

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

NEURAL ABSTRACTIVE SUMMARIZATION

FOR LONG DOCUMENTS

SHUAIQI LIU

PhD

The Hong Kong Polytechnic University

2024

The Hong Kong Polytechnic University

Department of Computing

Neural Abstractive Summarization for Long Documents

Shuaiqi LIU

A thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

August 2023

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published

or written, nor material that has been accepted for the award of any

other degree or diploma, except where due acknowledgment has been

made in the text.

Signature:

Name of Student: Shuaiqi LIU

Abstract

Long documents, like academic literature, financial reports, and legal instruments, are

important information sources. Nowadays, people can access massive long documents

through the Internet. Reading through all their acquired documents and finding

their desired content would be a heavy burden. The high-quality summaries can

help people quickly grasp the key information from original documents. Automatic

text summarization techniques can be employed to produce concise summaries for

long documents. Abstractive summarization methods can approximate how humans

write summaries by capturing input documents’ salient content and generating novel

sentences as summaries.

In this thesis, I study neural abstractive summarization for long documents. I aim

to train neural network models to generate informative, fluent, and non-redundant

summaries covering the multi-granularity, multi-document, and multimodal salient

content in various long documents. Some new challenges arise in order to accomplish

this objective: 1) the scarcity of available datasets, 2) identifying the multi-granularity

salient information scattered in long inputs, 3) incorporating multi-document and

multimodal content when generating summaries, 4) evaluating the quality of the

generated summaries, 5) improving the efficiency of model training and inference. To

tackle the above challenges, I built multiple large-scale datasets, novel summarization

methods, and evaluation metrics, which are summarized below.

First, I built multiple large-scale long document summarization datasets for academic

i

literature, financial reports, and legal instruments, which can be the foundation of

long document summarization research. Meanwhile, my datasets support extending

long document summarization research from unimodal to multimodal, from summa-

rizing a limited number of documents to a large number of documents.

Second, I propose a series of techniques to identify the multi-granularity salient infor-

mation scattered in long documents. This thesis introduces novel attention mecha-

nisms, category-based content alignment method, and the multistage content selection

schema for identifying and encoding phrase-level, sentence-level, and segment-level

salient content.

Besides, my research validates the importance of jointly considering multimodal or

multi-document content when summarizing long documents. This thesis proposes

multiple methods incorporating salient content from text and tables into summary

generation. Besides, this thesis also proposes methods to summarize multiple cate-

gories of salient content from a large number of documents and generate structured

summaries.

To evaluate various summarization methods, my research not only employs commonly

used automatic evaluation metrics but also proposes novel evaluation metrics. We

also compare different models’ generated summaries by human evaluation.

Last but not least, my research leverages various techniques to improve the efficiency

of model training and inference. This thesis not only proposes efficient summarization

models but also adopts some memory-efficient training methods. These techniques

enable training large neural summarization models over long inputs on an off-the-shelf

GPU.

I hope this thesis can promote the long document summarization research. Although

this thesis presents novel datasets, methods, and evaluation metrics for this topic, it

still has many open problems. I list some future research directions at the end of this

thesis.

ii

Publications Arising from the

Thesis

1. Shuaiqi Liu, Jiannong Cao, Ruosong Yang, and Zhiyuan Wen, ”Generating a

Structured Summary of Numerous Academic Papers: Dataset and Method”,

In Proceedings of the Thirty-First International Joint Conference on Artificial

Intelligence (IJCAI 2022), pages 4259–4265, 2022.

2. Shuaiqi Liu, Jiannong Cao, Ruosong Yang, and Zhiyuan Wen, ”Long Text and

Multi-Table Summarization: Dataset and Method”, In Findings of the 2022

Conference on Empirical Methods in Natural Language Processing (EMNLP

2022), pp. 1995-2010, 2022.

3. Shuaiqi Liu, Jiannong Cao, Zhongfen Deng, Wenting Zhao, Ruosong Yang, and

Zhiyuan Wen, ”Neural Abstractive Summarization for Long Text and Multiple

Tables”, IEEE Transactions on Knowledge and Data Engineering (TKDE).

4. Shuaiqi Liu, Jiannong Cao, Ruosong Yang, and Zhiyuan Wen, ”Key phrase

aware transformer for abstractive summarization”, Information Processing &

Management (IP&M) 59, no. 3 (2022): 102913.

5. Shuaiqi Liu, Jiannong Cao, Ruosong Yang, and Zhiyuan Wen, ”Highlight-Transformer:

Leveraging Key Phrase Aware Attention to Improve Abstractive Multi-Document

Summarization”, In Findings of the 59th Annual Meeting of the Association for

iii

Computational Linguistics and the 11th International Joint Conference on Nat-

ural Language Processing (ACL-IJCNLP 2021), pp. 5021-5027. 2021.

6. Shuaiqi Liu, Jiannong Cao, Yicong Li, Ruosong Yang, and Zhiyuan Wen, ”Lever-

aging Foundation Models to Improve Low-Resource Court Judgment Summa-

rization for Common Law Systems”, manuscript submitted to Information Pro-

cessing & Management (IP&M).

7. Chenxi Hu, Tao Wu, Shuaiqi Liu, Chunsheng Liu, Chao Chang, and Fang Yang,

”Joint Unsupervised Contrastive Learning and Robust GMM for Text Cluster-

ing”, Information Processing & Management (IP&M).

8. Zhiyuan Wen, Jiannong Cao, Yu Yang, Haoli Wang, Ruosong Yang, Shuaiqi Liu,

”DesPrompt: Personality-descriptive Prompt Tuning for Few-shot Personality

Recognition”, Information Processing & Management (IP&M).

9. Zhiyuan Wen, Jiannong Cao, Ruosong Yang, Shuaiqi Liu, and Jiaxing Shen.

”Automatically Select Emotion for Response via Personality-affected Emotion

Transition.” In Findings of the 59th Annual Meeting of the Association for Com-

putational Linguistics and the 11th International Joint Conference on Natural

Language Processing (ACL-IJCNLP 2021), pp. 5010-5020. 2021.

10. Zhiyuan Wen, Jiannong Cao, Ruosong Yang, Shuaiqi Liu, Jiaxing Shen, Maosong

Sun, ”Personality-affected Emotion Generation in Dialog Systems”, manuscript

submitted to ACM Transactions on Information Systems (TOIS).

11. Zhiyuan Wen, Jiannong Cao, Yu Yang, Ruosong Yang, and Shuaiqi Liu. “Affective-

NLI: Towards Accurate and Interpretable Personality Recognition in Conversa-

tion”, manuscript accepted by The 22nd International Conference on Pervasive

Computing and Communications (PerCom 2024).

iv

Acknowledgments

Before I started my Ph.D., I set ambitious goals and plans and naively hoped that

everything would move forward as planned if I tried hard enough. I used to seek cer-

tainty and was uncomfortable with occasional uncertainty. Growing up in a booming

social environment brings natural optimism that everything will keep growing and

life will get better. However, I gradually realized that uncertainty is the norm and

certainty is accidental after some tumultuous months. I learned to reconcile with

myself and find inner peace in the ups and downs of life. As I look back on my Ph.D.

journey, the most unforgettable moments would be those spent with great teachers

and friends.

Firstly, I want to thank my family for their unlimited support during my growth. I am

so lucky to have perfect parents and grandparents who always patiently communicate

with me, respect my decisions, and selflessly support me to achieve my dream. No

matter when and where I can feel their infinite love as long as I call them. My father’s

motto: ‘There is no flaming mountain you cannot get past’ helped me stay optimistic

during some tough days. My hard-working grandparents and mother are my role

models, encouraging me to overcome various difficulties and keep moving forward.

As I grew up, I understood the difficulties of being a parent. Compared with their

experiences, many difficulties in front of me are so trivial.

Next, I would like to give my biggest thanks to my Ph.D. supervisor Prof. Jiannong

Cao. I really admire that he is always energetic and treats everything with his heart.

v

He is my role model who taught me to constantly explore the endless frontiers of

science, to be enthusiastic and sensitive to new technologies, and to keep learning

new knowledge. I would not have had the chance to write this thesis without his

patient guidance and enthusiastic help. I am also very grateful to my supervisor,

Prof. Philip S. Yu, during my visiting period at University of Illinois Chicago. He is

a famous scholar and excellent supervisor who always patiently listens to students’

ideas, accurately grasps the key points, and gives his wise suggestions.

My colleagues in the IMCL group offered me constant support and cooperation

throughout these years. Dr. Ruosong Yang and Dr. Zhiyuan Wen helped me a

lot when my research career started. They taught me many basic skills for doing

research and their understanding of technology. We are the IMCL-NLP group and

have done a lot of work together. Dr. Yannni Yang has helped me a lot since I applied

for the scholarship. Without her help, it would be very difficult for us to purchase the

necessary equipment for our research. Dr. Yannni Yang and Dr. Linchuan Xu helped

me a lot when I applied for the research student attachment program and started my

life in the United States. I also want to thank Dr. Yu Yang, Dr. Jia Wang, Dr. Zhuo

Li, Dr. Wanyu Lin, and Dr. Jinlin Chen, who provide many useful suggestions for

my research career. Dr. Qianyi Chen, Dr. Mingjin Zhang, Dr. Zhixuan Liang, and I

joined the IMCL group in 2019. We helped each other and made progress together.

I emphasize my appreciation to Dr. Yicong Li. She helped me a lot in research and

life and provided crucial emotional support, which lit up my life.

I would like to thank my friends in the BDSC Lab. Thank Mr. Liangwei Yang, Mr.

Chen Wang, Mr. Xiaolong Liu, Mr. Jiangshu Du, Dr. Ziwei Fan, Dr. Yingtong

Dou, Dr. Xiaohan Li, Ms. Zhongfen Deng, Ms. Wenting Zhao, Ms. Yueqing Liang,

Mr. Kay Liu, Mr. Hengrui Zhang, Mr. Mingdai Yang, Ms. Yuwei Cao, Ms. Tao

Zhang, Ms. Yu Wang, Ms. Yibo Wang, Ms. Yuqing Liu, Mr. Weizhi Zhang, and Mr.

Yuanjie Zhu for their warm welcome and great support during my visiting period at

University of Illinois Chicago.

vi

Table of Contents

Abstract i

Publications Arising from the Thesis iii

Acknowledgments v

List of Figures xiii

List of Tables xvi

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 3

1.3 Research Challenges . 6

1.4 Research Framework . 7

1.5 Thesis Organization . 10

2 Literature Review 13

2.1 Neural Networks . 13

vii

2.1.1 Recurrent Neural Networks 13

2.1.2 Transformer Model . 14

2.1.3 Pre-trained Models Based on Transformer 17

2.2 Automatic Document Summarization 22

2.2.1 Neural Extractive Summarization Methods 22

2.2.2 Neural Abstractive Summarization Methods 23

2.2.3 Document Summarization Datasets 24

3 Key Phrase Aware Transformer for Abstractive Document Summa-

rization 27

3.1 Introduction . 27

3.2 Objectives . 31

3.3 Proposed method . 32

3.3.1 Data preparation . 32

3.3.2 Key phrase aware transformer model 34

3.4 Datasets . 39

3.5 Experiments . 41

3.5.1 Data preprocessing . 41

3.5.2 Experimental setting . 42

3.5.3 Baselines . 43

3.5.4 Evaluation metrics . 45

3.6 Results and discussion . 47

3.6.1 Automatic evaluation results 47

viii

3.6.2 Human evaluation results . 50

3.6.3 Impact of the multi-head highlighting attention 51

3.6.4 Impact of the key phrase extraction 52

3.6.5 Ablation study . 56

3.7 Chapter Summary . 56

4 From Unimodal to Multimodal: Long Text and Multi-Table Sum-

marization 57

4.1 Introduction . 57

4.2 FINDSum Dataset . 61

4.2.1 Data Collection and Pre-Processing 61

4.2.2 Dataset Description . 62

4.2.3 Dataset Analysis . 64

4.3 Method . 65

4.3.1 Textual and Tabular Content Selection 66

4.3.2 Generating Summary for Textual and Tabular Data 68

4.3.3 Processing Long Inputs and Outputs 70

4.4 Experiments . 70

4.4.1 Baselines . 70

4.4.2 Experimental Setting . 71

4.4.3 Evaluation Metrics . 71

4.5 Results and Discussion . 76

4.5.1 Summarization Results . 77

ix

4.5.2 Discussion on Content Selection Methods 82

4.5.3 Discussion on Input Length of Summarization Model 84

4.5.4 Discussion on the Divide-and-Conquer Method 85

4.5.5 Discussion on Template Filling Methods 87

4.5.6 Discussion on Tuple-to-Text Generation Methods 88

4.5.7 Case Study . 90

4.6 Chapter Summary . 91

5 From Single Document to Multiple Documents: Generating a Struc-

tured Summary of Numerous Academic Papers 96

5.1 Introduction . 96

5.2 BigSurvey Dataset . 100

5.2.1 Data Collection and Pre-processing 101

5.2.2 Dataset Description . 101

5.2.3 Diversity Analysis of Dataset 104

5.3 Method . 105

5.4 Experiments . 108

5.4.1 Baselines . 108

5.4.2 Experimental Setting . 109

5.4.3 Results and Discussion . 109

5.5 Chapter Summary . 113

6 From High-Resource to Low-Resource: Low-Resource Court Judg-

x

ment Summarization for Common Law Systems 114

6.1 Introduction . 114

6.2 CLSum Dataset . 118

6.2.1 Collecting and Pre-processing Data 118

6.2.2 Description of the CLSum’s Subsets 119

6.2.3 Dataset Analysis . 120

6.3 Method . 122

6.3.1 Mitigating the Impact of Insufficient Labeled Samples 123

6.3.2 Salient Content Identification and Integration 124

6.3.3 Improving the Efficiency of Models and Training Methods . . 125

6.4 Experiments . 126

6.4.1 Baselines . 126

6.4.2 Experimental Setting . 127

6.4.3 Evaluation Metrics . 128

6.5 Results and Discussion . 132

6.5.1 Summarization Results . 132

6.5.2 Discussion on the training set size 139

6.5.3 Discussion on SFT and RLHF 140

6.5.4 Discussion on data augmentation methods 143

6.5.5 Discussion on adapters’ trainable parameters 145

6.6 Chapter Summary . 145

xi

7 Conclusions and Future Directions 147

7.1 Conclusions . 147

7.2 Future Directions . 150

References 151

xii

List of Figures

1.1 Research framework. 8

2.1 The architecture of transformer model. [131] 15

2.2 Two types of transformer self-attention layers: (a) the bidirectional

self-attention layer and (b) the unidirectional self-attention layer . . . 18

3.1 The highlighting mechanism assigns greater attention weights for to-

kens within key phrases indicated by the highlighting matrix. 29

3.2 The workflow of our proposed method. 32

3.3 The architecture of the Key Phrase Aware Transformer (KPAT) model. 34

3.4 An overview of the highlighting attention mechanisms, namely (a) the

weighted highlighting attention and (b) the additive highlighting at-

tention. 36

4.1 An overview of our solution for long text and multi-table summarization. 58

4.2 Distributions of extractive fragments’ density and coverage. 64

4.3 An overview of our summarization methods. 66

xiii

4.4 Impact of tuple selection methods on FINDSum-Liquidity. Each sum-

marization method using outputs of XGBoost, MLP, and LR has three

parts of scores. 83

4.5 Impact of tuple selection methods on FINDSum-ROO. Each summa-

rization method using outputs of XGBoost, MLP, and LR has three

parts of scores. 84

4.6 Impact of input length and Divide-and-Conquer (DC) on FINDSum-

Liquidity. Each summarizer has two parts of scores denoting w/ and

w/o DC. 93

4.7 Impact of input length and Divide-and-Conquer (DC) on FINDSum-

ROO. Each summarizer has two parts of scores denoting w/ and w/o

DC. 94

4.8 The input content and output summaries of an example from the

FINDSum-Liquidity. In these output summaries, the underlined con-

tent comes from row names or cell values of input tables or input text

fragments. The summary sentences marked with dotted lines below

are mainly derived from the input text, while those marked with solid

lines below mainly come from the input tables. 95

5.1 An overview of our CAST method. 98

5.2 Coverage and density distributions of the BigSurvey. 104

6.1 Our workflow of Court Judgment Summarization. 116

6.2 Distributions of extractive fragment coverage and extractive fragment

density. ”c” denotes the compression ratio. 122

6.3 Automatic evaluation result (ROUGE-2 Score) on CLSum. 133

xiv

6.4 Automatic evaluation result (BARTScore) on CLSum. 134

6.5 Automatic evaluation result (LTScore-LED) on CLSum. 135

6.6 Automatic evaluation result (LTScore-Vicuna) on CLSum. 136

6.7 Correlation of automatic evaluation metrics. 139

xv

List of Tables

2.1 Characteristics of different neural network layers. The sequence length

is n, the representation dimension is d, and the kernel size of convolu-

tions is k [136]. 14

2.2 Statistical information of some public summarization datasets. ”Pairs”

denotes the number of examples. ”Input Len” and ”Target Len” denote

the average number of words in input documents and ground truth

summaries . 26

3.1 Statistical information of two summarization datasets we used, ”Pairs”

denotes the number of examples, and ”Words” denotes the average

number of words in input documents and ground truth summaries. . 40

3.2 Some common sections’ contributions to abstracts in the PubMed

dataset. ’Examples’ denotes the percentage of examples containing

each section. The average recalls of unigram, bigram, and longest

common subsequence (LCS) are calculated by comparing each section

with the abstract. 40

3.3 Automatic evaluation results on the Multi-News test set. 48

3.4 Automatic evaluation results on the PubMed test set. 49

xvi

3.5 Human evaluation results on the test sets of Multi-News and PubMed,

”Win” represents the generated summary of our KPAT model is better

than that of the CopyTransformer in one aspect. ”Tie” denotes two

summaries are comparable in one aspect. 50

3.6 Evaluation results of highlighting different numbers of heads and layers

on the Multi-News test set. 51

3.7 Adopting different settings of key phrase selection on the Multi-News

test set. 52

3.8 Adopting different settings of key phrase selection on the PubMed test

set. 53

3.9 Evaluation results on our labeled test sets for key phrase extraction

on the Multi-News and PubMed. ”P%” is the precision. ”R%” is the

recall. ”Exact” denotes the exact match. ”Contain” represents one

gold phrase that is contained in one predicted phrase. ”Cover” is the

number of predicted phrases contained in target summaries. 54

3.10 Ablation study on the Multi-News and PubMed datasets. ”w/o block

linear” denotes removing the block-wise linear transformation on the

block diagonal highlighting matrix, ”w/o highlighting attention” is re-

placing the highlighting attention with the original self-attention, and

”w/o self-attention” represents replacing self-attention weight matrices

with highlighting matrices. 55

3.11 Details of summarization models. 56

xvii

4.1 Statistical information of summarization datasets. ”Pairs” is the num-

ber of examples. ”Words” and ”Sents” denote the average number of

words and sentences in input text or target summary. ”Num” is the

average number of numerical values in target summaries, and ”Cov

Num” is the ratio of the target summary’s numerical values found in

the input text. ”Cov.” and ”Dens.” are the extractive fragment’s cov-

erage and density [44]. 60

4.2 The proportion of novel n-grams in target summaries. 63

4.3 Automatic evaluation results on test sets of FINDSum-Liquidity. . . . 72

4.4 Automatic evaluation results on test sets of FINDSum-ROO. 73

4.5 GC methods’ evaluation results on test sets of FINDSum-Liquidity.

”Text/Tuple” denotes the assigned length ratio of text summary and

table summary in each combined summary. 74

4.6 GC methods’ evaluation results on test sets of FINDSum-ROO. ”Text/Tuple”

denotes the assigned length ratio of text summary and table summary

in each combined summary. 74

4.7 Human evaluation results on FINDSum-ROO. “Win” represents the

generated summary of our method is better than that of BigBird-

PEGASUS. 75

4.8 Human evaluation results on FINDSum-Liquidity. “Win” represents

the generated summary of our method is better than that of BigBird-

PEGASUS. 75

4.9 Evaluation results of input text selection methods on FINDSum-ROO.

R-1 denotes the recall of unigram, and R-AVG is the average recall of

unigram, bigram, trigram, and 5-gram. 76

xviii

4.10 Evaluation results of input text selection methods on FINDSum-Liquidity.

R-1 denotes the recall of unigram, and R-AVG is the average recall of

unigram, bigram, trigram, and 5-gram. 77

4.11 Evaluation results of salient tuple selection on the Liquidity subset.

”Pos” denotes positional features. ”Glove” is the Glove embedding of

row and column names. ”ACC” and ”Recall” are the accuracy and

recall of the selected top-n tuples. 78

4.12 Evaluation results of salient tuple selection on the ROO subset. ”Pos”

denotes positional features. ”Glove” is the Glove embedding of row

and column names. ”ACC” and ”Recall” are the accuracy and recall

of the selected top-n tuples. 79

4.13 Impact of text content selection methods on summarization results. . 80

4.14 Effect of input sequence length on generated results for FINDSum-

Liquidity. ”Input Len” denotes the length of input text and flattened

tuples. 81

4.15 Effect of input sequence length on generated results for FINDSum-

ROO. ”Input Len” denotes the length of input text and flattened tuples. 82

4.16 Evaluation results of template filling. EM denotes Exact Match. . . 86

4.17 Impact of template filling methods. TG and TF denote the template

generation and template filling methods. LF is the Longformer model. 87

4.18 Evaluation results of tuple-to-text generation. 88

4.19 N-gram recall of tuple-to-text generation results on test sets of FINDSum-

ROO and FINDSum-Liquidity. 89

4.20 Details of summarization models. 90

xix

5.1 Comparison of our BigSurvey dataset to other summarization datasets.

”Pairs” denotes the number of examples. ”Words” and ”Sents” indi-

cate the average number of words and sentences in input text or target

summary. ”Doc Num” represents the average number of input doc-

uments in each example. ”Cov.” is the extractive fragment coverage,

”Dens.” is the extractive fragment density, and ”Comp.” is the com-

pression ratio of target summaries. 100

5.2 Coverage and density distributions of the BigSurvey. 103

5.3 Automatic evaluation results of each summary segment on the BigSurvey-

MDS test set. 106

5.4 Automatic evaluation results of combined summary on the BigSurvey-

MDS test set. 107

5.5 Automatic evaluation results on the BigSurvey-Abs. 110

5.6 Human evaluation results on the test set of BigSurvey-MDS. ”Win”

denotes that the generated summary of our CAST-LED is better than

that of the original LED model in one aspect. ”Tie” represents that

two summaries are comparable in one aspect. 110

5.7 Ablation study on the test set of BigSurvey-MDS. We report the ROUGE

scores of combined summaries. ”w/o sparse attn” denotes using the

original self-attention in the encoder. ”w/o CA” represents removing

the category-based alignment. 111

5.8 Details of summarization models. 111

xx

6.1 Summarization datasets’ statistical information. ”Samples” is the sam-

ple number in the dataset. ”Doc” and ”Sum” stand for the input doc-

ument and target summary. ”Sents” and ”Words” represent the mean

number of sentences and words. ”Dens.” and ”Cov.” are the density

and coverage of extractive fragments. 119

6.2 The percentage of target summaries’ new n-grams. 121

6.3 Evaluation results of content selection methods. ”R1” is the unigram

recall, and ”Ravg” represents the mean value of the recalls of uni-

gram, bigram, trigram, and 5-gram. ”Lead” represents the truncation

method. 125

6.4 Automatic evaluation results on test sets of CLSum-CA. ”N examples”

denotes using N examples when fine-tuning models. 131

6.5 Automatic evaluation results on test sets of CLSum-HK. ”N examples”

denotes using N examples when fine-tuning models. 131

6.6 Automatic evaluation results on test sets of CLSum-UK. ”N examples”

denotes using N examples when fine-tuning models. 137

6.7 Automatic evaluation results on test sets of CLSum-AUS. ”N exam-

ples” denotes using N examples when fine-tuning models. 138

6.8 Human evaluation results on CLSum dataset. “win” denotes that the

current model’s output summary surpasses that of LEDLarge model in

one dimension. 141

6.9 Evaluation results of summarization models trained on augmented

datasets. 142

6.10 Effect of the amount of trainable parameters in the QLoRA adapter. 143

6.11 Details of summarization models. 144

xxi

Chapter 1

Introduction

1.1 Background

Long documents, like academic literature, financial reports, government reports, and

legal instruments, are important information sources. Nowadays, people can access

massive long documents through the Internet. Reading through all their acquired

documents and finding their desired content would be a heavy burden [72, 74]. During

the COVID-19 pandemic, hundreds of thousands of academic papers about COVID-19

were released on the Internet1. Researchers were drowned in the torrent of coronavirus

papers, while a large amount of them are not what people care about [73]. People

need advanced tools to support efficiently reading and selecting long documents2.

Providing readers with high-quality summaries of long documents can help alleviate

the above problems. High-quality summaries can help people efficiently obtain the

key information in original documents [73]. Meanwhile, people can first read the

summary to determine if one document is worth further reading, which enables people

1https://www.nature.com/articles/d41586-020-03564-y
2https://www.sciencemag.org/news/2020/05/scientists-are-drowning-covid-19-papers-can-new-

tools-keep-them-afloat

1

Chapter 1. Introduction

to quickly filter out undesired documents and save time and effort. Employing human

experts to write summaries costs a lot of time and effort, making it challenging to

cover new or unpopular documents from diverse sources [73]. Automatic document

summarization techniques can be utilized to produce summaries [75]. Users can adjust

the input documents flexibly and immediately get summaries from the automatic

summarization system.

Automatic document summarization techniques aim to produce a concise summary

of one or more documents [72, 74]. Previous document summarization methods can

be broadly categorized into extractive and abstractive methods [73, 75]. Extrac-

tive summarization methods [7, 36, 37, 78, 84, 85, 112] identify and select the most

salient sentences from the input document to form the summary, while abstractive

summarization methods [19, 41, 77, 86, 97, 109] can approximate the way humans

write summaries by capturing and merging input documents’ salient information and

then generating a summary that may contain new expressions [74]. Besides, previous

summarization methods can be classified into neural-network-based and non-neural

methods according to whether the neural network is used.

This thesis mainly focuses on the neural abstractive summarization methods. They

can be further divided into recurrent neural network (RNN) based methods [86, 116],

transformer-based methods (trained from scratch) [38, 41, 72, 74], and pre-trained

foundation model-based methods [73, 75, 78, 149], according to their backbone mod-

els. RNN model [18, 53] was widely used in short document summarization [86, 116],

but it has limited ability to learn the long-range dependencies [131]. The transformer

model relying on the attention mechanisms can model the long-range dependencies

[131] and shows better performance on long document summarization [72, 74].

The performance of supervised models trained from scratch is limited by the size

of the labeled dataset. Labeling large-scale datasets can cost a lot, while unlabeled

data can be easily crawled from the Internet. Researchers pre-train large foundation

models with self-supervised tasks on a huge amount of unlabeled data to learn better

2

1.2. Motivation

text representations [13, 32, 102]. After being fine-tuned on labeled datasets for

downstream tasks, pre-trained models can outperform models trained from scratch.

This thesis covers both our novel model trained from scratch and our summarization

methods built on pre-trained foundation models.

In addition to the development of neural summarization methods, publicly available

summarization datasets also facilitated improving generated summaries’ quality. In

recent years, researchers released various large-scale datasets [23, 38, 52, 70, 81, 88,

118], which made it possible to train large neural models for document summarization

[74]. Summarization tasks or datasets can be categorized into single-document sum-

marization (SDS) and multi-document summarization (MDS) based on the number

of documents taken into consideration for a summary. Considering different types of

content in input documents, previous work can be divided into unimodal and mul-

timodal summarization. My research built datasets for both SDS and MDS and

generalized long document summarization from unimodal (text) to multimodal.

Automatic text summarization techniques have been widely applied in many domains,

like news article summarization, forum post summarization, and product review sum-

marization. This thesis studies summarizing various long documents from different

domains, including academic literature, financial reports, and legal instruments.

1.2 Motivation

Long documents, like academic literature, financial reports, government reports, and

legal instruments, have some properties:

• Plentiful but scattered salient content: Compared with short documents, long

documents often contain more salient content, which can be scattered in multi-

ple parts of long documents.

• Containing multiple categories of content: Long documents can describe an

3

Chapter 1. Introduction

object from multiple aspects. For example, public companies’ financial reports

usually describe multiple aspects of the company, including business, operations,

and cash flow. Academic papers usually describe the background, problem

definition, methods, and experimental results of research work.

• Containing multimodal content: The long documents may contain multimodal

content (e.g., text, tables, and figures). Some key information may only ap-

pear in non-textual content (e.g., tables and figures), like accounting data in a

company’s financial statements [75, 76].

• Following some structures or templates: Compared with the free-form short

text, long documents usually follow some structures to organize plentiful con-

tent. There are some given structures (templates), like the division of sections or

chapters. For example, the U.S. Securities and Exchange Commission stipulates

companies’ annual reports’ format [75, 76]. Academic journals and conferences

also require manuscripts following their templates. Meanwhile, some structures

are author-defined. For instance, authors may arrange sentences introducing

different content in the same paragraph.

Previous summarization research usually focuses on summarizing short documents,

like short news [38, 44], forum posts [59], and online product reviews [82, 153]. When

generalizing to long document summarization, previous document summarization

datasets and methods did not consider the above properties of long documents and

still have limitations.

Annotated datasets are the foundation of long document summarization research.

Previous document summarization datasets usually focus on short documents [38,

44, 59]. The lack of large-scale datasets limits the long document summarization

research. Specifically, previous long document summarization datasets only focus on

text content. This limits research on generating summaries for multimodal content in

long documents [75, 76]. Besides, previous multi-document summarization datasets

4

1.2. Motivation

focus on summarizing a limited number of input documents, which limits the research

on generating summaries for a large number of documents [73].

When generalizing from short documents to long documents, previous summarization

methods have difficulties in completely identifying and encoding multi-granularity

salient content (e.g., key phrases, sentences, and paragraphs) scattered in a large

amount of input content [75, 76]. It can limit the informativeness of their generated

summaries.

As for the multimodal content (e.g., text, tables, and figures) in long documents,

existing summarization datasets and methods usually concentrate on textual content

while disregarding non-textual content [75, 76]. However, some key information may

only appear in non-textual content (e.g., tables and figures). Missing non-textual

content can limit produced summaries’ informativeness [75, 76].

Neural summarization models usually require more time or GPU memory when pro-

cessing longer input and output [131]. For long document summarization, improving

the efficiency of model training and inference is important [73, 75, 76]. The sequential

nature of RNN hampers parallelization [18, 53]. Compared with RNN, the trans-

former model reduces the required sequential operations and is more parallelizable.

However, the complexity of the transformer’s self-attention mechanism scales quadrat-

ically with the input length [131], which limits transformer-based models’ efficiency.

Given the constraints of GPU memory size, the complexity of the transformer-based

model limits the context length it can model. In addition to the complexity of the

neural summarization model, some training techniques (e.g., gradient accumulation,

gradient checkpointing3, optimizer [30, 104], parameter quantization [29, 139], and

parameter-efficient adapters [31, 55]) can also affect the training efficiency.

3github.com/cybertronai/gradient-checkpointing

5

Chapter 1. Introduction

1.3 Research Challenges

This thesis is confronted with the following challenges in summarizing long documents

with neural abstractive summarization methods.

• The scarcity of available datasets: The lack of large-scale datasets limits the

long document summarization research. The labeled dataset is necessary for

training and evaluating summarization methods. To deal with this challenge,

we built multiple large-scale datasets for academic literature summarization,

financial report summarization, and legal instrument summarization, which can

be the foundation of long document summarization research. Meanwhile, our

datasets are the basis of extending long document summarization research from

unimodal to multimodal, from summarizing a limited number of documents to

a large number of documents.

• Identifying the salient information scattered in long inputs: Long documents

often contain rich multi-granularity salient content. The salient content can

be scattered in different parts of the documents. It is challenging to com-

pletely identify and encode multi-granularity salient content scattered in a large

amount of input content. To tackle this challenge, we propose novel attention

mechanisms, category-based content alignment, and a multistage summariza-

tion schema to identify and encode phrase-level, sentence-level, and segment-

level salient content.

• Incorporating multi-document or multimodal content when generating sum-

maries: The long documents may contain multimodal content (e.g., text, ta-

bles, and figures). How to effectively integrate multi-document and multimodal

salient content into the generated summaries is an important issue. My research

work validates the importance of jointly considering multimodal content in long

documents and proposes multiple methods incorporating text and tables into

6

1.4. Research Framework

summary generation. We also study summarizing a large number of academic

documents and generate structured summaries.

• Evaluating generated summaries’ quality: How to effectively assess the quality

of generated summaries from different aspects is also an important issue. My

research not only employs commonly used automatic evaluation metrics but also

proposes novel evaluation metrics. We also compare different models’ generated

summaries by human evaluation.

• Improving the efficiency of model training and inference: The efficiency of model

training and inference is important when deploying summarization models in

real-world scenarios. When processing very long inputs and outputs with large

neural models, it is challenging to save computation time and GPU memory. My

research work takes different approaches to improve summarization methods’

efficiency and enable the training of large neural summarization models over

long inputs on an off-the-shelf GPU. To improve the model efficiency, we pro-

pose a lightweight transformer-based model named KPAT and employ sparse

attention mechanisms in multiple summarization models. Besides, we adopt

some memory-efficient training methods, like gradient accumulation, gradient

checkpointing, parameter quantization, memory-efficient optimizer, and adding

parameter-efficient adapters. In addition, we also adopt the divide-and-conquer-

based training strategy to further reduce the context length that neural sum-

marization models need to model and the corresponding memory consumption.

1.4 Research Framework

This thesis studies neural abstractive long document summarization. As shown in Fig.

1.1, my research framework has five layers. The lower four layers correspond to the

four main parts of my research, including data preparation, long document content

7

Chapter 1. Introduction

PolyU

Research Framework

Shuaiqi LIU 1

Document content

modeling

Salient content selection

[2,3]
Multi-granularity content

modeling [1,3]

Multi-modal

content modeling [2]

Data

preparation

Document collection Data cleaning Data annotation

Document parsing Data transformation Data augmentation

Evaluation
Statistics-based automatic

evaluation [2]

Model-based automatic

evaluation [4]
Human evaluation

Applications
Academic literature

summarization [1,3]

Financial report summarization

[2]

Legal instrument summarization

[4]

Summary

generation

Summary content planning

Section-

level

planning [3]

Sentence-

level

planning [2]

Multi-source content aggregation

Multi-doc

content

[3]

Multi-modal

content

[2]

Efficient summarization method

Efficient

neural

model [1,2]

Efficient

training

method [3,4]

Figure 1.1: Research framework.

modeling, summary generation, and evaluation. On top of them is the application

layer they support.

The bottom layer is data preparation, which is usually the first step in my research

work. To build a summarization dataset, we first need to find data sources, collect

raw files, and parse these raw files to extract document content. We should clean the

extracted content and align input documents with their target summaries. Sometimes

we need to convert the format of data. When the labeled samples are insufficient,

we will consider data augmentation. Chapter 2 introduces existing summarization

datasets. Chapter 4 presents my multimodal financial report summarization dataset.

My academic literature summarization dataset is shown in Chapter 5. My court

judgment summarization dataset is presented in Chapter 6. This thesis introduces

the process of building each dataset in the corresponding chapter.

Above the data preparation layer is the long document content modeling layer. Its key

problem is to identify and encode multi-granularity and multimodal salient content

scattered in a large amount of input content [74–76]. Chapter 4 and Chapter 6 intro-

8

1.4. Research Framework

duce my content selection methods for text and tabular data. These content selection

methods conduct a rough selection, which compresses long inputs while maximizing

the recall of salient content that should be preserved in summaries [75]. The com-

pressed inputs are fed into summarization models for fine-grained content selection

and integration. After selecting the salient content, how to completely encode the

multi-granularity and multimodal content is also important. Chapter 3 proposes novel

attention mechanisms encoding token-level and phrase-level salient content. Chapter

5 encodes document-level salient content. Chapter 4 studies encoding salient content

in text and tables.

The middle layer is the summary generation layer. We need to plan the content

of the output summary and aggregate salient content from multiple sources. When

planning the summary content, Chapter 5 generates structured summaries and plans

the division of summary sections. Chapter 4 first generates sentence-level templates

and then fills content into these templates. As for multiple sources input content

aggregation, Chapter 4 studies aggregate multimodal content into summary gener-

ation. Chapter 5 aggregates the salient content from tens of input documents for

each example. Improving the efficiency of model training and inference is also very

important. My research work proposes efficient summarization models and employs

efficient training methods [72–76].

In the evaluation layer, we usually conduct automatic evaluation and human evalua-

tion to assess various summarization models’ generated summaries. The metrics we

used in automatic evaluation can be further classified into statistics-based evaluation

metrics and model-based evaluation metrics. We not only employ commonly used

evaluation metrics (e.g., ROUGE [67], BLEU [95], and BARTScore [145]) but also

propose novel evaluation metrics [75, 76].

Lastly, my research proposes multiple long document summarization datasets and

methods that can support different applications. Chapter 4 introduces my work on

multimodal financial report summarization [75, 76]. Chapter 5 presents my academic

9

Chapter 1. Introduction

literature summarization work. My court judgment summarization work is introduced

in Chapter 6.

1.5 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2 reviews existing work in neural abstractive summarization and long

document summarization. This chapter first briefly introduces the taxonomies

of existing summarization work. Then, this chapter illustrates the develop-

ment of neural abstractive summarization methods, including the RNN-based,

transformer-based (trained from scratch), and pre-trained foundation model-

based methods. This chapter also introduces existing summarization datasets.

• Chapter 3 introduces my first work that proposes the key phrase aware trans-

former (KPAT), a lightweight model achieving great performance on multiple

abstractive summarization tasks. This work focuses on enhancing the trans-

former encoder to completely encode the key phrases in input documents. We

present the highlighting mechanism incorporating the prior knowledge of key

phrases when calculating attention weights for tokens within key phrases.

• In Chapter 4, we propose a new task named long text and multi-table summa-

rization, which generalizes the long document summarization from unimodal

(text) summarization to multimodal. Previous document summarization datasets

and methods are usually restricted to summarizing the text content and exclud-

ing tables and figures from the input. In financial report documents, the key

information can be distributed across both textual and non-textual content.

The absence of tabular data can restrict the informativeness of generated sum-

maries, particularly when summaries necessitate the quantitative descriptions

of vital metrics within tables. Existing summarization methods and datasets

10

1.5. Thesis Organization

fail to meet the demands of summarizing extensive textual and tabular content

within financial reports. To deal with the scarcity of available datasets, we

propose FINDSum, the first large-scale dataset for long text and multi-table

summarization. Besides, we present four types of summarization methods to

jointly consider the text and table content when summarizing reports. Ad-

ditionally, we propose a set of evaluation metrics assessing the utilization of

numerical information within the generated summaries.

• In Chapter 5, we study how to summarize numerous academic papers about the

same topic into a structured summary. Existing multi-document summariza-

tion (MDS) work usually focuses on producing an unstructured summary that

encompasses only a limited number of input documents. Meanwhile, previous

structured summarization work focuses on summarizing each document into a

summary with multiple sections. Existing methods and datasets fail to fulfill the

demands of summarizing numerous academic literature. We propose BigSurvey,

the first large-scale dataset for generating comprehensive summaries of numer-

ous academic papers on each topic. Besides, we propose the category-based

alignment and sparse transformer (CAST) to effectively arrange the diverse

content from a large number of input documents while simultaneously ensuring

efficiency when processing long inputs.

• Chapter 6 illustrates my work on low-resource court judgment summarization.

Judges in common law systems need to find similar precedents in all common

law jurisdictions and refer to the reasoning in previous judgments. There ex-

ist hundreds of thousands of reported cases in common law jurisdictions, and

the number of cases is still increasing. It can be challenging for legal practi-

tioners to read through abundant cases’ judgment documents. We aim to let

the computer generate high-quality court judgment summaries, which can help

readers quickly browse key information in long judgment documents. To deal

with the scarcity of available datasets, we propose CLSum, the first large-scale

11

Chapter 1. Introduction

dataset for summarizing common law court judgment documents from multiple

jurisdictions. Similar to other domain-specific tasks, court judgment summa-

rization usually suffers from the shortage of labeled samples. To deal with this

problem, we propose a foundation model-based solution for the low-resource

court judgment summarization. To the best of our knowledge, we are the first

to employ large language models for data augmentation, summary generation,

and evaluation in court judgment summarization. Additionally, we propose an

evaluation metric named LTScore to assess the quality of the generated legal

text.

• In Chapter 7, I summarize this thesis’s research problems and contributions.

Meanwhile, I also present many open problems and future directions in the

long document summarization.

12

Chapter 2

Literature Review

2.1 Neural Networks

This section will briefly introduce neural network models commonly used in abstrac-

tive summarization, including recurrent neural networks, transformer model, and

transformer-based pre-trained models.

2.1.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of neural network for processing se-

quential data. To calculate the hidden state at each step, RNNs combine the current

step’s input with the hidden state from the previous step. The hidden state maintains

the memory of the previous inputs [144]. RNNs share the same weights for each step

of the sequence and can model varying-length sequences. Traditional RNNs suffer

from the problem of vanishing gradients and exploding gradients. The frequently

used RNN variants, like the Gated Recurrent Unit (GRU) [18] and Long Short-Term

Memory (LSTM) [53] network, selectively update the hidden state. RNNs have been

widely used in many applications, including machine translation, speech recognition,

13

Chapter 2. Literature Review

Table 2.1: Characteristics of different neural network layers. The sequence length is

n, the representation dimension is d, and the kernel size of convolutions is k [136].

Type of Layer Complexity
Sequential

Operations

Maximum Path

Length

Self-attention Layer O(n2 · d) O(1) O(1)

CNN Layer O(k · n · d2) O(1) O(logk(n))

RNN Layer O(n · d2) O(n) O(n)

and document summarization [144]. However, the sequential nature of RNN hampers

parallelization. Besides, the forward and backward signals have to propagate through

the long paths in the network [136], which limits the ability to learn the long-range

dependencies.

2.1.2 Transformer Model

Transformer [131] is an advanced sequence transduction model that dispenses the

recurrence and convolution structures and is solely built on attention mechanisms.

The transformer model relying entirely on the attention mechanisms can model the

long-range dependencies since the self-attention reduces the maximum path length to

O(1) as depicted in Table 2.1 [136]. Compared with RNN models, the transformer

model also reduces the required sequential operations from O(n) to O(1) and is more

parallelizable [131, 136].

The effectiveness of the transformer model was first verified on machine translation

tasks [131]. Then it has been applied in various natural language processing tasks,

including language modeling, question answering, named entity recognition, and doc-

ument summarization. There have been many transformer-based models for both

extractive and abstractive summarization, bringing notable performance gains. This

14

2.1. Neural Networks

Multi-Head

Attention

Add & Norm

Input

Embedding
Output

Embedding

Feed

Forward

Add & Norm

Masked

Multi-Head

Attention

Add & Norm

Multi-Head

Attention

Add & Norm

Feed

Forward

Add & Norm

Linear

Softmax

Inputs Outputs (shifted right)

Positional

Encoding

Positional

Encoding

N ×

N ×

Output Probabilities

Figure 2.1: The architecture of transformer model. [131]

sub-section briefly introduces the transformer model’s architecture and its attention

mechanisms.

Architecture of Transformer Model

The transformer model [131] follows the encoder-decoder structure. The encoder

maps input sequences to continuous representations. Given the representations of

inputs, the decoder is responsible for generating the output sequences [72, 74, 131].

As shown in Fig. 2.1, the encoder part of the transformer model is comprised of N

layers, each containing two sub-layers. The first sub-layer employs the multi-head

self-attention mechanism. The second is a position-wise fully connected feed-forward

15

Chapter 2. Literature Review

network [72, 74, 131]. The outputs from the stacked sub-layers are connected with

the residual connection [51] and normalized with layer normalization [3].

LayerNorm(x + Sublayer(x)) (2.1)

Similarly, the decoder part of the transformer model also consists of N identical

layers. The multi-head self-attention sub-layers mask subsequent positions in atten-

tion weight matrices. Compared with the encoder layers, the decoder layers add an

additional sub-layer, which conducts the encoder-decoder attention, enabling the in-

teraction between the encoder’s output and the output of the decoder’s multi-head

self-attention sub-layer [72, 74, 131].

Attention mechanisms in transformer

The transformer model [131] replaces the recurrent neural network layers with multi-

headed self-attention, which reduces the sequential computation and becomes more

parallelizable. The multi-head attention mechanism employs the scaled dot-product

attention for each head. Its operation involves a query Q, a key K, and a value V

[72, 74, 131].

Attention(Q,K, V) = WmV (2.2a)

Wm = softmax(
QKT

√
dk

) (2.2b)

The weight matrix Wm ∈ Rn×n is calculated by Eq. (2.2b). dk is the dimensionality

of key K.

The multi-head attention utilizes the scaled dot-product attention across h heads

[131].

MultiHead(Q,K, V) = HeadsW o

Heads = Concat(Head1, ...,Headh)

Headi = Attention(Q,K, V)

(2.3)

16

2.1. Neural Networks

The matrix Headi is calculated by Eq. (2.2a). In Eq. (2.3), the outputs from all the

heads will be concatenated and subsequently projected through a feed-forward layer

with a parameter matrix W o ∈ Rhdv×dmodel [72, 74, 131].

There are three different types of multi-head attention layers in the transformer model

[131]. Fig. 2.2 shows two types of self-attention layers in the transformer’s encoder

and decoder.

• The self-attention layers in the transformer encoder receive the outputs of pre-

vious encoder layers as the inputs and calculate the keys, values, and queries

based on the inputs. Without the mask, each position can attend to all input

positions [131].

• The self-attention layers within the transformer decoder are similar to that of

the encoder, except that they adopt masking to avoid each position attending

to the positions preceding it to uphold the auto-regressive property [131].

• Within the encoder-decoder attention layers, the encoder outputs keys and val-

ues. The queries come from the previous decoder layer. This configuration

allows every position in the decoder to attend to all positions in the encoder

[131].

2.1.3 Pre-trained Models Based on Transformer

In many language understanding and language generation tasks, a general bottleneck

lies in the availability of large-scale labeled datasets. Existing labeled datasets are

relatively small and not enough for training very large deep neural networks. It

can cause overfitting and cannot generalize well in practice. In recent years, various

pre-trained models built on the transformer model have been flourishing. They are

also known as foundation models. The idea of pre-training and fine-tuning is to first

17

Chapter 2. Literature Review

Tm

Tm

Tm Tm Tm

E1 E2 E3 EN

…

…

…

…T1

Tm Tm Tm

T2 T3 TN

Tm

Tm

Tm Tm Tm

E1 E2 E3 EN

…

…

…

…T1

Tm Tm Tm

T2 T3 TN

(a) (b)

Figure 2.2: Two types of transformer self-attention layers: (a) the bidirectional self-

attention layer and (b) the unidirectional self-attention layer

pre-train the large neural models on extensive unlabeled data with self-supervised

learning tasks and then fine-tune these models on supervised downstream tasks [32,

101]. The transformer-based pre-trained models can be categorized according to their

architectures. Some pre-trained models are built on the encoder or decoder part of

the transformer model (e.g., BERT [32], RoBERTa [79], and GPT [101]), while some

of them are built on the entire transformer model, like MASS [122], BART [64], and

PEGASUS [149]. This sub-section briefly reviews some representative transformer-

based pre-trained models.

Pre-trained Models Based on Transformer Decoder

Based on the unidirectional self-attention layers in the transformer decoder, the GPT

model [101] adopts a standard left-to-right language modeling objective and is au-

toregressively pre-trained on the BooksCorpus dataset. The pre-trained GPT model

[101] can be fine-tuned on various supervised tasks, including natural language infer-

ence, question answering, and text classification, which reveals it can generalize well

to both natural language understanding and generation. The subsequent versions

18

2.1. Neural Networks

of the GPT model, including GPT-2 [102] and GPT-3 [13], are large-size models

with billions and hundreds of billions of parameters. They demonstrate that gen-

erative pre-training can benefit various downstream tasks, and the capacity of the

language model is essential to their success on zero-shot or few-shot learning. They

have been used in summarization [102]. Some previous work also tried using the pre-

trained GPT model to replace the randomly initialized transformer decoder in the

transformer-based summarization models.

GPT-3 model is closed-source, while many open-source large pre-trained models follow

GPT’s decoder-only architecture. OPT [151] is a series of large pre-trained models

ranging from 125M to 175B parameters. The performance of OPT-175B is similar to

GPT-3. BLOOM [113] is a multilingual language model with 176B parameters. It

supports 46 languages and 13 programming languages. LLaMA [129] is a collection

of foundation language models ranging from 7B to 65B parameters trained on large-

scale publicly available data (1-1.4 trillion tokens). LLaMA2 [130] models are trained

on more data (2 trillion tokens) and longer context length (4096 tokens).

Although these pre-trained models have good zero-shot performance, using them for

downstream tasks requires further adaptation to improve performance. Researchers

fine-tune these large pre-trained models with instruction-following examples to align

them with user intentions. Stanford Alpaca [128] is a LLaMA model fine-tuned

with 52K instruction-following demonstrations generated by OpenAI’s text-davinci-

003 API. Peng et al. [98] fine-tune the LLaMA model with 52K instruction-following

data generated by GPT-4. Vicuna [17] is a set of LLaMA models fine-tuned with

70K user-shared ChatGPT conversations from ShareGPT.com.

To avoid generating untruthful or toxic outputs or reflecting harmful sentiments,

Ouyang et al. [94] propose reinforcement learning from human feedback (RLHF).

RLHF mainly includes three steps: 1) collecting human-written examples of prompts

and using these examples to train a language model with supervised learning; 2) train-

ing a reward model (RM) on a dataset of human-labeled comparisons between two

19

Chapter 2. Literature Review

model outputs to predict labelers’ preferred output choice; 3) fine-tuning the GPT-3

policy with the PPO algorithm to maximize the reward. RLHF enables InstructGPT

to generate more appropriate outputs with less toxicity and hallucinates [94]. Stien-

non et al. [124] shows that training a model to optimize for human preferences can

significantly improve the quality of generated summaries.

Pre-trained Models Based on Transformer Encoder

Considering the bidirectional contextual information is critical for various downstream

natural language understanding tasks, some famous pre-trained models are built on

the multi-layer transformer encoder like BERT [32] and RoBERTa [79]. The self-

attention layers in the transformer encoder are pre-trained to model the bidirectional

contextual information via the bidirectional attention mechanism.

Among these pre-trained encoders, BERT [32] is the most representative work. It

adopts two self-supervised pre-training tasks: the masked language model (MLM)

and the next sentence prediction (NSP). It is pre-trained on large corpora named

BooksCorpus and Wikipedia. The MLM task encourages the transformer encoder to

learn the bidirectional contextual information, which is essential for many downstream

tasks [32].

RoBERTa [79] is one of the famous variants of BERT. The author found removing

the NSP objective matches or slightly improves its performance on the downstream

tasks. They also adopt dynamic masking and train the model with longer sequences

and larger batch sizes. Besides, they also found that BERT was undertrained, and

training the model over more data and for more steps brought the performance gain.

Some pre-trained transformer encoders have been fine-tuned on the extractive sum-

marization task to [78]. Some models [78, 107] replace the randomly initialized trans-

former encoder with pre-trained encoders in transformer-based abstractive summa-

rization models. The bidirectional contextual information learned by pre-trained

20

2.1. Neural Networks

encoders can bring performance gains for both extractive and abstractive summa-

rization.

Pre-trained Models Based on Encoder-Decoder Transformer Model

The encoder-decoder framework has been widely adopted in conditional text gen-

eration tasks, including machine translation, document summarization, and dialog

response generation [4, 86]. The transformer model adopts the bidirectional self-

attention for the encoder and the unidirectional self-attention for the decoder. It

utilizes the cross attention to connect the two parts [131]. We will briefly introduce

representative work on sequence-to-sequence pre-training.

MASS [122] adopts the encoder-decoder architecture and a masked sequence-to-

sequence pre-training task that demands the model to predict the fragment of the

sentence that is masked on the encoder side. To force the decoder to rely more on

the encoded representation other than the previous tokens in the decoder, it only

provides previous tokens in the masked fragment for the decoder when generating the

fragment.

BART [64] is a denoising autoencoder that corrupts the input text with an arbitrary

noising function and then trains a standard transformer model to reconstruct the

original input text. They compared the different corruption methods and found that

randomly shuffling sentences and using a novel in-filling scheme achieved the best

performance on various text generation tasks. They also reveal the effectiveness of

pre-training methods is highly dependent on the pre-training task.

Raffel et al. [103] take the text-to-text as a unified framework and generalize their

pre-trained model T5 to various natural language processing tasks. Their experiments

verify that scaling up the size of the pre-trained model and the pre-training corpus

consistently improves the performance on a variety of downstream tasks.

21

Chapter 2. Literature Review

In addition to these general pre-training objectives adopted in the above pre-trained

models, the pre-training objectives tailored for the downstream task can bring extra

performance gain. Zhang et al. [149] propose a new self-supervised objective named

Gap Sentences Generation (GSG), which masks whole sentences from a document

and aims to generate these gap sentences according to the rest of the document and

is quite similar to the abstractive summarization task. They use the GSG task to

pre-train a transformer model named PEGASUS and achieve the SOTA performance

on various summarization datasets [149].

2.2 Automatic Document Summarization

Automatic document summarization is a classical research topic in natural language

processing (NLP). It is a process of condensing the input and producing a summary

that retains the salient information from the original input. In the past decades,

there has been lots of work on this topic, and previous summarization methods can

be categorized according to various criteria. Based on the mode of summary produc-

tion, previous summarization methods can be broadly categorized into extractive and

abstractive methods. Besides, previous summarization methods can be classified into

neural and non-neural methods according to whether using the neural network. This

section briefly reviews previous neural methods for extractive and abstractive summa-

rization. Some hybrid methods combining extractive and abstractive summarization

will also be introduced.

2.2.1 Neural Extractive Summarization Methods

Extractive summarization methods identify and select the most salient sentences from

the input document to form the summary. Its objective is to maximize the coverage

of salient content in input documents while minimizing repetitive content [74]. Ex-

22

2.2. Automatic Document Summarization

tractive summarization methods [36, 37, 78, 84, 85, 112] have been studied for several

decades. The neural-based methods garnered substantial attention in recent years.

Typically, neural extractive summarization methods comprise two main steps: sen-

tence representation acquisition and selecting the most salient sentences to compose

the summary [85].

Various neural networks have been adopted to acquire accurate sentence representa-

tion, including the convolutional neural network (CNN) [91], the graph neural net-

works (GNN) [135], the recurrent neural networks (RNN) [87], and the transformer

model [78, 140, 152]. When it comes to the step of sentence selection, previous re-

search [16, 87, 143] usually treats it as either a sentence classification or sequence

labeling problem. To mitigate the discrepancy between the training objective and

the evaluation criterion, Narayan et al. [91] tried directly optimizing the ROUGE

score with reinforcement learning.

Despite the notable development of extractive summarization methods over the last

few decades, the extracted summaries still encounter challenges related to coherence

and readability [137, 142]. Consequently, abstractive summarization methods have

garnered escalating interest in recent years.

2.2.2 Neural Abstractive Summarization Methods

Abstractive summarization methods identify and select the salient content in docu-

ments and generate novel sentences as summaries. Compared with extractive meth-

ods, abstractive methods have the ability to approximate how humans write sum-

maries by consolidating and condensing information from multiple sentences. Fur-

thermore, abstractive summarization methods possess the capacity to generate new

expressions that are not explicitly present within the input documents [46, 68, 150].

Abstractive summarization models usually adopt the encoder-decoder architecture

[19, 86, 97, 109]. These models are confronted with two challenges: 1) Identifying and

23

Chapter 2. Literature Review

encoding salient content of input document. 2) Generating high-quality summaries

through the decoder [74, 75].

To identify and encode salient content, existing work employs various neural models

as the encoder, including the CNN [34, 69, 108], the RNN [19, 86, 97, 116, 127], the

GNN [66], and the transformer encoder [65, 77]. Besides, researchers try different

attention mechanisms to encode the input context [4, 108, 116, 127].

To facilitate the summary generation, the pointer-generator network [116] employs

the copy mechanism, which enables copying input words. The copy mechanism can

alleviate the out-of-vocabulary problem. It is also helpful for generating factually

correct summaries.

Extractive and abstractive summarization methods have their advantages and dis-

advantages. Researchers attempted to combine these two approaches’ advantages

and proposed some hybrid methods. The most straightforward way is adopting the

extraction-then-generation framework [70, 80, 100, 125]. Other work [57, 78] explores

the potential of integrating extractive and abstractive summarization through multi-

task learning.

2.2.3 Document Summarization Datasets

Over the past few decades, the development of summarization models and the con-

struction of large-scale summarization datasets have jointly advanced document sum-

marization research. Large-scale labeled datasets enable the training of large neural

summarization models via supervised learning.

In table 2.2, we summarize some frequently-used document summarization datasets

from different domains, including news articles, forum posts, scientific literature, legal

instruments, and government reports. We can discover that the average lengths of

the input short news articles or forum posts in these datasets are shorter than 1,000

24

2.2. Automatic Document Summarization

words. The average lengths of their corresponding summaries are usually shorter

than 60 words. Examples in the Multi-News [38] dataset concatenate multiple news

articles about the same event or topic as inputs. Typically, the input for each example

is restricted to the text content found within the original documents, while tables and

figures are usually excluded from the input.

Compared with short documents (e.g., news articles, forum posts, and product re-

views), long documents, including scientific literature, government reports, and legal

documents, usually contain thousands of words. The average lengths of these ground

truth summaries (e.g., the abstracts in academic papers) in these datasets are usually

shorter than 300 words. The government reports in the GOVREPORT [56] and the

book chapters in the BookSum [62] are much longer. The average lengths of their

ground truth summaries are more than 500 words.

25

Chapter 2. Literature Review

Table 2.2: Statistical information of some public summarization datasets. ”Pairs”

denotes the number of examples. ”Input Len” and ”Target Len” denote the average

number of words in input documents and ground truth summaries

Domain Dataset Mode Pairs Input Len Target Len

News XSum [90] SDS 226.7K 431 23

Newsroom [44] SDS 1.21M 751 30

NYTimes [111] SDS 655K 549 40

CNN/DM [52] SDS 312K 790 56

Multi-News[38] MDS 56.2K 2,103 264

Forum TIFU-short [59] SDS 79.9K 342 9

TIFU-long [59] SDS 42.9K 432 23

TLDR-Comment [133] SDS 1.67M 225 22

TLDR-Submission [133] SDS 2.38M 416 34

Scientific SCITLDR [14] SDS 3.2K 5K 21

BIGPATENT [118] SDS 1.34M 3,573 117

PubMed [23] SDS 133K 3,016 203

Arxiv [23] SDS 215K 4,938 220

CSPubSum [25] SDS 10.3K 8.2K 226

FacetSum [83] SDS 58.3K 6,827 290

Multi-XScience [81] MDS 40.5K 778 116

WikiSum [70] MDS 1.57M 36,802 139

Law BillSum-US [35] SDS 23.5K 1,382 207

Report GOVREPORT [56] SDS 19.5K 9,409 553

Book BookSum-Para [62] SDS 142.7K 160 41

BookSum-Chapter [62] SDS 12.3K 5,102 505

BookSum-Full [62] SDS 436 112,885 1167

26

Chapter 3

Key Phrase Aware Transformer for

Abstractive Document

Summarization

3.1 Introduction

Nowadays, people can access massive text documents through the Internet. It brings

a heavy burden for people to read through all their acquired documents and find their

desired parts [36, 85, 150]. For example, hundreds of thousands of academic papers

about the COVID-19 pandemic have been released on the Internet since 2020.1 As a

result, people were drowned in the torrent of varying-quality papers, making it harder

to track frontier research. There is an urgent need to develop advanced tools to assist

people in efficiently reading plentiful text documents.2

Automatic text summarization techniques, which produce a concise summary of one

1https://www.nature.com/articles/d41586-020-03564-y
2https://www.sciencemag.org/news/2020/05/scientists-are-drowning-covid-19-papers-can-new-

tools-keep-them-afloat

27

Chapter 3. Key Phrase Aware Transformer for Abstractive Document
Summarization

or more text documents [36, 85, 112], can be utilized to alleviate the above problem.

The produced summary can help people quickly grasp the key information from the

original document and determine whether the document is worth further reading.

Previous text summarization methods can be generally classified into two categories:

extractive and abstractive summarization methods. Extractive methods [7, 36, 37,

78, 84, 85, 112] select important sentences from input documents to form summaries.

While abstractive methods [19, 41, 77, 86, 97, 109, 141] capture and encode the

salient content from input documents as the condition for generating novel sentences

as summaries.

Many recent abstractive summarization methods [77, 78, 141] are built on the trans-

former model and achieve great performance in various summarization tasks. In the

transformer encoder, calculating attention weights is a crucial step for encoding input

documents. Encoding key phrases completely is important to encode the semantic

information of input documents. However, existing transformer-based abstractive

summarization models did not consider key phrases in input when determining self-

attention weights, and their objective functions usually focus on sequence generation.

Without the constraint of a specific objective function or the guidance of prior knowl-

edge, it can be difficult for the model to encode these key phrases completely. When

testing these models, we observed that some tokens within key phrases only receive

small attention weights, which is not conducive to encoding these phrases and the

salient information they convey.

Existing summarization datasets usually do not have labels of key phrases, so we

cannot train the model through supervised multi-task learning to recognize keywords

while generating summaries. In this chapter, we introduce some prior knowledge of

key phrases into the transformer-based summarization model and guide the model to

encode these key phrases.

Our work is inspired by previous studies in education and psychology. They reveal

that key phrases are important for people to understand [47, 106] and summarize

28

3.1. Introduction

30
coronary

artery
tissues
without

atherosclerotic
plaques

that
served

as
the

control
group

coronary
artery

tissues

atherosclerotic
plaques

control
group

30
coronary
artery
tissues
without
atherosclerotic
plaques
that
served
as
the
control
group

3
0

co
ro

n
a

ry
a

rt
e

ry

tis
su

e
s

w
ith

o
u

t
a

th
e

ro
sc

le
ro

tic
p

la
qu

e
s

th
a

t
se

rv
e

d
a

s
th

e
co

n
tr

o
l

gr
ou

p

3
0

co
ro

n
a

ry
a

rt
e

ry

tis
su

e
s

w
ith

o
u

t
a

th
e

ro
sc

le
ro

tic
p

la
qu

e
s

th
a

t
se

rv
e

d
a

s
th

e
co

n
tr

o
l

gr
ou

p

Highlighting Matrix

Self-Attention Weight Matrix

Highlighting Attention
Weight Matrix

Figure 3.1: The highlighting mechanism assigns greater attention weights for tokens

within key phrases indicated by the highlighting matrix.

[8, 21] the given documents. Besides, previous work found that highlighting key

phrases can help people with dyslexia improve comprehension [47, 106]. One possible

advantage of highlighting is that it utilizes a cognitive bias named the Von Restorff

effect [96, 134]. The highlighted portion of text stands out from the surrounding non-

highlighted text, making it more memorable [146]. These findings can be instructive

to improve abstractive summarization models.

There are usually multiple tokens in each key phrase. These tokens should be highly

related and serve as a grammatical unit together. For the contextual representation

of key phrases, we assume that the tokens within the same key phrase make larger

contributions than other tokens in the input sequence. Based on this assumption,

we propose the Key Phrase Aware Transformer (KPAT), an abstractive summariza-

29

Chapter 3. Key Phrase Aware Transformer for Abstractive Document
Summarization

tion model with the highlighting mechanism in the encoder. As shown in Fig.3.1,

the highlighting mechanism assigns greater attention weights for tokens within key

phrases.

Our proposed highlighting mechanism comprises three main parts: the highlighting

matrix, the highlighting attention for each head, and the multi-head highlighting

attention. We build a highlighting matrix for each input token sequence to indicate

key phrases’ importance scores and their positions in the input sequence. To combine

self-attention weights with key phrases’ importance scores, we propose two structures

of highlighting attention. Besides, we conduct the block-wise linear transformation

on the highlighting matrix to adjust the contributions of phrases’ importance scores.

We evaluate our model and various summarization baselines on a multi-document

summarization (MDS) dataset named Multi-News [38] and a single document summa-

rization (SDS) dataset named PubMed [23]. Automatic evaluation results show that

our model significantly improves the ROUGE scores [67] of generated summaries. Hu-

man evaluation results also confirm that the highlighting mechanism can improve the

informativeness of generated summaries. Experimental results on these two datasets

verify that our proposed methods can generalize to different summarization tasks

(MDS and SDS) and different domains (news articles and academic literature).

In addition, we conduct more experiments to analyze the impact of each part of

our model on the summarization performance. Firstly, we compare adopting the

highlighting attention in different numbers of heads and layers and discover that using

it in a subset of heads or layers surpasses using it in all heads or layers. Secondly,

we analyze the impact of the number of introduced key phrases and the utilized

key phrase extractor. Experimental results show that introducing more accurate

and adequate key phrases can bring extra performance gains for the KPAT model.

The ablation studies also validate the effectiveness of each part of the highlighting

mechanism.

30

3.2. Objectives

The contribution of this work is threefold:

• We propose the highlighting mechanism assigning greater attention weights for

tokens within key phrases to encode them completely.

• We design two structures of highlighting attention for each head and the multi-

head highlighting attention to combine self-attention weights with key phrases’

importance scores indicated by the highlighting matrix.

• Our proposed KPAT model significantly outperforms advanced summarization

baselines on two datasets in different domains (news articles and academic pa-

pers) and different summarization tasks (MDS and SDS).

3.2 Objectives

The primary focus of this research is to enhance the transformer-based abstractive

summarization model’s ability to completely encode key phrases in input documents.

We aim to introduce some prior knowledge to guide the model to encode key phrases.

To achieve this goal, we need to complete three objectives:

• To introduce key phrases’ importance and position information into the transformer-

based abstractive summarization model.

• To modify the encoder part of the transformer model and combine self-attention

weights with key phrases’ importance scores.

• To evaluate our proposed model on different summarization datasets and verify

its effectiveness.

• To analyze the impact of the introduced key phrases’ precision and coverage on

our model’s summarization performance.

31

Chapter 3. Key Phrase Aware Transformer for Abstractive Document
Summarization

Preprocessing

Key Phrase Extraction

Building Highlighting Matrix

 Summarization

Truncated
Documents

Key Phrases

Input
Documents

Summary
Highlighting

Matrixes

Figure 3.2: The workflow of our proposed method.

3.3 Proposed method

Our proposed method includes several steps, including data preprocessing, key phrase

extraction, building highlighting matrix, and summarization, as depicted in Fig. 3.2.

The procedures of data preprocessing and key phrase extraction are presented in

subsection 3.3.1. Moreover, subsection 3.3.2 introduces our KPAT model, which

mainly comprises the highlighting matrix, the highlighting attention mechanism for

each head, and the multi-head highlighting attention mechanism.

3.3.1 Data preparation

We need to prepare the dataset for training and evaluating our proposed abstractive

summarization model. Each input example of our KPAT model contains the trun-

cated articles, key phrases, and their importance scores. We first preprocess input

documents as introduced in subsection 3.3.1. In subsection 3.3.1, we adopt the au-

tomatic key phrase extraction method to assess phrases’ importance and select the

ones with top importance scores as key phrases.

32

3.3. Proposed method

Input documents preprocessing

Input documents need to be preprocessed to meet the requirements of neural sum-

marization models. We only preserve the text content in input documents. To ensure

the efficiency of neural summarization models, we need to truncate input documents.

For the MDS dataset, we can truncate input documents within each example. In the

SDS dataset, an input document usually contains multiple parts. We can consider

their contributions to the summary and truncate these parts. More specific oper-

ations should depend on the nature of the dataset and the summarization models’

requirements, and they will be discussed in subsection 3.5.1.

Phrase importance assessment

This chapter aims to enhance the transformer model’s ability to completely encode

key phrases that usually convey the salient information of input documents. As a

prerequisite, the phrases’ importance should be assessed, and key phrases should be

identified. Since there are usually no labels of key phrases in existing summarization

datasets, we utilize unsupervised key phrase extraction methods to score phrases’

importance and select the phrases with top-N scores as key phrases. After removing

stopwords, we tried a statistics-based method named tf-idf [110]3 and two graph-based

ranking methods: TopicRank [11] and PositionRank [40].4 We only select bigrams

and trigrams since longer phrases are sparse and more likely to be compressed in

summaries. Based on these extracted key phrases, we conduct the L2 normalization

on their scores assigned by the extractor as their importance scores.

After the step of key phrase extraction, we build the highlighting matrix for each

input example based on extracted key phrases and their importance scores. More

3We calculate the tf-idf score by the scikit-learn library https://scikit-learn.org/stable/index.html
4We adopt the implementations of TopicRank and PositionRank from

https://github.com/boudinfl/pke

33

Chapter 3. Key Phrase Aware Transformer for Abstractive Document
Summarization

Multi-Head
Highlighting

Attention

Add & Norm

Input
Embedding

Output
Embedding

Feed
Forward

Add & Norm

Masked
Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Copy Generator

Input
Sequence

Output Sequence
(Shifted Right)

Positional
Encoding

Positional
Encoding

N ×
N ×

Output
Probability

Highlighting
Matrix

Encoder

Decoder

Figure 3.3: The architecture of the Key Phrase Aware Transformer (KPAT) model.

details of building the highlighting matrix will be illustrated in subsection 3.3.2. We

also conduct experiments to compare the effects of adopting different key phrase

extractors and selecting different numbers of key phrases. Our experimental results

will be reported and analyzed in subsection 3.6.4.

3.3.2 Key phrase aware transformer model

This section introduces the Key Phrase Aware Transformer (KPAT), a model with the

highlighting mechanism. We first present the architecture of the KPAT model. And

then, three main components in the highlighting mechanism: the highlighting matrix,

the highlighting attention for each head, and the multi-head highlighting attention

34

3.3. Proposed method

will be introduced separately.

Model architecture

Our KPAT model follows the encoder-decoder structure. This chapter mainly focuses

on the encoder part since our motivation is to augment the transformer’s ability to

encode key phrases in input documents. The decoder part of the KPAT model follows

settings in [38, 41]. Fig. 3.3 depicts the architecture of the KPAT model.

The encoder of our KPAT model consists of N identical layers. Each of them has two

sub-layers: the multi-head highlighting attention layer and the position-wise fully con-

nected feed-forward layer. These encoder layers’ inputs include the previous layer’s

output and the highlighting matrix. We replace the multi-head self-attention layers

in the original transformer model [131] with the multi-head highlighting attention

layers, which will be presented in subsection 3.3.2. Each multi-head highlighting at-

tention layer contains h heads and employs the highlighting attention on p highlighted

heads to adjust attention weights according to the phrase importance. We depict the

highlighting attention in subsection 3.3.2.

Highlighting matrix

The first step of the highlighting mechanism is to build a highlighting matrix for each

input example based on the results of key phrase extraction. The highlighting matrix

can indicate key phrases’ positions in the attention weight matrix and these phrases’

importance scores.

As described in subsection 3.3.1, the input of each example in the MDS dataset is the

concatenation of multiple truncated articles. In the SDS dataset, the input of each

example is the truncated single document. Each example’s input can be represented

as an input sequence (t1, ..., tn) containing n tokens. We use (p1, ..., pk) and (s1, ..., sk)

35

Chapter 3. Key Phrase Aware Transformer for Abstractive Document
Summarization

Linear Linear Linear

MatMul

Scale

Mask

Softmax

MatMul

Highlight
Matrix

Block
Linear

Add

Linear Linear Linear

MatMul

Scale

Mask

Softmax

Highlight
Matrix

Block
Linear

Softmax

Mask

MatMul

L1Norm

Add

(a) (b)

Q K V Q K V

Figure 3.4: An overview of the highlighting attention mechanisms, namely (a) the

weighted highlighting attention and (b) the additive highlighting attention.

to denote key phrases extracted from truncated articles and their importance scores.

For each input example, we build the highlighting matrix H ∈ Rn×n with the same

shape as the self-attention weight matrix. Assuming a phrase pr contains b tokens in

the input sequence pr = (ta, ..., ta+b), and the phrase’s importance score sr is added to

the elements Hi,j, where i = a, . . . , a + b, j = a, . . . , a + b, in the highlighting matrix.

These phrases can be partially overlapping or nested, and the token ti can be contained

in c phrases (pr, ..., pr+c), whose importance scores are (sr, ..., sr+c). The element Hii

is assigned as the maximum value of the c phrases’ importance scores. Finally, we

get a block diagonal matrix as the highlighting matrix H = diag(H1, H2, ..., Ht), in

which the main-diagonal blocks are square matrices and all off-diagonal blocks are

zero matrices, as depicted in Fig. 3.1.

36

3.3. Proposed method

Highlighting attention

The highlighting attention is the crucial component in our model for adjusting at-

tention weights according to the phrase importance. For the head m, the original

transformer model [131] adopts Eq. (2.2b) to calculate the scaled dot-product atten-

tion.

We propose two structures of highlighting attention, namely the weighted highlighting

attention and the additive highlighting attention, to replace the scaled dot-product

attention. These two structures of highlighting attention are compared in Fig. 3.4.

Within the inputs of the highlighting attention, all the keys, values, and queries come

from the previous layer’s output. The input highlighting matrix H can indicate which

elements in the attention weight matrix should be increased.

Hm = block-linear(H) = diag(linear(H1), ..., linear(Ht)) (3.1)

The block-wise linear transformation conducts on the block diagonal highlighting ma-

trix H =diag(H1, H2, ..., Ht). As shown in Eq. (3.1), submatrices in the highlighting

matrix are transformed to adjust the scale of key phrases’ importance scores.

The weighted highlighting attention mainly modifies Eq. (2.2b) to calculate the

attention weight matrix Wm for the head m. The block diagonal highlighting matrix

H=diag(H1, H2, ..., Ht) is transformed by Eq. (3.1). Then the result Hm is added to

the input of the softmax function.

Wm = softmax(
QKT

√
dk

+ Hm) (3.2)

As shown in Eq. (3.3), the softmax function applies the exponential function to

each input element and divides them by the sum of all these exponentials. Since the

additive operation in Eq. (3.2) is identical to calculating the weighted average, we

37

Chapter 3. Key Phrase Aware Transformer for Abstractive Document
Summarization

name it weighted highlighting attention.

softmax(zi + bi) =
ebiezi∑n
j=1 e

bjezj
i = 1, . . . , n (3.3)

The additive highlighting attention is also designed for adjusting the attention

weight matrix Wm. The block-wise linear transformed result Hm is normalized by the

softmax function5 and added to the original attention weight matrix Wm
a calculated

in Eq. (2.2b). After that, the matrix Wm
b produced by Eq. (3.4a) is normalized

along the dimension, where the softmax function is computed, to ensure the sum of

elements in that dimension is equal to one.

Wm
b = Wm

a + softmax(Hm) (3.4a)

Wm
:, j =

Wm
b :, j

||Wm
b :, j||1

j = 1, . . . , n (3.4b)

Multi-head highlighting attention

In our model, the encoder with dimension dmodel consists of N layers and h heads.

Each encoder layer contains the multi-head highlighting attention as a sub-layer. We

proposed the multi-head highlighting attention mechanism, which employs the high-

lighting attention on p highlighted heads HeadH
i and the original scaled dot-product

attention on the rest of (h − p) normal heads HeadN
i . The multi-head highlighting

attention is calculated as follows:

MultiHead(Q,K, V) = HeadsW o

Heads = Concat(HeadH
1 , ...,HeadH

p ,HeadN
p+1, ...,HeadN

h)

Headi = Attention(Q,K, V)

(3.5)

5Since the number of key phrases is limited, and the highlighting matrix can be sparse, we mask

the zero elements and only conduct the softmax operation on the nonzero elements.

38

3.4. Datasets

The matrix Headi is calculated by Eq. (2.2a). Within that equation, the attention

weight matrix Wm of the highlighted head HeadH
i can be calculated by Eq. (3.2) or

Eq. (3.4), while that of the normal head HeadN
i can be calculated by Eq. (2.2b). In

Eq. (3.5), results of all the heads will be concatenated and then projected through a

feed-forward layer, whose parameter matrix is W o ∈ Rhdv×dmodel .

3.4 Datasets

We train and evaluate our model on an MDS dataset named Multi-News [38] and an

SDS dataset named PubMed [23] to verify the effectiveness of our proposed methods

on two summarization tasks (MDS and SDS) and datasets from two domains (news

articles and academic literature).

In the Multi-News dataset [38], each example contains multiple news articles about

the same event collected from diverse sources and a summary written by professional

editors from newser.com. Cohan et al. [23] collected biomedical papers and built an

SDS dataset named PubMed. Scientific papers are usually long documents. Their

abstracts can be used as ground truth summaries. We find that the original PubMed

dataset fails to separate abstracts from body sections in some examples, so we remove

these abstracts from body sections in these examples.

The statistical information of these two datasets is shown in Table 3.1. Since Multi-

News is an MDS dataset, the input document’s length is calculated on the concate-

nation of all input documents in each example. We find that input documents in the

PubMed dataset are notably longer than those of the Multi-News dataset. Addition-

ally, academic literature’s format and content organization are quite different from

news articles, so we need to adopt different data preprocessing operations on these

two datasets.

39

Chapter 3. Key Phrase Aware Transformer for Abstractive Document
Summarization

Table 3.1: Statistical information of two summarization datasets we used, ”Pairs”

denotes the number of examples, and ”Words” denotes the average number of words

in input documents and ground truth summaries.

Dataset Pairs Words (Doc) Words (Summary)

Multi-News 56K 2,103 264

PubMed 133K 3,016 203

Table 3.2: Some common sections’ contributions to abstracts in the PubMed dataset.

’Examples’ denotes the percentage of examples containing each section. The average

recalls of unigram, bigram, and longest common subsequence (LCS) are calculated

by comparing each section with the abstract.

Sections Examples
Recall

Unigram Bigram LCS

Introduction 76.3% 0.515 0.205 0.405

Discussion 69.6% 0.678 0.502 0.531

Result 56.4% 0.503 0.225 0.387

Conclusion 55.2% 0.304 0.123 0.272

Methods 54.0% 0.576 0.202 0.449

Case Report 28.8% 0.558 0.216 0.448

Analysis 21.6% 0.255 0.069 0.213

40

3.5. Experiments

3.5 Experiments

3.5.1 Data preprocessing

To prepare the text data for training and evaluating the summarization model, we

need to remove irrelevant content, filter out some outliers, change the format and

length of text content, and split the dataset into training, validation, and test subsets.

We lowercase all tokens in two datasets and perform sentence and word tokenization

using NLTK [10]. More specific operations should depend on the nature of the dataset

and the requirements of the summarization model.

For the Multi-News dataset, we follow the settings of data preparation in [38] and

only keep examples with 2-10 input documents per summary. We take the first

500/S tokens from each document for the examples with S documents. If some input

documents are shorter than 500/S, we follow [38] and iteratively adjust the quota for

each document until reaching the 500-token limit. Then these truncated documents

within one example are concatenated into a single document. We follow [38] to split

the dataset into training (80%), validation (10%), and test (10%) sets.

For the PubMed dataset, we follow the settings in [23] and first filter out the outliers

that are excessively long or too short. We also remove examples that do not contain

the abstract. Figures and tables are removed, and we only preserve the text content.

Since academic papers usually contain multiple sections and each section contributes

differently to the abstract, we need strategies to preprocess these sections differently.

We discover that the sections appearing after the conclusion section, like acknowledg-

ments, conflict of interest, and sponsorship, usually do not contribute to the content

of the abstract, so we remove these sections. Besides, some examples in the original

PubMed dataset mix these abstracts’ subsections with other body sections. We re-

move abstracts from these examples’ body sections to prevent leaking target outputs

into inputs of these examples.

41

Chapter 3. Key Phrase Aware Transformer for Abstractive Document
Summarization

In addition, we count section names of these papers in the PubMed dataset and find

some common sections, including introduction, discussion, results, conclusion, meth-

ods, case report, and analysis. The ”Examples” column in Table 3.2 summarizes the

percentages of examples containing these common sections.6 To calculate the average

recalls of unigram, bigram, and longest common subsequence (LCS), we compare each

of these common sections with the abstract, and we only count the examples whose

inputs include that section.

Existing neural models’ time or space complexity is usually highly correlated with the

input sequence length. There is usually a limitation on the input sequence length to

ensure the efficiency of the neural summarization model. Since the concatenation of

these common sections can be excessively long, we still need to truncate them. We first

count the number of common sections included in each paper. If one paper contains

S common sections, we truncate each common section to 1000/S tokens. When some

sections are shorter than 1000/S tokens, the excess quota will be equally distributed

to other common sections. When the total length of these common sections is less

than 1000, we equally assign the remaining quota to other body sections.

These truncated sections within one example are concatenated into a single document

as the input. When increasing input length from 1000 to 2000 tokens, we do not find

significant performance improvement, while training the neural models with a larger

input size is more time-consuming. Following the settings in [23], we split the dataset

into training (90%), validation (5%), and test (5%) sets.

3.5.2 Experimental setting

We adopt a 4-layer encoder and a 4-layer decoder to build the KPAT model. Each

layer has eight attention heads. Both word embedding size and hidden size are set as

6We employ string matching on the section name to judge if each section belongs to a common

section.

42

3.5. Experiments

512. The maximum size of the vocabulary is set as 50000 by default. We also use label

smoothing [126] with the smoothing factor 0.1 and dropout [123] with probability

0.2. The optimizer is Adam [60] with learning rate 2, β1=0.9, and β2=0.998. We

also adopt the learning rate warmup over the first 8,000 steps and decay as in [131].

During decoding, we use beam search with a beam size of 5. The trigram blocking

is used to reduce repetitions. We implement our model with OpenNMT-py [61]. All

the models are trained on one NVIDIA QUADRO RTX 8000 GPU.

3.5.3 Baselines

We compare our proposed KPAT model with the following summarization methods.

These methods can be roughly divided into two categories: extractive summarization

methods and abstractive summarization methods. These models’ details are shown

in Table 3.11.

Extractive summarization methods

LexRank and TextRank7 [37, 84] are two graph-based ranking methods that can

be used for extractive summarization. They first build a sentence similarity graph

and adopt the idea of PageRank [12] to score sentences. These sentences are sorted

in descending order of their scores. Then top-ranked sentences are selected to form a

summary.

Tf-idf [110] scores of words within a sentence can be summed to measure the sen-

tence’s importance. An extractive summarization method [22] is built based on this

idea.

7We utilize the implementation of the LexRank model from

https://pypi.org/project/lexrank/ and that of the TextRank model from

https://radimrehurek.com/gensim 3.8.3/summarization/summariser.html

43

Chapter 3. Key Phrase Aware Transformer for Abstractive Document
Summarization

BertExt [78] stacks inter-sentence transformer layers on top of the pre-trained BERT

model to capture document-level features. We follow settings in [78] and fine-tune

the BERT model and inter-sentence transformer layers jointly on the training sets we

used.

Abstractive summarization methods

PG and PG-MMR are models based on the pointer-generator network [63]. The

pointer-generator network [116] allows both copying words from the input text and

generating words from a vocabulary. Besides, it utilizes the coverage mechanism to

discourage repetition in the generated text.

Hi-MAP [38] expands the PG network into a hierarchical network and calculates each

sentence’s Maximal Marginal Relevance (MMR) score. The attention distribution of

each token within one sentence is multiplied by the MMR score of that sentence.

DAA [23] extends the pointer-generator network with discourse-aware attention. It

consists of a hierarchical encoder modeling the discourse structure of each input doc-

ument and an attentive discourse-aware decoder.

CopyTransformer [38, 41] adds the copy mechanism [116] to a 4-layer transformer

model. Our KPAT model’s decoder part adopts the decoder from this model.

SAGCopy [141] modifies the copy mechanism by adding words’ centrality scores to

the linearly transformed hidden state when calculating the copy distribution.

BertAbs [78] adopts the pre-trained BERT model as the encoder and randomly

initializes a decoder comprising six transformer layers. We adopt the settings in [78]

and fine-tune the model on the training sets we used.

44

3.5. Experiments

3.5.4 Evaluation metrics

We use the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) F1 scores

[67] as the automatic evaluation metrics. Specifically, we report overlaps of uni-

grams (R-1), bigrams (R-2), and skip-bigrams with unigrams (R-SU) between system-

generated summaries and reference summaries provided by summarization datasets.

ROUGE-N (R-N) is a statistic on n-gram co-occurring in both a candidate summary

and a set of reference summaries. N is the number of words in the n-gram.

R-Nr =

∑
S∈ref

∑
gramN∈S Countm(gramN)∑

S∈ref
∑

gramN∈S Count(gramN)
(3.6a)

R-Np =

∑
S∈ref

∑
gramN∈S Countm(gramN)∑

S∈cand
∑

gramN∈S Count(gramN)
(3.6b)

R-NF1 =
2× R-Np × R-Nr

R-Np + R-Nr

(3.6c)

In Eq. (3.6), S represents the sentence in summaries. Countm(gramN) is the max-

imum number of n-grams co-occurring in both a candidate summary and a set of

reference summaries. R-Nr, R-Np, and R-NF1 represent the recall, precision, and F1

score of ROUGE-N. We employ the F1 scores of ROUGE-1 (R-1) and ROUGE-2

(R-2) for assessing generated summaries’ informativeness [65, 77].

ROUGE-S (R-S) is a co-occurrence statistic on the skip-bigram. In a sentence, each

skip-bigram is an ordered pair of words allowing for arbitrary gaps between them.

Given a sentence senti = [w1, w2, ..., wn] comprising multiple words in a candidate

summary, a pair of words within the sentence (wj1 , wj2) is a skip-bigram if j1 < j2.

ROUGE-S does not require consecutive matching, but it is still sensitive to word order

[67]. It counts all in-order matching word pairs and can be computed as follows:

45

Chapter 3. Key Phrase Aware Transformer for Abstractive Document
Summarization

R-Sr =
SKIP(X, Y)

C(m, 2)
(3.7a)

R-Sp =
SKIP(X, Y)

C(n, 2)
(3.7b)

R-SF1 =
2× R-Sr × R-Sp

R-Sr + R-Sp

(3.7c)

SKIP(X, Y) =
∑
S∈X

∑
s-grami∈S

Countm(s-grami) (3.7d)

In Eq. (3.7), s-grami is a skip-bigram. m is the length of the reference summary X.

n represents that of the generated candidate summary Y. C(m, 2) and C(n, 2) are

numbers of skip-bigrams in X and Y. Besides, SKIP(X, Y) is the number of matched

skip-bigrams between X and Y. R-Sr, R-Sp, and R-SF1 represent the recall, precision,

and F1 score of ROUGE-S.

However, ROUGE-S does not consider that some generated sentences may not include

skip-bigrams. ROUGE-SU extends the ROUGE-S by adding unigram as an additional

counting unit. It can be implemented by adding a marker at the beginning of the

candidate and reference sentences [67].

ROUGE-SU(X, Y) = ROUGE-S(X+, Y +) (3.8a)

SKIP(X+, Y +) = SKIP(X, Y)+ Uni-CNT (3.8b)

Uni-CNT =
∑
S∈X

∑
Unigrami∈S

Countm(Unigrami) (3.8c)

In Eq. (3.8), X+ and Y + denote the reference and candidate summary added a

start token. Uni-CNT is the maximum number of unigrams co-occurring in both the

candidate summary and a set of reference summaries.

46

3.6. Results and discussion

3.6 Results and discussion

In this section, we present and analyze our experimental results. To compare the

quality of summaries generated by our KPAT model and various advanced baselines,

we conduct automatic and human evaluations and analyze evaluation results in sub-

section 3.6.1 and 3.6.2. Besides, we conduct more experiments to analyze the impact

of each part of our model on the summarization performance. We compare the effects

of adopting the highlighting attention in different numbers of heads and layers in the

encoder of our KPAT model in subsection 3.6.3. We also compare the impacts of

introducing different numbers of key phrases from different key phrase extractors into

the KPAT model in subsection 3.6.4. To validate the effectiveness of each compo-

nent in our proposed KPAT model, we adopt ablation studies and report results in

subsection 3.6.5.

3.6.1 Automatic evaluation results

In the automatic evaluation, we employ the ROUGE scores [67] of generated sum-

maries on test sets as the evaluation metrics and compare the summaries generated

by our KPAT model with those of baseline models.

Automatic evaluation results of LexRank, TextRank, PG, PG-MMR, Hi-MAP, and

CopyTransformer on the Multi-News test set follow Fabbri et al. [38]. For the PubMed

dataset, we train and evaluate these models since we choose a different truncation

strategy compared with the original scheme in [23] and remove abstracts from body

sections in some examples that fail to separate them. In addition to the baseline

models used in [23, 38], we add two additional extractive baselines and two abstrac-

tive baselines introduced in subsection 3.5.3. The tf-idf-based extractive method [22]

is adopted as a baseline to compare with introducing the tf-idf score into our abstrac-

tive model. The BERT-based extractive summarization method named BertExt and

47

Chapter 3. Key Phrase Aware Transformer for Abstractive Document
Summarization

Table 3.3: Automatic evaluation results on the Multi-News test set.

Method R-1 R-2 R-SU

LexRank 38.27 12.70 13.20

TextRank 38.44 13.10 13.50

tf-idf 38.68 12.09 13.54

BertExt 44.27 15.09 17.44

PG 41.85 12.91 16.46

PG-MMR 40.55 12.36 15.87

Hi-MAP 43.47 14.89 17.41

BertAbs 42.21 15.14 16.33

SAGCopy 43.98 15.21 17.65

CopyTransformer 43.57 14.03 17.37

KPAT (Weighted) 45.30 15.96 18.62

KPAT (Additive) 44.37 15.55 17.77

the abstractive summarization method named BertAbs in [78] are fine-tuned on our

training sets and evaluated on our test sets. The SAGCopy [141] is also trained and

evaluated on these two datasets we used.

We report the F1 scores of ROUGE-1 (R-1), ROUGE-2 (R-2), and ROUGE-SU (R-

SU) in Table 3.3 and 3.4. ”KPAT (Weighted)” denotes the KPAT model equipped

with the weighted highlighting attention, and ”KPAT (Additive)” represents the

KPAT model equipped with the additive highlighting attention. For the Multi-News

dataset, we report the results of the KPAT model based on the top-20 key phrases

extracted by the PositionRank. For the PubMed dataset, we report the results of the

KPAT model based on the top-10 key phrases extracted by the PositionRank.

Our proposed model significantly outperforms these baseline models on all metrics.

48

3.6. Results and discussion

Table 3.4: Automatic evaluation results on the PubMed test set.

Method R-1 R-2 R-SU

LexRank 35.78 14.75 11.35

TextRank 36.41 14.97 11.90

tf-idf 33.67 9.18 10.74

BertExt 37.72 13.95 12.48

PG 38.37 13.59 14.72

DAA 38.95 15.41 15.63

BertAbs 39.29 15.59 15.84

SAGCopy 38.66 15.24 15.35

CopyTransformer 38.81 14.99 15.39

KPAT (Weighted) 40.04 15.82 16.24

KPAT (Additive) 39.67 15.61 15.94

These results prove the effectiveness of the highlighting mechanism on two summa-

rization tasks (MDS and SDS) and datasets from two domains (news articles and

academic literature). Besides, the weighted highlighting attention performs better

than additive highlighting attention. According to Eq. (3.2) and (3.3), the weighted

highlighting attention can take advantage of the exponential operation in the softmax

function to amplify the influence of key phrases’ importance scores. Consequently,

the highlighted heads adopting the weighted highlighting attention can enlarge the

contributions of tokens within the same key phrase to the contextual representation

of each token in that phrase.

49

Chapter 3. Key Phrase Aware Transformer for Abstractive Document
Summarization

Table 3.5: Human evaluation results on the test sets of Multi-News and PubMed,

”Win” represents the generated summary of our KPAT model is better than that of

the CopyTransformer in one aspect. ”Tie” denotes two summaries are comparable in

one aspect.

Win Lose Tie Kappa

Multi-News dataset

Informativeness 44.5% 21.0% 34.5% 0.656

Fluency 31.5% 29.0% 39.5% 0.647

Non-Redundancy 28.0% 23.5% 48.5% 0.614

PubMed dataset

Informativeness 43.0% 19.5% 37.5% 0.659

Fluency 27.0% 25.0% 48.0% 0.622

Non-Redundancy 23.5% 19.0% 57.5% 0.631

3.6.2 Human evaluation results

We perform the human evaluation to compare the quality of summaries generated by

our KPAT model and the CopyTransformer model. This human evaluation mainly

focuses on three metrics: informativeness (the coverage of information from input

documents), fluency (content organization and grammatical correctness), and non-

redundancy (less repetitive information). We randomly select 50 samples from the test

sets of Multi-News and PubMed, respectively. We invite four annotators to compare

summaries generated by two models. These summaries are presented anonymously.

Besides, we assess annotators’ agreements by Fleiss’ kappa [39].

Human evaluation results in Table 3.5 suggest that our proposed model significantly

outperforms the CopyTransformer in terms of informativeness and is comparative in

50

3.6. Results and discussion

Table 3.6: Evaluation results of highlighting different numbers of heads and layers

on the Multi-News test set.

KPAT (Weighted) R-1 R-2 R-SU

1/4 Heads 1/2 Layers 45.30 15.96 18.62

1/2 Heads 1/2 Layers 44.61 15.60 18.16

All Heads 1/2 Layers 44.42 15.36 17.92

1/4 Heads All Layers 44.67 15.54 18.11

1/2 Heads All Layers 44.58 15.43 18.02

All Heads All Layers 44.35 15.23 17.90

terms of fluency and non-redundancy on these two datasets we used.

3.6.3 Impact of the multi-head highlighting attention

We compare the effects of adopting the weighted highlighting attention in different

numbers of heads and layers in the encoder of our proposed model. In this experiment,

we adopt the weighted highlighting attention mechanism on each highlighted head of

our encoder. Table 3.6 summarizes results on the test set of Multi-News. It shows

that adopting the weighted highlighting attention in a quarter of the heads and half

of the layers achieves the best performance. We discover that adopting highlighting

attention in a subset of heads surpasses adopting it in all heads. Applying the multi-

head highlighting attention in all the encoder layers is also not optimal.

Multi-head attention in the transformer model [131] is designed for jointly attending

to information from different representation sub-spaces. Voita et al. [132] find that

heads in the transformer model trained on the neural machine translation dataset

have specialized functions and focus on different types of information, including the

51

Chapter 3. Key Phrase Aware Transformer for Abstractive Document
Summarization

Table 3.7: Adopting different settings of key phrase selection on the Multi-News test

set.

Key phrase extractor R-1 R-2 R-SU

tf-idf (top-10) 44.56 15.63 18.00

tf-idf (top-20) 44.84 15.80 18.21

TopicRank (top-10) 44.53 15.29 17.97

TopicRank (top-20) 45.24 15.93 18.56

PositionRank (top-10) 44.70 15.73 18.12

PositionRank (top-20) 45.30 15.96 18.62

adjacent tokens, syntactic relations, and rare words. Adopting the highlighting at-

tention in all heads and layers is not conducive to encoding other types of useful

information and leads to performance degradation.

3.6.4 Impact of the key phrase extraction

Since our KPAT model relies on extracted key phrases to construct highlighting met-

rics, the precision and coverage of introduced key phrases are crucial. In this subsec-

tion, we compare the impacts of introducing different numbers of key phrases from

different key phrase extractors into our proposed KPAT model.

There are usually no labels of key phrases in existing summarization datasets, so we

only focus on unsupervised extraction methods. We adopt the tf-idf-based extractor

and two graph-based ranking methods: TopicRank [11] and PositionRank [40], to

score the importance of phrases and extract key phrases from input documents. Based

on their extraction results, we build highlighting matrices as a part of the input of

our summarization model.

52

3.6. Results and discussion

Table 3.8: Adopting different settings of key phrase selection on the PubMed test

set.

Key phrase extractor R-1 R-2 R-SU

tf-idf (top-10) 39.88 15.70 16.06

tf-idf (top-20) 39.43 15.55 15.96

TopicRank (top-10) 39.48 15.73 15.91

TopicRank (top-20) 39.28 15.58 15.85

PositionRank (top-10) 40.04 15.82 16.24

PositionRank (top-20) 39.64 15.70 15.99

Evaluation results in Table 3.7 and Table 3.8 suggest that selecting the top-10 key

phrases performs well on the PubMed dataset. Considering PubMed is an SDS

dataset, ten key phrases can be enough for a single input document. For the MDS

dataset Multi-News, multiple news articles in each example usually contain more di-

verse phrases, including names of events, persons, locations, and organizations. Ten

phrases are not enough to cover them, so we decide to extract the top-20 phrases

from the input text in each example of Multi-News. We discover that selecting the

top-20 key phrases performs better on the Multi-News dataset.

When it comes to the impact of different key phrase extractors, introducing key

phrases extracted by the PositionRank algorithm [40] achieves the best results on the

two summarization datasets we used. PositionRank assigns larger probabilities to

words found early or frequently in a given document. It can meet the phenomenon

that key phrases usually appear near the beginning of a document or appear fre-

quently, which is common in news articles and academic literature [40].

For further analysis, we need to assess the performance of used key phrase extractors.

Unfortunately, there are usually no labels for key phrases in existing summarization

53

Chapter 3. Key Phrase Aware Transformer for Abstractive Document
Summarization

Table 3.9: Evaluation results on our labeled test sets for key phrase extraction on

the Multi-News and PubMed. ”P%” is the precision. ”R%” is the recall. ”Exact”

denotes the exact match. ”Contain” represents one gold phrase that is contained in

one predicted phrase. ”Cover” is the number of predicted phrases contained in target

summaries.

P% R% P% R% Num

Exact Exact Contain Contain Cover

Multi-News (top-20)

tf-idf 23.9 19.8 25.0 20.6 2.95

TopicRank 39.4 38.2 45.2 43.7 3.38

PositionRank 45.6 43.5 54.2 51.6 3.72

PubMed (top-10)

tf-idf 23.6 23.9 35.6 33.2 2.83

TopicRank 22.4 22.6 34.4 29.2 2.20

PositionRank 30.5 30.0 52.9 37.3 3.21

datasets. Therefore, we randomly selected 50 examples from training sets of the

Multi-News and PubMed, respectively. Then we invite annotators to label key phrases

(bigrams and trigrams) in input texts of these selected examples.

We evaluate three key phrase extractors on our labeled test sets. Considering that

gold phrases labeled by humans can be part of the phrases in input texts, we not

only calculate the precision and recall based on exact matching but also count pre-

dicted phrases containing a gold phrase. Because our target is to completely encode

key phrases in input texts, we do not accept predicted phrases contained in gold

phrases. Additionally, we count the number of predicted phrases contained in target

summaries.

54

3.6. Results and discussion

Table 3.10: Ablation study on the Multi-News and PubMed datasets. ”w/o block

linear” denotes removing the block-wise linear transformation on the block diagonal

highlighting matrix, ”w/o highlighting attention” is replacing the highlighting atten-

tion with the original self-attention, and ”w/o self-attention” represents replacing

self-attention weight matrices with highlighting matrices.

R-1 R-2 R-SU

Multi-News dataset

KPAT model 45.30 15.96 18.62

w/o block linear 44.62 15.57 18.06

w/o highlighting attention 43.57 14.03 17.37

w/o self-attention 42.82 14.66 16.71

PubMed dataset

KPAT model 40.04 15.82 16.24

w/o block linear 39.68 15.62 15.95

w/o highlighting attention 38.81 14.99 15.39

w/o self-attention 37.63 14.87 15.14

Table 3.9 shows these key phrase extractors’ performance. PositionRank performs

the best on two datasets. TopicRank performs better than tf-idf on the Multi-News,

while tf-idf performs better on the Pubmed dataset. Compared with the summariza-

tion results of our KPAT model in Table 3.7 and 3.8, we discover that a better key

phrase extractor can bring performance gains to our KPAT model since our model re-

lies on extracted phrases to construct highlighting metrics. This positive correlation

also reveals our highlighting mechanism’s effectiveness in introducing key phrases’

information.

55

Chapter 3. Key Phrase Aware Transformer for Abstractive Document
Summarization

Table 3.11: Details of summarization models.

Model Type Architecture Params Enc/Dec Layers Input Len

PG LSTM Enc-Dec 42.8M 2 -

BertAbs Transformer Enc-Dec 180.6M 12 1,024

CopyTransformer Transformer Enc-Dec 81.5M 4 1,024

KPAT Transformer Enc-Dec 81.5M 4 1,024

3.6.5 Ablation study

We conduct ablation studies to validate the effectiveness of each component in our

proposed model. Table 3.10 summarizes ablation studies’ results on the Multi-News

and PubMed datasets. These results confirm that incorporating the highlighting at-

tention and the block-wise linear transformation on the block diagonal highlighting

matrix can benefit both single-document summarization and multi-document sum-

marization. In addition, we also tried directly replacing the self-attention weight ma-

trices with the highlighting matrices in a quarter of the heads and half of the layers.

The performance degradation reveals that combining attention weights with phrases’

importance scores outperforms simply replacing the self-attention mechanism.

3.7 Chapter Summary

In this chapter, we propose the key phrase aware transformer (KPAT), a lightweight

model achieving great performance on multiple abstractive summarization tasks. This

work focuses on enhancing the transformer encoder to completely encode the key

phrases in input documents. We present the highlighting mechanism incorporating

the prior knowledge of key phrases when calculating attention weights for tokens

within key phrases. The results of our comparative experiments verify the effective-

ness of the highlighting mechanism.

56

Chapter 4

From Unimodal to Multimodal:

Long Text and Multi-Table

Summarization

4.1 Introduction

Report documents, like financial reports, investigative reports, and technical reports,

are essential information sources. These report documents usually contain large

amounts of textual and tabular content and provide rich knowledge about compa-

nies, industries, technologies, etc. Each report’s salient information can be scattered

in long text and multiple tables in different sections, which makes it difficult for

non-specialized readers to efficiently read these report documents. A high-quality

summary of each report document can help readers quickly browse key information.

Automatic document summarization techniques can be utilized to produce reports’

summaries. Users can flexibly adjust the input document and immediately get a sum-

mary from the automatic summarization system. Our target is to let the computer

generate an informative, fluent, and non-redundant summary for the long text and

57

Chapter 4. From Unimodal to Multimodal: Long Text and Multi-Table
Summarization

Tuple Example:

(Row Name, Column Name,

Cell Value, Date, Table Id,

Row Id, Column Id)

Tuple Example:

(Row Name, Column Name,

Cell Value, Date, Table Id,

Row Id, Column Id)

Document

Parsing

Text

Segment 1

…

Text

Segment n

Table 1

Tuple 1

…

Table p

Tuple q

Summarization

Model

Tuple

Selection

Text

Selection

Text

Segment i

…

Text

Segment m

Table j

Tuple e

…

Table k

Tuple f

Target

Summary

Text Pre-

processing &

Segmentation

Tables &

Tuples

Extraction

Parsed Text

Parsed Tuples

Selected Text

Selected Tuples

Data Pre-processing Content Selection Summarization

Report

Document

Report

Document
Target

Summary

Text Pre-

Processing &

Segmentation

Tables &

Tuples

Extraction

Parsed Text

Segments

Parsed Tuples

Selected Text

Segments

Selected Tuples

Data Pre-Processing Content Selection Summarization

…
… …

…

Summarization

Model

Document

Parsing

Tuple

Selection

Text

Selection

Figure 4.1: An overview of our solution for long text and multi-table summarization.

multiple tables in each report document. To achieve this target, we need to deal with

some challenging issues: 1) the scarcity of available datasets, 2) identifying the salient

information scattered in a large amount of input content, 3) incorporating different

types of content when generating summaries, and 4) models’ efficiency in processing

long inputs and outputs.

Previous document summarization datasets usually focus on text. Non-textual con-

tent is usually regarded as noises and filtered out. When target summaries only

focus on narratives and qualitative descriptions, removing non-textual content has

little effect since the document’s text already contains most of the required infor-

mation. When it comes to report documents, like financial reports, their summaries

should cover both the narrative content and quantitative descriptions of critical met-

rics recorded in tables, which are essential for readers’ analysis and decision-making

[115]. Existing datasets cannot meet the requirements of summarizing long text and

multiple tables in each report document.

To deal with the scarcity of available datasets, we propose FINDSum, the first large-

scale dataset for long text and multi-table summarization1. FINDSum has two subsets

1FINDSum dataset is available for download online at:

https://github.com/StevenLau6/FINDSum

58

4.1. Introduction

named FINDSum-ROO and FINDSum-Liquidity for summarizing companies’ results

of operations and liquidity. Inputs of each example in FINDSum include tens of

thousands of words and dozens of tables from a report document. Table 4.1 shows that

FINDSum’s target summaries usually contain more numerical values than previous

datasets. Meanwhile, most numerical values in target summaries cannot be found

in the corresponding input text. Only focusing on text is not enough to summarize

these financial reports.

We propose a solution for long text and multi-table summarization to cope with

the other three issues. As shown in Fig. 4.1, our solution has three main steps:

data pre-processing, content selection, and summarization. To efficiently identify the

scattered key information, we add the content selection step as a rough selection over

the long inputs, and then the summarization step conducts a finer selection. The

content selection step aims to compress long inputs while maximizing the recall of

salient content in long text and dozens of tables. Specifically, we adopt the Maximum

Marginal Recall Gain (MMRG) method to select salient text segments. As for the

tabular content, we transform each table cell into a tuple and regard the salient

tuple selection as a binary classification problem. The summarization step should

jointly consider different types of inputs. To incorporate text and tabular content, we

present four types of summarization methods: generate-then-combine (GC), combine-

then-generate (CG), generate-template-then-fill (GTF), and generate-combine-then-

generate (GCG).

The complexity of the transformer’s self-attention mechanism scales quadratically

with the input length [131], which limits transformer-based models’ efficiency. Thus,

we employ content selection methods and sparse attention mechanisms to reduce

the complexity and enable fine-tuning large pre-trained models over long inputs on

an off-the-shelf GPU. Besides, existing autoregressive models still have difficulty in

generating long sequences [54, 105]. We employ a divide-and-conquer approach to

generate summary segments in parallel and then merge them as the final summary.

59

Chapter 4. From Unimodal to Multimodal: Long Text and Multi-Table
Summarization

Table 4.1: Statistical information of summarization datasets. ”Pairs” is the number

of examples. ”Words” and ”Sents” denote the average number of words and sentences

in input text or target summary. ”Num” is the average number of numerical values

in target summaries, and ”Cov Num” is the ratio of the target summary’s numerical

values found in the input text. ”Cov.” and ”Dens.” are the extractive fragment’s

coverage and density [44].

Dataset Pairs
Words

(Doc)

Sents

(Doc)

Words

(Sum)

Sents

(Sum)

Num

(Sum)

% Cov

Num
Cov. Dens.

CNN/DM 312k 810.6 39.8 56.2 3.7 0.6 78.7 0.9 3.8

PubMed 133k 3049.0 87.5 202.4 6.8 3.3 68.2 0.8 5.8

arXiv 216k 6029.9 205.7 272.7 9.6 0.7 53.9 0.9 3.8

ROO 21k 45,566.0 1250.5 660.7 16.3 24.3 26.3 0.9 9.7

Liquidity 21k 45,566.0 1250.5 1,057.6 26.7 32.3 41.2 0.9 9.6

We benchmark advanced extractive and abstractive summarizers as baselines on our

FINDSum dataset. To compare their performance, we conduct automatic evaluation

and human evaluation. In addition to the commonly used ROUGE scores [67], we

propose a set of evaluation metrics to assess the usage of numerical information in

produced summaries. Experimental results show that our methods can outperform

competitive baselines.

We also conduct extensive comparative experiments and a case study to compare

and analyze the influence of model components and configurations on summarization

results. We find the input sequence length, content selection methods, divide-and-

conquer method, sparse attention mechanism, and pre-trained model can greatly

affect summarization results. Experimental results also verify the effectiveness of our

methods in content selection and summarization.

60

4.2. FINDSum Dataset

Our contribution is fourfold:

• We build FINDSum, the first large-scale dataset for long text and multi-table

summarization.

• We present and compare four types of methods incorporating text and tables

into summary generation.

• We propose evaluation metrics to assess the usage of numerical information in

generated summaries.

• We find vital components and configurations of models that improve summa-

rization results.

4.2 FINDSum Dataset

Financial report document summarization (FINDSum) is the first large-scale dataset

for long text and multi-table summarization. This section introduces our data col-

lection and pre-processing procedures and describes FINDSum’s two subsets. We

conduct descriptive statistics and in-depth analysis on FINDSum and compare it

with other datasets.

4.2.1 Data Collection and Pre-Processing

Form 10-K is the annual report that comprehensively describes a company’s financial

performance in the prior fiscal year [115]. We collected thousands of companies’

last ten 10-K forms’ HTML files from the Electronic Data Gathering, Analysis, and

Retrieval (EDGAR) system2. The U.S. Securities and Exchange Commission (SEC)

makes companies’ 10-K forms publicly available through the EDGAR system. The

2www.sec.gov/edgar/searchedgar/companysearch.html

61

Chapter 4. From Unimodal to Multimodal: Long Text and Multi-Table
Summarization

SEC stipulates the 10-K form’s format and required content. It usually has four

parts and sixteen items [114]. The item ”Management’s Discussion and Analysis of

Financial Condition and Results of Operations” (MD&A) contains the management’s

summary of the company’s results of operations and liquidity [89]. FINDSum uses

the text in MD&A’s two sections: ”results of operations” and ”liquidity and capital

resources” as target summaries and the remaining content of each report document

as the input.

After collecting tens of thousands of 10-K forms’ HTML files, we parse them and split

text and tables. To keep tables’ positional information and align tables and text, we

add a special token containing each table’s index to concatenate the text before and

after the table. Extracted text and tables are stored in separate files. Text and tabular

data require different pre-processing procedures, considering their different natures.

Our text pre-processing procedures include: removing noises (e.g., cover pages and

special characters composing a style) and dividing text in different parts of 10-K form

into text segments. To pre-process tabular data, we extract table content (e.g., names

of rows and columns, cell content), remove noises in table content, and transform each

cell into a tuple: (row name, column name, cell value, date, table index, row index,

column index). The cell value in the tuple concatenates the original cell value and

the rounding result with an ampersand. Besides, we remove duplicate samples and

outliers with too-short input text, truncate too-long input text, split the training

(80%), validation (10%), and test (10%) sets. Considering that the same company’s

annual reports in different years usually have duplicate content, we split these three

sets by company to minimize their overlaps.

4.2.2 Dataset Description

FINDSum dataset is built on collected report documents. It has two subsets: FINDSum-

ROO and FINDSum-Liquidity.

62

4.2. FINDSum Dataset

Table 4.2: The proportion of novel n-grams in target summaries.

Dataset
% of novel n-grams in target summary

unigrams bigrams trigrams 4-grams

CNN/DM 19.50 56.88 74.41 82.83

PubMed 18.38 49.97 69.21 78.42

arXiv 15.04 48.21 71.66 83.26

FINDSum-ROO 17.79 50.59 72.13 81.66

FINDSum-Liquidity 26.45 59.63 80.43 88.48

FINDSum-ROO is the subset focusing on each company’s results of operations

(ROO). In the ROO section of MD&A, the company’s management usually compares

and explains critical items of revenue and expense in the current and prior period

[114]. This section’s text can be regarded as the target summary written by experts.

Table 4.1 exhibits that the average number of numerical values in FINDSum-ROO’s

target summaries is dozens of times larger than that of previous datasets. However,

nearly three-quarters of these numerical values cannot be found in these reports’

remaining text. A lot of critical numerical information is only recorded in tables.

Therefore, we use the remaining parts’ text and all the tables in each report as inputs

for each example.

FINDSum-Liquidity focuses on summarizing each company’s liquidity and capital

resources. The ”liquidity and capital resources” section in MD&A mainly analyzes

the company’s ability to generate and obtain cash [89]. This section’s text can be

used as the target summary. Most of the numerical values in target summaries are

not included in the remaining parts’ text. FINDSum-Liquidity’s inputs include the

remaining text and all the tables in each report.

63

Chapter 4. From Unimodal to Multimodal: Long Text and Multi-Table
Summarization

2

4

6
Ex

tra
ct

iv
e

fra
gm

en
t d

en
sit

y

CNNDM
c= 10.91

Pubmed
c= 13.57

0.4 0.6 0.8 1.0
Extractive fragment coverage

2

4

6

Ex
tra

ct
iv

e
fra

gm
en

t d
en

sit
y

FINDSum-ROO
c= 68.97

0.4 0.6 0.8 1.0
Extractive fragment coverage

FINDSum-Liquidity
c= 43.08

Figure 4.2: Distributions of extractive fragments’ density and coverage.

4.2.3 Dataset Analysis

We conduct statistics and analysis on FINDSum’s two subsets. Table 4.1 shows that

both the input documents and target summaries of these two subsets are much longer

than those of previous summarization datasets. These two subsets’ target summaries

contain much more numerical information, while most of them cannot be found in

the input text.

To measure how abstractive FINDSum’s target summaries are, we count the per-

centage of summaries’ novel n-grams not appearing in inputs. Table 4.2 shows that

FINDSum-Liquidity’s target summaries have more novel n-grams and are more ab-

stractive. The abstractiveness of FINDSum-ROO’s target summaries is similar to

that of other datasets.

64

4.3. Method

We also adopt three measures defined by Grusky et al. [44] to assess the extractive

nature of summarization datasets. Given a document D = [d1, d2, ..., dn] consisting

of a sequence of tokens di and its summary S = [s1, s2, ..., sm], extractive fragments

F (D,S) is the set of shared token sequences in D and S. In Eq. (4.1a), extractive

fragment coverage measures the percentage of summary words that are part of an

extractive fragment from the input document. Eq. (4.1b) calculates the extractive

fragment density assessing the average length of the extractive fragment to which each

summary word belongs. Besides, the compression ratio is the word ratio between the

articles and their summaries, as shown in Eq. (4.1c). We report the extractive frag-

ment coverage and density in Table 4.1. Two measures’ distributions are visualized

using kernel density estimation in Fig. 4.2. FINDSum’s density is higher than those

of previous datasets. The variability along the y-axis (density) suggests the varying

writing styles in its target summaries.

COVERAGE(D,S)=
1

|S|
∑

f∈F (D,S)

|f | (4.1a)

DENSITY(D,S)=
1

|S|
∑

f∈F (D,S)

|f |2 (4.1b)

COMPRESSION(D,S)=
|D|
|S|

(4.1c)

4.3 Method

Summarizing long text and multiple tables has several challenging issues: identifying

the salient information from a large amount of input content, incorporating the text

and tabular content into the summary generation, and efficiently processing long

input and output sequences. This section presents our solution to the above issues.

65

Chapter 4. From Unimodal to Multimodal: Long Text and Multi-Table
Summarization

Tuple Example:

(Row Name, Column Name,

Cell Value, Date, Table Id,

Row Id, Column Id)

Document

Parsing

Text

Segment 1

…

Text

Segment n

Table 1

Tuple 1

…
Table p

Tuple q

Summarization

Model

Tuple

Selection

Text

Selection

Text

Segment i

…

Text

Segment m

Table j

Tuple e

…

Table k

Tuple f

Target

Summary

Text Pre-

processing &

Segmentation

Tables &

Tuples

Extraction

Parsed Text

Parsed Tuples

Selected Text

Selected Tuples

Data Pre-processing Content Selection Summarization

Report

Document

Text Summarizer Summary
Text-

Only

Summarizer
Tuples

Text
Summary+ CG

Summarizer

Tuples

Text Text Sum

Generator Table Sum

+ GC

S
in

g
le

-s
ta

g
e

 m
e

th
o

d
s

T
w

o
-s

ta
g

e
 m

e
th

o
d

s

Summarizer

Tuples

Text
Template+

GTF
QA Model

Tuples
+ Answer

Template
+

Summarizer
Tuples

Text

Generator Table Sum
+ Summary GCG+

QA Model

+

Figure 4.3: An overview of our summarization methods.

4.3.1 Textual and Tabular Content Selection

Fig. 4.1 shows the three main steps of our solution: data pre-processing, content se-

lection, and summarization. After the pre-processing, we get dozens of text segments

and thousands of tuples from dozens of tables in each report. It is challenging to

accurately identify the scattered salient content. We add the content selection step

as a rough selection to compress long inputs while maximizing the recall of salient

content that should be preserved in summaries. Then compressed inputs are fed

into the summarizer for further selection. Content selection methods’ output lengths

should not exceed pre-specified lengths, as neural summarization models’ complexity

can scale with input sequence length.

We employ separate methods to select salient content from textual and tabular data

considering their different natures. To select salient text segments, we adopt a method

named Maximum Marginal Recall Gain (MMRG) on our training set. Specifically,

MMRG keeps adding the text segment bringing the maximum gain of n-gram’s recall

into the combination of selected segments till reaching the length limit. Finally, we

can get selected salient segments’ indexes and choose text segments with the same

indexes for samples in our test set. Algorithm 1 is MMRG’s pseudocode. We also

66

4.3. Method

follow Liu et al. [70] to try some extractive summarizers, like Textrank [84] and

Lexrank [37], for salient text selection. Experimental results in subsection 4.5.2 show

that MMRG performs the best, so we use it in our experiments.

Algorithm 1 Maximum Marginal Recall Gain (MMRG)

Input: Input m examples I ← [e1, ..., em], each example ei contains n parts for selection

ei ← [p1i , ..., p
n
i], the list of target item T ← [t1, ..., tm], and the maximum number of

selected parts n′ (n′ ≪ n)

Output: The list of selected parts’ id S ← [j, ..., k] and the selected inputs I ′ ← [e′1, ..., e
′
m],

in which each example e′i has selected parts e′i ← [pji , ..., p
k
i] (|e′i| = |S| ≤ n′)

S ← [];

e′1, ..., e
′
m ← “”, ..., “”;

I ′ ← [e′1, ..., e
′
m];

while |S| < n′ do

//SelectPart finds the part pjselect bringing the largest average recall gain across all

examples

jselect = SelectPart(I, I ′, T, S);

if jselect > 0 then

S ← S ∪ [jselect];

while i ≤ m do

I ′[i]← Concat(I ′[i], pjselecti);

end while

end if

end while

As for those thousands of tuples extracted from tables, we model the salient tuple

selection as a binary classification problem. Based on the FINDSum dataset, we

annotate a tuple selection dataset for training and evaluating different classifiers (e.g.,

logistic regression, support vector machine, AdaBoost [50], XGBoost [15], and Multi-

67

Chapter 4. From Unimodal to Multimodal: Long Text and Multi-Table
Summarization

layer Perceptron)3. We also utilize various features, including positional features (e.g.,

indexes of the row, column, table, and section, together with their normalized values)

and text features (e.g., word embedding of row and column names). Considering

the content selection step focuses more on the recall of salient content, we sort these

tuples by their positive probability predicted by the trained classifier and use the

top-n tuples’ recall to evaluate these classifiers. Tables 4.11 and 4.12 show that the

XGBoost and MLP models equipped with positional features and Glove embedding

[99] outperform others. We adopt them for tuple selection and compare their impact

on the produced summaries in subsection 4.5.2. We follow the setting in [71] to flatten

the selected tuples into a linearized sequence.

4.3.2 Generating Summary for Textual and Tabular Data

To incorporate text and tabular data into summary generation, we present four types

of methods: Generate-then-Combine (GC), Combine-then-Generate (CG), Generate-

Template-then-Fill (GTF), and Generate-Combine-then-Generate (GCG). We show

their structures in Fig. 4.3.

GC method makes two assumptions: 1) The summary of long text and multiple

tables can be divided into text summary and table summary. 2) Summary generation

can be divided into two parallel processes generating these two parts of summary.

It assigns the maximum output lengths for the text summary and table summary,

generates these two summaries separately, and concatenates them to form the final

summary. GC has obvious limitations: 1) It cannot merge the information from

text and tables when generating each summary sentence. 2) The pre-defined length

assignment is not flexible enough to adapt to diverse examples.

CG is an end-to-end method generating a summary for both text and table content.

3We use XGBoost’s implementation from xgboost.readthedocs.io/ en/stable/ and other classifiers

from scikit-learn

68

4.3. Method

It first concatenates the selected text segments and tuples with a special symbol and

then feeds them into a sequence-to-sequence summarizer. The summarizer needs to

learn both text-to-text and tuple-to-text generation. When generating summaries, it

should jointly consider these two types of input content.

GTF method is inspired by how humans write quantitative descriptions of report

documents. The CG and GC methods use similar processes to generate qualitative

and quantitative descriptions, while the way people write quantitative descriptions

differs from the way they write qualitative descriptions. Specifically, people usually

decide which metrics to describe and then read tables to find numerical values to fill

in the quantitative descriptions. When writing qualitative descriptions, they mainly

refer to text content. GTF method has two stages: template generation and tem-

plate filling, which mimic how humans write quantitative descriptions. The template

generation stage generates all the words and the special token [num] as the place-

holder for numerical values from tables. We regard the template filling as a question

answering (QA) task. We use each template sentence containing the placeholder as a

question and the linearized sequence of selected tuples as the context. We train the

QA model to find the numerical value from table content as an answer to replace the

placeholder. Table 4.16 shows that Bigbird’s large model performs the best on the

ROO subset. Longformer’s large model performs the best on the Liquidity subset.

We use them for the template filling in GTF.

GCG is another two-stage method. It employs a tuple-to-text generator to pro-

duce input tuples’ text descriptions, concatenates the input text with the tuples’

descriptions, and feeds them into the summarizer. Compared with the CG, GCG

simplifies the requirement on the summarizer to focus on summarizing text, but the

extra tuple-to-text generation process can lose some tuples’ information. We annotate

a tuple-to-text generation dataset based on our FINDSum dataset for training and

evaluating various generators. Table 4.18 indicates that the BART-large outperforms

other baselines, so we use it as the tuple-to-text generator in GCG.

69

Chapter 4. From Unimodal to Multimodal: Long Text and Multi-Table
Summarization

4.3.3 Processing Long Inputs and Outputs

Input documents in our FINDSum-ROO and FINDSum-Liquidity subsets contain

tens of thousands of words. The average length of target summaries in FINDSum-

Liquidity exceeds 1,000 words. Long inputs and outputs bring some problems: 1) The

transformer model’s self-attention mechanism [131] scales quadratically with the in-

put sequence length. It is prohibitively expensive for long input [20] and precludes the

usage of large pre-trained models with limited computational resources. 2) Existing

autoregressive abstractive summarization methods still have difficulty in generating

long text in terms of efficiency and quality [54, 105]. To deal with the first prob-

lem, we employ sparse attention mechanisms [6, 147] in our summarization models’

encoders. The content selection step in our solution also reduces the length of input

sequences. To handle the second problem, we follow a divide-and-conquer method [42]

and decompose the long summary generation problem into multiple sub-problems of

summary segment generation. These summary segments can be generated in parallel

and merged as a final summary. To minimize output summaries’ redundancy, we add

a constraint that the MMRG in the content selection step should not select the same

combination of input text segments for generating different summary segments.

4.4 Experiments

4.4.1 Baselines

In our experiments, we adopt advanced extractive and abstractive summarization

models as baselines. These models’ details are shown in Table 4.20.

LexRank and TextRank [37, 84] are two graph-based ranking methods that can

be used for unsupervised extractive summarization.

BART [64] is a denoising autoencoder built with a sequence-to-sequence model pre-

70

4.4. Experiments

trained to reconstruct the original input text from the corrupted text.

PEGASUS [149] is a transformer-based model pre-trained with the Gap Sentences

Generation (GSG) and Masked Language Model (MLM) objectives.

LongT5 [45] extends the original T5 encoder [103] with a global-local attention

mechanism to handle long inputs.

BigBird-PEGASUS [147] adopts the BigBird encoder with sparse attention mech-

anisms and the PEGASUS decoder.

Longformer-Encoder-Decoder (LED) [6] follows BART’s architecture and adopts

sparse attention in its encoder.

4.4.2 Experimental Setting

The vocabulary’s maximum size is set as 50,265 for summarization models, while the

tuple-to-text generators use 32,128 as default. When fine-tuning these pre-trained

models, we use the learning rate of 5e−5 and adopt the learning rate warmup and

decay. The optimizer is Adam with β1 = 0.9 and β2 = 0.999. We use dropout with a

probability of 0.1. In the generation process, we use beam search with a beam size of

5. Trigram blocking is used to reduce repetitions. We adopt the implementations of

BART, PEGASUS, T5, BigBird, and LED from HuggingFace’s Transformers [138].

All the models are trained on one NVIDIA RTX 8000 GPU.

4.4.3 Evaluation Metrics

We propose a set of evaluation metrics to assess the usage of numerical information in

produced summaries. This is necessary for long text and multi-table summarization.

We use D, S, and H to denote the input document, human-written target summary,

and the summarizer’s output summary. Dn, Sn, and Hn are sets of numbers contained

71

Chapter 4. From Unimodal to Multimodal: Long Text and Multi-Table
Summarization

Table 4.3: Automatic evaluation results on test sets of FINDSum-Liquidity.

Type Method R-1 R-2 R-L NP NC NS

Only

Text

LexRank 40.67 10.61 16.28 12.58 14.50 13.47

TextRank 41.71 10.90 16.54 13.37 13.02 13.19

BART 52.37 17.91 19.59 21.18 22.78 21.95

PEGASUS 52.57 18.46 19.75 16.98 22.74 19.44

LongT5 44.89 14.61 17.39 13.74 17.00 15.20

LED 53.52 18.91 19.75 18.68 22.56 20.44

BigBird-

PEGASUS
53.42 19.39 20.07 17.16 22.44 19.45

Single

Stage

GC-LED 52.30 20.09 19.61 15.13 44.47 22.58

GC-BigBird 51.61 20.00 19.86 14.76 44.21 22.13

CG-LED 54.12 20.26 20.46 21.86 35.14 26.95

CG-BigBird 53.82 20.15 20.39 20.98 34.29 26.03

Two

Stage

GTF-LED 53.88 19.82 20.13 21.37 31.76 25.55

GTF-BigBird 53.66 19.56 19.97 21.96 30.52 25.54

GCG-LED 54.55 20.36 20.41 21.15 34.52 26.23

GCG-BigBird 53.90 20.47 20.59 20.67 36.43 26.38

in them. |Dn|, |Sn|, and |Hn| denote the sizes of these number sets. For a produced

summary H, we first extract the number set Hn from it.4 Then M(Hn, Sn) counts

numbers appearing in both the produced summary H and the target summary S.

M(Dn, Sn) counts numbers appearing in both the input document D and the target

summary S.

We mainly consider three metrics: Number Precision (NP), Number Coverage (NC),

and Number Selection (NS). Calculated by Eq. (4.2), NP is the ratio of numbers in the

4We do not count numbers in a word, like COVID-19.

72

4.4. Experiments

Table 4.4: Automatic evaluation results on test sets of FINDSum-ROO.

Type Method R-1 R-2 R-L NP NC NS

Only

Text

LexRank 34.43 7.73 14.92 14.77 9.73 11.73

TextRank 35.93 7.74 15.08 14.68 10.96 12.55

BART 49.00 16.88 19.14 14.38 23.72 17.91

PEGASUS 51.92 19.31 21.47 10.90 21.89 14.55

LongT5 43.26 11.84 17.83 8.75 10.37 9.49

LED 53.06 20.33 22.28 14.25 22.99 17.59

BigBird-

PEGASUS
53.08 20.85 20.94 13.15 23.82 16.95

Single

Stage

GC-LED 53.19 21.97 22.84 12.83 41.54 19.60

GC-BigBird 53.13 22.03 23.11 12.49 41.30 19.18

CG-LED 54.24 22.08 23.10 16.41 33.89 22.11

CG-BigBird 54.40 22.48 23.21 16.46 35.84 22.56

Two

Stage

GTF-LED 53.60 21.61 22.89 15.49 29.06 20.21

GTF-BigBird 54.07 21.93 22.85 15.27 29.99 20.24

GCG-LED 54.32 21.92 23.03 16.03 32.54 21.48

GCG-BigBird 54.12 22.11 23.02 15.33 32.82 20.90

produced summary that also appears in the target summary. It measures how well the

produced summary matches the target summary in terms of contained numbers. NC

measures how well the produced summary covers the numbers appearing in both the

target summary and the input document. Some of the numbers in the target summary

cannot be directly found in the inputs (including textual and tabular data) and need

numerical reasoning. Some of them may be lost when preparing the summarization

model’s inputs, which can limit the produced summary’s number recall computed by

Eq. (4.3a). To evaluate the summarization model’s coverage capability, we divide

the produced summary’s number recall by the input document’s number recall in Eq.

73

Chapter 4. From Unimodal to Multimodal: Long Text and Multi-Table
Summarization

Table 4.5: GC methods’ evaluation results on test sets of FINDSum-Liquidity.

”Text/Tuple” denotes the assigned length ratio of text summary and table summary

in each combined summary.

Text/

Tuple
Method R-1 R-2 R-L NP NC NS

1:1
GC-LED 52.30 20.09 19.61 15.13 44.47 22.58

GC-BigBird 51.61 20.00 19.86 14.76 44.21 22.13

2:1
GC-LED 52.28 18.37 19.12 16.63 22.45 19.11

GC-BigBird 52.99 20.18 19.81 14.43 35.62 20.54

3:1
GC-LED 52.57 18.47 19.21 16.13 22.24 18.70

GC-BigBird 53.33 20.15 19.81 14.58 32.30 20.09

Table 4.6: GC methods’ evaluation results on test sets of FINDSum-ROO.

”Text/Tuple” denotes the assigned length ratio of text summary and table summary

in each combined summary.

Text/

Tuple
Method R-1 R-2 R-L NP NC NS

1:1
GC-LED 53.19 21.97 22.84 12.83 41.54 19.60

GC-BigBird 53.13 22.03 23.11 12.49 41.30 19.18

2:1
GC-LED 53.56 21.95 22.78 13.45 36.54 19.66

GC-BigBird 53.51 22.02 22.69 12.82 38.74 19.26

3:1
GC-LED 53.66 21.88 22.48 13.62 36.21 19.79

GC-BigBird 53.59 22.07 22.73 13.18 35.84 19.27

(4.3b). NS calculates the harmonic mean of NP and NC in Eq. (4.4) and reflects the

quality of number selection in the produced summary.

74

4.4. Experiments

Table 4.7: Human evaluation results on FINDSum-ROO. “Win” represents the gen-

erated summary of our method is better than that of BigBird-PEGASUS.

Method Metric Win Lose Tie Kappa

CG-BigBird

Informativeness 44.2% 20.8% 35.0% 0.626

Fluency 26.7% 25.8% 47.5% 0.616

Non-Redundancy 35.0% 23.3% 41.7% 0.632

GTF-BigBird

Informativeness 42.5% 23.3% 34.2% 0.631

Fluency 25.0% 26.7% 48.3% 0.648

Non-Redundancy 34.2% 21.7% 44.2% 0.636

GCG-BigBird

Informativeness 43.3% 20.8% 35.8% 0.653

Fluency 27.5% 24.2% 48.3% 0.613

Non-Redundancy 33.3% 21.7% 45.0% 0.644

Table 4.8: Human evaluation results on FINDSum-Liquidity. “Win” represents the

generated summary of our method is better than that of BigBird-PEGASUS.

Method Metric Win Lose Tie Kappa

CG-BigBird

Informativeness 40.8% 20.8% 38.3% 0.620

Fluency 25.0% 24.2% 50.8% 0.615

Non-Redundancy 31.7% 22.5% 45.8% 0.626

GTF-BigBird

Informativeness 40.0% 22.5% 37.5% 0.649

Fluency 24.2% 23.3% 52.5% 0.637

Non-Redundancy 30.8% 24.2% 45.0% 0.629

GCG-BigBird

Informativeness 41.7% 21.6% 36.7% 0.655

Fluency 25.8% 25.0% 49.2% 0.611

Non-Redundancy 32.5% 23.3% 44.2% 0.638

75

Chapter 4. From Unimodal to Multimodal: Long Text and Multi-Table
Summarization

Table 4.9: Evaluation results of input text selection methods on FINDSum-ROO. R-1

denotes the recall of unigram, and R-AVG is the average recall of unigram, bigram,

trigram, and 5-gram.

Method
Segment 1 Segment 2

R-1 R-AVG R-1 R-AVG

LexRank 56.01 22.14 53.96 20.72

TextRank 58.38 22.94 56.25 21.53

MMRG 63.38 28.01 61.68 27.85

NP(Hn, Sn)=
M(Hn, Sn)

|Hn|
(4.2)

NR(Hn, Sn)=
M(Hn, Sn)

|Sn|
(4.3a)

NC(Dn, Hn, Sn)=
NR(Hn, Sn)∗ |Sn|

M(Dn, Sn)
(4.3b)

NS(Dn, Hn, Sn)=
2 ∗ NP ∗ NC

NP + NC
(4.4)

4.5 Results and Discussion

This section presents our experimental results and analysis. We conduct automatic

and human evaluations to compare the quality of summaries produced by different

models. We also conduct extensive comparative experiments to compare and analyze

the influence of different components and configurations of summarization models.

Finally, a case study compares and analyses different models’ output summaries.

76

4.5. Results and Discussion

Table 4.10: Evaluation results of input text selection methods on FINDSum-Liquidity.

R-1 denotes the recall of unigram, and R-AVG is the average recall of unigram,

bigram, trigram, and 5-gram.

Method
Segment 1 Segment 2 Segment 3

R-1 R-AVG R-1 R-AVG R-1 R-AVG

LexRank 49.71 18.59 48.92 17.97 46.45 17.00

TextRank 55.18 20.94 54.02 20.40 51.72 19.49

MMRG 58.61 24.28 56.69 23.09 53.94 21.62

4.5.1 Summarization Results

In the automatic evaluation, we calculate the ROUGE F1 scores [67], including the

overlaps of unigrams (R-1), bigrams (R-2), and longest common subsequence (R-

L)5, and NP, NC, and NS scores. We employ a divide-and-conquer approach to

generate summary segments in parallel and then merge them as the final summary.

Tables 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.14, and 4.15 report the final merged summaries’

scores. In Tables 4.3 and 4.4, all the abstractive methods are built on large pre-

trained models. Limited by the GPU memory size, the input text length of models

using full attention mechanism is 1024, while that of models with sparse attention

mechanisms is 2048. The GC, CG, GTF, and GCG methods in Tables 4.3 and

4.4 receive selected tuples’ linearized sequences of length 1024. Tables 4.3 and 4.4

show that these abstractive summarizers based on pre-trained models outperform

unsupervised extractive summarizers. Compared with other baselines based on full

attention, LED [147] and BigBird-PEGASUS [6] equipped with sparse attention can

model longer context and achieve higher ROUGE scores. Longer inputs can cover

more scattered salient content, which benefits output summaries’ informativeness.

Our CG, GTF, and GCG methods outperform these text-only baselines on FIND-

5github.com/falcondai/pyrouge/

77

Chapter 4. From Unimodal to Multimodal: Long Text and Multi-Table
Summarization

Table 4.11: Evaluation results of salient tuple selection on the Liquidity subset. ”Pos”

denotes positional features. ”Glove” is the Glove embedding of row and column

names. ”ACC” and ”Recall” are the accuracy and recall of the selected top-n tuples.

Method Features
Top-100 Top-200 Top-400

ACC Rec ACC Rec ACC Rec

LR
Pos 94.53 40.36 89.32 61.95 78.64 73.01

Pos+Glove 94.64 52.96 89.36 66.84 78.70 79.69

SVM
Pos 94.55 43.19 89.34 64.27 78.63 72.24

Pos+Glove 94.64 53.73 89.36 66.58 78.69 79.43

Adaboost
Pos 94.61 50.13 89.35 65.04 78.68 78.15

Pos+Glove 94.69 58.87 89.42 73.78 78.74 85.35

XGBoost
Pos 94.61 49.61 89.38 69.15 78.70 79.95

Pos+Glove 94.74 65.30 89.46 78.15 78.77 88.43

MLP
Pos 94.61 50.13 89.37 67.87 78.69 78.41

Pos+Glove 94.74 65.30 89.46 78.66 78.76 87.40

Sum’s two subsets. Incorporating tabular information is conducive to improving the

NP, NC, NS, and ROUGE scores. GCG methods perform better on FINDSum-

Liquidity, while CG methods perform better on FINDSum-ROO. Table 4.1 shows

that target summaries in the FINDSum-ROO subset have a larger ratio of numerical

information not found in the input text and rely more on tables. The table content

passes one generation process in CG methods but needs to pass through two stages in

GTF and GCG methods. The extra stage can lose some required tabular information

and accumulate more errors. In FINDSum-Liquidity, a larger ratio of the numerical

values can be found in the input text, and the loss of tabular information in the extra

stage has less effect. Table 4.18 depicts that these tuple-to-text generators perform

better on the Liquidity subset, which also contributes to the GCG methods’ perfor-

78

4.5. Results and Discussion

Table 4.12: Evaluation results of salient tuple selection on the ROO subset. ”Pos”

denotes positional features. ”Glove” is the Glove embedding of row and column

names. ”ACC” and ”Recall” are the accuracy and recall of the selected top-n tuples.

Method Features
Top-100 Top-200 Top-400

ACC Rec ACC Rec ACC Rec

LR
Pos 94.54 41.53 89.27 56.08 78.60 68.78

Pos+Glove 94.56 43.39 89.31 60.58 78.64 73.28

SVM
Pos 94.55 42.86 89.28 57.14 78.62 70.63

Pos+Glove 94.56 43.65 89.31 60.58 78.65 74.34

Adaboost
Pos 94.57 45.24 89.31 60.05 78.62 70.90

Pos+Glove 94.56 43.12 89.30 58.99 78.65 75.40

XGBoost
Pos 94.59 47.62 89.32 62.17 78.65 75.13

Pos+Glove 94.63 52.65 89.36 67.20 78.71 82.28

MLP
Pos 94.60 48.41 89.32 61.90 78.65 74.60

Pos+Glove 94.64 53.97 89.34 64.55 78.67 77.25

mance on the FINDSum-Liquidity. GTF methods’ performance is mainly limited by

the template generation process, which needs to decide whether to copy the numerical

values appearing in the input text or the values in input tables and put placeholders

in the exact positions. Meanwhile, better template filling methods can also benefit

produced summaries’ quality.

The GC methods do not perform well, which is due to GC’s limitations mentioned in

subsection 4.3.2. In Tables 4.3 and 4.4, the GC methods’ evaluation results represent

summaries combining text and table summaries of the same length. Although they

can achieve high NC scores, their NP and ROUGE scores are unsatisfactory. The re-

sult reflects that it is not appropriate to treat long text and multi-table summarization

79

Chapter 4. From Unimodal to Multimodal: Long Text and Multi-Table
Summarization

Table 4.13: Impact of text content selection methods on summarization results.

Summarizer Text Select R1/R2/RL

FINDSum-Liquidity

LED-large

MMRG 53.52/18.91/19.75

Textrank 51.76/17.35/19.02

Lexrank 51.68/17.29/19.00

BigBird-

PEGASUS

MMRG 53.42/19.39/20.07

Textrank 51.09/17.29/19.20

Lexrank 51.00/17.16/19.15

FINDSum-ROO

LED-large

MMRG 53.06/20.33/22.28

Textrank 48.75/16.07/19.78

Lexrank 48.73/16.10/19.78

BigBird-

PEGASUS

MMRG 53.08/20.85/20.94

Textrank 49.59/17.30/20.67

Lexrank 49.78/17.48/20.66

as two independent processes. Tables 4.5 and 4.6 show that the pre-defined length

assignment can affect the combined summaries’ quality. It is not flexible enough to

adapt to diverse examples.

Our human evaluation compares different models’ output summaries in terms of in-

formativeness (the coverage of information from input documents), fluency (content

organization and grammatical correctness), and non-redundancy (less repetitive infor-

mation). We randomly selected 30 samples from the test sets of the FINDSum-ROO

and FINDSum-Liquidity, respectively. Four annotators are required to compare two

models’ output summaries presented anonymously. We also assess their agreements

by Fleiss’ kappa [39]. Tables 4.7 and 4.8 exhibit that CG-BigBird, GTF-BigBird,

80

4.5. Results and Discussion

Table 4.14: Effect of input sequence length on generated results for FINDSum-

Liquidity. ”Input Len” denotes the length of input text and flattened tuples.

Input

Len
Method R-1 R-2 R-L NP NC NS

2K+1K

LED-base 52.91 18.41 19.58 19.97 24.07 21.83

CG-LED-base 53.73 19.68 20.26 21.76 34.39 26.65

GTF-LED-base 53.89 19.39 19.88 20.77 30.73 24.79

GCG-LED-base 54.01 19.94 20.26 20.29 35.32 25.77

4K+2K

LED-base 53.58 19.29 20.01 19.68 24.63 21.88

CG-LED-base 54.42 20.40 20.44 22.32 38.10 28.15

GTF-LED-base 54.02 19.83 20.10 21.75 30.70 25.46

GCG-LED-base 54.14 20.11 20.32 21.23 36.78 26.92

8K+4K

LED-base 54.04 19.88 20.31 20.40 26.35 23.00

CG-LED-base 54.82 20.95 20.78 24.49 41.36 30.76

GTF-LED-base 54.61 20.67 20.55 23.05 32.27 26.89

GCG-LED-base 54.60 20.71 20.57 22.53 38.26 28.36

and GCG-BigBird significantly outperform the BigBird-PEGASUS only using in-

put text in terms of informativeness and are comparable in terms of fluency and

non-redundancy. It verifies that incorporating text and tabular data into summary

generation can benefit output summaries’ informativeness.

The following subsections discuss our extensive comparative experiments compar-

ing the performance of different model components (e.g., content selection methods,

divide-and-conquer method, sparse attention mechanisms, template filling methods

in GTF, and tuple-to-text generators in GCG). We also analyze their influence on

summarization results.

81

Chapter 4. From Unimodal to Multimodal: Long Text and Multi-Table
Summarization

Table 4.15: Effect of input sequence length on generated results for FINDSum-ROO.

”Input Len” denotes the length of input text and flattened tuples.

Input

Len
Method R-1 R-2 R-L NP NC NS

2K+1K

LED-base 52.96 20.52 22.14 14.60 24.67 18.34

CG-LED-base 54.38 22.13 23.10 17.21 34.94 23.06

GTF-LED-base 53.76 21.54 22.81 14.69 29.07 19.52

GCG-LED-base 53.91 21.69 22.83 15.90 30.23 20.84

4K+2K

LED-base 53.68 21.64 22.95 15.66 26.10 19.58

CG-LED-base 54.51 22.63 23.42 17.55 35.06 23.39

GTF-LED-base 54.16 22.31 23.27 16.11 30.37 21.05

GCG-LED-base 54.53 22.63 23.45 16.07 32.71 21.55

8K+4K

LED-base 53.39 21.53 22.97 15.91 26.94 20.01

CG-LED-base 54.43 22.59 23.46 18.24 35.69 24.14

GTF-LED-base 53.92 21.96 23.11 16.61 30.09 21.40

GCG-LED-base 54.09 22.23 23.21 15.98 32.58 21.44

4.5.2 Discussion on Content Selection Methods

As introduced in subsection 4.3.1, the content selection step filters out the non-

prominent content and retains the salient content as summarizers’ inputs. Different

methods are employed to select salient content from text and tabular data, consid-

ering their different natures. We conduct a series of experiments to compare the

performance of different content selection methods and their impact on summariza-

tion results.

To select salient text content, we compare the statistics-based MMRG method with

some extractive summarization methods, like TextRank and Lexrank. We use the

82

4.5. Results and Discussion

CG
LED

CG
Bigbird

GCG
LED

GCG
Bigbird

48

49

50

51

52

53

54

55

56

R1

16

18

20

22

24

26

28

30

32

R2
 /

RL
 /

NS

XGB MLP LR
R1
R2
RL
NS

Figure 4.4: Impact of tuple selection methods on FINDSum-Liquidity. Each summa-

rization method using outputs of XGBoost, MLP, and LR has three parts of scores.

recall of n-grams to evaluate these methods’ performance in selecting the salient text

of the same length. Tables 4.10 and 4.9 indicate that MMRG outperforms these

extractive summarizers. We also compare their impact on the ROUGE scores of

produced summaries. Table 4.13 depicts that the better text content selection method

benefits the quality of produced summaries.

As for those thousands of tuples extracted from tables, we model the salient tuple

selection as a binary classification task. We annotate a tuple selection dataset based

on the FINDSum dataset. Salient tuples (positive samples) are usually sparse in these

report documents. To deal with the class imbalance problem, we perform undersam-

pling over negative samples to ensure the ratio of positive and negative samples is 1:10

in the training set. We train and evaluate different classification methods, including

the logistic regression (LR), support vector machine (SVM), AdaBoost, XGBoost,

and Multi-layer Perceptron (MLP), on our annotated tuple selection dataset. We

use the accuracy and recall of salient tuples to evaluate these classifiers. Tables 4.11

and 4.12 show that adding word embeddings of row and column names as features

83

Chapter 4. From Unimodal to Multimodal: Long Text and Multi-Table
Summarization

CG
LED

CG
Bigbird

GCG
LED

GCG
Bigbird

48

49

50

51

52

53

54

55

56

R1

16

18

20

22

24

26

R2
 /

RL
 /

NS

XGB MLP LR
R1
R2
RL
NS

Figure 4.5: Impact of tuple selection methods on FINDSum-ROO. Each summariza-

tion method using outputs of XGBoost, MLP, and LR has three parts of scores.

significantly improves the recall of all classifiers and facilitates finding salient table

content. Besides, XGBoost and MLP models equipped with positional features and

Glove embedding [99] outperform other classifiers. We compare three tuple selection

methods’ impact on the quality of produced summaries. Fig. 4.4 and Fig. 4.5 depict

that summarization models receiving the outputs of XGBoost and MLP outperform

summarization models using the LR model’s outputs. Better tuple selection methods

benefit the quality of produced summaries. This verifies the effectiveness of our tuple

selection methods.

4.5.3 Discussion on Input Length of Summarization Model

How to set the input sequence length of the summarization model is also an important

issue. We conduct a series of experiments to analyze the input sequence length’s

impact on the performance of summarization models. Considering the constraint of

GPU memory size, we use the base model of LED as the backbone. We compare the

84

4.5. Results and Discussion

performance of text-only, CG, GTF, and GCG methods over the inputs of different

lengths. Tables 4.14 and 4.15 show that these methods built on the base model with

longer inputs can surpass these methods based on the large model shown in Tables

4.3 and 4.4. When the GPU memory size is limited, using the base model with

longer inputs may be better. However, increasing input length does not always bring

performance gain. As shown in Fig. 4.6 and Fig. 4.7, all of these summarization

models improve when the input length is doubled. When the input length increases

from double to quadruple, models’ performance on the Liquidity subset improves,

while some models’ ROUGE scores on the ROO subset decrease. Longer inputs can

cover more salient information, which benefits generating informative summaries.

Meanwhile, longer inputs can also introduce more non-prominent content, making it

more difficult for summarization models to identify salient content. When adjusting

the input length, we should find a balance between covering salient information and

reducing non-prominent content to meet the requirements of various outputs.

4.5.4 Discussion on the Divide-and-Conquer Method

Existing autoregressive abstractive summarization methods still have difficulty in gen-

erating long text in terms of efficiency and quality [54, 105]. We adopt a divide-and-

conquer (DC) method [42], which decomposes the long summary generation problem

into multiple sub-problems of summary segment generation. These summary seg-

ments can be generated in parallel and merged as a final summary. We conduct

experiments comparing the performance of these summarization models with and

without the divide-and-conquer method. Fig. 4.6 and Fig. 4.7 show that DC can

bring additional performance gains even when the context length grows. When the

GPU memory size limits the model’s context length, DC can help the model pro-

duce better summaries with relatively short inputs. It reveals the effectiveness of the

divide-and-conquer method. To reduce the redundancy in the merged summary, we

add constraints to MMRG to avoid providing the same inputs for summarizers and

85

Chapter 4. From Unimodal to Multimodal: Long Text and Multi-Table
Summarization

Table 4.16: Evaluation results of template filling. EM denotes Exact Match.

Dataset Type Method EM

ROO

Gen

BART-base 71.71

BART-large 75.40

TAPEX-base 74.75

TAPEX-large 76.82

Ext

Bigbird-base 76.75

Bigbird-large 80.72

Longformer-base 77.88

Longformer-large 80.30

Liquidity

Gen

BART-base 73.13

BART-large 70.96

TAPEX-base 75.49

TAPEX-large 74.59

Ext

Bigbird-base 77.59

Bigbird-large 78.12

Longformer-base 78.31

Longformer-large 79.99

use trigram blocking in the summary generation process, as discussed in subsections

4.3.3 and 4.4.2. Besides, we train a separate model to generate each summary seg-

ment. Different segments of target summaries can supervise separate summarization

models to focus on different content.

86

4.5. Results and Discussion

Table 4.17: Impact of template filling methods. TG and TF denote the template

generation and template filling methods. LF is the Longformer model.

TG TF R1/R2/RL NP/NC/NS

FINDSum-ROO

BigBird-

PEGASUS

Bigbird-base 53.90/21.81/22.76 14.16/27.7/18.74

Bigbird-large 54.07/21.93/22.85 15.27/29.99/20.24

LED
LF-base 53.51/21.50/22.78 14.08/28.48/18.84

LF-large 53.60/21.61/22.89 15.49/29.06/20.21

FINDSum-Liquidity

BigBird-

PEGASUS

Bigbird-base 53.52/19.45/19.86 21.14/30.16/24.86

Bigbird-large 53.66/19.56/19.97 21.96/30.52/25.54

LED
LF-base 53.75/19.71/20.03 20.64/31.04/24.79

LF-large 53.88/19.82/20.13 21.37/31.76/25.55

4.5.5 Discussion on Template Filling Methods

Template filling is the second stage in GTF methods introduced in subsection 4.3.2.

We model the template filling process as a question answering (QA) task. We use

each template sentence containing the placeholder as a question and the linearized

sequence of selected tuples as the context. We annotate a question answering dataset

based on FINDSum and employ extractive or generative QA models to find numerical

values from table content as answers to replace placeholders in questions. Considering

the requirements of template filling, we use exact match (EM) to evaluate template

filling methods. Table 4.16 shows that the Bigbird-large outperforms other baselines

on the ROO subset, while the Longformer-large performs the best on the Liquidity

subset. Besides, these extractive methods perform better than generative methods.

We find that generative methods still suffer from hallucinations and can generate

inaccurate numerical values. Compared with the backbone BART model [64], pre-

87

Chapter 4. From Unimodal to Multimodal: Long Text and Multi-Table
Summarization

Table 4.18: Evaluation results of tuple-to-text generation.

Dataset Method R-1 R-2 R-L BLEU

ROO

T5-base 45.45 24.77 28.84 12.20

T5-large 45.81 24.64 29.04 12.87

BART-base 42.08 20.45 25.86 10.57

BART-large 47.21 25.63 31.08 13.14

Liquidity

T5-base 48.90 28.34 31.98 15.44

T5-large 49.03 28.05 32.02 15.86

BART-base 45.71 24.75 29.28 13.66

BART-large 49.78 28.24 32.59 16.05

training on table-related tasks brings performance gain to the TAPEX model [71].

Table 4.17 compares the impact of different template filling methods on the quality

of generated summaries when using the same template generation method. As shown

in Table 4.16, the large models of Bigbird and Longformer perform better than their

base models in template filling. These better template filling methods benefit the NP,

NC, and NS scores of produced summaries. Presenting accurate numerical values is

essential for financial reports’ summaries. Template filling methods have less impact

on ROUGE scores because there are many fewer numerical values than words in target

summaries.

4.5.6 Discussion on Tuple-to-Text Generation Methods

As introduced in subsection 4.3.2, tuple-to-text generation is the first step in GCG

methods. We annotate a tuple-to-text generation dataset based on our FINDSum

dataset for training and evaluating various generators. These tuple-to-text generators

88

4.5. Results and Discussion

Table 4.19: N-gram recall of tuple-to-text generation results on test sets of FINDSum-

ROO and FINDSum-Liquidity.

Top-N R-1 R-2 R-3 R-5 R-AVG

ROO

XGB

100 36.32 16.55 7.45 1.47 15.45

200 42.73 20.67 9.78 2.01 18.80

400 49.25 24.88 12.19 2.59 22.23

MLP

100 36.75 16.69 7.51 1.49 15.61

200 42.98 20.69 9.74 1.97 18.85

400 49.38 24.86 12.16 2.57 22.24

Liquidity

XGB

100 33.47 15.27 7.12 1.69 14.39

200 40.11 18.99 9.26 2.13 17.62

400 46.84 22.78 11.51 2.67 20.95

MLP

100 33.65 15.39 7.17 1.68 14.47

200 40.30 19.10 9.31 2.15 17.72

400 47.06 22.87 11.55 2.70 21.05

are evaluated by the ROUGE [67] and BLEU scores6 [95]. Table 4.18 depicts the

performance of different tuple-to-text generators on ROO and Liquidity subsets. The

large model of BART [64] performs the best on these two subsets, so we use it as

the tuple-to-text generator in GCG. Table 4.19 depicts that both the tuple selection

methods in the content selection step and the number of input tuples can affect

tuple-to-text generators’ performance.

6www.nltk.org/api/nltk.translate.bleu score.html. We report the cumulative 4-gram BLEU score.

89

Chapter 4. From Unimodal to Multimodal: Long Text and Multi-Table
Summarization

Table 4.20: Details of summarization models.

Model Architecture Params
Enc/Dec

Layers
Heads dmodel dff Input Len

Bigbirdbase Enc 127.5M 12 12 768 3,072 4,096

Bigbirdlarge Enc 359.1M 24 16 1,024 4,096 4,096

Longformerbase Enc 148.7M 12 12 768 3,072 4,098

Longformerlarge Enc 434.6M 24 16 1,024 4,096 4,098

BARTbase Enc-Dec 139.4M 6 12 768 3,072 1,024

BARTlarge Enc-Dec 406.3M 12 16 1,024 4,096 1,024

PEGASUSlarge Enc-Dec 570.8M 16 16 1,024 4,096 1,024

LEDbase Enc-Dec 161.8M 6 12 768 3,072 16,384

LEDlarge Enc-Dec 459.8M 12 16 1,024 4,096 16,384

BigBird-PEGASUS Enc-Dec 577.1M 16 16 1,024 4,096 4,096

T5base Enc-Dec 222.9M 12 12 768 3,072 512

T5large Enc-Dec 737.7M 24 16 1,024 4,096 512

LongT5large Enc-Dec 783.2M 24 16 1,024 2,816 4,096

TAPEXbase Enc-Dec 139.4M 6 12 768 3,072 1,024

TAPEXlarge Enc-Dec 406.3M 12 16 1,024 4,096 1,024

4.5.7 Case Study

We conduct a case study to compare and analyze summaries generated by different

models. Fig. 4.8 has two parts. Its left part shows some fragments of input text

and tables from one example in the FINDSum-Liquidity. The right part presents

fragments in the target summary and different models’ output summaries. When

comparing these summaries, we find that our GCG, CG, and GTF methods can

generate quantitative descriptions of some critical items in tables. The text-only

baseline BigBird-PEGASUS focuses more on narratives in the input text. Without

tabular data as evidence, most of the numerical values generated by the BigBird-

PEGASUS are inaccurate. It reflects the importance of incorporating tables when

90

4.6. Chapter Summary

summarizing report documents.

GCG method’s input is the concatenation of input text and generated text descrip-

tions of selected tabular data, which differs from the CG method. The summary

generated by GCG focuses more on descriptions of tables. Unlike the GCG method,

the CG method needs to handle text-to-text and tuple-to-text generation simulta-

neously, which is quite challenging. The generated summary reflects that the CG

method can find a balance for its focus on text and table content. The accuracy of

its tuple-to-text generation needs further improvements. As for the GTF method, it

enumerates many critical items in its generated summary, but it does not mention

these items’ values. As discussed in subsection 4.5.1, the GTF method’s performance

is mainly limited by the template generation process. If the generated template does

not add or add placeholders in the wrong positions, the template filling step cannot

produce quantitative descriptions correctly.

Some items mentioned in the target summary need numerical reasoning over tabular

data. For example, the item ”changes in our operating assets and liabilities” has

many components. Although its value is not shown in the table, we can calculate it

by adding up all its components. Some items like ”non-cash charges” do not appear

in inputs. To handle these more complex cases, the summarization model needs

more knowledge about the relationships among all these items and better numerical

reasoning ability.

4.6 Chapter Summary

In this chapter, we propose a new task named long text and multi-table summariza-

tion, which generalizes the long document summarization from unimodal (text) sum-

marization to multimodal. Previous document summarization datasets and methods

are usually restricted to summarize the text content and exclude tables and figures

91

Chapter 4. From Unimodal to Multimodal: Long Text and Multi-Table
Summarization

from the input. In financial report documents, the key information can be distributed

across both textual and non-textual content. The absence of tabular data can restrict

the informativeness of generated summaries, particularly when summaries necessitate

the quantitative descriptions of vital metrics within tables. Existing summarization

methods and datasets fail to meet the demands of summarizing extensive textual

and tabular content within financial reports. To deal with the scarcity of available

datasets, we propose FINDSum, the first large-scale dataset for long text and multi-

table summarization. Besides, we present four types of summarization methods to

jointly consider the text and table content when summarizing reports. Additionally,

we propose a set of evaluation metrics assessing the utilization of numerical informa-

tion within the generated summaries.

92

4.6. Chapter Summary

LE
D_

2K
CG

LE
D_

2K
GT

F
LE

D_
2K

GC
G

LE
D_

2K
LE

D_
4K

CG
LE

D_
4K

GT
F

LE
D_

4K
GC

G
LE

D_
4K

LE
D_

8K
CG

LE
D_

8K
GT

F
LE

D_
8K

GC
G

LE
D_

8K
44464850525456 R1

14161820222426283032

R2 / RL / NS

w/ DC
w/

o
DC

R1 R2 RL NS

Figure 4.6: Impact of input length and Divide-and-Conquer (DC) on FINDSum-

Liquidity. Each summarizer has two parts of scores denoting w/ and w/o DC.

93

Chapter 4. From Unimodal to Multimodal: Long Text and Multi-Table
Summarization

LE
D_

2K
CG

LE
D_

2K
GT

F
LE

D_
2K

GC
G

LE
D_

2K
LE

D_
4K

CG
LE

D_
4K

GT
F

LE
D_

4K
GC

G
LE

D_
4K

LE
D_

8K
CG

LE
D_

8K
GT

F
LE

D_
8K

GC
G

LE
D_

8K
464850525456 R1

14161820222426

R2 / RL / NS

w/ DC
w/

o
DC

R1 R2 RL NS

Figure 4.7: Impact of input length and Divide-and-Conquer (DC) on FINDSum-ROO.

Each summarizer has two parts of scores denoting w/ and w/o DC.

94

4.6. Chapter Summary

Input Output Summary

Target Summary: cash used in operating activities was $ 85.0 million , which consisted of a
net loss of $ 94.4 million , adjusted by non-cash charges of $ 15.1 million and cash used due
to changes in our operating assets and liabilities of $ 5.7 million. the non-cash charges
consisted primarily of depreciation and amortization expense of $ 3.4 million , stock-based
compensation of $ 5.3 million, and non-cash operating lease expense of $ 6.4 million. …
during the year ended december 31 , 2019 , cash provided by investing activities was $ 15.8
million , which consisted of $ 113.0 million in proceeds from the maturity of marketable
securities , offset by $ 81.0 million of purchases of marketable securities and $ 16.2 million of
capital expenditures to purchase property and equipment. …

GCG-Bigbird: operating activities net cash used in operating activities was $ 85.0 million for
the year ended december 31, 2019, primarily resulting from our net loss of $ 94.4 million,
which was partially offset by non-cash charges of $ 50.0 million for depreciation and
amortization, $ 0.7 million for stock-based compensation, and $ 6.4 million for operating
lease expense. … net cash provided by investing activities was $ 15.8 million during the
periods presented, primarily due to maturities of marketable securities of $ 64.3 million and
purchases of property and equipment of $ 5.7 million offset by purchases of available-for-
sale marketable securities totaling $ 80.0 million …

CG-Bigbird: since our inception, we have incurred significant losses and negative cash
flows from operations. we have an accumulated deficit of $ 221.0 million through december
31, 2019. we expect to incur substantial additional losses in the future as we conduct and
expand our research and development activities and invest in our manufacturing facility. …
operating activities net cash used in operating activities was $ 81.0 million for the year ended
december 31, 2019, and consisted primarily of a net loss of $ 94.4 million, partially offset by
non-cash charges of $ 55.0 million and net cash provided by changes in our operating assets
and liabilities of $ 15.8 million. the net loss was primarily due to an increase in the net
deferred revenue of $ 4.3 million due to the timing of payments …
$ 5.3 million in stock-based compensation expense and $ 6.4 million in operating lease
expense … net cash from investing activities for 2019 was $ 16.4 million and consisted
primarily of maturities and purchases of marketable securities of $ 48.7 million …

GTF-Bigbird: since our inception, we have incurred significant losses and negative cash
flows from operations. we have funded our operations to date primarily from private
placements of our convertible preferred stock, the net proceeds from our initial public
offering … net cash used in operating activities for the year ended december 31, 2019 was $
85 million and consisted primarily of our net loss of $ 94.4 million, partially offset by non-cash
charges for stock-based compensation, depreciation and amortization, operating lease
expense, net amortization of premiums and discounts on marketable securities and net
changes in our operating assets and liabilities. … our investing activities consist primarily of
purchases and maturities of marketable securities, purchases and sales of property and
equipment, and purchases of intangible assets. …

BigBird-PEGASUS: since our inception, we have incurred significant losses and negative
cash flows from operations. we have funded our operations to date primarily from private
placements of our convertible preferred stock, the net proceeds from our initial public
offering, … net cash used in operating activities was $ 64.6 million, primarily resulting from
our net loss of $ 92.2 million and changes in our operating assets and liabilities, partially
offset by non-cash charges totaling $ 19.9 million. … net cash from investing activities was $
(20.0) million for the years ended december 30, 2019 and 2018, respectively. during the
year, we purchased marketable securities totaling $ 20.0 million and purchased property and
equipment, net of cash acquired, of $ 0.2 million and $ 0.1 million respectively, which were
offset by maturities of marketable securities of $ 25.0 million …

Table 1: Statements of Cash Flows
(In thousands)

2019

Net loss (94,433)

Adjustments to reconcile net loss to
net cash used in operating activities:

Depreciation and amortization 4,745

Net amortization of premiums and
discounts on marketable securities

(1,349)

Stock-based compensation 5,299

Non-cash operating lease expense 6,382

Changes in operating assets and
liabilities:

… …

Deferred revenue (4,297)

… …

Purchase of marketable securities (80,979)

Maturities of marketable securities 112,993

Purchase of property and equipment (16,173)

… …

Table 2: (In thousands)

2019

Cash used in operating activities (85,011)

Cash provided by (used in) investing
activities

15,841

… …

Input Text:
…
we have funded our operations to date primarily
from private placements of our convertible
preferred stock , the net proceeds from our initial
public offering … we have incurred net losses
each year since inception. our net losses were $
94.4 million, $ 64.8 million and $ 41.4 million for
the years ended december 31, 2019, 2018 and
2017, respectively. as of december 31, 2019, we
had an accumulated deficit of $ 221.0 million …
since our inception, we have incurred significant
losses and negative cash flows from operations .
we have an accumulated deficit of $ 221.0 million
through december 31, 2019. we expect to incur
substantial additional losses in the future as we
conduct and expand our research and
development activities. …

…

Figure 4.8: The input content and output summaries of an example from the

FINDSum-Liquidity. In these output summaries, the underlined content comes from

row names or cell values of input tables or input text fragments. The summary sen-

tences marked with dotted lines below are mainly derived from the input text, while

those marked with solid lines below mainly come from the input tables.

95

Chapter 5

From Single Document to Multiple

Documents: Generating a

Structured Summary of Numerous

Academic Papers

5.1 Introduction

The number of published academic papers has been growing rapidly [2]. It becomes

more and more difficult for researchers to read through the numerous papers on the

research topics they are interested in. A summary of papers on a research topic can

help researchers quickly browse key information in these papers. As a type of human-

written summary, the survey paper can review numerous papers on each research

topic and guide people to learn the topic. However, writing a survey paper needs

a lot of time and effort, making it challenging to cover the latest papers and all

the research topics. The multi-document summarization (MDS) techniques [38, 70,

74] can be utilized to automatically produce summaries as a supplement to human-

96

5.1. Introduction

written summaries. To cover the latest papers and more research topics at a low

cost, people can flexibly adjust the input papers and let the summarization methods

produce summaries for these papers. Our target is to generate a comprehensive, well-

organized, and non-redundant summary for numerous papers on the same research

topic. To achieve this target, there are some challenging issues, including the scarcity

of available data, the organization of diverse content from different sources, and the

summarization models’ efficiency in processing long texts.

Although there have been some MDS datasets [38, 81], most of them focus on produc-

ing short and structureless summaries covering less than ten input documents, which

cannot meet the real needs of reviewing numerous papers on one research topic. To

deal with the scarcity of available data, we propose BigSurvey, the first large-scale

dataset for numerous academic papers summarization. It contains more than seven

thousand survey papers and their 434 thousand reference papers’ abstracts. Consider-

ing copyright issues, we collect these reference papers’ abstracts as input documents

for MDS. These abstracts can be regarded as summaries written by their authors,

which include these reference papers’ salient information.

These input abstracts usually have content on multiple aspects, including the back-

ground, method, objective, and results. It is challenging for a summary to organize

and present the diverse content from dozens of input documents. Compared with

the structureless summary, the structured summary contains multiple sections sum-

marizing particular aspects of input content and is found easier to read and more

welcomed by readers [48, 49]. To balance comprehensiveness and brevity, we built

two subsets of the BigSurvey to produce two-level summaries. The BigSurvey-MDS

focuses on producing comprehensive summaries, while the BigSurvey-Abs is built to

produce more concise summaries of these summaries in BigSurvey-MDS.

We make two assumptions for the structured summary of multiple papers on the

same topic. 1) The research topic’s descriptions on one aspect constitute a subset of

the union of related papers’ content on this aspect (e.g., the research topic’s back-

97

Chapter 5. From Single Document to Multiple Documents: Generating a
Structured Summary of Numerous Academic Papers

…

BERT

SSC

Ref1

Ref2

BERT

SCC

Type-2 Sent

Type-2 Sent

Type-2 Sent

…
Type-3 Sent

Type-3 Sent

Type-3 Sent
…

Sparse

Transformer

Sparse

Transformer

Refn

Type-1 Sents

Type-2 Sents

Type-3 Sents

……

Sent1

Sent2

Sentm-1

Sentm-2

Sentm

…

Sentm

Sentm-1

BERT

SCC

BERT

SCC

Type-2 Sent

Type-2 Sent

…

Type-3 Sent

Type-3 Sent

…

Type-2 Sent

Type-2 Sent

…

Type-3 Sent

Type-3 Sent

…

Type-1 Sent

Type-1 Sent

Type-1 Sent

…

Sparse

Transformer
Type-1 Sent

Type-1 Sent

…

Type-1 Sent

Type-1 Sent

…

Generated

Summaries
Target

Summaries

Sents in

Survey

Survey

Paper

Ref

Paper

SSC Results

Combined

Segments

Sequential Sentence Classification (SSC) Sentence Classification with Context (SCC)Sparse Transformer Based Summarizer

Type-1 Sents

Type-2 Sents

Type-3 Sents

Type-1 Sents

Type-2 Sents

Type-3 Sents

BERT

SSC

BERT

SSC

[CLS]

y1

Sent2 Sent3[SEP] [SEP] [SEP]

… … … …

…

…

…

…

…

…

…

…

…

MLP MLP MLP

y2 y3

[SEP][CLS] Sent3[SEP] [SEP]

… … …

…

…

…

…

…

…

MLP

y1

Sent1 Sent2
[CLS]

C T1 T2 …
Tm TSEP

…

t1 [SEP]t2 tm…

…

…

Sent1 [CLS]

…

…

t1 tmt2 tm-1
…

…

…

t1 t2 t3 tm [EOS]

Figure 5.1: An overview of our CAST method.

ground should be part of all the related papers’ backgrounds). 2) Each section of the

structured summary focuses more on the salient content in one subset mentioned in

1) (e.g., the summary’s background section focuses on the salient content in all the

reference papers’ backgrounds). Based on these assumptions, we propose category-

based alignment (CA) to align each section of the structured summary with a set of

input sentences classified as the same type.

As shown in Table 5.1, the average sum of input documents’ word numbers is close

to twelve thousand in each example of the BigSurvey dataset. The much longer in-

puts can introduce more noises, and the salient content can be more scattered, which

makes it more difficult to capture and encode the salient content. Long input se-

quences can also reduce the efficiency of summarization models since existing neural

models’ time or space complexity is usually highly correlated with the input sequence

length. To deal with the above problems, we propose a method named category-based

alignment and sparse transformer (CAST). As shown in Fig. 5.1, we use the BERT-

based sequential sentence classification (SSC) method and the sentence classification

98

5.1. Introduction

with context (SCC) method to classify input and output sentences. Then, we use

the category-based alignment to align the sets of input and target output sentences

classified as the same type and compose examples for training summarization mod-

els. We adopt the transformer with the sparse attention mechanism for abstractive

summarization. The sparse attention supports the encoder in modeling longer input

sequences with limited GPU memory. Our BigSurvey dataset and CAST method en-

able fine-tuning a large pre-trained model to generate structured summaries covering

dozens of input documents on an off-the-shelf GPU.

We benchmark advanced extractive and abstractive summarization methods as base-

lines on our BigSurvey dataset. To compare their performance, we conduct automatic

evaluation and human evaluation. Experimental results show that our proposed

CAST method outperforms these baseline models, and adding the category-based

alignment can bring extra performance gains for various summarization methods.

Our contribution is threefold:

• We build BigSurvey, the first large-scale dataset for numerous academic papers

summarization.

• We propose a method named category-based alignment and sparse transformer

(CAST) to summarize numerous academic papers on each research topic.

• We benchmark various summarization methods on our dataset and find that

adding the category-based alignment can bring extra performance gains for

various methods.

99

Chapter 5. From Single Document to Multiple Documents: Generating a
Structured Summary of Numerous Academic Papers

Table 5.1: Comparison of our BigSurvey dataset to other summarization datasets.

”Pairs” denotes the number of examples. ”Words” and ”Sents” indicate the aver-

age number of words and sentences in input text or target summary. ”Doc Num”

represents the average number of input documents in each example. ”Cov.” is the ex-

tractive fragment coverage, ”Dens.” is the extractive fragment density, and ”Comp.”

is the compression ratio of target summaries.

Dataset Pairs
Words

(Doc)

Sents

(Doc)

Words

(Sum)

Sents

(Sum)

Doc

Num
Cov. Dens. Comp.

Multi-News 56.2k 2,103.5 82.7 263.7 10.0 2.8 0.69 3.1 6.3

Multi-XScience 40.5k 778.1 23.7 116.4 4.9 4.4 0.60 1.1 5.6

PubMed 133.2k 3,049.0 87.5 202.4 6.8 1 0.79 4.3 13.6

ArXiv 215.9k 6,029.9 205.7 272.7 9.6 1 0.87 3.8 39.8

BigSurvey-MDS 4.4k 11,893.1 450.1 1,051.7 38.8 76.3 0.81 1.5 11.3

BigSurvey-Abs 7.1k 12,174.5 463.8 170.1 6.4 1 0.83 3.5 71.6

5.2 BigSurvey Dataset

In this section, we first present our data sources and procedures of data collection and

pre-processing. And then, we introduce our BigSurvey dataset1. We also conduct

descriptive statistics and in-depth analysis of our dataset and compare them with

other commonly used document summarization datasets.

1Our dataset: https://github.com/StevenLau6/BigSurvey

100

5.2. BigSurvey Dataset

5.2.1 Data Collection and Pre-processing

We collect more than seven thousand survey papers from arXiv.org 2, download their

PDF files by their DOIs, and parse these files with a tool named science-parse3. We

can extract the bibliography information (e.g., reference papers’ titles and authors)

from parsing results. Based on these survey papers’ bibliography information, we

collect their reference papers’ abstracts from Microsoft Academic Service (MAS) [121]

and Semantic Scholar [1]. We collected more than 434 thousand reference papers in

total.

In the pre-processing stage, we first filter out invalid samples from collected data.

Specifically, downloaded files that are duplicated or cannot be parsed properly (e.g.,

some PDF files are scanned or incomplete) are removed. We also filter out out-

liers with too-short parsed texts in the survey papers or very few collected reference

papers. For each selected survey paper, we remove noises (e.g., the copyright infor-

mation before the first section and special symbols used to compose a style), extract

the abstract and introduction sections from these survey papers, and truncate their

reference papers’ abstracts. We lowercase these texts and use NLTK [10] to split

sentences and words. After that, we split the training (80%), validation (10%), and

test (10%) sets.

5.2.2 Dataset Description

BigSurvey is a large-scale dataset containing two-level target summaries for dozens

of academic papers on the same topic. The long summary aims to comprehensively

cover the reference papers’ salient content in different aspects, while the much shorter

summary is more concise and can be regarded as the summary of the long summary.

2These survey papers’ metadata are collected from a June 2021 dump

(https://www.kaggle.com/datasets/Cornell-University/arxiv)
3https://github.com/allenai/science-parse

101

Chapter 5. From Single Document to Multiple Documents: Generating a
Structured Summary of Numerous Academic Papers

For these two-level summaries, we build two subsets: BigSurvey-MDS and BigSurvey-

Abs. Their statistical information is shown in Table 5.1. We will introduce their

definitions and properties separately.

BigSurvey-MDS. This subset focuses on producing comprehensive summaries cov-

ering numerous academic papers on one research topic. Each example in the BigSurvey-

MDS corresponds to one survey paper from arXiv.org. These survey papers usually

have tens or hundreds of reference papers. Considering copyright issues, BigSurvey-

MDS does not include these reference papers’ body sections and uses their abstracts

as input documents. These abstracts can be regarded as summaries written by their

authors, which include these papers’ salient information. For each survey paper, we

collect at most two hundred reference papers’ abstracts and truncate each of them

to no more than two hundred words. These truncated abstracts are used as input

documents of the BigSurvey-MDS.

The survey paper’s introduction section usually introduces a research topic’s back-

ground, method, and other aspects. We split the content of the survey paper’s in-

troduction into three sections (the background, method, and other) and use them to

compose the structured summary as the target in each example of the BigSurvey-

MDS. The content about the objective, result, and others are merged into the section

named others because we observe that these types of content appear less frequently

than the background and method in the survey papers’ introduction section. To

prepare these three sections in the target summary, we first collect the introduction

section from a survey paper. If there is no introduction section, we extract the sur-

vey paper’s first 1,024 words after the abstract part. Then, we classify sentences in

the introduction section and concatenate the sentences classified as the same type to

form the three sections in the target summary. We filter out the examples with too

short input sequences or target summaries. As shown in Table 5.1, BigSurvey-MDS’s

average input length, average output length, and average number of input documents

102

5.2. BigSurvey Dataset

Table 5.2: Coverage and density distributions of the BigSurvey.

Dataset
% of novel n-grams in target summary

unigrams bigrams trigrams 4-grams

Multi-News 17.76 57.10 75.71 82.30

Multi-XScience 42.33 81.75 94.57 97.62

PubMed 18.38 49.97 69.21 78.42

ArXiv 15.04 48.21 71.66 83.26

BigSurvey-MDS 37.39 76.46 93.87 98.04

BigSurvey-Abs 19.85 53.97 74.15 82.22

are much larger than previous MDS datasets.

BigSurvey-Abs. The body text of a survey paper can be regarded as a compre-

hensive and long summary of its reference papers. Meanwhile, the survey paper’s

abstract is a short summary of its body text. The subset named BigSurvey-Abs uses

these survey papers’ abstracts as target summaries, which aims to produce more con-

cise summaries of these survey papers’ body text. Considering the constraints of GPU

memory, we truncate these survey papers in our experiments. Specifically, we follow

the settings in [147, 149] to use the first 1,024 words as the input for transformer-

based models without sparse attention and use the first 3,072 words as the input for

transformer-based models with sparse attention. In this case, the input documents of

the BigSurvey-Abs highly overlap with the target summaries in the BigSurvey-MDS.

Therefore, the short summary in the BigSurvey-Abs can be regarded as the summary

of the long summary in the BigSurvey-MDS. Besides, the average input and output

lengths are similar to previous academic literature summarization datasets. Previous

text summarization methods should be able to adapt to the BigSurvey-Abs dataset.

103

Chapter 5. From Single Document to Multiple Documents: Generating a
Structured Summary of Numerous Academic Papers

0

1

2

3

4

5

Ex
tra

ct
iv

e
fra

gm
en

t d
en

sit
y

MDS-Background
c= 10.32

MDS-Method
c= 12.18

0.4 0.6 0.8 1.0
Extractive fragment coverage

0

1

2

3

4

5

Ex
tra

ct
iv

e
fra

gm
en

t d
en

sit
y

MDS-Other
c= 26.07

0.4 0.6 0.8 1.0
Extractive fragment coverage

ABS
c= 71.57

Figure 5.2: Coverage and density distributions of the BigSurvey.

5.2.3 Diversity Analysis of Dataset

To measure how abstractive our target summaries are, we report the percentage of

target summaries’ novel n-grams, which do not appear in input documents. Table 5.2

reflects that the abstractiveness of the BigSurvey-MDS subset is similar to that of

the Multi-XScience. The BigSurvey-Abs subset’s abstractiveness is lower than that

of the BigSurvey-MDS and Multi-XScience and is similar to other existing datasets.

Besides, we assess the extractive nature of BigSurvey’s subsets by three measures

defined by Grusky et al. [44], including the extractive fragment coverage, extractive

fragment density, and compression ratio. They can be calculated with Eq. 4.1. The

extractive fragment coverage measures the percentage of words in the summary that

are part of an extractive fragment from the input document. The extractive frag-

ment density assesses the average length of the extractive fragment where each word

104

5.3. Method

in the target summary belongs. The compression ratio is the word ratio between the

input documents and their target summaries. The results of these three measures

are visualized using kernel density estimation. Fig. 5.2 shows that three summary

sections in the BigSurvey-MDS subset have similar distributions in coverage and den-

sity. Their densities are low, and their coverages vary in a relatively large range. The

BigSurvey-Abs subset varies largely along the y-axis (extractive fragment density),

which suggests varying writing styles of target summaries.

5.3 Method

In this chapter, we propose a solution named category-based alignment and sparse

transformer (CAST) to summarize numerous academic papers on one research topic.

CAST contains three main components: the BERT-based sentence classification with

context (SCC) model, the sequential sentence classification (SSC) model, and the

transformer-based abstractive summarization model with sparse attention.

Each section of the structured summary usually focuses on a specific aspect of the con-

tent from input documents. To prepare each summary section’s content, we classify

sentences in the extracted introduction section of a survey paper and merge sentences

classified as the same type. We design a method named sentence classification with

context (SCC) to classify these sentences. Given a sentence and the sentences before

and after it, we concatenate them as the input for the sentence classification model

based on a pre-trained model (e.g., BERT [32] or RoBERTa [79]). We train the SCC

model on the labeled sentences from the CSABST dataset [24], in which each sentence

is annotated as one of 5 categories: background, objective, method, result, and other.

To deal with the above problem, we use category-based alignment (CA) to align

each summary section with input sentences classified as the same type. The aligned

input text and target summary compose the example for model training. CA can be

105

Chapter 5. From Single Document to Multiple Documents: Generating a
Structured Summary of Numerous Academic Papers

Table 5.3: Automatic evaluation results of each summary segment on the BigSurvey-

MDS test set.

Method
Background Method Other

R1/R2/RL R1/R2/RL R1/R2/RL

LexRank+CA 31.33/5.92/13.93 28.85/4.65/13.07 23.61/6.08/13.04

TextRank+CA 31.20/5.79/13.91 28.80/4.38/12.94 24.41/6.42/13.81

BART 31.96/5.73/14.96 28.61/4.97/14.32 23.87/5.74/13.50

BART+CA 33.05/6.21/15.40 29.22/5.22/14.57 25.39/6.58/14.44

PEGASUS 33.51/6.74/15.67 27.47/4.93/14.17 25.20/6.55/14.02

PEGASUS+CA 33.93/6.80/15.67 29.76/5.74/15.05 26.32/7.34/15.34

BigBird-

PEGASUS
34.31/6.78/15.54 29.46/5.47/14.43 26.07/6.66/14.24

LED 34.11/6.84/15.78 26.15/4.59/13.47 25.26/6.34/13.74

CAST-BigBird 34.56/6.96/15.55 30.83/5.95/15.03 26.90/7.47/15.45

CAST-LED 36.55/8.82/16.87 31.72/6.94/15.61 27.16/8.10/15.53

regarded as a content selection operation based on sentence classification, supporting

the summarization model to focus on specific aspects of input documents.

Considering that different sections of the structured summary can be written in dif-

ferent ways, we train multiple models to produce separate sections in the target

summary. To prepare the pairs of input and output for model training, aligning all

summary sections with the same input (one-to-many) is straightforward. Merged

from dozens of reference papers’ abstracts, the input text of each example in the

BigSurvey-MDS usually contains multiple aspects of content. For a summary sec-

tion focusing on a specific aspect, other aspects of input content can be regarded as

noises. Using the same input for producing different summary sections can make the

produced sections mix different aspects of content.

106

5.3. Method

Table 5.4: Automatic evaluation results of combined summary on the BigSurvey-MDS

test set.

Method R1/R2/RL

LexRank 35.85/8.59/14.22

LexRank+CA 37.92/8.56/14.63

TextRank 36.35/8.49/14.24

TextRank+CA 38.22/8.45/14.70

BART 37.64/8.45/15.69

BART+CA 40.21/9.38/16.06

PEGASUS 38.91/9.00/16.20

PEGASUS+CA 41.09/9.96/16.76

BigBird-PEGASUS 41.29/9.84/16.37

LED 39.79/9.42/16.05

CAST-BigBird 42.10/10.24/16.71

CAST-LED 43.13/11.64/17.35

Classifying sentences from reference papers’ abstracts can be defined as a sequential

sentence classification (SSC) problem. We follow the setting in [24] and train a BERT-

based SSC model on the datasets named CSABST [24]. We first use the SSC model to

classify the sentences in each reference paper’s abstract and then merge the sentences

classified as the same type. Our evaluation results show that the SSC model can

outperform the SCC model in abstract sentence classification. Considering the target

summary in BigSurvey-MDS is usually much longer than the samples in the CSABST

and the max length limit of the BERT model, it is not appropriate to use the SSC

model trained on the CSABST to classify the target summary’s sentences. Therefore,

we utilize the SSC model to classify input sentences and the SCC model to classify

sentences in the target summary.

107

Chapter 5. From Single Document to Multiple Documents: Generating a
Structured Summary of Numerous Academic Papers

The original transformer model’s encoder adopts the self-attention mechanism scaling

quadratically with the number of tokens in input sequences [131]. It is prohibitively

expensive for the long input sequence [20] and precludes fine-tuning large pre-trained

models with limited computational resources. Some transformer models’ variants

adopt sparse attention mechanisms to reduce the complexity. For example, BigBird

[147] and Longformer [6] combine three different types of attention mechanisms and

scale linearly with sequence length. Considering the constraint of GPU memory, our

CAST model employs the pre-trained encoder with sparse attention to encode longer

input texts. Our CAST model has two versions: the CAST-BigBird employs the

BigBird [147] as the encoder, and the CAST-LED’s encoder is from the Longformer

[6].

5.4 Experiments

5.4.1 Baselines

In our experiments, we compare various extractive and abstractive summarization

models on our BigSurvey dataset. These models’ details are shown in Table 5.8.

LexRank and TextRank. Two unsupervised extractive summarizers are built on

graph-based ranking methods [37, 84].

CopyTransformer. Gehrmann et al. [41] add the copy mechanism [116] to the

transformer model for abstractive summarization.

BART. Lewis et al. [64] build a sequence-to-sequence denoising autoencoder that is

pre-trained to reconstruct the original input text from the corrupted text.

PEGASUS. [149] pre-train a transformer-based model with the Gap Sentences Gen-

eration (GSG) and Masked Language Model (MLM) objectives.

108

5.4. Experiments

BigBird-PEGASUS. Zaheer et al. [147] combine the BigBird encoder with the

decoder from the PEGASUS model.

Longformer-Encoder-Decoder (LED).LED [6] is built on BART and adopts the

local and global attention mechanisms in the encoder part, while its decoder part still

utilizes the original self-attention mechanism.

We fine-tuned large models of these pre-trained summarizers on BigSurvey’s training

set.

5.4.2 Experimental Setting

The vocabulary’s maximum size is set as 50,265 for these abstractive summarization

models, while the BERT-based classifiers use 30,522 as default. We use dropout with

the probability 0.1. The optimizer is Adam with β1=0.9 and β2=0.999. Summariza-

tion models use learning rate of 5e−5, while the classifiers use 2e−5. We also adopt

the learning rate warmup and decay. During decoding, we use beam search with a

beam size of 5. Trigram blocking is used to reduce repetitions. We adopt the imple-

mentations of PEGASUS, BigBird, and LED from HuggingFace’s Transformers [138].

The BART’s implementation is from the fairseq [93]. All the models are trained on

one NVIDIA RTX8000.

5.4.3 Results and Discussion

In our experiments, we train and evaluate various summarization models on the

BigSurvey-MDS and BigSurvey-Abs. We divide the BigSurvey-MDS into three sub-

sets and train three models producing separate sections in the target summary. In

this section, we report and analyze our experimental results.

To compare the quality of summaries produced by these models, we conduct au-

tomatic evaluation and report the ROUGE F1 scores [67], including the overlap of

109

Chapter 5. From Single Document to Multiple Documents: Generating a
Structured Summary of Numerous Academic Papers

Table 5.5: Automatic evaluation results on the BigSurvey-Abs.

Method R-1 R-2 R-L

LexRank 30.93 8.53 15.54

TextRank 32.21 8.79 15.96

CopyTransformer 30.59 5.80 16.76

BART 35.28 9.71 17.89

PEGASUS 37.47 11.08 19.25

LED 38.57 11.52 19.36

BigBird-PEGASUS 39.75 12.60 20.11

Table 5.6: Human evaluation results on the test set of BigSurvey-MDS. ”Win” denotes

that the generated summary of our CAST-LED is better than that of the original

LED model in one aspect. ”Tie” represents that two summaries are comparable in

one aspect.

Win Lose Tie Kappa

Informativeness 39.5% 25.0% 35.5% 0.659

Fluency 28.5% 27.5% 44.0% 0.631

Non-Redundancy 33.0% 25.5% 41.5% 0.623

unigrams (R-1), bigrams (R-2), and longest common subsequence (R-L). We report

ROUGE scores of produced three summary sections and the combined summaries

for the BigSurvey-MDS in Tables 5.3 and 5.4. It shows that these abstractive sum-

marization models can outperform these extractive models on the BigSurvey-MDS.

Replacing the encoder’s self-attention mechanism with sparse attention mechanisms

can enable us to train transformer-based models on longer input texts with limited

GPU memory. The BigBird-PEGASUS and the LED outperform other transformer-

based models without sparse attention, which reveals that introducing longer input

110

5.4. Experiments

Table 5.7: Ablation study on the test set of BigSurvey-MDS. We report the ROUGE

scores of combined summaries. ”w/o sparse attn” denotes using the original self-

attention in the encoder. ”w/o CA” represents removing the category-based align-

ment.

R-1 R-2 R-L

CAST-LED 43.13 11.64 17.35

w/o sparse attn 40.21 9.38 16.06

w/o CA 39.79 9.42 16.05

w/o CA + LEDbase-8192 39.38 9.78 16.30

Table 5.8: Details of summarization models.

Model Architecture Params
Enc/Dec

Layers
Heads dmodel dff Input Len

CopyTransformer Enc-Dec 81.5M 4 8 512 2,048 512

BARTlarge Enc-Dec 406.3M 12 16 1,024 4,096 1,024

PEGASUSlarge Enc-Dec 570.8M 16 16 1,024 4,096 1,024

LEDlarge Enc-Dec 459.8M 12 16 1,024 4,096 16,384

BigBird-PEGASUS Enc-Dec 577.1M 16 16 1,024 4,096 4,096

text can benefit the quality of generated summaries.

The concatenation of input reference papers’ abstracts usually contains multiple as-

pects of content. It requires the summarization method to have a strong capability

of content selection to produce a summary section precisely covering a specified as-

pect. We compare the effects of applying different ways of alignment (one-to-many

or category-based alignment) on various summarization models. When using the

one-to-many alignment, we observe that the produced summary sections often mix

multiple aspects of content and have overlapping content in different sections. It

reveals that these summarization models still have difficulties in content selection,

111

Chapter 5. From Single Document to Multiple Documents: Generating a
Structured Summary of Numerous Academic Papers

although they have supervision from target summaries. Tables 5.3 and 5.4 show that

introducing CA can bring extra performance gains for various summarization models.

It reflects the effectiveness of CA and the need to enhance summarization models’

capabilities of content selection. Combining the CA and the transformer model with

the sparse attention mechanism, CAST-LED outperforms other baseline models on

the BigSurvey-MDS.

Table 5.5 shows the evaluation results on the BigSurvey-Abs. These transformer-

based abstractive summarization models with sparse attention mechanisms also out-

perform other baselines. It reveals that modeling longer input text is also impor-

tant for summarizing survey papers in the BigSurvey-Abs. Besides, the pre-trained

sequence-to-sequence models outperform the model trained from scratch.

In addition to automatic evaluation, we performed a human evaluation to compare

two summarization models’ generated summaries in terms of their informativeness

(the coverage of input documents’ content), fluency (content organization and gram-

matical correctness), and non-redundancy (fewer repetitions). We randomly selected

50 samples from the test set of the BigSurvey-MDS. Four annotators are required to

compare two models’ generated summaries that are presented anonymously. We also

assess their agreements by Fleiss’ kappa [39]. Human evaluation results in Table 5.6

exhibit that our CAST-LED method outperforms the original LED model in terms

of informativeness and non-redundancy.

We also conduct the ablation study to validate the effectiveness of individual compo-

nents in our method. Table 5.7 shows that using the original self-attention to replace

the sparse attention mechanism in the encoder part or removing the category-based

alignment can lead to performance degradation. Besides, increasing the input se-

quence length cannot replace the CA. The longer inputs can introduce more noise,

and it is still difficult for summarization models to select the salient content on the

specific aspect without CA. The results verify the effectiveness of the sparse attention

mechanism and CA.

112

5.5. Chapter Summary

5.5 Chapter Summary

In this chapter, we study how to summarize numerous academic papers about the

same topic into a structured summary. Existing multi-document summarization

(MDS) work usually focuses on producing an unstructured summary that encom-

passes only a limited number of input documents. Meanwhile, previous structured

summarization work focuses on summarizing each document into a multi-aspect sum-

mary. Existing methods and datasets fail to fulfill the demands of summarizing nu-

merous academic literature. We propose BigSurvey, the first large-scale dataset for

generating comprehensive summaries of numerous academic papers on each topic.

Besides, we propose the category-based alignment and sparse transformer (CAST) to

effectively arrange the diverse content from a large number of input documents while

simultaneously ensuring efficiency when processing long inputs.

113

Chapter 6

From High-Resource to

Low-Resource: Low-Resource

Court Judgment Summarization

for Common Law Systems

6.1 Introduction

Common law systems rely on case precedents, which encompass not only judicial

decisions within a particular jurisdiction but also decisions from all jurisdictions

throughout the common law world [33]. Judges in common law jurisdictions need

to find similar precedents (prior cases) resolved in the past and refer to the ratio-

nale employed in previous decisions [9]. Court judgment documents typically contain

long text that comprehensively discusses each case and provides detailed explana-

tions of judges’ decisions. Reading previous cases’ judgment documents is crucial for

legal practitioners in common law jurisdictions. There exist massive reported cases

in common law jurisdictions, and the number of cases is still increasing [33], which

114

6.1. Introduction

makes it difficult for legal practitioners to read through abundant cases’ judgment

documents.

High-quality summaries of judgment documents can facilitate readers to quickly

browse key information. Nevertheless, employing legal experts to write summaries

costs a lot and has limited coverage of new or atypical cases’ judgments [58]. Alter-

natively, we can leverage automatic text summarization technology to generate sum-

maries for court judgments. Our objective is to enable computers to generate high-

quality court judgment summaries that are informative, coherent, and concise. To

accomplish this objective, we must address several problems: 1) the lack of datasets,

2) training supervised summarization models with very limited labeled data, 3) iden-

tifying the salient content dispersed within the long judgment document, and 4)

improving the efficiency of summarization models and training methods to process

long input documents and summaries.

There are very few court judgment summarization datasets. Some focus on civil law

jurisdictions [28, 43], while others concentrate on judgments from specific common

law jurisdictions [5, 120]. Considering judges need to compare similar precedents

across all common law jurisdictions [33], summaries of court judgments from multiple

common law jurisdictions are helpful for comparing and analyzing similar precedents

efficiently. The formats and content of court judgment documents vary across dif-

ferent jurisdictions. A summarization method that exhibits proficiency in processing

judgment documents from one jurisdiction may not perform well when applied to

judgments from other jurisdictions. Current summarization datasets are insufficient

to satisfy the demands of summarizing court judgment documents across multiple

common law jurisdictions and comprehensively evaluating judgment summarization

methods. In order to address the lack of datasets, we introduce CLSum, the first

large-scale dataset for summarizing multi-jurisdictional common law court judgment

documents. 1 CLSum has four subsets for court judgments from Canada, Australia,

1The CLSum dataset will be made publicly available upon publication.

115

Chapter 6. From High-Resource to Low-Resource: Low-Resource Court Judgment
Summarization for Common Law Systems

Data

Collection

Data

Cleaning

Data

Augmentation

Content

Selection

Summary

Generation
Evaluation

Figure 6.1: Our workflow of Court Judgment Summarization.

the United Kingdom, and Hong Kong SAR.

We propose a solution for low-resource court judgment summarization to address the

remaining three problems. Fig. 6.1 depicts six key steps in our solution, includ-

ing data collection, data cleaning, data augmentation, content selection, summary

generation, and evaluation.

Similar to other domain-specific tasks, court judgment summarization usually suf-

fers from the shortage of labeled data. Court websites in most jurisdictions publish

only a small number of judgment summaries of typical cases. Under this low resource

condition, summarization models’ few-shot and zero-shot performance are important.

We carry out extensive comparative experiments to analyze the effect of the training

set size on summarization models’ performance. In addition to selecting models with

good few-shot and zero-shot performance, expanding the dataset is another way to

improve summarization performance. To expand our CLSum’s training sets and re-

duce overfitting, we adopt the large language model (LLM) for data augmentation.

Meanwhile, we introduce legal knowledge into the prompts to constrain the LLM to

properly use legal concepts when synthesizing sample text in the data augmentation

process.

Another challenging issue is identifying and integrating the salient information scat-

tered in long judgment documents. Accordingly, our solution has a two-stage summa-

rization framework to deal with this issue from coarse to fine. The first stage, named

116

6.1. Introduction

salient content selection, can be regarded as a rough selection. The recall of essential

content that should be retained in summaries is maximized during the compression of

long inputs. Subsequently, the condensed inputs are passed to summarization mod-

els for fine-grained content selection and integration. Compressing long inputs also

improves the efficiency of summarization models. Further improving the efficiency

requires modifying the models and training methods to reduce complexity.

The complexity of the self-attention mechanism in the transformer model [131] ex-

hibits a quadratic increase with the input length. It can take up a lot of GPU

memory and limit transformer-based models’ efficiency. The model complexity can

be reduced by substituting the original self-attention mechanism with sparse atten-

tion mechanisms. Given the constraints of GPU memory size, models equipped with

sparse attention mechanisms can be pre-trained on longer text sequences and fine-

tuned to generate the full summary directly. For models pre-trained on the shorter

input sequences, we adopt a divide-and-conquer-based training strategy for generat-

ing summary segments, followed by merging them to form the final summary. To

further reduce the consumption of GPU memory and fine-tune large language mod-

els (LLMs) on off-the-shelf GPUs, we adopt some memory-efficient training tech-

niques, like gradient accumulation, gradient checkpointing 2, parameter quantiza-

tion [29, 139], memory-efficient optimizer [30, 104], and adding parameter-efficient

adapters [31, 55].

We adopt various summarization methods as baselines and evaluate them on our

CLSum dataset. For performance comparison, we carry out automatic evaluation

and human evaluation. Apart from the widely used Recall-Oriented Understudy for

Gisting Evaluation (ROUGE) scores [67] and the model-based BARTScore [145], we

design a legal knowledge enhanced evaluation metric named LTScore, which is based

on foundation models fine-tuned on the legal corpus. Legal texts usually contain more

legal terms compared to texts in the general domain. These terms should be used

2github.com/cybertronai/gradient-checkpointing

117

Chapter 6. From High-Resource to Low-Resource: Low-Resource Court Judgment
Summarization for Common Law Systems

accurately in court judgments and their respective summaries. Therefore, LTScore

assigns greater weights to legal terms in judgment summaries to better assess the

accurate usage of such legal terms.

The contribution of this work is threefold:

• We present CLSum, the first large-scale dataset for summarizing common law

court judgment documents from multiple jurisdictions.

• We are the first to employ large language models for data augmentation, sum-

mary generation, and evaluation in court judgment summarization.

• We design a legal knowledge enhanced evaluation metric named LTScore to

evaluate generated legal text.

6.2 CLSum Dataset

Common law court judgment summarization (CLSum) is a large-scale summariza-

tion dataset covering court judgments from four common law jurisdictions, including

Canada, Australia, the United Kingdom, and Hong Kong SAR. This section first

presents our procedures for collecting and pre-processing data. Subsequently, we de-

scribe four subsets in CLSum. Furthermore, we carry out statistics on CLSum and

perform a comparative analysis with other datasets.

6.2.1 Collecting and Pre-processing Data

Court judgment documents usually comprehensively discuss each case and explain

judges’ decisions. Electronic files of judgments are usually publicly available online.

Judiciaries usually publish judgment summaries of typical cases to the public. We col-

lected court judgment documents together with their summaries from court websites

118

6.2. CLSum Dataset

Table 6.1: Summarization datasets’ statistical information. ”Samples” is the sample

number in the dataset. ”Doc” and ”Sum” stand for the input document and target

summary. ”Sents” and ”Words” represent the mean number of sentences and words.

”Dens.” and ”Cov.” are the density and coverage of extractive fragments.

Dataset Samples
Sents

(Doc)

Words

(Doc)

Sents

(Sum)

Words

(Sum)
Dens. Cov.

CNN/DM 312,085 39.8 810.6 3.7 56.2 3.8 0.9

PubMed 133,215 87.5 3049.0 6.8 202.4 5.8 0.8

arXiv 215,913 205.7 6029.9 9.6 272.7 3.8 0.9

CLSum-CA 192 1,168 38,403 38 748 0.8 0.5

CLSum-HK 233 395 11,911 46 1,169 9.7 0.9

CLSum-UK 793 458 16,143 41 1,241 2.4 0.7

CLSum-AUS 1,019 630 20,485 19 592 1.4 0.6

in four jurisdictions.

After collecting thousands of court judgments’ HTML or PDF files, we parse these

files and extract their content. Then, we conduct a series of data pre-processing

operations, including eliminating noises, eliminating replicated examples and outliers

with excessively short content, and splitting three sets for training, validation, and

test.

6.2.2 Description of the CLSum’s Subsets

We collected multi-jurisdictional common law court judgment documents to build the

CLSum dataset. CLSum consists of four subsets, namely CLSum-CA, CLSum-HK,

CLSum-UK, and CLSum-AUS.

119

Chapter 6. From High-Resource to Low-Resource: Low-Resource Court Judgment
Summarization for Common Law Systems

CLSum-CA is collected from the website of the Supreme Court of Canada (SCC)3.

We collect the case briefs and corresponding judgment documents from 2018 to 2023.

CLSum-CA is the subset with the smallest number of samples.

CLSum-HK is collected from the legal reference system4. It covers typical cases

from multilevel courts, including the Coroner’s Court, Magistrates’ Court, District

Court (DC), High Court (HC), and Court of Final Appeal (CFA) in Hong Kong.

We collect these cases’ judgment documents and their press summaries from 2012 to

2023.

CLSum-UK is the subset focusing on the United Kingdom Supreme Court’s judg-

ment documents5. We collect British judgment documents and their press summaries

from 2009 to 2023.

CLSum-AUS is collected from the High Court of Australia’s website6. We collect

Australian judgment documents and their summaries from 2005 to 2023. CLSum-

AUS is the subset with the most samples.

6.2.3 Dataset Analysis

We conduct statistics on CLSum’s four subsets and perform a comparative analysis

with other datasets. As shown in Table 6.1, these four subsets’ input documents and

target summaries are much longer in comparison to existing datasets. The formats

and content of court judgments in these four subsets are different. CLSum-HK and

CLSum-CA have a few samples. CLSum-UK and CLSum-AUS have more samples.

Among these four subsets, CLSum-CA and CLSum-AUS have longer input documents

but shorter target summaries.

3www.scc-csc.ca/case-dossier/cb/index-eng.aspx
4legalref.judiciary.hk/lrs/common/contactus/contactus.jsp
5www.supremecourt.uk/decided-cases/
6www.hcourt.gov.au/publications/judgment-summaries/2023-judgment-summaries

120

6.2. CLSum Dataset

Table 6.2: The percentage of target summaries’ new n-grams.

Dataset unigrams bigrams trigrams 4-grams

arXiv 15.04 48.21 71.66 83.26

PubMed 18.38 49.97 69.21 78.42

CNN/DM 19.50 56.88 74.41 82.83

CLSum-CA 21.65 58.00 80.90 90.09

CLSum-HK 13.48 38.86 57.53 69.06

CLSum-UK 15.00 36.25 53.71 64.29

CLSum-AUS 11.65 37.69 58.01 70.53

In order to quantify the abstraction level of CLSum’s target summaries, Table 6.2

counts the ratio of target summaries’ n-grams that do not appear in the inputs.

Target summaries of CLSum-CA exhibit a greater number of new n-grams and a

higher abstraction level. The abstraction level of target summaries in CLSum-HK,

CLSum-UK, and CLSum-AUS is comparatively lower than that in other datasets.

Additionally, we utilize two measures [44], including the coverage and density of ex-

tractive fragments, to evaluate summarization datasets’ extractive nature. As shown

in Table 6.1, CLSum-HK’s coverage is similar to previous summarization datasets but

is higher than that of other subsets in CLSum. Among these four subsets, CLSum-CA

and CLSum-AUS have smaller coverage and density of extractive fragments. Fig. 6.2

depicts the visualization of distributions of two measures using kernel density esti-

mation. CLSum-HK and CLSum-UK subsets have high variability in density, which

suggests their target summaries are written in varying styles. Furthermore, the com-

pression ratio is calculated by dividing the word count of a document by that of its

corresponding summary.

121

Chapter 6. From High-Resource to Low-Resource: Low-Resource Court Judgment
Summarization for Common Law Systems

0

1

2

3

4

5

Ex
tra

ct
iv

e
fra

gm
en

t d
en

sit
y

CA
c= 0.04

HK
c= 15.96

0.4 0.6 0.8 1.0
Extractive fragment coverage

0

1

2

3

4

5

Ex
tra

ct
iv

e
fra

gm
en

t d
en

sit
y

UK
c= 0.11

0.4 0.6 0.8 1.0
Extractive fragment coverage

AUS
c= 0.05

Figure 6.2: Distributions of extractive fragment coverage and extractive fragment

density. ”c” denotes the compression ratio.

6.3 Method

Summarizing court judgment documents under low resource conditions has several

problems, including: training supervised models with extremely limited labeled data,

identifying the salient content dispersed within the long judgment document, and

improving the efficiency of summarization models and training methods to process

long input documents and summaries. This section presents our solution to address

the aforementioned problems.

Fig. 6.1 depicts that our solution consists of six key steps: data collection, data

cleaning, data augmentation, content selection, summary generation, and evaluation.

Our data collection and cleaning procedures are introduced in subsection 6.2.1. After

122

6.3. Method

the first two steps, we conduct data augmentation to expand the training sets and

reduce overfitting to the limited training samples. Then, the content selection and

summary generation steps complete the selection and integration of key information

from rough to fine. Our evaluation step comprises both automatic evaluation and

human evaluation for assessing the summaries generated by various summarization

models. To the best of our knowledge, this is the first court judgment summarization

work adopting LLM in data augmentation, summary generation, and evaluation. This

section will introduce our methods for training supervised summarization models

with very limited labeled data, identifying salient content scattered in long judgment

documents, and improving the efficiency of the summarization model and its training

process.

6.3.1 Mitigating the Impact of Insufficient Labeled Samples

In most jurisdictions, courts only release a limited number of judgment summaries

for typical cases. The limited size of the labeled training set usually hinders the

performance of supervised models trained from scratch. It is essential to guarantee

the summarization model’s performance when generalizing to cases not seen dur-

ing training. Labeling large-scale datasets can cost a lot, while unlabeled data can

be easily collected from the Internet. Researchers pre-train foundation models with

self-supervised tasks on massive unlabeled data to learn better text representations.

These foundation models can provide good initialization and reduce the amount of

labeled training samples required for downstream tasks. By fine-tuning on the down-

stream task, these foundation models often outperform models trained on the same

task from scratch. To mitigate the impact of insufficient labeled samples from the

summarization model perspective, we evaluate diverse foundation models’ few-shot

and zero-shot performance on our CLSum dataset and select the best performing

model.

123

Chapter 6. From High-Resource to Low-Resource: Low-Resource Court Judgment
Summarization for Common Law Systems

Meanwhile, we also study mitigating the impact of insufficient labeled samples from

the data perspective. We propose knowledge-constrained rephrasing, an LLM-based

data augmentation method constrained by legal knowledge. We also compare it with

different data augmentation methods like back translation and rephrasing. These

data augmentation methods can expand the training sets and reduce overfitting to the

limited training samples. The back translation is a commonly used data augmentation

method. It first translates the text into another language (e.g., from English to

German) and then translates it back to the original language (e.g., from German to

English) [117]. The rephrasing method employs large language models to rephrase

each sentence in judgment documents and target summaries [26]. Legal texts usually

contain more legal terms compared to texts in the general domain. These terms must

be used correctly in court judgments and their summaries. Therefore, we propose

knowledge-constrained rephrasing, which introduces legal knowledge into the prompts

of LLMs to constrain the synthesized sentences to correctly use legal concepts in

the data augmentation process. These generated sentences are merged as new data

samples. We supplement the synthetic data into the training sets to alleviate the

impact of insufficient labeled data.

6.3.2 Salient Content Identification and Integration

Judgment documents in our CLSum datasets usually contain tens of thousands of

words, as depicted in Table 6.1. The salient content is dispersed within different parts

of these long judgment documents. Nonetheless, foundation models are commonly

pre-trained on text sequences that have a predetermined maximum length. When

abstractive summarization models cannot accept the entire document as input, com-

pressing the input length while preserving key information is important. Apart from

simply truncating the document, there exist more efficient content selection methods.

We conduct two-stage operations to identify and integrate the salient content from

124

6.3. Method

Table 6.3: Evaluation results of content selection methods. ”R1” is the unigram recall,

and ”Ravg” represents the mean value of the recalls of unigram, bigram, trigram, and

5-gram. ”Lead” represents the truncation method.

Method
CLSum-CA CLSum-HK CLSum-UK CLSum-AUS

R1 Ravg R1 Ravg R1 Ravg R1 Ravg

Lead 68.41 30.46 85.67 52.29 83.81 54.47 80.05 46.95

LexRank 69.10 30.61 85.61 52.38 83.15 53.84 85.83 50.91

TextRank 69.88 30.88 85.68 52.45 83.06 53.70 85.90 50.91

coarse to fine. The first stage, named salient content selection, can be regarded as a

rough selection. The recall of essential content that should be retained in summaries

is maximized during the compression of long inputs. Subsequently, the condensed

inputs are passed to summarization models for fine-grained content selection and

integration.

The step of content selection is designed to preserve the maximum key information

when compressing the input to a fixed length. We compare different methods’ per-

formance and mainly focus on their average recall of n-grams. Table 6.3 shows these

methods’ evaluation results on the training set of CLSum. We choose the most ef-

fective method for content selection in our subsequent experiments. Specifically, we

adopt TextRank for CLSum-CA, CLSum-HK, and CLSum-AUS and use truncation

for CLSum-UK.

6.3.3 Improving the Efficiency of Models and Training Meth-

ods

Most real-world applications not only face low data resources but also have the con-

straint of low computing resources. Especially when available computing resources are

125

Chapter 6. From High-Resource to Low-Resource: Low-Resource Court Judgment
Summarization for Common Law Systems

limited, how to improve the efficiency of model training and inference is an important

issue. Many summarization methods require large computing resources when pro-

cessing long documents, which limits their applications. In transformer-based models

[131], the self-attention mechanism’s complexity exhibits a quadratic increase with

the input length. It can take up a lot of GPU memory and limit models’ efficiency.

Moreover, the limited GPU memory size poses constraints on transformer-based mod-

els’ capability to model longer context. To improve summarization models’ efficiency,

we employ sparse attention mechanisms [6, 27, 45]. Summarization models employing

sparse attention mechanisms have the capability to model longer contexts with the

same size of GPU memory.

In addition to efficient models, efficient training methods can also expedite the train-

ing process. We adopt some memory-efficient training methods, like gradient accumu-

lation, gradient checkpointing 7, parameter quantization [29, 139], memory-efficient

optimizer [30, 104], and adding parameter-efficient adapters [31, 55]. For those mod-

els pre-trained on the shorter input sequences, we adopt a divide-and-conquer-based

training strategy for generating summary segments, followed by merging them to form

the final summary. Additionally, our two-stage summarization schema also reduces

the context length that neural summarization models need to model, thus reducing

the associated GPU memory consumption. These efficient training methods enable

us to fine-tune LLMs on lengthy inputs using one off-the-shelf GPU.

6.4 Experiments

6.4.1 Baselines

We employ various summarization methods as baselines and evaluate them on the

CLSum dataset. These models’ details are shown in Table 6.11.

7github.com/cybertronai/gradient-checkpointing

126

6.4. Experiments

TextRank and LexRank [37, 84] are graph-based ranking methods that are widely

employed in unsupervised extractive summarization.

Longformer-Encoder-Decoder (LED) [6] is built on the architecture of the BART

model [64] and employs sparse attention mechanisms to replace the original self-

attention mechanism within its encoder.

Legal-LED 8 is the LED model fine-tuned on the litigation releases of U.S. Securities

and Exchange Commission (SEC)9.

LongT5 [45] replaces the self-attention mechanism with a global-local attention

mechanism in the encoder part of T5 model [103] to model longer inputs.

LLaMA [129] is a collection of LLMs with parameter sizes ranging from 7B to 65B,

which are trained on publicly available data.

Vicuna [17] is a set of LLaMA models fine-tuned with user-shared ChatGPT con-

versation data.

GPT-3.5-turbo10 is the model employed in the ChatGPT. Its fine-tuning process

employs Reinforcement Learning from Human Feedback (RLHF) on the GPT-3.5

model [92].

6.4.2 Experimental Setting

For LED-based models (LED and Legal-LED), the vocabulary size is set as 50,265,

whereas LLaMA-based models (Vicuna and LLaMA) and LongT5 model utilize a

default vocabulary size of 32,000 and 32,128, respectively. When fine-tuning the

LED-based model, we set the learning rate to 5e−5. The LLaMA-based models and

LongT5 model use 2e−5 and 1e−3, respectively. We utilize the warmup and decay of

8github.com/nsi319/Legal-Summarizer
9www.sec.gov/litigation/litreleases.htm

10We adopt the GPT-3.5-turbo-0301 API from Azure Cloud

127

Chapter 6. From High-Resource to Low-Resource: Low-Resource Court Judgment
Summarization for Common Law Systems

the learning rate for all these models. As for the optimizer, we use Adam [60] with

β1 = 0.9 and β2 = 0.999 for LED-based models and Adafactor [119] for T5-based

models. When fine-tuning LLaMA and Vicuna models, we use 4-bit NormalFloat

(NF4), QLoRA, and 32-bit paged AdamW optimizer [31] to save GPU memory. Dif-

ferent foundation models are pre-trained on texts of different lengths. In the fine-

tuning stage, we predefine the maximum input length for each model to match its

input length during the pre-training. Given the constraints of GPU memory size,

models equipped with sparse attention mechanisms (e.g., LongT5, LED, Legal-LED)

can be pre-trained on longer text sequences. Their maximum input length is 16,384.

We fine-tuned them to generate the full summary directly. For models pre-trained

on the shorter input sequences (e.g., LLaMA and Vicuna), we utilize the divide-

and-conquer-based training strategy for generating summary segments, followed by

combining them to form the final summary. We employ the beam search, whose beam

size is five. We utilize the implementations of LongT5, LED, Legal-LED, and Vicuna

from HuggingFace’s Transformers [138] and LLaMA’s implementation from Touvron

et al. [129]. We fine-tune these models using one GPU named Nvidia RTX8000.

6.4.3 Evaluation Metrics

We carry out automatic evaluation and human evaluation for assessing the summaries

generated by various models. The automatic evaluation metrics we used can be

further divided into statistics-based evaluation metrics (e.g., ROUGE) and model-

based evaluation metrics (e.g., BARTScore). We not only employ commonly used

evaluation metrics but also propose novel evaluation metrics.

We present F1 scores of ROUGE [67] in our experimental results. Specifically, we mea-

sure overlaps of unigrams (R-1), bigrams (R-2), and the longest common subsequence

(R-L) between output summaries and target summaries.

128

6.4. Experiments

BARTScore =
m∑
t=1

ωt log p (yt | y<t,x, θ) (6.1)

BARTScore [145] is a model-based evaluation metric assessing the quality of generated

text by formulating it as a text generation task. Built on the pre-trained BART

model [64], BARTScore calculates the log probability of one text sequence y when

given another text sequence x. In Eq. 6.1, θ represents the given pre-trained BART

model’s parameters. Lewis et al. [64] set equal weight ωt for each token.

Compared with general documents, legal documents usually contain many specialized

expressions and domain knowledge. Compared with the BART model trained on

the general domain corpus, the models trained on legal instruments have a better

command of these specialized expressions and domain knowledge. To evaluate the

generated legal text, we design an evaluation metric named legal text score (LTScore).

LTScore employs foundation models (e.g., LED and Vicuna) fine-tuned on our legal

corpus to predict the log probability of each text sequence.

Legal texts usually contain more legal terms compared to texts in the general domain.

These terms must be used accurately in court judgments and their summaries. There-

fore, LTScore assigns greater weight to legal terms in judgment summaries to better

evaluate whether these legal terms are used correctly. LTScore can be calculated

according to the following formulas.

129

Chapter 6. From High-Resource to Low-Resource: Low-Resource Court Judgment
Summarization for Common Law Systems

LTScoreP =
m∑
t=1

ωt log p (candt | cand<t, ref, θ) (6.2a)

LTScoreR =
m∑
t=1

ωt log p (reft | ref<t, cand, θ) (6.2b)

LTScoreF1 =
2× LTScoreP × LTScoreR

LTScoreP + LTScoreR
(6.2c)

ωt =

1, if tokent /∈ gi

1 + eωgi , if tokent∈ gi

(6.2d)

ωgi =
Score(gi)− Score(G)min

Score(G)max − Score(G)min

gi ∈ G (6.2e)

The θ represents the given legal foundation model’s parameters. Eq. 6.2a and Eq.

6.2b calculate the precision and recall of LTScore. In Eq. 6.2c, the F1 score of

LTScore is the arithmetic average of its recall and precision. We adopt the LED and

Vicuna model [6] fine-tuned on our CLSum dataset to calculate log p in Eq. 6.2a and

6.2b. For each sample, we select the phrases appearing in the candidate sequence or

reference sequence from the glossary of legal terms11. We rank these selected phrases

according to their importance scores and then select the set of phrases G with top-

100 importance scores Score(G). In our experiments, we employ these phrases’ tf-idf

scores as their importance scores Score(G). The gi is the i-th phrase in the selected

top-100 phrases set G. Eq. 6.2e calculates the Min-Max normalized importance score

of gi as ωgi . Eq. 6.2d calculates the weight ωt of the t-th token tokent in the candidate

sequence or reference sequence. If the t-th token tokent is a part of the phrase gi, we

add the exponential weight of phrase gi to the t-th token’s weight wt.

LTScore enhances the adaptation to legal texts from two aspects: not only by injecting

legal knowledge through fine-tuning the base model on the legal dataset but also by

adjusting token weights to emphasize the precise use of legal terms.

11www.glossary.doj.gov.hk/

130

6.4. Experiments

Table 6.4: Automatic evaluation results on test sets of CLSum-CA. ”N examples”

denotes using N examples when fine-tuning models.

Method

CLSum-CA

0 examples 10 examples 50 examples 100 examples

R1 / R2 / RL R1 / R2 / RL R1 / R2 / RL R1 / R2 / RL

LexRank 31.87/9.54/13.24 - - -

TextRank 32.03/9.36/13.57 - - -

GPT3.5 50.01/18.58/20.62 - - -

LLaMA7B 39.88/11.90/15.99 46.41/15.95/19.00 45.61/15.80/20.08 47.91/18.10/20.74

LLaMA13B 40.59/12.63/16.19 44.08/16.80/18.30 45.44/15.70/20.22 48.09/17.00/20.45

Vicuna7B 47.32/16.42/20.00 47.94/16.78/20.77 47.02/17.00/21.64 47.62/17.36/22.05

Vicuna13B 47.69/17.17/20.29 48.36/17.50/20.32 49.78/19.29/22.72 50.66/19.22/22.68

LongT5 23.29/6.08/10.23 48.97/12.79/18.10 52.77/19.23/21.15 55.85/19.98/21.48

LEDBase 23.63/6.83/11.58 51.41/16.76/20.75 55.10/19.39/21.36 54.57/19.63/21.32

Legal-LED 37.10/6.97/16.66 51.94/16.65/20.80 54.63/19.10/21.43 56.04/20.33/21.73

LEDLarge 23.87/6.80/10.79 54.37/17.29/20.85 56.27/19.52/21.54 57.23/21.15/22.65

Table 6.5: Automatic evaluation results on test sets of CLSum-HK. ”N examples”

denotes using N examples when fine-tuning models.

Method

CLSum-HK

0 examples 10 examples 50 examples 100 examples

R1 / R2 / RL R1 / R2 / RL R1 / R2 / RL R1 / R2 / RL

LexRank 49.66/23.58/21.41 - - -

TextRank 51.50/24.36/23.65 - - -

GPT3.5 54.28/24.04/25.13 - - -

LLaMA7B 47.60/18.22/20.91 53.15/23.15/24.31 50.66/22.81/25.39 51.71/23.30/26.18

LLaMA13B 48.21/18.90/20.88 52.75/22.95/25.03 51.98/22.76/25.22 52.21/23.99/26.06

Vicuna7B 53.01/23.20/23.94 55.58/25.57/26.26 54.84/25.26/26.50 55.01/25.26/26.42

Vicuna13B 53.08/24.45/24.91 54.14/24.83/26.15 56.04/26.99/27.67 55.07/26.18/26.78

LongT5 46.73/16.63/19.32 51.35/19.38/21.39 55.36/24.81/23.50 56.29/26.67/24.85

LEDBase 47.26/18.16/19.85 53.03/21.36/21.89 53.62/23.52/22.65 55.56/25.47/23.04

Legal-LED 39.43/9.79/17.88 53.26/22.05/22.54 54.23/24.45/23.58 56.10/25.50/23.74

LEDLarge 47.03/17.27/19.97 53.96/22.52/22.42 53.61/22.93/22.23 56.43/26.49/24.92

131

Chapter 6. From High-Resource to Low-Resource: Low-Resource Court Judgment
Summarization for Common Law Systems

6.5 Results and Discussion

In this section, we exhibit our experimental results, and then we analyze and discuss

these results. We carry out automatic evaluation and human evaluation for assessing

the summaries generated by various summarization models. Furthermore, we carry

out comprehensive comparative experiments to find essential model components and

settings that are capable of improving summarization performance.

6.5.1 Summarization Results

We employ multiple metrics to assess the quality of the output summaries in the

automatic evaluation. Specifically, we adopt the F1 score of ROUGE [67]12, and some

model-based metrics, including BARTScoreF1 and our proposed LTScoreF1. We fine-

tune summarization models on training sets of increasing size (from zero examples to

hundreds of examples). Tables 6.4, 6.5, 6.6, and 6.7 report ROUGE scores of final

summaries.

Under the zero-shot setting, LLMs (GPT-3.5-turbo, LLaMA, and Vicuna) are com-

petitive on all subsets of our CLSum dataset. The zero-shot performance of some

pre-trained sequence-to-sequence models with hundreds of millions of parameters

(LongT5, LED, and Legal-LED) is not as good as that of unsupervised extractive

methods (LexRank and TextRank). As for the few-shot setting, even fine-tuning

on only a few examples can bring obvious performance gains for these abstractive

summarization methods, which validates the necessity of fine-tuning on downstream

tasks. Fig. 6.3, Fig. 6.4, Fig. 6.5, and Fig. 6.6 illustrate the impact of training set

size on the ROUGE-2 scores, BARTScore, and LTScore of the generated summaries.

In our human evaluation, we compare the outputs of summarization models based

on their informativeness (i.e., cover salient content of input documents), fluency

12github.com/bheinzerling/pyrouge

132

6.5. Results and Discussion

0 shot 10 shot 50 shot 100 shot
Training Sample Num

2

6

10

14

18

22

Ro
ug

e-
2 LLAMA-7B

LLAMA-13B
Vicuna-7B
Vicuna-13B
LongT5
LED-Base
Legal-LED
LED-Large

(a) CLSum-CA

0 shot 10 shot 50 shot 100 shot
Training Sample Num

8

12

16

20

24

28

Ro
ug

e-
2 LLAMA-7B

LLAMA-13B
Vicuna-7B
Vicuna-13B
LongT5
LED-Base
Legal-LED
LED-Large

(b) CLSum-HK

0 shot 10 shot 50 shot 100 shot 500 shot
Training Sample Num

8

12

16

20

24

28

32

Ro
ug

e-
2 LLAMA-7B

LLAMA-13B
Vicuna-7B
Vicuna-13B
LongT5
LED-Base
Legal-LED
LED-Large

(c) CLSum-UK

0 shot 10 shot 50 shot 100 shot 500 shot
Training Sample Num

10

14

18

22

26

30

34

Ro
ug

e-
2 LLAMA-7B

LLAMA-13B
Vicuna-7B
Vicuna-13B
LongT5
LED-Base
Legal-LED
LED-Large

(d) CLSum-AUS

Figure 6.3: Automatic evaluation result (ROUGE-2 Score) on CLSum.

133

Chapter 6. From High-Resource to Low-Resource: Low-Resource Court Judgment
Summarization for Common Law Systems

0 shot 10 shot 50 shot 100 shot
Training Sample Num

4.0

3.6

3.2

2.8

2.4

BA
RT

Sc
or

e

LLAMA-7B
LLAMA-13B
Vicuna-7B
Vicuna-13B
LongT5
LED-Base
Legal-LED
LED-Large

(a) CLSum-CA

0 shot 10 shot 50 shot 100 shot
Training Sample Num

3.6

3.4

3.2

3.0

2.8

2.6

BA
RT

Sc
or

e

LLAMA-7B
LLAMA-13B
Vicuna-7B
Vicuna-13B
LongT5
LED-Base
Legal-LED
LED-Large

(b) CLSum-HK

0 shot 10 shot 50 shot 100 shot 500 shot
Training Sample Num

4.0

3.6

3.2

2.8

BA
RT

Sc
or

e

LLAMA-7B
LLAMA-13B
Vicuna-7B
Vicuna-13B
LongT5
LED-Base
Legal-LED
LED-Large

(c) CLSum-UK

0 shot 10 shot 50 shot 100 shot 500 shot
Training Sample Num

3.4

3.2

3.0

2.8

2.6

2.4

BA
RT

Sc
or

e

LLAMA-7B
LLAMA-13B
Vicuna-7B
Vicuna-13B
LongT5
LED-Base
Legal-LED
LED-Large

(d) CLSum-AUS

Figure 6.4: Automatic evaluation result (BARTScore) on CLSum.

134

6.5. Results and Discussion

0 shot 10 shot 50 shot 100 shot
Training Sample Num

5.0

4.6

4.2

3.8

3.4

3.0

2.6

LT
Sc

or
e LLAMA-7B

LLAMA-13B
Vicuna-7B
Vicuna-13B
LongT5
LED-Base
Legal-LED
LED-Large

(a) CLSum-CA

0 shot 10 shot 50 shot 100 shot
Training Sample Num

5.0

4.6

4.2

3.8

3.4

3.0

LT
Sc

or
e LLAMA-7B

LLAMA-13B
Vicuna-7B
Vicuna-13B
LongT5
LED-Base
Legal-LED
LED-Large

(b) CLSum-HK

0 shot 10 shot 50 shot 100 shot 500 shot
Training Sample Num

5.0

4.6

4.2

3.8

3.4

3.0

LT
Sc

or
e LLAMA-7B

LLAMA-13B
Vicuna-7B
Vicuna-13B
LongT5
LED-Base
Legal-LED
LED-Large

(c) CLSum-UK

0 shot 10 shot 50 shot 100 shot 500 shot
Training Sample Num

4.8

4.4

4.0

3.6

3.2

2.8

LT
Sc

or
e LLAMA-7B

LLAMA-13B
Vicuna-7B
Vicuna-13B
LongT5
LED-Base
Legal-LED
LED-Large

(d) CLSum-AUS

Figure 6.5: Automatic evaluation result (LTScore-LED) on CLSum.

135

Chapter 6. From High-Resource to Low-Resource: Low-Resource Court Judgment
Summarization for Common Law Systems

0 shot 10 shot 50 shot 100 shot
Training Sample Num

2.6

2.2

1.8

1.4

1.0

LT
Sc

or
e LLAMA-7B

LLAMA-13B
Vicuna-7B
Vicuna-13B
LongT5
LED-Base
Legal-LED
LED-Large

(a) CLSum-CA

0 shot 10 shot 50 shot 100 shot
Training Sample Num

2.2

1.8

1.4

1.0

LT
Sc

or
e LLAMA-7B

LLAMA-13B
Vicuna-7B
Vicuna-13B
LongT5
LED-Base
Legal-LED
LED-Large

(b) CLSum-HK

0 shot 10 shot 50 shot 100 shot 500 shot
Training Sample Num

2.4

2.0

1.6

1.2

LT
Sc

or
e LLAMA-7B

LLAMA-13B
Vicuna-7B
Vicuna-13B
LongT5
LED-Base
Legal-LED
LED-Large

(c) CLSum-UK

0 shot 10 shot 50 shot 100 shot 500 shot
Training Sample Num

1.6

1.4

1.2

1.0

0.8

LT
Sc

or
e LLAMA-7B

LLAMA-13B
Vicuna-7B
Vicuna-13B
LongT5
LED-Base
Legal-LED
LED-Large

(d) CLSum-AUS

Figure 6.6: Automatic evaluation result (LTScore-Vicuna) on CLSum.

136

6.5. Results and Discussion

Table 6.6: Automatic evaluation results on test sets of CLSum-UK. ”N examples”

denotes using N examples when fine-tuning models.

Method

CLSum-UK

0 examples 10 examples 50 examples 100 examples 500 examples

R1 / R2 / RL R1 / R2 / RL R1 / R2 / RL R1 / R2 / RL R1 / R2 / RL

LexRank 60.28/26.86/22.84 - - - -

TextRank 60.62/27.22/25.39 - - - -

GPT3.5 57.05/25.51/24.10 - - - -

LLaMA7B 54.72/22.52/22.59 55.12/26.29/23.57 59.68/26.54/25.23 59.77/27.02/25.72 60.52/27.77/26.09

LLaMA13B 52.80/21.87/22.23 60.70/27.38/25.47 59.61/26.37/25.51 60.83/28.09/26.26 61.26/28.54/26.70

Vicuna7B 57.29/27.38/24.40 58.80/26.87/25.40 59.77/27.26/25.92 60.05/26.98/25.50 61.74/28.58/26.68

Vicuna13B 57.86/28.69/25.46 60.00/28.07/26.02 60.91/28.18/26.11 60.42/28.01/26.44 61.05/28.65/26.46

LongT5 52.32/19.68/20.40 55.47/23.24/22.38 57.80/25.81/24.13 58.07/25.99/24.48 58.51/26.73/25.89

LEDBase 56.08/21.52/21.43 59.61/24.19/22.00 60.23/26.59/23.48 60.28/27.64/24.37 62.06/29.40/25.30

Legal-LED 37.46/10.07/17.05 60.62/25.56/23.45 60.71/26.55/23.78 61.52/27.59/24.49 61.62/28.97/25.67

LEDLarge 49.02/17.91/20.85 59.33/24.28/22.55 60.78/26.79/24.05 61.42/27.78/24.58 61.78/28.90/26.28

(i.e., summary content is well organized and uses grammar appropriately), and non-

redundancy (i.e., less repetition in output summary). We selected 30 samples at

random from each CLSum subset’s test set. For each sample, three annotators as-

sess and compare the anonymously presented output summaries from two models.

Additionally, we evaluate the agreement among annotators using Fleiss’ kappa [39].

Table 6.8 exhibits our human evaluation results. Three models fine-tuned on each

entire subset are compared here. The CLSum-CA and CLSum-HK subsets have very

few samples in their training sets. On these two subsets, the Vicuna models per-

form worse than the LED model in terms of informativeness. Tables 6.1 and 6.2

present that target summaries’ average length is shorter in the CLSum-CA subset.

The shorter target summaries in the CLSum-CA comprise more new n-grams that are

absent in the input and exhibit lower coverage and density of extractive fragments.

Generating these more abstractive summaries can be difficult, particularly when the

summarization model is fine-tuned on a very small training set. We discover that Vi-

cuna models trained with the divide-and-conquer method on the CLSum-CA subset

137

Chapter 6. From High-Resource to Low-Resource: Low-Resource Court Judgment
Summarization for Common Law Systems

Table 6.7: Automatic evaluation results on test sets of CLSum-AUS. ”N examples”

denotes using N examples when fine-tuning models.

Method

CLSum-AUS

0 examples 10 examples 50 examples 100 examples 500 examples

R1 / R2 / RL R1 / R2 / RL R1 / R2 / RL R1 / R2 / RL R1 / R2 / RL

LexRank 53.57/24.46/24.24 - - - -

TextRank 54.31/24.51/24.61 - - - -

GPT3.5 54.10/25.51/25.11 - - - -

LLaMA7B 40.55/15.75/18.88 58.07/27.92/28.29 58.11/29.28/30.22 57.08/29.32/30.53 57.77/30.69/30.81

LLaMA13B 43.41/17.44/19.74 57.73/27.61/27.85 57.37/29.49/30.67 59.19/30.96/31.05 59.32/31.60/32.16

Vicuna7B 57.27/27.53/27.03 57.27/29.65/29.20 56.80/29.42/29.49 57.27/30.01/30.40 57.66/30.13/30.47

Vicuna13B 57.33/27.36/26.75 55.03/27.45/27.27 55.70/28.58/29.52 56.41/29.12/29.95 57.73/30.41/30.95

LongT5 43.43/16.93/19.88 57.46/25.62/26.81 60.02/29.24/28.14 60.58/30.31/29.18 61.47/31.21/30.40

LEDBase 44.84/15.73/21.25 57.18/24.73/26.04 59.03/27.57/27.46 59.68/29.22/28.24 61.91/31.60/30.21

Legal-LED 42.28/11.08/19.78 57.97/25.72/26.63 59.84/28.85/28.16 60.00/29.37/28.52 61.86/31.74/30.24

LEDLarge 43.64/15.57/20.40 56.73/24.25/26.41 59.29/27.81/28.42 61.19/29.90/29.22 62.77/32.07/31.05

generate more redundant and less informative summary content than the LED model.

When there is a lack of training samples, the semantics of the generated summaries for

different segments become relatively concentrated and exhibit more repeated content.

Tables 6.1 and 6.2 also exhibit that the average length of target summaries is longer

in the CLSum-HK subset. These longer target summaries’ content is more diverse

and less abstractive. When employing divide-and-conquer, semantically dispersed

and longer target summaries for each segment will guide the summarization model to

focus on different content when summarizing different segments. The lack of training

samples in the CLSum-HK subset mainly affects informativeness and has less impact

on the redundancy of generated summaries. On the CLSum-UK and CLSum-AUS

subsets, the Vicuna models can outperform the LED model in informativeness, while

these models are comparable regarding fluency and non-redundancy. These results

verify that the training set size can affect the model acquiring the capacity to ef-

fectively summarize key information during fine-tuning, consequently influencing the

informativeness of output summaries.

138

6.5. Results and Discussion

R1
R2
RL

BARTScore
LTScore-LED

LTScore-Vicuna

CLSum-CA
R1
R2
RL

BARTScore
LTScore-LED

LTScore-Vicuna

CLSum-HK

R1 R2 RL
BA

RT
Sc

or
e

LT
Sc

or
e-

LE
D

LT
Sc

or
e-

Vi
cu

na
R1
R2
RL

BARTScore
LTScore-LED

LTScore-Vicuna

CLSum-UK

R1 R2 RL
BA

RT
Sc

or
e

LT
Sc

or
e-

LE
D

LT
Sc

or
e-

Vi
cu

na

R1
R2
RL

BARTScore
LTScore-LED

LTScore-Vicuna

CLSum-AUS

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.7: Correlation of automatic evaluation metrics.

Fig. 6.7 depicts the Pearson correlation among various evaluation metrics. The

correlation among ROUGE scores on different N-grams is high. BARTScore and

LTScore have a lower correlation with ROUGE scores. Introducing BARTScore and

LTScore as supplements facilitates a more comprehensive evaluation of the generated

results.

6.5.2 Discussion on the training set size

For models trained on the same training set, the larger models’ few-shot performance

is not always better than that of the smaller models. With the increase in the num-

139

Chapter 6. From High-Resource to Low-Resource: Low-Resource Court Judgment
Summarization for Common Law Systems

ber of training samples, the performance of LLMs (LLaMA and Vicuna) improves

slower than these smaller pre-trained sequence-to-sequence models (LongT5, LED,

and Legal-LED). This may be caused by two reasons: 1) When adopting the QLoRA

[31] technology, the number of trainable parameters is smaller than the entire model’s

parameter number. The small number of trainable parameters limits the new knowl-

edge that the model can learn during fine-tuning; 2) Compared with the training data

utilized in the pre-training stage and supervised fine-tuning (SFT) stage, the amount

of labeled samples used in our fine-tuning process is relatively small, thereby having

limited impact on model performance.

Finally, the performance of pre-trained models with hundreds of millions of parame-

ters (LongT5, LED, and Legal-LED) can exceed that of a large language model with

billions of parameters (LLaMA and Vicuna). Training smaller models with more la-

beled data can achieve comparable performance, which is critical to reducing the cost

of deploying models in real-world applications.

6.5.3 Discussion on SFT and RLHF

The Vicuna models [17] fine-tuned with user-shared ChatGPT conversations largely

surpass the original LLaMA models [129] in the zero-shot setting. Regarding the

few-shot performance, SFT can assist LLMs in achieving commendable results by

fine-tuning on a small set of labeled samples. Our experiment results verify the

effectiveness of SFT.

We discover that GPT-3.5-turbo 13 fine-tuned with RLHF [92] has difficulty in gener-

ating case statements. The RLHF process trains the model to avoid generating illegal

content. However, court judgment documents usually require an accurate statement

of the parties’ illegal facts, which are crucial bases for the judgment. RLHF used

on general domains is not suitable for legal text generation. It requires a specially

13We adopt the GPT-3.5-turbo-0301 API from Azure Cloud

140

6.5. Results and Discussion

Table 6.8: Human evaluation results on CLSum dataset. “win” denotes that the

current model’s output summary surpasses that of LEDLarge model in one dimension.

Vicuna13B Vicuna7B

win lose tie kappa win lose tie kappa

CLSum-CA

Informativeness 23.3% 31.1% 45.6% 0.671 21.1% 26.7% 52.2% 0.618

Fluency 18.9% 21.1% 60.0% 0.623 17.8% 18.9% 63.3% 0.603

Non-Redundancy 27.8% 36.7% 35.6% 0.614 28.9% 33.3% 37.8% 0.648

CLSum-HK

Informativeness 24.4% 28.9% 46.7% 0.635 26.7% 27.8% 45.6% 0.638

Fluency 20.0% 22.2% 57.8% 0.634 21.1% 24.4% 54.4% 0.629

Non-Redundancy 17.8% 18.9% 63.3% 0.624 18.9% 20.0% 61.1% 0.677

CLSum-UK

Informativeness 37.8% 30.0% 32.2% 0.648 35.6% 31.1% 33.3% 0.649

Fluency 28.9% 25.6% 45.6% 0.655 26.7% 24.4% 48.9% 0.612

Non-Redundancy 17.7% 20.0% 62.2% 0.672 15.6% 16.7% 67.8% 0.636

CLSum-AUS

Informativeness 30.0% 28.9% 41.1% 0.662 28.9% 27.8% 43.3% 0.625

Fluency 26.7% 24.4% 48.9% 0.647 23.3% 22.2% 54.4% 0.629

Non-Redundancy 25.6% 26.7% 47.8% 0.668 20.0% 22.2% 57.8% 0.615

designed RLHF process to adequately cater to the complex requirements in the legal

field. Court judgment summarization models’ outputs should accurately and objec-

tively reflect the cases’ facts and the court’s decisions. There should be no factual or

logical errors. Parties from different groups should be treated fairly.

141

Chapter 6. From High-Resource to Low-Resource: Low-Resource Court Judgment
Summarization for Common Law Systems

Table 6.9: Evaluation results of summarization models trained on augmented

datasets.

Method

Full

Train Set
Rephrasing

Constrained

Rephrasing

Back

Translation

R1 / R2 / RL R1 / R2 / RL R1 / R2 / RL R1 / R2 / RL

CLSum-CA

LLaMA-7B 47.91/18.10/20.74 46.41/16.79/21.24 52.17/19.46/22.39 39.91/12.06/21.18

LLaMA-13B 48.09/17.00/20.45 45.90/17.09/21.56 51.02/19.41/22.70 47.21/17.30/21.94

Vicuna-7B 47.62/17.36/22.05 47.92/17.47/23.10 52.45/19.65/22.80 43.22/14.92/21.48

Vicuna-13B 50.66/19.22/22.68 49.93/18.86/23.06 51.02/18.49/21.79 49.39/18.70/22.36

LongT5 55.85/19.98/21.48 55.01/19.88/21.73 55.31/20.18/21.84 55.62/19.93/21.70

LED-Base 54.57/19.63/21.32 53.28/19.57/21.39 54.94/20.08/22.10 52.75/19.29/20.80

Legal-LED 56.04/20.33/21.73 53.95/19.95/21.63 54.95/20.64/22.13 55.09/20.29/21.56

LED-Large 57.23/21.15/22.65 56.64/21.17/22.17 56.62/21.72/22.81 56.50/21.00/22.28

Average Improvement % -2.14/-1.32/1.65 2.82/4.82/3.29 -4.62/-6.41/0.20

CLSum-HK

LLaMA-7B 51.71/23.30/26.18 52.14/23.66/25.72 53.39/24.04/25.76 52.40/23.58/24.83

LLaMA-13B 52.21/23.99/26.06 53.15/24.76/26.24 53.53/24.67/26.83 53.06/23.84/26.06

Vicuna-7B 55.01/25.26/26.42 54.32/25.32/26.24 54.71/25.27/26.15 54.64/24.94/26.07

Vicuna-13B 55.07/26.18/26.78 55.30/25.96/26.98 56.31/26.45/27.02 54.87/25.14/26.17

LongT5 56.29/26.67/24.85 55.92/26.57/25.14 55.80/26.39/25.21 55.40/26.10/24.43

LED-Base 55.56/25.47/23.04 53.98/24.66/23.36 55.89/24.72/24.03 55.05/25.51/24.19

Legal-LED 56.10/25.50/23.74 55.46/25.82/24.20 56.12/25.36/24.85 55.88/26.10/24.13

LED-Large 56.43/26.49/24.92 56.69/27.04/25.37 57.15/26.44/25.52 55.75/25.85/24.41

Average Improvement % -0.30/0.49/0.66 1.06/0.29/1.76 -0.27/-0.84/-0.73

CLSum-UK

LLaMA-7B 60.68/27.65/26.04 60.83/28.29/26.68 60.47/27.14/25.90 60.37/27.37/26.05

LLaMA-13B 61.13/28.49/26.52 60.81/28.21/26.29 60.69/28.44/26.75 61.27/28.99/27.12

Vicuna-7B 61.42/29.04/26.83 61.58/29.28/27.10 61.63/29.46/27.30 61.53/28.78/26.77

Vicuna-13B 61.47/29.15/27.07 61.48/29.37/27.38 61.27/28.71/27.16 61.44/29.24/27.00

LongT5 59.62/28.08/26.64 59.76/27.81/26.22 60.27/28.62/26.86 60.54/29.23/26.93

LED-Base 62.18/28.92/25.91 62.63/29.52/26.58 62.41/30.81/27.41 61.61/28.49/26.02

Legal-LED 62.59/29.37/25.93 62.43/29.51/26.63 62.43/30.68/27.57 62.05/28.67/25.94

LED-Large 61.55/29.09/26.27 61.38/28.80/26.64 62.50/31.16/28.17 61.98/29.41/26.81

Average Improvement % 0.05/0.44/1.11 0.21/2.24/2.82 0.04/0.19/0.68

CLSum-AUS

LLaMA-7B 56.24/28.56/28.71 55.87/28.92/29.38 57.27/26.07/26.39 56.78/28.93/29.29

LLaMA-13B 58.76/31.04/30.64 58.69/31.03/30.70 57.81/30.02/29.74 58.25/31.10/30.73

Vicuna-7B 57.95/30.46/30.77 58.18/27.92/27.64 57.84/30.10/30.70 57.17/29.88/30.33

Vicuna-13B 58.17/30.51/30.86 58.10/30.71/30.98 57.17/30.30/31.27 58.57/31.22/30.96

LongT5 61.99/31.82/31.55 60.90/30.51/30.31 61.57/31.52/31.18 60.89/30.77/30.74

LED-Base 62.65/32.38/30.92 61.75/31.63/30.52 63.14/35.19/33.32 62.40/32.14/30.84

Legal-LED 62.42/32.11/30.54 61.61/31.70/30.47 62.77/34.44/32.61 62.27/31.88/30.78

LED-Large 62.64/32.78/31.57 62.44/32.38/31.14 62.72/32.66/31.27 63.07/33.01/31.47

Average Improvement % -0.66/-1.92/-1.76 -0.11/0.09/0.31 -0.29/-0.27/-0.14

142

6.5. Results and Discussion

Table 6.10: Effect of the amount of trainable parameters in the QLoRA adapter.

Dataset Method
Rank=8 Rank=16 Rank=32

R1 / R2 / RL R1 / R2 / RL R1 / R2 / RL

CLSum-CA

LLaMA-7B 47.91/18.10/20.74 40.35/13.40/20.93 42.04/13.09/21.49

LLaMA-13B 48.09/17.00/20.45 48.54/14.42/19.16 46.86/16.50/20.91

Vicuna-7B 47.62/17.36/22.05 48.26/17.47/22.49 46.22/16.13/22.39

Vicuna-13B 50.66/19.22/22.68 49.66/19.04/22.29 50.44/19.14/22.84

CLSum-HK

LLaMA-7B 51.71/23.30/26.18 53.73/24.31/26.32 53.64/24.25/26.16

LLaMA-13B 52.21/23.99/26.06 54.13/25.31/26.61 54.89/25.83/26.90

Vicuna-7B 55.01/25.26/26.42 55.02/25.20/26.40 55.13/25.82/26.58

Vicuna-13B 55.07/26.18/26.78 55.82/27.25/27.54 55.82/26.95/27.00

CLSum-UK

LLaMA-7B 60.68/27.65/26.04 61.04/27.88/26.05 60.55/27.96/26.21

LLaMA-13B 61.13/28.49/26.52 60.75/28.19/26.34 60.52/28.14/26.03

Vicuna-7B 61.42/29.04/26.83 61.45/28.44/26.56 61.19/28.80/26.47

Vicuna-13B 61.47/29.15/27.07 61.30/28.42/26.71 60.93/28.66/26.81

CLSum-AUS

LLaMA-7B 56.24/28.56/28.71 56.21/28.61/28.95 56.32/28.55/28.82

LLaMA-13B 58.76/31.04/30.64 59.15/31.82/31.81 58.62/31.35/31.60

Vicuna-7B 57.95/30.46/30.77 56.98/30.14/30.35 57.45/30.34/31.00

Vicuna-13B 58.17/30.51/30.86 57.19/30.09/30.94 57.88/30.56/30.94

6.5.4 Discussion on data augmentation methods

The performance of supervised models trained from scratch is typically constrained

by the training set size. As introduced in subsection 6.3.1, we adopt and compare

different data augmentation methods, including rephrasing, knowledge-constrained

rephrasing, and back translation, to expand the training sets and reduce overfitting

to the limited training samples. In our experiments, we doubled the training set size

using each data augmentation method. Table 6.9 shows the impact of three data

augmentation methods on summarization results. These data augmentation methods

143

Chapter 6. From High-Resource to Low-Resource: Low-Resource Court Judgment
Summarization for Common Law Systems

Table 6.11: Details of summarization models.

Model Architecture Params
Enc/Dec

Layers
Heads dmodel dff Input Len

LEDbase Enc-Dec 161.8M 6 12 768 3,072 16,384

LEDlarge Enc-Dec 459.8M 12 16 1,024 4,096 16,384

Legal-LED Enc-Dec 161.8M 6 12 768 3,072 16,384

LongT5base Enc-Dec 247.6M 12 12 768 2,048 16,384

LLaMA7B Dec Only 6.7B 32 32 4,096 11,008 2,048

LLaMA13B Dec Only 13.0B 40 40 5,120 13,824 2,048

Vicuna7B Dec Only 6.7B 32 32 4,096 11,008 2,048

Vicuna13B Dec Only 13.0B 40 40 5,120 13,824 2,048

bring different performance gains to summarization models trained on different sub-

sets of CLSum. Experimental results verify that our proposed knowledge-constrained

rephrasing method is helpful in the absence of labeled data. As shown in Table 6.1,

CLSum-CA has the smallest training set. Data augmentation methods bring the

most significant performance gain to summarization models trained on this subset.

CLSum-AUS has the largest training set. Data augmentation methods bring marginal

performance gain to models trained on that subset. This verifies that our data aug-

mentation method primarily mitigates the impact of insufficient labeled data. The

original rephrasing method and back translation method can benefit the ROUGE-

L scores, but they often yield negative effects on ROUGE-1 and ROUGE-2 scores.

Without the constraints of legal knowledge, there may be many errors in the data

synthesized by data augmentation, which can adversely affect the summarization per-

formance. Adding constraints in the rephrasing process can ensure the accurate use

of legal terms in the synthesized data. This helps train models to accurately use

relevant terms when generating judgment summaries.

144

6.6. Chapter Summary

6.5.5 Discussion on adapters’ trainable parameters

The adapter is a small set of trainable parameters added to the large language models.

We use the Low-rank Adapter (LoRA) [31, 55] to reduce the consumption of GPU

memory when fine-tuning LLaMA and Vicuna models. As shown in Eq. 6.3, LoRA

supplements the original linear projection h = W0x with an additional factorized

projection. During training, W0 ∈ Rd×k remain unchanged, whereas A ∈ Rr×k and

B ∈ Rd×r, which have a rank r ≪ min(d, k), comprise trainable parameters.

h = W0x + ∆Wx = W0x + BAx (6.3)

Table 6.10 shows the impact of LoRA’s rank r on summarization results. The number

of trainable parameters in the adapters expands as the rank r increases. Results show

that increasing the LoRA’s rank r does not necessarily improve the generated sum-

maries. The primary constraint on the model performance stems from the inadequate

quantity of training samples.

6.6 Chapter Summary

In this chapter, we introduce CLSum, a large-scale summarization dataset covering

court judgments from four common law jurisdictions, including the United Kingdom,

Canada, Australia, and Hong Kong SAR. Besides, we propose a foundation model-

based solution for the low-resource court judgment summarization. We present a

series of methods to deal with three challenges: 1) identifying the salient information

scattered in the long document, 2) training supervised models with very limited la-

beled data, and 3) improving models’ efficiency in processing long inputs and outputs.

Additionally, we propose an evaluation metric named LTScore to assess the quality

of the generated legal text. We benchmark advanced extractive and abstractive sum-

marizers as baselines on our CLSum dataset. Our experimental results verify that the

145

Chapter 6. From High-Resource to Low-Resource: Low-Resource Court Judgment
Summarization for Common Law Systems

foundation model-based summarization methods can perform well in the few-shot or

zero-shot settings.

146

Chapter 7

Conclusions and Future Directions

7.1 Conclusions

In this thesis, I study neural abstractive summarization for long documents. When

generalizing the summarization research from short documents to long documents,

various new challenges arise. Firstly, the scarcity of large-scale datasets limits the

long document summarization research. The labeled dataset is necessary for training

and evaluating summarization methods. Secondly, it is difficult to completely identify

and encode multi-granularity salient content scattered in a large amount of input

content. Thirdly, integrating multi-document and multimodal salient content into

the generated summaries is also challenging. Additionally, evaluating the quality

of generated summaries from different aspects is also an important issue. Last but

not least, improving the efficiency of model training and inference is challenging,

especially when summarizing very long documents. To tackle the above challenges,

I built multiple large-scale datasets, novel summarization methods, and evaluation

metrics.

Specifically, I review existing work on neural abstractive summarization in Chapter

2. I first briefly introduce the taxonomies of existing document summarization work.

147

Chapter 7. Conclusions and Future Directions

Then, I illustrate the development of neural abstractive summarization methods,

including the RNN-based, transformer-based (trained from scratch), and pre-trained

foundation model-based methods. I also introduce existing document summarization

datasets.

In Chapter 3, I propose the key phrase aware transformer (KPAT), a lightweight

model achieving great performance on multiple abstractive summarization tasks. This

work focuses on enhancing the transformer encoder to completely encode the key

phrases in input documents. I present the highlighting mechanism incorporating the

prior knowledge of key phrases when calculating attention weights for tokens within

key phrases.

In Chapter 4, I propose a new task named long text and multi-table summarization,

which generalizes the long document summarization from unimodal (text) summa-

rization to multimodal. Previous document summarization datasets and methods are

usually restricted to summarizing the text content and excluding tables and figures

from the input. In financial report documents, the key information can be distributed

across both textual and non-textual content. The absence of tabular data can restrict

the informativeness of generated summaries, particularly when summaries necessitate

the quantitative descriptions of vital metrics within tables. Existing summarization

methods and datasets fail to meet the demands of summarizing extensive textual

and tabular content within financial reports. To deal with the scarcity of available

datasets, this work builts FINDSum, the first large-scale dataset for long text and

multi-table summarization. Besides, this work presents four types of summarization

methods to jointly consider the text and table content when summarizing reports.

Additionally, this work designs a set of evaluation metrics assessing the utilization of

numerical information within the generated summaries.

In Chapter 5, I study how to summarize numerous academic papers about the same

topic into a structured summary. Existing multi-document summarization (MDS)

work usually focuses on producing an unstructured summary that encompasses only

148

7.1. Conclusions

a limited number of input documents. Meanwhile, previous structured summariza-

tion work focuses on summarizing a single document into a multi-aspect summary.

Existing methods and datasets fail to fulfill the demands of summarizing numerous

academic literature. This work builts BigSurvey, the first large-scale dataset for gener-

ating comprehensive summaries of numerous academic papers on each topic. Besides,

this work proposes the category-based alignment and sparse transformer (CAST) to

effectively arrange the diverse content from a large number of input documents while

simultaneously ensuring efficiency when processing long inputs.

Finally, I illustrate our work on low-resource court judgment summarization. Judges

in common law systems need to find similar precedents in all common law juris-

dictions and refer to the reasoning in previous decisions. There exist hundreds of

thousands of reported cases in common law jurisdictions, and the number of cases is

still increasing. It can be challenging for legal practitioners to read through abundant

cases’ judgment documents. This work aims to let the computer generate high-quality

court judgment summaries, which can help readers quickly browse key information

in long judgment documents. To deal with the scarcity of available datasets, this

work builts CLSum, the first large-scale dataset for summarizing common law court

judgment documents from multiple jurisdictions. Like other domain-specific tasks,

court judgment summarization usually suffers from the shortage of labeled samples.

To address this challenge, this work proposes a foundation model-based solution for

the low-resource court judgment summarization. To the best of our knowledge, this

work is the first to employ large language models for data augmentation, summary

generation, and evaluation in court judgment summarization. Additionally, this work

designs an evaluation metric named LTScore to assess the quality of the generated

legal text.

149

Chapter 7. Conclusions and Future Directions

7.2 Future Directions

Although this thesis presents several novel datasets, methods, and evaluation met-

rics for long document summarization, there are still several open problems to be

addressed in the future. I list the open problems and future directions as follows:

• Controllability of abstractive summarization models: Ensuring controllability

of text generation is a pivotal and fundamental research problem in the natural

language generation [148]. It requires text generation models to reliably gener-

ate text that conforms to users’ specific requirements or constraints. Currently,

all mainstream abstractive summarization models still have controllability prob-

lems. Although the RLHF technique [94] improves the alignment between user

instructions and model outputs [124], the models trained with RLHF (e.g.,

ChatGPT) still struggle to follow some simple constraints, like the length of the

generated text, not to mention more complex and multifaceted user require-

ments. There is still a lot of work to be done to improve the controllability of

the abstractive summarization models.

• Generalizing from monolingual to multilingual summarization: Current long

document summarization research mainly focuses on monolingual documents.

However, valuable content about an object may come from documents in dif-

ferent languages. In the context of globalization, generalizing long document

summarization research from monolingual to multilingual is very valuable. It

can be of great help to many transnational studies and cooperation.

• Generalizing from unimodal to multimodal summarization: Many long doc-

uments contain multimodal content. Current document summarization work

usually filters out non-textual content. Missing non-textual content can limit

produced summaries’ informativeness, especially when some critical information

only appears in non-textual content. Multimodal long document summariza-

150

7.2. Future Directions

tion would be a promising research direction. There is still a lot of work to be

done to efficiently integrate multimodal content into a text summary.

• Generalizing from closed-domain to open-domain summarization: Previous sum-

marization research usually focuses on closed domains. Commonly used sum-

marization datasets are usually collected from a single or limited source. In

some real-world applications, people need to summarize numerous documents

from diverse sources. These documents can follow diverse formats and writ-

ing styles. Adapting summarization models to various documents in the open

domain deserves further study.

• Better evaluation metrics for generated summaries: Many studies found that the

results of existing commonly used evaluation metrics (e.g., ROUGE [67]) are not

always consistent with human preferences [120, 124]. Designing more effective

automatic evaluation metrics is a valuable research direction. When the quality

of model-generated text is close to that of human writing, further research

on the annotation process is needed to ensure human evaluation’s objectivity,

accuracy, and consistency.

• More efficient neural models for processing long inputs and outputs: Neu-

ral summarization models’ training and inference efficiency is very important

when deploying them to real-world applications. Adopting neural summariza-

tion models with lower complexity together with more efficient training tech-

niques can substantially reduce cost while maintaining comparable performance.

Lighter and more effective summarization models are worth further exploration.

151

References

[1] Waleed Ammar, Dirk Groeneveld, et al. Construction of the literature graph

in semantic scholar. In NAACL-HLT, 2018.

[2] Shir Aviv-Reuven and Ariel Rosenfeld. Publication patterns’ changes due to

the covid-19 pandemic: A longitudinal and short-term scientometric analysis.

Scientometrics, pages 1–24, 2021.

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine

translation by jointly learning to align and translate. CoRR, abs/1409.0473,

2015.

[5] Ahsaas Bajaj, Pavitra Dangati, Kalpesh Krishna, Pradhiksha Ashok Kumar,

Rheeya Uppaal, Bradford Windsor, Eliot Brenner, Dominic Dotterrer, Rajarshi

Das, and Andrew McCallum. Long document summarization in a low resource

setting using pretrained language models. In Proc. ACL-SRW, pages 71–80,

2021.

[6] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-

document transformer. arXiv preprint arXiv:2004.05150, 2020.

[7] Ramesh Chandra Belwal, Sawan Rai, and Atul Gupta. Text summarization

152

References

using topic-based vector space model and semantic measure. Information Pro-

cessing & Management, 58(3):102536, 2021.

[8] Ahmet Benzer, Ayşegül Sefer, Zeyneb Ören, and Sümeyye Konuk. A student-

focused study: Strategy of text summary writing and assessment rubric. Edu-

cation & Science/Egitim ve Bilim, 41(186), 2016.

[9] Paheli Bhattacharya, Kaustubh Hiware, Subham Rajgaria, Nilay Pochhi, Kri-

pabandhu Ghosh, and Saptarshi Ghosh. A comparative study of summariza-

tion algorithms applied to legal case judgments. In Advances in Information

Retrieval: 41st European Conference on IR Research, ECIR 2019, Cologne,

Germany, April 14–18, 2019, Proceedings, Part I 41, pages 413–428. Springer,

2019.

[10] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with

Python: analyzing text with the natural language toolkit. ” O’Reilly Media,

Inc.”, 2009.

[11] Adrien Bougouin, Florian Boudin, and Béatrice Daille. Topicrank: Graph-

based topic ranking for keyphrase extraction. In International joint conference

on natural language processing (IJCNLP), pages 543–551, 2013.

[12] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web

search engine. Computer networks and ISDN systems, 30(1-7):107–117, 1998.

[13] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, et al. Language models are few-shot learners. Advances in neural infor-

mation processing systems, 33:1877–1901, 2020.

[14] Isabel Cachola, Kyle Lo, Arman Cohan, and Daniel S Weld. Tldr: Extreme

summarization of scientific documents. In Proceedings of the 2020 Conference

153

References

on Empirical Methods in Natural Language Processing: Findings, pages 4766–

4777, 2020.

[15] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.

In Proc. KDD, pages 785–794, 2016.

[16] Jianpeng Cheng and Mirella Lapata. Neural summarization by extracting sen-

tences and words. In Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), pages 484–494, 2016.

[17] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang,

Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.

Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality.

https://lmsys.org/blog/2023-03-30-vicuna/, 2023.

[18] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase rep-

resentations using rnn encoder–decoder for statistical machine translation. In

Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP), page 1724. Association for Computational Linguistics,

2014.

[19] S. Chopra, M. Auli, and Alexander M. Rush. Abstractive sentence summariza-

tion with attentive recurrent neural networks. In HLT-NAACL, 2016.

[20] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou

Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz

Mohiuddin, Lukasz Kaiser, et al. Rethinking attention with performers. In

International Conference on Learning Representations, 2020.

[21] Mu-hsuan Chou. Implementing keyword and question generation approaches in

teaching efl summary writing. English Language Teaching, 5(12):36–41, 2012.

154

References

[22] Hans Christian, Mikhael Pramodana Agus, and Derwin Suhartono. Single doc-

ument automatic text summarization using term frequency-inverse document

frequency (tf-idf). ComTech: Computer, Mathematics and Engineering Appli-

cations, 7(4):285–294, 2016.

[23] Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan

Kim, Walter Chang, and Nazli Goharian. A discourse-aware attention model

for abstractive summarization of long documents. In Proceedings of NAACL-

HLT, pages 615–621, 2018.

[24] Arman Cohan, Iz Beltagy, King, et al. Pretrained language models for sequential

sentence classification. In EMNLP-IJCNLP, pages 3693–3699, 2019.

[25] Edward Collins, Isabelle Augenstein, and Sebastian Riedel. A supervised ap-

proach to extractive summarisation of scientific papers. In Proceedings of the

21st Conference on Computational Natural Language Learning (CoNLL 2017),

pages 195–205, 2017.

[26] Haixing Dai, Zhengliang Liu, Wenxiong Liao, Xiaoke Huang, Yihan Cao, Zihao

Wu, Lin Zhao, Shaochen Xu, Wei Liu, Ninghao Liu, et al. Auggpt: Leveraging

chatgpt for text data augmentation. arXiv preprint arXiv:2302.13007, 2023.

[27] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashatten-

tion: Fast and memory-efficient exact attention with io-awareness. Advances in

Neural Information Processing Systems, 35:16344–16359, 2022.

[28] Diego de Vargas Feijó and Viviane Pereira Moreira. Rulingbr: A summariza-

tion dataset for legal texts. In Computational Processing of the Portuguese Lan-

guage: 13th International Conference, PROPOR 2018, Canela, Brazil, Septem-

ber 24–26, 2018, Proceedings 13, pages 255–264. Springer, 2018.

[29] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.

155

References

int8 (): 8-bit matrix multiplication for transformers at scale. arXiv preprint

arXiv:2208.07339, 2022.

[30] Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit opti-

mizers via block-wise quantization. 9th International Conference on Learning

Representations, ICLR, 2022.

[31] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora:

Efficient finetuning of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

[32] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understanding. In

Proceedings of the 2019 Conference of the North American Chapter of the Asso-

ciation for Computational Linguistics: Human Language Technologies, Volume

1 (Long and Short Papers), pages 4171–4186, 2019.

[33] HKSAR DOJ. The common law and rules of equity. URL https://www.doj.

gov.hk/en/our_legal_system/the_common_law.html.

[34] Qiang Du. A reinforced topic-aware convolutional sequence-to-sequence model

for abstractive text summarization. In IJCAI, 2018.

[35] Vladimir Eidelman. Billsum: A corpus for automatic summarization of us legis-

lation. In Proceedings of the 2nd Workshop on New Frontiers in Summarization,

pages 48–56, 2019.

[36] Wafaa S El-Kassas, Cherif R Salama, Ahmed A Rafea, and Hoda K Mohamed.

Edgesumm: Graph-based framework for automatic text summarization. Infor-

mation Processing & Management, 57(6):102264, 2020.

[37] Günes Erkan and Dragomir R Radev. Lexrank: Graph-based lexical centrality

as salience in text summarization. Journal of artificial intelligence research, 22:

457–479, 2004.

156

https://www.doj.gov.hk/en/our_legal_system/the_common_law.html
https://www.doj.gov.hk/en/our_legal_system/the_common_law.html

References

[38] Alexander Richard Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir Radev.

Multi-news: A large-scale multi-document summarization dataset and abstrac-

tive hierarchical model. In Proceedings of the 57th Annual Meeting of the As-

sociation for Computational Linguistics, pages 1074–1084, 2019.

[39] Joseph L Fleiss. Measuring nominal scale agreement among many raters. Psy-

chological bulletin, 76(5):378, 1971.

[40] Corina Florescu and Cornelia Caragea. Positionrank: An unsupervised ap-

proach to keyphrase extraction from scholarly documents. In Proceedings of the

55th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pages 1105–1115, 2017.

[41] Sebastian Gehrmann, Yuntian Deng, and Alexander M Rush. Bottom-up ab-

stractive summarization. In Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing, pages 4098–4109, 2018.

[42] Alexios Gidiotis and Grigorios Tsoumakas. A divide-and-conquer approach to

the summarization of long documents. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 28:3029–3040, 2020.

[43] Ingo Glaser, Sebastian Moser, and Florian Matthes. Summarization of ger-

man court rulings. In Proceedings of the Natural Legal Language Processing

Workshop 2021, pages 180–189, 2021.

[44] Max Grusky, Mor Naaman, and Yoav Artzi. Newsroom: A dataset of 1.3 mil-

lion summaries with diverse extractive strategies. In Proceedings of the 2018

Conference of the North American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies, Volume 1 (Long Papers),

pages 708–719, New Orleans, Louisiana, June 2018. Association for Computa-

tional Linguistics. doi: 10.18653/v1/N18-1065. URL https://www.aclweb.

org/anthology/N18-1065.

157

https://www.aclweb.org/anthology/N18-1065
https://www.aclweb.org/anthology/N18-1065

References

[45] Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-

Hsuan Sung, and Yinfei Yang. LongT5: Efficient text-to-text transformer for

long sequences. In Findings of NAACL, pages 724–736, 2022. doi: 10.18653/

v1/2022.findings-naacl.55.

[46] Som Gupta and SK Gupta. Abstractive summarization: An overview of the

state of the art. Expert Systems with Applications, 121:49–65, 2019.

[47] Sandra Hargreaves and Jamie Crabb. Study Skills for Students with Dyslexia:

Support for Specific Learning Differences (SpLDs). Sage, 2016.

[48] James Hartley. Current findings from research on structured abstracts. Journal

of the Medical Library Association, page 368, 2004.

[49] James Hartley. Current findings from research on structured abstracts: An

update. Journal of the Medical Library Association, pages 146–148, 2014.

[50] Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Multi-class adaboost.

Statistics and its Interface, 2(3):349–360, 2009.

[51] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 770–778. IEEE Computer Society, 2016.

[52] Karl Moritz Hermann, Tomáš Kočiskỳ, Edward Grefenstette, Lasse Espeholt,

Will Kay, Mustafa Suleyman, and Phil Blunsom. Teaching machines to read

and comprehend. In Proceedings of the 28th International Conference on Neural

Information Processing Systems-Volume 1, pages 1693–1701, 2015.

[53] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[54] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious

case of neural text degeneration. In Proc. ICLR, 2019.

158

References

[55] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,

Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language

models. In International Conference on Learning Representations, 2021.

[56] Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Ef-

ficient attentions for long document summarization. In Proceedings of the

2021 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, pages 1419–1436, On-

line, June 2021. Association for Computational Linguistics. URL https:

//www.aclweb.org/anthology/2021.naacl-main.112.

[57] Hanqi Jin, Tianming Wang, and Xiaojun Wan. Multi-granularity interaction

network for extractive and abstractive multi-document summarization. In Pro-

ceedings of the 58th Annual Meeting of the Association for Computational Lin-

guistics, pages 6244–6254, 2020.

[58] Ambedkar Kanapala, Sukomal Pal, and Rajendra Pamula. Text summarization

from legal documents: a survey. Artificial Intelligence Review, 51:371–402, 2019.

[59] Byeongchang Kim, Hyunwoo Kim, and Gunhee Kim. Abstractive summa-

rization of Reddit posts with multi-level memory networks. In Proceedings

of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long

and Short Papers), pages 2519–2531, Minneapolis, Minnesota, June 2019. As-

sociation for Computational Linguistics. doi: 10.18653/v1/N19-1260. URL

https://www.aclweb.org/anthology/N19-1260.

[60] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. CoRR, abs/1412.6980, 2015.

[61] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M

159

https://www.aclweb.org/anthology/2021.naacl-main.112
https://www.aclweb.org/anthology/2021.naacl-main.112
https://www.aclweb.org/anthology/N19-1260

References

Rush. Opennmt: Open-source toolkit for neural machine translation. In Pro-

ceedings of ACL 2017, System Demonstrations, pages 67–72, 2017.

[62] Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong, and

Dragomir Radev. Booksum: A collection of datasets for long-form narrative

summarization. arXiv preprint arXiv:2105.08209, 2021.

[63] Logan Lebanoff, Kaiqiang Song, and Fei Liu. Adapting the neural encoder-

decoder framework from single to multi-document summarization. In Proceed-

ings of the 2018 Conference on Empirical Methods in Natural Language Pro-

cessing, pages 4131–4141, 2018.

[64] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman

Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denois-

ing sequence-to-sequence pre-training for natural language generation, trans-

lation, and comprehension. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, pages 7871–7880, 2020.

[65] Wei Li, Xinyan Xiao, Jiachen Liu, Hua Wu, Haifeng Wang, and Junping Du.

Leveraging graph to improve abstractive multi-document summarization. arXiv

preprint arXiv:2005.10043, 2020.

[66] Zeyu Liang, Junping Du, Yingxia Shao, and Houye Ji. Gated graph neural

attention networks for abstractive summarization. Neurocomputing, 431:128–

136, 2021.

[67] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In

Text summarization branches out, pages 74–81, 2004.

[68] Hui Lin and Vincent Ng. Abstractive summarization: A survey of the state

of the art. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 33, pages 9815–9822, 2019.

160

References

[69] Junyang Lin, Xu Sun, Shuming Ma, and Qi Su. Global encoding for abstractive

summarization. In Proceedings of the 56th Annual Meeting of the Association

for Computational Linguistics (Volume 2: Short Papers), pages 163–169, 2018.

[70] Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi,

Lukasz Kaiser, and Noam Shazeer. Generating wikipedia by summarizing long

sequences. In International Conference on Learning Representations, 2018.

[71] Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and

Jian-Guang Lou. Tapex: Table pre-training via learning a neural sql executor.

In Proc. ICLR, 2021.

[72] Shuaiqi Liu, Jiannong Cao, Ruosong Yang, and Zhiyuan Wen. Highlight-

transformer: Leveraging key phrase aware attention to improve abstractive

multi-document summarization. In Findings of ACL, pages 5021–5027, 2021.

doi: 10.18653/v1/2021.findings-acl.445.

[73] Shuaiqi Liu, Jiannong Cao, Ruosong Yang, and Zhiyuan Wen. Generating a

structured summary of numerous academic papers: Dataset and method. In

Proc. IJCAI, pages 4259–4265, 2022. doi: 10.24963/ijcai.2022/591.

[74] Shuaiqi Liu, Jiannong Cao, Ruosong Yang, and Zhiyuan Wen. Key phrase

aware transformer for abstractive summarization. Information Processing &

Management, 59(3):102913, 2022.

[75] Shuaiqi Liu, Jiannong Cao, Ruosong Yang, and Zhiyuan Wen. Long text and

multi-table summarization: Dataset and method. In Findings of the Association

for Computational Linguistics: EMNLP 2022, pages 1995–2010, 2022.

[76] Shuaiqi Liu, Jiannong Cao, Zhongfen Deng, Wenting Zhao, Ruosong Yang,

Zhiyuan Wen, and S Yu Philip. Neural abstractive summarization for long text

and multiple tables. IEEE Transactions on Knowledge and Data Engineering,

2023.

161

References

[77] Yang Liu and Mirella Lapata. Hierarchical transformers for multi-document

summarization. In Proceedings of the 57th Annual Meeting of the Association

for Computational Linguistics, pages 5070–5081, 2019.

[78] Yang Liu and Mirella Lapata. Text summarization with pretrained encoders. In

Proceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP), pages 3721–3731, 2019.

[79] Yinhan Liu, Myle Ott, Naman Goyal, et al. Roberta: A robustly optimized

bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[80] Yizhu Liu, Qi Jia, and Kenny Zhu. Keyword-aware abstractive summariza-

tion by extracting set-level intermediate summaries. In Proceedings of the Web

Conference 2021, pages 3042–3054, 2021.

[81] Yao Lu, Yue Dong, and Laurent Charlin. Multi-XScience: A large-scale

dataset for extreme multi-document summarization of scientific articles. In

Proceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pages 8068–8074, Online, November 2020. Association

for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.648. URL

https://www.aclweb.org/anthology/2020.emnlp-main.648.

[82] Duy Khang Ly, Kazunari Sugiyama, Ziheng Lin, and Min-Yen Kan. Product

review summarization from a deeper perspective. In Proceedings of the 11th

annual international ACM/IEEE joint conference on Digital libraries, pages

311–314, 2011.

[83] Rui Meng, Khushboo Thaker, Lei Zhang, Yue Dong, Xingdi Yuan, Tong Wang,

and Daqing He. Bringing structure into summaries: a faceted summarization

dataset for long scientific documents. arXiv preprint arXiv:2106.00130, 2021.

162

https://www.aclweb.org/anthology/2020.emnlp-main.648

References

[84] Rada Mihalcea and Paul Tarau. Textrank: Bringing order into text. In Proceed-

ings of the 2004 conference on empirical methods in natural language processing,

pages 404–411, 2004.

[85] Begum Mutlu, Ebru A Sezer, and M Ali Akcayol. Candidate sentence selection

for extractive text summarization. Information Processing & Management, 57

(6):102359, 2020.

[86] Ramesh Nallapati, Bowen Zhou, C. D. Santos, Çaglar Gülçehre, and B. Xiang.

Abstractive text summarization using sequence-to-sequence rnns and beyond.

In CoNLL, 2016.

[87] Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. Summarunner: A recurrent

neural network based sequence model for extractive summarization of docu-

ments. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-

ume 31, 2017.

[88] Courtney Napoles, Matthew R Gormley, and Benjamin Van Durme. Annotated

gigaword. In Proceedings of the Joint Workshop on Automatic Knowledge Base

Construction and Web-scale Knowledge Extraction (AKBC-WEKEX), pages

95–100, 2012.

[89] NARA. Regulation s-k item 303 management’s discussion and analysis of fi-

nancial condition and results of operations. URL https://www.ecfr.gov/

current/title-17/chapter-II/part-229.

[90] Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the de-

tails, just the summary! topic-aware convolutional neural networks for extreme

summarization. In Proceedings of the 2018 Conference on Empirical Methods

in Natural Language Processing, pages 1797–1807, Brussels, Belgium, October-

November 2018. Association for Computational Linguistics. doi: 10.18653/v1/

D18-1206. URL https://www.aclweb.org/anthology/D18-1206.

163

https://www.ecfr.gov/current/title-17/chapter-II/part-229
https://www.ecfr.gov/current/title-17/chapter-II/part-229
https://www.aclweb.org/anthology/D18-1206

References

[91] Shashi Narayan, Shay B Cohen, and Mirella Lapata. Ranking sentences for

extractive summarization with reinforcement learning. In Proceedings of the

2018 Conference of the North American Chapter of the Association for Compu-

tational Linguistics: Human Language Technologies, Volume 1 (Long Papers),

pages 1747–1759, 2018.

[92] OpenAI. Introducing chatgpt. https://openai.com/blog/chatgpt, 2022.

[93] Myle Ott et al. fairseq: A fast, extensible toolkit for sequence modeling. In

NAACL-HLT, 2019.

[94] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright,

Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,

et al. Training language models to follow instructions with human feedback.

Advances in Neural Information Processing Systems, 35:27730–27744, 2022.

[95] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a

method for automatic evaluation of machine translation. In Proceedings of the

40th annual meeting of the Association for Computational Linguistics, pages

311–318, 2002.

[96] Amanda Parker, Edward Wilding, and Colin Akerman. The von restorff ef-

fect in visual object recognition memory in humans and monkeys: The role of

frontal/perirhinal interaction. Journal of cognitive neuroscience, 10(6):691–703,

1998.

[97] Romain Paulus, Caiming Xiong, and R. Socher. A deep reinforced model for

abstractive summarization. ArXiv, abs/1705.04304, 2018.

[98] Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao.

Instruction tuning with gpt-4. arXiv preprint arXiv:2304.03277, 2023.

164

References

[99] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:

Global vectors for word representation. In Proc. EMNLP, pages 1532–1543,

2014.

[100] Jonathan Pilault, Raymond Li, Sandeep Subramanian, and Christopher Pal.

On extractive and abstractive neural document summarization with transformer

language models. In Proceedings of the 2020 Conference on Empirical Methods

in Natural Language Processing (EMNLP), pages 9308–9319, 2020.

[101] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improv-

ing language understanding by generative pre-training.

[102] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya

Sutskever, et al. Language models are unsupervised multitask learners. OpenAI

blog, 2019.

[103] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of

transfer learning with a unified text-to-text transformer. Journal of Machine

Learning Research, 21:1–67, 2020.

[104] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero:

Memory optimizations toward training trillion parameter models. In SC20: In-

ternational Conference for High Performance Computing, Networking, Storage

and Analysis, pages 1–16. IEEE, 2020.

[105] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba.

Sequence level training with recurrent neural networks. In Proc. ICLR, 2016.

[106] Luz Rello, Horacio Saggion, and Ricardo Baeza-Yates. Keyword highlight-

ing improves comprehension for people with dyslexia. In Proceedings of the

3rd Workshop on Predicting and Improving Text Readability for Target Reader

Populations (PITR), pages 30–37, 2014.

165

References

[107] Sascha Rothe, Shashi Narayan, and Aliaksei Severyn. Leveraging pre-trained

checkpoints for sequence generation tasks. Transactions of the Association for

Computational Linguistics, 8:264–280, 2020.

[108] Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention

model for abstractive sentence summarization. In Proceedings of the 2015

Conference on Empirical Methods in Natural Language Processing, pages 379–

389, Lisbon, Portugal, September 2015. Association for Computational Linguis-

tics. doi: 10.18653/v1/D15-1044. URL https://www.aclweb.org/anthology/

D15-1044.

[109] Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model

for abstractive sentence summarization. In Proceedings of the 2015 Conference

on Empirical Methods in Natural Language Processing, pages 379–389, 2015.

[110] Gerard Salton and Christopher Buckley. Term-weighting approaches in au-

tomatic text retrieval. Information processing & management, 24(5):513–523,

1988.

[111] Evan Sandhaus. The new york times annotated corpus. Linguistic Data Con-

sortium, Philadelphia, 6(12):e26752, 2008.

[112] Yogesh Sankarasubramaniam, Krishnan Ramanathan, and Subhankar Ghosh.

Text summarization using wikipedia. Information Processing & Management,

50(3):443–461, 2014.

[113] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel

Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias

Gallé, et al. Bloom: A 176b-parameter open-access multilingual language

model. arXiv preprint arXiv:2211.05100, 2022.

[114] United States SEC. Form 10-k general instructions. URL https://www.sec.

gov/about/forms/form10-k.pdf.

166

https://www.aclweb.org/anthology/D15-1044
https://www.aclweb.org/anthology/D15-1044
https://www.sec.gov/about/forms/form10-k.pdf
https://www.sec.gov/about/forms/form10-k.pdf

References

[115] United States SEC. How to read a 10-k/10-q, January 2021. URL https:

//www.sec.gov/fast-answers/answersreada10khtm.html.

[116] Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Sum-

marization with pointer-generator networks. In Proceedings of the 55th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-

pers), pages 1073–1083, 2017.

[117] Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine

translation models with monolingual data. In Proc. ACL, pages 86–96, 2016.

[118] Eva Sharma, Chen Li, and Lu Wang. Bigpatent: A large-scale dataset for

abstractive and coherent summarization. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, pages 2204–2213,

2019.

[119] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sub-

linear memory cost. In International Conference on Machine Learning, pages

4596–4604. PMLR, 2018.

[120] Abhay Shukla, Paheli Bhattacharya, Soham Poddar, Rajdeep Mukherjee, Kri-

pabandhu Ghosh, Pawan Goyal, and Saptarshi Ghosh. Legal case document

summarization: Extractive and abstractive methods and their evaluation. In

Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Associa-

tion for Computational Linguistics and the 12th International Joint Conference

on Natural Language Processing, pages 1048–1064, 2022.

[121] Arnab Sinha, Zhihong Shen, Yang Song, et al. An overview of microsoft aca-

demic service (mas) and applications. In WWW, pages 243–246, 2015.

[122] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mass: Masked

sequence to sequence pre-training for language generation. In International

Conference on Machine Learning, pages 5926–5936. PMLR, 2019.

167

https://www.sec.gov/fast-answers/answersreada10khtm.html
https://www.sec.gov/fast-answers/answersreada10khtm.html

References

[123] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-

lan Salakhutdinov. Dropout: a simple way to prevent neural networks from

overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.

[124] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea

Voss, Alec Radford, Dario Amodei, and Paul F Christiano. Learning to summa-

rize with human feedback. Advances in Neural Information Processing Systems,

33:3008–3021, 2020.

[125] Ming-Hsiang Su, Chung-Hsien Wu, and Hao-Tse Cheng. A two-stage

transformer-based approach for variable-length abstractive summarization.

IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28:2061–

2072, 2020.

[126] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew

Wojna. Rethinking the inception architecture for computer vision. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition, pages

2818–2826, 2016.

[127] Jiwei Tan, Xiaojun Wan, and Jianguo Xiao. Abstractive document summariza-

tion with a graph-based attentional neural model. In Proceedings of the 55th

Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), pages 1171–1181, 2017.

[128] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos

Guestrin, Percy Liang, and Tatsunori B Hashimoto. Alpaca: A strong, repli-

cable instruction-following model. Stanford Center for Research on Foundation

Models. https://crfm. stanford. edu/2023/03/13/alpaca. html, 2023.

[129] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,

168

References

Faisal Azhar, et al. Llama: Open and efficient foundation language models.

arXiv preprint arXiv:2302.13971, 2023.

[130] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi,

Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti

Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv

preprint arXiv:2307.09288, 2023.

[131] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

In Advances in neural information processing systems, pages 5998–6008, 2017.

[132] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov.

Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the

rest can be pruned. In Proceedings of the 57th Annual Meeting of the Association

for Computational Linguistics, pages 5797–5808, 2019.

[133] Michael Völske, Martin Potthast, Shahbaz Syed, and Benno Stein. Tl; dr: Min-

ing reddit to learn automatic summarization. In Proceedings of the Workshop

on New Frontiers in Summarization, pages 59–63, 2017.

[134] Hedwig Von Restorff. Über die wirkung von bereichsbildungen im spurenfeld.

Psychologische Forschung, 18(1):299–342, 1933.

[135] Danqing Wang, Pengfei Liu, Yining Zheng, Xipeng Qiu, and Xuan-Jing Huang.

Heterogeneous graph neural networks for extractive document summarization.

In Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, pages 6209–6219, 2020.

[136] Tianxin Wang, Jingwu Chen, Fuzhen Zhuang, Leyu Lin, Feng Xia, Lihuan Du,

and Qing He. Capturing attraction distribution: Sequential attentive network

for dwell time prediction. In ECAI 2020, pages 529–536. IOS Press, 2020.

169

References

[137] Xun Wang, Masaaki Nishino, Tsutomu Hirao, Katsuhito Sudoh, and Masaaki

Nagata. Exploring text links for coherent multi-document summarization. In

Proceedings of COLING 2016, the 26th International Conference on Computa-

tional Linguistics: Technical Papers, pages 213–223, 2016.

[138] Thomas Wolf, Julien Chaumond, Lysandre Debut, et al. Transformers: State-

of-the-art natural language processing. In EMNLP, pages 38–45, 2020.

[139] Xiaoxia Wu, Cheng Li, Reza Yazdani Aminabadi, Zhewei Yao, and Yuxiong

He. Understanding int4 quantization for transformer models: Latency speedup,

composability, and failure cases. arXiv preprint arXiv:2301.12017, 2023.

[140] Wen Xiao, Patrick Huber, and Giuseppe Carenini. Do we really need that many

parameters in transformer for extractive summarization? discourse can help! In

Proceedings of the First Workshop on Computational Approaches to Discourse,

pages 124–134, 2020.

[141] Song Xu, Haoran Li, Peng Yuan, Youzheng Wu, Xiaodong He, and Bowen

Zhou. Self-attention guided copy mechanism for abstractive summarization. In

Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, pages 1355–1362, 2020.

[142] Jin-ge Yao, Xiaojun Wan, and Jianguo Xiao. Recent advances in document

summarization. Knowledge and Information Systems, 53(2):297–336, 2017.

[143] Michihiro Yasunaga, Rui Zhang, Kshitijh Meelu, Ayush Pareek, Krishnan Srini-

vasan, and Dragomir Radev. Graph-based neural multi-document summariza-

tion. In Proceedings of the 21st Conference on Computational Natural Language

Learning (CoNLL 2017), pages 452–462, 2017.

[144] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of recur-

rent neural networks: Lstm cells and network architectures. Neural computa-

tion, 31(7):1235–1270, 2019.

170

References

[145] Weizhe Yuan, Graham Neubig, and Pengfei Liu. Bartscore: Evaluating gen-

erated text as text generation. Advances in Neural Information Processing

Systems, 34:27263–27277, 2021.

[146] Carole L Yue, Benjamin C Storm, Nate Kornell, and Elizabeth Ligon Bjork.

Highlighting and its relation to distributed study and students’ metacognitive

beliefs. Educational Psychology Review, 27(1):69–78, 2015.

[147] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie,

Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang,

Li Yang, et al. Big bird: Transformers for longer sequences. In NeurIPS, 2020.

[148] Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou, and Dawei Song. A survey

of controllable text generation using transformer-based pre-trained language

models. arXiv preprint arXiv:2201.05337, 2022.

[149] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. Pegasus: Pre-

training with extracted gap-sentences for abstractive summarization. In Inter-

national Conference on Machine Learning, pages 11328–11339. PMLR, 2020.

[150] Mengli Zhang, Gang Zhou, Wanting Yu, and Wenfen Liu. Far-ass: Fact-aware

reinforced abstractive sentence summarization. Information Processing & Man-

agement, 58(3):102478, 2021.

[151] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen,

Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin,

et al. Opt: Open pre-trained transformer language models. arXiv preprint

arXiv:2205.01068, 2022.

[152] Ming Zhong, Pengfei Liu, Danqing Wang, Xipeng Qiu, and Xuan-Jing Huang.

Searching for effective neural extractive summarization: What works and what’s

next. In Proceedings of the 57th Annual Meeting of the Association for Com-

putational Linguistics, pages 1049–1058, 2019.

171

References

[153] Li Zhuang, Feng Jing, and Xiao-Yan Zhu. Movie review mining and summariza-

tion. In Proceedings of the 15th ACM international conference on Information

and knowledge management, pages 43–50, 2006.

172

	Abstract
	Publications Arising from the Thesis
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Background
	Motivation
	Research Challenges
	Research Framework
	Thesis Organization

	Literature Review
	Neural Networks
	Recurrent Neural Networks
	Transformer Model
	Pre-trained Models Based on Transformer

	Automatic Document Summarization
	Neural Extractive Summarization Methods
	Neural Abstractive Summarization Methods
	Document Summarization Datasets

	Key Phrase Aware Transformer for Abstractive Document Summarization
	Introduction
	Objectives
	Proposed method
	Data preparation
	Key phrase aware transformer model

	Datasets
	Experiments
	Data preprocessing
	Experimental setting
	Baselines
	Evaluation metrics

	Results and discussion
	Automatic evaluation results
	Human evaluation results
	Impact of the multi-head highlighting attention
	Impact of the key phrase extraction
	Ablation study

	Chapter Summary

	From Unimodal to Multimodal: Long Text and Multi-Table Summarization
	Introduction
	FINDSum Dataset
	Data Collection and Pre-Processing
	Dataset Description
	Dataset Analysis

	Method
	Textual and Tabular Content Selection
	Generating Summary for Textual and Tabular Data
	Processing Long Inputs and Outputs

	Experiments
	Baselines
	Experimental Setting
	Evaluation Metrics

	Results and Discussion
	Summarization Results
	Discussion on Content Selection Methods
	Discussion on Input Length of Summarization Model
	Discussion on the Divide-and-Conquer Method
	Discussion on Template Filling Methods
	Discussion on Tuple-to-Text Generation Methods
	Case Study

	Chapter Summary

	From Single Document to Multiple Documents: Generating a Structured Summary of Numerous Academic Papers
	Introduction
	BigSurvey Dataset
	Data Collection and Pre-processing
	Dataset Description
	Diversity Analysis of Dataset

	Method
	Experiments
	Baselines
	Experimental Setting
	Results and Discussion

	Chapter Summary

	From High-Resource to Low-Resource: Low-Resource Court Judgment Summarization for Common Law Systems
	Introduction
	CLSum Dataset
	Collecting and Pre-processing Data
	Description of the CLSum's Subsets
	Dataset Analysis

	Method
	Mitigating the Impact of Insufficient Labeled Samples
	Salient Content Identification and Integration
	Improving the Efficiency of Models and Training Methods

	Experiments
	Baselines
	Experimental Setting
	Evaluation Metrics

	Results and Discussion
	Summarization Results
	Discussion on the training set size
	Discussion on SFT and RLHF
	Discussion on data augmentation methods
	Discussion on adapters' trainable parameters

	Chapter Summary

	Conclusions and Future Directions
	Conclusions
	Future Directions

	References

