
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



DEVELOPMENT AND APPLICATION OF 

ISOGEOMETRIC ANALYSIS AND TOPOLOGY 

OPTIMIZATION FOR FUTURE STRUCTURAL 

DESIGN 

ZHANG ZIXIN 

PhD 

The Hong Kong Polytechnic University 

2024 



The Hong Kong Polytechnic University 

Department of Building Environment and Energy 
Engineering

Development and application of isogeometric analysis and 

topology optimization for future structural design 

ZHANG Zixin 

A thesis submitted in partial fulfilment of the requirements for the degree 

of Doctor of Philosophy 

August 2023 



CERTIFICATE OF ORIGINALITY 

I hereby declare that this thesis is my own work and that, to the best of my knowledge 

and belief, it reproduces no material previously published or written, nor material that 

has been accepted for the award of any other degree or diploma, except where due 

acknowledgement has been made in the text. 

ZHANG Zixin 





 

I 

Abstract 

In the context of rapid development in construction technology, civil 

engineers have greater design freedom for pursuing efficient yet aesthetic 

structures. The conceptual design phase may often produce a complex structure 

and prove challenging for structural safety requiring multiple revisions and 

negotiations between the architect and structural engineer in order to obtain a 

practical, economical, and safe design. This thesis presents a framework to 

facilitate better communication between architects and structural engineers by 

establishing an isogeometric analysis and topology optimization platform that 

may also explicitly account for constructability constraints. 

Isogeometric analysis (IGA) is an emerging numerical approach for 

simulating the structural response, which aims at integrating Computer-Aided 

Design (CAD) and Computer-Aided Engineering (CAE) into a consistent 

mathematical expression. Benefiting from its precise boundary description and 

high-order continuity, IGA is recognized to have great application potential in 

various industrial scenarios. To explore the application value of IGA-based 

structural optimization for the construction industry, an isogeometric 

optimization approach of the post-tensioned concrete beam, a typical 

construction component, was developed. This approach uses NURBS curves for 

the geometric description and interpolation, which incorporates the SIMP 

method to generate the optimized topology and enables simultaneous 

optimization of prestress tendon shape and concrete beam topology for pursuing 

optimal structural performance. With a Drucker-Prager criterion, unequal 

tension and compression stress constraints are adopted for the use of concrete 

material. The isogeometric description of the concrete beam not only enhances 
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the accuracy of stress calculation but also gives a simplified and straightforward 

prestress mapping scheme. To avoid the existence of slim components, a 

NURBS-based minimum width control approach is adopted in a consistent 

isogeometric framework. 

To standardize and continuously maintain the structural analysis and 

topology optimization process under the isogeometric framework, an integrated 

structural simulation tool shall be based on open-source software and facilitated 

by a specially developed tool to consider various construction demands. This 

includes an isogeometric analysis module in OpenSees for simulating the 

structural response, as well as a corresponding topology optimization package. 

In this thesis, the development of IGA module begins from the IGAQuad and 

IGABrick elements with NURBS-based shape functions and geometric 

descriptions in OpenSees, a widely used finite element modelling framework. 

The reliability and modelling capabilities of these IGA solid elements have been 

verified from the 2D and 3D benchmark problems. The isogeometric 

optimization package includes two classical topology optimization models that 

are the minimum compliance model with volume constraint and the minimum 

volume model with unequal stress constraint. The base of development and 

maintenance is the opensource and modular infrastructure of OpenSees and its 

extensive library of material models and solution methods that provides strong 

code support for pursuing the futural construction-oriented design. 

With the computational platform established, various construction 

considerations can be integrated. In the context of the still-developing 

construction printing technology, prefabrication technology is relatively more 

economical and reliable at the current stage. From the structural design 

perspective, periodic topology optimization addresses the prefabricability, 
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regularity aesthetic, and assemblability, which fits the demands of the 

construction-oriented design. However, due to the strict geometric constraint, 

full periodic structure over-sacrifices structural performance like compliance. 

To trade-off the manufacturability of full-periodic structures with the high 

structural performance of free-form design, it is effective to combine the 

advantages of both by assembling the free-form and periodic components 

according to a rational scheme, which is called multi-pattern design. Herein, we 

proposed a new multi-pattern topology optimization method for allowing user-

defined periodic groups between the individual unit-cells, several unit-cells are 

grouped with the same periodic configurations (type 1 to n) to find the possible 

designs between full-periodic and free-form structures. To automatically define 

a more beneficial scheme of the periodic group with a huge number of unit cells 

in case no preferred scheme, a new clustering-based multi-pattern selection 

approach is also proposed. It can be found that the multi-pattern design performs 

the merits of regularity from full-periodic design and efficient structural 

performance from free-form design, users can simply control the optimization 

tendency to determine the solution closer to free-form or periodic design. 
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Chapter 1 Introduction 

firmitas, utilitas, venustas 

------ De Architectura, by Vitruvius 

1.1 Background 

1.1.1 Trinity principles of architecture 

The construction industry has been the cornerstone of social development 

from ancient times to the present. The imaginative landmarks have become 

national and regional calling cards, and architects go down in history for their 

masterpieces. Designers' desire to find beautiful and efficient architecture has led 

to innovative and mechanically sound form-finding approaches, such as Gaudi 

designing the Sagrada Familia Church [1] with its Gothic spire by observing the 

tension of chains under gravity, Swiss engineer Heinz Isler designed many thin 

concrete shell structures by observing inflatable and draped membranes [2]. It 

shows that the mechanical properties of a structure can guide the configuration 

design while bringing an organic aesthetic that obeys the laws of nature. However, 

relying on the episodic inspiration sparkling of architects is not enough to guide the 

structural design in the increasingly complex construction of modern buildings, 

thus requiring the evolution of design and construction techniques. As construction 
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technology advances, from bungalows to high-rise buildings, from one-way 

bridges to cross-sea bridges, civil construction is gaining more and more freedom 

and imagination of structural design. Although structural design has become 

increasingly free, the fundamental considerations of architecture design have not 

changed. As Vitruvius proposed more than two thousand years ago, the 

architectural trinity principle, i.e., firmitas (durability), utilitas (utility), and 

venustas (beauty) are still held in high esteem even in the modern construction 

industry [3]. In the recent era, the trinity principles are interpreted as Efficiency, 

Economy, and Elegance[4]. 

 

Figure 1.1 Architectures inspired by the load-carrying nature 

The architectural trinity is the foundation for admiring a design. It is easy to 

notice the importance of the first two principles, but the architecture would be 

tedious to just say the foundations or the structural framing. Architectures are not 

solely admired for their impressive structural framing and extraordinary ventilation 

performance, but aesthetics are equally important. By the same token, a beautiful 

building is not admirable if lacking durability for easy collapse or lacking utility 

like overheating from too much glazing. However, the trinity principle of 

architecture does not form an efficient and unified framework in the practical 



Chapter 1 Introduction 

3 

design stage. The architect is responsible for the utility and aesthetic performance, 

while the durability is ensured by the structural engineer based on experience and 

structural analysis. Therefore, satisfying the trinity requires time-consuming and 

laborious iterative design between architects and structural engineers [5]. One way 

for resolving this dilemma is using structural optimization in the conceptual design 

stage, which allows the architect to optimize the preliminary draft based on the 

structural simulation, thus resulting in a material-saving and safe design scheme 

that can then be checked and refined by the structural engineer for significantly 

reducing design costs. 

1.1.2 The environmentally sustainable way to use 

concrete 

As the population exploded and technology development in recent centuries, 

the demand for architecture reached unprecedented heights and brings severe 

pollution issues. Therefore, the demand for environmentally sustainable products is 

increasing in response to global carbon neutrality strategies. Compared with other 

manufacturing industries, the traditional construction industry suffers from severe 

pollution during the production of raw materials such as concrete and the 

construction process. Concrete is widely favored by the construction industry for 

its reliable load-carrying capacity, rich combination of raw material options, and 

low cost, but the same make concrete production and construction the third largest 

source of carbon emissions in the world, accounting for about 10% of global 

carbon dioxide emissions [6]. 

There are two major ways to reduce pollution levels in the concrete industry 
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via saving the amount of cement usage, which are optimizing the concrete 

composition and reducing concrete usage. The former is mainly from a material 

point of view, such as adding recycled aggregate to replace cement [7, 8]. 

Reducing cement composition tends to deteriorate its mechanical properties such as 

compressive strength, which may not be suitable for load-bearing components with 

higher consumables, thus the carbon footprint still has room for reduction. The 

latter, on the other hand, seeks more material-efficient configurations from a 

structural design perspective. Traditional structures have a large number of 

inefficient and even non-load-bearing members for the prescribing loading 

scenarios, and the redundancy of the structure leads to the overuse of concrete. The 

adoption of numerical structural optimization can automatically generate lighter 

structures to save concrete materials, answering the call for carbon neutrality. 

Admittedly, structural design by removing inefficient materials often results in 

free-formed members that are difficult to manufacture, but the fluidity of concrete, 

before it sets, makes it extremely malleable and allows any possible structural form 

to be manufactured. The development of automated construction de-emphasizes the 

reliance on advanced in-site labor skills for the production of free-form concrete 

components and reduces construction expenses, which provides a construction 

foundation of numerical structural optimization in practical application. 

1.1.3 The trend of automated construction 

With the signing of the Paris Agreement [9], carbon neutrality has become a 

global target to ensure sustainable development. It is achieved by replacing fossil 

fuels with low-carbon energy, reforestation, energy saving, and emission reduction 

to offset the carbon dioxide or greenhouse gas emissions produced during 
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industrial and daily life activities, finally achieving “zero emission”. There are two 

general approaches to achieving carbon neutrality: the first is an administrative or 

economic approach that uses carbon offsetting mechanisms that produce carbon 

emissions equal to the carbon emissions reduced elsewhere, such as planting trees 

and purchasing renewable energy certificates. The second is technological 

improvement, using low or zero-carbon technologies such as (a) using renewable 

energy (e.g. wind and solar energy) to avoid carbon dioxide emissions into the 

atmosphere from burning fossil fuels, and (b) technological innovations in heavy-

emissions industries that contribute to carbon neutrality in a way of reducing 

emissions. 

In the era of carbon neutrality, the construction industry is eager to embrace 

the evolution of automation to reduce its gigantic level of carbon emission. In 

addition to the demand for emission reduction, the chronic problems of traditional 

construction methods such as labour aging and limitations in manual construction 

skills are also driving the construction industry toward automation to pursue faster, 

more economic, environmental-friendly, and safer workflow. Prefabrication and 

additive manufacturing as the representative technologies of automated 

construction address the demands on the construction side. In the current stage, 

prefabrication is known as its reliance on the mold precast and hence often focuses 

on manufacturing structures composed of repeated components to save the cost of 

producing molds. The advent of additive manufacturing has removed the limitation 

of mold precasting to allow for freer structural forms, which has shown great 

promise in futural construction. It should be noted that with the emergence of such 

advanced construction technologies, the topology optimization design methods find 

the corresponding manufacturing process and thus bring lightweight, high-
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performance structures closer to practical applications, which can follow the trinity 

principles of architecture. 

1.1.4 Considering the trinity principle in architecture 

design using topology optimization 

Typically, architectural designs are based on the standard requirement and the 

experiences of designers, and the design should undergo a series of time-

consuming iterative discussions between architects and structural engineers. As the 

construction industry embraces automated construction, the numerical optimization 

architecture design has likewise become a hot research topic that can provide 

inspiring configurations in the early design stage, thus saving the effort of manual 

design and enhancing structural performance. 

Topology optimization has been recognized as a significant tool for the 

identification of the best concepts in the numerical optimization design of various 

industries such as aerospace, automotive, and biomechanics. Despite the topology 

optimization can provide designs with excellent structural performance and 

inspiring geometry, the organic and odd-shaped structures are often difficult and 

costly for manufacturing, hence it is limited to high-tech industries with high 

manufacturing budgets and hence prevents it from being brought to widespread use. 

Benefiting from the development of automated construction technologies such as 

prefabrication and additive manufacturing in recent decades, this disadvantage is 

gradually being overcome and a series of construction projects have emerged with 

adopting topology optimization, including Shanghai Zendai Himalaya  Art Center 

[10], Qatar National Convention Center [10], Shenzhen CITIC Financial Center 
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[11], Concrete Pavilion [12] presented in Figure 1.2. 

 

Figure 1.2 Architectures designs using topology optimization 

As introduced in Section 1.1.1, the trinity principle of architecture contributes 

significant guidance when it comes to construction design. In the context of 

topology optimization, the trinity principle has many connotations that can be 

explored, and a series of construction-oriented optimization models can be formed 

by means of mathematical expressions. Noted that durability is a broad concept and 

not exclusively the studies related to structural service life, it includes all the 

connotations of structural safety. Since safety concerns often have associated 

mechanical indices and systematic calculation methods, abstraction into 

mathematical models is often possible, so this classification has been extensively 

studied and is still in progress to approach realistic applications. Utility 

performance can be interpreted as the serviceability of the architecture, including 

ventilation, insulation, water supply, lightning protection, manufacturability, etc. 

Among them, thermal insulation and manufacturability are more related to the 
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architecture design, and the rest considerations are more likely to be expressed as 

pre-venting apertures and fixtures. The last is beauty, which is a subjective 

performance that is less likely to be quantified, but the aesthetic-oriented 

optimization model is still a significant direction to explore to enhance the aesthetic 

performance of the optimized structure, the valid ways might be to translate the 

concept of aesthetics into quantifiable metrics or provide a variety of reliable 

designs for users to choose from. 

1.2 Scopes and objectives 

To date, many researchers have carefully addressed their goal of bringing the 

topology optimization approach into the architectural design for responding to the 

call for carbon neutrality and tackling the bottlenecks of the current construction 

industry, which requires abundant effort in equipping the tool with the various 

requirements of the architecture trinity principle, such as construction material 

behavior, structural safety considerations, and aesthetics. In addition, the 

development of structural simulation methods in recent decades such as 

isogeometric analysis gives more precise solutions, which have great application 

potential. In this regard, it is meaningful to conduct this project to establish a 

platform, which adopts a new simulation method and the necessary design 

constraints on architectural design.  

To sum up, this project capitalizes on: 

(a) Proposing an isogeometric topology optimization approach of the typical 

construction components (post-tensioned concrete beam in this thesis) from the 
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perspective of material saving and safety to explore the capabilities of the 

application potential of topology optimization; 

(b) Creating a new architectural design platform that facilitates concurrent 

engagement of architects and structural engineers on the building design stage. The 

aim of this platform is to generate highly customized designs using isogeometric 

topology optimization and it is open to including various considerations of 

structural design; 

(c) Developing a methodology that provides a range of optimized designs for 

design diversity, which also combines structural performance with 

manufacturability; 

The overall narrating flow follows a sequential order from the practical 

component design (i.e., post-tensioned concrete beam) for demonstrating the safety-

oriented application potential of the isogeometric topology optimization method to 

the establishment of an IGA-based simulation and optimization platform for 

enabling the existing and futural extension on various optimization models (i.e., 

minimum compliance/volume model), and take a new multi-pattern optimization 

model as the first construction-oriented model extension. 

1.3 Thesis overview 

This thesis contains six chapters in total. Following Chapter 1 as the 

introduction, Chapter 2 is the literature review that summarizes the conception of 

construction-oriented design by addressing the key considerations of civil structure 

design using topology optimization, and the evolution of advanced construction 
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technologies such as prefabrication and concrete additive manufacturing to 

demonstrate the development trend of the futural construction industry. It also 

contains a review of existing topology optimization methods and platforms with 

common numerical problems and extensions based on isogeometric analysis. 

Chapter 3 describes the design methodology of the post-tensioned concrete 

beam, including a simplified expression of prestress load effect with corresponding 

IGA-based load mapping approach, the Drucker-Prager stress constraint to address 

the unequal tensile-compressive strength property of concrete, the solution of 

numerical problems of stress-based topology optimization such as the stress-

singularity phenomenon, the computational burden of abundant local stress 

constraint, and the instability of optimization process. In addition, a series of 

geometry control methods are also introduced to ensure an extinct, robust design. 

Several groups of examples demonstrate the effectiveness, and we explored the 

effect on different levels of component size and tensile-compressive strength ratio. 

As a starting point for the OPS-ITO platform, Chapter 4 illustrates the basic 

hierarchy of the OpenSEES with our newly developed Isogeometric elements for 

enabling 2D and 3D solid structure simulation. For construction-oriented topology 

optimization usage, an isogeometric topology optimization package is 

correspondingly developed with a user-friendly graphical interface. 

Chapter 5 takes a step forward in that construction-oriented topology 

optimization requires a series of specialization constraints to approach real 

architectural design scenarios. Thus, we innovatively introduce multi-pattern 

control in this part as the first construction-oriented module, which can balance the 

manufacturability and structural performance of the final design. 

Chapter 6 concludes the key contributions in this thesis and suggests the 
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next-stage research of the construction-oriented topology optimization to make this 

tool approach the practical construction industry. 
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Chapter 2 Literature review 

2.1 Prefabrication and 3D printing in construction 

With the overwhelming progress of global industrialization, construction 

activities are continuously catering to the enormous demands of the ever-growing 

human population from various aspects. Accordingly, undesired on-site 

construction dilemmas such as material waste, pollution, safety concern, labor 

aging shortage, and low construction efficiency force construction technologies to 

update and move to off-site construction plants to pursue more efficient and safer 

workflow[13]. The most significant advantage of off-site manufacturing is the 

high-level automation, which enables producing construction components in a 

precise and standard environment by customizing molds (prefabrication) and 

additive manufacturing. There are 7 major advantages of adopting automated 

manufacturing technologies, including the collaborating capability with advanced 

management tools such as Building Information Modeling (BIM), safer work 

environment, lower cost, quality control, time-saving, lower emission, and 

construction flexibility, which gives sufficient motivation of engineers for adoption. 

2.1.1 Prefabrication 

Prefabrication is a typical and promising off-site manufacturing technology, 
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which represents a new round of technological revolution in the construction 

industry and the direction of industrial upgrading. Benefiting from global policy 

support and the improvement of relevant standards, it quickly entered practical 

construction projects and continually expanded its market share, now it has become 

an indispensable part of the modern construction industry. Essentially, 

prefabrication is not a new building method, its history can be traced back to two 

hundred years ago (in 1830) by a London carpenter H. John Manning [14]. The 

core idea is to carry out standardized production through molds and cutting in 

factories with a better processing environment, rather than being limited by on-site 

manufacturing skills and equipment unavailability, which results in the 

compromisation of low production quality and unnecessary waste. 

2.1.2 3D construction printing 

Unlike prefabrication has taken over a certain proportion of the construction 

market, 3d concrete printing is an emerging technology widely considered a 

significant trend in the next generation of construction [15-17]. It overcomes the 

inherent reliance on molds of prefabrication technology and thus provides a new 

solution to the manufacturing of odd-shaped structures. The 3D printing attempt 

appeared in the construction industry in the mid-1990s using contour crafting [18]. 

Later on, the deposition strategies were proposed in the first decade of the 21st 

century [19] with laboratory-grade demonstrative tests. The practical 3D printing 

construction starts in mid-2014, a concrete castle using Total Kustom’s 

technology[20], and WinSun Decoration Design Engineering Co. demonstrated 

efficiency by printing ten houses in a day for under $5,000 each [21] and a larger-

scale 6-storey building with 60% material, 70% time cost, and 80% labor saved to 
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present the potential [22]. Not only for building printing but a pre-stress concrete 

bridge was also segmentally printed and installed in the Netherlands in 2015 [23] 

which can carry up to 2 tons load. Massive construction organizations are attracted 

by the bright potential of 3D printing and a series of fascinating 3D printing 

projects are emerging in recent decades, as illustrated in Figure 2.1. 

 
Figure 2.1 A few representative projects manufactured by 3D printing. (a) the 

concrete castle by Rudenko in 2014, Minnesota, US, (b) concrete houses and a 6-

storey building by WinSun in 2015, Shanghai, China, (c) Public restroom by 

WinSun in 2016, (d) Habitat for Humanity, a charitable project for low-income 

families, by Alquist in 2021, Virginia, US, (e) Shamballa village, the vision of the 

first community living entirely in 3D printed buildings, by WASP in 2018, Massa 

Lombarda, Italy, (f) an odd-shaped pedestrian bridge by MX3D in 2021, 

Amsterdam, the Netherlands, (g) Urban cabin for disaster relief and temporary 

functional housing, by DUS Architects in 2015, Amsterdam, the Netherlands, (h) 

Office of the future, the first 3D printed commercial building by Gensler and 

WinSun in 2016, Dubai, United Arab Emirates. 
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2.2 Topology optimization 

Topology optimization is a mathematical structural design methodology via 

optimizing the material distribution of the designable domain, aiming at finding the 

solution with the optimal objective under prescribed constraints. Since Bendsøe 

and Kikuchi proposed the first approach called homogenization method, several 

design methods have been proposed one after another, which can be generally 

classified as two types of material description methods (e.g., basic homogenization 

method, Solid Isotropic Material with Penalty (SIMP) [24], and Bi-directional 

Evolutionary Structural Optimization (BESO) [25]) and boundary description 

methods (such as the Level-Set Method (LSM) [26]), and geometric description 

methods (e.g., Moving Morphable Units method (MMU) [27]). The topology 

optimization process involves iterative simulation, optimization, and state update, 

the typical workflow is generally illustrated in Figure 2.2 and the general 

optimization model example can be written as below to pursue the optimal 

objective f (e.g. compliance) under the prescribed volume limit V  in the design 

domain  : 

 
min  

. .   

f

s t V V
 (2.1) 

 

Figure 2.2 General workflow of the topology optimization process 
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2.2.1 Computational frameworks of topology 

optimization 

As an advanced numerical structural design approach, topology optimization 

has undergone plenty of research [5, 28-30] and industrial applications [11, 31] in 

multiple fields. Establishing a standard and ease-to-extension framework is 

essential for delivering the topology optimization approach in both research and 

industrial use. In the recent decade, several open-source topology optimization 

frameworks have been established for engineering use such as OpenMDAO [32-

34], PolyTop [35, 36], and TopOpt [37]. In addition, the commercial software 

Altair OptiStruct [38], Ameba [39], Abaqus Tosca[40], Ansys Discovery[41], 

Comsol [42], and Fusion 360 [43] are also extending topology optimization 

methods to more structural design scenarios. These growing platforms ensure 

various demands of structural optimization, which focus on the multi-disciplinary 

design based on various stand-alone programs. However, there are abundant types 

of construction and service requirements in civil engineering that require the 

adoption of corresponding material models, element classes, and especially 

corresponding considerations for architectural design. Thus, it is beneficial and 

worthwhile to build up a topology optimization module under professional civil 

engineering simulation software with equipping various construction-oriented 

design constraints. 

2.2.2 Common numerical problems and corresponding 

solutions 

Among all topology optimization approaches, the SIMP method is widely 
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adopted as it is intuitive and easy-to-extension, therefore it is the key optimization 

method in this thesis. As a density-based method, the SIMP model of the Eq.(2.2) 

is discrete as: 

 

( )

1

min   

. .   

        0 1

N

i i
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

=
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 



ρ
ρ

 (2.2) 

where ρ  is the design variable vector of elemental density. As a numerical design 

approach, the SIMP method faces several inherent numerical problems such as the 

checkerboard phenomenon, mesh dependency, and so on. After decades of 

development, the numerical problems of topology optimization have been 

alleviated or avoided with the help of a series of new alternations, which are 

reviewed in this section. 

2.2.2.1 Intermediate density variables 

As presented in Eq.(2.2), the density variables are continuous between zero to 

one. However, only integer variables of 0 and 1 have the physical meaning of voids 

and solid material, the intermediate density should be avoided since it is not 

manufacturable. Penalization is the most widely accepted approach, and the 

general way is adding a penalty exponential coefficient on the density variables to 

punish the elemental stiffness of those with intermediate density [44]. In addition, 

several projection filtering methods are also proposed to further enhance the 0-1 

solution of density variables [45], including dilation-erosion [46], threshold 

projection [47], and multi-phase projection [48]. 

2.2.2.2 Checkerboard and mesh dependency 

It is well-known that the introduction of more holes without changing the 
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structural volume will computationally increase the structural performance index 

[49], which causes the optimization process converges to a configuration in which 

solid material and voids alternative, called the checkerboard phenomenon. 

Accordingly, the number of holes is changed when adopting different mesh sizes, 

which can be explained as the non-existence of the general optimal solution and 

thus results in a mesh-dependent configuration, which is termed mesh dependency. 

The checkerboard-style configuration represents the “optimal topology” in the 

numerical perspective but is not manufacturable, it is believed that the erroneous 

FE-modeling is the key reason[50], several schemes are proposed to avoid the 

appearance of the checkerboard pattern such as smoothing, high-order elements, 

and filter. Smoothing is a preliminary image-processing way that ignores the 

underlying problems and is not widely applied. Adopting high-order elements is a 

relatively valid way, the checkerboard phenomenon is mostly avoided by using 8 

or 9-node finite elements if the penalization is weak [51] and the computational 

cost is correspondingly increased due to the adoption of high-order elements. The 

last way is introducing filtering techniques by efficiently weighting the density 

variables of neighboring elements, it is widely adopted and the mesh-independent 

filter can also extensively avoid the mesh dependency [52]. 

2.2.2.3 Local minima 

As topology optimization is usually a non-convex problem, is clear that many 

local minima solutions appeared in literature. Mathematically, the pursuit of the 

optimal solution to the non-convex problem is still a big challenge, thus the value 

of convexifying the problems and generating reproducible designs are recognized 

and investigated. Nevertheless, the final design can be drastically affected by even 

small variations in initial optimization parameters such as move limits of 
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optimization algorithm, geometry and mesh scheme of design domains, and filter 

parameters. The undesirable nature of the objective function, such as flatness, is an 

important factor contributing to this problem, but the limitations of the 

optimization algorithm are more responsible. As a remediation, the algorithm 

convergence check of the non-convex problem only ensures the solution to a 

nearby stationary point (not necessarily be similar to the global optimum). 

2.2.2.4 Numerical problems of stress-constrained topology optimization 

Most of the research on topology optimization focus on the minimization of 

compliance with other global responses such as frequency, while stress is another 

significant issue to ensure structural safety. Nevertheless, stress is relatively less 

considered because of three significant challenges [53] termed the stress singularity 

phenomenon [54-56], the computational burden of the abundant local stress 

constraints, and the convergence problem from the strong non-linear property of 

stress response. 

The issue of stress singularity is first noticed when optimizing the truss 

system, the n-dimensional design space decreases into a subspace with a lower 

dimension, and the feasible region becomes discontinued [57]. The programming 

algorithms are unable at searching singular regions the global optimum is located 

and hence converge to the local optimal solution. As a remediation, relaxation 

methods, such as -relaxation [55] and smooth envelope functions [58], are 

proposed to eliminate those discontinued and lower-dimensional regions and later 

on applied to the stress-constrained problems [59-61]. 

Stress constraints are a huge group of local constraints that are considered at 

all material points, and the computational cost is unaffordable for practical 

applications. The widely adopted resolution is finding a single representative stress 
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constraint that is close to the maximum stress value to replace local stress 

constraints, such as p-norm [62] and the Kreisselmeier-Steinhauser (K-S) [63] 

aggregation function. By aggregating the huge number of local stress constraints 

into a global aggregated stress measurement, the computational cost is effectively 

controlled, but the approximation of the maximum stress has two drawbacks. The 

first is the dilemma between the approximation error and convergence problem, the 

error will reduce when the aggregation degree is strengthen and correspondingly 

worsen the smoothness of the aggregation function, hence resulting in a worse 

convergence performance, and vice versa. The aggregation degree should be 

carefully selected. The second is the approximation of the maximum stress value, 

which is unable to adequately control the local stress behavior. 

The highly non-linear stress behavior brings dramatic reliance on the change 

of structural configuration, which is exasperated in the regions with high-stress 

gradients. Hence, the optimization formulations and corresponding solution 

algorithms should be numerically consistent to alleviate the convergence problem. 

2.2.3 Isogeometric topology optimization 

Among all iterative processes in Figure 2.2, solving the structural response is 

one of the most essential steps throughout the entire iteration, the accuracy and 

efficiency of simulation have a profound impact on the quality of the optimization. 

As it is common that accuracy and efficiency are typically contradictory. In a 

traditional Finite Element workflow, the shape function is described using the 

polynomial function. There is an inherent error between the spline-based geometric 

model and the polynomial-based mesh model thus cannot capture the exact 

structural geometry. And accordingly, the mesh model cannot be simply discrete 
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from the geometric model to build an analysis-suitable model, a great extent of 

time is consumed in the pre-processing step. Commonly, only 20% of the overall 

time is consumed for the analysis model solving, the rest 20% and 60% are 

sacrificed in the mesh generation and the generation of simulation-specific 

geometry model [64], which is desirable to cut down by integrating CAD and CAE. 

In addition, the piece-wise polynomial shape function suffers from the lower 

continuity (C0) on the boundary of the element. These two drawbacks should be 

alleviated by achieving a high quality of the finite element mesh, which is less 

efficient. Adopting a new simulation method is a valid way to improve the 

simulation quality of both efficiency and accuracy. 

2.2.3.1 Isogeometric analysis 

Isogeometric analysis [64] is inspired by Computer-Aided Design (CAD) for 

employing spline curves as the shape function of mesh models to conduct 

Computer-Aided Engineering (CAE) [65]. It can be viewed as an extension and 

generalization of the traditional finite element method for solving the structural 

response. The core concept of IGA is adopting the various types of spline basis 

functions, the most widely used forms of geometric description, to replace the 

conventional polynomial shape function in the finite element framework. The most 

straightforward merit is the consistent geometry-mesh description and thus 

eliminates the inevitable geometric error, which is so-called the integrated CAD-

CAE approach. In IGA, the B-spline function is the basic description form [64, 65]. 

Despite the B-spline function being flexible in describing many geometries, it is 

still unable to exactly express some specific and important shapes like circles and 

ellipsoids. To enhance the generalizability, the Non-Uniform Rational B-Spline 

(NURBS) is introduced by adding a positive weight to each B-spline basis function 
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[66] and becomes the most widely adopted form. Afterward, other spline functions 

have been employed in IGA, like the T-Spline curve [67], to give more beneficial 

mathematical properties such as the variation diminishing to tackle the local 

oscillation and the convex hull issues [68]. 

2.2.3.2 Isogeometric topology optimization 

There are two branches in the development of Isogeometric Topology 

Optimization (ITO), focusing on the new curve description of IGA and the 

isogeometric cooperation with the existing topology description for optimization. 

From the curve description perspective, NURBS is the most widely-used curve 

form for ITO development [69-71]. In addition to this, a series of earlier works [72] 

considered trimmed spline surfaces to use trimming information in solving the 

trimmed surface responses and deriving the corresponding sensitivity in topology 

optimization by adopting the physical coordinates of control points as the design 

variables.  

Correspondingly, developing the ITO design methods on the classic topology 

optimization framework is the major research field, which can be further classified 

into two main categories of material description model and boundary description 

method, which covers the major approaches of typical topology optimization. 

Compared to the boundary description method, the formulation of the material 

description model is more intuitive through directly expressing the existence of 

elemental material, and hence independent design variables accordingly bring 

several numerical problems during the topology transformation, like the 

checkerboard phenomenon, the zig-zag or wavy boundary, and the mesh-

dependency, which should be alleviated or removed using several modificative 

methods [73]. With cooperating with IGA, the checkerboard phenomenon, and 
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mesh dependency are alleviated from the local supportive property of the spline 

curve, which is similar to the effect of the classical density filter. While the 

boundary description methods describe implicit iso-contour (e.g., LSM) or explicit 

virtual morphable units (e.g., MMU) to define the topology. 

2.3 Key considerations of concrete structure design 

using topology optimization 

The topology optimization method has not received sufficient attention in the 

civil engineering field until recent decades, especially for structure optimization 

with concrete-type material, which is a valid lever within the cementitious 

construction supply chain to cut off carbon emissions. The adoption of topology 

optimization is also helpful for the civil designer to explore the limit of modern 

architectures such as high-rise building and long-span bridge, which is currently 

blank in conventional construction codes. Unlike the topology optimization 

approaches are recently been adopted, the potential of concrete structure 

optimization has been recognized over two centuries, which starts in 1866, 

Culmann considered minimizing cement usage via graphical statics. Afterward, the 

concept of mathematical optimum finding was considered since Michell 

investigated the economic limit of frame structures, which were described by an 

orthogonal system composed of a group of curves to pursue minimum compliance 

when carrying maximum tension and compression loads. 

2.3.1 Durability performance 
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It should be noted that the “Durability” in the architecture trinity principle is a 

generalized concept, which includes all the structural performances related to 

structural safety. The safety concern is the most important issue that has undergone 

a vast number of investigations in topology optimization, including concrete stress 

constraints [59, 74-89], concrete damage modeling [90-92], multi-material 

modeling [93-99], strut and tie modeling [28, 100-111], truss-continuum topology 

optimization [96, 97, 112], multi-load problems [113-117], prestressed structures 

[29, 118-120] and thermal-structural problems [121, 122]. Among all, the research 

on stress constraints and prestressed structures are highly related to the scope of 

this thesis, hence will be detailed in the following paragraphs. 

2.3.1.1 Stress constraint 

As concrete material has different strength levels on tension and compression, 

the conventional Von-Mises stress criterion is improper to be adopted, hence 

Druker-Prager criterion [74] is mostly consulted in this scenario. Luo and Kang 

[79] first investigated the D-P constrained topology optimization model to 

minimize the material volume under local stress constraints, it demonstrates that 

the unequal strength criterion has a significant effect on the material distribution. In 

the same year, they also proposed a three-phase model [80] to enable the 

optimization of steel-concrete composites. Furthermore, the shrinkage effect and 

strength failure are considered [83] by introducing an additional design-dependent 

load vector. Bruggi and Duysinx approximated the unilateral stress field to replace 

the symmetric material in a typical minimum compliance model [84] in 2013, 

Jewett and Carstensen then optimized and conducted the test of plain concrete 

structure in 2019 [86]. From the material model perspective, the elastoplastic 

model is adopted with the Drucker-Prager criterion by Bogomolny and Amir [87] 
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and highlighted that the mesh refinement is important for concrete-steel structures 

to ensure the simulation accuracy, as the volume of steel is often only a very small 

part of the total. Later on, Amir adopted a rate-independent elastoplastic model and 

proposed a single global plastic strain constraint to enable the control of the 

violated local stress [88]. Pastore introduced risk factors to quantify the distance 

between the current principal stresses and the prescribed stress limits [89]. 

2.3.1.2 Prestressed structures 

To date, the optimization of prestressed structure gradually attracts research 

interests but has still not been investigated in full depth from the topology 

optimization perspective. The intention of prestressed structure optimization starts 

in the 1980s, such as the optimal tendon shape of the multi-span prestressed bridge 

[123] by Kirsch, Quiroga, and Arroyo [124] optimized the size and position of the 

tendon of a fixed bridge deck to balance the transverse loading, Lounis and Cohn 

[125] developed a single objective model from the multi-objective model by 

transforming other objectives into a series of constraints and further implemented 

the optimization of prestressed structures with a series of considerations such as the 

ultimate and serviceability limit states [126]. Han et al. [127, 128] developed a 

DCOC-based optimization model to minimize the cost expense of the multi-span 

beams and T-beams which are partially prestressed. The first research on the 

topology optimization of prestressed structure appeared in 2018, Amir and Shakour 

[118] proposed a simultaneous method to design the concrete topology and tendon 

shape, the effect of prestress tendon is simplified as a group of equivalent prestress 

load vector on the linear tendon segments. To ensure the tendon-covered 

configuration, a tendon-concrete filter is correspondingly introduced, and hence the 

prestress load can be correctly transferred to the body of the concrete beam. The 
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optimized structure is later converted into a 3D model using Fusion 360 and 

manufactured [29] using 3D printing and conducted corresponding experiments to 

test the structural performance. Zhang et al [129] used isogeometric analysis to 

extend the above work into a more continued formulation, updated the linear 

segmental tendon form with the continued NURBS curve to enhance the accuracy 

of equivalent load, and considered the unequal stress limit using Drucker-Prager 

criterion. 

2.3.2 Utility performance 

From the traditional perspective of architecture, utility performance means the 

functionality of usage, such as the industrial building, domestic building, etc., and 

the building services performance, such as heating, ventilation, air conditioning, 

water supply, lightning prevention, manufacturability, expense during construction 

and maintenance, and so on. As a structural design approach, topology 

optimization mainly focuses on the performance of the manufacturability from the 

utility perspective at the current stage, which can be interpreted as the 

considerations of construction techniques [130-141]. 

Before the emergence of 3D printing technology, manufacturability has two 

major connotations of simplicity and regularity. The simplicity indicates the 

structure is made of few components to reduce the difficulty of installation, and 

lower resolution of components is preferred to avoid relatively expensive high-end 

manufacturing technologies. Regularity means the components appear multiple 

times, which reduces the expense of mold making limiting the number of molds. 

The most intuitive way to ensure structural simplicity is by increasing the radius of 

the density filter. On the one hand, it avoids optimized structures from tiny 
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components that require higher resolution of manufacturing. On the other hand, 

thicker components provide greater load-support capacity, hence reducing the 

demand for load-bearing members and further simplifying the final configuration. 

As for regularity, it refers to the generation of periodic structures using topology 

optimization. Past researchers have explored various periodic styles using affine 

transformation, such as translational offset [142], pattern gradation [5], and 

rotation-reflection combination [143]. 

The introduction of 3D construction printing technology provides a new 

dimension to manufacturability, that is printability of the optimized structure. The 

major challenge of 3D printing is the overhang component has no load-bearing 

capacity before solidification and collapses under gravity thus leading to the failure 

of the printing process. The first solution is to set up removable supports, 

Vantyghem [29] used the sand hill as the temporary support during the 3D printing 

of the bridge. The second solution is simply to consider the collapse issue during 

the topology optimization stage, which is termed a self-support structural design 

[144]. Morgan et al. [145] proposed an approach to consider the optimum printing 

orientation to minimize the volume of extra supports. Later on, Hu et al. developed 

an orientation-based shape optimization method to obtain the self-support structure 

by introducing the global rigid energy as the objective to further reduce the 

additional supports. Johnson and Gaynor [146] applied the density projection 

method to achieve a self-supported structure by only preserving those that should 

be projected to solid and satisfy overhang constraints, it avoids additional explicit 

geometric constraints but brings difficulty to convergence. Qian [147] proposed the 

density gradient-based integral method to form overhang constraints with 

geometrical meaning, but cannot avoid V-shape on the boundary. Mass and Amir 
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[148] considered preserving the overhang features of the final design and hence 

developed the computationally efficient Virtual Skeleton Method. Allaire et al 

[139]avoided overhang features by combining the geometric and mechanical 

constraints, but computationally inefficient. 

2.3.3 Aesthetic performance 

According to the aforementioned trinity principle of architecture, durability, 

and utility have been considered by structural engineers in various service 

scenarios to ensure the safety and functionality of the structure. Likewise, aesthetic 

performance is equally significant for designing a successful architecture, which 

should carefully explore its underlying principles for truly achieving automated 

architectural design. From the structural optimization perspective, unlike 

quantifiable durability and utility performance, aesthetics is a rather subjective 

consideration that is hard to directly express in the optimization model 

straightforwardly [5, 149-151]. Regularity is a typical form of aesthetics in 

architectural design, which is mathematically practical to be considered in the 

optimization model by adopting periodic geometrical constraint, which has been 

introduced in Section 2.3.2. Accordingly, it is more realistic to use alternative ways 

to transfer the task of assessing aesthetic performance to the users. Xie et, al. [152] 

proposed diverse designs by penalizing precedent configurations, which are 

capable of providing various designs under the prescribed conditions if the current 

design is unsatisfactory. Shannon et, al. [153] explored the possibility of converting 

the un-quantifiable aesthetic performance to a qualitative prediction and explaining 

the aesthetic responses of users when adopting the concept of Unity-in-Variety, 

which balances the unity of the entire design and interest-stimulating variety. In 
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conclusion, the consideration of structural aesthetics in automated design remains 

open and such persuasion is helpful for integrating the duty of structural engineers 

and architects. 

2.4 Concluding remarks 

This chapter of the literature review, many issues and the evolution history of 

advanced construction technology, topology optimization process, and some key 

points for structural engineering applications are discussed. The major remarks are 

concluded in this section, which established the research basis of the construction-

oriented topology optimization and forms this thesis. 

1. Prefabrication and 3D printing technology enables advanced construction by 

adopting off-site manufacturing, which has significant potential for collaborating 

with topology optimization to construct efficient, lightweight, and green structures; 

2. So far, topology optimization has established several FE-based computational 

platforms for multi-disciplinary usage, and corresponding numerical problems of 

topology optimization methods are gradually alleviated or eliminated by relentless 

research. From the simulation perspective, isogeometric analysis as an extension of 

FEM is widely recognized for its ideal computational accuracy and continuity, 

hence has great application prospects; 

3. In recent decades, topology optimization techniques are gradually entering the 

field of structural engineering design, the corresponding applications can be 

generally classified by the trinity principle of architecture, that is durability, utility, 

and beauty; 

4. “Durability” is implied as a generalized concept of structural safety, which is 
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the major research field for adopting topology optimization. Among all, the 

prestress structure and stress constraint are considered in this thesis. “Utility” is 

interpreted as a building services-oriented performance, manufacturability is the 

major consideration of topology optimization in this category. “Beauty” is the only 

subjective performance among the trinity principle, the development can help users 

to generate diverse and aesthetic structures. 
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Chapter 3 Isogeometric structural 

optimization of the post-tensioned 

concrete beam 

3.1 Introduction 

The state of art construction industry faces a series of dilemmas, such as labor 

ages, low efficiency, pollution, safety issue, and material waste. The development 

of the automation industry brings more efficient manufacturing technology, which 

requires less labor that working in a cleaner and safer workplace. In the 

construction industry, new construction technologies such as prefabrication and 

additive manufacturing are sprouting from the development of the automation 

industry. With such new technologies keep developing, the main issues are how to 

ensure the strength of the structure and how to build a design platform that 

addresses construction requirements. Recall that the question of why iconic 

architecture is so rare lies primarily in the new challenges they pose to aesthetics, 

structural reliability, and economic property. Therefore, the futural architectural 

design approach requires designers to propose new configurations to explore the 

unknown beyond traditional forms. Topology optimization methods are thus 
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uniquely valuable in architectural design for seeking optimal configurations under 

given constraints. 

In this section, the major purpose is to demonstrate and explore the potential 

of isogeometric topology optimization in the construction industry and approaching 

futural construction design. To achieve this goal, a typical construction component, 

the post-tensioned concrete beam, is picked to develop an optimization method 

under various structural reliability considerations. 

Unlike the finite element-based method (FEM) widely adopted in analyzing 

the stress distribution [154, 155], the Isogeometric Analysis (IGA) [156] is an 

emerging approach. As pointed out in the milestone work of Hughes et al.(2005), 

IGA was an extension of FEM and was inspired by the computer-aided design 

(CAD) methodology, featuring an exact geometric description from CAD by 

adopting Non-uniform Rational B-Splines (NURBS) as its basis functions. The 

IGA method enables the identical description of the analysis model to the geometry 

model during optimization, as they both use the same NURBS parameters and the 

adaptive mesh for FEM could be avoided. The typical advantage of IGA-based 

structural topology optimization has been discussed by [70]. Along with IGA, the 

aforementioned density-based SIMP method can be incorporated into the 

framework, in which a vision of construction-oriented topology optimization is 

proposed corresponding to the above-manifested needs. To implement topology 

optimization in a wider scope of realistic construction, the generated design of 

optimal topology should also be construction-friendly. Using NURBS based IGA 

model, the structural shape can be naturally compatible with the design input, 

which enables potential industrialized construction approaches such as factory 

prefabrication. 
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Figure 3.1 A brief vision of the futural construction design for the post-tensioned 

concrete beam 

Moreover, the structural components of the optimal design should fulfil the 

safety and resilience requirements in a performance-based design domain. Ideally, 

the stresses of structural components should be maintained underneath specified 

limits in various loading scenarios [157]. It is also equally important that these 

components shall be of limited variation and easy-to-manufacture sections. Thus, 

geometry control, such as minimum width and tendon cover (discussed in this 

chapter), should be considered in the construction-oriented topology optimization 

framework.  

In this chapter, a prestressed concrete beam with unequal tensile and 

compressive strengths and a tendon is used to demonstrate the vision of the 

construction-oriented topology optimization. The Drucker-Prager criterion is 

adopted in the optimization procedure to constrain the material stress within the 

realistic concrete strengths of low tensile strength and relatively high compressive 

strength. This is implemented with an IGA-SIMP topology optimization 

framework, where a NURBS tendon curve representing equivalent prestress load is 

achieved using a simplified load mapping process from the tendon to the concrete 

(Section 3.3). A NURBS-based minimum-width control is applied to ensure 

manufacturability and prevent slim components for better resilience performance. 

The formulation and sensitivity analysis of the outlined optimization problem is 
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discussed, followed by an investigation of various effects on the optimized 

topology, including the tensile-compressive strength ratio and the controlled 

component widths.  

3.2 Isogeometric Analysis and NURBS curve 

Isogeometric analysis (IGA) is a new simulation approach, which unifies 

Computer-Aided Design (CAD) and Computer-Aided Engineering (CAE) by 

adopting various types of spline functions (NURBS [65], T-spline [67], etc.) for 

describing the geometric models and as the shape function of mesh models to build 

up a seamless CAD-CAE system. Among all types of spline functions, NURBS 

excels in the generalizability of curve representation and thus becomes the 

mainstream modeling description method. 

3.2.1 NURBS curve 

NURBS is a generalized format of B-spline, basic B-spline curve is 

determined by a group of control points Pi, as below: 

 ( ) ( ),
1

n

i p i
i

C N 
=

=  P  (3.1) 

where Ni,p() is the i-th of a total of n p-th order B-spline basis function at the knot 

location , the basis function could be defined in Cox-de Boor recursive format 

[66]:  
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where the given knot vector  1 2 1, , , n p   + + = K  is a monotonically increasing 

scalar array that defined parametric space to describe the B-spline curve. Noted 

that if the knot vector repeats p+1 times at the beginning and end, the described 

curve is not connected at both ends, which is also called an open knot vector. Take 

an example of a simple 2-order curve with the open knot vector 

 0,0,0,0.5,1,1,1 = , 4 control points (right) have their basis functions (left) to 

contribute weight value on arbitrary parametrical coordinates for describing the 

curve. 

  
 (a) (b) 

Figure 3.2 Example of a 2-order B-spline curve, (a) the basis functions of all 

control points, (b) control points and the B-spline curve 

NURBS is the generalized form of B-spline, with non-uniform and rational 

properties. It can accurately describe various types of curves such as rectangular, 

circle, and elliptical by adding a weighted index iw  of control points iP , which can 

be described as: 
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to simplify the expression, the i-th and p-order NURBS basis function is denoted as 

( ),i pR  . NURBS inherits 3 important properties from the B-spline curve: (a) non-

negativity ( ), 0i pR   , (b) local supportive ( ), 0i pR  =  if 
1[ , ]i i p   + +  and (c) 

smoothness, the interval 
1[ , ]i i p   + + is continuously derivable of order p-1 and 

order p-k at the knots, where k is the repeat times of the knot. 

3.2.2 Curve refinement 

CAE system requires a well-refined mesh model to ensure a continuous and 

accurate solution. NURBS as the shape function of isogeometric has a set of 

embedded curve refinement methods for knot insertion and order elevation [158] 

that can preserve the original geometric model. 

Firstly, the knot insertion method of B-spline is called h-refinement. The 

insertion of m knots extends the former knot vector  1 2 1, , , n p   + + = K  into 

 1 1 2 1 1, , , m n p n p    + + + + + = = =K , the new basis function still follows Eq. (3.2), 

and the control points  
T

1 2, ,..., m n+=P P P P  are updated as below: 
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 (3.4) 

The knot insertion process is analogous to the mesh regeneration process of the 

classical finite element method, which has the advantage of not requiring a revisit 
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to the geometry model and maintaining the original curve shape for promising 

geometric accuracy. Noted that the insertion of the existing knot will decrease the 

curve continuity at the corresponding location and changes the curve shape, which 

has no analogous function in the finite element method. 

Secondly, the mechanism of order elevation is p-refinement. During order 

elevation, the polynomial order of spline basis function s is thus raised without 

changing the curve shape. To preserve original p kC −  continuity across the curve 

boundaries, the repeat knot number k at the existing knots should raise with p 

increasing. The next step is removing excess knots to merge the segments and 

achieve order elevation of the B-spline curve. There are various efficient 

algorithms for saving the computational costs of order elevation, which is referred 

from [66] and detail omitted here since out of the scope of this thesis. 

To rationalize the B-spline curve into NURBS, the basis functions are firstly 

derived as: 
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3.2.3 Isogeometric structural analysis and IGA-SIMP 

method 

Compared to the classical finite element method, isogeometric analysis has a 

series of analogous, which list as below: 
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Table 3.1 Analogous between the finite element method and isogeometric analysis 

with NURBS 

 Isogeometric analysis Finite element method 

Shape function NURBS basis Polynomial basis 

Element Freedom Control points Node points 

Mesh refinement 
Knot insertion & order elevation 

Exact geometry 

re-mesh 

revisit geometry (approximate) 

Element-wise continuity Cp-1 (local supportive) C0 

Domain type Patches Sub-domains 

Isoparametric element Support 

Patch tests Pass 

Under the isogeometric analysis concept, the isoparametric NURBS patches 

can express exact rigid motion and deformation[65]. For structural analysis, the 

discrete formulation of governing equation remains in the classical form: 

 =KU F  (3.6) 

where K is the global stiffness matrix, and U and F are the global displacement and 

load vectors. The key point is that the shape function changed as the NURBS basis 

function from the polynomial basis function of the classical finite element method. 

When adopting the IGA concept, the design variables can logically extend as 

the pseudo density of IGA control points. For the planar problem, the shape 

function using NURBS is employed as: 

 ( ) ( ),

, ,
1 1

, ,
n m

p q

i j i j
i j

R   
= =

= x x  (3.7) 

where 
,i jx  denotes the variable vectors such as coordinate, displacement, or density 

value of the control point in the SIMP method.  

The Solid Isotropic Material with Penalty (SIMP) method is a widely used 

topology optimization approach, which introduces pseudo-elemental density as the 

design variable to describe any possible material distribution. Accordingly, the 
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elemental stiffness matrix of planar problem eK  and elastic matrix eD  can be 

described as: 
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where eB  is the strain-displacement matrix, 0D  is the solid elastic matrix, and p is 

the penalty coefficient to penalize the intermediate density that is generally set as 3 

[159]. min is the minimum density, generally set as 0.001 for avoiding 

computational instability when the elemental density e close to zero. Under the 

IGA concept, the elemental density is approximately set as the density value in the 

element centroid as below: 

 ( ),

, ,
1 1

,
n m

p q c c

e i j e e i j
i j
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= =

=   (3.9) 

,c c

e e   are the parametric coordinates of the e-th element center. For the plane 

stress problem, the stress vector of point a is expressed as below: 

 
0

s

a e a e=σ D B U  (3.10) 

where aB  is the strain-displacement matrix of point a; eU  is the displacement of 

the element control point; s is generally set as 0.5 [160] to penalize the 

intermediate density value. 

3.3 Modeling post-tensioned concrete beams using IGA 

A post-tensioned concrete beam is optimized using the proposed construction-

oriented topology optimization framework as a typical structure comprising 

separate components of different materials. Based on the equivalent load method 
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[161], a set of equivalent loads can replace the prestressing effect. A new load 

transfer formulation of the continuous equivalent prestress load is developed for 

the IGA-SIMP framework, enabling the prestressed concrete beam's optimization 

procedure. 

3.3.1 IGA for prestressed beam 

For the concrete part of a simply supported prestressed concrete beam, it is 

subjected to various types of loads, which include the external loads such as 

vehicles and structural self-weight as well as the equivalent loads representing the 

action of the prestressed tendon. The displacement caused by the equivalent 

prestresses 
preU  will balance the displacement caused by external load and self-

weight load extU , swU . Similar to the finite element method, the equilibrium of the 

prestressed beam can be formulated as below: 

 ext sw pre pre*= + + +KU F F F F  (3.11) 

where ext
F  and sw

F  represent the external force vector and the self-weight force 

vector, respectively. The tendon geometry is described using a NURBS curve with 

equidistant x coordinates and the varying y coordinates of control points. A smooth 

curve across the concrete beam can be thereafter assigned to the tendon, as shown 

in Figure 3.3(a). The prestressed load due to the tendon comprises two parts: 

equivalent distributed load along the tendon pre
F  and concentrated anchor load 

pre*
F , as shown in Figure 3.3(b). It should be noted that the prestress loss during 

construction and tendon friction is ignored in this model. 
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 (a) (b) 

Figure 3.3 Example of prestress tendon: (a) Tendon curve described by NURBS, 

(b) equivalent prestress load along the tendon 

3.3.2 Equivalent prestress load along the tendon 

The equivalent distributive prestressed load is calculated according to the 

curvature of the tendon, irrespective of the shape of the member and support 

condition. The distributed load along the tendon is expressed as: 

 ( ) ( ) ( )q  =q n  (3.12) 

where ( ) ( ) preq T  = g  describes the curvature-based load distribution along the 

tendon, and ( )n  is the corresponding normal direction. 
preT  indicates the 

prestressed force and ( )   is the curvature. According to the principle of virtual 

work, the distributed load could be equivalented as a load vector on control points: 

 ( ) ( )ten ten ds = F U q Ug  (3.13) 

where ten
F  and ten

U  are the load vector and the displacement vector at the tendon 

control point, respectively. The equivalent load using Gaussian integration is 

expressed as follows: 

 

ten
GP

ten ten ten ten

i 1 2
1

N

i i
e i

w R
=

= F q J J  (3.14) 
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where ten

GPN  is the number of tendon elemental Gaussian points. ten

1J  is the tendon 

elemental Jacobian matrix from the parametric space to the physical space, while 

ten

2J  is the parent space of the Gaussian point to the parametric space. iw  

represents the weight value of i-th Gaussian point in e-th tendon element. 

It should be noted that the initial number of control points of tendon shape is 

limited, which would lead to an inaccurate estimation of the equivalent prestressed 

in the mapping process, as shown in Figure 3.4. By introducing the h-refinement 

process in Section 3.2.2, more knots and control points can be automatically added 

to the curve to improve the accuracy with consistent geometry at the model 

formulation stage. 

 
Figure 3.4 The process of prestressed load discretion  

The refined set of control points set can be thereafter attained, as shown in 

Figure 3.5. To simplify the expression of h-refinement sensitivity analysis, the 

relationship between the coordinates of refined and original control points in Eq. 

(3.15) could be explicitly rewritten as follows: 

 
init

ref ref init

,
1

N

i i j j
j

W
=

= P P  (3.15) 

where 
ref

,i jW  indicates the weight value from j-th original control point to i-th 

refined control point. It should be noted that the h-refinement process of the tendon 

control point affects the sensitivity analysis of tendon shape variables. 
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Figure 3.5 The h-refinement process of tendon control point for improving the 

load discretion accuracy 

For the axial load at both ends of the prestressed tendon, it is also applied 

along the tangential direction at the end of the tendon curve, as shown below: 

 
ten* *

preT=F ng  (3.16) 

where *
n  indicates the tangential direction of the tendon curve end; 

preT  is the 

prestressed load value. 

3.3.3 A simplified load mapping scheme using IGA 

The load mapping scheme of the prestressed concrete beam optimization can 

take advantage of using IGA. To address the prestress load on the concrete section, 

a mapping scheme is applied to transform physical coordinates into parametrical 

coordinates of the concrete domain. Traditionally in FEA, the process is achieved 

by calculating the inverse Jacobian matrix for each finite element. While in the 

IGA framework, an direct and explicit relationship [162] between physical 

coordinates and parametrical coordinates can be applied. The differences between 

these two approaches are illustrated in Figure 3.6. The transformation from the 

physical coordinate of tendon control points to the concrete domain can be 

expressed as follows: 
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where ,x y

i iP P  are the physical coordinates of the i-th tendon control point, and 

con con,i i   are the corresponding parametrical location in the concrete domain. The 

load mapping operation based on this geometric transformation is illustrated in 

Figure 3.7. According to the principle of virtual work, the equivalent prestressed 

load can be written as follows: 
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where 
( ) ( )con con

con

,
,

i i
j jR

 
  (alternatively denoted as ( )con

iR j  for simplicity) represents 

the NURBS basis function, which maps the parametric location of the tendon 

control point ( )con con,i i   to the concrete control point ( ),j j  .  

 

Figure 3.6 Comparison of the physical-parametrical mapping process between 

FEA and IGA 
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Figure 3.7 The inverse mapping process of an equivalent load from the tendon to 

the concrete domain 

3.4 IGA-SIMP optimization model with unequal stress 

constraints 

3.4.1 Drucker-Prager stress constraint 

As previously explained, stress constraints are implemented in the IGA-SIMP 

optimization framework. For structural materials like concrete, the Drucker-Prager 

stress criterion is more suitable to exploit the unequal material strengths in tension 

and compression than the Von-Mises criterion of identical stress limits [163]. The 

Drucker-Prager criterion is usually written as below: 

 ( ) ( ) ( )1 2F I J H= + −σ σ σ  (3.19) 

where 1 2,I J  indicate the first and second invariant of the stress tensor, 

respectively. a and H are variables and can be calculated with compressive strength 

c  and tensile strength t : 
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Along with the Drucker-Prager criterion, the IGA-SIMP topology 

optimization can be formulated as: 
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The optimization is herein performed regarding the concrete topology and 

tendon shape.  ,ρ y  as the design variables of the optimization model represent the 

density of concrete ( )ρ  at control points and the y coordinate of the tendon curve. 

,e iσ  is the stress vector on Gaussian point. GP ten, ,eN N N are the number of 

elemental Gaussian point, concrete elements and initial tendon control points, 

respectively. h is the total beam height, and t is the interval of the unreachable 

region of the tendon, as illustrated in Figure 3.8. 

 

Figure 3.8 Designable region of the tendon curve 

3.4.2 Refinements of stress constraint 

For stress constraint problem, the following numerical issues have to be 

carefully resolved: (1) the stress singularity problem; (2) the unaffordable 
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computational cost of numerous local stress constraints; and (3) the optimization 

stabilization. Various approaches are used to alleviate the above technical barriers, 

which have been briefly explained in this section. 

3.4.2.1 Stress relaxation 

For issue (1): when the density of the element tends to be zero, it will result in 

extremely large stress and violate the yield criterion. Consequently, the yield 

constraints in the low-density region will prevent materials from being completely 

removed, leading to numerical difficulty in obtaining the actual optimal material 

distribution. This phenomenon is usually termed stress singularity, which is 

alleviated using an epsilon-relaxation method [164] in this paper: 

 

( ) ( ) ( )( )

( )

, 1 2

1
, / 1

1 ,    1, 2,...,

F e e e e e

e

e e

e

I J H
h

h e N

  






= + 

= + − =

σ σ σ

 (3.22) 

where eh  is the relaxation coefficient representing the relaxation degree of the 

corresponding constraint and  is a prescribed small positive real number. A greater 

value means a higher relaxation degree. 

3.4.2.2 Local stress aggregation 

For issue (2): The computational cost of implementing stress constraints for 

the elements of the model is a technical challenge during the optimization process. 

This issue is addressed by wrapping the local constraints as a single global 

constraint using the Kreisselmeier-Steinhauser (K-S) and p-norm stress measure 

[165-167] to reduce the computational complexity. The major difference between 

these two global constraint functions is that the P-norm requires the non-negative 

local function value, while K-S has no such requirements [160]. Due to the 
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negative values of the Drucker-Prager criterion, the K-S function is chosen as the 

aggregation function: 

 ( ) ( )( )KS ,

1
, ln exp , 1

eN

F e e e
e

G  


= ρ y σ  (3.23) 

where ( ), ,F e e e σ  is the relaxation function in Eq.(3.22), and  >0 is the 

aggregation parameter, which is used to penalize the violation of the local 

constraints. By increasing the value of the aggregation parameter , the 

approximation error could be reduced. However, the larger  also leads to higher 

nonlinearity, which means more difficulty in convergence. 

3.4.2.3 Stabilization of optimization 

For issue (3), the STM-based stress correction scheme [160] is used to correct 

the global stress measures and to stabilize the optimization process with the 

oscillation control, as shown in Eq. (3.24). 

 
KS KSG cp G=% g  (3.24) 

cp  is the correction parameter, as: 

 

( )
( )

( )
( )

( )

,

KS

,

1

KS

max
,                                  1

max
1 ,       1

F e n

n

n

F e n
n n n

n

n
G

cp

q q cp n
G




−



 =



= 



+ − 



 (3.25) 

where the control factor ( 0 1nq  ) is to alleviate the discontinue change of ncp  

and to avoid iterative oscillation leading to unstable convergence. 

3.4.3 Geometry control of optimized configuration 

Aiming for construction-oriented topology optimization, the design variables, 
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including the minimum width (length scale) control and the tendon-concrete filter, 

are necessary to be included in order to prevent segments of low manufacturability, 

as illustrated in Figure 3.9. For instance, very slim components are challenging to 

manufacture and of little resilience during lifetime service. This optimal design 

effect is avoided by a desirable width control method to set up a minimum width. 

 

Figure 3.9 Illustration of geometry control 

3.4.3.1 Tendon-concrete filter 

a tendon-concrete filter is used to ensure the minimum cover of the tendon by 

the concrete. The filter proposed by [168] can be expressed as follows: 

 ( )

pre

fil

1

2ˆ 1

eid

e e e e




  

 
 

−   
 = + −  

(3.26) 

where ˆ
e  means the e-th elemental density and eid  indicates the shortest 

distance between the center of e-th element and the tendon control points. fil  is 

the function width, while 
pre  is the sharpness of the Super-Gaussian function. 

3.4.3.2 Component size control 

Moreover, a NURBS-based minimum length scale control approach [162] is 

adopted in this paper and further developed to co-work with the IGA-SIMP 

optimization framework. Besides the geometric mesh, an independent density mesh 

is used to control the minimum length (width) scale. The density filter can be 

thereafter similarly formulated as Eq. (3.9) and can be written as below: 
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 ( )
R

den

1

N

e j j
j

R e 
=

=   (3.27) 

where ( )den

jR e  is the NURBS rational basis function of density variables, NR is the 

number of supporting control points. 

3.4.3.3 Density projection 

Finally, the erode-dilate function [169] is applied to obtain a clear 0-1 

solution. the formulation of the erode-dilate method is as follows: 
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 (3.28) 

As the sharpness value HS  increases, the 0-1 solution is better, but it reduces 

the stability of the optimization iteration. ero  and dil  are the projection threshold 

for eroded and dilated design [169], respectively. It should be noted that too high 

or too low projection thresholds can produce Zig-Zag boundaries since the 

NURBS-based length scale method reduces the topological design space. As 

shown in Figure 3.10, a zoomed 3×3 nodes region using different projection 

schemes is presented. The boundary of density distribution is not sharp enough if 

no Heaviside is adopted (Figure 3.10 (a)), whereas the Heaviside method of a zero 

projection leads to a Zig-Zag boundary. When the projection threshold is defined 

as a variable similar to the erode-dilate method [169], a relatively smooth boundary 

can be obtained. 
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(a) (b) (c) 

Figure 3.10 Comparison of projection schemes with different project threshold, 

(ero, dil)): (a) no Heaviside; (b) projection threshold is 0; (c) variable projection 

threshold e.g.: (0.4, 0.6). 

After aforementioned modifications including local Drucker-Prager stress 

constraint, stress relaxation, local constraint aggregation, stabilization, and 

geometric control, the optimization model can be updated from Eq.(3.21) as: 
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(3.29) 

3.5 Sensitivity analysis 

3.5.1 Volume sensitivity 

The material distribution of concrete is described with the topological 

variables of concrete and shape variables of the tendon. The volume objective and 

the stress constraint are coupled during the topology optimization, which 

eventually produces the design variables  ,=x ρ y . For the derivation of volume 
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objective function Eq. (3.19), the partial derivative for the design variable ix  can 

be given using a direct form: 

 e
e

ei i

V
V

x x


=

 


%
 (3.30) 

The explicit gradient of the term e

ix





%
 is calculated from the partial 

derivatives of the topological variables i : 
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 (3.31) 

In Eq. (3.31), the derivatives of variables can be explicitly computed as 

follows: (i)
ˆ

e

e









%
 is derived from the Heaviside function in Eq. (3.28); (ii) 

ˆ
e

e








 is a 

differential form of the tendon-concrete filter in Eq. (3.26); (iii) e

i








 is derived 

from Eq. (3.27), where the derivatives of the NURBS filter from density design 

variables to elemental density. Particularly the partial derivative of e%  with respect 

to the shape variable iy  is given as below: 
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 (3.32) 

where 
ˆ

e

eid




 is derived from the Heaviside function in Eq. (3.28) and ei

i

d

y




 is 

based on the Euclidean distance. According to the h-refinement operation in Eq. 

(3.4), the distance is computed from the element center to the refined tendon 

control points and then projected to shape variables iy , as shown in the following 

form: 
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 (3.33) 

where the first component 
ref

ei

j

d

y




 is derived from the formula of distance, it should 

be noted that the derivatives of the non-closest control points are zero. The second 

component 

ref

j

i

y

y




 is given by Eq. (3.15). 

3.5.2 Stress constraint sensitivity 

For the stress constraint function, the adjoint method is used for sensitivity 

analysis, which is expressed as follows: 

 ( ) ( )T ext sw pre pre*

KS, G = + − − − −ρ y λ KU F F F F%  (3.34) 

where λ  is the adjoint vector. The partial derivative of Eq. (3.34) to a certain 

variable ix  is given by: 
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 (3.35) 

To eliminate the implicit term 
ix





U
, by collecting all the related terms in Eq. 

(3.35), the following adjoint equation is to be solved: 
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F e
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 (3.36) 

Where 
,

KS

F e

G







%
 is calculated by the K-S aggregation function in Eq. (3.24), and

,F e

σ
 can be obtained from Eq. (3.22), which is related to the stress relaxation 
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procedure. The last term e

e





σ

U
 is derived from Eq. (3.10), for measuring the 

elemental stresses. Then, by solving Eq. (3.36), the adjoint vector  is obtained. 

After plugging it into Eq. (3.35), the expression can be rewritten as: 
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The unknown derivatives in Eq. (3.37) can be explicitly obtained as follows: 

(i) e

e





σ
 is obtained from the stress expression in Eq. (3.10); (ii) 

,F e

eh




 and e

e

h






 

are calculated from the stress relaxation function in Eq. (3.22); (iii)
ix





K
 is based on 

the interpolation rule of the stiffness matrix in Eq. (3.8); (iv)For sw

ix





F
, the self-

weight load is expressed as con

1 2sw i i e
e i e

w R g


= F J J , which suggests the 

derivative can be given as: 
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(v) The derivatives of the prestress force vectors 

*

,
pre pre

i ix x

 

 

F F
 are only related to 

shape variables (i.e., the geometry of the tendon). The derivatives of distributive 

prestress load can be given below: 
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(i) From Eq. (3.12), 
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to the detailed explanation in Appendix A; 
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 is also available in the process of derivation of the normal direction in 

Appendix A; 
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The partial derivate of the concentrated prestressed load
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 is given as: 
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 is already available and 

( )*

ten

iy





F
 can be obtained from Eq. 
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(3.16). The corresponding tangential derivation term 
( )*

iy





n
 is given in Eq. (A.6) 

in Appendix A. 

3.6 Demonstrative examples 

The proposed topology optimization framework is demonstrated using a 

simply-supported post-tensioned concrete beam, as shown in Figure 3.11, where a 

half model is presented considering symmetry. An open-source IGA package 

programmed in MATLAB [170] has been adapted in the proposed framework to 

conduct optimization. The effects of various strength ratios (compressive strength 

cf  to tensile strength tf ) and minimum width are discussed within this section to 

demonstrate the construction-oriented concerns. It should be clarified that these 

attempts are somehow still preliminary regarding the real application of civil 

engineering structures. The proposed method is conceptually demonstrated using a 

2D problem in this paper, which can be extended for 3D formulation later and will 

be discussed in the follow-up work.  

When performing the IGA-SIMP-based optimization, the MMA [171] moving 

limit of the topology and shape variables are set as 0.1 and 0.01, respectively. The 

SIMP penalty value is used to accelerate the formation of the configuration of the 

structure. The penalty is increased from 1.0 to 3.0, with a step size of 0.25 per 25 

iterations. A high sharpness value of the erode-and-dilate function HS  strengthens 

the 0-1 sharpness however, unfavorably reduces optimization stability. Hence, the 

sharpness value is increased by 1 per 25 iterations from 1 to 5. The tendon-concrete 
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filter width fil  and the sharpness 
pre  are set as 0.015 and 5.0. A relatively high 

epsilon-relaxation coefficient   is set as 0.4 to ensure the well-relaxed low-density 

region, while the aggregation coefficient  is taken as 8.0. The value of nq  in the 

STM-based stress correction scheme is fixed at 0.5 to improve the continuity of the 

aggregated stress evaluation. 

Regarding the material properties of the beams, Young's modulus of the 

concrete (E) is 28 GPa, and Poisson ratio  =0.2. The density of concrete is taken 

as 2450 kg/m3. The load balancing method[172] for curved tendons has been 

adopted to estimate the tendon force corresponding to the given beam geometry. 

This analytical estimation assumes the tendon of a parabola curve, and the prestress 

force for the beam of length L is given as: 

 
2

sv
pre

8

q L
T

a
=  (3.41) 

where svq  is the service load (such as vehicles) on the top surface, a indicates the 

tendon’s drape, set as 0.8 of beam height to ensure a safe distance from tendon to 

both top and bottom chords.  

3.6.1 Simply supported beams with single span 

In this beam example, the beam length L is 2m, and the height D is 0.2m. 

When the service load svq  equals 200 kN/m, the analytical 
preT  is calculated as 625 

kN. According to the IGA result of this rectangular beam, the maximum tensile and 

compressive stress is 0.28 MPa and 1.33 MPa, respectively, which are both far 

below the strength limit, indicating low utilization of material capacity in a 

traditional design. Through utilizing the theoretical prestress force in the proposed 
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optimization method, the restriction of parabolic tendon shape and prismatic 

concrete topology are eliminated to achieve a more efficient tendon shape and 

lighter concrete beam, which enhances the practical value of such traditional 

prestress beam design methods. It should be noted that the concentrated prestress 

load on the edge is equivalented to a localized pressure to simulate the effect of the 

anchor and to avoid stress concentration on the loading region. 

 

Figure 3.11 A half model of the simply supported beam with a uniform load 

The right half of the beam is modelled considering the axial symmetry and 

discretized as 200×40 elements under the IGA framework. For convenient 

visualization, the half model is duplicated to show a full model in the following 

discussion. Nine tendon control points are used to generate the curve shape for the 

prestressed tendon, while 200 knots are inserted to improve the accuracy of load 

equivalence, as discussed in Section 3.3.2. The elemental density value of the first 

two upper surface layers is fixed as 1.0 to form a rigid load-carrying surface, and 

the edge tendon control point is fixed on the upper right corner to predetermine the 

location of the prestressing anchor, as shown in Figure 3.11. 

Figure 3.12 (a) shows the typical iteration of topology optimization, where 

the density distribution has been generated after several steps. During the iteration, 

the structural volume ratio decreases from 1.0 to a converged 0.47, while the D-P 

criterion value approaches zero, suggesting that the stresses are constrained 

underneath the yielding surface to remain elastic. The presented optimization is 

performed with equal strength limits and low minimum-width control (the 

reference length scale bar can be found in Table 3.2). Thus, the equal-strength D-P 



Chapter 3 Isogeometric structural optimization of the post-tensioned concrete beam 

61 

value reflects the Von-Mises stress criterion, and the distribution is shown in 

Figure 3.12(b), where the relatively higher level of stress is in the upper chord. 

This is due to (1) the bottom chord assigned with a fixed filter thickness to ensure a 

sufficient tendon cover; (2) the bottom chord only co-working the tendon to resist 

the tendon forces, and the main resisting action is taken by the prestressed tendon. 

Figure 3.12 presents a visualized topology optimization process without the 

construction-oriented concerns, whereas the effect of minimum width and unequal 

strengths is discussed in the following subsections. 

 
 

 (a) (b) 

Figure 3.12 Topology optimization result(equal strength limits, low width control 

(11.6 mm)): (a) optimization process; (b) the distribution of D-P index (

, 1dp F eI = − ), negative value of Idp indicates below strength limit. 

3.6.1.1 Effect of different component size control 

A NURBS-based minimum length scale control [162] is applied to prevent 

slim components in an optimized structure. As shown in, the optimized models of 

various minimum-width control are presented, where the width is selected as 

11.6mm, 23.3 mm, and 46.6 mm corresponding to the different density mesh grids: 

100×20, 50×10, 25×5. In these examples, the compressive strength is taken as 10 

MPa, equal to the tensile strength. The iteration of topology correlated to the 
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material distribution during the optimization is shown in Figure 3.13, in which the 

variation of volume ratio and D-P value are presented as well. In the optimized 

models, a density control mesh of 50×10 is adopted as the minimum width is 

limited to 23.3mm. 

 
 

 (a) (b) 

Figure 3.13 Optimized topology with medium width control (23.3 mm) and equal 

strength limits: (a) optimization process; (b) the distribution of D-P index Idp. 

Meanwhile, the geometric mesh independent from the density mesh remains at 

200×40. When the minimum width limit varies, it can be observed that the slim 

components and tiny branches are gradually prevented, as shown in Table 3.2. The 

structure of a reasonably controlled minimum width thereafter represents a better 

manufacturability performance for construction. 

Table 3.2 Illustration of various minimum-width control in topology optimization 

Volume Configuration 

47.39% 

 

48.91% 

 

58.52% 
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3.6.1.2 Effect of different ratio of unequal compressive and 

tensile strength 

Concrete is a common structural material used with steel rebars as 

reinforcement, which can be either strengthened by adding steel fibers or other 

types of fibers. The critical feature of concrete is its different strengths in tension 

and compression. When the tensile strength (ft) and the compressive strength (fc) 

are known, the topology optimization should maximize the use of the material 

strength while the safety performance is ensured. As shown in Table 3.3, different 

topology optimization results can be obtained after applying the Drucker-Prager 

criterion to consider unequal ft and fc, while a minimum-width control of 11.6 mm 

is applied in these models. To observe the effect of strength ratios, the compressive 

and tensile strength are selected as three sets: fc =10MPa, ft = 10MPa (Von-Mises 

Criterion); fc =13.3MPa, ft = 6.7MPa; fc =15MPa, ft = 5MPa. Here the scale of 

summed fc and ft has been kept the same to represent the similar material capacity 

combining tension and compression. The optimized structural configuration varies 

when the ratio of fc / ft is increased from one to three times the tensile strength. As 

the fc / ft ratio increases, the number of components between the upper and lower 

chords is reduced because the major components of higher compressive strength 

can solely bear the load transferred from the chords. Meanwhile, the volume ratio 

declines from 47.39% to 37.94% as higher compressive strength and fc / ft ratio are 

employed. It should be noticed that further improvement may be necessary for the 

optimized structure since the structural performance of the model has to be 

examined for various loading scenarios considering the service loading and 

extreme loading, which can lead to additional variation to the optimized topology. 
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Table 3.3 Effect of different strength ratio to the topology optimization with low 

width control (11.6 mm) 

Compressive/Tensile 

Strength 
Volume Configuration 

10/10 MPa 

(1:1) 
47.39% 

 

13.3/6.7 MPa 

(2:1) 
40.89% 

 

15/5 MPa 

(3:1) 
39.77% 

 
 

When applying the D-P stress constraints, and the minimum-width control 

simultaneously, the iterative process of topology optimization is illustrated in 

Figure 3.14 (a). As the strength ratio, fc / ft is set to 3, and the minimum-width 

control is 23.3mm, the volume ratio and the D-P ratio converge to the optimized 

values after 300 iterations. Upon the completion of optimization, the obtained 

shape comprises fewer components and the middle components yield to an arch. 

Such a regularized shape could significantly simplify the construction procedure, 

indicating a high level of constructional ability. Figure 3.14 (b) shows the D-P 

value distribution after the completion of the optimization. When using the same 

minimum-width control (23.3mm), the variations of optimal topology 

corresponding to various strength ratios have been shown in Table 3.4. Compared 

to the results in Table 3.3, the optimized models with a minimal width limit of 

23.3mm comprise less complexity in terms of the middle component distribution. 

As a compromising result of the width constraint, higher volume ratios are seen in 

these optimized models. In real structural design, a balanced performance between 

the volume ratio (material cost) and the width control (manufacturing cost) should 

be considered.  
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 (a) (b) 

Figure 3.14 Topology optimization with medium width control and 3:1 strength 

limit ratio: (a) optimization process; (b) the distribution of D-P index Idp. 

Table 3.4 Topology optimization results after applying strength ratios and 23mm 

minimum-width control 

Compressive/Tensile 

Strength 
Volume Configuration 

10/10 MPa 

(1:1) 
48.91% 

 

13.3/6.7 MPa 

(2:1) 
41.04% 

 

15/5 MPa 

(3:1) 
40.54% 

 

3.6.2 Simply supported beams with multiple spans 

To further demonstrate the proposed optimization approach, two continuous 

beams are briefly presented here, which are of two spans and three spans, 

respectively. Each span is 2.0 m long and similarly configured as the previous 

single-span beam model. fc, ft is adopted as 13.3 MPa and 6.7 MPa. The schematic 

plots of the continuous beams are shown in Figure 3.15 (a) and (b). The upper 

surface pressure is assigned as 250 kN/m for the continuous beams, and the 

prestress force is fixed to 625 kN. The optimization process and the distribution of 
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the D-P index of optimized models are presented in Figure 3.15. 

 

Figure 3.15 Schematic plot of continuous beams.: (a) a two-span beam (2×2.0m); 

(b) a three-span beam (3×2.0m). 

The optimized models are obtained under the same width control limit as 23.3 

mm, while the volume ratios of the two beam cases eventually converge at 0.49 

and 0.47. As shown in the figures, the tendon profiles of both beams are of smooth 

curved shapes after the automatic optimization. The tendon-covering region of the 

stress distribution contours is well below the strength limit, indicating that the 

prestress tendons effectively alleviate the tensile stress in the concrete beams. As 

shown in Figure 3.16, the optimized topology of continuous beams is of expected 

performance, which presents the well-controlled complexity of component 

distribution and the well-achieved efficiency in pursuing a lightweight design. 

 

Figure 3.16 Topology optimization of multi-span beam: (a) density distribution of 

two-span beam; (b) D-P index Idp distribution of two-span beam; (c) density 

distribution of three-span beam; (d) D-P index Idp distribution of three-span beam 
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3.7 Concluding remarks 

In this chapter, an IGA-SIMP topology optimization approach has been 

developed along with a vision of a construction-oriented topology optimization 

framework. The constraint functions for material stresses and geometric 

configuration have been implemented to address safety and manufacturability in 

real construction practice.  

A prestressed concrete beam comprising a steel tendon and a concrete beam is 

modelled and optimized using the proposed topology optimization framework. The 

NURBS-IGA-based mapping from the tendon to the concrete entity can achieve a 

simultaneous optimization over the concrete topology and the tendon curve shape. 

The Drucker-Prager criterion has been applied to consider the unequal strength 

limits for tension and compression as commonly encountered for concrete-type 

materials in real construction. A minimum-width control is implemented during the 

topology optimization to prevent very slim components in the optimum model. 

The effect of strength ratio fc / ft and minimum width has been demonstrated 

using the prestressed concrete beam. The increasing strength ratio can lead to a 

different distribution of concrete in the optimized beam and a lower volume ratio. 

When applying minimum-width control, the branch components are significantly 

reduced, and the pattern of internal components tends to be more regularized, 

which could essentially improve the manufacturability of the optimized structures.  

As discussed in this chapter, the construction-oriented constraint functions are 

not limited to the stress criterion and width control. To implement topology 

optimization in structural engineering, the performance of the optimized structure 

subjected to various loading scenarios during its lifetime service should be 
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considered. The manufacturing cost and the maintenance cost (i.e., resilience) of 

the structure should also be considered. These concerns should be plugged into the 

construction-oriented topology optimization framework, and the future work of the 

authors will continue to explore it. 
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Chapter 4 An object-oriented 

framework for the isogeometric 

topology optimization 

The soaring growth of computational power has enabled the unprecedented 

evolution of structural design practice [111, 173], which was represented by the 

milestone work of the Finite Element Method (FEM) [174]. FEM employed in 

structural analyses enables analysis models at various scales, which commonly 

comprise beam-column elements for frame members and shell elements for slabs 

or brick (solid) elements for a detailed model of structural components. In the 

conventional design framework, typical building structures, e.g., steel structures or 

reinforced concrete structures, usually consist of rectangular or circular sections 

limited by the current construction approaches. Dating back to the early 20th 

century, Gaudi has shown off his legendary attempts in architecture design 

pursuing optimal form [175] as shown in Figure 4.1. In recent years, modern 

architectural designs have re-entered this regime as represented by Zaha Hadid’s 

masterpiece designs (also shown in Figure 4.1). Moreover, the evolution of 

construction technologies, such as prefabricated construction and 3D-printing 

construction [17, 176] has fundamentally freed the traditional design constraints, 

which potentially enables structures designed with the least material cost and 
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optimal safety performance [106]. In this context, an adequate design tool using 

advanced computational modeling remains missing, while it is devoted to finding 

optimized structural design in the context of modern architecture design and 

sophisticated construction technologies. 

 

Figure 4.1 A design tool for future free-form structural design 

Instead of manually conducting iterative designs with implicit attempts, 

executing automatic iteration is a key feature of topology optimization. Finite 

element models were usually employed in various software packages to obtain 

indices such as structural deformation and material usage. The FE analysis models 

during the iterations of the TO procedure are likely to experience complex 

geometry, which inevitably requires locally refined mesh to sustain FE analyses. 

While the number of optimization iterations increases, simultaneously generating 

mesh refinement according to the optimized model becomes nearly impossible. 

Isogeometric Analyses (IGA) as the latest development [177] exhibit an 

outstanding capability in tackling the compatibility challenge between mesh 

scheme and model geometry [70]. The Isogeometric Analysis concept was 
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proposed by Hughes et al [65] as an extension of conventional FEM, which uses 

Non-Uniform Rational B-Spline (NURBS) for shape functions instead of the 

polynomial shape functions in FEM. Moreover, IGA adopts the same NURBS 

shape functions for geometry description [178], which can be seamlessly ported to 

computer-aided design (CAD) for the shared NURBS basis [179, 180]. Another 

benefit of using IGA is the increased computational accuracy achieved by elevating 

the order of shape continuity (p-refinement or k-refinement) without refining the 

mesh (h-refinement) [24, 181]. 

To implement IGA for topology optimization of structures [182, 183], an 

open-source and object-oriented FEM framework has been chosen for code 

development considering the sound experience of authors in this framework [184, 

185], which was initially established as the Open System for Earthquake 

Engineering Simulation (OpenSees) by McKenna (1997) at UC Berkely. The code 

architecture of OpenSees is constructed for finite element analyses, consisting of 

material models, sections, elements, loads, solvers, etc. [157, 186-188]. OpenSees 

is primarily programmed in C++ and interpreted by Tool command language (Tcl) 

[189] and Python, which has attracted a variety of development for different 

purposes [184, 190-192]. The authors of this paper have been deeply engaged in 

developing OpenSees [157, 186-188], which has formulated a fire edition: 

OpenSees for fire, enabling fire modeling, heat transfer, thermo-mechanical 

analyses, and integrated analyses with GUIs. With these experiences, OpenSees 

has been extended in this paper with newly developed IGA elements to enable 

isogeometric analyses for the topology optimization process. An IGAQuad and an 

IGABrick element have been created for 2D analyses and 3D analyses in the FEM-

based OpenSees framework, respectively. The NURBS-based geometry definition 

has been enabled along with the solved nodal displacements taking advantage of 
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the existing components of OpenSees. The computational performance of these 

IGA elements has been examined and demonstrated, showing the outstanding 

capability of dealing with irregular-shape models compared to FEM. The topology 

optimization platform OPS-ITO is thereafter established, which is programmed in 

Python and developed to integrate the OpenSees IGA-based iterative analyses into 

the SIMP-based topology optimization. The developed codes have been 

encapsulated as an executable program with graphic user interface, which offers 

various constraint functions for modern structural design including stress limit, 

minimum material consumption, and pattern compliance. 

4.1 Introduction of OpenSees framework 

OpenSees is an open-source simulation framework initially developed for 

finite element analyses of structures subjected to earthquake loading [184], which 

was later extended by the authors for modeling structures in fires (OpenSees for 

fire) [157, 186-188]. Analyses in OpenSees follow the conventional routine of the 

finite element method, and the simulation process is disseminated into the 

following common steps: (1) mesh discretization; (2) formulation of stiffness 

matrices and residual forces in each finite element; (3) assembly of elemental 

stiffness matrices and force vectors; (4) solving the system of the equation; (5) 

check of convergence and updating elemental state.  

4.1.1 The object-oriented programming infrastructure 

As an object-oriented software framework for computing structural response 
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using finite element analysis, OpenSees is implemented with C++ language and 

interpreted by Tool Command Language (Tcl) [189] and Python application 

programming interface (API) [157]. Benefiting from the open-source platform, 

allows researchers to further develop the source code in different research areas.  

The main characteristic of object is its independence, which can be considered 

as an independent entity with corresponding data and functions for describing its 

attributes and properties. The functions of object are responsible for operating the 

contained data and can respond to the calling requests from other functions. 

Accordingly, object-oriented programming language is also called class-based 

language. The object is created by instantiating the class, and its internal structure 

is encapsulated to operate only through the interface, and the related computational 

process is not visible. Encapsulation makes the program architecture modular, thus 

adapting it for developing large software systems. Another important property is 

inheritance, which defines the subordination between classes. A subclass inherits 

data and functions from its base class and can produce new private components for 

saving redundant and repeated coding effort. The property of polymorphism means 

that the inherited methods can also be redefined in subclass for allowing different 

forms of input and outputs. A virtual function is an iconic form of dynamic 

polymorphism, which ensures the inherited function calls the implementation of 

the fundamental subclass for bypassing the originally declared function as the base 

class. 

There are three types of relationships between classes, namely association, 

generalization, and aggregation that can be visualized using Unified Modelling 

Language (UML [193]), as illustrated in Figure 4.2, each class contains its 

attributes and operations. Association means the objects of different classes have 

interactions, which is illustrated with a line linking the corresponding classes. 
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Generalization illustrates the inheritance relationship between subclass and base 

class, and aggregation means the object of the assembly class is composed by the 

object of other classes 

 

Figure 4.2 Illustration of different class relationships in the class diagram 

4.1.2 OpenSees for finite element analysis 

Taking an object-oriented architecture of source code development, these 

tasks are conducted in OpenSees within four basic modules: ModelBuilder, 

Domain, Analysis, and Recorder (blue boxes in Figure 4.4) along with a variety of 

supported packages. The ModelBuilder is responsible for building FE models after 

the mesh discretization, which adds the components of the FE model to the 

Domain. The Domain stores the information of an FE model, enabling updates 

during the FE analysis. As illustrated in Figure 4.3, the objects of the FE model 

(green boxes) stored in Domain include Node, Material, Element, Constraint 

(single point SP_Constraint and multi-point MP_Constraint, for boundary 

conditions), and LoadPattern (for imposing various load types). These objects are 

defined in various projects (modules) as inherited classes taking advantage of the 
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object-oriented nature of C++. When the model is built and stored in Domain, 

finite element analyses can be carried out with the Analysis module, which 

formulates the global system of equations and solves the equation to obtain the 

converged solution of nodal displacements. To record the analysis results as output, 

the recorder includes various recorder objects for nodes and elements deployed 

under the request of the user, which retrieves the data from the corresponding 

model objects. 

 

Figure 4.3 Class hierarchy of OpenSees framework 

4.1.3 Interpreters of OpenSees 

4.1.3.1 Tcl interpreter 

As the most fundamental command interpreter of OpenSees, Tcl is a scripting 

language with a simple syntax and standard programming structure. Besides, Tcl 

embeds a user-friendly interface to extend the command library that allows 

OpenSees to give a standard entry, thus users can control OpenSees through Tcl 

script to complete all processes such as model defining and analysis solving instead 

of writing in complex C++ format. As exampled in Table 4.1 [194], Tcl commands 

are typically written in bellowing format with hashtag (#) commented and the 
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variables are substituted by a dollar sign ($). 

Table 4.1 Example of Tcl script for defining a node in OpenSees 

# “set” is a built-in command of Tcl, which assigns a value to the variable 

set nodex 0; 

# “expr” is an evaluation command, which computes the following expression 

set nodey [expr $nodex+2]; 

# extended command from OpenSees 

Node 1 $nodex $nodey; 

4.1.3.2 Python API 

Despite Tcl has shown outstanding flexibility and strength in string process, it 

is still not sufficient for increasingly complex scientific computing. String is the 

only native data type of Tcl, which results in cumbersome mathematical 

expressions and raises the cost of learning OpenSees. To remove the constraint of 

scripting-only expression and extend the usage possibilities of more scripting 

languages, it is necessary to adopt a new and versatile interpreter. 

Python is a high-level combination of interpreted compiled, interactive, and 

object-oriented scripting language. Benefiting from its powerful extensibility, it has 

rich interfaces and is therefore known as a glue language. Glue language is a 

language that integrates well with modules developed in other languages, 

combining them organically to form new and more straightforward programs. 

Likewise, OpenSees also provides a Python interface that supports all features 

[195]. With its extension of Python interpreter, the users of OpenSees are also 

capable to use the extensive libraries of Python such as using Matplotlib for 

visualization, Scipy for scientific computing, and PyQt for establishing a graphical 

user interface. In addition, with the rich interfaces, OpenSees can be used as a 
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structural simulation tool to achieve more complex computational tasks in 

collaboration with other software and scripts to accomplish hybrid programming. 

4.2 Development of isogeometric analysis module in 

OpenSees 

The major challenge of developing IGA capability in a FE framework is the 

different scopes and processes for element definition and state determination. IGA 

employs NURBS as shape functions with the nodes serving as control points of the 

splines. The model geometry and shape functions are both described using these 

splines. As depicted in Figure 4.4, the newly developed IGA element classes are 

denoted as IGAQuad and IGABrick for 2D and 3D isogeometric analyses, 

respectively. These elements are to be duplicated as objects and stored in Domain, 

which is now connected to the ITO tool package for running topology optimization 

processes with the IGA approach (discussed later). When developing IGA elements 

in OpenSees, the interface functions for the computation of characteristic 

components (e.g., stiffness matrix, load vector, etc) are inherited from the base 

class of Element. The fundamental functions of these interface functions are: (1) to 

perform in-element interpolation from nodal displacements (NURBS-based 

interpolation in IGA) to section deformation at each integration point; (2) to 

formulate resisting forces at nodes from the integration of section forces; (3) to 

formulate element stiffness matrix from the section stiffness matrices. Due to the 

use of NURBS, these in-element processes (also termed element state 

determination) are rewritten with NURBS-based interpolation and integration.  
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Figure 4.4 Class hierarchy of OpenSees framework with our ITO extensions 

Taking a 2D model as an example, the computation of shape functions for 

each integration point is conducted within the procedure of shapeFunction in the 

IGAQuad element class, which serves as a key step to transform the Isogeometric 

formulation to the standard FE interface of OpenSees. The workflow of computing 

the IGA shape function is presented in Figure 4.5. The knot vector in an IGA 

element is used to find the belonging knot span of Gaussian points for determining 

the NURBS shape functions (represented by the blue shade) and the Jacobian 

matrix J2 for mapping the parent space into parametric space (yellow shade). For 

each element, the belonging knot span index (KntSpan) of each gauss point 

(Xg&Wg) is computed from the function findSpan [66], which is followed by the 

calculation of basis function (N&dN/d) for B-Spline (DerBasisFuns) and the 

rationalized R&dR/d.  As shown in Figure 4.5, two steps of space mapping are 

carried out to compute the corresponding Jacobian matrixes J1 and J2 to map the 

parent space into physical space, which is completed in the functions SpaceMap#1 

and SpaceMap#2. The stiffness determination is of a similar interface as general 

FE elements in OpenSees, whereas the NURBS-based shape functions are 

embedded in calculating the stiffness components and the elemental volume.  
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Figure 4.5 Workflow of computing IGA shape function 

With the development of IGAQuad and IGABrick elements, isogeometric 

analyses can be now performed using OpenSees. The material definition should be 

specified such as an elastic 2D or 3D material, which is consistent with the original 

OpenSees user commands. When using the Python interpreter in OpenSees, the 

input command for defining the IGAQuad element can be written as follows: 

element IGAQuad ex, nex, ey, ney, OrderX, OrderY, CPIds, nKntVectX, KntVectX, 

nKntVectY, KntVectY, rho_e, WCPs, thk, matTag; 

Similarly, the definition script of the IGABrick element is in the following 

form: 

element IGABrick ex, nex, ey, ney, ez, nez, OrderX, OrderY, OrderZ, CPIds, 

nKntVectX, KntVectX, nKntVectY, KntVectY, nKntVectZ, KntVectZ, rho_e, WCPs, 

matTag 

In these command lines, the integers ex, nex, OrderX represent the element 

label, element amount, and element order along the x-direction, respectively, the 

format of y- and z-direction are in the same manner. CPIds is an integer array of 

the control point label of an element, while the integer nKntVectX represents the 

knot vector length along the x-direction (KntVectX), likewise in y- and z-direction. 
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The float number rho_e is the elemental density that is specially added for the 

application of topology optimization, which is of a default value of 1. The float 

number WCPs indicate the weight values of each elemental control point, whereas 

the integer matTag is the label of the applied material. When generating the model 

using IGA elements in OpenSees, a more practical approach is to use Python-based 

functions to automatically define the model from the NURBS-based geometry. The 

pre-processing is enabled by taking the components from the open-source IGA tool 

SIMOPackage[196], which has been integrated into the pre-processing tool of the 

topology optimization framework in this paper.  

4.3 Verification examples of using Isogeometric 

elements in OpenSees 

4.3.1 2D model using IGAQuad: an infinite plate with a 

circular hole subjected to tension 

The first benchmark case of the IGA element is to model an infinite plate with 

a circular hole, which is subjected to constant tension along the x-axis on both 

edges as shown in Figure 4.6. Considering the symmetry, this infinite plate can be 

simplified as a quarter plate with translational constraints along the x-axis at the 

right edge and translational constraints along the y-axis at the bottom edge. The 

analytical solution to the stresses of the quarter plate can be given as: 
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 (4.1) 

where the magnitude of constant tension (on the infinite boundary) is denoted as 0

. As shown in Figure 4.6, the exact center is the origin of polar coordinates. R and 

L are the hole radius and finite quarter plate length, respectively. Regarding 

material properties, the Youngs modulus E, Poisson ratio v, and thickness t of the 

planar plate is defined using the values presented in Figure 4.6. 

 

Figure 4.6 An infinite plate with a circular hole subjected to tension: (a) schematic 

of the model; (b) a quarter-plate model for analysis 

This problem is analyzed using the newly developed IGA element (IGAQuad) 

in OpenSees to evaluate the element performance. A k-refinement process of IGA 

is used to enable convenient mesh refinement for benchmark tests, which simply 

elevates the order of the basis function by inserting additional knots to refine the 

IGA continuity without significantly adding control points (nodes) [66]. The 

corresponding models of Case 1-6 using order elevation and mesh refinement are 

illustrated in Figure 4.7 to show the mesh schemes. For models of Case 1 to Case 

3, the basis function order is gradually elevated from 2 to 6, while adopting the 
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same mesh scheme (12×8 elements). The elevation of the NURBS order leads to 

the increasing number of control points from 140 to 308. For Cases 4 and 5, the 

mesh of elements is refined with doubled elements along each axis, while the 

NURBS order is kept as 2. Moreover, Case 6 adopts an extremely fine mesh, which 

should provide results sufficiently close to the analytical solution given in Eq. 

(4.1).  

Table 4.2 IGA models for the infinite plate with a circular hole 

Case Order (u/v) Control points (u/v) Elements (u/v) 

1 2 140 (14/10) 96 (12/8) 

2 4 216 (18/12) 96 (12/8) 

3 6 308 (22/14) 96 (12/8) 

4 2 (doubled elements) 468 (26/18) 384 (24/16) 

5 2 (four times elements) 1700 (50/34) 1536 (48/32) 

6 2 (Extremely fine mesh) 10004 (122/82) 9600 (120/80) 

The distributions of stress 11 (normal stress along the x-axis) analyzed using 

the IGA models are illustrated in Figure 4.8, which include the contour plots from 

Case 1, Case 2 using elevated order, and Case 6 using a fine mesh scheme. Except 

for Case 1 of minor differences, Case 2 and Case 6 present nearly identical stress 

distributions. While the stress distribution of Case 6 is considered as the reference 

solution, the modeling results of Case 1-5 have shown that good computational 

performance can be achieved by either elevating the NURBS order or simply 

adding elements. Furthermore, the 11 at point A and 22 at point B are retrieved 

from the models and compared in Figure 4.8, where the analytical solutions of 

stresses 11 at A and 22 at B are given as straight lines.  In Figure 4.9, the 

competitiveness of the IGA element is clearly shown in terms of order elevation. 

While the element order is elevated from 2 to 4 and 6 improving the continuity 

from C1 to C5, the error percentage is down to less than 0.1% (Figure 4.9(a)). 
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Alternatively, mesh refinement (cases 4, 5) can achieve similar accuracy 

improvement, with the price being the significantly increased number of elements 

(Figure 4.9(b)). 

  

 
 

Figure 4.7 Various mesh schemes for modelling the quarter plate: (a) case 1-3, 

control points of case 1; (b) case 4; (c) case 5; (d) Case 6 (fine mesh) 

   

Figure 4.8 Contour plots of stress σ11: (a) Case 1; (b) Case2 using elevated 

element order (c) Case 6 using fine mesh as reference 



Chapter 4 An object-oriented framework for the isogeometric topology optimization 

84 

 
(a) 

 
(b) 

Figure 4.9 Accuracy of various IGA models: (a) elevated element order; (b) mesh 

refinement 

4.3.2 3D model using IGABrick: a cylinder with internal 

pressure 

The second benchmark case is to demonstrate the performance of the 

IGABrick element using a 3D case, which models a cylinder with uniform pressure 

on its internal surface, as shown in Figure 4.10. A quarter model is built for 
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analyses using IGA elements and FE elements after considering symmetry. Here an 

FE model of a fine mesh analyzed using Abaqus [197] serves as the reference 

solution for performance comparison. For this 3D model, its geometric parameters, 

boundary conditions, and loading conditions are illustrated in Figure 4.10, whereas 

its material parameters are identically defined as the material model in the 2D plate 

cases. 

 

Figure 4.10 A hollow cylinder with internal pressure: (a) schematic of the model; 

(b) quarter model for numerical analyses 

To examine the computational performance of the IGABrick element, the 

models of this 3D cylinder are varied from a relatively coarse mesh to the models 

of elevated NURBS order and refined mesh using k-refinement. Similarly, the 

various simulation schemes using the IGABrick elements are listed in Table 4.3. 

The modeled cases are numbered in four groups: A1~A4, B1~B4, C1~C4, and 

D1~D4. For these groups, the NURBS order has been changed in different 

directions of u, v, and w (as shown in Table 4.3) from 2 to 4. In each group, the 

mesh schemes are changed from a relatively coarse mesh to a fine mesh, which is 

of two additional elements in all directions as the case number increases. 

Correspondingly, the number of control points changes as a result of elevated order 

and refined mesh scheme, as shown in Table 4.3. Considering that the resolution 
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over the thickness of the cylinder (v-direction) is crucial to the accuracy of 

analyses, relatively more knots are used than the directions of u and w. 

Table 4.3 Simulation cases for modeling 3D cylinder with different order and 

mesh schemes 

Case Order (u/v/w) Control points (u/v/w) Elements (u/v/w) 

A1 

2×2×2 

96 (4×6×4) 16 (2×4×2) 

A2 288(6×8×6) 96 (4×6×4) 

A3 640 (8×10×8) 288 (6×8×6) 

A4 1200 (10×12×10) 640 (8×10×8) 

B1~B4 2×3×2 112~1300 (4~10/7~13/4~10) 16~640 (2~8/4~10/2~8) 

C1~C4 2×4×2 128~1400 (4~10/8~14/4~10) 16~640 (2~8/4~10/2~8) 

D1~D4 3×3×3 175~1573 (5~11/7~13/5~11) 16~640 (2~8/4~10/2~8) 

E1~E4 4×4×4 288~2016 (6~12/8~14/6~12) 16~640 (2~8/4~10/2~8) 

 

  
(a) (b) 

Figure 4.11 Mises stress distribution of case E4 and reference FEM case 

The reference solution using a FEM model is built with 50×40×40 

isoparametric elements in ABAQUS. As presented in Figure 4.11, the Mises stress 

distribution of Case E4 and the reference FEM solution are illustrated as contour 

plots, which are very close in terms of stress distribution. After retrieving the 

maximum Mises stresses from the models of all the above-mentioned cases, the 

performance of the IGA element in OpenSees can be observed in Figure 4.12. 
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With the mesh refinement in A1~A4, the peak stresses quickly approach the 

reference solution, which is 2.315 MPa indicated by the dashed line. Moreover, the 

elevation of NURBS order in case groups B, C, D, and E is significantly more 

efficient. Even with the least elements (2×4×2 elements), the results have become 

very close to the reference solution. If comparing the case groups of B and C with 

the groups of D and E, a lower order over the directions of u and w causes a minor 

effect on the analysis accuracy. However, increasing the order over thickness 

direction (v) in the models as shown among the case groups of A, B, and C poses 

high sensitivity. Nevertheless, these analyses successfully demonstrate that the 

IGA model of much fewer elements provides nearly identical results. Like the 

IGAQuad element, the simulation accuracy can be ensured by solely increasing the 

NURBS order while keeping a relatively coarse mesh scheme. This unique feature 

ultimately facilitates the simulation in OpenSees-based topology optimization as it 

enables a fixed mesh scheme with an adaptively refined NURBS order during the 

iterations of model topology. 

 

Figure 4.12 Computational performance of IGABrick elements in modeling a 

hollow cylinder using various modeling schemes 
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4.4 Development of isogeometric topology optimization 

package for the OpenSees 

4.4.1 Basic optimization models 

The developed OpenSees-ITO tool package currently supports two typical 

topology optimization models, a minimum compliance model and a minimum 

volume (with stress constraints) model [198]. These models are employed to define 

the objectives of topology optimization, which are briefly explained below: 

4.4.1.1 Minimum compliance model 

The minimum compliance model aims to find the optimal material 

distribution that minimizes structural compliance under the prescribed volume 

ratio. The optimization model is preliminarily defined as: 
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The NURBS shape function is based on multiple input variables according to 

their order and mesh density, which is unlike the shape function of FE analysis 

limited to the domain of every single element. Since it is a natural density filter, the 

filter size relies on the order and size of the mesh, which leads to the unfavorable 

dependency of the filter size on the element sizes (model resolution). There are two 

major approaches to facilitate independent filter under the ITO framework: (1) to 

apply an additional distance-based filter[46]; or (2) to apply a multi-resolution 

approach [162], which uses the different sizes of NURBS shape functions in 
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structural analysis (Eq. (3.7)) and in addressing the elemental density (Eq. (3.9)). 

The second approach utilizes the NURBS shape function as a filter, and the first 

approach is simpler when predicting the minimum length scale of the optimal 

structure in the context of construction-oriented topology optimization [119]. The 

distance-based filter is adopted in the present formulation, and the filter is 

expressed as: 

 i
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where 
ijw  is a linear distance weighting function given as: 

 
minij j iw r= − −x x  (4.4) 

In the above equation, minr  is the filter radius, representing the cartesian 

distance between the centroid of i-th and j-th element. 
j  is the density variable of 

the j-th element. 

The projection is based on the filtered elemental density e%  in Eq. (4.2). The 

formulation is expressed as: 
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Where ˆ
e  is the projected elemental density by using the tanh function [199] 

to enhance the binarization degree of density variables. As the sharpness value HS  

increases, the density binarization is strengthened with the threshold th . 

After aforementioned modifications, the optimization model can be updated 

from Eq. (4.10) as: 
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The sensitivity of the volume constraint ( )V ρ with respect to the design 

variable control point density can be given as: 
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where the term 
ˆ

e

i








 follows the chain rule, which is sequentially derived 

from the density filter in Eq. (4.3) and the projection in Eq. (4.5) given as below: 
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The sensitivity of compliance objective ( )c ρ  is: 
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 is derived by Eq. (3.9) and Eq. (4.8). 

4.4.1.2 Minimum volume model with stress constraint 

The minimum volume model is used to find the lightweight structure under 

prescribed Mises stress constraints to ensure structural safety and resilience. This 

optimization model can be preliminarily described as: 
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where the Mises stress at each Gaussian point 
,

M

e i  is constrained below the 

stress limit  . For the sake of formulation simplicity, the density at the elemental 

center is taken as the density of all corresponding Gaussian points. To interpolate 

the stress value of the intermediate density variable and tackle the stress singularity 

issue, the q-p stress relaxation scheme as suggested in [59] is applied. Therefore, 

the penalized Mises stress is expressed as: 
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where 
,e iB  is the strain-displacement matrix at the i-th gauss point of the 

element. Likewise, the Drucker-Prager stress is also supported to enable unequal 

tension-compression stress limit, the formulation is available from our former 

paper[119]. 

Another challenge is the high computational cost induced by a large number 

of local stress constraints, which can be reduced using Kreisselmeier-

Steinhauser(K-S) or p-norm [61, 75, 200]  function to aggregate all local 

constraints as a single global constraint. The K-S function is here applied 

considering the convenient development of future optimization models: 
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where the aggregation factor   is a positive value, which is to penalize the 

violated local constraints. A higher   helps to reduce the approximation error of 

stress measurement but brings higher nonlinearity and convergence difficulty. To 

scale the approximation to a reasonable level, an adaptive constraint scaling (ACS) 



Chapter 4 An object-oriented framework for the isogeometric topology optimization 

92 

scheme [77] is adopted. It offers more accurate stress measurement with a 

relatively low factor and it also stabilizes the iteration process. The ACS-corrected 

stress evaluation is described as: 
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where the ACS factor 
( )I

ACSc  at I-th iteration is weighted by the stress measurement 

of past iterations, and the weight factor 
( )I

ACS  is suggested as constant 0.5 after 2 

initial iterations. As pointed out by Le et al. [77], this weighted ACS factor 

converges at a constant throughout the iteration, and the influence is gradually 

reduced to the optimum. 

After aforementioned modifications, the optimization model can be updated 

from Eq. (4.10) as: 
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The sensitivity of volume constraint presented in Eq. (4.7), which is along 

with the adjoint method for the stress constraint sensitivity analysis: 

 ( )T

KSG = + −λ KU F  (4.15) 

where the adjoint vector λ  is arbitrary, and the adjoint formulation sensitivity is 

given by the chain rule: 
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To eliminate the component with the implicit term e

i





U
, a specific adjoint vector 

λ  is solved by: 
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where the term KS
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 is the sensitivity of K-S aggregation in Eq. (4.12). 
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4.4.2 Details of the optimization package 

Based on OpenSees-IGA and SIMP formulation, an ITO tool with a graphical 

user interface has been developed to perform topology optimization with the 

developed IGA in OpenSees. As depicted in Figure 4.13, the OPS-ITO tool 

package comprises three modules: (1) ITO tool: A toolset with a graphical user 

interface (GUI) embedding the middleware and interface ported to the analysis 

module and TO module. The GUI provides an entry for defining the model 

geometry, mesh, and boundary conditions to be used in OPS-IGA and the 

optimization parameters for TO iterations.  For visualization after the optimization 

procedure, a middleware is established to export jpg/vtk files for 2D and 3D 

models to support the display of displacements, strains, and stresses. (2) OPS-IGA 

Module: When receiving an OpenSees input file (Tcl or Python script), the 
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simulation model will be created in OpenSees using the corresponding IGA 

elements (IGAQuad or IGABrick). In each iteration, the results from the completed 

analysis will be recorded using nodal and elemental recorders and transferred to the 

TO module and GUI. (3) TO module: It is responsible for performing topology 

optimization with various sensitivity functions for different optimization goals, 

such as minimum compliance, minimum volume with material strength, pattern 

compliance to control the number of variations, and other constraint functions of 

potential interest. The density of control points is generated from the TO 

procedures and transferred to the IGA models for iterative analyses. 

 

Figure 4.13 OPS-ITO framework comprising model setup, IGA analysis, and 

optimization module 

The OPS-ITO framework has been packed as a tool package and can be 

executed using an executable program with GUI, which is illustrated in Figure 

4.14. The currently available input parameters are listed in Figure 4.14 (a~c), 

while the model visualizations are set up in Figure 4.14 (d~e). It presents the real-

time topology configuration and the iterative histories of objective indices and 

constraints. 2D and 3D problems have been enabled, which allows optimization 

using the typical optimization models as minCompliance (compliance 
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minimization with volume constraint) and minVolume (volume minimization with 

Mises stress constraint). 

To launch the optimization analysis, the input parameters are required in three 

categories: (a) model dimension, optimization type, and geometric model, (b) 

material, boundary, and load conditions, and (c) optimization parameters. After 

setting the 2D/3D option and optimization type option, the model geometry can be 

defined for two types of models: (1) Simple models: Frequently used rectangular or 

brick types of initial design space can be activated ‘By setting’, which allows users 

to define the size of design space, element number and orders of each direction. (2) 

Complex models: The option ‘By input file’ can be chosen for models of irregular 

design space using the pre-process of SIMOPackage [196] as introduced before. 

The information of generated geometric model is stored as the Surf/Volu variables 

saved as a Matlab file (.mat), which can be imported by the OPS-ITO executable. 

The material definition of the model takes advantage of the extensive 

collection of materials in OpenSees as an open-source simulation platform. 

Currently, the isotropic linear elastic material is used as a default material, which 

can be further extended by co-working with the OpenSees isogeometric analyses. 

Moreover, the definition of loading and boundary conditions can be conducted 

using the pre-processing tool of the SIMOPackage. Additional definitions of 

loading or boundary conditions are allowed on the user interface using a script line 

comprising a boundary index, a type label, and a distribution expression. The 

typical face indices of 2D and 3D models are presented in Figure 4.15. The type 

label allows UX, UY, UZ for boundary conditions and FX, FY, FZ, PRESS for load 

conditions, and the 2D/3D function handle expression begins with 

@(x,y)/@(x,y,z). 

As shown in Figure 4.14, the category of (c) OptParameters defines various 
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parameters for the topology optimization process, which are corresponding to the 

previously mentioned target constraint functions. The ConstValue (volume limit 

𝑉̅ in Eq.10 or Mises stress limit 𝜎  in Eq.15) indicates the maximum value of 

constraint, while the maximum number of iterations is given as MaxIter. 

MMAMoveLimits sets the move limit of the MMA optimization algorithm, and 

Penalty indicates the density penalty order of the SIMP method. Projection ( HS ) 

is the sharpness value of the erode/dilate Heaviside function, which determines the 

0-1 solution degree of optimized topology configuration, and the projection 

threshold is set by ProjThreshold ( th ). To accelerate the convergence and optimal 

topology generation, the stepped penalty and projection can be respectively 

activated by StpPenalty and StpProj, these two parameters default raise 1 per 10 

iterations, and the function of the minimum component size scale is controlled by 

r_min ( minr ) to avoid possible over-thin components and improve the 

constructability.  
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Figure 4.14 Graphical user interface of OPS-ITO platform 

 

Figure 4.15 Illustration of elemental boundary indexes (boxed): (a) 2D model; (b) 

3D model 

4.5 Demonstrative examples of using the OPS-ITO 

package 
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To demonstrate the use of the OPS-ITO framework for structural design 

optimization, four cases have been conducted and briefly described regarding the 

different optimization schemes. A 2D cantilever beam is optimized towards 

minimum compliance, i.e., the stiffest beam with a prescribed volume ratio. An L-

shape beam is optimized for minimum volume ratio under various stress 

constraints of structural materials, followed by a 3D cantilever beam case to 

showcase the 3D optimization under minimum compliance. The last case is to 

show the optimization of a structural system reflecting a long-term vision, which 

considers pattern compliance regarding manufacturability and aesthetic 

performance.  

4.5.1 A planar quarter annulus structure design using the 

minimum compliance model 

A 2D quarter annulus is initially assumed 2m outer radius and 1m inner 

radius, subjected to a downward load at the top right free end. As shown in Figure 

4.16, the load is distributed from 1.95m to 2.0m along the x-axis with the load 

density of 5 kN/m. The geometric model meshes as a 2-order grid of 240×48 

IGAQuad elements of plane stress material. Using the linear elastic material, its 

Young’s modulus is defined as 2×105 MPa and the Poisson ratio is 0.3. In this 

optimization case, it is aimed to find a beam design of maximum stiffness 

(minimum compliance) while the volume ratio is assigned as 50% of the initial 

domain. All the relevant input parameters required by the OPS-ITO platform are 

listed in Table 4.4. To enable the user-defined design domain, a geometric file is 

allowed as the input to replace the default rectangular domain. Noted that the 

boundary indexes are labeled as given in Figure 4.15 when defining the Boundary 
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Conditions and Load Conditions. In this case, the density filter size is assigned as 

0.15 m to avoid slim components. 

Table 4.4 Input parameters to OPS-ITO for optimization of a quarter annulus 

structure 

Parameter Value Parameter  Value 

Dimension 2D OptType minCompliance 

Geo model User input Geo.mat Path quartAnnulus.mat 

MatTag LinearElastic MatProp 2e11 0.3 

BoundaryConditions 
1 UX @(x,y)1 

1 UY @(x,y)1 
LoadConditions 4 FY @(x,y)-5e3*(x>=1.95) 

ConstValue 0.5 MaxIter 300 

MMAMoveLimits 2 1 1 2 r_min 0.15 

Penalty 3 StpPenalty √ 

Projection 5 StpProj √ 

ProjThreshold 0.5   

The initial density variables are uniformly initialized as 0.5 to start the 

optimization iterations. When the stepped penalty (StpPenalty) and projection 

(StpProj) are activated, the penalty value (Penalty) starts at 1 and increases with 1 

per 10 iterations until it reaches 3 to ensure a clear topology. Likewise, the 

projection sharpness value (Projection) is also initialized as 0.1 to approximate the 

non-projected state, which is gradually increased by 1 per 10 iterations with a 

threshold (ProjThreshold) of 0.5. The optimization history is presented in Figure 

4.16 (b) with respect to the iterations, including the indexes of compliance and 

volume ratios at each iteration. It can be seen the stepwise fluctuation from the 

stepped penalty and projection disappears after 30 iterations as the optimized 

topology is formulated, and the optimization converged to an eventual compliance 

of 18.11Nmm after 300 iterations. Meanwhile, the volume ratio of the optimized 

topology reaches 0.5, and high sharpness of density distribution is achieved as 

shown in Figure 4.16 (b-c). Observing the optimized density distribution, the 
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obtained topology exhibits decent smoothness, continuity, and distinct boundaries 

between solid and void segments.  

 

Figure 4.16 Optimization of a plane stress quarter annulus example: (a) model 

schematic; (b) optimized topology; (c) iteration history 

4.5.2 A planar L-shape beam design using the minimum 

volume model with stress constraint 

The strength limits of construction materials are a practical concern for real 

structural design, which shall be included in the OPS-ITO package. An L-shape 

beam is modeled for demonstration of this purpose, which is fixed at the top edge 

with a downward load of 250 kN at the free end (5e6 N/m, x>=1.95) as shown in 

Figure 4.17. The initial design domain of this L-shape is defined by using the 

SIMOPackage by giving a readable file through the ‘input file’ option in the GUI, 

which contains the Surf variables of the model. For the optimization parameters, 

lower MMA move limits and a higher maximum of iteration number 400 are 

adopted since the stress constraint of structural material introduces difficulties to 

the convergence. The filter size is reduced to 0.01 to allow for slightly slimmer 

components with high-stress levels. The input parameters for GUI are listed in 

Table 4.5. 

Regarding the stress constraint, the Mises and Drucker-Prager strength limits 
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are applied separately to this L-shape beam, which is usually suitable for steel 

sections and concrete sections (including fiber-reinforced concrete), respectively. 

The K-S aggregation factor is default set as 8, and the Mises stress state is 

corrected by the ACS method in Eq. (4.13). The stress contour plots are shown in 

Figure 4.17, where the effect of imposing the Mises strength limit is shown in 

Figure 4.17 (a) and the effect of imposing the Drucker-Prager strength limit is 

given in Figure 4.17 (b). The contour plots represent the ratios of corresponding 

stress terms over the assigned strengths, which are iteratively changing as a result 

of the model. For a concrete type of material of different strengths for tension and 

compression, the eventual topology of the L-shape beam requires stronger 

components in the tension region. This strength limit enabled in topology 

optimization can be later applied for designs of real 3D printable structures, only 

requiring the corresponding material properties [28] prior to the design. 

Table 4.5 Input parameters for optimization of an L-shape beam 

Parameter name Value Parameter name Value 

Geo model User input Geo.mat Path stressCase.mat 

MatTag ElasticIsotropic MatProp 4e10 0.3 

BCs 
1 UX @(x,y)1 

1 UY @(x,y)1 
Loads 4 FY @(x,y)-5e6*(x>=1.95) 

ConstVal 10e6 MaxIter 400 

MMAPars 1 0.5 0.5 1 Penalty 3 

StpPenalty × Projection 0.1 

StpPrj × ProjThreshold 0.5 

rmin 0.01   
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Figure 4.17 Optimization case of L-shape beam for light weight with material 

strength constraints: (a) using Mises stress constraint; (b) using Drucker-Prager 

stress constraint 

4.5.3 A 3D cantilever beam design using minimum 

compliance model 

In addition to the 2D planar cantilever beam optimized in Section 5.1, it can 

be either optimized regarding a 3D domain using IGABrick elements and the OPS-

ITO platform. This further alleviates the constraint along the thickness direction 

during the optimization iterations. The minCompliance module for a 3D domain is 

employed using the boundary conditions and material properties identical to the 2D 

beam except for the thickness of 1 m. The input parameters of this 3D cantilever 

beam are listed in Table 4.6. 
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Table 4.6 The input parameters of the 3D cantilever beam case 

Parameter name Value Parameter name Value 

Geo model Default Sizes 5 3 1 

Orders 1 1 1 NEls 30 18 6 

MatTag ElasticIsotropic MatProp 2e11 0.3 

BCs 

1 UX @(x,y,z)1 

1 UY @(x,y,z)1 

1 UZ @(x,y,z)1 

Loads 

2 FY @(x,y,z)-

1e5*(abs(y)<=0.05)*(abs(

z-0.5)<=0.05) 

ConstVal 0.3 MaxIter 100 

MMAPars 4 2 2 4 Penalty 5 

StpPenalty √ Projection 5 

ProjThreshold 0.5 ProjThreshold 0.5 

rmin 0.3   

 

In Figure 4.18, the variations of beam topology are shown alongside the 

iteration tags. When the optimization iteration proceeds, the rendering of beam 

topology gradually becomes crisp from the initially gloomy topology. The volume 

ratio converges to 0.3 after the first 20 iterations, which is accompanied by the 

compliance index reducing to 352.76N*m upon the completion of 100 iterations as 

illustrated in Figure 4.18 (d). Compared to the 2D topology, hollow sections, and 

voids are seen inside the beam, and its behavior may be similar to a space truss. 3D 

printing construction is more suitable for this type of beam design after 

optimization. This enables the most efficient use of construction materials and it 

would potentially reduce the carbon footprint at the construction stage, especially 

when this technique is combined with the use of other sustainable structural 

materials in the era of pursuing carbon neutrality. 
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Figure 4.18 Optimization of 3D cantilever beam: (a) a rectangular beam; (b) a 

curved beam 

4.6 Concluding remarks 

In this chapter, an OPS-ITO platform has been established, which employs 

IGA elements to perform analyses of structural members or structural systems for 

the iteration of topology optimization. The SIMP-based optimization is developed 

and conducted in this OPS-ITO framework, which can find the optimal distribution 

of materials in a design domain aiming for minimum volume or minimum 

compliance with the consideration of material strength limits. The OPS-ITO tool 

package reflects the authors’ vision of future building design, which first ever 

attempts to provide a design tool to resolve the need as the structure is 

unnecessarily designed with conventionally regular shapes. The work presented in 

this paper can be summarized as follows: 

(1) The IGA elements for 2D and 3D structural analyses have been developed 

in the open-source simulation platform OpenSees, which uses NURBS for 
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geometric description and shape functions in element state determination. NURBS 

as the basis of computer-aided design provides seamless solutions from model 

geometry to the numerical description. 

(2) The outstanding performance of IGA elements has been demonstrated 

using 2D and 3D benchmark studies. IGA models can achieve accurate results by 

simply elevating NURBS order rather than the traditional mesh refinement. 

(3) An OPS-ITO tool is developed to integrate the graphic user interface, pre-

processing, OPS-IGA modeling, and optimization process. Standard 2D or 3D 

minimum compliance models and minimum volume models with stress constraints 

have been developed as optimization objectives and constraint functions. The 

optimized geometric model can be exported for further post-processing or 3D 

printing. 

(4) Three case studies using the OPS-ITO package are discussed, including 

the optimization of beams in 2D and 3D domains, and an L-shape beam with Mises 

and Drucker-Prager strength limits. 

(5) The OPS-ITO package is a platform for structural design, which is 

motivated by the need for automated construction and integrated design. It is 

expected to promote 3D printing in building construction and to bridge the 

architectural design with structural engineering.  
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Chapter 5 Between free-form and 

periodic design - a multi-pattern 

approach 

5.1 Introduction 

Modern building construction has entered a new era that adopts prefabrication 

and modular design, the structural design paradigm ought to accordingly adapt to 

this evolution and potentially integrates with architectural design and building 

service design. Topology optimization is favored for industrial applications 

because of its effectiveness as a numerical form-finding approach that pursues 

optimal structural performance via determining material distribution [144]. 

However, the topology optimization method generally yields free-form designs that 

are structurally efficient but costly for manufacturing [201]. Benefiting from the 

development of prefabrication technology [13], periodic structures can be 

fabricated in the factory and assembled on-site, so periodic topology optimization 

has gained interest due to its manufacturability. The development of the periodic 

design method is based on microscopic [202] and macroscopic [143] perspectives, 

respectively. The former treats the unit cells as infinitely small and optimizing 
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microscale materials while the latter is the scope of this study, which optimizes 

them for finite sizes of large macrostructures.  

The periodic design usually divides the structural design domain into multiple 

sub-domains, and each sub-domain is of an identical topology after the 

optimization, which is termed a representative unit cell (RUC). Researchers have 

proposed several RUC arrangement methods to achieve various structural forms of 

single RUC, such as the translational offset method [142], pattern gradation 

method [5], rotation-reflection combination [143], and joint-based assemblies of 

multi-component [203]. Currently, a key premise of this optimization-generated 

structural design is a structural pattern of a single type of RUC. while from the 

manufacturing perspective, the full-periodic design is not always necessary since it 

is acceptable to prefabricate several molds for multiple types of RUC. To 

simultaneously allow multiple RUCs, this study proposed multi-pattern topology 

optimization. From the structural performance perspective, the multi-pattern design 

has a lower requirement for material distribution of the entire design domain, it is 

beneficial for deriving more efficient macrostructure. In addition from an aesthetic 

point of view, the organic of free-form and the regularity of periodic designs each 

have their own unique aesthetics, and the multi-pattern design still harbours many 

aesthetic design possibilities. As an intermediate area between full-periodic and 

free-form design, multi-pattern design has not been investigated adequately in the 

literatures so far. 
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Figure 5.1 Illustrations of multi-pattern design that balances preferences of 

performance and form 

As briefly reviewed, the use of topology optimization for structural design 

currently mainly falls into two categories: (1) free-form optimization in a global 

domain, and (2) optimization in the single unit cell for a fully periodic design. 

Inevitably, the former compromises manufacturability and aesthetics, whereas the 

latter eliminates the variations between unit cells and sacrifices the structural 

performance. To answer the need for balanced performance, manufacturability, and 

form aesthetics (form and performance, in general, as indicated in Figure 5.1). In 

this paper, a novel methodology is presented to meet this genuine need in real 

structural designs, which introduces a multi-pattern control into topology 

optimization-based methodology. This pattern control can be varied by an index 

(Number of variations: NoV) to quantitatively express the design freeform of 

structural form, it ranges from 1 for a fully periodic pattern to the number of unit 

cells, i.e., a free-form design. On the other hand, the structural performance is 

quantitatively interpreted as the conventional compliance value. This paper begins 

with the mathematical formulation of this methodology and demonstrates the 
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inspiring structural shapes while imposing pattern control in manually assigned 

groups of unit cells. This is followed by the discussion of a clustering method that 

enables automatic grouping for multi-pattern topology optimization. Furthermore, 

post-processing for the optimized topology is developed, which helps remove the 

segments of low load-bearing contribution but is imposed for the sake of prevailing 

pattern recurrence. Case studies of pinned beams subjected to a center load and 

plane frames subjected to a horizontal load are carried out. Eventually, a series of 

automatically generated design patterns have been presented in this paper, which 

shows how inspiring a multi-pattern TO design tool is to structural engineers and 

underlines the fascinating potential of computer-generated designs using topology 

optimization between a free-form design and a fully periodic design. 

5.2 Multiple patterns design using topology 

optimization 

In this paper, the topology optimization process is formulated with the 

density-based SIMP method, empowered by the Isogeometric analysis (IGA) 

taking advantage of the foundation work of OPS-ITO developed by the authors. 

Unlike the existing free-form optimization in a global domain or single-pattern 

optimization in the basic unit cells. This paper, for the first time, establishes an 

automatically generated structural design with a multi-pattern formulation in 

topology optimization, which allows the number of pattern variations (denoted as 

NoV) in unit cells to be varied from 1 (i.e., fully periodic design) to the number of 

unit cells (i.e., free form) and enables a multi-pattern design that quantitatively 
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balances the preferences on performance and form (modular manufacturability). 

This section will briefly describe the theoretical formulation of this innovative TO 

scheme. 

To enable the generation of multiple patterns in various groups of unit cells, 

the topology optimization process should be able to impose an identical density 

distribution of materials in each specific group. The grouping of unit cells can be 

manually assigned or automatically selected, which are both discussed in this 

paper. To map the optimized density distribution of a unit cell to the global 

structure of the multi-pattern design, the density distribution is described as 

follows: 
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where C is the mapping matrix between the optimized topology of an RUC 

and the unit cell in the design domain. Hereby, 
, 1i uC =  is valid when the RUC u is 

equal to the i-th index of the RUC index set T. The e-th elemental density of the i-

th unit cell i

e  is mapped from the e-th elemental density of the u-th RUC u

e . Ru is 

the resolution (number of elements) of each unit cell, Nu is the number of unit cells, 

and NV is the number of pattern variations (NoV), which is equal to the number of 

RUC.  

When considering a user-defined grouping of unit cells, all the unit cells are 

manually divided and labeled by the RUC index set T. For instance, in a fully 

periodic pattern scheme, the index set of all the unit cells is simply given as Ti=NV, 

hereby the NV yields 1. On the opposite side, a free-form scheme could be also 
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gained by defining the index set as ( ) i V uT i N N= = , which implies that the 

topology pattern of each unit cell is different. 

For a multi-pattern design, the manual setting of T should be assigned prior to 

executing topology optimization. For example, the grouping of unit cells (u1~u6) as 

shown in Figure 5.2 is given by T = [1, 2, 1, 3, 2, 3], indicating that the unit cell 1 

and unit cell 3 should be of the same pattern or using the same RUC (tagged as 

RUC1), and the rest of unit cells are so forth. It should be noted that the actual 

topology has not been optimized yet, and the material distribution in the RUC 

remains unknown. It can be expected that a fully periodic design consisting of a 

single RUC will certainly impose much higher optimization constraints compared 

with the free-form design. In the case of a multi-pattern design (i.e., NoV is 

between 1 and Nu), the constraints would be gradually released and thereby the 

structural performance is better than the full-periodic scheme and approaches to the 

performance of a free-form scheme. 

 
Figure 5.2 Schematic illustration of RUC and grouping schemes using a 3× 2 

design domain. (u1, u3 are mapped by RUC1; u2, u5 are mapped by RUC2; u4, u6 

are mapped by RUC3) 

When the mapping scheme is determined, the SIMP method of topology 

optimization can be operated to pursue an optimal design of NoV-controlled 

multiple patterns. If using the objective function of minimum compliance (aiming 
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for the highest stiffness), the mathematical form is given as follows: 
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(5.2) 

In the above formulation, the elemental density of RUCs u
ρ  are the design 

variables during automated iterative analyses. Particularly, the sensitivity function 

of the compliance objective c in a multi-pattern optimization is given as: 

 T e
e eu

ei e

c

 


= −

 


K
U U  (5.3) 

where the term 
ˆ

ˆ
e e e

u u

e e e



  

  
=

  

K K
and the term 

ˆ
e

u

e








 follows the chain rule from the 

periodic mapping in Eq. (5.1), filter in Eq. (4.3) but for elemental density, and 

projection in Eq. (4.5), which is given as below: 
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5.3 Automated grouping of unit cells for multi-pattern 

topology optimization 

The above-presented method has shown how a multi-pattern control enables 

balanced design preferences on aesthetic form in patterns and structural 

performance in compliance. It should be clarified that by now the grouping of unit 

cells for the pattern control remains manually done, which is based on a 
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prescriptive vector of T for unit cells and feasible for a limited number of unit 

cells. However, if a design domain involves many unit cells to be grouped, it is 

unlikely to manually enumerate all the possible schemes to find the optimal 

arrangement of unit cells and to achieve the best structural performance. To further 

enhance the degree of automation, it is necessary to develop an automated 

grouping technique for assigning unit cells to different patterns while the variable 

of NoV becomes the only index for pattern control. 

5.3.1 Clustering-based selection of unit cell scheme for 

automated grouping 

To enable the automated selection of unit cells for multi-pattern control, the 

key is to identify a characteristic index to divide the unit cells into the given 

number of groups. As an optimal structure tends to allocate materials in the areas 

formulating the most effective loading paths, it may be feasible to group them 

according to their contribution to the load resistance. In the BESO methodology, 

the non-effective elements are identified according to their elemental compliance 

[204, 205], which could be extended for the automatic grouping of unit cells in the 

multi-pattern control of topology optimization. The elemental compliance 

distribution of a structural domain has been illustrated in Figure 5.3(a), where the 

elements of high-strain energy (high compliance) are printed in red. Based on this 

elemental distribution, the similarity between unit cells can be identified by 

calculating the summation of compliance differences of the corresponding 

elements in these two unit cells. Hence, the compliance difference between i-th and 

j-th unit-cell is expressed as: 
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i j

ij k k
k

S c c= −  (5.5) 

where i

kc  and j

kc  are the compliances of the k-th element in the i-th unit cell 

and the j-th unit cell. The element tag k in each unit cell is also indicated in Figure 

5.3 (a).  

 
Figure 5.3 Compliance distribution and differences of a 4×1 domain: (a) elemental 

distribution, (b) compliance difference between unit-cells (N·mm), and two 

illustrative examples of grouping calculation. 

Using Eq. (5.5), a matrix of 
ijS quantifying the average compliance 

differences of unit cells is calculated for the beam of a 4×1 domain, which has been 

displayed in Figure 5.3 (b). For instance, the scheme T = [1, 1, 2, 2] groups the 

unit cells as (1, 2) and (3, 4) in two groups. Hence, for the 1st group of (1,2), the 

compliance difference of Unit cell 1 and 2 are 0 ( )11S  and 9.516 N·mm 
,i uC ( )12S , 

whereas the 2nd groups of (3,4) are also 0 ( )33S  and 9.516 N·mm ( )34S . For this 
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grouping scheme, the cumulative difference is 19.032 N·mm. Similarly, the 

cumulative compliance difference of the Grouping Scheme with T = [1, 2, 1, 2] is 

(S11+S13+S22+S24) = 11.838 N·mm. Using this approach, the cumulative compliance 

differences of different pattern controls can be obtained. In Figure 5.4, the scatters 

show the compliance of the optimized structure with respect to the cumulative 

compliance difference of unit cells. It can be observed that a grouping scheme of a 

smaller cumulative difference leads to lower compliance of the macrostructure, 

indicating a model of the best structural performance. Therefore, the key action is 

to search for the minimum cumulative difference from all the possible grouping 

schemes as shown in Figure 5.3 that grouping the unit cells with similar 

compliance distribution, and this is technically a clustering problem for data 

processing. 

 
Figure 5.4 The positive correlation between the optimized compliance and 

accumulative unit-cell difference Sij for (a) the 4×1 beam cases (b) the 6×1 

building cases subjected to lateral load 

Clustering as a typical approach for classifying a series of samples into several 

clusters, has been adopted in various topology optimization models to group 

similar multi-scale structures [206-208]. K-means is a widely-used clustering 

method [209], which well suits the grouping need in the developed multi-pattern 

control. The method is initiated with random cluster centers and followed by 
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iterations by assigning the closest samples (lowest 
ijS ) to the center and averaging 

grouped samples to update the location of centers to achieve the minimum 

clustering error. K-means is efficient in classifying the data, and it is sensitive to 

the initial position of centers. To enhance the stability, it is usually recommended 

to relocate the position for several trials and to record the best solution. While 

implementing an auto-grouping for multi-pattern control, the compliance 

distributions of all the unit cells become the samples, and the number of patterns 

(NoV) is the number of clusters. Therefore, a compliance difference 
ijS  between a 

sample unit i

kc  and the clustering center j

k  is quantified as the generalized 

distance: 

 
i j

ij k k
k

S c = −  (5.6) 

To apply the K-means clustering for automated grouping of unit cells in a 

multi-pattern scheme, a few challenges need to be resolved. Firstly, the density 

variation in unit cells during optimization varies, and its average compliance 

changes correspondingly throughout the iterations, which may compromise the 

adequacy of the grouping scheme chosen at the initial stage. Hence, it would be 

beneficial to update the grouping vector T after each iteration if any change is 

incurred. As shown in Figure 5.5, the grouping scheme is evaluated regarding the 

clustering distances at each iterative analysis, and the suitable cluster centers as 

well as the grouping schemes are kept for the next iteration. Eventually, the 

clustering-based method will automatically generate multiple groups of unit cells 

(clusters) to fit the number of patterns and to achieve the minimum average 

compliance. 
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Figure 5.5 Workflow of k-means clustering for automated grouping of unit cells 

Secondly, since the initial cluster centers are randomly located, an over-far 

center is of lower priority for assigning unit cells, which could potentially result in 

an empty cluster. Because no unit cells are associated with this empty cluster, the 

initial number of variations defined by the NoV cannot be maintained (reduced by 

the number of empty clusters). It is noted that computationally a higher NoV would 

provide more freedom to the topology optimization (as seen in the previous 

demonstration cases), resulting in better structural performance.  Although the 

prevention of empty clusters remains a challenge to the research of K-means 

clustering [210], a simple solution is to remove the farthest center among all the 

clusters and add a new center. As shown in Figure 5.5, the occurrence of the empty 

cluster is checked after assigning samples (unit cells) to the clusters. If identified, 

the empty cluster will be removed and the unit cell with the least fit compliance 

distribution will become a new center, and the evaluation process loops until the 

empty clusters are all removed.  

Lastly, the typical k-means clustering does not preserve the sequential 

relationship between the clusters. In multi-pattern optimization, the clusters as 

groups of unit cells not only store the attributed RUCs to the unit cells but also map 

the density distribution of corresponding RUCs. While the optimization proceeds, 



Chapter 5 Between free-form and periodic design – a multi-pattern approach 

119 

the clusters formed at a new step would lose the projection of RUCs even though 

the grouping scheme is given (e.g., T = [1,2,1,2] or T = [2,1,2,1]). This shuffled 

projection between grouped unit cells and RUCs is likely to cause convergence 

oscillation during the optimization. To resolve this issue, the clustering centers 

from the last optimization step are recorded as the starting centers for the next step 

to avoid oscillation. 

The workflow to establish multi-pattern topology optimization is illustrated in 

Figure 5.6, and this new capability along with corresponding codes has been 

computationally developed and implemented in the open-source structural 

simulation platform OPS-ITO [211]. In the figure below, the functions for multi-

pattern with manual grouping and the later introduced auto-grouping have been 

labeled in different colors.  

 

Figure 5.6 Topology optimization flowchart for multi-pattern design 

Phase 1 Pre-optimization. Firstly defining the mesh domain, boundary condition, 

loads, and dividing unit cells. Secondly, assembling the macrostructure using the 

prescribed grouping scheme T. If the grouping scheme is not given, the auto-

grouping process is activated at the beginning of Phase 3, the macrostructure is 

temporarily free-form until the group scheme is auto-selected. 
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Phase 2 Structural analysis. The structural response is computed in OpenSEES 

using the newly developed isogeometric analysis module [211]. 

Phase 3 Optimization & Update. When the auto-grouping process is activated, the 

grouping scheme is obtained for the macrostructure assembling of the next 

iteration. Then compute the objective compliance c and constraint volume V in Eq. 

(5.2) and corresponding sensitivity analysis, the design variables RUC density is 

optimized using MMA [212]. The macrostructure is re-assembled for the next 

iteration until converged (the change ratio of structural compliance less than 0.1% 

or reach the maximum iteration limit, e.g., 200). 

5.3.2 Post-processing of automated multi-pattern topology 

optimization 

One inevitable side effect of enforcing pattern control in structural design is 

the generation of some structural segments for pattern recurrence but of minor 

contribution to load-bearing capacity, which are so-called zero-force (or nearly 

zero-force) components. The major reason is that this method defines the 

continuous material distribution of macrostructure using a group of mesoscale unit 

cells, the weak/discontinuous segments may therefore appear between the 

boundary of unit cells. 

To remove the zero-force components in an optimized structural design using 

multi-pattern control, the post-processing can be conducted using the following 

criteria: 
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where i  is the density variable of the element of tag i, min  is the minimum 

density to enable computational removal. Herby the identification of zero-force 

elements is based on elemental compliance ic , i.e., the elemental strain energy 

induced by external loading. In Eq. (5.7), c  is the penalty parameter for 

determining zero-force components (10-7 is often used) with respect to maxc , while 

maxc is the maximum elemental compliance in the design domain. As long as ic  is 

significantly lower than the maximum compliance, the element i identified as of 

nearly zero contribution to load-bearing could be removed. 

5.4 Application of multi-pattern control in manually 

assigned cells 

Based on the work described in the above section and the code 

implementation in OpenSees, an optimal form of a given structural domain with 

multi-pattern control can be obtained. In this section, the performance of the multi-

pattern scheme is compared to the conventional free-form optimization and fully 

periodic topology optimization. A case study on a vertical structure subjected to 

horizontal load is thereafter demonstrated, which illustrates the inspiring structural 

forms automatically generated by the developed multi-pattern topology 

optimization framework.   

5.4.1 Performance verification of multi-pattern topology 

optimization 
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Taking the classic beam model as shown in Figure 5.7 to benchmark the 

performance. The multi-pattern topology optimization framework is deployed for 

the two currently available cases of topology optimization, i.e., a free-form design 

and a fully periodic design. The reference results were given by Thomas et al. 

[143],  which include the cases of a volume ratio of 0.5 presented in the paper and 

the cases of a volume ratio (Vol) of 0.3 using the code shared by Thomas et al. 

[143]. In this paper, all of the topology optimization attempts were under the 

premise of Vol = 0.3 for the expectation of more light structures rather than 

occupying a large portion of the initial design domain. In these benchmark cases, 

steel material is assumed with Young’s modulus E of 200 GPa and a Poisson’s 

ratio v of 0.3. A downward force of 10 kN is imposed at the center of the bottom 

edge, while both ends of a beam are pinned supports. The 2×1 m initial domain is 

divided into two unit cells and each unit cell of a 1×1 m size is meshed as 80 × 80 

IGA elements. For a model of 2 unit cells only, the grouping vector of multi-

pattern optimization yields T = [1,1] for a fully periodic case (NoV = 1) or T = 

[1,2] for a free-form case (NoV = 2). The optimization targeted minimum structural 

compliance (or highest stiffness) with a prescribed volume ratio of 30% and the 

density variables are uniformly initialized as 0.5 at the beginning of optimization 

iterations along with a filter radius rmin set as 0.03 m. 

 
Figure 5.7 Multi-pattern topology optimization applied for free-form and fully 

periodic models 
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The optimization results for free-form and fully periodic designs are shown in 

Figure 5.7, where the optimized topologies obtained from the developed open-

source tool are compared to very similar to the optimized models given by Thomas 

et.al [143]. Due to the different optimization algorithms and software environments 

(OC criterion and FEM were adopted in [143], while we adopts MMA [212] and 

IGA), slight differences exist between the reported models and the present models. 

However, the distributions of materials after topology optimization are very 

similar, especially in the case of free-form design, which both contains an arch and 

a hanging region. For the fully periodic designs, the model obtained in the present 

framework is close to the reference model when the volume ratios are identical, 

whereas some differences can be observed between the originally presented 

topologies and the obtained topologies of different Vol. Additionally, a high degree 

of agreement is also found in the case of 3×1 unit cells and 4×1 unit cells between 

the models shown in Figure 5.8(a) and Figure 5.9 (the case of NoV=1) and the 

reference models in [143]. 

The iterative models during the optimization process extracted from the OPS-

ITO tool have been also illustrated, which clearly shows how the multi-pattern 

topology optimization evolves from the initial domain to the eventual designs. The 

blurry components gradually disappear, whereas the load-bearing components 

become crisp. Regarding the structural performance, it is verified that a softer 

model of higher compliance (C = 4.67 Nm) results from the imposed single-

pattern control compared to the free-form optimization model (C = 3.67 Nm) with 

no pattern control. Through this comparison, the capability of multi-pattern 

topology optimization yielded for two classic cases of optimization is verified.  
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5.4.2 Demonstration of multi-pattern control in 3×1 and 

4×1 design domains 

It is certainly of more interest to explore a multi-pattern design in a domain of 

more unit cells. This could potentially lead to a variety of grouping schemes and 

different pattern designs to fulfill the needs of architects and engineers. A simple 

example is drawn with a design domain of 3×1 unit cells for the above-optimized 

beam model (3m×1m), which is now prescribed as a fully periodic pattern, a 

double pattern, or a fully-free form pattern separately, as shown in Figure 5.8. 

Hereby a double-pattern design can be realized in different grouping choices, either 

as a symmetrical one (T = [1,2, 1]) or a non-symmetrical one (T = [1,2, 2]), as 

shown in Figure 5.8(c). Noted that the other grouping schemes for a double pattern 

design are not presented here, due to the consideration of symmetry and 

equivalency. While observing the eventual topologies of various NoVs and 

grouping schemes, the aesthetic performance becomes different and various 

patterns lead to different forms and performances. Moreover, the compliance 

values (C) of these optimization-designed structures are shown in Figure 5.8(d). 

The minimum compliance (C=8.35 Nm) is achieved in the fully-free form case as 

no pattern control is imposed as the additional constraints. The maximum 

compliance (C=14.39 Nm) indicating the lowest stiffness under the identical 

volume ratio appears in the fully periodical case (NoV=1). On the other hand, this 

design is of the highest degree of modular prefabrication, as it comprises three 

identical units. While only allowing two patterns exhibited in unit cells, the 

compliance values are between the minimum and the maximum ones, which read 

C=7.52 Nmm for a symmetrical design and C=8.25 Nmm for a non-symmetrical 
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case. In Figure 5.8 (d), the variations of compliance values during the iterations of 

topology optimization have been plotted regarding the four cases of different 

NoVs. The rapid drops of compliance values are achieved relatively faster in the 

cases of NoV=2 and free-form design as the constraint function is looser compared 

with the fully periodic model. 

 
Figure 5.8 Multi-pattern topology optimization of a beam using 3×1 unit-cells: (a) 

NoV=1 (fully periodic design); (b) NoV= 3 (free-form design); (c) NoV=2, (d) 

Histories of compliance values. 

If further extending the design domain to a model of 4×1 unit cells, the 

number of design variations is correspondingly increased, which thereby offers 

more candidate designs to the decision-makers. When NoV is set to 2 for these 4 

unit cells, it is interesting to see that all three variations exhibit regularity and 

symmetry, as the program tends to find the optimal load-bearing path. Due to the 

forced recurrence of patterns in unit cells, some components of the optimized 

structure should be of zero force, with no contribution to the load-bearing 

performance. If comparing the model of C equal to 10.97 Nm (T= [1, 2, 1, 2]) to 

the free-form design (NoV= 4), the structural topologies are very similar but differ 

at the upper chords resulting from the enforced pattern singularity. For the models 

allowing three patterns in unit cells, the two models on the right-hand side are 

similar to the free-form design result, whereas the other two are between the fully 

periodic design and the free-form design. Generally, the structural topologies given 
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by the optimization process closer to the free-form topology are of higher load-

bearing efficiency, as indicated by their lower compliance values (flexibility) 

compared to the other models of the same NoV. 

 
Figure 5.9 Topology optimization results of the beam model using 4×1 unit-cells. 

5.4.3 Demonstration of multi-pattern control for a frame 

subjected to horizontal load 

A multi-pattern control of topology optimization is not only used for the 

design of single structural members but also is expected to inspire the designs of 

structural systems for optimal form and performance. As shown in Figure 5.10, a 

plane frame is 2m wide and 6m high, which is subjected to a uniformly distributed 

load (1kN/m) on both two vertical edges to represent the horizontal load. The 

bottom surface is assumed to be fixed to the ground. The material remains steel, 

while Young’s modulus E = 200 GPa and Poisson’s ratio v=0.3. The volume ratio 

maintained is set as 40%. Prior to running topology optimization, the model 

meshes with 90×242 IGA elements, and the frame boundary layers are prescribed 

as a fixed elemental density of 1 (initially filled) for 5 layers on the left- and right-

hand sides and 2 layers for the top surface. In this problem, the initial domain 

covers 80×240 elements and is divided into 6 unit cells vertically, and the dividing 

of the unit cell can be implemented for standard storeys of a building design. Noted 
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that the horizontal loading scenario is considered here, which could be extended to 

multiple loading scenarios for structural performance examination and is currently 

being developed by the authors.  

The multi-pattern designs of this plane frame generated by the topology 

optimization have been shown in Figure 5.10, where the control index NoV is 

given as 1,2, 3, and 4 (free form), separately. The grouping schemes for pattern 

control follow the convention of ‘standard storey’ along with the load 

accumulation. When the NoV is increased from 1 (fully periodic) to 2, slender 

components appear in the upper group as it is subjected to lower shear force. As a 

result of loosed pattern control, the structural lateral stiffness is increased from 

19.74 Nmm to 16.44 Nmm.  While further increasing the number of variations, 

the lower zone is prone to the bottom of the free-form model after topology 

optimization without pattern control. Meanwhile, the unit cells in the upper zone of 

the NoV=3 case remain close to the optimized design of the NoV=2 model.  

 
Figure 5.10 Multi-pattern topology optimization of a plane frame subjected 

to horizontal load 

5.4.4 Demonstration of multi-pattern topology 

optimization with automated grouping 
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The automated grouping of unit cells applied along with multi-pattern 

topology optimization is demonstrated using a plane frame, which is similar to the 

above-discussed case using manual grouping but the size is further enlarged to 4 

m×6 m. Correspondingly, the number of unit cells has been increased to 2×6 for 

the design domain, while each cell comprises 30×60 IGA elements. On the 

boundaries of this plane frame, solid layers are assumed with a prescribed density 

index of 1 for the outer profile of the frame. Noted this plane frame model remains 

a scaled one to real structures, which can be certainly extended to a real scale. This 

along with 3D application and optimization for multiple loading scenarios will be 

studied as the follow-up work. 

Using multi-pattern topology optimization with auto-grouping, the 

optimization results are illustrated in Figure 5.11. Now the only control index 

becomes the NoV (1~11, and 12 for free form), while the distribution of patterns 

into different unit cells is automatically found by the program. In the illustrations 

of the optimized models, the unit cells mapped to the same RUC (i.e., the same 

group of unit cells) are labeled by the same color shade, whereas the unit cells of 

the no-repeating pattern (i.e., the RUC only appears in a single unit-cell) are not 

colored as the group number is above 6. Generally, the structural forms of different 

NoVs exhibit different pattern formulations and different cost-effectiveness in 

terms of modular fabrication. When the NoV is set to 2 or 3, it is clearly observed 

that the auto-grouping program divides the unit cells into two or three zones 

differentiated by height. This agrees with the common design logic as the 

horizontal shear force decreases from the lower storeys to the upper ones. While 

further increasing the NoV to allow more patterns in unit cells, the structural design 

varies and gradually approaches the free-form design (NoV=12). 
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From all of the optimized models of different NoVs, the structural compliance 

varies while the multi-pattern control is differently applied. The corresponding 

compliance values have been given in Figure 5.12, where an obviously decreasing 

trend is found along with the increased NoV. When the volume ratio is fixed to 

30%, it verifies that applying a higher degree of pattern control (from free-form to 

single-pattern periodicity) would compromise the structural performance (higher 

compliance) but improves the degree of modular prefabrication. When allowing 

only one pattern in all the unit cells, the structural compliance reaches the 

maximum (7.34 N•mm). An intermediate value (5.75 N•mm) of compliance can be 

obtained while increasing NoV to 4 for this 2×6 design domain. It can be further 

reduced to 4.81 N•mm in the case of NoV= 7 as the topology of the upper zone 

becomes very similar to the free-form optimized model, which is of the lowest 

compliance (3.66 N•mm) indicating the best structural performance. In real design 

practice, these design control variables and performance indices could support 

quantifiable parameters to evaluate the structural design, which can thereafter 

fulfill the different design needs in consideration of pattern aesthetics and 

construction cost. 
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Figure 5.11 Topology optimization-based structural design of a building frame 

model with different NoV 

 
Figure 5.12 Compliance values of optimized models with various NoVs 

5.4.5 Demonstration of automated grouping with zero-

force removal 
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Such a post-optimization process can be demonstrated with the 

aforementioned 2m×1m beam model, which has been optimized using 8×4 unit 

cells and 30×30 IGA 1-order elements for each unit cell, as shown in Figure 5.13. 

The beam model optimized using the multi-pattern control with auto-grouping has 

led to various forms of different NoVs (such as NoV=1, 3, 5, 4, 6, 8), where a 

handful of branching components do not form effective load transferring paths and, 

therefore, could be removed. Certainly, the removal of zero-force (or nearly zero-

force) components from a multi-pattern design would potentially generate new 

patterns and increase the NoV. To pursue an optimal design, it may be more 

practical to begin the topology optimization with a lower NoV and to execute the 

zero-force removal as post-processing.  

As a result of pattern control, some components of very low-stress levels 

should be ideally removed to avoid material waste. For example, in the optimized 

model of NoV=6, the outer branches undoubtedly bear nearly zero force (stress). 

After using the removal process defined in Eq. (5.7), these components are 

identified and removed from the optimized model and visualized as a light grey 

shade. The post-process model presents a more practical loading path and the 

pattern aesthetics have not been compromised. On the contrary, the aesthetic 

performance may be even improved, which in practice surely depends on the 

architects’ preference. The post-processing using zero-force removal has been also 

implemented for the models generated using NoV = 4, 8, 12, 24. After removal, the 

benefit similar to the case of NoV = 6 is gained. 
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Figure 5.13 Optimized configurations of 8×4 simply supported beam with zero-

force removal 

5.5 Concluding remarks 

In this chapter, a new topology optimization strategy for prefabrication called 

multi-pattern design is proposed. Since the practical prefabricated structure may be 

composed of several types of the component instead of full-periodic, multi-pattern 

design can trades-off the structural performance and prefabricability by allowing 

multiple RUCs and user-defined unit-cell arrangement scheme (defining the 

mapping relationship from RUC to unit-cell). Although the determination of an 

optimal arrangement scheme may require traversal search, it is computationally 

infeasible for cases with a large number of unit cells because of the plenty of 
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possible combinations. 

Considering the unbearable computational cost of selecting an optimal 

arrangement scheme, this study also proposed a k-means-based method for 

computationally efficiently finding a more beneficial scheme if no preferred given. 

This scheme selection approach is inspired by the topology evolution strategy of 

the BESO method (e.g., refer to the distribution of elemental compliance). 

Several demonstrative cases are presented using the multi-pattern design 

method, and this approach coincident with the building design rule of standard 

layer, thus it is capable to optimize the building under the guise of the prescribed 

standard layer as the arrangement scheme. In the cases with a prescribed 

arrangement scheme, it can be observed that the optimized structural compliance 

decreases with the NoV increasing (deterioration of prefabricability), which can be 

traded off by users. And in the cases with an automated scheme selection method, 

more beneficial schemes can be found and adopted to ensure a reliable design. 

It should be noted that efficiently finding the optimal scheme for multi-pattern 

design is still an open issue, and the proposed k-means-based method has the 

noteworthy ability for giving relatively reliable schemes when only giving NoV. 
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Chapter 6 Conclusions and future study 

6.1 Conclusions 

This thesis is an early-stage project of establishing the construction-oriented 

topology optimization platform, which presents our vision for the automatic 

construction of the next generation. This platform considers a workflow of 

converting the most manual design and construction tasks into automatic ones to 

shape a sustainable future by reducing carbon emission, material wastage, 

workload pressure, safety risks, duration, and expense costs. In addition from the 

structural design perspective, it guarantees the optimized architectures with higher 

structural and aesthetic performances based on the trinity principle of architecture 

design, and the simulation quality can be enhanced by adopting new methods (e.g. 

isogeometric analysis in this thesis). 

In this thesis, the structural optimization framework is established based on 

OpenSEES by developing the isogeometric solid elements and the corresponding 

topology optimization tool package. In addition, we proposed two optimization 

models under the connotation of the trinity principle of architecture design as the 

preliminary exploration. These two models respectively investigate (a) the 

explorative application of the isogeometric topology optimization method on 

designing typical engineering structures (e.g. post-tensioned concrete beam), 

introducing corresponding structural analysis model, and proposing suitable 
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optimization model. (b) simultaneously considering the manufacturability and 

aesthetic performance of optimized structures via combining the advantages of 

modular prefabricable periodic design and the efficient free-form design to explore 

a collection of intermediate solutions. The main contributions of the thesis are 

concluded as follows: 

• By employing the IGA-SIMP method, a topology-shape optimization model is 

developed to design the post-tensioned concrete beam comprising a 

prestressing tendon. It is capable of simultaneously optimizing the concrete 

topology and NURBS-based tendon curve shape. (Chapter 3) 

• From the structural simulation perspective, the tendon is described by a 

NURBS curve to enhance the continuity and accuracy of the expression of 

equivalent prestress load, and an IGA-based mapping process is proposed to 

simplify the expression of prestressed load, which avoids the calculation of 

inverting jacobian matrix from the tendon to the concrete domain. (Chapter 3) 

• From the optimization perspective, considering the typical unequal strength 

limits for tension and compression of concrete material, the Drucker-Prager 

stress constraint is considered and firstly extended into the isogeometric 

framework. In addition, a series of numerical problems of stress-based 

topology optimization (e.g., stress singularity, local stress constraint, and 

stabilization of iteration) and geometric control of the optimized structure (e.g., 

minimum width control, density projection, tendon-concrete filter) are 

considered to ensure a reliable design. (Chapter 3) 

• OPS-ITO platform is established as the foundation for our futural building 

design, which employs 2D and 3D IGA elements for structural simulation and 

the IGA-SIMP method for topology optimization, it includes classical 
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minimum compliance model and minimum volume model with Von-Mises and 

Drucker-Prager stress constraints. To ease the usage, a graphical user interface 

integrates all the available functions of OPS-ITO and it is continually 

developing to consider more construction-oriented considerations. The 

optimized 3D model can also be exported for further post-processing in a 

widely used vtk format. (Chapter 4) 

• A multi-pattern control method has been developed to allow intermediate 

designs between the free-form design and the fully periodic design. Noted that 

this approach requires users to provide a prescribed grouping scheme to 

determine the layout of the macrostructure, the optimal grouping is often 

computationally infeasible using the traversal method when lacking a preferred 

scheme. Hence, an automatic grouping selection method is proposed based on 

the K-means clustering approach to provide relative ideal solutions, and the 

post-processing of zero-force removal is also developed to reduce the possible 

material waste of the multi-pattern design. (Chapter 5) 

6.2 Future works 

For the direction of our future research, calculation, and manufacturing are 

both considered. From the calculation perspective, multi-load design, fail-safe 

design, and thermal insulation design are preferable to further enhance the 

durability and utility performance of the optimized structures. Generally, 

architectures are often subjected to different complicated loads during the course of 

their service, while current construction-oriented topology optimization research 

focuses on finding the optimal structure subjected to a single type of load, it is 
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essential to consider the multi-load scenarios to enhance the structural reliability. 

In addition, the traditional optimized structures often pursue the ultimate utilization 

of materials without considering the structural redundancy hence posing a great 

structural safety threat when some of the components fail unexpectedly. On the 

utility concern, the thermal insulation performance of the architecture is our first 

concern, which will be deeply investigated. 

From the manufacturing perspective, we are adopting 3D concrete printing 

technology to produce some demonstrative examples and extend the manufacturing 

work to a real scale manufacturing with the collaboration of prefabrication 

technology. So far, the ductility and strength properties of 3D printing material are 

still a major challenge, improving the material performance will be our main 

interest such as using high-performance composite concrete with fiber and 

prestressing process to enhance the tensile strength of the material. 
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Appendix A 

A1 The curvature sensitivity analysis of the tendon curve 

The formulation of curvature can be written as: 
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where ( ) ( )' , '' C C  are the first and second derivative values of the tendon curve, 

respectively. For the sake of formulation simplicity, we define terms ( ) ( )' '' = A C C  and 

( )' =B C . Therefore, the expression of Eq. (A.1) could be rewritten as: 
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According to the formulation of the first and second derivative values of the tendon 

curve, the corresponding derivatives are given as follows: 
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A2 Normal direction sensitivity analysis of the tendon curve 
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The formulation of normal direction can be written as: 
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where 
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Likewise, the tangential direction 
*
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 can be written as: 
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where ten

1J  is the tendon elemental Jacobian matrix from physical space to parametric space 

is calculated by: 

 
( )ten

ten ref

1

j

j
j e

R e




=


J P  (A.7) 

and the corresponding derivatives term 
ten

1

iy





J
 is: 

 
( )ten reften

,1 j p j

j ei i

R e

y y

 
=

  


PJ
 (A.8) 

according to Eq. (3.15), the term 
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where the corresponding derivative term is as 
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Appendix B 

B1 MATLAB code of designing post-tensioned concrete beam 

B1.1 A driver for iterative running the main function 

clear;clc; 
SavePathList = "\13.3&6.7MPa_50x10\"; 
CompThegLimList = 13.3e6; 
TensThegLimList = 6.7e6; 
MeshSizeList = [50,10]; 
for i = 1:length(CompThegLimList) 
    SavePathDetail = char(SavePathList(i)); 
    SavePath = [pwd,'\myResult2\',SavePathDetail]; 
    mkdir(SavePath) 
    CompThegLim = CompThegLimList(i); 
    TensThegLim = TensThegLimList(i); 

    MeshSize = MeshSizeList(i,:); 
    CaseLabel = 'Single'; 
    disp(['CurrentPath: ' char(SavePathDetail) '   CompTheg: ' 
char(num2str(CompThegLim)) '   MeshSize: ' 
char(num2str(MeshSize(1)))... 
        ' ' char(num2str(MeshSize(2)))]); 
    
MainFuncPC(SavePath,CompThegLim,TensThegLim,MeshSize,CaseLa
bel); 
end 

 

B1.2 Main function (based on SIMOPackage [196]) 

function 
MainFuncPC(SavePath,CompThegLim,TensThegLim,MeshSize,CaseLa
bel) 
if CaseLabel == 'Single' 
    L = 1; 
    SpanSupRatio = 0;% no support region 
elseif CaseLabel == 'Double' 
    L = 2;  
    SpanSupRatio = 0.05; % half mid support region 
elseif CaseLabel == 'Triple' 
    L = 3; 
    SpanSupRatio = 0.1; % entire support region 
End 
D = 0.2; 
eleL = 0.005; eleD = 0.005; 
FixedTopRatio = 0.1;%the thickness of fixed top layer 
%location 
CtrlPts = zeros(4, 2, 2); 
CtrlPts(1 : 3, 1, 1) = [0; 0; 0]; 
CtrlPts(1 : 3, 2, 1) = [L; 0; 0]; 
 
CtrlPts(1 : 3, 1, 2) = [0; D; 0]; 
CtrlPts(1 : 3, 2, 2) = [L; D; 0]; 
%weight 
CtrlPts(4, :, :) = 1; 
 
KntVect[181] = [0 0 1 1]; 
KntVect[181] = [0 0 1 1]; 
% create NURBS surface in CAD  
Surf = CreateNURBS(KntVect, CtrlPts); 
% degree of basis function 
p=1;q=1; 
% repeated knot value inside knot vector 
kx=1;ky=1; 
% number of elements in each direction 
nelx_Den=MeshSize(1); nely_Den=MeshSize(2); 

nelx = L/eleL; nely = D/eleD; 
% h,p,k-refinements 
Surf_Den = KRefine(Surf, [nelx_Den, nely_Den], [p, 
q], [p-kx, q-ky]); 
Surf_Anal = KRefine(Surf, [nelx, nely], [p, q], [p-
kx,q-ky]); 
% calculate Rij for all element centroids 
check_x = 
linspace(0,1,p*nelx*(length(KntVect[181])-p-1)+1); 
check_y = 
linspace(0,1,q*nely*(length(KntVect[181])-q-1)+1); 
node_x = check_x(2:2:end); 
node_y = check_y(2:2:end); 
%R(kxi,eta,i,j)-->CtrlPts -- ParaPts (centroid of 
elements) 
R_Center = FindInterpFunc(Surf_Den,{node_x, node_y}); 
node_xx = linspace(0,1,nelx+1); node_yy = 
linspace(0,1,nely+1); 
RR_node = FindInterpFunc(Surf_Den,{node_xx, 
node_yy}); 
x_CtrlPts = 
permute(Surf_Den.CtrlPts3D(1,:,:),[2,3,1]); 
y_CtrlPts = 
permute(Surf_Den.CtrlPts3D(2,:,:),[2,3,1]); 
loc_CtrlPts = [x_CtrlPts(:),y_CtrlPts(:)]; 
CurvStore_center = (R_Center*loc_CtrlPts)'; 
CurvStore_Xi = (RR_node*loc_CtrlPts)'; 
% penalty for SIMP 
penalty = 3; 
% rho for CtrlPts 
rho_CtrlPts = 0.8*ones(Surf_Den.NCtrlPts); 
NCP_Tendon = 8*L + 1; 
tendon_x=linspace(0,L,NCP_Tendon); 
tendon_y=0.1*D*ones(1,NCP_Tendon); 
tendon_y(end) = 0.9*D; 
nelx_tendon = 200; 
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[Tendon,Tendon_Refine] = 
BuildTendon(nelx_tendon,tendon_x,tendon_y); 
RefWeight = RefineWeight(Tendon,Tendon_Refine); 
rho_e = reshape(R_Center*rho_CtrlPts(:),nelx,nely); 
miu_pre = 1;beta_fil = FixedTopRatio*D; 
[rho_ehat,pdist_pyi,dist] = 
TendonModiDensity(CurvStore_center,Tendon_Refine,rho_e,RefWei
ght,miu_pre,beta_fil); 
[prhoeHat_prhoi, prhoeHat_pyi] = 
calc_drhoedvar(R_Center,dist,beta_fil,miu_pre,rho_e,pdist_pyi); 
beta_HS = 1;eta_ero = 0.4; eta_dil = 0.6; 
[rho_estar,prhoeStar_prhoi,prhoeStar_pyi] = 
DilHeaviside_PC(rho_ehat,beta_HS,eta_ero,eta_dil,prhoeHat_prhoi,p
rhoeHat_pyi); 
NFixLayer = floor(FixedTopRatio*nely); 
rho_estar(:,end-NFixLayer:end) = 1; 
Mesh = Mesh2D(Surf_Anal, 'VectorField'); 
E = 28e9;nu=0.2; 
theg_c = CompThegLim; 
theg_t = TensThegLim; 
%initialize MMA 
t1nn = size(rho_CtrlPts(:),1); 
t2nn = size(tendon_y(:),1); 
tnn = t1nn + t2nn; 
xy00 = [rho_CtrlPts(:);tendon_y(:)]; 
numVar = length(xy00); 
rho_min = 1e-3; 
xval=xy00; 
xold1 = xy00; 
xold2 = xy00; 
x1min=0*ones(t1nn,1); 
x1max=ones(t1nn,1); 
x2min = 0.1*D*ones(t2nn,1); 
x2max = 0.9*D*ones(t2nn,1); 
xmin = [x1min;x2min]; 
xmax = [x1max;x2max]; 
low   = xmin; 
upp   = xmax; 
numDV = length(low); 
m = 1; 
Var_num=tnn; 
c=1000*ones(m,1); 
dd=ones(m,1); 
a0=1; 
a=zeros(m,1); 
loop = 0; 
maxiter=300; 
loopp = []; 
volp = [];stress = []; 
initial_Ve = CalcVe(Mesh,CurvStore_Xi,ones(size(rho_estar))); 
initial_Ve = sum(initial_Ve(:)); 
if CaseLabel == 'Single' 
    Pressure = @(x,y) -200e3; 
elseif CaseLabel == 'Double' 
    Pressure = @(x,y) -250e3; 
elseif CaseLabel == 'Triple' 
    Pressure = @(x,y) -250e3; 
end 
Tpre = 6e5; 
while loop < maxiter 
    loop = loop+1; 
    Ve = CalcVe(Mesh,CurvStore_Xi,rho_estar);%element volume(area) 
    [KVals,KE] = calcLocalStiffnessMatrices2D(Mesh, Surf_Anal, E, nu, 
'PlaneStress', rho_estar, penalty,rho_min); 
    KEe = reshape(KE,size(KE,1),size(KE,2),[]); 
    [Rows, Cols, Vals] = convertToTripletStorage(Mesh, KVals); 
    % Convert triplet data to sparse matrix 
    K = sparse(Rows, Cols, Vals); 
    clear Rows Cols Vals 
    f = zeros(Mesh.NDof, 1); 
    [Fy, DofsFy] = applyNewmannBdryVals(Surf_Anal, Mesh, Pressure, 
4, 'FY'); 
    f(DofsFy) = f(DofsFy) + Fy; 

    [F_pre,TendonLoc,dFCondy] = 
Prestress_Force(Surf_Anal,L,D,Tendon_Refine,RefWeight,Tpre,Mesh,
beta_fil);%seems solved 
    f = f + F_pre; 
    [grav, dfswdrhoi, dfswdyi] = 
applyGravity_PC(Surf_Anal,Mesh,9.8*2450,rho_estar,prhoeStar_prh
oi,prhoeStar_pyi); 
    f = f + grav; 
    h=@(x, y) 0; 
    [UX, DofsX] = projDrchltBdryVals(Surf_Anal, Mesh, h, 1, 'UX'); 
    [UY, DofsY] = projDrchltBdryVals(Surf_Anal, Mesh, h, 2, 'UY'); 
    if CaseLabel == 'Single' 
        DofsY1 = []; 
        UY1 = []; 
    elseif CaseLabel == 'Double' 
        DofsY1 = 
(1:floor(SpanSupRatio*nelx))'+Mesh.NDof/2;%double_span beam 
        UY1 = zeros(size(DofsY1)); 
    elseif CaseLabel == 'Triple' 
        DofsY1 = (1:floor(SpanSupRatio*nelx))' + Mesh.NDof/2 + 
floor((nelx+1)/3);%triple_span beam 
        UY1 = zeros(size(DofsY1)); 
    end 
    BdryIdcs = [DofsY; DofsX; DofsY1]; 
    BdryVals = [UY; UX; UY1]; 
    FreeIdcs = setdiff(1 : Mesh.NDof, BdryIdcs); 
    d = zeros(Mesh.NDof, 1); 
    d(BdryIdcs) = BdryVals; 
    f(FreeIdcs) = f(FreeIdcs) - K(FreeIdcs, BdryIdcs) * BdryVals;  
    % Solve the system 
    d(FreeIdcs) = K(FreeIdcs, FreeIdcs) \ f(FreeIdcs);%d-->uij 
    f0val = sum(Ve(:))/initial_Ve; 
    df0dx = 
calc_df0dx_ConTen(Ve,prhoeStar_prhoi,prhoeStar_pyi,rho_estar); 
    ParaPts = {node_x,node_y}; 
    edof = 
[Mesh.El,Mesh.El+size(d,1)/2];%d(u1x,u2x,...,unx,u1y,u2y,...,uny) 
    [D_Mat,Be,ue] = calc_B_ue(Surf_Anal, ParaPts, d, Mesh, E, nu, 
'PlaneStress'); 
    epsi = 0.4; 
    [ele_dp1,ele_s,alpha,H,J2,he] = 
Drucker_Prager_paper(rho_estar(:),Be,D_Mat,ue,theg_c,theg_t,epsi,r
ho_min); 
    ele_dp = ele_dp1./he; 
    center_x = reshape(CurvStore_center(1,:),nelx,nely); 
    center_y = reshape(CurvStore_center(2,:),nelx,nely); 
    if rem(loop,5) == 0 
        f1 = figure(1); 
        clf(f1) 
        set(f1,'visible','off'); 
        hold on 
        daspect([1, 1, 1]) 
        PlotTopo(Surf_Den,Mesh,rho_CtrlPts,Tendon_Refine,miu_pre,... 
            
beta_fil,beta_HS,eta_ero,eta_dil,TendonLoc,tendon_x,tendon_y,Fixe
dTopRatio); 
        pos=get(gcf,'Position'); 
        pos(4)=pos(3)/7; 
        set(gcf,'Position',pos) 
        set(gca, 'LooseInset', [0,0,0,0]); 
        saveas(gcf,[SavePath,num2str(loop),'.jpg']) 
        f2 = figure(2); 
        clf(f2) 
        set(f2,'visible','off'); 
        hold on 
        axis equal 
        daspect([1, 1, 1]) 
        center_dp = reshape(ele_dp-1,nelx,nely); 
        center_x_plt = [flipud(center_x);-center_x]; 
        center_y_plt = [flipud(center_y);center_y]; 
        center_dp_plt = [flipud(center_dp);center_dp]; 
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surf(center_x_plt,center_y_plt,zeros(size(center_dp_plt)),center_dp_
plt); 
        caxis([max(-1.5,min(center_dp(:))) max(center_dp(:))]); axis off; 
view(0,90);shading interp;drawnow;colorbar;colormap(jet) 
        shading interp; 
        saveas(gcf,[SavePath,'CurrentDP.jpg']) 
    end 
    miu = 8; 
    DP_KS = 1/miu*log(sum(exp(miu*ele_dp))); 
    qn = 0.5; 
    cp_old = max(ele_dp)/DP_KS; 
    if loop == 1 
        cp = max(ele_dp)/DP_KS; 
    else 
        cp = qn*max(ele_dp)/DP_KS+(1-qn)*cp_old; 
    end 
    cp_old = cp; 
    DP_KS1 = cp*DP_KS; 
    fval = DP_KS1-1; 
    dfdx = calc_dfdx_ConTen_DP(ele_dp,ele_s,cp,he,miu,rho_estar,... 
    
Be,D_Mat,ue,d,K,edof,FreeIdcs,BdryIdcs,BdryVals,Mesh,KE,alpha,H,J2
,epsi,... 
    
prhoeStar_prhoi,prhoeStar_pyi,dfswdrhoi,dfswdyi,dFCondy,penalty,r
ho_min); 
    % use MMA to optimize the system 
 [xmma,ymma,zmma,lam,xsi,eta,mu,zet,ss,low,upp] = ... 
        mmasub_PC(m,numDV,loop,xval,xmin,xmax,xold1,xold2, ...  
        f0val,df0dx,fval,dfdx,low,upp,a0,a,c,dd,NCP_Tendon); 
    xold2 = xold1; 
    xold1 = xval; 
    xval = xmma; 
    rho_CtrlPts = reshape(xval(1:end-NCP_Tendon),Surf_Den.NCtrlPts); 
    tendon_y = xval(end+1-NCP_Tendon:end)'; 
    tendon_y(end) = 0.9*D; 
    [Tendon,Tendon_Refine] = 
BuildTendon(nelx_tendon,tendon_x,tendon_y); 
    rho_e = reshape(R_Center*rho_CtrlPts(:),nelx,nely);%rho_e 
    [rho_ehat,pdist_pyi,dist] = 
TendonModiDensity(CurvStore_center,Tendon_Refine,rho_e,RefWei
ght,miu_pre,beta_fil); 
    rho_ehat(:,end-3:end) = 1;%lock upper bound of the beam 
    [prhoeHat_prhoi, prhoeHat_pyi] = 
calc_drhoedvar(R_Center,dist,beta_fil,miu_pre,rho_e,pdist_pyi); 
    [rho_estar,prhoeStar_prhoi,prhoeStar_pyi] = 
DilHeaviside_PC(rho_ehat,beta_HS,eta_ero,eta_dil,prhoeHat_prhoi,p
rhoeHat_pyi); 
    rho_estar(:,end-NFixLayer:end) = 1; 
    disp([' It.: ' sprintf('%4i\t',loop) ' Obj(Vol).: ' sprintf('%7.5f\t',f0val) ' 
Const(D-P).: ' ... 
    sprintf('%7.5f\t',fval)]); 
    loopp = [loopp,loop]; 
    volp = [volp, f0val]; 
    stress = [stress, fval]; 
    if rem(loop,25) == 0 
        if penalty < 3 
            penalty = penalty+0.5; 
        end 
    end 

    if rem(loop,25) == 0 
        if beta_HS < 5 
            beta_HS = beta_HS + 0.25; 
        end 
        if miu_pre < 4 
            miu_pre = miu_pre + 1; 
        end 
    end 
    if loop == maxiter-1 
        beta_HS = 20; 
    end 
end 
f1 = figure(1); 
clf(f1) 
set(f1,'visible','off'); 
hold on 
daspect([1, 1, 1]) 
PlotTopo(Surf_Den,Mesh,rho_CtrlPts,Tendon_Refine,miu_pre,... 
    
beta_fil,beta_HS,eta_ero,eta_dil,TendonLoc,tendon_x,tendon_y,Fixe
dTopRatio); 
pos=get(gcf,'Position');  
pos(4)=pos(3)/7;  
set(gcf,'Position',pos)  
set(gca, 'LooseInset', [0,0,0,0]); 
saveas(gcf,[SavePath,'finalTopo.jpg']) 
f2 = figure(2); 
clf(f2) 
set(f2,'visible','off'); 
hold on 
axis equal 
daspect([1, 1, 1]) 
center_dp = reshape(ele_dp-1,nelx,nely); 
center_x_plt = [flipud(center_x);-center_x]; 
center_y_plt = [flipud(center_y);center_y]; 
center_dp_plt = [flipud(center_dp);center_dp]; 
surf(center_x_plt,center_y_plt,zeros(size(center_dp_plt)),center_dp_
plt); 
caxis([max(-1.5,min(center_dp(:))) max(center_dp(:))]); axis off; 
view(0,90);shading interp;drawnow;colorbar;colormap(jet) 
shading interp; 
saveas(gcf,[SavePath,'finalDP.jpg']) 
 
Ve = CalcVe(Mesh,CurvStore_Xi,rho_estar);%element volume(area) 
f0val = sum(Ve(:))/initial_Ve; 
volp = [volp, f0val]; 
stress = [stress, fval]; 
disp([' It.: ' sprintf('%4i\t',loop) ' Obj(Vol).: ' sprintf('%7.5f\t',f0val) ' 
Const(D-P).: ' ... 
    sprintf('%7.5f\t',fval)]); 
writematrix([volp;stress]',[SavePath,'finalRec.csv']) 
f3 = figure(3); 
set(f3,'visible','off'); 
subplot(2,1,1) 
plot(volp*100);title('Volume(%)') 
subplot(2,1,2) 
plot(stress);title('D-P') 
saveas(gcf,[SavePath,'finalHistory.jpg']) 
save([SavePath,'WorkSpace.mat']) 
end 

 

B1.3 Finding the interpped location of nodes 

function [R] = FindInterpFunc(Surf, ParaPts) 
KntVects=Surf.KntVect; 
CtrlPts=Surf.CtrlPts4D; 
weight = permute(Surf.Weights(1,:,:),[2,3,1]); 
dim = numel(KntVects); 
NCtrlPts = size(CtrlPts); 
 

p = zeros(1, dim); 
idx = cell(1, dim); 
N0 = cell(1, dim); 
CtrlPts_id = cell(1, dim); 
for i = 1 : dim 
    p(i) = numel(KntVects{i}) - NCtrlPts(i + 1) - 1;%p=k-n-1 
    idx{i} = FindSpan(NCtrlPts(i + 1), p(i), ParaPts{i}, KntVects{i}); 
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    N0{i} = BasisFuns(idx{i}, ParaPts{i}, p(i), KntVects{i}); 
    CtrlPts_id{i} = repmat(idx{i}',1,p(i)+1)-
p(i)+repmat(1:p(i)+1,size(ParaPts{i},2),1)-1; 
end 
kxi = 1:size(ParaPts[181],2); 
eta = 1:size(ParaPts[181],2); 
[KXI,ETA] = meshgrid(kxi,eta); 
RR = zeros(numel(KXI),Surf.Order(1)+1,Surf.Order(2)+1); 
RR1 = zeros(numel(KXI),size(CtrlPts,2),size(CtrlPts,3)); 
parfor it = 1:numel(KXI) 
    x_list(it,:) = CtrlPts_id[181](KXI(it),:); 
    Nx_list = N0[181](KXI(it),:); 
    y_list(it,:) = CtrlPts_id[181](ETA(it),:); 
    Ny_list = N0[181](ETA(it),:); 
    x_temp_weight = weight(x_list(it,:),y_list(it,:)); 

    temp_w_xi = Nx_list'*Ny_list.*x_temp_weight; 
    w_xi = sum(temp_w_xi(:)); 
    RR(it,:,:) = temp_w_xi; 
    RR(it,:,:) = RR(it,:,:)/w_xi; 
end 
for i = 1:size(x_list,1) 
    RR1(i,x_list(i,:),y_list(i,:)) = RR(i,:,:); 
end 
R = 
reshape(RR1,size(ParaPts[181],2),size(ParaPts[181],2),size(CtrlPts,2),s
ize(CtrlPts,3)); 
R = permute(R,[2,1,3,4]); 
shape_R = size(R); 
R = reshape(R,[shape_R(1)*shape_R(2),shape_R(3)*shape_R(4)]); 
end 

 

B1.4 Generating the tendon curve 

function [Tendon,Tendon_Refine] = 
BuildTendon(nelx_tendon,tendon_x,tendon_y) 
p=2; 
kx=1; 
NCtrlPts = length(tendon_x); 
CtrlPts = zeros(4, NCtrlPts, 1); 
CtrlPts(1, :, 1) = tendon_x; 
CtrlPts(2, :, 1) = tendon_y; 

%weight 
CtrlPts(4, :, :) = 1; 
KntVect = {[zeros(1,p+1),(p+1:NCtrlPts-1)/(NCtrlPts+p),ones(1,p+1)]}; 
% create NURBS Curve in CAD  
Tendon = CreateNURBS(KntVect, CtrlPts); 
InsrtKnt = setdiff(linspace(0,1,nelx_tendon),KntVect[181]); 
Tendon_Refine = HRefine(Tendon, 1, InsrtKnt); 
end 

 

B1.5 Refining the weight vector of the tendon 

function Weight = RefineWeight(Tendon,Tendon_Refine) 
DiffKnt = setdiff(Tendon_Refine.KntVect[181],Tendon.KntVect[181]); 
NCtrlPts = size(Tendon.CtrlPts3D,2); 
Weight = eye(NCtrlPts); 
IKntVect = Tendon.KntVect[181]; 
p = Tendon.Order; 
for i = 1:length(DiffKnt) 
    k = FindSpan(NCtrlPts, p, DiffKnt(i), IKntVect); 
    size_Weight_i = [NCtrlPts+1,NCtrlPts]; 
    Weight_i = zeros(size_Weight_i); 
    Weight_i(1:k-p,1:k-p) = eye(k-p); 

    Weight_i(k+1:end,k:end) = eye(NCtrlPts-k+1); 
    for l = 1:p 
        j = k-p+l; 
        alpha = (DiffKnt(i)-IKntVect(j))/(IKntVect(j+p)-IKntVect(j)); 
        Weight_i(k-p+l,k-p+l-1:k-p+l) = [1-alpha,alpha]; 
    end 
    Weight = Weight_i*Weight; 
    NCtrlPts = NCtrlPts + 1; 
    IKntVect = [IKntVect(1:k),DiffKnt(i),IKntVect(k+1:end)]; 
end 

 

B1.6 Tendon filter 

function [rho_ehat,pdist_pyi,dist] = 
TendonModiDensity(CurvStore_center,Tendon_Refine,rho_e,RefWei
ght,miu_pre,beta_fil) 
TendonLoc = Tendon_Refine.CtrlPts3D; 
ConcreteLoc = [CurvStore_center;zeros(1,size(CurvStore_center,2))]; 
distMat = pdist2(TendonLoc',ConcreteLoc'); 
[dist,dist_id] = min(distMat);%dist_id is the closest tendon CP for i-th 
Con-CP 
%Super Gaussian 
rho_i = rho_e(:); 

rho_modi = exp(-0.5*(dist/beta_fil).^miu_pre)'; 
rho_ehat = rho_i+(1-rho_i).*rho_modi; 
rho_ehat = reshape(rho_ehat,size(rho_e)); 
pdist_pyyi = zeros(length(rho_ehat(:)),Tendon_Refine.NCtrlPts); 
for i = 1:length(rho_ehat(:)) 
    pdist_pyyi(i,dist_id(i))=(TendonLoc(2,dist_id(i))-
ConcreteLoc(2,i))/dist(i); 
end 
pdist_pyi = pdist_pyyi*RefWeight; 
end 

 

B1.7 Computing prho_e/px 

function [prhoehat_prhoi, prhoehat_pyi] = calc_drhoedvar(R_Center,dist,beta_fil,miu_pre,rho_e,pdist_pyi) 
rho_Ten = exp(-0.5*(dist/beta_fil).^miu_pre)'; 
prhoehat_prhoe = diag(1-rho_Ten); 
prhoe_prhoi = R_Center; 
prhoehat_prhoi = prhoehat_prhoe*prhoe_prhoi; 
prhoehat_pyi = (1-rho_e(:)).*(-miu_pre/2/beta_fil).*rho_Ten(:).*(dist(:)/beta_fil).^(miu_pre-1)... 
    .*pdist_pyi; 
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end 

 

B1.9 Density projection 

function [rho_estar,prhoeStar_prhoi,prhoeStar_pyi] = 
DilHeaviside_PC(rho_ehat,beta_HS,eta_ero,eta_dil,prhoeHat_prhoi,p
rhoeHat_pyi) 
rho_min = 1e-3; 
rho_ero = (tanh(beta_HS*eta_ero)+tanh(beta_HS*(rho_ehat-
eta_ero)))/... 
    (tanh(beta_HS*eta_ero)+tanh(beta_HS*(1-eta_ero))); 
rho_estar = (tanh(beta_HS*eta_dil)+tanh(beta_HS*(rho_ero-
eta_dil)))/... 
    (tanh(beta_HS*eta_dil)+tanh(beta_HS*(1-eta_dil))); 
rho_estar = rho_min + (1-rho_min)*rho_estar; 
 

prhoero_prhoehat = beta_HS*(1-tanh(beta_HS*(rho_ehat-
eta_ero)).^2)/... 
    (tanh(beta_HS*eta_ero)+tanh(beta_HS*(1-eta_ero))); 
prhoestar_prhoero = beta_HS*(1-tanh(beta_HS*(rho_ero-
eta_dil)).^2)/... 
    (tanh(beta_HS*eta_dil)+tanh(beta_HS*(1-eta_dil))); 
prhoestar_prhoehat = 
diag(prhoestar_prhoero(:).*prhoero_prhoehat(:)); 
prhoeStar_prhoi = prhoestar_prhoehat*prhoeHat_prhoi; 
prhoeStar_pyi = prhoestar_prhoehat*prhoeHat_pyi; 
end 

 

B1.10 Computing the elemental volume 

function Ve = CalcVe(Mesh,CurvStore_Xi,rho_ParaPts) 
Ve = zeros(Mesh.NElDir); 
for i = 1:Mesh.NElDir(1) 
    for j = 1:Mesh.NElDir(2) 
        temp_node_corner1 = (i-1)+(j-1)*(Mesh.NElDir(1)+1)+1; 
        temp_node_corner2 = (i-1)+j*(Mesh.NElDir(1)+1)+1; 
        temp_node_id = [temp_node_corner1,temp_node_corner1+1,... 
            temp_node_corner2,temp_node_corner2+1]; 
        coor_node = CurvStore_Xi(1:2,temp_node_id); 
        tri_1 = coor_node(:,[1 2 3]); 
        tri_2 = coor_node(:,[2 3 4]); 

        S1 = calc_tri_area(tri_1); 
        S2 = calc_tri_area(tri_2); 
        Ve(i,j) = (S1+S2)*rho_ParaPts(i,j); 
    end 
end 
end 
function area = calc_tri_area(tri) 
x1 = tri(1,1); x2 = tri(1,2); x3 = tri(1,3); 
y1 = tri(2,1); y2 = tri(2,2); y3 = tri(2,3); 
area = abs(x1*y2+x2*y3+x3*y1-x1*y3-x2*y1-x3*y2)/2; 
end 

 

B1.11 Computing the prestressed load 

function [F_Con,ConfigTendon,dFCondy] = 
Prestress_Force(Surf_Anal,L,D,Tendon_Refine,RefWeight,Tpre,Mesh,
beta_fil) 
ConfigTendon = Tendon_Refine.CtrlPts3D; 
Mesh_Tendon = Mesh1D(Tendon_Refine); 
NGPs = Tendon_Refine.Order + 1; 
[Jx, Wx, ~, Nx] = calcDersBasisFunsAtGPs(Tendon_Refine.Order, 
Tendon_Refine.NCtrlPts, Tendon_Refine.KntVect[181], 2, NGPs, 
Mesh_Tendon.NEl); 
Weights = reshape(Tendon_Refine.Weights, 1, []); 
CtrlPts = reshape(Tendon_Refine.CtrlPts3D, 3, [])'; 
FTenVals = zeros(Mesh_Tendon.NDof*2, 1); 
dFTendy = zeros(Mesh_Tendon.NDof*2, size(RefWeight,2)); 
loc = [Mesh_Tendon.El, Mesh_Tendon.El + Tendon_Refine.NNP]'; 
% set concentrated load of tendon 
[EvalPts,N0n] = DerBsplineEval(Tendon_Refine.KntVect, 
Tendon_Refine.CtrlPts4D, 1, {[0,1]}); 
Bdry_Grad = EvalPts[181](1:3,:); 
%normalize the gradient dx/dxi 
J01 = norm(Bdry_Grad(:,1)); 
J02 = norm(Bdry_Grad(:,2)); 
Grad_1 = Bdry_Grad(:,1)/norm(Bdry_Grad(:,1)); 
Grad_2 = Bdry_Grad(:,2)/norm(Bdry_Grad(:,2)); 
Corre_Coor = 
[1,Tendon_Refine.NNP,1+Tendon_Refine.NNP,2*Tendon_Refine.NNP
]; 
N00 = N0n[181](:,:,1); 
N01 = N0n[181](:,:,2); 
[~,R01] = 
Rationalize(Weights(Mesh_Tendon.El(1,:)),N00(1,:),N01(1,:));%for 
initial 

[~,R02] = 
Rationalize(Weights(Mesh_Tendon.El(end,:)),N00(2,:),N01(2,:));%for 
end 
pJ01py = (R01*RefWeight(Mesh_Tendon.El(1,:),:))'*[0,1]; 
pJ01normpy = Grad_1(1:2)'*pJ01py'; 
pJ02py = (R02*RefWeight(Mesh_Tendon.El(end,:),:))'*[0,1]; 
pJ02normpy = Grad_2(1:2)'*pJ02py'; 
pn1py = 1/J01*pJ01py'-Grad_1(1:2)/J01*pJ01normpy; 
pn2py = 1/J02*pJ02py'-Grad_2(1:2)/J02*pJ02normpy; 
Fx_preCon = -Grad_2(1)*Tpre*0.75;  
Fy_preCon = Grad_1(2)*Tpre; 
dFTendy(Corre_Coor,:) = Tpre*[pn1py(1,:);-pn2py(1,:);pn1py(2,:);-
pn2py(2,:)]; 
xi = Tendon_Refine.CtrlPts3D(1,:)/L; 
eta = Tendon_Refine.CtrlPts3D(2,:)/D; 
[R_ConTen,dR_ConTen] = FindInterpFunc_ConTen(Surf_Anal,{xi, eta}); 
shape_R = size(R_ConTen); 
R_ConTen = 
reshape(R_ConTen,[shape_R(1)*shape_R(2),shape_R(3)*shape_R(4)]
);% for center of element 
shape_dR = size(dR_ConTen); 
dR_ConTen = 
reshape(dR_ConTen,[shape_dR(1)*shape_dR(2),shape_dR(3)*shape_
dR(4)]);% for center of element 
dRConTendy = zeros([size(dR_ConTen),size(RefWeight,2)]); 
for i = 1:size(dRConTendy,3) 
    dRConTendy(:,:,i) = 
dR_ConTen.*repmat(RefWeight(:,i),1,size(dR_ConTen,2))/D; 
end 
for e = 1:Mesh_Tendon.NEl 
    for q = 1:NGPs 
        N0 = Nx(e, q, :, 1); 
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        N1 = Nx(e, q, :, 2); 
        N2 = Nx(e, q, :, 3); 
        [R0, R1, R2] = Rationalize(Weights(Mesh_Tendon.El(e, :)), N0(:)', 
N1(:)', N2(:)'); 
        dxdxi = R1 * CtrlPts(Mesh_Tendon.El(e, :), :); 
        J1 = norm(dxdxi); 
        C1 = R1 * CtrlPts(Mesh_Tendon.El(e, :), :); 
        C2 = R2 * CtrlPts(Mesh_Tendon.El(e, :), :); 
        cross_result = cross(C2,C1); 
        curv = cross_result(3)/norm(C1)^3; 
        p_GP = curv*Tpre; 
        n0 = dxdxi(1:2)'/norm(dxdxi); 
        n = [0 1; -1 0]*n0; % dxdxi: tangential vector 
        [pQpy,pnormJ1py] = 
calc_pqpy(J1,R1,R2,RefWeight,n0,n,e,C1,C2,Mesh_Tendon,Tpre,p_GP
); 
        pressure = repmat(p_GP, 2, 1) .* n; 
        R0Mat = zeros(2, Mesh_Tendon.NEN * 2); % matrix of tendon 
basis functions 
        R0Mat(1, 1 : Mesh_Tendon.NEN) = R0; 
        R0Mat(2, Mesh_Tendon.NEN + 1 : 2 * Mesh_Tendon.NEN) = R0; 
        FTenVals(loc(:,e)) = FTenVals(loc(:,e)) + Wx(q) * R0Mat' * 
pressure * J1 * Jx(e); 
        dFTendy(loc(:,e),:) = dFTendy(loc(:,e),:) + Wx(q) * R0Mat' * pQpy' 
* J1 * Jx(e) + ... 
            Wx(q) * R0Mat' * pressure * pnormJ1py' * Jx(e); 
    end 
end 
R_ConTenMat = [R_ConTen zeros(size(R_ConTen)); 
zeros(size(R_ConTen)) R_ConTen]; 
temp1 = cat(1,dRConTendy,zeros(size(dRConTendy))); 
temp2 = cat(1,zeros(size(dRConTendy)),dRConTendy); 
dRConTenMat = cat(2,temp1,temp2); 
F_Con = R_ConTenMat'*FTenVals; 
[Fprex_Con,DofsFx_precon] = 
calc_concentratedLoadx(Tendon_Refine,Surf_Anal,Mesh,D,Fx_preCo
n,beta_fil); 
F_Con(DofsFx_precon) = F_Con(DofsFx_precon) + Fprex_Con; 
[Fprey_Con,DofsFy_precon] = 
calc_concentratedLoady(Tendon_Refine,Surf_Anal,Mesh,D,Fy_preCo
n,beta_fil); 

F_Con(DofsFy_precon) = F_Con(DofsFy_precon) + Fprey_Con; 
size_dRConTenMat = size(dRConTenMat); 
size_dRConTenMat = size_dRConTenMat(2:3); 
temp = zeros(size_dRConTenMat); 
for i = 1:size(dRConTenMat,3) 
    temp(:,i) = dRConTenMat(:,:,i)'*FTenVals; 
end 
dFCondy = R_ConTenMat'*dFTendy + temp; 
end 
function [pQpy,pnormJ1py] = 
calc_pqpy(J1,R1,R2,RefWeight,n0,n,e,C1,C2,Mesh_Tendon,Tpre,p_GP) 
pJ1py = (R1*RefWeight(Mesh_Tendon.El(e,:),:))'*[0,1]; 
pnormJ1py = pJ1py*n0; 
pnpy = [0,1;-1,0]*(1/J1*pJ1py'-n0/J1*pnormJ1py'); 
x1 = C1(1);y1 = C1(2); 
x2 = C2(1);y2 = C2(2); 
pkpy = ((x2*R1-x1*R2)/norm(C1)^3-3*(x2*y1-
x1*y2)*y1/norm(C1)^5*R1)*RefWeight(Mesh_Tendon.El(e,:),:); 
pqpy = pkpy*Tpre; 
pQpy = (n*pqpy+p_GP*pnpy)'; 
end 
function [Fprex_Con,DofsFx_precon] = 
calc_concentratedLoadx(Tendon_Refine,Surf,Mesh,D,Fx_preCon,beta
_fil) 
para_y = Tendon_Refine.CtrlPts3D(2,end)/D; 
load_area = 2*beta_fil; 
press_pre = @(x,y) Fx_preCon/load_area*exp(-0.5*(abs(y-
para_y*D)/beta_fil).^100); 
[Fprex_Con, DofsFx_precon] = applyNewmannBdryVals(Surf, Mesh, 
press_pre, 2, 'FX'); 
end 
function [Fprey_Con,DofsFy_precon] = 
calc_concentratedLoady(Tendon_Refine,Surf,Mesh,D,Fy_preCon,beta
_fil) 
para_y = Tendon_Refine.CtrlPts3D(2,1)/D; 
load_area = 2*beta_fil; 
press_pre = @(x,y) Fy_preCon/load_area*exp(-0.5*(abs(y-
para_y*D)/beta_fil).^100); 
[Fprey_Con, DofsFy_precon] = applyNewmannBdryVals(Surf, Mesh, 
press_pre, 1, 'Fy'); 
end 

 

B1.12 Applying the gravity load 

function [FVals, dfswdrhoi, dfswdyi] = applyGravity_PC(Surf_Anal, 
Mesh, g, rho_estar, prhoe_prhoi,prhoe_pyi) 
%R1_Ref: drhoedrhoi 
fi = rho_estar*g; 
NGPs = Surf_Anal.Order + 1; 
[Jx, Wx, ~, Nx] = calcDersBasisFunsAtGPs(Surf_Anal.Order(1), 
Surf_Anal.NCtrlPts(1), Surf_Anal.KntVect[181], 1, NGPs(1), 
Mesh.NElDir(1)); 
[Jy, Wy, ~, Ny] = calcDersBasisFunsAtGPs(Surf_Anal.Order(2), 
Surf_Anal.NCtrlPts(2), Surf_Anal.KntVect[181], 1, NGPs(2), 
Mesh.NElDir(2)); 
Weights = reshape(Surf_Anal.Weights, 1, []); 
CtrlPts = reshape(Surf_Anal.CtrlPts3D, 3, [])'; 
FVals = zeros(Mesh.NDof, 1); 
dFdrhoeVals = zeros(Mesh.NDof, Mesh.NEl); 
loc = [Mesh.El, Mesh.El + Surf_Anal.NNP]'; 
for ey = 1 : Mesh.NElDir(2) 
    for ex = 1 : Mesh.NElDir(1) 
        e = sub2ind(Mesh.NElDir, ex, ey); 
        for qy = 1 : NGPs(2) 
            for qx = 1 : NGPs(1) 
                N0x = Nx(ex, qx, :, 1); 
                N1x = Nx(ex, qx, :, 2); 
                N0y = Ny(ey, qy, :, 1); 
                N1y = Ny(ey, qy, :, 2); 
                N0 = bsxfun(@times, N0x(:), N0y(:)'); 

                N11 = bsxfun(@times, N1x(:), N0y(:)'); 
                N12 = bsxfun(@times, N0x(:), N1y(:)'); 
                [R0, R1] = Rationalize(Weights(Mesh.El(e, :)), N0(:)', [N11(:)'; 
N12(:)']); 
                J2 = Jx(ex) * Jy(ey); 
                W = Wx(qx) * Wy(qy); 
                % gradient of mapping from parameter space to physical 
space 
                dxdxi = R1 * CtrlPts(Mesh.El(e, :), 1:2); 
                t1 = [dxdxi(1, :),0]; 
                t2 = [dxdxi(2, :),0]; 
                J1 = norm(cross(t1,t2)); 
                p = [0,-fi(ex,ey)]';%p=rho*g 
                R0Mat = zeros(2, 2 * Mesh.NEN); 
                R0Mat(1, 1 : Mesh.NEN) = R0; 
                R0Mat(2, Mesh.NEN + 1 : 2 * Mesh.NEN) = R0; 
                FVals(loc(:,e)) = FVals(loc(:,e)) + W * R0Mat' * p * J1 * J2; 
                dFdrhoeVals(loc(:,e),e) = dFdrhoeVals(loc(:,e),e) +  
W*R0Mat' * p/rho_estar(ex,ey) * J1 * J2; 
            end 
        end 
    end 
end 
dfswdrhoi = dFdrhoeVals*prhoe_prhoi; 
dfswdyi = dFdrhoeVals*prhoe_pyi; 
end 
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B1.13 Computing pV/px 

function df0dx = 
calc_df0dx_ConTen(Ve,prhoeStar_prhoi,prhoeStar_pyi,rho_estar) 
Ve = Ve./rho_estar; 
Ve1 = Ve(:); 
dVdrhoi = prhoeStar_prhoi'*Ve1; 

dVdyi = prhoeStar_pyi'*Ve1; 
dVdrhoi = dVdrhoi/max(abs(dVdrhoi)); 
dVdyi = dVdyi/max(abs(dVdyi)); 
df0dx = [dVdrhoi;dVdyi]; 

 

B1.14 Computing elastic matrix, strain matrix, and elemental displacement 

function [D,Be,ue] = calc_B_ue(NURBS, ParaPts, d, Mesh, E, nu, lab) 
    %2d only 
    KntVects = NURBS.KntVect; 
    CtrlPts = NURBS.CtrlPts4D; 
    D = getElastMat(E, nu, lab); 
    F1 = reshape(d, NURBS.NNP, [])'; 
    F2 = reshape(reshape(d, NURBS.NNP, [])', [size(F1, 1), 
NURBS.NCtrlPts]); 
    d = F2; 
    assert(iscell(KntVects), 'Knot vector(s) must be in cell format'); 
    assert(iscell(ParaPts), 'Parameter points must be in cell format'); 
    dim = numel(KntVects); 
    NCtrlPts = size(CtrlPts); 
    p = zeros(1, dim); 
    Idx = cell(1, dim); 
    N01 = cell(1, dim); 
    for i = 1 : dim 
        p(i) = numel(KntVects{i}) - NCtrlPts(i + 1) - 1; 
        Idx{i} = FindSpan(NCtrlPts(i + 1), p(i), ParaPts{i}, KntVects{i}); 
        N01{i} = DersBasisFuns(Idx{i}, ParaPts{i}, p(i), 1, KntVects{i}); 
    end 
    NPts = cellfun(@numel, ParaPts); 
    nen = prod(p + 1); 
    g = zeros([dim, size(d, 1), NPts]); 
    Be = zeros([3, 2*(p(1)+1)*(p(2)+1), NPts]); 
    ue = zeros([2*(p(1)+1)*(p(2)+1), 1, NPts]); 
    N0 = zeros(1, nen); 
    N1 = zeros(dim, nen); 
    j_max = NPts(2); 
    parfor i = 1 : NPts(1) 
        [ue(:,:,i,:),Be(:,:,i,:)] = 
calc_dRdx(i,j_max,d,Idx,N0,N01,N1,p,CtrlPts,Mesh,nen); 
    end 
    Be = reshape(Be,size(Be,1),size(Be,2),[]); 
    ue = reshape(ue,size(ue,1),size(ue,2),[]); 
end 
 

function [ue,Be] = 
calc_dRdx(i,j_max,d,Idx,N0,N01,N1,p,CtrlPts,Mesh,nen) 
    for j = 1 : j_max 
        de = d(:, Idx[181](i) - p(1) : Idx[181](i), Idx[181](j) - p(2) : 
Idx[181](j)); 
        Weights = CtrlPts(4, Idx[181](i) - p(1) : Idx[181](i), Idx[181](j) - 
p(2) : Idx[181](j)); 
        xye = bsxfun(@rdivide, CtrlPts(1 : 2, Idx[181](i) - p(1) : Idx[181](i), 
Idx[181](j) - p(2) : Idx[181](j)), Weights); 
        k = 1; 
        for jk = 1 : p(2) + 1 
            for ik = 1 : p(1) + 1 
                N0(k) = N01[181](i, ik, 1) * N01[181](j, jk, 1); 
                N1(1, k) = N01[181](i, ik, 2) * N01[181](j, jk, 1); 
                N1(2, k) = N01[181](i, ik, 1) * N01[181](j, jk, 2); 
                k = k + 1; 
            end 
        end 
        [~, R1] = Rationalize(reshape(Weights, 1, []), N0, N1); 
        ue(:,:,j) = reshape(reshape(de, 2,[])',1,[])'; 
        dxdxi = R1 * reshape(xye, [], nen)'; 
        %parallel calculation, solve the issue of multiple small-scale inv 
        dRdx = dxdxi^(-1) * R1; 
        % B matrix 
        %        _                                      _ 
        %          |  N_1,x  N_2,x  ...      0      0  ...   | 
        %  B  =  |      0      0  ...  N_1,y  N_2,y        | 
        %          |  N_1,y  N_2,y  ...  N_1,x  N_2,x| 
        %        -                                      - 
        B = zeros(3, 2 * Mesh.NEN); 
        B(1, 1 : Mesh.NEN) = dRdx(1, :); 
        B(2, Mesh.NEN + 1 : end) = dRdx(2, :); 
        B(3, 1 : Mesh.NEN) = dRdx(2, :); 
        B(3, Mesh.NEN + 1 : end) = dRdx(1, :); 
        Be(:,:,j) = B; 
    end 
end 
 

 

B1.15 Computing elemental D-P stress 

function [ele_dp,ele_s,alpha,H,J2,he] = 
Drucker_Prager_paper(rho_ParaPts,Be,D_Mat,ue,theg_c,theg_t,epsi,
rho_min) 
V = [1,-0.5,0;-0.5,1,0;0,0,3]; 
ele_dp = zeros(size(rho_ParaPts,1),1); 
ele_s = zeros(size(rho_ParaPts,1),3); 
I1 = zeros(size(rho_ParaPts,1),1); 
J2 = zeros(size(rho_ParaPts,1),1); 
w = [1,1,0]; 
alpha = (theg_c-theg_t)/(theg_c+theg_t)/sqrt(3); 
H = 2*theg_c*theg_t/(theg_c+theg_t)/sqrt(3); 

he = zeros(size(rho_ParaPts,1),1); 
penalty_s = 0.5; 
for i = 1:length(rho_ParaPts) 
    ele_s(i,:) = 
(D_Mat*Be(:,:,i)*ue(:,:,i))'.*(rho_ParaPts(i).^penalty_s+rho_min); 
    I1(i) = w*ele_s(i,:)'; 
    J2(i) = ele_s(i,:)*V*ele_s(i,:)'/3; 
    he(i) = 1-epsi+epsi/rho_ParaPts(i); 
    ele_dp(i) = (alpha*I1(i)+sqrt(J2(i)))/H; 
end 
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B1.16 Plotting current design 

function 
rho_ehat=PlotTopo(Surf_Den,Mesh,rho_CtrlPts,Tendon_Refine,... 
    
miu_pre,beta_fil,beta_HS,eta_ero,eta_dil,TendonLoc,tendon_x,tend
on_y,FixedTopRatio) 
refine_level = 10; 
xi = linspace(0, 1, refine_level*Mesh.NElDir(1)); % parametric points 
eta = linspace(0, 1, refine_level*Mesh.NElDir(2)); % parametric points 
% elvaluate the parametric points to plot the surface 
CtrlPts = 
[Surf_Den.CtrlPts4D;reshape(rho_CtrlPts,[1,size(rho_CtrlPts)])]; 
c = gray; 
c = flipud(c); 
colormap(c) 
xi_e = (xi(1:end-1)+xi(2:end))/2; 
eta_e = (eta(1:end-1)+eta(2:end))/2; 
Sw_e = BsplineEval(Surf_Den.KntVect, CtrlPts, {xi_e, eta_e}); 
[~, m_e, n_e] = size(Sw_e); 
w_e = Sw_e(4, :, :); 
S_e = bsxfun(@rdivide, Sw_e, w_e); 
x_e = reshape(S_e(1, :, :), m_e, n_e); 
y_e = reshape(S_e(2, :, :), m_e, n_e); 
z_e = reshape(S_e(3, :, :), m_e, n_e); 
rho_e = reshape(S_e(5, :, :), m_e, n_e);%permute(S_e(5, :, :),[2,3,1]); 
rho_ehat = 
TendonModiDensity_ForPlot([x_e(:),y_e(:),z_e(:)]',Tendon_Refine,rho
_e,miu_pre,beta_fil); 
rho_ero = (tanh(beta_HS*eta_ero)+tanh(beta_HS*(rho_ehat-
eta_ero)))/... 
    (tanh(beta_HS*eta_ero)+tanh(beta_HS*(1-eta_ero))); 
rho_estar = (tanh(beta_HS*eta_dil)+tanh(beta_HS*(rho_ero-
eta_dil)))/... 

    (tanh(beta_HS*eta_dil)+tanh(beta_HS*(1-eta_dil))); 
NFixLayer = floor(FixedTopRatio*length(eta_e)); 
rho_estar(:,end-NFixLayer:end) = 1; 
x_e_plt = [flipud(x_e);-x_e]; 
y_e_plt = [flipud(y_e);y_e]; 
z_e_plt = [flipud(z_e);z_e]; 
rho_estar_plt = [flipud(rho_estar);rho_estar]; 
surf(x_e_plt, y_e_plt, z_e_plt, rho_estar_plt); 
axis normal; 
caxis([0 1]); axis off; view(0,90);shading 
interp;drawnow;colormap(flipud(gray)) 
TendonLoc_x_plt = [fliplr(-1*TendonLoc(1,2:end)),TendonLoc(1,:)]; 
TendonLoc_y_plt = [fliplr(TendonLoc(2,2:end)),TendonLoc(2,:)]; 
tendon_x_plt = [fliplr(-1*tendon_x(2:end)),tendon_x]; 
tendon_y_plt = [fliplr(tendon_y(2:end)),tendon_y]; 
plot(TendonLoc_x_plt,TendonLoc_y_plt,'LineWidth',1.5,'Color','c') 
plot(tendon_x_plt,tendon_y_plt,'*c','MarkerSize',6) 
end 
 
function rho_ehat = 
TendonModiDensity_ForPlot(ConcreteLoc,Tendon_Refine,rho_e,miu
_pre,beta_fil) 
    TendonLoc = Tendon_Refine.CtrlPts3D; 
    distMat = pdist2(TendonLoc',ConcreteLoc'); 
    dist = min(distMat);%dist_id is the closest tendon CP for i-th Con-
CP 
    %Super Gaussian 
    rho_i = rho_e(:); 
    rho_modi = exp(-0.5*(dist/beta_fil).^miu_pre)'; 
    rho_ehat = rho_i+(1-rho_i).*rho_modi; 
    rho_ehat = reshape(rho_ehat,size(rho_e)); 
end 

 

B1.17 Computing pS_dp/px 

function dfdx = 
calc_dfdx_ConTen_DP(ele_dp,ele_s,cp,he,miu,rho_ParaPts,... 
    
Be,D_Mat,ue,d,K,edof,FreeIdcs,BdryIdcs,BdryVals,Mesh,KE,alpha,H,J2
,epsi,... 
    
prhoe_prhoi,prhoe_pyi,dfswdrhoi,dfswdyi,dFCondy,penalty,rho_min) 
KE = reshape(KE,size(KE,1),size(KE,2),[]); 
rho_ParaPts = rho_ParaPts(:); 
drhoe_dx = [prhoe_prhoi,prhoe_pyi]; 
dfsw_dx = [dfswdrhoi,dfswdyi]; 
dfpre_dx = [zeros(size(dfswdrhoi)),dFCondy]; 
pGks_pphife = exp(miu*ele_dp)/sum(exp(miu*ele_dp)); 
w0 = [1,1,0];V = [1,-0.5,0;-0.5,1,0;0,0,3]; 
pphife_pthege = 
(repmat(alpha*w0,length(ele_s),1)+ele_s*V./(3*repmat(J2,1,3).^0.5))
/H./he; 
comp1 = zeros(1,size(drhoe_dx,2)); 
pphife_phe = -ele_dp./he; 
dhe_drhoe = -epsi./rho_ParaPts.^2; 
penalty_s = 0.5; 
for i = 1:length(rho_ParaPts) 
    pthege_prhoe = penalty_s*rho_ParaPts(i)^(penalty_s-
1)*D_Mat*Be(:,:,i)*ue(:,:,i); 
    comp1 = comp1+cp*pGks_pphife(i)*(... 
        pphife_pthege(i,:)*pthege_prhoe*drhoe_dx(i,:)+... 
        pphife_phe(i)*dhe_drhoe(i)*drhoe_dx(i,:)); 

end 
%adjoint method 
A = zeros(1,size(d,1)); 
for i = 1:length(rho_ParaPts) 
    pthege_pu = (rho_ParaPts(i).^penalty_s+rho_min)*D_Mat*Be(:,:,i); 
    A(edof(i,:)) = A(edof(i,:))-cp*pGks_pphife(i)*... 
        pphife_pthege(i,:)*pthege_pu; 
end 
lambda_KS = zeros(Mesh.NDof, 1); 
lambda_KS(BdryIdcs) = BdryVals; 
lambda_KS(FreeIdcs) = K(FreeIdcs, FreeIdcs) \ A(FreeIdcs)';%??? 
lambda_KS_e = extract(edof,lambda_KS); 
dfdx = comp1; 
for i = 1:length(rho_ParaPts) 
    adjEleComp = lambda_KS_e(i,:)*KE(:,:,i)*ue(:,:,i); 
    trm1 = rho_ParaPts(i).^penalty+rho_min; trm2 = 
penalty*rho_ParaPts(i).^(penalty-1); 
    dfdx = dfdx+adjEleComp*trm2/trm1*drhoe_dx(i,:); 
end 
dfdx = (dfdx - lambda_KS'*(dfsw_dx+dfpre_dx))'; 
dfdx(1:size(dfswdrhoi,2)) = 
dfdx(1:size(dfswdrhoi,2))./max(abs(dfdx(1:size(dfswdrhoi,2)))); 
dfdx(end+1-size(dfswdyi,2):end) = dfdx(end+1-
size(dfswdyi,2):end)./max(abs(dfdx(end+1-size(dfswdyi,2):end))); 
dfdx = dfdx./max(abs(dfdx)); 
end 

 

B1.18 Updated MMA function to enable different move limits of concrete density and 
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tendon shape variables 

function [xmma,ymma,zmma,lam,xsi,eta,mu,zet,s,low,upp] = ... 
mmasub_PC(m,n,iter,xval,xmin,xmax,xold1,xold2, ... 
f0val,df0dx,fval,dfdx,low,upp,a0,a,c,d,NCP_Tendon) 
epsimin = 10^(-10);  
raa0 = 0.01; 
albefa = 0.4;   
asyinit = 0.1; 
asyincr = 0.8; 
asydecr = 0.6; 
eeen = ones(n,1); 
eeem = ones(m,1); 
zeron = zeros(n,1); 
% Calculation of the asymptotes low and upp : 
if iter < 2.5                                   %Eq 3.11 
  low = xval - asyinit*(xmax-xmin); 
  upp = xval + asyinit*(xmax-xmin); 
else 
  zzz = (xval-xold1).*(xold1-xold2);            %Eq 3.13 
  factor = eeen; 
  factor(find(zzz > 0)) = asyincr; 
  factor(find(zzz < 0)) = asydecr; 
  low = xval - factor.*(xold1 - low); 
  upp = xval + factor.*(upp - xold1);           %Eq 3.12 
  xval1 = xval(1:end-NCP_Tendon);xmin1 = xmin(1:end-
NCP_Tendon);xmax1 = xmax(1:end-NCP_Tendon); 
  xval2 = xval(end-NCP_Tendon+1:end);xmin2 = xmin(end-
NCP_Tendon+1:end);xmax2 = xmax(end-NCP_Tendon+1:end); 
%   ff1 = 2e-2; 
  if iter < 50 
      ff1 = 2e-1; 
      ff2 = 2e-1; 
  elseif iter<150 
      ff1 = 1e-1; 
      ff2 = 5e-2; 
  else 
      ff1 = 2e-1; 
      ff2 = 5e-3; 
  end 
  low1min = xval1 - ff1*(xmax1-xmin1);low2min = xval2 - ff2*(xmax2-
xmin2); 
  low1max = xval1 - ff1*(xmax1-xmin1);low2max = xval2 - ff2*(xmax2-
xmin2); 
  upp1min = xval1 + ff1*(xmax1-xmin1);upp2min = xval2 + 
ff2*(xmax2-xmin2); 
  upp1max = xval1 + ff1*(xmax1-xmin1);upp2max = xval2 + 
ff2*(xmax2-xmin2); 
  lowmin = [low1min;low2min]; 
  lowmax = [low1max;low2max]; 
  uppmin = [upp1min;upp2min]; 
  uppmax = [upp1max;upp2max]; 
  low = max(low,lowmin); 
  low = min(low,lowmax); 
  upp = min(upp,uppmax); 
  upp = max(upp,uppmin); 

end 
% Calculation of the bounds alfa and beta : 
 
zzz = low + albefa*(xval-low);              %Eq 3.6 
alfa = max(zzz,xmin); 
zzz = upp - albefa*(upp-xval);              %Eq 3.7 
beta = min(zzz,xmax); 
 
% Calculations of p0, q0, P, Q and b. 
 
xmami = xmax-xmin; 
xmamieps = 0.00001*eeen; 
xmami = max(xmami,xmamieps); 
xmamiinv = eeen./xmami; 
ux1 = upp-xval; 
ux2 = ux1.*ux1; 
xl1 = xval-low; 
xl2 = xl1.*xl1; 
uxinv = eeen./ux1; 
xlinv = eeen./xl1; 
% 
p0 = zeron; 
q0 = zeron; 
% p0 = max(df0dx,0); 
% q0 = max(-df0dx,0); 
p0(find(df0dx > 0)) = df0dx(find(df0dx > 0)); %Eq3.3 for objective 
function 
q0(find(df0dx < 0)) = -df0dx(find(df0dx < 0)); 
pq0 = 0.001*(p0 + q0) + raa0*xmamiinv; 
p0 = p0 + pq0; 
q0 = q0 + pq0; 
p0 = p0.*ux2; 
q0 = q0.*xl2; 
% 
% P = sparse(m,n); 
% Q = sparse(m,n); 
P = zeros(m,n); 
Q = zeros(m,n); 
% P = max(dfdx,0); 
% Q = max(-dfdx,0); 
P(find(dfdx > 0)) = dfdx(find(dfdx > 0)); 
Q(find(dfdx < 0)) = -dfdx(find(dfdx < 0)); 
PQ = 0.001*(P + Q) + raa0*eeem*xmamiinv'; 
P = P + PQ; 
Q = Q + PQ; 
P = P * spdiags(ux2,0,n,n); 
Q = Q * spdiags(xl2,0,n,n); 
b = P*uxinv + Q*xlinv - fval ;   
%-Eq 3.5 
% 
%%% Solving the subproblem by a primal-dual Newton method 
[xmma,ymma,zmma,lam,xsi,eta,mu,zet,s] = ... 
subsolv(m,n,epsimin,low,upp,alfa,beta,p0,q0,P,Q,a0,a,b,c,d); 
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Appendix C 

C1 Main script in Python  

(library dependency: numpy, scipy, PyQt5, matplotlib, pyevtk, pyvista) 

(API dependency: matlab, opensees) 

The version of OpenSees with IGA elements can be found in  

https://openseesforfire.github.io 

import matlab.engine 
import numpy as np 
import scipy.io as scio 
import os 
os.add_dll_directory('C:\\program files\\tcl\\bin') 
import sys 
from opensees import * 
from PyQt5 import QtWidgets, QtCore, sip 
from OPS_ITO_GUI import Ui_Form 
import time 
import matplotlib 
matplotlib.use('Qt5Agg') 
from matplotlib.backends.backend_qt5agg import 
FigureCanvasQTAgg as FigureCanvas 
from matplotlib.figure import Figure 
from pyevtk.hl import gridToVTK 
import pyvista as pv 
from pyvistaqt import QtInteractor 
import time 
class MyMplCanvasTopo2D(FigureCanvas): 
 def __init__(self, parent=None): 
  self.fig = 
Figure(figsize=(1.8,1.1),tight_layout=True,facecolor='0.95') 
  self.axes = self.fig.add_subplot(111) 
  self.axes.set_aspect("equal") 
  self.axes.set_xticks([]) 
  self.axes.set_yticks([]) 
  FigureCanvas.__init__(self, self.fig) 
  self.setParent(parent) 
 def updateTopo2D(self,loc_x,loc_y,rhoi_plt): 
  self.axes.cla() 
  self.axes.set_xticks([]) 
  self.axes.set_yticks([]) 
  self.axes.axis('off') 
  self.Cont = 
self.axes.contourf(loc_x,loc_y,rhoi_plt,100,vmin=0,vmax=1,cmap=ma
tplotlib.cm.Greys) 
  self.fig.canvas.draw()# redraw the canvas 
  self.fig.canvas.flush_events()# update the canvas 
class MyVtkTopo3D(): 
 def __init__(self, widget): 
  self.widget = widget 
  self.vtk_widget = QtInteractor(self.widget) 
  self.vtk_widget.set_background('white') 

 def updateTopo3D(self,loop,loc_x,loc_y,loc_z,rhoi_plt): 
  if loop == 1: 
   self.grid = 
pv.StructuredGrid(loc_x,loc_y,loc_z) 
   self.grid.point_data["rho"] = 
rhoi_plt.flatten(order="F") 
  
 self.vtk_widget.add_mesh(self.grid,clim=[0,1],show_scalar_ba
r=False, opacity='linear',cmap='Greys') 
   self.vtk_widget.show() 
  else: 
   self.grid.point_data["rho"] = 
rhoi_plt.flatten(order="F") 
  if np.remainder(loop,5)==0: 
   fileName = "./Topology"+str(loop) 
  
 gridToVTK(fileName,loc_x,loc_y,loc_z,pointData={'rho' :rhoi_pl
t}) 
class MyMplCanvasLine(FigureCanvas): 
 def __init__(self, parent=None): 
  self.fig = 
Figure(figsize=(1.8,1.1),linewidth=0.5,tight_layout=True,facecolor='0.
95',edgecolor='0.95') 
  self.axes = self.fig.add_subplot(111) 
  self.axes.tick_params(labelsize=5) 
  self.line, = self.axes.plot([],[],color="black") 
  FigureCanvas.__init__(self, self.fig) 
  self.setParent(parent) 
class OPSITOThread(QtCore.QThread): 
 signal = QtCore.pyqtSignal(str) 
 finished = QtCore.pyqtSignal() 
 return_2Dfig = QtCore.pyqtSignal(object, object, object, object, 
object, object) 
 return_3Dfig = QtCore.pyqtSignal(object, object, object, object, 
object, object, object) 
 def __init__(self, Inputs): 
  super(OPSITOThread, self).__init__() 
  self.flag = True 
  self.Inputs = Inputs 
 def __del__(self): 
  print(">>> __del__") 
 def Sim2DInit(self,MatTag,OptType): 
  wipe() 
  model('basic', '-ndm', 2, '-ndf', 2) 
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  PreOutput = 
scio.loadmat("Output.mat")['PreOutput'][0,0] 
  CtrlPts = PreOutput['CtrlPts'] 
  NdId = 0 
  for i in CtrlPts.T: 
   NdId += 1 
   node(NdId,i[0],i[1])  
  ConPts = PreOutput['ConDofList'].astype(int).tolist() 
  for i in ConPts: 
   fix(i[0],i[1],i[2]) 
  MatProp = PreOutput['MatProp'][0].tolist() 
  nDMaterial(MatTag, 1, MatProp[0], MatProp[1]) 
  NElDir = PreOutput['NElDir'][0].astype(int).tolist() 
  Order = PreOutput['Order'][0].astype(int).tolist() 
  ElCPs = PreOutput['El'] 
  KntVectX = PreOutput['KntVectX'] 
  nKntVectX = np.size(KntVectX) 
  KntVectY = PreOutput['KntVectY'] 
  nKntVectY = np.size(KntVectY) 
  Weight = PreOutput['Weight'] 
  rho_eHat = PreOutput['rhoeHat'] 
  cnt = 0 
  for i in range(1,NElDir[1]+1): 
   for j in range(1,NElDir[0]+1): 
    cnt += 1 
   
 element('IGAQuad',j,NElDir[0],i,NElDir[1],Order[0],Order[1],El
CPs[cnt-
1].tolist(),nKntVectX,KntVectX[0].tolist(),nKntVectY,KntVectY[0].tolist(
),float(rho_eHat[cnt-1]),Weight[cnt-1].tolist(),1.0,'PlaneStress',1) 
  timeSeries("Linear", 1) 
  pattern("Plain", 1, 1) 
  LoadPts = PreOutput['LoadDofList'] 
  for i in LoadPts: 
   load(int(i[0]),float(i[1]),float(i[2])) 
  system("SuperLU") 
  numberer("RCM") 
  constraints("Plain") 
  integrator("LoadControl", 1.0) 
  algorithm("Linear") 
  analysis("Static") 
  analyze(1) 
  NEl = int(PreOutput['NEl']) 
  NCPs = int(PreOutput['NCPs']) 
  u = np.zeros([NCPs,2],dtype = float) 
  Ve = np.zeros([NEl,1],dtype = float) 
  NEN = int(PreOutput['NEN']) 
  Ke = np.zeros([NEN*2*NEN*2,NEl],dtype = float) 
  SimOutput = {} 
  for i in range(1,NCPs+1):# read the disp response of 
all dofs 
   u[i-1,0] = nodeResponse(i,1,1) 
   u[i-1,1] = nodeResponse(i,2,1) 
  for i in range(1,NEl+1): 
   Ve[i-1] = eleResponse(i,'Ve') 
   Ke[:,i-1] = 
eleResponse(i,'elementalStiffness') 
  if OptType == 'minComp' or OptType == 
'minCompSimi': 
  
 scio.savemat('SimOutput.mat',{'u':u,'Ve':Ve,'Ke':Ke}) 
  elif OptType == 'minVol':# need shp & Stress 
   shp = np.zeros([NEN*NEN*2,NEl],dtype 
= float) 
   stress = np.zeros([3*NEN,NEl],dtype = 
float) 
   for i in range(1,NEl+1): 
    shp[:,i-1] = 
eleResponse(i,'elementalBe') 
    stress[:,i-1] = 
eleResponse(i,'stress') 

  
 scio.savemat('SimOutput.mat',{'u':u,'Ve':Ve,'Ke':Ke,'shp':shp,'s
tress':stress}) 
  reset()#revert the domain to the original state 
 def Sim2DIter(self,OptType): 
  PreOutput = 
scio.loadmat("Output.mat")['PreOutput'][0,0] 
  rho_e = PreOutput['rhoeHat'].T.tolist()[0] 
  NEl = int(PreOutput['NEl']) 
  NCPs = int(PreOutput['NCPs']) 
  updateIGADensity(len(rho_e),rho_e) 
  analyze(1) 
  u = np.zeros([NCPs,2],dtype = float) 
  Ve = np.zeros([NEl,1],dtype = float) 
  NEN = int(PreOutput['NEN']) 
  Ke = np.zeros([NEN*2*NEN*2,NEl],dtype = float) 
  SimOutput = {} 
  for i in range(1,NCPs+1):# read the disp response of 
all dofs 
   u[i-1,0] = nodeResponse(i,1,1) 
   u[i-1,1] = nodeResponse(i,2,1) 
  for i in range(1,NEl+1): 
   Ve[i-1] = eleResponse(i,'Ve') 
   Ke[:,i-1] = 
eleResponse(i,'elementalStiffness') 
  if OptType == 'minComp' or OptType == 
'minCompSimi': 
  
 scio.savemat('SimOutput.mat',{'u':u,'Ve':Ve,'Ke':Ke}) 
  elif OptType == 'minVol':# need shp & Stress 
   shp = np.zeros([NEN*NEN*2,NEl],dtype 
= float) 
   stress = np.zeros([NEN*3,NEl],dtype = 
float) 
   for i in range(1,NEl+1): 
    shp[:,i-1] = 
eleResponse(i,'elementalBe') 
    stress[:,i-1] = 
eleResponse(i,'stress') 
  
 scio.savemat('SimOutput.mat',{'u':u,'Ve':Ve,'Ke':Ke,'shp':shp,'s
tress':stress}) 
  reset()#revert the domain to the original state 
 def AdjSim2D(self): 
  LoadDatasAdj = 
scio.loadmat("AdjInfos.mat")['AdjInfos'][0,0]['LoadDatas'] 
  PreOutput = 
scio.loadmat("Output.mat")['PreOutput'][0,0] 
  LoadDofList = PreOutput['LoadDofList'] 
  NCPs = int(PreOutput['NCPs']) 
  remove('loadPattern',1) 
  pattern("Plain", 1, 1) 
  # define the adjoint vector 
  for i in LoadDatasAdj: 
   load(int(i[0]),float(i[1]),float(i[2])) 
  analyze(1) 
  u = np.zeros([NCPs,2],dtype = float) 
  for i in range(1,NCPs+1):# read the disp response of 
all dofs 
   u[i-1,0] = nodeResponse(i,1,1) 
   u[i-1,1] = nodeResponse(i,2,1) 
  scio.savemat('SimAdjOutput.mat',{'u':u}) 
  # redefine the load 
  remove('loadPattern',1) 
  pattern("Plain", 1, 1) 
  for i in LoadDofList: 
   load(int(i[0]),float(i[1]),float(i[2])) 
  reset() 
 def replot2D(self): 
  VisDatas = 
scio.loadmat("Output.mat")['VisDatas'][0,0] 
  # plot the topology distribution 
  loc_x = VisDatas['loc_x'] 
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  loc_y = VisDatas['loc_y'] 
  rhoi_plt = VisDatas['rhoi_plt'] 
  loopHist = VisDatas['loopHist'][0] 
  ObjHist = VisDatas['f0valHist'][0] 
  ConsHist = VisDatas['fvalHist'][0] 
  self.return_2Dfig.emit(loc_x, loc_y, rhoi_plt, 
loopHist, ObjHist, ConsHist) 
 def Sim3DInit(self,MatTag,OptType): 
  wipe() 
  model('basic', '-ndm', 3, '-ndf', 3) 
  PreOutput = 
scio.loadmat("Output.mat")['PreOutput'][0,0] 
  CtrlPts = PreOutput['CtrlPts'] 
  NdId = 0 
  for i in CtrlPts.T: 
   NdId += 1 
   node(NdId,i[0],i[1],i[2]) 
  ConPts = PreOutput['ConDofList'].astype(int).tolist() 
  for i in ConPts: 
   fix(i[0],i[1],i[2],i[3]) 
  MatProp = PreOutput['MatProp'][0].tolist() 
  nDMaterial(MatTag, 1, MatProp[0], MatProp[1]) 
  NElDir = PreOutput['NElDir'][0].astype(int).tolist() 
  Order = PreOutput['Order'][0].astype(int).tolist() 
  ElCPs = PreOutput['El'] 
  KntVectX = PreOutput['KntVectX'] 
  nKntVectX = np.size(KntVectX) 
  KntVectY = PreOutput['KntVectY'] 
  nKntVectY = np.size(KntVectY) 
  KntVectZ = PreOutput['KntVectZ'] 
  nKntVectZ = np.size(KntVectZ) 
  Weight = PreOutput['Weight'] 
  rho_eHat = PreOutput['rhoeHat'] 
  cnt = 0 
  for k in range(1,NElDir[2]+1): 
   for j in range(1,NElDir[1]+1): 
    for i in range(1,NElDir[0]+1): 
     cnt += 1 
    
 element('IGABrick',i,NElDir[0],j,NElDir[1],k,NElDir[2],Order[0],
Order[1],Order[2],ElCPs[cnt-1].tolist(), 
   
 nKntVectX,KntVectX[0].tolist(),nKntVectY,KntVectY[0].tolist(),n
KntVectZ,KntVectZ[0].tolist(),float(rho_eHat[cnt-1]),Weight[cnt-
1].tolist(),1) 
  timeSeries("Linear", 1) 
  pattern("Plain", 1, 1) 
  LoadPts = PreOutput['LoadDofList'] 
  for i in LoadPts: 
  
 load(int(i[0]),float(i[1]),float(i[2]),float(i[3])) 
  system("SuperLU") 
  numberer("RCM") 
  constraints("Plain") 
  integrator("LoadControl", 1.0) 
  algorithm("Linear") 
  analysis("Static") 
  analyze(1) 
  NEl = int(PreOutput['NEl']) 
  NCPs = int(PreOutput['NCPs']) 
  u = np.zeros([NCPs,3],dtype = float) 
  Ve = np.zeros([NEl,1],dtype = float) 
  NEN = int(PreOutput['NEN']) 
  Ke = np.zeros([NEN*3*NEN*3,NEl],dtype = float) 
  SimOutput = {} 
  for i in range(1,NCPs+1):# read the disp response of 
all dofs 
   u[i-1,0] = nodeResponse(i,1,1) 
   u[i-1,1] = nodeResponse(i,2,1) 
   u[i-1,2] = nodeResponse(i,3,1) 
  for i in range(1,NEl+1): 
   Ve[i-1] = eleResponse(i,'Ve') 

   Ke[:,i-1] = 
eleResponse(i,'elementalStiffness') 
  scio.savemat('SimOutput.mat',{'u':u,'Ve':Ve,'Ke':Ke}) 
  reset()#revert the domain to the original state 
 def Sim3DIter(self,OptType): 
  PreOutput = 
scio.loadmat("Output.mat")['PreOutput'][0,0] 
  rho_e = PreOutput['rhoeHat'].T.tolist()[0] 
  NEl = int(PreOutput['NEl']) 
  NCPs = int(PreOutput['NCPs']) 
  updateIGADensity(len(rho_e),rho_e) 
  analyze(1) 
  u = np.zeros([NCPs,3],dtype = float) 
  Ve = np.zeros([NEl,1],dtype = float) 
  NEN = int(PreOutput['NEN']) 
  Ke = np.zeros([NEN*3*NEN*3,NEl],dtype = float) 
  SimOutput = {} 
  for i in range(1,NCPs+1):# read the disp response of 
all dofs 
   u[i-1,0] = nodeResponse(i,1,1) 
   u[i-1,1] = nodeResponse(i,2,1) 
   u[i-1,2] = nodeResponse(i,3,1) 
  for i in range(1,NEl+1): 
   Ve[i-1] = eleResponse(i,'Ve') 
   Ke[:,i-1] = 
eleResponse(i,'elementalStiffness') 
  scio.savemat('SimOutput.mat',{'u':u,'Ve':Ve,'Ke':Ke}) 
  reset()#revert the domain to the original state 
 def replot3D(self): 
  VisDatas = 
scio.loadmat("Output.mat")['VisDatas'][0,0] 
  loc_x = VisDatas['loc_x'] 
  loc_y = VisDatas['loc_y'] 
  loc_z = VisDatas['loc_z'] 
  rhoi_plt = VisDatas['rhoi_plt'] 
  loopHist = VisDatas['loopHist'][0] 
  ObjHist = VisDatas['f0valHist'][0] 
  ConsHist = VisDatas['fvalHist'][0] 
  self.return_3Dfig.emit(loc_x, loc_y, loc_z, rhoi_plt, 
loopHist, ObjHist, ConsHist) 
 def run(self): 
  if self.Inputs['Dimension'] == '2D': 
   MaxIter = int(self.Inputs['MaxIter']) 
   OptType = self.Inputs['OptType'] 
   MatTag = self.Inputs['MatTag'] 
   if OptType == 'minComp' or OptType == 
'minCompSimi': 
    time_start = time.time() 
    loop = eng.Pre2D(self.Inputs) 
   
 self.Sim2DInit(MatTag,OptType) 
    loop = 
eng.SenOpt2DMinComp(self.Inputs) 
    time_end = time.time() 
    print("Elapsed time: ", 
time_end-time_start, "s") 
    self.replot2D() 
    while int(loop) < MaxIter and 
self.flag: 
     time_start = 
time.time() 
    
 self.Sim2DIter(OptType) 
     loop = 
eng.SenOpt2DMinComp(self.Inputs) 
    
 self.signal.emit(str(int(loop/MaxIter*100))) 
     time_end = 
time.time() 
     print("Elapsed 
time: ", time_end-time_start, "s") 
     self.replot2D() 
   elif OptType == 'minVol': 
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    time_start = time.time() 
    loop = eng.Pre2D(self.Inputs) 
   
 self.Sim2DInit(MatTag,OptType) 
   
 eng.SenOpt2DMinVolAdj(nargout=0)# build adjoint model 
    self.AdjSim2D()# calculate 
the adjoint vector for dSdx 
    loop = 
eng.SenOpt2DMinVol(self.Inputs) 
    time_end = time.time() 
    print("Elapsed time: ", 
time_end-time_start, "s") 
    self.replot2D() 
    while int(loop) < MaxIter and 
self.flag: 
     time_start = 
time.time() 
    
 self.Sim2DIter(OptType) 
    
 eng.SenOpt2DMinVolAdj(nargout=0)# build adjoint model 
    
 self.AdjSim2D()#calculate the adjoint vector for dSdx 
     loop = 
eng.SenOpt2DMinVol(self.Inputs) 
    
 self.signal.emit(str(int(loop/MaxIter*100))) 
     time_end = 
time.time() 
     print("Elapsed 
time: ", time_end-time_start, "s") 
     self.replot2D() 
   print('>>> optimization end: ') 
   self.finished.emit() 
  elif self.Inputs['Dimension'] == '3D': 
   if self.Inputs['OptType'] == 'minVol': 
    print("Error: current 3D 
minVol model is unsupported!") 
    return 
   time_start = time.time() 
   loop = eng.Pre3D(self.Inputs) 
   MaxIter = int(self.Inputs['MaxIter']) 
   OptType = self.Inputs['OptType'] 
   MatTag = self.Inputs['MatTag'] 
   self.Sim3DInit(MatTag,OptType) 
   loop = 
eng.SenOpt3DMinComp(self.Inputs) 
   self.replot3D() 
   time_end = time.time() 
   print("Elapsed time: ", time_end-
time_start, "s") 
   while int(loop) < MaxIter and self.flag: 
    time_start = time.time() 
    self.Sim3DIter(OptType) 
    loop = 
eng.SenOpt3DMinComp(self.Inputs) 
   
 self.signal.emit(str(int(loop/MaxIter*100))) 
    self.replot3D() 
    time_end = time.time() 
    print("Elapsed time: ", 
time_end-time_start, "s") 
   print('>>> optimization end: ') 
   self.finished.emit() 
class MyOPSITO_GUI(QtWidgets.QWidget, Ui_Form): 
 initFlag = True 
 def __init__(self, parent=None): 
  super(MyOPSITO_GUI, self).__init__(parent) 
  self.setupUi(self) 
  self.StartButton.clicked.connect(self.runMainOpt) 

 
 self.InterruptButton.clicked.connect(self.interruptMainOpt)
  
  self.ObjPlot = MyMplCanvasLine(self.ObjWidget) 
  self.ConsPlot = MyMplCanvasLine(self.ConsWidget) 
 def runMainOpt(self): 
  self.Inputs = {} 
  if self.buttonGroup.checkedId() == -2: # Default geo 
model input is activated 
   self.Inputs['Sizes'] = self.SizesEdit.text() 
   self.Inputs['Orders'] = 
self.OrdersEdit.text() 
   self.Inputs['NEls'] = self.NElsEdit.text() 
   self.Inputs['GeoInputType'] = 'Default' 
  elif self.buttonGroup.checkedId() == -3: # User 
input geo model is activated 
   self.Inputs['GeoModelPath'] = 
self.PathOfGeoModelEdit.text() 
   self.Inputs['GeoInputType'] = 'User 
input' 
  self.Inputs['MatTag'] = self.MatTagBox.currentText() 
  self.Inputs['MatProp'] = self.MatPropEdit.text() 
  self.Inputs['BCs'] = self.BCsEdit.toPlainText() 
  self.Inputs['Loads'] = self.LoadsEdit.toPlainText() 
  self.Inputs['ConstVal'] = self.ConsValEdit.text() 
  self.Inputs['MaxIter'] = self.MaxIterEdit.text() 
  self.Inputs['MMAPars'] = self.MMAParsEdit.text() 
  self.Inputs['Penalty'] = self.PenaltyEdit.text() 
  self.Inputs['StpPenalty'] = 
self.StpPntCheckBox.isChecked() 
  self.Inputs['Projection'] = self.PrjEdit.text() 
  self.Inputs['StpPrj'] = 
self.StpPrjCheckBox.isChecked() 
  self.Inputs['PrjThreshold'] = self.PrjThrEdit.text() 
  self.Inputs['rmin'] = self.rminEdit.text() 
  self.Inputs['OptType'] = 
self.OptTypeBox.currentText() 
  self.Inputs['Dimension'] = 
self.DimensionBox.currentText() 
  if self.initFlag == False: 
   item = self.vertical_layout.itemAt(0) 
   self.vertical_layout.removeItem(item) 
   item.widget().deleteLater() 
  if self.Inputs['Dimension'] == '2D': 
   if self.initFlag == True: 
    self.vertical_layout = 
QtWidgets.QVBoxLayout() 
   
 self.TopoWidget.setLayout(self.vertical_layout) 
   self.TopoPlot = 
MyMplCanvasTopo2D(self.TopoWidget) 
  
 self.vertical_layout.addWidget(self.TopoPlot) 
  elif self.Inputs['Dimension'] == '3D': 
   if self.initFlag == True: 
    self.vertical_layout = 
QtWidgets.QVBoxLayout() 
   
 self.TopoWidget.setLayout(self.vertical_layout) 
   self.TopoPlot = 
MyVtkTopo3D(self.TopoWidget) 
  
 self.vertical_layout.addWidget(self.TopoPlot.vtk_widget) 
  self.OPSITOThread = OPSITOThread(self.Inputs) 
  self.OPSITOThread.signal.connect(self.call_backlog) 
 
 self.OPSITOThread.finished.connect(self.finishedMainOpt) 
 
 self.OPSITOThread.return_2Dfig.connect(self.plot2D) 
 
 self.OPSITOThread.return_3Dfig.connect(self.plot3D) 
  self.OPSITOThread.flag = True 
  self.StartButton.setEnabled(False) 
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  self.OPSITOThread.start() 
 def interruptMainOpt(self): 
  if not self.OPSITOThread.isRunning(): 
   return 
  self.StartButton.setEnabled(True) 
  self.OPSITOThread.flag = False 
  self.initFlag = False 
  print(">>> stop thread...") 
  self.OPSITOThread.quit() 
  self.OPSITOThread.wait() 
  print(">>> stop thread end...") 
 def finishedMainOpt(self): 
  self.StartButton.setEnabled(True) 
  self.initFlag = False 
  self.OPSITOThread.flag = False 
  self.OPSITOThread.quit() 
  self.OPSITOThread.wait() 
 def call_backlog(self, msg): 
  self.progressBar.setValue(int(msg))# update the 
parameter to progress bar 
 def plot2D(self, loc_x, loc_y, rhoi_plt, loopHist, ObjHist, 
ConsHist): 
  self.TopoPlot.updateTopo2D(loc_x, loc_y, rhoi_plt) 
  self.ObjPlot.line.set_data([loopHist, ObjHist]) 
  self.ObjPlot.axes.set_xlim([loopHist.min()-
0.1*abs(loopHist.max()),loopHist.max()+0.1*abs(loopHist.max())]) 
  self.ObjPlot.axes.set_ylim([ObjHist.min()-
0.1*abs(ObjHist.max()), ObjHist.max()+0.1*abs(ObjHist.max())]) 
  self.ObjPlot.draw() 
  self.ConsPlot.line.set_data([loopHist, ConsHist]) 

  self.ConsPlot.axes.set_xlim([loopHist.min()-
0.1*abs(loopHist.max()),loopHist.max()+0.1*abs(loopHist.max())]) 
  self.ConsPlot.axes.set_ylim([ConsHist.min()-
0.1*abs(ConsHist.max()), ConsHist.max()+0.1*abs(ConsHist.max())]) 
  self.ConsPlot.draw() 
 def plot3D(self, loc_x, loc_y, loc_z, rhoi_plt, loopHist, ObjHist, 
ConsHist): 
  #print('come to plot3D, is the gui frozen?') 
  self.TopoPlot.updateTopo3D(loopHist[-1],loc_x, 
loc_y, loc_z, rhoi_plt) 
  self.ObjPlot.line.set_data([loopHist, ObjHist]) 
  self.ObjPlot.axes.set_xlim([loopHist.min()-
0.1*abs(loopHist.max()),loopHist.max()+0.1*abs(loopHist.max())]) 
  self.ObjPlot.axes.set_ylim([ObjHist.min()-
0.1*abs(ObjHist.max()), ObjHist.max()+0.1*abs(ObjHist.max())]) 
  self.ObjPlot.draw() 
  self.ConsPlot.line.set_data([loopHist, ConsHist]) 
  self.ConsPlot.axes.set_xlim([loopHist.min()-
0.1*abs(loopHist.max()),loopHist.max()+0.1*abs(loopHist.max())]) 
  self.ConsPlot.axes.set_ylim([ConsHist.min()-
0.1*abs(ConsHist.max()), ConsHist.max()+0.1*abs(ConsHist.max())]) 
  self.ConsPlot.draw() 
 
if __name__ == '__main__': 
 # start matlab engine 
 eng = matlab.engine.start_matlab() 
 # call the GUI 
 app = QtWidgets.QApplication(sys.argv) 
 myWin = MyOPSITO_GUI() 
 myWin.show() 
 app.exec_() 

 

C2 Python script of the Graphical User Interface of OPS-ITO 

from PyQt5 import QtCore, QtGui, QtWidgets 
class Ui_Form(object): 
    def setupUi(self, Form): 
        Form.setObjectName("Form") 
        Form.resize(445, 609) 
        self.StartButton = QtWidgets.QPushButton(Form) 
        self.StartButton.setGeometry(QtCore.QRect(60, 560, 81, 31)) 
        font = QtGui.QFont() 
        font.setPointSize(12) 
        font.setBold(True) 
        font.setWeight(75) 
        self.StartButton.setFont(font) 
        self.StartButton.setObjectName("StartButton") 
        self.InterruptButton = QtWidgets.QPushButton(Form) 
        self.InterruptButton.setGeometry(QtCore.QRect(290, 560, 91, 
31)) 
        font = QtGui.QFont() 
        font.setPointSize(12) 
        font.setBold(True) 
        font.setWeight(75) 
        self.InterruptButton.setFont(font) 
        self.InterruptButton.setObjectName("InterruptButton") 
        self.GeoGroupBox = QtWidgets.QGroupBox(Form) 
        self.GeoGroupBox.setGeometry(QtCore.QRect(20, 70, 201, 131)) 
        self.GeoGroupBox.setObjectName("GeoGroupBox") 
        self.DefaultGeoButton = 
QtWidgets.QRadioButton(self.GeoGroupBox) 
        self.DefaultGeoButton.setGeometry(QtCore.QRect(120, 30, 61, 
17)) 
        self.DefaultGeoButton.setChecked(True) 
        self.DefaultGeoButton.setObjectName("DefaultGeoButton") 
        self.buttonGroup = QtWidgets.QButtonGroup(Form) 
        self.buttonGroup.setObjectName("buttonGroup") 

        self.buttonGroup.addButton(self.DefaultGeoButton) 
        self.SizesLabel = QtWidgets.QLabel(self.GeoGroupBox) 
        self.SizesLabel.setGeometry(QtCore.QRect(10, 20, 31, 21)) 
        self.SizesLabel.setObjectName("SizesLabel") 
        self.OrdersLabel = QtWidgets.QLabel(self.GeoGroupBox) 
        self.OrdersLabel.setGeometry(QtCore.QRect(10, 40, 41, 21)) 
        self.OrdersLabel.setObjectName("OrdersLabel") 
        self.GeoPathLabel = QtWidgets.QLabel(self.GeoGroupBox) 
        self.GeoPathLabel.setGeometry(QtCore.QRect(10, 80, 101, 21)) 
        self.GeoPathLabel.setObjectName("GeoPathLabel") 
        self.PathOfGeoModelEdit = 
QtWidgets.QLineEdit(self.GeoGroupBox) 
        self.PathOfGeoModelEdit.setGeometry(QtCore.QRect(10, 100, 
181, 20)) 
        
self.PathOfGeoModelEdit.setObjectName("PathOfGeoModelEdit") 
        self.SizesEdit = QtWidgets.QLineEdit(self.GeoGroupBox) 
        self.SizesEdit.setGeometry(QtCore.QRect(50, 20, 61, 20)) 
        self.SizesEdit.setObjectName("SizesEdit") 
        self.OrdersEdit = QtWidgets.QLineEdit(self.GeoGroupBox) 
        self.OrdersEdit.setGeometry(QtCore.QRect(50, 40, 61, 20)) 
        self.OrdersEdit.setObjectName("OrdersEdit") 
        self.NElsLabel = QtWidgets.QLabel(self.GeoGroupBox) 
        self.NElsLabel.setGeometry(QtCore.QRect(10, 60, 41, 21)) 
        self.NElsLabel.setObjectName("NElsLabel") 
        self.NElsEdit = QtWidgets.QLineEdit(self.GeoGroupBox) 
        self.NElsEdit.setGeometry(QtCore.QRect(50, 60, 61, 20)) 
        self.NElsEdit.setObjectName("NElsEdit") 
        self.UserInputGeoButton = 
QtWidgets.QRadioButton(self.GeoGroupBox) 
        self.UserInputGeoButton.setGeometry(QtCore.QRect(120, 50, 71, 
17)) 
        self.UserInputGeoButton.setObjectName("UserInputGeoButton") 
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        self.buttonGroup.addButton(self.UserInputGeoButton) 
        self.label = QtWidgets.QLabel(Form) 
        self.label.setGeometry(QtCore.QRect(180, 10, 101, 21)) 
        font = QtGui.QFont() 
        font.setPointSize(10) 
        font.setBold(True) 
        font.setWeight(75) 
        self.label.setFont(font) 
        self.label.setObjectName("label") 
        self.MatBCsGroupBox = QtWidgets.QGroupBox(Form) 
        self.MatBCsGroupBox.setGeometry(QtCore.QRect(20, 200, 201, 
171)) 
        self.MatBCsGroupBox.setObjectName("MatBCsGroupBox") 
        self.MatTagLabel = QtWidgets.QLabel(self.MatBCsGroupBox) 
        self.MatTagLabel.setGeometry(QtCore.QRect(10, 20, 41, 21)) 
        self.MatTagLabel.setObjectName("MatTagLabel") 
        self.MatPropLabel = QtWidgets.QLabel(self.MatBCsGroupBox) 
        self.MatPropLabel.setGeometry(QtCore.QRect(10, 50, 41, 21)) 
        self.MatPropLabel.setObjectName("MatPropLabel") 
        self.MatPropEdit = QtWidgets.QLineEdit(self.MatBCsGroupBox) 
        self.MatPropEdit.setGeometry(QtCore.QRect(60, 50, 61, 20)) 
        self.MatPropEdit.setObjectName("MatPropEdit") 
        self.BCsLabel = QtWidgets.QLabel(self.MatBCsGroupBox) 
        self.BCsLabel.setGeometry(QtCore.QRect(10, 90, 41, 21)) 
        self.BCsLabel.setObjectName("BCsLabel") 
        self.BCsEdit = QtWidgets.QPlainTextEdit(self.MatBCsGroupBox) 
        self.BCsEdit.setGeometry(QtCore.QRect(60, 80, 131, 41)) 
        self.BCsEdit.setObjectName("BCsEdit") 
        self.LoadsLabel = QtWidgets.QLabel(self.MatBCsGroupBox) 
        self.LoadsLabel.setGeometry(QtCore.QRect(10, 130, 41, 21)) 
        self.LoadsLabel.setObjectName("LoadsLabel") 
        self.LoadsEdit = QtWidgets.QPlainTextEdit(self.MatBCsGroupBox) 
        self.LoadsEdit.setGeometry(QtCore.QRect(60, 120, 131, 41)) 
        self.LoadsEdit.setObjectName("LoadsEdit") 
        self.MatTagBox = QtWidgets.QComboBox(self.MatBCsGroupBox) 
        self.MatTagBox.setGeometry(QtCore.QRect(60, 20, 101, 22)) 
        self.MatTagBox.setObjectName("MatTagBox") 
        self.MatTagBox.addItem("") 
        self.OptParsGroupBox = QtWidgets.QGroupBox(Form) 
        self.OptParsGroupBox.setGeometry(QtCore.QRect(20, 380, 201, 
171)) 
        self.OptParsGroupBox.setObjectName("OptParsGroupBox") 
        self.ConsValLabel = QtWidgets.QLabel(self.OptParsGroupBox) 
        self.ConsValLabel.setGeometry(QtCore.QRect(10, 20, 41, 21)) 
        self.ConsValLabel.setObjectName("ConsValLabel") 
        self.MMAParsLabel = QtWidgets.QLabel(self.OptParsGroupBox) 
        self.MMAParsLabel.setGeometry(QtCore.QRect(10, 50, 51, 21)) 
        self.MMAParsLabel.setObjectName("MMAParsLabel") 
        self.MMAParsEdit = QtWidgets.QLineEdit(self.OptParsGroupBox) 
        self.MMAParsEdit.setGeometry(QtCore.QRect(60, 50, 61, 20)) 
        self.MMAParsEdit.setObjectName("MMAParsEdit") 
        self.PenaltyLabel = QtWidgets.QLabel(self.OptParsGroupBox) 
        self.PenaltyLabel.setGeometry(QtCore.QRect(10, 80, 41, 21)) 
        self.PenaltyLabel.setObjectName("PenaltyLabel") 
        self.ConsValEdit = QtWidgets.QLineEdit(self.OptParsGroupBox) 
        self.ConsValEdit.setGeometry(QtCore.QRect(60, 20, 31, 20)) 
        self.ConsValEdit.setObjectName("ConsValEdit") 
        self.MaxIterEdit = QtWidgets.QLineEdit(self.OptParsGroupBox) 
        self.MaxIterEdit.setGeometry(QtCore.QRect(150, 20, 31, 20)) 
        self.MaxIterEdit.setObjectName("MaxIterEdit") 
        self.MaxIterLabel = QtWidgets.QLabel(self.OptParsGroupBox) 
        self.MaxIterLabel.setGeometry(QtCore.QRect(100, 20, 41, 21)) 
        self.MaxIterLabel.setObjectName("MaxIterLabel") 
        self.PenaltyEdit = QtWidgets.QLineEdit(self.OptParsGroupBox) 
        self.PenaltyEdit.setGeometry(QtCore.QRect(70, 80, 31, 20)) 
        self.PenaltyEdit.setObjectName("PenaltyEdit") 
        self.StpPntCheckBox = 
QtWidgets.QCheckBox(self.OptParsGroupBox) 
        self.StpPntCheckBox.setGeometry(QtCore.QRect(120, 80, 70, 17)) 
        self.StpPntCheckBox.setChecked(True) 
        self.StpPntCheckBox.setObjectName("StpPntCheckBox") 
        self.ProjectionLabel = QtWidgets.QLabel(self.OptParsGroupBox) 
        self.ProjectionLabel.setGeometry(QtCore.QRect(10, 110, 51, 21)) 

        self.ProjectionLabel.setObjectName("ProjectionLabel") 
        self.PrjEdit = QtWidgets.QLineEdit(self.OptParsGroupBox) 
        self.PrjEdit.setGeometry(QtCore.QRect(70, 110, 31, 20)) 
        self.PrjEdit.setObjectName("PrjEdit") 
        self.StpPrjCheckBox = 
QtWidgets.QCheckBox(self.OptParsGroupBox) 
        self.StpPrjCheckBox.setGeometry(QtCore.QRect(120, 110, 70, 
17)) 
        self.StpPrjCheckBox.setChecked(True) 
        self.StpPrjCheckBox.setObjectName("StpPrjCheckBox") 
        self.ProjThresholdLabel = 
QtWidgets.QLabel(self.OptParsGroupBox) 
        self.ProjThresholdLabel.setGeometry(QtCore.QRect(10, 140, 71, 
21)) 
        self.ProjThresholdLabel.setObjectName("ProjThresholdLabel") 
        self.PrjThrEdit = QtWidgets.QLineEdit(self.OptParsGroupBox) 
        self.PrjThrEdit.setGeometry(QtCore.QRect(80, 140, 31, 20)) 
        self.PrjThrEdit.setObjectName("PrjThrEdit") 
        self.rminLabel = QtWidgets.QLabel(self.OptParsGroupBox) 
        self.rminLabel.setGeometry(QtCore.QRect(120, 140, 21, 21)) 
        self.rminLabel.setObjectName("rminLabel") 
        self.rminEdit = QtWidgets.QLineEdit(self.OptParsGroupBox) 
        self.rminEdit.setGeometry(QtCore.QRect(150, 140, 31, 20)) 
        self.rminEdit.setObjectName("rminEdit") 
        self.DimLabel = QtWidgets.QLabel(Form) 
        self.DimLabel.setGeometry(QtCore.QRect(30, 20, 51, 21)) 
        self.DimLabel.setObjectName("DimLabel") 
        self.OptTypeLabel = QtWidgets.QLabel(Form) 
        self.OptTypeLabel.setGeometry(QtCore.QRect(30, 40, 51, 21)) 
        self.OptTypeLabel.setObjectName("OptTypeLabel") 
        self.TopologyLabel = QtWidgets.QLabel(Form) 
        self.TopologyLabel.setGeometry(QtCore.QRect(320, 70, 51, 21)) 
        self.TopologyLabel.setObjectName("TopologyLabel") 
        self.ConsHistLabel = QtWidgets.QLabel(Form) 
        self.ConsHistLabel.setGeometry(QtCore.QRect(300, 220, 91, 21)) 
        self.ConsHistLabel.setObjectName("ConsHistLabel") 
        self.ObjHistLabel = QtWidgets.QLabel(Form) 
        self.ObjHistLabel.setGeometry(QtCore.QRect(300, 390, 91, 21)) 
        self.ObjHistLabel.setObjectName("ObjHistLabel") 
        self.progressBar = QtWidgets.QProgressBar(Form) 
        self.progressBar.setGeometry(QtCore.QRect(300, 40, 118, 23)) 
        self.progressBar.setProperty("value", 0) 
        self.progressBar.setObjectName("progressBar") 
        self.DimensionBox = QtWidgets.QComboBox(Form) 
        self.DimensionBox.setGeometry(QtCore.QRect(80, 20, 69, 22)) 
        self.DimensionBox.setObjectName("DimensionBox") 
        self.DimensionBox.addItem("") 
        self.DimensionBox.addItem("") 
        self.OptTypeBox = QtWidgets.QComboBox(Form) 
        self.OptTypeBox.setGeometry(QtCore.QRect(80, 40, 69, 22)) 
        self.OptTypeBox.setObjectName("OptTypeBox") 
        self.OptTypeBox.addItem("") 
        self.OptTypeBox.addItem("") 
        self.OptTypeBox.addItem("") 
        self.TopoWidget = QtWidgets.QWidget(Form) 
        self.TopoWidget.setGeometry(QtCore.QRect(240, 100, 191, 121)) 
        self.TopoWidget.setObjectName("TopoWidget") 
        self.ConsWidget = QtWidgets.QWidget(Form) 
        self.ConsWidget.setGeometry(QtCore.QRect(240, 250, 191, 121)) 
        self.ConsWidget.setObjectName("ConsWidget") 
        self.ObjWidget = QtWidgets.QWidget(Form) 
        self.ObjWidget.setGeometry(QtCore.QRect(240, 420, 191, 121)) 
        self.ObjWidget.setObjectName("ObjWidget") 
 
        self.retranslateUi(Form) 
        QtCore.QMetaObject.connectSlotsByName(Form) 
    def retranslateUi(self, Form): 
        _translate = QtCore.QCoreApplication.translate 
        Form.setWindowTitle(_translate("Form", "Form")) 
        self.StartButton.setText(_translate("Form", "Start")) 
        self.InterruptButton.setText(_translate("Form", "Interrupt")) 
        self.GeoGroupBox.setTitle(_translate("Form", "geometric 
model")) 
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        self.DefaultGeoButton.setText(_translate("Form", "Default")) 
        self.SizesLabel.setText(_translate("Form", "Sizes")) 
        self.OrdersLabel.setText(_translate("Form", "Orders")) 
        self.GeoPathLabel.setText(_translate("Form", "Path of Geo 
model:")) 
        self.SizesEdit.setText(_translate("Form", "5 3")) 
        self.OrdersEdit.setText(_translate("Form", "1 1")) 
        self.NElsLabel.setText(_translate("Form", "NEls")) 
        self.NElsEdit.setText(_translate("Form", "100 60")) 
        self.UserInputGeoButton.setText(_translate("Form", "User 
input")) 
        self.label.setText(_translate("Form", "GUI of OPS-ITO")) 
        self.MatBCsGroupBox.setTitle(_translate("Form", "Material and 
BCs")) 
        self.MatTagLabel.setText(_translate("Form", "MatTag")) 
        self.MatPropLabel.setText(_translate("Form", "MatProp")) 
        self.MatPropEdit.setText(_translate("Form", "2e11 0.3")) 
        self.BCsLabel.setText(_translate("Form", "BCs")) 
        self.BCsEdit.setPlainText(_translate("Form", "1 UX @(x,y)1\n" 
"1 UY @(x,y)1")) 
        self.LoadsLabel.setText(_translate("Form", "Loads")) 
        self.LoadsEdit.setPlainText(_translate("Form", "2 FY @(x,y)-
3e6*(abs(y)<=0.2)")) 
        self.MatTagBox.setItemText(0, _translate("Form", 
"ElasticIsotropic")) 
        self.OptParsGroupBox.setTitle(_translate("Form", 
"OptParameters")) 
        self.ConsValLabel.setText(_translate("Form", "ConsVal")) 

        self.MMAParsLabel.setText(_translate("Form", "MMAPars")) 
        self.MMAParsEdit.setText(_translate("Form", "2 1 1 2")) 
        self.PenaltyLabel.setText(_translate("Form", "Penalty")) 
        self.ConsValEdit.setText(_translate("Form", "0.5")) 
        self.MaxIterEdit.setText(_translate("Form", "200")) 
        self.MaxIterLabel.setText(_translate("Form", "MaxIter")) 
        self.PenaltyEdit.setText(_translate("Form", "3")) 
        self.StpPntCheckBox.setText(_translate("Form", "StpPenalty")) 
        self.ProjectionLabel.setText(_translate("Form", "Projection")) 
        self.PrjEdit.setText(_translate("Form", "5")) 
        self.StpPrjCheckBox.setText(_translate("Form", "StpPrj")) 
        self.ProjThresholdLabel.setText(_translate("Form", 
"ProjThreshold")) 
        self.PrjThrEdit.setText(_translate("Form", "0.5")) 
        self.rminLabel.setText(_translate("Form", "rmin")) 
        self.rminEdit.setText(_translate("Form", "0.15")) 
        self.DimLabel.setText(_translate("Form", "Dimension")) 
        self.OptTypeLabel.setText(_translate("Form", "OptType")) 
        self.TopologyLabel.setText(_translate("Form", "Topology")) 
        self.ConsHistLabel.setText(_translate("Form", "Constraint 
history")) 
        self.ObjHistLabel.setText(_translate("Form", "Objective history")) 
        self.DimensionBox.setItemText(0, _translate("Form", "2D")) 
        self.DimensionBox.setItemText(1, _translate("Form", "3D")) 
        self.OptTypeBox.setItemText(0, _translate("Form", "minComp")) 
        self.OptTypeBox.setItemText(1, _translate("Form", "minVol")) 
        self.OptTypeBox.setItemText(2, _translate("Form", 
"minCompSimi")) 

 

C3 The OPS-ITO tool written in MATLAB 

C3.1 2D pre-process 

function loop = Pre2D(Inputs) 
addpath(genpath(fullfile(pwd,'SRC'))) 
Inputs = struct(Inputs); 
mmaMoveLimits = str2double(strsplit(Inputs.MMAPars,' ')); 
BCs = strsplit(Inputs.BCs,'\n'); 
numBCs = size(BCs,2); 
for i = 1:numBCs 
    BC_temp = strsplit(BCs{i},' '); 
    Disp{i,1} = str2double(BC_temp[181]); 
    Disp{i,2} = BC_temp[181]; 
    Disp{i,3} = str2func(BC_temp{3}); 
end 
Forces = strsplit(Inputs.Loads,'\n'); 
if isempty(Forces{end})% the end line is empty! 
    numLoads = size(Forces,2)-1; 
else 
    numLoads = size(Forces,2); 
end 
for i = 1:numLoads 
    force_temp = strsplit(Forces{i},' '); 
    force{i,1} = str2double(force_temp[181]); 
    force{i,2} = force_temp[181]; 
    force{i,3} = str2func(force_temp{3}); 
end 
MatProp = str2double(strsplit(Inputs.MatProp,' ')); 
%% generate the mesh model 
if strcmpi(Inputs.GeoInputType,'Default') 
    Sizes = str2double(strsplit(Inputs.Sizes,' ')); 
    Orders = str2double(strsplit(Inputs.Orders,' ')); 
    NEls = str2double(strsplit(Inputs.NEls,' ')); 
    L = Sizes(1);D = Sizes(2); 
    CtrlPts = zeros(4, 2, 2); 
    CtrlPts(1 : 3, 1, 1) = [0; -D/2; 0]; 

    CtrlPts(1 : 3, 2, 1) = [L; -D/2; 0]; 
    CtrlPts(1 : 3, 1, 2) = [0; D/2; 0]; 
    CtrlPts(1 : 3, 2, 2) = [L; D/2; 0]; 
    CtrlPts(4, :, :) = 1; 
    KntVect[181] = [0 0 1 1]; 
    KntVect[181] = [0 0 1 1]; 
    Surf = CreateNURBS(KntVect, CtrlPts); 
    p=Orders(1);q=Orders(2); 
    kx=1;ky=1; 
    nelx=NEls(1); nely=NEls(2); 
    Surf = KRefine(Surf, [nelx, nely], [p, q], [p-kx, q-ky]); 
    Mesh = Mesh2D(Surf, 'VectorField'); 
elseif strcmpi(Inputs.GeoInputType,'User input') 
    GeoModelPath = Inputs.GeoModelPath; 
    ModelDatas = load(GeoModelPath); 
    Surf = ModelDatas.Surf; 
    Mesh = Mesh2D(Surf, 'VectorField'); 
    nelx = Mesh.NElDir(1); nely = Mesh.NElDir(2); 
end 
if Inputs.StpPenalty == 1 
    penalty = 1; 
elseif Inputs.StpPenalty == 0 
    penalty = str2double(Inputs.Penalty); 
end 
if Inputs.StpPrj == 1 
    beta_HS = 0.1; 
elseif Inputs.StpPrj == 0 
    beta_HS = str2double(Inputs.Projection); 
end 
check_x = linspace(0,1,2*nelx+1); 
check_y = linspace(0,1,2*nely+1); 
node_x = check_x(2:2:end); 
node_y = check_y(2:2:end); 
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R_Center = FindInterpFunc(Surf,{node_x, node_y}); 
R_Center = sparse(R_Center); 
xloc_CtrlPts = reshape(Surf.CtrlPts3D(1,:,:),1,[]); 
yloc_CtrlPts = reshape(Surf.CtrlPts3D(2,:,:),1,[]); 
rmin = str2double(Inputs.rmin); HS_th = 
str2double(Inputs.PrjThreshold); 
%% modify the rho_e 
if strcmpi(Inputs.OptType,'minComp') || 
strcmpi(Inputs.OptType,'minVol') 
    loc_CPs = [xloc_CtrlPts',yloc_CtrlPts']; 
    dist = pdist2(loc_CPs,loc_CPs); 
    weight = rmin-dist; 
    weight(weight<0) = 0; 
    weight = weight./(sum(weight,2)); 
    weight = sparse(weight); 
    rho_CPs = 0.5*ones(Surf.NCtrlPts); 
    rhoi_hat = weight*rho_CPs(:); 
    rhoe_hat = reshape(R_Center*rhoi_hat,Mesh.NElDir); 
    rhoe_star = (tanh(beta_HS*HS_th)+tanh(beta_HS*(rhoe_hat-
HS_th)))/... 
        (tanh(beta_HS*HS_th)+tanh(beta_HS*(1-HS_th))); 
    prhoeStar_prhoeHat = diag(beta_HS*(1-
tanh(beta_HS*(rhoe_hat(:)-HS_th)).^2)/... 
        (tanh(beta_HS*HS_th)+tanh(beta_HS*(1-HS_th)))); 
    rho_e = reshape(rhoe_star,nelx,nely); 
    prhoe_prhoi = sparse(prhoeStar_prhoeHat*R_Center*weight); 
    dist_plt = pdist2(loc_CPs,loc_CPs);weight_plt = rmin-
dist_plt;weight_plt(weight_plt<0) = 0; 
    weight_plt = weight_plt./(sum(weight_plt,2));weight_plt = 
sparse(weight_plt); 
    rhoi_plt_hat = reshape(weight_plt*rho_CPs(:),Surf.NCtrlPts); 
    rhoi_plt = (tanh(beta_HS*HS_th)+tanh(beta_HS*(rhoi_plt_hat-
HS_th)))/... 
        (tanh(beta_HS*HS_th)+tanh(beta_HS*(1-HS_th))); 
    %export the MMA parameters 
    tnn = size(rho_CPs(:),1); 
    xy00 = rho_CPs(:); 
else 
    error('unsupported optimization type, please check') 
end 
numVar = length(xy00); 
xval=xy00; 
xold1 = xy00; 
xold2 = xy00; 
xmin=0*ones(tnn,1); 
xmax=ones(tnn,1); 
low   = xmin; 
upp   = xmax; 
numDV = length(low); 
m = 1; 
Var_num=tnn; 
c=1000*ones(m,1); 
dd=ones(m,1); 
a0=1; 
a=zeros(m,1); 
%% define BCs and Loads 
f = sparse(zeros(Mesh.NDof, 1)); 
ConDispVals = [];LoadVals = []; 
ConDispDofs = [];LoadDofs = []; 
for i = 1:numBCs 
    [UTemp, DofsTemp] = projDrchltBdryVals(Surf, Mesh, Disp{i,3}, 
Disp{i,1}, Disp{i,2}); 
    DofsTemp(abs(UTemp)<=0.2) = []; 
    UTemp(abs(UTemp)<=0.2) = []; 
    ConDispVals = [ConDispVals; UTemp]; 
    ConDispDofs = [ConDispDofs; DofsTemp]; 
end 
for i = 1:numLoads 
    [LoadTemp,DofsTemp] = applyNewmannBdryVals(Surf, Mesh, 
force{i,3}, force{i,1}, force{i,2}); 
    LoadVals = [LoadVals; LoadTemp]; 
    LoadDofs = [LoadDofs; DofsTemp]; 
end 

f(LoadDofs) = f(LoadDofs) + LoadVals; 
ff = sparse(zeros(size(f))); 
ff(1:2:end) = f(1:Surf.NNP); 
ff(2:2:end) = f(Surf.NNP+1:end); 
%% generate the output datas 
CtrlPts = reshape(Surf.CtrlPts3D,3,[]); 
% export constrained CPs list 
ConNdIds = rem(ConDispDofs,Surf.NNP); 
ConNdIds(ConNdIds==0) = Surf.NNP; 
ConDofIds = ceil(ConDispDofs/Surf.NNP); 
ConDofList = zeros(Surf.NNP,2); 
for i = 1:length(ConNdIds) 
    ConDofList(ConNdIds(i),ConDofIds(i)) = 1; 
end 
ConDofList = [(1:Surf.NNP)',ConDofList]; 
ConDofList(ConDofList(:,2)+ConDofList(:,3)==0,:) = []; 
% export loaded CPs list 
LoadNdIds = rem(LoadDofs,Surf.NNP); 
LoadNdIds(LoadNdIds==0) = Surf.NNP; 
LoadDofIds = ceil(LoadDofs/Surf.NNP); 
LoadDofList = zeros(Surf.NNP,2); 
for i = 1:length(LoadNdIds) 
    LoadDofList(LoadNdIds(i),LoadDofIds(i)) = LoadVals(i); 
end 
LoadDofList = [(1:Surf.NNP)',LoadDofList]; 
LoadDofList(abs(LoadDofList(:,2))+abs(LoadDofList(:,3))==0,:) = []; 
El = Mesh.El; 
rho_min = 1e-9; 
rho_eHat = (1-rho_min)*rho_e.^penalty+rho_min; 
Weights = reshape(Surf.Weights,1,[]); 
Const_value = str2double(strsplit(Inputs.ConstVal,' ')); 
loop = 0; 
loopHist = [];fvalHist = [];f0valHist = []; 
NEN = Mesh.NEN; 
PreOutput = {}; MMAPars = {}; VisDatas = {}; IterPars = {}; 
PreOutput.CtrlPts = CtrlPts;PreOutput.ConDofList = 
ConDofList;PreOutput.LoadDofList = LoadDofList; 
PreOutput.MatProp = MatProp;PreOutput.D0 = 
getElastMat(MatProp(1), MatProp(2), 
'PlaneStress');PreOutput.MatTag = Inputs.MatTag; 
PreOutput.NEN = NEN;PreOutput.El = El;PreOutput.NEl = Mesh.NEl; 
PreOutput.NCPs = prod(Surf.NCtrlPts); 
PreOutput.NElDir = Mesh.NElDir;PreOutput.Order = 
Surf.Order;PreOutput.El = Mesh.El; 
PreOutput.KntVectX = Surf.KntVect[181];PreOutput.KntVectY = 
Surf.KntVect[181];PreOutput.Weight = Weights(Mesh.El); 
PreOutput.rhoeHat = rho_eHat(:);PreOutput.OptType = 
Inputs.OptType; 
MMAPars.mmaMoveLimits = mmaMoveLimits;MMAPars.tnn = tnn; 
MMAPars.xy00 = xy00;MMAPars.numVar = numVar;MMAPars.xval = 
xval; 
MMAPars.xold1 = xold1;MMAPars.xold2 = xold2;MMAPars.xmin = 
xmin; 
MMAPars.xmax = xmax;MMAPars.low = low;MMAPars.upp = upp; 
MMAPars.numDV = numDV;MMAPars.m = m;MMAPars.Var_num = 
Var_num; 
MMAPars.c = c;MMAPars.dd = dd;MMAPars.a0 = a0;MMAPars.a = a; 
VisDatas.loc_x = reshape(xloc_CtrlPts,Surf.NCtrlPts);VisDatas.loc_y = 
reshape(yloc_CtrlPts,Surf.NCtrlPts); 
VisDatas.loop = loop;VisDatas.loopHist = loopHist;VisDatas.fvalHist = 
fvalHist; 
VisDatas.f0valHist = f0valHist;VisDatas.rhoi_plt = 
rhoi_plt;VisDatas.weight_plt = weight_plt; 
IterPars.Const_value = Const_value;IterPars.rho_min = 
rho_min;IterPars.rho_e = rho_e; 
IterPars.weight = weight;IterPars.R_Center = 
R_Center;IterPars.prhoe_prhoi = prhoe_prhoi; 
IterPars.ff = ff;IterPars.penalty = penalty;IterPars.beta_HS = beta_HS; 
IterPars.HS_th = HS_th;IterPars.Surf = Surf;IterPars.Mesh = Mesh; 
IterPars.ACS_c_old = 0;IterPars.ACS_c = 0; IterPars.ACS_a = 0; 
if strcmpi(Inputs.OptType,'minVol') 
    IterPars.ss = 0.8; 
end 
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save('Output.mat','PreOutput','MMAPars','VisDatas','IterPars'); end 

 

C3.2 2D min_compliance model 

function loop = SenOpt2DMinComp(Inputs) 
addpath(genpath(fullfile(pwd,'SRC'))) 
SimOutput = load('SimOutput.mat'); 
PreOutput = load('Output.mat').PreOutput; 
MMAPars = load('Output.mat').MMAPars; 
VisDatas = load('Output.mat').VisDatas; 
IterPars = load('Output.mat').IterPars; 
Surf = IterPars.Surf; 
Mesh = IterPars.Mesh; 
Ke = reshape(SimOutput.Ke,Mesh.NEN*2,Mesh.NEN*2,[]); 
rho_min = IterPars.rho_min; 
weight = IterPars.weight; 
R_Center = IterPars.R_Center; 
beta_HS = IterPars.beta_HS; 
HS_th = IterPars.HS_th; 
prhoe_prhoi = IterPars.prhoe_prhoi; 
VisDatas.loop = VisDatas.loop+1; 
loop = VisDatas.loop; 
if VisDatas.loop == 1 
    IterPars.InitVe = sum(SimOutput.Ve); 
end 
d = SimOutput.u; 
dx = d(:,1);dy = d(:,2); 
d = reshape(d',1,[]); 
ue = zeros(Mesh.NEl,2*Mesh.NEN); 
ue(:,1:2:end) = dx(Mesh.El); 
ue(:,2:2:end) = dy(Mesh.El); 
[f0val,df0dx] = 
calc_dCdx(IterPars.ff,d,IterPars.rho_e(:),ue,Ke,prhoe_prhoi,IterPars.p
enalty,IterPars.rho_min); 
[fval,dfdx] = 
calc_dVdx(IterPars.rho_e(:),prhoe_prhoi,SimOutput.Ve,IterPars.Const
_value); 
if loop == 1 
    IterPars.scl = f0val/10; 
end 
dgt0 = 5; 
dgt = dgt0 - floor(log10([max(abs(df0dx(:))) max(abs(dfdx(:)))])); 
f0val_mma = f0val/IterPars.scl; 
df0dx = df0dx/IterPars.scl; 
VisDatas.loopHist = [VisDatas.loopHist,VisDatas.loop]; 
VisDatas.fvalHist = [VisDatas.fvalHist,fval]; 
VisDatas.f0valHist = [VisDatas.f0valHist,f0val]; 
[xmma,~,~,~,~,~,~,~,~,MMAPars.low,MMAPars.upp] = ... 
    
mmasub(MMAPars.m,MMAPars.numDV,VisDatas.loop,MMAPars.xval
,MMAPars.xmin,MMAPars.xmax,MMAPars.xold1,MMAPars.xold2, ... 
    
f0val_mma,df0dx,fval,dfdx,MMAPars.low,MMAPars.upp,MMAPars.a
0,MMAPars.a,MMAPars.c,MMAPars.dd,MMAPars.mmaMoveLimits); 

MMAPars.xold2 = MMAPars.xold1; 
MMAPars.xold1 = MMAPars.xval; 
MMAPars.xval = xmma; 
if strcmpi(Inputs.OptType,'minComp') 
    rho_CPs = MMAPars.xval; 
    rho_CPs = reshape(rho_CPs,Surf.NCtrlPts); 
    rhoi_hat = weight*rho_CPs(:); 
    rhoe_hat = reshape(R_Center*rhoi_hat,Mesh.NElDir); 
    rhoe_star = (tanh(beta_HS*HS_th)+tanh(beta_HS*(rhoe_hat-
HS_th)))/... 
        (tanh(beta_HS*HS_th)+tanh(beta_HS*(1-HS_th))); 
    rhoi_plt_hat = 
reshape(VisDatas.weight_plt*rho_CPs(:),Surf.NCtrlPts); 
    VisDatas.rhoi_plt = 
(tanh(beta_HS*HS_th)+tanh(beta_HS*(rhoi_plt_hat-HS_th)))/... 
        (tanh(beta_HS*HS_th)+tanh(beta_HS*(1-HS_th))); 
    prhoeStar_prhoeHat = sparse(diag(beta_HS*(1-
tanh(beta_HS*(rhoe_hat(:)-HS_th)).^2)/... 
        (tanh(beta_HS*HS_th)+tanh(beta_HS*(1-HS_th))))); 
    IterPars.prhoe_prhoi = prhoeStar_prhoeHat*R_Center*weight; 
    IterPars.rho_e = rhoe_star;%rho_e 
end 
rhoeHat = (1-rho_min)*IterPars.rho_e.^IterPars.penalty+rho_min; 
PreOutput.rhoeHat = rhoeHat(:); 
if rem(VisDatas.loop,20) == 0 && VisDatas.loop >= 100 ... 
        && Inputs.StpPrj == 1 && IterPars.beta_HS < 
str2double(Inputs.Projection) 
    IterPars.beta_HS = IterPars.beta_HS + 1; 
end 
if rem(VisDatas.loop,10) == 0 && VisDatas.loop >= 10 ... 
        && Inputs.StpPenalty == 1 && IterPars.penalty < 
str2double(Inputs.Penalty) 
    IterPars.penalty = IterPars.penalty + 1; 
end 
disp([' It.: ' sprintf('%4i\t',VisDatas.loop) ' Obj.: ' sprintf('%7.5f\t',f0val) 
' S.t.: ' ... 
    sprintf('%7.5f\t',fval)]); 
if rem(VisDatas.loop,5) == 0 
   fig = figure('visible','off'); 
   surf(VisDatas.loc_x,VisDatas.loc_y,VisDatas.rhoi_plt); 
   axis equal; 
   caxis([0 1]); axis off; view(0,90);shading 
interp;drawnow;colormap(flipud(gray)); 
   saveas(fig,[num2str(VisDatas.loop),'.jpg']); 
end 
save('Output.mat','PreOutput','MMAPars','VisDatas','IterPars'); 
end 

 

C3.3 2D min_volume model (with Mises/D-P stress constriant) 

function loop = SenOpt2DMinVol(Inputs) 
addpath(genpath(fullfile(pwd,'SRC'))) 
SimOutput = load('SimOutput.mat'); 
PreOutput = load('Output.mat').PreOutput; 
MMAPars = load('Output.mat').MMAPars; 
VisDatas = load('Output.mat').VisDatas; 
IterPars = load('Output.mat').IterPars; 
AdjInfos = load('AdjInfos.mat').AdjInfos; 
SimAdjOutput = load('SimAdjOutput.mat'); 
Surf = IterPars.Surf; 
Mesh = IterPars.Mesh; 

Ke = reshape(SimOutput.Ke,Mesh.NEN*2,Mesh.NEN*2,[]); 
rho_min = IterPars.rho_min; 
weight = IterPars.weight; 
R_Center = IterPars.R_Center; 
beta_HS = IterPars.beta_HS; 
HS_th = IterPars.HS_th; 
VisDatas.loop = VisDatas.loop+1; 
loop = VisDatas.loop; 
if VisDatas.loop == 1 
    IterPars.InitVe = sum(SimOutput.Ve); 
end 
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d = SimOutput.u; 
dx = d(:,1);dy = d(:,2); 
d = reshape(d',1,[]); 
ue = zeros(Mesh.NEl,2*Mesh.NEN); 
ue(:,1:2:end) = dx(Mesh.El); 
ue(:,2:2:end) = dy(Mesh.El); 
Lambda_KS = SimAdjOutput.u; 
Lambda_dx = Lambda_KS(:,1);Lambda_dy = Lambda_KS(:,2); 
Lambda_ue = zeros(Mesh.NEl,2*Mesh.NEN); 
Lambda_ue(:,1:2:end) = Lambda_dx(Mesh.El); 
Lambda_ue(:,2:2:end) = Lambda_dy(Mesh.El); 
shp = SimOutput.shp; Stress = SimOutput.stress; 
NEleGPs = prod(Surf.Order+1); 
shp = reshape(shp,NEleGPs,2,[]); 
shp = permute(shp,[2,1,3]); 
Stress = reshape(Stress,3,[]); 
edof = zeros(size(Mesh.El,1),size(Mesh.El,2)*2); 
edof(:,1:2:end) = Mesh.El*2-1; 
edof(:,2:2:end) = Mesh.El*2; 
densPlot = Surf.CtrlPts4D; densPlot(3,:,:) = VisDatas.rhoi_plt; 
Sw = BsplineEval(Surf.KntVect, densPlot, Surf.uqKntVect); 
[~, m, n] = size(Sw); 
w = Sw(4, :, :); 
S = bsxfun(@rdivide, Sw, w); 
loc_x = reshape(S(1, :, :), m, n); 
loc_y = reshape(S(2, :, :), m, n); 
rhoi_Pars = reshape(S(3, :, :), m, n); 
[f0val,df0dx] = 
calc_dVdx(IterPars.rho_e(:),IterPars.prhoe_prhoi,SimOutput.Ve); 
fval = AdjInfos.fval; 
if length(IterPars.Const_value) == 1 
    [dfdx,IterPars.ACS_c_old,IterPars.ACS_c,IterPars.ACS_a,SPars] = 
calc_dSdx(... 
        
AdjInfos.ACS_c_old,AdjInfos.ACS_c,AdjInfos.ACS_a,Stress',ue,Lambda
_ue,shp,d,PreOutput.D0,Ke,IterPars.rho_e(:),... 
        
IterPars.penalty,rho_min,edof,IterPars.prhoe_prhoi,IterPars.Const_v
alue,Surf,Mesh,PreOutput.MatProp,IterPars.ss); 
elseif length(IterPars.Const_value) == 2% Drucker-Prager Stress index 
    [dfdx,IterPars.ACS_c_old,IterPars.ACS_c,IterPars.ACS_a,SPars] = 
calc_dSdx_DP(... 
        
AdjInfos.ACS_c_old,AdjInfos.ACS_c,AdjInfos.ACS_a,Stress',ue,Lambda
_ue,shp,d,PreOutput.D0,Ke,IterPars.rho_e(:),... 
        
IterPars.penalty,rho_min,edof,IterPars.prhoe_prhoi,IterPars.Const_v
alue,Surf,Mesh,PreOutput.MatProp,... 
        rhoi_Pars,IterPars.ss); 
end 
df0dx = df0dx/max(abs(df0dx)); 
dfdx = dfdx/max(abs(dfdx)); 
f0val = f0val/IterPars.InitVe; 
VisDatas.loopHist = [VisDatas.loopHist,VisDatas.loop]; 
VisDatas.fvalHist = [VisDatas.fvalHist,fval]; 
VisDatas.f0valHist = [VisDatas.f0valHist,f0val]; 
[xmma,~,~,~,~,~,~,~,~,MMAPars.low,MMAPars.upp] = ... 
    
mmasub(MMAPars.m,MMAPars.numDV,VisDatas.loop,MMAPars.xval
,MMAPars.xmin,MMAPars.xmax,MMAPars.xold1,MMAPars.xold2, ... 

    
f0val,df0dx,fval,dfdx,MMAPars.low,MMAPars.upp,MMAPars.a0,MM
APars.a,MMAPars.c,MMAPars.dd,MMAPars.mmaMoveLimits); 
MMAPars.xold2 = MMAPars.xold1; 
MMAPars.xold1 = MMAPars.xval; 
MMAPars.xval = xmma; 
rho_CPs = MMAPars.xval; 
rho_CPs = reshape(rho_CPs,Surf.NCtrlPts); 
rhoi_hat = weight*rho_CPs(:); 
rhoe_hat = reshape(R_Center*rhoi_hat,Mesh.NElDir); 
rhoe_star = (tanh(beta_HS*HS_th)+tanh(beta_HS*(rhoe_hat-
HS_th)))/... 
    (tanh(beta_HS*HS_th)+tanh(beta_HS*(1-HS_th))); 
rhoi_plt_hat = reshape(VisDatas.weight_plt*rho_CPs(:),Surf.NCtrlPts); 
VisDatas.rhoi_plt = 
(tanh(beta_HS*HS_th)+tanh(beta_HS*(rhoi_plt_hat-HS_th)))/... 
    (tanh(beta_HS*HS_th)+tanh(beta_HS*(1-HS_th))); 
prhoeStar_prhoeHat = diag(beta_HS*(1-tanh(beta_HS*(rhoe_hat(:)-
HS_th)).^2)/... 
    (tanh(beta_HS*HS_th)+tanh(beta_HS*(1-HS_th)))); 
IterPars.prhoe_prhoi = prhoeStar_prhoeHat*R_Center*weight; 
IterPars.rho_e = rhoe_star;%rho_e 
rhoeHat = (1-rho_min)*IterPars.rho_e.^IterPars.penalty+rho_min; 
PreOutput.rhoeHat = rhoeHat(:); 
if rem(VisDatas.loop,20) == 0 && VisDatas.loop >= 100 ... 
        && Inputs.StpPrj == 1 && IterPars.beta_HS < 
str2double(Inputs.Projection) 
    IterPars.beta_HS = IterPars.beta_HS + 1; 
end 
if rem(VisDatas.loop,10) == 0 && VisDatas.loop >= 10 ... 
        && Inputs.StpPenalty == 1 && IterPars.penalty < 
str2double(Inputs.Penalty) 
    IterPars.penalty = IterPars.penalty + 1; 
end 
disp([' It.: ' sprintf('%4i\t',VisDatas.loop) ' Obj.: ' sprintf('%7.5f\t',f0val) 
' S.t.: ' ... 
    sprintf('%7.5f\t',fval)]); 
if rem(loop,5) == 0 
   fig = figure('visible','off'); 
 
   surf(VisDatas.loc_x,VisDatas.loc_y,VisDatas.rhoi_plt); 
   axis equal; 
   caxis([0 1]); axis off; view(0,90);shading 
interp;drawnow;colormap(flipud(gray)); 
   saveas(fig,[num2str(loop),'.jpg']); 
   clf(fig); 
   surf(loc_x,loc_y,SPars); 
   if length(IterPars.Const_value) == 1% Mises Stress 
       caxis([0 max(SPars(:))]); 
   elseif length(IterPars.Const_value) == 2% D-P Stress 
       caxis([max(-1.5,min(SPars(:))) 0]); 
   end 
   axis equal;axis off; view(0,90);shading 
interp;drawnow;colormap(jet);colorbar; 
   saveas(fig,['Stress',num2str(loop),'.jpg']); 
end 
save('Output.mat','PreOutput','MMAPars','VisDatas','IterPars'); 
end 

 

C3.4 2D min_volume model (adjoint method part) 

function SenOpt2DMinVolAdj() 
addpath(genpath(fullfile(pwd,'SRC'))) 
SimOutput = load('SimOutput.mat'); 
PreOutput = load('Output.mat').PreOutput; 
VisDatas = load('Output.mat').VisDatas; 
IterPars = load('Output.mat').IterPars; 
Surf = IterPars.Surf; 
Mesh = IterPars.Mesh; 

AdjInfos = {}; 
VisDatas.loop = VisDatas.loop+1; 
loop = VisDatas.loop; 
if VisDatas.loop == 1 
    IterPars.InitVe = sum(SimOutput.Ve); 
end 
d = SimOutput.u; 
d = reshape(d',1,[]); 
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edof = zeros(size(Mesh.El,1),size(Mesh.El,2)*2); 
edof(:,1:2:end) = Mesh.El*2-1; 
edof(:,2:2:end) = Mesh.El*2; 
shp = SimOutput.shp; Stress = SimOutput.stress; 
NEleGPs = prod(Surf.Order+1); 
shp = reshape(shp,NEleGPs,2,[]); 
shp = permute(shp,[2,1,3]); 
Stress = reshape(Stress,3,[]); 
if length(IterPars.Const_value) == 1% Mises Stress 
    
[AdjInfos.fval,AdjInfos.ACS_c_old,AdjInfos.ACS_c,AdjInfos.ACS_a,AdjI
nfos.LoadDatas] = calc_dSdxAdj(loop,... 
        
IterPars.ACS_c_old,IterPars.ACS_c,IterPars.ACS_a,Stress',shp,d,PreOu
tput.D0,IterPars.rho_e(:),... 

        edof,IterPars.Const_value,Mesh,IterPars.ss); 
elseif length(IterPars.Const_value) == 2% Drucker-Prager Stress index 
    
[AdjInfos.fval,AdjInfos.ACS_c_old,AdjInfos.ACS_c,AdjInfos.ACS_a,AdjI
nfos.LoadDatas] = calc_dSdx_DPAdj(loop,... 
        
IterPars.ACS_c_old,IterPars.ACS_c,IterPars.ACS_a,Stress',shp,d,PreOu
tput.D0,IterPars.rho_e(:),IterPars.rho_min,... 
        edof,IterPars.Const_value,Mesh,IterPars.ss); 
end 
save('AdjInfos.mat','AdjInfos'); 
end 

 

C3.5 3D min_compliance model 

function loop = SenOpt3DMinComp(Inputs) 
addpath(genpath(fullfile(pwd,'SRC'))) 
SimOutput = load('SimOutput.mat'); 
PreOutput = load('Output.mat').PreOutput; 
MMAPars = load('Output.mat').MMAPars; 
VisDatas = load('Output.mat').VisDatas; 
IterPars = load('Output.mat').IterPars; 
Volu = IterPars.Volu; 
Mesh = IterPars.Mesh; 
Ke = reshape(SimOutput.Ke,Mesh.NEN*3,Mesh.NEN*3,[]); 
rho_min = IterPars.rho_min; 
weight = IterPars.weight; 
R_Center = IterPars.R_Center; 
beta_HS = IterPars.beta_HS; 
HS_th = IterPars.HS_th; 
VisDatas.loop = VisDatas.loop+1; 
loop = VisDatas.loop; 
if VisDatas.loop == 1 
    IterPars.InitVe = sum(SimOutput.Ve); 
end 
d = SimOutput.u; 
dx = d(:,1);dy = d(:,2);dz = d(:,3); 
d = reshape(d',1,[]); 
ue = zeros(Mesh.NEl,3*Mesh.NEN); 
ue(:,1:3:end) = dx(Mesh.El); 
ue(:,2:3:end) = dy(Mesh.El); 
ue(:,3:3:end) = dz(Mesh.El); 
[f0val,df0dx] = 
calc_dCdx(IterPars.ff,d,IterPars.rho_e(:),ue,Ke,IterPars.prhoe_prhoi,It
erPars.penalty,IterPars.rho_min); 
[fval,dfdx] = 
calc_dVdx(IterPars.rho_e(:),IterPars.prhoe_prhoi,SimOutput.Ve,IterP
ars.Const_value); 
if loop == 1 
    IterPars.scl = f0val/10; 
end 
dgt0 = 5; 
dgt = dgt0 - floor(log10([max(abs(df0dx(:))) max(abs(dfdx(:)))])); 
f0val_mma = f0val/IterPars.scl; 
df0dx = df0dx/IterPars.scl; 
VisDatas.loopHist = [VisDatas.loopHist,VisDatas.loop]; 
VisDatas.fvalHist = [VisDatas.fvalHist,fval]; 
VisDatas.f0valHist = [VisDatas.f0valHist,f0val]; 
[xmma,~,~,~,~,~,~,~,~,MMAPars.low,MMAPars.upp] = ... 
    
mmasub(MMAPars.m,MMAPars.numDV,VisDatas.loop,MMAPars.xval
,MMAPars.xmin,MMAPars.xmax,MMAPars.xold1,MMAPars.xold2, ... 

    
f0val,df0dx,fval,dfdx,MMAPars.low,MMAPars.upp,MMAPars.a0,MM
APars.a,MMAPars.c,MMAPars.dd,MMAPars.mmaMoveLimits); 
MMAPars.xold2 = MMAPars.xold1; 
MMAPars.xold1 = MMAPars.xval; 
MMAPars.xval = xmma; 
rho_CPs = MMAPars.xval; 
rho_CPs = reshape(rho_CPs,Volu.NCtrlPts); 
rhoi_hat = weight*rho_CPs(:); 
rhoe_hat = reshape(R_Center*rhoi_hat,Mesh.NElDir); 
rhoe_star = (tanh(beta_HS*HS_th)+tanh(beta_HS*(rhoe_hat-
HS_th)))/... 
    (tanh(beta_HS*HS_th)+tanh(beta_HS*(1-HS_th))); 
rhoi_plt_hat = reshape(VisDatas.weight_plt*rho_CPs(:),Volu.NCtrlPts); 
VisDatas.rhoi_plt = 
(tanh(beta_HS*HS_th)+tanh(beta_HS*(rhoi_plt_hat-HS_th)))/... 
    (tanh(beta_HS*HS_th)+tanh(beta_HS*(1-HS_th))); 
prhoeStar_prhoeHat = sparse(diag(beta_HS*(1-
tanh(beta_HS*(rhoe_hat(:)-HS_th)).^2)/... 
    (tanh(beta_HS*HS_th)+tanh(beta_HS*(1-HS_th))))); 
IterPars.prhoe_prhoi = 
sparse(prhoeStar_prhoeHat*R_Center*weight); 
IterPars.rho_e = rhoe_star;%rho_e 
rhoeHat = (1-rho_min)*IterPars.rho_e.^IterPars.penalty+rho_min; 
PreOutput.rhoeHat = rhoeHat(:); 
if rem(VisDatas.loop,10) == 0 && VisDatas.loop >= 10 ... 
        && Inputs.StpPrj == 1 && IterPars.beta_HS < 
str2double(Inputs.Projection) 
    IterPars.beta_HS = IterPars.beta_HS + 1; 
end 
if rem(VisDatas.loop,10) == 0 && VisDatas.loop >= 10 ... 
        && Inputs.StpPenalty == 1 && IterPars.penalty < 
str2double(Inputs.Penalty) 
    IterPars.penalty = IterPars.penalty + 1; 
end 
disp([' It.: ' sprintf('%4i\t',VisDatas.loop) ' Obj.: ' 
sprintf('%7.5f\t',VisDatas.f0valHist(end)) ' S.t.: ' ... 
    sprintf('%7.5f\t',VisDatas.fvalHist(end))]); 
 
ParaPts = {linspace(0,1,2*Volu.NCtrlPts(1)), 
linspace(0,1,2*Volu.NCtrlPts(2)), linspace(0,1,2*Volu.NCtrlPts(3))}; 
SRho = 
refineRhoValue(Volu,ParaPts,permute(VisDatas.rhoi_plt,[4,1,2,3])); 
VisDatas.rhoi_plt = SRho.rho; 
save('Output.mat','PreOutput','MMAPars','VisDatas','IterPars'); 
end 
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Appendix D 

D1 2D pre-process of OPS-ITO tool (with multi-pattern function) 

function loop = Pre2D(Inputs) 
addpath(genpath(fullfile(pwd,'SRC'))) 
Inputs = struct(Inputs); 
mmaMoveLimits = str2double(strsplit(Inputs.MMAPars,' ')); 
BCs = strsplit(Inputs.BCs,'\n'); 
numBCs = size(BCs,2); 
for i = 1:numBCs 
    BC_temp = strsplit(BCs{i},' '); 
    Disp{i,1} = str2double(BC_temp[181]); 
    Disp{i,2} = BC_temp[181]; 
    Disp{i,3} = str2func(BC_temp{3}); 
end 
Forces = strsplit(Inputs.Loads,'\n'); 
if isempty(Forces{end})% the end line is empty! 
    numLoads = size(Forces,2)-1; 
else 
    numLoads = size(Forces,2); 
end 
for i = 1:numLoads 
    force_temp = strsplit(Forces{i},' '); 
    force{i,1} = str2double(force_temp[181]); 
    force{i,2} = force_temp[181]; 
    force{i,3} = str2func(force_temp{3}); 
end 
MatProp = str2double(strsplit(Inputs.MatProp,' ')); 
%% generate the mesh model 
if strcmpi(Inputs.GeoInputType,'Default') 
    Sizes = str2double(strsplit(Inputs.Sizes,' ')); 
    Orders = str2double(strsplit(Inputs.Orders,' ')); 
    NEls = str2double(strsplit(Inputs.NEls,' ')); 
    L = Sizes(1);D = Sizes(2); 
    CtrlPts = zeros(4, 2, 2); 
    CtrlPts(1 : 3, 1, 1) = [0; -D/2; 0]; 
    CtrlPts(1 : 3, 2, 1) = [L; -D/2; 0]; 
    CtrlPts(1 : 3, 1, 2) = [0; D/2; 0]; 
    CtrlPts(1 : 3, 2, 2) = [L; D/2; 0]; 
    CtrlPts(4, :, :) = 1; 
    KntVect[181] = [0 0 1 1]; 
    KntVect[181] = [0 0 1 1]; 
    Surf = CreateNURBS(KntVect, CtrlPts); 
    p=Orders(1);q=Orders(2); 
    kx=1;ky=1; 
    nelx=NEls(1); nely=NEls(2); 
    Surf = KRefine(Surf, [nelx, nely], [p, q], [p-kx, q-ky]); 
    Mesh = Mesh2D(Surf, 'VectorField'); 
elseif strcmpi(Inputs.GeoInputType,'User input') 
    GeoModelPath = Inputs.GeoModelPath; 
    ModelDatas = load(GeoModelPath); 
    Surf = ModelDatas.Surf; 
    Mesh = Mesh2D(Surf, 'VectorField'); 
    nelx = Mesh.NElDir(1); nely = Mesh.NElDir(2); 
end 
if Inputs.StpPenalty == 1 
    penalty = 1; 
elseif Inputs.StpPenalty == 0 

    penalty = str2double(Inputs.Penalty); 
end 
if Inputs.StpPrj == 1 
    beta_HS = 0.1; 
elseif Inputs.StpPrj == 0 
    beta_HS = str2double(Inputs.Projection); 
end 
check_x = linspace(0,1,2*nelx+1); 
check_y = linspace(0,1,2*nely+1); 
node_x = check_x(2:2:end); 
node_y = check_y(2:2:end); 
R_Center = FindInterpFunc(Surf,{node_x, node_y}); 
R_Center = sparse(R_Center); 
xloc_CtrlPts = reshape(Surf.CtrlPts3D(1,:,:),1,[]); 
yloc_CtrlPts = reshape(Surf.CtrlPts3D(2,:,:),1,[]); 
rmin = str2double(Inputs.rmin); HS_th = 
str2double(Inputs.PrjThreshold); 
%% modify the rho_e 
if strcmpi(Inputs.OptType,'minComp') || 
strcmpi(Inputs.OptType,'minVol') 
    loc_CPs = [xloc_CtrlPts',yloc_CtrlPts']; 
    dist = pdist2(loc_CPs,loc_CPs); 
    weight = rmin-dist; 
    weight(weight<0) = 0; 
    weight = weight./(sum(weight,2)); 
    weight = sparse(weight); 
    rho_CPs = 0.5*ones(Surf.NCtrlPts); 
    rhoi_hat = weight*rho_CPs(:); 
    rhoe_hat = reshape(R_Center*rhoi_hat,Mesh.NElDir); 
    rhoe_star = (tanh(beta_HS*HS_th)+tanh(beta_HS*(rhoe_hat-
HS_th)))/... 
        (tanh(beta_HS*HS_th)+tanh(beta_HS*(1-HS_th))); 
    prhoeStar_prhoeHat = diag(beta_HS*(1-
tanh(beta_HS*(rhoe_hat(:)-HS_th)).^2)/... 
        (tanh(beta_HS*HS_th)+tanh(beta_HS*(1-HS_th)))); 
    rho_e = reshape(rhoe_star,nelx,nely); 
    prhoe_prhoi = sparse(prhoeStar_prhoeHat*R_Center*weight); 
    dist_plt = pdist2(loc_CPs,loc_CPs);weight_plt = rmin-
dist_plt;weight_plt(weight_plt<0) = 0; 
    weight_plt = weight_plt./(sum(weight_plt,2));weight_plt = 
sparse(weight_plt); 
    rhoi_plt_hat = reshape(weight_plt*rho_CPs(:),Surf.NCtrlPts); 
    rhoi_plt = (tanh(beta_HS*HS_th)+tanh(beta_HS*(rhoi_plt_hat-
HS_th)))/... 
        (tanh(beta_HS*HS_th)+tanh(beta_HS*(1-HS_th))); 
    %export the MMA parameters 
    tnn = size(rho_CPs(:),1); 
    xy00 = rho_CPs(:); 
%%------------------multi-pattern pre part 1 start-------------------------------
---- 
elseif strcmpi(Inputs.OptType,'minCompSimi') 
    xloc_Eles = R_Center*xloc_CtrlPts'; 
    yloc_Eles = R_Center*yloc_CtrlPts'; 
    sideSldLyrs = 0; 
    topSldLyrs = 0; 
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    xDiv = 2; 
    yDiv = 1; 
%     SimGroupIdRef = 
{[1;5],[2;6],[3;7],[4;8],[9;13],[10;14],[11;15],[12;16],[17;21],[18;22],[1
9;23],[20;24],[25;29]... 
%         ,[26;30],[27;31],[28;32]}; 
    SimGroupIdRef = {}; 
%     SimGroupIdRef = {[1;2;3]}; 
     
    if ~isempty(SimGroupIdRef) 
        disp('self determined arrangement scheme') 
        numOfVari = numel(SimGroupIdRef); 
        disp(numOfVari) 
    else 
        numOfVari = 2; 
        disp(numOfVari) 
    end 
     
    NEls_RUC = [(Mesh.NElDir(1)-topSldLyrs)/xDiv,(Mesh.NElDir(2)-
2*sideSldLyrs)/yDiv]; 
    ElMat = reshape(1:Mesh.NEl,Mesh.NElDir); 
    El_RUC = mat2cell(ElMat(1:end-topSldLyrs,sideSldLyrs+1:end-
sideSldLyrs), ... 
        (Mesh.NElDir(1)-topSldLyrs)/xDiv*ones(xDiv,1), ... 
        (Mesh.NElDir(2)-sideSldLyrs*2)/yDiv*ones(yDiv,1)); 
 
    rho_RUC = repmat(0.5*ones(NEls_RUC),1,numOfVari); 
    rho_e = 0.5*ones(Mesh.NElDir); 
    loc_Els = [xloc_Eles,yloc_Eles]; 
    dist = sparse(pdist2(loc_Els,loc_Els)); 
    weight = rmin-dist; 
    weight(weight<0) = 0; 
    weight = sparse(weight./(sum(weight,2))); 
    rhoe_hat_RUC = weight*rho_e(:);% filter the size 
    rhoe_star_RUC = 
(tanh(beta_HS*HS_th)+tanh(beta_HS*(rhoe_hat_RUC-HS_th)))/... 
        (tanh(beta_HS*HS_th)+tanh(beta_HS*(1-HS_th)));% project the 
density 
    prhoeStar_prhoeHat = sparse(diag(beta_HS*(1-
tanh(beta_HS*(rhoe_hat_RUC(:)-HS_th)).^2)/... 
        (tanh(beta_HS*HS_th)+tanh(beta_HS*(1-HS_th))))); 
    rho_e = reshape(rhoe_star_RUC,nelx,nely); 
    rho_e(:,1:sideSldLyrs) = 1; 
    rho_e(:,end-sideSldLyrs+1:end) = 1; 
    rho_e(end+1-topSldLyrs:end,:) = 1; 
    prhoe_prhoi = prhoeStar_prhoeHat*weight; 
    rhoi_plt = rho_e; 
    weight_plt = weight; 
 
    tnn = numel(rho_RUC); 
    xy00 = rho_RUC(:); 
%%------------------multi-pattern pre part 1 end------------------------------ 
else 
    error('unsupported optimization type, please check') 
end 
numVar = length(xy00); 
xval=xy00; 
xold1 = xy00; 
xold2 = xy00; 
xmin=0*ones(tnn,1); 
xmax=ones(tnn,1); 
low   = xmin; 
upp   = xmax; 
numDV = length(low); 
m = 1; 
Var_num=tnn; 
c=1000*ones(m,1); 
dd=ones(m,1); 
a0=1; 
a=zeros(m,1); 
%% define BCs and Loads 
f = sparse(zeros(Mesh.NDof, 1)); 
ConDispVals = [];LoadVals = []; 

ConDispDofs = [];LoadDofs = []; 
for i = 1:numBCs 
    [UTemp, DofsTemp] = projDrchltBdryVals(Surf, Mesh, Disp{i,3}, 
Disp{i,1}, Disp{i,2}); 
    DofsTemp(abs(UTemp)<=0.2) = []; 
    UTemp(abs(UTemp)<=0.2) = []; 
    ConDispVals = [ConDispVals; UTemp]; 
    ConDispDofs = [ConDispDofs; DofsTemp]; 
end 
for i = 1:numLoads 
    [LoadTemp,DofsTemp] = applyNewmannBdryVals(Surf, Mesh, 
force{i,3}, force{i,1}, force{i,2}); 
    LoadVals = [LoadVals; LoadTemp]; 
    LoadDofs = [LoadDofs; DofsTemp]; 
end 
f(LoadDofs) = f(LoadDofs) + LoadVals; 
ff = sparse(zeros(size(f))); 
ff(1:2:end) = f(1:Surf.NNP); 
ff(2:2:end) = f(Surf.NNP+1:end); 
%% generate the output datas 
CtrlPts = reshape(Surf.CtrlPts3D,3,[]); 
% export constrained CPs list 
ConNdIds = rem(ConDispDofs,Surf.NNP); 
ConNdIds(ConNdIds==0) = Surf.NNP; 
ConDofIds = ceil(ConDispDofs/Surf.NNP); 
ConDofList = zeros(Surf.NNP,2); 
for i = 1:length(ConNdIds) 
    ConDofList(ConNdIds(i),ConDofIds(i)) = 1; 
end 
ConDofList = [(1:Surf.NNP)',ConDofList]; 
ConDofList(ConDofList(:,2)+ConDofList(:,3)==0,:) = []; 
% export loaded CPs list 
LoadNdIds = rem(LoadDofs,Surf.NNP); 
LoadNdIds(LoadNdIds==0) = Surf.NNP; 
LoadDofIds = ceil(LoadDofs/Surf.NNP); 
LoadDofList = zeros(Surf.NNP,2); 
for i = 1:length(LoadNdIds) 
    LoadDofList(LoadNdIds(i),LoadDofIds(i)) = LoadVals(i); 
end 
LoadDofList = [(1:Surf.NNP)',LoadDofList]; 
LoadDofList(abs(LoadDofList(:,2))+abs(LoadDofList(:,3))==0,:) = []; 
El = Mesh.El; 
rho_min = 1e-9; 
rho_eHat = (1-rho_min)*rho_e.^penalty+rho_min; 
Weights = reshape(Surf.Weights,1,[]); 
Const_value = str2double(strsplit(Inputs.ConstVal,' ')); 
loop = 0; 
loopHist = [];fvalHist = [];f0valHist = []; 
NEN = Mesh.NEN; 
PreOutput = {}; MMAPars = {}; VisDatas = {}; IterPars = {}; 
PreOutput.CtrlPts = CtrlPts;PreOutput.ConDofList = 
ConDofList;PreOutput.LoadDofList = LoadDofList; 
PreOutput.MatProp = MatProp;PreOutput.D0 = 
getElastMat(MatProp(1), MatProp(2), 
'PlaneStress');PreOutput.MatTag = Inputs.MatTag; 
PreOutput.NEN = NEN;PreOutput.El = El;PreOutput.NEl = Mesh.NEl; 
PreOutput.NCPs = prod(Surf.NCtrlPts); 
PreOutput.NElDir = Mesh.NElDir;PreOutput.Order = 
Surf.Order;PreOutput.El = Mesh.El; 
PreOutput.KntVectX = Surf.KntVect[181];PreOutput.KntVectY = 
Surf.KntVect[181];PreOutput.Weight = Weights(Mesh.El); 
PreOutput.rhoeHat = rho_eHat(:);PreOutput.OptType = 
Inputs.OptType; 
MMAPars.mmaMoveLimits = mmaMoveLimits;MMAPars.tnn = tnn; 
MMAPars.xy00 = xy00;MMAPars.numVar = numVar;MMAPars.xval = 
xval; 
MMAPars.xold1 = xold1;MMAPars.xold2 = xold2;MMAPars.xmin = 
xmin; 
MMAPars.xmax = xmax;MMAPars.low = low;MMAPars.upp = upp; 
MMAPars.numDV = numDV;MMAPars.m = m;MMAPars.Var_num = 
Var_num; 
MMAPars.c = c;MMAPars.dd = dd;MMAPars.a0 = a0;MMAPars.a = a; 
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VisDatas.loc_x = reshape(xloc_CtrlPts,Surf.NCtrlPts);VisDatas.loc_y = 
reshape(yloc_CtrlPts,Surf.NCtrlPts); 
VisDatas.loop = loop;VisDatas.loopHist = loopHist;VisDatas.fvalHist = 
fvalHist; 
VisDatas.f0valHist = f0valHist;VisDatas.rhoi_plt = 
rhoi_plt;VisDatas.weight_plt = weight_plt; 
IterPars.Const_value = Const_value;IterPars.rho_min = 
rho_min;IterPars.rho_e = rho_e; 
IterPars.weight = weight;IterPars.R_Center = 
R_Center;IterPars.prhoe_prhoi = prhoe_prhoi; 
IterPars.ff = ff;IterPars.penalty = penalty;IterPars.beta_HS = beta_HS; 
IterPars.HS_th = HS_th;IterPars.Surf = Surf;IterPars.Mesh = Mesh; 
IterPars.ACS_c_old = 0;IterPars.ACS_c = 0; IterPars.ACS_a = 0; 
%%------------------multi-pattern pre part 2 start------------------------------- 
if strcmpi(Inputs.OptType,'minCompSimi') 
    IterPars.topSldLyrs = topSldLyrs; IterPars.sideSldLyrs = sideSldLyrs; 
    IterPars.xDiv = xDiv; IterPars.yDiv = yDiv; IterPars.numOfVari = 
numOfVari; 

    IterPars.NEls_RUC = NEls_RUC; IterPars.El_RUC = El_RUC; 
    IterPars.errCluster = Inf; 
    VisDatas.loc_x = reshape(xloc_Eles,Mesh.NElDir);VisDatas.loc_y = 
reshape(yloc_Eles,Mesh.NElDir); 
     
    IterPars.SimGroupIdRef = SimGroupIdRef; 
 
    MMAPars.mmaMoveLimits = mmaMoveLimits*numOfVari; 
%     IterPars.rho_RUC = rho_RUC; 
end 
%%------------------multi-pattern pre part 2 end-------------------------------- 
if strcmpi(Inputs.OptType,'minVol') 
    IterPars.ss = 0.8; 
end 
save('Output.mat','PreOutput','MMAPars','VisDatas','IterPars'); 
end 

D2 2D min-compliance model (with multi-pattern function) 

function loop = SenOpt2DMinComp(Inputs) 
addpath(genpath(fullfile(pwd,'SRC'))) 
SimOutput = load('SimOutput.mat'); 
PreOutput = load('Output.mat').PreOutput; 
MMAPars = load('Output.mat').MMAPars; 
VisDatas = load('Output.mat').VisDatas; 
IterPars = load('Output.mat').IterPars; 
Surf = IterPars.Surf; 
Mesh = IterPars.Mesh; 
Ke = reshape(SimOutput.Ke,Mesh.NEN*2,Mesh.NEN*2,[]); 
rho_min = IterPars.rho_min; 
weight = IterPars.weight; 
R_Center = IterPars.R_Center; 
beta_HS = IterPars.beta_HS; 
HS_th = IterPars.HS_th; 
prhoe_prhoi = IterPars.prhoe_prhoi; 
VisDatas.loop = VisDatas.loop+1; 
loop = VisDatas.loop; 
if VisDatas.loop == 1 
    IterPars.InitVe = sum(SimOutput.Ve); 
end 
d = SimOutput.u; 
dx = d(:,1);dy = d(:,2); 
d = reshape(d',1,[]); 
ue = zeros(Mesh.NEl,2*Mesh.NEN); 
ue(:,1:2:end) = dx(Mesh.El); 
ue(:,2:2:end) = dy(Mesh.El); 
%%------------multi-pattern min-Comp part 1 start------------------------ 
if strcmpi(Inputs.OptType,"minCompSimi") 
    xDiv = IterPars.xDiv; 
    yDiv = IterPars.yDiv; 
    numOfVari = IterPars.numOfVari; 
    topSldLyrs = IterPars.topSldLyrs; sideSldLyrs = IterPars.sideSldLyrs; 
    if VisDatas.loop <= 100 
        KeGPU = gpuArray(Ke); ueGPU = gpuArray(permute(ue,[3,2,1])); 
        ueKe = squeeze(pagemtimes(ueGPU,KeGPU)); 
        Ce = 
reshape(squeeze(pagemtimes(ueGPU,permute(ueKe,[1,3,2]))),Mesh.
NElDir); 
        Ce_RUC = mat2cell(Ce(1:end-topSldLyrs,sideSldLyrs+1:end-
sideSldLyrs), ... 
            (Mesh.NElDir(1)-
topSldLyrs)/xDiv*ones(1,xDiv),(Mesh.NElDir(2)-
sideSldLyrs*2)/yDiv*ones(1,yDiv)); 
        Ce_RUC = cat(3,Ce_RUC{:}); 
        if isempty(IterPars.SimGroupIdRef) 
            if loop == 1 
                IterPars.splitClusterAssume = ones(size(Ce_RUC,3),2); 
                IterPars.splitClusterAssume(:,2) = 1e7; 

            else 
                for i = 1:numOfVari 
                    IterPars.splitCluMat(:,:,i) = 
mean(Ce_RUC(:,:,IterPars.splitClusterAssume(:,1)==i),3); 
                end 
            end 
            IterPars.splitClusterAssumeOld = IterPars.splitClusterAssume; 
            for i = 1:10 
                if loop == 1 
                    IterPars.splitCluMat = 
zeros([size(Ce_RUC,1:2),numOfVari]);% the last cluster is zero to 
store void unit-cells 
                    for ii = 1:numOfVari 
                        IterPars.splitCluMat(:,:,ii) = rand(size(Ce_RUC(:,:,1))); 
                    end 
                end 
                [~, splitClusterAssumeTemp] = 
KMeans(loop,IterPars.splitCluMat,IterPars.splitClusterAssume,Ce_RU
C,numOfVari); 
                if 
sum(splitClusterAssumeTemp(splitClusterAssumeTemp(:,1)<=numOf
Vari,2)) <= IterPars.errCluster 
                    IterPars.errCluster = 
sum(splitClusterAssumeTemp(splitClusterAssumeTemp(:,1)<=numOf
Vari,2)); 
                    IterPars.splitClusterAssume = splitClusterAssumeTemp; 
                    if loop > 1 
                        mmaXval = []; 
                        for ii = 1:numOfVari 
                            mmaXvalTemp = 
mean(IterPars.rho_RUC(:,:,IterPars.splitClusterAssumeOld(... 
                                IterPars.splitClusterAssume(:,1)==ii,1)),3); 
                            mmaXval = [mmaXval;mmaXvalTemp(:)];  
                        end 
                        MMAPars.xval = mmaXval; 
                    end 
                end 
            end 
        end 
    end 
    if isempty(IterPars.SimGroupIdRef) 
        simiGroupId = cell(1,IterPars.numOfVari); 
        for i = 1:IterPars.numOfVari 
            simiGroupId{i} = find(IterPars.splitClusterAssume(:,1)==i); 
            disp(simiGroupId{i}') 
        end 
    else 
        simiGroupId = IterPars.SimGroupIdRef; 
        for i = 1:IterPars.numOfVari 
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            disp(simiGroupId{i}') 
        end 
    end 
    IterPars.simiGroupIdOld = simiGroupId; 
    drhoeDiv_drhoeRUC = []; 
    for ii  = 1:length(simiGroupId) 
        TempSimGroupId = simiGroupId[132]; 
        drhoeDiv_drhoeRUC_temp = 
sparse(zeros(Mesh.NEl,prod(IterPars.NEls_RUC))); 
        for jj = TempSimGroupId' 
            DivElList = IterPars.El_RUC{jj}; 
            for kk = 1:numel(DivElList)% loop the current div 
                drhoeDiv_drhoeRUC_temp(DivElList(kk),kk) = 1; 
            end 
        end 
        drhoeDiv_drhoeRUC = 
[drhoeDiv_drhoeRUC,drhoeDiv_drhoeRUC_temp]; 
    end 
    prhoe_prhoi = IterPars.prhoe_prhoi*drhoeDiv_drhoeRUC; 
end 
%%------------multi-pattern min-Comp part 1 end------------------------ 
[f0val,df0dx] = 
calc_dCdx(IterPars.ff,d,IterPars.rho_e(:),ue,Ke,prhoe_prhoi,IterPars.p
enalty,IterPars.rho_min); 
[fval,dfdx] = 
calc_dVdx(IterPars.rho_e(:),prhoe_prhoi,SimOutput.Ve,IterPars.Const
_value); 
if loop == 1 
    IterPars.scl = f0val/10; 
end 
dgt0 = 5; 
dgt = dgt0 - floor(log10([max(abs(df0dx(:))) max(abs(dfdx(:)))])); 
f0val_mma = f0val/IterPars.scl; 
df0dx = df0dx/IterPars.scl; 
VisDatas.loopHist = [VisDatas.loopHist,VisDatas.loop]; 
VisDatas.fvalHist = [VisDatas.fvalHist,fval]; 
VisDatas.f0valHist = [VisDatas.f0valHist,f0val]; 
[xmma,~,~,~,~,~,~,~,~,MMAPars.low,MMAPars.upp] = ... 
    
mmasub(MMAPars.m,MMAPars.numDV,VisDatas.loop,MMAPars.xval
,MMAPars.xmin,MMAPars.xmax,MMAPars.xold1,MMAPars.xold2, ... 
    
f0val_mma,df0dx,fval,dfdx,MMAPars.low,MMAPars.upp,MMAPars.a
0,MMAPars.a,MMAPars.c,MMAPars.dd,MMAPars.mmaMoveLimits); 
MMAPars.xold2 = MMAPars.xold1; 
MMAPars.xold1 = MMAPars.xval; 
MMAPars.xval = xmma; 
if strcmpi(Inputs.OptType,'minComp') 
    rho_CPs = MMAPars.xval; 
    rho_CPs = reshape(rho_CPs,Surf.NCtrlPts); 
    rhoi_hat = weight*rho_CPs(:); 
    rhoe_hat = reshape(R_Center*rhoi_hat,Mesh.NElDir); 
    rhoe_star = (tanh(beta_HS*HS_th)+tanh(beta_HS*(rhoe_hat-
HS_th)))/... 
        (tanh(beta_HS*HS_th)+tanh(beta_HS*(1-HS_th))); 
    rhoi_plt_hat = 
reshape(VisDatas.weight_plt*rho_CPs(:),Surf.NCtrlPts); 

    VisDatas.rhoi_plt = 
(tanh(beta_HS*HS_th)+tanh(beta_HS*(rhoi_plt_hat-HS_th)))/... 
        (tanh(beta_HS*HS_th)+tanh(beta_HS*(1-HS_th))); 
    prhoeStar_prhoeHat = sparse(diag(beta_HS*(1-
tanh(beta_HS*(rhoe_hat(:)-HS_th)).^2)/... 
        (tanh(beta_HS*HS_th)+tanh(beta_HS*(1-HS_th))))); 
    IterPars.prhoe_prhoi = prhoeStar_prhoeHat*R_Center*weight; 
    IterPars.rho_e = rhoe_star;%rho_e 
%%------------multi-pattern min-Comp part 2 start------------------------ 
elseif strcmpi(Inputs.OptType,'minCompSimi') 
    rho_RUC = MMAPars.xval; 
    IterPars.rho_RUC = 
reshape(rho_RUC,[IterPars.NEls_RUC,numOfVari]); 
    rhoe_star_RUC = weight*drhoeDiv_drhoeRUC*rho_RUC(:); 
    rho_e = 
reshape((tanh(beta_HS*HS_th)+tanh(beta_HS*(rhoe_star_RUC-
HS_th)))/... 
            (tanh(beta_HS*HS_th)+tanh(beta_HS*(1-
HS_th))),Mesh.NElDir);% project the density 
    prhoeStar_prhoeHat = sparse(diag(beta_HS*(1-
tanh(beta_HS*(rhoe_star_RUC(:)-HS_th)).^2)/... 
            (tanh(beta_HS*HS_th)+tanh(beta_HS*(1-HS_th))))); 
    rho_e(:,1:sideSldLyrs) = 1; 
    rho_e(:,end-sideSldLyrs+1:end) = 1; 
    rho_e(end+1-topSldLyrs:end,:) = 1; 
     
    IterPars.rho_e = rho_e; 
    IterPars.prhoe_prhoi = prhoeStar_prhoeHat*weight; 
 
    VisDatas.rhoi_plt = rho_e; 
%%------------multi-pattern min-Comp part 2 end------------------------ 
end 
rhoeHat = (1-rho_min)*IterPars.rho_e.^IterPars.penalty+rho_min; 
PreOutput.rhoeHat = rhoeHat(:); 
if rem(VisDatas.loop,20) == 0 && VisDatas.loop >= 100 ... 
        && Inputs.StpPrj == 1 && IterPars.beta_HS < 
str2double(Inputs.Projection) 
    IterPars.beta_HS = IterPars.beta_HS + 1; 
end 
if rem(VisDatas.loop,10) == 0 && VisDatas.loop >= 10 ... 
        && Inputs.StpPenalty == 1 && IterPars.penalty < 
str2double(Inputs.Penalty) 
    IterPars.penalty = IterPars.penalty + 1; 
end 
disp([' It.: ' sprintf('%4i\t',VisDatas.loop) ' Obj.: ' sprintf('%7.5f\t',f0val) 
' S.t.: ' ... 
    sprintf('%7.5f\t',fval)]); 
if rem(VisDatas.loop,5) == 0 
   fig = figure('visible','off'); 
   surf(VisDatas.loc_x,VisDatas.loc_y,VisDatas.rhoi_plt); 
   axis equal; 
   caxis([0 1]); axis off; view(0,90);shading 
interp;drawnow;colormap(flipud(gray)); 
   saveas(fig,[num2str(VisDatas.loop),'.jpg']); 
end 
save('Output.mat','PreOutput','MMAPars','VisDatas','IterPars'); 
end 
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