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ABSTRACT 

Classical wave systems have been fertile grounds where topological physics are 

investigated, enabling the discoveries of numerous intriguing phenomena such as 

backscattering-free chiral edge states associated with the quantum Hall–like effect 

and localized edge (corner) modes due to the quantized bulk dipole (quadrupole) 

moments. Much effort in this field has hitherto dedicated to the Hermitian 

Hamiltonians characterized by real-valued eigenfrequencies and orthogonal 

eigenvectors, while the intrinsically lossy nature of classical wave systems has 

inspired explorations towards their non-Hermitian counterparts for more realistic 

experimental investigations and practical applications. In this thesis, a series of non-

Hermitian topological phenomena are explored in elastic and acoustic lattices, 

aiming at offering new opportunities to explore topological physics and their 

potential applications in acoustic and elastic wave manipulation. 

 

This thesis starts with one-dimensional (1D) perturbative elastic metamaterials based 

on the Su–Schrieffer–Heeger (SSH) model to investigate the Hermitian topological 

edge states and their non-Hermitian counterparts. The designed metamaterials are 

tight-binding chains consisting of square plates (corresponding to mass points) 

connected by thin beams (corresponding to rigid bonds). For the hypothetically 

Hermitian case, alternating coupling strengths contribute to dimerization which gives 

rise to topologically non-trivial and trivial band gaps as well as the associated 

topological edge states. For the non-Hermitian case, uneven absorptive damping 

treatments applied to the double-sized unit cell modulate the system in a similar way 



 

ii 

as the uneven damping treatments are capable of creating topological edge states 

even under identical coupling strength.  

 

In the next chapter, it is shown that the topological edge states can be shifted to 

coexist with a bulk band, rather than emerging in a band gap as commonly seen, 

forming the so-called topological bound states in the continuum (BICs). These 

embedded topological states are observed in a 1D trimerized elastic lattice, which are 

produced solely by non-Hermiticity realized using constrained damping layers 

attached to particular sites in the finite-sized chain assembly. The results indicate that 

appropriately tailored non-Hermitian modulation can induce topological edge states 

that appear in the bulk spectrum, not necessarily requiring the construction of band 

gaps.  

 

This thesis further extends the 1D topological phenomena to a two-dimensional (2D) 

space, which could control not only the first-order topological edge states but also 

the second-order topological corner states. Different from the conventional wisdom 

that a topological state is usually altered with varied topological phase, this chapter 

shows an exception in non-Hermitian acoustic crystals. In an acoustic quadrupole 

topological insulator (QTI), its topological corner, edge and bulk states can be 

arbitrarily engineered at any desired positions with its topological phase maintained. 

These non-Hermiticity-controlled topological states bestow a bulk structure with 

unique features and versatilities not available in Hermitian scenarios. 

 

The above studies only concern topological phenomena in either fluids or solids 

alone, with fluid-solid interactions neglected. The following chapter attempts to 
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answer the question on how intricate fluid-solid interactions in “mixtures” can breed 

novel topological physics. With a simple three-dimensional (3D) phononic crystal 

immersed in water, this chapter shows that the unique interplay between fluids and 

solids can be utilized to realize type-II nodal rings, elusive in phononics. Strongly 

tilted drumhead surface states, the hallmark phenomena, are also experimentally 

demonstrated.  

 

In summary, starting from 1D elastic lattices to 2D acoustic lattices, and finally to a 

3D phononic crystal with fluid-solid interaction coming into play, multiple new 

breeds of topological phenomena are demonstrated both in theory and experiment. 

These results extend the topological physics beyond the conventional Hermiticity 

assumption and offer reconfigurable and versatile approaches to manipulating 

topological phenomena. Besides, these phononic approaches open a door to explore 

topological physics in classical systems, which is easy to implement and can be used 

for designing high-performance devices. 

  



 

iv 

PUBLICATIONS ARISING FROM THE 

THESIS 

Refereed Journal Papers 

1. Haiyan Fan, He Gao, Shuowei An, Zhongming Gu, Shanjun Liang, Yi Zheng, 

and Tuo Liu*, “Hermitian and non-Hermitian topological edge states in one-

dimensional perturbative elastic metamaterials” Mechanical Systems and 

Signal Processing 169,108774 (2022). 

2. Haiyan Fan, He Gao*, Shuowei An, Zhongming Gu, Yafeng Chen, Sibo 

Huang, Shanjun Liang, Jie Zhu, Tuo Liu*, and Zhongqing Su*, “Observation 

of non-Hermiticity-induced topological edge states in the continuum in a 

trimerized elastic lattice” Physical Review B 106, L180302 (2022).  

3. Haiyan Fan, He Gao*, Tuo Liu, Shuowei An, Xianghong Kong, Guoqiang 

Xu, Jie Zhu, Cheng-Wei Qiu*, Zhongqing Su*, "Reconfigurable topological 

modes in acoustic non-Hermitian crystals" Physical Review B 107, L201108 

(2023). (Editors’ Suggestion) 

4. Xiaoxiao Wu, Haiyan Fan, Tuo Liu, Zhongming Gu, Ruo-Yang Zhang, Jie 

Zhu*, and Xiang Zhang*, “Topological phononics arising from fluid-solid 

interactions” Nature Communications 13, 6120 (2022). (Co-first author) 

5. Shuowei An, Tuo Liu, Haiyan Fan, He Gao, Zhongming Gu, Shanjun Liang, 

Sibo Huang, Yi Zheng, Yafeng Chen*, Li Cheng*, Jie Zhu*, “Second-order 

elastic topological insulator with valley-selective corner states” International 

Journal of Mechanical Sciences 224, 107337 (2022). 

6. Yi Zheng, Shanjun Liang, Haiyan Fan, Shuowei An, Zhongming Gu, He 

Gao, Tuo Liu*, Jie Zhu, “Acoustic Luneburg lens based on a gradient 

metasurface for spoof surface acoustic waves” JASA Express Letters 2, 

024004 (2022). 



 

v 

7. Lei Fan, Yafeng Chen, Shuowei An, Tuo Liu, Haiyan Fan, Jie Zhu*, and 

Zhongqing Su*, “Local-Resonance-Induced Dual-Band Topological Corner 

States of Flexural Waves in a Perforated Metaplate” Physical Review Applied 

19, 034065 (2023). 

  



 

vi 

ACKNOWLEDGEMENTS 

First and foremost, I would like to thank my chief supervisor, Prof. Zhongqing Su for 

his support in my research work and common life. He provides me so many valuable 

suggestions and enough degrees of freedom to support my research. I still remember 

the experience that I attended an international academic conference with him in the 

USA, he gave me many detailed suggestions about my slides and presentation, 

demonstrated how to give a clear speech and shared with me his experience of giving 

a presentation. Thanks to him, in every presentation after that, I kept his advice in 

mind and tried to give a vivid and impressive speech. Meanwhile, my deep 

appreciation is dedicated to my supervisor, Prof. Jie Zhu, who gave me great support 

in daily life and generous help for career planning. I also want to express my 

gratitude to my supervisor, Prof. Tuo Liu. He is a young professor fighting in the 

front line of scientific research. I always set him as my benchmark. Due to his 

meticulous guidance and vast knowledge, my independent research ability and 

writing skills have been significantly improved. I wish to thank Prof. Cheng-Wei Qiu 

from the National University of Singapore who gave me a precious opportunity in 

the attachment program as a host supervisor. The experience broadens my views on 

metamaterials and benefits me a lot beyond academics. I was fortunate to have so 

many kind, patient and intelligent Ph.D. supervisors. 

 

Next, I would like to convey my gratitude to the technicians of ME department, Mr. 

Billy Yan, and Dr. Stephen Ng who always help me when I encounter some 

experimental problems. At the same time, many thanks to Ms. Lily Tam, Mrs. 



 

vii 

Michelle Lai, Mrs. Merlin Wong and Mrs. Yan Wong for their work on various 

general affairs.  

 

In addition, I would like to thank my colleagues and friends in the PolyU. With help 

from Dr. He Gao, Dr. Zhongming Gu, Dr. Shanjun Liang, Dr. Shuowei An, Dr. Sibo 

Huang and Mr. Lei Fan, I become familiar with my research topics and experimental 

equipment soon. I am also grateful to every friend from everyday birthday team, we 

shared much time together during the lockdown period and gave each other great 

support and companionship. 

 

Last but not least, my deepest appreciation is given to my family members and my 

beloved husband. Their selfless support and encouragement give me the power, 

strength and courage in pursuing my PhD degree. 

  



 

viii 

NOMENCLATURE 

Acronyms and Initialisms 

QHE 

2D 

Quantum Hall Effect  

Two-dimensional 

QSHE 

3D 

Quantum Spin Hall Effect 

Three-dimensional 

TSMs Topological Semimetals 

TIs Topological Insulators 

TRS Time Reversal Symmetry 

PT 

1D 

TBMs 

SSH 

QVHE 

DPs 

TPTs 

Parity-Time 

One-dimensional 

Tight-binding Models 

Su–Schrieffer–Heeger 

Quantum Valley Hall Effect 

Dirac points 

Topological Phase Transitions 

QTI Quadrupole Topological Insulator 

EP Exceptional Point 

DSSs Drumhead Surface States 

HOTIs Higher-order Topological Insulators 

BZ Brillouin Zone 

T Time-reversal 



 

ix 

P 

DOF 

Parity 

Degree of Freedom 

LCP Left-handed Circular Polarization  

RCP Right-handed Circular Polarization  

0D Zero-dimensional 

BBH Benalcazar, Bernevig and Hughes 

S Symmetric 

A 

FRF 

Anti-symmetric  

Frequency Response Function 

AD 

ID 

Additional Damping 

Intrinsic Damping 

BICs Bound States in the Continuum 

HLS High-loss Subarea 

LLS Low-loss Subarea 

WG  Waterborne Guided 

FL Flexure Lamb 

EL Extensional Lamb 

SH Shear Horizontal  



 

x 

Symbols 
χ Geometric topological invariant 

K Gaussian curvature 

g Number of holes 

C Chern number 

  Berry curvature 

k  Wave vector 

( )k  Periodic part of a wavefunction 

H Hamiltonian matrix 

t Intra-cell hopping 

s Inter-cell hopping 

  Nearest-neighbour hopping 

ϑ Zak phase 

a Lattice constant 

γ Intra-unit coupling 

  

  

Inter-unit coupling 

Coupling strength 

E0 Young’s modulus 

ρ Density 

ν Poisson’s ratio 

zu  Out-of-plane displacement 

w Width of the beam 

h Distance from the beam to the nodal line 

l Length of the beam 



 

xi 

0f  First non-rigid-body resonance frequency 

c Sound speed 

w  Resonance perturbation strength 

  Coupling perturbation strength 

( )X   Velocity/displacement/acceleration response signal in 

frequency domain 

( )F   Excitation force in frequency domain 

  Angular frequency 

( )X t  Velocity/displacement/acceleration response signal in 

time domain  

( )F t  Excitation force in time domain 

( )H   Frequency response function 

d0 Intrinsic damping 

d1 Additional damping 

p Biorthogonal polarization 

f  Frequency deviation 

1  Intrinsic loss 

2  Additional loss 

  Loss contrast 

  Loss perturbation strength 

xp  Quantized edge polarization along x 

yp  Quantized edge polarization along y 

Δω Frequency variation 



 

xii 

ωmid The middle of frequencies 

D Bending stiffness 

Mz Mirror symmetry along z 

1n  Eigenmode one 

2n  Eigenmode two 

Vw Fluid domain of the unit cell 

Vm Solid domains of the unit cell 

e Elastic strain tensor 

C  Stiffness tensor connecting stress and strain of the solid 

  



 

xiii 

TABLE OF CONTENTS 

ABSTRACT .................................................................................................................. i 

PUBLICATIONS ARISING FROM THE THESIS ............................................... iv 

ACKNOWLEDGEMENTS ....................................................................................... vi 

NOMENCLATURE ................................................................................................. viii 

TABLE OF CONTENTS ......................................................................................... xiii 

LIST OF FIGURES ............................................................................................... xviii 

CHAPTER 1 Introduction .......................................................................................... 1 

1.1 Background and Motivation ........................................................................... 1 

1.2 Research Objectives ....................................................................................... 5 

1.3 Organization of the Thesis ............................................................................. 6 

CHAPTER 2 State of the Art of Acoustic and Elastic Topological States: A 

Literature Review ......................................................................................................... 9 

2.1 Introduction .................................................................................................... 9 

2.2 Acoustic Topological Insulators ................................................................... 10 

2.2.1 One-dimensional Acoustic Topological Insulators ............................... 11 

2.2.2 Two-dimensional Acoustic Topological insulators ............................... 13 

2.2.3 Three-dimensional Acoustic Topological Insulators and Topological 

Semimetals .......................................................................................................... 20 

2.2.4 Higher-order Acoustic Topological Insulators ...................................... 24 

2.3 Elastic Topological Insulator ........................................................................ 27 

2.3.1 One-dimensional Elastic Topological Insulators................................... 28 



 

xiv 

2.3.2 Two-dimensional Elastic Topological Insulators .................................. 29 

2.3.3 Three-dimensional Elastic Topological Insulator and Topological 

Semimetals .......................................................................................................... 31 

2.3.4 Higher-order Elastic Topological Insulator ........................................... 32 

2.4 Non-Hermitian Topological Physics ............................................................ 34 

2.5 Summary ...................................................................................................... 37 

CHAPTER 3 Hermitian and Non-Hermitian Topological Edge States in One-

dimensional Perturbative Elastic Metamaterials .................................................... 39 

3.1 Introduction .................................................................................................. 39 

3.2 Hermitian Topological Edge States Based on Su-Schrieffer-Heeger Model 41 

3.2.1 Tuning the Coupling Strength Between the Plates ................................ 41 

3.2.2 Band Diagrams and Zak Phase of the Hermitian Unit Cell .................. 43 

3.2.3 Topological Edge States in Finite-Sized Hermitian Chains .................. 45 

3.2.4 Robustness of the Hermitian Topological Edge States ......................... 46 

3.2.5 Experimental Validation of the Hermitian Chain .................................. 48 

3.3 Non-Hermitian Counterparts in Perturbative Elastic Metamaterials ........... 51 

3.3.1 Band Diagrams and Biorthogonal Polarization .................................... 51 

3.3.2 Topological Edge States in Finite-Sized Non-Hermitian Chains .......... 54 

3.3.3 Robustness of the Non-Hermitian Topological Edge States ................. 55 

3.3.4 Experimental Results of Single Plate with Intrinsic and Additional 

Damping .............................................................................................................. 56 

3.3.5 Experimental Results of the Non-Hermitian Chain .............................. 58 



 

xv 

3.4 Summary ...................................................................................................... 60 

CHAPTER 4 Non-Hermiticity-Induced Topological Edge States in the 

Continuum in a One-dimensional Trimerized Elastic Lattice ............................... 61 

4.1 Introduction .................................................................................................. 61 

4.2 Band Diagrams and Topological Invariant of the Infinite-sized Chain ....... 63 

4.3 Topological Edge States in the Continuum of the Finite-sized Chain ......... 66 

4.3.1 Topological Edge States for a Lattice without Defects ......................... 66 

4.3.2 Eigenfrequencies of a Trimerized Lattice with Defects ........................ 67 

4.3.3 Robustness of the Edge States in the Continuum ................................. 68 

4.3.4 Hermitian Counterpart of the Trimerized Lattice.................................. 70 

4.4 Experimental Validation ............................................................................... 73 

4.4.1 Experimental Results for the Bare Plate and Composite Plate ............. 73 

4.4.2 Experimental Results for the Finite-sized Chains ................................. 75 

4.5 Summary ...................................................................................................... 77 

CHAPTER 5 Reconfigurable Higher-order Topological States in a Two-

dimensional Acoustic Non-Hermitian Lattice ......................................................... 79 

5.1 Introduction .................................................................................................. 79 

5.2 Theoretical Prediction Based on the Tight-Binding Model ......................... 80 

5.2.1 Non-Hermiticity-Induced Newly Emerged Corner and Edge States .... 80 

5.2.2 Eigenvalue Evolution ............................................................................ 82 

5.2.3 Exceptional Point .................................................................................. 83 

5.2.4 Robustness of the Corner States ............................................................ 85 



 

xvi 

5.3 Experimental Results ................................................................................... 86 

5.3.1 Acoustic Quadrupole Topological Insulator ......................................... 86 

5.3.2 Measured Response Spectra for the Single Cavities ............................. 87 

5.3.3 Measured Profiles of a Lattice with Rectangular High Loss Subarea .. 88 

5.3.4 Measured Profiles of a Lattice with L-shaped High Loss Subarea ....... 91 

5.4 Numerically Simulated Field Intensity Distribution .................................... 93 

5.5 Summary ...................................................................................................... 96 

CHAPTER 6 Topological Phenomena Arising from Fluid-solid Interactions in a 

Three-dimensional Phononic Crystal ....................................................................... 97 

6.1 Introduction .................................................................................................. 97 

6.2 Nodal Rings Induced by Fluid-solid Interaction .......................................... 98 

6.2.1 Simulated Band Diagram of the Three-dimensional Unit Cell .................. 98 

6.2.2 Origin and Analysis of the Nodal Rings .................................................. 102 

6.2.3 Experimental Observation of Type-II Nodal Rings ................................. 110 

6.3 Strongly Tilted Drumhead Surface State ................................................... 112 

6.3.1 Distribution of Zak Phase ................................................................... 112 

6.3.2 Experimental Observation of the Drumhead Surface State ................ 115 

6.4 Summary .................................................................................................... 118 

CHAPTER 7 Concluding Remarks and Recommendations for Future Study .. 119 

7.1 Concluding Remarks .................................................................................. 119 

7.2 Recommendations for Future Study .......................................................... 121 

Appendix  .................................................................................................................. 125 



 

xvii 

A. Tight-binding Model Calculation .................................................................... 125 

B. Adjusting the Frequency Deviation due to Coupling Beams ........................... 127 

C. Eigenfrequency Evolution with Increased non-Hermitian Modulation ........... 128 

D. Frequency Response Function Spectrum for the Host Plate without the Hole 130 

E. Quadrupole Topological Insulator .................................................................... 131 

E. Eigenfrequencies for Different High-loss Subareas ......................................... 134 

F. Band Diagrams Slightly Away from High-symmetry Planes ........................... 136 

G. Transfer Matrix Method ................................................................................... 137 

H. Control Experiment with Lattice Constant 4 mm ............................................ 140 

I. Experimentally Imaged Field Maps .................................................................. 144 

Bibliography ............................................................................................................. 145 

  



 

xviii 

LIST OF FIGURES 

Figure 1.1 Basic examples of different topological objects. Different shapes are 

indicated by different topological invariants. ....................................................... 1 

Figure 2.1 Acoustic analogue of the SSH model [38]. (a) Schematic of a 

dimerized SSH chain with lattice constant a and hopping terms t and s. (b) Band 

diagrams of infinite SSH chain with different values of t s .  (c) 

Implementation of the SSH model with acoustic linked cavities. (d) Simulated 

Bloch wavefunctions for the two bands correspond to the BZ centre (k = 0) and 

BZ edge (k = 1, in units of π/a). ......................................................................... 13 

Figure 2.2 The cyclotron motion of the electrons in magnetic field, leading to 

the QHE [38]. ..................................................................................................... 14 

Figure 2.3 Acoustic analogues of the QHE. (a) Schematic of an acoustic QHE. 

The white circles are solid rods. (b) Frequency evolution with increased flow 

velocity. The DP is lifted when the velocity is nonzero. (c) Band diagram for a 

ribbon supercell. The edge band is marked by the red line [47]. (d) Simulated 

field profiles of the edge state in an acoustic lattice with cavity defect (top) and 

a bending (bottom) [43]. (e) Experimental sample of an acoustic QHE [46]. ... 16 

Figure 2.4 Acoustic analogues of the QSHE. (a) Schematic of an acoustic 

QSHE. The white circles are metallic rods, and the light blue region is fluid. (b) 

Topological phase transition. (c) Band diagram for a ribbon supercell. The red 



 

xix 

and blue dots represent the acoustic pseudospin-up and pseudospin-down edge 

states [47]. (d) An experimental set-up of an acoustic QSHE (left) and the 

simulated sound field profiles (right) in three different configurations, 

corresponding to three types of defects [50]. ..................................................... 18 

Figure 2.5 Acoustic QVHE. (a) Schematic of an acoustic QVHE. The white 

triangles are solid rods, and the light blue region is air. (b) Topological phase 

transition. (c) Band diagram for a ribbon supercell. The red and blue dots 

represent the valley edge states [47]. (d) An experimental sample of an acoustic 

QVHE (left) and the simulated sound field profiles (right) in a zigzag path [57].

 ............................................................................................................................ 20 

Figure 2.6 Band diagrams for 3D DP (left) and topological band gap (right) by 

z-axis folding and breaking, respectively. Insets indicate the corresponding 

acoustic unit cells [59]. ...................................................................................... 21 

Figure 2.7 Schematic of band degeneracies in TSM. (a) The Weyl points and 

the surface Fermi arc. (b) A 3D DP [65]. (c) A straight nodal line [47]. (d) The 

nodal chains [66]. Type-I (e), Type-II (f) and hybrid (g) nodal rings [64]. ........ 22 

Figure 2.8 Acoustic Weyl points and nodal rings. (a) Unit cell of an acoustic 

Weyl lattice. (b) Weyl points in momentum space [68]. (c) The measured 

acoustic Fermi arcs [69]. (d) Measured field profile of topological negative 

refraction [71]. (e) Measure acoustic nodal rings [73]. ...................................... 24 

Figure 2.9 Schematic diagrams of HOTIs in two and three dimensions [65]. .. 25 



 

xx 

Figure 2.10 Acoustic HOTI. (a) Acoustic design of positive and negative 

coupling strengths [33]. (b) A non-symmorphic acoustic lattice used to achieve 

quadrupole moment [81]. (c) An experimental kagome lattice sample [35]. (d) 

Measured transmission spectra for corner, hinge, surface and bulk modes [85]. 

(e) Measured field profile for the corner states [88]. ......................................... 27 

Figure 2.11 Elastic analogues of the 1D SSH model. (a) Topological interface 

states implemented in shear horizontal guided waves [90]. (b) Topological 

nontrivial band gap realized in cylindrical granular particles [91]. ................... 28 

Figure 2.12 Elastic topological insulator in 2D structures. (a) Band diagram of 

the honeycomb gyroscopic lattice. The inset is the schematic of a unit cell [94]. 

(b) Experimental sample of the gyroscopic lattice [95]. (c) Band diagram with 

lifted double DP [97]. (d) A topological waveguide with a Z-shape realized in a 

perforated thin plate [99]. (e) Experimental sample for elastic QVHE with 

unbalanced masses [100]. (f) Experimental sample fabricated on the silicon chip 

with QVHE [101]. .............................................................................................. 30 

Figure 2.13 Elastic TIs and Weyl semimetals in 3D structures. (a) Experimental 

sample of 3D elastic TI based on the monolayer-stacked honeycomb lattice. The 

side and top views of the 3D structure are shown in the bottom panels. (b) The 

simulated displacement field profiles of the layer-dependent surface states [105]. 

(c) Schematic for the stacked lattice (blue) and chiral interlayer coupling 

(orange). The right panel is the slanted view. (d) Spatial Fourier transformed 



 

xxi 

contours of the real-space displacement field profiles of the surface states on the 

x-z (left) and y-z plane (right), respectively, showing the Fermi arcs [107]. ...... 32 

Figure 2.14 Elastic HOTI. (a) Implementation of an elastic QTI based on 

perturbative elastic metamaterials [113]. (b) Experimental sample of an in-plane 

HOTI based on a Kagome lattice [112]. (c) A out-of-plane HOTI based on a 

honeycomb lattice [114]. (d) An elastic HOTI based on a square lattice [111]. 34 

Figure 2.15 Non-Hermitian topological phenomena induced by the on-site 

gain/loss. (a) The normal EP in a two-level system. (b) The real (left) and 

imaginary (right) line gaps. (c) The complex SSH model with alternating gain 

and loss (upper). The calculated eigenvalues if the SSH chain (lower) [65]. (d) 

The experimental sample of the non-Hermiticity induced HOTI [19]. (e) The 

reconfigurable topological interfaces enabled by selectively pump the lattice 

[127]. .................................................................................................................. 37 

Figure 3.1 Parameter dependencies of the split eigenfrequencies for the double-

plate structures. (a) Schematic of the double-plate structures. (b)-(d) The two 

split eigenfrequencies plotted as a function of, 0w w , 0h h  and 0l l  

respectively. 1471 Hz is the eigenfrequency of the single plate. ....................... 43 

Figure 3.2 Band diagrams of the Hermitian unit cells. Schematics of the (a) 

non-trivial and (b) trivial unit cells for the elastic SSH chains. (c), (d) 

Corresponding band diagrams (the bule dotted lines) of the lattices in (a) and (b), 

respectively. The Zak phase is π for    and 0 for   . ............................. 45 



 

xxii 

Figure 3.3 Hermitian topological edge states. (a), (b) Numerically evaluated 

eigenfrequencies for finite-sized non-trivial and trivial 1D chains (5 unit cells), 

respectively. (c) Simulated out-of-plane displacement component of the edge 

states at 1544 Hz. Two edge states are respectively mirror symmetric and 

asymmetric about the middle-dotted line. .......................................................... 46 

Figure 3.4 Robustness of the edge states. The eigenfrequencies at different 

strengths of (a) random coupling perturbations and (b) random resonance 

perturbations for the 1D finite-sized Hermitian chain. ...................................... 48 

Figure. 3.5 Schematics of experiments. (a) Signal path in measuring all the FRF 

spectra. (b) Experimental set-up. ....................................................................... 49 

Figure 3.6 Forced responses of the finite-sized Hermitian SSH chains. Photos 

of the (a) non-trivial and (b) trivial elastic chain samples. (c), (d) Measured FRF 

spectra of the bulk (blue circle curve) and edge (red circle curve) plates for the 

non-trivial 1D chain (c) and trivial 1D chain (d), respectively. The gray regions 

indicate the complete band gap range. ............................................................... 51 

Figure 3.7 Band diagrams of non-Hermitian unit cells. (a), (b) Schematics of 

unit cells for non-Hermitian elastic SSH chains. L = 41 mm, W = 14.5 mm. (c), 

(d) Corresponding band diagrams (dotted lines) of the lattices in (a) and (b), 

respectively. The solid blue lines are the band diagram of unit cell without AD 

treatment indicated by the insets. ....................................................................... 54 

Figure 3.8 Topological edge states induced solely by non-Hermiticity. (a), (b) 



 

xxiii 

Simulated eigenfrequencies for finite-sized non-trivial and trivial 1D chains (3 

unit cells), respectively. (c) Simulated out-of-plane displacement fields of the 

edge states at 1135 Hz. Two edge states are respectively mirror symmetric and 

asymmetric about the middle dotted line. .......................................................... 55 

Figure 3.9 Robustness of the edge states. The eigenfrequencies at different 

strengths of (a) random coupling perturbations and (b) random resonance 

perturbations for the 1D finite-sized non-Hermitian chain. ............................... 56 

Figure 3.10 Forced responses of single plates with ID and AD. (a) Top view of 

experimental sample with only ID. L1 = 41 mm, W1 = 14.5 mm. (b) Top view of 

experimental sample with AD layer. L2 = 46 mm, W2 = 12 mm. (c), (d) FRF 

curves for the single plate correspond to (a) and (b), respectively. The blue 

circle curves represent the measured results, and the red solid curves are 

simulated results. ................................................................................................ 57 

Figure 3.11 Forced responses of the finite non-Hermitian SSH chains. Photos of 

(a) non-trivial and (b) trivial elastic chain samples. (c), (d) Measured (blue 

circle) and simulated (red line) FRF bulk curves of the non-trivial 1D chain (c) 

and trivial 1D chain (d). (e), (f) Measured (blue circle) and simulated (red line) 

FRF edge curves of the non-trivial 1D chain (e) and trivial 1D chain (f). ......... 59 

Figure 4.1 Band diagrams of the trimerized elastic lattices in the absence and in 

the presence of the non-Hermitian modulation. (a), (b) Schematic diagrams of 

the unit cells for the trimerized lattices with only intrinsic material damping and 



 

xxiv 

with AD treatment (applied to the middle plate colored in blue), respectively. L 

= 40 mm, D = 15 mm, l = 22.5 mm, c = 1.5 mm. (c), (d) Calculated band 

diagrams corresponding to the unit cells in (a) and (b), respectively. The general 

Zak phases for the three bands in (d) are calculated to be π, 0, π, respectively. 65 

Figure 4.2 Topological edge states in the continuum for the chain system with 

15 resonators. (a) The schematic of the chain composed of 5 unit cells. The red 

box indicates the trimerized non-trivial unit cell. Simulated real parts (b) and 

imaginary parts (c) of the complex eigenfrequencies for the non-trivial chain. (d) 

The out-of-plane displacement of the edge states at 2676 Hz. S (A) indicates the 

edge state profile is symmetric (anti-symmetric) about the dotted central line. 67 

Figure 4.3 Eigenfrequencies of a trimerize lattice with one defect at each 

boundary. (a) The schematic of the chain with defects. Simulated real parts (b) 

and imaginary parts (c) of the complex eigenfrequencies for the chain. ........... 68 

Figure 4.4 Topological robustness of the edge states in the continuum in a long 

chain with 40 unit cells. (a) The real part of eigenfrequencies with the increase 

of randomness on coupling disorders. Red box marks the edge states. (b) 

Displacement field profiles of the eigenstates at 𝛿𝜅 = 0.04 as marked by the 

vertical red dotted lines in (a). The red lines indicate two edge states. (c) The 

real parts of eigenfrequencies with the increase of randomness on resonance 

disorders. (d) Displacement field profiles of the eigenstates at 𝛿𝜔 = 0.04 as 

marked by the red dotted lines in (c). ................................................................. 70 



 

xxv 

Figure 4.5 Topological edge states in finite-sized Hermitian chains. (a) The 

non-trivial trimerized unit cell. (b) The trivial trimerized unit cell. (c), (d) 

Simulated band diagrams corresponding to the unit cells in (a) and (b), 

respectively. (e), (f) Simulated eigenfrequencies for finite-sized chain composed 

of unit cells in (a) and (b), respectively. (g) The out-of-plane displacement of the 

edge states at 2986 Hz (the upper two state profiles) and 2945 Hz (the lower two 

state profiles). ..................................................................................................... 72 

Figure 4.6 Forced responses of the plates with and without constrained 

damping layer. (a) Schematic of the composite plate with constrained damping 

layer. (b) Schematic of the aluminum alloy plate with a circular through hole. D 

= 15 mm. (c), (d) FRF spectra for the single plate illustrated in (a) and (b). The 

blue circles are the measured results, and the red solid lines present the 

simulated results. ................................................................................................ 75 

Figure 4.7 Forced responses of the 1D truncated lattice chains. (a) Photo of the 

sample without defects at boundaries. (b) Measured FRF spectra of the chain in 

(a). (c) Enlarged view of the green curve in (b). (d) Photo of the sample with 

defects at boundaries. (e) Measured FRF spectra of the chain in (d). (f) Enlarged 

view of the green curve in (e). ........................................................................... 77 

Figure 5.1 Non-Hermitian modulation of the topological states in a QTI. (a), (b) 

Schematics of the QTI with the imbalanced loss distributions. The dotted black 

box delineated one unit cell. (c), (d) The topological corner mode shape for the 



 

xxvi 

TBMs in (a) and (b), respectively. (e), (f) The topological edge state shape for 

the TBMs in (a) and (b), respectively. In (c)-(f), the areas inside the dotted black 

boxes possess additional losses. Both the size and the color of the dots in (c)-(f) 

represent the intensity. ........................................................................................ 81 

Figure 5.2 The evolution of the eigenvalue versus the loss contrast. (a), (b) 

Calculated real parts of the complex eigenvalues for the lattice illustrated in Fig. 

5.1(a) and Fig. 5.1(b), respectively. (c), (d) Calculated imaginary parts of the 

complex eigenvalues for the lattice illustrated in Fig. 5.1(a) and Fig. 5.1(b), 

respectively. The red dashed lines denote the value used in the following 

measurements. In all calculations, the loss coefficient 1 2.4 = , the intracell 

coupling strength 1 1 =  and intercell coupling strength 1 4.56 = . ................. 83 

Figure 5.3 Probing the existence of the EP by checking the corresponding 

eigenstates. (a) Schematics of the 72-site TBM. (b) The eigenfrequency 

evolution as a function of increased loss contrast, showing the bifurcation 

characteristic of the corner states. (c)-(e) The eigenstates of corner states, which 

are induced by imbalanced loss, before (c), at (d) and after (e) the EP, 

corresponding to the three gray dotted lines in (b). The intensity distributions in 

the 72-site lattice before, at and after the EP show the coupling, coalescence and 

decoupling effect between the high-loss and low-loss corner states, respectively.

 ............................................................................................................................ 85 

Figure 5.4 Robustness of the newly emerged corner states. The real parts of 



 

xxvii 

eigenvalue evolution with increased (a) coupling defect, (b) loss defect and (c) 

on-site potential defect. ...................................................................................... 86 

Figure 5.5 Schematic of an acoustic lattice which stringently satisfies the TBM 

in Fig. 5.1(a). The inset shows a unit cell of the lattice. .................................... 87 

Figure 5.6 Measured and simulated response spectra for the single cavities. 

Response spectrum for a single cavity with loss coefficient of γ1 (a) and γ2 (b). 

The blue circles are the measured results, and the red solid lines denote the 

fitted simulated results. ...................................................................................... 88 

Figure 5.7 Measured acoustic responses of the lattice with a rectangular HLS. 

(a) Photo of a sample with six-by-twelve site cavities. The inset illustrates one 

unit cell of the lattice. (b) Response spectra measured at cavities “1”, “2” and “3” 

marked in (a), corresponding to the edge-evolved corner (in red), bulk-evolved 

edge (in blue) and bulk (in gray) modes, respectively. (c)-(e) Measured intensity 

distributions at 2141 Hz, 2114 Hz and 2100 Hz, correspond to the peaks of the 

new corner, new edge, and bulk spectra, respectively........................................ 90 

Figure 5.8 Measured acoustic responses of the lattice with an “L” shaped HLS. 

(a) Photo of the sample with eight-by-twelve site cavities. (b) Measured spectra 

in cavities “1”, “4” and “5” labelled in (a), respectively, corresponding to the 

bulk-evolved corner (in red), bulk-evolved edge (in blue) and bulk (in gray) 

modes. The green spectrum is measured in cavity “2”, which is occupied by a 

bulk-evolved corner mode and two bulk modes. (c)-(e) Measured acoustic 



 

xxviii 

intensity profiles at 2141 Hz, 2114 Hz and 2100 Hz. ........................................ 92 

Figure 5.9 Full-wave simulation on the acoustic lattice with a rectangular HLS. 

(a) Simulated acoustic intensity spectra. Red, blue and gray spectra denote the 

edge-evolved corner, bulk-evolved edge, bulk spectra calculated at cavity “1”, 

“2” and “3” in Fig. 5.7(a), respectively. (b)-(d) Simulated field intensity 

distributions at the peak frequencies of the corner, edge and bulk intensity 

spectra, corresponding to the three black dotted lines in (a), respectively. ........ 94 

Figure 5.10 Full-wave simulation on the acoustic lattice with an “L” shaped 

HLS. (a) Simulated acoustic intensity. The simulated bulk-evolved corner, bulk-

evolved edge, and bulk spectra are represented by the red, blue and gray areas, 

respectively. (b)-(d) Simulated field intensity profiles at the peak frequencies of 

the corner, edge and bulk intensity spectra, respectively. .................................. 95 

Figure 6.1 Type-II nodal rings induced by fluid-solid interaction. (a) 

Perspective and cross-sectional views of the 3D phononic crystal. (b) Simulated 

band diagram along high-symmetry lines in first BZ. (c) Distribution of the 

nodal rings in the first BZ. The colors of the nodal rings are the same as the 

corresponding dots in (b). (d) Spectral variations of the three nodal rings. (e) 3D 

band diagrams of the first two modes on specified cross sections of the first BZ. 

Nodal rings formed by their crossings are denoted. ......................................... 101 

Figure 6.2 Mode profiles of the first four bands around Γ point. (a)-(d) 

Calculated field maps of the modes at k = (0.1π/a0, 0, 0), including the acoustic 



 

xxix 

pressure (Re(p)) and elastic displacements (Re(u), Re(v), Re(w)). The thin solid 

lines outline the profile of the unit cells without elastic displacements. .......... 102 

Figure 6.3 Band diagram of the phononic crystal without fluid-solid interaction. 

We only consider the longitudinal component of the system in the numerical 

calculations. Resultantly, the SH modes and Lamb modes (both FL and EL 

modes) that involve shear components disappear. ........................................... 103 

Figure 6.4 Origins and analysis of the nodal rings. (a) Band diagram of periodic 

metallic plates without perforations. (b) Distribution of the ideal type-II nodal 

ring for (a). ....................................................................................................... 104 

Figure 6.5 Comparison with the phononic crystal immersed in air. (a) The 

calculated band diagram with kz = 0 when the phononic crystal is immersed in 

air. (b) The normalized amplitude of averaged out-of-plane displacement 

(Abs(w)) for each layer of the aluminum plates when excited at the frequency of 

the nodal ring on kz = 0 for air and water, respectively. The excitation source is 

placed at the surface (N = 1). ........................................................................... 105 

Figure 6.6 Evolution of nodal rings when tuning thickness of plates. (a), (b) 

Calculated band diagrams when increasing thickness of plates, with tm = 3.0 mm 

(a) and tm = 4.0 mm (b), respectively. (c), (d) Calculated band diagrams when 

decreasing thickness of plates, with tm = 1.5 mm (a) and tm = 0.8 mm (b), 

respectively. ...................................................................................................... 106 

Figure 6.7 Evolution of the nodal rings, from uniform plates to plates with blind 



 

xxx 

holes and finally through holes. ....................................................................... 107 

Figure 6.8 Band diagrams when the plates are rigid. (a) Calculated band 

diagram of the unit cell when its solid domain is acoustically rigid, while 

geometric parameters are all the same. (b) Distribution of the nodal ring. (c) The 

field maps of the first two bands around the blue nodal ring. (d) Calculated band 

diagaram of the unit cell when the holes are blind holes. (e) Calculated band 

diagram when the thickness of rigid plates tm = 1.0 mm. (f) Distribution of the 

nodal rings. ....................................................................................................... 109 

Figure 6.9 Experimental observation of type-II nodal rings. (a) Schematic of 

experimental setup for near-field scanning. (b) Photograph of the sample and 

experimental setup. White scale bar: 40mm. (c) Spatial Fourier spectra of 

experimentally imaged fields at corresponding frequencies. Gray shaded regions: 

the sound cone projected on the kx-ky plane. (d) Experimental Fourier spectra 

along high-symmetry lines of the first BZ. The coloured dots represent the nodal 

rings of the same colour denoted in Fig. 6.1(b). .............................................. 111 

Figure 6.10 Numerical calculation of Zak phases. (a), (b) Numerically 

calculated Zak phases along the line ky = 0 (a) and kx = ky (b) in the surface first 

BZ. The dots represent numerical values calculated from full-wave simulations, 

and dashed lines represent theoretical values obtained from the distribution of 

nodal rings. (c), (d) Field maps of the eigenmodes of the first band at kz = 0 and 

kz = π/az, respectively, corresponding to kr = (0.6π/a0, 0) (c) and kr = (0.8π/a0, 0), 



 

xxxi 

indicated by arrows in (a). ................................................................................ 115 

Figure 6.11 Strongly tilted DSS between nodal rings. (a) Distribution of Zak 

phase on the surface first BZ projected along z direction. (b) Calculated band 

diagram of a supercell terminated by x-y surface. Red lines denote the strongly 

tilted DSSs. Gray shaded regions denote the projected bulk bands. (c) 

Calculated field profiles of acoustic pressure (Re(p)) and elastic displacements 

(Re(u), Re(v), Re(w)) for the marked point in (b). The thin solid lines outline the 

profile of the supercell without elastic displacements. (d) Experimental Fourier 

spectra along high-symmetry lines when launching and measuring the 

ultrasound at the same side of the phononic crystal. Triangle scatters: the 

simulated dispersion of the strongly tilted DSSs along the high-symmetry lines.

 .......................................................................................................................... 117 

Figure 7.1 Type-II Weyl points from lowering symmetries. (a) Schematic of the 

unit cell with lower symmetries. (b) Sectional schematics of the unit cell. (c) 

The calculated band structure on kz = 0. Inset shows the distribution of type-II 

Weyl points of opposite charges on kz = 0 plane. ............................................. 123 

Figure A1 Band diagrams of the lattice in (a) Fig. 3.2(a) and (b) Fig. 3.7(a) in 

the main text based on TBM. ........................................................................... 125 

Figure A3 Eliminating the deviation in frequency through design optimization. 

(a), (b) Schematics of the unit cells for the trimerized lattices with only intrinsic 

material damping and with AD treatment in the middle plate colored in blue, 



 

xxxii 

respectively. (c), (d) Calculated band diagrams corresponding to the unit cells in 

(a) and (b), respectively. The red circles present the TBM results, and the blue 

solid lines denote the numerical results. .......................................................... 128 

Figure A4 Eigenfrequency evolution as a function of increased non-Hermitian 

modulation for two long chains. Calculated real parts (a) and imaginary parts (b) 

of the complex eigenfrequencies for a finite-sized chain without defect. (c) 

Displacement field profiles of the eigenstatess at 𝑑1 − 𝑑0 = 0.0159 marked by 

the vertical red dotted line in (a). The red curves indicate the field distributions 

of two edge states. Calculated real parts (d) and imaginary parts (e) of the 

complex eigenfrequencies for a chain with a defect at each end. (f) 

Displacement field distributions of the eigenmodes at 𝑑1 − 𝑑0 = 0.0159 

marked by the vertical red dotted line in (d). ................................................... 130 

Figure A5 FRF spectra for the host plate. (a) Schematic of the host plate 

without the hole. (b) FRF spectra for the plate in (a). The blue circles and the 

red line present the measured and simulation results, respectively. ................. 131 

Figure A6 Energy Bands and Wannier bands. (a) Energy Band diagrams. The 

blue solid lines are numerical results, which are well-captured by the TBM 

results (red circles). The inset denotes the first BZ of the square lattice. (b) 

Wannier bands ( )
y( )xv k+ −  for Wannier Hamiltonian in Eq. (A7). ....................... 134 

Figure A7 Eigenfrequencies distributions of the lattices with (a) rectangular 

HLS and (c) “L” shaped HLS when 1/ 4.5  = . (b), (d) The sum of 



 

xxxiii 

probability distributions of the bulk modes in (a) and (c), respectively. .......... 135 

Figure A8 Calculated band diagrams on planes slightly away from high-

symmetry ones. (a)-(d) Calculated band diagrams on kz = 0 (a), kz = π/az (b), kz 

= 0.1π/az (c) and kz = 0.9π/az (d), respectively. The paths are indicated by 

equations in the figures, such as ky = kx and ky = 0. The touching points of the 

nodal rings demonstrated in (a) and (b), as denoted by the colored dots, are 

gapped correspondingly in (c) and (d), as indicated by the colored arrows. ... 137 

Figure A9 Schematic of the setup used to calculate dispersions with the transfer 

matrix method. ................................................................................................. 140 

Figure A10 Experimentally retrieved Fourier spectra for bulk bands. (a) 

Calculated band diagram when the in-plane lattice constant a0 = 4 mm. (b) 

Photographs of the control sample with a0 = 4 mm. Left panel: close view of the 

perforated holes. Blue scale bar: 8 mm. Right panel: top view. (c) 

Experimentally retrieved Fourier spectra along high-symmetry directions when 

a0 = 4 mm. (d) Experimentally retrieved Fourier spectra along high-symmetry 

directions when a0 = 3 mm for comparison, essentially the same as Fig. 6.9(d) 

in the main text. ................................................................................................ 142 

Figure A11 Experimentally retrieved Fourier spectra for surface states. (a) 

Projected band diagram for the supercell with a0 = 4 mm. (b) Experimentally 

retrieved Fourier spectra with a0 = 4 mm when probing surface states. (c) 

Projected band diagram for the supercell with a0 = 3 mm for comparison. (d) 



 

xxxiv 

Experimentally retrieved Fourier spectra with a0 = 3 mm for comparison when 

probing surface states, essentially the same as Fig. 6.10(d) in the main text... 143 

Figure A12 Experimentally imaged field maps. (a)-(d) The experimentally 

imaged field maps when probing surface states, exciting at the frequency (a) f = 

0.14 MHz, (b) 0.17 MHz, (c) 0.20 MHz, and (d) 0.23 MHz, respectively. The 

scale bar is 15 mm. ........................................................................................... 144 

 



 

1 

CHAPTER 1  

 

Introduction 

1.1 Background and Motivation  

Topology is initially a branch of geometric mathematics to study the unchanged 

characteristics of continuously deformed objects. For instance, in Fig. 1.1, a salient 

difference between a sphere and a torus can be intuitively recognized, that is, the 

number of holes. The hole number is identified by an equation: 

                                                   1= 2 2
2

KdS g


= −                                           (1.1) 

where χ is an integer number, named as geometric topological invariant, K is the 

Gaussian curvature defined on the surface, and g is the number of holes.  χ is fixed 

regardless of the any continuous deformation of the object, expect creating or 

eliminating holes inside the structure. 

 

Figure 1.1 Basic examples of different topological objects. Different shapes are 

indicated by different topological invariants. 
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In the 1980s, the remarkable discovery of the integer quantum Hall effect (QHE) in a 

two-dimensional (2D, unit cells periodically arranged along two spatial directions) 

electron gas under ultra-low temperature and a super strong magnetic field [1] 

brought the concept of topology into physics, triggering the tremendous exploration 

towards topological phenomena in condensed matter physics [2-4]. The topological 

phases of matter are characterized with insulating interior and robust conducting 

edges. The bulk-edge correspondence relates the existence of back-scattering 

immune edge states to the bulk topological invariants [5], which takes the form of 

                          1 1= ( ) ( ) ( )
2 2 k kC k dS i k k dS 
 

 =                              (1.2) 

where C is an integer number named physical topological invariant (Chern number), 

and ( )k  is the Berry curvature defined on the surface and can be written as 

( ) ( ) ( )k kk i k k  =    with ( )k  being the periodic part of the wavefunction 

on a Bloch band. After the discovery of QHE, other related topological phases have 

also been investigated, including the quantum spin Hall effect (QSHE) [6, 7], three-

dimensional (3D, unit cells periodically arranged along all three spatial directions) 

topological phases in topological semimetals (TSMs) [8-10] and topological 

insulators (TIs) [11, 12]. These phases of matter with robust edge states against local 

perturbations could offer greater possibilities for exploring sophisticated applications 

in electronic devices.  

 

Inspired by the progress of topological phases in condensed matter systems, their 

counterpart in classical wave systems, including acoustics and elastics (dubbed 

phononic crystals), have rapidly become artificial platforms to investigate novel 
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physical mechanisms and extraordinary phenomena associated with topological 

phases. Furthermore, acoustic and elastic wave systems can even facilitate the 

investigation of exotic phenomena previously unreachable or extremely difficult in 

condensed matter systems. They have several advantages in probing topological 

physics. First and foremost, they are robust to temperature and do not have inter-

particle interaction, which helps them to become exceptional macroscopic platforms 

to probe quantum physics that require complicated atomic-scale operations. Secondly, 

the design and fabrication of “atoms” and hopping strengths among “atoms” are 

more flexible and simper in acoustic and elastic topological structures, which 

facilitate the theoretical and experimental studies of topological phenomena in 

different dimensions as the “atoms” can be deliberately stacked. Thirdly, the 

observable frequency in phononic crystals is almost arbitrary, without the limitation 

in condensed matter systems, where investigation must take place close to the Fermi 

level. However, some barriers still exist during the implementation of topological 

phases in phononic crystals due to the lack of a half-integer spin of phonons and their 

inertia to external magnetic field. For instance, in the realization of QHE, the 

external magnetic field is exerted to break the time-reversal symmetry (TRS) of the 

electronic system. Instead, in the implementation of acoustic analogy of QHE, the 

creation of effective magnetic field that breaks TRS is realized by exerting a 

circulating airflow [13]. The investigation of topological phases in phononic crystals 

can enhance the flexibility to manipulate acoustic and elastic waves and lay the 

foundation for a series of promising applications, such as sound energy harvesting, 

high-quality sensors, and on-chip phononic circuits.  
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Most relevant studies in topological physics are based on the premise of Hermiticity, 

for its simplicity, with which the real eigenvalues and orthogonal eigenstates of their 

effective Hamiltonians ensure the well-defined topological invariants and bulk-edge 

correspondence [5, 14]. Acoustic and elastic wave systems, however, are naturally 

non-Hermitian with loss and/or gain arising from the energy exchange with the 

surrounding environment. In this regard, taking into consideration the effect of non-

Hermiticity when investigating acoustic and elastic topological phases represents a 

more realistic scenario and is thus essential for practical applications. Particularly, 

the intrinsic losses such as thermo-viscous and viscoelastic effects, major sources of 

non-Hermiticity in realistic scenario, are usually considered as negative factors as 

they naturally lead to energy dissipation and inevitably increase the difficulty in 

experimental implementation. Contrary to the negative impression of non-

Hermiticity, recent studies have indicated that it can bring about novel physical 

phenomena, such as non-Hermitian parity-time (PT) symmetry [15, 16], topological 

phase transition [17-20] and breakdown of fundamental bulk–edge correspondence 

[21-23]. 

 

Moreover, the quest for topological phononic systems often concerns sound in either 

fluids or solids alone (usually termed acoustic wave or elastic wave, respectively). As 

mechanical waves [24], sound propagates as a perturbation of pressure in fluids and 

elastic stress in solids, thereby being represented by a scalar field and vector field, 

respectively. This fundamental point leads to intrinsic differences in the dynamics 

and symmetries for sound in fluids and solids, a characteristic absent in photonics 

[25]. However, such intrinsic differences and their possible interactions have yet to 
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be considered in the development of topological phononics, even for underwater 

environment where the interactions can become considerable [26, 27]. 

 

1.2 Research Objectives 

Due to the fact that taking into consideration the effect of losses and fluid-solid 

interactions represents much more realistic scenarios in topological phononics, and 

motivated by the lack of investigations of topological phononics arising from non-

Hermiticity and fluid-solid interactions as commented above, this PhD study is 

dedicated at exploring new breeds of topological phases in phononic crystals based 

on non-Hermitian modulations and  fluid-solid interactions, from one-dimensional 

(1D, unit cells periodically arranged along only one spatial direction) elastic lattices, 

2D acoustic lattices, to 3D perforated elastic plates immersed in water. The designed 

elastic and acoustic lattices are the experimental implementations of the 

corresponding tight-binding models (TBMs) which significantly enrich the 

topological physics and application prospects. To address the incompleteness and 

insufficiency of existing research woks on topological phononics, the following 

detailed objectives are set: 

 

(i) To calculate the well-defined topological invariant in the non-Hermitian setting; 

(ii) To design acoustic and elastic models with good manufacturability and 

functionality to investigate the non-Hermiticity-induced topological phases; 

(iii) To fabricate the experimental samples by 3D printing or laser cutting techniques 

with high precision;  

(iv) To set up the airborne acoustic, waterborne acoustic and elastic wave test 
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platforms, scrutinize the excitation and detection performances, and to conduct the 

relevant experiments; 

(v)  To evaluate the measured results of time domain signals, resonance frequencies, 

field maps in the real space for each frequency, and band diagrams in the reciprocal 

space; 

 

1.3 Organization of the Thesis 

This PhD study is devoted to investigating new topological phononic systems with 

topologically protected eigenstates arising from non-Hermiticity and fluid-solid 

interactions. These topological states are expected to feature merits of extraordinary 

reconfigurability, good flexibility, and excellent robustness to deliberately introduced 

defects. This thesis is organized in the order of increasing dimensionality, from 1D 

in-gap and in-band topological edge states in elastic lattice, through 2D 

reconfigurable higher-order topological states in acoustic lattice, to fluid-solid 

interactions induced topological phenomena in a 3D phononic crystal. 

 

A brief literature review that concerns acoustic and elastic TIs in three different 

dimensions, higher-order topological phenomena and non-Hermitian topological 

physics is presented in Chapter 2. Major achievements in this field are reviewed, 

including acoustic and elastic counterparts of 1D Su–Schrieffer–Heeger (SSH) model, 

2D TIs with QHE, QSHE, and Quantum Valley Hall Effect (QVHE), 3D TIs based 

on Dirac points (DPs, linear degenerate points in the band diagram), 3D TSMs with 

Weyl points and nodal lines (linear degenerate lines in the band diagram) and higher-

order TIs based on quantized bulk multipole moments, the nontrivial dipole moments, 
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and the multidimensional topological phase transitions (TPTs). The concrete 

examples regarding to the above topological phenomena are also briefly introduced.  

 

Chapter 3 is pertaining to the experimental demonstration of a type of elastic 

metamaterials, which is composed of aluminium resonant plates and thin linking 

beams, that can be described by the SSH model to realize topological edge states in 

elastic wave system under both Hermitian and non-Hermitian modulations. For the 

Hermitian case, alternating coupling strengths implemented by adjusting the linking 

positions of the thin beams are the reasons to induce TPTs. For the non-Hermitian 

case, additional added damping layers on the particular resonant plates of the 

metamaterial causes the emergence of topologically protected edge states. These 

results display the first experimental implementation of extending the topological 

physics in elastic wave systems beyond the conventional Hermiticity assumption. 

 

In Chapter 4, to lift the requirement of complete band gaps in studying topological 

physics, we experimentally demonstrate a non-Hermitian scheme to induce the in-

band topological edge states. The proposed trimerized elastic lattice is also a chain of 

plates connected through beams with equal coupling strength. We demonstrate that 

appropriately tailored non-Hermitian modulation can induce topological edge states 

that appear in the bulk spectrum rather than exist in the band gap. Besides, the 

existence of such topological edge states is observed to be closely linked to the 

configurations of the lattice boundaries.  

 

As the non-Hermitian modulations are successfully utilized in creating topological 

edge states in 1D structures, the 2D structures with higher-order topological states 
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under non-Hermitian modulations are investigated in Chapter 5.  A non-Hermitian 

recipe to realize reconfigurable topological interface waveguides and corner 

localizations based on an example of acoustic quadrupole topological insulator (QTI) 

is proposed. In experiments, the additional on-site losses are implemented by 

inserting the sound-absorbing sponges to specific cavities of the lattice, while 

keeping the other cavities intact. If the loss contrast between the two cavities exceeds 

a particular value [the exceptional point (EP) in eigenfrequency spectra], some newly 

topological states will emerge at the interfaces formed by different losses, leading to 

robust guiding and localization of acoustic waves with unchanged topological phase.  

 

In Chapter 6, we go a step further to consider fluid-solid interaction and 

experimentally observe type-II nodal rings and strongly tilted drumhead surface 

states (DSSs) in a simple 3D phononic structure immersed in water. The phononic 

structure is composed of layer-stacked metallic plates with perforated through holes 

arranged in square lattice. The nodal rings also touch with each other, forming the 

firstly observed nodal chains in sound waves. Our study demonstrates that the 

previously often neglected fluid-solid interaction can give rise to interesting 

topological phenomena unobtainable for solely fluid-borne or solid-borne sound.   

 

Chapter 7 is the concluding remarks of the thesis, and the recommendations for 

future research are also listed. 
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CHAPTER 2  

 

State of the Art of Acoustic and Elastic 

Topological States: A Literature Review 

2.1 Introduction  

It has been a long time for scholars to find new and efficient methods to manipulate 

sound and vibration, as they convey vital information to perceive the nature. The idea 

of metamaterials, artificially designed materials or structures with on-demand exotic 

properties not available in nature, has suggested a promising direction towards 

unprecedent capabilities to engineer the basic and intrinsic characteristics of sound 

and vibration including but not limited to amplitude, phase, frequency and mode 

shape [24, 28]. More recently, topological phenomena have provided alternative and 

unparalleled approaches for classical wave manipulation, giving rise to novel 

acoustic and elastic topological structures. The hallmark of 2D phononic TIs is the 

ability to form robust and defect-immune waveguides at the artificially designed 

interfaces or edges. The existence of  interface or edge states is governed by the 

bulk–edge correspondence associating these edge states with bulk topological 
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invariants [11, 12]. But the realistic applications of phononic TIs encounters some 

problems, such as the non-conservative characteristic of acoustic and elastic systems 

and fluid-solid interactions in the underwater environments. Interestingly, these 

problems in turn could lead to novel topological phenomena not found in 

conventional Hermitian framework.  

 

In this literature review, we retrospectively introduce the fundamental concepts of 

topological physics applicable to acoustic and elastic waves, starting from the 

acoustic and elastic topological families of 1D examples based on the SSH model, 

2D examples based on the time-reversal-broken topological phase of QHE and time-

reversal-invariant topological phases, including the QSHE and QVHE, 3D cases of 

TIs and TSMs, and higher-order topological insulators (HOTIs) due to quantized 

dipole or multipole moments or multidimensional TPTs. We then move on to the 

latest developments in the field of non-Hermitian topological physics, including non-

Hermiticity-induced TPTs and EPs.  

 

2.2 Acoustic Topological Insulators 

Acoustics is a branch of science that investigates sound and vibration phenomena 

ubiquitous in daily life, like speech and audio communication, musical instruments, 

noise, ultrasonic imaging, etc. Controlling sound flow at will has long been and will 

always be a central topic. Acoustic topological materials have been proposed as new 
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ways to manipulate sound wave propagation for decades. Many remarkable 

functionalities can be obtained by judiciously designing these artificial structures. In 

the following, we will review the most representative works of acoustic TIs in 1D, 

2D and 3D structures. 

 

2.2.1  One-dimensional Acoustic Topological Insulators 

The SSH model for polyacetylene [29, 30] is one of the simplest and most typical 

paradigms with non-trivial topological states. The model is composed of a 

periodically arranged 1D chain of atoms with alternating hopping terms, intra-cell 

hopping t and inter-cell hopping s between the nearest neighbours [Fig. 2.1(a)]. The 

tight binding Hamiltonian matrix takes the form of  

                                                         
0

=
0

H


 

 
 
 

                                                    (2.1) 

where = ikt se −+ and k is the Bloch wavenumber. Changing the value of t s  can 

open or close the complete band gap. For 1t s  , a complete band gap appears in 

the band diagram; otherwise, the gap closes and two bands degenerate at the 

Brillouin zone (BZ) edge [Fig. 2.1(b)]. The right-most panel in Fig. 2.1(b) manifests 

that the eigenfrequencies of the two bands at the BZ edge are dependent on the value 

of t s . 

 

The acoustic implementation of the tight binding Hamiltonian matrices has been 

experimentally proposed with coupled resonant cavities [31-35]. Each atomic site is 

replaced by an acoustic resonant cavity, and the hoppings between the atoms are 

mimicked by the thin tubes that connect the adjacent resonators. Here, different 
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hopping strengths are easily obtained by changing the cross-sectional areas of the 

coupling tubes, and the acoustic SSH chain is depicted in Fig. 2.1(c). 

 

The Bloch wavefunctions of this acoustic SSH model is easy to examine, revealing 

that when 1t s  , these two bands possess different symmetries (if one is symmetric 

then the other one must be antisymmetric) at the BZ edge. Besides, the symmetries 

are reversed after crossing the degenerate point 1t s = . This evolution of the 

wavefunction symmetries can be evaluated by the Zak phase ϑ, which is a specific 

kind of the aforementioned topological invariants defined for isolated bulk bands 

[36]. Here, the Zak phase ϑ is calculated by integrating the Berry curvature over the 

first BZ, as defined in Eq. (1.2), and it turns out that for 1t s  , the Zak phase takes 

the quantized value of π, for 1t s  , ϑ = 0. The Bloch wavefunctions of acoustic 

unit cells are indicated in Fig. 2.1(d), showing that the value of Zak phase can also be 

determined by comparing the wavefunctions at the edge (k = π/a) and center (k = 0) 

of the first BZ. If the wavefunctions switch symmetry at the center and edge of the 

first BZ, the Zak phase of this band is π; if the symmetry remains the same in this 

process, the Zak phase is 0 [37]. The topological concept of bulk–edge 

correspondence [5] can further predict the existence of topological edge states using 

bulk band characteristics (topological invariants) if the chain is truncated and become 

a finite-sized structure.  
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Figure 2.1 Acoustic analogue of the SSH model [38]. (a) Schematic of a dimerized 

SSH chain with lattice constant a and hopping terms t and s. (b) Band diagrams of 

infinite SSH chain with different values of t s .  (c) Implementation of the SSH 

model with acoustic linked cavities. (d) Simulated Bloch wavefunctions for the two 

bands correspond to the BZ centre (k = 0) and BZ edge (k = 1, in units of π/a).  

 

2.2.2  Two-dimensional Acoustic Topological insulators 

Having discussed the 1D TIs with an acoustic SSH example, we now briefly 

introduce the acoustic realizations of the symmetry-protected topological states in 2D 

TIs, including QHE, QSHE, and QVHE.  

 

The QHE is the first proposed approach to observe the backscattering-immune 

topological edge propagation in a 2D electron gas in which a strong out-of-plane 

magnetic field is necessary [1]. Thouless et al. [2] further associated the QHE 

phenomenon with a topological invariant called the Chern number as defined by Eq. 

(1.2), which is related to the bulk bands. This effect can be straightforwardly 

understood by considering the cyclotron motion of the electrons (Fig. 2.2). The 

electrons can only travel in one direction (clockwise or anti-clockwise) due to the 
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broken time-reversal (T) symmetry induced by the out-of-plane magnetic field in the 

system. If the 2D system is not infinitely large, the cyclotron orbits must be broken at 

four edges, and the electrons at the edges have to jump to the neighboring orbit. As a 

result, a unidirectional current flow is formed as illustrated in Fig. 2.2. 

 

Figure 2.2 The cyclotron motion of the electrons in magnetic field, leading to the 

QHE [38]. 

 

For acoustic analogues of QHE, their implementation is not as intuitive as photonic 

QHE with the assistance of magneto-optical materials to break the T symmetry [39, 

40]. Sound waves are magnetically inert, and the realization of QHE in acoustics 

demands new approaches. In fact, effective magnetic fields can be achieved in 

acoustic wave systems by setting the media in constant motion [13, 41]. In 2015, 

several theoretical ideas shed light on acoustic QHE by applying circular airflows in 

triangular [42] or honeycomb lattice [43, 44] to break T symmetry for sound. Here, 

we take the triangular lattice composed of rotating rods as an example to illustrate 

the detailed design in Fig. 2.3. Fluids in the dark blue regions in Fig. 2.3(a) are set in 
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a circulatory motion because of the rotated rods, while the remaining fluid in the 

light blue area is in a stationary state. The circulating flows lift the degeneracy at the 

DP, and form a non-trivial band gap [Fig. 2.3(b)] populated by chiral edge states 

[Fig. 2.3(c)]. These chiral edge states have the same property as aforementioned 

QHE, that is, it can propagate only in one direction along the boundary [Fig. 2.3(d)]. 

Besides, they also have robustness against moderate disorder and defects as 

illustrated in Fig. 2.3(d).  

 

However, when it comes to the experimental validation of the proposed theory, 

several challenges including high airflow speed, out of synchronization rotation and 

flow instabilities must be overcome. In 2019, Ding et al. [45] propose an acoustic 

lattice consisting of optimized ring resonators with high quality factor [Fig. 2.3(e)], 

which substantially reduces the required airflow speed. As a result, the expected 

unidirectional edge transport is successfully observed.  
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Figure 2.3 Acoustic analogues of the QHE. (a) Schematic of an acoustic QHE. The 

white circles are solid rods. (b) Frequency evolution with increased flow velocity. 

The DP is lifted when the velocity is nonzero. (c) Band diagram for a ribbon 

supercell. The edge band is marked by the red line [46]. (d) Simulated field profiles 

of the edge state in an acoustic lattice with cavity defect (top) and a bending (bottom) 

[42]. (e) Experimental sample of an acoustic QHE [45]. 

 

Different from the QHE, a system with QSHE preserves the T symmetry and is 

indeed protected by the T symmetry. Unlike fermionic electrons with intrinsic spin-

±1/2, bosonic phonons carry intrinsic spin-0, leading to the T symmetry in acoustic 

systems satisfies T2 = 1. However, the electric systems with T symmetry satisfy T2 = 

-1, which enables the two-fold degenerate of electronic states at the T-invariant 

momenta, with Kramers doublets consisting of spin-up and spin-down states [6, 7, 

47]. Therefore, realizing the counterpart of the QSHE in acoustic waves depends on 
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constructing wavefunctions to obtain fermion-like pseudospins and artificial 

Kramers-like degeneracy. 

 

One typical way is to realize the accidental double DP (a fourfold degeneracy in the 

band diagram) in graphene-like lattices composed of metallic scatters in a 

background medium of air or water [48, 49] [Fig. 2.4(a)]. By adjusting the filling 

ratio of the unit cell, such fourfold degeneracy will split into two gapped twofold 

degenerated states at the BZ center (two dipole states and two quadrupole states), 

which is also associated with band inversion and topological phase transition, as 

indicated in Fig. 2.4(b). In Fig. 2.4(b), the dipole and quadrupole states are denoted 

by the green and red lines, respectively, and the yellow and blue are topologically 

trivial and non-trivial phases, respectively. The dipole and quadrupole eigenstates at 

the BZ center are plotted in the inset. A pair of counterpropagating helical edge states 

[Fig. 2.4 (c)] can emerge at the interface between the trivial and topological non-

trivial acoustic lattice, satisfying the requirement of Kramers-like degeneracy, and 

the corresponding acoustic QSHE waveguide with robustness against disorder, bends, 

and cavity can also be achieved [Fig. 2.4 (d)].  

 

Another more general method to construct the analogues of QSHE in photonic, 

acoustic and mechanical systems resorts to the band folding mechanism [50-53]. The 

starting point is the primitive unit cell in an acoustic honeycomb lattice featuring a 

pair of DPs at the BZ corners (K and K’ points). By properly choosing a three times 

larger unit cell than the primitive one, the DPs are folded to the BZ center, forming a 

double DP with two dipole states and two quadrupole states. The hybridization of 

these states generates the required Kramers-like doublets. Then, by compressing or 
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stretching the scatters in the supercell while maintaining the C6v symmetry, the 

double DP can be lifted, and topological phase transition can occur as well.  

 

Figure 2.4 Acoustic analogues of the QSHE. (a) Schematic of an acoustic QSHE. 

The white circles are metallic rods, and the light blue region is fluid. (b) Topological 

phase transition. (c) Band diagram for a ribbon supercell. The red and blue dots 

represent the acoustic pseudospin-up and pseudospin-down edge states [46]. (d) An 

experimental set-up of an acoustic QSHE (left) and the simulated sound field profiles 

(right) in three different configurations, corresponding to three types of defects [49].  

 

In addition to utilizing the spin degree of freedom (DOF) to implement the QSHE, 

the valley DOF has also been exploited in acoustics to implement another T-invariant 

topological phase, called acoustic QVHE [54-56]. Acoustic QVHE is usually 

achieved by lifting DPs at the BZ corners by breaking the spatial-inversion (parity, P) 

symmetry of the lattice, such that two local extrema emerge at the corners of the BZ 

in the band diagram, which are called valleys.  
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A conventional acoustic QVHE as indicated in Fig. 2.5(a) features equilateral 

triangular rods arranged in a triangular lattice inside a background medium of air. 

When the rods are orientated such that the acoustic lattice has C3v symmetry, a pair 

of DPs appear at the BZ corners. Slightly changing the angle ϑ [Fig. 2.5(a)] can 

lower the P symmetry to C3 and split the degeneracy of the DPs [55-57]. The energy 

flow at different valleys displays opposite vortices with either left-handed circular 

polarization (LCP) or right-handed circular polarization (RCP) [the insets in 

Fig. 2.5(b)], further associated with the band inversion and topological phase 

transition. Moreover, at the domain wall, which is the interface between two acoustic 

lattices with opposite ϑ, edge states appear [Fig. 2.5(c)]. These edge states are also 

related to a nonzero topological invariant localized to the valley named the valley 

Chern number, which is the integration of Berry curvature over a small BZ that 

includes only one valley. The experimental observation shows that these valley edge 

states can go through sharp bends with negligible scattering [Fig. 2.5(d)].  
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Figure 2.5 Acoustic QVHE. (a) Schematic of an acoustic QVHE. The white triangles 

are solid rods, and the light blue region is air. (b) Topological phase transition. (c) 

Band diagram for a ribbon supercell. The red and blue dots represent the valley edge 

states [46]. (d) An experimental sample of an acoustic QVHE (left) and the simulated 

sound field profiles (right) in a zigzag path [56].  

 

2.2.3  Three-dimensional Acoustic Topological Insulators and 

Topological Semimetals 

 The extension of 2D acoustic topological phenomena to 3D generally can be divided 

into two groups, 3D acoustic TIs [58] and acoustic TSMs. 3D acoustic TIs are 

closely associated with 3D DP, which is a fourfold degenerate point with linear 

dispersions along all three directions (kx, ky and kz) in the band diagram, as shown in 

the left panel of Fig. 2.6. There are primarily two approaches to achieve 3D DPs, one 

based on the band inversion mechanism [58, 59] and the other relying on crystalline 
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symmetries [60, 61]. By breaking the mirror symmetry along the z direction (see 

insets in Fig. 2.6), the space group of acoustic crystal shifts from No. 173 (P63) to No. 

168 (P6), giving rise to a complete topological band gap, which supports robust 

surface sound propagation.  

 

Figure 2.6 Band diagrams for 3D DP (left) and topological band gap (right) by z-axis 

folding and breaking, respectively. Insets indicate the corresponding acoustic unit 

cells [58]. 

 

Different from the TIs with topological band gaps, TSMs are nontrivial gapless 

phases having band degeneracies [8], including zero-dimensional (0D) nodal point, 

1D nodal lines, and 2D nodal surfaces degeneracies. The nodal points mainly contain 

two kinds of 0D degeneracies, the Weyl points with twofold linear dispersion [Fig. 

2.7(a)] and the 3D DPs [Fig. 2.7(b)]. A Weyl point can be regarded as a monopole of 

the Berry flux, which is demonstrated by integrating the Berry curvature on a surface 

encircling a Weyl point. The monopole behavior indicates that a Weyl point carry a 

topological charge defined by Chern number [62]. A Weyl semimetal is characterized 

by open isofrequency curves of surface states, called Fermi arcs [62], which link the 
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projections of a pair of oppositely charged Weyl points in momentum space [Fig. 

2.7(a)]. Moreover, these two oppositely charged Weyl points can be combined and 

form a 3D DP with fourfold linear degeneracy [10]. The nodal lines [Fig. 2.7(c)] are 

generated by the band crossing along 1D lines [9]. According to the geometries of the 

nodal lines, they can be divided into nodal rings, nodal links, nodal knots and nodal 

chains [Fig. 2.7(d)]. There are three types of nodal rings, type-I [Fig. 2.7(e)], type-II 

[Fig. 2.7(f)] and hybrid [Fig. 2.7(g)], depending on the slopes of the crossing bands 

[63]. A nodal surface is a 2D band crossing.  

 

Figure 2.7 Schematic of band degeneracies in TSM. (a) The Weyl points and the 

surface Fermi arc. (b) A 3D DP [64]. (c) A straight nodal line [46]. (d) The nodal 

chains [65]. Type-I (e), Type-II (f) and hybrid (g) nodal rings [63]. 
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Similar to the Weyl semimetals in electronic systems, acoustics Weyl semimetals also 

host Weyl points, which were experimentally observed in 3D artificial acoustic 

lattices [66-68]. For a system hosts both P and T symmetries, the Berry curvature is 

zero everywhere in momentum space [69]. Therefore, the minimum requirement to 

obtain Weyl points is to break either T or P symmetry. As the T-broken acoustic 

systems involving circulating fluid flows, which is much more challenging to 

implement than breaking P symmetry, most acoustic Weyl points obtained so far only 

break P symmetry. Fig. 2.8(a) indicates a unit cell of an acoustic Weyl lattice that is 

created by stacking 2D honeycomb lattice layers along the z direction and each layer 

is connected by slanted tubes to accomplish chiral interlayer coupling. In the band 

diagram, two pairs of Weyl points with topological charge ±1 [red and blue dots in 

Fig. 2.8(b)] appear at the BZ corners. As a result, a net Berry flux can exist in a 2D 

plane with a fixed kz due to the charged Weyl points, leading to a nonzero topological 

invariant for the 2D band, which predicts the existence of topologically protected 

unidirectional surface transport in a finite-sized structure. The acoustic Fermi arcs 

[68] [Fig. 2.8(c)] are also associated with intriguing phenomena, like negative 

refraction [70] [Fig. 2.8(d)] and sound collimation [66]. The straight [71], ring-like 

[72] nodal lines [Fig. 2.8(e)] and nodal chains [73] formed by two intersected nodal 

rings were also experimentally investigated in layer-staked acoustic lattices. As the 

Zak phase along a closed path that encircles a nodal line is π, exotic drumhead 

surface states can emerge [72]. 
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Figure 2.8 Acoustic Weyl points and nodal rings. (a) Unit cell of an acoustic Weyl 

lattice. (b) Weyl points in momentum space [67]. (c) The measured acoustic Fermi 

arcs [68]. (d) Measured field profile of topological negative refraction [70]. (e) 

Measure acoustic nodal rings [72]. 

 

2.2.4  Higher-order Acoustic Topological Insulators 

Other than the acoustic counterparts of conventional 2D TIs and 3D TSMs, a new 

type of topological phase, called HOTIs, has attracted tremendous attention. Unlike 

conventional TIs, HOTIs possess topological states in lower dimensions. For 

instance, 2D HOTIs host the salient features of gapped 1D edge states and in-gap 

topological 0D corner modes in a finite-sized sample. 3D HOTIs can exhibit a 

hierarchy of 2D surface states, 1D hinge states, and 0D corner states (Fig. 2.9). As 

the topological states can appear in multi-dimensions, HOTIs have not only enriched 

the topological physics, but also paved the way for applications, such as 

topologically localized modes with high quality factors, energy harvesting, and 
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topological sensors. The existing works on acoustic HOTIs are mainly based on three 

mechanisms, namely, the quantized bulk multipole moments, the nontrivial dipole 

moments, and the multidimensional TPTs. 

 

Figure 2.9 Schematic diagrams of HOTIs in two and three dimensions [64]. 

 

The earliest investigations were focused on achieving lattices with multipole 

moments, which were firstly proposed by Benalcazar, Bernevig and Hughes (BBH) 

[74, 75]. The BBH model contains both positive and negative couplings based on the 

TBM and constructs a 2D lattice with a quantized bulk quadrupole moment and a 3D 

lattice with a quantized bulk octupole moment. The nested Wilson-loop [74, 75] or 

the many-body multipole operators [76, 77] are two main methods to theoretically 

characterize the nontrivial multipole moments. As the implementation of opposite 

coupling signs in natural materials is a challenging topic, most experimental 

observations of HOTIs have been conducted in artificial structures, while only a few 

real materials with HOTIs were reported [78, 79]. In airborne acoustics, by 

judiciously engineering the coupling waveguides, the positive and negative couplings 

are successfully achieved [33, 34], as indicated in Fig. 2.10(a). In addition, the 

nontrivial quadrupole moments can also be realized, without the help of BBH models, 

by designing a non-symmorphic acoustic lattice [Fig. 2.10(b)] respecting p4g group 

symmetry [80]. In parallel, quantized higher moments were also studied in acoustic 
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lattices, including the octupole moment in 3D structure [33] and hexadecapole 

moment in a 1D structure by dimensional reduction [81].  

 

For the acoustic HOTIs with non-trivial dipole moments, a great number of artificial 

structures based on cavity-waveguide configurations or scattering-type lattices show 

great functionalities in experimental demonstrations, due to their flexible 

manipulations on coupling strengths. These investigations were conducted in various 

2D lattices, including Kagome crystals in Fig. 2.10(c) [35, 82], and triangular 

crystals [83]. In 3D cases, the 2D surface states, 1D hinge states, and 0D corner 

states can be observed in succession, showing bulk-surface-hinge-corner 

correspondence [84-86], as depicted in Fig. 2.10(d).  

 

The acoustic HOTIs due to multidimensional topological phase transitions have been 

realized in a 2D square lattice with glide symmetry [87] and a 3D honeycomb lattice 

with bilayer chiral structure [58]. This mechanism indicates that the higher-order 

corner (hinge) states is only dependent on the edge (surface) topological phases. In 

the 2D acoustic HOTI, the topological invariants on the two perpendicular 

boundaries are different, giving rise to a domain wall at the intersecting corners of 

the two boundaries, which corresponds to the higher-order corner states [Fig. 2.10(e)].  
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Figure 2.10 Acoustic HOTI. (a) Acoustic design of positive and negative coupling 

strengths [33]. (b) A non-symmorphic acoustic lattice used to achieve quadrupole 

moment [80]. (c) An experimental kagome lattice sample [35]. (d) Measured 

transmission spectra for corner, hinge, surface and bulk modes [84]. (e) Measured 

field profile for the corner states [87]. 

 

2.3 Elastic Topological Insulator 

The past decades have also witnessed increasing interest in controlling elastic wave 

by elastic metamaterials, further promoting the development of topological 

phononics. Compared with the fluid acoustic systems, elastic waves propagating in 

solid materials carry richer degrees of freedoms supporting both longitudinal and 

transverse modes, which can be utilized to create pseudospins to mimic the QSHE in 

topological physics. Besides, elastic TIs also possess some unique advantages in 

phononic information transmission, such as extensibility toward integrated devices, 

robustness against temperature and air flow variations, and relatively lower 

attenuation than airborne sound. Therefore, elastic TIs have potential to provide 
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robust designs and unparalleled functionalities for manipulating elastic waves 

especially for future chip-scale elastic devices. 

 

2.3.1  One-dimensional Elastic Topological Insulators 

In accordance with the aforementioned acoustic TIs, our review takes the SSH chains 

as a starting point to present the recent development of 1D topological phases in 

elastic wave systems [88-92]. Huang et al. [89] connected two solid elastic plates 

with different Zak phases to form the topological interface and realized the elastic 

counterpart of the SSH model with interface states of shear horizontal guided wave. 

The designed SSH chain and the corresponding transmission spectrum including the 

non-trivial topological band gaps are depicted in Fig. 2.11(a). Another strategy to 

achieve an elastic analogue of SSH model is experimentally demonstrated in a highly 

tunable cylindrical granular particle [90]. The intracell and intercell coupling 

strengths can be modified by shifting the angles between the adjacent cylinders, 

thereby leading to a nontrivial topological band gap. Figure 2.11(b) illustrates the 

topological phase transition corresponds to three different configurations of the 

infinite chain. 

 

Figure 2.11 Elastic analogues of the 1D SSH model. (a) Topological interface states 

implemented in shear horizontal guided waves [89]. (b) Topological nontrivial band 

gap realized in cylindrical granular particles [90]. 
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2.3.2  Two-dimensional Elastic Topological Insulators 

As mentioned in the above section on acoustic systems, achieving the QHE needs to 

introduce circulating air flow to break the T symmetry. This strategy also applies to 

elastic systems, and the rotating parts are straightforwardly available by using the 

mechanical components like gyroscopes or direct current motors. One effective way 

to obtain the elastic analogues of QHE is to utilize the chiral nature of gyroscopes 

[93]. By arranging the gyroscopes in a 2D honeycomb lattice with their top tips fixed 

by mass blocks, the T symmetry is broken due to the rotating motion of gyroscopes, 

giving rise to a topologically nontrivial phase [see Fig. 2.12(a)]. When all the mass 

blocks are replaced by gyroscopes with small DC motors [see Fig. 2.12(b)], a 

topological nontrivial gap is formed and populated only by edge states that propagate 

unidirectionally and unaffected by defects [94]. 

 

The first experimental implementation of the elastic counterpart of QSHE was 

presented in a discrete oscillator system [95], in which each lattice site has two 

pendulums to obtain a local Kramers pair. Moreover, in contrast to acoustic wave 

systems, elastic waves have more polarizations, which can be directly used to create 

pseudospins in QSHE via polarization hybridization. As an example, Mousavi et al. 

[96] proposed a thin plate with holes arranged in a triangular lattice to realize the 

topologically protected helical edge states due to the accidental degeneracy between 

the symmetric (S) and anti-symmetric (A) Lamb waves. These two vibration modes 

(S-modes are mainly longitudinal vibrations and A-modes are predominantly bending 

vibrations) can be viewed as two degrees of freedoms, viz., polarizations. Moreover, 
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as a triangular lattice naturally exhibit DPs, each vibrational mode can possess one 

set of DPs. By deliberately tuning the two sets of DPs coincide, the double DPs are 

formed. Then, by breaking the mirror symmetry along the z direction, the double DPs 

are lifted, accompanied by the two pseudospins, as shown in Fig. 2.12(c). This idea 

was later implemented in an experiment with a simplified design in which holes in 

the plate are utilized to tune the DPs of two vibration modes [97]. At the same time, 

Yu et al. [98] experimentally demonstrated another elastic QSHE in perforated thin 

plates by adjusting the distances among adjacent holes. As illustrated in Fig. 2.12(d), 

the achieved helical edge states are topologically protected and exhibit a high-quality 

elastic transport along the designed path. 

 

Figure 2.12 Elastic topological insulator in 2D structures. (a) Band diagram of the 

honeycomb gyroscopic lattice. The inset is the schematic of a unit cell [93]. (b) 

Experimental sample of the gyroscopic lattice [94]. (c) Band diagram with lifted 

double DP [96]. (d) A topological waveguide with a Z-shape realized in a perforated 

thin plate [98]. (e) Experimental sample for elastic QVHE with unbalanced masses 

[99]. (f) Experimental sample fabricated on the silicon chip with QVHE [100]. 
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The QVHE can also be achieved in elastic wave systems. Most of the existent works 

about achieving elastic QVHE share the same mechanism, namely, lower the P 

symmetry in the lattices. It includes the specific approaches of introducing a strain 

field [101], adding masses at the particular sites [99] [Fig. 2.13(e)], rotating the 

triangular pillars [100] [Fig. 2.13(f)] and so on [102, 103].  

 

2.3.3  Three-dimensional Elastic Topological Insulator and 

Topological Semimetals 

Parallel to the growth of 2D elastic TIs, a great deal of effort has been dedicated to 

the study of topological phases in 3D elastic structures, including TIs, Weyl 

semimetals, topological nodal lines, etc. All of them can exhibit the robust surface 

transport against defects without being restricted to a specific plane. The elastic 3D 

TIs [104, 105] feature the topological band gap that is occupied by gapless surface 

states. Huo et al. [104] experimentally implemented a 3D elastic TI based on the 

monolayer-stacked honeycomb lattice fabricated by aluminum material [see Fig. 

2.13(a)]. By stacking the original monolayer lattice into bilayer and rotating one 

layer by an angle of 60°, the out-of-plane mirror symmetry are broken, leading to the 

2D topological surface states dependent on layers, as shown in Fig. 2.13(b). 

 

Besides the 3D gapped TIs, another type of topological phase also exists in 3D 

elastic structures, i.e., the 3D gapless topological phases akin to the 3D Weyl 

semimetals [106-108]. The model proposed by Shi et al. [106] described an elastic 

counterpart of Weyl semimetal by stacking honeycomb lattice with chiral interlayer 

coupling composed of thin beams, as illustrated in Fig. 2.13(c). This model hosts 
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elastic oppositely charged Weyl points that are connected by elastic Fermi arcs [Fig. 

2.13(d)].  

 

Figure 2.13 Elastic TIs and Weyl semimetals in 3D structures. (a) Experimental 

sample of 3D elastic TI based on the monolayer-stacked honeycomb lattice. The side 

and top views of the 3D structure are shown in the bottom panels. (b) The simulated 

displacement field profiles of the layer-dependent surface states [104]. (c) Schematic 

for the stacked lattice (blue) and chiral interlayer coupling (orange). The right panel 

is the slanted view. (d) Spatial Fourier transformed contours of the real-space 

displacement field profiles of the surface states on the x-z (left) and y-z plane (right), 

respectively, showing the Fermi arcs [106]. 

 

2.3.4  Higher-order Elastic Topological Insulator 

Higher-order topological phases based on the quantized bulk multipole moments, the 

nontrivial dipole moments, and the multidimensional TPTs have also been realized in 

elastic wave systems [109-113]. The pioneering work  by Serra-Garcia et al. [112] 

realized an elastic counterpart of quadrupole TI based on perturbative elastic 
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metamaterials consisting of resonant silicon plates linked by thin bent beams [Fig. 

2.14(a)]. In their design, the shapes and positions of the linking beams mediate the 

positive and negative coupling strengths λ and γ, which can form a nontrivial band 

gap between two pairs of doubly degenerated bands.  

 

Motivated by the HOTIs induced by the dipole moments, similar experiments were 

also conducted on the 2D mechanical Kagome lattice [111] and honeycomb lattice 

[113] to observe the in-plane and out-of-plane second-order TIs, respectively. The 

Kagome lattice, composed by thin disks and bivalued width beams, is shown in Fig. 

2.14(b). The beams with different widths are used to turn the intra-cell coupling and 

inter-cell coupling strengths. The honeycomb lattice is depicted in Fig. 2.14(c), and 

the lengths of the connected beams are utilized to adjust the coupling strengths. Both 

of them can lead to the in-gap higher-order corner states. The multidimensional 

topological phase transitions mechanism has also been extended to elastic systems 

without the need of negative coupling. Huo et al. [110] proposed an elastic HOTI 

based on this mechanism in a square lattice consisting of perforated plate with pillars 

[Fig. 2.14(d)].  
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Figure 2.14 Elastic HOTI. (a) Implementation of an elastic QTI based on 

perturbative elastic metamaterials [112]. (b) Experimental sample of an in-plane 

HOTI based on a Kagome lattice [111]. (c) A out-of-plane HOTI based on a 

honeycomb lattice [113]. (d) An elastic HOTI based on a square lattice [110]. 

 

2.4 Non-Hermitian Topological Physics 

The above topological phenomena in acoustic and elastic lattices are all based on the 

hypothetically lossless condition, which guarantees real-valued eigenfrequencies, 

orthogonal eigenstates together with well-defined topological invariants. However, 

acoustic and elastic systems are indeed nonconservative systems involving energy 

exchange and interactions with the ambient environments (due to their intrinsic loss 

ubiquitous in open systems), resulting in the breakdown of Hermiticity. In this regard, 

taking into consideration the effect of losses represents a more realistic scenario and 

is thus essential for practical applications. More interestingly, non-Hermiticity, when 

judiciously designed via loss/gain or asymmetric coupling, can also lead to the TPT 
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behaviour, bringing new insights into the exploration of topological physics. In this 

section, two critical subjects in the non-Hermitian topology, namely, the exceptional 

degeneracies and non-Hermitian line band gaps, are introduced and reviewed by 

concrete examples.  

 

The non-Hermitian PT symmetry and EPs have been incorporated in a large number 

of studies in non-Hermitian physics. When the non-Hermitian parameters are tuned 

(often by controlling the on-site gain/loss), the real eigenvalues can be changed to 

complex ones, known as the PT phase transition [114], in which the transition point 

is a so-called EP [Fig. 2.15(a)]. The system's Hamiltonian gives rise to the 

coalescence of both eigenvalues and eigenvectors at the EP [115], which leads to 

intriguing phenomena such as loss-induced lasing [116], unidirectional invisibility 

[117], and unidirectional sound focusing [118].  

 

As aforementioned acoustic and elastic systems with Hermitian assumption, the 

nontrivial topological band gap (often referred to as insulators) is important for 

determining topological phases [119]. However, when it comes to their non-

Hermitian counterparts, the definitions of band gaps become less straightforward due 

to the complex nature of non-Hermitian eigenvalues. In general, the complex band 

gaps show either a line or a point style [120]. Here, we limit our discussion on the 

line gaps, which refer to the scenarios where the complex eigenvalues are split by 1D 

lines. The line gaps can be modulated to overlap with the real or imaginary axis in 

the complex plane, forming the real or imaginary line gap, respectively [Fig. 2.15(b)]. 

 

It has been demonstrated that line-gapped non-Hermitian matrix can be deformed 
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into a Hermitian or an anti-Hermitian Hamiltonian [120]. Therefore, the line-gapped 

non-Hermitian systems share the similar topological characteristics of its Hermitian 

counterparts, and the topological invariants can also be obtained according to the 

Hermitian definition [Eq. (1.2)] after the eigenvectors are orthogonalized in advance.  

 

Here, we take the complex SSH model with on-site gain and loss  [121, 122] as an 

example to specify non-Hermitian topological phenomena. As illustrated in the upper 

panel of Fig. 2.15(c), the model is composed of the typical dimerized chain with 

alternating gain and loss (or only be alternating on-site losses to simplify the 

experimental set-up [20]). By setting appropriate coupling and on-site gain/loss 

parameters, a real line gap with mid-gap edge states is realized [bottom panel of Fig. 

2.15(c)], consistent with its Hermitian counterpart [38]. In 2D TBMs, it has been 

theoretically [123, 124] and experimentally [19, 125] demonstrated that TPTs and 

HOTIs can also be realized solely by introducing on-site gain and loss. Gao et al. [19]  

showed that solely by inserting lossy media in particular acoustic resonant cavities, 

non-Hermitian counterpart of quadrupole TI with higher-order topological corner 

states can be obtained [Fig. 2.15(d)]. Zhao et al. [126] demonstrate that by selectively 

pumping a part of the lattice, the wave can propagate along the gain-loss interfaces in 

the arbitrary positions of the lattice, leading to the reconfigurable topological edge 

transportation [Fig. 2.15(e)].  

 

Up to the starting time of my PhD study (September 2020), there was an increasing 

attention paid to non-Hermitian topological phases in acoustic and elastic wave 

systems, but very few works were reported. To better organize the thesis, the 

introduction on specific topics of non-Hermitian topological physics will be 
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presented as a separated section at the beginning of each chapter. 

 

Figure 2.15 Non-Hermitian topological phenomena induced by the on-site gain/loss. 

(a) The normal EP in a two-level system. (b) The real (left) and imaginary (right) line 

gaps. (c) The complex SSH model with alternating gain and loss (upper). The 

calculated eigenvalues if the SSH chain (lower) [64]. (d) The experimental sample of 

the non-Hermiticity induced HOTI [19]. (e) The reconfigurable topological interfaces 

enabled by selectively pump the lattice [126]. 

 

2.5 Summary 

In this chapter, the basic concepts, constituents as well as their concrete 

implementations of TIs in acoustic and elastic systems are briefly introduced and 

classified. Clearly, topological phononics has enabled remarkable sound wave 

manipulation, like topological surface/edge transports and corner localizations with 

robustness against various defects, which can hardly be realized by traditional 

methods. More importantly, the study of acoustic and elastic topological phenomena 
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can be combined with non-Hermitian physics and inspires various non-Hermitian 

topological phenomena due to the inevitably lossy nature and feasible control of 

gain/loss in artificial acoustic and elastic lattices, opening new possibilities for both 

frontier physics research and potential practical applications. 
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CHAPTER 3  

 

Hermitian and Non-Hermitian Topological 

Edge States in One-dimensional 

Perturbative Elastic Metamaterials 

3.1 Introduction  

As discussed in section 2.3.1, some elastic TIs based on the SSH model have been 

studied without considering any damping effect unavoidable in solid materials. This 

ignorance of damping undoubtedly restricts the application of the topological edge 

states. In fact, the concept of non-Hermiticity in TIs has much more profound 

significances. Substantial theoretical works about the fundamental bulk–edge 

correspondence collapse [21-23] and new concepts of topological invariants specific 

to non-Hermitian settings [127, 128] have been put forward. In parallel, considerable 

experimental efforts were made in non-Hermitian systems to validate adjustable 

localization states with robustness [129, 130], skin effect due to the nonreciprocal 

hopping strengths [123, 131, 132] and topological lasers [133]. In these systems, 
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active sections are utilized to pump boundary modes thus enhancing the stability of 

topological boundary states or break time-reversal symmetry to create new kinds of 

topological insulators. As a matter of fact, recent experiments have shown that 

topological states in non-Hermitian systems can also be obtained by solely passive 

variant (loss) in acoustic systems, which significantly simplifies the experimental 

processes [19, 20].  

 

The non-Hermitian versions of the SSH model have also been extensively 

investigated and experimentally implemented in electric circuit [134], microwave 

[135] and acoustic lattice [20]. However, the practical realization of such non-

Hermitian SSH model in elastic wave system is yet to be fully investigated, 

especially when it comes to the implementation and modulation of the required non-

Hermitian parameters. 

 

In this chapter, we theoretically and experimentally investigate two different types of 

topological edge states induced respectively by alternating hopping strengths (under 

hypothetically Hermitian condition) and non-Hermiticity, with elastic analogues of 

the SSH model consisting of square plates and thin beams together with additional 

damping (AD) layers. In the absence of non-Hermitian modulation, a well-defined 

Zak phase can depict the topological characteristics of the edge state for non-trivial 

and trivial structures, but the corresponding measured result is inevitably affected by 
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the intrinsic material damping. For the non-Hermitian case, uneven dampings, 

purposely introduced through absorptive damping layers attached to particular plates, 

result in topological edge states characterized by a specific topological invariant 

called biorthogonal polarization. 

 

3.2 Hermitian Topological Edge States Based on 

Su-Schrieffer-Heeger Model 

 

3.2.1 Tuning the Coupling Strength Between the Plates 

The elastic topological edge states are realized by utilizing the notion of perturbative 

elastic metamaterials [112, 136] , which can be modulated to an elastic counterpart of 

the SSH chain. The metamaterials can be regarded as a periodically arranged 1D 

chain of atoms with alternating hoppings, intra-unit coupling γ and inter-unit 

coupling λ between the nearest neighbors. Each atomic site is replaced by an elastic 

resonant plate which shows linear resonant mode weakly coupled with the resonant 

modes of the nearest adjacent plates by connected thin beams. The lengths and 

widths of the resonant plates and the thin beams are 80 mm × 80 mm and 45 mm × 

45 mm, respectively. As a result, the lattice constant a = 250 mm. This elastic 

metamaterial is fabricated by laser cutting technique from an aluminum alloy plate 

(density ρ = 2700kg/m3, Poisson’s ratio ν = 0.33) with thickness of 2.94 mm. 

 

Before exploring the topological phases of the periodic chain, we firstly display how 
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the intra-unit coupling γ and inter-unit coupling λ can be adjusted according to our 

request, in which the material loss is ignored in theory but unavoidably exists in the 

fabricated sample. Here, we only focus on the first non-rigid-body resonant mode of 

the single plate [see the upper inset in Fig. 3.1(a) at 1471 Hz, which shows two 

perpendicular nodal lines (white dotted lines in Fig. 3.1(a)) intersecting at the center 

of the plate in the out-of-plane component of displacement ( zu )]. This mode is 

largely separated from other higher-order modes, which effectively avoids other 

unwanted modes appearing in the frequency of our interest. For double-plate shown 

in Fig. 3.1(a), the coupling strength 2 1 2f f = −  of the first non-rigid-body 

resonant mode is closely related to the geometric parameters of the connecting beam, 

namely, width w, distance h and length l. As indicated by the simulated results 

plotted in Fig. 3.1(b)-(c), the coupling strength gradually increases with the growth 

of the beam width w or the distance to the horizontal nodal line h, determined by the 

mode shape in Fig. 3.1(a). The growth of the beam length l leads to a declined 

hopping strength, remarkably for small l/l0 value and smoothly for large l/l0 value. w0 

= 4 mm, h0 = 10 mm, and l0 = 45 mm are the parameters picked in the following 

simulations and experiments. It is worth noting that the central frequencies of the 

coupled double-plate may deviate from the single-plate resonant frequency (1471 Hz) 

due to the introduction of coupling beams.  
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Figure 3.1 Parameter dependencies of the split eigenfrequencies for the double-plate 

structures. (a) Schematic of the double-plate structures. (b)-(d) The two split 

eigenfrequencies plotted as a function of, 0w w , 0h h  and 0l l  respectively. 1471 

Hz is the eigenfrequency of the single plate. 

 

3.2.2 Band Diagrams and Zak Phase of the Hermitian Unit Cell 

Here we simply tune the beam close to or away from the horizontal nodal line to 

decrease or increase the coupling strength. The unit cells of the non-trivial and trivial 

1D chains are shown in Figs. 3.2(a) and 3.2(b), respectively, which can be well 

captured by the TBM with the effective Hamiltonian matrix being written as  

                                                           0
*

0

( )
f

H k
f



 

=  
 

                                     (3.1) 

where ikae   −= +  , k is the Bloch wavenumber, and 0f   is the first non-rigid-body 

resonance frequency. For the case of  24 = = Hz (the beams are aligned in the x 
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direction), the band diagram shows a linear degeneracy at the BZ edge, illustrated by 

the grey dotted lines in Figs. 3.2(c) and 3.2(d). As we change the beam locations such 

that   , a complete band gap appears [bule dotted lines in Fig. 3.2(c)], leading to 

a coupling dimerization. By fitting the eigenvalues obtained by solving Eq. (3.1) to 

the simulated band diagram in Fig. 3.2(c), we get the tight-binding parameters as: 0f

= 1536 Hz,  = 10 Hz and  = 50 Hz [see Fig. A1(a) in Appendix A]. By exchanging 

the locations of the inter-unit and intra-unit beams (  = 50 Hz,   = 10 Hz), the 

same band diagram can be obtained. However, the topological phases of these two 

cases are totally different.  

 

The topological property of an isolated bulk band can be characterized by some 

certain topological invariants, which, for 1D lossless elastic system here, can be 

denoted by Zak phase. Because of the periodicity of the 1D chain, the Zak phase can 

be calculated by integrating the Berry curvature over the first BZ, written as 

                               
/ *

, ,2/

1 ( ) ( )
2

aZak
n n k n ka unitcell

i x x dx dk
c




  

−

 
=  

 
                       (3.2) 

where , ( )n k x  is the Bloch eigenfunction for the nth band at a specific wavenumber k, 

factor 21/ (2 )c  denotes an energy density operator for elastic wave systems. The 

Zak phase can also be obtained by utilizing the Wilson-loop approach [14], namely, 

rewriting Eq. (3.2) into a discretized form:  

                           
1

*
, ,2

1

1Im ln ( ) ( )
2 i i

N
Zak
n n k n kunitcell

i
x x dx

c
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 +
=

 
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 
                         (3.3) 
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It takes quantized value of   (Fig. 3.2(c)) or 0 (Fig. 3.2(d)), corresponding to the 

topologically non-trivial case (  ) or trivial case (  ).   

 
Figure 3.2 Band diagrams of the Hermitian unit cells. Schematics of the (a) non-

trivial and (b) trivial unit cells for the elastic SSH chains. (c), (d) Corresponding 

band diagrams (the bule dotted lines) of the lattices in (a) and (b), respectively. The 

Zak phase is π for    and 0 for   .  

 

3.2.3 Topological Edge States in Finite-Sized Hermitian Chains 

A nonzero Zak phase indicates the existence of localized modes at the edges or the 

interfaces (between trivial and non-trivial structures) within the band gap frequency 

range [137]. To confirm this, we consider in simulation two types of finite-sized 

elastic chains consisting of 5 non-trivial and trivial unit cells (10 connected square 

plates), respectively. Two topologically protected in-gap edge states [Fig. 3.3(a)] can 

be observed among the 8 bulk modes in the non-trivial chain due to the Zak phase π 

mentioned above [Fig. 3.2(c)]. On the contrary, only 10 bulk modes evenly split by a 

complete gap emerge in the trivial chain [Fig. 3.3(b)], as a result of the zero Zak 

phase [see Fig. 3.2(d)]. In  comparison, for the 1D chain with the same inter-unit and 
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intra-unit couplings, no obvious gap exists over the concerned frequency range. The 

simulated edge state profiles presented in Fig. 3.3(c) manifests that the out-of-plane 

component of displacement is mainly localized on the two boundaries of the 

topologically non-trivial chain. Here, both ends of the chains are applied with fixed 

boundary conditions to meet the requirement of the TBM with perturbative elastic 

metamaterials (see Fig. A2 in Appendix A) [112].  

 

Figure 3.3 Hermitian topological edge states. (a), (b) Numerically evaluated 

eigenfrequencies for finite-sized non-trivial and trivial 1D chains (5 unit cells), 

respectively. (c) Simulated out-of-plane displacement component of the edge states at 

1544 Hz. Two edge states are respectively mirror symmetric and asymmetric about 

the middle-dotted line.  

 

3.2.4 Robustness of the Hermitian Topological Edge States 

Here we assess the robustness of the Hermitian topological edge states against 

random defects on the resonance frequencies and the coupling strengths, which are 

also two main sources of defects in the experiments due to fabrication errors. The 
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calculations are based on the TBM as it possesses good agreement with the full-wave 

simulation thus can save much time in simulation. The resonance defects on plate i 

are added by shifting the resonance frequency terms (diagonal terms in Hamiltonian 

matrices) to 0 (1 )if df+ , where 0f  is the resonant frequency without the random 

defects and idf  are random numbers distributed from w− to w  with w  being the 

resonance defect strength. In a similar way, the coupling defects on coupling beam j 

are introduced by replacing the coupling term (off-diagonal terms in Hamiltonian 

matrices) with 0 (1 )jd + , where 0  denotes the coupling strength without the 

random defects and jd  are random numbers distributed from −  to  with 

being the coupling defect strength.  

 

The resultant real parts of eigenfrequencies are plotted in Fig. 3.4 as a function of w

or  , respectively for the 1D finite-sized Hermitian [Figs. 3.4(a) and 3.4(b)] chains. 

With the increasing of  , the edge states in Figs. 3.4(a) keep emerging near 

0 1536 Hzf = , verifying their robustness against the coupling defects. On the other 

hand, with the increasing of w , the eigenfrequencies of the edge states in Figs. 3.4(b) 

gradually spread, showing that they are not very robust against resonance defects 

because these topological edge states are protected by chiral symmetries [138]. 
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Figure 3.4 Robustness of the edge states. The eigenfrequencies at different strengths 

of (a) random coupling perturbations and (b) random resonance perturbations for the 

1D finite-sized Hermitian chain. 

 

3.2.5 Experimental Validation of the Hermitian Chain 

To examine the topologically-protected edge states experimentally, we fabricated two 

configurations of finite-sized chains (5 unit cells) composed of the trivial and non-

trivial unit cells, respectively, by laser cutting technique. In experiments, the samples 

are clamped at both ends to imitate fixed boundary conditions in simulations and 

excited by an electromagnetic shaker [Fig. 3.5(b)]. The resultant force at the 

excitation point, F(t), is recorded by a force transducer (B&K 8200) and then 

amplified through a charge amplifier (B&K 2635). A Polytec laser vibrometer is used 

to launch a periodic chirp signal with frequency ranging from 0 Hz to 3.2 kHz. The 

signal is then amplified by a power amplifier (B&K 2706) and sent to the shaker. The 

vibration in the out-of-plane direction was captured by the laser vibrometer to obtain 

the velocity/displacement/acceleration response at the measured point, which gives 

the forced response signal X(t). After Fourier transformation, the frequency response 
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function (FRF) can be achieved as  

                                                            
( )( )
( )

XH
F



=                                             (3.4) 

where ( )X   is the velocity/displacement/acceleration response at the measured 

point, and  ( )F   is the excitation force. The corresponding signal path in measuring 

all the FRF spectra in this study is shown in Fig. 3.5(a). 

 

Figure. 3.5 Schematics of experiments. (a) Signal path in measuring all the FRF 

spectra. (b) Experimental set-up. 

 

Two manufactured samples are displayed in Figs. 3.6(a) (non-trivial chain) and 3.6(b) 

(trivial chain). We measured the FRF curve at the outmost plates [the first plate in 

Figs. 3.6(a) and 3.6(b)] to evaluate the edge states and selected one arbitrary bulk 
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plate to assess the bulk states (both shaker and laser are located at the same plate). 

For the non-trivial configuration, two main resonance peaks, split by a band gap, can 

be observed in the bulk spectrum [blue circle curve in Figs. 3.6(c)], which show 

agreement with the two bulk state regions separated by the band gap from 1496 to 

1581 Hz in Fig. 3.3(a). Different from the bulk spectrum, the measured FRF curve on 

an edge plate only has one dominant peak located around 1545 Hz in the band gap 

[the red circle curve in Fig. 3.6(c)], which corresponds to the simulated 

eigenfrequencies of the edge states in Fig. 3.3(a) (the spectrum from the other edge is 

similar). In contrast, as shown in Fig. 3.6(d), no obvious peak can be observed in the 

gap range in the FRF curves of the trivial chain, demonstrating the gap property in 

Fig. 3.3(b). It is worth noting that as we ignore the intrinsic material damping of the 

whole structures together with the vibro-acoustic coupling, the resonance should 

theoretically show infinitely small linewidth. Nevertheless, the resonance peaks are 

broadened because of the unavoidable non-Hermiticities from dissipative and 

radiative losses non-negligible in experiments.  
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Figure 3.6 Forced responses of the finite-sized Hermitian SSH chains. Photos of the 

(a) non-trivial and (b) trivial elastic chain samples. (c), (d) Measured FRF spectra of 

the bulk (blue circle curve) and edge (red circle curve) plates for the non-trivial 1D 

chain (c) and trivial 1D chain (d), respectively. The gray regions indicate the 

complete band gap range. 

 

3.3 Non-Hermitian Counterparts in Perturbative 

Elastic Metamaterials 

 

3.3.1 Band Diagrams and Biorthogonal Polarization  

Other than regarding as a negative perturbation to the topological phenomena, non-

Hermiticity itself can also be utilized to obtain non-trivial topological phases. 

Specific to the elastic metamaterial in this study, we now consider a double-sized 
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unit cell comprised of four square plates connected by beams as depicted in Figs. 

3.7(a) and 3.7(b). The degeneracy emerges at the BZ centre [blue solid lines in Figs. 

3.7(c) and 3.7(d)] due to the band folding mechanism. After adding AD to two plates 

coloured in blue in Figs. 3.7(a) and 3.7(b), the degeneracy is opened, and complete 

band gaps emerge in the band diagrams [dotted lines in Figs. 3.7(c) and 3.7(d)]. 

Compared to the Hermitian case mentioned above, the double-sized unit cell is vital 

to lift the degeneracy, otherwise the band gap will be decreased by introducing on-

site gains and/or losses [139] . 

 

The two types of non-Hermitian elastic unit cells in Figs. 3.7(a) and 3.7(b) can be 

captured by the TBM with the same nearest-neighbor coupling terms   , in which 

the effective Hamiltonian matrices, ( )1H k and ( )2H k  for AD introduced 

respectively to the central and right two plates, take the forms of 

'

'

'
0 0

'
0 1(2) 0

'1(2)
0 1 0

'
0 2(1) 0

(1 ) 0
[1 ( ) ] 0

( )
0 [1 ( ) ]

0 [1 ( ) ]

ika

ika

d i f e
d d i f
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d d i f

e d d i f
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 

 

 

− +
 

+ + 
=  + + 
 + + 

 

(3.5) 

In the matrices, a’ = 2a is the doubled lattice constant, '
0f  is the first non-rigid-body 

mode resonance frequency, and d0 and d1 correspond to the intrinsic damping (ID) 

and AD, respectively, which are reflected by the imaginary part of the diagonal terms 

of the Hamiltonians (d2 = 0). By fitting the eigenvalues calculated by Eq. (3.5) to the 

simulated band diagram in Fig. 3.7(c), we can obtain the tight-binding parameters as: 

'
0 1133 Hzf = , 18.85 Hz = ,  d0 = 0.0061, and d1 = 0.041 [see Fig. A1(b) in 

Appendix A]. In these two types, uneven dampings of the four sites leads to the band 
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gap, different from the aforementioned Hermitian case that depends on dimerized 

couplings.  

 

Here, a biorthogonal polarization [121, 123] is used to represent a more generalized 

topological invariant in complex field induced by non-Hermiticity. The left-right and 

right-left polarization vectors can be obtained by integrating the biorthogonal non-

Abelian Berry curvature over the first BZ: 

                                        
/( ) ( ) ( )

, ,/

1
4

aLR RL L R R L
n n k k n ka

P i dk



 

 −
=                               (3.6) 

where the superscripts L and R of ξ denote the left and right eigenvectors of the 

Hamiltonian matrix after the normalization of , ,
L R
n k n k n  = . As these two 

eigenvectors are orthogonal to each other, they can form a biorthogonal basis. To 

obtain a real-valued topological invariant, we define LR RLp P P= +  as the 

biorthogonal polarization. By utilizing the biorthogonal Wilson-loop approach, p is 

calculated to be 1/2 for the lower two bands of ( )1H k , which corresponds to a 

topologically non-trivial case. Meanwhile, p is 0 for ( )2H k  that corresponds to a 

trivial case. The colour scale in Fig. 3.7 (c) and (d) denotes the imaginary parts of the 

eigenfrequencies. For example, an eigenfrequency in red (or blue) means that the 

elastic wave undergoes a relatively higher (or lower) attenuation, related to the mode 

shape in which the displacement is mainly localized at the plates with (or without) 

AD treatment. 
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Figure 3.7 Band diagrams of non-Hermitian unit cells. (a), (b) Schematics of unit 

cells for non-Hermitian elastic SSH chains. L = 41 mm, W = 14.5 mm. (c), (d) 

Corresponding band diagrams (dotted lines) of the lattices in (a) and (b), respectively. 

The solid blue lines are the band diagram of unit cell without AD treatment indicated 

by the insets.  

 

3.3.2 Topological Edge States in Finite-Sized Non-Hermitian 

Chains 

Similar to the Hermitian case, we create two finite-sized elastic chains with 3 non-

trivial and trivial unit cells (12 connected square plates), respectively, to evaluate the 

non-Hermitian topological edge states. Again, due to the nonzero topological 

invariant of the infinite chain with AD in the middle two plates, two topological in-

gap edge states [Fig. 3.8(a)] are clearly observable among the 10 bulk states in the 

finite-sized non-trivial chain. And only 12 bulk modes separated by a complete gap 

emerge in the finite-sized chain with the trivial unit cells [Fig. 3.8(b)]. The simulated 

mode shapes of two edge states presented in Fig. 3.8(c) further confirms their 

localization feature.  
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Figure 3.8 Topological edge states induced solely by non-Hermiticity. (a), (b) 

Simulated eigenfrequencies for finite-sized non-trivial and trivial 1D chains (3 unit 

cells), respectively. (c) Simulated out-of-plane displacement fields of the edge states 

at 1135 Hz. Two edge states are respectively mirror symmetric and asymmetric about 

the middle dotted line. 

 

3.3.3 Robustness of the Non-Hermitian Topological Edge States 

Like section 3.2.4, we also explore the robustness of the non-Hermitian edge states 

against random defects on the resonance frequencies and the coupling strengths. The 

resultant eigenfrequencies with the increasing of   and w are illustrated in Fig. 3.9, 

demonstrating the robustness of the non-Hermitian edge states is similar to the 

previous Hermitian edge states. 
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Figure 3.9 Robustness of the edge states. The eigenfrequencies at different strengths 

of (a) random coupling perturbations and (b) random resonance perturbations for the 

1D finite-sized non-Hermitian chain.  

 

3.3.4 Experimental Results of Single Plate with Intrinsic and 

Additional Damping 

The resonant plates and connecting beams possess the same dimensions as the 

aforementioned Hermitian cases except that frame-shaped grooves with a depth of 2 

mm [Figs. 3.10(a) and 3.10(b)] are added in the plates to attach AD layers (butyl 

rubber) in experiments. Since the out-of-plane displacement of the first non-rigid-

body resonant mode is localized at the four corners of the plate, damping layers 

attached near the corners give rise to higher damping efficiency. Therefore, the 

grooves are located away from the plate’s center. To determine the intrinsic material 

damping of a single plate, we measured the FRF curve of the plate with groove (L1 = 

41 mm, W1 = 14.5 mm) but without AD layer [Fig. 3.10(a)] at first. The plate was 

suspended by thin strings to mimic free boundary conditions. As shown in Fig. 

3.10(c), one resonance peak with a quality factor of 108 is located at 1082 Hz in the 

FRF curve. Then a piece of butyl rubber with matched size [black area in Fig. 3.10(b)] 

is inserted into the groove (L2 = 46 mm, W2 = 12 mm) of another resonant plate to 
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produce energy absorption. The resultant resonance frequency and quality factor are 

1084 Hz and 13, respectively, shown in Fig. 3.10(d). Note that the widths of the 

grooves are uniform in simulations (W = 14.5 mm) but different (W1 = 14.5 mm, W2 

= 12 mm) in the fabricated samples to minimize the frequency deviation introduced 

by the damping layers in experiments. The ID is represented by the imaginary part of 

the Young’s modulus whose loss factor 1 0.009 =  is achieved by fitting the 

simulated FRF curves to the experimental ones. The loss factor with AD is extracted 

and expressed in a similar way as 2 0.085 = . 

 

Figure 3.10 Forced responses of single plates with ID and AD. (a) Top view of 

experimental sample with only ID. L1 = 41 mm, W1 = 14.5 mm. (b) Top view of 

experimental sample with AD layer. L2 = 46 mm, W2 = 12 mm. (c), (d) FRF curves 

for the single plate correspond to (a) and (b), respectively. The blue circle curves 

represent the measured results, and the red solid curves are simulated results. 
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3.3.5 Experimental Results of the Non-Hermitian Chain 

As single plates with distinct damping effects have been experimentally realized, we 

can further create different finite-sized non-Hermitian chains and explore their 

topological phenomena in experiments. Firstly, we fabricated two different elastic 

chains with 12 connected resonant plates. One chain possesses narrower grooves (W2 

= 12 mm) milled at the middle two plates within each unit cell while the other chain 

has the same grooves milled at the right two plates within each unit cell. Then, butyl 

rubbers are added in all the narrower grooves, giving rise to non-Hermitian 

topological non-trivial chain [Fig. 3.11(a)] and trivial chain [Fig. 3.11(b)]. To 

measure the bulk FRF curves, the shaker and laser are placed at the corners of fifth 

and ninth plate, respectively, as depicted in Fig. 3.11(a). When both shaker and laser 

are located at the outmost plate, edge FRF curves can be obtained. According to 

simulated results, band gaps should exist in both chains and edge states only appear 

in the non-trivial chain.  

 

As displayed by the measured bulk FRF curves in Figs. 3.11(c) and 3.11(d), obvious 

drops are clearly visible, demonstrating the existence of the band gap in both cases. 

Compared to the bulk curves, the measured FRF spectra on edge plates exhibiting 

huge difference. Only one resonant peak [Fig. 3.11(e)] is observed in the band gap 

frequency range for the non-trivial case due to the in-gap topological edge states, 

while no obvious state emerges in the gap range in Fig. 3.11(f), since this band gap is 

trivial. These experimental results agree well with simulated ones, because the loss 

factors are well extracted in simulations to approach to realistic situations. 
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Figure 3.11 Forced responses of the finite non-Hermitian SSH chains. Photos of (a) 

non-trivial and (b) trivial elastic chain samples. (c), (d) Measured (blue circle) and 

simulated (red line) FRF bulk curves of the non-trivial 1D chain (c) and trivial 1D 

chain (d). (e), (f) Measured (blue circle) and simulated (red line) FRF edge curves of 

the non-trivial 1D chain (e) and trivial 1D chain (f). 
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3.4 Summary 

In conclusion, two different topological edge states induced by different physics have 

been experimentally explored by using elastic counterparts of SSH chains: arrays of 

square plates connected by thin beams. We start with an ideal Hermitian case, whose 

non-trivial topology originate from different coupling strengths in a unit cell. The 

relative strengths of intra- and inter-cell couplings govern if the band diagram is 

topologically non-trivial or trivial. Then for the non-Hermitian case, coupling 

strengths are identical in the double-sized unit cell while AD is deliberately applied 

to certain square plates. The damping configuration is the decisive factor in creating 

topological non-trivial or trivial structure. As demonstrated by the experimental FRF 

measurements, edge states only exist in the non-trivial band gaps in both cases. The 

proposed perturbative metamaterials offer a good experimental platform for studying 

non-Hermitian topology in macroscopic scale as compared to electronic and photonic 

systems that are often in atomic scale and are difficult to be realized experimentally.  
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CHAPTER 4  

 

Non-Hermiticity-Induced Topological Edge 

States in the Continuum in a One-

dimensional Trimerized Elastic Lattice 

4.1 Introduction  

In Chapter 3, the topological properties are considered to exist in the band gaps 

which separate the spatially localized modes from the bulk continuous spectra of 

propagating waves. Yet, it is entirely possible that the localized topological states 

reside in bulk bands, behaving as the so-called bound states in the continuum (BICs) 

[140-143]. 

  

BICs refer to a class of spatially confined eigenstates residing inside the continuous 

spectra of propagating modes. Their appearance and unconventional properties in 

topological systems have recently gained much attention and inspired a variety of 

theoretical and experimental investigations, e.g., topologically protected bound states 
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against hybridization in electronic system [144], subspace-induced embedded 

topological interface states in coupled 1D acoustic chains [145], and in-band 

topological corner states known as higher-order topological BICs [146, 147]. 

Topological BICs generally emerge as a result of the eigenfrequency shift of either 

bulk bands [145] or localized topological states [148] due to specific spatial 

variations in the coupling terms. However, the relevant exploration remains in the 

context of Hermitian scenario. A recent theory [149] based on the TBM implies a 

possible direction to realize in-band topological states from PT symmetry with 

balanced gain and loss, but the experimental observation of these non-Hermiticity-

induced, in-band topological states has not been reported to date. 

 

In this chapter, rather than resorting to balanced gain and loss configurations that 

require complicated experimental setups, we develop a series of lossy and passive 

structures to experimentally observe the non-Hermiticity-induced, in-band 

topological edge states. The structures are 1D non-Hermitian trimerized chains which 

consist of resonant square plates and connecting beams. Dissimilar to the in-gap 

topological states that depend on alternating coupling strengths and Hermitian 

hypotheses, the in-band topological states in the chains only rely on the additionally 

added damping on particular plates. Since the AD is purposely applied to the middle 

site of the trimerized unit cell, two DPs respectively located at the BZ center and 

corner are gradually opened, leading to two band gaps. Rather than emerging in the 
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band gaps, the topological edge states keep fixed in the continuous spectrum, 

behaving as BICs. The robustness of these in-band edge states is still indicated by the 

nonzero general Zak phases based on the orthogonalized eigenstates. By 

implementing the necessary non-Hermitian parameters with constrained damping 

layer treatments, we experimentally observe such in-band topological edge states.  

 

4.2 Band Diagrams and Topological Invariant of 

the Infinite-sized Chain 

Here we focus on the non-Hermitian version of the trimerized lattices (lattice 

constant a = 187.5 mm) consisting of resonant square plates (with a hole in each 

center) weakly coupled by linking beams as depicted in Figs. 4.1(a) and 4.1(b). The 

lattices are cut from an aluminum alloy plate with a thickness of 1.46 mm, and the 

sizes of the plates and beams are 40 mm × 40 mm and 22.5 mm × 1.5 mm, 

respectively. Besides, the linking positions are identical (located at the middle of the 

plates), leading to the identical nearest-neighbor coupling strengths between two 

adjacent plates. Consequently, the band diagram for the trimerized unit cell in Fig. 

4.1(a) is gapless, as presented in Fig. 4.1(c), and the degeneracies emerge at the 

center and edge of the first BZ. When AD treatment is introduced to the middle plate 

colored in blue in Fig. 4.1(b), both the degeneracies gradually split, giving rise to two 

complete band gaps, as shown in Fig. 4.1(d).  
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The band diagrams of the unit cells illustrated in Figs. 4.1(a) and 4.1(b) can also be 

obtained by solving the eigenvalue problems of the tight binding Hamiltonian 

matrices, which can be written as  

  𝐻(𝑘) = (
(1 − 𝑑0𝑖)𝑓0 𝜅 𝜅𝑒−𝑖𝑘𝑎

𝜅 [1 − (𝑑0 + 𝑑1)𝑖]𝑓0 𝜅
𝜅𝑒𝑖𝑘𝑎 𝜅 (1 − 𝑑0𝑖)𝑓0

) + 𝛿𝑓 (
1 0 0
0 1 0
0 0 1

)  (4.1) 

where a = 187.5 mm is the lattice constant, 𝑓0 = 2640 Hz is the resonance frequency 

of the single plate, and 𝜅 = 16 Hz  is the nearest-neighbor coupling strength, d0 = 

0.0041 and d1 = 0.02 describe the unavoidably intrinsic material damping and 

additionally introduced damping, respectively, 𝛿𝑓 = 36 Hz  is the frequency 

deviation from 𝑓0  to the zero-energy frequency of the band diagrams due to the 

introduction of coupling beams. The value of 𝛿𝑓 can be adjusted to zero when the 

thickness of linking beams is smaller than the resonance plates (see Fig. A3 in 

Appendix B). The numerically calculated band diagrams based on Eq. (4.1) [red 

dotted lines in Figs. 4.1(c) and 4.1(d)] match well with those obtained from 

numerical simulations with COMSOL Multiphysics software [blue solid lines in Figs. 

4.1(c) and 4.1(d)], indicating that the tight binding Hamiltonian matrices possess 

satisfactory agreement with the numerical simulations. 
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Figure 4.1 Band diagrams of the trimerized elastic lattices in the absence and in the 

presence of the non-Hermitian modulation. (a), (b) Schematic diagrams of the unit 

cells for the trimerized lattices with only intrinsic material damping and with AD 

treatment (applied to the middle plate colored in blue), respectively. L = 40 mm, D = 

15 mm, l = 22.5 mm, c = 1.5 mm. (c), (d) Calculated band diagrams corresponding to 

the unit cells in (a) and (b), respectively. The general Zak phases for the three bands 

in (d) are calculated to be π, 0, π, respectively. 

 

The topological properties of the non-Hermitian trimerized lattice can be identified 

by the general Zak phases of the energy bands [36, 150, 151], which take the form of  

                                          𝜃𝑚𝑛
𝑧𝑎𝑘 = 𝑖 ∫ ⟨𝜉𝑚,𝑘

𝑅 |𝜋/𝑎
−𝜋/𝑎 𝜕𝑘|𝜉𝑛,𝑘

𝐿 ⟩𝑑𝑘                                   (4.2) 

where 𝜉𝑚,𝑘
𝑅  and 𝜉𝑛,𝑘

𝐿  are the biorthogonalized right and left eigenvectors of 𝐻(𝑘) that 

satisfy ⟨𝜉𝑛,𝑘
𝐿 |𝜉𝑚,𝑘

𝑅 ⟩ = 𝛿𝑚𝑛. m, n = 1, 2, 3 represent the three energy bands and k is the 

corresponding wavenumber. The general Zak phases accumulated from -π/a to π/a in 

the BZ are π, 0, π for the first, second and third band in Fig. 4.1(d), respectively, 

indicating the topologically non-trivial properties of the configuration in Fig. 4.1(b). 
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4.3 Topological Edge States in the Continuum of 

the Finite-sized Chain 

 

4.3.1 Topological Edge States for a Lattice without Defects 

To further probe the non-Hermiticity controlled topological properties, a finite-sized 

lattice with 5 non-trivial unit cells [Fig. 4.2(a)] is considered foremost. The simulated 

real parts of the complex eigenfrequencies for the chain are plotted in Fig. 4.2(b) (the 

calculated eigenfrequencies based on TBM see Fig. A4 in Appendix C). Two band 

gaps (gray shaded areas) are formed, which are consistent with the band diagram in 

Fig. 4.1(d). Furthermore, two topological edge states [red boxes in Figs. 4.2(b)] are 

clearly embedded into the middle 5 bulk modes other than the band gap ranges, 

which significantly differs from its Hermitian counterparts in this trimerized lattice 

(more details see Fig. 4.5). Although the edge states lie inside the continuous 

spectrum, their energy remains perfectly confined at two edges [Fig. 4.2(d)] with 

robustness against random coupling strength disorders.  

 

Note that the middle 5 bulk modes between the two complete band gaps possess 

relatively higher imaginary parts around 40 Hz [Fig. 4.2(c)], implying a relatively 

higher elastic wave dissipation. In the according mode profiles, the elastic energy is 

mostly distributed on the 5 sites with AD that are highlighted in blue in Fig. 4.2(a).  



 

67 

As the elastic energy of the edge states is mainly trapped in the two plates with lower 

damping parameter [Fig. 4.2(d)], they possess relatively lower imaginary parts 

around 16 Hz shown in Fig. 4.2(c). 

 
Figure 4.2 Topological edge states in the continuum for the chain system with 15 

resonators. (a) The schematic of the chain composed of 5 unit cells. The red box 

indicates the trimerized non-trivial unit cell. Simulated real parts (b) and imaginary 

parts (c) of the complex eigenfrequencies for the non-trivial chain. (d) The out-of-

plane displacement of the edge states at 2676 Hz. S (A) indicates the edge state 

profile is symmetric (anti-symmetric) about the dotted central line. 

 

4.3.2 Eigenfrequencies of a Trimerized Lattice with Defects 

Moreover, the existence of the edge states can be flexibly tuned by altering the 

boundary configurations. By way of illustration, for a chain composed of four 

nontrivial unit cells and one additional defect at each end [Fig. 4.3(a)], the edge 
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states disappear in the eigenfrequencies spectra, as observed in Figs. 4.3(b) and 4.3(c) 

[see Fig. A4 in Appendix C for the TBM results], which are fairly distinct from the 

spectra of the nontrivial lattice without any defect, Figs. 4.2(b) and 4.2(c). In this 

case, there are four middle bulk modes with relatively higher imaginary parts, as the 

chain has four additional damped sites highlighted in blue. 

 
Figure 4.3 Eigenfrequencies of a trimerize lattice with one defect at each boundary. 

(a) The schematic of the chain with defects. Simulated real parts (b) and imaginary 

parts (c) of the complex eigenfrequencies for the chain.  

 

4.3.3 Robustness of the Edge States in the Continuum 

To evaluate the topological robustness of the edge states in the continuum, two kinds 

of random disorders are respectively introduced to the coupling (off-diagonal) terms 

and the resonance (diagonal) terms in the Hamiltonian matrices as they are two main 

nominal errors in manufacturing process. More specifically, we introduce a random 

perturbation on every off-diagonal and diagonal term with the strengths of 
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randomness denoted by 𝛿𝜅  and 𝛿𝑤 , respectively. The resultant real part of 

eigenfrequencies for the long chain with 40 unit cells are plotted in Fig. 4.4(a) [Fig. 

4.4(c)] with the increase of 𝛿𝜅 (𝛿𝑤). In Fig. 4.4(a), the edge states marked by the red 

box are still trapped in the continuum and restricted at the central frequency of 2676 

Hz despite the increase of 𝛿𝜅. Their eigenvectors [red curves in Fig. 4.4(b)] further 

demonstrate that the displacement fields are well confined in the first and the last 

sites of the chain. By contrast, all the eigenfrequencies in Fig. 4.4(c) gradually spread, 

and no obvious confinement of displacement fields can be observed in Fig. 4.4(d), 

implying the breakdown of robustness against randomness on the diagonal terms. 

Overall, the topological robustness of the non-Hermitian edge states in the 

continuum is similar to the robustness of the previous edge states in band gaps [34, 

138]. 
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Figure 4.4 Topological robustness of the edge states in the continuum in a long chain 

with 40 unit cells. (a) The real part of eigenfrequencies with the increase of 

randomness on coupling disorders. Red box marks the edge states. (b) Displacement 

field profiles of the eigenstates at 𝛿𝜅 = 0.04 as marked by the vertical red dotted 

lines in (a). The red lines indicate two edge states. (c) The real parts of 

eigenfrequencies with the increase of randomness on resonance disorders. (d) 

Displacement field profiles of the eigenstates at 𝛿𝜔 = 0.04 as marked by the red 

dotted lines in (c). 

 

4.3.4  Hermitian Counterpart of the Trimerized Lattice 

In Hermitian (lossless) systems (or the non-Hermiticity is irrelevant, e.g., a global 

loss uniformly distributed in the entire system), topological edge states can be 

realized by alternating coupling strengths. There is no exception for the trimerized 

lattice. For the two types of unit cells in Figs. 4.5(a) and 4.5(b), the nearest neighbor 
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coupling inside the unit cells is denoted by the intra-cell hopping γ, while the 

coupling between two nearest neighbor unit cells is inter-cell hopping λ. The 

coupling strength depends on the geometric parameters of the connecting beam, and 

here we just change the distance from the beam center to the horizontal nodal line to 

regulate the coupling strength. If all the beams are aligned (γ = λ), two Dirac cones 

will appear, similar to the band diagram in Fig. 4.1(c). As we change the linking 

positions to the extent that γ < λ in Fig. 4.5(a), two band gaps appear [Fig. 4.5(c)] and 

the accumulated Zak phases are respectively π, 0, π from the top band down, which 

suggests this configuration is a non-trivial structure. On the other hand, for the γ > λ 

configuration in Fig. 4.5(b), the accumulated Zak phases are all zero for the three 

bands in Fig. 4.5(d), corresponding to a trivial structure. 

 

To observe the topological edge states, we further calculate the eigenfrequencies of a 

finite-sized chain composed of 5 trimerized non-trivial unit cells. It turns out that 

four topological edge states [marked by the red boxes in Fig. 4.5(e)] exist in the two 

band gap regions, rather than among the bulk modes, which further confirms that the 

in-band topological edge states presented in the main text are indeed caused solely by 

the non-Hermiticity. For the trivial chain, only bulk modes separated by two band 

gaps are observed [Fig. 4.5(f)]. The mode profiles of the edge states are given by Fig. 

4.5(g), in which the upper (lower) two correspond to the two degenerate edge states 

in the upper (lower) band gap, and their out-of-plane displacement components are 
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mainly confined to the two edge sites asymmetrically (symmetrically) about the 

black dotted line. 

 
Figure 4.5 Topological edge states in finite-sized Hermitian chains. (a) The non-

trivial trimerized unit cell. (b) The trivial trimerized unit cell. (c), (d) Simulated band 

diagrams corresponding to the unit cells in (a) and (b), respectively. (e), (f) Simulated 

eigenfrequencies for finite-sized chain composed of unit cells in (a) and (b), 

respectively. (g) The out-of-plane displacement of the edge states at 2986 Hz (the 

upper two state profiles) and 2945 Hz (the lower two state profiles).  
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4.4 Experimental Validation 

 

4.4.1 Experimental Results for the Bare Plate and Composite Plate 

In the experiments, the plates with AD treatments can be easily achieved by attaching 

constrained damping layer on the square plate to introduce energy dissipation, as 

depicted in Fig. 4.6(a). This composite plate is composed of three layers. From the 

top down, they are the constraint layer of reflective tin foil (silver layer), damping 

layer of butyl rubber (blue layer), and aluminum alloy plate (host plate with low 

intrinsic material damping), with the thicknesses of t0 = 0.05 mm, t1 = 1.00 mm, and 

t2 = 1.46 mm, respectively. The ultrathin reflective tin foil can not only provide a 

highly reflective surface for receiving vibration signals by laser vibrometer but also 

increase the effective damping of the composite plate as the vibration energy is 

mainly attenuated by shear deformation [152]. 

 

To measure the FRF spectrum of the composite plate illustrated in Fig. 4.6(a), it was 

suspended by a string to mimic free boundary conditions. As depicted by the blue 

circle curve in Fig. 4.6(c), one resonance peak with certain bandwidth (the quality 

factor is 27) can be clearly observed at 2639 Hz. Without the constrained damping 

layer, the resonance peak of the bare plate will be shifted to a higher frequency of 
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2922 Hz with a sharper shape (see Fig. A5 in Appendix D). To experimentally make 

the plate without and with AD resonate at the same frequency, the bare plate was 

perforated with a circular through hole (the diameter is 15 mm) at the center [Fig. 

4.6(b)]. As a result, the measured FRF spectrum, as given in Fig. 4.6(d), shows a 

narrower resonance peak (the quality factor is 112) around 2641 Hz. To obtain the 

effective damping parameter (denoted by imaginary part of Young’s modulus) used 

in above numerical simulations from Fig. 4.1 to Fig. 4.3, the numerically calculated 

FRF spectra are fitted to the experimental data. It turns out that the Young’s moduli 

are modeled with E1 = 68.9 (1 + 0.04i) GPa and E2 = 68.9 (1 + 0.007i) GPa for the 

plate with and without the constrained damping, respectively.  

 

In addition, we also measured the mode shapes of these two plates at 2640 Hz and 

plotted them in the insets of Figs. 4.6(c) and 4.6(d), respectively (the data points 

measured for the interpolation are indicated by the black dots in the insets). It is 

proved that in spite of the constrained damping layer, the measured mode profiles 

still match well with the numerical results in Fig. 4.2(d).  
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Figure 4.6 Forced responses of the plates with and without constrained damping 

layer. (a) Schematic of the composite plate with constrained damping layer. (b) 

Schematic of the aluminum alloy plate with a circular through hole. D = 15 mm. (c), 

(d) FRF spectra for the single plate illustrated in (a) and (b). The blue circles are the 

measured results, and the red solid lines present the simulated results.  

 

4.4.2 Experimental Results for the Finite-sized Chains 

As the single plates with different damping parameters have been satisfied, now we 

can move to explore the topological properties of 1D truncated lattice chains. One 

experimental sample is composed of 15 coupled plates without any defects [Fig. 

4.7(a)], corresponding to the chain in Fig. 4.2(a). And the other sample possesses one 

additional defect at each boundary [14 coupled plates in Fig. 4.7(d)], corresponding 

to the chain in Fig. 4.3(a). In these two samples, the constrained damping layers are 

attached on the middle plates of all the trimerized non-trivial unit cells to supply the 

needed non-Hermiticities. Note that to keep the resonance frequency of the single 

plates pinned to 2640 Hz both in simulations and experiments, all the plates possess 
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the circular through holes in Figs. 4.2(a) and 4.3(a) but only the plates without 

constrained damping layers have the holes in Figs. 4.7(a) and 4.7(b).  

 

During all the measurements, the shaker with a force transducer is placed at the 

corner of a bulk plate only with ID [marked as “4” in Figs. 4.7(a) and 4.7(d)] to input 

the excitation signal. For the sample in Fig. 4.7(a), the according response FRF curve 

of a bulk plate [marked as “7” in Fig. 4.7(a)] is measured, as denoted by the bule line 

in Fig. 4.7(b). Obviously, two dominant resonance peaks can be observed, 

corresponding to the upper and lower bulk states with lower imaginary parts [the first 

to forth and twelfth to fifteenth eigenfrequencies in Figs. 4.2(b) and 4.2(c)]. When it 

comes to the eighth plate with constrained damping layer, the measured FRF 

spectrum has three resonance peaks, in which the highest peak located in the middle 

bulk bands with higher imaginary parts [the fifth, sixth, nineth and eleventh 

eigenfrequencies Figs. 4.2(b) and 4.2(c)], as shown by the green curve in Fig. 4.7(c).  

 

Strikingly different from two bulk spectra, the edge spectrum measured on the first 

plate in Fig. 4.7(a) only possesses one peak at the central frequency of 2676 Hz [the 

red line in Fig. 4.7(b)], exactly consistent with the simulated eigenfrequencies of 

edge states [the seventh and eighth eigenfrequencies Figs. 4.2(b) and 4.2(c)]. As we 

can see, the peaks of the edge spectrum and the bulk spectrum in green are 

overlapped at 2676 Hz in Fig. 4.7(b), indicating the topological edge states are 

embedded into the middle bulk states. For the other sample with two defects, no 

evident difference can be discovered between the response FRF spectra of an edge 

plate [the first plate in Fig. 4.7(d)] and a bulk plate only with ID [the seventh plate in 

Fig. 4.7(d)], as presented by the red line and blue line in Fig. 4.7(e), respectively. For 
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the green line in Fig. 4.7(f), which is the measured response of the nineth plate with 

AD in Fig. 4.7(d), the three separated peaks are consistent with that in Fig. 4.7(c). All 

the measured FRF spectra in Figs. 4.7(e) and 4.7(f) demonstrate that the topological 

edge states disappear with the introduced defects on the lattice boundaries.  

 

Figure 4.7 Forced responses of the 1D truncated lattice chains. (a) Photo of the 

sample without defects at boundaries. (b) Measured FRF spectra of the chain in (a). 

(c) Enlarged view of the green curve in (b). (d) Photo of the sample with defects at 

boundaries. (e) Measured FRF spectra of the chain in (d). (f) Enlarged view of the 

green curve in (e).  

 

4.5 Summary 

In conclusion, we have systematically elucidated the topological edge states in the 

continuum caused exclusively by non-Hermiticity in a trimerized elastic lattice. The 

characteristics of the edge states are numerically investigated and experimentally 

demonstrated in the finite-sized elastic lattices. Furthermore, two types of trimerized 
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chain systems with different topological features are respectively explored, which 

depend on the boundary conditions. The additional boundary defects can make the 

topological edge states in the non-Hermitian non-trivial chain disappear, providing a 

flexible approach to tune the existence of edge states. Our work offers an excellent 

platform towards the explorations on diverse non-Hermitian topological phenomena, 

such as higher-order non-Hermitian topological states in the continuum to enable 

high-density and disorder-immunity for wave routing. This idea can also be extended 

to various platforms in different dimensions, such as electric circuit, photonic and 

acoustic systems.  
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CHAPTER 5  

 

Reconfigurable Higher-order Topological 

States in a Two-dimensional Acoustic Non-

Hermitian Lattice 

5.1 Introduction  

In Chapters 3 and 4, the non-Hermiticity-induced in-gap and in-band topological 

edge states are all focused on the 1D chain structures, which hinders the explorations 

toward the non-Hermitian 1D topological waveguides and 0D topological higher-

order corner states based on the 2D periodic lattices. More interestingly, it was 

demonstrated that when the non-Hermitian parameter goes across the EP, the 

topological interface states can propagate along arbitrary gain and loss domain walls 

in a 2D photonic lattice [126] . Moreover, non-Hermiticity shows the capabilities to 

flexibly control the higher-order topological states at domain walls with arbitrary 

shapes [153]. But, how to experimentally realize the reconfigurable higher-order 

topological states is not reported so far. 

 

In this chapter, we experimentally investigate the flexible control of topological 

interface pathways and corner localizations based on an acoustic QTI with the help 
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of non-Hermiticity. The non-Hermitian modulation is realized by applying additional 

loss to a particular portion of the lattice [colored in blue in Figs. 5.1(a) and (b), 

termed as high-loss subarea (HLS)], while keeping the other sites intact [colored in 

red in Figs. 5.1(a) and (b), termed as low-loss subarea (LLS)]. Multiple new 

topological states emerge at the interfaces of the HLS and LLS as long as the loss 

contrast crosses the EPs, which gives rise to steering or localizing energy without 

changing the topological phase of the lattice. Hence, the non-Hermiticity can be 

regarded as a vital factor to manipulate the topological states on demand by 

constructing different patterns of the HLSs (Fig. 5.1), making the bulk sites, which 

always occupy a large section of the whole lattice, useful. 

 

5.2 Theoretical Prediction Based on the Tight-

Binding Model 

 

5.2.1 Non-Hermiticity-Induced Newly Emerged Corner and Edge 

States 

We start with the TBM for a QTI that has a topological nontrivial band gap, where 

the intracell coupling is smaller compared with the intercell coupling. The orange 

and black connecting lines in Figs. 5.1(a) and 5.1(b) represent the positive and 

negative couplings, respectively. In this typical QTI, the interior bulk sites are 

insulating, whereas the edge-transport pathways and corner-localizations are 

topologically protected. If we evenly introduce loss to the whole sites of this QTI, 

still no in-gap states occupy the bulk sites as the overall identical loss will not change 
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the topological properties of QTI [126]. However, if two different losses are applied 

to the red and blue sites in Figs. 5.1(a) and 5.1(b), respectively, new topologically 

protected corner [Figs. 5.1(c) and 5.1(d)] and edge states [Figs. 5.1(e) and 5.1(f)] will 

emerge at the interfaces between different loss areas. Both topological edge and 

corner states can be flexibly redistributed in various interfaces simply by changing 

the HLS shape. 

 

Figure 5.1 Non-Hermitian modulation of the topological states in a QTI. (a), (b) 

Schematics of the QTI with the imbalanced loss distributions. The dotted black box 

delineated one unit cell. (c), (d) The topological corner mode shape for the TBMs in 

(a) and (b), respectively. (e), (f) The topological edge state shape for the TBMs in (a) 

and (b), respectively. In (c)-(f), the areas inside the dotted black boxes possess 

additional losses. Both the size and the color of the dots in (c)-(f) represent the 

intensity. 
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5.2.2 Eigenvalue Evolution 

The uneven energy dissipation along the interfaces breaks the insulating property of 

interior, creating new interior topological states. The loss contrast defined by 

2 1   = −  ( 1  and 2  are the loss coefficients in the LLS and HLS, respectively) is 

the decisive parameter, which is confirmed by the results given by TBM, as 

illustrated in Fig. 5.2.  When 0 = , the finite-sized lattice is a standard QTI with 

corner states located at the zero-energy, and gapped edge and bulk states distributed 

symmetrically about the zero-energy. With the increase of the loss contrast, more 

corner (red circles in Fig. 5.2) and edge (blue circles in Fig. 5.2) states come out 

from the original edge and/or bulk regions. For the lattice configuration in Fig. 5.1(a), 

new corner states evolve from the two branches of edge states [Fig. 5.2(a)] and 

coalesce to an exceptional point (see more details in section 5.2.3) at 1/ 2  = . At 

the same time, the new edge states, coming from the gapped bulk regions, gradually 

merge into the existing edge states as the loss contrast grows. 

 

In addition, the loss-induced new corner states can reside not only at the edges but 

also in the bulk sites [see Fig. 5.1(d)] via reshaping the loss configuration to the one 

presented in Fig. 5.1(b). In this case, two pairs of new corner states coming from the 

edge and bulk states coalesce at 1/ 2  =  and 1/ 2.8  = , respectively, creating 

two EPs, as shown in Figs. 5.2(b) and 5.2(d). After exceeding the EPs, they share the 

same real part but different imaginary parts of eigenvalues. The states with lower 

imaginary parts mainly reside in the LLS, while those with higher imaginary parts 

locate in the HLS, which evidence that they decouple with each other. 
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Figure 5.2 The evolution of the eigenvalue versus the loss contrast. (a), (b) 

Calculated real parts of the complex eigenvalues for the lattice illustrated in Fig. 

5.1(a) and Fig. 5.1(b), respectively. (c), (d) Calculated imaginary parts of the 

complex eigenvalues for the lattice illustrated in Fig. 5.1(a) and Fig. 5.1(b), 

respectively. The red dashed lines denote the value used in the following 

measurements. In all calculations, the loss coefficient 1 2.4 = , the intracell coupling 

strength 1 1 =  and intercell coupling strength 1 4.56 = . 

 

5.2.3 Exceptional Point 

The EP, at which two or more eigenstates as well as their eigenvalues coalesce, is 

vital in our non-Hermitian models as it is the transition point to induce topologically 

protected new corner modes. Here, we utilize the 72-site TBM with the configuration 

shown in Fig. 5.3(a) as an example to investigate the EP. We use  1,72n  to mark 

the position of every cavity, therefore, the expected locations of the eight newly 

formed corner states [similar to Fig. 5.1(c)] are  4,5,8,9,64,65,68,69n .  
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Here, we chose a larger hopping ratio, i.e., 1 1/ 12.8  = ( 1 4.56 = , 1 0.36 = ) and 

plot the eigenfrequency evolution with the increased loss contrast of the lattice in Fig. 

5.3(b). Before the EP ( 1/ 1.4  = ), both the sites in the LLSs and HLSs possess 

higher field intensities, revealing that the coupling effect takes the dominant position 

[Fig. 5.3(c)]. At the EP ( 1/ 2  = ), the two branches of corner modes coalesce into 

one [Fig. 5.3(d)]. After the EP ( 1/ 4.5  = ), the corner states are decoupled, with 

one branch of corner states experiencing low-loss and the other branch undergoing 

high-loss, which are localized at the turning corners of the LLS [  4,9,64,69n , 

right panel of Fig. 5.3(e)] and HLS [  5,8,65,68n , left panel of Fig. 5.3(e)], 

respectively. 
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Figure 5.3 Probing the existence of the EP by checking the corresponding 

eigenstates. (a) Schematics of the 72-site TBM. (b) The eigenfrequency evolution as 

a function of increased loss contrast, showing the bifurcation characteristic of the 

corner states. (c)-(e) The eigenstates of corner states, which are induced by 

imbalanced loss, before (c), at (d) and after (e) the EP, corresponding to the three 

gray dotted lines in (b). The intensity distributions in the 72-site lattice before, at and 

after the EP show the coupling, coalescence and decoupling effect between the high-

loss and low-loss corner states, respectively. 

 

5.2.4 Robustness of the Corner States 

The new corner states located at the imbalanced interfaces are also robust to certain 

kinds of defects as long as they cross the EPs. As an illustration, we use the 

configuration in Fig. 5.1(a) with 1/ 4.5  =  to investigate the robustness against 

three different types of random defects on the coupling terms (δκ), on-site losses (δγ), 

and on-site potentials (δf), which are three typical perturbations. Specifically, some 

random numbers, defined as gapkX E =’ , gapX E =’  and gapff X E=’  are added 

to the coupling terms, on-site loss terms and resonant frequency terms in the TBM, 

respectively. Wherein [ 1,1]X  −  is randomly selected, δκ, δγ and δf denote the 

strengths of ddefects with respect to Egap (the complete band gap), respectively. With 

the increase of δκ and δγ, the corner states remain to localize around the zero-energy 

with only negligible changes in the eigenfrequency, indicating their robustness 

against coupling and loss defectss, as depicted in Figs. 5.4(a) and 5.4(b). On the other 

hand, for the on-site potential disorder, the real parts of the eigenvalues of corner 

states are no longer degenerate as δf increased [Fig. 5.4(c)], due to the broken chiral 

symmetry [138]. 
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Figure 5.4 Robustness of the newly emerged corner states. The real parts of 

eigenvalue evolution with increased (a) coupling defect, (b) loss defect and (c) on-

site potential defect. 

 

5.3 Experimental Results 

 

5.3.1 Acoustic Quadrupole Topological Insulator 

We utilize coupled resonant cavities to realize the above TBMs [31-34, 154] in 

acoustic lattice. Each unit cell in the designed acoustic QTI includes four cuboid 

acoustic cavities connected via thin waveguides [the inset in Fig. 5.5]. The length, 

width and height of the cavities are 80 mm, 40 mm and 10 mm, respectively. The 

thin waveguides have the same length of 40 mm, while the cross-sectional areas are 

22.5 2.5 mm  for the intracell ones and 25 5 mm  for the intercell ones. The cavities 

colored in blue (red) denote the high-loss (low-loss) area. The waveguides colored in 

orange (gray) represent positive (negative) coupling. Its quantized bulk quadrupole 

moment can be described by the quantized edge polarization  
( ) ( )

0.5y xv v
x yp p
+ − + −

= =  (see 

more details in Appendix E), following the nested-Wilson-loop approach [74]. The 

sign of coupling can be well tuned by changing the location of the connecting 
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waveguides, without influencing the coupling amplitudes [31]. The intracell and 

intercell coupling strengths are 1 5.5 Hz = − , 1 25.6 Hz = − , respectively (details 

see Appendix E).  

 

Figure 5.5 Schematic of an acoustic lattice which stringently satisfies the TBM in 

Fig. 5.1(a). The inset shows a unit cell of the lattice.  

 

5.3.2 Measured Response Spectra for the Single Cavities 

The loss coefficients of the cavity with only intrinsic loss (γ1) and with additional 

loss (γ2) can be extracted by fitting the simulated response spectra to the measured 

ones. By perforating the cavity with small leaky holes (the radius is 1.2 mm) and 

then inserting sound absorptive materials [19, 20], the additional loss 2 1   = −  is 

introduced. As illustrated by the blue circles in Fig. 5.6(a) [Fig. 5.6(b)], the measured 

spectrum of a single cavity with γ1 (γ2) has a peak at 2141 Hz with the quality factor 

of 80 (8). In simulations, we can treat the losses as the imaginary parts of sound 

speed, that is, 1 343 (1 0.0062 ) m/sc i=  +  for the cavity with γ1 and 

2 343 (1 0.06 ) m/sc i=  +  for the cavity with γ2. Therefore, the loss coefficients, 

which are also the imaginary parts of the resonant frequency, are 
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1 2141 0.0062 13.3 Hz =  =  and 2 2141 0.06 128.5 Hz =  = , respectively. Here, 

1/ 4.5  =  , denoted by the red dashed line in Fig. 5.2, is sufficient enough to 

exceed the EPs and separate the corner, edge and bulk modes. 

 

Figure 5.6 Measured and simulated response spectra for the single cavities. 

Response spectrum for a single cavity with loss coefficient of γ1 (a) and γ2 (b). The 

blue circles are the measured results, and the red solid lines denote the fitted 

simulated results. 

 

5.3.3  Measured Profiles of a Lattice with Rectangular High Loss 

Subarea 

A rectangular acoustic sample consists of coupled six-by-twelve cavities [Fig. 5.7(a)]. 

It is fabricated by stereo-lithography 3D printing technique to experimentally explore 

new topological corner and edge states, as predicted by the above theoretical 

calculations. The middle region of the sample (containing six-by-four cuboid cavities) 

is applied with additional loss, which corresponds to the TBM in Fig. 5.1(a). Small 

pieces of sound-absorbing sponge (black) are added into the leaky holes of these 

cavities to minimize the frequency deviation induced by the additional loss. Two 

identical holes are also drilled on the upper and lower sides (the radius is 1 mm) of 

each cavity to launch and measure the sound signals. When not used, the holes are 
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sealed by the matched cover lids [round protrusions in Fig. 5.7(a)].  

 

In the measurement, the exciting loudspeaker and measuring microphone are inserted 

at the same cavity, and this process is repeated for all the cavities. The non-

Hermiticity-controlled new topological states located in the LLS dominate that in the 

HLS as they show almost the same quality factors when compared with the original 

topological states (around 71), but for the topological states in the HLS, the quality 

factors are extremely small (around 9). Hence, the measured acoustic intensity 

spectra for cavities in the LLS that we focused on are enough high in amplitude to 

characterize the topological sates and band gap, while the intensity spectra for 

cavities in the HLS are much lower. 

 

Firstly, a bulk cavity labelled “3” in Fig. 5.7(a) is excited and measured to study the 

band gap feature. Its response spectrum [the gray area in Fig. 5.7(b)] shows two 

peaks, which correspond to the two branches of bulk states with lower imaginary 

parts around 14 Hz [see Fig. A7(a) in Appendix F]. Then, we measure a bulk cavity 

resided in the middle of the interface [marked as “2” in Fig. 5.7(a)], where the newly 

formed edge states are expected to be detected. The two peaks in the measured 

spectrum [the blue one in Fig. 5.7(b)] possess a smaller interval, evidencing the 

prediction in Fig. 5.2. In contrast, for the spectrum measured in the lowermost cavity 

of the interface [labelled as “1” in Fig. 5.7(a)], only one peak at the mid-gap 

frequency of 2141 Hz can be observed [depicted by the red plot in Fig. 5.7(b)], 

manifesting the existence of the new corner states. 

 

By repeating the measurements to all the sites, the site-resolved intensity field 
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distributions at peak frequencies of the three spectra [indicated by the black dotted 

lines in Fig. 5.7(b)] can be obtained and plotted in Figs. 5.7(c)-5.7(e), respectively. 

The intensity profile at 2141 Hz in Fig. 5.7(c) verifies the eight corner localizations. 

In addition to the original four corners, four new energy concentrations emerge at the 

interface corners. Moreover, the edge states profile [Fig. 5.7(d)] manifests that the 

overall intensity along the edges and interfaces is relatively higher than that in the 

interior, different from the bulk states profile [Fig. 5.7(e)].  

 

 

Figure 5.7 Measured acoustic responses of the lattice with a rectangular HLS. (a) 

Photo of a sample with six-by-twelve site cavities. The inset illustrates one unit cell 

of the lattice. (b) Response spectra measured at cavities “1”, “2” and “3” marked in 

(a), corresponding to the edge-evolved corner (in red), bulk-evolved edge (in blue) 

and bulk (in gray) modes, respectively. (c)-(e) Measured intensity distributions at 

2141 Hz, 2114 Hz and 2100 Hz, correspond to the peaks of the new corner, new edge, 

and bulk spectra, respectively.  
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5.3.4  Measured Profiles of a Lattice with L-shaped High Loss 

Subarea 

Non-Hermiticity improves the topological edge transport and corner localization by 

using various patterns inside the lattice. To show such flexible reconfigurability, the 

rectangular pattern of the HLS is shifted to an “L” shape [Figs. 5.1(b) and 5.8(a)]. 

Surprisingly, in the measured spectrum of an interior bulk cavity [site “1” in Fig. 

5.8(a)], only one peak appears [red area in Fig. 5.8(b)], similar with the one in Fig. 

5.7(b). These results demonstrate that the bulk-evolved corner states have almost the 

same characteristics as the edge-evolved ones if they exceed the corresponding EPs. 

The intensity spectrum measured in cavity “2” (or cavity “3”), which is resided in the 

other turning corner in the lattice, is represented by the green area in Fig. 5.8(b). In 

contrast, three separated peaks are observed, implying that a mid-gap corner state 

coexists with the gapped bulk states in these two cavities [see Fig. A7(d) in Appendix 

F]. The bulk and new edge spectra measured in cavity “5” and cavity “4” are 

represented by the gray and blue colors in Fig. 5.8(b), respectively, showing 

consistency with the measured ones in Fig. 5.7(b), which further evidence their 

stability no matter of the subarea patterns.  

 

In a same way, we also measure the responses of the whole sample for the corner 

(2141 Hz), edge (2114 Hz) and bulk (2100 Hz) states, as indicated in Figs. 5.8(c)-

5.8(e), respectively, which demonstrate the energy localizations at the predicted 
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corner and edge positions. 

 

 
Figure 5.8 Measured acoustic responses of the lattice with an “L” shaped HLS. (a) 

Photo of the sample with eight-by-twelve site cavities. (b) Measured spectra in 

cavities “1”, “4” and “5” labelled in (a), respectively, corresponding to the bulk-

evolved corner (in red), bulk-evolved edge (in blue) and bulk (in gray) modes. The 

green spectrum is measured in cavity “2”, which is occupied by a bulk-evolved 

corner mode and two bulk modes. (c)-(e) Measured acoustic intensity profiles at 

2141 Hz, 2114 Hz and 2100 Hz.  
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5.4 Numerically Simulated Field Intensity 

Distribution 

To compare with the measured results presented in Figs. 5.7 and 5.8, we perform the 

full-wave simulation for the acoustic lattices with a rectangular HLS and an “L” 

shaped HLS, respectively. For the former one, the response spectra in the same 

cavities, labelled as “1”, “2” and “3” in Fig. 5.7(a), are numerically calculated and 

denoted by the red, blue and gray spectra in Fig. 5.9(a), respectively. The separated 

peaks in the gray spectrum manifest two branches of bulk states, while the two closer 

peaks in the blue spectrum verify the newly formed edge states inside the bulk band 

gap. Since the red spectrum only has one peak located at 2141 Hz, the existence of 

edge-evolved corner states is confirmed. The field intensity distributions at the three 

peak frequencies, indicated by the three black dotted lines in Fig. 5.9(a), are also 

calculated and plotted in Fig. 5.9(b)-(d), which further evidence the edge-evolved 

corner, bulk-evolved edge and bulk states. 
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Figure 5.9 Full-wave simulation on the acoustic lattice with a rectangular HLS. (a) 

Simulated acoustic intensity spectra. Red, blue and gray spectra denote the edge-

evolved corner, bulk-evolved edge, bulk spectra calculated at cavity “1”, “2” and “3” 

in Fig. 5.7(a), respectively. (b)-(d) Simulated field intensity distributions at the peak 

frequencies of the corner, edge and bulk intensity spectra, corresponding to the three 

black dotted lines in (a), respectively. 

 

For the latter lattice with an “L” shaped HLS, the simulated bulk spectrum, bulk-

evolved edge spectrum and the bulk-evolved corner spectrum share the similar modal 

characteristics with the previous ones with a rectangular HLS, as confirmed by the 

gray, blue and red spectra in Fig. 5.10(a). However, at the other turning corner of 

imbalanced losses in the interior bulk, the single-site localization property of the new 

corner modes is shifted to the double-site localization due to the fact that these two 

sites [cavities “2” and “3” in Fig. 5.8(a)] are not only occupied by the new corner 



 

95 

state but also the gapped bulk states, which can be confirmed by the simulated 

response spectrum in the cavity “2” or “3” [green spectrum in Fig. 5.10(a)]. Similarly, 

the field intensity profiles at the three peak frequencies are also given in Fig. 5.10(b)-

(d). In summary, all these simulated results are consistent with the experimental ones 

indicated in Figs. 5.7 and 5.8. 

 

Figure 5.10 Full-wave simulation on the acoustic lattice with an “L” shaped HLS. (a) 

Simulated acoustic intensity. The simulated bulk-evolved corner, bulk-evolved edge, 

and bulk spectra are represented by the red, blue and gray areas, respectively. (b)-(d) 

Simulated field intensity profiles at the peak frequencies of the corner, edge and bulk 

intensity spectra, respectively. 
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5.5 Summary 

In conclusion, we have proposed and experimentally evidenced a non-Hermitian 

scheme to create the topological interfaces, which are formed by setting imbalanced 

losses. The interfaces hold both first-order and second-order topological states and 

can be flexibly adjusted via setting different patterns of HLS. The newly emerged 

first-order edge states are evolved from the original bulk modes, whereas the new 

corner states can come both from the original edge and bulk statess depending on the 

shapes of HLS, which show different EPs as the overall coupling strength of a bulk 

site is larger than an edge site.  

 

Our work shows that non-Hermiticity is an effective method by which the 

topological states can be flexibly controlled to guide and localize energy on demand, 

such that the originally useless bulk sites can be occupied by an edge or corner states 

leading to a significant improvement of the reconfigurability of the topological states. 

Other types of topological states, for example, the higher-order topological defect 

states in the honeycomb or hexagonal lattices [35, 113, 155, 156] and third-order 

topological states in the three-dimensional octupole topological insulators [33] can 

also be flexibly modulated. 
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CHAPTER 6  

 

Topological Phenomena Arising from 

Fluid-solid Interactions in a Three-

dimensional Phononic Crystal 

6.1 Introduction 

The investigation of topological phononic systems is generally limited to sound 

waves in either fluids or solids alone to simplify the physical picture, just like what 

we have done in Chapters 3, 4 and 5. As a mechanical wave [24], sound propagates 

in the manners of a pressure perturbation in fluids or an elastic stress perturbation in 

solids and is represented by a scalar wave or vector wave, respectively (recent study 

about acoustic spin have the potential to realize the counterpart of the QSHE in 

acoustic waves). This fundamental point leads to intrinsic differences in the 

dynamics and symmetries for sound in fluids and solids. However, such intrinsic 

differences and their possible interactions have yet to be considered in the 

development of topological phononics, even for the underwater environment where 
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the interactions can become considerable [26, 27]. 

 

In this chapter, we propose a novel approach to create and control topological 

properties in acoustic wave systems by utilizing the interplay of scalar sound in 

fluids and its vectorial counterpart in solids. With this approach absent in photonics 

and unique for phononics, we demonstrate type-II nodal rings in a simple 3D 

phononic crystal composed of identical perforated metallic plates immersed in water.  

Through near-field scanning of the fabricated sample, we experimentally confirm our 

findings and observe associated strongly tilted DSSs as well as nodal chains in the 

simple structure. Our study reveals that the sophisticated interaction between fluids 

and solids for sound, previously often disregarded for simplicity in topological 

phononics research, contains rich physics beyond sound wave systems supporting 

solely fluid-borne or solid-borne sound. It can thus serve as a novel platform for 

exploring unique topological physics and acoustic applications. 

 

6.2 Nodal Rings Induced by Fluid-solid Interaction 

 

6.2.1 Simulated Band Diagram of the Three-dimensional Unit Cell 

We consider a 3D phononic crystal, comprised of identical aluminum plates, 

immersed in water [Fig. 6.1(a)]. Each plate is perforated with a square lattice of 
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circular through holes. Water, dissimilar to air, possess comparable acoustic 

impedance with aluminum, significantly improving fluid-solid interaction. The 

phononic crystal belongs to the space group P4/mmm (No. 123). In Fig. 6.1(a), the 

bottom right inset depicts the 3D first BZ and the red dashed box shows a basic unit 

cell (z direction not shown). The diameter of holes d0 = 2 mm, the in-plane lattice 

constant a0 = 3 mm, the distance between adjacent plates tw = 2 mm, the thickness of 

plates tm = 2 mm, leading to out-of-plane lattice constant az = tm+tw = 4 mm. 

 

The first four bands of the phononic crystal stem from the three lowest plate modes 

and one waterborne sound mode. The simulated band diagram [Fig. 6.1(b)] along the 

high-symmetry lines of the first BZ characterizes their emergence from zero 

frequency at Γ point. The first band degenerates with the second band on high-

symmetry planes of the first BZ. Their intersecting points, as marked by the red, blue, 

and green dots in Fig. 6.1(b), form different nodal rings, respectively. Moreover, 

these intersecting points are all gapped slightly away from corresponding high-

symmetry planes in the momentum space, which are the features of nodal rings (see 

Appendix G).  

 

The detailed shapes of the nodal rings [Fig. 6.1(c)] in the whole first BZ further 

reveals that the blue and green nodal rings are chained together, forming nodal chains. 

The frequency variations of the nodal rings are plotted in Fig. 6.1(d). According to 



 

100 

the touching band slopes beside the nodal rings, the red and blue ones are type-II 

nodal rings, while the green ones are hybrid nodal rings [Fig. 6.1(e)]. The hybrid 

green nodal rings have a relatively large frequency dispersion (Δω/ωmid ~ 12.3%, 

with Δω being the frequency variation and ωmid being the middle of frequencies), 

while the type-II red and blue nodal rings have smaller frequency dispersions 

(Δω/ωmid ~ 6.6% and ~ 1.4% for the red and blue ones). Other nodal rings may also 

emerge between the second and higher-order bands, but they all reside in the sound 

cone (bulk acoustic waves in water) when projected along the z direction, which are 

out of our interest. 
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Figure 6.1 Type-II nodal rings induced by fluid-solid interaction. (a) Perspective and 

cross-sectional views of the 3D phononic crystal. (b) Simulated band diagram along 

high-symmetry lines in first BZ. (c) Distribution of the nodal rings in the first BZ. 

The colors of the nodal rings are the same as the corresponding dots in (b). (d) 

Spectral variations of the three nodal rings. (e) 3D band diagrams of the first two 

modes on specified cross sections of the first BZ. Nodal rings formed by their 

crossings are denoted. 
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6.2.2 Origin and Analysis of the Nodal Rings 

Notably, the nodal rings arise from the fluid-solid interaction, because transverse 

components of the plates’ displacements cannot be neglected. We first evaluate band 

diagram near Γ point [inset in Fig. 6.1(b)], around which the first four bands are 

classified as the lowest-order waterborne guided (WG) mode and the three lowest-

order plate modes: the flexure Lamb (FL) mode, the extensional Lamb (EL) mode, 

and the shear horizontal (SH) mode [see Fig. 6.2 for their mode shapes at k = 

(0.1π/a0, 0, 0)]. Far away from the Γ point, the hybridizations between these modes 

become significant, so that the bands cannot be simply distinguished.  

 
Figure 6.2 Mode profiles of the first four bands around Γ point. (a)-(d) Calculated 

field maps of the modes at k = (0.1π/a0, 0, 0), including the acoustic pressure (Re(p)) 

and elastic displacements (Re(u), Re(v), Re(w)). The thin solid lines outline the 

profile of the unit cells without elastic displacements. 

 

To verify that the fluid-solid interaction cannot be neglected in the “mixture” 
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phononic crystal, we give the simulated band diagram without the interaction. In this 

situation, the phononic crystal are modelled only with the Pressure Acoustics module 

in COMSOL Multiphysics. The longitudinal sound speed of aluminium cl = 6100 m/s 

is used in the simulations, and the calculated band diagram is depicted in Fig. 6.3. 

Only one mode, namely, the WG mode, emerges from Γ point. The SH mode and 

Lamb modes (both FL and EL modes) originating from solid displacements all 

disappear. 

 
Figure 6.3 Band diagram of the phononic crystal without fluid-solid interaction. We 

only consider the longitudinal component of the system in the numerical calculations. 

Resultantly, the SH modes and Lamb modes (both FL and EL modes) that involve 

shear components disappear. 

 

To shed light on the emergence of the nodal rings, we explore the situation that 

periodic aluminium plates are arranged in the same manner but without any 

perforations. The calculated bands still have the intersecting point between the first 
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and second bands on kz = 0 plane [Fig. 6.4(a)]. In this case, around Γ point with kz = 

0, we obtain the band dispersions based on the transfer matrix method (see Appendix 

H) 
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where 2 2
r x yk k k= + , D and ρm are the bending stiffness and density of the plates, cw 

and ρw are the sound speed and density of the background water. Hence, in the long-

wavelength limit, for the FL mode, a quadratic asymptotic behavior ωFL ~ kr2 is 

observed, which is similar to the case of flexural waves on a free-standing thin plate. 

In contrast, for the WG mode coinciding with sound cone, a typical linear asymptotic 

behavior ωWG ~ kr is observed. As they emerge together from Γ point when kz = 0, 

they will eventually touch each other along a closed loop with both slopes positive, 

forming a type-II nodal ring [Fig. 6.4(b)]. It is worth noting that this red nodal ring is 

very robust against various choices of material and geometric parameters. 

 

Figure 6.4 Origins and analysis of the nodal rings. (a) Band diagram of periodic 

metallic plates without perforations. (b) Distribution of the ideal type-II nodal ring 

for (a).  
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For example, in Fig. 6.5(a), we show the band diagram of the phononic crystal 

immersed in air. It can be seen that the inevitable type-II nodal ring on kz = 0 plane 

still exists. However, the size of the nodal ring is significantly shrunken since the 

sound speed of air is much smaller when compared with water. Moreover, the sound 

is also much harder to be transmitted because of the significant impedance mismatch 

between air and aluminum which gives rise to much weaker fluid-solid interaction. 

In fact, we have simulated excited of the phononic crystal in water and air at the 

corresponding frequency of the red nodal ring on kz = 0, respectively. In simulations, 

the phononic crystal contains 10 layers of the drilled aluminum plates, and the 

average out-of-plane displacement for each layer is illustrated in Fig. 6.5(b). It can be 

seen that the sound can hardly be transmitted when the phononic crystal is immersed 

in air, since the impedance of aluminum is four orders of magnitude than that of air. 

 

Figure 6.5 Comparison with the phononic crystal immersed in air. (a) The calculated 

band diagram with kz = 0 when the phononic crystal is immersed in air. (b) The 

normalized amplitude of averaged out-of-plane displacement (Abs(w)) for each layer 

of the aluminum plates when excited at the frequency of the nodal ring on kz = 0 for 

air and water, respectively. The excitation source is placed at the surface (N = 1). 
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The red nodal ring is related to the plate thickness. We consider the evolution of the 

nodal rings when we tune the thickness of plates tm. The calculated band diagrams 

and distribution of nodal rings are demonstrated in Fig. 6.6. It can be seen that the 

red nodal ring is shrunken when we increase the thickness of plates tm, as shown in 

Figs. 6.6(a) and 6.6(b). On the other hand, if we decrease the thickness of plates tm, 

the red nodal ring will expand, touch each other, reconnect, and become centered 

around M point of first BZ, as shown in Fig. 6.6(c). With further expansion, the red 

nodal ring will disappear, as shown in Fig. 6.6(d). 

 

Figure 6.6 Evolution of nodal rings when tuning thickness of plates. (a), (b) 

Calculated band diagrams when increasing thickness of plates, with tm = 3.0 mm (a) 

and tm = 4.0 mm (b), respectively. (c), (d) Calculated band diagrams when decreasing 

thickness of plates, with tm = 1.5 mm (a) and tm = 0.8 mm (b), respectively. 
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Different from the robust red nodal rings associated with the plate thickness, the 

green and blue nodal rings are directly related to the through holes. To make this 

point clear, we also probe the case of blind holes on the aluminium plates, with the 

limiting situation that they perforate the plates. The evolution of the band diagram 

reveals that only the red nodal ring, arising solely from the fluid-solid interaction, 

can exist with blind holes (Fig. 6.7). The blue and green nodal rings are largely 

dependent on the acoustic resonance mode of the through holes.  

 

Figure 6.7 Evolution of the nodal rings, from uniform plates to plates with blind 

holes and finally through holes. 

 

The perforated holes are critical for the emergence of other nodal rings except the red 

one. To confirm this point, we have calculated the bands of the phononic crystal with 

the metallic plate assumed to be acoustically rigid. The calculated band diagram is 

shown in Fig. 6.8(a), and only the blue nodal ring on kz = π/az exists, as demonstrated 

in Fig. 6.8(b). On the other hand, the red nodal ring arising from the fluid-solid 
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interaction is missing because the plates are now acoustically rigid and cannot 

support flexural Lamb modes. The results suggest that the blue nodal ring on kz = 

π/az is due to the degeneracy between the WG mode and the acoustic resonance 

mode of the through holes. Both modes still exist when the plates are acoustically 

rigid. To demonstrate this point, we plot the field maps of the two modes around the 

blue nodal ring at k = (0.83π/a0, 0.75π/a0, π/az). As shown in Fig. 6.8(c), the two 

modes indeed have opposite parities with respect to the mirror symmetry Mz, as 

expected. On the other hand, if the holes are blind holes on the rigid plates, for 

example, with a separation th = 1.0 mm between holes on two sides of the plates, we 

can see that the blue nodal rings will disappear, as shown in Fig. 6.8(d). This fact is 

because if the holes are blind holes, the frequency of their first-order acoustic 

resonance will be significantly increased because the effective length of the holes are 

greatly reduced. 

 

In other words, we can effectively tune the blue nodal rings by tuning the acoustic 

resonance mode, through changing the thickness of the plates tm. For example, we 

consider the case that the holes are through holes, and the thickness of rigid plates is 

tm = 1.0 mm, while other geometric parameters remain unchanged. The calculated 

band diagram is shown in Fig. 6.8(e). The blue nodal rings expand and reconnect 

after touching each other, now centered around R point in the reciprocal space, as 

demonstrated in Fig. 6.8(f). The green nodal rings now also appear on kx = π/a0 and 
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ky = π/a0 planes, connected with the blue nodal rings. In fact, the existence of green 

nodal rings, when the blue nodal rings are centered around R point, is guaranteed by 

the mirror symmetries with respect to the kx = π/a0 and ky = π/a0 planes in the 

reciprocal space. The mirror symmetries lead to the opposite orientations of the blue 

nodal rings on opposite sides of the kx = π/a0 and ky = π/a0 planes [157]. 

 
Figure 6.8 Band diagrams when the plates are rigid. (a) Calculated band diagram of 

the unit cell when its solid domain is acoustically rigid, while geometric parameters 

are all the same. (b) Distribution of the nodal ring. (c) The field maps of the first two 
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bands around the blue nodal ring. (d) Calculated band diagaram of the unit cell when 

the holes are blind holes. (e) Calculated band diagram when the thickness of rigid 

plates tm = 1.0 mm. (f) Distribution of the nodal rings.  

 

6.2.3 Experimental Observation of Type-II Nodal Rings 

Then, we carry out ultrasonic near-field scanning in fluid to experimentally 

investigate the type-II nodal rings [158]. When exploring bulk bands with the 

experimental setup [Fig. 6.9(a)], out-of-plane displacement is produced by a 

piezoelectric actuator, which couples efficiently with underwater ultrasound. The 

piezoelectric actuator is attached on one side (facet 1) of the sample by glue, and the 

ultrasound field on the opposite side (facet 2) is measured point-by-point [Fig. 6.9(b)] 

by a needle hydrophone. To extract the intensity spectra outside the sound cone in the 

reciprocal space, the measured fields are then Fourier transformed [159]. The bright 

strips in the intensity spectra correspond to the excited bulk modes outside sound 

cone in experiments that is projected over kz. Their evolution with respect to 

frequency is indicated in Fig. 6.9(c). 

 

We also extract the intensity spectra along high symmetry lines of the first BZ and 

compare them with the simulated band diagram projected over kz [black circles in Fig. 

6.9(d)]. In general, the spectra overlap with the black circles from full-wave 

simulations. For further confirmation, we also performed control experiments with 

in-plane lattice constant shifted to a0 = 4 mm, and the measured results also 
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consistent with corresponding simulations (see Appendix I). 

 

Figure 6.9 Experimental observation of type-II nodal rings. (a) Schematic of 

experimental setup for near-field scanning. (b) Photograph of the sample and 

experimental setup. White scale bar: 40mm. (c) Spatial Fourier spectra of 

experimentally imaged fields at corresponding frequencies. Gray shaded regions: the 

sound cone projected on the kx-ky plane. (d) Experimental Fourier spectra along high-

symmetry lines of the first BZ. The coloured dots represent the nodal rings of the 

same colour denoted in Fig. 6.1(b). 
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6.3 Strongly Tilted Drumhead Surface State 

 

6.3.1  Distribution of Zak Phase 

To further elaborate the topological effects of type-II nodal rings, we also note the 

existence of drumhead surface state (DSS) between the red type-II nodal ring on kz = 

0 and the blue type-II nodal ring on kz = ±π/az. The DSS is closely related to the Zak 

phase along kz direction that is quantized owing to the mirror symmetry Mz (z → −z) 

of the phononic crystal. An eigenmode of the phononic crystal which includes fluid-

solid interaction is generally comprised of ultrasound in both the fluid domains 

(described by acoustic pressure p) and the solid domains (described by displacement 

u). We can define the inner product of two eigenmodes 1n  and 2n  of the phononic 

crystal as [160, 161] 
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where Vw and Vm denoting the fluid and solid domains of the unit cell, respectively. 

In the integrals, p1(r) and p2(r) are periodic part of pressure field for 1n  and 2n , 

e1(r) and e2(r) are periodic part of strain field for 1n  and 2n . The elastic strain 

tensor e is defined as 
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where ui (i=1,2,3) are components of displacement and xi (i=1,2,3) are coordinates, 

respectively. C is the stiffness tensor connecting stress and strain of the solid, which 

is expressed as 
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For simplicity, the symmetric 3×3 strain tensor is rearranged into a 6-component 

vector e = [e11, e22, e33, 2e12, 2e13, 2e23]T. The particle velocity of ultrasound in the 

fluid is 

 w
w

p
i


=v ,  (6.6) 

while the particle velocity of ultrasound in the solid is 

 m i= −v u .  (6.7) 

Then, the eigenmodes can be normalized, and the Berry connection of the l-th band 

is then 
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 , ,( )l l lB i n n= k k kk ,  (6.8) 

where ,ln k  is the normalized eigenstate of l-th band at k in the reciprocal space. 

Correspondingly, the Zak phase Zak ( , )l x yk k  along kz direction of l-th band can be 

directly evaluated as (up to 2π) 
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In our numerical calculations, we discretize Eq. (6.9), and the results for the first 

band of selected lines in the surface first BZ are plotted in Fig. 6.10. It can be seen 

that the numerical results agree quite well with the theoretical results inferred from 

the distribution of nodal rings. The numerical errors are within ±0.05 and can be 

further decreased by refining the discretization of kz. 

 In fact, since the phononic crystal has mirror symmetry with respect to z 

direction, the Zak phase Zak
1  can also be inferred from parities of the eigenmodes at 

high symmetry points along the kz path (kz = 0 and π/az). Namely, we have [161] 

 
Zak

1
,1 ,1

1{ [ ( 0) ( π / )]}mod 2
π 2 z z z z zM k M k a

= = − = ,  (6.10) 

where Mz,1 are parities (±1) for mirror symmetry Mz (z → −z) of the 1st band at kz = 0 

and π/az, respectively. The field maps of the eigenmodes at kz = 0 and kz = π/az for kr 

= (kx, ky) = (0.6π/a0, 0) and (0.8π/a0, 0) are shown in Figs. 6.10(c) and 6.10(d), 

respectively. It shows that, for mirror symmetry Mz, the eigenmodes at kz = 0 and π/az 

have the same parity when kr = (0.6π/a0, 0), but opposite parities when kr = (0.8π/a0, 

0). This contrast confirms that the Zak phase takes the value 0 for the former case 
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and π for the latter case, as we have numerically demonstrated. 

 
Figure 6.10 Numerical calculation of Zak phases. (a), (b) Numerically calculated 

Zak phases along the line ky = 0 (a) and kx = ky (b) in the surface first BZ. The dots 

represent numerical values calculated from full-wave simulations, and dashed lines 

represent theoretical values obtained from the distribution of nodal rings. (c), (d) 

Field maps of the eigenmodes of the first band at kz = 0 and kz = π/az, respectively, 

corresponding to kr = (0.6π/a0, 0) (c) and kr = (0.8π/a0, 0), indicated by arrows in (a).  

 

6.3.2  Experimental Observation of the Drumhead Surface State 

The different values of the Zak phase in the surface first BZ [Fig. 6.11(a)] is just 

distinguished by the projection of the two nodal rings on kx-ky plane [162], implying 

possible existence of DSS in the region with nonzero Zak phase [163]. The 

calculated projected band diagram of a ribbon supercell terminated by its x-y surface 
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demonstrates that a strongly tilted DSS appears in the partial band gap [Fig. 6.11(b)], 

a typical characteristic of the topological effect of the type-II nodal rings. This strong 

tilting property is different form DSSs of type-I nodal rings, where they are generally 

flat. The field profiles of the strongly tilted DSS [Fig. 6.11(c)], including both 

acoustic pressure (left panel) and out-of-plane displacement (right panel), confirm 

that the DSS is a hybridized states with energy, both in water and plates, localized on 

the surface of the phononic crystal. 

 

Lastly, based on the generally same experimental setup but the actuator and 

hydrophone now on the same x-y surface [facet 2 in Fig. 6.9(a)], we experimentally 

observe the strongly tilted DSS. We carry out the similar near-field scanning and the 

measured field profiles (see Appendix J) are then Fourier transformed again to show 

band diagram in the reciprocal space. The excited modes manifested in the extracted 

intensity spectra [Fig. 6.11(d)] show good consistency with numerical simulations, 

thereby evidencing the existence of the DSS together with its critical feature, the 

strong tilting shape. Since we cannot completely avoid exciting bulk states, bright 

stripes at low frequency range also observed in Fig. 6.11(d). To further support our 

findings, control experiments are also performed (see Appendix I). 
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Figure 6.11 Strongly tilted DSS between nodal rings. (a) Distribution of Zak phase 

on the surface first BZ projected along z direction. (b) Calculated band diagram of a 

supercell terminated by x-y surface. Red lines denote the strongly tilted DSSs. Gray 

shaded regions denote the projected bulk bands. (c) Calculated field profiles of 

acoustic pressure (Re(p)) and elastic displacements (Re(u), Re(v), Re(w)) for the 

marked point in (b). The thin solid lines outline the profile of the supercell without 

elastic displacements. (d) Experimental Fourier spectra along high-symmetry lines 

when launching and measuring the ultrasound at the same side of the phononic 

crystal. Triangle scatters: the simulated dispersion of the strongly tilted DSSs along 

the high-symmetry lines. 
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6.4 Summary 

In this chapter, we present an approach for constructing topological phononic 

systems, based on which we realize type-II nodal rings in a phononic crystal and 

experimentally demonstrate the associated critical features with a underwater 

ultrasonic experimental environment. In view of the fact that the simple design only 

involves perforation during manufacturing, it can be readily rescaled to shorter 

wavelength regimes and may inspire on-chip devices. Using symmetry 

representation as a guidance, our approach reveals how fluid-solid interaction for 

sound can lead to unique behavior and hence enrich topological physics. Our 

findings expand topological systems and can serve as platforms to explore 

topological physics in a much simpler manner, not to mention the significantly 

reduced thermo-viscous losses of sound in water compared with air [96]. Remarkably, 

the rich physics discovered in this platform may also advance theoretical studies and 

experimental realizations of other nodal-line topologies, such as non-Abelian nodal 

links [157] and topological charges [164]. 
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CHAPTER 7  

 

Concluding Remarks and 

Recommendations for Future Study 

7.1 Concluding Remarks 

Topological phononics is an interdisciplinary subject combining condensed matter 

physics, acoustics and solid mechanics. Taking advantages of topological protection, 

these designed artificial structures can flexibly and robustly manipulate sound waves. 

Early works on topological phononics were restricted to searching the counterparts of 

TIs and TSMs that were previously proposed in condensed matter systems. 

Nowadays, topological phononics can even advance the study of TIs, shedding a new 

light on general topological physics and innovating novel applications not accessible 

with conventional materials, e.g., topological phases with non-Hermiticity and 

synthetic dimensions [46]. In this thesis, we have experimentally demonstrated three 

different topological phenomena induced solely by non-Hermiticity, that are, in-gap 

and in-band topological edge localizations based on the 1D elastic lattices and 

reconfigurable first-order and second-order topological states in 2D acoustic lattices, 

respectively. Furthermore, by combining the fluid-borne and solid-borne sound 

together by immersing the layer-stacked perforated elastic plates into water in 
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experiments, the formed 3D phononic crystal with fluid-solid interaction shows 

fascinating type-II nodal rings and associated DSSs. Our works open up new 

approaches to exploring unique topological physics for sound applications such as 

noise control, ultrasound imaging, underwater communications and so on. 

 

In the designed 1D topological structures, we have proposed the elastic analogues of 

the SSH model under Hermitian and non-Hermitian modulations, with perturbative 

elastic metamaterials consisting of square plates connected by thin beams. By setting 

alternating coupling strengths in the hypothetically Hermitian case and judiciously 

tailored damping treatments in the non-Hermitian case, the in-gap and in-band 

topological edge states have been experimentally observed, in which non-Hermiticity 

stands out as a non-trivial factor that fundamentally alters the system’s topology 

beyond conventional Hermitian configurations. This new non-Hermitian mechanism 

for achieving topological edge states is generally applicable to diverse systems and is 

simple to realize. 

 

By further extending the 1D lattice to 2D, we have utilized an acoustic QTI to 

evidently demonstrate that all the topological states could be flexibly engineered to 

arbitrary sites, simply by tailoring the non-Hermitian configurations. This strategy is 

fundamentally distinct from the Hermitian counterpart, where the inter-cell and intra-

cell hopping strengths should be changed to induce the phase transition. Moreover, in 

light of the rising demand of miniaturized and integrated topological devices, our 

study could facilitate the practical application due to the full usage of the lattice. This 

non-Hermitian scheme can be readily generalized to other topological systems in 
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various dimensions, such as the 3D photonic/phononic lattices, which offers 

advanced and externally controllable recipes for observing topological phenomena. 

 

Previous searches for phononic topological phases only concern sound in either 

fluids or solids alone, overlooking any prospect of novel topological physics 

stemming from their interactions. What if we “mix” them in a phononic system? In 

Chapter 6, we report the first experimental obserbation of type-II topological nodal 

rings in phononics by considering both vectorial and scalar nature of the sound. 

Specifically, with a strong band tilting, type-II nodal lines show many special 

physical phenomena in contrast to their conventional type-I counterparts, including 

anisotropic transports, conical diffractions, and tilted DSSs. Among them, the tilted 

DSSs are also experimentally observed. As nodal lines are basic building blocks of 

topological phenomena in the momentum space, our approach could reveal more 

complex topological physics in phononics. We believe that this approach can be 

regarded as a vital milestone in topological phononics and offers a much simple and 

flexible platform to implement interesting topological physics. 

 

7.2 Recommendations for Future Study 

With the promising outcomes listed in this PhD thesis, we envisage that this trend for 

studying topological phnonics will hold for the next several years. But still, we 

would like to point out several existing challenges and potential research directions. 
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To date, the experimental studies of non-Hermitian topology remain dominated by 

classical wave (including sound waves) platforms. We expect that the interest on 

non-Hermitian topological phononics, as our main works discussed in this thesis, will 

continue to increase in future studies especially if further introducing active elements 

[165, 166] to enable gain effect and control the topological states externally. Non-

Hermiticity is usually created by the interaction of a system with external elements 

that excluded by Hermitian frameworks that regard the external DOFs as 

perturbations. The suitable treatments of the external DOFs are formed when the 

non-Hermitian parameters go beyond perturbations but play vital roles in the 

topology therein. Non-Hermitian topology in sound waves may also inspire 

insightful designs such as non-Hermitian topological whispering-gallery [167]. 

 

When it comes to topological phenomena in 3D, many types of band degeneracies 

are still unexplored in sound waves, such as higher-order Weyl points, higher-order 

DPs and different types of nodal lines. Our work on 3D phononic crystals immersed 

in water reveals that the interaction between the fundamentally different wave 

dynamics of fluid-borne and structure-borne sounds can be a key to the rich 

topological properties absent in pure fluid or solid environments, especially under the 

guidance of symmetry representation. For example, the type-II nodal rings can be 

gapped into ideal type-II Weyl points [168, 169] by lowering the symmetry of the 

phononic crystal. In Figs. 7.1(a) and (b), we lower the symmetry of the unit cell by 

adding two orthogonal through holes on the aluminum plates. The geometric 
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parameters are tm = 3.0 mm, tw = 2.0 mm, d0 = 1.6 mm, d1 = 1.0 mm, and δz = 0.9 

mm. The calculated band diagram shown in Fig. 7.1(c) confirm that the red nodal 

ring in Fig.6.1(b) is now broken, giving rise to two pairs of type-II Weyl points at the 

diagonals of kz = 0 plane. 

 

Figure 7.1 Type-II Weyl points from lowering symmetries. (a) Schematic of the unit 

cell with lower symmetries. (b) Sectional schematics of the unit cell. (c) The 

calculated band structure on kz = 0. Inset shows the distribution of type-II Weyl 

points of opposite charges on kz = 0 plane. 

 

For potential applications, topologically protected surface, edge and corner states 

could benefit some engineering areas, such as sound or vibration energy harvesting 

[170] when combined with piezoelectric materials, topological sensors [171, 172] 

with high quality factor, and acoustic or elastic wave filters [173]. In addition, by 

redistributing the wave field based on topology, structural failure induced by 

concentration of vibration energy may be avoided. However, some challenges still 

need to be overcome to push topological phononics research into real-world 

applications. For example, to achieve high efficiency energy harvesting, we need to 

seek methods to improve the energy exchange rate from vibration to electricity. 

Besides, for better application of topological phnonics in medical field, how to 
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increase the effective frequency into the ultrasound and even hypersound ranges is 

still a question as most works have been focused on audible frequency ranges with 

long wavelengths. 
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Appendix 

A. Tight-binding Model Calculation 

The physics of our elastic counterparts of the SSH chain can be described by a TBM 

only involving the first non-rigid mode and nearest-neighbor couplings between 

plates. For the tight-binding Hamiltonian given by Eq. (3.1) in the main text, by 

setting 0f  = 1536 Hz, γ = 10 Hz and λ = 50 Hz, the calculated band diagram shown 

in Fig. A1(a) matches well with the bule dotted bands in Fig. 3.2(c) obtained from 

full-wave simulation. In the same way, for Eq. (3.5) in the main text, the band 

diagram from the TBM [Fig. A1(b)] generally overlaps with the dotted bands in Fig. 

3.7(c) from full-wave simulation due to the fitted parameters as '
0 1133 Hzf = ,  

18.85 Hz = , d0 = 0.0061 and d1 = 0.041. Note that, the lower two bands and upper 

two bands in Fig. A1(b) are fully overlapped because of the ignorance of other 

higher-order modes and non-nearest-neighbor couplings in the TBM. 

 
Figure A1 Band diagrams of the lattice in (a) Fig. 3.2(a) and (b) Fig. 3.7(a) in the 

main text based on TBM. 



 

126 

 

The eigenfrequency distributions rely on the coupling difference,  − , for the 

Hermitian case, and on the damping difference, 1 0d d− , for the non-Hermitian case. 

To evaluate their effect on each case, we calculate the eigenvalues based on the TBM 

by keeping γ = 10 Hz (or d0 = 0.0061) intact and increasing the value of λ (or d1) in 

the Hermitian (or non-Hermitian) chain. As depicted in Fig. A2(a), under Hermitian 

modulation, the band gap is gradually enlarged with the increase of  − , and the 

edge states always pinned on the mid-gap. In comparison, the band gap in the non-

Hermitian case is broadened at the beginning but keeps unchanged after the damping 

difference reaching a typical value ( 1 0 0.332d d− = ) limited by the coupling terms (κ 

= 18.85 Hz). In both cases, the in-gap edge states emerge for a non-zero coupling or 

damping difference. The red lines denote the parameter values used in the main text, 

which are also chosen for experiments as the edge states and bulk states are clearly 

separated at these values.  

 

Figure A2 Calculated eigenfrequencies for a 1D finite-sized Hermitian chain as a 

function of (a)  − and (b) 1 0d d− .  
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B. Adjusting the Frequency Deviation due to 

Coupling Beams 

The deviated frequency of zero-energy edge states [𝛿𝑓 in Eq. (4.1) of the main text] 

is introduced due to the perturbation of connecting beams. This global offset of 

eigenfrequencies does not affect the topological properties of the structure and can be 

modulated to approach zero by optimizing the geometric parameters of the 

connecting beams. In Figs. A3(a) and A3(b), as the plates are still those in Fig. 4.1, 

the concerned resonance frequency of the single plate (𝑓0) remains to be 2640 Hz. By 

setting the sizes of the linking beams to be 22.5 mm × 1.5 mm × 0.69 mm and the 

distance to the horizontal nodal line [also the central line of the plate due to the mode 

profile in Fig. 4.2(d)] to be h = 9 mm, the value of 𝛿𝑓 can be tuned to zero, and the 

in-band topological states fixed at the zero-energy frequency of 𝑓0 = 2640 Hz. 

 

Here, the tight binding Hamiltonian matrices without frequency deviation take the 

form of 

                𝐻(𝑘) = (
(1 − 𝑑0𝑖)𝑓0 𝜅 𝜅𝑒−𝑖𝑘𝑎

𝜅 [1 − (𝑑0 + 𝑑1)𝑖]𝑓0 𝜅
𝜅𝑒𝑖𝑘𝑎 𝜅 (1 − 𝑑0𝑖)𝑓0

)                 (A1) 

where a = 187.5 mm, 𝑓0 = 2640 Hz, 𝜅 = 22 Hz, 𝑑0 = 0.0041 and 𝑑1 = 0.02. As 

depicted in Figs. A3(c) and A3(d), the calculated band diagrams based on the TBM 
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agree well with those obtained from numerical simulation. Note that the thickness of 

linking beams must be smaller than the plates to eliminate the frequency deviation, 

which greatly increases the difficulty for sample manufacturing by laser cutting. 

Hence, the frequency deviation is kept in the theoretical consideration in the main 

text to facilitate the experimental investigation. 

 
Figure A3 Eliminating the deviation in frequency through design optimization. (a), 

(b) Schematics of the unit cells for the trimerized lattices with only intrinsic material 

damping and with AD treatment in the middle plate colored in blue, respectively. (c), 

(d) Calculated band diagrams corresponding to the unit cells in (a) and (b), 

respectively. The red circles present the TBM results, and the blue solid lines denote 

the numerical results. 

 

C. Eigenfrequency Evolution with Increased non-

Hermitian Modulation 

Based on the TBM, here we consider two finite-sized chains similar to those in the 
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main text (with and without boundary defects) but having much more unit cells and 

examine the evolution of their eigestates with respect to increased non-Hermitian 

modulation. The first chain contains 40 complete non-trivial unit cells (120 sites in 

total), and the second one contains 39 complete non-trivial unit cells and 2 defective 

unit cells at the two ends (119 sites in total). The calculation results as given in Fig. 

A4 are derived by fixing the intrinsic loss 𝑑0 = 0.0041 and gradually increasing the 

value of the modulation loss (non-Hermitian modulation) 𝑑1. As can be seen from 

Figs. A4(a) and A4(d), the eigenfrequencies of the two chains vary similarly as a 

function of the loss difference 𝑑1 − 𝑑0 . No obvious band gap exists at relatively 

small value of 𝑑1 − 𝑑0 (< 0.004), and then two band gaps emerge and are gradually 

broadened until the value of 𝑑1 − 𝑑0 reaches 0.027, beyond which the band gaps 

become unchanged due to the limited coupling terms (κ = 16 Hz). However, only the 

chain without defects possesses the edge states which locate at 2676 Hz among the 

bulk eigenstates, as marked by the red boxes in Figs. A4(a) and A4(b). The vertical 

red dotted lines in Fig. A4 indicate the value used in the main text, that is 𝑑1 − 𝑑0 =

0.0159. The corresponding displacement field profiles at this value are respectively 

plotted in Figs. A4(c) and Figs. A4(f), demonstrating that the edge states are well 

located at the leftmost and rightmost sites, which are consistent with the mode 

profiles in Fig. 4.2(c). 
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Figure A4 Eigenfrequency evolution as a function of increased non-Hermitian 

modulation for two long chains. Calculated real parts (a) and imaginary parts (b) of 

the complex eigenfrequencies for a finite-sized chain without defect. (c) 

Displacement field profiles of the eigenstatess at 𝑑1 − 𝑑0 = 0.0159 marked by the 

vertical red dotted line in (a). The red curves indicate the field distributions of two 

edge states. Calculated real parts (d) and imaginary parts (e) of the complex 

eigenfrequencies for a chain with a defect at each end. (f) Displacement field 

distributions of the eigenmodes at 𝑑1 − 𝑑0 = 0.0159  marked by the vertical red 

dotted line in (d).  

 

D. Frequency Response Function Spectrum for the 

Host Plate without the Hole 

We measure the FRF curve of the host plate [Fig. A5(a), which is also the yellowish 

layer of Fig. 4.6(a)], and its resonant peak is observed at 2922 Hz with a quality 

factor of ~115. Therefore, the circular hole in Fig. 4.6(b) is introduced to facilitate 

the tuning of the resonant frequency in experiment. It is especially useful in 
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eliminating the resonance frequency shift induced by the damping treatment. 

 

Figure A5 FRF spectra for the host plate. (a) Schematic of the host plate without the 

hole. (b) FRF spectra for the plate in (a). The blue circles and the red line present the 

measured and simulation results, respectively. 

 

E. Quadrupole Topological Insulator 

The coupled acoustic resonators with a π flux per plaquette can fulfill the 

requirements of square-lattice TBM which proposed by the QTI theory. The 

momentum space Hamiltonian of the lattice is 
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    (A2) 

where f0 corresponds to the zero-energy frequency, ε1 and κ1 represent the intracell 

and intercell coupling strength, respectively, a is the lattice constant. The eigenvalues 

of Eq. (A2) are 
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2 2
1,2 0 1 1 1 1

2 2
3,4 0 1 1 1 1

( , ) 2[ (cos cos )],

( , ) 2[ (cos cos )],

x y x y

x y x y

f k k f k a k a

f k k f k a k a

   

   

= − + + +

= + + + +
                (A3) 

forming two pairs of degenerate bands if  1 1  , as shown by the red circles in Fig. 

A6(a). By matching this band diagram with the one derived from full-wave 

simulation, depicted by the blue solid lines in Fig. A6(a), we obtain the parameters in 

Eq. (A2) as: 1 25.6 Hz = − , 1 5.5 Hz = −  and 0 2141 Hzf = . Hence, the band gap  

                                          gap 1 12 2 56.8 HzE  = − =                                          (A4) 

which is the minimal value of 3,4 1,2f f− . 

 

Not only the eigenvalues of Eq. (A2) can characterize the band feature, its 

eigenvectors with components  ( )nu k   also play a pivotal role in revealing a 

second-order nontrivial topology. Here n = 1, 2 represent the occupied two bands 

below the band gap, α = 1, 2, 3, 4 refer to the four acoustic resonators in a unit cell, 

( , )x yk k k=  is the wavenumber in the first BZ. After orthogonalized and normalized 

by ( ) ( )m n mnu k u k = , we define 

 ( ) ( ) ( )mn
x m x nF k u k k u k=                                      (A5) 

with fixed ky and discretized kx. The bracket notation ( ) ( )n mu k denote the 

eigenvector. Then the Wilson loop operator along a closed loop in the kx direction 

takes the form of  

                                ( ) ( ) ( ) ( ),x y x x x x x xW k F k N k F k k F k= +  +                            (A6) 

where Nx is the number of discrete points and 2 / /x xk a N = . The corresponding 
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Wannier Hamiltonian is defined as 

                                                ( ) log( ( )).
2xW y x y
iH k W k


= −                                    (A7) 

As ( )
xW yH k  is a two-by-two matrix, it has two eigenvalues ( )j

x yv k , ,j = + −

represent the upper and lower Wannier bands in Fig. A6(b), and their separation is 

named as Wannier gap. Each Wannier band can possess its own topological invariant 

owing to the gap property. The nest Wilson loop approach is an effective way to 

obtain the topological invariant of Wannier bands. Firstly, in order to split the 

original degenerated bands below the original band gap in Fig. A6(a), a well-defined 

subspace can be written as  

                                         ( ) ( )

1,2
( ) ( ) ( ) ,

n

x n x y
n

k u k v k+ − + −

=

 =                              (A8) 

where ( ) ( )
n

x yv k+ −    is the components of Wannier Hamiltonian’s eigenvector,  

( )nu k  is the eigenvector of Eq. (A2). Therefore, it is a four-by-one vector here. 

Then the nest Wilson loop operator along yk  direction is 

                      ( ) ( ) ( ) ( )( ) ( ) ( ) ( ),y x y y y y y yW k F k N k F k k F k+ − + − + − + −= +  +                (A9) 

where ( ) ( ) ( )( ) ( ) ( )
mn

y x y xF k k k k + − + − + −  =   , Ny is the number of discrete points 

and  2 / /y yk a N = . Finally, the nested polarization along y direction is 

                                  
( ) ( )1 [ ( )] 0.5.

2
x

x

v
y y x

kx

ip log W k
N

+ − + −= − =                          (A10) 

Similarly, 
( )

0.5yv
xp
+ −

= , when / 1   . These nonzero polarizations along the x and 

y edges reveal the topological property of the edges with quantized dipole moments 

which are brought by a quantized bulk quadrupole moment.  
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Figure A6 Energy Bands and Wannier bands. (a) Energy Band diagrams. The blue 

solid lines are numerical results, which are well-captured by the TBM results (red 

circles). The inset denotes the first BZ of the square lattice. (b) Wannier bands 
( )

y( )xv k+ −  for Wannier Hamiltonian in Eq. (A7). 

 

The quantized bulk quadrupole moment is not changed by adding uniform loss to the 

lattice sites, whose momentum space Hamiltonian can be written as 

                                              1(2) 4 4= ( , )loss x yH H k k i I −                                        (A11)  

 

F. Eigenfrequencies for Different High-loss Subareas 

To clearly see the eigenfrequency distributions in different acoustic lattices, 

numerical calculations based on the TBM are performed at 1/ 4.5  = . For the 

acoustic lattice in Fig. 5.1(a) and Fig. 5.1(b) in the main text, the resultant 

eigenfrequencies are shown in Fig. A7(a) and Fig. A7(c), respectively. As we can see, 

the bulk states, denoted by the gray dots, are divided into four branches with a real 

frequency gap from 2103 Hz to 2177 Hz and an imaginary frequency gap from 14 Hz 
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to 125 Hz, arising from the uneven coupling strengths and the imbalanced losses, 

respectively. The eigenfrequencies of gapped edge states (blue dots) and twelve 

corner states (red dots) have different imaginary parts. The states with high 

imaginary parts mainly localized in the HLS [encircled by the black dashed lines in 

Figs. A7(b) and A7(d)], while those with lower imaginary parts mainly localized in 

the LLS. The sum of probability distributions of the bulk modes in Fig. A7(a) is 

presented in Fig. A7(b). Similarly, the eigenstates of the bulk states for the lattice 

with the “L” shaped HLS are plotted in Fig. A7(d), which further confirms that the 

increased turning corners in the interior bulk sites can cause the bulk and corner 

states to occupy the same sites. 

 
Figure A7 Eigenfrequencies distributions of the lattices with (a) rectangular HLS 

and (c) “L” shaped HLS when 1/ 4.5  = . (b), (d) The sum of probability 

distributions of the bulk modes in (a) and (c), respectively.  
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G. Band Diagrams Slightly Away from High-

symmetry Planes 

To confirm the touching points between the first and second bands are nodal rings, 

we calculate band diagrams along directions that are slightly away from high-

symmetry planes. For comparison, the band diagrams on high-symmetry planes kz = 

0 and kz = π/az are plotted in Figs. A8(a) and A8(b). The calculated band diagram 

with kz = 0.1π/az is shown in Fig. A8(c), which confirms that the red touching points 

in Fig. A8(a) are now gapped. We then consider the band diagram with kz = 0.9π/az, 

and the result in Fig. A8(d) confirms that the blue and green touching points in Fig. 

A8(b) are also gapped when slightly away from the high-symmetry planes. 
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Figure A8 Calculated band diagrams on planes slightly away from high-symmetry 

ones. (a)-(d) Calculated band diagrams on kz = 0 (a), kz = π/az (b), kz = 0.1π/az (c) and 

kz = 0.9π/az (d), respectively. The paths are indicated by equations in the figures, 

such as ky = kx and ky = 0. The touching points of the nodal rings demonstrated in (a) 

and (b), as denoted by the colored dots, are gapped correspondingly in (c) and (d), as 

indicated by the colored arrows. 

 

H. Transfer Matrix Method 

Here, we use a transfer matrix method to model the phononic crystal that is 

comprised of periodic solid plates (aluminum) without holes immersed in the 

background fluid (water). To obtain an analytical model, we first calculate the 

dispersions of the first two modes of the phononic crystal in the long-wavelength 
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limit, which allows us to model the solid plates based on the thin plate theory. We 

assume the time-harmonic condition and follow the e-iωt sign convention. As shown 

in Fig. A9, we assume ky = 0 for simplicity as the system is rotation-invariant, and 

the acoustic pressure in the n-th water region can be written as 

 ( , ) x xz zik x ik xi z i z
n n np x z A e e B e e −= + ,  (A12) 

in which 2 2 2
w/z xc k = −  is the wave number of acoustic wave in z direction, 

while An and Bn are complex amplitudes of the forward and backward going acoustic 

waves, respectively. Likewise, the acoustic pressure in the (n+1)-th water region is 

then 

 ( ) ( )
1 1 1( , ) x xz z z zik x ik xik z a ik z a

n n np x z A e e B e e− − −
+ + += + .  (A13) 

The out-of-plane displacement in the n-th solid plate can be written as 

 ( ) xik x
n nw x C e= .  (A14) 

The thin plate theory then gives the dynamic equation for the n-th solid plate 

 4 2
1( ) ( , ) ( , ) ( )

w z
r n n m mz t z a

D w x p x z p x z t w x += =
 − + = ,  (A15) 

where 
3

212(1 )
mEtD


=
−

 is the bending stiffness of the thin plate, and ( , )r x y =    is 

the gradient on the plate surface. From Eq. (A15), we can solve Cn as the function of 

An, Bn, An+1, and Bn+1 

 
w w

1 1
4 2

m m

z zi t i t
n n n n

n
x

A e B e A BC
Dk t

 
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−
+ ++ − −

=
−

. (A16) 

Then, we use the boundary conditions of continuous velocity on two surfaces of the 

n-th solid plate, which give 
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and it can be simplified under the time-harmonic condition as 

 
w

w

1
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.  (A18) 

Combining Eqs. A16 and A18, we can eliminate Cn and solve An+1 and Bn+1 as the 

function of An and Bn, and we obtain the transfer matrix M 

 1 11 12

1 21 22

n n n

n n n

A A AM M
M

B B BM M
+

+

      
= =      

      
,  (A19) 

with the matrix element 

 

w

w

* 4 2
11 22 w m m2

w

* 4 2
12 21 m m2

w

1 [ (2 )]
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z

z
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x z z
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,  (A20) 

where * denotes the complex conjugate. Since the system is periodic and Hermitian, 

we can utilize the criteria on the trace of the transfer matrix which states that [174] 

 tr( ) 2cos( )z zM k a= ,  (A21) 

where kz is the Bloch wave number in z direction. Then, it gives the equation which 

determines the dispersions of the modes 

 
2 4 2

2

2 cos( ) ( )sin( ) 2cos( )m z w z x m m z w
z z

w

t Dk t t k a      
 

+ −
= . (A22) 

When kz = 0, one solution gives the WG mode,  
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 WG x wk c = , (A23) 

which coincides with the sound cone projected over kz. The other solution in the 

long-wavelength limit when kz = 0 gives the FL mode, 

 2
FL x

m m w w

Dk
t t


 

=
+

.  (A24) 

As can be seen, this dispersion is similar to that of a thin plate in free space 

2 / ( )x m mk D t = , except its quadratic coefficient is reduced due to the fluid-solid 

interaction.  

 
Figure A9 Schematic of the setup used to calculate dispersions with the transfer 

matrix method. 

 

I. Control Experiment with Lattice Constant 4 mm 

We change the in-plane lattice constant of the perforated holes to a0 = 4 mm and 

perform additional experiments on the new control sample. Other geometric  

parameters are kept unchanged. The simulated band diagram along high-symmetry 
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directions is shown in Fig. A10(a). The photographs of the new control sample is 

shown in Fig. A10(b). The new Fourier spectra experimentally retrieved along high-

symmetry directions for bulk bands is shown in Fig. A10(c).  

 

For the new sample, good agreement is observed between the bright stripes in the 

experimental Fourier spectra and the calculated bulk bands projected along kz 

direction. For comparison, the retrieved Fourier spectra when a0 = 3 mm in the main 

text is also demonstrated here as Fig. A10(d). From the shift of the bright stripes 

which generally overlap with the projected bulk modes calculated from full-wave 

simulations, we can conclude that the observed signals are indeed owing to the bulk 

bands of the phononic crystals.  
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Figure A10 Experimentally retrieved Fourier spectra for bulk bands. (a) Calculated 

band diagram when the in-plane lattice constant a0 = 4 mm. (b) Photographs of the 

control sample with a0 = 4 mm. Left panel: close view of the perforated holes. Blue 

scale bar: 8 mm. Right panel: top view. (c) Experimentally retrieved Fourier spectra 

along high-symmetry directions when a0 = 4 mm. (d) Experimentally retrieved 

Fourier spectra along high-symmetry directions when a0 = 3 mm for comparison, 

essentially the same as Fig. 6.9(d) in the main text. 

 

We can consider about the DSSs. The projected band diagram and the retrieved 

Fourier spectra for detection of surface states when a0 = 4 mm are shown in Figs. 

A11(a) and Fig. A11(b), respectively. For comparison, the results for a0 = 3 mm in 

the main text are also demonstrated here as Figs. A11(c) and A11(d), respectively. In 
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both cases, good agreement is observed between the bright stripes in the 

experimentally retrieved Fourier spectra and the numerically calculated dispersion of 

the drumhead surface states in both cases. The comparison between the 

experimentally retrieved Fourier spectra for different lattice constants also confirms 

that the detected signal includes contribution from the excited drumhead surface state. 

 
Figure A11 Experimentally retrieved Fourier spectra for surface states. (a) Projected 

band diagram for the supercell with a0 = 4 mm. (b) Experimentally retrieved Fourier 

spectra with a0 = 4 mm when probing surface states. (c) Projected band diagram for 

the supercell with a0 = 3 mm for comparison. (d) Experimentally retrieved Fourier 

spectra with a0 = 3 mm for comparison when probing surface states, essentially the 

same as Fig. 6.10(d) in the main text. 
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J. Experimentally Imaged Field Maps 

The field maps that are experimentally imaged when we probe the surface states are 

plotted in Fig. A12. 

 
Figure A12 Experimentally imaged field maps. (a)-(d) The experimentally imaged 

field maps when probing surface states, exciting at the frequency (a) f = 0.14 MHz, 

(b) 0.17 MHz, (c) 0.20 MHz, and (d) 0.23 MHz, respectively. The scale bar is 15 mm. 
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