

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

REAL-TIME PHOTOGRAMMETRY BASED ON

PARALLEL ARCHITECTURE FOR 3D APPLICATIONS

CHEN LONG

PhD

The Hong Kong Polytechnic University

2024

The Hong Kong Polytechnic University

Department of Land Surveying and Geo-Informatics

Real-time Photogrammetry Based on Parallel

Architecture for 3D Applications

CHEN Long

A Thesis Submitted in Partial Fulfilment of The Requirements

for the Degree of Doctor of Philosophy

July 2023

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or

written, nor material that has been accepted for the award of any other

degree or diploma, except where due acknowledgement has been made in

the text.

________________________ (Signed)

 CHEN Long (Name of student)

I

Abstract

Photogrammetry is the technique that allows capturing and reconstructing 3D models

of objects and scenes from multiple images. In recent years, with the rising demand for

efficient 3D reconstruction, real-time photogrammetry has attracted much attention in

various domains, such as unmanned aerial vehicles (UAVs) navigation, disaster

emergency response, human tracking, and autonomous driven. This research focuses

on the enhancement of the computational efficiency of photogrammetric algorithms by

taking advantage of parallel architectures and combining them with cutting-edge

methods such as deep learning to achieve real-time photogrammetry in various

scenarios.

The traditional visual navigation algorithms in a GPS-denied environment enable the

acquisition of approximate relative poses of cameras. However, tradition methods, such

as visual odometry (VO) suffers from attitude estimation errors that accumulate over

time and cause the estimated trajectory to drift, and the data processing efficiency is

relatively low. To address these challenges, this research firstly presents a feature-based

cross-view image matching and retrieval method for real-time camera pose estimation

by incorporating VO and photogrammetry algorithms. Specifically, the method uses a

deep-learning feature extraction and matching method to improve the robustness of the

relative pose estimation of the camera by VO. To correct accumulated errors by VO,

the method selects keyframes and applies photogrammetric algorithm of space

resection to determine the accurate pose information of the keyframes. The accurate

camera pose information of keyframes are then used to rectify the possible drift caused

by VO. Parallel architectures are implemented to enhance the data processing efficiency.

Experimental analysis using real UAV datasets shows that the developed method

achieves a root mean square error (RMSE) of 4.7 m for absolute positional error and

0.33° for rotation error, as compared with ground truth data. The developed method

also achieves an efficiency of 12 frames per second (FPS) based on the parallel

architecture implemented in a regular computer, indicating its real-time performance.

Dense image matching in real time is a challenging task because of the high

computation demand and high degree of ambiguity that often occurs in practical

II

situations. The state-of-the-art methods such as the semi-global matching (SGM) with

diverse local similarity metrics, offering favourable dense matching results against

various types of noise and disturbances, such as illumination variations and the ability

to handle textureless regions and preserve edges. However, the computational burden

associated with SGM hinders its real-time processing capabilities. To overcome these

challenges, this research leverages parallel structured systems, specifically graphic

processing units (GPUs), to enabled real-time dense image matching. A comprehensive

disparity estimation pipeline based on a GPU-accelerated device is developed and

evaluated. An effective parallel scheme and data layout strategy is proposed for the core

functions in the disparity estimation algorithm, and the algorithm codes are further

optimised to enhance efficiency. The optimised algorithm is deployed on a high-end

GPU, utilising the sum of absolute distance (SAD) as the similarity measurement, 64

disparity levels, and 8 path directions for the SGM method. As a result, the system

achieves high-quality real-time dense matching results for different datasets, including

a benchmark dataset, close-range images, and aerial images.

With the derived camera pose information and dense image matching results from the

previous steps, 3D data (e.g., 3D point clouds) can be generated through

photogrammetric space intersection (triangulation). However, existing methods seldom

focuses on the efficiency of 3D data generation for real-time applications. To overcome

this limitation, this research proposes a parallel architecture based framework that

performs multi-image triangulation based on an optimised angle-based error metric.

The proposed framework adopts a one-track-one-line strategy to exploit the parallel

computing power of GPU and can achieve real-time performance. The performances of

the proposed 3D data generation framework have been demonstrated by two application

scenarios: (1) real-time 3D point cloud generation from aerial images, and (2) real-time

3D human motion acquisition and monitoring. The experimental results show that the

proposed framework can process a pair of aerial images in 156 ms on average and

generate a 3D point cloud incrementally displayed by an optimised grid map in real

time. Moreover, the proposed framework was adopted to transfer human body feature

from 2D to 3D. Experimental results show that the developed methods can capture and

monitor 3D human motion at 17 FPS and achieve centimetre-level accuracy within a

15 m distance.

III

In conclusion, real-time photogrammetry offers significant benefits in enabling real-

time 3D data acquisition and modelling for diverse applications and domains. This

research presents novel contributions to the photogrammetry field by extending it to

real-time photogrammetry. The novel approaches and implementations including real-

time cross-view feature matching for camera pose determination, real-time dense image

matching, and real-time triangulation for 3D data generation can serve as foundations

for further research and development in real time photogrammetry. The developed real-

time photogrammetric methods and systems will have great potential for various

applications, such as more intelligent UAV applications based on real-time feedback

control, disaster emergency response from real-time 3D mapping, enhanced human

tracking and monitoring assisted with real-time 3D data, and autonomous driven

supported by real-time 3D pose determination and 3D mapping of the surrounding

environment.

IV

Publications Arising from the Thesis

Journal Papers:

[2] Chen, L., Wu, B., Duan, R., 2023. Real-Time Cross-View Feature Matching and

Camera Pose Determination for 3D Point Cloud Generation. Photogrammetric

Engineering & Remote Sensing, under review.

[1] Chen, L., Wu, B., Zhao, Y., Li, Y., 2021. A Real-Time Photogrammetric System

for Acquisition and Monitoring of Three-Dimensional Human Body Kinematics.

Photogrammetric Engineering & Remote Sensing, 87(5), pp. 363-373.

[3] Li, Z., Wu, B., Liu, W. C., Chen, L., Li, H., Dong, J., Rao, W., Wang, D., Meng,

Q., Dong, J., 2022. Photogrammetric Processing of Tianwen-1 HiRIC Imagery for

Precision Topographic Mapping on Mars. IEEE Transactions on Geoscience and

Remote Sensing, 60, pp. 1-16.

[4] Wu, B., Dong, J., Wang, Y., Rao, W., Sun, Z., Li, Z., Tan, Z., Chen, Z., Wang, C.,

Liu, W., Chen, L., Zhu, J., Li, H., 2022. Landing Site Selection and Characterisation

of Tianwen‐1 (Zhurong Rover) on Mars. Journal of Geophysical Research:

Planets, 127(4), e2021JE007137.

[5] Wu, B., Dong, J., Wang, Y., Li, Z., Chen, Z., Liu, W. C., Zhu, J., Chen, L., Li, Y.,

Rao, W., 2021. Characterisation of the Candidate Landing Region for Tianwen‐1—

China’s First Mission to Mars. Earth and Space Science, 8(6), e2021EA001670.

[6] Wu, B., Li, F., Hu, H., Zhao, Y., Wang, Y., Xiao, P., Li, Y., Liu, W., Chen, L., Ge,

X., Yang, M., Xu, Y., Ye, Q., Wu, X., Zhang. H., 2020. Topographic and

Geomorphological Mapping and Analysis of the Chang’E-4 Landing Site on The

Far Side of The Moon. Photogrammetric Engineering & Remote Sensing, 86(4):

pp. 247-258.

[7] Hu, H., Wu, B., Chen, L., 2019. Color Balancing and Geometrical Registration Of

High-resolution Planetary Imagery for Improved Orthographic Image Mosaicking.

Planetary and Space Science, 178, 104719.

Conference Proceedings:

[1] Chen, L., Wu, B., Zhao, Y., 2020. A real-time photogrammetric system for

monitoring human movement dynamics. The International Archives of

Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, pp. 561-

566.

V

Acknowledgements

Studying for a PhD in Hong Kong was one of the most valuable experiences of my life.

It has been like a long journey full of challenges. In the past five years, we have

encountered various challenges and hardships. In the past five years, we have

experienced difficulties and hardships. These difficulties have played a significant role

in shaping our character and development during this period. There are many critical

points in life, and many people and many thanks in life to remember.

Most importantly, I would like to express my deepest gratitude and respect to my

supervisor, Prof. WU Bo. Thanks very much for his patient guidance and strong support

for my research. I have learned more than just academic knowledge from him. His

guidance and wise advice have not only helped me conduct scientific research in the

past years and will also continue to benefit me in my future career.

I extend my thanks to thank all the academic and administrative staff at LSGI for

supporting this research. In particular, I would like to thank Dr. YAN Wai-yeung for

his professional insights on my confirmation. He has provided many pertinent

suggestions and support for my research. Thanks to Dr. DUAN Ran for his selfess help

and proofreading of this thesis. I also would like to thank the members of PRSlab, ZHU

Jiaming, CHEN Zeyu, LI Hongliang, LI Zhaojin for their assistance and company both

in my academic pursuits and personal life during my time in Hong Kong. Thanks to

former team members Dr. LIU Wai Chung and Dr. HU Han for their valuable advice

regarding my research..

Finally, I would like to thank my dear family for their constant understanding, support

and pride. I am also very grateful to, Wang Quan, for all his encouragement and

companionship.

VI

Table of Contents
Abstract ... I

Publications Arising from the Thesis .. IV

Acknowledgements ... V

Table of Contents .. VI

List of Figures .. IX

List of Tables .. XIV

Chapter 1 Introduction.. 1

1.1 Research Background .. 1

1.1.1 Importance of Real-time Photogrammetry and its Applications 1

1.1.2 Challenges in Real-time Photogrammetry .. 4

1.1.3 Advances in Parallel Architecture for Real-time Photogrammetry 5

1.2 Research Motivation .. 7

1.3 Objectives and Contributions ... 8

1.4 Outline of the Thesis Structure .. 10

Chapter 2 Literature Review .. 12

2.1 Fundamentals of Photogrammetry ... 12

2.1.1 Feature Extraction and Matching .. 13

2.1.2 Space Intersection (Triangulation) and Space Resection 27

2.1.3 Bundle Adjustment (BA) .. 34

2.1.4 Dense Image Matching ... 36

2.2 Visual Odometry .. 42

2.3 Parallel Architecture for 3D Applications ... 45

2.3.1 Multi-threading on CPU ... 46

2.3.2 GPU Acceleration ... 47

2.4 Real-Time Aerial Mapping .. 49

2.5 Summary .. 52

VII

Chapter 3 Real-Time Cross-View Feature Matching and Camera Pose

Determination ... 54

3.1 Overview of Approach ... 54

3.2 Feature-Based Cross-View Image Matching and Retrieval............................... 56

3.2.1 Feature Extraction Methods and Evaluation ... 56

3.2.2 Feature-Based Matching for Cross-View Image Retrieval 61

3.2.3 Experimental Analysis of Cross-View Image Matching and Retrieval 64

3.3 Camera Pose Determination by the Integration of VO and Space Resection 69

3.3.1 Feature-Based VO ... 71

3.3.2 Space Resection for Camera Pose Determination of Keyframes 79

3.3.3 Integration of VO and Space Resection for Continuous Camera Pose

Determination .. 83

3.4 Implementation and Evaluation ... 88

3.4.1 Onboard Platform and Algorithm Deployment .. 88

3.4.2 Evaluation with Aerial Images and Pre-built Database 91

Chapter 4 Real-Time Dense Image Matching Based on GPU Acceleration 95

4.1 Overview of Approaches ... 95

4.2 SGM-Based Dense Image Matching and Efficiency Considerations 96

4.2.1 Matching Costs and Similarity Measurements ... 98

4.2.2 Census Transform ... 99

4.2.3 Efficiency Considerations ... 100

4.3 GPU-Accelerated Dense Image Matching ... 104

4.3.1 GPU Architecture and Performance ... 106

4.3.2 GPU-Based Centre-Symmetric CT and Matching Cost Computation 107

4.3.3 Optimisation of Disparity Map Generation and Parallel Computing 111

4.4 Implementation and Evaluation ... 114

4.4.1 Hardware Configuration and Data Acquisition .. 114

4.4.2 Evaluation of GPU-Accelerated SGM on Benchmark Dataset 115

VIII

4.4.3 Evaluation of GPU-Accelerated SGM on Stereo Close-Range Images ... 117

4.4.4 Evaluation of GPU-Accelerated SGM on Aerial Images 119

Chapter 5 Real-Time 3D Data Generation and Applications 123

5.1 Triangulation for 3D Position Determination .. 123

5.2 Real-Time Triangulation Based on GPU Acceleration 125

5.2.1 Cost Function for Triangulation.. 126

5.2.2 GPU-Based Implementation of Triangulation .. 127

5.3 Real-Time 3D Point Cloud Generation from Aerial Images 130

5.3.1 3D Point Cloud Generation ... 131

5.3.2 Implementation and Experimental Evaluation.. 138

5.4 Real-Time Acquisition and Monitoring of 3D Human Body Kinematics 143

5.4.1 2D and 3D Human Body Feature Extraction .. 144

5.4.2 Derivation of 3D Kinematic Parameters ... 146

5.4.3 Implementation and Experimental Evaluation.. 154

Chapter 6 Conclusions and Discussions ... 163

6.1 Summary of the Research Work and Conclusions .. 163

6.2 Discussions and Future Works... 165

Reference .. 169

IX

List of Figures
Figure 1.1 Logical connections across chapters .. 11

Figure 2.1 Overview of SIFT algorithm using DoG (Bradski and Kaehler, 2008). ... 14

Figure 2.2 Overview of the FAST feature detector (Rosten and Drummond, 2006) . 18

Figure 2.3 Overview of the SuperPoint framework (DeTone et al., 2018)................. 21

Figure 2.4 Overview of the SuperGlue framework (Sarlin et al., 2020)..................... 22

Figure 2.5 Overview of the SIFT-CNN frameworks (Tsourounis et al., 2022) 25

Figure 2.6 Overview of the LF-Net framework .. 26

Figure 2.7 Basic camera model with the camera reference (X, Y, Z) 27

Figure 2.8 Basic geometry for multi-view image triangulation 29

Figure 2.9 Geometry of space resection with four known GCPs 33

Figure 2.10 Basic geometry of stereo vision... 37

Figure 2.11 Framework of Map2DFusion (Bu et al., 2016). 50

Figure 2.12 Overview of aerial mapper system proposed by Hinzmann et al. (2018).

 ... 51

Figure 3.1 Overview of the feature-based cross-view image matching and retrieval

for camera pose determination. The similarity between the local feature

from the aerial image and the global feature from the orthoimage base map

enables efficient recall and matching of cropped orthoimage tiles from a

pre-built database... 55

Figure 3.2 Framework of the SuperPoint feature extraction 58

Figure 3.3 Examples of two viewpoint image sequences (rows 1 and 2) and two

illumination image sequences (rows 3 and 4) from the HPatches dataset. 60

Figure 3.4 Framework of feature-based matching for cross-view image retrieval. 63

Figure 3.5 (a) Overview of the orthoimage base map for constructing the database for

image retrieval, and (b) thumbnails and examples of cropped tiles in the

database ... 65

Figure 3.6 Experimental result of feature-based image matching and retrieval. (a), (b)

and (c) are three example query images with different landscapes. The top

five similarity maps of each query image and corresponding cropped

orthoimage tiles were retrieved from the pre-built database 66

Figure 3.7 Comparison of confusion matrix between our method and others for

similarity searching ... 68

X

Figure 3.8 Overview of the integration of VO and space resection for camera pose

determination. The absolute pose of the keyframe obtained via space

resection is used as a constraint on the relative pose of the subsequent

frames estimated via VO, resulting in a refined trajectory. 70

Figure 3.9 Experimental results of different feature detection and matching methods.

 ... 73

Figure 3.10 Experimental results of estimated camera trajectories obtained via

different methods compared with the ground truth trajectory 74

Figure 3.11 ADE between the estimated camera trajectory and the ground truth 75

Figure 3.12 RDE between the estimated camera trajectory and the ground truth 75

Figure 3.13 Efficiency evaluation for each VO method. .. 77

Figure 3.14 Experiment of feature matching with different methods 78

Figure 3.15 Geometry of space resection .. 80

Figure 3.16 Overview of the DSM in the pre-built database 81

Figure 3.17 Experiment of space resection using matched GCPs on DSM to estimate

camera position and orientation: (a) aerial image sample; (b) matching

feature points from (a) to DSM to obtain real-world coordinates of

GCPs; (c) estimated camera positions (green dots) and orientations

(white polygons). The blue dots are the actual camera positions for

reference. ... 82

Figure 3.18 Overview of the integrated VO and space resection for camera pose

determination... 84

Figure 3.19 Experiment on integrating VO and space resection. The two frames

depict the use of space resection to determine the camera pose of

keyframes in situations where the UAV makes turns during the flight. . 86

Figure 3.20 Schematic of onboard computer installation and assembling 89

Figure 3.21 Algorithm deployment on GPU and CPU ... 90

Figure 3.22 Comparison of trajectories estimated using our approach and the ground

truth ... 92

Figure 3.23 The utilisation of hardware resources for each algorithm and the overall

FPS of integrated VO .. 93

Figure 4.1 Dataset for similarity measurement evaluation: (a) left-view image; (b)

right-view image; (c) ground-truth disparities; (d) invalid disparity mask.

 ... 101

XI

Figure 4.2 Disparity results obtained using different similarity measures combined

with WTA: (a) SAD with WTA; (b) SSD with WTA; (c) NCC with WTA.

 ... 102

Figure 4.3 Disparity estimation accuracy and processing time evaluation results under

the same maximum disparity and different window sizes of (a) 5 × 5, (b) 9

× 9, (c) 13 × 31, and (d) 21 × 21 pixels. .. 104

Figure 4.4 GPU-accelerated procedure of dense image matching and 3D map

generation. ... 105

Figure 4.5 Orientations of eight paths for pixel P, shown in black. 108

Figure 4.6 CSCT: 2D-tiled CTA-parallel scheme. ... 109

Figure 4.7 MC: 1D-tiled CTA-parallel scheme. ... 109

Figure 4.8 Comparison of disparity maps generated using the peak filter and the WLS

filter: (a) left-view image and (b) right-view image; (c) disparity map after

peak filtering; (d) disparity map after WLS filtering. 113

Figure 4.9 Types of cameras used in this research: (a) ZED camera by Stereolabs; (b)

Aeria X by senseFly. ... 114

Figure 4.10 Evaluation dataset from the Middlebury stereo vision dataset: (a and b)

left and right views of the dataset; (c) the ground-truth disparity; (d)

mask of the valid disparity in (c). ... 115

Figure 4.11 Disparity results obtained using traditional and GPU-accelerated SGM:

(a) ground-truth disparity; (b) disparity map obtained using traditional

SGM; (c) disparity map obtained using GPU-accelerated SGM. 116

Figure 4.12 Real-time disparity map generation results obtained using traditional and

GPU-accelerated SGM: (a) the left-view images in greyscale; (b) the

right-view images in greyscale; (c) disparity map obtained using

traditional SGM; (d) disparity map obtained using GPU-accelerated

SGM. ... 118

Figure 4.13 Comparison of the processing efficiency between traditional SGM and

GPU-accelerated SGM on SBS images. ... 118

Figure 4.14 Disparity map generated by traditional and GPU-accelerated SGM: (a

and b) two consecutive aerial images captured by UAV; (c) disparity

map obtained using traditional SGM; (d) disparity map obtained using

GPU-accelerated SGM. ... 120

XII

Figure 4.15 Comparison of the processing efficiency of traditional SGM and GPU-

accelerated SGM on UAV images. ... 121

Figure 5.1 Stereo geometry for triangulation .. 124

Figure 5.2 Concept of using one block per track for the multiple processes of

triangulation. Each block consists of several tracks for solving collinearity

equations. ... 128

Figure 5.3 Experiment results of GPU-based triangulation. (a), (b) Inputs of stereo

pair images (1920 × 1080 pixels). (c) Coloured point clouds from different

views. ... 129

Figure 5.4 Resource usage and processing rate (fps) of GPU-based triangulation... 130

Figure 5.5 Framework of real-time 3D point cloud generation from aerial images . 131

Figure 5.6 BoW framework for identifying the matching features on corresponding

neighbouring frame by visual words. .. 133

Figure 5.7 Interpolation of dense point clouds from sparse 3D points 134

Figure 5.8 Example of a multi-layered grid map model ... 136

Figure 5.9 Initialisation of grid map for storing sparse point cloud information...... 136

Figure 5.10 Point cloud fusion for real-time visualisation.. 137

Figure 5.11 Collection of Dataset 2 by DJI Mavic AIR 2 .. 138

Figure 5.12 Overview of the coverage of experimental aerial image datasets 139

Figure 5.13 Experimental results of sparse and dense point cloud generation. 140

Figure 5.14 Execution time of triangulation and interpolation on the two datasets. 142

Figure 5.15 Default 2D skeleton of human body parts by RMPE 145

Figure 5.16 Exploded view of human locomotion velocity and centre of mass 147

Figure 5.17 Geometric model of human movement direction. (a) Possible initial and

final positions of a locomotory action. (b) Geometry between an initial

position and each possible final position. ... 150

Figure 5.18 Geometric model for step length computation 151

Figure 5.19 Geometric model of joint motion monitoring. (a) Body parts used in joint

motion monitoring. For the corresponding order and name, refer to Table

5.3. Geometric model for calculating the (b) elbow angle, (c) knee

flexion angle, and (d) upper-arm angle. .. 152

Figure 5.20 Workflow of real-time acquisition and monitoring of 3D human body

kinematics ... 155

XIII

Figure 5.21 Visualisation of the real-time photogrammetric system for human

kinematics ... 156

Figure 5.22 Results of the efficiency assessment of the real-time photogrammetric

system. (a) Frame rate records. (b) Effective measurement distance

assessment. .. 157

Figure 5.23 Evaluation of distance measurement accuracy. (a) A person stood

stationary in front of the camera in an evaluation of the measurement

accuracy. (b) Measurements of individuals standing in front of the

camera at different distances. .. 159

Figure 5.24 Results of monitoring human movement direction. The direction of

movement is determined relative to the position of the camera............ 160

Figure 5.25 Analysis of kinematic measurements by the system. (a) 1,000-frame

measurements of the step length, knee flexion angles, and arm swing

angles. (b) System-measured kinematics of a person standing still in

front of the camera. ... 162

XIV

List of Tables
Table 3.1 Mean execution times and mean average precision (mAP) of three tasks for

traditional and deep learning-based detector–descriptor pairs. 60

Table 3.2 Accuracy comparison between our methods and other methods 67

Table 3.3 Comparison of correct matches and execution times for each feature-

matching method ... 78

Table 3.4 Accuracy evaluation of the experiment depicted in Figure 3.17 83

Table 3.5 Evaluation of trajectory estimation accuracy .. 91

Table 4.1 Accuracy and efficiency results of different similarity measures 102

Table 4.2 Accuracy and efficiency evaluation results of traditional SGM and 116

Table 4.3 Comparison of the real-time processing efficiencies of traditional and GPU-

accelerated SGM on close-range images .. 119

Table 4.4 Comparison of the real-time processing efficiencies of traditional and GPU-

accelerated SGM on aerial images .. 121

Table 5.1 Statistics of sparse and dense point cloud generation 142

Table 5.2 Comparison of 2D human detection and tracking algorithms based on mAP

scores... 144

Table 5.3 Order number of human body parts .. 145

Table 5.4 3D human kinematic measurements considered in thread 3 147

Table 5.5 Assessment of system measurement accuracy .. 159

Table 5.6 Movement direction identification results .. 161

Table 5.7 Analysis results of kinematic applications .. 161

1

Chapter 1 Introduction

1.1 Research Background

Photogrammetry has a rich historical background and has traditionally been used for

extracting three-dimensional (3D) information from two-dimensional (2D) images.

However, the introduction of real-time photogrammetry has transformed this domain

by facilitating dynamic and interactive 3D reconstruction. As it can promote the

generation of accurate and detailed 3D models in real time for diverse industrial

applications, real-time photogrammetry has garnered significant attention. Moreover,

real-time photogrammetry has emerged as a promising solution to address the growing

demand for real-time 3D applications (Saouli, 2019). In particular, 3D models can be

captured and reconstructed with immediate or near-instantaneous results by leveraging

the principles of photogrammetry and advanced parallel architectures (Wang, 2019).

Real-time photogrammetry has presented a longstanding challenge in the computer

graphics domain as considerable amounts of data must be processed to generate high-

quality 3D models. The “real-time” aspect refers to the ability to process the images

and produce results almost instantly (Technology et al, 1991). Real-time

photogrammetry refers to the process of capturing and processing images or video in

real time to generate 3D models of objects or environments (Förstner, 2005). The

evolution of technology over the years has enabled the realization of real-time

photogrammetry. Recent advancements in parallel architectures have facilitated the

realisation of real-time 3D applications capable of generating real-time

photogrammetric models. In this research, we explore the significance of parallel

architectures in revolutionising the field of photogrammetry and their impact on the

development of interactive and immersive 3D applications.

1.1.1 Importance of Real-time Photogrammetry and its Applications

Real-time photogrammetry techniques generate 3D models in real-time or near real-

time through image capture, feature extraction, camera pose determination, and model

2

reconstruction. Real-time photogrammetry is a rapidly evolving field that has garnered

considerable attention due to its wide ranging applications across various industries,

such as unmanned aerial vehicles (UAVs), medicine, human tracking and monitoring,

land surveying, emergency rescue operations, architecture, and construction.

In the UAV domain, real-time photogrammetry facilitates autonomous navigation and

obstacle avoidance. Drones with real-time photogrammetry capabilities can capture

images of their surroundings and generate 3D models in real time, which can promote

obstacle detection and path planning, enabling UAVs to make immediate decisions and

navigate safely in dynamic environments. Obstacle detection can be realised by

comparing the current environment with the reconstructed model. Moreover,

algorithms such as simultaneous localisation and mapping (SLAM) can be used to track

the position and orientation of the drone relative to the 3D model (Frosi et al., 2023;

Roy et al., 2023; Sawada and Hirata, 2023). By analysing the differences between the

images captured in real time and reconstructed model, obstacles such as buildings, trees,

or power lines can be detected, allowing the UAV to adjust its flight path for avoiding

collisions.

Path planning is another key task facilitated by real-time photogrammetry. The 3D

models generated in real time can accurately represent the environment, including

terrain and obstacles. UAVs can leverage this information to identify optimal paths and

trajectories for their missions. For example, in search and rescue operations, drones can

apply real-time photogrammetry to rapidly generate 3D models of the disaster area.

Based on these models, efficient paths can be planned to navigate through debris and

locate survivors (Daud et al., 2022; Kim et al., 2019). Furthermore, the real-time nature

of photogrammetry allows UAVs to adapt to dynamic environments. As the drone

traverses its flight path, it can continuously capture images and update the 3D model in

real time. This approach provides the UAV with up-to-date information regarding its

surroundings, enabling it to react to environmental changes, such as moving objects or

newly emerging obstacles (Shang and Shen, 2018; Vasudevan et al., 2016).

In the medical field, real-time photogrammetry has proven valuable across various

aspects of surgical procedures. Surgeons can capture intraoperative images of the

patient’s anatomy and use real-time photogrammetry algorithms to reconstruct 3D

3

models of the surgical site. These 3D models enable precise visualisation, providing

surgeons with enhanced spatial understanding and assisting them in making critical

decisions during the procedure. In this manner, 3D models can help improve surgical

outcomes and reduce patient risk. Postoperative assessment is another crucial

application of real-time photogrammetry. By comparing preoperative images with

postoperative images and 3D models, healthcare professionals can objectively evaluate

the surgical outcomes, assess the effectiveness of the procedure, and monitor the

recovery progress. Thus, real-time photogrammetry techniques can help identify

potential complications or issues that may necessitate further intervention or adjustment

to the treatment plan (Patias, 2002; Treleaven and Wells, 2007).

Real-time photogrammetry can facilitate human tracking and monitoring in various

domains. By using camera networks and real-time photogrammetry algorithms, the 3D

movements of individuals can be tracked and reconstructed in real time. Such

frameworks have been applied in surveillance, crowd monitoring, and behaviour

analysis. In surveillance scenarios, real-time photogrammetry enables the tracking and

identification of individuals in real time. By reconstructing the 3D movements of

individuals, abnormal behaviours or potential security threats can be effectively

detected, thereby improving public safety and security (Geiger et al., 2011; Izadi et al.,

2011). Crowd monitoring is another area where real-time photogrammetry plays a

significant role. Patterns and behaviours can be identified by analysing the 3D

movements and interactions of individuals within a crowd. This approach has

implications for crowd management, crowd flow optimisation, and prevention of

overcrowding in public spaces (Junior et al., 2010). Real-time photogrammetry can also

facilitate behavioural analysis, in which the intentions or emotional states of individuals

can be inferred by examining their movements and postures. By reconstructing the

individuals’ 3D movements, subtle cues and patterns can be identified, contributing to

applications in psychology, human–computer interactions, and intelligent surveillance

(Chen et al., 2021; Sarafianos et al., 2016).

The use of real-time photogrammetry in the architecture and construction industry can

promote collaboration among the various stakeholders involved in a construction

project. By generating real-time 3D models, architects, engineers, contractors, and

clients can visualise the project in a comprehensive and interactive manner. Such

4

visualisation can foster effective communication and allow stakeholders to better

understand the design intent and construction progress (Balali et al., 2018). Real-time

photogrammetry also supports decision-making processes during the construction

phase. Construction professionals can utilise real-time 3D models to assess construction

progress, monitor quality control, and evaluate compliance with design specifications.

In addition, these models enable virtual inspections, reducing the need for physical site

visits and enhancing the overall efficiency (Shang and Shen, 2018).

1.1.2 Challenges in Real-time Photogrammetry

One of the main challenges in achieving real-time performance in photogrammetry is

the high computational requirements. Generating 3D models from images requires

extensive computational power, especially when dealing with large datasets or complex

scenes. The algorithms used for feature extraction, matching, and reconstruction are

computationally intensive, often requiring significant processing time.

To overcome these challenges, the use of parallel architectures has emerged as a

promising solution (La Salandra et al., 2021; Moustafa et al., 2016). Parallel

architecture involves the use of multiple processors or computing units to divide and

conquer tasks, thereby increasing the processing speed and efficiency. By distributing

the computational load across multiple units, parallel architectures can significantly

improve the efficiency of real-time photogrammetry applications. Several researchers

have recognised the potential of parallel architectures in improving the real-time

capabilities of photogrammetric applications.

For instance, La Salandra et al. (2021) developed a parallel algorithm that leverages the

power of multiple computing units to process images simultaneously. This approach

divided image processing into subtasks assigned to different computing units, which

enabled parallel execution and reduced the overall processing time. The results

demonstrated the feasibility of achieving real-time photogrammetry using parallel

architectures. In addition to La Salandra et al., other researchers have explored the use

of parallel architecture in real-time photogrammetry. For example, Moustafa et al.

(2016) developed a parallel framework that used multi-core CPUs and graphics

5

processing units (GPUs) to accelerate the photogrammetric pipeline. Real-time

performance was achieved by leveraging the parallel processing capabilities of GPUs

for computationally intensive tasks, such as dense reconstruction.

These studies collectively highlight the potential of parallel architectures as a promising

solution for achieving real-time photogrammetry. By harnessing the power of multiple

processors or computing units, parallel architectures facilitate the efficient distribution

of computational tasks, resulting in faster processing times and enhanced real-time

performance. However, the effectiveness of parallel architecture may depend on

various factors, such as the application, dataset size, and hardware configuration.

Further research and optimisation efforts are required to fully exploit the benefits of

parallel architectures in real-time photogrammetry fully.

In conclusion, real-time photogrammetry plays a crucial role in real-time 3D

applications. However, the realisation of real-time performance is challenging due to

the high computational requirements involved. Parallel architectures have emerged as

a promising solution for enhancing efficiency by leveraging multiple processors or

computing units. Researchers have explored the use of parallel architectures in various

photogrammetric algorithms and demonstrated their potential in achieving real-time

photogrammetry.

1.1.3 Advances in Parallel Architecture for Real-time Photogrammetry

Parallel architectures are pivotal in enhancing the performance and efficiency of various

computational tasks, including real-time photogrammetry. In recent years, significant

advancements have been made in parallel computing, enabling researchers to exploit

the power of multiple processors or computing units to accelerate complex

computations.

In parallel architectures, multiple tasks or subtasks are simultaneously executed,

resulting in the distribution of the workload among multiple processors or computing

units. By dividing a task into smaller units and processing them in parallel, the overall

processing time can be significantly reduced, leading to increased efficiency (Foster

6

and Kesselman, 2003). This computational power of multiple processors can be

harnessed to rapidly execute computationally intensive algorithms.

Parallel architectures can be implemented using various strategies, such as multi-core

CPUs, GPUs, and specialised hardware accelerators. Multi-core CPUs consist of

multiple processing units within a single chip, enabling concurrent execution of

multiple threads or processes. Conversely, GPUs excel in parallel processing due to

their large number of cores and high memory bandwidth. GPUs have been extensively

used in graphics rendering and are increasingly being leveraged for general-purpose

parallel computing (Owens et al., 2007). Specialised hardware accelerators offer

dedicated hardware components tailored for specific computational tasks, such as field-

programmable gate arrays (FPGAs) and application-specific integrated circuits. These

accelerators can enable efficient parallel processing due to their custom-designed

architecture and optimised circuits (Pesce et al., 2022; Thomasian, 2022).

The effectiveness of parallel architectures depends on several factors, such as the nature

of the task, degree of parallelism in the algorithm, and hardware configuration. Certain

tasks exhibit higher inherent parallelism, enabling more efficient utilisation of parallel

architecture, whereas others may involve dependencies or sequential portions that limit

the achievable level of parallelism. In the context of real-time photogrammetry, parallel

architectures have facilitated efficiency improvements and the realisation of real-time

performance. The computational load can be distributed by leveraging multiple

processors or computing units, thereby reducing the processing time required for

complex photogrammetric algorithms. Several studies have demonstrated the

effectiveness of parallel architecture in tasks such as feature extraction, matching,

bundle adjustment, and dense reconstruction (Knyaz et al., 2020).

In summary, parallel architectures have emerged as a powerful tool for enhancing the

performance and efficiency of computationally demanding tasks, particularly in real-

time photogrammetry. These frameworks enable the simultaneous execution of

multiple tasks or subtasks across multiple processors or computing units, significantly

reducing the overall processing time. Various strategies, such as multi-core CPUs,

GPUs, and specialised hardware accelerators, can be used to implement parallel

7

architecture. The successful utilisation of parallel architectures in real-time

photogrammetry highlights their potential in enabling real-time 3D applications.

8

1.2 Research Motivation

Research on real-time photogrammetry based on parallel architectures for 3D

applications must be conducted given the growing demand for advanced visual

navigation, human tracking and monitoring, and 3D mapping capabilities in various

fields, such as UAVs, surveillance systems, and urban planning.

Visual navigation for UAV positioning has attracted significant attention due to the

expanding applications of UAVs across various industries, such as aerial photography,

disaster management, and package delivery. Real-time photogrammetry plays a crucial

role in UAV navigation by enabling the generation of 3D models from onboard images.

However, real-time performance must be achieved to ensure accurate and precise UAV

positioning, thereby enabling obstacle detection, collision avoidance, and precise

control. Parallel architectures can enhance the execution efficiency of real-time

photogrammetry algorithms, allowing UAVs to navigate in real time with improved

accuracy and efficiency.

Human tracking and monitoring systems rely on real-time photogrammetry to capture

and analyse human movements in complex environments. These systems are widely

used in security surveillance, sports analysis, and healthcare monitoring. Real-time

photogrammetry combined with parallel architectures can rapidly extract human pose

information and enable motion tracking, facilitating immediate response and analysis.

By using parallel architecture, the processing time can be reduced, thereby promoting

the timely detection and tracking of human activities and enhancing safety and security

measures.

The demand for 3D mapping has significantly grown, driven by applications such as

urban planning, virtual tourism, and archaeological preservation. Real-time

photogrammetry serves as a valuable tool for capturing the geometry and texture of

real-world objects and scenes. However, the generation of high-quality 3D data in real

time is computationally intensive, especially when dealing with large-scale

environments or dynamic scenes. Parallel architectures can address these challenges by

distributing the computational workload across multiple processors or computing units,

9

facilitating faster and more efficient 3D data generation. Thus, real-time

photogrammetry based on parallel architectures can revolutionise the way we visualise

and interact with 3D maps, enabling dynamic updates and immersive experiences.

In conclusion, the motivation for research on real-time photogrammetry based on

parallel architectures stems from the increasing demand for advanced visual navigation,

human tracking and monitoring, and 3D data generation capabilities. Notably, these

applications necessitate real-time performance for accurate and efficient operations. By

leveraging parallel architecture, the execution efficiency of real-time photogrammetry

algorithms can be significantly enhanced, resulting in improved positioning accuracy,

enhanced human tracking and monitoring, and efficient 3D map generation. This

research aims to advance the field by exploring the potential of parallel architectures in

addressing the computational challenges associated with real-time photogrammetry in

the relevant domains.

1.3 Objectives and Contributions

This thesis presents novel approaches and strategies for real-time photogrammetry

applications based on parallel architectures. The objective is to address the challenges

associated with achieving real-time performance and demonstrate the effectiveness of

parallel processing in improving the efficiency and accuracy of 3D data generation.

This research provides a practical and adaptable solution that can be readily

implemented in various domains requiring real-time photogrammetry. The objectives

and contributions of this research can be summarised as follows:

(1) Developing approaches and algorithms that enable accurate and efficient matching

of images captured from different viewpoints. This work focuses on feature-based

cross-view image matching and camera pose determination, including techniques

such as deep-learning feature detection and feature-based similarity search for

image matching and retrieval methods. The contributions of this work include the

advancement of state-of-the-art cross-view image-matching techniques to acquire

camera poses for aerial robot visual navigation in a global positioning system (GPS)

denied environment and provision of insights into the effectiveness and efficiency

10

of different approaches. The results of comparing the accuracy of our proposed

method with other popular image matching and retrieval methods show that our

method is higher than other popular methods at the top one and top five of the search

results from aerial image datasets, with an accuracy of ~60% and ~73%,

respectively. Eventually, this method is combined with a deep learning-based VO

method to achieve real-time camera pose determination in GPS denied

environments only using aerial images, where the RMSE can reach 4.7 m, and the

efficiency of the algorithm execution sustains around 12 FPS.

(2) Improving the efficiency of dense image matching algorithms for generating

accurate depth maps and 3D reconstructions. Dense image matching involves the

computation of the correspondences between pixels in multiple images, which is

crucial for generating accurate depth maps and 3D reconstructions. This work

explores semi-global matching (SGM)-based dense image matching, taking into

account efficiency considerations such as matching costs and similarity

measurements. The contributions of this work include the optimisation of dense

image matching techniques by leveraging GPU acceleration and derivation of

insights into the performance enhancement of these algorithms. Compared with the

traditional SGM method, our proposed method, not only improves the disparity

generated using benchmark dataset, close-range and aerial images, but also

surpasses the traditional SGM method in accuracy and efficiency.

(3) Development of strategies that enable real-time generation of 3D data for real-time

3D photogrammetric applications. This work first explores GPU-accelerated

triangulation methods for the real-time generation of 3D point clouds. Subsequently,

algorithms from earlier chapters on real-time photogrammetry are incorporated to

facilitate the instantaneous acquisition and monitoring of 3D human kinematics.

Contributions of this work include advancing complex triangulation algorithms

from static to real-time implementations. The advantage of photogrammetry over

traditional machine vision algorithms is the ability to acquire 3D information in

large-scale images. The application of this advantage is demonstrated in practical

scenarios such as aerial real-time 3D point cloud generation, motion capture, and

analysis of human kinematics. This work serves as a valuable reference for the

development of real-time photogrammetry applications.

11

Overall, the research objectives and contributions are focused on enhancing the

efficiency and accuracy of real-time photogrammetry applications. By addressing the

challenges encountered by the relevant algorithms in different scenarios, this research

aims to advance the field of real-time photogrammetry, provide valuable insights, and

identify techniques for various domains that rely on real-time 3D data generation and

analysis.

12

1.4 Outline of the Thesis Structure

This thesis consists of six chapters, and the remainder is organised as follows:

Chapter 2 presents a comprehensive literature review establishing the background and

fundamentals principles of real-time photogrammetry. Furthermore, state-of-the-art

studies on visual navigation and parallel architectures in 3D photogrammetric

applications are explored. The final section provides a brief overview of the latest

research and developments in real-time aerial mapping.

Chapter 3 focuses on real-time cross-view image matching and camera pose

determination. The objective of the research described in this chapter is to identify

approaches and algorithms for accurate and efficient feature-based image matching

from different image sources. Additionally, the integration of photogrammetric

methods and computer vision algorithms is proposed to achieve accurate visual

navigation for aerial robots.

Chapter 4 focuses on real-time dense image matching by leveraging GPU acceleration.

It describes GPU architecture and performance analyses, GPU-based centre-symmetric

census transform (CT) and matching cost computation, and optimisation of disparity

map generation and parallel computing. By leveraging the computational power of

GPUs, the efficiency and speed of dense image-matching algorithms can be

significantly improved, enabling real-time processing for depth estimation in different

scenarios.

Chapter 5 explores real-time triangulation for 3D data generation, focusing on

techniques for generating point clouds and extracting 3D information from aerial

images. Real-time triangulation is implemented with multi-threading and deep-learning

algorithms to acquire and monitor 3D human body kinematics. Using real-time

algorithms and strategies, experimental evaluations of real-time photogrammetric

applications are conducted across various domains that rely on real-time 3D data

generation and analysis.

13

Chapter 6 presents the concluding remarks and highlights potential future research

directions.

This thesis aims to develop and evaluate real-time photogrammetric methods for 3D

applications. Figure 1.1 presents the logical relationships among the chapters in this

thesis. The literature review in Chapter 2 elaborates upon the fundamental principles

and state-of-the-art approaches referred to in the main body of the thesis, forming a

solid basis for the analysis and discussions in subsequent chapters.

Figure 1.1 Logical connections across chapters

Real-time photogrammetry poses significant challenges in terms of computational

efficiency, accuracy, robustness, and scalability. To address these challenges, Chapter

3 to Chapter 5 of this thesis proposes novel algorithms and techniques that leverage

parallel computing, computer vision, and deep learning to achieve real-time

performance in different photogrammetric tasks. Chapter 6 concludes the thesis by

summarising the main contributions and findings, discussing the limitations and

challenges, and suggesting future directions for research.

14

Chapter 2 Literature Review

Photogrammetry is defined as “the science or art of obtaining reliable measurements by

means of photographs” (Manual of Photogrammetry, 1966). A more recent definition

by the American Society for Photogrammetry and Remote Sensing (ASPRS) is “the art,

science, and technology of obtaining reliable information about physical objects and

the environment through processes of recording, measuring, and interpreting

photographic images and patterns of recorded radiant electromagnetic energy and other

phenomena.” In simple terms, photogrammetry enables the acquisition of 3D

measurements (e.g., position, orientation, shape, and size) of objects from photographs.

The fundamental principle of photogrammetry is triangulation, which involves the

calculation of the intersection of an object’s image points from multiple perspectives to

determine its position. Through the analysis of the geometry and features within a set

of images, photogrammetry enables the creation of photorealistic and precise 3D

models.

This chapter discusses the fundamentals of photogrammetry, encompassing key

concepts and techniques. Moreover, it provides an overview of how these principles

and foundations are applied in photogrammetry and highlights their significance and

relevance in various research fields. Furthermore, this chapter delves into the latest

research advancements in photogrammetric applications with parallel architectures,

aiming to uncover potential research directions and emerging trends in the field. By

elucidating the foundational principles, applications in relative disciplines, and state-

of-the-art research progress, this chapter aims to provide a comprehensive

understanding of photogrammetry and clarify the scope for its advancement.

2.1 Fundamentals of Photogrammetry

This section presents a comprehensive literature review on the fundamental aspects of

photogrammetry, focusing on feature point extraction and matching, dense image

matching, triangulation, and space resection. These methods are essential in subsequent

studies and are discussed in detail in this section, including their principles and

applications. The review includes a thorough examination of the literature, offering an

15

in-depth understanding of the key concepts, techniques, and advancements in

photogrammetry. Furthermore, the significance and relevance of these methods in

various applications are highlighted, allowing the readers to grasp the fundamental

principles and state-of-the-art research associated with photogrammetry.

2.1.1 Feature Extraction and Matching

Photogrammetry, which is aimed at extracting 3D information from 2D images, relies

on feature detection and matching. These methods are fundamental to numerous

photogrammetry applications, such as 3D reconstruction, image registration, and object

tracking. Feature detection and matching techniques enable the accurate alignment of

images, extraction of depth information, and creation of high-quality 3D models

through the identification of distinctive points or regions and establishment of

correspondences between these points. This section explores the various feature

detection and matching approaches, including traditional and deep-learning techniques.

Understanding these methods is essential for the advancement of photogrammetry and

development of more robust and effective algorithms.

2.1.1.1 Traditional Methods

Feature matching and detection are pivotal in photogrammetry and serve as the

foundation for subsequent processes. Feature detection involves the identification of

salient points or regions within images, which have unique characteristics, such as

corners, edges, or textures. These features can serve as reliable reference points for

subsequent computations. Upon detecting features, correspondences are established

between corresponding features in different images. This correspondence information

is vital for tasks such as image alignment and 3D reconstruction, as it enables the

tracking of the same feature points across multiple images.

16

i) Scale-Invariant Feature Transform (SIFT)

One notable traditional feature detection and matching method is the SIFT (Lowe,

2004). The SIFT algorithm was developed to address challenges associated with scale,

rotation, and affine transformations, which are commonly encountered in images. The

objective is to achieve invariance to these transformations by constructing a scale-space

representation of the image and identifying keypoints at multiple scales.

The SIFT algorithm begins by constructing a scale-space pyramid through the repeated

convolution of the image with Gaussian filters at different scales. This process results

in a series of blurred images at different levels of scale. Next, the difference of

Gaussians (DoG) is computed by subtracting adjacent scales in the scale-space pyramid,

as shown in Figure 2.1(a). The DoG images enhance the regions with significant

intensity variations and potential keypoints. The blurred image pyramid L is obtained

using the following equations:

 𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) × 𝐼(𝑥, 𝑦) (2.1)

 𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎ଶ
𝑒ି(௫మା௬మ)/ଶఙమ

 (2.2)

where G is the Gaussian blur operator, I is an input image, (x, y) denotes the location

of each pixel in I, and 𝜎 is the scale factor of the corresponding pixel.

(a) DoG processing (b) Keypoint represented in scale

Figure 2.1 Overview of SIFT algorithm using DoG (Bradski and Kaehler, 2008).

17

The SIFT algorithm applies a process named keypoint localisation to identify the

keypoints. As shown in Figure 2.1(b), the algorithm examines the extrema in the DoG

scale space to identify keypoints that are stable and invariant to changes in scale. This

process involves comparing a pixel with its 26 neighbours across the current and

adjacent scale levels. Keypoints that do not have extreme values are discarded. After

identifying the keypoints, SIFT descriptors are computed to represent the local image

structure around each keypoint. These descriptors capture the gradient magnitudes and

orientations within the local neighbourhoods of the keypoints. They are highly

distinctive and invariant to changes in scale, rotation, and affine transformations. In

particular, the descriptors are constructed by dividing the local region surrounding the

keypoint into subregions and computing the gradient orientations and magnitudes

within each subregion. The resulting descriptor is a high-dimensional vector that

encodes the local image information.

The SIFT algorithm has been applied in various areas of photogrammetry and computer

vision. One of its primary applications is feature matching (Hua et al., 2010), in which

SIFT descriptors are used to establish correspondences between keypoints in different

images. By comparing the SIFT descriptors, similarity measures such as the Euclidean

distance (Hua et al., 2012) or cosine similarity (Wang et al., 2022) can be used to

identify the best matches. Feature matching using SIFT has been widely implemented

in applications such as image stitching (Zhang et al., 2017), object recognition

(Alhwarin et al., 2008), and image retrieval (Chhabra et al., 2020), where robust and

accurate matching is essential. SIFT also plays a significant role in image registration,

which involves aligning multiple images into a common coordinate system (Ma et al.,

2016). The distinctive SIFT keypoints and descriptors facilitate the estimation of

geometric transformations, such as affine or perspective transformations, to achieve

accurate alignment of images. Image registration using SIFT has been applied in

medical imaging, where the precise alignment of images is crucial (Allaire et al., 2008).

Additionally, SIFT has been used in 3D reconstruction tasks (Du et al., 2011). By

extracting SIFT keypoints from images captured from different viewpoints,

correspondences between keypoints can be established, enabling the estimation of

camera poses and reconstruction of 3D scenes.

18

Despite its effectiveness, the SIFT algorithm exhibits computational complexity and

significant memory requirements, which may limit its real-time performance on large-

scale datasets. Owing to these characteristics, SIFT cannot be effectively applied in

real-time and resource-constrained environments. Moreover, SIFT is sensitive to noise

and blur, and significant changes in the viewpoint can affect its performance. Because

this algorithm primarily focuses on local features, it cannot effectively capture global

contextual information. Additionally, the performance of SIFT is vulnerable to

illumination changes.

ii) Speeded-Up Robust Features (SURF)

SURF is a feature detection and description method that was developed by Du et al.

(2011) as a more efficient and accurate alternative to SIFT. SURF uses integral images

to approximate the Laplacian of Gaussian (LoG), enabling rapid calculation of the

scale-space extrema. Owing to the use of integral images, the computational complexity

of SURF is lower than that of traditional methods, rendering SURF well-suited for real-

time applications.

One of the key contributions of SURF is its ability to approximate the LoG using

integral images, facilitating rapid computation of scale-space extrema, which is

essential for detecting features at different scales. The integral images can be computed

as follows:

 𝐼∑(𝑥) = ෍ ෍ 𝐼(𝑖, 𝑗)

௝ஸ௬

௝ୀ଴

௜ஸ௫

௜ୀ଴

 (2.3)

where 𝐼∑(𝑥) represents an integral image at location (i, j). The integral image is the sum

of all pixels in the input image I within a rectangular region formed by the origin and

x. To further refine the keypoints, SURF applies the Hessian-matrix-based detector

technique. The Hessian matrix at each potential keypoint is computed based on the

second-order derivatives of the Gaussian scale-space and used to assess the stability

and repeatability of keypoints. Points with low contrast or poorly defined locations are

discarded, resulting in a more accurate set of keypoints. For scale adaptation, the image

19

is filtered using a Gaussian kernel. Thus, given a point X = (x, y), the Hessian matrix

H(x, σ) at x and scale σ is defined as

 𝐻(𝑥, σ) = ቈ
𝐿௫௫(𝑥, σ) 𝐿௫௬(𝑥, σ)

𝐿௫௬(𝑥, σ) 𝐿௬௬(𝑥, σ)
቉ (2.4)

where Lxx(x, σ) is the convolution of the Gaussian second-order derivative with the

image I at point x, and Lxy(x, σ) and Lyy(x, σ) are similarly defined.

The SURF descriptor is based on the Haar wavelet responses in a square region around

the feature point. The descriptor is designed to be compact and efficient while still

capturing adequate information to distinguish different features. The square region

surrounding the keypoint is divided into smaller square subregions, and the Haar

wavelet responses are computed for each subregion. The responses are then

accumulated to form a feature vector normalised for illumination and contrast

invariance. The resulting descriptor is 64-dimensional and can be efficiently compared

using metrics such as the Euclidean distance or cosine similarity.

The computationally efficiency of SURF is particularly advantageous in large-scale

photogrammetry projects requiring numerous images to be processed (Afriansyah et al.,

2019). The rapid computation of SURF features enables prompt analysis of extensive

image datasets, which helps reduce the time required for image matching and enables

more efficient photogrammetric workflows. Additionally, SURF’s robustness to scale

and rotation changes is instrumental when dealing with challenging real-world

scenarios in photogrammetry. Environmental conditions, camera perspectives, and

object variations often introduce image scale and rotation variations (Teke et al., 2011).

As SURF features are robust to these changes, accurate and reliable matching can be

achieved across diverse image conditions, leading to more accurate 3D reconstructions.

Another primary application area is the generation of dense point clouds (Diskin and

Asari, 2013) and 3D reconstructions (Zhang et al., 2014a). By leveraging SURF

features for image matching, researchers can accurately align images and triangulate

the corresponding points to reconstruct the 3D structure of a scene. The high speed and

robustness of SURF features help enhance the efficiency and accuracy of reconstruction.

Additionally, SURF features have been used in photogrammetric applications such as

20

image-based localisation and camera pose estimation (Kim et al., 2014; Sheta et al.,

2012). By matching SURF features between reference and new images, researchers can

accurately determine the position and orientation of a camera with respect to a given

scene.

Despite its computational efficiency and robustness, SURF has several limitations. In

scenarios involving significant viewpoint changes or occlusions, SURF may not be as

accurate as more complex methods, such as SIFT. Furthermore, the performance of

SURF depends on the lighting conditions, as it lacks explicit illumination invariance.

iii) Oriented FAST and Rotated BRIEF (ORB)

ORB, proposed by Rublee et al. (2011), is an effective alternative to SIFT and SURF

for feature detection and matching in the field of computer vision. ORB combines the

efficiency of the FAST (features from accelerated segment test) corner detector with

the robustness of the BRIEF (binary robust independent elementary features) descriptor.

This combination renders ORB a popular choice for real-time applications that require

a balance between speed and accuracy.

Figure 2.2 Overview of the FAST feature detector (Rosten and Drummond, 2006)

The FAST corner detector operates by analysing the intensity patterns in a circular

neighbourhood of each pixel. By comparing the intensity values of the central pixel

with those of its neighbouring pixels, FAST can determine whether the pixel is a corner.

The FAST detector examines a set of pixels in a circle with a radius of three pixels to

21

identify a corner. As shown in Figure 2.2, the detector compares the intensity value of

the central pixel with the intensities of 16 surrounding pixels p located at the 12, 3, 6,

and 9 o’clock positions, as well as four additional pixels on the diagonals. If a sufficient

number of consecutive pixels have intensities greater than that of the central pixel plus

a threshold or lower than that of the central pixel minus the threshold, the central pixel

is classified as a corner.

This high-speed corner detection method has several advantages. First, it compares a

small number of intensity values and is thus computationally efficient. Second, it is

robust to image noise as only a limited number of pixel comparisons are required for

corner identification. Lastly, its simplicity and speed make it suitable for real-time

applications that require quick and efficient feature extraction, such as robotics,

augmented reality, and video analysis.

The BRIEF descriptor used in ORB is a compact binary descriptor that encodes the

intensity comparisons between pairs of pixels. The fundamental concept of BRIEF is

to generate a set of binary tests based on randomly selected pixel pairs and compute a

binary code that represents the results of these tests. The resulting binary code can be

considered a unique fingerprint of the local image structure around the keypoint. The

use of binary codes enables efficient matching of image features and reduces the

memory required for storage and computation. The binary test can be defined as

 𝜏(𝑝; 𝑥, 𝑦) = ൜
1: 𝑝(𝑥) < 𝑝(𝑦)

0: 𝑝(𝑥) ≥ 𝑝(𝑦)
 (2.5)

where 𝜏 represents the binary test, and p(x) is the intensity of p at a point x. The BRIEF

descriptor capture local image properties by comparing the intensities of pixel pairs. To

achieve computational efficiency and compactness, binary strings are used to represent

these comparisons. The binary tests are designed to be simple and fast, typically

involving the calculation of intensity differences between pixel pairs at specific

locations. The outcome of each test is encoded as either “1” or “0,” which indicate

whether the intensity of the first pixel is greater than the second pixel. Repeating this

process for multiple pixel pairs generates a binary code that represents the unique

intensity comparison pattern of a particular image patch. By combining the FAST

22

corner detector and BRIEF descriptor, ORB achieves both efficiency and robustness in

feature extraction. The corner detection step identifies keypoints, which are then

described by the BRIEF descriptor. These descriptors capture the distinctive properties

of the keypoints, enabling accurate feature matching across different images or frames.

ORB has been widely applied in computer vision tasks such as object recognition,

image stitching, and SLAM. In object recognition, ORB features are used to identify

and track objects in images or videos (Rosten and Drummond, 2006). In SLAM, ORB

features are used to estimate the camera position and map the environment in real-time

(Mur-Artal et al., 2015). ORB is also valuable in dense image matching, which involves

determining the correspondences between every pixel in a pair of images (Chen et al.,

2020). Dense matching is essential for tasks such as surface reconstruction, orthophoto

generation, and digital elevation model (DEM) generation. By leveraging the

robustness and efficiency of ORB, dense image matching algorithms can accurately

match pixels across images, enabling the generation of dense and accurate 3D models.

Despite its efficiency and robustness, ORB has several limitations. Specifically, its

performance may be limited compared with those of more advanced methods such as

SIFT or SURF in scenarios with significant viewpoint changes or image noise or when

dealing with image sequences with repetitive patterns or no distinctive features.

2.1.1.2 Deep-Learning Methods

In recent years, deep-learning methods have garnered significant attention in feature

detection and matching applications in photogrammetry. These methods leverage the

power of artificial neural networks to learn discriminative features and automatically

perform robust matching between images. Although traditional feature descriptors,

such as SIFT and SURF, have been widely used, deep-learning-based methods exhibit

superior accuracy and robustness, especially in challenging scenarios involving

viewpoint changes, occlusions, or illumination variations.

23

i) SuperPoint and SuperGlue

SuperPoint and its companion method SuperGlue have emerged as popular deep-

learning-based approaches for feature detection and matching in photogrammetry.

SuperPoint, proposed by DeTone et al. (2018), is a fully convolutional neural network

(CNN) that concurrently generates dense local feature keypoints and descriptors. This

simultaneous generation of keypoints and descriptors enables efficient and accurate

feature extraction.

Figure 2.3 Overview of the SuperPoint framework (DeTone et al., 2018)

As shown in Figure 2.3, The input to the SuperPoint network is an image, typically in

the form of a two-dimensional array of pixel values. The size of the input image may

vary depending on the specific implementation or requirements of the application. The

network takes the image as input and processes it through its layers to extract

meaningful feature representations. The SuperPoint network generates two main

outputs: local feature keypoints and their corresponding descriptors. SuperPoint

generates a dense set of local feature keypoints across the input image. These keypoints

represent distinctive points in the image that can be used for further analysis, such as

feature matching or tracking. Each keypoint is characterized by its location (coordinates)

within the image and other properties that describe its local image structure. These

properties could include scale, orientation, and possibly other characteristics depending

on the network architecture and the specific implementation of SuperPoint. In addition

to keypoints, SuperPoint also produces descriptors for each detected keypoint.

24

Descriptors are compact and informative representations of the local image structure

surrounding each keypoint. These descriptors encode information about the gradient or

intensity variations near the keypoint. They are designed to be invariant to certain image

transformations, such as changes in viewpoint, scale, and lighting conditions, while

maintaining discriminative power for accurate feature matching. The descriptors

generated by SuperPoint typically take the form of vectors or feature embeddings. The

dimensionality of the descriptors can vary depending on the network architecture, but

they are often designed to be compact to facilitate efficient storage and matching. The

descriptors’ length and content capture each keypoint’s distinctive characteristics,

enabling subsequent matching or recognition tasks.

Figure 2.4 Overview of the SuperGlue framework (Sarlin et al., 2020).

The integration of SuperPoint with SuperGlue (Sarlin et al., 2020) enhances the feature-

matching process. SuperGlue performs pairwise matching of the extracted keypoints

and descriptors to estimate correspondences between multiple images. By using the

dense local feature keypoints and descriptors obtained from methods such as

SuperPoint, SuperGlue incorporates local and global information to enhance the

reliability and accuracy of feature matching. By considering the context and

relationships between keypoints across different images, SuperGlue can mitigate

ambiguities and enhance the consistency of the matching results.

The input to the SuperGlue network consists of two sets of keypoints and descriptors,

extracted from two images by SuperPoint, which are being compared for feature

25

matching. The SuperGlue network processes these inputs to estimate correspondences

between the keypoints from the two images, considering both local and global

information to improve the matching reliability and accuracy. The network combines

the local descriptors with a global context obtained through a graph neural network

module. The output of the SuperGlue network is a set of correspondences between the

keypoints from the two images, which represent matches or associations between the

keypoints considered the same or similar across the images. The correspondences can

be represented as pairs of keypoints, each consisting of a keypoint from the first image

and its corresponding keypoint from the second image. Additionally, the network may

provide a confidence score or similarity measure for each correspondence, indicating

the quality or strength of the match.

SuperPoint and SuperGlue have been widely used in various computer vision tasks. Li

et al. (2021) demonstrated the capability of SuperPoint in detecting interest points in

texture-less areas in images, with SuperGlue used to perform feature matching and

correspondence estimation. These methods typically outperform traditional techniques,

rendering them valuable in computer vision applications. Xu et al. (2020) highlighted

that SuperPoint and SuperGlue play a crucial role in tasks such as visual SLAM and

visual odometry (VO) in visual navigation systems. These methods can be used to

extract and match features across consecutive frames, aiding in camera pose estimation

and map creation, which are important for navigation and localisation in various

domains, such as robotics and autonomous vehicles. In dense reconstruction

applications, SuperPoint and SuperGlue can extract and match features in images

captured from different viewpoints, enabling the generation of dense point clouds

(Deng et al., 2022; Qin et al., 2022). These dense point clouds are crucial for 3D

reconstruction tasks, such as the creation of digital surface models (DSMs), generation

of orthophotos, and derivation of terrain information. These clouds also facilitate

structure-from-motion (SfM) workflows by detecting and matching features across

images captured from different viewpoints. This allows for accurate camera pose

estimation and the creation of 3D point clouds, which are essential for reconstructing

the 3D structure of a scene. Furthermore, SuperPoint and SuperGlue can be used for tie

point extraction in change detection analysis in remote sensing (Deshmukh et al., 2023).

By comparing the features and correspondences between different periods, these

26

methods can help identify and analyse changes in land cover, vegetation, or other

environmental factors.

Despite their promising performance, SuperPoint and SuperGlue have certain

limitations that remain to be addressed. As SuperPoint and SuperGlue are typically

trained on synthetic or specific datasets, they may not be effective in handling diverse

and complex real-world environments. Their performance may be limited in scenarios

with occlusions, uncommon object types, or scenes that differ significantly from their

training data (Sarlin et al., 2020). SuperPoint and SuperGlue are somewhat robust to

scale and rotation invariance. However, they may struggle in scenarios with extreme

scale variations or highly rotated objects. Traditional feature detectors such as SIFT or

SURF may outperform them in such challenging scenarios (DeTone et al., 2018).

Researchers are actively addressing these limitations and seeking to improve the

robustness, generalisation, and efficiency of SuperPoint and SuperGlue (Sun et al.,

2021).

ii) SIFT-Based CNN (SIFT-CNN)

SIFT-CNN, which was introduced by Mahendran and Vedaldi (2015), is a pioneering

deep-learning-based feature detection and matching method. This framework combines

the robustness of SIFT with the discriminative power of CNNs to achieve state-of-the-

art results. The principle behind SIFT-CNN is to train a CNN to directly learn feature

descriptors from image data, eliminating the need for actively determining descriptors.

Traditional feature descriptors, such as SIFT, have been designed based on domain

knowledge and manual engineering. However, with the advent of deep learning, it has

become possible to train neural networks to automatically learn discriminative feature

representations. SIFT-CNN leverages the strength of CNNs in learning hierarchical and

invariant feature representations directly from raw image data.

27

Figure 2.5 Overview of the SIFT-CNN frameworks (Tsourounis et al., 2022)

During training, the CNN learns to transform the raw pixel values of the images into a

hierarchical representation of features. This hierarchical representation enables the

network to capture local and global information, allowing it to perceive and understand

the visual content of the images at multiple scales. The framework of SIFT-CNN is

shown in Figure 2.5. The network uses the SIFT image representation as its input and

is guided to learn features from the local gradient information of images. This approach

enables the SIFT-CNN to implicitly incorporate local rotation invariance. The training

process involves minimising a loss function that measures the discrepancy between the

predicted features and ground truth descriptors. The network gradually learns to extract

features invariant to typical image transformations through this optimisation process.

An essential aspect of the SIFT-CNN method is its integration with the traditional SIFT

framework. By aligning with the principles of SIFT, SIFT-CNN ensures compatibility

with existing SIFT-based methods. The learned feature descriptors can seamlessly

replace SIFT descriptors in various applications without requiring extensive

modifications to the existing pipeline. This integration can facilitate a smooth transition

from traditional feature detection and matching techniques to deep-learning-based

approaches while preserving the accuracy and efficiency of the SIFT framework.

The applications of the SIFT-CNN method are extensive and cover a wide range of

computer vision and photogrammetry tasks. In the context of object recognition and

classification, the learned feature descriptors can effectively identify and categorise

objects within images or videos (Rashid et al., 2019). The robustness of the features to

scale, rotation, and illumination variations makes them suitable for object recognition

in challenging scenarios. Additionally, the integration of SIFT-CNN with existing

SIFT-based methods can help enhance the matching accuracy and efficiency in tasks

28

such as image alignment (Ye et al., 2018) and 3D reconstruction (Fan et al., 2019).

Additionally, the learned features from SIFT-CNN can be used in visual localisation

and SLAM (Zhao et al., 2018).

iii) Learnable Feature Descriptor and Descriptor Matcher (LF-Net)

LF-Net is a deep-learning-based feature detection and matching method that has

demonstrated exceptional performance in challenging conditions and real-world

scenarios. This method, proposed by Ono et al. (2018), combines the advantages of

SIFT-based and CNN-based methods and addresses their limitations.

Figure 2.6 Overview of the LF-Net framework

The LF-Net framework takes a pair of images, typically greyscale or RGB images, as

the input. These images can be obtained from various sources, such as aerial or satellite

imagery, stereo image pairs, or multi-view image sequences. The input images are

preprocessed to ensure that they are appropriately aligned and normalised for further

processing. The output of LF-Net consists of two main components: local feature

keypoints and descriptors, and a global feature vector. The local feature keypoints

represent distinct points of interest in the input images, while the descriptors provide a

compact representation of the local image patches around each keypoint. These local

features are generated by a fully convolutional network within the LF-Net architecture.

LF-Net has been applied in various photogrammetry and remote-sensing-related

research areas, including 3D reconstruction, stereo matching, and image registration.

Mizginov and Kniaz (2019) used LF-Net for feature detection and matching in multi-

view stereo reconstruction. The method achieved state-of-the-art results on the ETH3D

benchmark dataset, demonstrating its potential for improving the accuracy and

efficiency of 3D reconstruction. Xu et al. (2022) applied LF-Net for feature matching

29

and registration in high-resolution satellite images. The method improved the accuracy

and robustness of registration compared with traditional methods, particularly in

challenging scenarios involving large viewpoint variations and low-texture regions.

2.1.2 Space Intersection (Triangulation) and Space Resection

The most fundamental device in photogrammetry is the camera. Cameras acquire the

images that are used to generate photogrammetric products. The interior orientation (IO)

of the camera is essential for triangulation and space resection. The IO parameters

include the focal length and principal centre. Figure 2.8 illustrates the basic pinhole

camera model. The following section briefly describes the mathematical background of

this model.

Figure 2.7 Basic camera model with the camera reference (X, Y, Z)

The model consists of the optical centre C and image plane. When a 3D point O is

projected onto the camera, it forms an image point p at the intersection of the image

plane with the line connecting C and O. The line perpendicular to the image plane and

passing through C is termed the principal axis (Z axis in Figure 2.7). This axis intersects

with the image plane at the principal point. The distance between the camera centre and

image plane is the focal distance, which is negative in real cameras, where C is

positioned behind the image plane. The IO matrix K of the camera can be defined as

follows:

30

 𝐾 = ൥
𝑓௫ 𝛾 𝑐௫

0 𝑓௬ 𝑐௬

0 0 1

൩ (2.6)

where (𝑓௫, 𝑓௬) denotes the focal length of the camera in pixels, and (𝑐௫, 𝑐௬) denotes the

principal centre of the camera on an image plane. In modern photogrammetry, the IO

of the cameras, described by the focal length, principal point, and distortion coefficients,

can be determined through camera calibration.

In photogrammetry, collinearity equations are used to model the projection of a 3D

object onto a 2D image plane. These equations define the relationship between the

coordinates of points in the 3D space (object space) and their corresponding image

coordinates in the 2D image space. Both triangulation, also known as space intersection

in photogrammetry, and space resection rely on known variables to solve the

collinearity equation and are thus fundamentally similar. These principles form the

basis for accurately determining the positions and orientations of cameras and the

spatial coordinates of points of interest within the captured images. The collinearity

equation can be written as

𝑥 − 𝑥଴ = −𝑓
𝑚ଵଵ(𝑋 − 𝑋ௌ) + 𝑚ଵଶ(𝑌 − 𝑌ௌ) + 𝑚ଵଷ(𝑍 − 𝑍ௌ)

𝑚ଷଵ(𝑋 − 𝑋ௌ) + 𝑚ଷଶ(𝑌 − 𝑌ௌ) + 𝑚ଷଷ(𝑍 − 𝑍ௌ)

𝑦 − 𝑦଴ = −𝑓
𝑚ଶଵ(𝑋 − 𝑋ௌ) + 𝑚ଶଶ(𝑌 − 𝑌ௌ) + 𝑚ଶଷ(𝑍 − 𝑍ௌ)

𝑚ଷଵ(𝑋 − 𝑋ௌ) + 𝑚ଷଶ(𝑌 − 𝑌ௌ) + 𝑚ଷଷ(𝑍 − 𝑍ௌ)

(2.7)

This set of equations establishes a direct relationship between an image point (x, y) and

its corresponding 3D position (X, Y, Z) within the object space. The principal point

(𝑥଴, 𝑦଴) denotes the foot of the perpendicular drawn from the image of the principal

centre, while f represents the focal length of the camera. The coordinates of the camera

centre in the object space are denoted as (XS, YS, ZS). The rotation matrix, determined

by three angles of rotation R (ω, φ, k) between the camera frame and object space, is

represented in terms of elements mij as

 𝑅 = 𝑅ఠ𝑅ఝ𝑅௞ = ൥

𝑚ଵଵ 𝑚ଵଶ 𝑚ଵଷ

𝑚ଶଵ 𝑚ଶଶ 𝑚ଶଷ

𝑚ଷଵ 𝑚ଷଶ 𝑚ଷଷ

൩ (2.8)

31

2.1.2.1 Triangulation for Object Location Determination

The exterior orientation (EO) of a camera can be determined through single image space

resection, as introduced in the following section. However, the determination of the

spatial location of an object point based on the coordinates of the image points from a

single image is a challenging task because the EO parameters of a single image only

provide information regarding the spatial orientation of the object. To overcome this

problem, a stereo image pair can be used by considering the same image point on both

images, enabling the determination of the directions of two rays in the same spatial

coordinate system. Because these two rays must intersect in space, their point of

intersection represents the actual spatial location of the object point (Wolf et al., 2014).

This concept can also be demonstrated by the collinearity equation (Eq. 2.7).

Figure 2.8 illustrates basic triangulation from multi-view images, based on collinearity.

The collinearity equations can be formulated by using the corresponding image points

p and p′ from different views to calculate the space coordinates of point O by

triangulation. As the six EO parameters are known, the only remaining unknowns in

the equations are (X, Y, Z). These coordinates can be obtained by iterating the initial

approximations to determine the object space coordinates of O. The left and right

cameras are denoted by their optical centres CL and CR, respectively.

Figure 2.8 Basic geometry for multi-view image triangulation

32

To further refine the triangulation process, rectification can be performed to compute

the transformation and rotation matrices to align the epipolar lines of the images to be

parallel and horizontal. The rectification process is aimed at simplifying multi-view

image matching by ensuring a consistent geometric relationship between the

corresponding points in the rectified images. The transformation matrix determines the

translation and scaling necessary to align the images, while the rotation matrix rotates

the cameras to achieve parallel epipolar lines. By combining the IO of the cameras

(which can be obtained through camera calibration), transformation matrix, and rotation

matrix, the object coordinates can be calculated through rectification. The following

equation succinctly expresses the relationship between the object coordinates and

camera parameters:

𝑠 ቈ
𝑥
𝑦
1

቉ = ൥
𝑓௫ 𝛾 𝑐௫

0 𝑓௬ 𝑐௬

0 0 1

൩ ∙ ቂ
𝑅ଷ×ଷ 𝑇ଷ×ଵ

0 1
ቃ ∙ ቎

𝑋
𝑌
𝑍
1

቏

= 𝐾 ∙ [𝑅|𝑇] ∙ ቎

𝑋
𝑌
𝑍
1

቏

(2.9)

where (x, y) denotes the image coordinates of the object; (X, Y, Z) denotes the space

coordinates of the object; s is the scale factor; K is the camera matrix representing the

camera IO; and R and T are the rotation and transformation matrices, respectively,

which indicate the relative orientation between two cameras. Based on Eq. 2.9, given

two points p and p′ located on the image planes of two cameras, (Figure 2.9), the

relationship between the corresponding coordinates can be expressed as follows:

 s ቈ
𝑥ଵ

𝑦ଵ

1
቉ = ቎

𝑚଴଴
ଵ 𝑚଴ଵ

ଵ 𝑚଴ଶ
ଵ 𝑚଴ଷ

ଵ

𝑚ଵ଴
ଵ 𝑚ଵଵ

ଵ 𝑚ଵଶ
ଵ 𝑚ଵଷ

ଵ

𝑚ଶ଴
ଵ 𝑚ଶଵ

ଵ 𝑚ଶଶ
ଵ 𝑚ଶଷ

ଵ

቏ ቎

X
Y
Z
1

቏ = 𝑀ଵ ∙ ቎

𝑋
𝑌
𝑍
1

቏ (2.10)

s ቈ

𝑥ଶ

𝑦ଶ

1
቉ = ቎

𝑚଴଴
ଶ 𝑚଴ଵ

ଶ 𝑚଴ଶ
ଶ 𝑚଴ଷ

ଶ

𝑚ଵ଴
ଶ 𝑚ଵଵ

ଶ 𝑚ଵଶ
ଶ 𝑚ଵଷ

ଶ

𝑚ଶ଴
ଶ 𝑚ଶଵ

ଶ 𝑚ଶଶ
ଶ 𝑚ଶଷ

ଶ

቏ [𝑋 𝑌 Z 1]

= 𝑀ଶ ∙ [X Y 𝑍 1]

(2.11)

33

where M1 and M2 represent the relative orientation and transformation parameters of

the two cameras, respectively. The space coordinates of the object can be solved

according to the collinearity equation (Eq. 2.7) with the two given image coordinates

(assuming s = 1).

Digital photogrammetry has revolutionised the field of 3D reconstruction by harnessing

the power of computer vision algorithms. These algorithms enable the efficient

computation of rotation and translation matrices by leveraging the relationships

between the feature points in two images. Accurately estimating these matrices is

essential for reconstructing 3D scenes from 2D images. This technological

advancement has been extensively applied across various industries and research areas.

One prominent example of the application of computer vision algorithms for 3D

reconstruction is in the field of remote sensing and cartography. Satellite imagery and

aerial photographs can be processed using photogrammetric techniques to extract

elevation data and generate accurate topographic maps (Jiménez-Jiménez et al., 2021;

Pulighe and Fava, 2013). This information is crucial for urban planning, environmental

monitoring, and disaster management. Another notable example of applying

triangulation for 3D reconstruction is SfM, which was introduced by Longuet-Higgins

(1981). SfM algorithms can reconstruct the 3D environment surrounding a vehicle,

enabling better perception and understanding of the surroundings. For example, Zhang

(2003) used SfM techniques to reconstruct a 3D scene from stereo camera images,

facilitating accurate depth estimation and object detection for autonomous driving

applications. Hu (2015) used SfM to reconstruct 3D models of ancient buildings,

providing a valuable tool for preserving and visualising cultural heritage.

In human motion analyses, triangulation techniques can capture human movements

with high precision. For example, Pfister et al. (2014) developed a triangulation-based

approach using an infrared emitter and a depth sensor to calculate the position of human

body joints. The advantage of using triangulation-based systems such as the Kinect is

their ability to capture real-time motion without the requirement of attaching markers

to the body of the target individual. Gait parameters, such as the stride length, joint

angles, and gait symmetry, can be calculated by analysing various triangulated joint

positions. In particular, this method can provide insight into the technique, balance, and

34

overall performance of athletes. LaViola Jr et al. (2017) proposed a triangulation-based

system using multiple infrared sensors for real-time hand gesture recognition. The

system used the principles of triangulation to accurately track the position of the user’s

hand in 3D space. By placing multiple sensors at different locations, the system could

determine the hand coordinates through the triangulation of the infrared signals.

2.1.2.2 Space Resection for EO Determination

In photogrammetry, space resection is used to determine the camera EO parameters

(position and orientation) through a single image based on known image coordinates of

ground control points (GCPs). GCPs are reference points with known ground

coordinates. The camera EO parameters are determined using the collinearity equations.

GCPs that correspond to known coordinates in both the object space and corresponding

image space contribute two observations to the estimation process. The EO parameters

can be solved using three GCPs according to Eq. 2.7. Notably, four or more control

points are typically used to achieve higher accuracy in practical applications. The

introduction of a larger number of control points enables a more robust estimation of

the EO parameters, typically through least-squares adjustment. By iteratively refining

the parameter estimates, the least-squares adjustment minimises the discrepancies

between the observed image coordinates and projected object coordinates. Figure 2.9

illustrates the geometry of space resection. With four given GCPs (O1, O2, O3, O4) and

camera IO parameters, the camera EO parameters (ω, φ, k, XC, YC, ZC) can be calculated

using the collinearity equation.

35

Figure 2.9 Geometry of space resection with four known GCPs

With the advent of digital imaging and computerised processing, space resection

techniques have undergone significant advancements. The development of digital

cameras and image sensors has enabled the acquisition of precise and high-resolution

images, which can provide more reliable input data for space resection. Furthermore,

the use of digital imagery has facilitated the automation of the measurement process,

which has helped reduce human error and increase the speed of calculations (Tsai, 1987;

Zhang, 2000). The introduction of computer algorithms and software has played a

crucial role in advancing space resection. These algorithms can automatically detect

and match GCPs in images, enabling the accurate estimation of camera parameters

(Lowe, 2004; Szeliski, 2022). Iterative optimisation algorithms, such as the least-

squares method, can refine the initial estimates and improve the accuracy of the results.

Another significant development in space resection is the integration of inertial

measurement units (IMUs) to measure the camera orientation and motion. By

combining the measurements from these sensors with image data, space resection

techniques can incorporate additional sources of information, enhancing the accuracy

and reliability of camera pose estimation (Abdi et al., 2016). In recent years, deep-

learning techniques have been widely used to facilitate space resection. For example,

the use of CNNs for feature extraction and matching has helped enhance the efficiency

36

and accuracy of space resection algorithms (Kendall and Cipolla, 2016). Additionally,

deep-learning-based methods have been explored for direct camera pose estimation

from images, thereby eliminating the traditional feature matching and triangulation

steps (Kendall et al., 2015).

2.1.3 Bundle Adjustment (BA)

BA is a classic photogrammetric technique for improving the accuracy of image

orientation parameters. BA is based on the principle of collinearity, according to which

a 3D point in the object space, its corresponding image point, and the perspective centre

of the camera are collinear. This implies that an optical ray can be traced from the image

point, through the perspective centre, to the 3D point. A bundle of optical rays can

connect the images and object space by matching tie points on two or more images.

Ideally, the optical rays from different images should intersect at the same 3D point,

but this typically does not occur due to errors and uncertainties in the image orientation

parameters. Therefore, BA aims to minimise these errors by adjusting the image

orientation parameters so that the optical rays converge as close to the 3D point as

possible (Wu, 2021).

The foundation of a BA system is the observation equations derived from the

collinearity equations (Eq. 2.7). As the collinearity equations are nonlinear, they are

linearised by applying the first-order terms of Taylor’s series. The following

expressions present the four types of observations formulated in a BA system, based on

the least-squares principle:

𝐴𝜈 + 𝐵Δ = 𝑓

𝑣௫ − 𝐼Δ = 𝑓௫

𝐴௖𝜈௖ + 𝐶Δ௖ = 𝑓௖

𝐴ୟ୮𝑣ୟ୮ + 𝐷Δୟ୮ = 𝑓ୟ୮

 (2.12)

where A is the matrix of observation coefficients, B is the matrix of parameter

coefficients, Δ is a vector containing the unknown EO parameters, and v is the vector

of residuals. The first observation equation relates to the matching of tie points. These

measurements are connected to their corresponding 3D coordinates via collinearity

37

equations. By establishing this connection, the first observation equation permits the

incorporation of image measurements into the framework for BA. The second

observation equation focuses on the unknown EO parameters and 3D object coordinates

of the tie points. This equation regulates the estimation and optimisation of these

unknown variables, enabling the exact determination of the EO parameters and 3D

coordinates of the tie points. The third observation equation imposes constraints on the

BA parameters, which provide additional information that can help enhance the

solution precision. By incorporating these constraints into the third observation

equation, the BA system can ensure adherence to these conditions. The fourth

observation equation facilitates self-calibration by allowing additional camera IO

parameters to be simultaneously solved within the BA framework. This equation

permits the estimation of additional IO parameters, enabling the refinement of the

camera calibration result.

The basic idea behind BA is to minimise the reprojection error, which indicates the

discrepancy between the observed image projections of 3D points and their

corresponding predicted projections based on the estimated camera poses and

parameters. BA iteratively refines the camera poses and 3D points by minimising this

error until an optimal solution is reached. This approach has been widely used in various

research fields, such as photogrammetry, remote sensing, and computer vision.

Triggs et al. (2000) reported one of the seminal works on BA, providing a

comprehensive overview of BA algorithms, covering various optimisation techniques,

robust estimation methods, and strategies for addressing large-scale problems.

Researchers have actively sought to develop efficient BA algorithms. Several

optimisation frameworks, such as Levenberg–Marquardt, Gauss–Newton, and sparse

matrix factorisation techniques, have been explored to solve the nonlinear optimisation

problem involved in BA (Bernecker and Idini, 2022; Chen et al., 2019; Lourakis and

Argyros, 2005). In recent years, BA has been advanced by incorporating additional

priors or constraints. For example, BA with priors, such as temporal or geometric

constraints, has been implemented to enhance the accuracy and efficiency of 3D

reconstruction and SfM systems (Sibley et al., 2019; Wei et al., 2020).

38

2.1.4 Dense Image Matching

Dense image matching is a fundamental task in many domains, such as photogrammetry,

computer vision, and image analysis. The objective is to extract dense point clouds from

multiple images with known orientation parameters. At present, image-based surveying

and 3D modelling techniques can deliver point clouds with accuracies comparable to

those produced by laser scanning (Remondino et al., 2014) for many terrestrial and

aerial applications in a reasonable time. Owing to the inherent nature of multi-spectral

images, rich textural information can be extracted. Moreover, the accuracy of a point

cloud can be assessed based on the redundant measurements extracted from imagery.

Image-based 3D reconstruction is widely applied for 3D modelling, mapping, robotics,

and navigation due to its lightweight nature, convenience, cost-effectiveness, and

ability to generate textured point clouds comparable to those obtained using LiDAR

systems (Szeliski, 2022).

Traditional dense image matching algorithms are further discussed in the following

section. With advancements in camera technologies and the advent of innovative

matching approaches, many state-of-the-art image-based algorithms and software for

3D modelling and reconstruction have been developed, as discussed in the subsequent

sections.

2.1.4.1 Traditional Dense Image Matching Methods

Photogrammetry has played a significant role in the development of image matching

algorithms, especially those focused on aerial images. Early matching algorithms were

developed by the photogrammetry community in the 1950s (Hobrough, 1959). With

the significant progress made in computer vision algorithms over the years, this task

has been transformed into the stereo vision problem (Trucco and Verri, 1998). Stereo

vision techniques aim to produce a depth map in the image space. The disparity measure,

which represents the horizontal motion between corresponding image points, is

inversely proportional to the distance between the camera and object. Figure 2.10

illustrates the fundamental geometry of stereo vision, which involves a pair of cameras

positioned at a baseline distance from each other.

39

Figure 2.10 Basic geometry of stereo vision

This configuration mimics the human eye perception and can capture the depth

information of a scene. The stereo camera system provides two slightly different views,

enabling the computation of the distance D between the cameras and a target object

using Eq. 2.13:

 𝐷 =
𝐵 ∙ 𝑓

𝑑
 (2.13)

where D represents the distance between the cameras and target object, B denotes the

baseline distance separating the cameras, f is the focal length of the camera, and d is the

disparity value obtained from the positional discrepancy of the target object in the stereo

image pair. Various cost-matching metrics have been used to measure the similarity

between pixels and determine their disparities in an accurate and reliable manner.

Traditional methods comprise the early algorithms based on basic cost-matching

metrics, such as the sum of absolute differences (SAD), normalised cross-correlation

(NCC), mutual information (MI), and CT. These metrics have been used to measure the

similarity between corresponding pixels in stereo images, enabling the estimation of

depth information.

40

The SAD metric determines the dissimilarity between corresponding pixels in two

images by calculating the absolute differences in their intensity values and summing

them. This metric assumes that corresponding pixels have similar intensity values in

both images. For example, the block matching algorithm can use the SAD to divide the

reference image into small blocks and identify the best matching block in the target

image. The disparity between the reference and target blocks is estimated based on the

block with the lowest SAD (Lu and Liou, 1997). SGM is another widely used algorithm

for dense stereo matching that incorporates SAD. The SGM uses dynamic

programming techniques to determine the optimal disparity values that minimise the

overall cost, considering local matching costs and the consistency of disparity values

along different scanline directions (Hirschmuller, 2005). The adaptive support-weight

approach (ASW) also uses the SAD metric for dense image matching. ASW

incorporates adaptive support weights that dynamically adjust the influence of

neighbouring pixels based on their SAD values. This scheme helps alleviate the effect

of noisy or unreliable matches, leading to improved accuracy in dense matching results

(Yang et al., 2008).

NCC indicates the similarity between two images by normalising their cross-correlation

coefficients. Specifically, this metric measures the degree of linear dependency

between corresponding image patches. For example, template matching algorithms use

the NCC as the matching metric to locate a template image within a larger image. By

sliding the template over the larger image and calculating the NCC score at each

location, the algorithm determines the site at which the template best matches the image,

enabling object detection and localisation (Briechle and Hanebeck, 2001; Viola and

Jones, 2001). The iterative closest point (ICP) algorithm is commonly used for point

cloud registration and 3D surface reconstruction. In each iteration, ICP uses the NCC

to establish correspondences between the points in the reference and target point clouds.

By maximising the NCC score, ICP iteratively refines the transformation parameters to

align the two point clouds (Besl and McKay, 1992).

MI is a statistical metric that measures the amount of information shared between two

images. This metric estimates the statistical dependency between the intensity values

of corresponding pixels based on their joint histogram. Studholme et al. (1999)

41

proposed the normalised MI (NMI) approach for medical image registration and multi-

modal image alignment. NMI measures the statistical dependency between the

intensities of corresponding pixels in the images. By maximising the NMI score, the

algorithm determines the optimal transformation parameters that align the images.

Hirschmuller (2007) combined MI and block matching techniques for dense stereo

matching. This approach divided images into blocks and searched for the best matching

block in the target image, based on the MI score. The disparities between corresponding

pixels in stereo images were estimated by maximising the MI. The optimal disparities

were determined by comparing the statistical dependencies between the intensities of

the blocks. MI also has been used as a matching criterion in the optical flow method.

Roth and Black (2007) proposed an MI-based optical flow approach for motion

estimation and video analysis tasks. This strategy calculates the MI between pixel

intensities in neighbouring frames and estimates the displacement by maximising the

MI score.

The CT metric encodes the spatial arrangement of pixel intensities in a binary code.

This strategy compares the census codes of corresponding pixels to compute the

dissimilarity between images. The CT, which can effectively manage photometric

variations and occlusions, is widely used in stereo-matching applications. The SGM

algorithm, proposed by Hirschmuller (2007), uses the CT for dense stereo matching.

Specifically, this algorithm uses the CT to compute matching costs between pixels in

stereo images. By comparing the CT codes, SGM estimates the disparities by

minimising a global energy function. The CT helps capture the local image structure,

thereby improving the robustness of the matching process. Another popular CT method

for dense stereo matching is the non-parametric local transform, proposed by Zabih and

Woodfill (1994). This method applies the CT to image patches to encode the local

neighbourhood structure. The CT converts the pixel intensities in a patch to binary

codes, thereby capturing the ordinal relationships between the pixels. The disparities

between stereo images can be estimated by comparing the CT codes between

corresponding patches. Adaptive CT (ACT), developed by Perri et al. (2013), is another

algorithm that uses CT for stereo dense image matching. The objective is to improve

the robustness and efficiency of image transformation on an FPGA chip. This strategy

computes the CT by weighting the contributions of neighbouring pixels based on their

42

similarity to the centre pixel. By adapting the window size according to the local image

structures, ACT can achieve more accurate and reliable dense matching results than CT.

These traditional stereo dense image matching methods have been extensively used for

tasks such as image registration, image alignment, and depth estimation. In particular,

these techniques played a crucial role in early computer vision applications, providing

a foundation for subsequent research and developments in the field.

2.1.4.2 Deep-Learning Dense Matching Methods

With advancements in deep-learning approaches, the cost-matching pipeline has been

replaced by CNNs. Deep-learning-based algorithms have attracted significant attention

owing to their excellent performance in benchmark testing. Depending on the learning

task, deep-learning stereo methods can be classified into learning-based cost metrics

and end-to-end (E2E) learning approaches.

The application of learning-based cost metrics was pioneered by Krizhevsky et al.

(2017), who highlighted the transformative impact of deep learning on stereo vision

applications in terms of enhanced performance. Ciregan et al. (2012) discussed the

limitations of traditional stereo-vision methods compared with human performance in

recognition tasks and argued that deep-learning algorithms can bridge this gap through

their ability to emulate human-like recognition. This observation has motivated

researchers to integrate deep-learning techniques into stereo vision algorithms to

achieve human-level performance.

The advent of machine learning has had a profound impact on stereo vision based

research, as noted by Tonioni et al. (2017). Advancements in machine learning

techniques have driven relevant research and provided valuable opportunities for

algorithm refinement and real-world applications. In the context of image classification,

Chauhan et al. (2019) used CNNs for vehicle counting and classification in the transport

engineering domain. This framework could accurately classify different types of

vehicles, demonstrating the potential of practically applying deep learning in stereo

vision for addressing complex tasks in real-world scenarios.

43

Deep-learning methods have rapidly evolved into E2E learning algorithms, replacing

classical multistage optimisation with trainable networks that can directly predict

disparity from stereo images. These neural networks can capture more global features,

potentially improving the task performance. Kang et al. (2019) advanced stereo vision

techniques by introducing dilated convolution into their E2E network architecture. The

authors emphasised the computational advantages of dilated convolution over 3D CNN

methods, which can lead to improved efficiency. Evaluation over the KITTI dataset

demonstrated significant enhancements compared with the original DispNet

implementation. The integration of dilated convolution offers a promising avenue for

advancing stereo vision systems, as it can yield more accurate depth estimation and

address the challenges associated with texture-less areas. Future research can be aimed

at refining the application of dilated convolution in stereo vision algorithms.

Yang et al. (2019) introduced HSMNet, an E2E network architecture designed for

stereo matching. This network has an encoder–decoder structure incorporating a

coarse-to-fine hierarchy for stereo matching. To extract multi-scale features, a

downsampling mechanism progressively reduces the input resolution. The pyramid

feature module incorporates residual blocks and spatial pyramid pooling layers to

enhance the receptive fields, thereby facilitating hierarchical matching. The authors

emphasised the real-time computational efficiency of their network, which could enable

on-demand computation. The network could estimate large disparity objects before the

end of the pipeline, resulting in improved efficiency. This approach outperformed other

E2E networks, such as those proposed by Chang and Chen (2018), Kendall et al. (2017),

and Song et al. (2019), when evaluated on the Middlebury and KITTI datasets.

Unlike the abovementioned methods, certain techniques integrate context learning into

specific components of the conventional pipeline without entirely aligning with any of

the mentioned deep-learning paradigms. One such example is SGM-Net (Seki and

Pollefeys, 2017), which focuses on learning the smoothness penalty on a per-pixel basis.

Similarly, GA-Net (Zhang et al., 2019) trains networks to guide the cost-aggregation

process. These approaches deviate from the purely deep-learning-based methods and

instead enhance specific stages within the traditional pipeline by leveraging context

learning techniques. SGM-Net, for instance, focuses on refining the estimation of the

44

per-pixel smoothness penalty, resulting in more accurate disparity maps. GA-Net

optimises the cost-aggregation process using learned networks, thereby enhancing the

disparity estimation.

2.2 Visual Odometry

Localisation is an essential task for autonomous vehicles to be able to track their paths

and effectively detect and avoid obstacles. Vision-based odometry is a robust technique

for vehicle localisation. The concept of estimating the pose of a vehicle solely from

visual input was first introduced by Moravec in the early 1980s (Nistér, 2004;

Scaramuzza and Fraundorfer, 2011). From 1980 to 2000, research on VO was driven

by NASA’s preparations for the 2004 Mars mission. The term “visual odometry” was

coined to describe the process of incrementally estimating vehicle motion by integrating

pixel displacements between image frames, similar to how wheel odometry estimates

motion by integrating the number of wheel turns over time (Scaramuzza and

Fraundorfer, 2011).

VO is a pose estimation process commonly implemented by various agents, such as

vehicles, humans, and robots. VO frameworks use continuous images from one or

multiple attached cameras (Fraundorfer and Scaramuzza, 2011). At the core of VO lies

camera pose estimation, which involves determining the agent’s relative motion based

on the visual input (Ni and Dellaert, 2006). This online estimation of ego motion from

video input is an effective non-contact method for effectively positioning mobile robots

(Munguia and Grau, 2007). By analysing image sequences captured by a camera, VO

enables incremental online estimation of the vehicle position (Campbell et al., 2005;

Gonzalez et al., 2012).

Images contain rich and informative data that can be leveraged to estimate camera

movement, and thus, VO is a viable solution for motion estimation (Rone and Ben-Tzvi,

2013). Unlike wheel encoders and low-precision inertial navigation systems (INSs),

VO is less prone to local drift, resulting in more accurate motion estimation (Howard,

2008). VO is particularly advantageous in scenarios involving uneven terrains, in which

wheel slippage may occur, or GPS-denied environments (Scaramuzza and Fraundorfer,

45

2011). VO can be combined with GPS and INS measurements to maximise the accuracy.

One of the distinct advantages of VO over laser and sonar localisation systems is its

non-invasive nature, as it does not emit detectable energy into the environment. Unlike

GPS, VO does not rely on external signals for operation, thus providing greater

flexibility in various environments (Ni and Dellaert, 2006). The use of cameras for

robot localisation offers several benefits, such as cost reduction, seamless integration

with other vision-based algorithms (e.g., obstacle, pedestrian, and lane detection), and

elimination of sensor calibration requirements (Wang et al., 2011). Cameras are

compact, affordable, lightweight, energy-efficient, and adaptable, making them suitable

for a wide range of vehicles (land, underwater, or air) and other robotic applications

(such as object detection and recognition).

In scenarios in which the distance between the stereo camera and scene exceeds the

stereo baseline, the effectiveness of stereo VO diminishes, and it becomes analogous to

the monocular case, which relies on 2D bearing data to estimate both the relative motion

and 3D structure (Scaramuzza and Fraundorfer, 2011). Nistér (2004) presented a real-

time VO algorithm capable of estimating camera motion from a monocular or stereo

camera. The authors introduced the first real-time large-scale VO specifically designed

for monocular cameras. This approach used feature tracking and incorporated random

sample consensus for robust outlier rejection. The algorithm consisted of three phases:

feature detection, feature tracking, and motion estimation. Although the overall

framework remained the same for monocular and stereo vision systems, slight

differences existed in the motion estimation phase. In the monocular case, a five-point

pose algorithm was used to calculate the pose for each tracked feature. The 3D position

of each feature was then computed using the first and last acquired images, which

facilitated the estimation of the camera’s 3D pose. In the stereo case, the 3D position

of each feature was obtained through stereo matching of corresponding features

between the two camera images.

VO can be considered a subset of SLAM: VO focuses solely on estimating the camera

or robot motion without explicitly building a map of the environment, whereas SLAM

is aimed at mapping the environment while simultaneously estimating the camera or

robot motion (Souici et al., 2013). Visual SLAM leverages camera sensors to gather

observation data for map creation. In feature-based SLAM, the robot uses

46

environmental features to update its position by extracting and reobserving these

features as it moves. Notably, real-time algorithms such as large-scale direct monocular

(LSD)-SLAM (Engel et al., 2014) and ORB-SLAM (Mur-Artal et al., 2015) have been

developed for SLAM using a freely moving monocular camera. ORB-SLAM is a

feature-based method that excels in challenging scenarios with significant motion

clutter and enables robust loop closing and re-localisation. In contrast, LSD-SLAM

takes a direct approach that avoids the need for feature extraction, rendering it suitable

for generating semi-dense reconstructions in low-texture environments and resistant to

blur. This approach achieves localisation by directly optimising image pixel intensities.

Gonzalez et al. (2012) and Yu et al. (2011) highlighted that the primary limitations

associated with VO systems are the high computational expense and vulnerability to

variations in light and imaging conditions. These conditions encompass factors such as

direct sunlight, shadows, image blur, and disparities in image scale. In regions in which

the floor exhibits a smooth and low-textured surface, the directional sunlight and

lighting conditions may result in non-uniform scene lighting. Additionally, the presence

of shadows caused by stationary or moving objects, include those originating from the

vehicle, can impede the accurate calculation of pixel displacement, leading to errors in

displacement estimation (Gonzalez et al., 2012). Monocular vision systems encounter

challenges related to scale uncertainty (Kitt et al., 2011; Zhang et al., 2014b). When the

surface is uneven, the image scale tends to fluctuate, which makes it difficult to estimate

the image scaling factor. Kitt et al. (2011) suggested that scaling factor may be

inaccurately estimated in scenarios involving a significant change in the road slope,

resulting in erroneous estimation of the trajectory.

47

2.3 Parallel Architecture for 3D Applications

Parallel architectures are computer systems that use multiple processing units or cores

to simultaneously perform tasks. Instead of relying on a single processor to manage all

computations, parallel architectures divide the workload into smaller tasks that can be

executed in parallel, thereby improving computational efficiency and reducing the

processing time.

Parallel architectures play a crucial role in enhancing the overall performance and

capabilities of photogrammetric systems. Photogrammetry involves computationally

intensive tasks, such as feature extraction, matching, triangulation, point cloud

generation, mesh construction, and texturing. Using parallel architecture, these tasks

can be distributed among multiple processing units, such as CPU cores or GPUs,

allowing their simultaneous processing. Such parallel processing techniques can

accelerate the overall reconstruction process, enabling faster generation of 3D models

from the input data (Fu et al., 2023; Wiechert et al., 2012). Additionally, parallel

architectures allow photogrammetric applications to efficiently handle large-scale

reconstructions and process massive datasets. By dividing the workload among

multiple processing units, the system can effectively use the available computational

resources and scale with the complexity and size of the data. This scalability is

particularly beneficial in applications that require the processing of many images or

generation of high-resolution 3D models (Buttinger-Kreuzhuber et al., 2022; Pepe and

Prezioso, 2016). Parallel architectures, especially those with GPU acceleration, can

achieve real-time or near-real-time performance in 3D photogrammetric applications.

The parallel processing capabilities of GPUs, specifically designed for handling large

amounts of data simultaneously, enable rapid execution of computationally demanding

tasks such as feature matching and triangulation (Wang, 2019). Furthermore, parallel

architectures can optimise the available hardware resources, such as CPU cores or GPU

threads. Instead of leaving processing units idle during certain stages of the

photogrammetric pipeline, parallel architectures can ensure that the available resources

are efficiently utilised, leading to better overall system performance and reduced

processing time (Choudhary et al., 2012).

48

2.3.1 Multi-threading on CPU

Multi-threaded technologies have emerged as a promising approach for accelerating

computationally intensive algorithms in various fields, including photogrammetry.

Researchers have recognised the potential of multi-threading in leveraging CPU

resources, leading to improved algorithm performance. Shigeto and Sakai (2011)

generated a DEM from input images by using CPU multi-threading acceleration. The

authors used two Intel Xeon W5590 dual-core CPUs to implement their method,

offering 240 clocks with an impressive 61,440 threads dedicated to image processing.

Vladimir (2016) proposed a multi-threaded approach for dense point cloud generation

from stereo images. The proposed method accelerated the point cloud generation

process by leveraging parallel processing capabilities. The authors implemented their

algorithm on a multi-core CPU architecture, effectively distributing the computational

load across multiple threads. This parallelisation resulted in accelerated processing,

enabling efficient and rapid reconstruction of dense 3D point clouds [3].

Grazioso et al. (2019) developed a photogrammetric system with 3D body scanners for

health-related applications. The objective was to generate a comprehensive 3D body

model from data acquired by the 3D scanners. To expedite data processing, the

researchers implemented a multi-threaded strategy. However, the system failed to

achieve real-time 3D human body model reconstruction despite the use of multi-

threading acceleration. The failed realisation of real-time performance was attributable

to the inherent complexity of the image processing algorithm and substantial volume

of data involved.

The utilisation of multi-threading in CPUs used in photogrammetry research can help

enhance the computational performance and expedite data processing.

Photogrammetric algorithms can distribute computation across multiple threads or

cores by exploiting the parallel processing capabilities of multi-threading, resulting in

increased efficiency and reduced processing time. The benefits of multi-threading

become particularly pronounced in large-scale data processing scenarios, where the

49

parallelisation of tasks can effectively harness the computational power of modern

CPUs.

While multi-threading technology can accelerate photogrammetric applications, it still

exhibits several limitations. Multi-threading relies on the availability of tasks that can

be executed concurrently. In photogrammetry, specific tasks may have dependencies

that may also be sequential, limiting the potential for parallelisation (Schiele et al.,

2012). Although multi-threading allows for efficient utilisation of CPU resources, its

scalability can be constrained by factors such as the memory bandwidth, cache

coherence, and thread synchronisation overhead. As the number of threads increases,

these factors can limit the performance gains achieved from parallel execution, leading

to diminished returns (Yang and Zhang, 2015). Therefore, depending on the nature of

the algorithm and available computational resources, alternative approaches, such as

GPU acceleration or distributed computing, may need to be incorporated to overcome

the limitations of multi-threading and enhance the performance of photogrammetric

techniques.

2.3.2 GPU Acceleration

In recent years, the development and evolution of GPU technologies have

revolutionised image processing capabilities, providing new opportunities for real-time

processing in photogrammetry applications. Dense matching algorithms have

traditionally relied on the CPU for feature point extraction and image processing.

However, by using powerful GPUs, the processing time and data volume can be

increased. Hardware-oriented approaches have harnessed the computational power of

modern graphics machines to achieve enhanced performance in photogrammetry tasks.

For instance, Zach et al. (2004) presented a hierarchical disparity estimation algorithm

implemented on a programmable 3D GPU. This method, capable of processing rectified

or uncalibrated image pairs, employed bidirectional matching in combination with a

locally aggregated sum of absolute intensity differences. Implementation over an ATI

Radeon 9700 Pro framework led to an impressive processing rate of up to 50 frames

per second (fps) for 256×256-pixel input images.

50

In addition to these algorithms, another notable example of real-time dense image

matching with GPU acceleration is the SGM algorithm, as illustrated by Hernandez-

Juarez et al. (2016). The SGM algorithm minimises a global energy function consisting

of data and a smoothness term. To achieve real-time operation, the authors leveraged

the parallelism offered by GPUs. They implemented a hierarchical belief propagation

method that optimised the smoothness term iteratively while removing redundant

computations to ensure fast convergence. Experimental results demonstrated the

effectiveness of this approach: a processing speed of 42 fps was achieved for self-

recorded images with dimensions of 640×480 pixels and 128 disparity levels. The

experiments were conducted using an NVIDIA Tegra X1 graphics card, with four path

directions used for the SGM.

Kern et al. (2020) also used GPUs for photogrammetry by developing a GPU-

accelerated method for real-time 3D reconstruction using UAVs. This approach

leveraged the parallel computing power of GPUs to enable rapid image feature

extraction, dense matching, and 3D reconstruction. Experimental results indicated the

achievement of real-time performance, enabling on-the-fly reconstruction during UAV

flights. Maoteng et al. (2017) proposed a GPU-accelerated BA algorithm for large-scale

reconstruction scenarios. By harnessing the parallel processing capabilities of GPUs,

significant improvements in computational efficiency were achieved. The GPU

implementation demonstrated a 20-fold reduction in processing time compared with

CPU-based approaches, enabling faster and more efficient large-scale reconstructions.

The integration of dense matching algorithms with GPU acceleration has significantly

improved the efficiency and performance of image processing in real-time applications.

By harnessing the parallel processing capabilities of GPUs, these algorithms can handle

larger data volumes with reduced processing times. Real-time processing is especially

important in various applications, such as robotics, augmented reality, and autonomous

systems, where immediate feedback and timely decision-making are critical. Further

exploration of GPU-based algorithms for dense matching can lead to advancements in

real-time image processing in photogrammetry. The ever-evolving GPU technology,

coupled with algorithmic optimisations and hardware innovations, is expected to

further advance dense matching techniques, enabling faster and more accurate

reconstruction of 3D models from images.

51

2.4 Real-Time Aerial Mapping

UAVs have revolutionised mapping technologies and serve as rapid and cost-effective

solutions for capturing aerial imagery and generating accurate maps. The

interdisciplinary nature of UAV data collection and the wide range of applications make

them invaluable for various scientific investigations. Mapping is one of the primary

applications for UAVs. By combining images captured by onboard cameras, UAVs can

generate accurate maps using photogrammetric techniques. These techniques involve

extracting features from images and matching them to create orthoimages and DSMs.

Traditional photogrammetric techniques can effectively generate precise and accurate

reconstructions. However, their application is limited by their computational

complexity and inability to incorporate incremental updates. By requiring the

simultaneous input of all data, such methods impose time constraints that may hinder

real-time applications or implementation in scenarios in which data collection occurs

over an extended period. For example, Pix4D (Pix4D, 2017) and Agisoft PhotoScan

(Agisoft, 2014) are commercial photogrammetry applications well known for their

precise reconstructions. These frameworks use photogrammetric techniques to process

digital images and generate 3D spatial data, including dense point clouds and texturised

polygonal models. Furthermore, they offer parallel computing and distributed

processing capabilities to optimise the execution time. However, the processing time

may still be significant for large datasets or complex scenes (Barbasiewicz et al., 2018).

COLMAP (Schönberger et al., 2016) is a free and open-source software for

photogrammetric reconstruction, which uses optimised algorithms for accurate

reconstructions. However, the acquisition of precise results often requires user expertise

and careful parameter tuning, particularly in challenging scenarios. These steps

necessitate additional learning for the user and time for data processing (Schönberger

et al., 2016). In addition, this software lacks incremental update capabilities, which

limits its adaptability to dynamic environments or situations in which new data becomes

available over time. Overall, the processing time and inflexibility of traditional

photogrammetry techniques hinder their use in practical mapping applications.

52

To overcome the limitations of real-time processing in traditional photogrammetry

approaches, fast mapping solutions based on image mosaic techniques can be applied,

given their capacity for incremental mapping. Bu et al. (2016) proposed a notable fast

image stitching approach. Their open-source framework, Map2DFusion, replaces the

traditional picture alignment module in a stitching pipeline with a cutting-edge SLAM

algorithm. Map2DFusion, which is a mature and well-studied framework, can alleviate

the challenges associated with loop closing, global optimisation, and robust tracking in

visually challenging environments. This framework uses 3D camera posture

information to build 2D maps. Figure 2.11 shows the process flow for using

Map2DFusion to create precise and dependable 2D maps.

First, the input images are subjected to distortion removal, and features are retrieved.

Visual SLAM is used to find unique keyframes in the image sequence. Local

optimisation and loop detection are performed to refine the camera pose estimates. Each

image is accompanied by synchronised GNSS measurements to establish a geographic

reference and transmit the camera posture. The framework computes a 2D best-fitting

plane using the 3D triangulated sparse cloud of the scene. This plane is used to project

and align pinhole-camera-modelled pictures to create a worldwide mosaic. All the

pictures are used to rapidly build maps post-flight.

Figure 2.11 Framework of Map2DFusion (Bu et al., 2016).

53

Hinzmann et al. (2018) performed extensive work on real-time aerial mapping.

Unfortunately, during the research period of this thesis, certain modules of their

framework remained closed source, limiting the possibility of conducting an extensive

practical survey. Nonetheless, their theoretical work inspired the fundamental

algorithms implemented in Chapter 5 of this thesis. Figure 2.12 shows an overview of

their system.

Figure 2.12 Overview of aerial mapper system proposed by Hinzmann et al. (2018).

Hinzmann et al. (2018) estimated camera postures without visual SLAM, unlike Bu et

al. (2016). The authors used a KandeLucas-Tomasi feature tracker, IMUs, and a GNSS

module to continuously estimate the state. A dense point cloud of the observed scene

was reconstructed by merging data from various sensors to generate a 3D camera

posture. This point cloud was incorporated into a multi-layer grid map to create a 3D

DEM of the surface. Using this model, the authors generated an orthogonal mosaic to

comprehensively visualise the mapped area.

The method proposed by Hinzmann et al. (2018) closely resembles traditional offline

aerial photogrammetry. The camera poses are determined as the surface is identified as

a 3-space quantity, and the resulting map is rectified. In this manner, the geometric

distortion of the surface is considered and corrected. Unlike Map2DFusion, the aerial

mapper was designed to perform calculations on UAVs. Although this information can

be used for navigation, it is of limited value to the user. Global maps on ground stations

(GCS) are extremely valuable and should be transmitted as soon as possible. In addition,

as part of the overall mapping procedure, certain tasks can be divided between the UAV

54

and GCS for ground station validation. This approach is particularly suitable for tasks

that are computationally intensive and may require GPU acceleration. This strategy can

help achieve higher map resolution and is expected to have more significant real-world

use cases in the future.

2.5 Summary

Chapter 2 provides a comprehensive review of research on photogrammetry, focusing

on the fundamentals of photogrammetry, monocular VO, use of parallel architectures

in 3D photogrammetric applications, and real-time applications associated with aerial

mapping.

The section on the fundamentals of photogrammetry discusses various techniques for

feature detection and matching. Traditional methods such as SIFT, SURF, and ORB

are explored alongside deep-learning methods, such as SIFT-CNN, SuperPoint,

SuperGlue, and LF-Net. Additionally, the chapter covers dense image matching,

distinguishing between stereo dense image matching algorithms and deep-learning-

based stereo-matching approaches. Furthermore, the concepts of triangulation and

space resection are introduced, encompassing topics such as 3D reconstruction and EO

determination. The following section delves into monocular VO, which involves

estimating camera poses using state-of-the-art algorithms. This section highlights the

importance of accurate camera pose estimation for visual navigation and positioning

applications. The last section describes the use of parallel architectures in 3D

photogrammetric applications, including multi-threading on CPUs and GPU

acceleration. Notably, multi-threading enables the efficient utilisation of CPU resources,

while GPU acceleration leverages the parallel computing power of GPUs to accelerate

computationally intensive tasks in photogrammetry.

This chapter highlights the advancements and current trends in photogrammetry.

However, several areas warrant further investigation. Specifically, the potential of

combining traditional and deep-learning-based methods for feature detection and

matching, dense image matching, and 3D reconstruction must be explored. Hybrid

approaches can potentially leverage the strengths of both techniques to improve

55

accuracy and efficiency. Additionally, future research can focus on developing robust

and efficient algorithms for monocular VO that can operate in real-time, facilitating

autonomous navigation and robotics applications.

56

Chapter 3 Real-Time Cross-View Feature

Matching and Camera Pose Determination

In recent years, robotic vision has become increasingly popular owing to its versatility

and applications in various fields, such as industrial inspection, remote sensing for

mapping and surveying, and rescue operations. Despite these capabilities, the

autonomous navigation capacity of robots remains limited, particularly in GPS-denied

environments where GPS signals are unavailable or unreliable. While GPS technology

has revolutionised location-based services, it has limitations in some environments.

GPS signals can be blocked by buildings, trees, or other obstacles, and their accuracy

can be affected by atmospheric conditions. Implementing computer vision technology

on robots is a potential solution to improve the navigation capacity of robots in

unfavourable environments.

3.1 Overview of Approach

This chapter presents a novel approach for visual-based camera-pose determination of

aerial robots (e.g., UAVs and drones). This method offers a cost-effective alternative

to traditional navigation methods, such as those relying on GPS, inertial measurement

units, and laser or radar sensors. Additionally, the method provides a flexible solution

for use in the environments where GPS signals are interfered with or blocked. The

proposed method is a coarse-to-fine approach that localises the robot by two sequential

processes: a) feature-based cross-view image matching and retrieval for matching the

aerial images with a pre-built database constructed from a large-scale orthoimage base

map; b) camera relative and absolute pose determination based on the integration of

VO and space resection. The first process narrows the down the region for visual

positioning, while the second process (i.e., space resection) identifies the exact location

and orientation of the aerial robot through VO and photogrammetry techniques.

57

Figure 3.1 Overview of the feature-based cross-view image matching and retrieval for

camera pose determination. The similarity between the local feature from the aerial

image and the global feature from the orthoimage base map enables efficient recall and

matching of cropped orthoimage tiles from a pre-built database.

The concept of the approach (Figure 3.1) is introduced in the following sections:

(1) In Section 3.2, a feature-based approach for cross-view image matching and

retrieval is presented. The pre-built database consists of cropped orthoimage tiles and a

DSM with features extracted using a deep learning-based algorithm. These features are

saved in separate files as the global feature points and descriptions for feature image

retrieval and matching.

(2) In Section 3.3, an integrated VO method is proposed to determine the camera

position and orientation. Our approach consist of state-of-the-art deep learning

algorithms for VO and space resection to obtain the absolute pose of the camera in real-

world coordinates. The details of our approach are presented in the subsections.

58

(3) In Section 3.4, the experiment and evaluation are presented, and the effectiveness

of our method is demonstrated using open-access image data. The trajectory of the

estimated camera pose and the evaluation results of the accuracy and efficiency of the

method are presented.

3.2 Feature-Based Cross-View Image Matching and Retrieval

Image matching and retrieval are crucial in several applications in which images are

matched with a vast reference image database, such as robotic vision, navigation, and

positioning (Arras et al., 1998, Chen et al., 2016, Deng et al., 2012). Because these tasks

can be computationally intensive, particularly in cases involving large datasets,

implementing an effective feature extraction strategy is essential to alleviate the

computational burden. This strategy involves selecting the most informative features

from the images, which reduces data dimensionality, computational costs, and the risk

of overfitting. Furthermore, effective feature extraction enables the extraction of critical

discriminative information from images, enhancing recognition and retrieval accuracy.

For example, in place recognition applications, distinctive features such as unique

buildings or landmarks can be captured, facilitating accurate recognition even in the

presence of other similar-looking places. Images of the same or similar places may

significantly vary depending on lighting conditions, viewpoint directions, and

occlusions. Effective feature extraction captures the key characteristics of an image that

remain invariant to these variations, providing robustness to image variations and

enabling reliable place recognition and retrieval. Another advantage of feature

extraction is its scalability to large image datasets, making it suitable for real-world

applications such as online image retrieval. However, selecting the appropriate feature

extraction strategy depends on several factors, including the specific application and

characteristics of the adopted dataset.

3.2.1 Feature Extraction Methods and Evaluation

Feature extraction is a crucial aspect of computer vision and photogrammetry, as it

forms the foundation for essential applications such as VO and simultaneous

localisation and mapping. These applications rely on the accurate extraction and

59

matching of feature points across images. Feature extraction involves identifying

unique, distinguishable features from images, which can then be used for subsequent

matching and tracking. These features may include corners, edges, blobs, or more

complex structures that can be represented mathematically. Feature extraction is often

followed by feature description and matching, in which the extracted features are

described with local descriptors and matched across different images. Achieving

accurate and reliable results in the presence of various environmental factors, such as

varying lighting conditions, occlusions, and image noise, is a key challenge in feature

extraction. To address this, researchers have developed various feature extraction

methods, such as scale-invariant feature transform (SIFT; Lowe, 2004), binary robust

independent elementary features (BRIEF; Calonder et al., 2010), features from

accelerated segment test (FAST; Rosten et al., 2006), and oriented BRIEF (ORB;

Rublee et al., 2011). These methods have been widely adopted in numerous computer

vision applications and have proven effective in achieving fast and accurate feature

extraction. However, the methods are characterised by high computational costs,

sensitivity to illumination changes, and difficulty in handling large datasets. To

overcome these challenges, researchers have explored the application of deep learning

techniques to enhance feature extraction capabilities, leveraging the power of neural

networks to learn feature representations directly from data.

The images captured by the onboard camera of a drone often feature motion blur,

uneven illumination, and occlusion owing to the speed and jitter of the drone during

flight. To overcome these problems, a deep learning feature detection algorithm,

SuperPoint, was used in this study to further encode aerial images and the

corresponding cropped orthoimage tiles to prepare the pre-built database for image

matching and retrieval. SuperPoint (DeTone et al., 2018) is a lightweight neural

network model for computing image keypoints and local feature descriptors. It is

designed to be lightweight and efficient, making it well-suited for real-time applications.

SuperPoint features considerably fewer fine-tuned weight parameters than other deep

learning-based feature detection methods, such as D2-Net and LF-Net (Dusmanu et al.,

2019, Ono et al., 2018); moreover, its parameter file size is only ~800 kb, which makes

it suitable for tasks that require fast response and real-time applications on mobile

devices. In addition, SuperPoint is highly accurate and robust to challenging imaging

60

conditions such as motion blur and occlusions, owing to its ability to learn features

specific to the problem domain and efficiently handle large datasets.

Figure 3.2 shows the framework of the clustered SuperPoint feature extraction. The

input is a one-dimensional greyscale image with size W × H. The image is passed to a

convolutional neural network (CNN) from a VGG-16 (Simonyan et al., 2014)

architecture encoder. The encoder consists of 10 convolutional layers, pooling-based

spatial downsampling layers, nonlinear activation functions, and three max-pooling

layers. The input greyscale image of size W × H is first resized to 256 × 256 pixels and

then normalised to zero mean and unit variance. The convolutional layers in the encoder

extract features from the input image at different spatial resolutions. The first few

convolutional layers capture low-level features such as edges and corners, while the

deeper layers capture high-level features such as object parts and textures. All of the

features are delivered to max-pooling layers for feature-map downsampling and spatial

resolution reduction. This step enhances the robustness of the network to variations in

scale and viewpoint. After each convolutional layer in the encoder, a nonlinear rectified

linear unit (ReLU) activation function is applied to introduce nonlinearity into the

network and improve its expressive power. In the last step, three max-pooling layers

are implemented to reduce the feature maps to a size of W/8, H/8, and D.

Figure 3.2 Framework of the SuperPoint feature extraction

The intermediate tensor with a size of W/8, H/8, and D is first sent to a neural network

similar to the universal correspondence network (UCN; Choy et al., 2016) for descriptor

61

vector refinement. The descriptor decoder of SuperPoint uses a learned pooling

operation to aggregate local feature descriptors around a given interest point. This

pooling operation is parameterised by a set of weights that depend on the spatial

location of each descriptor relative to the keypoint. The UCN-like neural network is

used to learn these weights end-to-end. The output of the network (a set of weights)

enables the descriptor decoder to consider the spatial relationships between the features

in the images and results in more robust and discriminative descriptors. Then, the size

of the feature descriptor maps is fixed via bicubic interpolation. This up-sampling step

is performed to obtain a dense representation of local geometry and appearance

information around the interest points in a grid of feature values. Afterwards, the

resulting descriptor vector is typically L2-normalised and clustered, which scales the

vector to unit length, to improve the robustness of the descriptor for matching across

multiple images.

The robustness and execution time of traditional and deep learning-based feature

detection methods has been assessed by implementing homography estimation on

sequences of the benchmark dataset HPatches (Balntas et al., 2017). This involved

performing nearest neighbour matching of the interest points and descriptors detected

in the first image with those in the second image sourced from the benchmark dataset.

The dataset comprised 116 image sequences that were grouped into two categories:

illumination changes and viewpoint alterations (Figure 3.3). The former consisted of

57 sequences that exhibited exclusively photometric modifications, while the latter

consisted of 59 sequences characterised by geometric deformations. This division

differentiated the effects of changes in illumination conditions from the effects of

variations in viewpoint. Each sequence consisted of one reference image and five target

images.

62

Figure 3.3 Examples of two viewpoint image sequences (rows 1 and 2) and two

illumination image sequences (rows 3 and 4) from the HPatches dataset.

Table 3.1 Mean execution times and mean average precision (mAP) of three tasks for

traditional and deep learning-based detector–descriptor pairs.

Detector Descriptor
Execution
Time (ms)

mAP

Verification Matching Retrieval

SuperPoint SuperPoint 13 29% 57% 29%

LF-Net LF-Net 196 5% 52% 37%

ORB ORB 17 15% 45% 23%

FAST BRIEF 32 10% 48% 17%

FAST SIFT 163 27% 60% 64%

SIFT SIFT 195 11% 59% 26%

SIFT BRIEF 122 14% 56% 35%

The evaluation methods of above algorithms were based on the study by Balntas et al.

(2017). The robustness of the traditional and deep learning-based detectors and

descriptors was represented by the mean average precision (mAP) of three tasks:

keypoint verification, image matching, and keypoint retrieval. The mAP was

determined according to the precision and recall values of a ranked list, LK, with K

elements. The precision and recall values were computed for every k < K, which refers

to the top-k elements of the ranked list. Precision and recall were calculated for LK, and

the values were averaged across all Lk instances where the recall increases. This process

resulted in the computation of the average precision measure for the ranked list LK.

63

The evaluation results (Table 3.1) reveal the performances of three top traditional

feature detectors and descriptors and two deep learning-based methods. For traditional

algorithms, the default parameters from OpenCV (Bradski, 2000) were used. For

SuperPoint and LF-Net evaluation, pre-trained models were implemented according to

the fine-tuned outdoor weight provided by DeTone et al. (2018). SuperPoint yielded

the most favourable results on the three tasks, outperforming LF-Net on the keypoint

verification task. The results highlight the superior computational efficiency of

SuperPoint, with a keypoint detection time of 13 ms for a single image. It was

significantly faster than LF-Net, whose execution time was 60 times longer. The

evaluation also showed the performances of different traditional detector–descriptor

combinations. The SIFT detector and descriptor yielded the most successful outcomes,

particularly in image matching and retrieval tasks. However, the BRIEF descriptor

performed poorly in all combinations. While the FAST + SIFT combination

outperformed other traditional algorithms on all three tasks, its execution time (163 ms)

was significantly longer than that of ORB + SuperPoint. The evaluation results

emphasise the effectiveness of SuperPoint for practical applications requiring rapid

performance.

3.2.2 Feature-Based Matching for Cross-View Image Retrieval

In image matching and retrieval, similarity search is typically performed through

feature-based approaches. Features are distinctive descriptors extracted from an image,

and they capture local geometric information for image recognition. To identify the

location of a query image in an orthoimage, we propose a feature-based similarity

search approach for image place recognition that involves the following steps: 1) Global

feature points and descriptors are extracted from the orthoimage base map and then

saved as an individual file and as part of the pre-built database for image retrieval. 2)

Feature points and descriptors extracted from the query image are also extracted to

match the spatial structure obtained from the previous step. 3) The k-nearest neighbour

(KNN; Cover et al., 1967) search algorithm is used to compute the Euclidean distance

between the feature point descriptors of the query image and those in the pre-built

database. 4) The k search results with the smallest L2 distance to the feature point

64

descriptors of the query image are selected. 5) The corresponding cropped orthoimage

tile of the query image in the database is retrieved according to the maximum density

of feature points among the k search results. Figure 3.4 illustrates the framework of our

approach, and each step is detailed below.

Figure 3.4 Framework of feature-based matching for cross-view image retrieval.

After the extraction of global feature points and descriptors from the orthoimage base

map, principal component analysis is applied to reduce the redundancy of the spatial

and geometric dimensionalities of features. Then, clustered feature descriptors are

saved as an individual file in the pre-built database for further image matching and

retrieval. The KNN algorithm is adopted owing to its ability to efficiently identify the

k most similar or nearest vectors in the database for the query vector a using a Euclidean

distance metric. Given a query vector of the feature point descriptor 𝑥௜ ∈ ℚௗ and the

database of vector collection 𝑦௜ ∈ ℂௗ, we conduct the following search:

 𝐿௣(𝑥௜, 𝑦௜) = 𝑘 ∙ 𝑎𝑟𝑔𝑚𝑖𝑛 ተ൭෍ቚ𝑥௜
(௡)

− 𝑦௜
(௡)

ቚ
௣

௡

௟ୀଵ

൱

ଵ
௣

ተ (3.1)

where 𝑖 ∈ {1, … , 𝑙} indicates the number of vectors in the database, and n is the vector

dimensionality. The Euclidean distance with p = 2 is denoted as the L2 distance. This

metric has been mentioned earlier and is commonly used as a similarity measure in

several applications, including image retrieval. This distance metric is often preferred

owing to its attractive linear algebra properties, making it well-suited for tasks that

65

involve the learning of multiple embedded vectors. Specifically, the L2 distance is

optimised by design, allowing for efficient computations and effective similarity

comparisons between feature vectors (Muja et al., 2014). Its mathematical properties

make it a popular choice in various similarity search tasks, including image matching

and retrieval, owing to its effectiveness in capturing the pairwise distance between

feature descriptors. The smallest L2 distance is collected via k-selection. For an array

ai, k-selection identifies the k lowest valued elements 𝑎௦ೕ
൫𝑠௝ ∈ {1, … , 𝑙}, 𝑗 ∈

{0, … , 𝑘}൯, 𝑎௦ೕ
 indicate the elements from the input array sj. Because each image

contains n feature point descriptors, a batch similarity search is performed to identify

the k most similar results through a comparison of the n feature point descriptors over

the m descriptors from the database. Batching for k-selection entails selecting n × k

elements and indices from n separate arrays.

The KNN similarity search results in a k set of vectors containing n feature points

descriptors. We determine the location of n feature points according to the saved feature

points ℝ extracted by SuperPoint in previous steps. Then, a similarity map is generated

following the feature point distribution. The similarity value is expressed as Di (𝑖 ∈

{0, … , 𝑛}), and the centre location (𝑥஽ , 𝑦஽) of the maximum feature point similarity is

calculated as

 𝑥஽ , 𝑦஽ = 𝑙𝑜𝑐(𝑎𝑟𝑔𝑚𝑎𝑥|𝐷௜|) (3.2)

Once the centre of maximum feature point density is located, the pixel coordinates will

be saved as an index to search for the closest centre coordinates of the cropped

orthoimage tiles in the database using KNN. This step serves as a two-way verification

and constraint for the previous feature point similarity search, enhancing the robustness

of the final search result. The KNN algorithm allows for more flexibility when executed

on multiple CPU threads or GPUs. It was adopted in our study following the approach

proposed by Johnson et al. (2019).

66

3.2.3 Experimental Analysis of Cross-View Image Matching and

Retrieval

3.2.3.1 Pre-Built Database Construction

The orthoimage base map used for image matching was generated from an open-access

aerial image dataset. The dataset comprised over 400 aerial photographs collected by

an eBee X drone equipped with an Aeria X photogrammetry camera (senseFly, 2019).

For further analysis, the orthoimage was cropped into multiple sections to create the

image dataset. SuperPoint extracted the feature points and descriptors from the cropped

image sections. The feature points and descriptors were represented as vector data and

saved separately as files. The resulting vector database obtained from this process can

be utilised for similarity search in image retrieval.

Figure 3.5 presents an overview of the orthoimage generated by the aerial images. The

image size was 70,391 × 59,269 pixels, covering an area of ~0.033 km2 with a 1 m

resolution. The input to the framework was an orthoimage, from which global feature

points and descriptors were extracted using SuperPoint and saved as a separate file for

further image matching. Additionally, the orthoimage was cropped into several sections.

The central location of each cropped tile on the orthoimage and the feature points and

descriptors were saved for further image retrieval. The size of the cropping window

was represented as (Wd, Hd). The cropping window was moved along the long side of

the orthophoto, with the movement step determined by the end lap and side lap

selections. The step was inspired by the flight planning of aerial photogrammetry,

which emphasises the importance of image overlap during the capture of consecutive

photos along and adjacent to a flight strip. As noted in the Chapter 2, ‘end lap’ and ‘side

lap’ refer to the overlap between consecutive photos captured by the camera along and

adjacent to a flight strip, respectively. Generally, the end lap and side lap in aerial

photogrammetry are set to 60% (Wolf et al., 2014). The present study employed a

cropping strategy to produce pre-built database, with each cropped image piece having

80% overlap on both the end and side laps. The image tiles in the pre-built database

were achieved through the cropping of the orthoimage into smaller pieces, and

67

consecutive photos were captured according to the overlapping requirement. This

approach was adopted to enhance the quality and completeness of the pre-built database.

(a)

(b)

Figure 3.5 (a) Overview of the orthoimage base map for constructing the database for

image retrieval, and (b) thumbnails and examples of cropped tiles in the database

68

3.2.3.2 Performances of Cross-View Image Matching and Retrieval

The orthoimage was cropped into over 900 sections, and each section was passed to

SuperPoint for feature point and descriptor extraction. The centre location of each

image section was also saved during this processing. As shown in Figure 3.4, the aerial

image was first extracted using SuperPoint, with d number of feature points and

descriptors. The k sets from the global feature descriptor most similar to the query

features were found via a similarity search, and each set contained d vectors of feature

descriptors. In the experiment, we set k to 5 to obtain the top five sets of search results

most similar to the query vector. Then, the maximum density value and corresponding

image coordinates were found on the density map, which was generated according to

the search results. The KNN algorithm was applied again to find the cropped tiles in

the pre-built database.

Figure 3.6 Experimental result of feature-based image matching and retrieval. (a), (b)

and (c) are three example query images with different landscapes. The top five

similarity maps of each query image and corresponding cropped orthoimage tiles were

retrieved from the pre-built database

Figure 3.6 demonstrates our proposed approach for the matching and retrieval of the

cropped tiles of the aerial image in the pre-built database. Figure 3.6(a) shows an aerial

69

image of rich-texture areas, such as buildings, roads, and green belts. The top half of

Figure 3.6(a) presents similarity maps of the top five most similar feature points, and

the corresponding nearest cropped tiles are shown below. Because features in this

region are easily extracted, the abundance of features in this region results in relatively

reliable search results. In contrast, the query image in Figure 3.6(b) contains areas with

less texture (e.g., trees and lakes) than in Figure 3.6(a). However, the search results still

enable the successful retrieval of the location of the query aerial image. In contrast,

Figure 3.6(c) shows a query image with similar content to Figure 3.6(b) but with even

less textured areas. Extracting features from this region is challenging, and the

descriptors in such areas, such as trees and green belts, are rather similar to the global

feature descriptor. Hence, the search results may result in incorrect image retrieval, as

demonstrated by the last image retrieval results at the bottom of Figure 3.6(c).

Table 3.2 Accuracy comparison between our methods and other methods

Methods
R@1 R@5

+ve −ve Precision +ve −ve Precision

VGG-16 203 236 46.2% 315 124 71.8%

SuperPoint 225 214 51.3% 282 147 64.2%

Our method 263 176 59.9% 320 119 72.9%

To comprehensively evaluate the performance and accuracy of our proposed method,

we analysed the number of positive (+ve) and negative (−ve) results for the top one and

top five search results. Furthermore, we compared the similarity search and image

retrieval results obtained using feature points and descriptors from VGG-16 and

SuperPoint with the results obtained using feature points and descriptors from our

method. The pre-built database consisted of 921 cropped image sections and 439 aerial

images used in our evaluation and experiment. As shown in Table 3.2, our method

successfully retrieved 253 images in the top one result, with a precision of ~60%,

demonstrating its effectiveness compared with other methods. VGG-16 exhibited the

worst performance in both the top one and top five search results. The proposed method

exhibited the most robust performance in the top five search results. The favourable

performance and robustness of the proposed approach demonstrate its potential in real-

time localisation and navigation applications. Moreover, our evaluation results

70

demonstrate the potential of our proposed approach for practical aerial image retrieval

tasks, providing a solid basis for further research and development in this area.

Using only aerial images, we conducted a comprehensive evaluation to assess the

accuracy and reliability of the proposed approach for image retrieval. Different methods

were adopted to retrieve aerial images from a dataset of over 400 aerial images. The

evaluation was performed using a confusion matrix, which is commonly used for

evaluating the accuracy and reliability of a model or algorithm in machine learning and

data analysis. The confusion matrix typically consists of rows and columns representing

the sample and actual values (ground truth). In our study, the rows of the confusion

matrix represent the query image index, while the columns represent the index of the

aerial images in the dataset as the reference. By analysing the confusion matrix, we

comprehensively evaluated the performance of our approach and its ability to

accurately retrieve aerial images from the dataset. The element (i, j) in the confusion

matrix represents the similarity value between reference image i and image retrieval

result j.

(a) VGG (b) SurperPoint (c) Our method

Figure 3.7 Comparison of confusion matrix between our method and others for

similarity searching

Figure 3.7 shows the three confusion matrices for image retrieval. Each square matrix

had dimensions of 439 × 439, where 439 represents the total number of aerial images

in the dataset. The diagonal cells from top-left to bottom-right represent the correctly

retrieved query image. The decimal proportion value indicates the similarity to the

ground truth (the query image in the dataset). The off-diagonal cells represent the

71

mismatches. Figure 3.7(a) presents the confusion matrix obtained using the VGG-16

model. This matrix is used for extracting feature points and descriptors in the context

of aerial image retrieval from the dataset. The descriptors extracted from VGG-16 were

used for similarity search to retrieve images. The results indicate that the VGG-16

feature descriptor approach exhibited relatively high mismatches, suggesting its

limitations for aerial image retrieval. The image retrieval based on only feature

descriptors extracted by SuperPoint was evaluated using a confusion matrix (Figure

3.7b). The results indicate that the SuperPoint feature descriptor improved robustness

in similarity search compared with the VGG-16 feature descriptor. Figure 3.7(c)

displays the confusion matrix obtained through our approach after feature point

similarity evaluation and density comparison. Our approach showed a higher precision

than the other two methods, with fewer mismatches in the off-diagonal cells. These

findings suggest that our approach yielded more robust and reliable image retrieval

results than VGG-16 and SuperPoint feature descriptors.

3.3 Camera Pose Determination by the Integration of VO

and Space Resection

VO is a computer vision-based technique that enables a machine or robot to estimate

its position and orientation in the environment by analysing visual information from a

camera or multiple cameras. It is a critical technology for navigation and positioning in

various applications, including autonomous vehicles, drones, robotics, and augmented

reality. VO relies on extracting visual features, such as keypoints or landmarks, from

consecutive images or video frames and then tracking their motion over time to estimate

the relative camera motion. VO involves analysing the changes in the visual features to

estimate the camera pose (position and orientation) in 3D space, usually in relative

frames. However, traditional VO methods often struggle under low-illumination

conditions, fast motion, and large camera rotations. To overcome these challenges, a

state-of-the-art deep learning algorithm has been introduced as a powerful technology

for enhancing monocular VO.

Space resection is a fundamental technique used in photogrammetry to determine the

absolute camera pose in a 3D space. It involves estimating the camera position and

72

orientation relative to a known coordinate system. Space resection can accurately

calculate the camera pose by analysing the correspondences between 2D image points

and their corresponding 3D world points. First, a set of known 3D points is selected,

and then the corresponding 2D projections in the image are identified. The camera

exterior orientation parameters can be solved using the collinearity equation with the

camera interior orientation parameters. The reprojection error and the camera pose are

minimised and optimised through the iterative adjustment of the camera position and

orientation until the projected 3D points are aligned with their corresponding 2D points

in the image. This enables the conversion of image coordinates to world coordinates,

facilitating the accurate mapping of the camera position in space.

In the proposed approach, VO was used for the relative pose estimation of aerial image

series, and space resection was used to determine the absolute camera pose of the

keyframes (e.g., the turning point of the flying path) of the aerial images and transfer

the VO results to absolute scales. The concept of the proposed approach is illustrated

in Figure 3.8.

Figure 3.8 Overview of the integration of VO and space resection for camera pose

determination. The absolute pose of the keyframe obtained via space resection is used

as a constraint on the relative pose of the subsequent frames estimated via VO, resulting

in a refined trajectory.

73

3.3.1 Feature-Based VO

Feature-based VO methods, which rely on the detection and matching of features, such

as corners or keypoints, between consecutive images to estimate camera motion, are

commonly used in navigation and positioning (Aqel et al., 2016, Nistér et al., 2004).

However, these traditional feature-based VO algorithms have several limitations. They

are often sensitive to lighting conditions, as changes in illumination can adversely affect

feature quality and repeatability, leading to inaccurate feature detection and matching,

which can result in poor motion estimation. Additionally, these methods may have

limited robustness to motion blur and occlusions, as fast motion, motion blur, and

occlusions can limit the accuracy of feature tracking across consecutive frames.

Traditional feature-based methods may struggle to effectively handle these situations,

resulting in degraded motion-estimation accuracy. Furthermore, traditional feature-

based methods may face difficulties in accurately estimating motion in large camera-

rotation scenarios. Large camera rotations can cause changes in the appearance and

geometry of the scene, leading to feature mismatches and inaccurate motion estimates.

In contrast, deep learning-based VO algorithms such as SuperPoint and SuperGlue

(Sarlin et al., 2020) offer several advantages in navigation and positioning, such as their

robustness to varying lighting conditions. The state-of-the-art deep learning-based

methods can learn robust features from images with varying illumination conditions,

enabling accurate feature matching even in low-light or varying-lighting environments.

Moreover, these methods can capture complex and discriminative features from images.

They can learn sophisticated features, leading to more accurate and reliable feature

matching, even in challenging scenarios with motion blur, occlusions, or large camera

rotations. Additionally, state-of-the-art methods such as SuperPoint and SuperGlue

perform end-to-end feature extraction and matching while considering the global

context, which can help improve the overall pose estimation accuracy. These

advantages endow the state-of-the-art VO algorithms with improved performance and

reliability in motion estimation tasks, making them promising alternatives to traditional

feature-based methods.

74

3.3.1.1 Accuracy Evaluation of VO Methods

The performances of various VO algorithms on the KITTI odometry benchmark dataset

were evaluated using the average distance error and the relative distance error (RDE;

Geiger et al., 2013). The KITTI odometry benchmark dataset is widely used for

evaluating the accuracy, robustness, and real-time performance of VO algorithms for

monocular cameras. The dataset serves as a benchmark for comparing different

algorithms and assessing their performances in challenging driving scenarios, such as

unfavourable lighting conditions, unfavourable weather conditions, and complex

scenes. The KITTI odometry benchmark dataset includes 22 monocular camera

sequences with over 4,000 frames captured from a vehicle driving in urban and highway

environments. The sequences cover ~39 km and include diverse scenes such as urban

streets, residential areas, highways, and tunnels. The sequences were captured at a

frame rate of ~10 Hz, with a resolution of 1241 × 376 pixels. The ground truth poses of

the camera are provided in the dataset, which allows for the evaluation of the accuracy

of VO algorithms. The ground truth poses were obtained using a high-precision laser-

based Velodyne HDL-64E LIDAR sensor and a high-accuracy GPS/INS system. The

ground truth poses are provided as 3D translation vectors and 3D rotation matrices.

Figure 3.7 illustrates the experimental results of the traditional and deep learning-based

feature detection and matching methods.

Figure 3.9(a) shows the original two consecutive frames from one sequence of the

KITTI benchmark dataset. To demonstrate the limitations of the traditional feature-

based methods, Figure 3.9(b) presents the feature-matching results obtained using the

SIFT and FLANN (fast library for approximate nearest neighbours) algorithms for

feature detection and matching, respectively. Despite its popularity, the traditional

SIFT + FLANN algorithm may have limitations, such as reduced feature extraction and

matching robustness under varying conditions. Figure 3.9(c) shows the results obtained

using the SuperPoint deep learning-based algorithm for feature detection while

maintaining the same feature-matching method as in Figure 3.9(b). SuperPoint,

specifically designed to capture complex and discriminative features, showed improved

feature extraction and matching robustness. Furthermore, Figure 3.9(d) presents the

results of SuperPoint + SuperGlue, in which SuperPoint is used for feature detection

and SuperGlue, another deep learning-based method, is used for feature matching. The

75

use of SuperPoint + SuperGlue demonstrates the potential of end-to-end deep learning-

based algorithms for achieving improved feature-matching performance.

(a) sample of the sequence frames (b) SIFT + FLANN

(c) SuperPoint + FLANN (d) SuperPoint + SuperGlue

Figure 3.9 Experimental results of different feature detection and matching methods.

To further evaluate and compare the accuracies of traditional and state-of-the-art VO

methods, the methods were applied to all frames in the KITTI benchmark dataset, and

the average distance error and the RDE were calculated. The absolute distance error

(ADE) measures the absolute difference in distance between the estimated camera

trajectory and the ground truth trajectory. A lower average distance error indicates

higher accuracy in camera motion estimation. The RDE measures the relative

difference in distance between the estimated camera trajectory and the ground truth

trajectory at each time step and frame. A lower RDE indicates better consistency in

relative motion estimation between consecutive frames. Figure 3.10 compares the

experimental results of the estimated camera trajectory (shallow line) with the ground

truth trajectory (dark line).

76

(a) ADE = 344.6 m (b) ADE = 21.9 m

(c) ADE = 37.6 m (d) ADE = 15.5 m

Figure 3.10 Experimental results of estimated camera trajectories obtained via

different methods compared with the ground truth trajectory

The camera trajectory estimates obtained using SuperPoint + SuperGlue (Figure 3.10d)

closely reproduced the ground truth trajectory, indicating the superior performance of

deep learning-based methods. In contrast, when combined both the traditional feature

point extraction algorithms (Figures 3.10b) and the deep learning-based feature point

extraction algorithms with FLANN for feature point matching (Figures 3.10c), the

results deviate moderately from the ground truth. The estimated camera trajectory

obtained using ORB + BF showed a significant deviation from the ground truth (Figure

3.10a). The statistics of each approach for camera trajectory estimation are presented

in Figures 3.11 and 3.12. The ADE measures the cumulative error over time, while the

RDE evaluates the accuracy of camera pose estimation between two consecutive frames.

ORB + BF SIFT + FLANN

SuperPoint + FLANN SuperPoint +SuperGlue

77

The results in Figure 3.11 show that the SuperPoint + SuperGlue algorithm exhibited

the lowest ADE, with an average error of 15.5 m, while the ORB + BF algorithm

exhibited the highest ADE, with an average error of 344.6 m. The SIFT + FLANN

algorithm exhibited an ADE of 21.9 m, and the SuperPoint + FLANN algorithms

exhibited an average ADE of ~37.6 m. Both algorithms exhibited similar pattern offsets

in their trajectories, possibly because both algorithms were used with the same

matching algorithm. As shown in Figure 3.12, ORB + BF exhibited a substantially

higher RDE (0.748 m on average) than the other algorithms, while SIFT + FLANN

exhibited the lowest RDE (0.085 m on average). The SuperPoint + FLANN and

SuperPoint + SuperGlue algorithms exhibited an average RDE of 0.177 and 0.103 m,

respectively. These results suggest that the SuperPoint + SuperGlue algorithm

outperformed the other algorithms in overall accuracy, while the ORB + BF algorithm

exhibited the highest error.

Figure 3.11 ADE between the estimated camera trajectory and the ground truth

Figure 3.12 RDE between the estimated camera trajectory and the ground truth

78

3.3.1.2 Efficiency Evaluation of VO Methods

According to the above analysis, SuperPoint and SuperGlue demonstrated high

accuracy and precision in feature matching, which are crucial for accurate motion

estimation. SuperGlue, a deep learning-based feature-matching algorithm, further

enhances the accuracy and robustness of feature matching compared with traditional

methods such as BF or FLANN.

To evaluate the efficiency of different feature detection and matching algorithms, we

considered three aspects: CPU usage, GPU usage, and frames per second (FPS). CPU

usage refers to the amount of processing power required by the algorithm to run on the

CPU. A higher CPU usage indicates that the algorithm is computationally intensive and

may not be suitable for real-time applications and low-power devices. GPU usage refers

to the amount of processing power required by the algorithm to run on a GPU. The

speed of many feature detection and matching algorithms can be enhanced by running

them on a GPU rather than a CPU. FPS refers to the number of frames per second that

the algorithm can process. A higher FPS indicates that the algorithm can process more

frames in real time and is more suitable for applications requiring real-time processing.

According to these criteria, the efficiencies of the traditional and state-of-the-art VO

methods were evaluated on a PC with an Intel Xeon E5-2603 v4 CPU and an NVIDIA

GeForce RTX 2080Ti GPU.

Figure 3.13 presents the efficiency evaluation results of each VO method on the KITTI

benchmark dataset. ORB is a feature descriptor algorithm that primarily runs on a CPU.

Among the traditional VO methods, the ORB + BF algorithm is CPU-based. It runs

entirely on the CPU, with an average usage of 40% CPU resource, and does not require

GPU resource. Because ORB is a relatively lightweight feature detection algorithm and

the BF algorithm used for matching is relatively simple, the efficiency of ORB + BF

exceeded 90 FPS. SIFT is a computationally expensive feature detector. It involves

multiple steps, including scale-space extrema detection, keypoint localisation,

orientation assignment, and descriptor computation. These steps can be

computationally intensive and may require significant CPU usage. The FLANN

matching algorithm is more complex than BF and may require more CPU resources.

Overall, the CPU usage of SIFT + FLANN (52% on average) was higher than that of

79

ORB + BF. SIFT can utilise the GPU for certain computations, but the CPU typically

handles most of its workload. FLANN does not have GPU implementations. Therefore,

its GPU usage should also be negligible. Figure 3.11(b) shows that SIFT + FLANN

exhibited a lower FPS (27 on average) than ORB + BF, owing to the computational

complexity of the former.

Among the state-of-the-art VO methods, SuperPoint + FLANN was less efficient than

ORB + BF and SIFT + FLANN, as it requires a GPU for feature extraction. FLANN

consumed ~74% of CPU resources for loading CNNs and feature matching, and

SuperPoint consumed ~25% of GPU resources for feature extraction.

SuperPoint + FLANN exhibited a higher FPS (~40 FPS for the entire evaluation) than

SIFT + FLANN. However, both SuperPoint and SuperGlue require GPU for feature

extraction and matching. They featured the highest GPU usage among all of the

methods, and CPU usage was only for CNN loading. SuperPoint + SuperGlue exhibited

a moderate FPS: ~33.

(a) CPU usage (b) GPU usage (c) FPS

Figure 3.13 Efficiency evaluation for each VO method.

80

The above VO methods were applied to our aerial image and pre-built database to

evaluate the effectiveness of SuperPoint and SuperGlue on real-time motion estimation.

We compared the methods with traditional feature detection and matching methods.

(a) Aerial image and cropped tiles (b) ORB + BF

(c) SIFT + FLANN (d) SuperPoint + SuperGlue

Figure 3.14 Experiment of feature matching with different methods

Table 3.3 Comparison of correct matches and execution times for each feature-

matching method

Methods
Number of

Feature Points Correct
Matches

Execution Time (ms)

Detection Matching
Aerial
Images

Cropped
Tiles

Detection Matching Overall

ORB BF 460 463 105 101 8 109

SIFT FLANN 922 887 58 101 137 238

SuperPoint SuperGlue 917 1187 337 20 102 122

Figure 3.14 presents the experimental results of the traditional and deep learning-based

feature detection and matching methods on aerial images and the corresponding

cropped tiles from the orthoimage. Figure 3.14(a) displays the original aerial image and

cropped image tiles used in the experiment. SuperPoint + SuperGlue exhibited a larger

number of correct matches (Figure 3.14d) than ORB + BF and SIFT + FLANN (Figures

3.14b and c). These results are further substantiated by the data presented in Table 3.3.

The table shows that the execution time for SuperPoint feature detection was only ~20

81

ms, resulting in over 900 detected feature points. The execution time for SuperGlue

feature matching was 102.432 ms, with 337 correct matches. In contrast, the execution

time for BF matching was only 8 ms, but ORB consumed much more time for feature

detection. The overall execution time for SuperPoint and SuperGlue was only ~122 ms

per frame, which is significantly shorter than those of SIFT + FLANN (238 ms) and

ORB + BF (109 ms). Although ORB + BF is a fast algorithm for feature extraction and

matching, using SuperPoint + SuperGlue for these tasks can result in even faster and

more accurate performance, as discussed in the previous section on balancing accuracy

and efficiency. These findings highlight the computational efficiency and effectiveness

of SuperPoint and SuperGlue in real-time aerial image processing.

3.3.2 Space Resection for Camera Pose Determination of Keyframes

In visual navigation and positioning, space resection is used to determine the absolute

camera pose of the keyframes in real time according to the detected ground control

points (GCPs). In space resection, the camera position and orientation are computed

using collinearity equations that relate the image coordinates of the GCPs to their

known ground coordinates. As introduced in Chapter 2, the exterior orientation

parameters of the camera position (Xs, Ys, Zs) and orientation (φ, ω, κ) in the scene can

be solved using Eq. (3.3):

𝑥 − 𝑥଴ = −𝑓

𝑎ଵ(𝑋 − 𝑋௦) + 𝑏ଵ(𝑌 − 𝑌௦) + 𝑐ଵ(𝑍 − 𝑍௦)

𝑎ଷ(𝑋 − 𝑋௦) + 𝑏ଷ(𝑌 − 𝑌௦) + 𝑐ଷ(𝑍 − 𝑍௦)

𝑦 − 𝑦଴ = −𝑓
𝑎ଶ(𝑋 − 𝑋௦) + 𝑏ଶ(𝑌 − 𝑌௦) + 𝑐ଶ(𝑍 − 𝑍௦)

𝑎ଷ(𝑋 − 𝑋௦) + 𝑏ଷ(𝑌 − 𝑌௦) + 𝑐ଷ(𝑍 − 𝑍௦)

(3.3)

where a1, a2, a3, b1, b2, b3, c1, c2, and c3 are the elements of the rotation matrix consisting

of (φ, ω, κ). (x, y) is the image coordinates of the GCPs (X, Y, Z), and (x0, y0, f) is the

interior orientation of the camera. The space resection accuracy depends on the

accuracy of the GCPs, the camera calibration quality, and the image quality. The GCPs

must be accurately surveyed and measured to ensure that their known ground

coordinates are precise. The camera must also be calibrated to correct for lens distortion

and other factors that can affect the image coordinates.

82

Figure 3.15 Geometry of space resection

In this study, GCPs in real-word coordinates were found on the orthoimage and its

corresponding DSM. The geometry of space resection used in this study is given in

Figure 3.15. During the processing of the pre-built data, the DSM and the orthoimage

were simultaneously generated using all of the aerial images. After the feature points

on the aerial image are matched with the corresponding points on the orthoimage, the

spatial coordinates of the feature points can be obtained from the DSM according to the

image coordinates. Figure 3.16 provides an overview of the DSM generated from the

aerial image dataset.

83

Figure 3.16 Overview of the DSM in the pre-built database

The DSM used in this study had the same image size as the orthoimage (70,391 ×

59,269 pixels) and the same resolution of 1 m. The georeferenced DSM contained all

spatial information, including elevation, which is essential for accurate space resection.

Once the feature points on the aerial image are matched with the orthoimage, the image

coordinates of the feature points can be used to locate the corresponding real-world

coordinates on the DSM. These real-world coordinates can then be used as GCPs for

space resection, to estimate the UAV camera position and orientation. This estimation

can be achieved using Eq. (3.3), which considers the image coordinates of the feature

points and the corresponding real-world coordinates on the DSM. The camera position

estimation results are shown in Figure 3.17.

84

(a) (b) (c)

Figure 3.17 Experiment of space resection using matched GCPs on DSM to estimate

camera position and orientation: (a) aerial image sample; (b) matching feature points

from (a) to DSM to obtain real-world coordinates of GCPs; (c) estimated camera

positions (green dots) and orientations (white polygons). The blue dots are the actual

camera positions for reference.

In this study, aerial images with varying surface structures such as buildings, roads,

trees, and other features were selected to perform space resection and estimate the

position and orientation of the camera. The original aerial images captured by the UAV

camera are displayed in Figure 3.17(a), while Figure 3.17(b) shows the correct matches

between the aerial images and the DSM cropped tiles. The real-world coordinates,

obtained from the DSM cropped tile in WGS84 Mercator coordinates, were used as

GCPs for space resection. The estimated camera position (blue dot) for each aerial

image is visualised in Figure 3.17(c) and compared with the ground truth (green dot)

on the corresponding orthoimage cropped tiles. The estimated orientation is visualised

via homography using a white contour. The accuracy of the estimated camera position

and its deviation from the actual position are presented in Table 3.4. The average RDE

between the actual camera location obtained via GPS and the estimation results

calculated through the space resection of the above three images was 15.8 m. The error

may include other inevitable errors; for example, the ground truth from GPS is the

location of the antenna on the UAV and not the real camera spatial coordinates.

1

2

3

85

Therefore, the position and pose of the camera sensor estimated via space resection

from the feature points of the image plane will feature a slight deviation from the GPS

location obtained using the UAV positioning system.

Table 3.4 Accuracy evaluation of the experiment depicted in Figure 3.17

Image
Ground Truth (m) Results from Our Method (m)

ADE (m)
Lat. Lon. Height Lat. Lon. Height

(1) 11199634.5 1572373.7 258.6 11199628.1 1572379.7 261.82 9.3

(2) 11199414.5 1572566.3 254.4 11199409.4 1572561.8 261.02 9.5

(3) 11199189.2 1572119.6 256.3 11199191.1 1572122.8 263.45 8.0

3.3.3 Integration of VO and Space Resection for Continuous Camera

Pose Determination

The previous section presents VO as a method for estimating the position and

orientation of a camera in real time. However, the resulting estimates were in relative

camera coordinates, not absolute real-world coordinates. To address this limitation,

space resection was used to calculate the absolute pose of the camera in real-world

coordinates using known locations of features in the image and the corresponding GCPs.

Collinearity equations were solved using image coordinates of the GCPs, to derive the

absolute camera pose in real-world coordinates. This approach is beneficial for

environments where GPS signals are weak or unavailable, such as indoor environments,

urban canyons, or areas with dense foliage. Combining these two methods allows for

the real-time estimation of camera position and orientation, regardless of external

conditions.

Another limitation of VO is its over-reliance on camera images and features extracted

from the image to estimate the camera pose. In such environments, the features may be

difficult to detect or track, leading to errors in position estimation. Moreover, VO is

prone to cumulative errors, in which the estimated position and orientation drift away

from the actual position and orientation over time. To overcome these limitations, space

86

resection can be integrated with VO. Because space resection relies on GCPs to

estimate pose using the collinearity equation, it can be used to provide a global control

for transferring the VO results to the global absolute scale and correct the local

segments in which VO fails or largely deviates from the real situation. The workflow

of our proposed method for integrating VO and space resection is given in Figure 3.18.

Figure 3.18 Overview of the integrated VO and space resection for camera pose

determination.

The initial camera pose was calculated via space resection based on the collinearity

equation using the first several frames of aerial images. SuperPoint extracts features

f(I0) from aerial images I0 and then passes them to the cross-view image matching

approach for identifying the corresponding cropped orthoimage Co and DSM Cd tiles

in the pre-built database. The initial camera position R0 and orientation t0 were

calculated using the features from aerial images f(It) and GCPs from DSM cropped tiles.

87

The next step is a loop in which the camera position Rt and orientation tt are estimated

in real time via VO, according to the consecutive frames of aerial images It captured by

the camera. The number of correct matches of feature points between consecutive

frames was calculated to determine whether space resection was needed to estimate the

camera position and orientation again. Space resection was applied to refine the

estimated camera position and orientation if the number of correct matches fell below

a certain threshold. After the refined camera position and orientation were obtained via

space resection, VO was used for the subsequent frames. The following pseudocode

provides a more detailed description of our proposed method.

Algorithm 1: Pseudocode for integrated VO

Input: frame 𝑰𝒕, global features 𝒇𝒈

Output: absolute orientation and position [𝐑|𝐭]

1: if t = 0 then

2: 𝒇(𝑰𝒕) ← 𝑺𝒖𝒑𝒆𝒓𝑷𝒐𝒊𝒏𝒕(𝑰𝒕)

3: 𝑪𝒐, 𝑪𝒅 ← 𝑰𝒎𝒂𝒈𝒆 𝑹𝒆𝒕𝒓𝒊𝒗𝒆𝒂𝒍(𝒇(𝑰𝒕), 𝒇𝒈)

4: 𝑮𝑪𝑷𝒔 ← 𝑭𝒆𝒂𝒕𝒖𝒓𝒆 𝑴𝒂𝒕𝒄𝒉𝒊𝒏𝒈(𝒇(𝑪𝒐), 𝒇(𝑪𝒅))

5: [𝐑𝒕|𝐭𝒕] ← 𝑺𝒑𝒂𝒄𝒆 𝑹𝒆𝒔𝒆𝒄𝒕𝒊𝒐𝒏(𝒇(𝑰𝒕), 𝑮𝑪𝑷𝒔)

6: else loop

7: [𝐑𝒕|𝐭𝒕] ← 𝑽𝑶([𝒇(𝑰𝒕)|𝒇(𝑰𝒕ି𝟏)], [𝐑𝒕ି𝟏|𝐭𝒕ି𝟏])

8: if 𝒍𝒆𝒏𝒈𝒕𝒉(𝒎𝒂𝒕𝒄𝒉𝒆𝒔([𝒇(𝑰𝒕)|𝒇(𝑰𝒕ି𝟏)]) < 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅) then

9: [𝐑𝒕|𝐭𝒕] ← 𝒓𝒆𝒑𝒆𝒂𝒕 𝒔𝒕𝒆𝒑 𝟑 − 𝟓

In our integrated approach, space resection is adopted to provide an initial estimation

of the camera position and orientation, and then VO is used for real-time estimation.

The number of correct matches of feature points is used as a threshold to determine

when to switch back to space resection for refinement. This approach can provide more

accurate and reliable visual navigation and positioning by monitoring the number of

correct matches and dynamically adjusting between the two methods.

88

Figure 3.19 Experiment on integrating VO and space resection. The two frames

depict the use of space resection to determine the camera pose of keyframes in

situations where the UAV makes turns during the flight.

The experimental results of our VO–space resection integration approach for estimating

the camera position and orientation in real-world coordinates are shown in Figure 3.19.

Yellow dots represent the estimated results, while blue dots indicate the ground truth.

In situations in which the correct matches between two consecutive frames are not

89

sufficient to estimate the camera’s relative pose through VO, space resection

determines the camera’s absolute position and orientation as a constraint, enabling

trajectory refinement. This situation typically occurs when the UAV finishes

photographing along a planned flight route section and then turns around to start another

planned flight section.

To demonstrate the integrated strategy, Figures 3.19(a) and (b) show a pair of

consecutive frames captured by the UAV, while Figures 3.19(c) and (d) show the last

image from the first section and the first image from the second section, respectively.

When the features on these two consecutive frames are not sufficient for the VO

algorithm to estimate the camera position and orientation, the features on both images

are matched with the corresponding features on the cropped tile from the orthoimage

and the DSM for space resection. The estimated camera position and orientation are

shown as a yellow dot in Figure 3.19(e). The corresponding homography represented

by a red and white polygon illustrates the estimated orientation. Similarly, Figures

3.19(a) and (b) show the last image of the second flight section and the first image of

the third section, respectively. Although many features matched between the two

images, the mismatches were significant; consequently, the estimated camera position

and orientation exhibited significant deviation from the results based on the image

shown in Figure 3.19(a). Therefore, space resection was applied again to estimate the

camera position and orientation, which were then used to refine the camera pose. The

refined results were used as the initial start point for the third flight route.

Integrating VO and space resection is a promising approach for the real-time estimation

of the absolute camera pose in real-world coordinates. This method provides a reliable

and accurate solution for mapping applications, particularly in scenarios with weak or

unavailable GPS signals. The fusion of these two methods leverages the strengths of

both techniques, allowing for precise localisation even in complex environments.

Additionally, the fusion reduces the error accumulation associated with the standalone

methods, resulting in more robust and accurate mapping results. This integrated method

has many potential applications; for example, it can be applied in indoor environments,

urban canyons, or areas with heavy foliage, where traditional localisation methods may

not work effectively.

90

3.4 Implementation and Evaluation

The onboard computer of a UAV serves as the central processing units that controls

and manages the various components of the UAV, including the navigation and

positioning systems. In particular, the computer is essential for the visual navigation

and positioning of UAVs, as it utilises data from onboard sensors, such as cameras, to

estimate the UAV position and orientation in real time. The onboard computer requires

powerful image processing capabilities to extract features from the images captured by

the onboard cameras. Recently, there have been significant advancements in the

development of CPUs and GPUs for onboard computers in UAVs, with manufacturers

designing specialised hardware to meet the specific needs of UAV applications. For

example, Intel (Intel Corporation 2018) and ARM (Arm Limited 2023) have developed

CPUs specifically for use in UAVs. These CPUs are designed to be small, lightweight,

and energy-efficient, providing high-performance processing power. GPUs are also

becoming increasingly crucial for onboard computers in UAVs, as they can increase

the speed of complex image processing and machine learning algorithms, which is

critical for object recognition and tracking tasks. NVIDIA is a leading manufacturer of

GPUs for UAVs, with products such as the Jetson TX2 (NVIDIA 2017) and the Jetson

Xavier (NVIDIA 2018), which offer high-performance computing in a compact form.

These advancements in CPU and GPU technology enable UAVs to perform

increasingly complex tasks, such as visual navigation and UAV positioning, with high

accuracy and efficiency.

In this study, we implemented our proposed approach to estimate camera position and

orientation on an onboard computer with a CPU and a GPU. The following sections

introduce the overall design and evaluation results of our approach.

3.4.1 Onboard Platform and Algorithm Deployment

The NVIDIA Jetson Xavier NX is a high-performance system-on-module explicitly

designed for use in embedded artificial intelligence applications, including UAVs. It

features a 6-core NVIDIA Carmel ARM v8.2 64-bit CPU, a 384-core NVIDIA Volta

GPU, and 8 GB of LPDDR4 RAM. In addition to its processing power, the Jetson

91

Xavier NX system supports multiple cameras, high-speed I/O, and hardware-

accelerated video encoding and decoding.

(a) NVIDIA Jetson Xavier NX (b) Onboard computer installation

Figure 3.20 Schematic of onboard computer installation and assembling

An instance of NVIDIA Jetson Xavier NX chips is demonstrated in Figure 3.20(a), and

Figure 3.20(b) illustrates the installation and assembling of the Jetson Xavier NX

system on a UAV. The compact size, low power consumption, and high performance

of the module make it an excellent choice for use in UAVs. The module’s capacity to

handle complex tasks makes it a perfect fit for visual navigation and positioning

applications. Another significant feature of the module is its ability to perform multi-

threaded processing using the CPU and GPU, allowing for the efficient processing of

complex algorithms while minimising power consumption. For example, the CPU can

be used for background tasks, while the GPU is used for real-time image processing

and machine learning.

The allocation of the algorithms in our approach is shown in Figure 3.21. As the CPU

is proficient in logic processing, we allocated VO and space resection algorithms to two

threads for efficient parallel processing. The implementation of SuperPoint and

SuperGlue algorithms relied on deep learning frameworks, and the Jetson Xavier NX

GPU supported TensorRT (NVIDIA 2021) to accelerate graphic processing using deep

learning algorithms.

92

Figure 3.21 Algorithm deployment on GPU and CPU

The Jetson Xavier NX GPU has 384 CUDA cores and Tensor cores specifically

designed for deep learning tasks. These cores enable the Jetson Xavier NX module to

perform real-time inference based on deep neural networks, making it ideal for object

detection and application tracking. TensorRT is an NVIDIA software library that

optimises deep learning models for deployment on NVIDIA GPUs. It combines graph

optimisation and layer fusion to optimise the computation graph of the neural network,

resulting in shorter inference times and lower memory requirements. Furthermore, by

allocating the VO and space resection algorithms to two separate threads, we leveraged

the multi-threaded processing capabilities of the Jetson Xavier NX CPU, so that the

tasks could be performed in parallel, significantly improving the system’s overall

performance for real-time processing.

The memory controller fabric (MCF) plays a crucial role in optimising the performance

of the NVIDIA Jetson Xavier NX system. Its primary function is to manage memory

access and bandwidth between various processing elements on the chip. The MCF

facilitates efficient and rapid data transfer between the CPU, GPU, and other processing

units. For instance, when image data are received from a camera, the USB controller

first processes the data, which are then connected to the MCF. The MCF manages data

transfer between the USB controller and the appropriate processing unit, such as the

CPU or the GPU. If image processing is assigned to the CPU, the MCF ensures that the

93

image data are transferred from the memory to the CPU, which then processes the

image data as necessary. If image processing is assigned to the GPU, the MCF transfers

the image data from the memory to the GPU’s GDDR6 memory. The GPU then

performs the required image processing and machine learning tasks on the data.

Moreover, the MCF dynamically allocates memory resources between the CPU and the

GPU as needed, depending on the processing requirements of the image processing

algorithm. This helps optimise the system’s performance, ensuring that the system

operates efficiently and accurately.

3.4.2 Evaluation with Aerial Images and Pre-built Database

In the experiment, the camera position and orientation were estimated through our

approach using 439 aerial images. The algorithm was implemented on the Jetson Xavier

NX system following the deployment shown in Figure 3.22. The resulting estimations

and ground truth are presented in Figure 3.22. The camera position and orientation were

obtained in WGS84 Mercator coordinates, with latitude, longitude, and height in metres.

The estimated position was plotted on the orthoimage with a resolution of 1 m after

coordination transformation from WGS84 Mercator to image coordinates. The root

mean square error (RMSE) values in the horizontal (longitude and latitude) and vertical

(height) directions were calculated (Table 3.5). The overall RMSE was 4.7 m, and the

average execution time of our approach was 897.39 ms.

Table 3.5 Evaluation of trajectory estimation accuracy

ADE (m)

Rotation Error (°)
Horizontal Vertical Overall

Mean 17.17 8.09 22.17 0.51

RMSE 4.14 14.24 4.7 0.33

94

Figure 3.22 Comparison of trajectories estimated using our approach and the ground

truth

Our approach achieved an RMSE of 4.7 m in ADE and 0.33° in rotation error. The

execution time of the proposed approach includes several steps, namely the reading and

writing of image data in memory, VO and space resection in the CPU, and the

implementation of deep learning algorithms in the GPU. However, owing to the limited

arithmetic power of the Jetson Xavier NX’s camera ARM v8 processor and the

complexity of the space resection algorithm, the input images were resized to 640 × 480

pixels to fully utilise the CPU and GPU resources. The CPU usage and GPU usage are

given in Figure 3.23.

95

(a) CPU usage (b) GPU usage (c) FPS

Figure 3.23 The utilisation of hardware resources for each algorithm and

the overall FPS of integrated VO

VO and space resection utilised most of the CPU resources for complex calculation,

while the remaining CPU resources were allocated to image reading and writing and

the loading of deep learning frameworks. Feature extraction and image retrieval

consume a large amount of GPU resources, occasionally resulting in full utilisation,

particularly when both algorithms are running simultaneously. The FPS fluctuated

between 9.5 and 14, with an average of 12, depending on the execution time of each

algorithm running in the CPU and the GPU. Our experiments showed that our approach

can achieve near-real-time efficiency, demonstrating its potential for achieving real-

time localisation. The results indicate that our proposed method can be optimised for

improved performance; for example, the space resection algorithm and the utilisation

of the hardware resources, such as the Tensor cores of the GPU, can be optimised.

Integrating VO and space resection techniques has immense potential for real-time

UAV position estimation. With the increasing use of UAVs in diverse industries, this

96

integration can help overcome the challenges limiting the precise and reliable real-time

estimation of UAV position and orientation, enabling more successful UAV

applications. For instance, UAVs can be used for monitoring, inspection, search and

rescue, and mapping applications. However, accurately estimating UAV position and

orientation in real time is challenging. Integrating VO and space resection techniques

offers a solution and could significantly enhance the accuracy and reliability of UAV

applications.

97

Chapter 4 Real-Time Dense Image Matching

Based on GPU Acceleration

4.1 Overview of Approaches

Dense disparity estimation is a challenging task owing to the high level of ambiguity

often associated with real-world scenarios. Dense image matching algorithms, such as

the SGM algorithm (Hirschmuller et al., 2008), have been extensively used in various

applications. Methods combining SGM with different types of local similarity metrics

are insensitive to various types of noise and interference (e.g., illumination), efficiently

estimate disparity on large untextured areas, and can produce favourable matching

results (Feng et al., 2019, Sinha et al., 2014, Spangenberg et al., 2014).

This section focuses on the development and implementation of a parallel-architecture

SGM algorithm for real-time dense image matching on photogrammetric applications.

A parallel-architecture method for accelerating dense image matching is proposed. This

method can improve the efficiency of dense image matching in real-time scenarios. Its

effectiveness is experimentally demonstrated in two applications. The first application

involves the generation of real-time disparity maps using ground images obtained from

a stereo camera. The second application involves real-time dense image matching to

generate disparity maps using aerial images captured by UAVs.

This section includes the following:

(1) The SGM framework for dense image matching is introduced in Section 4.2. Issues

related to processing efficiency (e.g., the matching cost [MC] and the selection of

similarity measures) are discussed.

(2) The implementation of a parallel-architecture SGM with enhanced computational

efficiency is presented. The parallel architecture significantly improves the overall

processing efficiency of the algorithm and endows it with real-time processing

applicability.

98

(3) To evaluate the real-time processing efficiency of the parallel-architecture SGM,

we first used images taken by a stereo camera to assess the processing efficiency of

real-time depth map generation and then tested the algorithm using large-scale

aerial images collected from a UAV platform. The results of the real-time

processing of the depth maps and the evaluation results are presented, and the

results are analysed and discussed in Section 4.4.

4.2 SGM-Based Dense Image Matching and Efficiency

Considerations

In Chapter 2, the state-of-the-art dense image matching algorithms are reviewed in

terms of their strengths and weaknesses, and their performances in different scenarios

are evaluated and compared. Our analysis and previous studies (Hermann et al., 2011,

Hirschmuller, 2005, Stentoumis et al., 2015) indicate that SGM can generate robust

matching results in stereo-scope scenarios.

SGM was first proposed by Hirschmuller (2005). It is a pixel-wise matching algorithm

that combines the benefits of both global and local matching techniques. This dense

image matching algorithm operates on a pair of images with known internal and

external orientations and a defined epipolar geometry, meaning that the corresponding

points are situated on the same horizontal line in the image. The objective of the

algorithm is to minimise a global smoothness constraint by combining the MCs along

independent one-dimensional paths across the image.

Scharstein et al. (2002) adopted a scanline approach to calculate a single global MC for

each image line. This method was prone to streaking effects, as the optimal solution of

each scan was not connected to the neighbouring scans. The SGM algorithm overcomes

this limitation by symmetrically computing the pixel MC through multiple paths in the

image. Given a known disparity value, the MCs obtained from each path are aggregated

for each pixel and disparity value. The SGM algorithm then selects the pixel matching

solution with the lowest cost, often through dynamic programming. This unique image

matching approach leads to a more robust solution, eliminating the streaking effects

present in previous methods. The MC vector is a 3D structure in which the first two

99

dimensions represent the pixels of the reference image, and the third dimension

represents the pixels of the target image.

𝐿ᇱ
௥(𝑝, 𝑑) = 𝐶(𝑝, 𝑑) + min (𝐿௥(𝑝 − 𝑟, 𝑑),

𝐿௥(𝑝 − 𝑟, 𝑑 − 1) + 𝑃ଵ,

𝐿௥(𝑝 − 𝑟, 𝑑 + 1) + 𝑃ଵ,

min
ூ

𝐿௥(𝑝 − 𝑟, 𝑖) + 𝑃ଶ) − min
௄

𝐿௥(𝑝 − 𝑟, 𝑘)

(4.1)

The cost 𝐿ᇱ
௥(𝑝, 𝑑) of the pixel p at disparity d along the path direction r is defined in

Eq. 4.1 as in Hirschmuller (2005). 𝐶(𝑝, 𝑑) represents the similarity cost between the

pixels. The second part of the equation evaluates the regularity of the disparity field by

introducing a penalty term P1 to account for small changes. P2 accounts for more

significant changes in disparity relative to the previous point in the evaluated matching

path. P1 and P2 allow for the description of curved surfaces and the preservation of

disparity discontinuities, respectively. The last term of the equation plays a crucial role

in mitigating the accumulated cost along the path. The subtraction of the minimum path

cost of the preceding pixel from the overall cost allows for reducing the overall cost

and ensures that the final result is minimised.

The SGM algorithm performs the minimisation operation via dynamic programming

(Van Meerbergen et al., 2002). To avoid streaking effects, SGM computes the

optimisation by symmetrically combining multiple individual paths from all directions

in the image. The algorithm generates the final disparity map by summing the costs of

all paths r and identifying the disparity with the minimum cost for each pixel p in the

image. The cost aggregation is expressed in Eq. 4.2. The minimum position is

calculated by fitting a quadratic curve through the cost values of the neighbours’ pixels

for sub-pixel estimation of the final disparity solution.

 𝑆(𝑝, 𝑑) = ෍ 𝐿௥(𝑝, 𝑑)

௥

 (4.2)

100

4.2.1 Matching Costs and Similarity Measurements

Area-based matching methods are fundamental techniques for identifying

corresponding pixels. However, it is assumed that all pixels within a correlation

window possess equivalent depth values, which is not necessarily valid in the presence

of depth discontinuities or substantial perspective changes between matching images.

Utilising small templates in the matching process may result in noisy and low-precision

outcomes. In contrast, larger templates can lead to smoother results but also violate the

constant-depth hypothesis, causing a loss of information on the shape details of small

objects. The size of the correlation window influences the accuracy and completeness

of the results and matching efficiency. While small correlation windows improve the

level of object details, they may also provide an unreliable disparity estimation owing

to the insufficient coverage of intensity variations. Conversely, a large window size

hinders the ability of the matching algorithm to estimate sudden depth changes, leading

to erroneous matching pairs and the generation of smoother surfaces (Kanade et al.,

1995). Image correlation in computer vision research is characterised by swiftness and

low demand for runtime and memory occupancy; thus, it tends to be more widely

utilised as a matching technique than alternatives such as least squares matching (Gruen

et al., 1988). Common parametric correlation measures used in photogrammetry and

computer vision include the sum of SAD and NCC.

The SAD is calculated as the summation of the absolute differences between each pixel

in an original image and the corresponding pixel in the matched image within a search

window. In contrast, the sum of squared differences (SSD) is calculated as the

summation of the squares of the differences between the same pixels. The summations

are optimised via the winner-take-all (WTA) strategy (Kanade et al., 1995). The SAD

and SSD are expressed as

 𝑆𝐴𝐷 = ෍ ෍|𝑓(𝑖, 𝑗) − 𝑔(𝑖, 𝑗)|

௝௜

 (4.3)

 𝑆𝑆𝐷 = ෍ ෍൫𝑓(𝑖, 𝑗) − 𝑔(𝑖, 𝑗)൯
ଶ

௃ூ

 (4.4)

101

where the window f is centred in the (x, y) position on the master image, and the

corresponding same-size window on the slave image g is shifted by (∆𝑥, ∆𝑦).

The NCC is more complex than both the SAD and SSD; however, it is invariant to

linear transformations in the image amplitude. Normalising feature vectors to unit

length allows the similarity measure between the features to become independent of

radiometric changes (Yoo et al., 2009). The NCC identifies matches of a reference

template f(j, i) of size m × n in a scene image g(x, y) of size M × N, and is defined as

 𝜌(𝑖, 𝑗) =
∑ ∑ ൣ൫𝑓(𝑗, 𝑖) − 𝑓൯̅ ∙ (𝑔(𝑗 + ∆𝑥, 𝑖 + ∆𝑦) − 𝑔̅)൧௝௜

ට∑ ∑ [൫𝑓(𝑗, 𝑖) − 𝑓൯̅
ଶ

∙ (𝑔(𝑗 + ∆𝑥, 𝑖 + ∆𝑦) − 𝑔̅)ଶ]௝௜

 (4.5)

where 𝑓 ̅and 𝑔̅ represent the corresponding sample means. A unitary value of the NCC

coefficient indicates a perfect matching window.

4.2.2 Census Transform

The census transform (CT) (Zabih et al., 1994) is an area-based solution to the problem

of correspondence between images. The CT is a non-parametric description of the local

spatial structure. It compares the intensity values of each pixel within window W with

that of the central pixel according to the Hamming distance. The intensity comparison

between the master and central slave pixel p of the window returns a Boolean value of

1 if the pixel intensity is less than the intensity of the central pixel, and 0 otherwise; that

is,

 𝑅(𝑝) =⊗௣ᇲ 𝜉(𝐼(𝑝ᇱ), 𝐼(𝑝))
𝜉(𝑖, 𝑗) = 1, 𝑖 < 𝑗

𝜉(𝑖, 𝑗) = 0, 𝑖 > 𝑗
(4.6)

where ⊗ represents the concatenation and 𝑝ᇱ ∈ 𝑊. According to Hirschmuller et al.

(2008), both hierarchical mutual information and CT features provide similarly high-

quality results, with CT being less computationally demanding. However, recent

advancements in cost functions based on neural networks have been demonstrated to

outperform CT (Zbontar et al., 2015) but increase computational requirements.

102

4.2.3 Efficiency Considerations

The accuracy and computational efficiency of real-time dense image matching using

SGM depend on several critical factors, including the choice of similarity measure,

adaptive window size, and search range. The similarity measure is critical in

establishing correspondences between the left- and right-view images and estimating

the disparity. The adaptive window size is used to limit the search space for matching

pixels, which helps to reduce the number of computations required. Additionally, the

search range defines the minimum and maximum disparity values. Increasing the

maximum disparity value allows the algorithm to estimate disparities over a wider

range of pixel distances but increases the computational requirements and the noise

levels in the resulting disparity map.

Image similarity measures also ensure that the disparities can be accurately estimated

in the presence of noise, occlusions, and other image artefacts. Among the widely used

image similarity measures, the SAD is computationally efficient and straightforward,

making it suitable for images with small changes in content, such as close-range images.

The SSD and NCC are more robust to illumination and contrast variations, making them

more accurate than the SAD for images with large changes in content, such as large-

scale images. Owing to their complex calculation steps, the SSD and NCC require more

computational resources than the SAD. Once the MC volume is created, it is processed

via cost-volume smoothing (using a series of filters) through a left–right consistency

check to reduce the number of false matches. The left–right consistency check ensures

that the disparity value for a pixel in one image is the same as that for the corresponding

pixel in the other image. Finally, the optimal path is computed according to the cost

volume, which provides the correspondences between the pixels of the two images. The

optimal path is calculated using a dynamic programming algorithm such as the WTA

strategy or graph cutting. The WTA strategy is a simple approach for computing the

optimal path (Scharstein et al. 2002). It involves finding the minimum value of the cost

volume along the disparity dimension for each reference image pixel. The algorithm

finds the minimum cost with overall disparities for each pixel of the reference image,

and assigns the corresponding disparity value to the pixel.

103

(a) (b)

(c) (d)

Figure 4.1 Dataset for similarity measurement evaluation: (a) left-view image; (b)

right-view image; (c) ground-truth disparities; (d) invalid disparity mask.

The accuracy and computational efficiency of various similarity measures combined

with WTA were assessed using the standard benchmark dataset for stereo vision

proposed by Scharstein et al. (2003). The benchmark dataset included a pair of left- and

right-view images, each with a 450 × 375 pixels resolution (Figure 4.1). Ground-truth

disparities were provided for accuracy evaluation, and a grey-level mask was used to

indicate pixels with invalid disparities; the invalid disparities were encoded as 0 and 1,

respectively. The similarity measures were evaluated through the comparison of the

estimated disparities with the ground-truth disparities, and the provided mask was used

to exclude pixels with invalid disparities.

104

(a) (b) (c)

Figure 4.2 Disparity results obtained using different similarity measures combined

with WTA: (a) SAD with WTA; (b) SSD with WTA; (c) NCC with WTA.

Table 4.1 Accuracy and efficiency results of different similarity measures

 SAD SSD NCC

Accuracy (%) 86.4 88.1 91.1

Processing time (s) 1.76 2.28 4.13

The disparity results obtained using various similarity measures are shown in Figure

4.2. The accuracy was evaluated using the following equation:

 𝐴𝑐𝑐𝑋 =
∑ ∑ 𝑑(𝑖, 𝑗)௡

௝
௡
௜

∑ ∑ 𝑔(𝑖, 𝑗)௠
௝

௠
௜

× 𝑚𝑎𝑠𝑘 (4.7)

where d(i, j) represents the disparity generated using various similarity measures, and

g(i, j) is the corresponding ground-truth disparity. The mask was applied to filter out

all unknown disparities, and the accuracy was calculated using valid pixels. Compared

with the other similarity measures, the NCC provided more robust disparity results,

with >90% accuracy. As indicated in Table 4.1, the NCC provided high-precision

disparity; however, the computational cost of ~4 s per pair of stereo images was higher

than those of the other two measures. The SAD and SSD provided similar accuracies

in the disparity results: 86.4% and 88.1%, respectively, but the processing time of the

SAD was 1.76 s, much less than that of the SSD. Because the processing efficiency and

simplicity of the algorithm are essential for real-time stereo matching, the SAD is

preferred for similarity measures, as it requires less computation time than the SSD or

NCC and is suitable for real-time stereo matching.

105

To achieve real-time stereo matching, it is necessary to carefully choose the adaptive

window size for the search space of each pixel and the search range between a pair of

stereo images to limit computational cost. The evaluation of the window sizes and the

minimum and maximum disparities adopted in SGM was assessed using the same

dataset. In the experiment, the minimum variance was set to 0 to reduce the influence

of redundant variables on the evaluation results. The accuracy and efficiency of

disparity generation under different window sizes and a search range of diverse

maximum disparities are shown in Figure 4.3. The results in Figure 4.3(a) were

obtained using a window size of 5 × 5 pixels. A larger maximum disparity led to a more

robust disparity estimation. At a maximum disparity of over 64 pixels, the disparity

generation accuracy became stable and remained above 90%. Similar results were

observed at various window sizes of 9 × 9, 13 × 13, and 21 × 21 pixels (Figures 4.3b,

c, and d).

Figure 4.3 also indicates that the processing time for disparity estimation increased with

increasing window radius under a constant maximum disparity. For instance, the time

for disparity generation under a maximum disparity of 64 pixels and a window size of

5 × 5 pixels was ~1.5 s (Figure 4.3a). However, disparity estimation under a window

size of 21 × 21 pixels took ~13 s (Figure 4.3d).

106

(a) (b)

(c) (d)

Figure 4.3 Disparity estimation accuracy and processing time evaluation results

under the same maximum disparity and different window sizes of (a) 5 × 5, (b) 9 ×

9, (c) 13 × 13, and (d) 21 × 21 pixels.

In conclusion, to achieve real-time dense image matching using SGM, the following

are recommended: 1) The SAD should be used as the similarity measure for close-range

images owing to its lower complexity and more robust disparity estimation ability

compared with other similarity measures. 2) An adaptive window size of 5 × 5 pixels

and a search range with 64 pixels as the maximum disparity should be adopted, as these

parameters provided accurate and fast disparity estimation in the conducted experiment.

3) The smoothing of MC for each path should be considered as a filtering procedure to

reduce the number of false matches. 4) Dynamic programming techniques such as WTA

should be employed to calculate the optimal path using MC, thereby determining the

relationship between the pixels of the two images.

107

74.3 GPU-Accelerated Dense Image Matching

Figure 4.4 GPU-accelerated procedure of dense image matching and 3D map

generation.

A GPU-accelerated SGM method was developed to obtain a disparity map for real-time

stereo image estimation. As shown in Figure 4.4, each frame of the stereo images in the

rectified pipeline was captured by preliminary calibrated cameras as a side-by-side

(SBS) image and saved in the host memory. The GPU device copied this image from

the host memory space and split it into left-view and right-view images in preparation

for dense image matching by SGM. The CT features were extracted from the two

images and used for a similarity comparison to generate a local-matching cost for each

pixel and potential disparity. SGM was then used to aggregate a smoothing cost that

considers the similarity of the neighbouring points and disparities along different paths

to reduce errors. In this system, the number of paths was set to four to reduce

computational consumption while ensuring the quality and effectiveness of real-time

processing. The disparity of each pixel was computed, and a 3 × 3 median filter was

applied to remove outliers. The resulting disparity image was copied back to the local

host memory and stitched with the left-view image to form a new image array, which

was then saved in the queue for visualisation.

108

4.3.1 GPU Architecture and Performance

GPUs are massively parallel architectures containing tens of streaming multiprocessors

(SMs), and vector computer operations are highly utilised and pipelined in SMs to

optimise computational efficiency. The compute unified device architecture (CUDA)

programming model (NVIDIA et al., 2020) allows for defining a massive number of

threads deployed in SMs of the same program code. SGM was coded using a two-level

identifier in CUDA to specialise each thread for disparity estimation. The code in this

study was deployed following the method proposed by Hernamdez-Juarez et al. (2016).

The CUDA programming model provides a platform for executing parallel programs

in a GPU environment. It enables the creation of numerous concurrent execution

instances, commonly referred to as threads, which run the same program code. The

threads are differentiated according to their unique two-level identifier, <ThrId, CTAid>,

which serves as a specialisation mechanism for assigning particular data and functions

to each thread. A cooperative thread array (CTA) is a group of threads that

simultaneously execute the same CTAid within the same SMs and can share a fast,

limited memory space. Warps are groups of threads with consecutive ThrIds within the

same CTA, and they are compiled by a compiler into vector instructions, allowing for

the execution of the threads in a lockstep synchronous manner. Warps belonging to the

same CTA can be synchronised according to explicit barrier instruction. Each thread

has its own private local memory space, commonly assigned to registers by the

compiler. Additionally, a large space of global memory is accessible to all execution

instances, providing a shared public space for data and functions. The global memory

is mapped into a large-capacity device memory with a long latency and is optimised

using a two-level hierarchy of cache memories.

The parallelisation scheme of an algorithm and the data layout determine the available

parallelism at the instruction and thread levels, which is crucial for achieving the total

resource usage and the memory access pattern. To achieve efficient memory

performance, the GPU requires that the set of addresses generated by a warp correspond

to consecutive positions that can be coalesced into a single, wider memory transaction.

As the device memory bandwidth can be a performance bottleneck, an efficient CUDA

109

code should be used to promote data reuse on shared memory and registers. The design

of the CUDA programming model allows for the efficient use of the GPU resources

through the creation of numerous concurrent execution instances and the utilisation of

a fast but limited memory space of the SMs. The use of warps and CTAs allows for

efficient thread execution and synchronisation and enhances memory performance by

promoting data reuse and coalescing memory transactions. CUDA provides a powerful

and efficient platform for parallel computing on GPUs.

4.3.2 GPU-Based Centre-Symmetric CT and Matching Cost Computation

As mentioned in the previous section, CT is a technique for encoding the similarities

between the values of pixels in a window around a central pixel. A global two-

dimensional energy minimisation problem involving non-unique or wrong

correspondences caused by low texture and ambiguity can feature consistency

constraints. SGM approximates the global solution by solving a one-dimensional

minimisation problem along several independent paths across the image (Hirschmuller

et al., 2008). There are typically four or eight paths. An eight-path direction was used

in this work (Figure 4.5). For each path direction, image point, and disparity, SGM

calculates a cost by considering the cost of neighbouring points and disparities. The

other path directions along the diagonal paths between pixel P and P’ are not

immediately available for cost calculation, resulting in complex memory access

patterns. The number of paths used in the SGM algorithm plays a crucial role in

determining the final outcome. It affects both the quality and accuracy of the results. A

higher number of paths will result in a more accurate solution but increases

computational time. A lower number of paths will result in faster computation but

reduces accuracy.

110

Figure 4.5 Orientations of eight paths for pixel P, shown in black.

After careful examination, a centre-symmetric CT (CSCT) configuration with a 9 × 7

window size was selected, providing a compact representation while maintaining

similar accuracy (Spangenberg et al., 2013). The similarity between two pixels was

calculated using the Hamming distance of the CSCT bit-vector features. This feature is

robust in outdoor environments with uncontrolled lighting and in the presence of

calibration errors. The CT feature is invariant to local intensity changes and tolerant to

outliers, as it compares the neighbouring pixels with each other. An incorrect value only

modifies a single bit, which will not considerably affect the overall similarity score.

To accelerate the CSCT and MC computation using GPUs, CTA-parallel schemes are

proposed in this work. The CSCT feature encodes the similarities between the values

of pixels in a window around a central pixel. The CSCT feature uses a 9 × 7 window

size and concatenates the comparisons of 31 pairs of pixels into a bit-vector feature. Eq.

4.8 defines the CSCT, where ⊗ is bit-wise concatenation; I(x, y) is the value of pixel

(x,y) in the input image; and s(u,v) is 1 if u ≥ v, or 0 otherwise. This bit-vector feature

calculates the MC between a pixel (x, y) in the base image and each potentially

corresponding pixel in the matched image at a specific disparity d. MC is calculated

using Eq. 4.9, where ⊕ denotes bit-wise exclusive-or, and the bit count (B) is the

number of bits set to 1.

111

 𝐶𝑆𝐶𝑇ଽ,଻(𝐼, 𝑥, 𝑦) =⊗ ቊ
⊗௜ୀଵ

ସ ⊗௝ୀିଷ
ଷ 𝑠(𝐼(𝑥 + 𝑖, 𝑦 + 𝑗), 𝐼(𝑥 − 𝑖, 𝑦 − 𝑗))

⊗௝ୀଵ
ଷ 𝑠(𝐼(𝑥, 𝑦 + 𝑗), 𝐼(𝑥, 𝑦 − 𝑗))

, (4.8)

 𝑀𝐶(𝑥, 𝑦, 𝑑) = 𝐵(𝐶𝑆𝐶𝑇ଽ,଻(𝐼௕௔௦௘, 𝑥, 𝑦) ⊕ 𝐶𝑆𝐶𝑇ଽ,଻(𝐼௠௔௧௖௛, 𝑥 − 𝑑. 𝑦). (4.9)

Figures 4.6 and 4.7 show the pipeline of CSCT and the MC processing steps,

respectively. In Figure 4.6, (H, W) denotes the dimensions of an input image. A 2D-

tiled data access pattern using shared memory reduces the total number of global data

accesses. To enhance the processing efficiency, computation and image input in the

system are performed using the 32-bit integer data type. To maintain data coherence

and alignment for all threads in CUDA, a conversion from integer to uchar4 data type

(the native data type in the GPU) is conducted just before result writing. The cost values

are only stored in the shared memory every four iterations, and the in-built packed

uchar4 data type is used to minimise memory bandwidth requirements. This leads to a

compact data layout of the cost space, which is not significant if subsequent kernels

employ the same parallelisation scheme and thus maintain a consistent data layout. This

straightforward and embarrassingly parallel design allows each thread in the GPU to

read its input values directly from the global memory, thereby optimising data reuse.

Figure 4.6 CSCT: 2D-tiled CTA-parallel scheme.

Figure 4.7 MC: 1D-tiled CTA-parallel scheme.

112

A 1D-tiled parallel scheme for MC calculation using Eq. 4.9 is shown in Figure 4.7. D

represents the maximum disparity. Each thread synchronously calculates the disparity

levels of a group of D neighbouring pixels in D threads. Pixels from the left and right

CSCTs are aligned and coalesced over the D threads. Additionally, choosing D as a

multiple of the warp size results in an always-aligned memory access. The MC

calculation follows an optimisation approach similar to CSCT calculation by providing

inherently aligned memory access, high data reuse, and efficient arithmetic pipeline

usage.

𝐿௥(𝑥, 𝑦, 𝑑) = 𝑀𝐶(𝑥, 𝑦, 𝑑) +

𝑚𝑖𝑛

⎩
⎪
⎨

⎪
⎧

𝐿௥(𝑥 − 𝑟௫, 𝑦 − 𝑟௬, 𝑑)

𝐿௥൫𝑥 − 𝑟௫, 𝑦 − 𝑟௬, 𝑑 − 1൯ + 𝑃ଵ

𝐿௥൫𝑥 − 𝑟௫, 𝑦 − 𝑟௬, 𝑑 + 1൯ + 𝑃ଵ

𝑚𝑖𝑛௜𝐿௥൫𝑥 − 𝑟௫, 𝑦 − 𝑟௬, 𝑖൯ + 𝑃ଶ

− 𝑚𝑖𝑛௞𝐿௥൫𝑥 − 𝑟௫, 𝑦 − 𝑟௬, 𝑘൯,
(4.10)

 𝐷(𝑥, 𝑦) = 𝑚𝑖𝑛ௗ ∑ 𝐿௥(𝑥, 𝑦, 𝑑)௥ . (4.11)

SGM solves one-dimensional minimisation problems by considering different paths,

represented by the vector r = (rx, ry), and using a dynamic programming algorithm to

find the optimal path. The method uses a matrix called Lr, which contains the smoothed

aggregated costs for each path r. The smoothing costs are calculated as in Eq. 4.10,

which has three terms. The first term is the original MC, denoted MC (x, y, d), which is

the cost of matching the current pixel to the corresponding pixel in the other image. The

second term is the minimum cost of the disparities corresponding to the previous pixel

(x − rx, y − ry). This term includes penalties for small disparity changes P1 and larger

disparity discontinuities P2. P1 is designed to detect slanted and curved surfaces, as they

are more likely to feature small disparity changes. P2 smoothens the results and makes

it more difficult for abrupt changes to occur. This is important as abrupt changes may

result in false depth perception. The last term of Eq. 4.10 ensures the boundedness of

the aggregated costs, which prevents unrealistic results and helps the algorithm to

converge to the optimal solution. This term also limits error accumulation in the

calculation, thereby increasing the accuracy of the final result. Eq. 4.10 demonstrates

the use of the WTA strategy, in which the matrices Lr are added to obtain the final cost,

and then the disparity corresponding to the minimum cost is selected.

113

Eq. 4.10 is used to calculate the costs of different paths in the SGM method, but it also

creates a recurrent dependence that prevents the parallel processing of pixels in the

same path direction. However, parallelism can still be exploited in other ways.

Specifically, it can be exploited in the direction perpendicular to the path, in the

disparity dimension, and for each of the computed path directions. Our proposed

solution leverages all of the available parallelism by creating a CTA for each slice in

the aggregated cost matrix along each particular path direction. This allows for the

parallel processing of the slices in the disparity dimension and the parallel processing

of each path direction. This means that instead of processing the pixels sequentially,

our proposed strategy allows for the simultaneous processing of multiple pixels,

resulting in a significant increase in computational efficiency.

In summary, to minimise the number of memory accesses during cost aggregation and

disparity computation according to Eq. 4.11, a CTA-based parallel scheme is proposed.

The algorithm uses a CTA-based parallel scheme in which each CTA thread first adds

the costs corresponding to a given disparity level for all path directions. Then, the CTA

threads cooperate to identify the disparity level with the minimum cost. This approach

avoids the writing and reading of the final cost matrix and increases the computational

speed. Additionally, it allows for parallel processing of the algorithm, enhancing its

efficiency and suitability for real-time computer vision applications.

4.3.3 Optimisation of Disparity Map Generation and Parallel Computing

SGM uses penalty parameters to handle different situations, such as depth continuity

and discontinuity. By adjusting these parameters, the algorithm can effectively handle

depth discontinuities, reduce breakage, and provide good disparity smoothing.

However, this method is computationally intensive, and if the input left and right image

pairs from a stereo camera are not ideal, the final disparity map may contain small black

squares. These squares may be due to the failure of the algorithm to match the

corresponding pixels in the left and right images. This is usually caused by errors in the

images, such as noise, blur, or a lack of texture, which makes it difficult for the

algorithm to identify correspondences.

114

To address the issue of noise and artefacts in the disparity map, a simple peak filter was

applied after the SGM cost aggregation step. The peak filter (Hirschmuller, 2007)

operates by computing the maximum disparity value within a local window around each

pixel in the disparity map. The resulting maximum disparity value is then assigned to

the central pixel in the window, and this process is repeated for all pixels in the disparity

map. Despite the operational simplicity and effectiveness of the process in reducing

noise and artefacts in the disparity map, the peak filter features several limitations. For

example, the filter may blur edges and details in the scene, particularly in regions with

high contrast or texture. Moreover, the peak filter may be unable to handle occlusions

and textureless regions as effectively as other smoothing filters, such as the weighted

least squares (WLS) filter. These limitations suggest that further modification of the

peak filter is necessary to improve its performance in challenging scenarios.

The WLS filter can effectively reduce noise and artefacts in the disparity maps without

significantly blurring the edges or details of the scene. It achieves this by assigning

higher weights to pixels with similar intensity values and lower weights to pixels with

dissimilar intensity values. Thus, the WLS filter can preserve the sharpness and details

of the scene while effectively reducing noise and smoothing the disparity maps.

Moreover, the WLS filter can handle occlusions and textureless regions, which are

common challenges in stereo image matching tasks. The filter can detect and handle

these regions by assigning higher weights to pixels with reliable disparity values and

lower weights to those with unreliable disparity values. This helps to minimise the

effect of occlusions and textureless regions on the final disparity maps.

Figure 4.8 compares the experimental results of disparity maps generated using the peak

filter and the WLS filter. WLS filtering was more robust and effective in improving the

quality of the disparity maps. As shown in Figure 4.8(d), the peak values of disparity

filtered out by the peak filter, indicated by the black gaps in Figure 4.8(c), were

significantly reduced after the application of WLS filtering.

115

Figure 4.8 Comparison of disparity maps generated using the peak filter and the WLS

filter: (a) left-view image and (b) right-view image; (c) disparity map after peak

filtering; (d) disparity map after WLS filtering.

The deployment of the WLS filter as the smoothing filter will increase the amount of

data accessed from memory and therefore the computational cost of SGM. To avoid

this situation, we adopted the GPU parallel scheme optimisation procedure proposed

by Hernandez-Juarez et al. (2016); however, the parallel scheme was modified such

that a single warp now performs the task previously assigned to the CTA, and the

modified method is referred to as CTA-to-warp conversion. This modification

eliminates the need for expensive synchronisation operations, enables faster register-

to-register communication through special shuffle instructions, and reduces the number

of instructions required while increasing instruction-level parallelism. However, the

strategy reduces thread-level parallelism. Overall, the CTA-to-warp conversion

increases processing efficiency and is thus useful for real-time applications that require

high performance.

116

4.4 Implementation and Evaluation

4.4.1 Hardware Configuration and Data Acquisition

(a) (b)

Figure 4.9 Types of cameras used in this research: (a) ZED camera by Stereolabs;

(b) Aeria X by senseFly.

The first experiment on real-time dense image matching was related to human

kinematics. In this experiment, a ZED camera was used (Figure 4.9a). The camera

system included a stereo pair of RGB cameras of the same model on a mainboard. The

baseline between the two cameras was 12 cm, and each camera had a horizontal field

of view (FOV) of 90 and a vertical FOV of 60. The left and right cameras had a focal

length of 5.6 mm. The image resolution of each camera was 672 × 376 pixels, with a

pixel size of 8 µm. The manufacturer had calibrated the camera system. The camera

interior orientation parameters, including the focal length, the offset of the principal

point, lens distortions, and a fundamental matrix defining the relative orientation of the

stereo cameras, were provided. In the experiments, we used a local coordinate system,

with the origin at the perspective centre of the left camera, the X-axis along the baseline,

the Y-axis pointing downwards, and the Z-axis pointing to the range direction.

Another experiment on real-time dense image matching was conducted. The images

were captured by an Aeria X camera mounted on the UAV (Figure 4.9b). The camera

had a focal length of 19 mm, with an image resolution of 6000 × 4000 pixels. The FOV

of the camera was 64 vertical and 90 horizontal. The camera was also calibrated by

the manufacturer, and all of the interior orientation parameters were provided. All of

the UAV images are accessible through the senseFly website (senseFly, 2019).

117

Both experiments were run on a computer with two NVIDIA RTX 2080Ti graphics

cards, 64 GB RAM, and two 12-core CPUs. The real-time processing capability of the

algorithm was evaluated through the evaluation and comparison of the processing

efficiencies of the traditional SGM algorithm and our parallel-architecture acceleration

method. The traditional SGM algorithm was implemented using OpenCV, and the

evaluation was conducted using images captured by stereo cameras. During the

evaluation, several frames were captured, and the disparity maps were obtained using

our GPU-accelerated SGM and the stereo_SGBM function of OpenCV.

4.4.2 Evaluation of GPU-Accelerated SGM on Benchmark Dataset

(a) (b)

(c) (d)

Figure 4.10 Evaluation dataset from the Middlebury stereo vision dataset: (a and b)

left and right views of the dataset; (c) the ground-truth disparity; (d) mask of the

valid disparity in (c).

118

The effectiveness of our GPU-accelerated SGM algorithm for disparity map generation

was evaluated using a single stereo image pair with ground truth from the Middlebury

stereo vision dataset (Scharstein et al., 2014). The dataset (Figure 4.10) contained left-

view and right-view images with a resolution of 497 × 720 pixels. The corresponding

ground-truth disparity and mask of valid pixels were provided; they were similar to

those of the test dataset in Section 4.3.3, and the latest version was used for stereo image

matching evaluation.

(a) (b) (c)

Figure 4.11 Disparity results obtained using traditional and GPU-accelerated SGM:

(a) ground-truth disparity; (b) disparity map obtained using traditional SGM; (c)

disparity map obtained using GPU-accelerated SGM.

Table 4.2 Accuracy and efficiency evaluation results of traditional SGM and

GPU-accelerated SGM

 Traditional SGM GPU-accelerated SGM

Accuracy (%) 64.5 88.9

Processing time (ms) 282.1 18.3

The dataset shown in Figure 4.10 was used to assess the precision of a GPU-accelerated

SGM algorithm and the effectiveness of a singular image pair. The objective was to

determine the accuracy and performance of the algorithm through a comparison of the

generated disparity maps with the ground-truth disparity. As stated in the previous

section, the algorithm was evaluated using SAD as the similarity measure. A window

size of 7 × 7 and a search range with a maximum disparity of 64 pixels was adopted.

Figure 4.11(a) presents the ground-truth disparity of the stereo image pair, which was

used as a benchmark for evaluating the accuracy of the disparity maps generated by the

119

algorithm. Figures 4.11(b) and (c) depict the disparity maps generated by the traditional

and GPU-accelerated SGM algorithms, respectively. The disparity maps were

compared with the ground-truth disparity to evaluate the accuracy of the generated

maps.

The chair rail in the middle of the left-view and right-view images featured a significant

positional variation, leading to a large variation in the content of the corresponding

pixels in the epipolar-plane stereo image. Figure 4.11(b) shows that the pixels in this

area produced a mask with a distinct pattern. This non-uniformity in the image can lead

to discontinuities in the estimated disparity, which may result in spurious matches or

incorrect peak disparity values. Traditional SGM approaches with peak filters have

been adopted to address this issue (Hirschmuller, 2007). However, as illustrated in

Figure 4.11(b), this filtering approach may also remove valid disparity values, leading

to a substantial amount of invalid disparity in the final result. The accuracy was assessed

according to Equation 4.7. As shown in Table 4.2, disparity accuracy was significantly

improved from 64.5% to 88.9% after the application of WLS filtering. The processing

time of this single stereo image pair was considerably decreased to 18.3 ms. The results

indicate that our approach can provide a robust disparity suitable for real-time dense

image matching.

4.4.3 Evaluation of GPU-Accelerated SGM on Stereo Close-Range Images

To evaluate the application of our approach to close-range images, a stereo camera was

used to capture SBS images featuring the human body at a resolution of 1344 × 376

within 600 s, and the effectiveness of the algorithm for real-time processing was

evaluated. Figure 4.12 illustrates the results of real-time disparity map generation using

the traditional SGM and GPU-accelerated SGM algorithms. The image obtained using

the traditional SGM algorithm (Figure 4.12c) featured mismatches and noise consisting

of occlusion and textureless regions caused by excessive sunlight from the window. In

contrast, the disparity map obtained via our approach featured distinct contours of the

human body, both in a sitting and standing position (Figure 4.12d). WLS helped

minimise the effects of occlusions and textureless regions on the final disparity maps;

120

thus, our approach provided a disparity map that could delineate the contours of the

object.

(a) (b) (c) (d)

Figure 4.12 Real-time disparity map generation results obtained using traditional

and GPU-accelerated SGM: (a) the left-view images in greyscale; (b) the right-view

images in greyscale; (c) disparity map obtained using traditional SGM; (d) disparity

map obtained using GPU-accelerated SGM.

Figure 4.13 Comparison of the processing efficiency between traditional SGM and

GPU-accelerated SGM on SBS images.

121

Table 4.3 Comparison of the real-time processing efficiencies of traditional and GPU-

accelerated SGM on close-range images

Approaches
Real-time processing efficiency (fps)

Min Max Mean

Traditional SGM 1.29 5.92 5.24

GPU-accelerated SGM 58.82 76.92 65.5

Figure 4.12 depicts the real-time processing efficiency of disparity map generation from

SBS images using the traditional SGM and GPU-accelerated SGM algorithms. The red

line indicates the SBS image processing efficiency of the traditional SGM algorithm

implemented with OpenCV, while the blue line represents the efficiency of our GPU-

accelerated SGM algorithm. Figure 4.13 compares the real-time processing efficiencies

of the traditional and GPU-accelerated SGM algorithms. The GPU-accelerated SGM

algorithm maintained an average real-time processing efficiency of ~65.4 frames per

second (fps) during the 10 min experimental record, while the traditional SGM

algorithm maintained a speed of only ~5.2 fps. However, the graph also shows that the

processing efficiency of the GPU-accelerated SGM algorithm fluctuated. As shown in

Table 4.3, both the traditional and GPU-accelerated SGM algorithms varied in the

interval between the maximum and minimum fps. This occurred owing to the fast

movement of the individual being photographed, and a ghost effect occurred on the

corresponding frames under unstable illumination, affecting the computational

efficiency of matching and smoothing. The significant difference in processing

efficiencies shows that parallel architecture-based image matching acceleration can

significantly improve the real-time processing efficiency of the SGM algorithm.

4.4.4 Evaluation of GPU-Accelerated SGM on Aerial Images

The evaluation of the GPU-accelerated SGM algorithm on close-range images in the

previous section shows that the computational efficiency of this method is significantly

higher than that of the traditional SGM approach. Furthermore, we evaluated the GPU-

accelerated SGM algorithm using images taken by a UAV. Chapter 2 introduces the

background and purpose of our research on the real-time processing of aerial images

122

captured by the camera on UAVs during flight. Our goal is to achieve real-time

processing of aerial images to generate a digital terrain model for the visual localisation

of the UAV. However, the task is challenging owing to the high resolution of aerial

images and the changing angle of the images caused by UAV oscillation during flight.

The dense image matching algorithm must be fast and optimised for images captured

from different angles to effectively handle a large amount of image data in real-time.

(a) (b)

(c) (d)

Figure 4.14 Disparity map generated by traditional and GPU-accelerated SGM: (a

and b) two consecutive aerial images captured by UAV; (c) disparity map obtained

using traditional SGM; (d) disparity map obtained using GPU-accelerated SGM.

Therefore, before a large amount of data is processed using an efficient dense image

matching technique, epipolar calibration should be performed on every consecutive pair

of images. Two aerial images captured from different viewpoints can be corrected via

epipolar calibration, which ensures that the corresponding points lie on conjugate

epipolar lines for dense image matching. Our GPU-accelerated SGM algorithm can

then be applied to perform dense image matching to generate a more robust disparity

map.

123

Figure 4.14 shows the results of disparity map generation using SGM from two

consecutive aerial images captured at 6000 × 4000 resolution after epipolar calibration.

Rotation and transformation matrices were first calculated for two consecutive aerial

images to perform epipolar calibration. Subsequently, both the traditional and GPU-

accelerated SGM algorithms were applied for dense image matching. The disparity map

generated using traditional SGM (Figure 4.14c) featured a larger proportion of

mismatches and noise than that generated using our GPU-accelerated SGM. The WLS

filter reduced the noise in the results and allowed the object to retain a complete edge

in the disparity map (Figure 4.14d).

Figure 4.15 Comparison of the processing efficiency of traditional SGM and GPU-

accelerated SGM on UAV images.

Table 4.4 Comparison of the real-time processing efficiencies of traditional and GPU-

accelerated SGM on aerial images

Approaches
Real-time processing efficiency (fps)

Min Max Mean

Traditional SGM 0.021 0.023 0.022

GPU-accelerated SGM 0.427 0.452 0.440

124

The aerial images featured a significantly higher resolution than the SBS image

captured by the stereo camera adopted in the previous experiment. As a result, the real-

time processing efficiencies of both the traditional SGM and GPU-accelerated SGM

algorithms were expected to be lower than the experimental results. The traditional

SGM algorithm exhibited a low real-time processing efficiency of 0.022 fps for aerial

images (Figure 4.13, red line). This corresponds to a processing time of ~45 s for a pair

of images, making the algorithm unsuitable for real-time applications. The GPU-

accelerated SGM significantly improved the processing efficiency, with a real-time

processing efficiency of 0.44 fps (Figure 4.13, blue line). Our approach improved the

processing time for a pair of aerial images by ~20 times more efficiently than the

traditional SGM (Table 4.4). The GPU-accelerated SGM algorithm offers a promising

solution for real-time UAV image processing, as it improves processing efficiency for

dense image matching, according to the assessment results in Table 4.4.

125

Chapter 5 Real-Time 3D Data Generation and

Applications

5.1 Triangulation for 3D Position Determination

Triangulation is a fundamental method for determining the precise position of an object

or point in three-dimensional space. This process involves the measurement of angles

formed between the object or point of interest and multiple reference points, thereby

enabling accurate localisation. Triangulation, also known as space intersection, is

widely applied in photogrammetry, with the fundamental geometric relation being the

well-known collinearity equation (Wu, 2021). The collinearity equation, as introduced

in Chapter 2, establishes a mathematical relationship between the 3D coordinates of a

point, the 2D image coordinates, and camera parameters. This collinearity relationship

is essential in determining the 3D coordinates of an object point based on its image

coordinates and camera parameters.

Figure 5.1 illustrates the concept of stereo triangulation. Two cameras, referred to as a

stereo pair, are used to capture images of the same scene from different viewpoints.

Due to the offset viewpoints of the cameras, the captured images exhibit disparities,

which indicate the horizontal shift between the corresponding points in the left and right

images. The known baseline distance between the cameras and disparity information

can be used to calculate the depth or distance of objects using triangulation principles

(Hartley and Zisserman, 2003).

126

Figure 5.1 Stereo geometry for triangulation

In Figure 5.1, Cl and Cr are the centres of the left and right camera sensors, respectively;

and IPl and IPr are the corresponding image planes. Ol and Or on the image planes are

the optical centres of the left and right cameras, respectively. Given any point

𝑃(𝑋௉, 𝑌௉, 𝑍௉) of the object in the real world, 𝑝௟(𝑢௟, 𝑣௟) and 𝑝௥(𝑢௥ , 𝑣௥) are pixel-point

representations of P in the IPl and IPr planes of the stereo cameras at sensors Cl and Cr,

respectively. The baseline is the offset distance between the optical centres of the

camera sensors Cl and Cr. The world point P is transformed from the pixel point using

the interior orientation parameters and translation between two image planes. The

relationship between these parameters in the homogeneous coordinate system can be

expressed as follows:

 𝑠 ቈ
𝑢
𝑣
1

቉ = ൥
𝑓௫ 𝛾 𝑐௫

0 𝑓௬ 𝑐௬

0 0 1

൩ ∙ ቂ
𝑅ଷ×ଷ 𝑇ଷ×ଵ

0 1
ቃ ∙ ൦

𝑋௉

𝑌௉

𝑍௉

1

൪ = 𝑊 ∙ ൦

𝑋௉

𝑌௉

𝑍௉

1

൪ (5.1)

 ൦

𝑋௉

𝑌௉

𝑍௉

1

൪ = 𝑄 ቎

𝑢
𝑣
𝑑
1

቏ (5.2)

where R and T represent 3×3 rotation and 3×1 translation matrices, respectively; W is a

projection matrix derived from the interior orientation parameters and translation

matrix; Q is a re-projection matrix that enables the translation of pixel points to world

points; and d is the disparity between the pixels in the left and right image planes. The

127

rotation and translation matrices can be obtained from preliminary calibrations, and Eq.

5.2 can be alternatively represented using intrinsic parameters, as follows:

 ൥
𝑋௉

𝑌௉

𝑍௉

൩ = ൥

𝑢 − 𝑐௫

𝑣 − 𝑐௬

𝑓௫

൩ ∙
𝑏

𝑑
 (5.3)

where b is the baseline of the camera pair, f is the camera focal length, (cx, cy) is the

optical centre of the corresponding sensor, and d is the disparity value of any pixel point

(u, v). The focal length of a single sensor is fixed. Hence, the distance Zp of the world

points depends solely on its disparity component, which is calculated for each point

from the left-view to the right-view images, as described previously. In this manner,

each pixel in the disparity map can be transformed to a 3D coordinate. The resulting

3D point cloud is typically represented in the camera coordinate system.

5.2 Real-Time Triangulation Based on GPU Acceleration

In recent years, the use of GPUs has extended beyond their original purpose of

accelerating graphics rendering, and they have been applied as powerful acceleration

tools in various domains. NVIDIA’s CUDA Programming Model has significantly

facilitated this transition, enabling developers to write general-purpose programs for

GPUs using a language based on C/C++. GPUs offer several advantages for image

processing and computer vision tasks due to their high memory bandwidth, efficient

access to large image datasets, and ability to exploit data parallelism. The numerous

cores on GPUs can be used to implement a divide-and-conquer approach, which is

particularly beneficial for handling high-resolution images. The programming of GPUs

is predominantly based on the single-instruction multiple-data (SIMD) model, in which

multiple threads execute the same operations simultaneously on different data.

Consequently, an algorithm must be well-suited for this SIMD computational model to

effectively leverage the computational capabilities of GPUs.

This research introduces a GPU-based triangulation method that builds upon the cost

function proposed by Recker et al. (2013). The proposed method is highly amenable to

parallelisation due to the large number of independent tasks. By leveraging the

128

capabilities of the CUDA programming model, a parallelisation strategy is used for the

GPU, in which one thread block is assigned to each track for processing. The

triangulation algorithm exploits GPU properties derived from the L1 cost function and

its gradients, as described in Section 5.2.1. The implementation of triangulation with

parallelisation is discussed in Section 5.2.2.

5.2.1 Cost Function for Triangulation

The previous section outlines the process of triangulation, which involves solving the

collinearity equation. The collinearity equation uses the geometric relationship between

the camera, the object in space, and its corresponding 2D point on the image plane as

parameters. Notably, each individual collinearity equation can serve as a cost function

suitable for parallel computation on a GPU. This parallelisation approach enables the

simultaneous processing of multiple collinearity equations. In this manner, the

computational capabilities of the GPU can be leveraged to expedite triangulation.

A prospective 3D location p and its accompanying feature track t can be evaluated using

an angular error measure based on the L1 triangulation cost function (Recker et al.,

2013). The inputs to the cost function are a collection of feature tracks across N images

and their corresponding 3 × 4 camera projection matrices Pi. The error for position p is

calculated as follows:

𝑓௧∈்(𝑝) =

෌ (1 − 𝑣పෝ ⋅ 𝑤௧పෞ)
௜∈ூ

∣∣ 𝐼 ∣∣
 (5.4)

Calculation of the error at position p involves several stages: First, a unit direction

vector vi is computed between the centre of each camera and the candidate position p.

Subsequently, a second unit vector wti is determined, which originates from each

camera centre Ci and passes through the 2D feature track t in each image plane. Because

the feature track t may not precisely align with the projection of position p in each image

plane, a non-zero angle typically exists between the potential direction vector vi and

vector wti. Finally, the cost function is computed as the mean of the dot products (𝑣పෝ ⋅

𝑤௧పෞ) across all cameras. Each dot product has a range of [-1, 1], but only the points in

129

front of the cameras are evaluated, limiting the range to [0, 1]. To maintain consistency

with the L1 triangulation cost function, we use the same notation and define Eq. 5.4 as

the cost function for evaluating the 3D position p pertaining to track t.

5.2.2 GPU-Based Implementation of Triangulation

To facilitate comprehension, we focus on the key features of CUDA that are relevant

to our task. In CUDA, algorithms are referred to as kernels and are executed on parallel

blocks with up to 1024 threads. The GPU allocates these blocks to its multiple

streaming multiprocessors, each responsible for the synchronised execution of 32

thread groups, known as warps, under the control of an SIMD. The use of shared

memory, a small memory space that facilitates efficient data sharing among threads

within a block, is a crucial aspect of CUDA programming. Notably, shared memory

offers considerably faster access than DRAM (global memory), which is located off-

chip. Effective GPU programs must maximise the use of computational resources by

launching numerous threads; minimising thread divergence (i.e., threads following

different control flows) within warps; and strategically using the memory hierarchy to

prioritise fast shared memory over global memory, when possible (Nickolls et al., 2008).

These considerations are essential for the development of GPU applications that are

both efficient and effective.

In this study, triangulation is implemented using a block-based method for processing

tracks, inspired by the methodology proposed by Mak et al. (2014). This strategy

maximises computational efficiency by implementing parallelism within each segment.

Instead of assigning a single thread per track, a group of threads is dedicated for

processing each recording. The individual threads within these segments compute the

specific term associated with each track feature. The angles between ray-based terms

are then aggregated using a parallel reduction technique to derive the overall gradient

of the cost function. This block-based strategy enables the concurrent processing of

multiple features within a single track, thereby maximising parallelism and facilitating

efficient triangulation computation.

130

Figure 5.2 Concept of using one block per track for the multiple processes of

triangulation. Each block consists of several tracks for solving collinearity equations.

Figure 5.2 illustrates the proposed implementation, tailored for datasets with long

feature tracks. Each thread within a block is responsible for calculating the gradient for

a particular feature, and a parallel sum reduction is performed to obtain the final

gradient value for the entire track. This method exhibits enhanced performance when

dealing with longer tracks, as the gradient computation workload varies with the track

length, and multiple gradient calculations may be required until convergence. The

utilisation of shared memory on GPU is a significant advantage of this approach.

Modern GPUs provide thread blocks with limited access to shared memory. When one

track is assigned to each thread, the shared memory may not be adequate for storing the

data associated with all tracks within a block, even when sampling techniques are used.

Assigning an entire block to a single track and integrating sampling can reduce the per-

thread memory requirements. Consequently, the working set of track and camera data

for a block can be accommodated in shared memory, effectively transforming it into a

cache. In addition, the parallel sum reduction operation for gradient computation is also

executed in shared memory, which facilitates the necessary inter-thread communication

for the reduction process.

Figure 5.3 shows the results of an experiment involving GPU-based triangulation for

3D point cloud generation. The processing times and performance of the proposed

GPU-based triangulation strategy were evaluated on a computer equipped with a 1.70

GHz Intel Xeon E5-2603 v4 CPU and an NVIDIA GeForce 2080Ti GPU.

131

(a) (b)

(c)

Figure 5.3 Experiment results of GPU-based triangulation. (a), (b) Inputs of stereo

pair images (1920 × 1080 pixels). (c) Coloured point clouds from different views.

Figure 5.3 shows the result of implementing GPU-based triangulation for the generated

3D point clouds. The input for this process consists of a stereo pair of images (Figures

5.3 (a) and (b)), each sized 1920 × 1080 pixels. GPU-based triangulation generates a

coloured point cloud (Figures 5.3 (c) and (d)). The processing pipeline involves the

initial reading of the input images by the CPU, which transmits them to the GPU for

triangulation. As shown in Figure 5.4, the average utilisation of CPU resources is 13%.

The GPU helps to accelerate the triangulation process, with the average GPU usage

being 19%. Eventually, the GPU-based triangulation generates a coloured point cloud.

132

Figure 5.4 Resource usage and processing rate (fps) of GPU-based triangulation

5.3 Real-Time 3D Point Cloud Generation from Aerial Images

Real-time 3D point cloud generation is crucial for applications that require immediate

visualisation, accurate object detection and tracking, and 3D mapping. These

capabilities can enable real-time interaction with the 3D environment and enhance the

efficiency and effectiveness of various systems and applications. In Section 5.1,

triangulation and its algebraic representation are described. Specifically, Eqs. 5.1 to 5.3

can be used to triangulate 2D image points to 3D points in space coordinates. Chapter

3 describes the process for computing the camera pose for the current input frame in

real-world space coordinates. This pose can be used as the exterior orientation to

reconstruct 3D point clouds through GPU-accelerated triangulation, as discussed in

Section 5.2. This section describes the strategy for real-time 3D point cloud generation.

133

Figure 5.5 Framework of real-time 3D point cloud generation from aerial images

Figure 5.5 shows the framework for real-time 3D point cloud generation. The

implementation over three different threads allows the parallel processing of incoming

data. The first thread is responsible for camera pose estimation, following the method

described in Chapter 3. After obtaining the camera poses of two consecutive frames,

the frame is passed to the next thread to generate a sparse 3D point cloud through

triangulation, following the approach described in Section 5.2. The third thread

interpolates the sparse 3D point to construct a dense point cloud construction, as

discussed throughout Chapter 5. The visualisation of the 3D point cloud is achieved

using the Grid Map Core library (Fankhauser and Hutter, 2016). The transportation of

each frame is realised using the robot operating system (ROS), which is commonly used

to simulate and efficiently deploy real-time processing algorithms for robots. The ROS

provides different nodes for the facile implementation of parallel processing and real-

time visualisation of the final result.

5.3.1 3D Point Cloud Generation

The camera pose for the current input frame is obtained using the approach described

in Chapter 3. Upon determining a keyframe based on a predefined threshold, the camera

134

pose is calculated through space resection according to the matches between two

consecutive frames. This pose is used to refine the camera pose for the subsequent

frames. The camera pose information is then used to generate 3D points through

triangulation.

5.3.1.1 Local Optimisation for Generating Sparse 3D Points

In the process of extracting and matching features, 3D points must be rapidly generated

by triangulation and added to the map to achieve real-time 3D mapping. In the proposed

strategy, local optimisation is performed with a bag-of-words (BoW) vector for

matching features on keyframes and ensuring their correspondence on neighbour

subsequent frames. BoW involves the construction of a visual vocabulary by clustering

the feature descriptors into a set of visual words. Figure 5.6 illustrates the BoW

framework. The feature descriptors on each image are encoded to the nearest visual

word, resulting in a histogram-like representation with visual word frequencies. The

corresponding neighbouring frames of keyframes are matched by comparing the

similarity of the visual words of the features in different image views. After verifying

the correspondences, all of the features on the keyframes and corresponding

neighbouring frames are triangulated to generate sparse 3D points. Fast BoW (FBoW,

Gálvez-López and Tardos, 2012) is applied for local optimisation in this work.

135

Figure 5.6 BoW framework for identifying the matching features on corresponding

neighbouring frame by visual words.

5.3.1.2 Interpolation for Generating Dense Point Clouds

As discussed in the previous Section 5.3.1.1, local optimisation facilitates the

identification of matching feature points between keyframes and adjacent frames.

These feature points serve as the basis for triangulation, resulting in the generation of

sparse point clouds. These sparse point clouds then serve as a reference for creating

dense point clouds. Specifically, a sparse point cloud is transformed into a grid map

while preserving the elevation information to generate a dense point cloud. This grid

map representation allows for comprehensive and organised data storage. Further

details regarding the grid map are provided in Section 5.3.1.3. To interpolate the sparse

point cloud into a dense point cloud, a k-dimensional (k-d) tree is used to locate the

nearest neighbouring feature points to the sparse points within the grid map. Finally, a

dense point cloud with elevation information is generated and visualised in 3D.

136

Figure 5.7 Interpolation of dense point clouds from sparse 3D points

Figure 5.7 illustrates the interpolation scheme for creating dense point clouds from

sparse point clouds. The sparse point cloud serves as the input for dense point cloud

generation. The algorithm involves a loop that iterates over all affected cells in the grid.

The first step involves organising the x- and y-coordinates of the dense point cloud

using a 2D binary k-d tree (Bentley, 1975). In the next step, this k-d tree returns a set

of nearest points within the interpolation radius, which is determined by the average

value of the distances from the nearest point according to the k-d tree. The inverse

distance weighting (IDW) method is used to perform the interpolation. IDW computes

the cell height by linearly combining the nearest neighbours with the weights

determined using the inverse distance to the cell centre. Points closer to the cell centre

are assigned higher weights, and thus, their influence on the interpolated height is more

notable. The resulting interpolated height is assumed to be the ground sampling distance

(GSD) for the creation of the grid map. Additionally, the region of interest (ROI) is

determined by projecting the frame onto the reference plane. After adding the layers for

‘elevation’ and ‘valid’, a nearest neighbour search is conducted for each cell (Xcell, Ycell)

within the grid. The z-component is extracted from the dense point cloud for each

identified neighbour, enabling the final interpolation of the cell height. These steps are

detailed in Algorithm 5.1, with the implementation following the workflow presented

by Hinzmann et al. (2018).

137

Algorithm 5.1: Pseudocode of dense point cloud creation

Input: ROI for the current frame, sparse point cloud

1: KdTree kdtree = initKdTree(sparse point cloud)

2: double resolution = estimateNearestPointDistance(kd tree, sparse point cloud)

3: CvGridMap dense_map(‘elevation’, ‘valid’)

4: dense_map.setGeometry(ROI, GSD = resolution)

5: for every cell in dense_map do

6: Point query_point = (Xcell, Ycell)

7: vector<Point> neighbours = kdtree → findNearestNeighbours(query_point)

8: if neighbours are found then

9: dense_map.at(Xcell, Ycell, ‘elevation’) = interpolateHeight(neighbours);

10: dense_map.at(Xcell, Ycell, ‘valid’)=true

11: end if

12: end for

5.3.1.3 Real-Time Visualisation of the 3D Point Clouds

The implementation of point cloud storage and visualisation is based on an adaptation

of the Grid Map Core library (Fankhauser and Hutter, 2016). The fundamental concept

can be summarised as follows: A structured framework is established, based on an ROI

specified by its coordinates (x, y), width, height, and a specified sampling resolution.

As shown in Figure 5.8, the ROI consists of multiple data layers, each capturing specific

information. Detailed information can be assigned to individual sample points within

these layers. For instance, in a 3D grid map model, one layer stores the observed height

of a point relative to a reference plane, while another layer stores the corresponding

surface normal and texture. This multi-layered strategy allows the generated 3D grid

map model to comprehensively represent the various attributes associated with the

observed points within the defined ROI.

138

Figure 5.8 Example of a multi-layered grid map model

In this work, several modifications to the original Grid Map Core library are introduced.

The original library was designed for a mobile robot, resulting in efficient dynamic map

movement but limited incremental expansion capabilities. Although this design may be

suitable for moving aerial robots, it is not suitable for creating a comprehensive global

map. Furthermore, the original library represents all layers as Eigen matrices (Bates et

al., 2013) with float values for cell storage. Although this framework can simplify

mathematical operations involving layer manipulations, the implementation of

computer vision tasks that rely on OpenCV becomes challenging (Bradski, 2000). To

address these issues, a new framework, CvGridMap, is developed, which maintains the

overall architecture of the original library but incorporates an OpenCV matrix-type

backend. Moreover, the CvGridMap framework is extended to support dynamic map

expansion and overlap computations, thereby enhancing the capabilities for the

visualisation task considered in this study.

Figure 5.9 Initialisation of grid map for storing sparse point cloud information

Figure 5.9 illustrates the initialisation of the grid map, which involves the creation of

four distinct layers. The elevation data within the map are determined through

139

triangulation, using the feature points matched between the keyframe and

corresponding subsequent frame. The normal vector of each 3D point is computed

based on its geometric relationship with the surrounding 3D points. Textures,

represented using RGB colour, are obtained from the pixel points in the frame

corresponding to the ROI. These layers collectively provide the necessary information

for subsequent steps, such as the generation of dense point cloud maps and interpolation

of additional points, guided by the validity indicators established in the initialisation

phase.

In the final stage, the point cloud data acquired in the preceding steps are consolidated

into a single scene to enable real-time visualisation. The point clouds in this stage are

georeferenced, as the absolute orientation of the camera is used during triangulation.

The first set of point cloud data is received and used for initialisation to construct the

global map framework, which serves as the foundation for further data integration.

Subsequently, new point cloud data are seamlessly fused with the existing global map

using the ‘map update’ and ‘map fusion’ functions provided by the Grid Map Library.

These functions facilitate the incorporation of new data while handling the overlap with

the current global map, thereby ensuring the coherence and consistency of the overall

map. Figure 5.10 demonstrates the procedure of point cloud fusion for real-time

visualisation.

Figure 5.10 Point cloud fusion for real-time visualisation

140

5.3.2 Implementation and Experimental Evaluation

This section describes the implementation of techniques for the real-time generation of

sparse 3D point clouds and interpolation of dense 3D point clouds. The proposed

approach is validated using two aerial image datasets, referred to as Datasets 1 and 2.

As described later in this section, the validation results indicate that the proposed

approach can realise real-time 3D point cloud generation.

Dataset 1 is an openly accessible dataset consisting of 328 aerial images sized 2456 ×

2054 pixels, which were captured by a UI-5280CP camera mounted on a customised

UAV. Dataset 1 covers a land area of approximately 250 m2 in Germany. The images

for Dataset 1 were acquired with 99% end overlap and 50% side overlap. Dataset 2, a

self-made made dataset, consists of 329 aerial images sized 4000 × 3000 pixels, which

were captured using the camera on a DJI Mavic AIR 2 (Figure 5.11). Dataset 2 covers

a land area of approximately 150 m × 200 m in Hong Kong. The images for Dataset 2

were captured with 80% end overlap and 60% side overlap. An overview of the

coverage of both datasets is depicted in Figure 5.12. The images are downsampled to

half of their original size to decrease the bandwidth and enhance the performance of

triangulation and interpolation. The implementation and evaluation are performed on a

computer with a 1.70 GHz Intel Xeon E5-2603 v4 CPU and an NVIDIA GeForce

2080Ti GPU.

Figure 5.11 Collection of Dataset 2 by DJI Mavic AIR 2

141

(a) Dataset 1 (b) Dataset 2

Figure 5.12 Overview of the coverage of experimental aerial image datasets

Both datasets present various challenges for visual algorithms, as illustrated in Figure

5.12. Figure 5.12 (a1) illustrates the regional aliasing effect on corrugated iron roofs,

caused by the camera resolution. As shown in Figures 5.12 (a2) and (b4), the forest has

a repetitive texture that renders feature extraction challenging. Feature extraction for

the grassland area shown in Figures 5.12 (a3) and (b6) is challenging because of the

homogeneous surface. The shadows in Figure 5.12 (b5) correspond to a low texture

area from which the extraction of features is difficult.

142

(a) Results of sparse 3D point cloud generation from Dataset 1 from different views

(b) Dense point cloud interpolated from (a)

(c) Results of sparse 3D point cloud generation from Dataset 2 from different views

(d) Dense point cloud interpolated from (c)

Figure 5.13 Experimental results of sparse and dense point cloud generation.

143

To address the abovementioned challenges, the features are extracted using SuperPoint,

as discussed in Chapter 3. SuperPoint, which is a deep learning method, can effectively

extract features in textureless regions such as those shown in Figure 5.12. The sparse

3D point clouds generated by the proposed method for Datasets 1 and 2 are shown in

Figures 5.13 (a) and (c), respectively. The corresponding dense point clouds obtained

by interpolation based on the IDW method are shown in Figures 5.13 (b) and (d). In the

interpolation process (Algorithm 5.1), the radius of the search neighbourhood is

determined using the features in the k-d tree structure and sparse point cloud.

Figures 5.13 (a1), (a2), and (a3) illustrate the sparse point clouds for the regions with

iron roofs (Figure 5.12 (a1)), southern forested area (Figure 5.12 (a2)), and grassland

(Figure 5.12 (a3)), respectively. The sparse point clouds for the forest area and

grassland shown in Figures 5.12 (b4) and (b6), respectively, are shown in Figures 5.13

(c4) and (c6). Notably, the shaded region in 5.13 (c5) indicates missing point clouds

due to insufficient feature points. In the iron roof area shown in Figure 5.13 (b1), texture

interference results in the inadequate representation of most textures within the dense

point cloud. Similar observations can be made from Figures 5.13 (b2) and (d4),

corresponding to the forest regions in Figures 5.12 (a2) and (b4), respectively. In

contrast, in the grassland region shown in Figure 5.13 (b3), the feature points are evenly

distributed, resulting in a high-quality dense point cloud. A similar outcome is observed

in Figure 5.13 (d6): A high-quality dense point cloud is obtained for the grassland

region in Dataset 2. Nevertheless, a dense point cloud cannot be accurately interpolated

for the shadow regions (Figure 5.13 (d5)) due to the absence of features, as in the case

of their sparse 3D point cloud.

Table 5.1 presents the statistics associated with the generation of sparse 3D point clouds

and dense point clouds for Datasets 1 and 2. fT denotes the features used in the

triangulation process for constructing sparse 3D point clouds, and fI denotes the features

used during interpolation to generate dense point clouds. PTA and PIA represent the

percentages of features used in triangulation and interpolation among all features,

respectively. Dn is the nearest neighbour point distance (Algorithm 5.1).

144

Table 5.1 Statistics of sparse and dense point cloud generation

Dataset
Total

images
Total

features

Sparse 3D point clouds Dense point clouds

fT PTA Points
Dn

(pixels)
fI PIA Points

1 328 2,217,172 766,175 34.5% 185,666 20 1,870,473 84.4% 3,510,445

2 329 3,736,392 324,136 8.7% 51,702 162 2,983,361 80.1% 670,587

For Dataset 1, approximately 760,000 features (34.5% of all features) are selected for

triangulation, resulting in the generation of a sparse 3D point cloud with 190,000 points.

For dense point cloud generation, the neighbourhood search radius is 20 pixels, and

approximately 1.9 million features (85.4% of all features) are used for interpolation.

Dataset 2 consists of 329 aerial photographs, from which more than 3.7 million feature

points are extracted. Among these features, approximately 320,000 (8.7% of all features)

are used to generate sparse 3D point clouds via triangulation. The search radius is 162

pixels, and approximately 3 million features (80% of all features) are used to generate

dense point clouds.

(a) Dataset 1 (b) Dataset 2

Figure 5.14 Execution time of triangulation and interpolation on the two datasets.

Figure 5.14 illustrates the efficacy of the triangulation and interpolation procedures for

generating sparse and dense 3D point clouds from the two datasets. As shown in Figure

5.14(a), in the case of Dataset 1, the triangulation process exhibits a greater variation in

performance than does interpolation. This discrepancy is attributable to the additional

complexity involved in scene reconstruction, which relies on the textures present in the

area. The average execution time values for triangulation and interpolation are 156 ms

and 223 ms, respectively. In the processing of Dataset 2 (Figure 5.14(b)), sporadic high

145

peaks can be observed in the triangulation stage, whereas low peaks can be observed in

the interpolation stage. This behaviour can be attributed to the presence of texture-rich

regions within the dataset, owing to which more sparse point clouds are generated.

Consequently, less time is required for the interpolation of dense point clouds. The

average execution time values for triangulation and interpolation are 362 ms and 383

ms, respectively.

5.4 Real-Time Acquisition and Monitoring of 3D Human

Body Kinematics

The real-time capture and analysis of human locomotion at a large scale are crucial for

various applications, such as monitoring the actions of patients during physical

rehabilitation (Karunarathne et al., 2014), ensuring worker safety in domains with

industrial robots (Seo et al., 2015), analysing the movements of athletes (Gholami et al.,

2019), and facilitating human–computer interactions in virtual reality (Jaimes and Sebe,

2007). Given that the success of these applications depends on the accurate extraction

and analysis of 3D human body kinematics at a large scale, real-time photogrammetric

systems with the corresponding capabilities have been extensively researched in recent

years.

Real-time computations have become feasible with the advent of CPUs with multi-

threaded capabilities and GPU-acceleration technologies. This work introduces a cost-

effective photogrammetric system involving a stereo pair of RGB cameras. Using GPU-

acceleration and multi-threading technologies, this system can extract and monitor 3D

human body kinematics in real-time and on a large scale. Section 5.4.1 describes a

strategy that combines a 2D human body skeleton extraction algorithm with the

projection relationships between 2D and 3D spaces. Section 5.4.2 describes a kinematic

model based on 3D body features. Section 5.4.3 presents the experimental details and

discusses the results.

146

5.4.1 2D and 3D Human Body Feature Extraction

In recent years, the rapid advancements in GPU technology and multithreading-capable

CPUs have led to the widespread use of deep learning approaches (Ranjan et al., 2017),

such as mask regional-based convolutional neural networks (R-CNNs) (He et al., 2017),

OpenPose (Cao et al., 2021), and regional multi-person pose estimation (RMPE) (Fang

et al., 2017). These technologies and algorithms have facilitated the evaluation and

extraction of 2D features of human postures in real-time. Fang et al. (2017) used the

benchmark MPII human pose dataset to compare state-of-the-art human pose estimators

based on the mean average precision (mAP) score, which indicates the accuracy of the

estimation results. Table 5.2 provides an overview of these popular human pose

estimators. According to Fang et al. (2017), deep-learning-based object-detection and

pose-evaluation algorithms accurately obtained the 2D keypoints of human posture.

Among the assessed algorithms, RMPE was the most reliable and accurate multi-person

pose estimator, with an overall mPA of 80+ and a processing rate of 20+ frames per

second (fps). The OpenPose algorithm had a mAP of approximately 70+ but a

processing rate of only 10+ fps when implemented on the same platform (Cao et al.,

2021). Overall, these deep learning approaches are highly efficient and accurate and

thus suitable for real-time 2D human posture evaluation and feature extraction.

Table 5.2 Comparison of 2D human detection and tracking algorithms based on mAP scores

 Head Shoulder Elbow Wrist Hip Knee Ankle Total

Fang et al.
(RMPE)

88.4 86.5 78.6 70.4 74.4 73.0 65.8 76.7

Iqbal et al. 58.4 53.9 44.5 35.0 42.2 36.7 31.1 43.1

Insafutdinov et al.
(DeeperCut)

78.4 72.5 60.2 51.0 57.2 52.0 45.4 59.5

Levinkov et al. 89.8 85.2 71.8 59.6 71.1 63.0 53.5 70.6

Insafutdinov et al.
(ArtTrack)

88.8 87.0 75.9 64.9 74.2 68.8 60.5 74.3

Cao et al.
(OpenPose)

91.2 87.6 77.7 66.8 75.4 68.9 61.7 75.6

Newell et al. 92.1 89.3 78.9 69.8 76.2 71.6 64.7 77.5

147

Considering its performance, the proposed system leverages the mature 2D body

skeleton extraction algorithm, RMPE (also known as ‘AlphaPose’, Fang et al., 2017).

The 2D body skeleton is converted to 3D body features based on the projection

relationship between the 2D image space and 3D object space. RMPE is an open-source,

CNN-based, single-person pose estimator method that can be applied to conventional

pictorial structure models for posture estimation. RMPE is particularly suitable for real-

time human body detection from RGB images. It yields a well-trained posture

estimation model of the common objects in context (COCO) dataset (Fang et al., 2017),

which is a benchmark dataset for training deep learning object detection algorithms and

includes 17 key joint points representing human body parts (Figure 5.15). Table 5.3

lists the 17 key joint points and their corresponding human body parts.

Figure 5.15 Default 2D skeleton of human body parts by RMPE

Table 5.3 Order number of human body parts

Order No. Body part Order No. Body part
0 Nose 9 Left wrist
1 Left eye 10 Right wrist
2 Right eye 11 Left hip
3 Left ear 12 Right hip
4 Right ear 13 Left knee
5 Left shoulder 14 Right knee
6 Right shoulder 15 Left ankle
7 Left elbow 16 Right ankle
8 Right elbow

148

The 2D body skeletons extracted from the images using RMPE can be expressed as in

Eqs. (5.5), (5.6), and (5.7):

 𝐸ത = {𝑆ଵ̅, 𝑆ଶ̅, ⋯ , 𝑆௞̅} (5.5)

 𝑆 = {𝑗௜|0 ≤ 𝑖 ≤ 𝑚}, 0 ≤ 𝑚 ≤ 16, 𝑆 ∈ 𝐸ത (5.6)

 𝑗௜ = (𝑥௜, 𝑦௜), 0 ≤ 𝑖 ≤ 𝑚, (5.7)

where 𝐸ത is a set of human body skeletons 𝑆ప
ഥ(𝑖 ∈ 1, 2, … , 𝑘}) of k people detected by

RMPE in an image. Each skeleton S is a set of 2D joint points 𝑗௜(𝑖 ∈ {1, 2, … , 𝑚}) that

contain 2D coordinates (𝑥௜ , 𝑦௜), corresponding to the left-view image. m is the total

number of body parts listed in Table 2. Each pixel in a 3D map contains both 2D image

coordinates and 3D coordinates. The 2D body skeletons are converted to 3D body

features by determining the 3D coordinates corresponding to the 2D joint points from

the 3D map, using the 2D image coordinates as the index. This transformation follows

the concept of triangulation described in Section 5.1. In this manner, a set of 3D body

features containing depth information is derived and saved in the queue for further

analysis. The 3D body features are combined to generate various kinematic models for

evaluating and monitoring human movements, as discussed in the subsequent section.

5.4.2 Derivation of 3D Kinematic Parameters

This study focuses on typical 3D human kinematics, including the velocity of

movement (both speed and direction), step length, knee flexion angle, and arm swing

angles. Table 5.4 describes the considered human kinematics based on the 17 key joint

points (Table 5.3).

149

Table 5.4 3D human kinematic measurements considered in thread 3

Name of
measurement

Description Body parts used
No. of

body parts

Movement
velocity

Vector quantity that measures the
changes in position in a time
interval, including the movement
speed and direction.

Left and right hip 11, 12

Step length
Distance covered when a person
starts walking and takes one step.

Left and right ankle 15, 16

Knee flexion
angle

Measurement of the knee joint
motion when a person moves.

Left and right hip
Left and right knee
Left and right ankle

11, 12
13, 14
15, 16

Arm swing
angle

Essential index of the human
movement pattern, including the
upper-arm and elbow angles.

Left and right shoulder
Left and right elbow
Left and right wrist

5, 6
7, 8
9, 10

5.4.2.1 Movement Velocity Determination

Seventeen 3D human body keypoints are extracted in Thread 2. Subsequently, it is

necessary to identify a suitable keypoint that can serve as the representative point for

calculating the movement velocity. According to Zatsiorsky (2002), the centre of mass

of an object is the ideal point for calculating velocity. In planar movement analyses, the

position of the centre of mass changes with translational displacement and rotational

displacement during object motion. Furthermore, in 3D movement computation, the

location of the centre of mass changes with tilting displacement as well, as shown in

Figure 5.16. Therefore, we categorise general locomotion in the 3D world by

considering these three movement states and project them into a 2D plane to clarify the

changes in the centre of mass position caused by the abovementioned displacements.

Figure 5.16 Exploded view of human locomotion velocity and centre of mass

3D World

2D Plane

150

Figure 5.16 depicts the realm of human locomotion in a 3D space, where the velocity

vector is represented by a blue arrow, and the positions of the centre of mass in different

stages of movement are denoted by red dots. The definitive position of the centre of

mass is represented by a blue dot. During motion, the rotational velocity marginally

counteracts the translational velocity, leading to a shift in the location of the centre of

mass. If a tilting angular velocity is introduced, which imparts a slight forward velocity,

the final position of the centre of mass will shift towards the location of the blue dot.

Consequently, the blue dot is an appropriate reference point for determining the velocity

of an object in both its initial and final positions. Previous research suggests that the

centre of mass of the human body generally remains within or deviates slightly from

the region between the left and right hips (Vlutters et al., 2016). Thus, this study

considers the midpoint between the two hips as the centre of mass for velocity

calculations.

The movement of an individual involves a combination of multiple variable-speed

linear motions. The velocity of these motions can be calculated by considering the

initial and final positions in a specific interval. Specifically, the velocity can be

determined by measuring the difference in 3D hip positions in consecutive frames,

based on the timestamps. The movement speed is calculated following the general

principles of velocity calculation:

 න 𝑣(𝑡)
మ்

భ்

d𝑡 = 𝑓(𝑇ଵ) − 𝑓(𝑇ଶ) (5.8)

where 𝑣(𝑡) is the speed of a human moving from the initial position at time T1 to the

final position at time T2, and 𝑠(𝑇ଵ) − 𝑠(𝑇ଶ) is the displacement. In the proposed system,

the speed is computed every five frames. Thus, Eq. 5.8 can be rewritten as

 𝑣 = ห𝑀௦𝑀௘
ሬሬሬሬሬሬሬሬሬሬሬ⃑ ห ∙ ∆𝑡௙௥௔௠௘

ିଵ (5.9)

where 𝑀௦𝑀௘
ሬሬሬሬሬሬሬሬሬሬሬ⃑ is the vector of the midpoint of two hip positions when an individual

moves from the position in the first frame (initial position) to that in the fifth frame

(final position). ∆𝑡௙௥௔௠௘ is the capture time interval between the previous frame and

151

current frame, determined considering the timestamp of each frame. In this study, the

frame interval is set as five units. The human movement speed is calculated according

to the abovementioned equations, and the results are stored in a queue for further

visualisation.

The human centre of mass tends to remain near the midpoint of the left and right hips,

with only slight deviations (Vlutters et al., 2016). Therefore, the midpoint of the left

and right hips is examined to calculate the movement speed and direction. The

movement speed is calculated based on the 3D coordinates of the midpoint at the initial

and final positions during a time interval. Considering that movement can occur in any

direction in a 360° arc, the movement direction is assessed based on trigonometric

principles, starting from the direction in which the person faces the camera. The arc is

partitioned to represent different directions. Specifically, the movement direction is

classified as forward, backward, left, and right. In Figure 5.17, Pi (i = 0) indicates the

potential initial position, and Pi (i = 1, 2, 3, 4) depicts the possible final positions in

each direction within the next frame. The direction is determined by calculating the

angle i between the vector from the initial position to the final position and the XY-

plane of the camera system, based on the 3D coordinates of the two hip positions. The

step length, which is defined as the vector length from one ankle to the other, is

calculated using the 3D coordinates of both ankles.

152

(a) (b)

Figure 5.17 Geometric model of human movement direction. (a) Possible initial and

final positions of a locomotory action. (b) Geometry between an initial position and

each possible final position.

As shown in Figure 5.17, the coordinates of the human centre of mass at potential initial

and final positions under the camera coordinate system are denoted as 𝑃௜ (𝑥௜, 𝑧௜). To

determine the direction of human movement, the angle between the vector extending

from the initial position to the final position and the z-axis can be calculated using the

(x, z) coordinates of the human centre of mass point. The computation is based on the

following equations:

 𝜃௜ = arccos
𝑑(𝑧௜, 𝑧ହ௜)

ห𝑃ప𝑃ହప
ሬሬሬሬሬሬሬሬ⃑ ห

 𝑖 ∈ {1, 2, ⋯ } (5.10)

 𝜑௜ =

⎩
⎨

⎧

𝜃௜ , (𝑥௜ > 𝑥ହ௜ , 𝑧௜ > 𝑧ହ௜)

𝜋 − 𝜃௜ , (𝑥௜ > 𝑥ହ௜, 𝑧௜ < 𝑧ହ௜)

𝜋 + 𝜃௜ , (𝑥௜ < 𝑥ହ௜, 𝑧௜ > 𝑧ହ௜)

2𝜋 − 𝜃௜ , (𝑥௜ < 𝑥ହ௜, 𝑧௜ < 𝑧ହ௜)

 (5.11)

where the constant k determines the frame interval for calculating the movement

direction, and 𝑑(𝑧௜, 𝑧ହ௜) is the difference in the z-values of two positions. For example,

in Figure 5.17(b), if 𝑃௜(𝑥௜, 𝑧௜) is the possible initial position of the human centre of mass

point in the first frame i (i = 0) and 𝑃ହ௜ (𝑥ହ௜ , 𝑧ହ௜) is the final position of the human centre

153

of mass point in the fifth frame, the angle between the vector 𝑃ప𝑃ହప
ሬሬሬሬሬሬሬሬ⃑ and z-axis is 𝜃௜ (in

radians). As the movement direction is defined in four directions, 𝜃௜ must be converted

according to the rules in Eq. 5.11. The final angle 𝜑௜ is used to determine the movement

direction. Therefore, the human is moving forward if 𝜑௜ ∈ [0, 𝜋/4)⋃(7𝜋/4, 2𝜋] ,

leftward if 𝜑௜ ∈ (𝜋/4, 3𝜋/4),backward if 𝜑௜ ∈ (3𝜋/4, 5𝜋/4), and rightward if 𝜑௜ ∈

(5𝜋/4, 7𝜋/4).

5.4.2.2 Step Length Measurement

Step size is a precise measurement used in gait analysis to evaluate the movement and

posture of individuals. This parameter varies with an individual’s height, as taller

individuals with longer legs tend to walk faster than those with shorter legs. Specifically,

the step length refers to the distance covered when a person takes a single step,

beginning from a standing position with both feet together. This distance can be

expressed as the length of the vector from one ankle to the other.

Figure 5.18 Geometric model for step length computation

 𝑠 = argmax
௦

𝑓 ൫ฮ𝐴௟𝐴௥
ሬሬሬሬሬሬሬሬሬ⃑ ฮ൯ (5.12)

Figure 5.18 illustrates the general geometry for computing the step length. Equation

5.12 is introduced to calculate the step length, where 𝐴௟𝐴௥
ሬሬሬሬሬሬሬሬሬ⃑ denotes the vector from the

left ankle to the right ankle. Therefore, the step length can be directly measured, and

the resulting value is saved in the queue.

154

5.4.2.3 Human Joint Motion Measurement

Figure 5.19 Geometric model of joint motion monitoring. (a) Body parts used in joint

motion monitoring. For the corresponding order and name, refer to Table 5.3.

Geometric model for calculating the (b) elbow angle, (c) knee flexion angle, and (d)

upper-arm angle.

Human joint motion measurements include the knee pressure angle and arm swing

angle. The arm swing angle is divided into two indices, i.e., the upper-arm angle and

elbow angle. The calculation of these angles based on the geometry is shown in Figure

5.19. The knee flexion angle is calculated using the angle between the knee angle and

knee–hip vectors in 3D coordinates. The upper-arm angle is the angle between the

shoulder–elbow and shoulder–hip vectors. The elbow angle is calculated as the angle

between the elbow–shoulder and elbow–wrist vectors.

155

Walking and running injuries significantly impact the measurement of knee joint

motion, with several of these injuries attributable to anomalous knee motion (Lysholm

and Wiklander, 1987). Consequently, 3D joint information must be used for accurately

assessing the kinematics of the knee during human movement, as it can facilitate the

identification of potential injuries that are affected by knee angles. In this work, six key

joints within the 3D body structure are considered for calculating the knee angle. Figure

5.19(c) depicts the geometric model used to calculate the knee angle. The knee angle is

calculated using Eq. 5.13.

 𝑐𝑜𝑠 𝛼௞ = 𝑐𝑜𝑠൫𝐾𝐻ሬሬሬሬሬሬ⃑ , 𝐾𝐴ሬሬሬሬሬ⃑ ൯
෣

=
〈𝐾𝐻ሬሬሬሬሬሬ⃑ , 𝐾𝐴ሬሬሬሬሬ⃑ 〉

ห𝐾𝐻ሬሬሬሬሬሬ⃑ ห ∙ ห𝐾𝐴ሬሬሬሬሬ⃑ ห
 (5.13)

where 〈𝑎, 𝑏〉 denotes the scalar product of vectors a and b. 𝛼௞ is the knee angle, which

represents the shortest angle between the knee–hip and knee–ankle vectors. 𝐾𝐻ሬሬሬሬሬሬ⃑ is the

vector from the knee to the hip, 𝐾𝐴ሬሬሬሬሬ⃑ is the vector from the knee to the ankle, and 𝐻𝐴ሬሬሬሬሬሬ⃑ is

the vector from the hip to the ankle. Because the vectors change with the hip (𝑥௛, 𝑦௛, 𝑧௛),

knee (𝑥௞, 𝑦௞, 𝑧௞), and ankle (𝑥௔, 𝑦௔ , 𝑧௔) positions during movement, the knee angle 𝛼௞

varies based on the 3D coordinates of these joints. The knee joint angles of the left and

right legs are calculated separately in each frame.

Arm swing is an essential component of human walking that can reduce the metabolic

cost of walking and enhance gait stability (Bruijn et al., 2010). Thus, it is essential to

evaluate the arm swing when analysing walking patterns. Figure 5.19(b) illustrates the

geometrical model used for computing the elbow joint angle, and Figure 5.19(d) shows

the angle between the upper arm and upper torso. The two indices are computed as

follows.

cos 𝛼௘ =

〈𝐸𝑊ሬሬሬሬሬሬሬ⃑ , 𝐸𝑆ሬሬሬሬሬሬ⃗ 〉

 ห𝐸𝑊ሬሬሬሬሬሬሬ⃑ ห ∙ ห𝐸𝑆ሬሬሬሬሬ⃗ ห
 (5.14)

cos 𝛼௧ =

〈𝐸𝑆ሬሬሬሬሬ⃑ , 𝑆𝐻ሬሬሬሬሬ⃗ 〉

ห𝐸𝑆ሬሬሬሬሬ⃑ ห ∙ ห𝑆𝐻ሬሬሬሬሬ⃗ ห
 (5.15)

156

𝛼௘ and 𝛼௧ indicate the elbow angle and upper arm angle, respectively; 𝐸𝑊ሬሬሬሬሬሬሬ⃗ is the vector

from the elbow to the wrist; 𝐸𝑆ሬሬሬሬሬ⃗ is the vector from the elbow to the shoulder; and 𝑆𝐻ሬሬሬሬሬ⃗ is

the vector from the shoulder to the hip. The left- and right-arm swing are simultaneously

calculated, and the results are saved in the queue for visualisation in the final thread.

5.4.3 Implementation and Experimental Evaluation

5.4.3.1 Hardware Configuration and Multi-threading Design

The system was implemented on a computer equipped with two NVIDIA RTX 2080Ti

graphics cards, 64 GB of RAM, and two 12-core CPUs. The proposed system consisted

of a stereo pair of cameras, each with a horizontal field of view (FOV) of 90, vertical

FOV of 60, and depth FOV of 100. The image resolution of the camera was 672 

376 pixels. The baseline distance between the left and right cameras was 120 cm. The

intrinsic camera parameters, including the focal length (3.5 mm), offset of the principle

point, and lens distortions, were calibrated for each camera prior to use.

The real-time photogrammetric system involved four threads, each functioning as an

individual model that managed different tasks, as shown in Figure 5.20. Thread 1

loaded stereo RGB images with timestamps and known orientation parameters from the

camera and applied semi-global matching (SGM) (Hirschmuller, 2007) to generate a

disparity map. A 3D map was then retrieved by triangulation based on the disparities

and orientation parameters of the camera. A GPU-acceleration solution was

implemented in Thread 1 to increase the processing rate of 3D scene reconstruction.

Thread 2 extracted 2D human body skeletons from the left-view images using RMPE

and extended these skeletons to 3D body features based on the 3D map array produced

by Thread 1. Thread 3 computed various human kinematic parameters, including the

movement velocity, step length, and joint motion angles, based on the 3D body features.

The outputs of each thread were stored in the same queue for data exchange, and the

results were loaded into Thread 4 from the queue for real-time system visualisation.

157

Figure 5.20 Workflow of real-time acquisition and monitoring of 3D human body

kinematics

Figure 5.20 presents an overview of the system workflow. Thread 1 performed dense

image matching and triangulation with GPU acceleration. GPU-based dense image

matching was realised following the approach introduced in Chapter 4, and GPU-

accelerated triangulation was executed following the method described in Section 5.1.

The algorithm in Thread 1 involved multiple stages. First, stereo RGB images with

known interior and exterior orientation parameters were imported from the stereo

camera and stored in the host (CPU). Subsequently, the device (GPU) copied the stereo

RGB images of the host and separated them into left-view and right-view images. The

GPU with acceleration frameworks then executed the dense image matching algorithm

SGM and triangulation process for reconstructing the 3D information in real-time. The

left-view image and disparity map acquired from the SGM were combined to create the

background image for visualisation preparation in Thread 4. Threads 1 and 2

158

continuously processed frames from the stereo camera. The 3D body features derived

from a series of stereo camera frames were used by Thread 3 to analyse the kinematics

of a 3D human body over time.

Figure 5.21 Visualisation of the real-time photogrammetric system for human

kinematics

Thread 4 was responsible for visualisation. This thread loaded all of the information

stored in the queue. When the queue was detected to be full of the stitching and 3D

maps generated by Thread 1, the 3D body features extended from the 2D skeleton in

Thread 2, and the kinematic results computed from the 3D body features in Thread 3,

Thread 4 automatically displayed all of the results in a window. As shown in Figure

5.21, the background consisted of the stitching image with the left-view image of the

camera and coloured disparity map. Red colours in the disparity map indicate objects

closer to the camera, and darker blue colours represent objects further from the camera.

Different-coloured lines connected each joint. The distance of each body joint was

loaded from 3D information in the queue and displayed on the left side of the

background next to each body joint, using 2D coordinates. All kinematic results were

loaded from the queue and displayed on the coloured disparity map for real-time

monitoring of human locomotion.

5.4.3.2 Efficiency Evaluation of System Capacity

The capabilities of the proposed system were evaluated by assessing the processing rate

and effective detection distance of a person moving in front of the stereo camera.

During the assessment, 6,000 frames were captured within 300 s (Figure 5.22). The

threads achieved a processing rate of ~18 fps or higher, with a resolution of 1,344 

159

376 pixels. The average processing rate was 17.8 fps. Figure 5.22(a) illustrates the

processing time of each frame from Thread 1 to Thread 4. The processing rate exceeded

20 fps in certain instances in which an individual’s motion was exceptionally fast,

resulting in a ghost effect in the frames, or when the lighting conditions were

insufficient, and the person appeared faintly on the screen. In such cases, the RMPE

failed to extract the 2D human skeletons, owing to which Thread 2 skipped the current

frame and processed the next frame directly, resulting in a delay of several seconds. In

the evaluation involving 6,000 frames (Figure 5.22(a)), the proposed system could

accomplish real-time processing in nearly all instances.

(a) (b)

Figure 5.22 Results of the efficiency assessment of the real-time photogrammetric

system. (a) Frame rate records. (b) Effective measurement distance assessment.

The system demonstrated an effective measurement distance of ~15 m, based on the

assessment of a person moving back and forth along the optical axis of the left camera.

When the person left the camera FOV and returned along the same path, the system

recorded all distance values from the person’s waist, defined as the midpoint between

the left and right hips. As shown in Figure 5.22(b), when the person moved ~1.4 m, the

system extracted the 3D body features of the left and right hips and began computing

the corresponding 3D coordinates. When the person moved beyond a distance of 15.7

m from the camera, the system could not measure the distance because the person

appeared too small on the screen for detection by the RMPE. As the person started

moving toward the camera within a range of 14.2 m, the system could again extract the

3D human body features and simultaneously calculate the distance until the person

moved to a distance of less than 1.1 m from the camera. Notably, the measurements

were unstable in the distance range of 14–15 m, and the dead zone for close-range

160

measurements was ~1 m to ~1.4 m. Thus, the effective measurement range was ~1.5 m

to ~15 m, which could cover a wide range of scenes.

5.4.3.3 Accuracy Evaluation of the 3D Human Body Kinematics

To evaluate the accuracy of the distances measured by the system at a specific

resolution, we conducted an experiment in which a person remained stationary in front

of the camera at various distances (Figure 5.23(a)). The measurement accuracy was

assessed by comparing the measured distances between the person and camera with the

ground truth. As shown in Figure 5.23(b), the system captured 1,000 frames of a person

standing still in front of the camera at distances of 2.3 m, 4.1 m, 12 m, and 15 m.

Table 5.5 lists the average measured values. The measured distances were close to the

ground truth. When the person was 2.3 and 4.1 m from the camera, the root mean square

errors (RMSEs) were 0.4 cm and 2.6 cm, respectively, corresponding to errors of 0.2%

and 0.6%. As the person moved to a distance of 12 m, the measurements became

unstable. The RMSE increased to 8.7 cm, and the error became 0.7%. The

measurements were even more erratic when the person stood 15 m from the camera.

The RMSE and error increased to 47.9 cm and 3.2%, respectively. Because the effective

measurement range was ~1.5 m to 15 m, the system could not detect the person at a

distance of 15 m. Nevertheless, the system could obtain 3D human body measurements

with an average geometric accuracy exceeding 1% of the distance.

161

(a)

(b)

Figure 5.23 Evaluation of distance measurement accuracy. (a) A person stood

stationary in front of the camera in an evaluation of the measurement accuracy. (b)

Measurements of individuals standing in front of the camera at different distances.

Table 5.5 Assessment of system measurement accuracy

Ground truth (m) Mean of measurements (m) RMSE (cm) Error

2.3 2.3 0.4 0.2%

4.1 4.1 2.6 0.6%

12.0 12.1 8.7 0.7%

15.0 15.1 47.9 3.2%

The human movement direction was assessed by recording a person moving in four

directions relative to the camera: leftward, rightward, forward, and backward, as

illustrated in Figure 5.24. Figure 5.24 (a) shows the initial position of the person, and

Figures 5.24 (b), (c), (d), and (e) display the monitoring results of the person moving in

four directions, with the movement speed computed in real-time. The results are

162

summarised in Table 5.6. The identified movement direction was consistent with the

expected behaviour in each direction. In particular, the results presented in Figure 5.24

show that the system accurately identified the direction of movement and calculated the

movement speed in real-time.

(a) Initial position of the human

(b) Results for leftward movement (c) Results for rightward movement

(d) Results for forward movement (e) Results for backward movement

Figure 5.24 Results of monitoring human movement direction. The direction of

movement is determined relative to the position of the camera.

163

Table 5.6 Movement direction identification results

 Expected behaviour θ (°)
Movement

speed (cm/s)

Identified
movement
direction

(a) The person is standing still 0.3 0 Not Moving

(b) The person moves to their left 94.6 52 Leftward

(c)
The person moves to their
right

-89.7 55 Rightward

(d) The person moves forward -9.2 95 Forward

(e) The person moves backwards -1.2 114 Backward

Table 5.7 Analysis results of kinematic applications

Kinematic application
Mean of

measurements
Ground truth RMSE Error

Step length (cm) 32.6 33.1 0.3 0.8%

Knee angle
(degrees)

Left 169.7 176.0 6.3 3.6%

Right 170.4 176.0 5.7 3.2%

Elbow angle
(degrees)

Left 164.1 161.0 5.4 3.4%

Right 166.4 160.0 7.1 4.4%

Upper-arm angle
(degrees)

Left 33.6 35.0 2.6 7.3%

Right 32.9 31.0 2.3 7.5%

Table 5.7 and Figure 5.25 present the kinematic analysis results, including the step

length, knee angle, elbow angle, and upper-arm swing angle, as measured and recorded

from 1,000 frames involving a person standing stationary in front of the camera. For

the step length, the RMSE was 0.3 cm and the error was 0.8%. The values of the left

and right knee angles fluctuated slightly at approximately 170°. The RMSEs for the left

and right knee angles were 6.3° and 5.7°, respectively, and the error was approximately

3%. The measurements of the elbow and upper-arm angle were unstable due to the

bright light at their positions in the image. This instability resulted in the RMPE being

unable to accurately extract the 2D features and convert the 3D features. The mean

values of the measured left and right elbow angles were 164.1° and 166.4°, respectively,

with RMSEs of 5.4° and 7.1° and an error within 5%. Overall, the measured values

could be considered stable. The RMSEs of the left and right upper-arm angles were 2.6°

164

and 2.3°, respectively, with errors of 7.3% and 7.5%. These results indicate that the

measured angles deviated slightly from the ground truth values.

(a)

(b)

Figure 5.25 Analysis of kinematic measurements by the system. (a) 1,000-frame

measurements of the step length, knee flexion angles, and arm swing angles. (b)

System-measured kinematics of a person standing still in front of the camera.

165

Chapter 6 Conclusions and Discussions

This thesis provides a complete framework for achieving real-time photogrammetry by

presenting novel approaches and implementations of cross-view feature matching for

camera pose determination, dense image matching, and GPU-accelerated triangulation

for real-time 3D data generation. This chapter summarises the achievements, draws

conclusions from this research and then makes recommendations for future research.

6.1 Summary of the Research Work and Conclusions

Existing techniques for implementing real-time photogrammetry algorithms are limited

by high computational requirements and by processing large datasets in various scenes

to generate 3D data. These limitations have been discussed in the previous chapters.

This study addresses these limitations using a parallel architecture to accelerate

computational efficiency as a promising solution for implementing real-time

photogrammetry. The evaluation results demonstrate the effectiveness, efficiency, and

applicability of the proposed algorithms and techniques in various situations. This

study’s results can advance real-time photogrammetry applications such as accurate

aerial visual navigation, real-time aerial 3D modelling, and human motion tracking and

analysis. The following summarises the effectiveness and experimental results in

achieving real-time processing at each stage:

First, a novel visual-based approach for real-time camera pose determination was

achieved (Chapter 3). The approach utilises a coarse-to-fine strategy involving feature-

based cross-view image matching, retrieval, and camera pose determination using VO

and space resection techniques. It provided a robust and accurate camera pose

estimation by combining the strengths of both techniques. Space resection offered

global accuracy based on ground control points, while VO provided incremental

updates for continuous tracking. The experiment result indicates that the proposed

approach successfully localises the aerial robot by narrowing the region for visual

positioning and then precisely identifying its location and orientation through visual

odometry and space resection. The proposed method not only achieves the

implementation of photogrammetric algorithms into real-time localisation algorithms,

166

but also offers a cost-effective alternative to traditional navigation methods and

provides a flexible solution for accurate visual navigation in a GPS-denied environment.

Secondly, a parallel architecture SGM algorithm was developed and implemented for

real-time dense image matching in photogrammetric applications (Chapter 4). The

proposed method aims to improve the efficiency of dense image matching, enabling

real-time processing in various scenarios, such as the matching cost (MC) and similarity

measures selection. The overall processing efficiency is significantly improved by

utilising a parallel architecture to increase the computing speed of MC and similarity

measures so that it can be adapted to real-time dense image matching. Two applications

are considered to evaluate the real-time processing efficiency of the parallel-

architecture SGM: real-time generation of disparity maps using stereo images and aerial

images. The evaluation results demonstrate that the accuracy of the proposed method

outperforms traditional SGM methods and achieves real-time processing efficiency. It

also validates that the proposed method can be suitable for disparity map generation for

various large-scale scenarios. In conclusion, this research contributes to the

achievement of real-time processing of dense matching algorithms in photogrammetry,

offering potential benefits for photogrammetry and related fields.

Third, the photogrammetry approaches were extended and implemented to various

relative fields of real-time 3D data generation and applications (Chapter 5). One

application is the implementation of GPU-accelerated triangulation algorithm

incorporating the ROS system to generate 3D point clouds from aerial images in real-

time. This application also proposes a new method of point cloud storage and

visualisation. The method uses a revised library to incrementally process incoming

frames and pass them to the next stage as soon as possible to achieve real-time

visualisation of the point cloud. Experimental results indicate that the 3D data is

incrementally generated and visualised using the ROS system with multi-threading

capabilities. Ultimately, this application achieves the real-time acquisition of detailed

3D point clouds that accurately represent the environment from aerial images. Another

application that benefits from photogrammetry techniques and GPU acceleration is the

real-time acquisition and monitoring of 3D human body kinematics. This application

uses a deep learning approach to extract human features, which are then converted into

a corresponding 3D representation by the GPU-accelerated disparity mapping method

167

presented in Chapter 3. The experimental results quantitatively evaluate the efficiency

and accuracy of each measurement for human kinematic analysis and demonstrate that

this approach enables the real-time measurement and visualisation of various kinematic

parameters related to human motion. The contribution of this work is not only achieving

real-time triangulation algorithm for 3D point cloud generation, but also integrating the

proposed real-time photogrammetric methods in the previous chapters to achieve real-

time 3D application in different scenarios. This work provides a reference and

pavement for the real-time 3D photogrammetry applications in the future.

Overall, this research accomplished the stated objectives of achieving real-time

photogrammetry by presenting novel techniques and their implementations. The

experimental evaluations demonstrate the feasibility and effectiveness of the proposed

approaches in real-world scenarios.

6.2 Discussions and Future Works

While the presented approach offers advantages over traditional methods, it may have

certain limitations. The limitations could include:

a) Real-time cross-view feature matching and camera pose determination

In the real-time camera pose determination (Chapter 3), the method depends on a pre-

built database consisting of cropped orthoimage and DSM tiles with features extracted

using a deep learning algorithm. The accuracy and effectiveness of the approach heavily

rely on the quality and completeness of this database. Currently, the orthoimages and

DSMs in the dataset are cropped using a fixed scale, which must align with the scale of

the aerial images captured by the camera mounted on the UAV. This alignment is

crucial to ensure the robustness of cross-view image matching, which impacts the

accuracy of camera pose determinations. However, the fixed-scale cropping approach

poses challenges when variations in the camera’s scale vary across different situations.

It is imperative to enhance the cropping scheme by implementing alternative methods

to address this limitation. One potential improvement is adopting an adaptive scale

cropping technique, which dynamically adjusts the cropping of orthoimages and DSMs

168

to match the specific camera scale during the resumption of the pre-built database.

Another possible approach is utilising a content-aware cropping scheme that

intelligently analyses the image content to determine the optimal cropping parameters.

Another limitation of the current camera pose refinement method is that it solely relies

on space resection. Additionally, this method requires prior knowledge of the world

space coordinates of GCPs to accurately determine the camera pose by solving co-linear

equations. While this approach allows for obtaining the real-world coordinates of the

camera, its feasibility is constrained to environments with a DSM. Consequently, it is

essential to explore alternative methods in future work that can achieve accurate camera

pose estimation in GPS-denied environments.

A further constraint arises when the algorithm reaches a specific number of input

images, at which point it becomes unable to process additional images due to the

memory constraints of the on-board computer. To address this challenge, the current

approach involves only keeping the feature points extracted by the algorithm without

saving the images to reduce the load on memory and storage. Our proposed cross-view

image matching and retrieval method also uses only the feature points to determine the

position of the aerial image. However, it is crucial to acknowledge a potential constraint

in this approach when the same image is needed and reused by the following algorithms

for subsequent image processing. Therefore, based on the above analysis, the method

for effective image processing needs to be optimised in future work.

(b) Real-time dense image matching based on GPU-acceleration

In Section 4.2 of Chapter 4, the SGM framework for dense image matching is

introduced, discussing issues related to processing efficiencies, such as the MC and the

selection of similarity measures. However, some limitations need to be addressed. First,

implementing a parallel-architecture SGM algorithm may require specialised hardware,

potentially limiting its adoption on devices with limited computational capabilities.

Secondly, scalability could be challenging when dealing with extremely large-scale

aerial images or real-time simultaneous processing of multiple image streams. Further

research is needed to optimise the algorithm for such scenarios. Nevertheless, the

algorithm’s performance might vary in environments such as underwater, in urban

169

canyons, or heavily occluded scenes. Future work could focus on adapting the

algorithm for optimal performance in these scenarios. Section 4.4 evaluates the real-

time processing efficiency of the parallel-architecture SGM algorithm. Firstly, images

taken by a stereo camera are used to assess the real-time depth map generation. Then,

the algorithm is tested using large-scale aerial images collected from a UAV platform.

The real-time processing and evaluation results are presented, analysed, and discussed.

This evaluation helps identify the algorithm’s strengths and weaknesses in generating

depth maps in real-time scenarios.

Future research could further concentrate on optimising the algorithm, exploring

advanced data structures, parallelisation techniques, and integrating machine learning

approaches. Cross-platform compatibility should also be considered to ensure broader

accessibility. Improving hardware capabilities, such as faster GPUs and specialised

parallel processing units, could enhance real-time performance. Additionally, adapting

the algorithm to various environments and automating parameter tuning would increase

its robustness and usability. Furthermore, the parallel-architecture SGM algorithm can

be integrated with other technologies, such as SLAM or AI-based vision systems, to

expand its capabilities and enable more sophisticated applications. Overall, developing

and implementing a parallel-architecture SGM algorithm for real-time dense image

matching show promising results and present an exciting area for future research in

photogrammetric applications.

(c) Real-time 3D data generation and applications

In Section 5.3, the real-time 3D point cloud generation has several limitations and

potential areas for future work. Firstly, the processing efficiency of the system might

vary depending on the complexity of the scene and the available computational

resources. Further optimisation of the camera pose estimation, triangulation, and

interpolation processes is necessary to improve overall processing speed, ensuring real-

time performance in various scenarios. Another limitation lies in the conversion from

sparse to dense point clouds. The effectiveness of the interpolation process in accurately

representing the 3D scene relies on the density and distribution of the sparse points. In

scenarios with limited coverage or challenging geometries, achieving a high-quality,

dense point cloud representation may prove challenging. Future work could focus on

170

developing advanced interpolation techniques or incorporating additional information

and sensor modalities to enhance the accuracy and density of the resulting dense point

cloud. The method we propose is only simulated on the computer, and in the future, we

hope to put it on the UAV to process it in real time while flying.

Several limitations could be noticed in the experiments for real-time acquisition and

monitoring of 3D human body kinematics in Section 5.4. The RMPE failed to detect

the 2D human features when the person moved very fast (a ghosting effect appeared on

the screen) or when the illumination was dark (the person almost disappeared).

Similarly, the light intensity in the environment was not constant, and the SGM did not

accurately obtain the disparity value in a very highlighting environment, such as an area

near a lamp, or low-illumination environments, such as shadows. The 3D information

was not extracted in these cases. Moreover, 3D body features were not extracted over

a certain distance, where the person was so small in the image that the 2D human

detection algorithm was unable to extract human skeletons. These problems can be

improved by optimising the algorithms to support higher image resolutions. The clearer

outline of a person in a higher-resolution image allows the deep learning method to

recognise the body features at farther distances. With proper optimisation in our future

works, real-time processing of image sequences of higher resolutions can be expected.

It should also be noted that the moving directions that can be identified in the current

system only allow four main directions. The algorithms will be further improved in our

future works to allow the identification of more sophisticated moving directions.

This thesis provides a complete framework for achieving real-time photogrammetry

with various applications. The findings of this research have the potential to advance

real-time photogrammetry applications in areas such as aerial imagery analysis, 3D

modelling, and human motion tracking. Further research and development in these

areas can build upon the foundations laid out in this thesis to continue advancing real-

time photogrammetry algorithms and their practical applications.

171

Reference

Abdi, G., Samadzadegan, F., Kurz, F., 2016. Pose estimation of unmanned aerial

vehicles based on a vision-aided multi-sensor fusion, XXII ISPRS Congress,

Technical Commission I, pp. 193-199.

Afriansyah, F.L., Muna, N., Widiastuti, I., Fanani, N.Z., Purnomo, F.E., 2019. Image

mapping detection of green areas using speed up robust features, 2019

International Conference on Computer Science, Information Technology, and

Electrical Engineering (ICOMITEE). IEEE, pp. 165-168.

Agisoft, L., 2014. Agisoft Photoscan User Manual: Professional Edition. URL:

https://www.agisoft.com/pdf/photoscan-pro_1_4_en.pdf (accessed 2023 Jan.

14).

Alhwarin, F., Wang, C., Ristić-Durrant, D., Gräser, A., 2008. Improved SIFT-features

matching for object recognition, Visions of Computer Science-BCS

International Academic Conference, pp. 179-190.

Allaire, S., Kim, J.J., Breen, S.L., Jaffray, D.A., Pekar, V., 2008. Full orientation

invariance and improved feature selectivity of 3D SIFT with application to

medical image analysis, 2008 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition Workshops. IEEE, pp. 1-8.

Aqel, M.O., Marhaban, M.H., Saripan, M.I., Ismail, N.B., 2016. Review of visual

odometry: Types, approaches, challenges, and applications. SpringerPlus, 5, pp.

1-26.

Arm Limited, 2023. Learn the architecture - Introducing the ARM architecture. URL:

https://developer.arm.com/documentation/102404/latest/ (accessed 2023 Jan.

10).

Arras, K.O., Siegwart, R.Y., 1998. Feature extraction and scene interpretation for map-

based navigation and map building. Mobile Robots XII. SPIE, pp. 42-53.

Balali, V., Noghabaei, M., Heydarian, A., Han, K., 2018. Improved stakeholder

communication and visualizations: Real-time interaction and cost estimation

within immersive virtual environments. Construction Research Congress 2018,

pp. 522-530.

172

Balntas, V., Lenc, K., Vedaldi, A., Mikolajczyk, K., 2017. HPatches: A benchmark and

evaluation of handcrafted and learned local descriptors. Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pp. 5173-5182.

Barbasiewicz, A., Widerski, T., Daliga, K., 2018. The analysis of the accuracy of spatial

models using photogrammetric software: Agisoft Photoscan and Pix4D, E3S

Web of Conferences. EDP Sciences, pp. 12.

Bates, D., Eddelbuettel, D., 2013. Fast and elegant numerical linear algebra using the

RcppEigen package. Journal of Statistical Software, 52, pp. 1-24.

Bentley, J.L., 1975. Multidimensional binary search trees used for associative searching.

Communications of the ACM, 18(9), pp. 509-517.

Besl, P.J., McKay, N.D., 1992. Method for registration of 3D shapes. Sensor fusion IV:

Control Paradigms and Data Structures. SPIE, pp. 586-606.

Bradski, G., 2000. The OpenCV library. Dr. Dobb’s Journal: Software Tools for the

Professional Programmer, 25(11), pp. 120-123.

Bradski, G., Kaehler, A., 2008. Learning OpenCV: Computer vision with the OpenCV

library. O’Reilly Media, Inc., Sebastopol, US, ISBN: 9788184045970.

Briechle, K., Hanebeck, U.D., 2001. Template matching using fast normalized cross

correlation. Optical Pattern Recognition XII. SPIE, pp. 95-102.

Bruijn, S.M., Meijer, O.G., Beek, P.J., Van Dieen, J.H., 2010. The effects of arm swing

on human gait stability. Journal of Experimental Biology, 213(23), pp. 3945-

3952.

Bu, S., Zhao, Y., Wan, G., Liu, Z., 2016. Map2Dfusion: Real-time incremental UAV

image mosaicing based on monocular SLAM. 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 4564-4571.

Buttinger-Kreuzhuber, A., Konev, A., Horváth, Z., Cornel, D., Schwerdorf, I., Blöschl,

G., Waser, J., 2022. An integrated GPU-accelerated modeling framework for

high-resolution simulations of rural and urban flash floods. Environmental

Modelling & Software, 156, 105480.

Calonder, M., Lepetit, V., Strecha, C., Fua, P., 2010. Brief: Binary robust independent

elementary features. Computer Vision - ECCV 2010: 11th European

Conference on Computer Vision, Part IV 11, pp. 778-792.

Campbell, J., Sukthankar, R., Nourbakhsh, I., Pahwa, A., 2005. A robust visual

odometry and precipice detection system using consumer-grade monocular

173

vision. Proceedings of the 2005 IEEE International Conference on Robotics and

Automation. IEEE, pp. 3421-3427.

Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., Sheikh, Y., 2021. OpenPose: Realtime

multi-person 2D pose estimation using part affinity fields. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 43(1), pp. 172-186.

Chaivivatrakul, S., Moonrinta, J., Dailey, M.N., 2010. Towards automated crop yield

estimation-detection and 3D reconstruction of pineapples in video sequences.

VISAPP, 1, pp. 180-183.

Chang, J.-R., Chen, Y.-S., 2018. Pyramid stereo matching network. Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410-5418.

Chauhan, M.S., Singh, A., Khemka, M., Prateek, A., Sen, R., 2019. Embedded CNN

based vehicle classification and counting in non-laned road traffic. Proceedings

of the 10th International Conference on Information and Communication

Technologies and Development, pp. 1-11.

Chen, L., Wu, B., Zhao, Y., Li, Y., 2021. A real-time photogrammetric system for

acquisition and monitoring of three-dimensional human body kinematics.

Photogrammetric Engineering & Remote Sensing, 87(5), pp. 363-373.

Chen, W., Liao, X., Sun, Y., Wang, Q., 2020. Improved ORB-SLAM based 3D dense

reconstruction for monocular endoscopic image. 2020 International Conference

on Virtual Reality and Visualization (ICVRV). IEEE, pp. 101-106.

Chen, Y., Chen, Y., Wang, G., 2019. Bundle adjustment revisited. arXiv preprint

arXiv:1912.03858.

Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P., 2016. Deep feature extraction and

classification of hyperspectral images based on convolutional neural networks.

IEEE Transactions on Geoscience and Remote Sensing, 54(10), pp. 6232-6251.

Chhabra, P., Garg, N.K., Kumar, M., 2020. Content-based image retrieval system using

ORB and SIFT features. Neural Computing and Applications, 32, pp. 2725-

2733.

Choudhary, S., Gupta, S., Narayanan, P., 2012. Practical time bundle adjustment for

3D reconstruction on the GPU, Trends and Topics in Computer Vision: ECCV

2010 Workshops, Part II 11, pp. 423-435.

Choy, C.B., Gwak, J., Savarese, S., Chandraker, M., 2016. Universal correspondence

network. Advances in Neural Information Processing Systems, 29.

174

Ciregan, D., Meier, U., Schmidhuber, J., 2012. Multi-column deep neural networks for

image classification, 2012 IEEE Conference on Computer Vision and Pattern

Recognition. IEEE, pp. 3642-3649.

Cover, T., Hart, P., 1967. Nearest neighbor pattern classification. IEEE Transactions

on Information Theory, 13(1), pp. 21-27.

Daud, S.M.S.M., Yusof, M.Y.P.M., Heo, C.C., Khoo, L.S., Singh, M.K.C., Mahmood,

M.S., Nawawi, H., 2022. Applications of drone in disaster management: A

scoping review. Science & Justice, 62(1), pp. 30-42.

Deng, S., Dong, Q., Liu, B., Hu, Z., 2022. SuperPoint-guided semi-supervised semantic

segmentation of 3D point clouds. 2022 International Conference on Robotics

and Automation (ICRA). IEEE, pp. 9214-9220.

Deng, Z.-A., Xu, Y.-B., Ma, L., 2012. Indoor positioning via nonlinear discriminative

feature extraction in wireless local area network. Computer Communications,

35(6), pp. 738-747.

Deshmukh, R., Roros, C.J., Kashyap, A., Kak, A.C., 2023. An aligned multi-temporal

multi-resolution satellite image dataset for change detection research. arXiv

preprint arXiv:2302.12301.

DeTone, D., Malisiewicz, T., Rabinovich, A., 2018. SuperPoint: Self-supervised

interest point detection and description. Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, pp. 224-236.

Diskin, Y., Asari, V.K., 2013. Dense 3D point-cloud model using optical flow for a

monocular reconstruction system. 2013 IEEE Applied Imagery Pattern

Recognition Workshop (AIPR). IEEE, pp. 1-6.

Du, P., Zhou, Y., Xing, Q., Hu, X., 2011. Improved SIFT matching algorithm for 3D

reconstruction from endoscopic images. Proceedings of the 10th International

Conference on Virtual Reality Continuum and Its Applications in Industry, pp.

561-564.

Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A., Sattler, T., 2019.

D2-net: A trainable CNN for joint detection and description of local features.

arXiv preprint arXiv:1905.03561.

Engel, J., Schöps, T., Cremers, D., 2014. LSD-SLAM: Large-scale direct monocular

slam, Computer Vision - ECCV 2014: 13th European Conference, Part II 13,

pp. 834-849.

175

Fan, B., Kong, Q., Wang, X., Wang, Z., Xiang, S., Pan, C., Fua, P., 2019. A

performance evaluation of local features for image-based 3D reconstruction.

IEEE Transactions on Image Processing, 28(10), pp. 4774-4789.

Fang, H.-S., Xie, S., Tai, Y.-W., Lu, C., 2017. RMPE: Regional multi-person pose

estimation. Proceedings of the IEEE International Conference on Computer

Vision, pp. 2334-2343.

Fankhauser, P., Hutter, M., 2016. A universal grid map library: Implementation and use

case for rough terrain navigation. Robot Operating System (ROS) The

Complete Reference, 1, pp. 99-120.

Feng, H., Zhang, G., Hu, B., Zhang, X., Li, S., 2019. Noise-resistant matching

algorithm integrating regional information for low-light stereo vision. Journal

of Electronic Imaging, 28(1), 013050.

Förstner, W, 2005. Real-Time Photogrammetry. Proceedings of the Photogrammetric

Week, 5, pp. 229-238.

Förstner, W., Wrobel, B.P., 2016. Photogrammetric computer vision: Statistics,

Geometry, Orientation and Reconstruction. Springer, Switzerland, ISBN:

9783319115504.

Foster, I., Kesselman, C., 2003. The Grid 2: Blueprint for a new computing

infrastructure. Elsevier, San Francisco, US, ISBN: 9781558609334.

Fraundorfer, F., Scaramuzza, D., 2011. Visual odometry: Part I: The first 30 years and

fundamentals. IEEE Robotics and Automation Magazine, 18(4), pp. 80-92.

Frosi, M., Gobbi, V., Matteucci, M., 2023. OSM-SLAM: Aiding SLAM with

OpenStreetMap priors. Frontiers in Robot and AI, 10, 1064934.

Fu, Q., Tong, X., Liu, S., Ye, Z., Jin, Y., Wang, H., Hong, Z., 2023. GPU-accelerated

PCG method for the block adjustment of large-scale high-resolution optical

satellite imagery without GCPs. Photogrammetric Engineering & Remote

Sensing, 89(4), pp. 211-220.

Gálvez-López, D., Tardos, J.D., 2012. Bags of binary words for fast place recognition

in image sequences. IEEE Transaction on Robot, 28(5), pp. 1188-1197.

Geiger, A., Lenz, P., Stiller, C., Urtasun, R., 2013. Vision meets robotics: The KITTI

dataset. The International Journal of Robotics Research, 32(11), pp. 1231-1237.

Geiger, A., Ziegler, J., Stiller, C., 2011. Stereoscan: Dense 3D reconstruction in real-

time. 2011 IEEE Intelligent Vehicles Symposium (IV). IEEE, pp. 963-968.

176

Gholami, M., Rezaei, A., Cuthbert, T.J., Napier, C., Menon, C., 2019. Lower body

kinematics monitoring in running using fabric-based wearable sensors and deep

convolutional neural networks. Sensors, 19(23), pp. 5325.

Gonzalez, R., Rodriguez, F., Guzman, J.L., Pradalier, C., Siegwart, R., 2012. Combined

visual odometry and visual compass for off-road mobile robots localization.

Robotica, 30(6), pp. 865-878.

Grazioso, S., Caporaso, T., Selvaggio, M., Panariello, D., Ruggiero, R., Di Gironimo,

G., 2019. Using photogrammetric 3D body reconstruction for the design of

patient - tailored assistive devices. 2019 II Workshop on Metrology for Industry

4.0 and IoT (MetroInd4. 0&IoT). IEEE, pp. 240-242.

Gruen, A., 2012. Development and status of image matching in photogrammetry. The

Photogrammetric Record, 27(137), pp. 36-57.

Hartley, R., Zisserman, A., 2003. Multiple view geometry in computer vision.

Cambridge University Press, Cambridge, UK, ISBN: 9781139449144.

He, K., Gkioxari, G., Dollár, P., Girshick, R., 2017. Mask r-CNN. Proceedings of the

IEEE International Conference on Computer Vision, pp. 2961-2969.

Hermann, S., Morales, S., Klette, R., 2011. Half-resolution semi-global stereo matching,

2011 IEEE Intelligent Vehicles Symposium (IV). IEEE, pp. 201-206.

Hernandez-Juarez, D., Chacón, A., Espinosa, A., Vázquez, D., Moure, J.C., López,

A.M., 2016. Embedded real-time stereo estimation via semi-global matching on

the GPU. Procedia Computer Science, 80, pp.143-153.

Hinzmann, T., Schönberger, J.L., Pollefeys, M., Siegwart, R., 2018. Mapping on the

fly: Real-time 3D dense reconstruction, digital surface map and incremental

orthomosaic generation for unmanned aerial vehicles. Field and Service

Robotics: Results of the 11th International Conference, pp. 383-396.

Hirschmuller, H., 2005. Accurate and efficient stereo processing by semi-global

matching and mutual information. 2005 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’05). IEEE, pp. 807-814.

Hirschmuller, H., 2007. Stereo processing by semiglobal matching and mutual

information. IEEE Transactions on Pattern Analysis and Machine Intelligence,

30(2), pp. 328-341.

Hirschmüller, H., Innocent, P.R., Garibaldi, J., 2002. Real-time correlation-based stereo

vision with reduced border errors. International Journal of Computer Vision, 47,

pp. 229-246.

177

Hirschmuller, H., Scharstein, D., 2008. Evaluation of stereo matching costs on images

with radiometric differences. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 31(9), pp. 1582-1599.

Howard, A., 2008. Real-time stereo visual odometry for autonomous ground vehicles,

2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

IEEE, pp. 3946-3952.

Hu, Y., 2015. Research on three dimensional reconstruction of the ancient building

based on images. Computer and Computing Technologies in Agriculture VIII:

8th IFIP WG 5.14 International Conference, CCTA 2014, pp. 73-79.

Hua, S., Chen, G., Wei, H., Jiang, Q., 2012. Similarity measure for image resizing using

SIFT feature. EURASIP Journal on Image and Video Processing 2012, 1, pp.

1-11.

Hua, Y., Lin, J., Lin, C., 2010. An improved SIFT feature matching algorithm. 2010

8th World Congress on Intelligent Control and Automation. IEEE, pp. 6109-

6113.

Intel Corporation, 2018. Intel® Aero compute board. URL:

https://www.intel.com/content/www/us/en/products/sku/97178/intel-aero-

compute-board/specifications.html (accessed 2022 Oct. 04).

Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J.,

Hodges, S., Freeman, D., Davison, A., 2011. Kinectfusion: Real-time 3D

reconstruction and interaction using a moving depth camera. Proceedings of the

24th Annual ACM Symposium on User Interface Software and Technology, pp.

559-568.

Jaimes, A., Sebe, N., 2007. Multimodal human–computer interaction: A survey.

Computer vision and image understanding, 108(1-2), pp. 116-134.

Jiménez-Jiménez, S.I., Ojeda-Bustamante, W., Marcial-Pablo, M.d.J., Enciso, J., 2021.

Digital terrain models generated with low-cost UAV photogrammetry:

Methodology and accuracy. ISPRS International Journal of Geo-Information,

10(5), pp. 285.

Johnson, J., Douze, M., Jégou, H., 2019. Billion-scale similarity search with GPUs.

IEEE Transactions on Big Data, 7(3), pp. 535-547.

Junior, J.C.S.J., Musse, S.R., Jung, C.R., 2010. Crowd analysis using computer vision

techniques. IEEE Signal Processing Magazine, 27(5), pp. 66-77.

178

Kanade, T., Kano, H., Kimura, S., Yoshida, A., Oda, K., 1995. Development of a video-

rate stereo machine. Proceedings 1995 IEEE/RSJ International Conference on

Intelligent Robots and Systems. Human Robot Interaction and Cooperative

Robots. IEEE, pp. 95-100.

Kang, J., Chen, L., Deng, F., Heipke, C., 2019. Context pyramidal network for stereo

matching regularized by disparity gradients. ISPRS Journal of Photogrammetry

and Remote Sensing, 157, pp. 201-215.

Karunarathne, M.S., Jones, S.A., Ekanayake, S.W., Pathirana, P.N., 2014. Remote

monitoring system enabling cloud technology upon smart phones and inertial

sensors for human kinematics. 2014 IEEE 4th International Conference on Big

Data and Cloud Computing. IEEE, pp. 137-142.

Kendall, A., Cipolla, R., 2016. Modelling uncertainty in deep learning for camera

relocalization. 2016 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, pp. 4762-4769.

Kendall, A., Grimes, M., Cipolla, R., 2015. PoseNet: A convolutional network for real-

time 6-dof camera relocalization. Proceedings of the IEEE International

Conference on Computer Vision, pp. 2938-2946.

Kendall, A., Martirosyan, H., Dasgupta, S., Henry, P., Kennedy, R., Bachrach, A., Bry,

A., 2017. End-to-end learning of geometry and context for deep stereo

regression. Proceedings of the IEEE International Conference on Computer

Vision, pp. 66-75.

Kern, A., Bobbe, M., Khedar, Y., Bestmann, U., 2020. OpenREALM: Real-time

mapping for unmanned aerial vehicles. 2020 International Conference on

Unmanned Aircraft Systems (ICUAS). IEEE, pp. 902-911.

Kim, H., Oh, T., Lee, D., Myung, H., 2014. Image-based localization using prior map

database and monte carlo localization, 2014 11th International Conference on

Ubiquitous Robots and Ambient Intelligence (URAI). IEEE, pp. 308-310.

Kim, S., Kim, T., Sim, J., 2019. Applicability assessment of UAV mapping for disaster

damage investigation in Korea. International Archives of the Photogrammetry,

Remote Sensing & Spatial Information Sciences, 42, pp. 209-214.

Kitt, B.M., Rehder, J., Chambers, A.D., Schonbein, M., Lategahn, H., Singh, S., 2011.

Monocular visual odometry using a planar road model to solve scale ambiguity.

Proceedings of the 5th European Conference on Mobile Robots (ECMR 2011),

pp. 43-48.

179

Knyaz, V.A., Kniaz, V.V., Remondino, F., Zheltov, S.Y., Gruen, A., 2020. 3D

reconstruction of a complex grid structure combining UAS images and deep

learning. Remote Sensing, 12(19), pp. 3128.

Kotsakis, C., 2007. Least-squares collocation with covariance-matching constraints.

Journal of Geodesy, 81(10), pp. 661-677.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2017. ImageNet classification with deep

convolutional neural networks. Communications of the ACM, 60(6), pp. 84-90.

La Salandra, M., Miniello, G., Nicotri, S., Italiano, A., Donvito, G., Maggi, G., Dellino,

P., Capolongo, D., 2021. Generating UAV high-resolution topographic data

within a FOSS photogrammetric workflow using high-performance computing

clusters. International Journal of Applied Earth Observation and

Geoinformation, 105, 102600.

LaViola Jr, J.J., Kruijff, E., McMahan, R.P., Bowman, D., Poupyrev, I.P., 2017. 3D

user interfaces: Theory and practice. Addison-Wesley Professional, Boston, US,

ISBN: 9780201758672.

Li, G., Yu, L., Fei, S., 2021. A deep-learning real-time visual slam system based on

multi-task feature extraction network and self-supervised feature points.

Measurement, 168, 108403.

Longuet-Higgins, H.C., 1981. A computer algorithm for reconstructing a scene from

two projections. Nature, 293(5828), pp. 133-135.

Lourakis, M.L., Argyros, A.A., 2005. Is levenberg-marquardt the most efficient

optimization algorithm for implementing bundle adjustment?. 10th IEEE

International Conference on Computer Vision (ICCV’05) Volume 1. IEEE, pp.

1526-1531.

Lowe, D.G., 2004. Distinctive image features from scale-invariant keypoints.

International Journal of Computer Vision, 60, pp. 91-110.

Lu, J., Liou, M.L., 1997. A simple and efficient search algorithm for block-matching

motion estimation. IEEE Transactions on Circuits and Systems for Video

Technology, 7(2), pp. 429-433.

Lysholm, J., Wiklander, J., 1987. Injuries in runners. The American Journal of Sports

Medicine, 15(2), pp. 168-171.

Ma, W., Wen, Z., Wu, Y., Jiao, L., Gong, M., Zheng, Y., Liu, L., 2016. Remote sensing

image registration with modified SIFT and enhanced feature matching. IEEE

Geoscience and Remote Sensing Letters, 14(1), pp. 3-7.

180

Mahendran, A., Vedaldi, A., 2015. Understanding deep image representations by

inverting them. Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 5188-5196.

Mak, J., Hess-Flores, M., Recker, S., Owens, J.D., Joy, K.I., 2014. GPU-accelerated

and efficient multi-view triangulation for scene reconstruction, IEEE Winter

Conference on Applications of Computer Vision. IEEE, pp. 61-68.

Maoteng, Z., Shunping, Z., Xiaodong, X., Junfeng, Z., 2017. A new GPU bundle

adjustment method for large-scale data. Photogrammetric Engineering &

Remote Sensing, 83(9), pp. 633-641.

Min, D., Choi, S., Lu, J., Ham, B., Sohn, K., Do, M.N., 2014. Fast global image

smoothing based on weighted least squares. IEEE Transactions on Image

Processing, 23(12), pp. 5638-5653.

Mizginov, V., Kniaz, V., 2019. Evaluating the accuracy of 3D object reconstruction

from thermal images. The International Archives of Photogrammetry, Remote

Sensing and Spatial Information Sciences, 42, pp. 129-134.

Moustafa, M., Ebeid, H.M., Helmy, A., Nazmy, T.M., Tolba, M.F., 2016. Rapid real-

time generation of super-resolution hyperspectral images through compressive

sensing and GPU. International Journal of Remote Sensing, 37(18), pp. 4201-

4224.

Muja, M., Lowe, D.G., 2014. Scalable nearest neighbor algorithms for high

dimensional data. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 36(11), pp. 2227-2240.

Munguia, R., Grau, A., 2007. Monocular slam for visual odometry. 2007 IEEE

International Symposium on Intelligent Signal Processing. IEEE, pp. 1-6.

Mur-Artal, R., Montiel, J.M.M., Tardos, J.D., 2015. ORB-SLAM: A versatile and

accurate monocular SLAM system. IEEE Transaction on Robot, 31(5), pp.

1147-1163.

Ni, K., Dellaert, F., 2006. Stereo tracking and three-point/one-point algorithms-a robust

approach in visual odometry. 2006 International Conference on Image

Processing. IEEE, pp. 2777-2780.

Nickolls, J., Buck, I., Garland, M., Skadron, K., 2008. Scalable parallel programming

with CUDA: Is CUDA the parallel programming model that application

developers have been waiting for? Queue, 6(2), pp. 40-53.

181

Nistér, D., 2004. An efficient solution to the five-point relative pose problem. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 26(6), pp. 756-770.

Nistér, D., Naroditsky, O., Bergen, J., 2004. Visual odometry. Proceedings of the 2004

IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR 2004). IEEE, pp. I-I.

NVIDIA, 2017. Jetson TX2 developer kit user guide. URL:

https://developer.nvidia.com/downloads/jetson-tx2-developer-kit-user-guide

(accessed 2022 Apr. 11).

NVIDIA, 2018. Jetson Xavier NX developer kit. URL:

https://developer.download.nvidia.com/embedded/L4T/r32_Release_v4.2/Jets

on_Xavier_NX_Developer_Kit_User_Guide.pdf (accessed 2022 Apr. 11).

NVIDIA, 2021. Nvidia deep learning TensorRT documentation. URL:

https://docs.nvidia.com/deeplearning/tensorrt/ (accessed 2022 Apr. 11).

NVIDIA, Vingelmann, P., Fitzek, F.H.P., 2020. CUDA, release: 10.2.89. URL:

https://docs.nvidia.com/cuda/archive/10.2/ (accessed 2022 Mar. 19).

Ono, Y., Trulls, E., Fua, P., Yi, K.M., 2018. LF-net: Learning local features from

images. Advances in Neural Information Processing Systems, 31.

Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell,

T.J., 2007. A survey of general‐purpose computation on graphics hardware,

Computer graphics forum. Wiley Online Library, pp. 80-113.

Patias, P., 2002. Medical imaging challenges photogrammetry. ISPRS Journal of

Photogrammetry and Remote Sensing, 56(5-6), pp. 295-310.

Peng, K., Chen, X., Zhou, D., Liu, Y., 2009. 3D reconstruction based on SIFT and

HARRIS feature points, 2009 IEEE International Conference on Robotics and

Biomimetics (ROBIO). IEEE, pp. 960-964.

Pepe, M., Prezioso, G., 2016. Two approaches for dense DSM generation from aerial

digital oblique camera system. GISTAM, pp. 63-70.

Perri, S., Corsonello, P., Cocorullo, G., 2013. Adaptive census transform: A novel

hardware-oriented stereovision algorithm. Computer Vision and Image

Understanding, 117(1), pp. 29-41.

Pesce, V., Colagrossi, A., Silvestrini, S., 2022. Modern spacecraft guidance, navigation,

and control: From system modeling to AI and innovative applications. Elsevier,

Cambridge, US, ISBN: 9780323909167.

182

Pfister, A., West, A.M., Bronner, S., Noah, J.A., 2014. Comparative abilities of

Microsoft Kinect and Vicon 3D motion capture for gait analysis. Journal of

Medical Engineering & Technology, 38(5), pp. 274-280.

Pix4D, S., 2017. Pix4Dmapper 4.1 User Manual. Pix4D SA: Lausanne, Switzerland.

URL: https://support.pix4d.com/hc/en-us/articles/204272989-Offline-Getting-

Started-and-Manual-pdf (accessed 2023 Feb. 15).

Pulighe, G., Fava, F., 2013. DEM extraction from archive aerial photos: Accuracy

assessment in areas of complex topography. European Journal of Remote

Sensing, 46(1), pp. 363-378.

Qin, Z., Yu, H., Wang, C., Guo, Y., Peng, Y., Xu, K., 2022. Geometric transformer for

fast and robust point cloud registration. Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 11143-11152.

Ranjan, R., Patel, V.M., Chellappa, R., 2017. Hyperface: A deep multi-task learning

framework for face detection, landmark localization, pose estimation, and

gender recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 41(1), pp. 121-135.

Rashid, M., Khan, M.A., Sharif, M., Raza, M., Sarfraz, M.M., Afza, F., 2019. Object

detection and classification: A joint selection and fusion strategy of deep

convolutional neural network and SIFT point features. Multimedia Tools and

Applications, 78, pp. 15751-15777.

Recker, S., Hess-Flores, M., Joy, K.I., 2013. Statistical angular error-based

triangulation for efficient and accurate multi-view scene reconstruction. 2013

IEEE Workshop on Applications of Computer Vision (WACV). IEEE, pp. 68-

75.

Remondino, F., Spera, M.G., Nocerino, E., Menna, F., Nex, F., 2014. State of the art in

high density image matching. The Photogrammetric Record, 29(146), pp. 144-

166.

Rone, W., Ben-Tzvi, P., 2013. Mapping, localization and motion planning in mobile

multi-robotic systems. Robotica, 31(1), pp. 1-23.

Rosten, E., Drummond, T., 2006. Machine learning for high-speed corner detection,

Computer Vision–ECCV 2006: 9th European Conference on Computer Vision,

Part I, 9, pp. 430-443.

Roth, S., Black, M.J., 2007. On the spatial statistics of optical flow. International

Journal of Computer Vision, 74, pp. 33-50.

183

Roy, R., Tu, Y.P., Sheu, L.J., Chieng, W.H., Tang, L.C., Ismail, H., 2023. Path planning

and motion control of indoor mobile robot under exploration-based SLAM (e-

SLAM). Sensors, 23(7), pp. 3606.

Rublee, E., Rabaud, V., Konolige, K., Bradski, G., 2011. ORB: An efficient alternative

to SIFT or surf, 2011 IEEE International Conference on Computer Vision. IEEE,

pp. 2564-2571.

Saouli, A., 2019. Effective multi-view stereo 3-dimensional reconstruction for virtual

reality (Doctoral thesis). Universite Mohamed Khider-BISKRA.

Sarafianos, N., Boteanu, B., Ionescu, B., Kakadiaris, I.A., 2016. 3D human pose

estimation: A review of the literature and analysis of covariates. Computer

Vision and Image Understanding, 152, pp. 1-20.

Sarlin, P.-E., DeTone, D., Malisiewicz, T., Rabinovich, A., 2020. Superglue: Learning

feature matching with graph neural networks. Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 4938-4947.

Sawada, R., Hirata, K., 2023. Mapping and localization for autonomous ship using

LiDAR SLAM on the sea. Journal of Marine Science and Technology, 28,

pp.410-421.

Scaramuzza, D., Fraundorfer, F., 2011. Visual odometry [tutorial]. IEEE Robotics &

Automation Magazine, 18(4), pp. 80-92.

Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N., Wang, X.,

Westling, P., 2014. High-resolution stereo datasets with subpixel-accurate

ground truth. Pattern Recognition: 36th German Conference, GCPR 2014, 36,

pp. 31-42.

Scharstein, D., Szeliski, R., 2002. A taxonomy and evaluation of dense two-frame

stereo correspondence algorithms. International Journal of Computer Vision, 47,

pp. 7-42.

Scharstein, D., Szeliski, R., 2003. High-accuracy stereo depth maps using structured

light. 2003 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition. IEEE, pp. I-I.

Schiele, S., Blaar, H., Müller-Hanneman, M., Thürkow, D., Möller, M., 2012.

Parallelization strategies to speed-up computations for terrain analysis on multi-

core processors. ARCS 2012. IEEE, pp. 1-6.

184

Schönberger, J.L., Zheng, E., Frahm, J.-M., Pollefeys, M., 2016. Pixelwise view

selection for unstructured multi-view stereo. Computer Vision - ECCV 2016,

Part III 14, pp. 501-518.

Seki, A., Pollefeys, M., 2017. SGM-nets: Semi-global matching with neural networks.

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 231-240.

senseFly, 2019. University campus. URL: https://ageagle.com/data-set/university-

campus/ (accessed 2022 Oct. 04).

Seo, J., Han, S., Lee, S., Kim, H., 2015. Computer vision techniques for construction

safety and health monitoring. Advanced Engineering Informatics, 29(2), pp.

239-251.

Shang, Z., Shen, Z., 2018. Real-time 3D reconstruction on construction site using visual

SLAM and UAV, Construction Research Congress 2018, pp. 305-315.

Sheta, B., Elhabiby, M., El-Sheimy, N., 2012. Assessments of different speeded up

robust features (surf) algorithm resolution for pose estimation of UAV.

International Journal of Computer Science and Engineering Survey, 3(5), pp.

15.

Shigeto, Y., Sakai, M., 2011. Parallel computing of discrete element method on multi-

core processors. Particuology, 9(4), pp. 398-405.

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556.

Sinha, S.N., Scharstein, D., Szeliski, R., 2014. Efficient high-resolution stereo

matching using local plane sweeps. Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 1582-1589.

Song, X., Zhao, X., Hu, H., Fang, L., 2019. EdgeStereo: A context integrated residual

pyramid network for stereo matching, Computer Vision - ACCV 2018: 14th

Asian Conference on Computer Vision, Part V, 14, pp. 20-35.

Souici, A., Courdesses, M., Ouldali, A., Chatila, R., 2013. Full-observability analysis

and implementation of the general SLAM model. International Journal of

Systems Science, 44(3), pp. 568-581.

Spangenberg, R., Langner, T., Adfeldt, S., Rojas, R., 2014. Large scale semi-global

matching on the CPU, 2014 IEEE Intelligent Vehicles Symposium Proceedings.

IEEE, pp. 195-201.

185

Spangenberg, R., Langner, T., Rojas, R., 2013. Weighted semi-global matching and

center-symmetric census transform for robust driver assistance, Computer

Analysis of Images and Patterns: 15th International Conference, CAIP 2013,

Part II, 15, pp. 34-41.

Stentoumis, C., Karkalou, E., Karras, G., 2015. A review and evaluation of penalty

functions for semi-global matching, 2015 IEEE International Conference on

Intelligent Computer Communication and Processing (ICCP). IEEE, pp. 167-

172.

Studholme, C., Hill, D.L., Hawkes, D.J., 1999. An overlap invariant entropy measure

of 3D medical image alignment. Pattern recognition, 32(1), pp. 71-86.

Sun, J., Shen, Z., Wang, Y., Bao, H., Zhou, X., 2021. LoFTR: Detector-free local

feature matching with transformers. Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pp. 8922-8931.

Szeliski, R., 2022. Computer vision: Algorithms and applications. Springer Nature.

Technology, S.f.U., Turner, J., Yule, D.J., Zanre, J., 1991. Real Time Photogrammetry

— A Technique for Today or Tomorrow?, SUBTECH’91: Back to the Future,

pp.319-331.

Teke, M., Vural, M.F., Temizel, A., Yardımcı, Y., 2011. High-resolution multispectral

satellite image matching using scale invariant feature transform and speeded up

robust features. Journal of Applied Remote Sensing, 5(1), 053553-053559.

Thomasian, A., 2022. Chapter 8 - database parallelism, big data and analytics, deep

learning, in: Thomasian, A. (Ed.), Storage Systems. Morgan Kaufmann, pp.

385-491.

Tonioni, A., Poggi, M., Mattoccia, S., Di Stefano, L., 2017. Unsupervised adaptation

for deep stereo. Proceedings of the IEEE International Conference on Computer

Vision, pp. 1605-1613.

Treleaven, P., Wells, J., 2007. 3D body scanning and healthcare applications. Computer,

40(7), pp. 28-34.

Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W., 2000. Bundle adjustment

- a modern synthesis, Vision Algorithms: Theory and Practice: International

Workshop on Vision Algorithms Corfu, pp. 298-372.

Trucco, E., Verri, A., 1998. Introductory techniques for 3-D computer vision. Prentice

Hall, Englewood Cliffs, US, ISBN: 9780132611084.

186

Tsai, R., 1987. A versatile camera calibration technique for high-accuracy 3D machine

vision metrology using off-the-shelf tv cameras and lenses. IEEE Journal on

Robotics and Automation, 3(4), pp. 323-344.

Tsourounis, D., Kastaniotis, D., Theoharatos, C., Kazantzidis, A., Economou, G., 2022.

SIFT-CNN: When convolutional neural networks meet dense SIFT descriptors

for image and sequence classification. Journal of Imaging, 8(10), pp. 256.

Van Meerbergen, G., Vergauwen, M., Pollefeys, M., Van Gool, L., 2002. A hierarchical

symmetric stereo algorithm using dynamic programming. International Journal

of Computer Vision, 47, pp. 275-285.

Vasudevan, A., Kumar, D.A., Bhuvaneswari, N., 2016. Precision farming using

unmanned aerial and ground vehicles. 2016 IEEE technological innovations in

ICT for agriculture and rural development (TIAR). IEEE, pp. 146-150.

Viola, P., Jones, M., 2001. Rapid object detection using a boosted cascade of simple

features. Proceedings of the 2001 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. CVPR 2001. IEEE, pp. I-I.

Vladimir, A.G., 2016. Point clouds registration and generation from stereo images. Inf.

Content Process, 3, pp. 193-199.

Vlutters, M., Van Asseldonk, E.H., Van der Kooij, H., 2016. Center of mass velocity-

based predictions in balance recovery following pelvis perturbations during

human walking. Journal of Experimental Biology, 219(10), pp. 1514-1523.

Wand, M., Berner, A., Bokeloh, M., Fleck, A., Hoffmann, M., Jenke, P., Maier, B.,

Staneker, D., Schilling, A., 2007. Interactive editing of large point clouds,

PBG@ Eurographics, pp. 37-45.

Wang, C., Zhao, C., Yang, J., 2011. Monocular odometry in country roads based on

phase‐derived optical flow and 4‐DoF ego‐motion model. Industrial Robot: An

International Journal, 38(5), pp. 509-520.

Wang, Q., 2019. Towards real-time 3D reconstruction using consumer UAVs. arXiv

preprint arXiv:1902.09733.

Wang, Z., Chen, J., Hu, J., 2022. Multi-view cosine similarity learning with application

to face verification. Mathematics, 10(11), pp. 1800.

Wei, X., Zhang, Y., Li, Z., Fu, Y., Xue, X., 2020. DeepSfM: Structure from motion via

deep bundle adjustment, Computer Vision - ECCV 2020: 16th European

Conference, Part I 16, pp. 230-247.

187

Wiechert, A., Gruber, M., Karner, K., 2012. Ultramap: The all in one photogrammetric

solution. ISPRS International Archives of the Photogrammetry, Remote

Sensing and Spatial Information Sciences, 39, pp. 183-186.

Wolf, P.R., Dewitt, B.A., Wilkinson, B.E., 2014. Elements of photogrammetry with

applications in GIS. McGraw-Hill Education, New York, US, ISBN:

9780071761123.

Wu, B., 2021. Photogrammetry for 3D mapping in urban areas. In: Shi, W., Goodchild,

M.F., Batty, M., Kwan, M.-P., Zhang, A. (Eds.), Urban informatics. Springer

Singapore, Singapore, pp. 401-413.

Xu, C., Liu, C., Li, H., Ye, Z., Sui, H., Yang, W., 2022. Multiview image matching of

optical satellite and UAV based on a joint description neural network. Remote

Sensing, 14(4), pp. 838.

Xu, Z., Yu, J., Yu, C., Shen, H., Wang, Y., Yang, H., 2020. CNN-based feature-point

extraction for real-time visual slam on embedded FPGA. 2020 IEEE 28th

Annual International Symposium on Field-Programmable Custom Computing

Machines (FCCM). IEEE, pp. 33-37.

Yang, G., Manela, J., Happold, M., Ramanan, D., 2019. Hierarchical deep stereo

matching on high-resolution images. Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pp. 5515-5524.

Yang, J., Zhang, J., 2015. Parallel performance of typical algorithms in remote sensing-

based mapping on a multi-core computer. Photogrammetric Engineering &

Remote Sensing, 81(5), pp. 373-385.

Yang, Q., Wang, L., Yang, R., Stewénius, H., Nistér, D., 2008. Stereo matching with

color-weighted correlation, hierarchical belief propagation, and occlusion

handling. IEEE Transactions on Pattern Analysis and Machine Intelligence,

31(3), pp. 492-504.

Ye, F., Su, Y., Xiao, H., Zhao, X., Min, W., 2018. Remote sensing image registration

using convolutional neural network features. IEEE Geoscience and Remote

Sensing Letters, 15(2), pp. 232-236.

Yoo, J.-C., Han, T.H., 2009. Fast normalized cross-correlation. Circuits, Systems and

Signal Processing, 28, pp. 819-843.

Yu, Y., Pradalier, C., Zong, G., 2011. Appearance-based monocular visual odometry

for ground vehicles, 2011 IEEE/ASME International Conference on Advanced

Intelligent Mechatronics (AIM). IEEE, pp. 862-867.

188

Zabih, R., Woodfill, J., 1994. Non-parametric local transforms for computing visual

correspondence, Computer Vision – ECCV’94: Third European Conference on

Computer Vision Stockholm, Volume II, 3, pp. 151-158.

Zach, C., Karner, K., Bischof, H., 2004. Hierarchical disparity estimation with

programmable 3D hardware. Proceeding of the International Conference in

Central Europe on Computer Graphics, Visualization and Computer Vision, pp.

275-282.

Zatsiorsky, V.M., 2002. Kinetics of human motion. Human kinetics, Champaign, US.

Zbontar, J., LeCun, Y., 2015. Computing the stereo matching cost with a convolutional

neural network. Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 1592-1599.

Zhang, B., Jiao, Y., Ma, Z., Li, Y., Zhu, J., 2014. An efficient image matching method

using speed up robust features. 2014 IEEE International Conference on

Mechatronics and Automation. IEEE, pp. 553-558.

Zhang, F., Prisacariu, V., Yang, R., Torr, P.H., 2019. GA-net: Guided aggregation net

for end-to-end stereo matching. Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pp. 185-194.

Zhang, J., Chen, G., Jia, Z., 2017. An image stitching algorithm based on histogram

matching and SIFT algorithm. International Journal of Pattern Recognition and

Artificial Intelligence, 31(04), 1754006.

Zhang, J., Singh, S., Kantor, G., 2014. Robust monocular visual odometry for a ground

vehicle in undulating terrain. Field and Service Robotics: Results of the 8th

International Conference, pp. 311-326.

Zhang, L., 2003. Shape and motion under varying illumination: Unifying structure from

motion, photometric stereo, and multiview stereo. Proceedings Ninth IEEE

International Conference on Computer Vision. IEEE, pp. 618-625.

Zhang, Z., 2000. A flexible new technique for camera calibration. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 22(11), pp. 1330-1334.

Zhao, Q., Zhang, B., Lyu, S., Zhang, H., Sun, D., Li, G., Feng, W., 2018. A CNN-SIFT

hybrid pedestrian navigation method based on first-person vision. Remote

Sensing, 10(8), pp. 1229.

