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ABSTRACT 

Fatigue has been identified as a primary cause of construction site accidents in many studies. 

Owing to the nature of construction tasks, workers have to perform their duties attentively over a 

long period of time in a harsh environment. Mental and physical fatigue are the dominant risk 

factors for weakening workers’ ability to perform functionally. Recent studies have proposed 

electroencephalography and eye-tracking based solutions to detect mental fatigue, whereas 

physiological biomarkers (i.e., heart rate, temperature, and breathing rate) to assess physical 

fatigue. However, fatigue that construction workers usually experience appears to be complicated 

and more than one type. Specifically, it usually involves the interactive influences between 

physical and mental fatigue, therefore, single type of fatigue assessment could result in biased and 

inaccurate outputs.  

This study proposed to develop non-invasive wearable sweat-based biosensors that can measure 

chemical biomarkers to assess mental and physical fatigue. To achieve this objective, first, a 

systematic review was conducted to investigate 1) the potential sweat-based biomarkers that are 

relevant to fatigue; 2) the prevalent sensing technologies in the sweat biosensor domain. Second, 

an experiment was conducted to model the relationship between sweat biomarkers and fatigue 

levels during simulated construction rebar tasks using machine learning techniques. Lactate was 

selected for further investigation due to its high concentration in sweat and its crucial role in 

supplying energy resources during high-energy consumption activities. Third, an advanced 

wireless organic electrochemical transistor-based biosensor with high selectivity and sensitivity 

was developed to measure lactate concentrations from sweat. Fourth, an experiment was conducted 

to evaluate the reliability of the sweat lactate device in assessing fatigue. This was done by 

comparing the results obtained from the proposed device with those obtained from a professional 
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blood lactate meter, and conducting a test-retest experiment to assess its accuracy. Last, an 

investigation was conducted to validate the usefulness of sweat lactate in assessing physical and 

mental fatigue during construction manual material handling task and equipment operation task, 

respectively. Overall this project was the first to develop and validate the feasibility of sweat-based 

sensors in detecting fatigue levels during construction tasks. The results of this study will provide 

a comprehensive solution for monitoring and mitigating fatigue of construction workers exposed 

to prolonged tasks in seemingly harsh environments. 
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CHAPTER 1 INTRODUCTION 

This chapter serves to illustrate the workforce issue of construction industry and emphasize the 

importance of investigating fatigue to improve health and safety. To provide context for the 

research topic, an overview of the technologies used to detect and evaluate fatigue is presented. 

The study's objectives and aims are subsequently defined, and the structure of the thesis, along 

with its research significance, is highlighted. 

1.1 Research Background 

Construction industry is booming and essential in Hong Kong. It is expected to grow at 3.3% in 

real terms from 2023, as a result of global economic recovery and government's investments in 

infrastructure projects (RESEARCH AND MARKETS, 2022). However, labour issues stymy the 

rapid growth, and become the most pressing challenge for the construction industry in the months 

and years ahead. These include an increasing labour cost, an ageing workforce, and a shortage of 

skilled workers (Umer, 2022). There has been a 44% increase in labour salaries for construction 

workers from 2012 to 2015 (Cheung J, 2016). What’s worse, 37.7% of skilled and semi-skilled 

workers are over 55 years old (CONSTRUCTION INDUSTRY COUNCIL, 2018). Furthermore, 

a shortage of 10,000 to 15,000 construction workers is forecasted from 2019 to 2023 

(CONSTRUCTION INDUSTRY COUNCIL, 2018). Sustain workforce becomes an even bigger 

challenge as to the nature of construction tasks entails long-hour work, hazardous environment 

and labor-intensive tasks; this discourages young people to join the workforce. 

International Labor Organization (2022) reported that there are at least 60,000 deaths of 

construction workers every year, making the industry one of the world’s largest and most 

dangerous work sectors. Serious health and safety problems in the construction industry not only 
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decrease the economic efficiency of enterprises, but also produce a variety of social problems such 

as loss/injury of family provider and loss of quality life (Elsebaei et al., 2020). Nowadays, nearly 

90% of the casualties and accidents that have occurred at construction sites are incurred by 

workers' improper or wrong operations/behaviors (Suraji et al., 2001), where many such mistakes 

could be attributed to excessive levels of fatigue suffered by workers. Many studies identified 

fatigue as a major factor causing construction accidents (Aryal et al., 2017; Esmaeili & Hallowell, 

2012; Tixier et al., 2016; M. Zhang et al., 2015). Fatigue refers to the gradual discomfort, decline 

in work ability and the body's resistance to continue working in the process of labor. While they 

experience general weakness, physical and mental exhaustion, lack of concentration, sluggishness, 

construction site workers are in a state of fatigue (Venkata Sai Vardhan et al., 2021). Consequently, 

this decreases in capability of properly performing tasks and increases the risk of serious accidents. 

Construction site workers are prone to fatigue due to prolonged working time (X. Dong, 2005), 

high physical demanding tasks (Hartmann & Fleischer, 2005), and harsh work environments like 

high temperature and humid (Yi et al., 2016). Their performance is the primary risk factor to safety. 

For example, accidents involving rebar bending, cutting, fixing might cause serious injuries due 

to dangerous working scenarios. Also, accidents involving the use of lifting equipment not only 

causing injury and death in construction industry, but also affect people in the vicinity (Goldobina 

et al., 2019).  It is thus important to prevent construction site workers from working under 

excessive stress or fatigue, as this can lead to improper operations and ultimately result in accidents. 

And this is precisely the primary purpose of this study that will be further elaborated subsequently. 

1.2 Research Problem 

Fatigue is generally defined as the lassitude or exhaustion of mental and physical strength induced 

by manual labor or mental activities (M. Zhang et al., 2015). Construction site workers are exposed 
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to unique work settings that often necessitate prolonged physical and/or mental exertion, which 

can lead to two major types of fatigue: physical and mental. To manage or minimize the ill-effects 

of fatigue, monitoring and assessing fatigue levels through various methodologies can offer 

solutions.  

Research Problem of Mental fatigue assessment 

Mental fatigue is the temporary incapacity to sustain cognitive and emotional performance, its 

multidimensional and multicausal characteristics make them exceedingly difficult to be quantified, 

thereby, it has been previously monitored using questionnaires. However, questionnaire-based 

mental fatigue monitoring is a manual process that interrupts workers’ tasks, motivating 

researchers to use electroencephalograph (EEG)-based sensor technologies instead (Boksem et al., 

2005; Wascher et al., 2016). Placed on the head and forehead, EEG sensors use an array of sensor 

units to read the electrical activity of various parts of the brain. Although EEG technology can 

achieve continuous mental fatigue monitoring, it requires multiple sensor units to maintain 

constant contact with the head/forehead, which may cause irritation and limit long-term use on 

construction sites. Beside EEG, eye-tracking is also a potential technology to monitor 

manifestations of mental fatigue (Yamada & Kobayashi, 2018). Recent studies have found 

wearable eye-tracking technology to be useful in evaluating and classifying various levels of 

mental fatigue for construction equipment operators (J. Li et al., 2019). Compared to EEGs, eye-

tracking technology is more resistant to measurement of signal noise produced by operators’ body 

movements. However, its intrusiveness and susceptibility to light  limit its application in a variety 

of construction scenarios. 

Research Problem of  Physical fatigue assessment 
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Physical fatigue is defined biomechanically as a reduction in muscle capacity to produce strength. 

It refers to elevated distress and  is commonly associated with heavy workloads. Although Survey 

questionaries have been used in the past (Fang et al., 2015; Mitropoulos & Memarian, 2013), smart 

sensor technologies have become increasingly widespread in recent years. Various technologies 

have been successfully tested to monitor physiological measures such as heart rate (HR) 

(Abdelhamid & Everett, 1999), heart-rate variability (HRV) (Tsai, 2016), skin temperature (Chan 

et al., 2012), electromyography (EMG) (McDonald et al., 2015), and jerk metrics (L. Zhang et al., 

2019). Specifically, HR and HRV are the prevalent methods in construction (Anwer et al., 2020; 

Umer et al., 2022), but they are more relevant to managing the intensity of the activities rather than 

controlling the individual’s fatigue.  

Potential fatigue assessment methodology 

The majority of recent studies only focus on monitoring single type of fatigue, be it physical or 

mental. However, once fatigue sets in among construction site workers, in some cases both manual 

laborers and equipment operators may experience complex fatigue situations. For example,  when 

a rebar worker performs a long-period task, a decrease of muscle strength and an increase of 

anxiety could happen simultaneously, thus, inducing both physical and mental fatigue. Similarly, 

operators experience prolonged sitting and sustained concentration, not only induce mental fatigue, 

but also muscle pain in back or leg which refers to physical fatigue. As such, construction site 

workers in fact suffer from a complex fatigue situation. Accordingly, our project targeted to 

explore new, cutting-edge technologies to address the challenge of fatigue surveillance in both 

physical and mental. To tackle this issue, the measurement of chemical biomarkers might present 

an opportunity. 
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Examining the actual mechanisms of fatigue, which entail intricate neuroendocrine and 

biochemical processes may offer a methodology to assess both physical and mental fatigue (Li et 

al., 2020; Mehmood et al., 2022; Pau et al., 2016). For example, when a construction worker 

performs a long-period task, the continuous consumption of physical and mind strength of laborers 

gradually changes chemical biomarkers in the body. Seshadri et al. (2019) reviewed current 

wearable monitoring sensors and summarized those chemical biomarkers have strong correlations 

to mental and physical fatigue of human bodies. However, current professional sensing 

technologies on measurements of chemical biomarkers are emerging on blood or saliva, their 

strong intrusive nature hinders further application at the construction site. Among the very latest 

research in the areas of health and fitness, the sweat-based sensor has drawn tremendous attentions 

due to its non-intrusiveness, simplicity, and low-cost (Xu et al., 2021). The detection of 

perspiration is accessible by portable sensors on practically most area of the body with a minimum 

of discomfort (H. Lee et al., 2017). Besides, human sweat, as a biofluid for noninvasive biosensing, 

is enormously promising because of its rich distribution (>100 glands/cm2) (Sonner et al., 2015) 

and containing abundant biochemicals contents, such as sodium, chlorine, potassium, lactate, 

calcium, glucose, ammonia, ethanol, and urea (Heikenfeld, 2016). These biochemical compounds 

within sweat may offer a numerous wealth of information about people’s health and fatigue status 

(Koh et al., 2016). Of course, sweat cannot replace blood completely. However, as previously 

stated, we are looking at the use of minimally invasive devices/monitors. This necessitates an 

occasional blood sample to calibrate, a sufficient need for non-invasive evaluation would be a 

correlation of the states of change between concentrations of metabolites in the excreted fluid and 

the corresponding values in the blood (Karpova et al., 2020). This necessitates the experimental 

calibration test on measurements of sweat and blood biomarkers in our study. In summary, the 
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features of non-invasive and rich biochemical contents enable sweat sensor to be a tremendous 

promising device for construction site workers. But, as of my knowledge, this potentially 

beneficial technology has not received sufficient attention in its application to the construction 

industry.  

Conclusion 

Through the aforementioned study review, four research problems are drawn: (1) there is a lack of 

non-invasive, accurate and comprehensive tools for monitoring mental and physical fatigue among 

construction site workers; (2) sweat-based biosensor, as a potential tool to tackle this problem, has 

not been explored in construction domain; (3) there is a necessity to examine the correlation 

between sweat and blood biomarkers for calibration analysis; (4) validation of the proposed 

methodology for implementing construction scenarios is necessary to ensure its feasibility. In order 

to evaluate the general/broad usefulness of sweat biomarker among construction site workers, this 

research will study fatigue arising from construction manual workers and equipment operators. 

1.3 Aim and Objectives 

The primary aim of this research is to develop non-invasive sweat-based wearable sensors that can 

measure chemical biomarkers to assess mental and physical fatigue. 

To achieve this goal, the following specific objectives have been drawn up for this research: 

(1) To summarize and evaluate current wearable sweat-based biosensors for monitoring 

fatigue/stress through measuring chemical biomarkers. 
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(2) To establish the relationship between potential sweat biomarkers and fatigue development 

during a simulated construction rebar task, thereby, sorting out the predominant biomarker 

for further study. In this case it is sweat lactate.  

(3) To develop and fabric advanced wireless sweat-based lactate sensors for assessing fatigue.  

(4) To validate and evaluate the suggested sweat-based sensors for monitoring  fatigue coupled 

with blood lactate measurements during a simulated construction equipment operation task. 

(5) To assess the feasibility of using the sweat lactate biomarker in evaluating physical and 

mental fatigue coupled with other established fatigue assessment methodologies during 

manual material handling task and equipment operation task at construction sites, 

respectively. 

1.4 Research Approaches 

An explanation of the approach pathways to reach these five objectives is given as follows. 

Objective 1  

Through literature review on the wearable sweat-based biosensors, valuable biomarkers for 

monitoring fatigue were thoroughly investigated, then research gaps and limitations of existing 

methods were summarized. 

Objective 2  

Through conducting laboratory experiments, the relationship between potential sweat biomarkers 

and fatigue development was established. Sweat rate, sodium, lactate, and glucose have been 

chosen for studying fatigue development among construction rebar workers based on an extensive 



8 
 

review of existing literature. In this case, Machine learning techniques were employed to model 

and predict fatigue levels. 

Objective 3 

An advanced wireless sweat-based lactate biosensor system with high selectivity and sensitivity 

was fabricated. Lactate was selected because of its high concentrations in sweat and crucial role 

in supplying energy resource during high-energy consumption activities, both physically and 

mentally. 

Objective 4 

The overall accuracy and reliability of the sweat-based lactate sensor for monitoring fatigue was 

validated against the results of a professional blood lactate meter. This task also verified the 

effectiveness of the proposed sweat-based sensor through conducting a test-retest experiment. 

Objective 5 

We have proposed that lactate can serve as an indicator for assessing both physical and mental 

fatigue. In order to validate this hypothesis, we conducted experiments employing sweat lactate to 

evaluate physical and mental fatigue, respectively. Our approach involved comparing the results 

with other established methodologies, such as 1) heart rate, breathing rate, skin temperature, and 

Borg 6-20 for physical fatigue during construction manual material handling task, and 2) EEG 

signals and NASA Task Load Index (NASA-TLX) for mental fatigue during construction 

equipment operation task. 
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1.5 Research Implication and Significances 

Firstly, there is a lack of non-invasive tool proactively monitor mental and physical fatigue of  

construction site workers. In this regard, sweat-based sensors could provide a breakthrough, 

opening an avenue for a new generation of sensors to improve the health and safety monitoring of 

construction workers. As the sweat-based sensors are developed, they could significantly change 

the way the industry deals with mental and physical fatigue, hence benefiting the industry and the 

general society as well.  

Secondly, this study will lead to a new generation of abundant fatigue-related data from 

construction site workers. These data could be analyzed using state-of-the-art data analytics to 

reveal latent patterns and relationships between various variables, paving the path for a better 

comprehension of workers’ fatigue related issues. Also, the results obtained from sweat lactate and 

glucose measurements could be used to recommend immediate nutrition intake, while the results 

obtained from sweat sodium and sweat rate measurements could be used to suggest instant 

electrolytes intake. These could effectively help alleviate the negative effects of fatigue. As a result, 

evidence-based policies and industry-wide guidance can be formulated and disseminated in the 

construction industry.  

Thirdly, apart from the construction industry, other industries could also benefit from this study. 

For example, the transportation industry also faces the issue of mental and physical fatigue among 

drivers and port workers. Many transportations related accidents have been attributed to their 

fatigue. Therefore, by applying the same methodology as proposed in the study, the transportation 

industry can identify the critical periods of fatigue among its workers and take necessary 

precautions to ensure their safety. 
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Lastly, the sweat sensor is a sophisticated biological product that, through this study, will be shared 

with the construction industry, government institutions, and academia. This will promote the 

development of commercial sweat-based sensors for construction workers’ fatigue management. 

Once developed, these commercial sensors could significantly change the way the industry deals 

with fatigue from construction workers, hence enlarging social impact of the study. Additionally, 

the knowledge gained from this study will be shared with prominent health and safety 

organizations in Hong Kong, Mainland China, and abroad. The benefits of this dissemination are 

twofold. First, these organizations will be updated on the achievements of this study; second, 

research teams will be able to seek advice from domain experts on how to further enhance this 

work. 

1.6 Thesis Structure 

The following is the outline of the thesis: 

Chapter 1 introduces the background, research problem, aim and objectives, research approaches, 

contributions, and thesis structure.  

Chapter 2 demonstrates a comprehensive review on sweat-based sensors for monitoring fatigue 

and sorts out the current limitations and research gap. 

Chapter 3 establishes the relationship between chemical biomarkers and fatigue level of 

construction rebar workers, then directs the follow-up research focusing on a specific chemical 

biomarker, lactate, as a target to be monitored for assessing fatigue. 

Chapter 4 presents the development and fabrication of wearable sweat-based lactate sensors. 
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Chapter 5 conducts validation studies to evaluate the accuracy and reliability of the self-developed 

device during a simulated construction operation task. 

Chapter 6 conducts experiments to assess the feasibility of using sweat lactate in monitoring 

physical and mental fatigue during construction manual material handling task and equipment 

operation task.  

Chapter 7 concludes the research findings and highlights the contributions, as well as illustrates 

the future study in this topic. 
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CHAPTER 2 LITERATURE REVIEW 

This section reviews existing research on sweat biomarkers related to stress and fatigue. Then, 

sweat-based wearable biosensors are summarized. After that, sweat sensing approaches are 

reviewed. Finally, a conclusion is summarized. 

2.1 Introduction 

Fatigue is a common symptom among healthy adults. Subjective fatigue affects approximately 14% 

to 60% of the healthy population (Watanabe et al., 2008). Given that construction work is a 

physically demanding, labor-intensive, and repetitive task, workers are susceptible to developing 

fatigue (Darbandy et al., 2020; Ng & Tang, 2010). Nearly 40% of construction workers in the 

United States have reported experiencing significant fatigue, which can have a negative influence 

on worker safety, health status, and productiveness (Ricci et al., 2007). Workplaces that are hot 

and humid and have long hours and heavy workloads have been shown to exacerbate the negative 

consequences of fatigue (Abdelhamid & Everett, 2002; Hallowell, 2010; Judith K. Sluiter, 2006), 

resulting in more and more dangerous human actions and mishaps (Judith K. Sluiter, 2006). The 

incidence of work-related musculoskeletal problems and falls in construction workers may also be 

increased by excessive fatigue (Umer et al., 2018). 

In one of the first theories of fatigue, an unbalanced internal environment is cited as a key cause, 

with stress as a potential contributor (Kop & Kupper, 2016). Later theories attribute fatigue to a 

breakdown in one's ability to adjust to stressful situations, rather than to a lack of sleep or some 

other underlying cause (Siegrist, 1991). Because fatigue is an adaptive response to prolonged stress, 

it can be viewed as an individual's decision to give up on efforts to reduce a persistent stressor. 

This means that the behavioral implications of fatigue may be adaptive in the sense that they could 
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reduce the potentially harmful effects of long-term depletion of biological resources (Fink, 2016; 

Kop & Kupper, 2016). The term "fatigue" refers to a person's inability to perform at their best 

(Whelan & Porter, 1981). Mental and physical fatigue are two different types of fatigue. A decline 

in cognitive and behavioral performance is caused by extended cognitive workload (Boksem et al., 

2005; Boksem & Tops, 2008), while physical fatigue is caused by prolonged and intense physical 

workload (Frone & Tidwell, 2015). Occupational fatigue has long been recognized as one of the 

top five health risks in the construction industry due to its detrimental effects on worker health, 

safety, and productivity (Lerman et al., 2012; Shortz et al., 2019). Concerns regarding worker 

safety and health have prompted an increased focus on keeping track of needless physical tasks in 

order to avoid fatigue, injuries, or accidents in physically demanding workplaces (Hwang et al., 

2016). For this reason, workers in the construction industry need regular examinations and early 

identification of fatigue (Anwer, Li, Antwi-Afari, Umer, & Wong, 2021; Umer et al., 2018). 

There are many factors that contribute to fatigue, including sleep deprivation, constant mental 

activity, and long periods of exertion (Michael et al., 2012). Physical exertion that lasts for a long 

period of time can lead to fatigue, which can be felt in the peripheral muscles and in the central 

nervous system (CNS) (Ament & Verkerke, 2009). Ionic imbalances in myocytes are altered as a 

result of decreased glycogen storage and an accumulation of metabolites in the case of the former 

(Michael et al., 2012). Although the specific mechanism for the latter is still up for question, it has 

been established that cytokines and/or neurotransmitters such as interleukin (IL) 1, IL-6, tumor 

necrosis factor (TNF), serotonin, dopamine, and tyrosine are altered when the CNS is implicated 

in the experience of exhaustion (Cannon et al., 1989; Cannon & Kluger, 1983; Council, 2009). 

Autonomic nervous system (ANS) is impacted by prolonged physical activity, resulting in 

simultaneous withdrawal of the parasympathetic nervous system (PNS) and activation of the 
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parasympathetic nervous system (SNS) (Klein & Corwin, 2002). To eliminate the need for self-

reported fatigue, all of these physiological changes might be used as potential objectives for 

accurately detecting fatigue levels. 

Only a handful of objective approaches are available for diagnosing and monitoring fatigue. 

Fatigue has been measured in the past using questionnaires. Researchers, however, have been 

seeking to employ more objective, accurate, and non-invasive procedures because of the 

limitations of existing methods. Chemical biomarkers are regarded as the gold standard for fatigue 

monitoring among the available options because of their accuracy and objectivity (Seshadri et al., 

2019). Construction workers, on the other hand, are exposed to unique work environments that 

necessitate physically demanding and significant mental effort to complete work tasks, as opposed 

to athletes and sports people whose jobs entail task specific physical load. It is possible that in this 

case the underlying metabolic changes are rather distinct. Until recently, the use of chemical 

biomarkers for real-time fatigue monitoring applications was restricted due to the requirement for 

taking blood samples and conducting laboratory analysis. Non-invasive tests, such as saliva and 

sweat analysis, have been made possible by technological advancements. These measurements can 

also assess changes in biochemical profiles over time. Numerous chemical biomarkers, such as 

blood lactate, pH, potassium, sodium, and blood glucose concentrations in saliva, could be 

investigated to determine the development of fatigue in construction workers. For instance, lactate 

was utilized in a prior study to demonstrate that continuous physical work results in a rise in the 

body's lactic acid content, which may contribute to feelings of fatigue (Wickens, 2004). Similarly, 

it has been discovered that mental stress is related to lactate levels (Hermann et al., 2019). 

Furthermore, pH, potassium, sodium, and glucose levels are associated with a rise in lactic acid 

(Seshadri et al., 2019), hyper/hypokalemia, hyper/dehydration, energy loss (Gao et al., 2016), 
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drowsiness, irritability, and muscle cramps. As a result, the aim of this systematic review is to 

offer a complete analysis of numerous sweat-based biomarkers for stress and fatigue assessment, 

the recent outlook of sweat-based biosensor development, and what methodologies are employed 

in wearable biosensors for monitoring biomarkers. 

2.2 Methods  

The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist 

was used to conduct a comprehensive review of the literature. The combination of the terms 

"biomarkers," OR “Sweat,” OR "Wearable biosensors," and "Fatigue OR Stress" was searched for 

in electronic databases such as PubMed, Web of Science, and IEEE Explorer (Table 2.1). 

Table 2.1 Search Strategies 

Keywords (28-12-2022) PubMed Web of Science IEEE Explorer 

Sweat biomarkers OR Chemical biomarkers OR Sweat 
Cortisol OR Sweat electrolytes OR Sweat ammonia OR 
Sweat glucose OR Sweat Lactate OR Ammonia 

10,982  33,622 491 

Wearable biosensors OR Wearable sensors OR 
Wearable biosensing technology OR Wearable 
electrochemical sensors OR Wearable biochemical 
Sensors OR Wearable Chemical Sensors 

1,488  27,494 14680 

Fatigue OR Stress OR Burnout OR Exertion OR 
Exhaustion 

195,506 2,520,421 94150 

Combined, Limit (up to 28-12-2022) 48 59 6 

Total after duplicates removed 98   

 

The initial step of the review was to analyze the titles and abstracts of the returned publications. 

The possibly eligible articles must have been published till December 28, 2022. Additionally, the 

articles were required to focus on the identification of fatigue or stress biomarkers in sweat. Finally, 

the articles must be written in the English language. The full text of the potentially relevant 

publications was analyzed in the second step of the review. There has to be a detailed description 
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of the sensors, their properties, and their suitability for human sweat to be provided. Total citations 

of all included papers were also calculated based on their citations. The Web of Science Core 

Collection search tool and the Google Scholar search engine were used to determine the number 

of citations. 

2.3 Results 

A preliminary search of electronic databases yielded 113 hits. 15 duplicate studies were eliminated 

from the total, bringing the total to 98. Another 17 publications were omitted because they were 

not human research, and two more were omitted because they were not written in English. The 

remaining 79 abstracts were analyzed further, and 32 unrelated research studies were removed. A 

total of 47 articles remained for full-text examination. Another 34 articles were omitted from this 

review because they made no relevance to the primary issue. As a result, the current review 

comprised a total of 13 publications. The complete selection algorithm is illustrated in Fig. 2.1. 

Detailed information about the final selected articles is provided in Table 2.2, including the names 

of the authors and the names of the publishers as well as information about the biomarkers 

evaluated, the participants and their demographics, the types of sensors and wearables used, the 

time it took for the sensor to begin recording, and the number of citations. Sweat biomarkers such 

as metabolites (i.e., lactate and glucose), amino acids & Hormones and electrolytes were 

discovered (Bariya et al., 2018) (Fig. 2.2). Potentiometric and amperometric biosensors are widely 

used to detect sweat-based biomarkers in real time. Wearable biosensors, such as an epidermal 

patch or a sweatband, have received a great deal of validation in scientific publications. The bio-

signals collected by these wearable sensors could take anywhere from 1 to 20 minutes to begin 

recording. 
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Table 2.3 has a detailed list of all eligible publications, which includes the validation techniques, 

experiments, findings, and conclusions of each paper. Most of the included studies used laboratory 

trials for validation of wearable biosensors for monitoring sweat-based biomarkers. The majority 

of the research included in this review used a stationary cycling program to evaluate the 

concentrations of sweat biomarkers under a variety of physiological circumstances. 

 
Fig. 2.1 The process of selecting research studies and the outcomes of the literature (PRISMA flow 

chart) 
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Fig. 2.2 Schematic drawing of sweat gland structure and biomarkers (Bariya et al., 2018) 

2.4 Discussion 

Sweat-based biomarkers have been discovered to have considerable promise for stress and fatigue 

evaluation in the current review. This review also found that the use of sweat-based biosensors to 

detect stress and fatigue has grown in popularity in recent years. 

2.4.1 Sweat biomarkers for stress and fatigue 

Earlier research has concentrated on the detection of fatigue by physiological signs, visual tasks, 

and biomarkers (Xu et al., 2018). Changes in electroencephalogram (EEG) theta (θ) waves, high-

frequency (HF) EEG, pulse signals, and the ratio of low- and high-frequency components (LF/HF 

ratio) are used to detect physiological signals (Li et al., 2017). Glare conditions and frequencies, 

mouth movements, and head positions are all examples of vision tasks (Cyganek & Gruszczyński, 

2014). Creatine kinase (Hecksteden et al., 2016; Wiewelhove et al., 2015), blood interleukin (IL)-

8 (Dutheil et al., 2013), and α-amylase (Yamaguchi et al., 2006) are all examples of chemical 

biomarkers that can be detected. While some of these metrics have been used in clinical practice 

to quantify fatigue, the majority is invasive diagnostic tests that require blood samples and hence 

cannot be utilized for rapid, on-site, and accurate fatigue identification. When compared to blood 

and urine, which can be influenced by kidneys and other causes, sweat biofluid is more stable and 
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easier to sample (Xu et al., 2019). There has been a lot of interest in sweat component analysis for 

fatigue detection in China and other nations (Calderón-Santiago et al., 2014; Zhang, 2017).
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Table 2.2. Overview of wearable biosensors for monitoring sweat-based biomarkers 
Citations  Publishers Biomarkers Subjects  Demographics Types of sensors Types of 

wearables 
Time 
taken start 
recording 

Cited 
by 

Guinovart 
et al. 
(2013) 

The Royal 
Society of 
Chemistry 

Electrolytes 
(Ammonia) 

Not 
reported 

Not reported Potentiometric sensor Tattooed 
sensor  

Not 
reported 

231 

Rose et al. 
(2015) 

IEEE Electrolytes 
(Na+) 

Seven 
healthy 
volunteer
s 

Not reported Potentiometric 
electrolyte sensors 

Epidermal 
patch 

4 min 364 

Imani et al. 
(2016) 

Nature Lactate 3 healthy 
males 

Not reported Amperometric lactate 
biosensor  

Epidermal 
patch 

Not 
reported 

546 

Matzeu et 
al. (2016) 

The Royal 
Society of 
Chemistry 

Electrolytes 
(Na+) 

Four 
Healthy 
active 
male 
athletes 

Not reported Potentiometric 
electrolyte sensors 

Sweatband 20 min 64 

Emaminej
ad et al. 
(2017) 

National 
Academy 
Sciences 

Electrolytes 
(Na+/Cl−) 
Glucose 

Six 
healthy 
volunteer
s and 
three 
Cystic 
Fibrosis 
patients 

Not reported Potentiometric 
electrolyte sensors 
Amperometric 
glucose sensors 

Sweatband 20 min 435 

Alizadeh et 
al. (2018) 

The Royal 
Society of 
Chemistry 

Electrolytes 
(Na+and 
K+) 

One 
healthy 
male 

Not reported Potentiometric 
electrolyte sensors 

Epidermal 
patch 

Not 
reported 

92 

McCaul et 
al. (2018) 

Wiley Electrolytes 
(Na+) 

One 
healthy 
male 

26 Y Potentiometric 
electrolyte sensors 

Wristband 8 min 32 

Bariya et 
al. (2018) 

American 
Chemical 
Society 

pH Not 
reported 

Not reported Potentiometric 
electrolyte sensors 

Wristband 14 min 166 
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Choi et al. 
(2019) 

Elsevier Electrolytes 
(Cl−) 

10 
individua
ls with 
Cystic 
Fibrosis 
(CF) and 
10 
healthy 
subjects 

CF: male = 4, female = 6, 
age = 28.9 ± 7.4 years; 
healthy individuals: male 
= 1, female = 9, age = 
35.0 ± 12.1 years 

Colorimetric sensors Epidermal 
patch 

15 min 41 

Renner et 
al. (2020) 

IEEE Electrolytes 
(Ammonia) 

35 male 
and 5 
female 

Age 39.9 ± 12.5 years 
Height 180.3 ± 7.9 cm, 
Weight 80.9 ± 12.7 kg 

A screen-printed 
electrolyte sensor 

Polystyrene 
tubes 

Not 
reported 

4 

Saha et al. 
(2021) 

MDPI Lactate Eight 
healthy 
subjects  

5 females and 3 males, 
aged 20–28 

Polydimethylsiloxane 
(PDMS)-based 
hydrogels 

Wearable 
patch 

Not 
reported 

1 

Seki et al. 
(2021) 

Nature Lactate 23 
healthy 
42 
patients 
(CVDs) 

Age 20 Y (healthy) 
63 Y (patients)  
Male 21 (healthy), 32 
(patients) 
Height 171 cm (healthy), 
165 cm (patients) 
BMI 22 (healthy), 23 
(patients) 

Amperometric lactate 
biosensor  
 

Sensor 
chips 

Not 
reported 

5 

Huang et 
al. (2021) 

Springer Glucose 
Lactate 

Not 
reported 

Not reported Polydimethylsiloxane 
(PDMS)-based 
enzymatic biofuel 
cells 

Epidermal 
patch 

1 min 5 
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Table 2.3. Validation experiment for continuous monitoring of sweat-based biomarkers using wearable biosensors 
Citations Sweat 

Biomarkers 
Validation 
methods 

Experiment  Findings  Conclusions 

Guinovart et 
al. (2013) 

Electrolytes 
(Ammonia) 

Laboratory 
trials 

A 30-minute stationary 
cycling regimen with 
three-minute cool-down 
periods and another 
three-minute rest period 
was employed in the 
study. To achieve an 
anaerobic state, each 
volunteer drank mineral 
water the entire time and 
cycled and ran 
alternately every five 
minutes.  

High Noise signal at the 
beginning. Low Noise 
signal (< 0.5 mV) when 
sweat begins. 
Amount of NH4+ = 0.1 to 
1 mM (range). NH4+ 
levels increased with the 
increased load of cycling 
without sprinting. Sensor 
signals increased with 
increased speed of 
cycling. 
 

Solid-state tattoo potentiometric cells that 
can detect ammonium (NH4 +) in sweat 
have been developed and are currently 
being tested. It combines screen-printed 
technology with a temporary transfer 
tattoo. NH4+ may be detected at 
physiological levels in sweat using this 
new potentiometric sensor, which is 
identical to ordinary potentiometric 
electrodes. Preliminary findings indicate 
that this ion selective electrode-tattoo can 
sense the transition of subjects doing 
intense exercise from an aerobic to 
anaerobic state. The new epidermal 
ammonium sensor will require more 
testing before it can be fully used and 
validated, but it has already opened up 
new possibilities for evaluating athletic 
performance, healthcare, and other fields. 
Electrolyte concentrations in sweat can 
be monitored non-invasively using a mix 
of epidermal integration, screen-printed 
technology, and potentiometric sensors. 

Rose et al. 
(2015) 

Electrolytes 
(Na+) 

Laboratory 
trials 

To determine the radio-
frequency ID (RFID) 
Na+ sensor's accuracy, 
they repeatedly 
measured 50mM NaCl, 
which should provide 
185mV according to the 
calibration curve. To 
further investigate the 
possibility of continuous 

The sensor output rose as 
the analyte concentration 
increased. The sensor 
responded fast to each 
concentration change, 
with a response time of 
around 30 seconds. The 
correlation coefficient = 
0.99. Sensor sensitivity = 
0.3 mV/mM. Sensor 

For basic sweat sensing at 
physiologically relevant levels, the 
current patch works well and accurately 
and would perform even better with a 
higher sampling frequency, improved 
power management, sensor signal 
conditioning, and analog sensor input 
conversion efficiency. When it comes to 
collecting real-time data on people's 



23 
 

monitoring in sweat, the 
concentration of NaCl 
was adjusted every 4 
minutes for 45 minutes, 
ranging from 20mM to 
70mM. 

accuracy = 96%. Sensor 
precision = 28%. Average 
value for high 
concentration = 255mV. 
CV = 0.1%. Average 
value for low 
concentration = 237mV. 
CV = 0.8%. 

health, wearable and wireless gadgets fill 
a huge gap in the technology needed. 

Imani et al. 
(2016) 

Lactate enzyme-free 
amperometric 
sensor 

The Chem–Phys hybrid 
patch was created and 
applied to the fourth 
intercostal area of three 
healthy male volunteers 
in order to evaluate 
performance under 
realistic conditions. 
Sweat-lactate levels and 
ECG signals were 
regularly measured 
during 15–30 minutes of 
intense cycling exertion. 
While pedaling 
difficulty was increased 
intermittently, 
participants were 
instructed to maintain a 
steady riding cadence on 
a stationary cycle. 

Heart rate (HR) was 60 to 
120 beats per minute and 
low current response was 
recorded by the lactate 
biosensor at the start of the 
cycling activity 
HR and sweat production 
increased as individuals 
increased amount of 
effort. LOx-based 
biosensor recorded lactate 
from the epidermis at the 
commencement of 
perspiration.  
Perspiration rate, HR, 
lactate levels increased as 
riding intensity increased. 
The HR returned to a level 
close to normal resting 
HR after cooldown 
session. Simultaneously, 
the lactate concentration 
decreased. 

This technology was a vital first step in 
the research and development of 
multimodal wearable sensors, which 
integrate chemical, electrophysiological, 
and physical sensors to provide a more 
comprehensive view of human 
physiology. Human studies have 
demonstrated that it is possible to monitor 
physiochemistry and electrophysiology 
at the same time with minimal cross-talk, 
paving the way for the creation of a new 
class of hybrid sensing devices. 

Matzeu et al. 
(2016) 

Electrolytes 
(Na+) 

Laboratory 
trials 

Using stationary bikes 
and a cycle ergometer at 
an effort level that 
elicited sweating, a 
group of healthy, active 

Linear relationship 
between  
the sensors and a PEDOT 
solid-contact layer (R2 > 
0.98), with an average 

Results show that the sensor is capable of 
displaying changes in Na+ 
concentrations in real time throughout 
workout sessions. Due to the fact that 
variations in Na+ levels could be 
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male athletes was tested 
in an indoor 
environment. The 
PotMicroChip was 
attached to the upper left 
arm using a Velcro® 
strap (after cleaning the 
sampling region with 
alcohol swabs and 
deionised water). The 
external forearm was 
selected as the primary 
sampling location. 
When the athlete was 
unable to keep up with 
the set intensity load, the 
trials were halted. 

slope and offset of 55.5 
mV/log Na+ and 474.8 
mV, respectively. 
The slope and offset 
standard deviations = 4.9 
mV/log Na+ and 23.1 mV. 
Sensors with a 
PEDOT/PB film as the SC 
layer demonstrated 
excellent linear 
calibration (R2 > 0.98). 
The slope and offset 
values = 53.4 ± 3.0 
mV/log Na+ and 524.1 
± 14.4 mV. 
When the PotMicroChips 
began harvesting 
perspiration, Na+ levels 
increased for 2 and 5 
minutes, respectively.  
Na+ levels then stabilized 
at an average of 10.3 ± 0.2 
mM and 24.2 ± 2.7 mM. 
The average interpolated 
sodium concentration at 
the end of cycling sessions 
was found to be 18.2 ± 8.9 
mM. 

followed from the point of first sweat 
contact with the sensor to the point of 
final sweat contact with the sensor, it was 
possible to obtain distinct "over time 
sodium profiles" for each individual 
athlete. 

Emaminejad 
et al. (2017) 

Electrolytes 
(Na+/Cl−) 
Glucose 

Blood 
glucose 

To assess the wearable 
platform's efficacy for 
noninvasive glucose 
monitoring, they 
performed real-time 
sweat stimulation and 
glucose sensing 
measurements of a 

The results of this 
experiment demonstrate 
that the sweat and blood 
glucose levels before and 
after 30 g oral glucose 
consumption follow a 
similar pattern. The off-
body measurements 

Cystic fibrosis diagnosis and blood/sweat 
glucose correlation investigations were 
carried out using human subjects to 
establish the wearable platform' clinical 
efficacy. They used this technology to 
detect an increased electrolyte content in 
the perspiration of cystic fibrosis patients 
compared to healthy control volunteers. 
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group of subjects 
participating in fasting 
and post-glucose 
ingestion experiments. 
A commercially 
accessible glucometer 
was used to conduct the 
blood glucose analysis. 

obtained from the sweat 
sample created by the 
wearable device reveal 
that oral glucose 
consumption in fasting 
people typically leads to a 
rise in both sweat and 
blood glucose levels. 

Additionally, there is a correlation 
between a rise in blood and sweat glucose 
levels following the ingestion of oral 
glucose during fasting. Their technology 
enables a diverse variety of noninvasive 
diagnostic and population health 
monitoring applications. 

Alizadeh et 
al. (2018) 

Electrolytes 
(Na +  and 
K+) 

Laboratory 
trials 

A healthy male 
volunteer underwent on-
body testing of the fully 
integrated sweat sensors 
while undergoing high 
intensity activity on a 
bicycle on a roller trainer 
and treadmill running 
trials. The patches were 
applied to the back of the 
individual, around the 
latissimus dorsi muscle 
and/or the 
thoracolumbar fascia in 
the upper lumbar 
vertebrae region. 
Averaging 26 to 29 mph, 
the bike's top speed 
during the session, 
which typically lasts 30 
to 60 minutes, caused 
the person being tested 
to perspire profusely.  

The sensitivity of the Na+ 
and K+ = 55.7 mV per log 
a Na+ and 53.9 mV per 
log a K+ per decade. 
The results in the Na+ 
concentration 
demonstrate the expected 
rise in voltage associated 
with the introduction of 
eutonic sweat to the ISE 
(from a dry baseline), with 
minor noise aberrations. 

Briefly stated, this research demonstrated 
the viability of a wireless sweat 
monitoring device that provides good 
accuracy while also providing continuous 
and unobtrusive sweat electrolyte 
monitoring over a prolonged period of 
time while maintaining user comfort. The 
microfluidics and overall system design 
principles learnt by this device were 
likely applicable to a wide variety of 
analytes, despite the fact that it was 
designed for electrolyte analysis during 
vigorous perspiration only. 

McCaul et 
al. (2018) 

Electrolytes 
(Na+) 

Laboratory 
trials 

A watch-type sweat 
sampling and analysis 
platform was used 
during on-body trials 
using exercise-induced 

Within 8 minutes, the 
signal at the electrodes 
begins to rapidly grow as 
the perspiration replaces 

With a relatively short delay (5 minutes) 
between the point of sweat emergence on 
the skin surface and the detection of the 
electrodes, it appears that the watch-type 
sweat sampling and analysis platform is 
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perspiration. VO2Max 
(absolute oxygen 
consumption per 
minute) and relative 
oxygen consumption per 
kilogram of body weight 
(relative oxygen 
consumption per 
kilogram of body 
weight) were measured 
before the volunteer 
participated in the trial. 
In this experiment, the 
sweat sensor was 
attached to the 
volunteer's wrist. A 10-
minute warm-up was 
followed by a 5-minute 
ramp-up before the 
subject completed a 50-
minute cycling period at 
120 W followed by a 10-
minute cool-down 
period. 

the conditioning fluid 
(0.13 mM NaCl).  
After 12 minutes, the 
signal began to settle and 
remained stable until 50 
minutes had passed. 
The concentration of 
sweat NaCl increases to a 
high of 17.0 to 17.5 mM 
(11–13 minutes) and then 
progressively declines to 
11.0 to 11.5% (30–50 
minutes). 
Following that, the Na+ 
concentration appears to 
decrease at a faster rate, 
eventually falling below 
6.0 mM near the end of the 
trial.  
 

working satisfactorily in terms of sweat 
sampling and analysis as well. The 
findings demonstrate that there was no 
statistically significant change in the 
response characteristics of the system, 
and as a result of these findings, the trial 
data can be considered reasonably 
accurate. 

Bariya et al. 
(2018) 

Electrolytes 
(Ammonia) 

Blood 
ammonia, 
blood lactate, 
and heart rate 

An electromagnetically 
braked cycle ergometer 
was used to test the 
subjects' maximum load 
capacity. It was 
constantly monitored for 
changes in heart rate and 
breathing gas levels. The 
subjects were at rest 
when the baseline data 
was obtained. A 25 W 
increase in exertion was 

The data indicate that the 
HR increases 
approximately linearly as 
the effort increases. 
Lactate concentrations 
were measured 
throughout the program, 
ranging from 0.5 mmol/l 
at the start to 16.3 mmol/l 
at the conclusion. 
Blood ammonium 
concentrations have been 

Using a screen-printed electrolyte sensor 
that is suited for application in wearable 
electronic devices, the results presented 
here show that sweat ammonium 
concentration may be detected directly 
from skin samples. As a result of these 
observations, ammonium content in 
sweat decreases as a function of increased 
exertion. But the rate of sweat 
ammonium production must be taken into 
account in order to make sweat 
ammonium practical to use and 
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made every three 
minutes after the first 
three minutes. If a 
participant felt they had 
expended all of their 
energy, they were 
allowed to stop the 
activity. 375 W was the 
maximum load that 
could be applied. At the 
end of each procedure 
step, 5 ml round-bottom 
clear polystyrene tubes 
were used to collect 
sweat samples from the 
upper body. The upper 
arms, shoulders, and 
back were the preferred 
locations to gather sweat 
because they are 
hairless. 

measured to range 
between 15 and 193 
µmol/l.  
In comparison, following 
a modest plateau between 
150 and 200 W, the sweat 
ammonium concentration 
decreases with effort. 
The content of ammonium 
in sweat was found to 
range between 0.12 and 
2.17 mmol/l. Sweat 
ammonium concentration 
is decreasing, 
contradicting the other 
three values. 
Similar to the other 
observed characteristics, 
the sweat ammonium 
curve exhibits a shift in 
concentration at 300 W. 

meaningful to understand data collected 
in sweat as compared to blood. 

Choi et al. 
(2019) 

Electrolytes 
(Cl−) 

Standard 
laboratory 
test 

Pilocarpine 
iontophoresis was used 
to generate sweat on 
both forearms of ten 
persons with Cystic 
Fibrosis and ten healthy 
volunteers. On one arm, 
a Macroduct sweat 
collection device was 
mounted, and 
perspiration was 
collected for 30 minutes 
before being transported 
to the laboratory for 
analysis. In the other 

The wearable sensor was 
able to collect steady 
sweat chloride levels 
within 15 minutes of 
starting to sweat. The 
sensor measured a sweat 
volume of 13.1 ± 11.4 L 
(SD) at detection time (5 
minutes), which was 
typically less than the 
minimum sweat volume 
of 15 L required for 
conventional 
testing.  Chloride 
concentration differences 

When utilized in conjunction with a 
wearable sensor, real-time measurements 
of sweat chloride can be obtained within 
15 minutes of sweat induction. This 
method requires only a little quantity of 
sweat volume and provides excellent 
agreement with standard methods in the 
process. 
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arm, a sensor was 
attached, and the 
concentration of 
chloride ions was 
monitored in real time 
for 30 minutes. 

between the sensor and 
typical laboratory practice 
were 6.2 ± 9.5 mEq/L 
(SD), which was 
comparde to the arm-to-
arm variability of roughly 
3 mEq/L. It was 
discovered that the two 
measurements had a 
Pearson correlation 
coefficient of 0.97. 

Renner et al. 
(2020) 

Electrolytes 
(Ammonia) 

Blood 
ammonia, 
blood lactate, 
and heart rate 

An electromagnetically 
braked cycle ergometer 
was used to test the 
subjects' maximum load 
capacity. It was 
constantly monitored for 
changes in heart rate and 
breathing gas levels. The 
subjects were at rest 
when the baseline data 
was obtained. A 25 W 
increase in exertion was 
made every three 
minutes after the first 
three minutes. If a 
participant felt they had 
expended all of their 
energy, they were 
allowed to stop the 
activity. 375 W was the 
maximum load that 
could be applied. At the 
end of each procedure 
step, 5 ml round-bottom 
clear polystyrene tubes 

The data indicate that the 
HR increases 
approximately linearly as 
the effort increases. 
Lactate concentrations 
were measured 
throughout the program, 
ranging from 0.5 mmol/l 
at the start to 16.3 mmol/l 
at the conclusion. 
Blood ammonium 
concentrations have been 
measured to range 
between 15 and 193 
µmol/l.  
In comparison, following 
a modest plateau between 
150 and 200 W, the sweat 
ammonium concentration 
decreases with effort. 
The content of ammonium 
in sweat was found to 
range between 0.12 and 
2.17 mmol/l. Sweat 
ammonium concentration 

Using a screen-printed electrolyte sensor 
that is suited for application in wearable 
electronic devices, the results presented 
here show that sweat ammonium 
concentration may be detected directly 
from skin samples. As a result of these 
observations, ammonium content in 
sweat decreases as a function of increased 
exertion. But the rate of sweat 
ammonium production must be taken into 
account in order to make sweat 
ammonium practical to use and 
meaningful to understand data collected 
in sweat as compared to blood. 
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were used to collect 
sweat samples from the 
upper body. The upper 
arms, shoulders, and 
back were the preferred 
locations to gather sweat 
because they are 
hairless. 

is decreasing, 
contradicting the other 
three values. 
Similar to the other 
observed characteristics, 
the sweat ammonium 
curve exhibits a shift in 
concentration at 300 W. 

Saha et al. 
(2021) 

Lactate Blood lactate Using a lactate paper 
sample, researchers 
were able to determine 
the amount of lactate in 
the blood under five 
different physiological 
conditions: rest, 
moderate exercise (60–
70% of maximal heart 
rate), post-medium-
intensity exercise, and 
post-high intensity 
exercise. All of the 
experiments were 
conducted at 22 degrees 
Celsius and 45 percent 
RH (relative humidity). 

The hydrogel disc can 
take fluid from the skin 
and transmit it to the paper 
via osmosis while the user 
is sleeping or otherwise 
resting. Even without the 
hydrogel patch, the paper 
can still collect 
perspiration during 
periods of intense 
sweating (for example, 
exercise). Inversely 
proportional to sweating 
rate is the total amount of 
lactate moles measured in 
the experiments. High-
intensity exercise has the 
best association between 
perspiration and blood 
lactate concentrations. 

Overall, this wearable osmotic sweat 
sampling patch looks to have significant 
potential in terms of permitting the 
continuous sweat collection for hours at a 
time while also providing valuable health 
information regarding human lactate 
patterns under a variety of physiological 
circumstances. For reliable estimation of 
lactate concentration in sweat 
notwithstanding the skin tests, this patch 
needs additional post-processing 
processes. To determine lactate levels, a 
rectangular strip from the sample must be 
cut off and tested. The existing patch was 
not the best answer for device operation 
because an ideal wearable should enable 
continuous monitoring and real-time data 
output. 

Seki et al. 
(2021) 

Lactate Blood lactate, 
and 
ventilatory 
threshold 

The RAMP protocol 
ergometer was used to 
conduct exercise testing 
on healthy volunteers, 
while a wearable lactate 
sensor measured 
changes in sweat lactate. 
Lactate levels in the 

At the start of the cycling 
activity, the lactate 
biosensor registered a 
negligible current 
response due to a lack of 
sweat. As the riding 
continued to volitional 
exhaustion, a dramatic 

It was the first study to establish real-time 
monitoring of sweat lactate readings 
during progressive exercise in both 
patients with cardiovascular disease 
(CVD) and healthy individuals. 
Increasing the detection of ventilatory 
threshold through the monitoring of 
lactate levels in sweat may be useful, 
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blood were monitored 
every two minutes using 
a sensor attached to the 
upper arm of healthy 
individuals. The subjects 
performed the test in an 
upright position on an 
electrically braked 
ergometer. Subjects 
began by pedaling for 2 
minutes at 50 W for 
healthy males and 0 W 
for healthy females, then 
increased the intensity of 
their exercise until they 
were no longer able to 
maintain the pedaling 
rate (volitional 
exhaustion). Every 
minute, the intensity was 
stepped up by 20 W. 
(RAMP protocol). At 60 
rotations per minute, the 
pedaling speed was 
set. According to the 
subject's exercise 
capacity, the 
incremental exercise 
testing lasted between 
10 and 20 minutes. 
Individuals were 
instructed to stop 
cycling immediately and 
remain on the ergometer 
for three minutes after 

increase in sweat lactate 
levels was noticed. At the 
conclusion of the workout 
period, sweat lactate 
readings continued to 
decline slowly in 
comparison to the heart 
rate decrease. 
The correlations between 
sweat lactate and blood 
lactate were excellent 
(r=0.92, P<0.001). The 
least-product regression 
analysis revealed no 
evidence of a fixed bias or 
a proportionate bias (95 
percent confidence 
intervals (CIs) for the y-
intercept ranged from 9.16 
to 19.1; CIs for the slope 
ranged from 0.854 to 
1.020). 
Similarly, a strong 
association between the 
sweat lactate and 
ventilatory threshold was 
seen (r=0.71, P<0.001). 
Between each threshold, 
least-product regression 
analysis revealed a fixed 
bias (y-intercept, 22.7) 
and a proportionate bias 
(slope, 0.57). 

which was particularly significant given 
the difficult circumstances of identifying 
ventilatory threshold. 
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the exercise tests were 
completed. 

Huang et al. 
(2021) 

Glucose 
Lactate 

Laboratory 
trials 

The lactate and glucose 
concentrations of a 
cyclist were monitored 
in real time as he or she 
cycled at a steady load. 
Sensors implanted in the 
subject's back measured 
glucose and lactate 
concentrations during a 
period of 1200 seconds 
of activity. The lactate 
and glucose 
concentrations in three 
independent body 
regions were also 
measured after 0.5 hours 
of continuous activity. 
After that, the sensors 
were attached to the 
backs of three volunteers 
and the changes in 
lactate and glucose 
levels in sweat were 
measured. 

Throughout the exercise, 
the glucose and lactate 
concentrations gradually 
reduced due to the dilution 
impact of the increased 
sweat rate. 
Lactate and glucose 
concentrations were 
nearly same across all test 
locations, and a 
significant drop was 
observed after 0.5 hours of 
perspiration. 
A determination 
coefficient (R2) of 0.98 
and a sensitivity of 2.48 
mV/mM was noted for 
lactate detection, and a 
determination coefficient 
(R2) of 0.96 and a 
sensitivity of 0.11 
mV/mM for glucose 
detection. 

A newly invented epidermal, stretchable, 
self-powered biosensor is demonstrated 
in this work and may be used to monitor 
in real time the levels of lactate and 
glucose in human sweat. Biofuel cells 
functioning as precise sensing 
components can work without the use of 
external power supplies due to the careful 
selection of materials and device designs. 
Results from the studies show that the 
suggested biosensor has the potential to 
be used in sweat sensing and healthcare 
monitoring scenarios where sensors on 
volunteers react in real time to changes in 
lactate and glucose levels. 
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Sweating is a physiological response to a variety of factors, including ambient conditions, physical 

activity, and an individual's emotional state. In addition to salivary biomarkers, other less intrusive 

approaches such as sweat analysis are becoming increasingly popular for continuous health 

monitoring (Corrie et al., 2015). Sweat glands, which are classified as either apocrine, apoeccrine, 

or eccrine, are responsible for the production of sweat (Sato et al., 1989). Apocrine sweat glands 

are the most common kind of sweat gland found in humans (Sato et al., 1989). Eccrine sweat 

glands, which are found throughout the body and cover the majority of the surface area, are the 

primary cause of thermoregulatory sweating (Sato et al., 1987). They produce a fluid that is 

predominantly composed of water, salts, and a diverse spectrum of biological metabolites 

(Montain et al., 2006). 

Using sweat as an analysis fluid allows for non-invasive samples to be taken for both early and 

continuing diagnosis (Nunes et al., 2021). Depending on the analytical techniques, sweat samples 

and preparation may be easier and faster than other biological fluids, such as blood (Calderón-

Santiago et al., 2014; Zhang, 2017). Due to its low invasiveness and high protein and peptide 

content, sweat is an excellent source of chemical biomarkers (Raiszadeh et al., 2012). 

Sweat Lactate (sLa) 

Several studies have looked at the elements of sweat to determine if they can reflect the 

physiological state of the individuals. Sweat is a good alternative for biosensing than other 

potential biomarkers since it is readily available and contains a variety of essential electrolytes, 

metabolites, amino acids, proteins, and hormones. The determination of lactate in sweat has a 

number of clinical uses that are currently being explored. One early notion was that because lactate 

is a result of anaerobic metabolism, it may be utilized to monitor parameters such as physical 

performance. It was stated that the assessment of sweat lactate would give a non-invasive 
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alternative to blood lactate measurements; and a positive correlation of blood and sweat lactate 

was found in studies (Karpova et al., 2020; Sakharov et al., 2010a). There are also certain 

advantages of using sweat lactate (sLa) measurement over other methods, such as the ease of use, 

non-invasiveness, and ability to measure continuously. New information can be gained from 

continuous monitoring of sweat gland activity by using an algorithm known as the sLa curve 

(Katsumata et al., 2021), even though some researchers have concluded that it only provides 

information about sweat gland metabolism and does not provide insight into clinical use of sLa 

(Baker et al., 2020). Some scholars looked at how sweat lactate is formed and its relationship to 

skin temperature, sweat rate, and sweat duration (van Heyningen & Weiner, 1952). It has been 

previously discovered that when sweat begins, lactate is liberated from the epidermis (Imani et al., 

2016). As the resistance of cycling exercise increases, the sweat-lactate concentration increases as 

well, demonstrating a relationship between physical exertion, heart rate, and, after a physiologic 

time delay, lactate formation during the experiment (Imani et al., 2016). When exercising at 

moderate intensity, the concentration of lactate was shown to be substantially higher than when 

resting (p < 0.05) (Saha et al., 2021). This is because (a) exercise produces anaerobic metabolism, 

which results in the formation of lactate in sweat, and (b) activity generates a larger sweat release, 

which generates more lactate (Saha et al., 2021). Recent studies have also suggested that lactate 

serves as a significant energy source to support muscle and brain functions during physical and 

mental activities (Brooks et al., 2022). Therefore, variations in lactate levels may occur during 

high-energy activities, both physically and mentally. Accordingly, we believe that sweat lactate 

might be highly relevant to fatigue development.  

Sweat Glucose 
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Controlling fatigue levels requires constant monitoring of glucose levels (Seshadri et al., 2016). 

The amount of glucose in human sweat ranges from 10 to 200 µM (Bariya et al., 2018), and studies 

have investigated the association between sweat glucose and blood glucose levels (Olarte et al., 

2013; Wang, 2008). It was revealed that the transit of sweat glucose and critical electrolyte 

concentrations were similar to those in blood (La Count et al., 2019). Sweat obtained using 

iontophoresis has also been proven to contain glucose levels that are comparable to those found in 

blood (Moyer et al., 2012). According to a more recent study, Huang et al. (2022) discovered that 

when perspiration rate rose, glucose levels decreased gradually during exercise because of the 

diluting effect and consumption of energy sources withing the bodies (Sonner et al., 2015; Gao et 

al., 2016). Develop biosensors that reliably measure analytes like glucose, which alter health status 

when exercising, requires knowledge of lag periods and transport kinetics (Seshadri et al., 2019). 

Sweat Electrolytes 

There is a high concentration of electrolytes such as sodium (Na+), chloride (Cl-), potassium (K+), 

and ammonia (NH4+) in sweat. Maintaining electrolyte balance necessitates replenishing Na+ and 

Cl- levels following a period of high-intensity exercise (Baker, 2017). Sweating rate and 

concentration (Na+) influence total Na+ loss from sweat, hence calculating sweat Na+ loss is critical 

for speeding up fatigue recovery and reducing soft tissue damage caused by dehydration (Allan & 

Wilson, 1971). Sweating rate and total body sweating loss can be calculated using the equations 

published in elsewhere (Baker, 2017). Additionally, Baker and colleagues devised a methodology 

to quantify the Na+ content in sweat from the forearm using absorbent patches taken from the 

forearm. Based on their findings, Matzeu et al. (2016) hypothesized that athletes' "over time 

sodium profiles" could be generated by monitoring changes in Na+ levels as sweat made its way 

into contact with the sensor. 
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Likewise, muscle activity is predicted by potassium (K+) concentrations in plasma, which can be 

used as a biomarker to detect muscle fatigue (Medbø & Sejersted, 1990). The electrical activity of 

the muscles involved in the exercise can explain the increase in K+ concentration during exercise 

(Medbø & Sejersted, 1990). The rate at which K+ is excreted is directly related to the intensity of 

activity. In order to remove K+ from the circulation, this proportional regulator, which may be a 

sodium–potassium pump in the exercising muscle, is responsible. The rate of absorption of 

extracellular K+ related to the pump stimulus, and the rate of extracellular accumulation in the 

extracellular space is related to the rate of absorption. A correlation between sweat K+ loss and the 

rate of sweat flow has been established, but its underlying mechanism is still unknown and needs 

additional investigation (Sato et al., 1987). Despite this, final sweat often has a K+ that is similar 

to, albeit with a slightly greater range (~ 2–8 mmol/L), that of blood plasma, which has been 

recorded (Baker, 2017). In order to quantify and assess the intensity of the workload and the level 

of fatigue, the measurement of K+ levels could be quite beneficial (Seshadri et al., 2019). 

Other Biomarkers 

Given that ammonium is formed in the blood as a result of the breakdown of proteins (Sato et al., 

1989), measuring plasma ammonium levels can provide extremely valuable physiological 

information. During exercise, for example, the concentration of ammonium changes when the 

body transitions from an aerobic to anaerobic state. However, ammonium in plasma can only be 

monitored by taking blood samples, which is a major drawback when exercising or engaging in 

other physical activity. There are several studies showing that ammonium concentrations in sweat 

can be strongly associated with ammonium levels in plasma (Brusilow & Gordes, 1968; 

Czarnowski & Gorski, 1991), which is why sweating is a good way to monitor ammonium levels. 

Czarnowski and Gorski (1991) investigated the association between ammonia levels in plasma and 
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ammonium concentrations in sweat. They believe that ammonia in plasma is the primary source 

of ammonium in sweat. Ammonium production via sweating during physical activity such as 

jogging has been studied and the researchers concluded that the difference in nitrogen loss between 

the two mechanisms was negligible. It has been shown that ammonium is secreted through sweat 

after short-term activity at the commencement of sweating (Czarnowski & Gorski, 1991). An 

investigation by Yuan and Chan (2004) found that a one-year training program had a unique effect 

on the ammonia threshold, which was associated with endurance time. Also, research on rugby 

players found that ammonium levels in their sweat rose significantly while they were playing the 

game (Alvear-Ordenes et al., 2005). This was also linked to an increase in blood ammonia levels 

of roughly three times greater than before. Another study found that when a participant increases 

the load after beginning to sweat, the levels of ammonium in the sweat rise (Guinovart et al., 2013). 

As a result, the production of ammonium in sweat can be employed as a biomarker, providing 

incredibly useful information in a wide range of conditions, such as the transition from aerobic to 

anaerobic exercise while measuring physical performance, among others. 

2.4.2 Sweat-based wearable biosensors 

The general population is becoming interested in smartwatches, wearable fitness trackers, and 

smart, at-home health services. Photoplethysmography is one of the most widely used techniques 

for measuring real-time stress and fatigue (O. Parlak et al., 2018). Other techniques include heart 

rate variability (Mohan et al., 2016), as well as respiratory signal and ECG data (Chen et al., 2016). 

These signals are linked to a stress response, but they do not generate it; rather, they represent the 

physiological impact of stress and fatigue biomarkers released in the body. As a result, biomarker 

detection could be a more precise means of detecting stress and fatigue. Efforts are being made to 

develop devices that can offer valuable, concrete data by detecting specific stress and fatigue 
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biomarkers for the purposes of stress and fatigue monitoring, so that stress and fatigue can be 

quantified more accurately. 

Innovative, non-invasive, sweat-based sensors for stress and fatigue biomarker monitoring have 

been developed. Wearable sweat sensors have seen a tenfold rise in development and research in 

the last few years. Medical researchers are still attempting to find out how biomarkers in sweat 

may be used to monitor our health, but their potential is undeniable. The amount of several 

molecular markers in sweat has been found to be comparable to the amount seen in human blood 

plasma (Marques-Deak et al., 2006) 

Biosensors for sweat lactate 

Likewise, Lactate concentrations in the blood closely resemble those in the sweat, which indicates 

the level of physical exertion and the intensity of the exercise (Jia et al., 2013). For example, screen 

printed lactate biosensors with three electrodes and two electrodes for ECG were used to make a 

hybrid epidermal wearable device that could simultaneously monitor lactate and heart activity at 

the same time (Imani et al., 2016). Between the two sensor groups, a hydrophobic coating was 

used to improve the impedance between the amperometric electrodes and ECG, preventing sensor 

crosstalk. Physicochemical and electrophysiological measurements were made possible with this 

wearable gadget thanks to the inclusion of both types of sensors on the same piece of equipment. 

The simultaneous lactate detection of the ECG had no effect, according to real-time monitoring, 

as compared to current wearable technologies. As the intensity of the activity grew, so did the 

lactate level record by the biosensor, which matched the estimated sweat-lactate profile. 

Continuous monitoring of stress and fatigue may be substantially enhanced by converting this 

device into a wearable. Lactate was measured using a flexible and wearable patch in another 

investigation (Seki et al., 2021). Sweat was transported using a microfluidic tube equipped with 
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an array of microneedle-type sensors (50 μm in diameter). For the amperometric-based lactate 

sensor, enzymes were doped and placed on top of a semipermeable copolymer membrane with an 

outer polyurethane layer on top. The 180 μm thick patch was attached to the skin of six healthy 

volunteers before to cycling and running using a double-layered adhesive. As a result of 

thermoregulation, sweating began 10–15 minutes into the warm-up phase. Exercise-induced rises 

in lactate show a shift toward anaerobic metabolism. In Recently, Saha et al. (2021) created an 

innovative sweat sampling patch that uses hydrogel discs and paper microfluidic channels to 

extract sweat over an extended period of time. During periods of inactivity, the hydrogel disc can 

collect moisture from the skin by osmosis and transmit it to the paper. Even without the hydrogel 

patch, the paper can collect sweat during active sweating (e.g., exercise). Colorimetric assays are 

used to measure lactate in the collected fluid. Sweating rate was connected to the amount of lactate 

excreted in the sweat. High-intensity exercise improves the correlation between sweat and blood 

lactate concentrations. In addition, the in-situ detection of lactate content in human sweat was 

accomplished by Huang et al. (2021) using a newly invented epidermal, stretchable self-powered 

biosensor. Stretchable electronics, a microfluidic system, and biosensors work together in harmony 

to give the self-powered sweat sensing instrument remarkable sweat collecting and sensing 

accuracy even when stretched to their limits. Individuals' measurements of lactate levels suggest 

that the proposed biosensor can be used in wearable sweat sensing and healthcare monitoring 

scenarios, indicating the potential of the sensor 

Biosensors for sweat glucose 

It is critical to keep an eye on blood glucose levels when exercising in order to avoid becoming 

overly fatigued (Seshadri et al., 2016). Abellan Llobregat et al. (2017) described the development 

of a sweat glucose detecting sensor based on printable and highly stretchy platinum (Pt)-decorated 
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graphite. Glucose oxidase immobilized on Pt-decorated graphite was used to monitor the reduction 

of hydrogen peroxide using chronoamperometry. Based on results obtained with commercial 

glucose meters, this sensor worked well with human sweat samples to show a high link between 

sweat glucose concentrations and blood concentrations. Sensors for glucose monitoring were 

printed using flexible, tattoo-based sensors (Bandodkar et al., 2015). Interstitial glucose was 

extracted through reverse iontophoretic extraction and an enzyme-based amperometric biosensor 

was used. Glucose and lactate can be detected using a microfluidic epidermal device developed by 

Martn et al. (2017). Adhesive on both sides of the double-sided polydimethylsiloxane layers make 

up the structure of the biosensor. Microfluidic passages (inlets and outlets), as well as a reservoir 

for the detection process, were contained in both layers of polydimethylsiloxane. As the wearer 

repeatedly deformed the biosensor, the sweat was sent to the electrochemical sensor, and the 

biosensor remained attached to the skin sweat pores. During a 20-minute bout of indoor cycling, 

the sweat glucose levels of two healthy human individuals were monitored in real time on their 

bodies. An increase in the current signal was observed when a sweat sample entered and filled the 

reservoir of the glucose oxidase-modified flow detector during the continuous monitoring of the 

amperometric sweat glucose response from the subjects. In another study, Emaminejad et al. (2017) 

tested a wearable device for noninvasive glucose monitoring and real-time sweat stimulation on a 

group of participants who participated in both fasting and post-glucose intake trials. In fasting 

subjects, oral glucose ingestion results in an increase in glucose levels in both sweat and blood, as 

measured by the wearable. In addition, Huang et al. (2022) used a newly designed epidermal, 

stretchable self-powered biosensor to measure glucose concentration in human sweat in situ. In 

combination with stretchable electronics and a microfluidic system, biosensors enable the self-

powered sweat sensing equipment to gather sweat with astonishing precision regardless of how far 
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it is stretched. The proposed biosensor can be used in wearable sweat sensing and healthcare 

monitoring scenarios, based on the results of glucose levels measured by individuals. 

Biosensors for electrolytes 

Furthermore, epidermal sensors have been used to detect several electrolytes in the literature. 

Bandodkar et al. (2014) successfully developed and tested an epidermal tattoo potentiometric 

sodium sensor for uninterrupted noninvasive monitoring of sodium excreted in sweat. There was 

no interference in analyte detection and wireless transmission using screen-printed devices, 

indicating their potential for use during the physical activity (Bandodkar et al., 2014). The Na+ 

electrochemical amperometric sensor was developed by researchers in another study, according to 

which it is flexible and wearable (Wujcik et al., 2013). The sensor was built using a nylon-6 mat 

made from multiwall carbon nanotubes (MWCNTs). In order to produce supramolecular 

complexes with sodium ions, the MWCNTs were functionalized with cyclo-oligomeric calixarene. 

After the complex was formed, the charge carriers moved out of the layer to stop the flow of 

electricity. In this way, sodium ions might be detected at the correct level in the body. Additionally, 

a solid-contact ion-selective electrode and a liquid-junction-free reference electrode were used to 

detect sodium in sweat (Matzeu et al., 2016). To collect sweat samples, the potentiometric strips 

were coupled to a passive pump via a microfluidic chip (PotMicroChip). The system was attached 

to a 3D printed enclosure that contained a miniature wireless communication system. During 

stationary cycling sessions, the sodium concentrations of healthy volunteers were continuously 

monitored using the gadget. It is possible to compare these results to those of current analytical 

procedures using techniques like Ion Chromatography, atomic absorption, and commercial sodium 

meters (e.g., AquaTwinTM) (Matzeu et al., 2016). Similarly, it has also been designed and tested 

a completely integrated and wearable platform for the collection and analysis of sweat sodium 
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concentration in real time during exercise. The platform was fabricated in significant part utilizing 

3D printing, which greatly simplifies the process of construction and operation. Because of the 3D 

printed platform, the sample storage reservoir has been increased from 0.6 to 1.3 mL, assembly 

time has been reduced, and alignment and contact of the integrated solid-state ion-selective and 

reference electrodes with the sorbent material has been made simple. The platform was tested in 

the lab and during exercise trials, which lasted around 60 minutes with continuous monitoring and 

recording. According to the findings, the sodium content in sweat increased first to roughly 17 

mM and then decreased progressively over the course of the trial to approximately 11–12 mM. 

Also recently created by Alam et al. (2018), a wireless sweat monitoring device provides a unique 

combination of user comfort, good accuracy, and continuous, non-obtrusive sweat electrolyte 

monitoring over an extended period of time. This system is composed of two modules: a disposable 

sensor/microfluidics module that is extremely flexible and a reusable electronics module that is 

durable. This makes it extremely adaptable and suitable for continuous Na+ and K+ measurement 

in sports or other physiological applications. Researchers have also used a fluorometric technique 

to detect Na+  and Cl- from eccrine sweat collected in a wearable microfluidic system with an 

imaging module for smartphones (Sekine et al., 2018). A smartphone equipped with an optics 

module observed variations in fluorescence excitation intensity as a result of the interaction of the 

micro reservoir probes with the specific ions. For human participants engaged in physical activity, 

the ion concentrations measured with this platform were identical to those obtained using more 

standard laboratory procedures, like ion chromatography for Cl- and atomic absorption for Na+. It 

is possible that microfluidics, rather than the current sweat patches, could provide significant 

advantages in measuring sweat rate and hydration levels. Additionally, a wearable sweat analysis 

platform was developed by Emaminejad et al. (2017), which included an electrochemically 
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improved iontophoresis interface that was integrated with the platform. A variety of secretion 

profiles, including Na+ and Cl-, can be programmed into this interface to generate sweat for real-

time study. Human subject studies were conducted in the context of cystic fibrosis diagnosis in 

order to establish the clinical utility of this platform. Using this technology, they were able to 

detect the increased electrolyte content in the sweat of cystic fibrosis patients as compared to 

healthy control individuals. 

Biosensors for other sweat biomarkers 

Guinovart et al. (2013) had made and tested a new potentiometric cell that could be used to monitor 

ammonium levels in sweat. Using a screen-printed design and all-solid state potentiometric sensors 

for both the working and reference electrodes, this skin-worn sensor can be made. It also has a 

polymer membrane that is ammonium-selective because it is made of the nonactic ionophore. The 

tattooed potentiometric sensor has a working range of between 104 M and 0.1 M, which is close 

to the amount of ammonium in sweat that is normal. Using screen-printed technology, epidermal 

integration, and potentiometric sensing is a good way to keep track of a wide range of electrolytes 

in human sweat without having to be invasive. Also, Renner et al. (2020) conducted ammonium 

measurements in blood and sweat during a stepwise incremental cycle ergometer test in 40 

participants under controlled conditions in order to evaluate the relationship between ammonium 

concentrations in blood and sweat. Aside from that, blood lactate and heart rate were monitored to 

guarantee that the recorded quantities could be categorized appropriately. It was shown that while 

the blood ammonium concentration corresponded to the commonly acknowledged levels of 

physical fatigue, the sweat ammonium concentration appeared to decrease with physical exertion. 

This may be due to the dilution effects, which occurs as the rate of sweat rises (Gao et al., 2016; 
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Sonner et al., 2015). As a result, they suggested that wearable technologies will benefit greatly 

from this research since it sheds light on the relationship between blood and sweat parameters. 

2.4.3 Sweat sensing approach 

Understanding the complex chemical composition and physical properties of sweat can provide 

valuable insights on human health issues in a variety of application situations, including stress and 

fatigue. Chemically related devices are commonly used in the majority of sweat biosensing. A 

number of research studies have looked into the relationship between the quantities of chemical 

components in the environment and human health states in depth. For example, during activity, 

the salt and chloride concentrations in sweat can represent the amount of water lost by the human 

body through the skin (J. Kim et al., 2018; Zhang et al., 2020). It has been created electrochemical, 

colorimetric, and hybrid chemical sensing approaches to measure the amounts of these chemical 

components in sweat. This subsection primarily discusses about new technologies and how they 

can be used in chemical sensing. 

Electrochemical sweat sensors 

It has been proven that biomarkers in sweat alter dynamically in response to factors such as health, 

stress, and fatigue (Kaya et al., 2019). The monitoring of sweat biomarkers in real time is critical. 

Electrochemical sensors connected to the skin that use conductometric, amperometric, 

potentiometric, and voltametric measurement techniques can be used to constantly monitor 

analytes in sweat (Francis et al., 2019; Zhao et al., 2021). It is possible to establish a proportionate 

link between analyte concentrations and electrical signals, with high specificity and rapid response 

times, while using only a small amount of power. Thus, tiny sensor designs that are suitable for 

wearable platforms can be developed, which can communicate data to an external personal device 

assistant (such as a smartphone or smartwatch) for real-time sweat analysis can be performed. 
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Colorimetric sweat sensors 

Elastomeric substrates with microfluidic channels placed in them can be used to collect and store 

sweat, which can then be used for various purposes. Sweat constituents of interest can be analyzed 

quantitatively by combining colorimetric (Choi et al., 2019) and fluorescence (Sekine et al., 2018) 

tests. When sweat is routed to discrete chambers, sweat components interact with specific chemical 

reagents to produce a distinct optical signal matching to a target analyte concentration, it is feasible 

to quantify sweat rate utilizing the natural pressure generated by sweat glands. This sort of 

instrument is used to determine the concentration of a target analyte in a sample. A smartphone-

based image capture and color-based processing technique have recently been demonstrated to be 

effective in the quantification of sweat chloride, pH, lactate, glucose, urea, and creatinine, among 

other substances (Choi et al., 2019; Kim et al., 2019; Sekine et al., 2018). 

Hybrid sweat sensors 

Biomarkers can now be measured wirelessly, without the use of batteries, in continuous or spot 

check modes (e.g., cortisol, ascorbic acid, glucose, and sweat rate) using wearable sensors that 

combine optical and electrochemical sensing technologies in a single analytical platform (Kim et 

al., 2019). Colorimetric lateral flow immunoassay for cortisol, fluorescence assays for ascorbic 

acid and glucose, and impedance-based sensors for sweat rate and galvanic skin reaction are used 

in this dual sensing technique. Field testing shows that these features may be used to track 

physiological parameters related to physical and mental stress over the course of many days in the 

real world. This type of hybrid technique has the potential to provide long-term continuous and 

intermittent monitoring of physiological indicators and situations. 
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2.5 Conclusion 

As a biofluid that may be used to evaluate and monitor a person's overall health, sweat has great 

clinical value. It is becoming increasingly common to use biosensors that can measure a wide 

range of sweat biomarkers to detect and prevent fatigue during high-intensity labor, such as 

construction. This chapter sorted out the number of biomarkers because of their relevance to 

fatigue or stress. Among these biomarkers, sweat rate, lactate, glucose, and sodium were selected 

to be further studied in this project since lactate and glucose are major energy sources to bodies 

whereas sodium and sweat rate could indicate dehydration states of bodies. And further research 

and testing of evaluation of using such biomarkers would be explored in the following chapters.  
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CHAPTER 3 SWEAT ANALYSIS-BASED FATIGUE 

MONITORING DURING SIMULATED CONSTRUCTION 

REBAR BENDING TASKS 

This chapter conducts experiments to explore the feasibility of applying sweat based biomarkers 

to evaluate fatigue levels during a simulated construction rebar task. Sweat rate, sodium, lactate 

and glucose are measured to construct a fatigue model using machine learning approaches.  

3.1 Introduction 

Fatigue, a sense of exhaustion, lack of energy, or tiredness (Krupp, 2006), is often recognized as 

the primary cause of accidents. Fatigue arising from construction rebar benders contributes to 

prolonged working time, intensive physical exertion, and repetitive tasks, leading to workers 

developing fatigue related ill-effects such as sore or aching muscles, decreased productivity, 

impaired decision-making and judgment, poor concentration, and low motivation (Abdelhamid & 

Everett, 2002; Anwer, Li, Antwi-Afari, Umer, Mehmood, et al., 2021; J. K. Sluiter, 2006). To 

minimize or alleviate fatigue-related ill-effects, detecting fatigue could be the most effective 

approach. 

Measurement of fatigue is difficult because it is a multifactorial symptom (Cincotta et al., 2016). 

Traditionally, survey-questionnaire methodology has been used to evaluate fatigue for its low cost 

and easy-to-use. Various subjective self-rating methods have been applied within the construction 

industry. For example,  NASA-TASK Load Index (NASA-TLX) estimates workload (Hart, 2006a) 

and has been used to evaluate fatigue during construction masonry work (Mitropoulos & 

Memarian, 2013). Mingzong Zhang et al. (2015) developed a fatigue assessment scale specifically 
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targeting construction workers’ fatigue and confirmed the merits of targeting and simple features. 

Despite the advantages, the further application of survey-questionnaire assessment is hindered by 

its interruption of the work, time-consuming, intrusive nature, and unsuitable for real-time 

monitoring (Umer et al., 2022).  

Recent studies have drawn attentions to wearable sensors for monitoring fatigue by measuring 

physiological parameters such as heart rate, heart rate variability (HRV), breathing rate, jerk 

metrics, and skin temperature (Anwer, Li, Antwi-Afari, Umer, Mehmood, et al., 2021; Anwer et 

al., 2020; Aryal et al., 2017; Umer et al., 2022; Yi et al., 2016; L. Zhang et al., 2019). Specifically, 

Anwer et al. (2020) employed a wearable EQ02 LifeMonitor system for fatigue monitoring. This 

system was designed to measure electrocardiography (ECG) and local skin temperature. Similarly, 

Umer et al. (2022) used EQ02 LifeMonitor system to obtain HRV data for physical exertion 

monitoring. Despite the promising results, there are several limitations. Firstly, such evaluations 

do not allow us to quantify a worker's metabolic profile in real-time with the goal of alleviating 

fatigue-related adverse effects like dehydration or cramping. Secondly, cardiovascular and 

thermoregulatory metrics can be easily affected by other external factors such as lifestyle and non-

modifiable impact, which in turn will affect the accuracy of fatigue evaluations (Fatisson et al., 

2016). Lastly, a hot and humid outdoor environment might induce perspiration heavily; thus, 

wearing an on-body vest EQ02 system might cause irritation and uncomfortable. To mitigate the 

shortcomings of these parameters, this study proposed measuring chemical biomarkers to assess 

fatigue levels of construction rebar benders by using sweat sensors. 

3.2 Literature Review 

Chemical biomarkers have been widely used in the medical and athletic fields to examine health 

issues (Baker, 2019). Also, because of their accuracy and lack of subjectivity in interpretation, 
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current study has highlighted the use of chemical biomarkers as the ideal way for monitoring 

fatigue (Seshadri et al., 2019). Measurements of chemical biomarkers such as electrolytes, analytes, 

and neuropeptides allow quantifying fatigue profiles regarding the severity of physiological 

exhaustion (i.e. dehydration and lack of energy). Specifically, some of the biomarkers could 

directly indicate body states such as hydration/dehydration. A study discovered that modest 

changes in hydration had a negative impact on several symptoms, including vigor, fatigue, 

perception of task difficulty, focus, and headache (Armstrong et al., 2012). As such, physiological 

exhaustion could lead to or trigger fatigue. However, no previous study has applied chemical 

biomarkers in construction domain to address fatigue issues. Accordingly, the authors 

hypothesized that measuring chemical biomarkers could possibly be an innovative fatigue 

monitoring approach. 

These chemical biomarkers can be found in bodily fluids such as saliva, sweat, tears, and blood. 

However, obtaining samples from saliva, tears, and blood is too invasive to adopt in construction 

industry. In contrast, measuring such chemical biomarkers through sweat can offer a non-invasive 

and accessible alternative. Sweat contains numerous rich biomarkers such as electrolyte ions and 

metabolites like lactate, glucose, ammonia, etc. (Seshadri et al., 2019). These biomarkers could 

reflect instant body conditions like dehydration or energy insufficiency, thus, potentially enabling 

instant fluid or nutrient supply recommendations during construction manual tasks. As a result, 

this could efficiently alleviate fatigue related ill-effects. Though sweat biomarkers have not been 

used in construction industry, they have nevertheless been employed to quantify physiological 

‘cost’ of construction activities. Moreover, a harsh outdoor environment like high temperature and 

humidity makes construction manual workers perspire heavily; this enhances the utility of sweat-

based biosensors in the construction field.  
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Among the detectable biomarkers from sweat, sodium, lactate, and glucose were selected. Besides, 

sweat rate was also measured in this study. These four parameters were chosen because: (1) the 

combined sweat rate and sodium levels could reflect hydration states of human bodies (Baker, 

2017; Baker et al., 2020); (2) lactate and glucose are the main energy sources of human bodies 

(Bartlett et al., 1984), thereby, their concentrations might be varied significantly during high 

energy consumption activities (Buono et al., 2010; Karpova et al., 2020). Apparently, it is crucial 

to maintain appropriate hydration, nutrition, and electrolyte balance, particularly in physically 

demanding tasks such as construction manual work. For example, the current studies (Baker et al., 

2020; Cheuvront & Kenefick, 2014; Hamouti et al., 2014; Nuccio et al., 2017; Wittbrodt & 

Millard-Stafford, 2018) found that body fluid and electrolyte deficiencies brought on by sweat loss 

from exertion and heat stress increase cardiovascular strain and may impair physical and cognitive 

functions. The low level of blood sugar (hypoglycemia), indicated by glucose concentration, can 

be dangerous during construction tasks as it can cause symptoms such as confusion, dizziness, and 

weakness (Cryer, 1993; Ivy, 1999).  

Sodium (Na+) ions are the most abundant electrolytes within sweat and play a crucial role in 

stimulating the hydration of the human body (Baker, 2017; Baker et al., 2016). The analysis of 

sweat rate and sweat electrolytes (mainly sodium) could contribute essential facts about human 

bodies' dehydration/euhydration/hyperhydration states. Studies have shown that dehydration 

appears to have a detrimental effect on physical and cognitive performances (Cian et al., 2000; 

Montain & Tharion, 2010), leading to transitory subjective state, such as fatigue (Fadda et al., 

2012). Specifically, even minor water losses of 2% of body weight can have a negative impact on 

body thermoregulation and physical activity capacity (Maughan, 2003), fatigue levels, mental 

concentration and alertness (Shirreffs et al., 2004), and cognitive function (N. Zhang et al., 2019). 
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Dehydration is induced by heat exposure, intensive physical activities or a combination of these 

conditions like construction works (Fadda et al., 2012). As such, it could occur more often in the 

summer, especially for individuals who perform highly demanding physical activities in a hot and 

humid environment. As it did in the case of construction rebar benders whose work entails 

intensely lengthy manual labor in a harsh outdoor environment. Accordingly, this study proposed 

using advanced sweat-based biosensors to measure sweat rate and sweat sodium level for fatigue 

monitoring of construction rebar benders. 

To manage fatigue levels during physical activities, it is also crucial to measure lactate and glucose 

(Seshadri et al., 2019), which are the major energy sources to support bodies. Both originate from 

glycogen, one of the energy stored forms, made from carbohydrates in the diet and stored in the 

muscles/livers. When the body requires energy, glycogen is broken down into glucose and lactate, 

and the circulatory system distributes them as general fuels throughout the body. Though lactate 

and glucose are both general fuels,  Brook's studies concluded that lactate is the primary fuel source 

of human bodies (Brooks, 2002, 2018; Brooks, 2020). Similarly, a study found that sport drinks 

combining lactate, glucose, and fructose were superior to that only containing glucose and fructose, 

for adding lactate allows athletes to benefit from the various ways their bodies burn fuel (Emhoff 

et al., 2013). And lactate enters the bloodstream twice as quickly as glucose and peaks in just 15 

minutes  instead of 30 minutes after consumption (Emhoff et al., 2013). However, some studies 

argued that glucose is our body's primary source of energy (Maher et al., 1994; Navale & Paranjape, 

2016). For now, the answer to this scientific debate is still open. This study aimed to detect fatigue; 

therefore, a combination measurement of lactate and glucose concentrations would be enough to 

satisfy the primary goal. Owing to their energy supply roles, intensive physical activities could 

lead to variations in their concentrations; this might provide some support for using lactate and 



51 
 

glucose to evaluate fatigue. Furthermore, significant statistical correlations between sweat glucose 

and blood glucose were found (Moyer et al., 2012; Olarte et al., 2013; Wang, 2008), as well as 

sweat lactate and blood lactate (Karpova et al., 2020). Taken together, a solid theoretical 

foundation is constructed to support the exploration of the usefulness of sweat-based lactate and 

glucose in the study. 

Fig. 3.1 summarizes the methodologies adopted in this study. Sweat-based biosensors were 

employed to measure sweat rate, sodium, lactate, and glucose concentrations for fatigue level 

modelling. Two subjective assessments were used to evaluate fatigue, Borg Rating of Perceived 

Exertion 6-20 Scale (Borg 6-20) and Fatigue Assessment Scale (FAS). Among different 

populations, the Borg 6-20 is widely used in various exercise regimens to evaluate physical 

demands and has been proven to be a reliable tool (Carvalho et al., 2009; Day et al., 2004). Besides, 

as the goal of this study was to evaluate fatigue by monitoring physiological exhaustion (i.e., 

shortages of water and food within the body), the subjective fatigue tool, Fatigue Assessment Scale 

(Michielsen et al., 2003), was utilized to determine the exhausting level for the manual tasks. 

Machine Learning techniques, more precisely, supervised machine learning techniques, including 

Decision Tree, Random Forest, Support Vector Machine, K-Nearest Neighbor, and Multilayer 

Perceptron, were employed to conduct data analysis, thus, modelling fatigue.  
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Fig. 3.1. The overall flowchart 

3.3 Methodology 

The overall research process consists of four steps (Fig. 3.1). The first step is to conduct the manual 

rebar bending experiments designed by the authors to collect raw data from the sensors and the 

survey questionnaires. The second step is pre-processing the collected data to generate the dataset. 

The third step is constructing classification models adopted to distinguish four fatigue states (low 

fatigue, medium fatigue, high fatigue, and very high fatigue). The last step is to select the optimal 

fatigue classification model based on the computational results of the evaluation metrics on the 

test set.  

3.3.1 Participants 

Twenty-eight health participants who are university students and staff were recruited to conduct a 

simulated rebar bending task. Their demographic information is displayed in Table 3.1. Individuals 

were asked to abstain from tea/coffee and alcohol before testing within 48 hours. They were also 

asked to get eight hours sleep before the test. The absence of musculoskeletal disorders in the 

previous 12 months and no history of cardio- or pulmonary ailments were requirements for 

participation in the experiments. The research protocol received approval from the university's 

ethical committee (Reference number: HSEARS20200922003) in accordance with the Declaration 

of Helsinki. Prior to data collection, participants were given written informed consent. 

Table 3.1. Demographic Information of participants 
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 Age (years) Height (cm) Weight (kg) BMI (kg/m2) 
Mean 32.6 ± 3.46 177 ± 2.84 78 ± 3.67  24.9 ± 0.736  
Range 13 (28-41) 8 (173-181) 13 (71-84) 2.79 (23.7-26.5) 
Note: ± indicates standard deviation; BMI = body mass index 

 

3.3.2 Wearable Sweat-based biosensors 

The prevalent methodologies that are used to detect chemical biomarkers from sweat are 

colorimetric and electrochemical technologies, owing to their noninvasive and low-cost features 

(Kaya et al., 2019). Colorimetric methods apply the change of colour to indicate the concentration 

of specific biomarkers, whereas electrochemical methods enable converting the biological 

information to electronic signals for measuring the biomarkers’ concentrations. This study 

employed Gx sweat patch (Baker et al., 2020; BIOSYSTEMS, 2022), a colorimetric technology-

based biosensor, to measure sweat rate and sodium level (Fig. 3.2 (a)). Meanwhile, an 

electrochemical technology based sweat biosensor (Huang et al., 2021) was used to measure lactate 

and glucose concentrations (Fig. 3.2 (b)).  

 
Fig. 3.2. Sweat sensors: (a) Gx sweat patch; (b) the sweat-based lactate and glucose biosensors 

Gx sweat patch for measuring sweat rate and sodium 
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Gx Sweat Patch is a skin-like, wearable patch pairs with an easy-to-use software app to provide 

real time monitoring on sweat rate and sodium level (Fig. 3.2 (a)). This device could optimize 

hydrate and refuel personalized recommendations for users. Two microchannels were embedded 

capturing sweat during activities, and colorimetric feedbacks were used to provide real-time 

information. This sweat patch used microfluidic channels to collect sweat (Baker et al., 2020). A 

developed algorithms as part of a software application Gx IOS app empowering users to track their 

real time sweat profiles (Fig. 3.2 (a)). The output of sweat sodium concentration is a range region 

rather than an exact number. Therefore, in this study  the median value of the sodium concentration 

was calculated for the data analysis. 

The sweat-based biosensors for measuring lactate and glucose 

In Fig. 3.2 (b), a developed sweat-based biosensor was employed to measure lactate and glucose 

concentrations (Huang et al., 2021). This device owns two novel features: 1) epidermal flexible 

self-powered biosensor; 2) microfluidic channels for sweat collection. The sweat biosensor 

enabled enzymatic reactions occurring that converts biochemical signals (lactate and glucose 

concentrations) to electrical signals (voltages). Meanwhile, microfluidic design realized situ 

measurement in real-time.  

Fig. 3.3 (a) shows a schematic of a stretchy epidermal sweat sensor that is self-powered and made 

up of four self-power biosensors and a microfluidics system. The design of biosensors uses a 

multilayer stacking layout. The microfluidic sweat collection layer that is used to collect sweat, 

which is defined by a thin-soft polydimethylsiloxane (PDMS) layer (170 µm) that acts as the 

substrate.  Stretchable electrodes and connecting cables are defined by Au electrodes. Specifically, 

the catalyst layer in the biosensors contains enzymes and graphene. It catalyzes the reactions 

between lactate, glucose, and oxygen to produce electricity, shown in Fig. 3.3 (b). On top of the 
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Au circuits, a further layer of a 2 µm thick polyimide (PI) acts as an encapsulation to avoid short 

circuits. Another PDMS layer is added on top for waterproofing.  

The design of the enzymatic biofuel cell is crucial for establishing self-powering behaviors (Huang 

et al., 2021). Fig. 3.3 (b) displays the fundamental ideas and conceptual representations of the 

biosensors based on biofuel cells. In the bioanode, glucose oxidase (gOx) oxidizes glucose into 

gluconic acid whereas lactate oxidase (LOx) converts lactate from sweat into pyruvate. The 

oxidation reaction releases electrons concurrently. Oxygen is reduced by laccase (Lac) into water 

(H2O) in the biocathode, where electrons are obtained. As a result, there is a significant link 

between the open-circuit potential values of enzymatic biofuel cells and the levels of lactate or 

glucose in sweat (Fig. 3.2 (b)). 

 
(a)                                                             (b) 

Fig. 3.3. Schematic illustrations of (a) a sweat sensor for measuring lactate and glucose, (b) the 
mechanism of self-powered biofuel cell 

3.3.3 Subjective Assessments 

Two subjective fatigue assessments were employed, Borg 6-20 and Fatigue Assessment Scale 

(FAS). Borg 6-20 was used as the output feature whereas FAS was for the qualitative input feature. 

The use of subjective fatigue perception instruments is central to qualitative approaches.  

Table 3.2 shows the classification of fatigue level based on Borg 6-20. It is a self-reported rating 

scale that measures perceived exertion and fatigue during exercise or physical activity (De Souza 
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et al., 2023). The Borg 6-20 scale is a modified version of the original Borg Rating of Perceived 

Exertion scale (Borg, 1982), which ranges from 0 to 10. The Borg 6-20 was developed to capture 

better the perceived exertion of individuals performing more intense exercise (Aryal et al., 2017; 

De Souza et al., 2023). It is a scale ranging from 6 to 20, with higher numbers indicating greater 

perceived work or effort. And it consists of a series of words and numbers that describe different 

levels of exertion or fatigue, such as in description from “sitting and resting” to “maximal 

exhaustion” (Table 3.2). It has acquired general acceptance as a trustworthy instrument for 

monitoring the combination of physiological, psychological, and environmental elements that 

enable a person to judge how simple or difficult a task is and how exhausted they feel while 

accomplishing the tasks (Eston, 2012). Verbal anchors were now included in Borg 6-20 to guide 

participants, as indicated in Table 3.2. As such, participants could judge their level of effort in 

accordance with the descriptions suggested by the Centers for Disease Control and Prevention 

(CDC) (Perceived Exertion (Borg Rating of Perceived Exertion Scale), 2022). 

To use the Borg 6-20, individuals rated their perceived exertion during the experiment on a scale 

of 6 to 20, with 6 representing no exertion/fatigue at all and 20 representing maximal 

exertion/fatigue. The scale is subjective and based on the individual's perception of their own effort, 

rather than objective measures such as heart rate. The authors used four classifications for fatigue 

in order to simplify the analysis and interpretation of their results (Aryal et al., 2017). These 

classifications were based on the participants' Borg 6-20 scores, as follows: (1) low fatigue: Borg 

6-20 score of 6-11; (2) medium fatigue: Borg 6-20 score of 12-14; (3) high fatigue: Borg 6-20 

score of 15-16; (4) very high fatigue: Borg 6-20 score of 17-20. 

Fatigue Assessment Scale, proposed by Michielsen et al. (2003), was employed to assess 

comprehensive fatigue (i.e. combined fatigue of physical and mental). FAS is a method for 
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systematically assessing fatigue that consists of 10 items,  each with a score ranging from 1 (no 

fatigue) to 5 (severe fatigue). The items ask about different aspects of fatigue, such as physical and 

mental fatigue, motivation, and activity level. Questions related to the evaluation of physical and 

mental exhaustion were included in the FAS questionnaire. In order to achieve the goal of detecting 

fatigue during a continuous repetitive task, FAS was modified by altering the 5 selection scales to 

the degree of with the 10 items rather than the frequency. In this case, FAS was employed as the 

qualitative input feature to model fatigue. 

Table 3.2. Borg 6-20 description along with verbal anchors and classification (Aryal et al., 2017) 
Borg 6-20 Level of Fatigue Verbal anchors Classification 

6 sitting and resting I am not tired; this is similar to resting Low 

7 Very, very light 

8  I am not tired; this is similar to walking 

9 Very light 

10  

11 Fairly light I feel fine to continue 

12  Medium 

13 Somewhat hard I am getting tired, but I can continue 

14  

15 Hard High 

16  

17 Very hard I am exhaustive; I have to push myself to 
continue 

Very High 

18  

19 Exhaustive hard I am extremely exhaustive; This is one of the 
hardest things I have done 

20 Maximal 
Exhaustion 
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3.3.4 Procedure 

The experiment consisted of a rebar bending task (Fig. 3.4) for a duration of the 1-h bar bending 

and fixing activities which was preceded by 10-min baseline physiological parameters 

measurements while sitting. The baseline physiological data, including sweat rate, sodium 

concentration, lactate concentration, and glucose concentration, were measured along with the 

subjective fatigue levels determined by Borg 6-20 and FAS. Each participant was instructed to 

carry out rebar bending tasks for one hour following the baseline examinations (Fig. 3.4). 

Throughout the one-hour work, participants were advised to wear the Gx sweat patches at forearms 

and the sweat-based biosensors attaching to foreheads. Measurements of sweat biomarkers and 

subjective evaluations were taken every 15 minutes (i.e., at 15, 30, 45, and 60 min). At these 

measurement points, sodium and sweat rate were recorded using a mobile phone App that 

displayed the corresponding numerical values (Fig. 3.2a). Also, lactate and glucose sweat 

concentration were recorded by connecting the sweat sensor (Huang et al., 2021) to a personal 

computer to read out potentials, and then based on the linear relationship between potentials and 

lactate/glucose concentration (Fig. 3.2b), outputting the results. A total of 28 subjects participated 

in the experiment, and the physiological data and the FAS score were recorded when these subjects 

used the Borg 6-20 to report their fatigue. FAS score and four physiological data, such as sweat 

rate, sodium concentration, lactate concentration, and glucose concentration, were normalized and 

then utilized as input features. Fatigue levels of the subjects, including low, medium, high, and 

very high, obtained using the Borg 6-20, were manually labeled as 0, 1, 2, and 3 and used as the 

output. Each subject was assessed five times for fatigue levels using Borg 6-20, resulting in 140 

sets of data generated. 
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Fig. 3.4. Experiment pictures 

3.3.5 Data pre-processing  

Before the captured data is fed into the fatigue classification model for training and prediction, the 

input features need to be pre-processed. Regarding the source of the input features, the Gx sweat 

patch was placed on the subject’s forearm (Fig. 3.2 (a)) whereas the invented instrument was 

attached to the subject's forehead (Fig. 3.2 (b)). These devices were adopted to measure some key 

indicators associated with human sweat. A description of the selected input features is provided in 

Table 3.3. Note that these features were collected from each subject during a simulated rebar 

bending task. 

Table 3.3. Input features 
No. Feature Description Units of data 
1 Sweat rate Indicator of dehydration (Baker et al., 2020) ml/h 
2 Sodium Concentration Indicator of dehydration (Baker, 2017) mM 
3 Glucose Concentration Energy source (Wang, 2008) µM 
4 Lactate Concentration Energy source (Brooks et al., 2022) mM 
5 FAS score Fatigue Level (Michielsen et al., 2003) - 
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Another significant point to be considered is that input features have different dimensions and 

orders of magnitude due to their different nature. For example, sweat rate is usually around several 

hundred ml/h, while sweat glucose does not exceed a maximum of 100 µM. If the original input 

features are directly used for analysis without considering the fact of existent different dynamic 

characteristics of these input features, the role of features with higher values in fatigue 

classification will be highlighted while the role of features with relatively lower values will be 

weakened. Therefore, to ensure the reliability of the results, the original values of input features 

need to be normalized. According to the Equation (1) (Fardhosseini et al., 2020), the values of all 

input features are mapped to [0, 1]. 

 * min

max min

x xx
x x

−
=

−  (1) 

where x  and 
*x  represent the original and normalized values of the input features, respectively. 

maxx  is the maximum value of an input feature sequence, while minx  is the minimum value of this 

input feature sequence. After the normalized preprocessing operation of the input features, the 

convergence speed of the fatigue classification algorithm can be accelerated, and the prediction 

performance of the algorithm is also expected to be improved. 

Model selection and validation 

For processing physiological data capturing from experiments, one of the most prevalent and 

effective methods is to use machine learning algorithms for analysis in order to accurately identify 

the physiological and psychological fatigue state of a worker. Various machine learning algorithms, 

such as decision tree (DT), random forest (RF), support vector machine (SVM), etc., have been 

applied in workers' fatigue classification (Elshafei et al., 2022; Fardhosseini et al., 2020; K et al., 
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2022; Marotta et al., 2021; Pinto-Bernal et al., 2021; Rahman et al., 2021; Varandas et al., 2022). 

In the machine learning domain, open-source packages have boosted, researchers can easily 

choose from a wide range of off-the-shelf implementations of machine learning algorithms to 

establish predictive models for complex data that meet the needs. This study compared five popular 

supervised machine learning classifiers that have shown promising results in detecting fatigue, 

including Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest 

Neighbor (KNN), and Multilayer Perceptron (MLP). The open-source python library "scikit-learn" 

(Pedregosa et al., 2011) is adopted to train, validate, and test these classifiers, thereby, extracting 

the model with the best prediction performance of workers' fatigue. The hyperparameters of each 

algorithm are summarized in Table 3.4. Readers are referred to (Han et al., 2011; James et al., 

2013) for a detailed introduction to the mentioned classifiers. 

Table 3.4. Hyperparameters of supervised machine learning algorithms 
Classifiers Hyperparameters Hyperparameters Description 

Decision Tree (DT) max_depth This argument represents the maximum 

depth of a tree. 

criterion Function used to measure the quality of a 

split. 

max_features The number of features to consider when 

computing the best split. 

min_samples_leaf The minimum number of samples 

required to be at a leaf node. 

Random Forest (RF) n_estimators This argument limits the number of 

decision trees in random forests. 

min_samples_split The minimum number of data points 

placed in a node before the node is split. 

min_samples_leaf The minimum number of data points 

allowed in a leaf node. 

max_features The maximum number of features 
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considered for splitting a node. 

max_depth The maximum number of levels in each 

decision tree. 

bootstrap Method for sampling data points. 

Support Vector Machine 

(SVM) 

C Penalty parameter for regularization. 

kernel ‘linear’, ‘poly’, ‘sigmoid’, or ‘rbf’. 

K-Nearest Neighbor (KNN) metric 'euclidean', 'manhattan', 'minkowski', or 

'chebyshev'. 

n_neighbors Number of neighbors to use. 

weights Function to weight the neighbors' votes. 

Multilayer Perceptron (MLP) activation Activation function for the hidden layer. 

 

alpha Strength of the L2 regularization term. 

hidden_layer_sizes Number of hidden layers and number of 

units for each hidden layer. 

learning_rate Learning rate schedule for weight 

updates. 

solver The solver for weight optimization. 

 

It should be noted that in this study, the input and output are constant. More specifically, there are 

five input features, including sweat rate, sweat sodium, sweat lactate, sweat glucose, and FAS. 

And the number of output features is set to 1, which represents the worker's fatigue level. For each 

algorithm, as illustrated in Table 3.4, the grid search method with K-fold cross-validation was 

employed to search and validate the optimal set of hyperparameters as shown in Fig. 3.5. The data 

training steps are described in Table 3.5.  

Table 3.5. A detailed description of each step 
Step 1 Shuffle the entire data set and then split it into the training set and the test set according to 

the ratio of 8:2. 

Step 2 Determine the hyperparameters of each algorithm and define the grid search space. 
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Step 3 Divide the training set into k subsets, one of which is kept as validation data to evaluate the 

prediction performance of each algorithm under different combinations of hyperparameters, 

and the remaining k-1 subsets are utilized as training data for the training of the algorithm. 

Step 4 Repeat Step 3 to train and validate each algorithm for k times until all subsets have been 

used as the validation data. 

Step 5 Repeat the above steps until all hyperparameter combinations of the algorithms are 

traversed. 

Step 6 Extract the hyperparameter combination with the highest score of each algorithm in k-time 

training and validation, which will also be adopted to evaluate the fatigue classification 

performance under this optimal hyperparameter combination based on the test set. 

 

 

 
Fig. 3.5. Steps of the grid search method with K-fold cross-validation 

 

Data Analysis 

To evaluate the performance of machine learning algorithms with optimal hyperparameter 

combinations for workers’ fatigue detection and classification, several evaluation metrics should 

be adopted to quantitatively assess the algorithms. Obviously, the prediction of workers' fatigue is 

a typical multi-classification problem. Therefore, Accuracy, which presents the percentage of 
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correct classifications made by a given algorithm, was used to evaluate the performance of fatigue 

classification. For multiple fatigue level classes 𝐶𝐶𝑖𝑖, Accuracy can be defined as follows. 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
1
𝑛𝑛
�

𝑇𝑇𝑇𝑇𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖
𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (Varandas et al., 2022) 

where n is the number of the fatigue level categories 𝐶𝐶𝑖𝑖. 𝑇𝑇𝑇𝑇𝑖𝑖 represents the number of samples 

correctly classified as 𝐶𝐶𝑖𝑖, and 𝐹𝐹𝐹𝐹𝑖𝑖 is the number of samples that are incorrectly classified as 𝐶𝐶𝑖𝑖. 

𝐹𝐹𝐹𝐹𝑖𝑖  denotes the number of samples of 𝐶𝐶𝑖𝑖  that are mistaken for other classes. 𝑇𝑇𝑇𝑇𝑖𝑖  refers to the 

number of samples that are correctly classified as categories that are not 𝐶𝐶𝑖𝑖 . In addition, the 

confusion matrix is employed to visualize the difference between the classification results of the 

algorithms and the ground-truth. The confusion matrix is a 𝑛𝑛 × 𝑛𝑛 matrix, each column of which 

denotes the class of the fatigue level predicted by the algorithm, while each row represents the 

ground-truth of the fatigue level. Notably, the elements on the diagonal from the upper left to the 

lower right of the confusion matrix are the results of correct classification. 

3.4 Results 

3.4.1 Experiment Data Analysis 

A detailed statistical description of each variable is shown in Table 3.6. From the starting point 

through the completion of the task, the mean values of sweat rate, sodium concentration, and 

lactate concentration all rose. The mean glucose concentration levels, on the other hand, fell from 

the starting point through the task's completion. And the means of the two subjective evaluations 

show growing trends from the starting point to the task's completion. 

Table 3.6. Descriptive statistics 
Variables (N=28) Timeline Mean SD Range (Min – Max) 
 
Sweat rate (ml/h) 

Baseline 0 0 0 
At 30 min 569 110 334 (378 – 712) 
End of task 801 114 391 (594 – 985) 
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Sodium (mM) 

Baseline 0 0 0 
At 30 min 32.5 12.0 45.0 (11.6 – 72.3) 
End of task 80.4 10.7 37.8 (59.7 – 97.5) 

 
Glucose (µM) 

Baseline 70.6 9.4 36.4 (52.2 – 88.6) 
At 30 min 46.7 9.49 41.9 (30.4 – 72.3) 
End of task 24.8 3.73 11.1 (19.4 – 30.5) 

 
Lactate (mM) 

Baseline 1.97 0.39 1.73 (1.05 – 2.78) 
At 30 min 20.9 5.08 18.9 (11.6 – 30.5) 
End of task 31.5 6.91 26.2 (20.5 – 46.7) 

 
FAS 

Baseline 10.5 0.51 1 (10 – 11) 
At 30 min 28.3 3.32 14 (21 – 35) 
End of task 41.0 3.39 16 (31 – 47)  

 
Borg 6-20 

Baseline 6 0 0 (6 – 6) 
At 30 min 13.7 1.68 8 (10 – 18) 
End of task 18.1 1.20 5 (15 – 20) 

 

During the simulated rebar work, the values of sweat rate, sodium concentration, glucose 

concentration, and lactate concentration are shown in Fig. 3.6 along with timelines. With task 

completion, there were noticeable rising trends in sweat rate, sodium, and lactate concentrations. 

Contrarily, as the task progressed, the level of glucose fell.  
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Fig. 3.6. Figures of Sweat rate, Sodium concentration, Glucose concentration and Lactate concentration 

3.4.2 Fatigue Model Analysis 

Classification assessment used five variants of feature-sets to model fatigue level including (1) 

sweat rate, (2) sodium concentration, (3) lactate concentration, (4) glucose concentration, and (5) 

FAS. A total of 140 sets of data were collected through the experiments described in Section 2, 
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which were then split into the training set and the test set in the ratio of 8:2. Table 3.7 summarizes 

the sample distribution of the four fatigue states in the training and the test set. It can be seen from 

Table 3.7 that the low-fatigue state has the largest number of samples in both the training and the 

test set, accounting for 33.04% and 57.14%, respectively. However, the difference in the number 

of samples representing the remaining three fatigue states is not significant. Firstly, the optimal 

sets of hyperparameters for the above-mentioned five classifiers were obtained using the training 

set based on the grid search method with 5-fold cross-validation (k = 5). Second, on the basis of 

the gained optimal hyperparameter set of each algorithm, the test set was employed to calculate 

the Accuracy by comparing the predicted results with the ground-truth, and thus the best algorithm 

for predicting the workers’ fatigue level with the highest Accuracy can be finally obtained.  

Table 3.7. The sample distribution of the 4 fatigue states according to the training and the test set 

Fatigue level 
Training set Test set 
Number Percentage Number Percentage 

Low fatigue 37 33.04% 16 57.14% 
Medium fatigue 22 19.64% 7 25% 
High fatigue 23 20.54% 2 7.14% 
Very high fatigue 30 26.78% 3 10.72% 
Total 112 100% 28 100% 

 

Table 3.8 reports the optimal hyperparameter sets and their Accuracy for the implemented 5 

classifiers, with the best result highlighted in bold. As can be seen from Table 8, the classification 

Accuracy obtained using the features such as sodium, and lactate, ranged from 71.43% (SVM) to 

96.43% (KNN). Each algorithm has good performance in the classification of workers’ fatigue 

level, especially KNN with the Accuracy reaching 96.43%, which can effectively and accurately 

classify the fatigue states of workers. Therefore, the KNN algorithm was selected to detect and 

classify the workers’ fatigue level. 
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Table 3.8. Performance of the implemented 5 classifiers with their optimal hyperparameter sets 
and Accuracy (the bold value shows the best Accuracy) 

Algorithms Hyperparameters Accuracy 
Decision Tree (DT) max_depth: 3 

max_features: 6 
min_samples_leaf: 2 

82.14% 

Random Forest (RF) n_estimators: 20 
min_samples_split: 25 
min_samples_leaf: 20 
max_features: ‘auto’ 
max_depth: 10 
bootstrap: False 

92.86% 

Support Vector Machine (SVM) C: 10 
kernel: ‘rbf’ 

82.14% 

K-Nearest Neighbor (KNN) metric: ‘euclidean’ 
n_neighbors: 15 
weights: ‘uniform’ 

96.43% 

Multilayer Perceptron (MLP) activation: ‘tanh’ 
alpha: 0.0001 
hidden_layer_sizes: (10, 30, 10) 
learning_rate: ‘constant’ 
solver: ‘adam’ 

71.43% 

 

Fig. 3.7 shows the confusion matrix obtained from the test set based on the best classifier (KNN) 

through the grid search method with 5-fold cross-validation. In the confusion matrix, the ground-

truths are listed along the x-axis and the predictions of workers' fatigue levels are listed along the 

y-axis. Additionally, the numbers on the diagonal of the confusion matrix represent the number of 

correct classifications for each class. It can be intuitively seen from the confusion matrix that KNN 

algorithm is effective and accurate in the classification of workers' fatigue states. 
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Fig. 3.7. Confusion matrix for KNN algorithm with five input features 

3.5 Discussion 

Despite the previous study linking the sweat factor to fatigue of construction workers (Aryal et al., 

2017), further exploration is limited by the lack of devices. The is the first in the construction 

industry to quantify sweat profiles to evaluate fatigue using sweat-based biosensors. Two types of 

features were used to determine and classify the four levels of fatigue: (1) quantitative sweat 

methodological approaches using the sweat rate, sodium concentration, lactate concentration, and 

glucose concentration; and (2) qualitative methodologies using the Fatigue Assessment Scale and 

Borg 6-20. The results of this study highlight that the analysis of sweat-based biomarkers using 

machine learning algorithms can be a feasible methodology to model physiological exhaustion for 

evaluating fatigue levels of construction rebar workers.  



69 
 

One of the most apparent findings to emerge from Table 3.6 and Fig. 3.6 is that sweat rate and 

sodium concentration increased as the task processing and correlated positively with subjective 

assessments of FAS and Borg 6-20. According to a variety of studies in various domains (Baker, 

2017; Baker et al., 2020), the combined result of sweat rate and sodium could reflect dehydration 

level, which has a major impact on human physical and cognitive function and is therefore very 

important to the onset of fatigue (Aphamis et al., 2019; Armstrong et al., 2012; Cian et al., 2000). 

Similarly, Table 3.6 and Fig. 3.6 also show that sweat lactate stepped up; this confirms that lactate 

was created productively during physical demanding work such as rebar tasks. Glucose, on the 

contrary, appeared to decrease. One explanation for this could be that there was a shortage of 

plasma glucose in the body, which would reflect a reduction in sweat glucose, and this might either 

cause or exacerbate fatigue (Coyle & Montain, 1992). The findings of rising lactate and falling 

glucose levels during demanding physical tasks not only advance knowledge about the 

development of fatigue but they may also back up the hypothesis that, given its continuous rising 

pattern, lactate is primarily for the energy support of human bodies (Brooks, 2002, 2018; Brooks, 

2020).  

In Table 3.7, the dataset distribution indicates that the significant class difference in the training 

set was 13.4%, which is considered a modest imbalance for data analysis and computational 

modelling (Krawczyk, 2016; Skiena, 2017). According to Fernández et al. (2018), minor 

imbalances are considered typical problems of standard categorization predictive models. 

Apparently, in Table 3.8, all the five selected algorithms achieved good performances in the 

classification of workers’ fatigue levels. KNN algorithm is the most desirable one, for it had the 

highest classification accuracy 96.43%. Similarly, the confusion matrix (Fig. 3.7) indicates that 

the prediction fatigue model through KNN algorithm was effective and accurate. 
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Sweat biomarkers have a number of advantages in comparison to heart rate, which is a prevalent 

physiological indicator of fatigue (Anwer et al., 2020; Umer et al., 2022; Yi et al., 2016). First, 

monitoring these physiological chemical biomarkers is more desirable and feasible for improving 

workers’ comfort. Apparently, throughout the experiment, it was seen that the participants were 

heavily perspiring (Aryal et al., 2017). In this circumstance, on-body heart rate monitoring devices 

like the vest EQ02 Lifemonitor may induce a significant strain for users. On the other hand, the 

flexible sensor on the forehead and the small sweat patch on the forearm are more comfortable to 

wear and provide superior performance. Therefore, adopting sweat-based biosensors is more 

valuable and appropriate for challenging outdoor working scenarios such as construction. Second, 

heart rate parameter is more relevant to managing the intensity of the activities rather than 

controlling the individual’s fatigue. Notably, it does not inversely correlate with a person’s level 

of fatigue (Cunha et al., 2010; Pinto-Bernal et al., 2021). For example, if the person is exercising 

at a steady speed, the heart rate might stay consistent. Still, the person might be feeling a level of 

exhaustion or fatigue that is not reflected in the measurement. Third, the justification for not 

addressing heart rate was the knowledge that it depends on various factors, including gender, age, 

and the physical health and comorbidities of the individual (Pinto-Bernal et al., 2021). In contrast, 

chemical biomarkers from sweat may have a universal standard for each individual, similar to 

those from blood. For example, diagnosing at a hospital by measuring biomarkers from blood is 

the same standard criterion for everyone. The same may be true for biomarkers from sweat, for 

they originate from plasma-derived biomarkers (Seshadri et al., 2019). Last, the result of these 

selected sweat biomarkers not only could be used to assess fatigue but also provide a possibility 

to enable a real-time fluid/nutriment recommendation which could reduce fatigue's adverse effects. 

As such, this might be the first potential method that simultaneously evaluates and lowers fatigue.  
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Despite the promising results, several limitations need to be noted. First, due to the limited funding, 

participants are students and university staff, whose physical abilities may not be as well-honed as 

those of construction workers. For example, someone with more work experience in a physically 

demanding job may have a higher sweat rate than someone who is less/no experienced. Besides, 

this study was conducted in a simulated scenario which might not replicate construction rebar tasks. 

A future study should confirm these findings on real construction sites with a large number of 

workers performing various tasks over an extended time. This kind of extensive, long-term 

research may offer reliable training data for physiological depletion of construction workers to be 

monitored and modelled on-site. Second, more variables, such as temperature and respiration rate, 

might also contribute to the development of physiological fatigue states, which could increase the 

validity and accuracy of the assessment model. Last, although the commercial product could 

provide sodium levels, its primary mechanism of colorimetric sensing device limits its usefulness 

since there is no exact number output but only a range of sodium concentration and the degree of 

levels (low, medium, high). As such, the authors are applying electrochemical biosensors to detect 

or measure the amounts of electrolytes like sodium and chloride in the upcoming investigation; 

this could provide more precise results. 

3.6 Conclusion 

For the first time, sweat-based biosensors were used to assess fatigue based on physiological 

exhaustion. Sweat rate, sodium concentration, glucose concentration, and lactate concentration 

were used as sweat-based features to classify the fatigue level model employing supervised 

machine learning techniques. The results highlight that KNN algorithm achieved the best accuracy. 

Also, the study substantiates the use of sweat biomarkers to predict fatigue level. These findings 

have significant implications for the construction industry. They suggested sweat-based 
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biomarkers could predict fatigue levels and potentially identify when workers need additional fluid 

or nutrient intake to maintain optimal physical performance. Additionally, this study highlights the 

importance of staying hydrated, eating well, and maintaining electrolyte balance during 

construction manual labor tasks. Future research could focus on developing sweat-based wireless 

sensors that can measure metabolites like glucose or lactate. Given that the amount of lactate in 

sweat is higher than that of glucose, we have decided to develop a sweat-based lactate sensor 

system, which comprises a wireless transmission device and an app display on a mobile phone. 

And the fabrication process of the sweat-based lactate sensor would be demonstrated in the next 

chapter. 
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CHAPTER 4 FABRIC OECT-BASED SWEAT LACTATE 

SENSOR  

This chapter demonstrates the methodology for developing organic electrochemical transistor 

(OECT) based sweat lactate sensors. Thanks to the introduction of a graphene oxidase 

polyetherimide (GO-PEI) membrane on the gate electrode of an OECT biosensor, the device 

achieves high selectivity. Moreover, the device enables in-situ monitoring of lactate levels via a 

wireless device and embedded mobile phone application.  

4.1 Introduction 

One of the richest and most readily available source of biochemical information to detect fatigue 

is human sweat (Jadoon et al., 2015). A comprehensive analysis of physiological health condition 

may be attained by harvesting sweat from a body. Sweat from humans is highly promising biofluid 

for non-invasive biosensing. It is distributed widely throughout the body with over 100 glands per 

square centimeter (Sonner et al., 2015). And it contains abundant biochemical compounds such as 

sodium, chlorine, potassium, lactate, calcium, glucose, and various neuropeptides and cytokines 

(Heikenfeld, 2016). The presence of these biochemical compounds in sweat has the potential to 

provide valuable insights into individuals' health and level of fatigue (Koh et al., 2016). Out of all 

the detectable biomarkers present in sweat, lactate is considered the most suitable for assessing 

fatigue among construction workers. This is due to its high concentration levels in sweat and its 

essential roles in supporting body functions (Brooks, 2018; Brooks et al., 2022; Derbyshire et al., 

2012). Specifically, it is a major energy resource in supporting the functional operations of muscles 

and brain during high energy-consuming activities, both physically and mentally (Brooks, 2020; 

Brooks et al., 2022; Gallagher et al., 2009; van Hall et al., 2009a). As it did in the case of 
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construction workers who are often required to perform tasks that are physically and mentally 

demanding, such as operating heavy machinery and working at heights, they may likely to 

experience an increase in their sweat lactate levels as becoming fatigued. Therefore, by monitoring 

sweat lactate levels in real-time, wearable biosensors can provide a non-invasive assessment of 

fatigue among construction workers, allowing for timely interventions and potential prevention of 

accidents or injuries caused by fatigue-related errors. 

Research studies have demonstrated the potential of utilizing various types of sensors for detecting 

biomarkers in sweat (Buono et al., 2010; Onur  Parlak et al., 2018; Pierre et al., 2019). Baker et al. 

(2020) developed a sweat sensor that uses a colorimetric technique to measure sweat rate and 

electrolyte losses, which allows for real-time personalized fluid-electrolyte intake 

recommendations. However, this technique is limited in terms of sensitivity, selectivity, and 

accuracy, which hampers its usefulness in the wearable sensor industry. Therefore, some 

researchers have explored electrochemical techniques to fabricate wearable sweat sensor, realizing 

real-time repetitive and more accurate measurements of ion concentration in human sweat (Chen 

et al., 2020; Keene et al., 2019; Y. Kim et al., 2018). Electrochemical devise  directly converts 

biological/chemical signals into electrical signals without labelling process, thereby, plays a 

dominant position in manufacturing sweat-based sensor (Windmiller & Wang, 2013). Specifically, 

regarding transducing chemical signals, the electrochemical techniques can be classified as 

transistors, amperometric and voltametric sensors (Kaya et al., 2019).  

Among the above transducers, organic electrochemical transistors (OECTs) can realize in situ 

amplification of detected signals. This contributes its merits including high transconductance at 

low-voltage, high selectivity to the specific analyte, and a low limit of detection (Chen et al., 2020; 

Khodagholy et al., 2013). In addition, OECT is well applicable for sensing of charged species in 
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an electrolyte solution such as sweat, because it works by translating ionic currents between two 

electrodes to modulation in the conductivity of a conductive polymer film. And its sensitivity to 

the ionic strength of the analyte is dependent on a wide range of chemicals rather than one species 

(Keene et al., 2019). Moreover, OECTs enable a simple process to fabricate the devices on a broad 

choice of flexible and stretchable substrates as to they are made from biocompatible polymer 

(Khodagholy et al., 2013; Yang et al., 2018). As such, the characteristics of various high 

conductivity conjugated polymers, inherent flexibility, and facile processability enable organic 

electrochemical transistors (OECTs) to grow primarily in sweat-based biosensors. (Chen et al., 

2020). Although OECTs show a very promising potential for detecting chemical biomarkers in 

human perspiration, rich contents in sweat still challenge the sensitivity and selectivity of the 

sensors. As such, this project proposed to utilize enzyme-based OECT to achieve high sensitivity, 

while also implementing gate modification of the transistors to attain exceptional selectivity. 

4.2 Literature Review 

Recent interest has been expressed in the use of sweat as a non-invasive alternative to blood testing 

to provide information on human physiology, health and performance (Baker, 2019). The 

development of wearable equipment and detection techniques for the diagnosis of sweat is a rapid 

growing arena. Various techniques have been studied to detect sweat using electrochemistry, 

conductometry, and optics (Kaya et al., 2019). Electrochemical measurements involve detecting 

electrochemical processes in sweat through a set of electrodes (known as ion-selective electrodes), 

which results in an impedance change. This change can be used to determine the quantities of 

targeted biomarkers in sweat (Wang et al., 2021). Conductometric sensors measure the ionic 

conductivity of sweat by applying an electrical potential through electrodes immersed in the sweat 

solution, creating an electrochemical cell (Kaya et al., 2019). And by measuring the ion 
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concentration in the solution, the amount of sweat can be determined. Optical equipment, on the 

other hand, uses dye-sensitive solutions to identify colour changes brought on by perspiration 

concentration (Min et al., 2023). 

Among these techniques, electrochemical sensor is a popular detection methodology for measuring 

biomarkers in bodily fluids (Gao et al., 2016). The success in detecting of biochemicals including 

blood-alcohol level in the breadth (Bihar et al., 2016), glucose levels in saliva (Soni & Jha, 2015), 

and blood (Gifford, 2013) has made it drawn more and more attentions. Due to its high sensitivity, 

low cost, and simplicity, an enzyme-based electrochemical sensor for detecting lactate, whether in 

blood or perspiration, has shown tremendous potential (Wang et al., 2021). Although some 

commercial devices for measuring lactate concentration from blood has been approved, the urgent 

need for non-invasive wearable sensors encouraged more and more research on exploring the 

possibility of detecting lactate from sweat. Therefore, this project proposed using organic 

electrochemical transistor-based sensor to measure sweat lactate concentrations. 

 
Fig. 4.1. Schematic structure of a typical OECT-based biosensor (Note: G is for Gate; S is for Source; 

and D is for Drain; IN is for inlet; OUT is for outlet.) 

Organic electrochemical transistors are a type of organic thin-film transistor that have gained 

popularity in biosensing applications because of their excellent biocompatibility and high 

sensitivity (Malliaras et al., 2018). The operation mechanism of an OECT is based on the 
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modulation of the electrical conductivity of an organic semiconductor by electrochemical reactions. 

Fig. 4.1 shows a universal OECT which is composed of three electrodes (gate, source and drain), 

a channel (organic semiconductor), and electrolyte. A gate electrode is separated from the organic 

semiconductor material by an electrolyte layer. As the gate voltage is varied, the electrical 

conductivity of the organic semiconductor material changes, leading to a corresponding change in 

the current flowing between the source and drain electrodes. This change in current can be used to 

amplify electrical signals and perform signal processing. Overall, the operation mechanism of an 

OECT involves the modulation of the electrical conductivity of an organic semiconductor, which 

enables the device to function as an amplifier and signal processor. 

OECTs offer several advantages over conventional transistors (H. Liu et al., 2021a). First, low 

voltage operation: OECTs can operate at low voltages, thus, they consume less power and generate 

less heat. This makes them suitable for low-power applications and wearable devices. Second, high 

sensitivity: OECTs have high sensitivity to the changes in the electrochemical potential of the 

surrounding environment, which makes them suitable for sensing applications such as biosensors. 

Third, biocompatibility: Organic materials used in OECTs are biocompatible, which means that 

they can be used for implantable medical devices and bioelectronics. Fourth, low-cost fabrication: 

OECTs can be fabricated using low-cost, solution-based printing techniques, which reduces the 

cost of production. In summary, OECTs offer a unique combination of low voltage operation, high 

sensitivity, biocompatibility, and low-cost fabrication, making them promise for various 

applications in electronics, biosensors, and medical devices. 

OECT-based techniques have been utilized to develop wearable biosensors to revolutionize 

healthcare technology by many research studies (Malliaras et al., 2018). Specifically, O. Parlak et 

al. (2018) presented a solution in the form of an electrochemical transistor and a tailor-made 
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synthetic and biomimetic polymeric membrane that can facilitate stable and selective molecular 

recognition of cortisol. The sensor is integrated into a wearable sweat diagnostics platform that 

provides accurate sweat acquisition and precise sample delivery to the sensor interface. The 

integrated devices have been successfully used in both ex-situ and on-body real-sample analysis, 

demonstrating their potential in wearable biosensor technology.  Besides, OECTs also can be used 

to detect electrolytes from sweat. Keene et al. (2019) reported on the integration of ammonium 

and calcium ion-selective membranes with a poly(3,4-ethylenedioxythiophene): 

poly(styrenesulfonate)-based OECT for multiplexed sensing of NH4+ and Ca2+ in sweat with high 

sensitivity and selectivity. The integrated devices have been successfully tested with both ex-situ 

measurements and on human subjects, demonstrating their potential for real-time analysis using a 

wearable sensor assembly. Also, Y. Kim et al. (2018) developed single-strand fiber-type skin-

mountable OECTs by introducing a source-gate hybrid electrode, and the microfiber sensors can 

perform real-time repetitive measurements of the ion concentration in human sweat. Chen et al. 

(2020) summarized the latest research advances in OECT fabrication techniques and applications 

and demonstrated that OECTs are capable of amplification and efficient ion-to-electron 

transduction at low operating voltages. 

To optimize the characteristics of OECT-based biosensors, researchers have applied various 

methodologies aimed at improving their selectivity and sensitivity. Liao et al. (2015b) used flexible 

OECTs as enzyme biosensors for detecting uric acid and glucose. The researchers found that the 

sensitivity and selectivity of the sensors were improved by modifying the gate electrodes with 

bilayer polymer films and enzymes that had positive or negative charges. And they realize the 

detection of uric acid in human saliva non-invasively. Qing et al. (2019) presented a new wearable 

biosensor for dopamine monitoring based on fiber-based organic electrochemical transistors. The 
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device exhibited superior sensitivity, selectivity, and reproducibility, rapid response time, and 

continuous cycling stability. It also showed mechanical compatibility with the human body and 

potential for integration into fabric products. Accordingly, this project proposed to use GO-PEI 

membranes  to modify the gate electrode of OECT for improving the selectivity of the sweat lactate 

sensor. 

4.3 Experimental Section 

4.3.1 Materials 

Poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) (Clevios PH 500) was 

purchased from Heraeus Ltd. Zinc acetate. Dimethyl sulfoxide (DMSO), glycerin, nafion aqueous 

solution (5%), polydimethylsiloxane (PDMS), and bovine serum albumin (BSA), lactate oxidase 

(LOx), lactic acid (LA), glucose (GLU), dopamine (DA), cholesterol (CHO) were purchased from 

Sigma-Aldrich, Inc. Urea, urea acid (UA), urate oxidase (UOx), ascorbic acid (AA) were 

purchased from J&K Scientific (Hong Kong) Ltd. Phosphate-buffered saline (PBS) was purchased 

from Thermo Fisher Scientific Inc. AZ5214 and SU-8 2002 photoresists were purchased from 

MicroChem Corp. Graphnene oxidase (GO) was purchased from Hangzhou Gaoxi Technology 

Co., Ltd. And polyetherimide (PEI) was purchased from International Laboratory USA.  
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4.3.2 OECT Device Fabrication 

 

Fig. 4.2.  Device fabrication process: (A-D) Cr/Au electrode deposition. (E-G) Ti/Pt electrode 
deposition. (H) SU-8 photoresists encapsulation. (I-J) Patterning of PEDOT:PSS channel 

semiconductor. 

Fig. 4.2 illustrates the process of fabricating the OECT biosensors. The OECT device was created 

on PET substrates by first applying AZ5214 photoresist and using Karl Suss MA6 Mask aligner 

to transfer the desired pattern (Fig. 4.2 A-B). Then, Cr/Au (thickness: ~10 nm/~100nm) and Ti/Pt 

(thickness: ~10 nm/~90nm) layers were deposited using a radio frequency magnetron sputtering 

system to serve as source/drain electrodes and gate electrodes, respectively (Fig. 4.2 C-G). The 

device was then encapsulated with SU-8 photoresist, except for the channel and gate areas (Fig. 

4.2 H). The channel window was opened with a photolithography process, and further spin-coated 

with PEDOT:PSS aqueous solution consisting of 90% Clevios PH-500, 5% DMSO and 5% 

glycerin, and then annealed at 110 oC in nitrogen for 20 mins (Fig. 4.2 I). Finally, acetone was 
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used to remove excess PEDOT:PSS, revealing a channel width and length of 120 μm × 30 μm (Fig. 

4.2 J). 

4.3.3 Gate modification strategies 

To modify the OECTs, Nafion solution (5 mg/mL) was applied to the Pt gate electrodes followed 

by the placement of a GO membrane with a PDMS shield nearby. The LOx solution (200 U/gate 

electrode) was then coated on the surface of the GO membrane and immobilized using chitosan 

acetic solution (8 mg/ gate electrode). The equipment was subjected to drying in a moist 

environment at 4 °C after each step of solution modification. Before sensing measurements, the 

instrument was washed with PBS solution to eliminate any residues. 

4.3.4 Sweat acquisition layer design and device assembly 

 
Fig. 4.3. OECT circuit with microfluidic channels 

A microfluidic system was designed with two channels and one chamber for lactate detection to 

achieve on-skin sweat collection. A microchamber is connected to the inlet channel (100 µm 

width), which has a diameter of 0.5 mm to allow sweat to flow in (Fig. 4.3). According to one 

estimation (Yokochi & Rohen, 1978), this hole's diameter typically covers 2–3 sweat glands on 

the palm. Because of the osmolality discrepancies between sweat and plasma that are produced by 

glands, sweat could be drawn into the microchannel by hydraulic pressure (Sonner et al., 2015). 
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And the gathered sweat fluid could then flow to the chamber after being steered through a 

bifurcation nozzle. Finally, sweat flows out through the outlet channel (100 µm width). 

4.3.5 Device characterizations 

The transfer characteristics (I-V curve) of OECTs were assessed using a wireless detection 

platform that comprised a flexible OECT sensor, hardware (signal conditioning and signal 

processing system), and software (wireless transmission via smartphone). The I-V curves were 

measured by sweeping the gate voltage (VG) from 0 to 1 V, while fixing the drain-source voltage 

(VD) at 0.1 V, and calculating the relative change of the gate voltage Δ VG after the redox reaction 

on the gate electrode's surface. The Keithley source meters (Keithley 2400) were used to measure 

the real-time channel current response (I-T curve) of OECTs to various analytes (e.g., lactic acid 

(LA), urea, urea acid (UA), cholesterol (CHO), glucose (GLU), dopamine (DA), ascorbic acid 

(AA), and bovine serum albumin (BSA)). During the measurement of the I-V characteristic, VD 

was fixed at 0.1 V, and VG was fixed at 0.5V. 
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4.3.6 Mobile meter design and wearable measurements 

 

Fig. 4.4. Schematic drawing of wearable sweat lactate sensor 

The wearable sweat-based lactate sensing system is shown schematically in Fig. 4.4. It consists of 

three main parts: an organic electrochemical transistor (OECT) lactate sensor with a sweat 

collection microfluidic system, a wireless transmission meter, and a mobile phone. Organic 

electrochemical transistors serve as sensing modules with highly sensitive and selective features 

that enable the conversion of biochemical signals (lactate concentration in our case) to electronic 

signals. The microfluidic channels, made of a thin and flexible polydimethylsiloxane (PDMS) 

layer, not only efficiently collect sweat but also provide excellent mechanical performance with 

stable output. The portable wireless transmission meter consists of four primary modules, namely 

the central CPU, analogue to digital circuits (ADC), digital to analogue circuits (DAC), and 

Bluetooth module. To enable wearable sweat lactate detection, the integrated device can be placed 

in a wearable arm batch or a hard safety hat. In addition, a custom mobile app was utilized to 

monitor the skin-mounted device's channel current response. As Fig. 4.4 shows, the working 
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procedure of this sensing system is that OECT lactate sensors covert sweat metabolic signals 

(lactate concentration) to electrical signals. The electrical signals are then received by a wireless 

transmission meter through a flexible flat cable. Finally, the lactate concentration is displayed by 

an embedded app on a mobile phone through Bluetooth transmission. 

4.4 Characteristics of OECT-based Sweat Lactate Sensor 

4.4.1 Operation Mechanism  

 
Fig. 4.5. OECT: (a) OECT-based Lactate biosensor Structure; (b) Schematic diagram of an OECT with 

LOx/GO-PEI membrane/Pt gate; (c) Voltage variations between the gate and channel of the OECT 
before (dash line) and after (solid line) the addition of Lactate in the electrolyte (Liao et al., 2015b).  

Fig. 4.5 (a) shows the structure of OECT-based lactate sensor. It has a simple structure where a 

thin layer of organic semiconductor (PEDOT: PSS) is placed on the channel region between the 

source and drain electrodes and subjected to an electrolyte together with the gate electrode. Pt 

electrodes (gate, source, and drain) were selected in our study because Pt is a biocompatible 

material with high suitability for on-body devices(Liao et al., 2015b). Organic electrochemical 

transistors (OECTs) serve as sensing modules with highly sensitive and selective features that 

enable the conversion of biochemical signals (lactate concentration in our case) to electronic 

signals. Fig. 4.5 (b)&(c) illustrates the working principles of OECT operation and the details were 

given below (Liao et al., 2015b). 
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Reaction of lactate with lactate oxidase 

The lactate oxidase (LOx) on the GO-PEI membranes can catalyze aerobic oxidation of lactate 

into pyruvate, further releasing hydrogen peroxide (H2O2) (Alam et al., 2018). The produced H2O2 

was then oxidized into oxygen and lose two electrons on the Pt gate electrode (Erden & Kılıç, 

2013), this electron transfer on the gate electrode changed the channel current. 

L − lactate
 LOx 
�⎯⎯⎯⎯� pyuvate + LOxred           (1)

LOxred
 O2 
�⎯⎯⎯� LOxox + H2O2                             (2)

H2O2
 Pt 
�⎯⎯⎯� 2H+ + O2 + 2e−                              (3)

 

where LOxred is reduced LOx, LOxox is oxidized LOx. 

Operation of OECTs 

The channel current (ID) of an OECT is shown as follows:(Inal et al., 2017; H. Liu et al., 2021b) 

ID =
CiμW

L
�Vp − VGeff +

VDS
2
�VD �when |VD| ≪ |Vp − VGeff|�          (4)

VP =
qp0t

Ci
                                                                                                       (5)

VGeff = VG + Voffset                                                                                          (6)

 

where Ci is the effective capacitance per unit area of the OECT, μ is hole mobility, W is the channel 

width, L is the channel length, Vp is the pinch-off voltage, VG
eff is the effective gate voltage, VD is 

the source-drain voltage, q is electron charge, p0 and t are the initial hole density and thickness of 

organic semiconductor layer, respectively, VG is gate voltage, Voffset is an offset voltage at two 

electric double layer (EDL) interfaces. 

Ci and VG are both related to two interfaces including electrolyte/channel and electrolyte/gate 

connected in series, and given by: 
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Ci =
CE−CCG−E

(CE−C + CG−E)S
                                                     (7)

VG = VE−C + VG−E = �1 +
CE−C
CG−E

�VE−C                       (8)
 

Where CE-C and CG-E are the capacitances of the two EDL close to the channel and the gate, 

respectively, S is the area of active layer, VE-C and VG-E are voltages applied on two EDL close to 

the channel and the gate, respectively. 

Mechanism of Lactate sensor 

The channel current change is attributed to the change of the effective gate voltage of the OECT 

(Liao et al., 2015a), which is modulated by the reaction of lactate with lactate oxidase and 

equations are given by: 

VG−E = −2.30
kT
2q

log([H2O2]) + C1                                      (9)

VE−C = VG + 2.30
kT
2q

log([H2O2]) − C1                                  (10)

VGeff = 2.30 �1 +
CE−C
CG−E

�
kT
2q

log([H2O2]) + C2                       (11)

VGeff = A log([LA]) + C3                                                              (12)

 

Where k is Boltzmann constant, T is temperature, [H2O2] is the concentration of H2O2, [LA] is the 

concentration of LA, A, C1, C2 and C3 are constants. Thus VG
eff and log[LA] are linearly dependent, 

and VG
eff corresponding to different lactate concentration from the transfer curve of OECT sensor 

can be read out, lactate concentration can also be calculated by VG
eff. 

Summary 

The lactate oxidase enzyme (LOx) was coated at the top of the Pt gate electrode to trigger the 

enzymatic reaction between lactate and oxygen. It outputs hydrogen peroxide (H2O2) that releases 
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electrons to stimulate the electronic circuit, as Equations (1), (2) & (3) show, consequently, leading 

to variations of the circuit potentials, the relationship is shown in Equation (12). 

4.4.2 The principle of GO-PEI membrane in obtaining high selectivity 

 

Fig. 4.6 Schematic drawing the transport of H2O2 through anti-swelling GO-PEI membranes 

Working Mechanism: Although the Pt gate electrode is sensitive to H2O2, it is also sensitized to 

other molecules in sweat, such as urea, glucose, ammonia, etc. (Baker, 2019; Liao et al., 2015b). 

Therefore, Pt gate electrodes of OECTs were modified in our project with GO-PEI membrane to 

increase the devices' selectivity to H2O2; this can be achieved because it is highly challenging for 

biomolecules like glucose, urea, and others to pass through the membrane’s nanochannels. Of all 

the analytes in sweat, the hydration volume of H2O2 is relatively small (around 9.88×10-13 m), thus 

being able to penetrate the multilayer membrane. As illustrated in Figure 4.6, an anti-swelling 

graphene oxide polyetherimide  membrane was designed to facilitate the transport of hydrogen 

peroxide (H2O2) while preventing the pass of other biomolecules. This enables a precise detection 

of lactate in bodily fluids like sweat and saliva based on OECTs.  
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Fig. 4.7. Pictures recording the ultrasonic tests of (a) a GO membrane; and (b) a GO-PEI membrane for 
30 seconds. 

PEI Function: GO membranes were prepared using the traditional vacuum filtration method. 

However, these membranes, which consisted of hydrogen-bond crosslinked graphene oxide sheets, 

were prone to swell and loose instability in water. In fact, as depicted in Fig. 4.7, an ultrasonic test 

on a GO membrane in water caused it to disintegrate in just 30 seconds. To address this issue, we 

incorporated a positively charged polymer called polyetherimide (PEI) into the GO. Since GO is 

a two-dimensional nanosheet with a negative charge, the addition of positively charged PEI 

resulted in an electrostatic interaction network between the GO sheets. This, in turn, enhanced the 

stability of GO membranes in aqueous solutions. As shown in Fig. 4.7 (b), the GO-PEI membrane 

exhibited anti-swelling behavior in water and retained its structural stability during ultrasonic 

testing. 
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Fig. 4.8. (a-c) Structures of anti-swelling GO-PEI membrane on a porous substrate. (d-f) SEM images 
of a self-standing anti-swelling GO membrane. (g-i) SEM images of a self-standing anti-swelling GO 

membrane after soaking-drying in water. 

Soaking-Drying Test: Fig. 4.8 (a)-(b) depict images of a GO-PEI membrane attached to a 

hydrophilic porous substrate made of a mixture of polymer fibers (Fig. 4.8 (c)). The use of a porous 

substrate provided excellent support for the GO-PEI films and allowed for the rapid pass of 

hydrogen peroxide and water molecules. Additionally, the self-standing GO-PEI membrane (Fig. 

4.8 (d)-(f)) was ultra-thin and highly flexible, and it could be easily detached from the substrate. 

To evaluate the stability of the GO-PEI membrane, we conducted a swelling-drying cycle test and 

analyzed its microstructures. As shown in Fig. 4.8 (g)-(i), the microstructures of the GO-PEI 

membrane remained nearly unaltered after the cycle, demonstrating its robustness and resilience 

to environmental stressors. 
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4.4.3 Laboratory Tests of the OECT biosensor  

 

Fig. 4.9. (a) The transfer characteristics of an OECT measured in PBS solution after the repeated tests 
up to 1000 times. (b) The response of OECT to lactic acid and lactate oxidase with and without GO-
PEI membrane. (c) The selectivity test without GO-PEI membrane; (d) The selectivity test with GO-

PEI membrane 

The modified OECT exhibit remarkable stability during cycle tests, withstanding up to 1000 cycles 

(see Fig. 4.9 (a)). When being immersed in a solution, lactate oxidase (LOx) catalyzes the 

conversion of lactate into H2O2, leading to a charge exchange on the gate electrode (Pt) in OECT. 

This, in turn, causes changes in drain-source current (IDS). By combining OECT and LOx, we can 

accurately monitor the concentration of H2O2, and therefore the lactate concentration in sweat. As 

demonstrated in Fig. 4.9 (b), the IDS significantly decreases with increasing amounts of lactic acid 

from 10 nM, 100 nM, 1 µM, 10 µM to 100 µM, with and without the coating of GO-PEI 
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membranes on the gate electrode. This indicates that the GO-PEI membrane has negligible 

influence on the detection of lactate by OECT. 

In addition, we conducted a selectivity test by using the sensors to detect various biomolecules in 

sweat. As illustrated in Fig. 4.9 (c), aside from lactate (LA), other biochemicals, such as Urea, 

ascorbic acid (AA), uric acid (UA), and glucose (GLU), present in body fluids can interfere with 

current signals in OECTs. After coating the gate with GO-PEI membranes, the selectivity of OECT 

was notably enhanced by the reduction of LogC for UREA, AA, UA, and GLU, while the 

sensitivity remained almost unaffected (Fig. 4.9 (d)). This indicates that GO-PEI membrane 

improves the selectivity of OECT sensor significantly. 

4.4.4 Validation Experiment of OECT-based biosensor  

 

We conducted a comparison and validation experiment as we developed this device. Lactate Assay 

Kit (Sigma-Aldrich, MAK064) was purchased to measure sweat lactate concentrations as a 

validation method for the device. The lactate detection kit's (lactate dehydrogenase colorimetry) 

detection principle is that lactate dehydrogenase (LDH) catalyzes the simultaneous synthesis of 

lactate pyruvate and nicotinamide adenine dinucleotide (NADH), and the lactate level can be 

evaluated by colorimetric analysis of these reaction products using the spectrophotometrically 

obtained absorbance at 570 nm. The endogenous lactate content of samples in body fluids such as 

sweat, blood, and salivary can be determined by this kit. 

Table 4.1. Comparison of electrochemical and colorimetric measurement of sweat lactate 
Sample No. Electrochemical Colorimetric 

Sample 1 (mM) 30.6 ± 2.7 30.8 ± 0.5 

Sample 2 (mM) 31.4 ± 0.9 31.1 ± 0.5 
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Sample collection and processing proceeded as follows: as the participant was running, a 1.5-mL 

plastic centrifuge tube was used to collect sweat from the forehead. This experiment aimed to 

validate the device by comparing the results with a commercial lactate assay kit. The sweat samples 

(sample 1 and sample 2) were collected from one participant who ran 2400 m. After that, the 

samples were measured by using the electrochemical sweat lactate device and the lactate assay kit 

for testing. Table 4.1 illustrates the results of colorimetric measurements, which have fewer 

variances. The two measurements correspond very closely to the same patch of sweat samples. 

Hence, the electrochemical sweat lactate sensor developed possesses good properties and can 

detect lactate in sweat.  

4.5 Conclusion 

To summarize, lactate biosensors based on organic electrochemical transistors (OECTs) have 

demonstrated highly selective capabilities with the introduction GO-PEI membranes, thus, 

enabling accurate measurements. With a wireless portable device and a mobile phone embedded 

App, these sensors can now facilitate real-time monitoring of sweat lactate. This technology paves 

the way for the development of efficient wearable systems that utilize OECT-based sensors in 

combination with microfluidic techniques to provide quick and on-site examination of metabolites 

in bodily fluids. It has the potential to significantly improve personalized and non-invasive 

healthcare management, as well as continuous physiological and clinical research. The 

applications of the proposed sensor in the construction field would be explored in the next two 

chapters. 
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CHAPTER 5 VALIDATE THE RELIABILITY OF THE SWEAT-

BASED LACTATE BIOSENSOR FOR ASSESSING FATIGUE 

DURING A SIMULATED CONSTRUCTION TASK 

This chapter presents the accuracy and usefulness of the sweat-based lactate biosensor in 

measuring the fatigue levels of construction equipment operators. The consistency of the sweat-

based lactate sensor is evaluated by conducting a between-day test-retest experiment. Lactate 

measurements of the sweat sensor are compared to measurements from blood lactate to assess the 

reliability of the sweat sensor. 

5.1 Introduction 

Accidents involving equipment contribute to a substantial proportion of total accidents on 

construction sites (Gürcanlı et al., 2015; Jebelli et al., 2020). Many studies have identified 

operators’ fatigue as a primary cause of these accidents (Gürcanlı et al., 2015). Owing to the nature 

of construction work, equipment operators have to attentively perform their tasks while sitting in 

their control cabins for prolonged periods. Mental fatigue caused by the sustained attention 

required and physical fatigue arising from prolonged sitting have been identified as principal risk 

factors. 

Physical fatigue, also known as muscle fatigue, refers to a decrease in a muscle’s ability to generate 

force (Mahdavi et al., 2020). Mental fatigue refers to a mental state associated with tiredness and 

loss of motivation experienced during sustained cognitively demanding tasks (Ahmed et al., 2016; 

Meijman, 1997). It is, therefore, also called “cognitive fatigue.” Fatigue arises from prolonged 

sitting and sustained concentration required for construction equipment operation work. This could 
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lead to aches in the muscles (Zhang et al., 2023), an overload of cognitive capabilities, and a loss 

of task engagement and alertness (Matthews et al., 2019). Consequently, operators may often 

experience a combination of physical and mental fatigue, or combined fatigue (Kar & Hedge, 

2020). The physical and mental health of a worker will be impacted by chronic fatigue over time. 

(Goetz et al., 2022). To prevent fatigue-related ill effects, it is vital to develop feasible and non-

invasive methods to detect combined fatigue. 

5.2 Literature Review 

Existing methodologies that might be used for monitoring fatigue among construction equipment 

operators include survey questionnaires, eye-tracking glasses, and Electroencephalogram (EEG). 

Survey questionnaires (Michielsen et al., 2003; Umer et al., 2020) rely on collecting the subjective 

opinions of subjects, which could cause inaccuracy and task interruption. Eye-tracking glasses (Li 

et al., 2020) can be significantly interfered with by background noise and light, limiting their 

adoption in various construction scenarios. Li et al. (2012) say that EEG requires a lot of small 

sensors to be placed on the scalp, which can be irritating and uncomfortable.  

Recently, chemical biomarkers have been studied for fatigue monitoring because of their accuracy 

and objectivity (Seshadri et al., 2019). Notably, rich concentrations of biomarkers were found in 

sweat, including sodium, chloride, potassium, lactate, urea, glucose, and so on (Baker, 2019). 

Measuring sweat biomarkers to evaluate fatigue appears to be a non-invasive, easy, and practical 

approach.  

Among detectable biomarkers in sweat, lactate, as a metabolite, presents a high concentration in 

sweat (Weiner & van Heyningen, 1952). The lactate shuttling theory, proposed by Brooks (2018), 

describes that lactate plays three main functions in the human body as: (1) a significant fuel source 
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for the body (i.e., muscle and brain), (2) a significant element in maintaining blood sugar levels, 

and (3) a potent indicator of metabolic fatigue and stress adaptation. Lactate is continuously 

produced in the body, but the majority (70 – 80%) is formed during functional activities to fuel the 

muscle, heart, and brain (Brooks et al., 2022). Therefore, lactate, as a body energy supplier, is not 

only for physical exercise but also for cognitive activities. For instance, lactate levels rise when 

the human body is subjected to high energy demands, such as during continued exhaustive exercise 

or a stressful scenario. This could offer evidence of how lactate levels change in response to 

physical and mental exhaustion. The mechanism of the lactate shuttle is shown in Fig. 5.1. Lactate 

is the ultimate byproduct of glucose and glycogen metabolism, which involves a lengthy series of 

complex steps. Lactate and glucose are interchangeable in response to body alterations. As a result, 

lactate levels may rise to cope with sustained muscle and brain activity. As it did in the case of 

equipment operation scenarios involving high energy consumption in both muscles and brain, this 

may result in an increase in lactate levels. Since lactate is affected by both muscle and mental 

activity, it could be used as a biomarker to measure the combined level of fatigue in equipment 

operators.  

On the other hand, although lactate is found in blood, sweat, tears, and saliva (Saha et al., 2021), 

devices measuring lactate from blood, tears, and saliva are not suitable for construction scenarios 

due to their invasiveness. Moreover, lactate within sweat has a higher concentration than in other 

body fluids (R Segura, 1996; Saha et al., 2021; Sakharov et al., 2010b). Therefore, this research 

adopts a sweat-based lactate sensor to evaluate if sweat lactate can be an effective indicator of the 

combined fatigue level of equipment operators.  
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Fig. 5.1: “Lactate-shuttle” (Brooks, 2018) within a human body 

In this study, we applied a sweat-based lactate device to evaluate the fatigue levels of equipment 

operators. Blood lactate was measured to validate the accuracy of lactate measurement from the 

sweat-based sensor. The validity of fatigue assessment based on sweat lactate was evaluated again 

using a subjective fatigue method, the Fatigue Assessment Scale (FAS) (Michielsen et al., 2003). 

Lastly, a test-retest experiment was conducted to evaluate the reliability of the sweat-based lactate 

sensor for monitoring fatigue. 

5.3 Methods  

5.3.1 Participants 

Table 5.1 gives basic information about the five participants. All the participants slept for at least 

eight hours before the experiment. They are also advised not to consume alcoholic beverages for 

at least 48 hours. The mean age is 29.8 years, with a standard deviation of 1.9 years. The mean 

weight is 80.2 kg with a 3.6 SD. The mean height was 177.2 ± 2.6 cm. The average Body Mass 

Index is 25.5 ± 0.8 kg/m2. The protocol was approved by the university ethical committee 

(Reference number: HSEARS20200922003), and the study adhered to the Declaration of 
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Helsinki's requirements. Prior to the collection of data, participants provided written informed 

consent.  

Table 5.1: Basic information of participants 

 Mean SD Range (Min-Max) 

Age (Years) 29.8 1.9 5 (28 - 33) 

Height (cm) 177.2 2.6 6 (174 - 180) 

Weight (kg) 80.2 3.6 9 (75 – 84) 

Body Mass Index (kg/m²) 25.5 0.8 2 (24.5 – 26.1) 

 

5.3.2 Materials 

This study used a sweat-based lactate biosensor, a Nova Biomedical blood lactate meter, and a 

fatigue questionnaire, the fatigue assessment scale (FAS), shown in Fig. 5.2, to obtain biomarkers 

from participants, including sweat lactate (SL) concentration, blood lactate (BL), and a subjective 

fatigue score.  
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Fig. 5.2: Overview of Devices for measuring biomarkers 

Description of developed sweat-based lactate sensor 

Wearable sweat-based biosensors have received considerable attention in the health monitoring 

field. The rich content of molecules in sweat challenges the accuracy of the biosensors. Herein, we 

applied a developed sweat-based biosensor with flexibility and high sensitivity and selectivity in 

an epidermal electronic format to measure sweat lactate concentration in situ. Fig. 5.3 (a) presents 

a schematic representation of the wearable sweat-based lactate sensing system. It comprises by an 

organic electrochemical transistor (OECT) lactate sensor, a wireless transmission meter, and a 

mobile phone. As Fig. 5.3 (b) shows, the OECT lactate sensor converts lactate concentration to 

electronic signals, which are transmitted to a wireless transmission meter via a flexible flat cable. 

Finally, the lactate concentration is displayed on a mobile phone using Bluetooth transmission. 

Thanks to the microfluidic system and the wireless meter, our device realizes the goal of measuring 

sweat lactate concentration on skin in real-time. Also, the highly sensitive and selective features 

of OECT enable reliable measurements of lactate.  
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(a)                                                                    (b) 

Fig. 5.3:  Schematic drawings of (a) wearable sweat-based lactate sensor on Arm; (b) OECT sensor for 
measuring Lactate concentration 

Fatigue Assessment Scale 

FAS is a systematic and comprehensive fatigue assessment methodology comprising 10 items and 

5 selection scales for each item (Michielsen et al., 2003). The common subjective fatigue 

measurement techniques, such as the Borg-20 Scale and NASA-TLX, focus on a single type of 

fatigue, either physical or mental; therefore, they are not suitable for measuring fatigue arising 

from equipment operation tasks, which induce combined fatigue, both physically and mentally. 

FAS, as a new fatigue assessment methodology, was developed by selecting the most effective 

items from an original item pool of 40 items taken from four commonly used fatigue questionnaires: 

the Fatigue Scale (FS) (Chalder et al., 1993); the Checklist Individual Strength (CIS) (Panitz et al., 

2015); the Maslach Burnout Inventory Emotional Exhaustion (MBIEE) (Schaufeli et al., 1994); 

and the Energy and Fatigue subscale of the World Health Organization Quality of Life 

(WHOQOL-EF) (Harper et al., 1998), which covers all types of fatigue. As such, FAS can be 

applied to evaluate combined fatigue. In our case, a modified FAS survey questionnaire was 

applied in which the five selection scales were altered to measure the degree of agreement with 

the 10 items rather than the frequency because the aim of this study was to monitor fatigue during 



100 
 

a continuous operation task and not a day-to-day fatigue development assessment. The FAS score 

ranges from 10 to 50, with 10 being the least amount of fatigue and 50 being the most.  

5.3.3 Experiment Process 

Five individuals in good health were recruited for the study. All the participants in both the 

experimental and control trials were required to complete them. A prolonged two-hour task was 

designed to induce cognitive and muscle fatigue. The procedure followed by the experimental trial 

group is depicted in Fig 5.4. To account for the possibility that some operators may work in an air-

conditioned environment, where they may not produce enough sweat for accurate measurement of 

biomarker levels using a sweat sensor, this study utilized pilocarpine as a cholinergic 

parasympathomimetic agent to induce sweating (Buono & Sjoholm, 1988). Pilocarpine stimulates 

muscarinic receptors, leading to increased secretion by exocrine glands and contraction of the 

ciliary and iris sphincter muscles (Davis et al., 2005). Biagi et al. (2012) previously applied 

pilocarpine stimulation to collect eccrine sweat at rest for investigating sweat lactate and pyruvate. 

As such, this study applied the pilocarpine sweating technique on the forearm region to stimulate 

perspiration. While participants were briefed about the experiment, their demographic data was 

being collected. Participants had 10 minutes to familiarize themselves with the simulation system 

before the start of the trial. After waiting five minutes, the experiment began with the first 

BioMarker-1 reading. Sweat lactate, blood lactate, and the FAS survey were all measured at each 

stage. Participants repeated the work at 30-minute intervals until the BioMarker-6 measurement 

was completed. There was a total of 120 minutes of working time, followed by a 10-minute break. 

The exact same experimental method was performed with the same individuals two days later to 

establish test-retest reliability of the sweat sensor device. The same approach was used, but the 

control group was instead exposed to non-work-related television programs. For each of the six 
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time points (baseline, 30 min, 60 min, 70 min, 100 min, and 130 min), there are corresponding 

biomarkers (1, 2, 3, 4, 5, and 6). Fig. 5.5 presents the simulated equipment operation system with 

an on-body sweat-based lactate device. 

 
Fig. 5.4. Experiment procedure 

 

 
Fig. 5.5. Pictures of construction equipment operation simulation system with on-body Sweat-based 

Lactate Device 
5.3.4 Data processing and analysis 

In this study, the SPSS Version 27 software, OriginPro 9.0, and Microsoft Excel were employed 

to carry out statistical analysis and visualization of the data. Pearson’s correlation coefficients were 

applied to examine the relations between sweat lactate and other measurements, including blood 

lactate and FAS score. The comparisons between the experimental and control groups were 

constructed in terms of sweat lactate, blood lactate, and FAS score. A two-way random-effects 
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model with intra-class correlation [ICC2,1] (Antwi-Afari et al., 2021; Anwer, Li, Antwi-Afari, 

Umer, Mehmood, et al., 2021) was used to assess the test-retest reliability of the sweat-based 

lactate sensor. The ICCs were interpreted using the following scale: excellent (> 0.90), good (0.76-

0.90), moderate (0.50-0.75), and poor reliability (0.5) (Moffroid, 1993). The distribution of the 

reliability error scores was displayed using Bland-Altman plots (Gant et al., 2006; Kelechi et al., 

2006). More reliable equipment is that with individual error scores that are close to zero.  

5.4 Results  

Table 5.3 displays the demographic information of the subjects. At baseline, the mean SL 

concentration was 1.46 mM; after completing the simulated operation task, it was 18.7 mM. As 

the simulated operating task progressed, the mean BL concentration rose from 1.92 mM at baseline 

to 4.82 mM at the end of the task. At baseline, the mean FAS scale score was 11.7; at task 

completion, it was 38.3. What stands out in the table is that the values of the three measured 

parameters appeared to increase at task completion.  

Table 5.3: Descriptive statistics of experiment data 
Variables (N = 5 x 2) Mean SD Range (Min – Max) 

SL at baseline (mM) 1.46 0.39 1.18 (0.98 - 2.16) 

SL at the end of the task (mM) 18.7 2.52 12.4 (13.05 – 25.45) 

BL at baseline (mM) 1.92 0.14 0.8 (1.5 - 2.3) 

BL at the end of the task (mM) 4.82 0.87 3.7 (2.3 – 6) 

FAS scale at baseline 11.7 1.15 4 (10 – 14) 

FAS scale at the end of the task 38.3 7.71 37 (13-50) 

Note: SL-sweat lactate; BL-blood lactate; FAS-fatigue assessment scale. 

 

Fig. 5.6 shows the values of sweat lactate, blood lactate, and FAS scores of the five subjects along 

with timelines. The Pearson’s correlation coefficient was used to determine the relationship 
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between sweat lactate concentration and the other two parameters. The statistical analysis revealed 

strong associations between SL and FAS scores; they were 0.856, 0,973, 0.767, 0.948, and 0.957. 

The Pearson’s correlation coefficient of average SL and FAS was 0.941. Similarly, the correlation 

coefficients of blood lactate and sweat lactate were fairly strong: 0.616, 0.965, 0.955, 0.963, and 

0.989, while the average was 0.978. Figure 5.6 also shows the average values of the five people in 

the experimental group along the timeline. 

 
Fig. 5.6. Figures showing SL concentration, BL concentration, and FAS scale of five participants and 

their average values 
 

In Fig. 5.7, sweat lactate concentration, blood lactate concentration, and FAS score are compared 

between the experimental and control groups. In comparison to the experimental group, the control 

group had lower and more stable values of SL, BL, and FAS. As shown in Fig. 5.7  (c), those who 

completed the simulated operation task had a higher FAS score, which increased as the task 

progressed.  
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Fig. 5.7: Comparisons of (a) sweat lactate, (b) blood lactate, and (c) FAS scale between experimental and 

control group 

Table 5.4 displays the data analysis of the between-day test-retest experiment for validating the 

reliability of the sweat-based lactate sensor. The last row represents the average values of the five 

participants, along with the timeline. The degree of reliability of the sweat lactate sensor ranged 

from good to excellent, and the values of the ICC were from 0.842 to 0.983. And most of the values 

of bias were close to zero, also indicating that the device was reliable. 

Table 5.4. Mean difference, Bland-Altman’s LOA between test-retest assessments of sweat lactate 
using sweat-based lactate biosensor 

Comparison Groups Bias LOA ICC (95% CI) 

Participant A -0.933 -3.03 to 2.85 0.978 

Participant B -3.96 -12.3 to 4.40 0.894 

Participant C 1.91 -5.65 to 9.47 0.915 

Participant D 1.74 -10.0 to 13.5 0.842 

Participant E -0.487 -3.85 to 2.88 0.983 

AVG -0.954 -5.56 to 3.65 0.992 

 

Fig. 5.8 presents scatter diagrams of the mean difference and Bland-Altman’s limits of agreement 

(LOA) between test-retest assessments of the sweat lactate biosensor. It indicates reasonable 

agreements between the test-retest scores of sweat lactate concentrations for almost all the points 

within the scope of the LOA. 
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Fig. 5.8: Bland Altman plots of Test-retest for (a) Participant A; (b) Participant B; (c) Participant C; (d) 

Participant D; (e) Participant E; (f) AVG of test-retest at different timelines (0, 30, 60, 70, 100, 130) 

Table 5.5 presents the correlations between the FAS scale and the other two physiological 

parameters. There was a strong association between sweat lactate and the FAS scale, ranging from 

0.896 to 0.975. The correlation between blood lactate and the FAS scale appeared to be good as 

well, ranging from 0.758 to 0.968. 

Table 5.5: Pearson’s correlation coefficient between physiological parameters and subjective 
fatigue scores 

 
Parameters 

 
Fatigue Scores 

 
FAS scale 

Participants A B C D E AVG 

Sweat Lactate 0.856 0.973 0.767 0.948 0.957 0.941 

Blood Lactate 0.827 0.884 0.552 0875 0.945 0.887 

 

5.5 Discussion  

Given the need to monitor the combined fatigue of construction equipment operators, many recent 

studies have entailed questionnaires and wearable devices such as eyeglasses and EEG to tackle 
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the challenge. However, these methodologies are either too interruptive or too intrusive, limiting 

their adoption in construction scenarios. Besides, their accuracy might be a concern because they 

were measuring the underlying mechanism of fatigue rather than the mechanism itself. This study 

employed a novel, non-invasive approach to monitor combined fatigue using a sweat-based lactate 

sensor. Experimental results highlight that sweat lactate can be used to measure the combined 

fatigue of operators due to the significant correlations between sweat lactate concentration and 

FAS score. When comparing to existent studies on lactate (Brooks, 2018; Hermann et al., 2019), 

the variation of sweat lactate in this study is consistent with the working mechanism of lactate 

theory proposed by Brooks (2018), in which, lactate plays as fuel and signal of fatigue/stress, 

generating productively when a human body is subjective to high energy demanding activities. 

This finding can also be supported by studies that demonstrate lactate provides more than half of 

overall energy in the brain and muscles (Boumezbeur et al., 2010; Brooks et al., 2022; van Hall et 

al., 2009b). Furthermore, the current findings demonstrated a strong relationship between sweat 

lactate concentration and blood lactate concentration, enhancing the applicability of sweat lactate 

in health issues. This result broadly supports the work of other studies linking sweat lactate and 

blood lactate (Karpova et al., 2020; Sakharov et al., 2010b). Higher lactate concentrations 

presented in sweat than in blood reflect those of Sakharov et al. (2010b), who also found that sweat 

lactate concentration was many times higher than blood lactate concentration, for lactate 

concentration in sweat is not only from blood lactate but also generated by the eccrine glands 

(Gordon et al., 1971; Weiner & van Heyningen, 1952). This indicates that sweat lactate might be 

a better option to assess fatigue, not only for its non-invasive characteristic but also for its 

physiological nature. The comparison results showed that the experimental group and control 

group differed regarding sweat lactate, blood lactate, and FAS scale, suggesting that operation 
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tasks might induce a rise in lactate levels. Taken together, these results provide important insights 

into sweat lactate, which could be a reliable biomarker for assessing the fatigue of equipment 

operators. 

The reliability of the sweat-based lactate sensor was examined by conducting a between-day test-

retest experiment. The results indicate that this developed device presented excellent reliability for 

ICC values ranging from 0.842 to 0.992. What is more, Fig. 5.8 displays the Bland-Altman plot, a 

way of visualizing the agreement between test-retest values. According to Bland and Altman 

(1999), the agreement requirements were satisfied if 95% of the score discrepancies were 

contained within the 95% bounds of agreement. It can be seen from Fig. 5.8 that more than 95% 

of the points were within the scope of the LOA boundaries. There was clear evidence that the 

sweat-based lactate sensor was accurate in its measurements.  

Though our primary goal is basically achieved in this study, there remain options to be explored 

for improving the accuracy of combined fatigue monitoring. First, since the results of this study 

indicated that equipment operation tasks could induce variations in lactate in sweat and blood, 

other biomarkers such as glucose, cortisol, and ammonia might have relevance as well. As per 

research done by Gao et al. (2016), who proposed the feasibility of measuring six sweat biomarkers 

in a single wearable device, we could try to develop a sweat-based sensor that enables measuring 

multiple biomarkers in sweat. This will provide a more comprehensive evaluation of combined 

fatigue. Second, traditional fatigue data analysis using the summary statistics of all the participants 

may have limitations due to the heterogeneity in how people perceive fatigue and how their 

physiologically based chemical biomarker reactions vary. Therefore, person-specific data 

characteristics could be eliminated using methods like first-order differentiation.  
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While the study has successfully demonstrated that the sweat-based lactate sensor is reliable to 

realize fatigue monitoring by measuring sweat lactate, a number of limitations need to be noted. 

First, due to the limited funding amount and the involvement of blood sampling, the experimental 

study was conducted on only five subjects, which is relatively small in terms of sample size. 

Therefore, the results of this experiment may not have a sufficient statistical basis. Another 

limitation was that all the participants were not professional operators in the construction industry. 

Therefore, their overall physical and mental conditions may differ from those of equipment 

operators, which may incur bias. In addition, the scope of this study was limited in terms of 

operation scenarios, for it was a simulated operation task that could not replicate construction 

equipment operations. However, notwithstanding the limitations, as our research focus is on 

examining the usefulness and validity of the sweat-based sensor in measuring lactate concentration, 

we believe the overall objective has been achieved. 

5.6 Conclusion 

This study evaluated the reliability of using the state-of-the-art sweat-based lactate sensor to assess 

fatigue. Specifically, sweat lactate, blood lactate, and FAS score were collected from five subjects 

while they performed a simulated equipment operation task. The statistical relationships among 

them were analyzed using the Person’s correlation coefficient method. Experimental results enable 

us to state that sweat lactate is a reliable biomarker for evaluating the combined fatigue of 

construction equipment operators. The sweat-based sensor appears to be non-invasive, accurate, 

quantifiable, and portable. The experimental results clearly indicated a strong association between 

sweat lactate concentration and fatigue level. These experiments also confirmed that sweat lactate 

and blood lactate had a positive correlation and that sweat lactate concentration was slightly higher 

than blood lactate concentration, especially given the exhaustive status of the body. However, 



109 
 

future research is needed to engage a sufficient number of actual construction equipment operators 

in the experimental study to generate statistically reliable results. 
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CHAPTER 6 VALIDATION OF SWEAT LACTATE FOR 

ASSESSING PHYSICAL AND MENTAL FATIGUE AT 

CONSTRUCTION SITES  

The chapter discusses a hypothesis that lactate can be used to measure both physical and mental 

fatigue. Experiments were conducted using sweat lactate to assess physical and mental fatigue, 

respectively. And the results were compared to other established methods such as heart rate, 

breathing rate, skin temperature, Borg 6-20 for physical fatigue, and EEG signals and NASA Task 

Load Index for mental fatigue. 

6.1 Introduction 

Construction workers are highly susceptible to physical and mental fatigue due to their 

unpredictable schedules, physically demanding workloads, and challenging working conditions 

(Suraji et al., 2001). Specifically, construction work requires significant physical exertion due to 

long working hours and high work intensity, which can result in physical fatigue and impair 

physical functioning (Xiuwen Dong, 2005). Meanwhile, the unpredictable and harsh working 

environment of construction work can cause mental fatigue, which can impair cognitive function 

(M. Zhang et al., 2015). It is important to note that impaired physical and cognitive functioning 

can decrease productivity and increase the risk of injury in the workplace. For example, Öztürkoğlu 

and Bulfin (2012) discovered that as workers experience fatigue, the time required for task 

completion increases. This not only escalates physical exertion but also induces greater cognitive 

stress, ultimately contributing to a potential hazardous cycle of safety risks. Consequently, there 

is a pressing need to establish an approach capable of addressing the onset of physical and mental 

fatigue. 
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Existing studies have proposed using the EQ02 system for physical fatigue assessment (Anwer, 

Li, Antwi-Afari, Umer, Mehmood, et al., 2021) and EEG and eye-tracking glasses for mental 

fatigue assessment (H. Li et al., 2019; J. Li et al., 2019; Mehmood et al., 2023), but these devices 

can be bothersome when worn for extended periods and primarily exhibit significant responses to 

specific type of fatigue. Moreover, their measurements represent the consequences of fatigue 

rather than the immediate physiological responses during the development of fatigue. As a result, 

these assessment methodologies may introduce a time delay and may not provide a precise 

reflection of fatigue levels in real-time. Chemical biomarkers might offer a more suitable means 

of assessing fatigue for two key reasons: 1) they provide instantaneous physiological responses 

that track the progression of fatigue development, and 2) both physical and mental fatigue can lead 

to variations in chemical biomarkers within the body (Seshadri et al., 2019). Among the detectable 

chemical biomarkers, we have identified lactate as a potential candidate that is produced 

effectively during both physical and mental exertions. Therefore, it could serve as a valuable 

indicator of fatigue in both physical and mental contexts. This is primarily due to its significant 

functions within the body: 1) a major energy source ; 2) a main material to keep blood sugar level; 

and 3) an important signal for metabolic adaptation to fatigue (Brooks, 2018; Brooks et al., 2022). 

This is demonstrated in Brooks’s “Lactate Shuttle Theory” (Brooks et al., 2022). Therefore, we 

propose the utilization of sweat lactate as a non-invasive indicator for assessing both physical and 

mental fatigue. To validate this hypothesis, we conducted two experiments in the construction 

setting. In the assessment of physical fatigue, sweat lactate was validated by comparing it with 

established subjective measures like Borg Rating of Perceived Exertion 6-20 (Borg 6-20) and 

objective measures such as skin temperature, breathing rate, and heart rate during construction 

material handling tasks. Similarly, for evaluating mental fatigue, sweat lactate was compared with 
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established subjective measures like NASA Task Load Index (NASA-TLX) and objective 

measures such as electroencephalogram (EEG) during construction equipment operation tasks. 

And the credibility of sweat lactate measurements was substantiated through a comparison with 

the visualized brain activity patterns derived from EEG. 

6.2 Literature Review 

Fatigue is often associated with high energy consumption (Berger et al., 1991; Jie Ma et al., 2023) 

and occurs frequently in the construction domain (M. Zhang et al., 2015). It is a disagreeable and 

subjective symptom that can cause a range of bodily sensations from tiredness to extreme 

exhaustion, leading to a persistent state that hinders a person's ability to function normally (Ream 

& Richardson, 1997). The biological mechanism, psychosocial issues, and behavioral expressions 

are all intricately intertwined in this process (Lauren S. Aaronson et al., 1999). And the challenge 

has been a long-standing one for scientists.  

 
Fig. 6.1. Fatigue development 
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Fatigue occurs when there is an imbalance in the utilization and restoration of resources, leading 

to a decreased capacity for performing physical and/or mental tasks, which can be caused by 

factors like excessive demand or malfunctioning mechanisms. Fig. 6.1. illustrates the process of 

fatigue and demonstrates that both physical and mental exertions result in a physiological reduction 

of energy in bodily organs. In response to this energy loss, the body activates a "safety mechanism" 

that include generating lactate in organs to provide energy and support to the body (Brooks et al., 

2022; MacLaren et al., 1989). Lactate accumulation or efficient production is therefore not the 

cause of fatigue but is the major energy substrate to response exhaustion states (i.e., muscle and 

cognitive fatigue). Indeed lactate accumulation not just happens in physical exertion activities, but 

also in mental exertion activities (Schurr, 2008; van Hall et al., 2009a). A release of lactate from 

muscles, skin, and other driving cells provides energy for working muscles (Bergman et al., 1999; 

Stanley et al., 1986) and brain (Glenn et al., 2015b). 

Lactate production in the body is intricately tied to a metabolic process known as glycolysis. This 

process involves the conversion of glucose into pyruvate which can subsequently be metabolized 

to generate lactate, fulfilling the body's energy requirements (Chaudhry R, 2022 ; Granchi et al., 

2010; MacLaren et al., 1989). At exhaustion state the lactate: pyruvate ratio increases more than 

10-fold (MacLaren et al., 1989). This metabolic progression is illustrated in Equations (1) and (2): 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 → 2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 2𝐻𝐻+                                               (1) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐻𝐻+  
𝐿𝐿𝐿𝐿𝐿𝐿 
�⎯� 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 +  𝑁𝑁𝑁𝑁𝑁𝑁+             (2) 

According to “safety mechanism” and “lactate shuttle theory”, the process of fatigue development 

entails “safety mechanism” to cope with physical and/or mental energy consumption; for instance, 

the efficient lactate production at exhaustion to meet energy needs in muscle and/or brain (Brooks, 
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2018; MacLaren et al., 1989). This supports the feasibility that using lactate as an indicator to 

evaluate complex fatigue state.  

While lactate is present in various bodily fluids such as blood, sweat, tears, and saliva (Saha et al., 

2021), devices that measure lactate levels in blood, tears, and saliva are not appropriate for 

construction environments due to their invasive nature. Additionally, the concentration of lactate 

in sweat is higher than in other bodily fluids (Jie  Ma et al., 2023; R Segura, 1996; Saha et al., 

2021; Sakharov et al., 2010b). Accordingly, this study introduced the utilization of sweat lactate 

as a biomarker of assessing fatigue. To facilitate this, a wireless sweat lactate biosensor was 

integrated to quantify lactate concentrations.   

To confirm the suggested hypothesis, this study compared the results of sweat lactate with other 

established methods to validate the capability of sweat lactate in evaluating physical and mental 

fatigue. In order to obtain accurate measurements, two experiments were conducted. The first one 

is for physical fatigue assessment: thirteen construction operators performed construction manual 

material handling task for one hour, and the established methods included subjective (Borg 6-20) 

and objective metrics (EQ02 device). Borg 6-20 was used to measure subjective workloads while 

EQ02 device was used to measure heart rate, breathing rate, and skin temperature. The EQO2 

LifeMonitor is a device for assessing physical fatigue during construction tasks (Anwer et al., 

2020). Studies have found that it accurately measures heart rate, skin temperature, and breathing 

rate to assess physical fatigue (Anwer, Li, Antwi-Afari, Umer, Mehmood, et al., 2021). 

Additionally, machine learning techniques applied to EQ02 data have yielded high accuracy in 

estimating physical exertion levels (Umer et al., 2020). 

The second one is for mental fatigue assessment: the same group of participants performed 

construction equipment operation tasks for one hour, and EEG headband (Muse S, 2023) was 
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applied as a standard objective measurement, whereas NASA-TLX was used as the subjective 

assessment. EEG sensors are a popular method for measuring mental fatigue in various fields, 

including knowledge workers (Okogbaa et al., 1994), long-distance drivers (Jap et al., 2009; Lal 

et al., 2003), and construction workers (Chen et al., 2016). Specifically, EEG has been used to 

monitor workers' mental workload during construction activities that require climbing, nut 

selection, and tightening. Low frequency brain signals were found to be valid indicators of mental 

workload in these workers (Chen et al., 2016; Mehmood et al., 2022). 

A one-hour experimental period was designated to ensure the induction of a singular type of fatigue 

across these tasks. By corroborating the utility of sweat lactate as an indicator for evaluating both 

physical and mental fatigue, this study offers the prospect of a valuable tool in monitoring and 

assessing fatigue levels among construction workers. Such an advancement has the potential to 

enhance safety and productivity on construction sites. 
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6.3 Methodology 

 
Fig. 6.2. Overview of the research 

Fig. 6.2 provides a summary of the research investigation. Two experiments were conducted in 

this study. Experiment 1 was carried out to confirm the feasibility of using sweat lactate biomarker 

in physical fatigue assessment. Meanwhile, the purpose of Experiment 2 was to determine whether 

sweat lactate biomarker can be used to evaluate mental fatigue. 

6.3.1 Participants 

 

Table 6.1 Participants’ demographics 
 Age Height Weight BMI 

Mean  30.2 ± 3.51 176 ± 3.79 78.4 ± 4.56 25.1 ± 0.692 

Range  11 (25-36) 14 (170-184) 16 (70-86) 2.76 (23.7-26.4) 
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The demographic information of thirteen construction equipment operators was summarized in 

Table 6.1.  They were recruited to conduct Experiment 1 and Experiment 2. The sample size was 

selected based on the previous research studies which had similar purposes with this paper. Ten 

(Umer et al., 2022), five (P. Liu et al., 2021), and six (Arsalan et al., 2019; Li et al., 2020) were 

recruited in these studies. According to the prior literature research, more than ten subjects would 

be enough for the investigation and to support the findings.  

Prior to the experiments, each participant was required to abstain from alcohol and caffeinated 

beverages for at least 24 hours. Subjects had to be free of musculoskeletal issues in the past 12 

months and have no history of cardiovascular or pulmonary diseases in order to take part in the 

study. All participants provided informed consent before participating in the study. The study 

protocol was approved by the university's ethical committee, and all procedures were conducted 

in accordance with the Declaration of Helsinki (Reference number: HSEARS20200922003). 

Confidentiality of participant data was ensured throughout the study. 

6.3.2 Material and Equipment 

The list of tools utilized in this investigation can be found in Fig. 6.2. 

Laboratory Sweat Lactate Sensor 
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Fig. 6.3. Sweat Lactate Sensor: (a) the three main components; (b) the structure and on-body 

application 

The laboratory sweat lactate sensor is shown in Fig. 6.3. It consists of three major components: (1) 

the organic electrochemical transistor (OECT) lactate biosensor; (2) the wireless transmission 

device; and (3) the App imbedded mobile phone. The OECT lactate biosensor, which was applied 

to the skin, converts the biological signal (sweat lactate concentration) into an electrical signal by 

an enzymatic lactate oxidase (LOx) reaction, shown in Equation (3) & (4). And after that, the 

electrical signal was transmitted into the wireless transmission device using a flexible flat cable, 

which later used Bluetooth to send the signal to the mobile phone for analysis and displaying the 

results. As shown in Fig. 6.3 (b), the sweat lactate sensor can be attached to different areas of 

bodies; this extends its application scenarios.  

L-lactate + O2 
𝐿𝐿−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� Pyruvate + H2O2 ,           (3) 

H2O2    
                                            
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� O2 + 2H+ + 2e- ,                           (4) 

Commercial Devices (EQ02 and EEG) 

The EQ02 device (EQ02 LifeMonitor, 2023), is a highly suitable device for monitoring human 

physiology across various applications, such as sports and exercise research, clinical trials, 
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biofeedback, military training, and deployment, as it can measure clinical-grade data including 

cardiorespiratory function, temperature, breathing rate, and activity levels from people who are 

on-the-go. The device stores the data on the sensor and can be wirelessly transmitted for viewing 

on a mobile phone. 

Muse headband (Muse S, 2023) was used to capture EEG signals. It is a versatile and user-friendly 

EEG recording device. Dry electrodes are located at AF7, AF8, TP9, and TP10 on this headband, 

which also has four channels. The reference electrode, designated as FPz, is positioned on the 

forehead. EEG data is captured by the Muse headband at a sampling rate of 256 Hz. Data could be 

transmitted by connecting the Muse headband through Bluetooth to a smartphone. EEG data was 

captured on a smartphone using the "Mind Monitor" software and then transferred to a Laptop for 

further processing (Arsalan et al., 2019). 

Subjective assessments 

Borg 6-20 was employed to assess physical fatigue while NASA-TLX was used to evaluate mental 

fatigue. 

Borg 6-20 is a useful tool for assessing an individual's fatigue level during physical activity. As 

such, it is highly relevant in the context of occupational safety and health, as it can help identify 

potential risks and inform appropriate measures to promote worker well-being (Williams, 2017). 

The scale ranges from ‘6’ to ‘20’, and this value serves as an indicator to the intensity of activity. 

Borg 6-20 has been widely utilized for a variety of workout regimens for various populations and 

has been discovered to be a trustworthy instrument to assess physical demands for the 

corresponding jobs (Carvalho et al., 2009; De Souza et al., 2023; Scherr et al., 2013).  



120 
 

NASA-TLX is used to evaluate how mentally taxing a task is (Hart, 2006b). Six subscales are used 

to determine the score: mental demand, physical demand, temporal demand, performance, effort, 

and frustration. Higher scores indicate higher levels of workload. Each subscale is scored on a 

scale from 0 to 100. The NASA-TLX score is determined by adding the subscale scores together 

and ranking them according to their relative importance to the task being evaluated. Higher scores 

indicate higher degrees of task workload, and the resulting score ranges from 0 to 100. The mental 

workload of pilots, air traffic controllers, and other professionals is frequently assessed using the 

NASA-TLX score in aviation, the military, and other high-performance contexts. It can also be 

applied in academic research to assess participants' mental effort while they complete various tasks 

(Li et al., 2020; Liu et al., 2016; Puspawardhani et al., 2016). 

6.3.3 Procedure and Data Analysis 

The two experiments followed the same chronological order as depicted in Figure 6.4. By 

designing the tasks to induce specific type of fatigue, the participants were asked to undergo 

relaxed sitting for 30 minutes before starting the experiment task. Also, the task that lasted for one 

hour was deliberately designed to ensure that the construction manual material task would 

primarily cause physical fatigue, while the construction equipment operation task would primarily 

cause mental fatigue. 

 
Fig. 6.4 Experiment Process 
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Experiment 1 

 

Fig. 6.5 The pictures of the Experiment 1 

The thirteen construction equipment operators were recruited to participate in the study. A range 

of 88% to 95% humidity accompanied the temperature, which was between 29 and 31 °C. 

Therefore, perspiration was induced naturally by the environment in Experiment 1. Each 

participant was given a standardized training session on proper lifting and material handling 

techniques. To stabilize their physiological characteristics, the subjects were then instructed to sit 

for 30 minutes (Fig. 6.4). During the experimental process, participants were asked to carry a 15 

kg box during a period of one hour, performing a set of standardized tasks; this involved picking 

up the box from the start point and carrying it 15 meters to the finish point, after that, taking a two-

minute break and picking up the box to return to the start point again (Fig. 6.5). As shown in Fig. 

6.4, The experimental process was divided into three segments, with data collection occurring 

every 20 minutes (i.e., T-1 baseline, T-2 20 min, T-3 40 min, and T-4 60 min). The Borg 6-20 

scale was used to assess participants perceived physical exertion at the baseline and the end of 

each 20-minute segment. The scale is from 6 to 20, with higher scores indicating higher levels of 



122 
 

perceived physical exertion. Objective measurements of sweat lactate concentration, heart rate, 

breathing rate, and skin temperature were collected at the baseline and the end of each 20-minute 

segment. Sweat lactate concentration was measured using the laboratory developed lactate sensor 

on sweat samples taken from the participants' foreheads (Fig. 6.5). Heart rate, breathing rate, and 

skin temperature were measured using EQ02 LifeMonitor wearable device (EQ02 LifeMonitor, 

2023) (Fig. 6.5), which must be worn next to individual’s skin.  

Data from the Borg scale, sweat lactate concentration, heart rate, breathing rate, and skin 

temperature were collected and analyzed for each segment. Descriptive statistics were used to 

summarize the data. The correlations between sweat lactate and other parameters were analyzed 

by Pearson correlational coefficients. The responsiveness of the sweat lactate sensor and the EQ02 

systems in measuring changes from baseline to post-task was calculated using the standardized 

response mean (SRM) which is a unit-free yardstick. The SRM is calculated by dividing the mean 

change in the variable by the standard deviation of the change (Liang et al., 1990). The resulting 

value represents the number of standard deviations that the change in the variable exceeds. It 

provides a standardized measure of the effect size, which can help determine the significance of 

the change (Rosenthal et al., 1994). 

Experiment 2 
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Fig. 6.6 The pictures of the Experiment 2 

The thirteen construction equipment operators participated in this study. The experiment was 

conducted on different days at the same timeslot (i.e., from 9.00 am to 11.00 am). Considering the 

possibility that some operators may work in an air-conditioned environment and will therefore not 

have enough sweat for the accurate measurement of biomarker levels using the sweat sensor. 

Pilocarpine was used to induce sweat in Experiment 2 (Biagi et al., 2012; Buono & Sjoholm, 1988; 

Davis et al., 2005). Before starting the experiment, each participant was given a standardized 

tutorial session (i.e., Practice 15 mins) on collecting their demographic information and learning 

the progress of the experiment (Fig. 6.4). All of the excavator operators were given an hour to 

accomplish an excavation operation that involved digging up the ground and moving the debris 

from pits to transport vehicles (Fig. 6.6). The time-on-task approach was used to intentionally 

produce mental fatigue and avoid from physical fatigue. Data collection took place every 20 

minutes across the three sections of the trial (Fig. 6.4). The participants were given the NASA-

TLX questionnaire to determine their perceived mental effort at the baseline and end of each 20-

minute phase. To measure the physiological reactions to the task, objective measurements of sweat 

lactate concentration and EEG were made at the baseline and end of each 20-minute phase. The 

lactate concentration in sweat was assessed using the lactate sensor developed in the laboratory by 

collecting sweat samples from the participants' forearms. In addition, EEG was measured using a 
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wireless, dry electrode device (Muse S, 2023) to capture brain wave activity from the subjects' 

scalps. 

During each segment, data was collected and analyzed from the NASA-TLX questionnaire, sweat 

lactate concentration, and EEG. Descriptive statistics, including correlation and p-value analyses, 

were used to summarize the data. The physiological signals obtained from EEG were analyzed by 

performing a paired t-test on the absolute power for each frequency band of the EEG signal 

obtained from all the channels of the MUSE headband during the four experimental phases: 

baseline, 20 min, 40 min, and 60 min. A null hypothesis and p-value were used to determine the t-

test decision. A significant difference between the groups was considered if the p-value was less 

than 0.05, and the null hypothesis was 1. To confirm the effectiveness of the suggested approach, 

the researchers utilized Pearson correlation coefficients to analyze the relationship between 

changes in sweat lactate levels and NASA-TLX scores. Additionally, this study computed 

correlation coefficients between the average sweat lactate measurements and an EEG metric [(θ + 

α) / (α + β)] to enhance the ecological validity of the method for construction equipment operators. 

This specific EEG metric was chosen based on the previous study conducted by Jap et al. (2009) 

which reported it as the most commonly used metric for computing mental fatigue. 

6.4 Results 

6.4.1 Experiment 1-Physical Fatigue Assessment  

The demographic information for each parameter is displayed in Table 6.2. 

Table 6.2 Description of experiment data for physical fatigue assessment  
Variables (N=13) Mean SD Range (Min – Max) 

SL at baseline (mM) 1.15 ±0.171 1 (6 – 7) 

SL at the end of the task (mM) 44.9 ±5.18 5 (15 – 20) 
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HR at the baseline (Beats/minute) 71.1 ±7.89 24 (60 – 84) 

HR at the end of the task (Beats/minute) 114 ± 14.1 52 (91 – 143) 

BR at the baseline (breaths/minute) 15.2 ±1.2 5.1 (13.2 – 18.3) 

BR at the end of the task (breaths/minute) 26.6 ±1.49 4.9 (24.6 – 29.5)  

ST at the baseline (°C) 28.5 ±0.763 2.8 (26.8 – 29.6)  

ST at the end of the task (°C) 37.2 ±1.20 4.6 (34.3 – 38.9) 

Borge-20 at the baseline  6.31 ±0.48 1 (6 – 7) 

Borge-20 at the end of the task 17.1 ±1.63 5 (15 – 20) 

Note: SL is for sweat lactate; HR is for heart rate; BR is for breathing rate; ST is for skin temperature; 
SD is for standard deviation. 
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Fig. 6.7. The mean values of the five parameters in Experiment 1 along with timespan 

As seen in Fig. 6.7, there were strong positive relationships between sweat lactate concentration 

and Borg 6-20 (r = 0.9886) as well as other physiological parameters including heart rate (r = 

0.9803), breathing rate (r = 0.9707), and skin temperature (r = 0.9998). All of the characteristics 

tend to rise as the task progresses. 

Table 6.3 Responsiveness of biomarkers for the assessment of physical fatigue during material 
handling task 

Indices of 
responsiveness 

Sweat Lactate Heart Rate Breathing Rate Skin Temperature 
(°C) 
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(mM) (beats/minute) (beats/minute) 

Baseline 1.15 (0.171) 71.8 (7.89) 15.2 (1.2) 28.5 (0.763) 

Post work 44.7 (5.18) 114 (14.1) 26.6 (1.49) 37.2 (1.20) 

Mean Difference 43.55 42.2 11.4 8.7 

Pooled standard 
deviation 

2.31 4.69 1.64 1.40 

Standard deviation of 
paired differences 

5.15 13.6 1.92 1.21 

(SRM) Standardized 
response mean  

8.48 3.12 5.97 7.20 

 

Table 6.3 illustrates the responsiveness of physiological measures for assessing physical fatigue 

during construction material handling tasks. All the physiological parameters including sweat 

lactate (SRM = 8.48), heart rate (SRM = 3.12), breathing rate (SRM = 5.97), and skin temperature 

(SRM= 7.20) received positive values of SRM, thereby, there were significant shifts in the 

physiological parameters' reactivity from the baseline to its post-work. 

Table 6.4 Correlations between physiological parameters and Borg 6-20 scale score 
Parameters  Borg 6-20 scale score 

 Time Baseline  20 min 40 min 60 min 

Sweat Lactate 

(mM)  

Baseline  0.522    

20 min  0.833**   

40 min    0.687**  

60 min    0.817** 

Heart rate 

(beats/minute)  

Baseline  0.679*    

20 min  0.662*   

40 min    0.744**  

60 min    0.844** 

Breathing rate 

(breaths/minute) 

Baseline  -0.459    

20 min  -0.080   
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40 min   0.333  

60 min    0.165 

Skin Temperature 

(°C) 

Baseline  0.401    

20 min  0.124   

40 min    0.410  

60 min    0.326 

Note: *Correlation is significant at the 0.05 level; **Correlation is significant at the 0.01 level. 

 

Table 6.4 displays the relationships between the four physiological parameters and subjective 

fatigue ratings during the whole experiment phases. There was a significant correlation between 

sweat lactate and Borg 6-20 scale at 20 min (r = 0.833), 40 min (r = 0.687) and 60 min (r = 0.817)  

of work. Significant correlations were also found between the heart rate and the corresponding 

subjective fatigue levels at baseline (r = 0.679), 20 min (r = 0.662), 40 min (r = 0.744) and 60 min 

(r = 0.844) of work. There was no significant correlation between skin temperature measurements  

and subjective fatigue scores. Also, little correlation exists between subjective fatigue scores and 

breathing rate. 

Table 6.5 Correlations between sweat lactate and cardiorespiratory/thermoregulatory measures 
Parameters  Sweat lactate 

 Time Baseline  20 min 40 min 60 min 

Heart rate 

(beats/minute)  

Baseline  0.681*    

20 min  0.241   

40 min   0.592*  

60 min    0.780** 

Breathing rate 

(breaths/minute) 

Baseline  -0.596*    

20 min  -0.268   

40 min   0.177  

60 min    0.001 
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Skin Temperature 

(°C) 

Baseline  -0.205    

20 min  -0.137   

40 min    0.016  

60 min    0.333 

Note: *Correlation is significant at the 0.05 level; **Correlation is significant at the 0.01 level. 

 

Table 6.5 displays the associations between sweat lactate concentration and various physiological 

metrics. There were significant positive correlations between sweat lactate and heart rate at 

baseline (r = 0.681), 20 min (r = 0.592), and 60 min (r = 0.780) of work. However, there was no 

substantial relationships found between breathing rate and sweat lactate. Similarly, no significant 

correlation between skin temperature and sweat lactate was found. 

6.3.2 Experiment 2-Mental Fatigue Assessment   

Table 6.6 Statistical description for mental fatigue assessment 
Parameter (N=13) Mean SD Range 

SL at baseline (mM) 1.44 ±0.361 1.13 (0.98 – 2.11) 

SL at 20 min (mM) 4.01 ±1.32 3.76 (2 – 5.76) 

SL at 40 min (mM) 8.29 ±1.13 3.31 (6.89 – 10.2) 

SL at the end of the task (mM) 13.2 ±2.35 8.07 (10.43 – 18.5) 

NASA-TLX at baseline  10.1 ±3.48 13 (4 – 17) 

NASA-TLX at 20 min 31.4 ±4.35 14 (23 – 37) 

NASA-TLX at 40 min 45.8 ±4.31 15 (40 – 55) 

NASA-TLX at the end of the 
task  

68.2 ±6.66 20 (59 – 79) 

 

Table 6.6 lists the demographic details of the study participants. As the task progresses, the ground 

truth NASA-TLX shows an obvious increase of the mental workload while the sweat lactate 

concentration also went up.  
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Table 6.7. Correlation between sweat lactate concentration and other parameters (EEG metric and 
NASA-TLX) 

Parameters  Sweat Lactate 

 Time Baseline  20 min 40 min 60 min 

EEG 
[(θ+α)/(α+β)] 

Baseline 0.406    

20 min  0.172   

40 min   0.340  

60 min    0.539* 

NASA-TLX Baseline 0.354    

20 min  0.867**   

40 min   0.923**  

60 min    0.561* 

Note: *Correlation is significant at the 0.05 level; **Correlation is significant at the 0.01 level. 

 

The correlations between sweat lactate and other established parameters (EEG metric and NASA-

TLX) for mental fatigue are shown in Table 6.7. There were significant positive correlations 

between NASA-TLX and sweat lactate at 20 (r = 0.867), 40 (r = 0.923) and 60 (r = 0.561) min of 

the task. And positive relationships between EEG metric [(θ+α)/(α+β)] and sweat lactate were 

discovered through the experiment phases. Specifically, there was a significant correlation at 60 (r 

= 0.539) min of the work. 

Table 6.8. p-values for EEG power spectral densities in different brain regions 
Time Channels EEG Frequency Bands (p values by t-test) 

Delta Theta Alpha Beta Gamma 

T1-T2 (0&20 min) AF7 0.444 0.568* 0.552 0.658* 0.649* 

AF8 0.473 0.275 0.752** 0.847** 0.918** 

TP9 -0.016 0.304 0.688** 0.750** 0.896** 

TP10 -0.029 0.140 0.339 0.565* 0.914** 

T2-T3 (20&40 min) AF7 0.659* 0.638* 0.369 0.749** 0.666* 
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AF8 0.683* 0.871* 0.600* 0.744** 0.652* 

TP9 0.616* 0.620* 0.617* 0.658* 0.768** 

TP10 0.620* 0.626* 0.451 0.765** 0.816** 

T3-T4 (40&60 min) AF7 0.779** 0.852** 0.788** 0.817** 0.820** 

AF8 0.901** 0.798** 0.642* 0.686** 0.651* 

TP9 0.731** 0.747** 0.767** 0.857** 0.818** 

TP10 0.820** 0.821** 0.821** 0.704** 0.758** 

Note: *Correlation is significant at the 0.05 level; **Correlation is significant at the 0.01 level. 

 

Table 6.8 illustrates a statistically significant difference between the EEG power spatial density in 

several brain areas. According to the t-test applied to EEG signals, the Alpha band was found to 

have significant statistical differences at the right frontal channel AF8 and the left temporal channel 

TP9 during all experiment phases. At the left frontal channel AF7 and right temporal channel TP10, 

it was found to have significant statistical differences only between experiment phases at 40 

minutes and 60 minutes. The Beta and Gamma Bands have significant statistical differences at all 

the channels (AF7, AF8, TP9 and TP10) across all the experiment phases. The Delta band was 

found to have significant statistical differences at T2-T3 and T3-T4 experiment phases. Moreover, 

the theta band showed statistically significant differences at the frontal and left regions of the brain 

across the whole experiment phases.  
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Fig. 6.8 Brain Map 

The brain activity of the construction equipment operators during the four phases of the experiment 

was visualized using the power spectral density of the EEG data, and this is presented in Fig. 6.8. 

The brain maps indicate strong cortical activity by the color red and little brain activity by the color 

orange. It is evident from the brain maps that the alpha and beta bands of the AF7 and AF8 frontal 

channels have visually distinguishable brain activity across all the phases of the experiment. 

6.4 Discussion 

The present study posited a hypothesis that sweat lactate levels could potentially serve as an 

indicator of both physical and mental fatigue. To investigate this hypothesis, two separate 

experiments were carried out to assess the feasibility of using sweat lactate as a chemical 

biomarker to evaluate physical and mental fatigue. The physical fatigue assessment revealed that 

strong Pearson correlation coefficients existed between sweat lactate levels and other established 

measures, including heart rate, breathing rate, skin temperature, and Borg 6-20 scale. This finding 

corroborated the hypothesis that sweat lactate could be an effective biomarker for evaluating 

physical fatigue. As for the mental fatigue assessment, positive correlations were observed 

between sweat lactate levels and subjective ratings on the NASA-TLX scale throughout the entire 
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experiment. The results support the hypothesis that sweat lactate could be utilized as a metric to 

assess mental fatigue. Moreover, a significant correlation was found between the EEG metric and 

sweat lactate levels at the conclusion of the task. Overall, the study's findings validate that sweat 

lactate could serve as a valuable biomarker for evaluating combined fatigue. 

The study revealed increasing trends in sweat lactate concentrations during both physical and 

mental activities, which confirms the lactate shuttle theory that suggests lactate as the primary 

energy source to support the body (Brooks, 2018; Brooks et al., 2022). Additionally, research by 

Seifert et al. (2010) indicates that lactate serves as an energy source for the brain and triggers the 

release of cerebral brain-derived neurotrophic factor (BDNF), which promotes neuronal growth, 

survival, and memory formation. As observed in the construction operation task, an increase in 

lactate levels may play a “safety mechanism” role in protecting the body from energy loss. It also 

could be used to indicate the intensity of energy consumption. Furthermore, lactate levels 

potentially could serve as a recommended nutrient intake indicator to relieve fatigue related ill-

effects. Studies by Hashimoto et al. (2018) and Wang et al. (2017) suggest that lactate uptake is 

directly related to executive function and can improve cerebral functioning, respectively. These 

findings suggest that lactate could be utilized as a fatigue indicator and provide recommendations 

on lactate nutrition intake to alleviate fatigue, enhance endurance during activities, and increase 

productivity in the construction industry. Therefore, lactate as a fatigue indicator could be a 

valuable tool for promoting productivity and preventing work-related accidents. 

While various methodologies such as the EQ02 device and EEG have been used to monitor fatigue 

in studies, sweat lactate sensors offer competitive advantages in fatigue assessment. Firstly, by 

examining the internal physiological reaction to fatigue development, sweat lactate sensors can 

provide more accurate results. Additionally, the variations of sweat lactate concentrations can 
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indicate both physical and mental fatigue, making this method effective in most fatigue scenarios. 

Secondly, the small size of the sweat lactate sensor allows for placement in various positions on 

the body, making it versatile in different scenarios. Thirdly, lactate can serve as a means of 

compensating for energy loss, and by keeping track of lactate levels, one can suggest the immediate 

consumption of lactate nutrients as a way to reduce fatigue and boost endurance, thereby, 

increasing productivity. 

While this study confirms the potential of sweat lactate to evaluate physical and mental fatigue, 

there are some limitations to consider. Firstly, the small sample size may limit the generalizability 

of the findings. Secondly, due to funding constraints, the same group of participants performed 

both tasks to ensure consistency between experiments. However, construction operators may have 

varying levels of familiarity with manual handling tasks or different health conditions from 

construction manual workers, thereby, could affect their results. Thirdly, the mean value of sweat 

lactate from mental fatigue assessment was lower than that from physical fatigue assessment, 

which could be due to different perspiration stimulations and activity types. Future studies could 

conduct cross-experiments to investigate the influence of sweat stimulation on lactate 

concentrations. 

6.5 Conclusion 

Construction workers often suffer from physical and mental fatigue simultaneously, but until now, 

there has been no established physiological metric or methodology to monitor this comprehensive 

fatigue situation. This study, therefore, aimed to evaluate the effectiveness of sweat lactate as a 

physiological metric in measuring both physical and mental fatigue for the first time. The results 

of the study demonstrated that the proposed hypothesis is practical for assessing both physical and 

mental fatigue throughout various construction tasks. The findings highlight the lactate’s energy 
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resource role in physical and mental consumption and confirm the suitability of sweat lactate as a 

tool for monitoring fatigue in the construction industry. The study proposed a monitoring system 

that can assess both physical and mental fatigue using a single device, eliminating the need for 

separate systems for each type of fatigue. By offering a non-invasive tool for simultaneous 

monitoring and proactive control of physical and mental fatigue, this technology might contribute 

to better productivity of construction workers. Also, it could provide prompt advice on nutrient 

intake to mitigate the negative effects of fatigue and aid in lowering the number of accidents related 

to physical and mental exhaustion at construction sites. 
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

Considering fatigue management, which still has remained interesting issues to tackle. Studies 

have shown that the metabolic changes could be the responses of fatigue development (Brooks et 

al., 2022; Seshadri et al., 2019), this provides a cutting-edge methodology to detect and manage 

fatigue. Our project explored the usefulness of non-invasive sweat biosensors to measure sweat 

biomarkers for fatigue assessment. Overall this study highlights that sweat biomarkers have huge 

potential for evaluating fatigue. Comparing the existent physiological fatigue indicators, it has a 

broader application in construction industry for it can be used to detect fatigue arising from manual 

workers and equipment operators. Sweat biosensor offers an innovative tool to achieve non-

invasive, real-time, and accurate fatigue assessment. The instant results might also be used to 

mitigate fatigue levels by recommending fluid or nutrient intake.  

The conclusions and suggestions are outlined below based on the individual studies conducted for 

this research project: 

6.1 Systematic Review 

A systematic review was conducted to report the results of an evaluation of wearable biosensors 

for the real-time assessment of stress and fatigue utilizing sweat biomarkers. Sweat has been 

offered as an alternative to traditional Biofluid tests because it is both readily available and reliable 

when it comes to evaluating a wide range of biomarkers. Biosensors have been developed for the 

analysis of sweat-based biomarkers for stress and fatigue assessment. There were 13 publications 

included in this review that looked at the biomarkers of sweat. Results revealed that metabolites 

(i.e., Lactate, Glucose), electrolytes and amino acids were found as sweat biomarkers. Sweat-based 
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biomarkers are frequently monitored in real-time using potentiometric and amperometric 

biosensors. Wearable biosensors such as an epidermal patch or a sweatband have been widely 

validated in the scientific literature. The bio-signals recorded by these wearable sensors took 

anywhere from 1 to 20 minutes to begin. For the evaluation and monitoring of general health, 

including stress and fatigue, sweat is an important biofluid. It is becoming increasingly common 

to use biosensors that can measure a wide range of sweat biomarkers to detect and prevent fatigue 

during high-intensity work, such as construction. Even though wearable biosensors have been 

validated for monitoring various sweat biomarkers, such biomarkers can only be used to assess 

stress and fatigue indirectly. As a result, further investigation and testing studies are warranted to 

identify the relationship between sweat biomarkers and fatigue development before any clear 

conclusions can be formed. 

6.2 Sweat Biomarkers and Fatigue Development 

This study proposed a novel approach to monitor the fatigue levels of construction rebar benders 

by measuring chemical biomarkers using sweat sensors. Fatigue resulting from dehydration and 

energy depletion can severely endanger the safety and health of construction workers. Sodium, 

lactate, glucose, and sweat rate were chosen as detectable biomarkers in this study, as their 

concentrations could indicate hydration status, energy consumption, and electrolyte balance, 

making them suitable for fatigue monitoring. The results were used to construct a fatigue model 

using supervised machine learning approaches. Construction rebar experiments were conducted 

while the sweat-based biosensors were applied to rebar workers to evaluate their fatigue with five 

different classifiers, demonstrating accuracy rates ranging from 71.43% to 96.43%. The results 

suggested that sweat-based biomarkers offer a non-invasive and accessible fatigue monitoring 

alternative. This could potentially help alleviate fatigue-related adverse ill-effects like dehydration 
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or cramping by enabling instant fluid or nutrient supply recommendations during construction 

manual tasks. It also provided valuable insights into the physiological effects of rebar work. 

Besides, this study presented a valuable model for predicting workers' fatigue levels, which could 

be applied in the construction industry to improve workers' safety and productivity. Furthermore, 

the study highlighted the importance of maintaining appropriate hydration, nutrition, and 

electrolyte balance during physically demanding tasks like construction manual work. 

6.3 Wearable OECT-based Sweat Lactate Device Fabrication 

Because traditional electrochemical sensors have a limited range of detection and low sensitivity, 

they are not frequently employed in wearable technology. In contrast, organic electrochemical 

transistors (OECTs) have become a popular choice for wearable applications due to their ability 

to amplify signals and convert ions to electrons. This study developed a highly sensitive and 

selective sweat lactate sensor using an OECT-based platform. The sensor was designed with a 

wireless transmission device and a mobile app for data analysis. The sensor's strong selectivity 

was shown by the fact that its response to lactate was more than two orders of magnitude greater 

than its sensitivity to other interferences. In summary, a wearable sweat lactate sensor has the 

potential to enable real-time monitoring of lactate concentrations in sweat. 

6.4 Validation of the Sweat Lactate Device 

A study was conducted to investigate the accuracy and usefulness of a sweat-based biosensor in 

measuring the fatigue levels of construction equipment operators. Specifically, the paper firstly 

elaborated on the suitability of selecting sweat lactate as a biomarker for measuring combined 

fatigue (i.e., a combination of physical and mental fatigue) that construction equipment operators 

often experience. The results revealed that sweat lactate could be an effective indicator of assessing 
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fatigue during operation tasks. Further, a between-day test-retest experiment validated the 

reliability of the sweat-based lactate sensor. Importantly, a positive correlation was found between 

blood lactate and sweat lactate. And this also validated the accuracy of the sweat sensor. The 

Fatigue Assessment Scale, a subjective fatigue method, validated sweat lactate as a fatigue 

assessment biomarker. Analytical results indicate that the lactate measurements from the sweat-

based sensor do reflect the fatigue level of equipment operators, and the device had good reliability 

for measuring sweat lactate concentration. 

6.5 Validation of sweat lactate for assessing physical and mental fatigue  

Owing to the nature of construction work, construction workers may experience both physical and 

mental fatigue, making it challenging to assess their fatigue levels accurately. One way to evaluate 

combined fatigue (i.e., combination of physical and mental fatigue) is to use lactate, a major source 

of energy. This study aimed to validate the usefulness of sweat lactate as an indicator of physical 

and mental fatigue by conducting two experiments. In the first experiment, sweat lactate for 

physical fatigue assessment was validated through comparing with subjective (the Borg Rating of 

Perceived Exertion 6-20 (Borg 6-20)) and objective measures (skin temperature, breathing rate, 

and heart rate) during construction material handling tasks. In the second experiment, sweat lactate 

for mental fatigue assessment was evaluated through comparing with subjective (NASA Task 

Load Index (NASA-TLX)) and objective measures (electroencephalogram (EEG)) during 

construction equipment operation tasks. The results showed that sweat lactate concentrations 

varied over time in both experiments. Specifically, sweat lactate was strongly correlated with 

validated parameters (Borg 6-20 and heart rate), confirming the feasibility of using it to assess 

physical fatigue. Similarly, sweat lactate was found to be ecologically valid for assessing mental 

fatigue, as it correlated with ground truth (NASA-TLX) and EEG results. Besides, the brain 
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visualization pattern obtained from EEG was also associated with sweat lactate concentrations. 

Overall, this study suggests that sweat lactate can be used to monitor combined fatigue state among 

construction workers. 

6.6 Recommendations for future studies 

The potential of sweat biomarker analysis is vast and future research can explore multiple avenues 

to further expand its application. One of the key areas of research could be measuring a greater 

number of biomarkers from sweat biofluid using a single wireless platform while simultaneously 

improving detection techniques for increased sensitivity and specificity. This will make it possible 

to analyze numerous physiological and biochemical processes, such as stress and fatigue, more 

thoroughly and accurately. 

Additionally, researchers may explore the utility of sweat biomarker outputs such as electrolytes, 

glucose, and lactate to recommend instant nutrition intake and their impact on alleviating the 

negative effects of fatigue. The information gathered from sweat biomarkers can provide crucial 

insights into the physiological and metabolic state of an individual and can help to personalize 

nutrition intake. This could optimize the management of worker fatigue and enhance worker safety 

and productivity in the construction industry. 

Further, longitudinal studies may be conducted to track changes in biomarker levels over time in 

response to different stressors or interventions. These studies can provide valuable information on 

the dynamic nature of biomarker changes and help to develop more targeted stress and fatigue 

management strategies. By providing reliable diagnostic and screening tools for stress and fatigue 

assessment, employers can better monitor the health and safety of their workers and make more 

informed decisions regarding work schedules and safety protocols. 
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Overall, this study represents an essential step towards improving the health and well-being of 

construction workers and underscores the potential for incorporating sweat-based biomarkers into 

fatigue monitoring protocols. And continued research into sweat biomarker analysis can lead to 

significant advancements in the fields of personalized health, stress and fatigue management, and 

occupational health and safety.  
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