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Abstract 
 

Photogrammetry is the technique that allows capturing and reconstructing 3D models 

of objects and scenes from multiple images. In recent years, with the rising demand for 

efficient 3D reconstruction, real-time photogrammetry has attracted much attention in 

various domains, such as unmanned aerial vehicles (UAVs) navigation, disaster 

emergency response, human tracking, and autonomous driven. This research focuses 

on the enhancement of the computational efficiency of photogrammetric algorithms by 

taking advantage of parallel architectures and combining them with cutting-edge 

methods such as deep learning to achieve real-time photogrammetry in various 

scenarios. 

 

The traditional visual navigation algorithms in a GPS-denied environment enable the 

acquisition of approximate relative poses of cameras. However, tradition methods, such 

as visual odometry (VO) suffers from attitude estimation errors that accumulate over 

time and cause the estimated trajectory to drift, and the data processing efficiency is 

relatively low. To address these challenges, this research firstly presents a feature-based 

cross-view image matching and retrieval method for real-time camera pose estimation 

by incorporating VO and photogrammetry algorithms. Specifically, the method uses a 

deep-learning feature extraction and matching method to improve the robustness of the 

relative pose estimation of the camera by VO. To correct accumulated errors by VO, 

the method selects keyframes and applies photogrammetric algorithm of space 

resection to determine the accurate pose information of the keyframes. The accurate 

camera pose information of keyframes are then used to rectify the possible drift caused 

by VO. Parallel architectures are implemented to enhance the data processing efficiency. 

Experimental analysis using real UAV datasets shows that the developed method 

achieves a root mean square error (RMSE) of 4.7 m for absolute positional error and 

0.33° for rotation error, as compared with ground truth data. The developed method 

also achieves an efficiency of 12 frames per second (FPS) based on the parallel 

architecture implemented in a regular computer, indicating its real-time performance. 

 

Dense image matching in real time is a challenging task because of the high 

computation demand and high degree of ambiguity that often occurs in practical 
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situations. The state-of-the-art methods such as the semi-global matching (SGM) with 

diverse local similarity metrics, offering favourable dense matching results against 

various types of noise and disturbances, such as illumination variations and the ability 

to handle textureless regions and preserve edges. However, the computational burden 

associated with SGM hinders its real-time processing capabilities. To overcome these 

challenges, this research leverages parallel structured systems, specifically graphic 

processing units (GPUs), to enabled real-time dense image matching. A comprehensive 

disparity estimation pipeline based on a GPU-accelerated device is developed and 

evaluated. An effective parallel scheme and data layout strategy is proposed for the core 

functions in the disparity estimation algorithm, and the algorithm codes are further 

optimised to enhance efficiency. The optimised algorithm is deployed on a high-end 

GPU, utilising the sum of absolute distance (SAD) as the similarity measurement, 64 

disparity levels, and 8 path directions for the SGM method. As a result, the system 

achieves high-quality real-time dense matching results for different datasets, including 

a benchmark dataset, close-range images, and aerial images.  

 

With the derived camera pose information and dense image matching results from the 

previous steps, 3D data (e.g., 3D point clouds) can be generated through 

photogrammetric space intersection (triangulation). However, existing methods seldom 

focuses on the efficiency of 3D data generation for real-time applications. To overcome 

this limitation, this research proposes a parallel architecture based framework that 

performs multi-image triangulation based on an optimised angle-based error metric. 

The proposed framework adopts a one-track-one-line strategy to exploit the parallel 

computing power of GPU and can achieve real-time performance. The performances of 

the proposed 3D data generation framework have been demonstrated by two application 

scenarios: (1) real-time 3D point cloud generation from aerial images, and (2) real-time 

3D human motion acquisition and monitoring. The experimental results show that the 

proposed framework can process a pair of aerial images in 156 ms on average and 

generate a 3D point cloud incrementally displayed by an optimised grid map in real 

time. Moreover, the proposed framework was adopted to transfer human body feature 

from 2D to 3D. Experimental results show that the developed methods can capture and 

monitor 3D human motion at 17 FPS and achieve centimetre-level accuracy within a 

15 m distance. 
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In conclusion, real-time photogrammetry offers significant benefits in enabling real-

time 3D data acquisition and modelling for diverse applications and domains. This 

research presents novel contributions to the photogrammetry field by extending it to 

real-time photogrammetry. The novel approaches and implementations including real-

time cross-view feature matching for camera pose determination, real-time dense image 

matching, and real-time triangulation for 3D data generation can serve as foundations 

for further research and development in real time photogrammetry. The developed real-

time photogrammetric methods and systems will have great potential for various 

applications, such as more intelligent UAV applications based on real-time feedback 

control, disaster emergency response from real-time 3D mapping, enhanced human 

tracking and monitoring assisted with real-time 3D data, and autonomous driven 

supported by real-time 3D pose determination and 3D mapping of the surrounding 

environment. 
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Chapter 1 Introduction 
 

1.1 Research Background 

 

Photogrammetry has a rich historical background and has traditionally been used for 

extracting three-dimensional (3D) information from two-dimensional (2D) images. 

However, the introduction of real-time photogrammetry has transformed this domain 

by facilitating dynamic and interactive 3D reconstruction. As it can promote the 

generation of accurate and detailed 3D models in real time for diverse industrial 

applications, real-time photogrammetry has garnered significant attention. Moreover, 

real-time photogrammetry has emerged as a promising solution to address the growing 

demand for real-time 3D applications (Saouli, 2019). In particular, 3D models can be 

captured and reconstructed with immediate or near-instantaneous results by leveraging 

the principles of photogrammetry and advanced parallel architectures (Wang, 2019). 

 

Real-time photogrammetry has presented a longstanding challenge in the computer 

graphics domain as considerable amounts of data must be processed to generate high-

quality 3D models. The “real-time” aspect refers to the ability to process the images 

and produce results almost instantly (Technology et al, 1991). Real-time 

photogrammetry refers to the process of capturing and processing images or video in 

real time to generate 3D models of objects or environments (Förstner, 2005). The 

evolution of technology over the years has enabled the realization of real-time 

photogrammetry. Recent advancements in parallel architectures have facilitated the 

realisation of real-time 3D applications capable of generating real-time 

photogrammetric models. In this research, we explore the significance of parallel 

architectures in revolutionising the field of photogrammetry and their impact on the 

development of interactive and immersive 3D applications. 

 

1.1.1 Importance of Real-time Photogrammetry and its Applications 

 

Real-time photogrammetry techniques generate 3D models in real-time or near real-

time through image capture, feature extraction, camera pose determination, and model 
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reconstruction. Real-time photogrammetry is a rapidly evolving field that has garnered 

considerable attention due to its wide ranging applications across various industries, 

such as unmanned aerial vehicles (UAVs), medicine, human tracking and monitoring, 

land surveying, emergency rescue operations, architecture, and construction. 

 

In the UAV domain, real-time photogrammetry facilitates autonomous navigation and 

obstacle avoidance. Drones with real-time photogrammetry capabilities can capture 

images of their surroundings and generate 3D models in real time, which can promote 

obstacle detection and path planning, enabling UAVs to make immediate decisions and 

navigate safely in dynamic environments. Obstacle detection can be realised by 

comparing the current environment with the reconstructed model. Moreover, 

algorithms such as simultaneous localisation and mapping (SLAM) can be used to track 

the position and orientation of the drone relative to the 3D model (Frosi et al., 2023; 

Roy et al., 2023; Sawada and Hirata, 2023). By analysing the differences between the 

images captured in real time and reconstructed model, obstacles such as buildings, trees, 

or power lines can be detected, allowing the UAV to adjust its flight path for avoiding 

collisions.  

 

Path planning is another key task facilitated by real-time photogrammetry. The 3D 

models generated in real time can accurately represent the environment, including 

terrain and obstacles. UAVs can leverage this information to identify optimal paths and 

trajectories for their missions. For example, in search and rescue operations, drones can 

apply real-time photogrammetry to rapidly generate 3D models of the disaster area. 

Based on these models, efficient paths can be planned to navigate through debris and 

locate survivors (Daud et al., 2022; Kim et al., 2019). Furthermore, the real-time nature 

of photogrammetry allows UAVs to adapt to dynamic environments. As the drone 

traverses its flight path, it can continuously capture images and update the 3D model in 

real time. This approach provides the UAV with up-to-date information regarding its 

surroundings, enabling it to react to environmental changes, such as moving objects or 

newly emerging obstacles (Shang and Shen, 2018; Vasudevan et al., 2016). 

 

In the medical field, real-time photogrammetry has proven valuable across various 

aspects of surgical procedures. Surgeons can capture intraoperative images of the 

patient’s anatomy and use real-time photogrammetry algorithms to reconstruct 3D 
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models of the surgical site. These 3D models enable precise visualisation, providing 

surgeons with enhanced spatial understanding and assisting them in making critical 

decisions during the procedure. In this manner, 3D models can help improve surgical 

outcomes and reduce patient risk. Postoperative assessment is another crucial 

application of real-time photogrammetry. By comparing preoperative images with 

postoperative images and 3D models, healthcare professionals can objectively evaluate 

the surgical outcomes, assess the effectiveness of the procedure, and monitor the 

recovery progress. Thus, real-time photogrammetry techniques can help identify 

potential complications or issues that may necessitate further intervention or adjustment 

to the treatment plan (Patias, 2002; Treleaven and Wells, 2007). 

 

Real-time photogrammetry can facilitate human tracking and monitoring in various 

domains. By using camera networks and real-time photogrammetry algorithms, the 3D 

movements of individuals can be tracked and reconstructed in real time. Such 

frameworks have been applied in surveillance, crowd monitoring, and behaviour 

analysis. In surveillance scenarios, real-time photogrammetry enables the tracking and 

identification of individuals in real time. By reconstructing the 3D movements of 

individuals, abnormal behaviours or potential security threats can be effectively 

detected, thereby improving public safety and security (Geiger et al., 2011; Izadi et al., 

2011). Crowd monitoring is another area where real-time photogrammetry plays a 

significant role. Patterns and behaviours can be identified by analysing the 3D 

movements and interactions of individuals within a crowd. This approach has 

implications for crowd management, crowd flow optimisation, and prevention of 

overcrowding in public spaces (Junior et al., 2010). Real-time photogrammetry can also 

facilitate behavioural analysis, in which the intentions or emotional states of individuals 

can be inferred by examining their movements and postures. By reconstructing the 

individuals’ 3D movements, subtle cues and patterns can be identified, contributing to 

applications in psychology, human–computer interactions, and intelligent surveillance 

(Chen et al., 2021; Sarafianos et al., 2016). 

 

The use of real-time photogrammetry in the architecture and construction industry can 

promote collaboration among the various stakeholders involved in a construction 

project. By generating real-time 3D models, architects, engineers, contractors, and 

clients can visualise the project in a comprehensive and interactive manner. Such 
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visualisation can foster effective communication and allow stakeholders to better 

understand the design intent and construction progress (Balali et al., 2018). Real-time 

photogrammetry also supports decision-making processes during the construction 

phase. Construction professionals can utilise real-time 3D models to assess construction 

progress, monitor quality control, and evaluate compliance with design specifications. 

In addition, these models enable virtual inspections, reducing the need for physical site 

visits and enhancing the overall efficiency (Shang and Shen, 2018). 

 

1.1.2 Challenges in Real-time Photogrammetry 

 

One of the main challenges in achieving real-time performance in photogrammetry is 

the high computational requirements. Generating 3D models from images requires 

extensive computational power, especially when dealing with large datasets or complex 

scenes. The algorithms used for feature extraction, matching, and reconstruction are 

computationally intensive, often requiring significant processing time. 

 

To overcome these challenges, the use of parallel architectures has emerged as a 

promising solution (La Salandra et al., 2021; Moustafa et al., 2016). Parallel 

architecture involves the use of multiple processors or computing units to divide and 

conquer tasks, thereby increasing the processing speed and efficiency. By distributing 

the computational load across multiple units, parallel architectures can significantly 

improve the efficiency of real-time photogrammetry applications. Several researchers 

have recognised the potential of parallel architectures in improving the real-time 

capabilities of photogrammetric applications.  

 

For instance, La Salandra et al. (2021) developed a parallel algorithm that leverages the 

power of multiple computing units to process images simultaneously. This approach 

divided image processing into subtasks assigned to different computing units, which 

enabled parallel execution and reduced the overall processing time. The results 

demonstrated the feasibility of achieving real-time photogrammetry using parallel 

architectures. In addition to La Salandra et al., other researchers have explored the use 

of parallel architecture in real-time photogrammetry. For example, Moustafa et al. 

(2016) developed a parallel framework that used multi-core CPUs and graphics 
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processing units (GPUs) to accelerate the photogrammetric pipeline. Real-time 

performance was achieved by leveraging the parallel processing capabilities of GPUs 

for computationally intensive tasks, such as dense reconstruction. 

These studies collectively highlight the potential of parallel architectures as a promising 

solution for achieving real-time photogrammetry. By harnessing the power of multiple 

processors or computing units, parallel architectures facilitate the efficient distribution 

of computational tasks, resulting in faster processing times and enhanced real-time 

performance. However, the effectiveness of parallel architecture may depend on 

various factors, such as the application, dataset size, and hardware configuration. 

Further research and optimisation efforts are required to fully exploit the benefits of 

parallel architectures in real-time photogrammetry fully. 

 

In conclusion, real-time photogrammetry plays a crucial role in real-time 3D 

applications. However, the realisation of real-time performance is challenging due to 

the high computational requirements involved. Parallel architectures have emerged as 

a promising solution for enhancing efficiency by leveraging multiple processors or 

computing units. Researchers have explored the use of parallel architectures in various 

photogrammetric algorithms and demonstrated their potential in achieving real-time 

photogrammetry.  

 

1.1.3 Advances in Parallel Architecture for Real-time Photogrammetry 

 

Parallel architectures are pivotal in enhancing the performance and efficiency of various 

computational tasks, including real-time photogrammetry. In recent years, significant 

advancements have been made in parallel computing, enabling researchers to exploit 

the power of multiple processors or computing units to accelerate complex 

computations. 

 

In parallel architectures, multiple tasks or subtasks are simultaneously executed, 

resulting in the distribution of the workload among multiple processors or computing 

units. By dividing a task into smaller units and processing them in parallel, the overall 

processing time can be significantly reduced, leading to increased efficiency (Foster 
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and Kesselman, 2003). This computational power of multiple processors can be 

harnessed to rapidly execute computationally intensive algorithms. 

 

Parallel architectures can be implemented using various strategies, such as multi-core 

CPUs, GPUs, and specialised hardware accelerators. Multi-core CPUs consist of 

multiple processing units within a single chip, enabling concurrent execution of 

multiple threads or processes. Conversely, GPUs excel in parallel processing due to 

their large number of cores and high memory bandwidth. GPUs have been extensively 

used in graphics rendering and are increasingly being leveraged for general-purpose 

parallel computing (Owens et al., 2007). Specialised hardware accelerators offer 

dedicated hardware components tailored for specific computational tasks, such as field-

programmable gate arrays (FPGAs) and application-specific integrated circuits. These 

accelerators can enable efficient parallel processing due to their custom-designed 

architecture and optimised circuits (Pesce et al., 2022; Thomasian, 2022). 

 

The effectiveness of parallel architectures depends on several factors, such as the nature 

of the task, degree of parallelism in the algorithm, and hardware configuration. Certain 

tasks exhibit higher inherent parallelism, enabling more efficient utilisation of parallel 

architecture, whereas others may involve dependencies or sequential portions that limit 

the achievable level of parallelism. In the context of real-time photogrammetry, parallel 

architectures have facilitated efficiency improvements and the realisation of real-time 

performance. The computational load can be distributed by leveraging multiple 

processors or computing units, thereby reducing the processing time required for 

complex photogrammetric algorithms. Several studies have demonstrated the 

effectiveness of parallel architecture in tasks such as feature extraction, matching, 

bundle adjustment, and dense reconstruction (Knyaz et al., 2020). 

 

In summary, parallel architectures have emerged as a powerful tool for enhancing the 

performance and efficiency of computationally demanding tasks, particularly in real-

time photogrammetry. These frameworks enable the simultaneous execution of 

multiple tasks or subtasks across multiple processors or computing units, significantly 

reducing the overall processing time. Various strategies, such as multi-core CPUs, 

GPUs, and specialised hardware accelerators, can be used to implement parallel 
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architecture. The successful utilisation of parallel architectures in real-time 

photogrammetry highlights their potential in enabling real-time 3D applications. 

  



8 

 

1.2 Research Motivation 

 

Research on real-time photogrammetry based on parallel architectures for 3D 

applications must be conducted given the growing demand for advanced visual 

navigation, human tracking and monitoring, and 3D mapping capabilities in various 

fields, such as UAVs, surveillance systems, and urban planning. 

 

Visual navigation for UAV positioning has attracted significant attention due to the 

expanding applications of UAVs across various industries, such as aerial photography, 

disaster management, and package delivery. Real-time photogrammetry plays a crucial 

role in UAV navigation by enabling the generation of 3D models from onboard images. 

However, real-time performance must be achieved to ensure accurate and precise UAV 

positioning, thereby enabling obstacle detection, collision avoidance, and precise 

control. Parallel architectures can enhance the execution efficiency of real-time 

photogrammetry algorithms, allowing UAVs to navigate in real time with improved 

accuracy and efficiency. 

 

Human tracking and monitoring systems rely on real-time photogrammetry to capture 

and analyse human movements in complex environments. These systems are widely 

used in security surveillance, sports analysis, and healthcare monitoring. Real-time 

photogrammetry combined with parallel architectures can rapidly extract human pose 

information and enable motion tracking, facilitating immediate response and analysis. 

By using parallel architecture, the processing time can be reduced, thereby promoting 

the timely detection and tracking of human activities and enhancing safety and security 

measures. 

 

The demand for 3D mapping has significantly grown, driven by applications such as 

urban planning, virtual tourism, and archaeological preservation. Real-time 

photogrammetry serves as a valuable tool for capturing the geometry and texture of 

real-world objects and scenes. However, the generation of high-quality 3D data in real 

time is computationally intensive, especially when dealing with large-scale 

environments or dynamic scenes. Parallel architectures can address these challenges by 

distributing the computational workload across multiple processors or computing units, 
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facilitating faster and more efficient 3D data generation. Thus, real-time 

photogrammetry based on parallel architectures can revolutionise the way we visualise 

and interact with 3D maps, enabling dynamic updates and immersive experiences. 

 

In conclusion, the motivation for research on real-time photogrammetry based on 

parallel architectures stems from the increasing demand for advanced visual navigation, 

human tracking and monitoring, and 3D data generation capabilities. Notably, these 

applications necessitate real-time performance for accurate and efficient operations. By 

leveraging parallel architecture, the execution efficiency of real-time photogrammetry 

algorithms can be significantly enhanced, resulting in improved positioning accuracy, 

enhanced human tracking and monitoring, and efficient 3D map generation. This 

research aims to advance the field by exploring the potential of parallel architectures in 

addressing the computational challenges associated with real-time photogrammetry in 

the relevant domains. 

 

1.3 Objectives and Contributions 

 

This thesis presents novel approaches and strategies for real-time photogrammetry 

applications based on parallel architectures. The objective is to address the challenges 

associated with achieving real-time performance and demonstrate the effectiveness of 

parallel processing in improving the efficiency and accuracy of 3D data generation. 

This research provides a practical and adaptable solution that can be readily 

implemented in various domains requiring real-time photogrammetry. The objectives 

and contributions of this research can be summarised as follows: 

 

(1) Developing approaches and algorithms that enable accurate and efficient matching 

of images captured from different viewpoints. This work focuses on feature-based 

cross-view image matching and camera pose determination, including techniques 

such as deep-learning feature detection and feature-based similarity search for 

image matching and retrieval methods. The contributions of this work include the 

advancement of state-of-the-art cross-view image-matching techniques to acquire 

camera poses for aerial robot visual navigation in a global positioning system (GPS) 

denied environment and provision of insights into the effectiveness and efficiency 
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of different approaches. The results of comparing the accuracy of our proposed 

method with other popular image matching and retrieval methods show that our 

method is higher than other popular methods at the top one and top five of the search 

results from aerial image datasets, with an accuracy of ~60% and ~73%, 

respectively. Eventually, this method is combined with a deep learning-based VO 

method to achieve real-time camera pose determination in GPS denied 

environments only using aerial images, where the RMSE can reach 4.7 m, and the 

efficiency of the algorithm execution sustains around 12 FPS. 

 

(2) Improving the efficiency of dense image matching algorithms for generating 

accurate depth maps and 3D reconstructions. Dense image matching involves the 

computation of the correspondences between pixels in multiple images, which is 

crucial for generating accurate depth maps and 3D reconstructions. This work 

explores semi-global matching (SGM)-based dense image matching, taking into 

account efficiency considerations such as matching costs and similarity 

measurements. The contributions of this work include the optimisation of dense 

image matching techniques by leveraging GPU acceleration and derivation of 

insights into the performance enhancement of these algorithms. Compared with the 

traditional SGM method, our proposed method, not only improves the disparity 

generated using benchmark dataset, close-range and aerial images, but also 

surpasses the traditional SGM method in accuracy and efficiency. 

 

(3) Development of strategies that enable real-time generation of 3D data for real-time 

3D photogrammetric applications. This work first explores GPU-accelerated 

triangulation methods for the real-time generation of 3D point clouds. Subsequently, 

algorithms from earlier chapters on real-time photogrammetry are incorporated to 

facilitate the instantaneous acquisition and monitoring of 3D human kinematics. 

Contributions of this work include advancing complex triangulation algorithms 

from static to real-time implementations. The advantage of photogrammetry over 

traditional machine vision algorithms is the ability to acquire 3D information in 

large-scale images. The application of this advantage is demonstrated in practical 

scenarios such as aerial real-time 3D point cloud generation, motion capture, and 

analysis of human kinematics. This work serves as a valuable reference for the 

development of real-time photogrammetry applications. 
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Overall, the research objectives and contributions are focused on enhancing the 

efficiency and accuracy of real-time photogrammetry applications. By addressing the 

challenges encountered by the relevant algorithms in different scenarios, this research 

aims to advance the field of real-time photogrammetry, provide valuable insights, and 

identify techniques for various domains that rely on real-time 3D data generation and 

analysis. 
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1.4 Outline of the Thesis Structure 

 

This thesis consists of six chapters, and the remainder is organised as follows: 

 

Chapter 2 presents a comprehensive literature review establishing the background and 

fundamentals principles of real-time photogrammetry. Furthermore, state-of-the-art 

studies on visual navigation and parallel architectures in 3D photogrammetric 

applications are explored. The final section provides a brief overview of the latest 

research and developments in real-time aerial mapping. 

 

Chapter 3 focuses on real-time cross-view image matching and camera pose 

determination. The objective of the research described in this chapter is to identify 

approaches and algorithms for accurate and efficient feature-based image matching 

from different image sources. Additionally, the integration of photogrammetric 

methods and computer vision algorithms is proposed to achieve accurate visual 

navigation for aerial robots.  

 

Chapter 4 focuses on real-time dense image matching by leveraging GPU acceleration. 

It describes GPU architecture and performance analyses, GPU-based centre-symmetric 

census transform (CT) and matching cost computation, and optimisation of disparity 

map generation and parallel computing. By leveraging the computational power of 

GPUs, the efficiency and speed of dense image-matching algorithms can be 

significantly improved, enabling real-time processing for depth estimation in different 

scenarios. 

 

Chapter 5 explores real-time triangulation for 3D data generation, focusing on 

techniques for generating point clouds and extracting 3D information from aerial 

images. Real-time triangulation is implemented with multi-threading and deep-learning 

algorithms to acquire and monitor 3D human body kinematics. Using real-time 

algorithms and strategies, experimental evaluations of real-time photogrammetric 

applications are conducted across various domains that rely on real-time 3D data 

generation and analysis. 

 



13 

 

Chapter 6 presents the concluding remarks and highlights potential future research 

directions. 

 

This thesis aims to develop and evaluate real-time photogrammetric methods for 3D 

applications. Figure 1.1 presents the logical relationships among the chapters in this 

thesis. The literature review in Chapter 2 elaborates upon the fundamental principles 

and state-of-the-art approaches referred to in the main body of the thesis, forming a 

solid basis for the analysis and discussions in subsequent chapters. 

 

 

Figure 1.1 Logical connections across chapters 

 

Real-time photogrammetry poses significant challenges in terms of computational 

efficiency, accuracy, robustness, and scalability. To address these challenges, Chapter 

3 to Chapter 5 of this thesis proposes novel algorithms and techniques that leverage 

parallel computing, computer vision, and deep learning to achieve real-time 

performance in different photogrammetric tasks. Chapter 6 concludes the thesis by 

summarising the main contributions and findings, discussing the limitations and 

challenges, and suggesting future directions for research. 
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Chapter 2 Literature Review 
 

Photogrammetry is defined as “the science or art of obtaining reliable measurements by 

means of photographs” (Manual of Photogrammetry, 1966). A more recent definition 

by the American Society for Photogrammetry and Remote Sensing (ASPRS) is “the art, 

science, and technology of obtaining reliable information about physical objects and 

the environment through processes of recording, measuring, and interpreting 

photographic images and patterns of recorded radiant electromagnetic energy and other 

phenomena.” In simple terms, photogrammetry enables the acquisition of 3D 

measurements (e.g., position, orientation, shape, and size) of objects from photographs. 

The fundamental principle of photogrammetry is triangulation, which involves the 

calculation of the intersection of an object’s image points from multiple perspectives to 

determine its position. Through the analysis of the geometry and features within a set 

of images, photogrammetry enables the creation of photorealistic and precise 3D 

models. 

 

This chapter discusses the fundamentals of photogrammetry, encompassing key 

concepts and techniques. Moreover, it provides an overview of how these principles 

and foundations are applied in photogrammetry and highlights their significance and 

relevance in various research fields. Furthermore, this chapter delves into the latest 

research advancements in photogrammetric applications with parallel architectures, 

aiming to uncover potential research directions and emerging trends in the field. By 

elucidating the foundational principles, applications in relative disciplines, and state-

of-the-art research progress, this chapter aims to provide a comprehensive 

understanding of photogrammetry and clarify the scope for its advancement. 

 

2.1 Fundamentals of Photogrammetry 

 

This section presents a comprehensive literature review on the fundamental aspects of 

photogrammetry, focusing on feature point extraction and matching, dense image 

matching, triangulation, and space resection. These methods are essential in subsequent 

studies and are discussed in detail in this section, including their principles and 

applications. The review includes a thorough examination of the literature, offering an 
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in-depth understanding of the key concepts, techniques, and advancements in 

photogrammetry. Furthermore, the significance and relevance of these methods in 

various applications are highlighted, allowing the readers to grasp the fundamental 

principles and state-of-the-art research associated with photogrammetry. 

 

2.1.1 Feature Extraction and Matching 

 

Photogrammetry, which is aimed at extracting 3D information from 2D images, relies 

on feature detection and matching. These methods are fundamental to numerous 

photogrammetry applications, such as 3D reconstruction, image registration, and object 

tracking. Feature detection and matching techniques enable the accurate alignment of 

images, extraction of depth information, and creation of high-quality 3D models 

through the identification of distinctive points or regions and establishment of 

correspondences between these points. This section explores the various feature 

detection and matching approaches, including traditional and deep-learning techniques. 

Understanding these methods is essential for the advancement of photogrammetry and 

development of more robust and effective algorithms. 

 

2.1.1.1 Traditional Methods 

 

Feature matching and detection are pivotal in photogrammetry and serve as the 

foundation for subsequent processes. Feature detection involves the identification of 

salient points or regions within images, which have unique characteristics, such as 

corners, edges, or textures. These features can serve as reliable reference points for 

subsequent computations. Upon detecting features, correspondences are established 

between corresponding features in different images. This correspondence information 

is vital for tasks such as image alignment and 3D reconstruction, as it enables the 

tracking of the same feature points across multiple images. 
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i) Scale-Invariant Feature Transform (SIFT) 

 

One notable traditional feature detection and matching method is the SIFT (Lowe, 

2004). The SIFT algorithm was developed to address challenges associated with scale, 

rotation, and affine transformations, which are commonly encountered in images. The 

objective is to achieve invariance to these transformations by constructing a scale-space 

representation of the image and identifying keypoints at multiple scales.  

 

The SIFT algorithm begins by constructing a scale-space pyramid through the repeated 

convolution of the image with Gaussian filters at different scales. This process results 

in a series of blurred images at different levels of scale. Next, the difference of 

Gaussians (DoG) is computed by subtracting adjacent scales in the scale-space pyramid, 

as shown in Figure 2.1(a). The DoG images enhance the regions with significant 

intensity variations and potential keypoints. The blurred image pyramid L is obtained 

using the following equations: 

 

 𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) × 𝐼(𝑥, 𝑦) (2.1) 

 𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎ଶ
𝑒ି(௫మା௬మ)/ଶఙమ

 (2.2) 

 

where G is the Gaussian blur operator, I is an input image, (x, y) denotes the location 

of each pixel in I, and 𝜎 is the scale factor of the corresponding pixel. 

 

  

(a) DoG processing (b) Keypoint represented in scale 

Figure 2.1 Overview of SIFT algorithm using DoG (Bradski and Kaehler, 2008). 
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The SIFT algorithm applies a process named keypoint localisation to identify the 

keypoints. As shown in Figure 2.1(b), the algorithm examines the extrema in the DoG 

scale space to identify keypoints that are stable and invariant to changes in scale. This 

process involves comparing a pixel with its 26 neighbours across the current and 

adjacent scale levels. Keypoints that do not have extreme values are discarded. After 

identifying the keypoints, SIFT descriptors are computed to represent the local image 

structure around each keypoint. These descriptors capture the gradient magnitudes and 

orientations within the local neighbourhoods of the keypoints. They are highly 

distinctive and invariant to changes in scale, rotation, and affine transformations. In 

particular, the descriptors are constructed by dividing the local region surrounding the 

keypoint into subregions and computing the gradient orientations and magnitudes 

within each subregion. The resulting descriptor is a high-dimensional vector that 

encodes the local image information. 

 

The SIFT algorithm has been applied in various areas of photogrammetry and computer 

vision. One of its primary applications is feature matching (Hua et al., 2010), in which 

SIFT descriptors are used to establish correspondences between keypoints in different 

images. By comparing the SIFT descriptors, similarity measures such as the Euclidean 

distance (Hua et al., 2012) or cosine similarity (Wang et al., 2022) can be used to 

identify the best matches. Feature matching using SIFT has been widely implemented 

in applications such as image stitching (Zhang et al., 2017), object recognition 

(Alhwarin et al., 2008), and image retrieval (Chhabra et al., 2020), where robust and 

accurate matching is essential. SIFT also plays a significant role in image registration, 

which involves aligning multiple images into a common coordinate system (Ma et al., 

2016). The distinctive SIFT keypoints and descriptors facilitate the estimation of 

geometric transformations, such as affine or perspective transformations, to achieve 

accurate alignment of images. Image registration using SIFT has been applied in 

medical imaging, where the precise alignment of images is crucial (Allaire et al., 2008). 

Additionally, SIFT has been used in 3D reconstruction tasks (Du et al., 2011). By 

extracting SIFT keypoints from images captured from different viewpoints, 

correspondences between keypoints can be established, enabling the estimation of 

camera poses and reconstruction of 3D scenes. 
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Despite its effectiveness, the SIFT algorithm exhibits computational complexity and 

significant memory requirements, which may limit its real-time performance on large-

scale datasets. Owing to these characteristics, SIFT cannot be effectively applied in 

real-time and resource-constrained environments. Moreover, SIFT is sensitive to noise 

and blur, and significant changes in the viewpoint can affect its performance. Because 

this algorithm primarily focuses on local features, it cannot effectively capture global 

contextual information. Additionally, the performance of SIFT is vulnerable to 

illumination changes. 

 

ii) Speeded-Up Robust Features (SURF) 

 

SURF is a feature detection and description method that was developed by Du et al. 

(2011) as a more efficient and accurate alternative to SIFT. SURF uses integral images 

to approximate the Laplacian of Gaussian (LoG), enabling rapid calculation of the 

scale-space extrema. Owing to the use of integral images, the computational complexity 

of SURF is lower than that of traditional methods, rendering SURF well-suited for real-

time applications. 

 

One of the key contributions of SURF is its ability to approximate the LoG using 

integral images, facilitating rapid computation of scale-space extrema, which is 

essential for detecting features at different scales. The integral images can be computed 

as follows: 

 

 𝐼∑(𝑥) = ෍ ෍ 𝐼(𝑖, 𝑗)

௝ஸ௬

௝ୀ଴

௜ஸ௫

௜ୀ଴

 (2.3) 

 

where 𝐼∑(𝑥) represents an integral image at location (i, j). The integral image is the sum 

of all pixels in the input image I within a rectangular region formed by the origin and 

x. To further refine the keypoints, SURF applies the Hessian-matrix-based detector 

technique. The Hessian matrix at each potential keypoint is computed based on the 

second-order derivatives of the Gaussian scale-space and used to assess the stability 

and repeatability of keypoints. Points with low contrast or poorly defined locations are 

discarded, resulting in a more accurate set of keypoints. For scale adaptation, the image 
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is filtered using a Gaussian kernel. Thus, given a point X = (x, y), the Hessian matrix 

H(x, σ) at x and scale σ is defined as 
 

 𝐻(𝑥, σ) = ቈ
𝐿௫௫(𝑥, σ) 𝐿௫௬(𝑥, σ)

𝐿௫௬(𝑥, σ) 𝐿௬௬(𝑥, σ)
቉ (2.4) 

 

where Lxx(x, σ) is the convolution of the Gaussian second-order derivative with the 

image I at point x, and Lxy(x, σ) and Lyy(x, σ) are similarly defined. 

 

The SURF descriptor is based on the Haar wavelet responses in a square region around 

the feature point. The descriptor is designed to be compact and efficient while still 

capturing adequate information to distinguish different features. The square region 

surrounding the keypoint is divided into smaller square subregions, and the Haar 

wavelet responses are computed for each subregion. The responses are then 

accumulated to form a feature vector normalised for illumination and contrast 

invariance. The resulting descriptor is 64-dimensional and can be efficiently compared 

using metrics such as the Euclidean distance or cosine similarity. 

 

The computationally efficiency of SURF is particularly advantageous in large-scale 

photogrammetry projects requiring numerous images to be processed (Afriansyah et al., 

2019). The rapid computation of SURF features enables prompt analysis of extensive 

image datasets, which helps reduce the time required for image matching and enables 

more efficient photogrammetric workflows. Additionally, SURF’s robustness to scale 

and rotation changes is instrumental when dealing with challenging real-world 

scenarios in photogrammetry. Environmental conditions, camera perspectives, and 

object variations often introduce image scale and rotation variations (Teke et al., 2011). 

As SURF features are robust to these changes, accurate and reliable matching can be 

achieved across diverse image conditions, leading to more accurate 3D reconstructions. 

Another primary application area is the generation of dense point clouds (Diskin and 

Asari, 2013) and 3D reconstructions (Zhang et al., 2014a). By leveraging SURF 

features for image matching, researchers can accurately align images and triangulate 

the corresponding points to reconstruct the 3D structure of a scene. The high speed and 

robustness of SURF features help enhance the efficiency and accuracy of reconstruction. 

Additionally, SURF features have been used in photogrammetric applications such as 
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image-based localisation and camera pose estimation (Kim et al., 2014; Sheta et al., 

2012). By matching SURF features between reference and new images, researchers can 

accurately determine the position and orientation of a camera with respect to a given 

scene.  

 

Despite its computational efficiency and robustness, SURF has several limitations. In 

scenarios involving significant viewpoint changes or occlusions, SURF may not be as 

accurate as more complex methods, such as SIFT. Furthermore, the performance of 

SURF depends on the lighting conditions, as it lacks explicit illumination invariance.  

 

iii) Oriented FAST and Rotated BRIEF (ORB) 

 

ORB, proposed by Rublee et al. (2011), is an effective alternative to SIFT and SURF 

for feature detection and matching in the field of computer vision. ORB combines the 

efficiency of the FAST (features from accelerated segment test) corner detector with 

the robustness of the BRIEF (binary robust independent elementary features) descriptor. 

This combination renders ORB a popular choice for real-time applications that require 

a balance between speed and accuracy. 

 

 

Figure 2.2 Overview of the FAST feature detector (Rosten and Drummond, 2006) 

 

The FAST corner detector operates by analysing the intensity patterns in a circular 

neighbourhood of each pixel. By comparing the intensity values of the central pixel 

with those of its neighbouring pixels, FAST can determine whether the pixel is a corner. 

The FAST detector examines a set of pixels in a circle with a radius of three pixels to 
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identify a corner. As shown in Figure 2.2, the detector compares the intensity value of 

the central pixel with the intensities of 16 surrounding pixels p located at the 12, 3, 6, 

and 9 o’clock positions, as well as four additional pixels on the diagonals. If a sufficient 

number of consecutive pixels have intensities greater than that of the central pixel plus 

a threshold or lower than that of the central pixel minus the threshold, the central pixel 

is classified as a corner. 

 

This high-speed corner detection method has several advantages. First, it compares a 

small number of intensity values and is thus computationally efficient. Second, it is 

robust to image noise as only a limited number of pixel comparisons are required for 

corner identification. Lastly, its simplicity and speed make it suitable for real-time 

applications that require quick and efficient feature extraction, such as robotics, 

augmented reality, and video analysis. 

 

The BRIEF descriptor used in ORB is a compact binary descriptor that encodes the 

intensity comparisons between pairs of pixels. The fundamental concept of BRIEF is 

to generate a set of binary tests based on randomly selected pixel pairs and compute a 

binary code that represents the results of these tests. The resulting binary code can be 

considered a unique fingerprint of the local image structure around the keypoint. The 

use of binary codes enables efficient matching of image features and reduces the 

memory required for storage and computation. The binary test can be defined as 

 

 𝜏(𝑝; 𝑥, 𝑦) = ൜
1: 𝑝(𝑥) < 𝑝(𝑦)

0: 𝑝(𝑥) ≥ 𝑝(𝑦)
 (2.5) 

 

where 𝜏 represents the binary test, and p(x) is the intensity of p at a point x. The BRIEF 

descriptor capture local image properties by comparing the intensities of pixel pairs. To 

achieve computational efficiency and compactness, binary strings are used to represent 

these comparisons. The binary tests are designed to be simple and fast, typically 

involving the calculation of intensity differences between pixel pairs at specific 

locations. The outcome of each test is encoded as either “1” or “0,” which indicate 

whether the intensity of the first pixel is greater than the second pixel. Repeating this 

process for multiple pixel pairs generates a binary code that represents the unique 

intensity comparison pattern of a particular image patch. By combining the FAST 
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corner detector and BRIEF descriptor, ORB achieves both efficiency and robustness in 

feature extraction. The corner detection step identifies keypoints, which are then 

described by the BRIEF descriptor. These descriptors capture the distinctive properties 

of the keypoints, enabling accurate feature matching across different images or frames. 

 

ORB has been widely applied in computer vision tasks such as object recognition, 

image stitching, and SLAM. In object recognition, ORB features are used to identify 

and track objects in images or videos (Rosten and Drummond, 2006). In SLAM, ORB 

features are used to estimate the camera position and map the environment in real-time 

(Mur-Artal et al., 2015). ORB is also valuable in dense image matching, which involves 

determining the correspondences between every pixel in a pair of images (Chen et al., 

2020). Dense matching is essential for tasks such as surface reconstruction, orthophoto 

generation, and digital elevation model (DEM) generation. By leveraging the 

robustness and efficiency of ORB, dense image matching algorithms can accurately 

match pixels across images, enabling the generation of dense and accurate 3D models. 

 

Despite its efficiency and robustness, ORB has several limitations. Specifically, its 

performance may be limited compared with those of more advanced methods such as 

SIFT or SURF in scenarios with significant viewpoint changes or image noise or when 

dealing with image sequences with repetitive patterns or no distinctive features. 

 

2.1.1.2 Deep-Learning Methods 

 

In recent years, deep-learning methods have garnered significant attention in feature 

detection and matching applications in photogrammetry. These methods leverage the 

power of artificial neural networks to learn discriminative features and automatically 

perform robust matching between images. Although traditional feature descriptors, 

such as SIFT and SURF, have been widely used, deep-learning-based methods exhibit 

superior accuracy and robustness, especially in challenging scenarios involving 

viewpoint changes, occlusions, or illumination variations. 
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i) SuperPoint and SuperGlue 

 

SuperPoint and its companion method SuperGlue have emerged as popular deep-

learning-based approaches for feature detection and matching in photogrammetry. 

SuperPoint, proposed by DeTone et al. (2018), is a fully convolutional neural network 

(CNN) that concurrently generates dense local feature keypoints and descriptors. This 

simultaneous generation of keypoints and descriptors enables efficient and accurate 

feature extraction. 

 

 

Figure 2.3 Overview of the SuperPoint framework (DeTone et al., 2018) 

 

As shown in Figure 2.3, The input to the SuperPoint network is an image, typically in 

the form of a two-dimensional array of pixel values. The size of the input image may 

vary depending on the specific implementation or requirements of the application. The 

network takes the image as input and processes it through its layers to extract 

meaningful feature representations. The SuperPoint network generates two main 

outputs: local feature keypoints and their corresponding descriptors. SuperPoint 

generates a dense set of local feature keypoints across the input image. These keypoints 

represent distinctive points in the image that can be used for further analysis, such as 

feature matching or tracking. Each keypoint is characterized by its location (coordinates) 

within the image and other properties that describe its local image structure. These 

properties could include scale, orientation, and possibly other characteristics depending 

on the network architecture and the specific implementation of SuperPoint. In addition 

to keypoints, SuperPoint also produces descriptors for each detected keypoint.  
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Descriptors are compact and informative representations of the local image structure 

surrounding each keypoint. These descriptors encode information about the gradient or 

intensity variations near the keypoint. They are designed to be invariant to certain image 

transformations, such as changes in viewpoint, scale, and lighting conditions, while 

maintaining discriminative power for accurate feature matching. The descriptors 

generated by SuperPoint typically take the form of vectors or feature embeddings. The 

dimensionality of the descriptors can vary depending on the network architecture, but 

they are often designed to be compact to facilitate efficient storage and matching. The 

descriptors’ length and content capture each keypoint’s distinctive characteristics, 

enabling subsequent matching or recognition tasks. 

 

 

Figure 2.4 Overview of the SuperGlue framework (Sarlin et al., 2020). 

 

The integration of SuperPoint with SuperGlue (Sarlin et al., 2020) enhances the feature-

matching process. SuperGlue performs pairwise matching of the extracted keypoints 

and descriptors to estimate correspondences between multiple images. By using the 

dense local feature keypoints and descriptors obtained from methods such as 

SuperPoint, SuperGlue incorporates local and global information to enhance the 

reliability and accuracy of feature matching. By considering the context and 

relationships between keypoints across different images, SuperGlue can mitigate 

ambiguities and enhance the consistency of the matching results. 

 

The input to the SuperGlue network consists of two sets of keypoints and descriptors, 

extracted from two images by SuperPoint, which are being compared for feature 
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matching. The SuperGlue network processes these inputs to estimate correspondences 

between the keypoints from the two images, considering both local and global 

information to improve the matching reliability and accuracy. The network combines 

the local descriptors with a global context obtained through a graph neural network 

module. The output of the SuperGlue network is a set of correspondences between the 

keypoints from the two images, which represent matches or associations between the 

keypoints considered the same or similar across the images. The correspondences can 

be represented as pairs of keypoints, each consisting of a keypoint from the first image 

and its corresponding keypoint from the second image. Additionally, the network may 

provide a confidence score or similarity measure for each correspondence, indicating 

the quality or strength of the match. 

 

SuperPoint and SuperGlue have been widely used in various computer vision tasks. Li 

et al. (2021) demonstrated the capability of SuperPoint in detecting interest points in 

texture-less areas in images, with SuperGlue used to perform feature matching and 

correspondence estimation. These methods typically outperform traditional techniques, 

rendering them valuable in computer vision applications. Xu et al. (2020) highlighted 

that SuperPoint and SuperGlue play a crucial role in tasks such as visual SLAM and 

visual odometry (VO) in visual navigation systems. These methods can be used to 

extract and match features across consecutive frames, aiding in camera pose estimation 

and map creation, which are important for navigation and localisation in various 

domains, such as robotics and autonomous vehicles. In dense reconstruction 

applications, SuperPoint and SuperGlue can extract and match features in images 

captured from different viewpoints, enabling the generation of dense point clouds 

(Deng et al., 2022; Qin et al., 2022). These dense point clouds are crucial for 3D 

reconstruction tasks, such as the creation of digital surface models (DSMs), generation 

of orthophotos, and derivation of terrain information. These clouds also facilitate 

structure-from-motion (SfM) workflows by detecting and matching features across 

images captured from different viewpoints. This allows for accurate camera pose 

estimation and the creation of 3D point clouds, which are essential for reconstructing 

the 3D structure of a scene. Furthermore, SuperPoint and SuperGlue can be used for tie 

point extraction in change detection analysis in remote sensing (Deshmukh et al., 2023). 

By comparing the features and correspondences between different periods, these 
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methods can help identify and analyse changes in land cover, vegetation, or other 

environmental factors. 

 

Despite their promising performance, SuperPoint and SuperGlue have certain 

limitations that remain to be addressed. As SuperPoint and SuperGlue are typically 

trained on synthetic or specific datasets, they may not be effective in handling diverse 

and complex real-world environments. Their performance may be limited in scenarios 

with occlusions, uncommon object types, or scenes that differ significantly from their 

training data (Sarlin et al., 2020). SuperPoint and SuperGlue are somewhat robust to 

scale and rotation invariance. However, they may struggle in scenarios with extreme 

scale variations or highly rotated objects. Traditional feature detectors such as SIFT or 

SURF may outperform them in such challenging scenarios (DeTone et al., 2018). 

Researchers are actively addressing these limitations and seeking to improve the 

robustness, generalisation, and efficiency of SuperPoint and SuperGlue (Sun et al., 

2021). 

 

ii) SIFT-Based CNN (SIFT-CNN) 

 

SIFT-CNN, which was introduced by Mahendran and Vedaldi (2015), is a pioneering 

deep-learning-based feature detection and matching method. This framework combines 

the robustness of SIFT with the discriminative power of CNNs to achieve state-of-the-

art results. The principle behind SIFT-CNN is to train a CNN to directly learn feature 

descriptors from image data, eliminating the need for actively determining descriptors. 

Traditional feature descriptors, such as SIFT, have been designed based on domain 

knowledge and manual engineering. However, with the advent of deep learning, it has 

become possible to train neural networks to automatically learn discriminative feature 

representations. SIFT-CNN leverages the strength of CNNs in learning hierarchical and 

invariant feature representations directly from raw image data. 
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Figure 2.5 Overview of the SIFT-CNN frameworks (Tsourounis et al., 2022) 

 

During training, the CNN learns to transform the raw pixel values of the images into a 

hierarchical representation of features. This hierarchical representation enables the 

network to capture local and global information, allowing it to perceive and understand 

the visual content of the images at multiple scales. The framework of SIFT-CNN is 

shown in Figure 2.5. The network uses the SIFT image representation as its input and 

is guided to learn features from the local gradient information of images. This approach 

enables the SIFT-CNN to implicitly incorporate local rotation invariance. The training 

process involves minimising a loss function that measures the discrepancy between the 

predicted features and ground truth descriptors. The network gradually learns to extract 

features invariant to typical image transformations through this optimisation process. 

 

An essential aspect of the SIFT-CNN method is its integration with the traditional SIFT 

framework. By aligning with the principles of SIFT, SIFT-CNN ensures compatibility 

with existing SIFT-based methods. The learned feature descriptors can seamlessly 

replace SIFT descriptors in various applications without requiring extensive 

modifications to the existing pipeline. This integration can facilitate a smooth transition 

from traditional feature detection and matching techniques to deep-learning-based 

approaches while preserving the accuracy and efficiency of the SIFT framework. 

 

The applications of the SIFT-CNN method are extensive and cover a wide range of 

computer vision and photogrammetry tasks. In the context of object recognition and 

classification, the learned feature descriptors can effectively identify and categorise 

objects within images or videos (Rashid et al., 2019). The robustness of the features to 

scale, rotation, and illumination variations makes them suitable for object recognition 

in challenging scenarios. Additionally, the integration of SIFT-CNN with existing 

SIFT-based methods can help enhance the matching accuracy and efficiency in tasks 
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such as image alignment (Ye et al., 2018) and 3D reconstruction (Fan et al., 2019). 

Additionally, the learned features from SIFT-CNN can be used in visual localisation 

and SLAM (Zhao et al., 2018).  

 

iii) Learnable Feature Descriptor and Descriptor Matcher (LF-Net) 

 

LF-Net is a deep-learning-based feature detection and matching method that has 

demonstrated exceptional performance in challenging conditions and real-world 

scenarios. This method, proposed by Ono et al. (2018), combines the advantages of 

SIFT-based and CNN-based methods and addresses their limitations. 

 

Figure 2.6 Overview of the LF-Net framework 

 

The LF-Net framework takes a pair of images, typically greyscale or RGB images, as 

the input. These images can be obtained from various sources, such as aerial or satellite 

imagery, stereo image pairs, or multi-view image sequences. The input images are 

preprocessed to ensure that they are appropriately aligned and normalised for further 

processing. The output of LF-Net consists of two main components: local feature 

keypoints and descriptors, and a global feature vector. The local feature keypoints 

represent distinct points of interest in the input images, while the descriptors provide a 

compact representation of the local image patches around each keypoint. These local 

features are generated by a fully convolutional network within the LF-Net architecture.  

 

LF-Net has been applied in various photogrammetry and remote-sensing-related 

research areas, including 3D reconstruction, stereo matching, and image registration. 

Mizginov and Kniaz (2019) used LF-Net for feature detection and matching in multi-

view stereo reconstruction. The method achieved state-of-the-art results on the ETH3D 

benchmark dataset, demonstrating its potential for improving the accuracy and 

efficiency of 3D reconstruction. Xu et al. (2022) applied LF-Net for feature matching 
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and registration in high-resolution satellite images. The method improved the accuracy 

and robustness of registration compared with traditional methods, particularly in 

challenging scenarios involving large viewpoint variations and low-texture regions. 

 

2.1.2 Space Intersection (Triangulation) and Space Resection 

 

The most fundamental device in photogrammetry is the camera. Cameras acquire the 

images that are used to generate photogrammetric products. The interior orientation (IO) 

of the camera is essential for triangulation and space resection. The IO parameters 

include the focal length and principal centre. Figure 2.8 illustrates the basic pinhole 

camera model. The following section briefly describes the mathematical background of 

this model. 

 

 

Figure 2.7 Basic camera model with the camera reference (X, Y, Z) 

 

The model consists of the optical centre C and image plane. When a 3D point O is 

projected onto the camera, it forms an image point p at the intersection of the image 

plane with the line connecting C and O. The line perpendicular to the image plane and 

passing through C is termed the principal axis (Z axis in Figure 2.7). This axis intersects 

with the image plane at the principal point. The distance between the camera centre and 

image plane is the focal distance, which is negative in real cameras, where C is 

positioned behind the image plane. The IO matrix K of the camera can be defined as 

follows: 
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 𝐾 = ൥
𝑓௫ 𝛾 𝑐௫

0 𝑓௬ 𝑐௬

0 0 1

൩ (2.6) 

 

where (𝑓௫, 𝑓௬) denotes the focal length of the camera in pixels, and (𝑐௫, 𝑐௬) denotes the 

principal centre of the camera on an image plane. In modern photogrammetry, the IO 

of the cameras, described by the focal length, principal point, and distortion coefficients, 

can be determined through camera calibration.  

 

In photogrammetry, collinearity equations are used to model the projection of a 3D 

object onto a 2D image plane. These equations define the relationship between the 

coordinates of points in the 3D space (object space) and their corresponding image 

coordinates in the 2D image space. Both triangulation, also known as space intersection 

in photogrammetry, and space resection rely on known variables to solve the 

collinearity equation and are thus fundamentally similar. These principles form the 

basis for accurately determining the positions and orientations of cameras and the 

spatial coordinates of points of interest within the captured images. The collinearity 

equation can be written as 

 

 

𝑥 − 𝑥଴ = −𝑓
𝑚ଵଵ(𝑋 − 𝑋ௌ) + 𝑚ଵଶ(𝑌 − 𝑌ௌ) + 𝑚ଵଷ(𝑍 − 𝑍ௌ)

𝑚ଷଵ(𝑋 − 𝑋ௌ) + 𝑚ଷଶ(𝑌 − 𝑌ௌ) + 𝑚ଷଷ(𝑍 − 𝑍ௌ)
 

𝑦 − 𝑦଴ = −𝑓
𝑚ଶଵ(𝑋 − 𝑋ௌ) + 𝑚ଶଶ(𝑌 − 𝑌ௌ) + 𝑚ଶଷ(𝑍 − 𝑍ௌ)

𝑚ଷଵ(𝑋 − 𝑋ௌ) + 𝑚ଷଶ(𝑌 − 𝑌ௌ) + 𝑚ଷଷ(𝑍 − 𝑍ௌ)
 

(2.7)

 

This set of equations establishes a direct relationship between an image point (x, y) and 

its corresponding 3D position (X, Y, Z) within the object space. The principal point 

(𝑥଴, 𝑦଴) denotes the foot of the perpendicular drawn from the image of the principal 

centre, while f represents the focal length of the camera. The coordinates of the camera 

centre in the object space are denoted as (XS, YS, ZS). The rotation matrix, determined 

by three angles of rotation R (ω, φ, k) between the camera frame and object space, is 

represented in terms of elements mij as 

 

 𝑅 = 𝑅ఠ𝑅ఝ𝑅௞ = ൥

𝑚ଵଵ 𝑚ଵଶ 𝑚ଵଷ

𝑚ଶଵ 𝑚ଶଶ 𝑚ଶଷ

𝑚ଷଵ 𝑚ଷଶ 𝑚ଷଷ

൩ (2.8) 
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2.1.2.1 Triangulation for Object Location Determination 

 

The exterior orientation (EO) of a camera can be determined through single image space 

resection, as introduced in the following section. However, the determination of the 

spatial location of an object point based on the coordinates of the image points from a 

single image is a challenging task because the EO parameters of a single image only 

provide information regarding the spatial orientation of the object. To overcome this 

problem, a stereo image pair can be used by considering the same image point on both 

images, enabling the determination of the directions of two rays in the same spatial 

coordinate system. Because these two rays must intersect in space, their point of 

intersection represents the actual spatial location of the object point (Wolf et al., 2014). 

This concept can also be demonstrated by the collinearity equation (Eq. 2.7). 

 

Figure 2.8 illustrates basic triangulation from multi-view images, based on collinearity. 

The collinearity equations can be formulated by using the corresponding image points 

p and p′ from different views to calculate the space coordinates of point O by 

triangulation. As the six EO parameters are known, the only remaining unknowns in 

the equations are (X, Y, Z). These coordinates can be obtained by iterating the initial 

approximations to determine the object space coordinates of O. The left and right 

cameras are denoted by their optical centres CL and CR, respectively. 

 

 

Figure 2.8 Basic geometry for multi-view image triangulation 
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To further refine the triangulation process, rectification can be performed to compute 

the transformation and rotation matrices to align the epipolar lines of the images to be 

parallel and horizontal. The rectification process is aimed at simplifying multi-view 

image matching by ensuring a consistent geometric relationship between the 

corresponding points in the rectified images. The transformation matrix determines the 

translation and scaling necessary to align the images, while the rotation matrix rotates 

the cameras to achieve parallel epipolar lines. By combining the IO of the cameras 

(which can be obtained through camera calibration), transformation matrix, and rotation 

matrix, the object coordinates can be calculated through rectification. The following 

equation succinctly expresses the relationship between the object coordinates and 

camera parameters: 

 

 

𝑠 ቈ
𝑥
𝑦
1

቉ =  ൥
𝑓௫ 𝛾 𝑐௫

0 𝑓௬ 𝑐௬

0 0 1

൩ ∙  ቂ
𝑅ଷ×ଷ 𝑇ଷ×ଵ

0 1
ቃ  ∙  ቎

𝑋
𝑌
𝑍
1

቏

= 𝐾 ∙ [𝑅|𝑇] ∙ ቎

𝑋
𝑌
𝑍
1

቏ 

(2.9) 

 

where (x, y) denotes the image coordinates of the object; (X, Y, Z) denotes the space 

coordinates of the object; s is the scale factor; K is the camera matrix representing the 

camera IO; and R and T are the rotation and transformation matrices, respectively, 

which indicate the relative orientation between two cameras. Based on Eq. 2.9, given 

two points p and p′ located on the image planes of two cameras, (Figure 2.9), the 

relationship between the corresponding coordinates can be expressed as follows: 
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𝑥ଵ
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ଵ
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where M1 and M2 represent the relative orientation and transformation parameters of 

the two cameras, respectively. The space coordinates of the object can be solved 

according to the collinearity equation (Eq. 2.7) with the two given image coordinates 

(assuming s = 1). 

 

Digital photogrammetry has revolutionised the field of 3D reconstruction by harnessing 

the power of computer vision algorithms. These algorithms enable the efficient 

computation of rotation and translation matrices by leveraging the relationships 

between the feature points in two images. Accurately estimating these matrices is 

essential for reconstructing 3D scenes from 2D images. This technological 

advancement has been extensively applied across various industries and research areas.  

 

One prominent example of the application of computer vision algorithms for 3D 

reconstruction is in the field of remote sensing and cartography. Satellite imagery and 

aerial photographs can be processed using photogrammetric techniques to extract 

elevation data and generate accurate topographic maps (Jiménez-Jiménez et al., 2021; 

Pulighe and Fava, 2013). This information is crucial for urban planning, environmental 

monitoring, and disaster management. Another notable example of applying 

triangulation for 3D reconstruction is SfM, which was introduced by Longuet-Higgins 

(1981). SfM algorithms can reconstruct the 3D environment surrounding a vehicle, 

enabling better perception and understanding of the surroundings. For example, Zhang 

(2003) used SfM techniques to reconstruct a 3D scene from stereo camera images, 

facilitating accurate depth estimation and object detection for autonomous driving 

applications. Hu (2015) used SfM to reconstruct 3D models of ancient buildings, 

providing a valuable tool for preserving and visualising cultural heritage. 

 

In human motion analyses, triangulation techniques can capture human movements 

with high precision. For example, Pfister et al. (2014) developed a triangulation-based 

approach using an infrared emitter and a depth sensor to calculate the position of human 

body joints. The advantage of using triangulation-based systems such as the Kinect is 

their ability to capture real-time motion without the requirement of attaching markers 

to the body of the target individual. Gait parameters, such as the stride length, joint 

angles, and gait symmetry, can be calculated by analysing various triangulated joint 

positions. In particular, this method can provide insight into the technique, balance, and 
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overall performance of athletes. LaViola Jr et al. (2017) proposed a triangulation-based 

system using multiple infrared sensors for real-time hand gesture recognition. The 

system used the principles of triangulation to accurately track the position of the user’s 

hand in 3D space. By placing multiple sensors at different locations, the system could 

determine the hand coordinates through the triangulation of the infrared signals. 

 

2.1.2.2 Space Resection for EO Determination 

 

In photogrammetry, space resection is used to determine the camera EO parameters 

(position and orientation) through a single image based on known image coordinates of 

ground control points (GCPs). GCPs are reference points with known ground 

coordinates. The camera EO parameters are determined using the collinearity equations. 

GCPs that correspond to known coordinates in both the object space and corresponding 

image space contribute two observations to the estimation process. The EO parameters 

can be solved using three GCPs according to Eq. 2.7. Notably, four or more control 

points are typically used to achieve higher accuracy in practical applications. The 

introduction of a larger number of control points enables a more robust estimation of 

the EO parameters, typically through least-squares adjustment. By iteratively refining 

the parameter estimates, the least-squares adjustment minimises the discrepancies 

between the observed image coordinates and projected object coordinates. Figure 2.9 

illustrates the geometry of space resection. With four given GCPs (O1, O2, O3, O4) and 

camera IO parameters, the camera EO parameters (ω, φ, k, XC, YC, ZC) can be calculated 

using the collinearity equation.  
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Figure 2.9 Geometry of space resection with four known GCPs 

 

With the advent of digital imaging and computerised processing, space resection 

techniques have undergone significant advancements. The development of digital 

cameras and image sensors has enabled the acquisition of precise and high-resolution 

images, which can provide more reliable input data for space resection. Furthermore, 

the use of digital imagery has facilitated the automation of the measurement process, 

which has helped reduce human error and increase the speed of calculations (Tsai, 1987; 

Zhang, 2000). The introduction of computer algorithms and software has played a 

crucial role in advancing space resection. These algorithms can automatically detect 

and match GCPs in images, enabling the accurate estimation of camera parameters 

(Lowe, 2004; Szeliski, 2022). Iterative optimisation algorithms, such as the least-

squares method, can refine the initial estimates and improve the accuracy of the results. 

Another significant development in space resection is the integration of inertial 

measurement units (IMUs) to measure the camera orientation and motion. By 

combining the measurements from these sensors with image data, space resection 

techniques can incorporate additional sources of information, enhancing the accuracy 

and reliability of camera pose estimation (Abdi et al., 2016). In recent years, deep-

learning techniques have been widely used to facilitate space resection. For example, 

the use of CNNs for feature extraction and matching has helped enhance the efficiency 
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and accuracy of space resection algorithms (Kendall and Cipolla, 2016). Additionally, 

deep-learning-based methods have been explored for direct camera pose estimation 

from images, thereby eliminating the traditional feature matching and triangulation 

steps (Kendall et al., 2015). 

 

2.1.3 Bundle Adjustment (BA) 

 

BA is a classic photogrammetric technique for improving the accuracy of image 

orientation parameters. BA is based on the principle of collinearity, according to which 

a 3D point in the object space, its corresponding image point, and the perspective centre 

of the camera are collinear. This implies that an optical ray can be traced from the image 

point, through the perspective centre, to the 3D point. A bundle of optical rays can 

connect the images and object space by matching tie points on two or more images. 

Ideally, the optical rays from different images should intersect at the same 3D point, 

but this typically does not occur due to errors and uncertainties in the image orientation 

parameters. Therefore, BA aims to minimise these errors by adjusting the image 

orientation parameters so that the optical rays converge as close to the 3D point as 

possible (Wu, 2021). 

 

The foundation of a BA system is the observation equations derived from the 

collinearity equations (Eq. 2.7). As the collinearity equations are nonlinear, they are 

linearised by applying the first-order terms of Taylor’s series. The following 

expressions present the four types of observations formulated in a BA system, based on 

the least-squares principle:  

 

𝐴𝜈 + 𝐵Δ = 𝑓

𝑣௫ − 𝐼Δ = 𝑓௫

𝐴௖𝜈௖ + 𝐶Δ௖ = 𝑓௖

𝐴ୟ୮𝑣ୟ୮ + 𝐷Δୟ୮ = 𝑓ୟ୮

 (2.12)

 

where A is the matrix of observation coefficients, B is the matrix of parameter 

coefficients, Δ is a vector containing the unknown EO parameters, and v is the vector 

of residuals. The first observation equation relates to the matching of tie points. These 

measurements are connected to their corresponding 3D coordinates via collinearity 
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equations. By establishing this connection, the first observation equation permits the 

incorporation of image measurements into the framework for BA. The second 

observation equation focuses on the unknown EO parameters and 3D object coordinates 

of the tie points. This equation regulates the estimation and optimisation of these 

unknown variables, enabling the exact determination of the EO parameters and 3D 

coordinates of the tie points. The third observation equation imposes constraints on the 

BA parameters, which provide additional information that can help enhance the 

solution precision. By incorporating these constraints into the third observation 

equation, the BA system can ensure adherence to these conditions. The fourth 

observation equation facilitates self-calibration by allowing additional camera IO 

parameters to be simultaneously solved within the BA framework. This equation 

permits the estimation of additional IO parameters, enabling the refinement of the 

camera calibration result. 

 

The basic idea behind BA is to minimise the reprojection error, which indicates the 

discrepancy between the observed image projections of 3D points and their 

corresponding predicted projections based on the estimated camera poses and 

parameters. BA iteratively refines the camera poses and 3D points by minimising this 

error until an optimal solution is reached. This approach has been widely used in various 

research fields, such as photogrammetry, remote sensing, and computer vision.  

 

Triggs et al. (2000) reported one of the seminal works on BA, providing a 

comprehensive overview of BA algorithms, covering various optimisation techniques, 

robust estimation methods, and strategies for addressing large-scale problems. 

Researchers have actively sought to develop efficient BA algorithms. Several 

optimisation frameworks, such as Levenberg–Marquardt, Gauss–Newton, and sparse 

matrix factorisation techniques, have been explored to solve the nonlinear optimisation 

problem involved in BA (Bernecker and Idini, 2022; Chen et al., 2019; Lourakis and 

Argyros, 2005). In recent years, BA has been advanced by incorporating additional 

priors or constraints. For example, BA with priors, such as temporal or geometric 

constraints, has been implemented to enhance the accuracy and efficiency of 3D 

reconstruction and SfM systems (Sibley et al., 2019; Wei et al., 2020). 
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2.1.4 Dense Image Matching 

 

Dense image matching is a fundamental task in many domains, such as photogrammetry, 

computer vision, and image analysis. The objective is to extract dense point clouds from 

multiple images with known orientation parameters. At present, image-based surveying 

and 3D modelling techniques can deliver point clouds with accuracies comparable to 

those produced by laser scanning (Remondino et al., 2014) for many terrestrial and 

aerial applications in a reasonable time. Owing to the inherent nature of multi-spectral 

images, rich textural information can be extracted. Moreover, the accuracy of a point 

cloud can be assessed based on the redundant measurements extracted from imagery. 

Image-based 3D reconstruction is widely applied for 3D modelling, mapping, robotics, 

and navigation due to its lightweight nature, convenience, cost-effectiveness, and 

ability to generate textured point clouds comparable to those obtained using LiDAR 

systems (Szeliski, 2022). 

 

Traditional dense image matching algorithms are further discussed in the following 

section. With advancements in camera technologies and the advent of innovative 

matching approaches, many state-of-the-art image-based algorithms and software for 

3D modelling and reconstruction have been developed, as discussed in the subsequent 

sections. 

 

2.1.4.1 Traditional Dense Image Matching Methods 

 

Photogrammetry has played a significant role in the development of image matching 

algorithms, especially those focused on aerial images. Early matching algorithms were 

developed by the photogrammetry community in the 1950s (Hobrough, 1959). With 

the significant progress made in computer vision algorithms over the years, this task 

has been transformed into the stereo vision problem (Trucco and Verri, 1998). Stereo 

vision techniques aim to produce a depth map in the image space. The disparity measure, 

which represents the horizontal motion between corresponding image points, is 

inversely proportional to the distance between the camera and object. Figure 2.10 

illustrates the fundamental geometry of stereo vision, which involves a pair of cameras 

positioned at a baseline distance from each other. 
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Figure 2.10 Basic geometry of stereo vision 

 

This configuration mimics the human eye perception and can capture the depth 

information of a scene. The stereo camera system provides two slightly different views, 

enabling the computation of the distance D between the cameras and a target object 

using Eq. 2.13: 

 

 𝐷 =
𝐵 ∙ 𝑓

𝑑
 (2.13) 

 

where D represents the distance between the cameras and target object, B denotes the 

baseline distance separating the cameras, f is the focal length of the camera, and d is the 

disparity value obtained from the positional discrepancy of the target object in the stereo 

image pair. Various cost-matching metrics have been used to measure the similarity 

between pixels and determine their disparities in an accurate and reliable manner. 

 

Traditional methods comprise the early algorithms based on basic cost-matching 

metrics, such as the sum of absolute differences (SAD), normalised cross-correlation 

(NCC), mutual information (MI), and CT. These metrics have been used to measure the 

similarity between corresponding pixels in stereo images, enabling the estimation of 

depth information. 
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The SAD metric determines the dissimilarity between corresponding pixels in two 

images by calculating the absolute differences in their intensity values and summing 

them. This metric assumes that corresponding pixels have similar intensity values in 

both images. For example, the block matching algorithm can use the SAD to divide the 

reference image into small blocks and identify the best matching block in the target 

image. The disparity between the reference and target blocks is estimated based on the 

block with the lowest SAD (Lu and Liou, 1997). SGM is another widely used algorithm 

for dense stereo matching that incorporates SAD. The SGM uses dynamic 

programming techniques to determine the optimal disparity values that minimise the 

overall cost, considering local matching costs and the consistency of disparity values 

along different scanline directions (Hirschmuller, 2005). The adaptive support-weight 

approach (ASW) also uses the SAD metric for dense image matching. ASW 

incorporates adaptive support weights that dynamically adjust the influence of 

neighbouring pixels based on their SAD values. This scheme helps alleviate the effect 

of noisy or unreliable matches, leading to improved accuracy in dense matching results 

(Yang et al., 2008). 

 

NCC indicates the similarity between two images by normalising their cross-correlation 

coefficients. Specifically, this metric measures the degree of linear dependency 

between corresponding image patches. For example, template matching algorithms use 

the NCC as the matching metric to locate a template image within a larger image. By 

sliding the template over the larger image and calculating the NCC score at each 

location, the algorithm determines the site at which the template best matches the image, 

enabling object detection and localisation (Briechle and Hanebeck, 2001; Viola and 

Jones, 2001). The iterative closest point (ICP) algorithm is commonly used for point 

cloud registration and 3D surface reconstruction. In each iteration, ICP uses the NCC 

to establish correspondences between the points in the reference and target point clouds. 

By maximising the NCC score, ICP iteratively refines the transformation parameters to 

align the two point clouds (Besl and McKay, 1992).  

 

MI is a statistical metric that measures the amount of information shared between two 

images. This metric estimates the statistical dependency between the intensity values 

of corresponding pixels based on their joint histogram. Studholme et al. (1999) 
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proposed the normalised MI (NMI) approach for medical image registration and multi-

modal image alignment. NMI measures the statistical dependency between the 

intensities of corresponding pixels in the images. By maximising the NMI score, the 

algorithm determines the optimal transformation parameters that align the images. 

Hirschmuller (2007) combined MI and block matching techniques for dense stereo 

matching. This approach divided images into blocks and searched for the best matching 

block in the target image, based on the MI score. The disparities between corresponding 

pixels in stereo images were estimated by maximising the MI. The optimal disparities 

were determined by comparing the statistical dependencies between the intensities of 

the blocks. MI also has been used as a matching criterion in the optical flow method. 

Roth and Black (2007) proposed an MI-based optical flow approach for motion 

estimation and video analysis tasks. This strategy calculates the MI between pixel 

intensities in neighbouring frames and estimates the displacement by maximising the 

MI score. 

 

The CT metric encodes the spatial arrangement of pixel intensities in a binary code. 

This strategy compares the census codes of corresponding pixels to compute the 

dissimilarity between images. The CT, which can effectively manage photometric 

variations and occlusions, is widely used in stereo-matching applications. The SGM 

algorithm, proposed by Hirschmuller (2007), uses the CT for dense stereo matching. 

Specifically, this algorithm uses the CT to compute matching costs between pixels in 

stereo images. By comparing the CT codes, SGM estimates the disparities by 

minimising a global energy function. The CT helps capture the local image structure, 

thereby improving the robustness of the matching process. Another popular CT method 

for dense stereo matching is the non-parametric local transform, proposed by Zabih and 

Woodfill (1994). This method applies the CT to image patches to encode the local 

neighbourhood structure. The CT converts the pixel intensities in a patch to binary 

codes, thereby capturing the ordinal relationships between the pixels. The disparities 

between stereo images can be estimated by comparing the CT codes between 

corresponding patches. Adaptive CT (ACT), developed by Perri et al. (2013), is another 

algorithm that uses CT for stereo dense image matching. The objective is to improve 

the robustness and efficiency of image transformation on an FPGA chip. This strategy 

computes the CT by weighting the contributions of neighbouring pixels based on their 
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similarity to the centre pixel. By adapting the window size according to the local image 

structures, ACT can achieve more accurate and reliable dense matching results than CT. 

 

These traditional stereo dense image matching methods have been extensively used for 

tasks such as image registration, image alignment, and depth estimation. In particular, 

these techniques played a crucial role in early computer vision applications, providing 

a foundation for subsequent research and developments in the field. 

 

2.1.4.2 Deep-Learning Dense Matching Methods 

 

With advancements in deep-learning approaches, the cost-matching pipeline has been 

replaced by CNNs. Deep-learning-based algorithms have attracted significant attention 

owing to their excellent performance in benchmark testing. Depending on the learning 

task, deep-learning stereo methods can be classified into learning-based cost metrics 

and end-to-end (E2E) learning approaches. 

 

The application of learning-based cost metrics was pioneered by Krizhevsky et al. 

(2017), who highlighted the transformative impact of deep learning on stereo vision 

applications in terms of enhanced performance. Ciregan et al. (2012) discussed the 

limitations of traditional stereo-vision methods compared with human performance in 

recognition tasks and argued that deep-learning algorithms can bridge this gap through 

their ability to emulate human-like recognition. This observation has motivated 

researchers to integrate deep-learning techniques into stereo vision algorithms to 

achieve human-level performance. 

 

The advent of machine learning has had a profound impact on stereo vision based 

research, as noted by Tonioni et al. (2017). Advancements in machine learning 

techniques have driven relevant research and provided valuable opportunities for 

algorithm refinement and real-world applications. In the context of image classification, 

Chauhan et al. (2019) used CNNs for vehicle counting and classification in the transport 

engineering domain. This framework could accurately classify different types of 

vehicles, demonstrating the potential of practically applying deep learning in stereo 

vision for addressing complex tasks in real-world scenarios. 
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Deep-learning methods have rapidly evolved into E2E learning algorithms, replacing 

classical multistage optimisation with trainable networks that can directly predict 

disparity from stereo images. These neural networks can capture more global features, 

potentially improving the task performance. Kang et al. (2019) advanced stereo vision 

techniques by introducing dilated convolution into their E2E network architecture. The 

authors emphasised the computational advantages of dilated convolution over 3D CNN 

methods, which can lead to improved efficiency. Evaluation over the KITTI dataset 

demonstrated significant enhancements compared with the original DispNet 

implementation. The integration of dilated convolution offers a promising avenue for 

advancing stereo vision systems, as it can yield more accurate depth estimation and 

address the challenges associated with texture-less areas. Future research can be aimed 

at refining the application of dilated convolution in stereo vision algorithms. 

 

Yang et al. (2019) introduced HSMNet, an E2E network architecture designed for 

stereo matching. This network has an encoder–decoder structure incorporating a 

coarse-to-fine hierarchy for stereo matching. To extract multi-scale features, a 

downsampling mechanism progressively reduces the input resolution. The pyramid 

feature module incorporates residual blocks and spatial pyramid pooling layers to 

enhance the receptive fields, thereby facilitating hierarchical matching. The authors 

emphasised the real-time computational efficiency of their network, which could enable 

on-demand computation. The network could estimate large disparity objects before the 

end of the pipeline, resulting in improved efficiency. This approach outperformed other 

E2E networks, such as those proposed by Chang and Chen (2018), Kendall et al. (2017), 

and Song et al. (2019), when evaluated on the Middlebury and KITTI datasets. 

 

Unlike the abovementioned methods, certain techniques integrate context learning into 

specific components of the conventional pipeline without entirely aligning with any of 

the mentioned deep-learning paradigms. One such example is SGM-Net (Seki and 

Pollefeys, 2017), which focuses on learning the smoothness penalty on a per-pixel basis. 

Similarly, GA-Net (Zhang et al., 2019) trains networks to guide the cost-aggregation 

process. These approaches deviate from the purely deep-learning-based methods and 

instead enhance specific stages within the traditional pipeline by leveraging context 

learning techniques. SGM-Net, for instance, focuses on refining the estimation of the 
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per-pixel smoothness penalty, resulting in more accurate disparity maps. GA-Net 

optimises the cost-aggregation process using learned networks, thereby enhancing the 

disparity estimation. 

 

2.2 Visual Odometry 

 

Localisation is an essential task for autonomous vehicles to be able to track their paths 

and effectively detect and avoid obstacles. Vision-based odometry is a robust technique 

for vehicle localisation. The concept of estimating the pose of a vehicle solely from 

visual input was first introduced by Moravec in the early 1980s (Nistér, 2004; 

Scaramuzza and Fraundorfer, 2011). From 1980 to 2000, research on VO was driven 

by NASA’s preparations for the 2004 Mars mission. The term “visual odometry” was 

coined to describe the process of incrementally estimating vehicle motion by integrating 

pixel displacements between image frames, similar to how wheel odometry estimates 

motion by integrating the number of wheel turns over time (Scaramuzza and 

Fraundorfer, 2011). 

 

VO is a pose estimation process commonly implemented by various agents, such as 

vehicles, humans, and robots. VO frameworks use continuous images from one or 

multiple attached cameras (Fraundorfer and Scaramuzza, 2011). At the core of VO lies 

camera pose estimation, which involves determining the agent’s relative motion based 

on the visual input (Ni and Dellaert, 2006). This online estimation of ego motion from 

video input is an effective non-contact method for effectively positioning mobile robots 

(Munguia and Grau, 2007). By analysing image sequences captured by a camera, VO 

enables incremental online estimation of the vehicle position (Campbell et al., 2005; 

Gonzalez et al., 2012). 

 

Images contain rich and informative data that can be leveraged to estimate camera 

movement, and thus, VO is a viable solution for motion estimation (Rone and Ben-Tzvi, 

2013). Unlike wheel encoders and low-precision inertial navigation systems (INSs), 

VO is less prone to local drift, resulting in more accurate motion estimation (Howard, 

2008). VO is particularly advantageous in scenarios involving uneven terrains, in which 

wheel slippage may occur, or GPS-denied environments (Scaramuzza and Fraundorfer, 
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2011). VO can be combined with GPS and INS measurements to maximise the accuracy. 

One of the distinct advantages of VO over laser and sonar localisation systems is its 

non-invasive nature, as it does not emit detectable energy into the environment. Unlike 

GPS, VO does not rely on external signals for operation, thus providing greater 

flexibility in various environments (Ni and Dellaert, 2006). The use of cameras for 

robot localisation offers several benefits, such as cost reduction, seamless integration 

with other vision-based algorithms (e.g., obstacle, pedestrian, and lane detection), and 

elimination of sensor calibration requirements (Wang et al., 2011). Cameras are 

compact, affordable, lightweight, energy-efficient, and adaptable, making them suitable 

for a wide range of vehicles (land, underwater, or air) and other robotic applications 

(such as object detection and recognition). 

 

In scenarios in which the distance between the stereo camera and scene exceeds the 

stereo baseline, the effectiveness of stereo VO diminishes, and it becomes analogous to 

the monocular case, which relies on 2D bearing data to estimate both the relative motion 

and 3D structure (Scaramuzza and Fraundorfer, 2011). Nistér (2004) presented a real-

time VO algorithm capable of estimating camera motion from a monocular or stereo 

camera. The authors introduced the first real-time large-scale VO specifically designed 

for monocular cameras. This approach used feature tracking and incorporated random 

sample consensus for robust outlier rejection. The algorithm consisted of three phases: 

feature detection, feature tracking, and motion estimation. Although the overall 

framework remained the same for monocular and stereo vision systems, slight 

differences existed in the motion estimation phase. In the monocular case, a five-point 

pose algorithm was used to calculate the pose for each tracked feature. The 3D position 

of each feature was then computed using the first and last acquired images, which 

facilitated the estimation of the camera’s 3D pose. In the stereo case, the 3D position 

of each feature was obtained through stereo matching of corresponding features 

between the two camera images. 

 

VO can be considered a subset of SLAM: VO focuses solely on estimating the camera 

or robot motion without explicitly building a map of the environment, whereas SLAM 

is aimed at mapping the environment while simultaneously estimating the camera or 

robot motion (Souici et al., 2013). Visual SLAM leverages camera sensors to gather 

observation data for map creation. In feature-based SLAM, the robot uses 
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environmental features to update its position by extracting and reobserving these 

features as it moves. Notably, real-time algorithms such as large-scale direct monocular 

(LSD)-SLAM (Engel et al., 2014) and ORB-SLAM (Mur-Artal et al., 2015) have been 

developed for SLAM using a freely moving monocular camera. ORB-SLAM is a 

feature-based method that excels in challenging scenarios with significant motion 

clutter and enables robust loop closing and re-localisation. In contrast, LSD-SLAM 

takes a direct approach that avoids the need for feature extraction, rendering it suitable 

for generating semi-dense reconstructions in low-texture environments and resistant to 

blur. This approach achieves localisation by directly optimising image pixel intensities. 

 

Gonzalez et al. (2012) and Yu et al. (2011) highlighted that the primary limitations 

associated with VO systems are the high computational expense and vulnerability to 

variations in light and imaging conditions. These conditions encompass factors such as 

direct sunlight, shadows, image blur, and disparities in image scale. In regions in which 

the floor exhibits a smooth and low-textured surface, the directional sunlight and 

lighting conditions may result in non-uniform scene lighting. Additionally, the presence 

of shadows caused by stationary or moving objects, include those originating from the 

vehicle, can impede the accurate calculation of pixel displacement, leading to errors in 

displacement estimation (Gonzalez et al., 2012). Monocular vision systems encounter 

challenges related to scale uncertainty (Kitt et al., 2011; Zhang et al., 2014b). When the 

surface is uneven, the image scale tends to fluctuate, which makes it difficult to estimate 

the image scaling factor. Kitt et al. (2011) suggested that scaling factor may be 

inaccurately estimated in scenarios involving a significant change in the road slope, 

resulting in erroneous estimation of the trajectory. 
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2.3 Parallel Architecture for 3D Applications 

 

Parallel architectures are computer systems that use multiple processing units or cores 

to simultaneously perform tasks. Instead of relying on a single processor to manage all 

computations, parallel architectures divide the workload into smaller tasks that can be 

executed in parallel, thereby improving computational efficiency and reducing the 

processing time.  

 

Parallel architectures play a crucial role in enhancing the overall performance and 

capabilities of photogrammetric systems. Photogrammetry involves computationally 

intensive tasks, such as feature extraction, matching, triangulation, point cloud 

generation, mesh construction, and texturing. Using parallel architecture, these tasks 

can be distributed among multiple processing units, such as CPU cores or GPUs, 

allowing their simultaneous processing. Such parallel processing techniques can 

accelerate the overall reconstruction process, enabling faster generation of 3D models 

from the input data (Fu et al., 2023; Wiechert et al., 2012). Additionally, parallel 

architectures allow photogrammetric applications to efficiently handle large-scale 

reconstructions and process massive datasets. By dividing the workload among 

multiple processing units, the system can effectively use the available computational 

resources and scale with the complexity and size of the data. This scalability is 

particularly beneficial in applications that require the processing of many images or 

generation of high-resolution 3D models (Buttinger-Kreuzhuber et al., 2022; Pepe and 

Prezioso, 2016). Parallel architectures, especially those with GPU acceleration, can 

achieve real-time or near-real-time performance in 3D photogrammetric applications. 

The parallel processing capabilities of GPUs, specifically designed for handling large 

amounts of data simultaneously, enable rapid execution of computationally demanding 

tasks such as feature matching and triangulation (Wang, 2019). Furthermore, parallel 

architectures can optimise the available hardware resources, such as CPU cores or GPU 

threads. Instead of leaving processing units idle during certain stages of the 

photogrammetric pipeline, parallel architectures can ensure that the available resources 

are efficiently utilised, leading to better overall system performance and reduced 

processing time (Choudhary et al., 2012). 
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2.3.1 Multi-threading on CPU 

 

Multi-threaded technologies have emerged as a promising approach for accelerating 

computationally intensive algorithms in various fields, including photogrammetry. 

Researchers have recognised the potential of multi-threading in leveraging CPU 

resources, leading to improved algorithm performance. Shigeto and Sakai (2011) 

generated a DEM from input images by using CPU multi-threading acceleration. The 

authors used two Intel Xeon W5590 dual-core CPUs to implement their method, 

offering 240 clocks with an impressive 61,440 threads dedicated to image processing. 

 

Vladimir (2016) proposed a multi-threaded approach for dense point cloud generation 

from stereo images. The proposed method accelerated the point cloud generation 

process by leveraging parallel processing capabilities. The authors implemented their 

algorithm on a multi-core CPU architecture, effectively distributing the computational 

load across multiple threads. This parallelisation resulted in accelerated processing, 

enabling efficient and rapid reconstruction of dense 3D point clouds [3]. 

 

Grazioso et al. (2019) developed a photogrammetric system with 3D body scanners for 

health-related applications. The objective was to generate a comprehensive 3D body 

model from data acquired by the 3D scanners. To expedite data processing, the 

researchers implemented a multi-threaded strategy. However, the system failed to 

achieve real-time 3D human body model reconstruction despite the use of multi-

threading acceleration. The failed realisation of real-time performance was attributable 

to the inherent complexity of the image processing algorithm and substantial volume 

of data involved. 

 

The utilisation of multi-threading in CPUs used in photogrammetry research can help 

enhance the computational performance and expedite data processing. 

Photogrammetric algorithms can distribute computation across multiple threads or 

cores by exploiting the parallel processing capabilities of multi-threading, resulting in 

increased efficiency and reduced processing time. The benefits of multi-threading 

become particularly pronounced in large-scale data processing scenarios, where the 
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parallelisation of tasks can effectively harness the computational power of modern 

CPUs.  

 

While multi-threading technology can accelerate photogrammetric applications, it still 

exhibits several limitations. Multi-threading relies on the availability of tasks that can 

be executed concurrently. In photogrammetry, specific tasks may have dependencies 

that may also be sequential, limiting the potential for parallelisation (Schiele et al., 

2012). Although multi-threading allows for efficient utilisation of CPU resources, its 

scalability can be constrained by factors such as the memory bandwidth, cache 

coherence, and thread synchronisation overhead. As the number of threads increases, 

these factors can limit the performance gains achieved from parallel execution, leading 

to diminished returns (Yang and Zhang, 2015). Therefore, depending on the nature of 

the algorithm and available computational resources, alternative approaches, such as 

GPU acceleration or distributed computing, may need to be incorporated to overcome 

the limitations of multi-threading and enhance the performance of photogrammetric 

techniques. 

 

2.3.2 GPU Acceleration 

 

In recent years, the development and evolution of GPU technologies have 

revolutionised image processing capabilities, providing new opportunities for real-time 

processing in photogrammetry applications. Dense matching algorithms have 

traditionally relied on the CPU for feature point extraction and image processing. 

However, by using powerful GPUs, the processing time and data volume can be 

increased. Hardware-oriented approaches have harnessed the computational power of 

modern graphics machines to achieve enhanced performance in photogrammetry tasks. 

For instance, Zach et al. (2004) presented a hierarchical disparity estimation algorithm 

implemented on a programmable 3D GPU. This method, capable of processing rectified 

or uncalibrated image pairs, employed bidirectional matching in combination with a 

locally aggregated sum of absolute intensity differences. Implementation over an ATI 

Radeon 9700 Pro framework led to an impressive processing rate of up to 50 frames 

per second (fps) for 256×256-pixel input images. 
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In addition to these algorithms, another notable example of real-time dense image 

matching with GPU acceleration is the SGM algorithm, as illustrated by Hernandez-

Juarez et al. (2016). The SGM algorithm minimises a global energy function consisting 

of data and a smoothness term. To achieve real-time operation, the authors leveraged 

the parallelism offered by GPUs. They implemented a hierarchical belief propagation 

method that optimised the smoothness term iteratively while removing redundant 

computations to ensure fast convergence. Experimental results demonstrated the 

effectiveness of this approach: a processing speed of 42 fps was achieved for self-

recorded images with dimensions of 640×480 pixels and 128 disparity levels. The 

experiments were conducted using an NVIDIA Tegra X1 graphics card, with four path 

directions used for the SGM. 

 

Kern et al. (2020) also used GPUs for photogrammetry by developing a GPU-

accelerated method for real-time 3D reconstruction using UAVs. This approach 

leveraged the parallel computing power of GPUs to enable rapid image feature 

extraction, dense matching, and 3D reconstruction. Experimental results indicated the 

achievement of real-time performance, enabling on-the-fly reconstruction during UAV 

flights. Maoteng et al. (2017) proposed a GPU-accelerated BA algorithm for large-scale 

reconstruction scenarios. By harnessing the parallel processing capabilities of GPUs, 

significant improvements in computational efficiency were achieved. The GPU 

implementation demonstrated a 20-fold reduction in processing time compared with 

CPU-based approaches, enabling faster and more efficient large-scale reconstructions. 

 

The integration of dense matching algorithms with GPU acceleration has significantly 

improved the efficiency and performance of image processing in real-time applications. 

By harnessing the parallel processing capabilities of GPUs, these algorithms can handle 

larger data volumes with reduced processing times. Real-time processing is especially 

important in various applications, such as robotics, augmented reality, and autonomous 

systems, where immediate feedback and timely decision-making are critical. Further 

exploration of GPU-based algorithms for dense matching can lead to advancements in 

real-time image processing in photogrammetry. The ever-evolving GPU technology, 

coupled with algorithmic optimisations and hardware innovations, is expected to 

further advance dense matching techniques, enabling faster and more accurate 

reconstruction of 3D models from images. 
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2.4 Real-Time Aerial Mapping 

 

UAVs have revolutionised mapping technologies and serve as rapid and cost-effective 

solutions for capturing aerial imagery and generating accurate maps. The 

interdisciplinary nature of UAV data collection and the wide range of applications make 

them invaluable for various scientific investigations. Mapping is one of the primary 

applications for UAVs. By combining images captured by onboard cameras, UAVs can 

generate accurate maps using photogrammetric techniques. These techniques involve 

extracting features from images and matching them to create orthoimages and DSMs.  

 

Traditional photogrammetric techniques can effectively generate precise and accurate 

reconstructions. However, their application is limited by their computational 

complexity and inability to incorporate incremental updates. By requiring the 

simultaneous input of all data, such methods impose time constraints that may hinder 

real-time applications or implementation in scenarios in which data collection occurs 

over an extended period. For example, Pix4D (Pix4D, 2017) and Agisoft PhotoScan 

(Agisoft, 2014) are commercial photogrammetry applications well known for their 

precise reconstructions. These frameworks use photogrammetric techniques to process 

digital images and generate 3D spatial data, including dense point clouds and texturised 

polygonal models. Furthermore, they offer parallel computing and distributed 

processing capabilities to optimise the execution time. However, the processing time 

may still be significant for large datasets or complex scenes (Barbasiewicz et al., 2018). 

COLMAP (Schönberger et al., 2016) is a free and open-source software for 

photogrammetric reconstruction, which uses optimised algorithms for accurate 

reconstructions. However, the acquisition of precise results often requires user expertise 

and careful parameter tuning, particularly in challenging scenarios. These steps 

necessitate additional learning for the user and time for data processing (Schönberger 

et al., 2016). In addition, this software lacks incremental update capabilities, which 

limits its adaptability to dynamic environments or situations in which new data becomes 

available over time. Overall, the processing time and inflexibility of traditional 

photogrammetry techniques hinder their use in practical mapping applications. 
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To overcome the limitations of real-time processing in traditional photogrammetry 

approaches, fast mapping solutions based on image mosaic techniques can be applied, 

given their capacity for incremental mapping. Bu et al. (2016) proposed a notable fast 

image stitching approach. Their open-source framework, Map2DFusion, replaces the 

traditional picture alignment module in a stitching pipeline with a cutting-edge SLAM 

algorithm. Map2DFusion, which is a mature and well-studied framework, can alleviate 

the challenges associated with loop closing, global optimisation, and robust tracking in 

visually challenging environments. This framework uses 3D camera posture 

information to build 2D maps. Figure 2.11 shows the process flow for using 

Map2DFusion to create precise and dependable 2D maps. 

 

First, the input images are subjected to distortion removal, and features are retrieved. 

Visual SLAM is used to find unique keyframes in the image sequence. Local 

optimisation and loop detection are performed to refine the camera pose estimates. Each 

image is accompanied by synchronised GNSS measurements to establish a geographic 

reference and transmit the camera posture. The framework computes a 2D best-fitting 

plane using the 3D triangulated sparse cloud of the scene. This plane is used to project 

and align pinhole-camera-modelled pictures to create a worldwide mosaic. All the 

pictures are used to rapidly build maps post-flight.  

 

 

Figure 2.11 Framework of Map2DFusion (Bu et al., 2016). 
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Hinzmann et al. (2018) performed extensive work on real-time aerial mapping. 

Unfortunately, during the research period of this thesis, certain modules of their 

framework remained closed source, limiting the possibility of conducting an extensive 

practical survey. Nonetheless, their theoretical work inspired the fundamental 

algorithms implemented in Chapter 5 of this thesis. Figure 2.12 shows an overview of 

their system. 

 

 

Figure 2.12 Overview of aerial mapper system proposed by Hinzmann et al. (2018). 

 

Hinzmann et al. (2018) estimated camera postures without visual SLAM, unlike Bu et 

al. (2016). The authors used a KandeLucas-Tomasi feature tracker, IMUs, and a GNSS 

module to continuously estimate the state. A dense point cloud of the observed scene 

was reconstructed by merging data from various sensors to generate a 3D camera 

posture. This point cloud was incorporated into a multi-layer grid map to create a 3D 

DEM of the surface. Using this model, the authors generated an orthogonal mosaic to 

comprehensively visualise the mapped area. 

 

The method proposed by Hinzmann et al. (2018) closely resembles traditional offline 

aerial photogrammetry. The camera poses are determined as the surface is identified as 

a 3-space quantity, and the resulting map is rectified. In this manner, the geometric 

distortion of the surface is considered and corrected. Unlike Map2DFusion, the aerial 

mapper was designed to perform calculations on UAVs. Although this information can 

be used for navigation, it is of limited value to the user. Global maps on ground stations 

(GCS) are extremely valuable and should be transmitted as soon as possible. In addition, 

as part of the overall mapping procedure, certain tasks can be divided between the UAV 
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and GCS for ground station validation. This approach is particularly suitable for tasks 

that are computationally intensive and may require GPU acceleration. This strategy can 

help achieve higher map resolution and is expected to have more significant real-world 

use cases in the future. 

 

2.5 Summary 

 

Chapter 2 provides a comprehensive review of research on photogrammetry, focusing 

on the fundamentals of photogrammetry, monocular VO, use of parallel architectures 

in 3D photogrammetric applications, and real-time applications associated with aerial 

mapping. 

 

The section on the fundamentals of photogrammetry discusses various techniques for 

feature detection and matching. Traditional methods such as SIFT, SURF, and ORB 

are explored alongside deep-learning methods, such as SIFT-CNN, SuperPoint, 

SuperGlue, and LF-Net. Additionally, the chapter covers dense image matching, 

distinguishing between stereo dense image matching algorithms and deep-learning-

based stereo-matching approaches. Furthermore, the concepts of triangulation and 

space resection are introduced, encompassing topics such as 3D reconstruction and EO 

determination. The following section delves into monocular VO, which involves 

estimating camera poses using state-of-the-art algorithms. This section highlights the 

importance of accurate camera pose estimation for visual navigation and positioning 

applications. The last section describes the use of parallel architectures in 3D 

photogrammetric applications, including multi-threading on CPUs and GPU 

acceleration. Notably, multi-threading enables the efficient utilisation of CPU resources, 

while GPU acceleration leverages the parallel computing power of GPUs to accelerate 

computationally intensive tasks in photogrammetry. 

 

This chapter highlights the advancements and current trends in photogrammetry. 

However, several areas warrant further investigation. Specifically, the potential of 

combining traditional and deep-learning-based methods for feature detection and 

matching, dense image matching, and 3D reconstruction must be explored. Hybrid 

approaches can potentially leverage the strengths of both techniques to improve 
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accuracy and efficiency. Additionally, future research can focus on developing robust 

and efficient algorithms for monocular VO that can operate in real-time, facilitating 

autonomous navigation and robotics applications. 
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Chapter 3 Real-Time Cross-View Feature 

Matching and Camera Pose Determination 
 

In recent years, robotic vision has become increasingly popular owing to its versatility 

and applications in various fields, such as industrial inspection, remote sensing for 

mapping and surveying, and rescue operations. Despite these capabilities, the 

autonomous navigation capacity of robots remains limited, particularly in GPS-denied 

environments where GPS signals are unavailable or unreliable. While GPS technology 

has revolutionised location-based services, it has limitations in some environments. 

GPS signals can be blocked by buildings, trees, or other obstacles, and their accuracy 

can be affected by atmospheric conditions. Implementing computer vision technology 

on robots is a potential solution to improve the navigation capacity of robots in 

unfavourable environments.  

 

3.1 Overview of Approach 

 

This chapter presents a novel approach for visual-based camera-pose determination of 

aerial robots (e.g., UAVs and drones). This method offers a cost-effective alternative 

to traditional navigation methods, such as those relying on GPS, inertial measurement 

units, and laser or radar sensors. Additionally, the method provides a flexible solution 

for use in the environments where GPS signals are interfered with or blocked. The 

proposed method is a coarse-to-fine approach that localises the robot by two sequential 

processes: a) feature-based cross-view image matching and retrieval for matching the 

aerial images with a pre-built database constructed from a large-scale orthoimage base 

map; b) camera relative and absolute pose determination based on the integration of 

VO and space resection. The first process narrows the down the region for visual 

positioning, while the second process (i.e., space resection) identifies the exact location 

and orientation of the aerial robot through VO and photogrammetry techniques. 
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Figure 3.1 Overview of the feature-based cross-view image matching and retrieval for 

camera pose determination. The similarity between the local feature from the aerial 

image and the global feature from the orthoimage base map enables efficient recall and 

matching of cropped orthoimage tiles from a pre-built database. 

 

The concept of the approach (Figure 3.1) is introduced in the following sections: 

 

(1) In Section 3.2, a feature-based approach for cross-view image matching and 

retrieval is presented. The pre-built database consists of cropped orthoimage tiles and a 

DSM with features extracted using a deep learning-based algorithm. These features are 

saved in separate files as the global feature points and descriptions for feature image 

retrieval and matching. 

 

(2) In Section 3.3, an integrated VO method is proposed to determine the camera 

position and orientation. Our approach consist of state-of-the-art deep learning 

algorithms for VO and space resection to obtain the absolute pose of the camera in real-

world coordinates. The details of our approach are presented in the subsections. 
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(3) In Section 3.4, the experiment and evaluation are presented, and the effectiveness 

of our method is demonstrated using open-access image data. The trajectory of the 

estimated camera pose and the evaluation results of the accuracy and efficiency of the 

method are presented. 

 

3.2 Feature-Based Cross-View Image Matching and Retrieval 

 

Image matching and retrieval are crucial in several applications in which images are 

matched with a vast reference image database, such as robotic vision, navigation, and 

positioning (Arras et al., 1998, Chen et al., 2016, Deng et al., 2012). Because these tasks 

can be computationally intensive, particularly in cases involving large datasets, 

implementing an effective feature extraction strategy is essential to alleviate the 

computational burden. This strategy involves selecting the most informative features 

from the images, which reduces data dimensionality, computational costs, and the risk 

of overfitting. Furthermore, effective feature extraction enables the extraction of critical 

discriminative information from images, enhancing recognition and retrieval accuracy. 

For example, in place recognition applications, distinctive features such as unique 

buildings or landmarks can be captured, facilitating accurate recognition even in the 

presence of other similar-looking places. Images of the same or similar places may 

significantly vary depending on lighting conditions, viewpoint directions, and 

occlusions. Effective feature extraction captures the key characteristics of an image that 

remain invariant to these variations, providing robustness to image variations and 

enabling reliable place recognition and retrieval. Another advantage of feature 

extraction is its scalability to large image datasets, making it suitable for real-world 

applications such as online image retrieval. However, selecting the appropriate feature 

extraction strategy depends on several factors, including the specific application and 

characteristics of the adopted dataset. 

 

3.2.1 Feature Extraction Methods and Evaluation 

 

Feature extraction is a crucial aspect of computer vision and photogrammetry, as it 

forms the foundation for essential applications such as VO and simultaneous 

localisation and mapping. These applications rely on the accurate extraction and 
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matching of feature points across images. Feature extraction involves identifying 

unique, distinguishable features from images, which can then be used for subsequent 

matching and tracking. These features may include corners, edges, blobs, or more 

complex structures that can be represented mathematically. Feature extraction is often 

followed by feature description and matching, in which the extracted features are 

described with local descriptors and matched across different images. Achieving 

accurate and reliable results in the presence of various environmental factors, such as 

varying lighting conditions, occlusions, and image noise, is a key challenge in feature 

extraction. To address this, researchers have developed various feature extraction 

methods, such as scale-invariant feature transform (SIFT; Lowe, 2004), binary robust 

independent elementary features (BRIEF; Calonder et al., 2010), features from 

accelerated segment test (FAST; Rosten et al., 2006), and oriented BRIEF (ORB; 

Rublee et al., 2011). These methods have been widely adopted in numerous computer 

vision applications and have proven effective in achieving fast and accurate feature 

extraction. However, the methods are characterised by high computational costs, 

sensitivity to illumination changes, and difficulty in handling large datasets. To 

overcome these challenges, researchers have explored the application of deep learning 

techniques to enhance feature extraction capabilities, leveraging the power of neural 

networks to learn feature representations directly from data. 

 

The images captured by the onboard camera of a drone often feature motion blur, 

uneven illumination, and occlusion owing to the speed and jitter of the drone during 

flight. To overcome these problems, a deep learning feature detection algorithm, 

SuperPoint, was used in this study to further encode aerial images and the 

corresponding cropped orthoimage tiles to prepare the pre-built database for image 

matching and retrieval. SuperPoint (DeTone et al., 2018) is a lightweight neural 

network model for computing image keypoints and local feature descriptors. It is 

designed to be lightweight and efficient, making it well-suited for real-time applications. 

SuperPoint features considerably fewer fine-tuned weight parameters than other deep 

learning-based feature detection methods, such as D2-Net and LF-Net (Dusmanu et al., 

2019, Ono et al., 2018); moreover, its parameter file size is only ~800 kb, which makes 

it suitable for tasks that require fast response and real-time applications on mobile 

devices. In addition, SuperPoint is highly accurate and robust to challenging imaging 
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conditions such as motion blur and occlusions, owing to its ability to learn features 

specific to the problem domain and efficiently handle large datasets.  

 

Figure 3.2 shows the framework of the clustered SuperPoint feature extraction. The 

input is a one-dimensional greyscale image with size W × H. The image is passed to a 

convolutional neural network (CNN) from a VGG-16 (Simonyan et al., 2014) 

architecture encoder. The encoder consists of 10 convolutional layers, pooling-based 

spatial downsampling layers, nonlinear activation functions, and three max-pooling 

layers. The input greyscale image of size W × H is first resized to 256 × 256 pixels and 

then normalised to zero mean and unit variance. The convolutional layers in the encoder 

extract features from the input image at different spatial resolutions. The first few 

convolutional layers capture low-level features such as edges and corners, while the 

deeper layers capture high-level features such as object parts and textures. All of the 

features are delivered to max-pooling layers for feature-map downsampling and spatial 

resolution reduction. This step enhances the robustness of the network to variations in 

scale and viewpoint. After each convolutional layer in the encoder, a nonlinear rectified 

linear unit (ReLU) activation function is applied to introduce nonlinearity into the 

network and improve its expressive power. In the last step, three max-pooling layers 

are implemented to reduce the feature maps to a size of W/8, H/8, and D. 

 

 

Figure 3.2 Framework of the SuperPoint feature extraction 

 

The intermediate tensor with a size of W/8, H/8, and D is first sent to a neural network 

similar to the universal correspondence network (UCN; Choy et al., 2016) for descriptor 
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vector refinement. The descriptor decoder of SuperPoint uses a learned pooling 

operation to aggregate local feature descriptors around a given interest point. This 

pooling operation is parameterised by a set of weights that depend on the spatial 

location of each descriptor relative to the keypoint. The UCN-like neural network is 

used to learn these weights end-to-end. The output of the network (a set of weights) 

enables the descriptor decoder to consider the spatial relationships between the features 

in the images and results in more robust and discriminative descriptors. Then, the size 

of the feature descriptor maps is fixed via bicubic interpolation. This up-sampling step 

is performed to obtain a dense representation of local geometry and appearance 

information around the interest points in a grid of feature values. Afterwards, the 

resulting descriptor vector is typically L2-normalised and clustered, which scales the 

vector to unit length, to improve the robustness of the descriptor for matching across 

multiple images. 

 

The robustness and execution time of traditional and deep learning-based feature 

detection methods has been assessed by implementing homography estimation on 

sequences of the benchmark dataset HPatches (Balntas et al., 2017). This involved 

performing nearest neighbour matching of the interest points and descriptors detected 

in the first image with those in the second image sourced from the benchmark dataset. 

The dataset comprised 116 image sequences that were grouped into two categories: 

illumination changes and viewpoint alterations (Figure 3.3). The former consisted of 

57 sequences that exhibited exclusively photometric modifications, while the latter 

consisted of 59 sequences characterised by geometric deformations. This division 

differentiated the effects of changes in illumination conditions from the effects of 

variations in viewpoint. Each sequence consisted of one reference image and five target 

images. 
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Figure 3.3 Examples of two viewpoint image sequences (rows 1 and 2) and two 

illumination image sequences (rows 3 and 4) from the HPatches dataset. 

 

Table 3.1 Mean execution times and mean average precision (mAP) of three tasks for 

traditional and deep learning-based detector–descriptor pairs. 

Detector Descriptor 
Execution 
Time (ms) 

mAP 

Verification Matching Retrieval 

SuperPoint SuperPoint 13 29% 57% 29% 

LF-Net LF-Net 196 5% 52% 37% 

ORB ORB 17 15% 45% 23% 

FAST BRIEF 32 10% 48% 17% 

FAST SIFT 163 27% 60% 64% 

SIFT SIFT 195 11% 59% 26% 

SIFT BRIEF 122 14% 56% 35% 

 

The evaluation methods of above algorithms were based on the study by Balntas et al. 

(2017). The robustness of the traditional and deep learning-based detectors and 

descriptors was represented by the mean average precision (mAP) of three tasks: 

keypoint verification, image matching, and keypoint retrieval. The mAP was 

determined according to the precision and recall values of a ranked list, LK, with K 

elements. The precision and recall values were computed for every k < K, which refers 

to the top-k elements of the ranked list. Precision and recall were calculated for LK, and 

the values were averaged across all Lk instances where the recall increases. This process 

resulted in the computation of the average precision measure for the ranked list LK. 
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The evaluation results (Table 3.1) reveal the performances of three top traditional 

feature detectors and descriptors and two deep learning-based methods. For traditional 

algorithms, the default parameters from OpenCV (Bradski, 2000) were used. For 

SuperPoint and LF-Net evaluation, pre-trained models were implemented according to 

the fine-tuned outdoor weight provided by DeTone et al. (2018). SuperPoint yielded 

the most favourable results on the three tasks, outperforming LF-Net on the keypoint 

verification task. The results highlight the superior computational efficiency of 

SuperPoint, with a keypoint detection time of 13 ms for a single image. It was 

significantly faster than LF-Net, whose execution time was 60 times longer. The 

evaluation also showed the performances of different traditional detector–descriptor 

combinations. The SIFT detector and descriptor yielded the most successful outcomes, 

particularly in image matching and retrieval tasks. However, the BRIEF descriptor 

performed poorly in all combinations. While the FAST + SIFT combination 

outperformed other traditional algorithms on all three tasks, its execution time (163 ms) 

was significantly longer than that of ORB + SuperPoint. The evaluation results 

emphasise the effectiveness of SuperPoint for practical applications requiring rapid 

performance. 

 

3.2.2 Feature-Based Matching for Cross-View Image Retrieval 

 

In image matching and retrieval, similarity search is typically performed through 

feature-based approaches. Features are distinctive descriptors extracted from an image, 

and they capture local geometric information for image recognition. To identify the 

location of a query image in an orthoimage, we propose a feature-based similarity 

search approach for image place recognition that involves the following steps: 1) Global 

feature points and descriptors are extracted from the orthoimage base map and then 

saved as an individual file and as part of the pre-built database for image retrieval. 2) 

Feature points and descriptors extracted from the query image are also extracted to 

match the spatial structure obtained from the previous step. 3) The k-nearest neighbour 

(KNN; Cover et al., 1967) search algorithm is used to compute the Euclidean distance 

between the feature point descriptors of the query image and those in the pre-built 

database. 4) The k search results with the smallest L2 distance to the feature point 
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descriptors of the query image are selected. 5) The corresponding cropped orthoimage 

tile of the query image in the database is retrieved according to the maximum density 

of feature points among the k search results. Figure 3.4 illustrates the framework of our 

approach, and each step is detailed below. 

 

 

Figure 3.4 Framework of feature-based matching for cross-view image retrieval. 

 

After the extraction of global feature points and descriptors from the orthoimage base 

map, principal component analysis is applied to reduce the redundancy of the spatial 

and geometric dimensionalities of features. Then, clustered feature descriptors are 

saved as an individual file in the pre-built database for further image matching and 

retrieval. The KNN algorithm is adopted owing to its ability to efficiently identify the 

k most similar or nearest vectors in the database for the query vector a using a Euclidean 

distance metric. Given a query vector of the feature point descriptor 𝑥௜ ∈ ℚௗ  and the 

database of vector collection 𝑦௜ ∈ ℂௗ, we conduct the following search: 

 

 𝐿௣(𝑥௜, 𝑦௜) = 𝑘 ∙ 𝑎𝑟𝑔𝑚𝑖𝑛 ተ൭෍ቚ𝑥௜
(௡)

− 𝑦௜
(௡)

ቚ
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where 𝑖 ∈ {1, … , 𝑙} indicates the number of vectors in the database, and n is the vector 

dimensionality. The Euclidean distance with p = 2 is denoted as the L2 distance. This 

metric has been mentioned earlier and is commonly used as a similarity measure in 

several applications, including image retrieval. This distance metric is often preferred 

owing to its attractive linear algebra properties, making it well-suited for tasks that 
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involve the learning of multiple embedded vectors. Specifically, the L2 distance is 

optimised by design, allowing for efficient computations and effective similarity 

comparisons between feature vectors (Muja et al., 2014). Its mathematical properties 

make it a popular choice in various similarity search tasks, including image matching 

and retrieval, owing to its effectiveness in capturing the pairwise distance between 

feature descriptors. The smallest L2 distance is collected via k-selection. For an array 

ai, k-selection identifies the k lowest valued elements 𝑎௦ೕ
൫𝑠௝ ∈ {1, … , 𝑙}, 𝑗 ∈

{0, … , 𝑘}൯, 𝑎௦ೕ
 indicate the elements from the input array sj. Because each image 

contains n feature point descriptors, a batch similarity search is performed to identify 

the k most similar results through a comparison of the n feature point descriptors over 

the m descriptors from the database. Batching for k-selection entails selecting n × k 

elements and indices from n separate arrays. 

 

The KNN similarity search results in a k set of vectors containing n feature points 

descriptors. We determine the location of n feature points according to the saved feature 

points ℝ extracted by SuperPoint in previous steps. Then, a similarity map is generated 

following the feature point distribution. The similarity value is expressed as Di (𝑖 ∈

{0, … , 𝑛}), and the centre location (𝑥஽ , 𝑦஽) of the maximum feature point similarity is 

calculated as 

 

 𝑥஽ , 𝑦஽ = 𝑙𝑜𝑐(𝑎𝑟𝑔𝑚𝑎𝑥|𝐷௜|) (3.2) 

 

Once the centre of maximum feature point density is located, the pixel coordinates will 

be saved as an index to search for the closest centre coordinates of the cropped 

orthoimage tiles in the database using KNN. This step serves as a two-way verification 

and constraint for the previous feature point similarity search, enhancing the robustness 

of the final search result. The KNN algorithm allows for more flexibility when executed 

on multiple CPU threads or GPUs. It was adopted in our study following the approach 

proposed by Johnson et al. (2019). 
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3.2.3 Experimental Analysis of Cross-View Image Matching and 

Retrieval 

 

3.2.3.1 Pre-Built Database Construction 

 

The orthoimage base map used for image matching was generated from an open-access 

aerial image dataset. The dataset comprised over 400 aerial photographs collected by 

an eBee X drone equipped with an Aeria X photogrammetry camera (senseFly, 2019). 

For further analysis, the orthoimage was cropped into multiple sections to create the 

image dataset. SuperPoint extracted the feature points and descriptors from the cropped 

image sections. The feature points and descriptors were represented as vector data and 

saved separately as files. The resulting vector database obtained from this process can 

be utilised for similarity search in image retrieval. 

 

Figure 3.5 presents an overview of the orthoimage generated by the aerial images. The 

image size was 70,391 × 59,269 pixels, covering an area of ~0.033 km2 with a 1 m 

resolution. The input to the framework was an orthoimage, from which global feature 

points and descriptors were extracted using SuperPoint and saved as a separate file for 

further image matching. Additionally, the orthoimage was cropped into several sections. 

The central location of each cropped tile on the orthoimage and the feature points and 

descriptors were saved for further image retrieval. The size of the cropping window 

was represented as (Wd, Hd). The cropping window was moved along the long side of 

the orthophoto, with the movement step determined by the end lap and side lap 

selections. The step was inspired by the flight planning of aerial photogrammetry, 

which emphasises the importance of image overlap during the capture of consecutive 

photos along and adjacent to a flight strip. As noted in the Chapter 2, ‘end lap’ and ‘side 

lap’ refer to the overlap between consecutive photos captured by the camera along and 

adjacent to a flight strip, respectively. Generally, the end lap and side lap in aerial 

photogrammetry are set to 60% (Wolf et al., 2014). The present study employed a 

cropping strategy to produce pre-built database, with each cropped image piece having 

80% overlap on both the end and side laps. The image tiles in the pre-built database 

were achieved through the cropping of the orthoimage into smaller pieces, and 
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consecutive photos were captured according to the overlapping requirement. This 

approach was adopted to enhance the quality and completeness of the pre-built database. 

 

(a) 

(b) 

Figure 3.5 (a) Overview of the orthoimage base map for constructing the database for 

image retrieval, and (b) thumbnails and examples of cropped tiles in the database 
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3.2.3.2 Performances of Cross-View Image Matching and Retrieval 

 

The orthoimage was cropped into over 900 sections, and each section was passed to 

SuperPoint for feature point and descriptor extraction. The centre location of each 

image section was also saved during this processing. As shown in Figure 3.4, the aerial 

image was first extracted using SuperPoint, with d number of feature points and 

descriptors. The k sets from the global feature descriptor most similar to the query 

features were found via a similarity search, and each set contained d vectors of feature 

descriptors. In the experiment, we set k to 5 to obtain the top five sets of search results 

most similar to the query vector. Then, the maximum density value and corresponding 

image coordinates were found on the density map, which was generated according to 

the search results. The KNN algorithm was applied again to find the cropped tiles in 

the pre-built database. 

 

 
Figure 3.6 Experimental result of feature-based image matching and retrieval. (a), (b) 

and (c) are three example query images with different landscapes. The top five 

similarity maps of each query image and corresponding cropped orthoimage tiles were 

retrieved from the pre-built database 

 

Figure 3.6 demonstrates our proposed approach for the matching and retrieval of the 

cropped tiles of the aerial image in the pre-built database. Figure 3.6(a) shows an aerial 
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image of rich-texture areas, such as buildings, roads, and green belts. The top half of 

Figure 3.6(a) presents similarity maps of the top five most similar feature points, and 

the corresponding nearest cropped tiles are shown below. Because features in this 

region are easily extracted, the abundance of features in this region results in relatively 

reliable search results. In contrast, the query image in Figure 3.6(b) contains areas with 

less texture (e.g., trees and lakes) than in Figure 3.6(a). However, the search results still 

enable the successful retrieval of the location of the query aerial image. In contrast, 

Figure 3.6(c) shows a query image with similar content to Figure 3.6(b) but with even 

less textured areas. Extracting features from this region is challenging, and the 

descriptors in such areas, such as trees and green belts, are rather similar to the global 

feature descriptor. Hence, the search results may result in incorrect image retrieval, as 

demonstrated by the last image retrieval results at the bottom of Figure 3.6(c). 

 

Table 3.2 Accuracy comparison between our methods and other methods 

Methods 
R@1 R@5 

+ve −ve Precision +ve −ve Precision 

VGG-16 203 236 46.2% 315 124 71.8% 

SuperPoint 225 214 51.3% 282 147 64.2% 

Our method 263 176 59.9% 320 119 72.9% 

 

To comprehensively evaluate the performance and accuracy of our proposed method, 

we analysed the number of positive (+ve) and negative (−ve) results for the top one and 

top five search results. Furthermore, we compared the similarity search and image 

retrieval results obtained using feature points and descriptors from VGG-16 and 

SuperPoint with the results obtained using feature points and descriptors from our 

method. The pre-built database consisted of 921 cropped image sections and 439 aerial 

images used in our evaluation and experiment. As shown in Table 3.2, our method 

successfully retrieved 253 images in the top one result, with a precision of ~60%, 

demonstrating its effectiveness compared with other methods. VGG-16 exhibited the 

worst performance in both the top one and top five search results. The proposed method 

exhibited the most robust performance in the top five search results. The favourable 

performance and robustness of the proposed approach demonstrate its potential in real-

time localisation and navigation applications. Moreover, our evaluation results 
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demonstrate the potential of our proposed approach for practical aerial image retrieval 

tasks, providing a solid basis for further research and development in this area. 

 

Using only aerial images, we conducted a comprehensive evaluation to assess the 

accuracy and reliability of the proposed approach for image retrieval. Different methods 

were adopted to retrieve aerial images from a dataset of over 400 aerial images. The 

evaluation was performed using a confusion matrix, which is commonly used for 

evaluating the accuracy and reliability of a model or algorithm in machine learning and 

data analysis. The confusion matrix typically consists of rows and columns representing 

the sample and actual values (ground truth). In our study, the rows of the confusion 

matrix represent the query image index, while the columns represent the index of the 

aerial images in the dataset as the reference. By analysing the confusion matrix, we 

comprehensively evaluated the performance of our approach and its ability to 

accurately retrieve aerial images from the dataset. The element (i, j) in the confusion 

matrix represents the similarity value between reference image i and image retrieval 

result j. 

 

(a) VGG (b) SurperPoint (c) Our method 

Figure 3.7 Comparison of confusion matrix between our method and others for 

similarity searching 

 

Figure 3.7 shows the three confusion matrices for image retrieval. Each square matrix 

had dimensions of 439 × 439, where 439 represents the total number of aerial images 

in the dataset. The diagonal cells from top-left to bottom-right represent the correctly 

retrieved query image. The decimal proportion value indicates the similarity to the 

ground truth (the query image in the dataset). The off-diagonal cells represent the 
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mismatches. Figure 3.7(a) presents the confusion matrix obtained using the VGG-16 

model. This matrix is used for extracting feature points and descriptors in the context 

of aerial image retrieval from the dataset. The descriptors extracted from VGG-16 were 

used for similarity search to retrieve images. The results indicate that the VGG-16 

feature descriptor approach exhibited relatively high mismatches, suggesting its 

limitations for aerial image retrieval. The image retrieval based on only feature 

descriptors extracted by SuperPoint was evaluated using a confusion matrix (Figure 

3.7b). The results indicate that the SuperPoint feature descriptor improved robustness 

in similarity search compared with the VGG-16 feature descriptor. Figure 3.7(c) 

displays the confusion matrix obtained through our approach after feature point 

similarity evaluation and density comparison. Our approach showed a higher precision 

than the other two methods, with fewer mismatches in the off-diagonal cells. These 

findings suggest that our approach yielded more robust and reliable image retrieval 

results than VGG-16 and SuperPoint feature descriptors. 

 

3.3 Camera Pose Determination by the Integration of VO 

and Space Resection 

 

VO is a computer vision-based technique that enables a machine or robot to estimate 

its position and orientation in the environment by analysing visual information from a 

camera or multiple cameras. It is a critical technology for navigation and positioning in 

various applications, including autonomous vehicles, drones, robotics, and augmented 

reality. VO relies on extracting visual features, such as keypoints or landmarks, from 

consecutive images or video frames and then tracking their motion over time to estimate 

the relative camera motion. VO involves analysing the changes in the visual features to 

estimate the camera pose (position and orientation) in 3D space, usually in relative 

frames. However, traditional VO methods often struggle under low-illumination 

conditions, fast motion, and large camera rotations. To overcome these challenges, a 

state-of-the-art deep learning algorithm has been introduced as a powerful technology 

for enhancing monocular VO. 

 

Space resection is a fundamental technique used in photogrammetry to determine the 

absolute camera pose in a 3D space. It involves estimating the camera position and 
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orientation relative to a known coordinate system. Space resection can accurately 

calculate the camera pose by analysing the correspondences between 2D image points 

and their corresponding 3D world points. First, a set of known 3D points is selected, 

and then the corresponding 2D projections in the image are identified. The camera 

exterior orientation parameters can be solved using the collinearity equation with the 

camera interior orientation parameters. The reprojection error and the camera pose are 

minimised and optimised through the iterative adjustment of the camera position and 

orientation until the projected 3D points are aligned with their corresponding 2D points 

in the image. This enables the conversion of image coordinates to world coordinates, 

facilitating the accurate mapping of the camera position in space. 

 

In the proposed approach, VO was used for the relative pose estimation of aerial image 

series, and space resection was used to determine the absolute camera pose of the 

keyframes (e.g., the turning point of the flying path) of the aerial images and transfer 

the VO results to absolute scales. The concept of the proposed approach is illustrated 

in Figure 3.8. 

 

Figure 3.8 Overview of the integration of VO and space resection for camera pose 

determination. The absolute pose of the keyframe obtained via space resection is used 

as a constraint on the relative pose of the subsequent frames estimated via VO, resulting 

in a refined trajectory. 
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3.3.1 Feature-Based VO 

 

Feature-based VO methods, which rely on the detection and matching of features, such 

as corners or keypoints, between consecutive images to estimate camera motion, are 

commonly used in navigation and positioning (Aqel et al., 2016, Nistér et al., 2004). 

However, these traditional feature-based VO algorithms have several limitations. They 

are often sensitive to lighting conditions, as changes in illumination can adversely affect 

feature quality and repeatability, leading to inaccurate feature detection and matching, 

which can result in poor motion estimation. Additionally, these methods may have 

limited robustness to motion blur and occlusions, as fast motion, motion blur, and 

occlusions can limit the accuracy of feature tracking across consecutive frames. 

Traditional feature-based methods may struggle to effectively handle these situations, 

resulting in degraded motion-estimation accuracy. Furthermore, traditional feature-

based methods may face difficulties in accurately estimating motion in large camera-

rotation scenarios. Large camera rotations can cause changes in the appearance and 

geometry of the scene, leading to feature mismatches and inaccurate motion estimates. 

 

In contrast, deep learning-based VO algorithms such as SuperPoint and SuperGlue 

(Sarlin et al., 2020) offer several advantages in navigation and positioning, such as their 

robustness to varying lighting conditions. The state-of-the-art deep learning-based 

methods can learn robust features from images with varying illumination conditions, 

enabling accurate feature matching even in low-light or varying-lighting environments. 

Moreover, these methods can capture complex and discriminative features from images. 

They can learn sophisticated features, leading to more accurate and reliable feature 

matching, even in challenging scenarios with motion blur, occlusions, or large camera 

rotations. Additionally, state-of-the-art methods such as SuperPoint and SuperGlue 

perform end-to-end feature extraction and matching while considering the global 

context, which can help improve the overall pose estimation accuracy. These 

advantages endow the state-of-the-art VO algorithms with improved performance and 

reliability in motion estimation tasks, making them promising alternatives to traditional 

feature-based methods. 
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3.3.1.1 Accuracy Evaluation of VO Methods 

 

The performances of various VO algorithms on the KITTI odometry benchmark dataset 

were evaluated using the average distance error and the relative distance error (RDE; 

Geiger et al., 2013). The KITTI odometry benchmark dataset is widely used for 

evaluating the accuracy, robustness, and real-time performance of VO algorithms for 

monocular cameras. The dataset serves as a benchmark for comparing different 

algorithms and assessing their performances in challenging driving scenarios, such as 

unfavourable lighting conditions, unfavourable weather conditions, and complex 

scenes. The KITTI odometry benchmark dataset includes 22 monocular camera 

sequences with over 4,000 frames captured from a vehicle driving in urban and highway 

environments. The sequences cover ~39 km and include diverse scenes such as urban 

streets, residential areas, highways, and tunnels. The sequences were captured at a 

frame rate of ~10 Hz, with a resolution of 1241 × 376 pixels. The ground truth poses of 

the camera are provided in the dataset, which allows for the evaluation of the accuracy 

of VO algorithms. The ground truth poses were obtained using a high-precision laser-

based Velodyne HDL-64E LIDAR sensor and a high-accuracy GPS/INS system. The 

ground truth poses are provided as 3D translation vectors and 3D rotation matrices. 

Figure 3.7 illustrates the experimental results of the traditional and deep learning-based 

feature detection and matching methods. 

 

Figure 3.9(a) shows the original two consecutive frames from one sequence of the 

KITTI benchmark dataset. To demonstrate the limitations of the traditional feature-

based methods, Figure 3.9(b) presents the feature-matching results obtained using the 

SIFT and FLANN (fast library for approximate nearest neighbours) algorithms for 

feature detection and matching, respectively. Despite its popularity, the traditional 

SIFT + FLANN algorithm may have limitations, such as reduced feature extraction and 

matching robustness under varying conditions. Figure 3.9(c) shows the results obtained 

using the SuperPoint deep learning-based algorithm for feature detection while 

maintaining the same feature-matching method as in Figure 3.9(b). SuperPoint, 

specifically designed to capture complex and discriminative features, showed improved 

feature extraction and matching robustness. Furthermore, Figure 3.9(d) presents the 

results of SuperPoint + SuperGlue, in which SuperPoint is used for feature detection 

and SuperGlue, another deep learning-based method, is used for feature matching. The 
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use of SuperPoint + SuperGlue demonstrates the potential of end-to-end deep learning-

based algorithms for achieving improved feature-matching performance. 

 

  
(a) sample of the sequence frames (b) SIFT + FLANN 

  
(c) SuperPoint + FLANN (d) SuperPoint + SuperGlue 

Figure 3.9 Experimental results of different feature detection and matching methods. 

 

To further evaluate and compare the accuracies of traditional and state-of-the-art VO 

methods, the methods were applied to all frames in the KITTI benchmark dataset, and 

the average distance error and the RDE were calculated. The absolute distance error 

(ADE) measures the absolute difference in distance between the estimated camera 

trajectory and the ground truth trajectory. A lower average distance error indicates 

higher accuracy in camera motion estimation. The RDE measures the relative 

difference in distance between the estimated camera trajectory and the ground truth 

trajectory at each time step and frame. A lower RDE indicates better consistency in 

relative motion estimation between consecutive frames. Figure 3.10 compares the 

experimental results of the estimated camera trajectory (shallow line) with the ground 

truth trajectory (dark line). 
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(a) ADE = 344.6 m (b) ADE = 21.9 m 

  
(c) ADE = 37.6 m (d) ADE = 15.5 m 

Figure 3.10 Experimental results of estimated camera trajectories obtained via 

different methods compared with the ground truth trajectory 

 

The camera trajectory estimates obtained using SuperPoint + SuperGlue (Figure 3.10d) 

closely reproduced the ground truth trajectory, indicating the superior performance of 

deep learning-based methods. In contrast, when combined both the traditional feature 

point extraction algorithms (Figures 3.10b) and the deep learning-based feature point 

extraction algorithms with FLANN for feature point matching (Figures 3.10c), the 

results deviate moderately from the ground truth. The estimated camera trajectory 

obtained using ORB + BF showed a significant deviation from the ground truth (Figure 

3.10a). The statistics of each approach for camera trajectory estimation are presented 

in Figures 3.11 and 3.12. The ADE measures the cumulative error over time, while the 

RDE evaluates the accuracy of camera pose estimation between two consecutive frames. 

ORB + BF SIFT + FLANN 

SuperPoint + FLANN SuperPoint +SuperGlue 
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The results in Figure 3.11 show that the SuperPoint + SuperGlue algorithm exhibited 

the lowest ADE, with an average error of 15.5 m, while the ORB + BF algorithm 

exhibited the highest ADE, with an average error of 344.6 m. The SIFT + FLANN 

algorithm exhibited an ADE of 21.9 m, and the SuperPoint + FLANN algorithms 

exhibited an average ADE of ~37.6 m. Both algorithms exhibited similar pattern offsets 

in their trajectories, possibly because both algorithms were used with the same 

matching algorithm. As shown in Figure 3.12, ORB + BF exhibited a substantially 

higher RDE (0.748 m on average) than the other algorithms, while SIFT + FLANN 

exhibited the lowest RDE (0.085 m on average). The SuperPoint + FLANN and 

SuperPoint + SuperGlue algorithms exhibited an average RDE of 0.177 and 0.103 m, 

respectively. These results suggest that the SuperPoint + SuperGlue algorithm 

outperformed the other algorithms in overall accuracy, while the ORB + BF algorithm 

exhibited the highest error. 

 

Figure 3.11 ADE between the estimated camera trajectory and the ground truth 

Figure 3.12 RDE between the estimated camera trajectory and the ground truth 
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3.3.1.2 Efficiency Evaluation of VO Methods 

 

According to the above analysis, SuperPoint and SuperGlue demonstrated high 

accuracy and precision in feature matching, which are crucial for accurate motion 

estimation. SuperGlue, a deep learning-based feature-matching algorithm, further 

enhances the accuracy and robustness of feature matching compared with traditional 

methods such as BF or FLANN. 

 

To evaluate the efficiency of different feature detection and matching algorithms, we 

considered three aspects: CPU usage, GPU usage, and frames per second (FPS). CPU 

usage refers to the amount of processing power required by the algorithm to run on the 

CPU. A higher CPU usage indicates that the algorithm is computationally intensive and 

may not be suitable for real-time applications and low-power devices. GPU usage refers 

to the amount of processing power required by the algorithm to run on a GPU. The 

speed of many feature detection and matching algorithms can be enhanced by running 

them on a GPU rather than a CPU. FPS refers to the number of frames per second that 

the algorithm can process. A higher FPS indicates that the algorithm can process more 

frames in real time and is more suitable for applications requiring real-time processing. 

According to these criteria, the efficiencies of the traditional and state-of-the-art VO 

methods were evaluated on a PC with an Intel Xeon E5-2603 v4 CPU and an NVIDIA 

GeForce RTX 2080Ti GPU. 

 

Figure 3.13 presents the efficiency evaluation results of each VO method on the KITTI 

benchmark dataset. ORB is a feature descriptor algorithm that primarily runs on a CPU. 

Among the traditional VO methods, the ORB + BF algorithm is CPU-based. It runs 

entirely on the CPU, with an average usage of 40% CPU resource, and does not require 

GPU resource. Because ORB is a relatively lightweight feature detection algorithm and 

the BF algorithm used for matching is relatively simple, the efficiency of ORB + BF 

exceeded 90 FPS. SIFT is a computationally expensive feature detector. It involves 

multiple steps, including scale-space extrema detection, keypoint localisation, 

orientation assignment, and descriptor computation. These steps can be 

computationally intensive and may require significant CPU usage. The FLANN 

matching algorithm is more complex than BF and may require more CPU resources. 

Overall, the CPU usage of SIFT + FLANN (52% on average) was higher than that of 
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ORB + BF. SIFT can utilise the GPU for certain computations, but the CPU typically 

handles most of its workload. FLANN does not have GPU implementations. Therefore, 

its GPU usage should also be negligible. Figure 3.11(b) shows that SIFT + FLANN 

exhibited a lower FPS (27 on average) than ORB + BF, owing to the computational 

complexity of the former.  

 

Among the state-of-the-art VO methods, SuperPoint + FLANN was less efficient than 

ORB + BF and SIFT + FLANN, as it requires a GPU for feature extraction. FLANN 

consumed ~74% of CPU resources for loading CNNs and feature matching, and 

SuperPoint consumed ~25% of GPU resources for feature extraction. 

SuperPoint + FLANN exhibited a higher FPS (~40 FPS for the entire evaluation) than 

SIFT + FLANN. However, both SuperPoint and SuperGlue require GPU for feature 

extraction and matching. They featured the highest GPU usage among all of the 

methods, and CPU usage was only for CNN loading. SuperPoint + SuperGlue exhibited 

a moderate FPS: ~33. 

 

(a) CPU usage (b) GPU usage (c) FPS 

Figure 3.13 Efficiency evaluation for each VO method. 
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The above VO methods were applied to our aerial image and pre-built database to 

evaluate the effectiveness of SuperPoint and SuperGlue on real-time motion estimation. 

We compared the methods with traditional feature detection and matching methods. 

 

(a) Aerial image and cropped tiles (b) ORB + BF 

(c) SIFT + FLANN (d) SuperPoint + SuperGlue 

Figure 3.14 Experiment of feature matching with different methods  

 

Table 3.3 Comparison of correct matches and execution times for each feature-

matching method 

Methods 
Number of 

Feature Points Correct 
Matches 

Execution Time (ms) 

Detection Matching 
Aerial 
Images 

Cropped 
Tiles 

Detection Matching Overall 

ORB BF 460 463 105 101 8 109 

SIFT FLANN 922 887 58 101 137 238 

SuperPoint SuperGlue 917 1187 337 20 102 122 

 

Figure 3.14 presents the experimental results of the traditional and deep learning-based 

feature detection and matching methods on aerial images and the corresponding 

cropped tiles from the orthoimage. Figure 3.14(a) displays the original aerial image and 

cropped image tiles used in the experiment. SuperPoint + SuperGlue exhibited a larger 

number of correct matches (Figure 3.14d) than ORB + BF and SIFT + FLANN (Figures 

3.14b and c). These results are further substantiated by the data presented in Table 3.3. 

The table shows that the execution time for SuperPoint feature detection was only ~20 
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ms, resulting in over 900 detected feature points. The execution time for SuperGlue 

feature matching was 102.432 ms, with 337 correct matches. In contrast, the execution 

time for BF matching was only 8 ms, but ORB consumed much more time for feature 

detection. The overall execution time for SuperPoint and SuperGlue was only ~122 ms 

per frame, which is significantly shorter than those of SIFT + FLANN (238 ms) and 

ORB + BF (109 ms). Although ORB + BF is a fast algorithm for feature extraction and 

matching, using SuperPoint + SuperGlue for these tasks can result in even faster and 

more accurate performance, as discussed in the previous section on balancing accuracy 

and efficiency. These findings highlight the computational efficiency and effectiveness 

of SuperPoint and SuperGlue in real-time aerial image processing. 

 

3.3.2 Space Resection for Camera Pose Determination of Keyframes 

 

In visual navigation and positioning, space resection is used to determine the absolute 

camera pose of the keyframes in real time according to the detected ground control 

points (GCPs). In space resection, the camera position and orientation are computed 

using collinearity equations that relate the image coordinates of the GCPs to their 

known ground coordinates. As introduced in Chapter 2, the exterior orientation 

parameters of the camera position (Xs, Ys, Zs) and orientation (φ, ω, κ) in the scene can 

be solved using Eq. (3.3):  

 

 
𝑥 − 𝑥଴ = −𝑓

𝑎ଵ(𝑋 − 𝑋௦) + 𝑏ଵ(𝑌 − 𝑌௦) + 𝑐ଵ(𝑍 − 𝑍௦)

𝑎ଷ(𝑋 − 𝑋௦) + 𝑏ଷ(𝑌 − 𝑌௦) + 𝑐ଷ(𝑍 − 𝑍௦)
 

𝑦 − 𝑦଴ = −𝑓
𝑎ଶ(𝑋 − 𝑋௦) + 𝑏ଶ(𝑌 − 𝑌௦) + 𝑐ଶ(𝑍 − 𝑍௦)

𝑎ଷ(𝑋 − 𝑋௦) + 𝑏ଷ(𝑌 − 𝑌௦) + 𝑐ଷ(𝑍 − 𝑍௦)
 

(3.3)

 

where a1, a2, a3, b1, b2, b3, c1, c2, and c3 are the elements of the rotation matrix consisting 

of (φ, ω, κ). (x, y) is the image coordinates of the GCPs (X, Y, Z), and (x0, y0, f) is the 

interior orientation of the camera. The space resection accuracy depends on the 

accuracy of the GCPs, the camera calibration quality, and the image quality. The GCPs 

must be accurately surveyed and measured to ensure that their known ground 

coordinates are precise. The camera must also be calibrated to correct for lens distortion 

and other factors that can affect the image coordinates. 
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Figure 3.15 Geometry of space resection 

 

In this study, GCPs in real-word coordinates were found on the orthoimage and its 

corresponding DSM. The geometry of space resection used in this study is given in 

Figure 3.15. During the processing of the pre-built data, the DSM and the orthoimage 

were simultaneously generated using all of the aerial images. After the feature points 

on the aerial image are matched with the corresponding points on the orthoimage, the 

spatial coordinates of the feature points can be obtained from the DSM according to the 

image coordinates. Figure 3.16 provides an overview of the DSM generated from the 

aerial image dataset. 
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Figure 3.16 Overview of the DSM in the pre-built database 

 

The DSM used in this study had the same image size as the orthoimage (70,391 × 

59,269 pixels) and the same resolution of 1 m. The georeferenced DSM contained all 

spatial information, including elevation, which is essential for accurate space resection. 

Once the feature points on the aerial image are matched with the orthoimage, the image 

coordinates of the feature points can be used to locate the corresponding real-world 

coordinates on the DSM. These real-world coordinates can then be used as GCPs for 

space resection, to estimate the UAV camera position and orientation. This estimation 

can be achieved using Eq. (3.3), which considers the image coordinates of the feature 

points and the corresponding real-world coordinates on the DSM. The camera position 

estimation results are shown in Figure 3.17. 
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(a) (b) (c) 

Figure 3.17 Experiment of space resection using matched GCPs on DSM to estimate 

camera position and orientation: (a) aerial image sample; (b) matching feature points 

from (a) to DSM to obtain real-world coordinates of GCPs; (c) estimated camera 

positions (green dots) and orientations (white polygons). The blue dots are the actual 

camera positions for reference. 

 

In this study, aerial images with varying surface structures such as buildings, roads, 

trees, and other features were selected to perform space resection and estimate the 

position and orientation of the camera. The original aerial images captured by the UAV 

camera are displayed in Figure 3.17(a), while Figure 3.17(b) shows the correct matches 

between the aerial images and the DSM cropped tiles. The real-world coordinates, 

obtained from the DSM cropped tile in WGS84 Mercator coordinates, were used as 

GCPs for space resection. The estimated camera position (blue dot) for each aerial 

image is visualised in Figure 3.17(c) and compared with the ground truth (green dot) 

on the corresponding orthoimage cropped tiles. The estimated orientation is visualised 

via homography using a white contour. The accuracy of the estimated camera position 

and its deviation from the actual position are presented in Table 3.4. The average RDE 

between the actual camera location obtained via GPS and the estimation results 

calculated through the space resection of the above three images was 15.8 m. The error 

may include other inevitable errors; for example, the ground truth from GPS is the 

location of the antenna on the UAV and not the real camera spatial coordinates. 

1 

2 

3 
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Therefore, the position and pose of the camera sensor estimated via space resection 

from the feature points of the image plane will feature a slight deviation from the GPS 

location obtained using the UAV positioning system. 

 

Table 3.4 Accuracy evaluation of the experiment depicted in Figure 3.17 

Image 
Ground Truth (m) Results from Our Method (m) 

ADE (m) 
Lat. Lon. Height Lat. Lon. Height 

(1) 11199634.5 1572373.7 258.6 11199628.1 1572379.7 261.82 9.3 

(2) 11199414.5 1572566.3 254.4 11199409.4 1572561.8 261.02 9.5 

(3) 11199189.2 1572119.6 256.3 11199191.1 1572122.8 263.45 8.0 

 

 

3.3.3 Integration of VO and Space Resection for Continuous Camera 

Pose Determination 

 

The previous section presents VO as a method for estimating the position and 

orientation of a camera in real time. However, the resulting estimates were in relative 

camera coordinates, not absolute real-world coordinates. To address this limitation, 

space resection was used to calculate the absolute pose of the camera in real-world 

coordinates using known locations of features in the image and the corresponding GCPs. 

Collinearity equations were solved using image coordinates of the GCPs, to derive the 

absolute camera pose in real-world coordinates. This approach is beneficial for 

environments where GPS signals are weak or unavailable, such as indoor environments, 

urban canyons, or areas with dense foliage. Combining these two methods allows for 

the real-time estimation of camera position and orientation, regardless of external 

conditions. 

 

Another limitation of VO is its over-reliance on camera images and features extracted 

from the image to estimate the camera pose. In such environments, the features may be 

difficult to detect or track, leading to errors in position estimation. Moreover, VO is 

prone to cumulative errors, in which the estimated position and orientation drift away 

from the actual position and orientation over time. To overcome these limitations, space 
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resection can be integrated with VO. Because space resection relies on GCPs to 

estimate pose using the collinearity equation, it can be used to provide a global control 

for transferring the VO results to the global absolute scale and correct the local 

segments in which VO fails or largely deviates from the real situation. The workflow 

of our proposed method for integrating VO and space resection is given in Figure 3.18. 

 

 
 

Figure 3.18 Overview of the integrated VO and space resection for camera pose 

determination. 

The initial camera pose was calculated via space resection based on the collinearity 

equation using the first several frames of aerial images. SuperPoint extracts features 

f(I0) from aerial images I0 and then passes them to the cross-view image matching 

approach for identifying the corresponding cropped orthoimage Co and DSM Cd tiles 

in the pre-built database. The initial camera position R0 and orientation t0 were 

calculated using the features from aerial images f(It) and GCPs from DSM cropped tiles. 
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The next step is a loop in which the camera position Rt and orientation tt are estimated 

in real time via VO, according to the consecutive frames of aerial images It captured by 

the camera. The number of correct matches of feature points between consecutive 

frames was calculated to determine whether space resection was needed to estimate the 

camera position and orientation again. Space resection was applied to refine the 

estimated camera position and orientation if the number of correct matches fell below 

a certain threshold. After the refined camera position and orientation were obtained via 

space resection, VO was used for the subsequent frames. The following pseudocode 

provides a more detailed description of our proposed method.  

 

Algorithm 1: Pseudocode for integrated VO 

Input: frame 𝑰𝒕, global features 𝒇𝒈 

Output: absolute orientation and position [𝐑|𝐭] 

1: if t = 0 then 

2:     𝒇(𝑰𝒕) ← 𝑺𝒖𝒑𝒆𝒓𝑷𝒐𝒊𝒏𝒕(𝑰𝒕) 

3:     𝑪𝒐, 𝑪𝒅 ← 𝑰𝒎𝒂𝒈𝒆 𝑹𝒆𝒕𝒓𝒊𝒗𝒆𝒂𝒍(𝒇(𝑰𝒕), 𝒇𝒈) 

4:     𝑮𝑪𝑷𝒔 ← 𝑭𝒆𝒂𝒕𝒖𝒓𝒆 𝑴𝒂𝒕𝒄𝒉𝒊𝒏𝒈(𝒇(𝑪𝒐), 𝒇(𝑪𝒅)) 

5:     [𝐑𝒕|𝐭𝒕] ← 𝑺𝒑𝒂𝒄𝒆 𝑹𝒆𝒔𝒆𝒄𝒕𝒊𝒐𝒏(𝒇(𝑰𝒕), 𝑮𝑪𝑷𝒔) 

6: else loop 

7:     [𝐑𝒕|𝐭𝒕] ← 𝑽𝑶([𝒇(𝑰𝒕)|𝒇(𝑰𝒕ି𝟏)], [𝐑𝒕ି𝟏|𝐭𝒕ି𝟏]) 

8:     if 𝒍𝒆𝒏𝒈𝒕𝒉(𝒎𝒂𝒕𝒄𝒉𝒆𝒔([𝒇(𝑰𝒕)|𝒇(𝑰𝒕ି𝟏)]) < 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅) then 

9:         [𝐑𝒕|𝐭𝒕] ← 𝒓𝒆𝒑𝒆𝒂𝒕 𝒔𝒕𝒆𝒑 𝟑 − 𝟓 

 

In our integrated approach, space resection is adopted to provide an initial estimation 

of the camera position and orientation, and then VO is used for real-time estimation. 

The number of correct matches of feature points is used as a threshold to determine 

when to switch back to space resection for refinement. This approach can provide more 

accurate and reliable visual navigation and positioning by monitoring the number of 

correct matches and dynamically adjusting between the two methods.  
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Figure 3.19 Experiment on integrating VO and space resection. The two frames 

depict the use of space resection to determine the camera pose of keyframes in 

situations where the UAV makes turns during the flight. 

 

The experimental results of our VO–space resection integration approach for estimating 

the camera position and orientation in real-world coordinates are shown in Figure 3.19. 

Yellow dots represent the estimated results, while blue dots indicate the ground truth. 

In situations in which the correct matches between two consecutive frames are not 
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sufficient to estimate the camera’s relative pose through VO, space resection 

determines the camera’s absolute position and orientation as a constraint, enabling 

trajectory refinement. This situation typically occurs when the UAV finishes 

photographing along a planned flight route section and then turns around to start another 

planned flight section. 

 

To demonstrate the integrated strategy, Figures 3.19(a) and (b) show a pair of 

consecutive frames captured by the UAV, while Figures 3.19(c) and (d) show the last 

image from the first section and the first image from the second section, respectively. 

When the features on these two consecutive frames are not sufficient for the VO 

algorithm to estimate the camera position and orientation, the features on both images 

are matched with the corresponding features on the cropped tile from the orthoimage 

and the DSM for space resection. The estimated camera position and orientation are 

shown as a yellow dot in Figure 3.19(e). The corresponding homography represented 

by a red and white polygon illustrates the estimated orientation. Similarly, Figures 

3.19(a) and (b) show the last image of the second flight section and the first image of 

the third section, respectively. Although many features matched between the two 

images, the mismatches were significant; consequently, the estimated camera position 

and orientation exhibited significant deviation from the results based on the image 

shown in Figure 3.19(a). Therefore, space resection was applied again to estimate the 

camera position and orientation, which were then used to refine the camera pose. The 

refined results were used as the initial start point for the third flight route. 

 

Integrating VO and space resection is a promising approach for the real-time estimation 

of the absolute camera pose in real-world coordinates. This method provides a reliable 

and accurate solution for mapping applications, particularly in scenarios with weak or 

unavailable GPS signals. The fusion of these two methods leverages the strengths of 

both techniques, allowing for precise localisation even in complex environments. 

Additionally, the fusion reduces the error accumulation associated with the standalone 

methods, resulting in more robust and accurate mapping results. This integrated method 

has many potential applications; for example, it can be applied in indoor environments, 

urban canyons, or areas with heavy foliage, where traditional localisation methods may 

not work effectively.  
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3.4 Implementation and Evaluation 

 

The onboard computer of a UAV serves as the central processing units that controls 

and manages the various components of the UAV, including the navigation and 

positioning systems. In particular, the computer is essential for the visual navigation 

and positioning of UAVs, as it utilises data from onboard sensors, such as cameras, to 

estimate the UAV position and orientation in real time. The onboard computer requires 

powerful image processing capabilities to extract features from the images captured by 

the onboard cameras. Recently, there have been significant advancements in the 

development of CPUs and GPUs for onboard computers in UAVs, with manufacturers 

designing specialised hardware to meet the specific needs of UAV applications. For 

example, Intel (Intel Corporation 2018) and ARM (Arm Limited 2023) have developed 

CPUs specifically for use in UAVs. These CPUs are designed to be small, lightweight, 

and energy-efficient, providing high-performance processing power. GPUs are also 

becoming increasingly crucial for onboard computers in UAVs, as they can increase 

the speed of complex image processing and machine learning algorithms, which is 

critical for object recognition and tracking tasks. NVIDIA is a leading manufacturer of 

GPUs for UAVs, with products such as the Jetson TX2 (NVIDIA 2017) and the Jetson 

Xavier (NVIDIA 2018), which offer high-performance computing in a compact form. 

These advancements in CPU and GPU technology enable UAVs to perform 

increasingly complex tasks, such as visual navigation and UAV positioning, with high 

accuracy and efficiency. 

 

In this study, we implemented our proposed approach to estimate camera position and 

orientation on an onboard computer with a CPU and a GPU. The following sections 

introduce the overall design and evaluation results of our approach. 

 

3.4.1 Onboard Platform and Algorithm Deployment 

 

The NVIDIA Jetson Xavier NX is a high-performance system-on-module explicitly 

designed for use in embedded artificial intelligence applications, including UAVs. It 

features a 6-core NVIDIA Carmel ARM v8.2 64-bit CPU, a 384-core NVIDIA Volta 

GPU, and 8 GB of LPDDR4 RAM. In addition to its processing power, the Jetson 
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Xavier NX system supports multiple cameras, high-speed I/O, and hardware-

accelerated video encoding and decoding. 

 

 

 

(a) NVIDIA Jetson Xavier NX (b) Onboard computer installation  

Figure 3.20 Schematic of onboard computer installation and assembling 

 

An instance of NVIDIA Jetson Xavier NX chips is demonstrated in Figure 3.20(a), and 

Figure 3.20(b) illustrates the installation and assembling of the Jetson Xavier NX 

system on a UAV. The compact size, low power consumption, and high performance 

of the module make it an excellent choice for use in UAVs. The module’s capacity to 

handle complex tasks makes it a perfect fit for visual navigation and positioning 

applications. Another significant feature of the module is its ability to perform multi-

threaded processing using the CPU and GPU, allowing for the efficient processing of 

complex algorithms while minimising power consumption. For example, the CPU can 

be used for background tasks, while the GPU is used for real-time image processing 

and machine learning. 

 

The allocation of the algorithms in our approach is shown in Figure 3.21. As the CPU 

is proficient in logic processing, we allocated VO and space resection algorithms to two 

threads for efficient parallel processing. The implementation of SuperPoint and 

SuperGlue algorithms relied on deep learning frameworks, and the Jetson Xavier NX 

GPU supported TensorRT (NVIDIA 2021) to accelerate graphic processing using deep 

learning algorithms. 
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Figure 3.21 Algorithm deployment on GPU and CPU 

 

The Jetson Xavier NX GPU has 384 CUDA cores and Tensor cores specifically 

designed for deep learning tasks. These cores enable the Jetson Xavier NX module to 

perform real-time inference based on deep neural networks, making it ideal for object 

detection and application tracking. TensorRT is an NVIDIA software library that 

optimises deep learning models for deployment on NVIDIA GPUs. It combines graph 

optimisation and layer fusion to optimise the computation graph of the neural network, 

resulting in shorter inference times and lower memory requirements. Furthermore, by 

allocating the VO and space resection algorithms to two separate threads, we leveraged 

the multi-threaded processing capabilities of the Jetson Xavier NX CPU, so that the 

tasks could be performed in parallel, significantly improving the system’s overall 

performance for real-time processing.  

 

The memory controller fabric (MCF) plays a crucial role in optimising the performance 

of the NVIDIA Jetson Xavier NX system. Its primary function is to manage memory 

access and bandwidth between various processing elements on the chip. The MCF 

facilitates efficient and rapid data transfer between the CPU, GPU, and other processing 

units. For instance, when image data are received from a camera, the USB controller 

first processes the data, which are then connected to the MCF. The MCF manages data 

transfer between the USB controller and the appropriate processing unit, such as the 

CPU or the GPU. If image processing is assigned to the CPU, the MCF ensures that the 
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image data are transferred from the memory to the CPU, which then processes the 

image data as necessary. If image processing is assigned to the GPU, the MCF transfers 

the image data from the memory to the GPU’s GDDR6 memory. The GPU then 

performs the required image processing and machine learning tasks on the data. 

Moreover, the MCF dynamically allocates memory resources between the CPU and the 

GPU as needed, depending on the processing requirements of the image processing 

algorithm. This helps optimise the system’s performance, ensuring that the system 

operates efficiently and accurately. 

 

3.4.2 Evaluation with Aerial Images and Pre-built Database 

 

In the experiment, the camera position and orientation were estimated through our 

approach using 439 aerial images. The algorithm was implemented on the Jetson Xavier 

NX system following the deployment shown in Figure 3.22. The resulting estimations 

and ground truth are presented in Figure 3.22. The camera position and orientation were 

obtained in WGS84 Mercator coordinates, with latitude, longitude, and height in metres. 

The estimated position was plotted on the orthoimage with a resolution of 1 m after 

coordination transformation from WGS84 Mercator to image coordinates. The root 

mean square error (RMSE) values in the horizontal (longitude and latitude) and vertical 

(height) directions were calculated (Table 3.5). The overall RMSE was 4.7 m, and the 

average execution time of our approach was 897.39 ms. 

 

Table 3.5 Evaluation of trajectory estimation accuracy 

 
ADE (m) 

Rotation Error (°) 
Horizontal Vertical Overall 

Mean 17.17 8.09 22.17 0.51 

RMSE 4.14 14.24 4.7 0.33 
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Figure 3.22 Comparison of trajectories estimated using our approach and the ground 

truth 

 

Our approach achieved an RMSE of 4.7 m in ADE and 0.33° in rotation error. The 

execution time of the proposed approach includes several steps, namely the reading and 

writing of image data in memory, VO and space resection in the CPU, and the 

implementation of deep learning algorithms in the GPU. However, owing to the limited 

arithmetic power of the Jetson Xavier NX’s camera ARM v8 processor and the 

complexity of the space resection algorithm, the input images were resized to 640 × 480 

pixels to fully utilise the CPU and GPU resources. The CPU usage and GPU usage are 

given in Figure 3.23. 
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(a) CPU usage (b) GPU usage (c) FPS 

Figure 3.23 The utilisation of hardware resources for each algorithm and 

the overall FPS of integrated VO 

 

VO and space resection utilised most of the CPU resources for complex calculation, 

while the remaining CPU resources were allocated to image reading and writing and 

the loading of deep learning frameworks. Feature extraction and image retrieval 

consume a large amount of GPU resources, occasionally resulting in full utilisation, 

particularly when both algorithms are running simultaneously. The FPS fluctuated 

between 9.5 and 14, with an average of 12, depending on the execution time of each 

algorithm running in the CPU and the GPU. Our experiments showed that our approach 

can achieve near-real-time efficiency, demonstrating its potential for achieving real-

time localisation. The results indicate that our proposed method can be optimised for 

improved performance; for example, the space resection algorithm and the utilisation 

of the hardware resources, such as the Tensor cores of the GPU, can be optimised. 

 

Integrating VO and space resection techniques has immense potential for real-time 

UAV position estimation. With the increasing use of UAVs in diverse industries, this 
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integration can help overcome the challenges limiting the precise and reliable real-time 

estimation of UAV position and orientation, enabling more successful UAV 

applications. For instance, UAVs can be used for monitoring, inspection, search and 

rescue, and mapping applications. However, accurately estimating UAV position and 

orientation in real time is challenging. Integrating VO and space resection techniques 

offers a solution and could significantly enhance the accuracy and reliability of UAV 

applications. 
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Chapter 4 Real-Time Dense Image Matching 

Based on GPU Acceleration 
 

4.1 Overview of Approaches 

 

Dense disparity estimation is a challenging task owing to the high level of ambiguity 

often associated with real-world scenarios. Dense image matching algorithms, such as 

the SGM algorithm (Hirschmuller et al., 2008), have been extensively used in various 

applications. Methods combining SGM with different types of local similarity metrics 

are insensitive to various types of noise and interference (e.g., illumination), efficiently 

estimate disparity on large untextured areas, and can produce favourable matching 

results (Feng et al., 2019, Sinha et al., 2014, Spangenberg et al., 2014). 

 

This section focuses on the development and implementation of a parallel-architecture 

SGM algorithm for real-time dense image matching on photogrammetric applications. 

A parallel-architecture method for accelerating dense image matching is proposed. This 

method can improve the efficiency of dense image matching in real-time scenarios. Its 

effectiveness is experimentally demonstrated in two applications. The first application 

involves the generation of real-time disparity maps using ground images obtained from 

a stereo camera. The second application involves real-time dense image matching to 

generate disparity maps using aerial images captured by UAVs. 

 

This section includes the following: 

(1) The SGM framework for dense image matching is introduced in Section 4.2. Issues 

related to processing efficiency (e.g., the matching cost [MC] and the selection of 

similarity measures) are discussed. 

 

(2) The implementation of a parallel-architecture SGM with enhanced computational 

efficiency is presented. The parallel architecture significantly improves the overall 

processing efficiency of the algorithm and endows it with real-time processing 

applicability. 
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(3) To evaluate the real-time processing efficiency of the parallel-architecture SGM, 

we first used images taken by a stereo camera to assess the processing efficiency of 

real-time depth map generation and then tested the algorithm using large-scale 

aerial images collected from a UAV platform. The results of the real-time 

processing of the depth maps and the evaluation results are presented, and the 

results are analysed and discussed in Section 4.4. 

 

4.2 SGM-Based Dense Image Matching and Efficiency 

Considerations 

 

In Chapter 2, the state-of-the-art dense image matching algorithms are reviewed in 

terms of their strengths and weaknesses, and their performances in different scenarios 

are evaluated and compared. Our analysis and previous studies (Hermann et al., 2011, 

Hirschmuller, 2005, Stentoumis et al., 2015) indicate that SGM can generate robust 

matching results in stereo-scope scenarios. 

 

SGM was first proposed by Hirschmuller (2005). It is a pixel-wise matching algorithm 

that combines the benefits of both global and local matching techniques. This dense 

image matching algorithm operates on a pair of images with known internal and 

external orientations and a defined epipolar geometry, meaning that the corresponding 

points are situated on the same horizontal line in the image. The objective of the 

algorithm is to minimise a global smoothness constraint by combining the MCs along 

independent one-dimensional paths across the image. 

 

Scharstein et al. (2002) adopted a scanline approach to calculate a single global MC for 

each image line. This method was prone to streaking effects, as the optimal solution of 

each scan was not connected to the neighbouring scans. The SGM algorithm overcomes 

this limitation by symmetrically computing the pixel MC through multiple paths in the 

image. Given a known disparity value, the MCs obtained from each path are aggregated 

for each pixel and disparity value. The SGM algorithm then selects the pixel matching 

solution with the lowest cost, often through dynamic programming. This unique image 

matching approach leads to a more robust solution, eliminating the streaking effects 

present in previous methods. The MC vector is a 3D structure in which the first two 
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dimensions represent the pixels of the reference image, and the third dimension 

represents the pixels of the target image. 

 

 

𝐿ᇱ
௥(𝑝, 𝑑) = 𝐶(𝑝, 𝑑) + min (𝐿௥(𝑝 − 𝑟, 𝑑), 

𝐿௥(𝑝 − 𝑟, 𝑑 − 1) + 𝑃ଵ, 

𝐿௥(𝑝 − 𝑟, 𝑑 + 1) + 𝑃ଵ, 

min
ூ

𝐿௥(𝑝 − 𝑟, 𝑖) + 𝑃ଶ) − min
௄

𝐿௥(𝑝 − 𝑟, 𝑘) 

(4.1) 

 

The cost 𝐿ᇱ
௥(𝑝, 𝑑) of the pixel p at disparity d along the path direction r is defined in 

Eq. 4.1 as in Hirschmuller (2005). 𝐶(𝑝, 𝑑) represents the similarity cost between the 

pixels. The second part of the equation evaluates the regularity of the disparity field by 

introducing a penalty term P1 to account for small changes. P2 accounts for more 

significant changes in disparity relative to the previous point in the evaluated matching 

path. P1 and P2 allow for the description of curved surfaces and the preservation of 

disparity discontinuities, respectively. The last term of the equation plays a crucial role 

in mitigating the accumulated cost along the path. The subtraction of the minimum path 

cost of the preceding pixel from the overall cost allows for reducing the overall cost 

and ensures that the final result is minimised. 

 

The SGM algorithm performs the minimisation operation via dynamic programming 

(Van Meerbergen et al., 2002). To avoid streaking effects, SGM computes the 

optimisation by symmetrically combining multiple individual paths from all directions 

in the image. The algorithm generates the final disparity map by summing the costs of 

all paths r and identifying the disparity with the minimum cost for each pixel p in the 

image. The cost aggregation is expressed in Eq. 4.2. The minimum position is 

calculated by fitting a quadratic curve through the cost values of the neighbours’ pixels 

for sub-pixel estimation of the final disparity solution. 

 

 𝑆(𝑝, 𝑑) = ෍ 𝐿௥(𝑝, 𝑑)

௥

 (4.2) 
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4.2.1 Matching Costs and Similarity Measurements 

 

Area-based matching methods are fundamental techniques for identifying 

corresponding pixels. However, it is assumed that all pixels within a correlation 

window possess equivalent depth values, which is not necessarily valid in the presence 

of depth discontinuities or substantial perspective changes between matching images. 

Utilising small templates in the matching process may result in noisy and low-precision 

outcomes. In contrast, larger templates can lead to smoother results but also violate the 

constant-depth hypothesis, causing a loss of information on the shape details of small 

objects. The size of the correlation window influences the accuracy and completeness 

of the results and matching efficiency. While small correlation windows improve the 

level of object details, they may also provide an unreliable disparity estimation owing 

to the insufficient coverage of intensity variations. Conversely, a large window size 

hinders the ability of the matching algorithm to estimate sudden depth changes, leading 

to erroneous matching pairs and the generation of smoother surfaces (Kanade et al., 

1995). Image correlation in computer vision research is characterised by swiftness and 

low demand for runtime and memory occupancy; thus, it tends to be more widely 

utilised as a matching technique than alternatives such as least squares matching (Gruen 

et al., 1988). Common parametric correlation measures used in photogrammetry and 

computer vision include the sum of SAD and NCC.  

 

The SAD is calculated as the summation of the absolute differences between each pixel 

in an original image and the corresponding pixel in the matched image within a search 

window. In contrast, the sum of squared differences (SSD) is calculated as the 

summation of the squares of the differences between the same pixels. The summations 

are optimised via the winner-take-all (WTA) strategy (Kanade et al., 1995). The SAD 

and SSD are expressed as 

 

 𝑆𝐴𝐷 = ෍ ෍|𝑓(𝑖, 𝑗) − 𝑔(𝑖, 𝑗)|

௝௜

 (4.3) 

 𝑆𝑆𝐷 = ෍ ෍൫𝑓(𝑖, 𝑗) − 𝑔(𝑖, 𝑗)൯
ଶ

௃ூ

 (4.4) 
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where the window f is centred in the (x, y) position on the master image, and the 

corresponding same-size window on the slave image g is shifted by (∆𝑥, ∆𝑦). 

 

The NCC is more complex than both the SAD and SSD; however, it is invariant to 

linear transformations in the image amplitude. Normalising feature vectors to unit 

length allows the similarity measure between the features to become independent of 

radiometric changes (Yoo et al., 2009). The NCC identifies matches of a reference 

template f(j, i) of size m × n in a scene image g(x, y) of size M × N, and is defined as  

 

 𝜌(𝑖, 𝑗) =
∑ ∑ ൣ൫𝑓(𝑗, 𝑖) − 𝑓൯̅ ∙ (𝑔(𝑗 + ∆𝑥, 𝑖 + ∆𝑦) − 𝑔̅)൧௝௜

ට∑ ∑ [൫𝑓(𝑗, 𝑖) − 𝑓൯̅
ଶ

∙ (𝑔(𝑗 + ∆𝑥, 𝑖 + ∆𝑦) − 𝑔̅)ଶ]௝௜

 (4.5) 

 

where 𝑓 ̅and 𝑔̅ represent the corresponding sample means. A unitary value of the NCC 

coefficient indicates a perfect matching window. 

 

4.2.2 Census Transform 

 

The census transform (CT) (Zabih et al., 1994) is an area-based solution to the problem 

of correspondence between images. The CT is a non-parametric description of the local 

spatial structure. It compares the intensity values of each pixel within window W with 

that of the central pixel according to the Hamming distance. The intensity comparison 

between the master and central slave pixel p of the window returns a Boolean value of 

1 if the pixel intensity is less than the intensity of the central pixel, and 0 otherwise; that 

is, 

 

 𝑅(𝑝) =⊗௣ᇲ 𝜉(𝐼(𝑝ᇱ), 𝐼(𝑝)) 
𝜉(𝑖, 𝑗) = 1, 𝑖 < 𝑗 

𝜉(𝑖, 𝑗) = 0, 𝑖 > 𝑗 
(4.6) 

 

where ⊗ represents the concatenation and 𝑝ᇱ ∈ 𝑊. According to Hirschmuller et al. 

(2008), both hierarchical mutual information and CT features provide similarly high-

quality results, with CT being less computationally demanding. However, recent 

advancements in cost functions based on neural networks have been demonstrated to 

outperform CT (Zbontar et al., 2015) but increase computational requirements. 
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4.2.3 Efficiency Considerations 

 

The accuracy and computational efficiency of real-time dense image matching using 

SGM depend on several critical factors, including the choice of similarity measure, 

adaptive window size, and search range. The similarity measure is critical in 

establishing correspondences between the left- and right-view images and estimating 

the disparity. The adaptive window size is used to limit the search space for matching 

pixels, which helps to reduce the number of computations required. Additionally, the 

search range defines the minimum and maximum disparity values. Increasing the 

maximum disparity value allows the algorithm to estimate disparities over a wider 

range of pixel distances but increases the computational requirements and the noise 

levels in the resulting disparity map. 

 

Image similarity measures also ensure that the disparities can be accurately estimated 

in the presence of noise, occlusions, and other image artefacts. Among the widely used 

image similarity measures, the SAD is computationally efficient and straightforward, 

making it suitable for images with small changes in content, such as close-range images. 

The SSD and NCC are more robust to illumination and contrast variations, making them 

more accurate than the SAD for images with large changes in content, such as large-

scale images. Owing to their complex calculation steps, the SSD and NCC require more 

computational resources than the SAD. Once the MC volume is created, it is processed 

via cost-volume smoothing (using a series of filters) through a left–right consistency 

check to reduce the number of false matches. The left–right consistency check ensures 

that the disparity value for a pixel in one image is the same as that for the corresponding 

pixel in the other image. Finally, the optimal path is computed according to the cost 

volume, which provides the correspondences between the pixels of the two images. The 

optimal path is calculated using a dynamic programming algorithm such as the WTA 

strategy or graph cutting. The WTA strategy is a simple approach for computing the 

optimal path (Scharstein et al. 2002). It involves finding the minimum value of the cost 

volume along the disparity dimension for each reference image pixel. The algorithm 

finds the minimum cost with overall disparities for each pixel of the reference image, 

and assigns the corresponding disparity value to the pixel. 
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(a) (b) 

  

(c) (d) 

Figure 4.1 Dataset for similarity measurement evaluation: (a) left-view image; (b) 

right-view image; (c) ground-truth disparities; (d) invalid disparity mask. 

 

The accuracy and computational efficiency of various similarity measures combined 

with WTA were assessed using the standard benchmark dataset for stereo vision 

proposed by Scharstein et al. (2003). The benchmark dataset included a pair of left- and 

right-view images, each with a 450 × 375 pixels resolution (Figure 4.1). Ground-truth 

disparities were provided for accuracy evaluation, and a grey-level mask was used to 

indicate pixels with invalid disparities; the invalid disparities were encoded as 0 and 1, 

respectively. The similarity measures were evaluated through the comparison of the 

estimated disparities with the ground-truth disparities, and the provided mask was used 

to exclude pixels with invalid disparities. 
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(a) (b) (c) 

Figure 4.2 Disparity results obtained using different similarity measures combined 

with WTA: (a) SAD with WTA; (b) SSD with WTA; (c) NCC with WTA. 

 

Table 4.1 Accuracy and efficiency results of different similarity measures 

 SAD SSD NCC 

Accuracy (%) 86.4 88.1 91.1 

Processing time (s) 1.76 2.28 4.13 

 

The disparity results obtained using various similarity measures are shown in Figure 

4.2. The accuracy was evaluated using the following equation: 

 

 𝐴𝑐𝑐𝑋 =
∑ ∑ 𝑑(𝑖, 𝑗)௡

௝
௡
௜

∑ ∑ 𝑔(𝑖, 𝑗)௠
௝

௠
௜

× 𝑚𝑎𝑠𝑘 (4.7) 

 

where d(i, j) represents the disparity generated using various similarity measures, and 

g(i, j) is the corresponding ground-truth disparity. The mask was applied to filter out 

all unknown disparities, and the accuracy was calculated using valid pixels. Compared 

with the other similarity measures, the NCC provided more robust disparity results, 

with >90% accuracy. As indicated in Table 4.1, the NCC provided high-precision 

disparity; however, the computational cost of ~4 s per pair of stereo images was higher 

than those of the other two measures. The SAD and SSD provided similar accuracies 

in the disparity results: 86.4% and 88.1%, respectively, but the processing time of the 

SAD was 1.76 s, much less than that of the SSD. Because the processing efficiency and 

simplicity of the algorithm are essential for real-time stereo matching, the SAD is 

preferred for similarity measures, as it requires less computation time than the SSD or 

NCC and is suitable for real-time stereo matching. 
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To achieve real-time stereo matching, it is necessary to carefully choose the adaptive 

window size for the search space of each pixel and the search range between a pair of 

stereo images to limit computational cost. The evaluation of the window sizes and the 

minimum and maximum disparities adopted in SGM was assessed using the same 

dataset. In the experiment, the minimum variance was set to 0 to reduce the influence 

of redundant variables on the evaluation results. The accuracy and efficiency of 

disparity generation under different window sizes and a search range of diverse 

maximum disparities are shown in Figure 4.3. The results in Figure 4.3(a) were 

obtained using a window size of 5 × 5 pixels. A larger maximum disparity led to a more 

robust disparity estimation. At a maximum disparity of over 64 pixels, the disparity 

generation accuracy became stable and remained above 90%. Similar results were 

observed at various window sizes of 9 × 9, 13 × 13, and 21 × 21 pixels (Figures 4.3b, 

c, and d). 

 

Figure 4.3 also indicates that the processing time for disparity estimation increased with 

increasing window radius under a constant maximum disparity. For instance, the time 

for disparity generation under a maximum disparity of 64 pixels and a window size of 

5 × 5 pixels was ~1.5 s (Figure 4.3a). However, disparity estimation under a window 

size of 21 × 21 pixels took ~13 s (Figure 4.3d). 
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(a) (b) 

(c) (d) 

Figure 4.3 Disparity estimation accuracy and processing time evaluation results 

under the same maximum disparity and different window sizes of (a) 5 × 5, (b) 9 × 

9, (c) 13 × 13, and (d) 21 × 21 pixels. 

 

In conclusion, to achieve real-time dense image matching using SGM, the following 

are recommended: 1) The SAD should be used as the similarity measure for close-range 

images owing to its lower complexity and more robust disparity estimation ability 

compared with other similarity measures. 2) An adaptive window size of 5 × 5 pixels 

and a search range with 64 pixels as the maximum disparity should be adopted, as these 

parameters provided accurate and fast disparity estimation in the conducted experiment. 

3) The smoothing of MC for each path should be considered as a filtering procedure to 

reduce the number of false matches. 4) Dynamic programming techniques such as WTA 

should be employed to calculate the optimal path using MC, thereby determining the 

relationship between the pixels of the two images. 
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74.3 GPU-Accelerated Dense Image Matching 

  

 

Figure 4.4 GPU-accelerated procedure of dense image matching and 3D map 

generation. 

 

A GPU-accelerated SGM method was developed to obtain a disparity map for real-time 

stereo image estimation. As shown in Figure 4.4, each frame of the stereo images in the 

rectified pipeline was captured by preliminary calibrated cameras as a side-by-side 

(SBS) image and saved in the host memory. The GPU device copied this image from 

the host memory space and split it into left-view and right-view images in preparation 

for dense image matching by SGM. The CT features were extracted from the two 

images and used for a similarity comparison to generate a local-matching cost for each 

pixel and potential disparity. SGM was then used to aggregate a smoothing cost that 

considers the similarity of the neighbouring points and disparities along different paths 

to reduce errors. In this system, the number of paths was set to four to reduce 

computational consumption while ensuring the quality and effectiveness of real-time 

processing. The disparity of each pixel was computed, and a 3 × 3 median filter was 

applied to remove outliers. The resulting disparity image was copied back to the local 

host memory and stitched with the left-view image to form a new image array, which 

was then saved in the queue for visualisation. 
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4.3.1 GPU Architecture and Performance 

 

GPUs are massively parallel architectures containing tens of streaming multiprocessors 

(SMs), and vector computer operations are highly utilised and pipelined in SMs to 

optimise computational efficiency. The compute unified device architecture (CUDA) 

programming model (NVIDIA et al., 2020) allows for defining a massive number of 

threads deployed in SMs of the same program code. SGM was coded using a two-level 

identifier in CUDA to specialise each thread for disparity estimation. The code in this 

study was deployed following the method proposed by Hernamdez-Juarez et al. (2016). 

 

The CUDA programming model provides a platform for executing parallel programs 

in a GPU environment. It enables the creation of numerous concurrent execution 

instances, commonly referred to as threads, which run the same program code. The 

threads are differentiated according to their unique two-level identifier, <ThrId, CTAid>, 

which serves as a specialisation mechanism for assigning particular data and functions 

to each thread. A cooperative thread array (CTA) is a group of threads that 

simultaneously execute the same CTAid within the same SMs and can share a fast, 

limited memory space. Warps are groups of threads with consecutive ThrIds within the 

same CTA, and they are compiled by a compiler into vector instructions, allowing for 

the execution of the threads in a lockstep synchronous manner. Warps belonging to the 

same CTA can be synchronised according to explicit barrier instruction. Each thread 

has its own private local memory space, commonly assigned to registers by the 

compiler. Additionally, a large space of global memory is accessible to all execution 

instances, providing a shared public space for data and functions. The global memory 

is mapped into a large-capacity device memory with a long latency and is optimised 

using a two-level hierarchy of cache memories. 

 

The parallelisation scheme of an algorithm and the data layout determine the available 

parallelism at the instruction and thread levels, which is crucial for achieving the total 

resource usage and the memory access pattern. To achieve efficient memory 

performance, the GPU requires that the set of addresses generated by a warp correspond 

to consecutive positions that can be coalesced into a single, wider memory transaction. 

As the device memory bandwidth can be a performance bottleneck, an efficient CUDA 
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code should be used to promote data reuse on shared memory and registers. The design 

of the CUDA programming model allows for the efficient use of the GPU resources 

through the creation of numerous concurrent execution instances and the utilisation of 

a fast but limited memory space of the SMs. The use of warps and CTAs allows for 

efficient thread execution and synchronisation and enhances memory performance by 

promoting data reuse and coalescing memory transactions. CUDA provides a powerful 

and efficient platform for parallel computing on GPUs. 

 

4.3.2 GPU-Based Centre-Symmetric CT and Matching Cost Computation 

 

As mentioned in the previous section, CT is a technique for encoding the similarities 

between the values of pixels in a window around a central pixel. A global two-

dimensional energy minimisation problem involving non-unique or wrong 

correspondences caused by low texture and ambiguity can feature consistency 

constraints. SGM approximates the global solution by solving a one-dimensional 

minimisation problem along several independent paths across the image (Hirschmuller 

et al., 2008). There are typically four or eight paths. An eight-path direction was used 

in this work (Figure 4.5). For each path direction, image point, and disparity, SGM 

calculates a cost by considering the cost of neighbouring points and disparities. The 

other path directions along the diagonal paths between pixel P and P’ are not 

immediately available for cost calculation, resulting in complex memory access 

patterns. The number of paths used in the SGM algorithm plays a crucial role in 

determining the final outcome. It affects both the quality and accuracy of the results. A 

higher number of paths will result in a more accurate solution but increases 

computational time. A lower number of paths will result in faster computation but 

reduces accuracy. 
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Figure 4.5 Orientations of eight paths for pixel P, shown in black. 

 

After careful examination, a centre-symmetric CT (CSCT) configuration with a 9 × 7 

window size was selected, providing a compact representation while maintaining 

similar accuracy (Spangenberg et al., 2013). The similarity between two pixels was 

calculated using the Hamming distance of the CSCT bit-vector features. This feature is 

robust in outdoor environments with uncontrolled lighting and in the presence of 

calibration errors. The CT feature is invariant to local intensity changes and tolerant to 

outliers, as it compares the neighbouring pixels with each other. An incorrect value only 

modifies a single bit, which will not considerably affect the overall similarity score. 

 

To accelerate the CSCT and MC computation using GPUs, CTA-parallel schemes are 

proposed in this work. The CSCT feature encodes the similarities between the values 

of pixels in a window around a central pixel. The CSCT feature uses a 9 × 7 window 

size and concatenates the comparisons of 31 pairs of pixels into a bit-vector feature. Eq. 

4.8 defines the CSCT, where ⊗ is bit-wise concatenation; I(x, y) is the value of pixel 

(x,y) in the input image; and s(u,v) is 1 if u ≥ v, or 0 otherwise. This bit-vector feature 

calculates the MC between a pixel (x, y) in the base image and each potentially 

corresponding pixel in the matched image at a specific disparity d. MC is calculated 

using Eq. 4.9, where ⊕ denotes bit-wise exclusive-or, and the bit count (B) is the 

number of bits set to 1. 
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 𝐶𝑆𝐶𝑇ଽ,଻(𝐼, 𝑥, 𝑦) =⊗ ቊ
⊗௜ୀଵ

ସ ⊗௝ୀିଷ
ଷ 𝑠(𝐼(𝑥 + 𝑖, 𝑦 + 𝑗), 𝐼(𝑥 − 𝑖, 𝑦 − 𝑗))

⊗௝ୀଵ
ଷ 𝑠(𝐼(𝑥, 𝑦 + 𝑗), 𝐼(𝑥, 𝑦 − 𝑗))

, (4.8) 

 𝑀𝐶(𝑥, 𝑦, 𝑑) = 𝐵(𝐶𝑆𝐶𝑇ଽ,଻(𝐼௕௔௦௘, 𝑥, 𝑦) ⊕ 𝐶𝑆𝐶𝑇ଽ,଻(𝐼௠௔௧௖௛, 𝑥 − 𝑑. 𝑦). (4.9) 

 

Figures 4.6 and 4.7 show the pipeline of CSCT and the MC processing steps, 

respectively. In Figure 4.6, (H, W) denotes the dimensions of an input image. A 2D-

tiled data access pattern using shared memory reduces the total number of global data 

accesses. To enhance the processing efficiency, computation and image input in the 

system are performed using the 32-bit integer data type. To maintain data coherence 

and alignment for all threads in CUDA, a conversion from integer to uchar4 data type 

(the native data type in the GPU) is conducted just before result writing. The cost values 

are only stored in the shared memory every four iterations, and the in-built packed 

uchar4 data type is used to minimise memory bandwidth requirements. This leads to a 

compact data layout of the cost space, which is not significant if subsequent kernels 

employ the same parallelisation scheme and thus maintain a consistent data layout. This 

straightforward and embarrassingly parallel design allows each thread in the GPU to 

read its input values directly from the global memory, thereby optimising data reuse.  

 

 

Figure 4.6 CSCT: 2D-tiled CTA-parallel scheme. 

 

Figure 4.7 MC: 1D-tiled CTA-parallel scheme. 
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A 1D-tiled parallel scheme for MC calculation using Eq. 4.9 is shown in Figure 4.7. D 

represents the maximum disparity. Each thread synchronously calculates the disparity 

levels of a group of D neighbouring pixels in D threads. Pixels from the left and right 

CSCTs are aligned and coalesced over the D threads. Additionally, choosing D as a 

multiple of the warp size results in an always-aligned memory access. The MC 

calculation follows an optimisation approach similar to CSCT calculation by providing 

inherently aligned memory access, high data reuse, and efficient arithmetic pipeline 

usage. 

 

 

𝐿௥(𝑥, 𝑦, 𝑑) = 𝑀𝐶(𝑥, 𝑦, 𝑑) +

𝑚𝑖𝑛

⎩
⎪
⎨

⎪
⎧

𝐿௥(𝑥 − 𝑟௫, 𝑦 − 𝑟௬, 𝑑)

𝐿௥൫𝑥 − 𝑟௫, 𝑦 − 𝑟௬, 𝑑 − 1൯ + 𝑃ଵ

𝐿௥൫𝑥 − 𝑟௫, 𝑦 − 𝑟௬, 𝑑 + 1൯ + 𝑃ଵ

𝑚𝑖𝑛௜𝐿௥൫𝑥 − 𝑟௫, 𝑦 − 𝑟௬, 𝑖൯ + 𝑃ଶ

− 𝑚𝑖𝑛௞𝐿௥൫𝑥 − 𝑟௫, 𝑦 − 𝑟௬, 𝑘൯, 
(4.10) 

 𝐷(𝑥, 𝑦) = 𝑚𝑖𝑛ௗ ∑ 𝐿௥(𝑥, 𝑦, 𝑑)௥ . (4.11) 

 

SGM solves one-dimensional minimisation problems by considering different paths, 

represented by the vector r = (rx, ry), and using a dynamic programming algorithm to 

find the optimal path. The method uses a matrix called Lr, which contains the smoothed 

aggregated costs for each path r. The smoothing costs are calculated as in Eq. 4.10, 

which has three terms. The first term is the original MC, denoted MC (x, y, d), which is 

the cost of matching the current pixel to the corresponding pixel in the other image. The 

second term is the minimum cost of the disparities corresponding to the previous pixel 

(x − rx, y − ry). This term includes penalties for small disparity changes P1 and larger 

disparity discontinuities P2. P1 is designed to detect slanted and curved surfaces, as they 

are more likely to feature small disparity changes. P2 smoothens the results and makes 

it more difficult for abrupt changes to occur. This is important as abrupt changes may 

result in false depth perception. The last term of Eq. 4.10 ensures the boundedness of 

the aggregated costs, which prevents unrealistic results and helps the algorithm to 

converge to the optimal solution. This term also limits error accumulation in the 

calculation, thereby increasing the accuracy of the final result. Eq. 4.10 demonstrates 

the use of the WTA strategy, in which the matrices Lr are added to obtain the final cost, 

and then the disparity corresponding to the minimum cost is selected. 
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Eq. 4.10 is used to calculate the costs of different paths in the SGM method, but it also 

creates a recurrent dependence that prevents the parallel processing of pixels in the 

same path direction. However, parallelism can still be exploited in other ways. 

Specifically, it can be exploited in the direction perpendicular to the path, in the 

disparity dimension, and for each of the computed path directions. Our proposed 

solution leverages all of the available parallelism by creating a CTA for each slice in 

the aggregated cost matrix along each particular path direction. This allows for the 

parallel processing of the slices in the disparity dimension and the parallel processing 

of each path direction. This means that instead of processing the pixels sequentially, 

our proposed strategy allows for the simultaneous processing of multiple pixels, 

resulting in a significant increase in computational efficiency. 

 

In summary, to minimise the number of memory accesses during cost aggregation and 

disparity computation according to Eq. 4.11, a CTA-based parallel scheme is proposed. 

The algorithm uses a CTA-based parallel scheme in which each CTA thread first adds 

the costs corresponding to a given disparity level for all path directions. Then, the CTA 

threads cooperate to identify the disparity level with the minimum cost. This approach 

avoids the writing and reading of the final cost matrix and increases the computational 

speed. Additionally, it allows for parallel processing of the algorithm, enhancing its 

efficiency and suitability for real-time computer vision applications. 

 

4.3.3 Optimisation of Disparity Map Generation and Parallel Computing 

 

SGM uses penalty parameters to handle different situations, such as depth continuity 

and discontinuity. By adjusting these parameters, the algorithm can effectively handle 

depth discontinuities, reduce breakage, and provide good disparity smoothing. 

However, this method is computationally intensive, and if the input left and right image 

pairs from a stereo camera are not ideal, the final disparity map may contain small black 

squares. These squares may be due to the failure of the algorithm to match the 

corresponding pixels in the left and right images. This is usually caused by errors in the 

images, such as noise, blur, or a lack of texture, which makes it difficult for the 

algorithm to identify correspondences. 
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To address the issue of noise and artefacts in the disparity map, a simple peak filter was 

applied after the SGM cost aggregation step. The peak filter (Hirschmuller, 2007) 

operates by computing the maximum disparity value within a local window around each 

pixel in the disparity map. The resulting maximum disparity value is then assigned to 

the central pixel in the window, and this process is repeated for all pixels in the disparity 

map. Despite the operational simplicity and effectiveness of the process in reducing 

noise and artefacts in the disparity map, the peak filter features several limitations. For 

example, the filter may blur edges and details in the scene, particularly in regions with 

high contrast or texture. Moreover, the peak filter may be unable to handle occlusions 

and textureless regions as effectively as other smoothing filters, such as the weighted 

least squares (WLS) filter. These limitations suggest that further modification of the 

peak filter is necessary to improve its performance in challenging scenarios. 

 

The WLS filter can effectively reduce noise and artefacts in the disparity maps without 

significantly blurring the edges or details of the scene. It achieves this by assigning 

higher weights to pixels with similar intensity values and lower weights to pixels with 

dissimilar intensity values. Thus, the WLS filter can preserve the sharpness and details 

of the scene while effectively reducing noise and smoothing the disparity maps. 

Moreover, the WLS filter can handle occlusions and textureless regions, which are 

common challenges in stereo image matching tasks. The filter can detect and handle 

these regions by assigning higher weights to pixels with reliable disparity values and 

lower weights to those with unreliable disparity values. This helps to minimise the 

effect of occlusions and textureless regions on the final disparity maps. 

 

Figure 4.8 compares the experimental results of disparity maps generated using the peak 

filter and the WLS filter. WLS filtering was more robust and effective in improving the 

quality of the disparity maps. As shown in Figure 4.8(d), the peak values of disparity 

filtered out by the peak filter, indicated by the black gaps in Figure 4.8(c), were 

significantly reduced after the application of WLS filtering. 
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Figure 4.8 Comparison of disparity maps generated using the peak filter and the WLS 

filter: (a) left-view image and (b) right-view image; (c) disparity map after peak 

filtering; (d) disparity map after WLS filtering. 

 

The deployment of the WLS filter as the smoothing filter will increase the amount of 

data accessed from memory and therefore the computational cost of SGM. To avoid 

this situation, we adopted the GPU parallel scheme optimisation procedure proposed 

by Hernandez-Juarez et al. (2016); however, the parallel scheme was modified such 

that a single warp now performs the task previously assigned to the CTA, and the 

modified method is referred to as CTA-to-warp conversion. This modification 

eliminates the need for expensive synchronisation operations, enables faster register-

to-register communication through special shuffle instructions, and reduces the number 

of instructions required while increasing instruction-level parallelism. However, the 

strategy reduces thread-level parallelism. Overall, the CTA-to-warp conversion 

increases processing efficiency and is thus useful for real-time applications that require 

high performance. 
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4.4 Implementation and Evaluation 

 

4.4.1 Hardware Configuration and Data Acquisition 

 

 
 

(a) (b) 

Figure 4.9 Types of cameras used in this research: (a) ZED camera by Stereolabs; 

(b) Aeria X by senseFly. 

 

The first experiment on real-time dense image matching was related to human 

kinematics. In this experiment, a ZED camera was used (Figure 4.9a). The camera 

system included a stereo pair of RGB cameras of the same model on a mainboard. The 

baseline between the two cameras was 12 cm, and each camera had a horizontal field 

of view (FOV) of 90 and a vertical FOV of 60. The left and right cameras had a focal 

length of 5.6 mm. The image resolution of each camera was 672 × 376 pixels, with a 

pixel size of 8 µm. The manufacturer had calibrated the camera system. The camera 

interior orientation parameters, including the focal length, the offset of the principal 

point, lens distortions, and a fundamental matrix defining the relative orientation of the 

stereo cameras, were provided. In the experiments, we used a local coordinate system, 

with the origin at the perspective centre of the left camera, the X-axis along the baseline, 

the Y-axis pointing downwards, and the Z-axis pointing to the range direction.  

 

Another experiment on real-time dense image matching was conducted. The images 

were captured by an Aeria X camera mounted on the UAV (Figure 4.9b). The camera 

had a focal length of 19 mm, with an image resolution of 6000 × 4000 pixels. The FOV 

of the camera was 64 vertical and 90 horizontal. The camera was also calibrated by 

the manufacturer, and all of the interior orientation parameters were provided. All of 

the UAV images are accessible through the senseFly website (senseFly, 2019). 
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Both experiments were run on a computer with two NVIDIA RTX 2080Ti graphics 

cards, 64 GB RAM, and two 12-core CPUs. The real-time processing capability of the 

algorithm was evaluated through the evaluation and comparison of the processing 

efficiencies of the traditional SGM algorithm and our parallel-architecture acceleration 

method. The traditional SGM algorithm was implemented using OpenCV, and the 

evaluation was conducted using images captured by stereo cameras. During the 

evaluation, several frames were captured, and the disparity maps were obtained using 

our GPU-accelerated SGM and the stereo_SGBM function of OpenCV.  

 

4.4.2 Evaluation of GPU-Accelerated SGM on Benchmark Dataset 

 

(a) (b) 

(c) (d) 

Figure 4.10 Evaluation dataset from the Middlebury stereo vision dataset: (a and b) 

left and right views of the dataset; (c) the ground-truth disparity; (d) mask of the 

valid disparity in (c). 
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The effectiveness of our GPU-accelerated SGM algorithm for disparity map generation 

was evaluated using a single stereo image pair with ground truth from the Middlebury 

stereo vision dataset (Scharstein et al., 2014). The dataset (Figure 4.10) contained left-

view and right-view images with a resolution of 497 × 720 pixels. The corresponding 

ground-truth disparity and mask of valid pixels were provided; they were similar to 

those of the test dataset in Section 4.3.3, and the latest version was used for stereo image 

matching evaluation. 

 

   

(a) (b) (c) 

Figure 4.11 Disparity results obtained using traditional and GPU-accelerated SGM: 

(a) ground-truth disparity; (b) disparity map obtained using traditional SGM; (c) 

disparity map obtained using GPU-accelerated SGM. 

 

Table 4.2 Accuracy and efficiency evaluation results of traditional SGM and  

GPU-accelerated SGM 

 Traditional SGM GPU-accelerated SGM 

Accuracy (%) 64.5 88.9 

Processing time (ms) 282.1 18.3 

 

The dataset shown in Figure 4.10 was used to assess the precision of a GPU-accelerated 

SGM algorithm and the effectiveness of a singular image pair. The objective was to 

determine the accuracy and performance of the algorithm through a comparison of the 

generated disparity maps with the ground-truth disparity. As stated in the previous 

section, the algorithm was evaluated using SAD as the similarity measure. A window 

size of 7 × 7 and a search range with a maximum disparity of 64 pixels was adopted. 

Figure 4.11(a) presents the ground-truth disparity of the stereo image pair, which was 

used as a benchmark for evaluating the accuracy of the disparity maps generated by the 
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algorithm. Figures 4.11(b) and (c) depict the disparity maps generated by the traditional 

and GPU-accelerated SGM algorithms, respectively. The disparity maps were 

compared with the ground-truth disparity to evaluate the accuracy of the generated 

maps. 

 

The chair rail in the middle of the left-view and right-view images featured a significant 

positional variation, leading to a large variation in the content of the corresponding 

pixels in the epipolar-plane stereo image. Figure 4.11(b) shows that the pixels in this 

area produced a mask with a distinct pattern. This non-uniformity in the image can lead 

to discontinuities in the estimated disparity, which may result in spurious matches or 

incorrect peak disparity values. Traditional SGM approaches with peak filters have 

been adopted to address this issue (Hirschmuller, 2007). However, as illustrated in 

Figure 4.11(b), this filtering approach may also remove valid disparity values, leading 

to a substantial amount of invalid disparity in the final result. The accuracy was assessed 

according to Equation 4.7. As shown in Table 4.2, disparity accuracy was significantly 

improved from 64.5% to 88.9% after the application of WLS filtering. The processing 

time of this single stereo image pair was considerably decreased to 18.3 ms. The results 

indicate that our approach can provide a robust disparity suitable for real-time dense 

image matching. 

 

4.4.3 Evaluation of GPU-Accelerated SGM on Stereo Close-Range Images 

 

To evaluate the application of our approach to close-range images, a stereo camera was 

used to capture SBS images featuring the human body at a resolution of 1344 × 376 

within 600 s, and the effectiveness of the algorithm for real-time processing was 

evaluated. Figure 4.12 illustrates the results of real-time disparity map generation using 

the traditional SGM and GPU-accelerated SGM algorithms. The image obtained using 

the traditional SGM algorithm (Figure 4.12c) featured mismatches and noise consisting 

of occlusion and textureless regions caused by excessive sunlight from the window. In 

contrast, the disparity map obtained via our approach featured distinct contours of the 

human body, both in a sitting and standing position (Figure 4.12d). WLS helped 

minimise the effects of occlusions and textureless regions on the final disparity maps; 
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thus, our approach provided a disparity map that could delineate the contours of the 

object. 

 

  

  

  

(a) (b) (c) (d) 

Figure 4.12 Real-time disparity map generation results obtained using traditional 

and GPU-accelerated SGM: (a) the left-view images in greyscale; (b) the right-view 

images in greyscale; (c) disparity map obtained using traditional SGM; (d) disparity 

map obtained using GPU-accelerated SGM. 

 

 

Figure 4.13 Comparison of the processing efficiency between traditional SGM and 

GPU-accelerated SGM on SBS images. 
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Table 4.3 Comparison of the real-time processing efficiencies of traditional and GPU-

accelerated SGM on close-range images 

Approaches 
Real-time processing efficiency (fps) 

Min Max Mean 

Traditional SGM 1.29 5.92 5.24 

GPU-accelerated SGM 58.82 76.92 65.5 

 

Figure 4.12 depicts the real-time processing efficiency of disparity map generation from 

SBS images using the traditional SGM and GPU-accelerated SGM algorithms. The red 

line indicates the SBS image processing efficiency of the traditional SGM algorithm 

implemented with OpenCV, while the blue line represents the efficiency of our GPU-

accelerated SGM algorithm. Figure 4.13 compares the real-time processing efficiencies 

of the traditional and GPU-accelerated SGM algorithms. The GPU-accelerated SGM 

algorithm maintained an average real-time processing efficiency of ~65.4 frames per 

second (fps) during the 10 min experimental record, while the traditional SGM 

algorithm maintained a speed of only ~5.2 fps. However, the graph also shows that the 

processing efficiency of the GPU-accelerated SGM algorithm fluctuated. As shown in 

Table 4.3, both the traditional and GPU-accelerated SGM algorithms varied in the 

interval between the maximum and minimum fps. This occurred owing to the fast 

movement of the individual being photographed, and a ghost effect occurred on the 

corresponding frames under unstable illumination, affecting the computational 

efficiency of matching and smoothing. The significant difference in processing 

efficiencies shows that parallel architecture-based image matching acceleration can 

significantly improve the real-time processing efficiency of the SGM algorithm. 

 

4.4.4 Evaluation of GPU-Accelerated SGM on Aerial Images 

 

The evaluation of the GPU-accelerated SGM algorithm on close-range images in the 

previous section shows that the computational efficiency of this method is significantly 

higher than that of the traditional SGM approach. Furthermore, we evaluated the GPU-

accelerated SGM algorithm using images taken by a UAV. Chapter 2 introduces the 

background and purpose of our research on the real-time processing of aerial images 
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captured by the camera on UAVs during flight. Our goal is to achieve real-time 

processing of aerial images to generate a digital terrain model for the visual localisation 

of the UAV. However, the task is challenging owing to the high resolution of aerial 

images and the changing angle of the images caused by UAV oscillation during flight. 

The dense image matching algorithm must be fast and optimised for images captured 

from different angles to effectively handle a large amount of image data in real-time. 

 

  
(a) (b) 

(c) (d) 

Figure 4.14 Disparity map generated by traditional and GPU-accelerated SGM: (a 

and b) two consecutive aerial images captured by UAV; (c) disparity map obtained 

using traditional SGM; (d) disparity map obtained using GPU-accelerated SGM.  

 

Therefore, before a large amount of data is processed using an efficient dense image 

matching technique, epipolar calibration should be performed on every consecutive pair 

of images. Two aerial images captured from different viewpoints can be corrected via 

epipolar calibration, which ensures that the corresponding points lie on conjugate 

epipolar lines for dense image matching. Our GPU-accelerated SGM algorithm can 

then be applied to perform dense image matching to generate a more robust disparity 

map. 

 



123 

 

Figure 4.14 shows the results of disparity map generation using SGM from two 

consecutive aerial images captured at 6000 × 4000 resolution after epipolar calibration. 

Rotation and transformation matrices were first calculated for two consecutive aerial 

images to perform epipolar calibration. Subsequently, both the traditional and GPU-

accelerated SGM algorithms were applied for dense image matching. The disparity map 

generated using traditional SGM (Figure 4.14c) featured a larger proportion of 

mismatches and noise than that generated using our GPU-accelerated SGM. The WLS 

filter reduced the noise in the results and allowed the object to retain a complete edge 

in the disparity map (Figure 4.14d). 

 

Figure 4.15 Comparison of the processing efficiency of traditional SGM and GPU-

accelerated SGM on UAV images. 

 

Table 4.4 Comparison of the real-time processing efficiencies of traditional and GPU-

accelerated SGM on aerial images 

Approaches 
Real-time processing efficiency (fps) 

Min Max Mean 

Traditional SGM 0.021 0.023 0.022 

GPU-accelerated SGM 0.427 0.452 0.440 
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The aerial images featured a significantly higher resolution than the SBS image 

captured by the stereo camera adopted in the previous experiment. As a result, the real-

time processing efficiencies of both the traditional SGM and GPU-accelerated SGM 

algorithms were expected to be lower than the experimental results. The traditional 

SGM algorithm exhibited a low real-time processing efficiency of 0.022 fps for aerial 

images (Figure 4.13, red line). This corresponds to a processing time of ~45 s for a pair 

of images, making the algorithm unsuitable for real-time applications. The GPU-

accelerated SGM significantly improved the processing efficiency, with a real-time 

processing efficiency of 0.44 fps (Figure 4.13, blue line). Our approach improved the 

processing time for a pair of aerial images by ~20 times more efficiently than the 

traditional SGM (Table 4.4). The GPU-accelerated SGM algorithm offers a promising 

solution for real-time UAV image processing, as it improves processing efficiency for 

dense image matching, according to the assessment results in Table 4.4. 
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Chapter 5 Real-Time 3D Data Generation and 

Applications 
 

5.1 Triangulation for 3D Position Determination 

 

Triangulation is a fundamental method for determining the precise position of an object 

or point in three-dimensional space. This process involves the measurement of angles 

formed between the object or point of interest and multiple reference points, thereby 

enabling accurate localisation. Triangulation, also known as space intersection, is 

widely applied in photogrammetry, with the fundamental geometric relation being the 

well-known collinearity equation (Wu, 2021). The collinearity equation, as introduced 

in Chapter 2, establishes a mathematical relationship between the 3D coordinates of a 

point, the 2D image coordinates, and camera parameters. This collinearity relationship 

is essential in determining the 3D coordinates of an object point based on its image 

coordinates and camera parameters. 

 

Figure 5.1 illustrates the concept of stereo triangulation. Two cameras, referred to as a 

stereo pair, are used to capture images of the same scene from different viewpoints. 

Due to the offset viewpoints of the cameras, the captured images exhibit disparities, 

which indicate the horizontal shift between the corresponding points in the left and right 

images. The known baseline distance between the cameras and disparity information 

can be used to calculate the depth or distance of objects using triangulation principles 

(Hartley and Zisserman, 2003). 
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Figure 5.1 Stereo geometry for triangulation 

 

In Figure 5.1, Cl and Cr are the centres of the left and right camera sensors, respectively; 

and IPl and IPr are the corresponding image planes. Ol and Or on the image planes are 

the optical centres of the left and right cameras, respectively. Given any point 

𝑃(𝑋௉, 𝑌௉, 𝑍௉) of the object in the real world, 𝑝௟(𝑢௟, 𝑣௟) and 𝑝௥(𝑢௥ , 𝑣௥) are pixel-point 

representations of P in the IPl and IPr planes of the stereo cameras at sensors Cl and Cr, 

respectively. The baseline is the offset distance between the optical centres of the 

camera sensors Cl and Cr. The world point P is transformed from the pixel point using 

the interior orientation parameters and translation between two image planes. The 

relationship between these parameters in the homogeneous coordinate system can be 

expressed as follows: 
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where R and T represent 3×3 rotation and 3×1 translation matrices, respectively; W is a 

projection matrix derived from the interior orientation parameters and translation 

matrix; Q is a re-projection matrix that enables the translation of pixel points to world 

points; and d is the disparity between the pixels in the left and right image planes. The 



127 

 

rotation and translation matrices can be obtained from preliminary calibrations, and Eq. 

5.2 can be alternatively represented using intrinsic parameters, as follows: 
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where b is the baseline of the camera pair, f is the camera focal length, (cx, cy) is the 

optical centre of the corresponding sensor, and d is the disparity value of any pixel point 

(u, v). The focal length of a single sensor is fixed. Hence, the distance Zp of the world 

points depends solely on its disparity component, which is calculated for each point 

from the left-view to the right-view images, as described previously. In this manner, 

each pixel in the disparity map can be transformed to a 3D coordinate. The resulting 

3D point cloud is typically represented in the camera coordinate system. 

 

5.2 Real-Time Triangulation Based on GPU Acceleration 

 

In recent years, the use of GPUs has extended beyond their original purpose of 

accelerating graphics rendering, and they have been applied as powerful acceleration 

tools in various domains. NVIDIA’s CUDA Programming Model has significantly 

facilitated this transition, enabling developers to write general-purpose programs for 

GPUs using a language based on C/C++. GPUs offer several advantages for image 

processing and computer vision tasks due to their high memory bandwidth, efficient 

access to large image datasets, and ability to exploit data parallelism. The numerous 

cores on GPUs can be used to implement a divide-and-conquer approach, which is 

particularly beneficial for handling high-resolution images. The programming of GPUs 

is predominantly based on the single-instruction multiple-data (SIMD) model, in which 

multiple threads execute the same operations simultaneously on different data. 

Consequently, an algorithm must be well-suited for this SIMD computational model to 

effectively leverage the computational capabilities of GPUs. 

 

This research introduces a GPU-based triangulation method that builds upon the cost 

function proposed by Recker et al. (2013). The proposed method is highly amenable to 

parallelisation due to the large number of independent tasks. By leveraging the 
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capabilities of the CUDA programming model, a parallelisation strategy is used for the 

GPU, in which one thread block is assigned to each track for processing. The 

triangulation algorithm exploits GPU properties derived from the L1 cost function and 

its gradients, as described in Section 5.2.1. The implementation of triangulation with 

parallelisation is discussed in Section 5.2.2. 

 

5.2.1 Cost Function for Triangulation 

 

The previous section outlines the process of triangulation, which involves solving the 

collinearity equation. The collinearity equation uses the geometric relationship between 

the camera, the object in space, and its corresponding 2D point on the image plane as 

parameters. Notably, each individual collinearity equation can serve as a cost function 

suitable for parallel computation on a GPU. This parallelisation approach enables the 

simultaneous processing of multiple collinearity equations. In this manner, the 

computational capabilities of the GPU can be leveraged to expedite triangulation. 

 

A prospective 3D location p and its accompanying feature track t can be evaluated using 

an angular error measure based on the L1 triangulation cost function (Recker et al., 

2013). The inputs to the cost function are a collection of feature tracks across N images 

and their corresponding 3 × 4 camera projection matrices Pi. The error for position p is 

calculated as follows: 

 

 
𝑓௧∈்(𝑝) =

෌ (1 − 𝑣పෝ ⋅ 𝑤௧పෞ )
௜∈ூ

∣∣ 𝐼 ∣∣
 (5.4) 

 

Calculation of the error at position p involves several stages: First, a unit direction 

vector vi is computed between the centre of each camera and the candidate position p. 

Subsequently, a second unit vector wti is determined, which originates from each 

camera centre Ci and passes through the 2D feature track t in each image plane. Because 

the feature track t may not precisely align with the projection of position p in each image 

plane, a non-zero angle typically exists between the potential direction vector vi and 

vector wti. Finally, the cost function is computed as the mean of the dot products (𝑣పෝ ⋅

𝑤௧పෞ ) across all cameras. Each dot product has a range of [-1, 1], but only the points in 
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front of the cameras are evaluated, limiting the range to [0, 1]. To maintain consistency 

with the L1 triangulation cost function, we use the same notation and define Eq. 5.4 as 

the cost function for evaluating the 3D position p pertaining to track t. 

 

5.2.2 GPU-Based Implementation of Triangulation 

 

To facilitate comprehension, we focus on the key features of CUDA that are relevant 

to our task. In CUDA, algorithms are referred to as kernels and are executed on parallel 

blocks with up to 1024 threads. The GPU allocates these blocks to its multiple 

streaming multiprocessors, each responsible for the synchronised execution of 32 

thread groups, known as warps, under the control of an SIMD. The use of shared 

memory, a small memory space that facilitates efficient data sharing among threads 

within a block, is a crucial aspect of CUDA programming. Notably, shared memory 

offers considerably faster access than DRAM (global memory), which is located off-

chip. Effective GPU programs must maximise the use of computational resources by 

launching numerous threads; minimising thread divergence (i.e., threads following 

different control flows) within warps; and strategically using the memory hierarchy to 

prioritise fast shared memory over global memory, when possible (Nickolls et al., 2008). 

These considerations are essential for the development of GPU applications that are 

both efficient and effective. 

 

In this study, triangulation is implemented using a block-based method for processing 

tracks, inspired by the methodology proposed by Mak et al. (2014). This strategy 

maximises computational efficiency by implementing parallelism within each segment. 

Instead of assigning a single thread per track, a group of threads is dedicated for 

processing each recording. The individual threads within these segments compute the 

specific term associated with each track feature. The angles between ray-based terms 

are then aggregated using a parallel reduction technique to derive the overall gradient 

of the cost function. This block-based strategy enables the concurrent processing of 

multiple features within a single track, thereby maximising parallelism and facilitating 

efficient triangulation computation. 
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Figure 5.2 Concept of using one block per track for the multiple processes of 

triangulation. Each block consists of several tracks for solving collinearity equations. 

 

Figure 5.2 illustrates the proposed implementation, tailored for datasets with long 

feature tracks. Each thread within a block is responsible for calculating the gradient for 

a particular feature, and a parallel sum reduction is performed to obtain the final 

gradient value for the entire track. This method exhibits enhanced performance when 

dealing with longer tracks, as the gradient computation workload varies with the track 

length, and multiple gradient calculations may be required until convergence. The 

utilisation of shared memory on GPU is a significant advantage of this approach. 

Modern GPUs provide thread blocks with limited access to shared memory. When one 

track is assigned to each thread, the shared memory may not be adequate for storing the 

data associated with all tracks within a block, even when sampling techniques are used. 

Assigning an entire block to a single track and integrating sampling can reduce the per-

thread memory requirements. Consequently, the working set of track and camera data 

for a block can be accommodated in shared memory, effectively transforming it into a 

cache. In addition, the parallel sum reduction operation for gradient computation is also 

executed in shared memory, which facilitates the necessary inter-thread communication 

for the reduction process. 

 

Figure 5.3 shows the results of an experiment involving GPU-based triangulation for 

3D point cloud generation. The processing times and performance of the proposed 

GPU-based triangulation strategy were evaluated on a computer equipped with a 1.70 

GHz Intel Xeon E5-2603 v4 CPU and an NVIDIA GeForce 2080Ti GPU. 
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(a) (b) 

 

(c) 

Figure 5.3 Experiment results of GPU-based triangulation. (a), (b) Inputs of stereo 

pair images (1920 × 1080 pixels). (c) Coloured point clouds from different views. 

 

Figure 5.3 shows the result of implementing GPU-based triangulation for the generated 

3D point clouds. The input for this process consists of a stereo pair of images (Figures 

5.3 (a) and (b)), each sized 1920 × 1080 pixels. GPU-based triangulation generates a 

coloured point cloud (Figures 5.3 (c) and (d)). The processing pipeline involves the 

initial reading of the input images by the CPU, which transmits them to the GPU for 

triangulation. As shown in Figure 5.4, the average utilisation of CPU resources is 13%. 

The GPU helps to accelerate the triangulation process, with the average GPU usage 

being 19%. Eventually, the GPU-based triangulation generates a coloured point cloud. 
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Figure 5.4 Resource usage and processing rate (fps) of GPU-based triangulation 

 

 

5.3 Real-Time 3D Point Cloud Generation from Aerial Images 

 

Real-time 3D point cloud generation is crucial for applications that require immediate 

visualisation, accurate object detection and tracking, and 3D mapping. These 

capabilities can enable real-time interaction with the 3D environment and enhance the 

efficiency and effectiveness of various systems and applications. In Section 5.1, 

triangulation and its algebraic representation are described. Specifically, Eqs. 5.1 to 5.3 

can be used to triangulate 2D image points to 3D points in space coordinates. Chapter 

3 describes the process for computing the camera pose for the current input frame in 

real-world space coordinates. This pose can be used as the exterior orientation to 

reconstruct 3D point clouds through GPU-accelerated triangulation, as discussed in 

Section 5.2. This section describes the strategy for real-time 3D point cloud generation.  
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Figure 5.5 Framework of real-time 3D point cloud generation from aerial images 

 

Figure 5.5 shows the framework for real-time 3D point cloud generation. The 

implementation over three different threads allows the parallel processing of incoming 

data. The first thread is responsible for camera pose estimation, following the method 

described in Chapter 3. After obtaining the camera poses of two consecutive frames, 

the frame is passed to the next thread to generate a sparse 3D point cloud through 

triangulation, following the approach described in Section 5.2. The third thread 

interpolates the sparse 3D point to construct a dense point cloud construction, as 

discussed throughout Chapter 5. The visualisation of the 3D point cloud is achieved 

using the Grid Map Core library (Fankhauser and Hutter, 2016). The transportation of 

each frame is realised using the robot operating system (ROS), which is commonly used 

to simulate and efficiently deploy real-time processing algorithms for robots. The ROS 

provides different nodes for the facile implementation of parallel processing and real-

time visualisation of the final result.  

 

5.3.1 3D Point Cloud Generation 

 

The camera pose for the current input frame is obtained using the approach described 

in Chapter 3. Upon determining a keyframe based on a predefined threshold, the camera 
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pose is calculated through space resection according to the matches between two 

consecutive frames. This pose is used to refine the camera pose for the subsequent 

frames. The camera pose information is then used to generate 3D points through 

triangulation.  

 

5.3.1.1 Local Optimisation for Generating Sparse 3D Points 

 

In the process of extracting and matching features, 3D points must be rapidly generated 

by triangulation and added to the map to achieve real-time 3D mapping. In the proposed 

strategy, local optimisation is performed with a bag-of-words (BoW) vector for 

matching features on keyframes and ensuring their correspondence on neighbour 

subsequent frames. BoW involves the construction of a visual vocabulary by clustering 

the feature descriptors into a set of visual words. Figure 5.6 illustrates the BoW 

framework. The feature descriptors on each image are encoded to the nearest visual 

word, resulting in a histogram-like representation with visual word frequencies. The 

corresponding neighbouring frames of keyframes are matched by comparing the 

similarity of the visual words of the features in different image views. After verifying 

the correspondences, all of the features on the keyframes and corresponding 

neighbouring frames are triangulated to generate sparse 3D points. Fast BoW (FBoW, 

Gálvez-López and Tardos, 2012) is applied for local optimisation in this work. 
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Figure 5.6 BoW framework for identifying the matching features on corresponding 

neighbouring frame by visual words. 

 

5.3.1.2 Interpolation for Generating Dense Point Clouds 

 

As discussed in the previous Section 5.3.1.1, local optimisation facilitates the 

identification of matching feature points between keyframes and adjacent frames. 

These feature points serve as the basis for triangulation, resulting in the generation of 

sparse point clouds. These sparse point clouds then serve as a reference for creating 

dense point clouds. Specifically, a sparse point cloud is transformed into a grid map 

while preserving the elevation information to generate a dense point cloud. This grid 

map representation allows for comprehensive and organised data storage. Further 

details regarding the grid map are provided in Section 5.3.1.3. To interpolate the sparse 

point cloud into a dense point cloud, a k-dimensional (k-d) tree is used to locate the 

nearest neighbouring feature points to the sparse points within the grid map. Finally, a 

dense point cloud with elevation information is generated and visualised in 3D. 
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Figure 5.7 Interpolation of dense point clouds from sparse 3D points 

 

Figure 5.7 illustrates the interpolation scheme for creating dense point clouds from 

sparse point clouds. The sparse point cloud serves as the input for dense point cloud 

generation. The algorithm involves a loop that iterates over all affected cells in the grid. 

The first step involves organising the x- and y-coordinates of the dense point cloud 

using a 2D binary k-d tree (Bentley, 1975). In the next step, this k-d tree returns a set 

of nearest points within the interpolation radius, which is determined by the average 

value of the distances from the nearest point according to the k-d tree. The inverse 

distance weighting (IDW) method is used to perform the interpolation. IDW computes 

the cell height by linearly combining the nearest neighbours with the weights 

determined using the inverse distance to the cell centre. Points closer to the cell centre 

are assigned higher weights, and thus, their influence on the interpolated height is more 

notable. The resulting interpolated height is assumed to be the ground sampling distance 

(GSD) for the creation of the grid map. Additionally, the region of interest (ROI) is 

determined by projecting the frame onto the reference plane. After adding the layers for 

‘elevation’ and ‘valid’, a nearest neighbour search is conducted for each cell (Xcell, Ycell) 

within the grid. The z-component is extracted from the dense point cloud for each 

identified neighbour, enabling the final interpolation of the cell height. These steps are 

detailed in Algorithm 5.1, with the implementation following the workflow presented 

by Hinzmann et al. (2018). 
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Algorithm 5.1: Pseudocode of dense point cloud creation 

Input: ROI for the current frame, sparse point cloud 

1:   KdTree kdtree = initKdTree(sparse point cloud) 

2:   double resolution = estimateNearestPointDistance(kd tree, sparse point cloud) 

3:   CvGridMap dense_map(‘elevation’, ‘valid’) 

4:       dense_map.setGeometry(ROI, GSD = resolution) 

5:   for every cell in dense_map do 

6:      Point query_point = (Xcell, Ycell) 

7:      vector<Point> neighbours = kdtree → findNearestNeighbours(query_point) 

8:      if neighbours are found then 

9:          dense_map.at(Xcell, Ycell, ‘elevation’) = interpolateHeight(neighbours); 

10:          dense_map.at(Xcell, Ycell, ‘valid’)=true 

11:    end if 

12: end for 

 

5.3.1.3 Real-Time Visualisation of the 3D Point Clouds 

 

The implementation of point cloud storage and visualisation is based on an adaptation 

of the Grid Map Core library (Fankhauser and Hutter, 2016). The fundamental concept 

can be summarised as follows: A structured framework is established, based on an ROI 

specified by its coordinates (x, y), width, height, and a specified sampling resolution. 

As shown in Figure 5.8, the ROI consists of multiple data layers, each capturing specific 

information. Detailed information can be assigned to individual sample points within 

these layers. For instance, in a 3D grid map model, one layer stores the observed height 

of a point relative to a reference plane, while another layer stores the corresponding 

surface normal and texture. This multi-layered strategy allows the generated 3D grid 

map model to comprehensively represent the various attributes associated with the 

observed points within the defined ROI.  

 



138 

 

 

Figure 5.8 Example of a multi-layered grid map model 

 

In this work, several modifications to the original Grid Map Core library are introduced. 

The original library was designed for a mobile robot, resulting in efficient dynamic map 

movement but limited incremental expansion capabilities. Although this design may be 

suitable for moving aerial robots, it is not suitable for creating a comprehensive global 

map. Furthermore, the original library represents all layers as Eigen matrices (Bates et 

al., 2013) with float values for cell storage. Although this framework can simplify 

mathematical operations involving layer manipulations, the implementation of 

computer vision tasks that rely on OpenCV becomes challenging (Bradski, 2000). To 

address these issues, a new framework, CvGridMap, is developed, which maintains the 

overall architecture of the original library but incorporates an OpenCV matrix-type 

backend. Moreover, the CvGridMap framework is extended to support dynamic map 

expansion and overlap computations, thereby enhancing the capabilities for the 

visualisation task considered in this study. 

 

 

Figure 5.9 Initialisation of grid map for storing sparse point cloud information 

 

Figure 5.9 illustrates the initialisation of the grid map, which involves the creation of 

four distinct layers. The elevation data within the map are determined through 
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triangulation, using the feature points matched between the keyframe and 

corresponding subsequent frame. The normal vector of each 3D point is computed 

based on its geometric relationship with the surrounding 3D points. Textures, 

represented using RGB colour, are obtained from the pixel points in the frame 

corresponding to the ROI. These layers collectively provide the necessary information 

for subsequent steps, such as the generation of dense point cloud maps and interpolation 

of additional points, guided by the validity indicators established in the initialisation 

phase. 

 

In the final stage, the point cloud data acquired in the preceding steps are consolidated 

into a single scene to enable real-time visualisation. The point clouds in this stage are 

georeferenced, as the absolute orientation of the camera is used during triangulation. 

The first set of point cloud data is received and used for initialisation to construct the 

global map framework, which serves as the foundation for further data integration. 

Subsequently, new point cloud data are seamlessly fused with the existing global map 

using the ‘map update’ and ‘map fusion’ functions provided by the Grid Map Library. 

These functions facilitate the incorporation of new data while handling the overlap with 

the current global map, thereby ensuring the coherence and consistency of the overall 

map. Figure 5.10 demonstrates the procedure of point cloud fusion for real-time 

visualisation. 

 

 

Figure 5.10 Point cloud fusion for real-time visualisation 
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5.3.2 Implementation and Experimental Evaluation 

 

This section describes the implementation of techniques for the real-time generation of 

sparse 3D point clouds and interpolation of dense 3D point clouds. The proposed 

approach is validated using two aerial image datasets, referred to as Datasets 1 and 2. 

As described later in this section, the validation results indicate that the proposed 

approach can realise real-time 3D point cloud generation. 

 

Dataset 1 is an openly accessible dataset consisting of 328 aerial images sized 2456 × 

2054 pixels, which were captured by a UI-5280CP camera mounted on a customised 

UAV. Dataset 1 covers a land area of approximately 250 m2 in Germany. The images 

for Dataset 1 were acquired with 99% end overlap and 50% side overlap. Dataset 2, a 

self-made made dataset, consists of 329 aerial images sized 4000 × 3000 pixels, which 

were captured using the camera on a DJI Mavic AIR 2 (Figure 5.11). Dataset 2 covers 

a land area of approximately 150 m × 200 m in Hong Kong. The images for Dataset 2 

were captured with 80% end overlap and 60% side overlap. An overview of the 

coverage of both datasets is depicted in Figure 5.12. The images are downsampled to 

half of their original size to decrease the bandwidth and enhance the performance of 

triangulation and interpolation. The implementation and evaluation are performed on a 

computer with a 1.70 GHz Intel Xeon E5-2603 v4 CPU and an NVIDIA GeForce 

2080Ti GPU. 

 

 

Figure 5.11 Collection of Dataset 2 by DJI Mavic AIR 2 
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(a) Dataset 1 (b) Dataset 2 

Figure 5.12 Overview of the coverage of experimental aerial image datasets 

 

Both datasets present various challenges for visual algorithms, as illustrated in Figure 

5.12. Figure 5.12 (a1) illustrates the regional aliasing effect on corrugated iron roofs, 

caused by the camera resolution. As shown in Figures 5.12 (a2) and (b4), the forest has 

a repetitive texture that renders feature extraction challenging. Feature extraction for 

the grassland area shown in Figures 5.12 (a3) and (b6) is challenging because of the 

homogeneous surface. The shadows in Figure 5.12 (b5) correspond to a low texture 

area from which the extraction of features is difficult. 
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(a) Results of sparse 3D point cloud generation from Dataset 1 from different views 

 
(b) Dense point cloud interpolated from (a) 

 
(c) Results of sparse 3D point cloud generation from Dataset 2 from different views 

 
(d) Dense point cloud interpolated from (c) 

Figure 5.13 Experimental results of sparse and dense point cloud generation. 
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To address the abovementioned challenges, the features are extracted using SuperPoint, 

as discussed in Chapter 3. SuperPoint, which is a deep learning method, can effectively 

extract features in textureless regions such as those shown in Figure 5.12. The sparse 

3D point clouds generated by the proposed method for Datasets 1 and 2 are shown in 

Figures 5.13 (a) and (c), respectively. The corresponding dense point clouds obtained 

by interpolation based on the IDW method are shown in Figures 5.13 (b) and (d). In the 

interpolation process (Algorithm 5.1), the radius of the search neighbourhood is 

determined using the features in the k-d tree structure and sparse point cloud. 

 

Figures 5.13 (a1), (a2), and (a3) illustrate the sparse point clouds for the regions with 

iron roofs (Figure 5.12 (a1)), southern forested area (Figure 5.12 (a2)), and grassland 

(Figure 5.12 (a3)), respectively. The sparse point clouds for the forest area and 

grassland shown in Figures 5.12 (b4) and (b6), respectively, are shown in Figures 5.13 

(c4) and (c6). Notably, the shaded region in 5.13 (c5) indicates missing point clouds 

due to insufficient feature points. In the iron roof area shown in Figure 5.13 (b1), texture 

interference results in the inadequate representation of most textures within the dense 

point cloud. Similar observations can be made from Figures 5.13 (b2) and (d4), 

corresponding to the forest regions in Figures 5.12 (a2) and (b4), respectively. In 

contrast, in the grassland region shown in Figure 5.13 (b3), the feature points are evenly 

distributed, resulting in a high-quality dense point cloud. A similar outcome is observed 

in Figure 5.13 (d6): A high-quality dense point cloud is obtained for the grassland 

region in Dataset 2. Nevertheless, a dense point cloud cannot be accurately interpolated 

for the shadow regions (Figure 5.13 (d5)) due to the absence of features, as in the case 

of their sparse 3D point cloud. 

 

Table 5.1 presents the statistics associated with the generation of sparse 3D point clouds 

and dense point clouds for Datasets 1 and 2. fT denotes the features used in the 

triangulation process for constructing sparse 3D point clouds, and fI denotes the features 

used during interpolation to generate dense point clouds. PTA and PIA represent the 

percentages of features used in triangulation and interpolation among all features, 

respectively. Dn is the nearest neighbour point distance (Algorithm 5.1).  

 

  



144 

 

Table 5.1 Statistics of sparse and dense point cloud generation 

Dataset 
Total 

images 
Total 

features 

Sparse 3D point clouds Dense point clouds 

fT PTA Points 
Dn 

(pixels) 
fI PIA Points 

1 328 2,217,172 766,175 34.5% 185,666 20 1,870,473 84.4% 3,510,445 

2 329 3,736,392 324,136 8.7% 51,702 162 2,983,361 80.1% 670,587 

 

For Dataset 1, approximately 760,000 features (34.5% of all features) are selected for 

triangulation, resulting in the generation of a sparse 3D point cloud with 190,000 points. 

For dense point cloud generation, the neighbourhood search radius is 20 pixels, and 

approximately 1.9 million features (85.4% of all features) are used for interpolation. 

Dataset 2 consists of 329 aerial photographs, from which more than 3.7 million feature 

points are extracted. Among these features, approximately 320,000 (8.7% of all features) 

are used to generate sparse 3D point clouds via triangulation. The search radius is 162 

pixels, and approximately 3 million features (80% of all features) are used to generate 

dense point clouds. 

 

(a) Dataset 1 (b) Dataset 2 

Figure 5.14 Execution time of triangulation and interpolation on the two datasets. 

 

Figure 5.14 illustrates the efficacy of the triangulation and interpolation procedures for 

generating sparse and dense 3D point clouds from the two datasets. As shown in Figure 

5.14(a), in the case of Dataset 1, the triangulation process exhibits a greater variation in 

performance than does interpolation. This discrepancy is attributable to the additional 

complexity involved in scene reconstruction, which relies on the textures present in the 

area. The average execution time values for triangulation and interpolation are 156 ms 

and 223 ms, respectively. In the processing of Dataset 2 (Figure 5.14(b)), sporadic high 
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peaks can be observed in the triangulation stage, whereas low peaks can be observed in 

the interpolation stage. This behaviour can be attributed to the presence of texture-rich 

regions within the dataset, owing to which more sparse point clouds are generated. 

Consequently, less time is required for the interpolation of dense point clouds. The 

average execution time values for triangulation and interpolation are 362 ms and 383 

ms, respectively. 

 

5.4 Real-Time Acquisition and Monitoring of 3D Human 

Body Kinematics 

 

The real-time capture and analysis of human locomotion at a large scale are crucial for 

various applications, such as monitoring the actions of patients during physical 

rehabilitation (Karunarathne et al., 2014), ensuring worker safety in domains with 

industrial robots (Seo et al., 2015), analysing the movements of athletes (Gholami et al., 

2019), and facilitating human–computer interactions in virtual reality (Jaimes and Sebe, 

2007). Given that the success of these applications depends on the accurate extraction 

and analysis of 3D human body kinematics at a large scale, real-time photogrammetric 

systems with the corresponding capabilities have been extensively researched in recent 

years. 

 

Real-time computations have become feasible with the advent of CPUs with multi-

threaded capabilities and GPU-acceleration technologies. This work introduces a cost-

effective photogrammetric system involving a stereo pair of RGB cameras. Using GPU-

acceleration and multi-threading technologies, this system can extract and monitor 3D 

human body kinematics in real-time and on a large scale. Section 5.4.1 describes a 

strategy that combines a 2D human body skeleton extraction algorithm with the 

projection relationships between 2D and 3D spaces. Section 5.4.2 describes a kinematic 

model based on 3D body features. Section 5.4.3 presents the experimental details and 

discusses the results.  
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5.4.1 2D and 3D Human Body Feature Extraction 

 

In recent years, the rapid advancements in GPU technology and multithreading-capable 

CPUs have led to the widespread use of deep learning approaches (Ranjan et al., 2017), 

such as mask regional-based convolutional neural networks (R-CNNs) (He et al., 2017), 

OpenPose (Cao et al., 2021), and regional multi-person pose estimation (RMPE) (Fang 

et al., 2017). These technologies and algorithms have facilitated the evaluation and 

extraction of 2D features of human postures in real-time. Fang et al. (2017) used the 

benchmark MPII human pose dataset to compare state-of-the-art human pose estimators 

based on the mean average precision (mAP) score, which indicates the accuracy of the 

estimation results. Table 5.2 provides an overview of these popular human pose 

estimators. According to Fang et al. (2017), deep-learning-based object-detection and 

pose-evaluation algorithms accurately obtained the 2D keypoints of human posture. 

Among the assessed algorithms, RMPE was the most reliable and accurate multi-person 

pose estimator, with an overall mPA of 80+ and a processing rate of 20+ frames per 

second (fps). The OpenPose algorithm had a mAP of approximately 70+ but a 

processing rate of only 10+ fps when implemented on the same platform (Cao et al., 

2021). Overall, these deep learning approaches are highly efficient and accurate and 

thus suitable for real-time 2D human posture evaluation and feature extraction. 

 

Table 5.2 Comparison of 2D human detection and tracking algorithms based on mAP scores 

 Head Shoulder Elbow Wrist Hip Knee Ankle Total 

Fang et al. 
(RMPE) 

88.4 86.5 78.6 70.4 74.4 73.0 65.8 76.7 

Iqbal et al. 58.4 53.9 44.5 35.0 42.2 36.7 31.1 43.1 

Insafutdinov et al. 
(DeeperCut) 

78.4 72.5 60.2 51.0 57.2 52.0 45.4 59.5 

Levinkov et al. 89.8 85.2 71.8 59.6 71.1 63.0 53.5 70.6 

Insafutdinov et al. 
(ArtTrack) 

88.8 87.0 75.9 64.9 74.2 68.8 60.5 74.3 

Cao et al. 
(OpenPose) 

91.2 87.6 77.7 66.8 75.4 68.9 61.7 75.6 

Newell et al. 92.1 89.3 78.9 69.8 76.2 71.6 64.7 77.5 
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Considering its performance, the proposed system leverages the mature 2D body 

skeleton extraction algorithm, RMPE (also known as ‘AlphaPose’, Fang et al., 2017). 

The 2D body skeleton is converted to 3D body features based on the projection 

relationship between the 2D image space and 3D object space. RMPE is an open-source, 

CNN-based, single-person pose estimator method that can be applied to conventional 

pictorial structure models for posture estimation. RMPE is particularly suitable for real-

time human body detection from RGB images. It yields a well-trained posture 

estimation model of the common objects in context (COCO) dataset (Fang et al., 2017), 

which is a benchmark dataset for training deep learning object detection algorithms and 

includes 17 key joint points representing human body parts (Figure 5.15). Table 5.3 

lists the 17 key joint points and their corresponding human body parts. 

 

 

Figure 5.15 Default 2D skeleton of human body parts by RMPE 

 

Table 5.3 Order number of human body parts 

Order No. Body part Order No. Body part 
0 Nose 9 Left wrist 
1 Left eye 10 Right wrist 
2 Right eye 11 Left hip 
3 Left ear 12 Right hip 
4 Right ear 13 Left knee 
5 Left shoulder 14 Right knee 
6 Right shoulder 15 Left ankle 
7 Left elbow 16 Right ankle 
8 Right elbow   
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The 2D body skeletons extracted from the images using RMPE can be expressed as in 

Eqs. (5.5), (5.6), and (5.7): 

 

 𝐸ത =  {𝑆ଵ̅, 𝑆ଶ̅, ⋯ , 𝑆௞̅} (5.5) 

 𝑆 =  {𝑗௜|0 ≤ 𝑖 ≤ 𝑚}, 0 ≤ 𝑚 ≤ 16, 𝑆 ∈ 𝐸ത (5.6) 

 𝑗௜ =  (𝑥௜, 𝑦௜), 0 ≤ 𝑖 ≤ 𝑚, (5.7) 

 

where 𝐸ത is a set of human body skeletons 𝑆ప
ഥ(𝑖 ∈ 1, 2, … , 𝑘}) of k people detected by 

RMPE in an image. Each skeleton S is a set of 2D joint points 𝑗௜(𝑖 ∈ {1, 2, … , 𝑚}) that 

contain 2D coordinates (𝑥௜ , 𝑦௜), corresponding to the left-view image. m is the total 

number of body parts listed in Table 2. Each pixel in a 3D map contains both 2D image 

coordinates and 3D coordinates. The 2D body skeletons are converted to 3D body 

features by determining the 3D coordinates corresponding to the 2D joint points from 

the 3D map, using the 2D image coordinates as the index. This transformation follows 

the concept of triangulation described in Section 5.1. In this manner, a set of 3D body 

features containing depth information is derived and saved in the queue for further 

analysis. The 3D body features are combined to generate various kinematic models for 

evaluating and monitoring human movements, as discussed in the subsequent section. 

 

5.4.2 Derivation of 3D Kinematic Parameters 

 

This study focuses on typical 3D human kinematics, including the velocity of 

movement (both speed and direction), step length, knee flexion angle, and arm swing 

angles. Table 5.4 describes the considered human kinematics based on the 17 key joint 

points (Table 5.3). 
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Table 5.4 3D human kinematic measurements considered in thread 3 

Name of 
measurement 

Description Body parts used 
No. of 

body parts 

Movement 
velocity 

Vector quantity that measures the 
changes in position in a time 
interval, including the movement 
speed and direction. 

Left and right hip 11, 12 

Step length 
Distance covered when a person 
starts walking and takes one step. 

Left and right ankle 15, 16 

Knee flexion 
angle 

Measurement of the knee joint 
motion when a person moves. 

Left and right hip 
Left and right knee 
Left and right ankle 

11, 12 
13, 14 
15, 16 

Arm swing 
angle 

Essential index of the human 
movement pattern, including the 
upper-arm and elbow angles. 

Left and right shoulder 
Left and right elbow 
Left and right wrist 

5, 6 
7, 8 
9, 10 

 

5.4.2.1 Movement Velocity Determination 

 

Seventeen 3D human body keypoints are extracted in Thread 2. Subsequently, it is 

necessary to identify a suitable keypoint that can serve as the representative point for 

calculating the movement velocity. According to Zatsiorsky (2002), the centre of mass 

of an object is the ideal point for calculating velocity. In planar movement analyses, the 

position of the centre of mass changes with translational displacement and rotational 

displacement during object motion. Furthermore, in 3D movement computation, the 

location of the centre of mass changes with tilting displacement as well, as shown in 

Figure 5.16. Therefore, we categorise general locomotion in the 3D world by 

considering these three movement states and project them into a 2D plane to clarify the 

changes in the centre of mass position caused by the abovementioned displacements. 

 

Figure 5.16 Exploded view of human locomotion velocity and centre of mass 

 

3D World 

2D Plane 
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Figure 5.16 depicts the realm of human locomotion in a 3D space, where the velocity 

vector is represented by a blue arrow, and the positions of the centre of mass in different 

stages of movement are denoted by red dots. The definitive position of the centre of 

mass is represented by a blue dot. During motion, the rotational velocity marginally 

counteracts the translational velocity, leading to a shift in the location of the centre of 

mass. If a tilting angular velocity is introduced, which imparts a slight forward velocity, 

the final position of the centre of mass will shift towards the location of the blue dot. 

Consequently, the blue dot is an appropriate reference point for determining the velocity 

of an object in both its initial and final positions. Previous research suggests that the 

centre of mass of the human body generally remains within or deviates slightly from 

the region between the left and right hips (Vlutters et al., 2016). Thus, this study 

considers the midpoint between the two hips as the centre of mass for velocity 

calculations. 

 

The movement of an individual involves a combination of multiple variable-speed 

linear motions. The velocity of these motions can be calculated by considering the 

initial and final positions in a specific interval. Specifically, the velocity can be 

determined by measuring the difference in 3D hip positions in consecutive frames, 

based on the timestamps. The movement speed is calculated following the general 

principles of velocity calculation:  

 

 න 𝑣(𝑡)
మ்

భ்

d𝑡 = 𝑓(𝑇ଵ) − 𝑓(𝑇ଶ) (5.8) 

 

where 𝑣(𝑡) is the speed of a human moving from the initial position at time T1 to the 

final position at time T2, and 𝑠(𝑇ଵ) − 𝑠(𝑇ଶ) is the displacement. In the proposed system, 

the speed is computed every five frames. Thus, Eq. 5.8 can be rewritten as 

 

 𝑣 =  ห𝑀௦𝑀௘
ሬሬሬሬሬሬሬሬሬሬሬ⃑ ห ∙ ∆𝑡௙௥௔௠௘

ିଵ (5.9) 

 

where 𝑀௦𝑀௘
ሬሬሬሬሬሬሬሬሬሬሬ⃑  is the vector of the midpoint of two hip positions when an individual 

moves from the position in the first frame (initial position) to that in the fifth frame 

(final position). ∆𝑡௙௥௔௠௘ is the capture time interval between the previous frame and 
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current frame, determined considering the timestamp of each frame. In this study, the 

frame interval is set as five units. The human movement speed is calculated according 

to the abovementioned equations, and the results are stored in a queue for further 

visualisation. 

 

The human centre of mass tends to remain near the midpoint of the left and right hips, 

with only slight deviations (Vlutters et al., 2016). Therefore, the midpoint of the left 

and right hips is examined to calculate the movement speed and direction. The 

movement speed is calculated based on the 3D coordinates of the midpoint at the initial 

and final positions during a time interval. Considering that movement can occur in any 

direction in a 360° arc, the movement direction is assessed based on trigonometric 

principles, starting from the direction in which the person faces the camera. The arc is 

partitioned to represent different directions. Specifically, the movement direction is 

classified as forward, backward, left, and right. In Figure 5.17, Pi (i = 0) indicates the 

potential initial position, and Pi (i = 1, 2, 3, 4) depicts the possible final positions in 

each direction within the next frame. The direction is determined by calculating the 

angle i between the vector from the initial position to the final position and the XY-

plane of the camera system, based on the 3D coordinates of the two hip positions. The 

step length, which is defined as the vector length from one ankle to the other, is 

calculated using the 3D coordinates of both ankles. 
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(a) (b) 

Figure 5.17 Geometric model of human movement direction. (a) Possible initial and 

final positions of a locomotory action. (b) Geometry between an initial position and 

each possible final position. 

 

As shown in Figure 5.17, the coordinates of the human centre of mass at potential initial 

and final positions under the camera coordinate system are denoted as 𝑃௜  (𝑥௜, 𝑧௜). To 

determine the direction of human movement, the angle between the vector extending 

from the initial position to the final position and the z-axis can be calculated using the 

(x, z) coordinates of the human centre of mass point. The computation is based on the 

following equations: 

 

 𝜃௜ =  arccos
𝑑(𝑧௜, 𝑧ହ௜)

ห𝑃ప𝑃ହప
ሬሬሬሬሬሬሬሬ⃑  ห

     𝑖 ∈ {1, 2, ⋯ } (5.10) 

 𝜑௜ =

⎩
⎨

⎧

 

𝜃௜ , (𝑥௜ > 𝑥ହ௜ , 𝑧௜ > 𝑧ହ௜)

𝜋 − 𝜃௜ , (𝑥௜ > 𝑥ହ௜, 𝑧௜ <  𝑧ହ௜)

𝜋 + 𝜃௜ , (𝑥௜ < 𝑥ହ௜, 𝑧௜ >  𝑧ହ௜)

2𝜋 − 𝜃௜ , (𝑥௜ < 𝑥ହ௜, 𝑧௜ <  𝑧ହ௜)

 (5.11) 

 

where the constant k determines the frame interval for calculating the movement 

direction, and 𝑑(𝑧௜, 𝑧ହ௜) is the difference in the z-values of two positions. For example, 

in Figure 5.17(b), if 𝑃௜(𝑥௜, 𝑧௜) is the possible initial position of the human centre of mass 

point in the first frame i (i = 0) and 𝑃ହ௜ (𝑥ହ௜ , 𝑧ହ௜) is the final position of the human centre 
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of mass point in the fifth frame, the angle between the vector 𝑃ప𝑃ହప
ሬሬሬሬሬሬሬሬ⃑  and z-axis is 𝜃௜ (in 

radians). As the movement direction is defined in four directions, 𝜃௜ must be converted 

according to the rules in Eq. 5.11. The final angle 𝜑௜ is used to determine the movement 

direction. Therefore, the human is moving forward if 𝜑௜ ∈  [0, 𝜋/4)⋃(7𝜋/4, 2𝜋] , 

leftward if 𝜑௜ ∈ (𝜋/4, 3𝜋/4),backward if 𝜑௜ ∈ (3𝜋/4, 5𝜋/4), and rightward if 𝜑௜ ∈

(5𝜋/4, 7𝜋/4).  

 

5.4.2.2 Step Length Measurement 

 

Step size is a precise measurement used in gait analysis to evaluate the movement and 

posture of individuals. This parameter varies with an individual’s height, as taller 

individuals with longer legs tend to walk faster than those with shorter legs. Specifically, 

the step length refers to the distance covered when a person takes a single step, 

beginning from a standing position with both feet together. This distance can be 

expressed as the length of the vector from one ankle to the other. 

 

 

Figure 5.18 Geometric model for step length computation 

 

 𝑠 =  argmax
௦

𝑓 ൫ฮ𝐴௟𝐴௥
ሬሬሬሬሬሬሬሬሬ⃑ ฮ൯ (5.12) 

 

Figure 5.18 illustrates the general geometry for computing the step length. Equation 

5.12 is introduced to calculate the step length, where 𝐴௟𝐴௥
ሬሬሬሬሬሬሬሬሬ⃑  denotes the vector from the 

left ankle to the right ankle. Therefore, the step length can be directly measured, and 

the resulting value is saved in the queue. 
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5.4.2.3 Human Joint Motion Measurement 

 

 

Figure 5.19 Geometric model of joint motion monitoring. (a) Body parts used in joint 

motion monitoring. For the corresponding order and name, refer to Table 5.3. 

Geometric model for calculating the (b) elbow angle, (c) knee flexion angle, and (d) 

upper-arm angle. 

 

Human joint motion measurements include the knee pressure angle and arm swing 

angle. The arm swing angle is divided into two indices, i.e., the upper-arm angle and 

elbow angle. The calculation of these angles based on the geometry is shown in Figure 

5.19. The knee flexion angle is calculated using the angle between the knee angle and 

knee–hip vectors in 3D coordinates. The upper-arm angle is the angle between the 

shoulder–elbow and shoulder–hip vectors. The elbow angle is calculated as the angle 

between the elbow–shoulder and elbow–wrist vectors. 
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Walking and running injuries significantly impact the measurement of knee joint 

motion, with several of these injuries attributable to anomalous knee motion (Lysholm 

and Wiklander, 1987). Consequently, 3D joint information must be used for accurately 

assessing the kinematics of the knee during human movement, as it can facilitate the 

identification of potential injuries that are affected by knee angles. In this work, six key 

joints within the 3D body structure are considered for calculating the knee angle. Figure 

5.19(c) depicts the geometric model used to calculate the knee angle. The knee angle is 

calculated using Eq. 5.13.  

 

 𝑐𝑜𝑠 𝛼௞ =  𝑐𝑜𝑠൫𝐾𝐻ሬሬሬሬሬሬ⃑ , 𝐾𝐴ሬሬሬሬሬ⃑ ൯
෣

=
〈𝐾𝐻ሬሬሬሬሬሬ⃑ , 𝐾𝐴ሬሬሬሬሬ⃑ 〉

ห𝐾𝐻ሬሬሬሬሬሬ⃑ ห ∙ ห𝐾𝐴ሬሬሬሬሬ⃑ ห
 (5.13) 

 

where 〈𝑎, 𝑏〉 denotes the scalar product of vectors a and b. 𝛼௞ is the knee angle, which 

represents the shortest angle between the knee–hip and knee–ankle vectors. 𝐾𝐻ሬሬሬሬሬሬ⃑  is the 

vector from the knee to the hip, 𝐾𝐴ሬሬሬሬሬ⃑  is the vector from the knee to the ankle, and 𝐻𝐴ሬሬሬሬሬሬ⃑  is 

the vector from the hip to the ankle. Because the vectors change with the hip (𝑥௛, 𝑦௛, 𝑧௛), 

knee (𝑥௞, 𝑦௞, 𝑧௞), and ankle (𝑥௔, 𝑦௔ , 𝑧௔) positions during movement, the knee angle 𝛼௞ 

varies based on the 3D coordinates of these joints. The knee joint angles of the left and 

right legs are calculated separately in each frame. 

 

Arm swing is an essential component of human walking that can reduce the metabolic 

cost of walking and enhance gait stability (Bruijn et al., 2010). Thus, it is essential to 

evaluate the arm swing when analysing walking patterns. Figure 5.19(b) illustrates the 

geometrical model used for computing the elbow joint angle, and Figure 5.19(d) shows 

the angle between the upper arm and upper torso. The two indices are computed as 

follows. 

 

 
cos 𝛼௘ =

〈𝐸𝑊ሬሬሬሬሬሬሬ⃑ ,  𝐸𝑆ሬሬሬሬሬሬ⃗ 〉

 ห𝐸𝑊ሬሬሬሬሬሬሬ⃑ ห ∙ ห𝐸𝑆ሬሬሬሬሬ⃗ ห
 (5.14) 

 
cos 𝛼௧ =

〈𝐸𝑆ሬሬሬሬሬ⃑ , 𝑆𝐻ሬሬሬሬሬ⃗  〉

ห𝐸𝑆ሬሬሬሬሬ⃑ ห ∙ ห𝑆𝐻ሬሬሬሬሬ⃗ ห
 (5.15) 
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𝛼௘ and 𝛼௧ indicate the elbow angle and upper arm angle, respectively; 𝐸𝑊ሬሬሬሬሬሬሬ⃗  is the vector 

from the elbow to the wrist; 𝐸𝑆ሬሬሬሬሬ⃗  is the vector from the elbow to the shoulder; and 𝑆𝐻ሬሬሬሬሬ⃗  is 

the vector from the shoulder to the hip. The left- and right-arm swing are simultaneously 

calculated, and the results are saved in the queue for visualisation in the final thread.  

 

5.4.3 Implementation and Experimental Evaluation 

 

5.4.3.1 Hardware Configuration and Multi-threading Design 

 

The system was implemented on a computer equipped with two NVIDIA RTX 2080Ti 

graphics cards, 64 GB of RAM, and two 12-core CPUs. The proposed system consisted 

of a stereo pair of cameras, each with a horizontal field of view (FOV) of 90, vertical 

FOV of 60, and depth FOV of 100. The image resolution of the camera was 672  

376 pixels. The baseline distance between the left and right cameras was 120 cm. The 

intrinsic camera parameters, including the focal length (3.5 mm), offset of the principle 

point, and lens distortions, were calibrated for each camera prior to use. 

 

The real-time photogrammetric system involved four threads, each functioning as an 

individual model that managed different tasks, as shown in Figure 5.20. Thread 1 

loaded stereo RGB images with timestamps and known orientation parameters from the 

camera and applied semi-global matching (SGM) (Hirschmuller, 2007) to generate a 

disparity map. A 3D map was then retrieved by triangulation based on the disparities 

and orientation parameters of the camera. A GPU-acceleration solution was 

implemented in Thread 1 to increase the processing rate of 3D scene reconstruction. 

Thread 2 extracted 2D human body skeletons from the left-view images using RMPE 

and extended these skeletons to 3D body features based on the 3D map array produced 

by Thread 1. Thread 3 computed various human kinematic parameters, including the 

movement velocity, step length, and joint motion angles, based on the 3D body features. 

The outputs of each thread were stored in the same queue for data exchange, and the 

results were loaded into Thread 4 from the queue for real-time system visualisation. 
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Figure 5.20 Workflow of real-time acquisition and monitoring of 3D human body 

kinematics 

 

Figure 5.20 presents an overview of the system workflow. Thread 1 performed dense 

image matching and triangulation with GPU acceleration. GPU-based dense image 

matching was realised following the approach introduced in Chapter 4, and GPU-

accelerated triangulation was executed following the method described in Section 5.1. 

The algorithm in Thread 1 involved multiple stages. First, stereo RGB images with 

known interior and exterior orientation parameters were imported from the stereo 

camera and stored in the host (CPU). Subsequently, the device (GPU) copied the stereo 

RGB images of the host and separated them into left-view and right-view images. The 

GPU with acceleration frameworks then executed the dense image matching algorithm 

SGM and triangulation process for reconstructing the 3D information in real-time. The 

left-view image and disparity map acquired from the SGM were combined to create the 

background image for visualisation preparation in Thread 4. Threads 1 and 2 
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continuously processed frames from the stereo camera. The 3D body features derived 

from a series of stereo camera frames were used by Thread 3 to analyse the kinematics 

of a 3D human body over time. 

 

Figure 5.21 Visualisation of the real-time photogrammetric system for human 

kinematics 

 

Thread 4 was responsible for visualisation. This thread loaded all of the information 

stored in the queue. When the queue was detected to be full of the stitching and 3D 

maps generated by Thread 1, the 3D body features extended from the 2D skeleton in 

Thread 2, and the kinematic results computed from the 3D body features in Thread 3, 

Thread 4 automatically displayed all of the results in a window. As shown in Figure 

5.21, the background consisted of the stitching image with the left-view image of the 

camera and coloured disparity map. Red colours in the disparity map indicate objects 

closer to the camera, and darker blue colours represent objects further from the camera. 

Different-coloured lines connected each joint. The distance of each body joint was 

loaded from 3D information in the queue and displayed on the left side of the 

background next to each body joint, using 2D coordinates. All kinematic results were 

loaded from the queue and displayed on the coloured disparity map for real-time 

monitoring of human locomotion. 

 

5.4.3.2 Efficiency Evaluation of System Capacity 

 

The capabilities of the proposed system were evaluated by assessing the processing rate 

and effective detection distance of a person moving in front of the stereo camera. 

During the assessment, 6,000 frames were captured within 300 s (Figure 5.22). The 

threads achieved a processing rate of ~18 fps or higher, with a resolution of 1,344  
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376 pixels. The average processing rate was 17.8 fps. Figure 5.22(a) illustrates the 

processing time of each frame from Thread 1 to Thread 4. The processing rate exceeded 

20 fps in certain instances in which an individual’s motion was exceptionally fast, 

resulting in a ghost effect in the frames, or when the lighting conditions were 

insufficient, and the person appeared faintly on the screen. In such cases, the RMPE 

failed to extract the 2D human skeletons, owing to which Thread 2 skipped the current 

frame and processed the next frame directly, resulting in a delay of several seconds. In 

the evaluation involving 6,000 frames (Figure 5.22(a)), the proposed system could 

accomplish real-time processing in nearly all instances. 

 

(a) (b) 

Figure 5.22 Results of the efficiency assessment of the real-time photogrammetric 

system. (a) Frame rate records. (b) Effective measurement distance assessment. 

 

The system demonstrated an effective measurement distance of ~15 m, based on the 

assessment of a person moving back and forth along the optical axis of the left camera. 

When the person left the camera FOV and returned along the same path, the system 

recorded all distance values from the person’s waist, defined as the midpoint between 

the left and right hips. As shown in Figure 5.22(b), when the person moved ~1.4 m, the 

system extracted the 3D body features of the left and right hips and began computing 

the corresponding 3D coordinates. When the person moved beyond a distance of 15.7 

m from the camera, the system could not measure the distance because the person 

appeared too small on the screen for detection by the RMPE. As the person started 

moving toward the camera within a range of 14.2 m, the system could again extract the 

3D human body features and simultaneously calculate the distance until the person 

moved to a distance of less than 1.1 m from the camera. Notably, the measurements 

were unstable in the distance range of 14–15 m, and the dead zone for close-range 
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measurements was ~1 m to ~1.4 m. Thus, the effective measurement range was ~1.5 m 

to ~15 m, which could cover a wide range of scenes. 

 

5.4.3.3 Accuracy Evaluation of the 3D Human Body Kinematics 

 

To evaluate the accuracy of the distances measured by the system at a specific 

resolution, we conducted an experiment in which a person remained stationary in front 

of the camera at various distances (Figure 5.23(a)). The measurement accuracy was 

assessed by comparing the measured distances between the person and camera with the 

ground truth. As shown in Figure 5.23(b), the system captured 1,000 frames of a person 

standing still in front of the camera at distances of 2.3 m, 4.1 m, 12 m, and 15 m.  

 

Table 5.5 lists the average measured values. The measured distances were close to the 

ground truth. When the person was 2.3 and 4.1 m from the camera, the root mean square 

errors (RMSEs) were 0.4 cm and 2.6 cm, respectively, corresponding to errors of 0.2% 

and 0.6%. As the person moved to a distance of 12 m, the measurements became 

unstable. The RMSE increased to 8.7 cm, and the error became 0.7%. The 

measurements were even more erratic when the person stood 15 m from the camera. 

The RMSE and error increased to 47.9 cm and 3.2%, respectively. Because the effective 

measurement range was ~1.5 m to 15 m, the system could not detect the person at a 

distance of 15 m. Nevertheless, the system could obtain 3D human body measurements 

with an average geometric accuracy exceeding 1% of the distance. 
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(a) 

 

(b) 

Figure 5.23 Evaluation of distance measurement accuracy. (a) A person stood 

stationary in front of the camera in an evaluation of the measurement accuracy. (b) 

Measurements of individuals standing in front of the camera at different distances. 

 

Table 5.5 Assessment of system measurement accuracy 

Ground truth (m) Mean of measurements (m) RMSE (cm) Error 

2.3 2.3 0.4 0.2% 

4.1 4.1 2.6 0.6% 

12.0 12.1 8.7 0.7% 

15.0 15.1 47.9 3.2% 

 

The human movement direction was assessed by recording a person moving in four 

directions relative to the camera: leftward, rightward, forward, and backward, as 

illustrated in Figure 5.24. Figure 5.24 (a) shows the initial position of the person, and 

Figures 5.24 (b), (c), (d), and (e) display the monitoring results of the person moving in 

four directions, with the movement speed computed in real-time. The results are 
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summarised in Table 5.6. The identified movement direction was consistent with the 

expected behaviour in each direction. In particular, the results presented in Figure 5.24 

show that the system accurately identified the direction of movement and calculated the 

movement speed in real-time. 

 

 

(a) Initial position of the human 

  

(b) Results for leftward movement (c) Results for rightward movement 

  

(d) Results for forward movement (e) Results for backward movement 

Figure 5.24 Results of monitoring human movement direction. The direction of 

movement is determined relative to the position of the camera.  
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Table 5.6 Movement direction identification results 

 Expected behaviour θ (°) 
Movement 

speed (cm/s) 

Identified 
movement 
direction 

(a) The person is standing still 0.3 0 Not Moving 

(b) The person moves to their left 94.6 52 Leftward 

(c) 
The person moves to their 
right 

-89.7 55 Rightward 

(d) The person moves forward -9.2 95 Forward 

(e) The person moves backwards -1.2 114 Backward 

 

Table 5.7 Analysis results of kinematic applications 

Kinematic application 
Mean of 

measurements 
Ground truth RMSE Error 

Step length (cm)  32.6 33.1 0.3 0.8% 

Knee angle 
(degrees) 

Left 169.7 176.0 6.3 3.6% 

Right 170.4 176.0 5.7 3.2% 

Elbow angle 
(degrees) 

Left 164.1 161.0 5.4 3.4% 

Right 166.4 160.0 7.1 4.4% 

Upper-arm angle 
(degrees) 

Left 33.6 35.0 2.6 7.3% 

Right 32.9 31.0 2.3 7.5% 

 

Table 5.7 and Figure 5.25 present the kinematic analysis results, including the step 

length, knee angle, elbow angle, and upper-arm swing angle, as measured and recorded 

from 1,000 frames involving a person standing stationary in front of the camera. For 

the step length, the RMSE was 0.3 cm and the error was 0.8%. The values of the left 

and right knee angles fluctuated slightly at approximately 170°. The RMSEs for the left 

and right knee angles were 6.3° and 5.7°, respectively, and the error was approximately 

3%. The measurements of the elbow and upper-arm angle were unstable due to the 

bright light at their positions in the image. This instability resulted in the RMPE being 

unable to accurately extract the 2D features and convert the 3D features. The mean 

values of the measured left and right elbow angles were 164.1° and 166.4°, respectively, 

with RMSEs of 5.4° and 7.1° and an error within 5%. Overall, the measured values 

could be considered stable. The RMSEs of the left and right upper-arm angles were 2.6° 
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and 2.3°, respectively, with errors of 7.3% and 7.5%. These results indicate that the 

measured angles deviated slightly from the ground truth values. 

 

(a) 

 

(b) 

Figure 5.25 Analysis of kinematic measurements by the system. (a) 1,000-frame 

measurements of the step length, knee flexion angles, and arm swing angles. (b) 

System-measured kinematics of a person standing still in front of the camera. 
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Chapter 6 Conclusions and Discussions 
 

This thesis provides a complete framework for achieving real-time photogrammetry by 

presenting novel approaches and implementations of cross-view feature matching for 

camera pose determination, dense image matching, and GPU-accelerated triangulation 

for real-time 3D data generation. This chapter summarises the achievements, draws 

conclusions from this research and then makes recommendations for future research. 

 

6.1 Summary of the Research Work and Conclusions 

 

Existing techniques for implementing real-time photogrammetry algorithms are limited 

by high computational requirements and by processing large datasets in various scenes 

to generate 3D data. These limitations have been discussed in the previous chapters. 

This study addresses these limitations using a parallel architecture to accelerate 

computational efficiency as a promising solution for implementing real-time 

photogrammetry. The evaluation results demonstrate the effectiveness, efficiency, and 

applicability of the proposed algorithms and techniques in various situations. This 

study’s results can advance real-time photogrammetry applications such as accurate 

aerial visual navigation, real-time aerial 3D modelling, and human motion tracking and 

analysis. The following summarises the effectiveness and experimental results in 

achieving real-time processing at each stage: 

 

First, a novel visual-based approach for real-time camera pose determination was 

achieved (Chapter 3). The approach utilises a coarse-to-fine strategy involving feature-

based cross-view image matching, retrieval, and camera pose determination using VO 

and space resection techniques. It provided a robust and accurate camera pose 

estimation by combining the strengths of both techniques. Space resection offered 

global accuracy based on ground control points, while VO provided incremental 

updates for continuous tracking. The experiment result indicates that the proposed 

approach successfully localises the aerial robot by narrowing the region for visual 

positioning and then precisely identifying its location and orientation through visual 

odometry and space resection. The proposed method not only achieves the 

implementation of photogrammetric algorithms into real-time localisation algorithms, 
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but also offers a cost-effective alternative to traditional navigation methods and 

provides a flexible solution for accurate visual navigation in a GPS-denied environment. 

 

Secondly, a parallel architecture SGM algorithm was developed and implemented for 

real-time dense image matching in photogrammetric applications (Chapter 4). The 

proposed method aims to improve the efficiency of dense image matching, enabling 

real-time processing in various scenarios, such as the matching cost (MC) and similarity 

measures selection. The overall processing efficiency is significantly improved by 

utilising a parallel architecture to increase the computing speed of MC and similarity 

measures so that it can be adapted to real-time dense image matching. Two applications 

are considered to evaluate the real-time processing efficiency of the parallel-

architecture SGM: real-time generation of disparity maps using stereo images and aerial 

images. The evaluation results demonstrate that the accuracy of the proposed method 

outperforms traditional SGM methods and achieves real-time processing efficiency. It 

also validates that the proposed method can be suitable for disparity map generation for 

various large-scale scenarios. In conclusion, this research contributes to the 

achievement of real-time processing of dense matching algorithms in photogrammetry, 

offering potential benefits for photogrammetry and related fields. 

 

Third, the photogrammetry approaches were extended and implemented to various 

relative fields of real-time 3D data generation and applications (Chapter 5). One 

application is the implementation of GPU-accelerated triangulation algorithm 

incorporating the ROS system to generate 3D point clouds from aerial images in real-

time. This application also proposes a new method of point cloud storage and 

visualisation. The method uses a revised library to incrementally process incoming 

frames and pass them to the next stage as soon as possible to achieve real-time 

visualisation of the point cloud. Experimental results indicate that the 3D data is 

incrementally generated and visualised using the ROS system with multi-threading 

capabilities. Ultimately, this application achieves the real-time acquisition of detailed 

3D point clouds that accurately represent the environment from aerial images. Another 

application that benefits from photogrammetry techniques and GPU acceleration is the 

real-time acquisition and monitoring of 3D human body kinematics. This application 

uses a deep learning approach to extract human features, which are then converted into 

a corresponding 3D representation by the GPU-accelerated disparity mapping method 
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presented in Chapter 3. The experimental results quantitatively evaluate the efficiency 

and accuracy of each measurement for human kinematic analysis and demonstrate that 

this approach enables the real-time measurement and visualisation of various kinematic 

parameters related to human motion. The contribution of this work is not only achieving 

real-time triangulation algorithm for 3D point cloud generation, but also integrating the 

proposed real-time photogrammetric methods in the previous chapters to achieve real-

time 3D application in different scenarios. This work provides a reference and 

pavement for the real-time 3D photogrammetry applications in the future. 

 

Overall, this research accomplished the stated objectives of achieving real-time 

photogrammetry by presenting novel techniques and their implementations. The 

experimental evaluations demonstrate the feasibility and effectiveness of the proposed 

approaches in real-world scenarios.  

 

6.2 Discussions and Future Works 

 

While the presented approach offers advantages over traditional methods, it may have 

certain limitations. The limitations could include: 

 

a) Real-time cross-view feature matching and camera pose determination 

 

In the real-time camera pose determination (Chapter 3), the method depends on a pre-

built database consisting of cropped orthoimage and DSM tiles with features extracted 

using a deep learning algorithm. The accuracy and effectiveness of the approach heavily 

rely on the quality and completeness of this database. Currently, the orthoimages and 

DSMs in the dataset are cropped using a fixed scale, which must align with the scale of 

the aerial images captured by the camera mounted on the UAV. This alignment is 

crucial to ensure the robustness of cross-view image matching, which impacts the 

accuracy of camera pose determinations. However, the fixed-scale cropping approach 

poses challenges when variations in the camera’s scale vary across different situations. 

It is imperative to enhance the cropping scheme by implementing alternative methods 

to address this limitation. One potential improvement is adopting an adaptive scale 

cropping technique, which dynamically adjusts the cropping of orthoimages and DSMs 
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to match the specific camera scale during the resumption of the pre-built database. 

Another possible approach is utilising a content-aware cropping scheme that 

intelligently analyses the image content to determine the optimal cropping parameters. 

 

Another limitation of the current camera pose refinement method is that it solely relies 

on space resection. Additionally, this method requires prior knowledge of the world 

space coordinates of GCPs to accurately determine the camera pose by solving co-linear 

equations. While this approach allows for obtaining the real-world coordinates of the 

camera, its feasibility is constrained to environments with a DSM. Consequently, it is 

essential to explore alternative methods in future work that can achieve accurate camera 

pose estimation in GPS-denied environments. 

 

A further constraint arises when the algorithm reaches a specific number of input 

images, at which point it becomes unable to process additional images due to the 

memory constraints of the on-board computer. To address this challenge, the current 

approach involves only keeping the feature points extracted by the algorithm without 

saving the images to reduce the load on memory and storage. Our proposed cross-view 

image matching and retrieval method also uses only the feature points to determine the 

position of the aerial image. However, it is crucial to acknowledge a potential constraint 

in this approach when the same image is needed and reused by the following algorithms 

for subsequent image processing. Therefore, based on the above analysis, the method 

for effective image processing needs to be optimised in future work. 

 

(b) Real-time dense image matching based on GPU-acceleration 

 

In Section 4.2 of Chapter 4, the SGM framework for dense image matching is 

introduced, discussing issues related to processing efficiencies, such as the MC and the 

selection of similarity measures. However, some limitations need to be addressed. First, 

implementing a parallel-architecture SGM algorithm may require specialised hardware, 

potentially limiting its adoption on devices with limited computational capabilities. 

Secondly, scalability could be challenging when dealing with extremely large-scale 

aerial images or real-time simultaneous processing of multiple image streams. Further 

research is needed to optimise the algorithm for such scenarios. Nevertheless, the 

algorithm’s performance might vary in environments such as underwater, in urban 
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canyons, or heavily occluded scenes. Future work could focus on adapting the 

algorithm for optimal performance in these scenarios. Section 4.4 evaluates the real-

time processing efficiency of the parallel-architecture SGM algorithm. Firstly, images 

taken by a stereo camera are used to assess the real-time depth map generation. Then, 

the algorithm is tested using large-scale aerial images collected from a UAV platform. 

The real-time processing and evaluation results are presented, analysed, and discussed. 

This evaluation helps identify the algorithm’s strengths and weaknesses in generating 

depth maps in real-time scenarios. 

 

Future research could further concentrate on optimising the algorithm, exploring 

advanced data structures, parallelisation techniques, and integrating machine learning 

approaches. Cross-platform compatibility should also be considered to ensure broader 

accessibility. Improving hardware capabilities, such as faster GPUs and specialised 

parallel processing units, could enhance real-time performance. Additionally, adapting 

the algorithm to various environments and automating parameter tuning would increase 

its robustness and usability. Furthermore, the parallel-architecture SGM algorithm can 

be integrated with other technologies, such as SLAM or AI-based vision systems, to 

expand its capabilities and enable more sophisticated applications. Overall, developing 

and implementing a parallel-architecture SGM algorithm for real-time dense image 

matching show promising results and present an exciting area for future research in 

photogrammetric applications. 

 

(c) Real-time 3D data generation and applications 

 

In Section 5.3, the real-time 3D point cloud generation has several limitations and 

potential areas for future work. Firstly, the processing efficiency of the system might 

vary depending on the complexity of the scene and the available computational 

resources. Further optimisation of the camera pose estimation, triangulation, and 

interpolation processes is necessary to improve overall processing speed, ensuring real-

time performance in various scenarios. Another limitation lies in the conversion from 

sparse to dense point clouds. The effectiveness of the interpolation process in accurately 

representing the 3D scene relies on the density and distribution of the sparse points. In 

scenarios with limited coverage or challenging geometries, achieving a high-quality, 

dense point cloud representation may prove challenging. Future work could focus on 
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developing advanced interpolation techniques or incorporating additional information 

and sensor modalities to enhance the accuracy and density of the resulting dense point 

cloud. The method we propose is only simulated on the computer, and in the future, we 

hope to put it on the UAV to process it in real time while flying. 

 

Several limitations could be noticed in the experiments for real-time acquisition and 

monitoring of 3D human body kinematics in Section 5.4. The RMPE failed to detect 

the 2D human features when the person moved very fast (a ghosting effect appeared on 

the screen) or when the illumination was dark (the person almost disappeared). 

Similarly, the light intensity in the environment was not constant, and the SGM did not 

accurately obtain the disparity value in a very highlighting environment, such as an area 

near a lamp, or low-illumination environments, such as shadows. The 3D information 

was not extracted in these cases. Moreover, 3D body features were not extracted over 

a certain distance, where the person was so small in the image that the 2D human 

detection algorithm was unable to extract human skeletons. These problems can be 

improved by optimising the algorithms to support higher image resolutions. The clearer 

outline of a person in a higher-resolution image allows the deep learning method to 

recognise the body features at farther distances. With proper optimisation in our future 

works, real-time processing of image sequences of higher resolutions can be expected. 

It should also be noted that the moving directions that can be identified in the current 

system only allow four main directions. The algorithms will be further improved in our 

future works to allow the identification of more sophisticated moving directions. 

 

This thesis provides a complete framework for achieving real-time photogrammetry 

with various applications. The findings of this research have the potential to advance 

real-time photogrammetry applications in areas such as aerial imagery analysis, 3D 

modelling, and human motion tracking. Further research and development in these 

areas can build upon the foundations laid out in this thesis to continue advancing real-

time photogrammetry algorithms and their practical applications. 
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