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Abstract

An intelligent personal stylist, designed to offer personalized fashion recom-

mendations, is becoming increasingly important in the fashion industry. Meet-

ing the crucial requirements of compatibility and personalization, this

technology aims to provide users with aesthetically pleasing and tailored fash-

ion outfits. However, existing systems face limitations when deployed in real-

world applications, prompting the need for further advancements in this field.

The existing literature exhibits three primary limitations: 1). Most ex-

isting fashion compatibility models overlook hierarchical relationships among

fashion elements and need more explanatory capabilities; 2). Due to the lack of

professional fashion knowledge in current evaluation datasets, the assessment

of fashion compatibility models is limited to accuracy rather than aesthetic

ability; 3). Existing research on personalized fashion recommendation mainly

prioritizes user preferences and social media data, neglecting to incorporate

diverse appearances of customers in the recommendation process.

This thesis aims to develop an intelligent personal stylist to overcome the

above limitations. Firstly, a Hierarchical Outfit Network is proposed, featur-

ing a multi-layered structure that captures relations among attributes, items,

and outfits. The model learns outfit representation in a bottom-up manner,

utilizing the attention mechanism to model feature relationships at each level.

A gradient penalty loss is also employed to learn the underlying reasons behind

the compatibility prediction.

Secondly, a novel evaluation dataset, Aesthetic 100 (A100), is developed to

assess the aesthetic capabilities of fashion compatibility models. A100 demon-

strates three desirable qualities: 1). Completeness, covering two types of stan-

dards in the fashion aesthetic system through two independent aesthetic tests;
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2) Reliability, being independent of training data and consistent with major

indicators; 3) Explainability, identifying essential fashion aesthetic character-

istics to evaluate model performance in more detailed dimensions.

Thirdly, a new fashion cognition modeling task is introduced to investi-

gate the relationship between outfits and an individual’s physical attributes.

A new dataset is constructed, consisting of 29,352 annotated outfits that in-

dicate physical attribute compatibility. Moreover, a Fashion Convolutional

Network is proposed to solve the task, comprising an outfit encoder module

that encodes fashion attribute features into an outfit embedding using convo-

lutional layers of various window sizes and a multi-label graph convolutional

network module that captures label correlations to learn classifiers for physical

attributes. The compatibility score is obtained by applying the classifiers to

the outfit embedding.

Fourthly, a novel framework, Body-shape-Aware Network, is developed to

enhance body-aware recommendations. This network utilizes visual and an-

thropometric features from a large-scale body shape dataset to represent body

shapes. It also incorporates try-on images generated by the proposed Multi-

layer Virtual Try-on System to represent outfits. The cross-model attention

mechanism is leveraged to provide attribute-level explanations.

The contributions of this thesis lie in developing and advancing intelligent

fashion recommendation systems. The proposed solutions address the chal-

lenges of fashion compatibility and cognition modeling, providing practical

and effective tools for the fashion industry to enhance customer experiences.

The research also reveals its limitations and provides insights for further ex-

ploration.
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Chapter 1

Introduction

1.1 Research Background

The fashion industry is one of the largest and most influential sectors globally,

generating trillions of dollars in revenue each year [5]. Beyond its economic

impact, fashion is an art form allowing individuals to express their identity.

Online shopping platforms have revolutionized the industry, offering abundant

choices and enabling the free exchange of fashion ideas [4]. However, the rise

of e-commerce poses opportunities and challenges [39]. On the one hand, the

fashion industry benefits from digital platforms, which enable global reach,

expanded customer bases, and enhanced brand visibility. On the other hand,

fashion companies face significant challenges in securing a competitive edge

and driving sustainable growth by effectively utilizing emerging technologies

and data-driven insights.

As a response to these challenges and opportunities, the integration of ar-

tificial intelligence (AI) technology into the fashion industry has emerged as

a prominent trend in expanding digital fashion market. With the help of AI,
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2 1.1. Research Background

$0.65 billion
$0.91 billion

$3.72 billion

Market size of AI in fashion

2022 2023 2027

Figure 1.1 The market size of AI in fashion grow from $0.65 billion in 2022 to
$0.91 billion in 2023. Moreover, it is projected to reach $3.72 billion by 2027, with
a compound annual growth rate of 42.0%.

fashion companies can better understand customer preferences and provide

personalized recommendations and marketing campaigns, ultimately increas-

ing customer engagement and loyalty. AI also plays a crucial role in the design

and manufacturing process by analyzing vast data on fashion trends, consumer

tastes, and market demand, generating innovative and unique designs. Fur-

thermore, AI optimizes the supply chain management system, reducing the

cost of inventory management and logistics. These AI applications can poten-

tially revolutionize the fashion industry, enhancing profitability and sustain-

ability. According to the fashion global report [15], the AI in fashion industry

witnessed significant growth in recent years. As illustrated in figure 1.1, the

market size of AI in fashion has increased from $0.65 billion in 2022 to $0.91

billion in 2023, representing a 40.0% compound annual growth rate (CAGR).

Moreover, it is projected that the AI fashion industry will continue to expand,

reaching a market volume of $3.72 billion in 2027 at a higher CAGR of 42.0%.



1.1. Research Background 3

The tremendous potential of AI in the fashion industry has attracted signif-

icant attention from researchers. Technically, intelligent fashion is a multidis-

ciplinary field encompassing various research areas, including computer vision,

machine learning, natural language processing, and human-computer interac-

tion [13]. The current cutting-edge fashion research topics can be categorized

into four main areas:

1). Fashion detection is extensively explored as it is a fundamental step for

many fashion-related tasks aiming to detect fashion-related elements from

the given image. It mainly consists of three tasks: (1) fashion landmark de-

tection [79, 80, 148] whose objective is to forecast the locations of functional

keypoints defined on clothing items; (2) fashion parsing [34, 109, 141]

which segments the human image into pixel-level fashion elements, such

as pants or dress; (3) item retrieval [65, 70, 74] which is an image-based

fashion retrieval task aiming to match real-world fashion items with their

corresponding online shopping images.

2). Fashion analysis aims to uncover personality traits for precise marketing

and sociological analysis, demonstrating enormous potential in the fashion

industry. It encompasses three primary tasks: (1) attribute recognition [16,

59, 125] which aims to identify fashion attributes from clothing items,

and are usually modeled as a multi-label classification problem; (2) style

learning [61, 86, 138] which refers to the process of understanding and

identifying the discriminative features that distinguish different fashion

styles and trend; (3) popularity prediction [6, 7, 33, 115] which tackles the

problem of forecasting fashion popularity and future fashion trend based

on the knowledge from fashion style learning.

3). Fashion synthesis aims to generate realistic-looking images that depict
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a person in different makeup or clothing styles. It includes two main

tasks: (1) virtual try-on [42, 149, 167] which enables the placement of

desired clothing items onto the corresponding areas of a person in an image,

creating a seamless visual representation; (2) pose transformation [106,

107, 117] which aims to generate pose-guided person images in different

postures while preserving individual characteristics.

4). Fashion recommendation is an intelligent system recommending fash-

ion products to customers. It can be hierarchically divided into two tasks:

(1) fashion compatibility modeling [62, 89, 166] which evaluates the over-

all aesthetic quality of different types of clothing items collaborating to

form fashionable outfits; (2) personalized recommendation which aims to

provide personalized recommendations of fashionable outfits to customers,

taking into account their physical attributes and preferences; (3) explan-

able recommendation [9, 129, 150] which enables recommendation system

to provide users with a deeper understanding of why a specific item or

outfit is recommended to them.

The summary above offers an extensive overview of the emerging applica-

tion of AI within the realm of fashion. This thesis focuses on the Fashion

recommendation problem, aiming to develop an intelligent personal stylist

that offers customers personalized styling advice. However, achieving this

goal faces significant challenges because it needs to fulfill two requirements:

compatibility and personalization. The former involves the generation

of compatible outfits, while the latter focuses on providing personalized outfit

recommendations tailored to individuals. A brief literature review is presented

in the subsequent subsection, focusing on the fundamental aspects of fashion

recommendation systems. A more detailed review is provided in Chapter 2.
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Task 1: Find the most compatible item

Task 2: Point out the incompatible item and revise it 

Task 3: Generate outfit compositions

suggested items 
rank by 

compatibility score

initial item

Figure 1.2 Three downstream tasks based on FCM. Task 1: Fashion outfit com-
plementary item retrieval [71]. Task 2: Fashion outfit revision [169]. Task 3: Fashion
outfit generation [18].

1.1.1 Fashion Compatibility Modeling (FCM)

The foundation of fashion recommendation lies in FCM, as illustrated in Fig-

ure 1.2. This task involves assessing the compatibility of multiple fashion

items [19, 75, 83, 150, 160, 170]. In this domain, the development of compati-

bility models and the utilization of evaluation metrics are reviewed.

Fashion Compatibility Model

Predicting the compatibility of an outfit is complicated because it involves

visual perception, texture, and trend, to name a few, and every factor is in the

process of changing. Prior works conducted on compatibility prediction have
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attribute level outfit levelitem level
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knitted
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Look 1
Look 2

Figure 1.3 Multiple relations between attribute, item, and outfit level

explored numerous methods. The mainstream methods [17, 50, 134] adopt

metric learning, where items of an outfit are transformed into embeddings. The

embeddings of mismatching items are maximally separated, while the distances

between matching items are minimized. Visileva et al. [134] proposed to learn

an item embedding considering fashion categories. Cucurull et al. [17] utilized

items’ visual features and contextual information to forecast the compatibility

of two items. Han et al. [41] treated individual items in an outfit as a sequence

and employed bidirectional Long Short-term Memory networks to encode an

outfit. Zheng et al. [166] proposed to evaluate compatibility from both the

collocation and try-on perspectives. Other studies employed the Conditional

Random Field [119] and clothing style modeling [2, 137] to estimate fashion

compatibility. Despite the favorable outcomes achieved by these methods, they

still exhibit certain areas for improvement:

(1). They overlook the intrinsic relationships among fashion data, limiting

their evaluation performance. As shown in Figure 1.3, there are multi-

relations between attributes, items, and outfits. Previous research only

encoded outfit at item level [18, 71, 134] or attribute level [152, 169].

(2). The evaluation results of current compatibility models lack convincing
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explanations. The explainability of compatibility models is essential for

gaining users’ trust in the recommendation system.

Evaluation Metrics

Apart from the accuracy of fashion compatibility models, evaluating these

models presents additional challenges in fashion recommendation applications.

The conventional approach to evaluation in the fashion industry often involves

hiring professional stylists to assess the generated results, which not only incurs

high costs but also proves inconvenient in terms of logistics and time. Further-

more, the current evaluation metrics employed in academic research primarily

focus on measuring retrieval or ranking performance, such as the widely used

Area Under Curve (AUC) metric. AUC has been applied to assess the compat-

ibility score of item-level recommendations in various studies. Additionally,

other commonly utilized metrics in recommendation tasks include Normal-

ized Discounted Cumulative Gain (NDCG), mean Average Precision (mAP),

and Recall. These metrics, although effective for ranked retrieval evaluation,

fall short in capturing the aesthetic ability of compatibility models. They do

not fully encompass essential fashion concepts such as compatibility, novelty,

and beauty, which are crucial for evaluating the overall performance of these

models. As a result, there is a clear need for more comprehensive and reli-

able evaluation metrics that can effectively measure the aesthetic qualities and

fashion concepts addressed by compatibility models.

1.1.2 Fashion Cognition Modelling

Fashion cognition modelling is positioned at a higher level because it learns

the relationship between the outfit and human physical information. As illus-
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(a) Outfit compositions generated by fashion compatibility models

(b) Precise outfit recommendation with fashion cognition models
height hair style body figure hair color skin colorwell matched

Figure 1.4 Two steps involved in fashion recommendations.

trated in Figure 1.4, there are two steps involved in fashion recommendation

system. Figure 1.4 (a) depicts good mix-and-matches generated by the fashion

compatibility model. However, as shown in Figure 1.4 (b), different customers

have varied appearances, directly affecting whether an outfit is compatible

with them. Taking the first outfit shown in Figure 1.4 (a) as an example, it

consists of a long white dress unsuitable for the second customer since she is

not so high enough to wear this long dress. Thus, even though this outfit is

perfectly matched, it is not appropriate to recommend it to her. Otherwise, it

will be resulting she is losing trust in the service provider. In other words, un-

derstanding the relationships between outfits and customers to achieve precise

outfit recommendations is crucial.

Only a few works noticed the influence of personal information on the

fashion recommendation problem. Most of them utilized user preference for

personalized recommendations. Xu et al. [8] used user preference for individ-
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ual items to satisfy the personalized recommendation requirements. Packer

et al. [95] leveraged users’ prior feedback to calculate their affinity matrix

towards specific visual styles and attributes. Liu et al. [78] leveraged user re-

views to assist recommender systems in predicting product ratings. Besides

user preferences, social media posts are another commonly used information

source [123, 165]. Zheng et al. [165] introduced a personalized fashion rec-

ommendation framework based on item-to-set metric learning based on social

media data. Some studies investigated the relationships between the outfit

and human shapes. Hsiao et al. [52] proposed a visual body-aware embedding

framework to capture the item’s association with diverse body shapes. Hi-

dayati et al. [47, 48] modeled this relationship based on the full-body images

of celebrities and their body measurement data collected from the internet.

However, no prior approach systematically considered the varied appearance

of individuals and then solved it from a comprehensive point of view.

1.2 Research Objectives

This study aims to develop an intelligent personal stylist targeting the fashion

recommendations problem in the real application. Specifically, this research

addresses the following objectives:

1. To construct a new fashion compatibility evaluation protocol that con-

siders three aspects which are completeness, practicality, and reliability.

2. To propose novel fashion compatibility models that leverage the multi-

relations among fashion elements and produce a convincing explanation

for the evaluation result.
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3. To construct a new dataset for the fashion cognition modeling task and

propose a framework to accomplish this task.

4. To investigate the relationship between body shapes and outfits, utilizing

visual images of body shapes and try-on appearances of outfits.

1.3 Research Methodology

1.3.1 Modeling Fashion Compatibility

The primary objective of modeling fashion compatibility is to build the under-

standing of how different clothing items complement each other. This study

primarily focuses on three key aspects: constructing a comprehensive evalu-

ation protocol, developing a hierarchical outfit network, and providing con-

vincing explanations for compatibility prediction. These efforts collectively

strive to enhance the model’s fashion compatibility knowledge and facilitate

the creation of visually harmonious outfits.

(1). Comprehensive Evaluation Protocol. To overcome the lack of a

practical evaluation protocol for fashion compatibility models, a comprehen-

sive evaluation protocol, named Aesthetic 100 (A100), is constructed. A100

incorporates two types of fashion aesthetic standards: the Bottom-up and Top-

down standards. Two tests, namely the Liberalism Aesthetic Test (LAT) and

the Academicism Aesthetic Test (AAT), are designed to assess these standards,

respectively. The LAT consists of randomly generated questions verified by

fashion experts, with answers collected through a website questionnaire. The

AAT examines the model’s performance in six main fashion aspects, utilizing

carefully created questions and options.
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(2). Hierarchical Outfit Network. A hierarchical outfit network is pro-

posed to improve the performance of the fashion compatibility model. This

network leverages the multi-relations among fashion elements by incorporating

three levels: attribute, item, and outfit. The network employs the multi-head

attention mechanism [135] to model the internal relationships within each level.

Fashion features are aggregated from the attribute level to the outfit level, re-

sulting in an enhanced outfit representation. This hierarchical design enables

the exploitation of tree-structured relations inherent in fashion data, leading

to improved performance.

(3). Providing Convincing Explanation. The ability to offer explana-

tions for the model’s predictions is crucial in building user trust. Firstly, the

EVALUATION3 dataset [169] is expanded, encompassing outfits with multiple

items, attribute labels, compatibility judgments, and corresponding reasons.

Secondly, based on this dataset, a new framework utilizing bidirectional Long

Short-term Memory networks is proposed. During the training process, a gra-

dient penalty regularization is employed to align the reasons predicted by the

network with the reason labels in the dataset, thus enhancing the model’s

ability to provide explanations.

1.3.2 Modeling Fashion Cognition

The objective of modeling fashion cognition is to enable models to acquire

knowledge pertaining to the interconnections between outfits and human phys-

ical attributes. This task is introduced and formulated as a multi-label classi-

fication problem. A comprehensive dataset comprising numerous outfits and

corresponding physical labels is constructed. Moreover, two distinct models,
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namely the Outfit Convolutional Network and the Body-shape-Aware Net-

work, are proposed to address this task.

(1). Task Introduction, Dataset Construction, and Model Proposal.

Previous personalized fashion recommendation systems primarily focused

on user preferences and neglected the physical attributes of customers. To ad-

dress this shortcoming, the fashion cognition modeling task is introduced and

formulated as a multi-label classification problem. A new dataset called Out-

fit for You (O4U) is constructed to facilitate task solving. The O4U dataset

consists of 29,352 outfits and 82,677 annotations. Fashion experts are invited

to annotate these outfits. Each outfit is assigned with two labels: one indi-

cating its compatibility and the other identifying any incompatible physical

attributes. Based on the O4U dataset, a Fashion Convolutional Network is

proposed, which comprises an outfit encoder and a multi-label graph convo-

lutional network (ML-GCN). The outfit encoder utilizes convolutional layers

with diverse window sizes to encode fashion attribute features into an outfit

embedding. The ML-GCN captures label correlations and learns classifiers for

each physical attribute. The predicted compatibility score between the outfit

and the physical label is obtained by multiplying the classifier features and

outfit embedding.

(2). Enhancing Data Representation for Body Shape and Outfit.

A new framework named Body-shape-Aware network is proposed to en-

hance the model’s fashion cognition in terms of body shapes. The body shapes

are represented using visual and anthropometric features. A large-scale body

shape dataset is created to provide the 3D models and images of body shapes.

It contains 20,000 3D body models with varying body sizes generated using
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the Skinned Multi-Person Linear (SMPL) [81] model. The dataset covers five

common body shapes: the bottom hourglass, top hourglass, spoon, inverted

triangle, and triangle.

The outfit is encoded by using its try-on appearance and fashion attributes.

A Multi-layer Virtual Try-on System (M-VTON) is proposed to generate real-

istic try-on images given an outfit composed of various item images. The sys-

tem extracts fashion keypoints using the pre-trained ViPNAS model. Scaling

data and pixel locations of each item are calculated by aligning the extracted

fashion keypoints with those on a mannequin image. The Object-Contextual

Representation model is trained to segment clothing images into front and

back pieces to achieve a multi-layered try-on effect. These segmented pieces

are synthesized to create the try-on appearance according to the predefined

try-on order. Outfit features are extracted from the obtained try-on image

using the Convolutional Neural Network (CNN).

BA-Net is designed to provide the attribute-level explanation for its predic-

tion by analyzing the attention maps computed by the cross-model attention

mechanism. This approach enhances the interpretability of the evaluation

process and enables users to understand the factors influencing the model’s

decisions.

1.4 Research Significance

(1). Introduction of a Comprehensive Evaluation Protocol.

This study makes a contribution by introducing a novel evaluation dataset

named Aesthetic 100. Unlike existing datasets, A100 covers systematic aes-

thetic standards, comprehensively evaluating fashion compatibility quality.

This pioneering work incorporates professional fashion domain knowledge, al-
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lowing for more characteristic performance evaluation. Extensive experiments

are conducted to demonstrate the proposed protocol’s practicability and reli-

ability.

(2). Enhancement of Aesthetic Ability and Explainability for Fash-

ion Compatibility Model

This study proposes the Hierarchical Outfit Network, a novel approach that

enhances performance by introducing implicit attributes and exploiting multi-

relations among the attribute, item, and outfit levels. The HON surpasses

state-of-the-art results on two widely used datasets and the Aesthetic 100

dataset, outperforming 14 baseline models. The study also proposes practical

solutions for integrating the trained HON into real-world products, enabling

effective cross-selling in online fashion platforms. In addition, employing a

gradient penalty during model training enables the model to provide the reason

aligned with experts’ knowledge, enabling the system to deliver convincing

explanations. These advancements in both performance and explainability

foster greater user trust in the recommendation system, improving the overall

user experience.

(3). Introduction of Fashion Cognition Modeling and O4U Dataset.

This study introduces the task of fashion cognition modeling and con-

structs the Outfit for You dataset. This work bridges the research gap in

personalized fashion recommendation systems that previous works solely rely

on user preferences while overlooking human physical attributes. The pro-

posed Fashion Convolutional Network, trained on the O4U dataset, enables

the fashion recommendation system to provide targeted clothing suggestions

based on customers’ physical information. By leveraging this innovative model,
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the accuracy of fashion recommendations is improved, thereby increasing the

potential sales and customer satisfaction in electronic retail.

(4). Enrichment of Methodology for Virtual Try-on System.

A Multi-layer Virtual Try-on system is presented that incorporates the

technologies of fashion detection, alignment, and segmentation. In contrast to

mainstream approaches relying on Generative Adversarial Network technol-

ogy [35], the proposed try-on system exhibits notable advantages, including

details preservation and high reliability. This system provides a realistic rep-

resentation of outfits, enabling users to visualize how the clothing would look

on them. From the perspective of data representation, this method provides

a new data source for the representation of an outfit.

(5). Improvement of Performance for Body-shape-Aware Recom-

mendation.

This study contributes to the field of body-shape-aware fashion recom-

mendation by introducing a new dataset comprising 20,000 annotated body

samples covering five common body shapes. Each body sample includes a 3D

body model, anthropometric data, and a frontal view image. This dataset is

valuable for body-shape-aware recommendation and related tasks such as vir-

tual try-on and clothed human generation. Additionally, the study proposes

the Body-shape-Aware network, a novel approach that leverages visual features

extracted from body images to enhance the body shape embedding.
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Chapter 3
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Fashion Cognition Modelling

Chapter 8. Conclusion

Figure 1.5 The structure of this thesis.

1.5 Organization of the Thesis

The outline of this thesis is illustrated in Figure 1.5. Chapter 1 presents the

research background, objectives, and significance of this thesis, providing an

introduction to the overall topic and setting the context for the research.

Chapter 2 provides a detailed literature review on fashion recommendation

systems. It covers the state-of-the-art methods in the field, available datasets

used for evaluation, and the evaluation metrics commonly employed. This

chapter serves as a comprehensive overview of the existing research in fashion

recommendation.

Chapters 3, 4, and 5 focus on developing a practical fashion compatibil-

ity model. Chapter 3 introduces a more comprehensive evaluation protocol

named Aesthetic 100, which aims to evaluate the aesthetic quality of fashion
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recommendations. Chapter 4 delves into the development of a hierarchical out-

fit network that leverages the relationships between fashion attributes, items,

and outfits to enhance the performance of the fashion compatibility model.

Chapter 5 introduces an approach to provide convincing explanations for the

fashion compatibility model’s prediction.

Chapters 6 and 7 propose two models to solve the task of fashion cognition

modeling. Chapter 6 introduces this task and a new dataset. Chapter 7 pro-

poses a body-shape-aware embedding approach to recommend outfits tailored

to customers with different body shapes.

Chapter 9 concludes the thesis by summarizing the essential findings and

limitations. Additionally, an overview of future works is provided.



Chapter 2

Literature Review

The fashion recommendation system has two essential requirements: com-

patibility and personalization. Compatibility ensures that fashion outfits

demonstrate aesthetic harmony and coherence among their clothing items.

Personalization emphasizes the need to tailor the recommendation process

to individual preferences and characteristics, ensuring that the recommended

outfits align with each user’s unique body and style. In the past years, a

multitude of methods, datasets, and evaluation metrics have been proposed

to address these two tasks. This chapter presents a detailed review of prior

research efforts in fashion recommendation systems.

2.1 Fashion Compatibility Modeling

Fashion compatibility modeling (FCM) is a task that differs from simple fash-

ion item retrieval because FCM considers the aesthetic principles that govern

the compatibility of different clothing items in an outfit. This section reviews

FCM from two perspectives: the state-of-the-art methods and datasets used

18
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for training and evaluation.

2.1.1 State-of-the-art Methods

At the outset of fashion recommendation research, the main objective is to

recommend single fashion items. Iwata et al. [56] introduced a fashion rec-

ommender system, utilizing a Probabilistic Topic Model to acquire knowledge

about fashion combinations and suggest an appropriate item according to the

query item. Liu et al. [76] later developed a practical system called Magic

Closet, providing users with occasion-oriented item recommendations.

However, the scope of fashion recommendations has expanded beyond in-

dividual item suggestions. There is a growing interest in recommending com-

plete outfits, driven by the need for a more comprehensive range of applica-

tions. Based on the encoding methods employed on outfits, these methods of

FCM can be categorized into three distinct categories: item-wise modeling,

graph modeling, and try-on modeling.

Item-wise modeling approaches have been extensively explored in the liter-

ature. Viet et al. [137] trained Siamese Networks using co-occurrence informa-

tion to predict item-wise compatibility. To address the conflicting similarities

between items within a unified space, the authors introduced Conditional Sim-

ilarity Networks in [136]. Vasileva et al. [134] proposed a type-specific embed-

ding space that respects item types to learn the similarity and compatibility

between items. Wang et al. [143] learned fashion compatibility by compar-

ing features from different layers of a convolutional neural network. Lu et

al. [84] introduced type-dependent hashing modules that consider both item-

item and user-item relationships to generate binary codes. Tan et al. [128]

proposed Similarity Condition Embedding Network, which avoids the reliance
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on explicit labels during testing by learning representations of similarity un-

der different conditions. Lin et al. [71] introduced a Category-based Subspace

Attention Networks, which is capable of capturing multiple dimensions of simi-

larities. Additionally, the outfit ranking loss is commonly employed to improve

the representation of item relationships within an outfit.

Graph modeling methods have also been explored for outfit modeling in

the literature. These methods leverage the inherent relationships and depen-

dencies among fashion items within an outfit to capture compatibility. Han et

al. [41] utilized bidirectional Long Short-term Memory Networks to estimate

the compatibility score based on the probability of the following item given the

previously observed items. Li et al. [68] introduced the fashion outfit scoring

model, which employed non-parametric element-wise reduction as a pooling

function to handle outfits with varying numbers of items. Cui et al. [18] em-

ployed a Node-wise Graph Neural Network to model outfit compatibility using

information from multiple modalities. Cucurull et al. [17] applied a Graph

Neural Network to learn compatibility conditioned on context.

Try-on modeling provides an alternative approach to encoding outfits. It

leverages the try-on images to represent outfits, which aligns with the natural

inclination of humans to evaluate an outfit visually. Dong et al. [25] proposed

a Try-on-guided Compatibility Network that jointly learns the interaction be-

tween individual items and try-on images. They employed a Multi-modal Try-

on Template Network to generate the try-on appearance automatically. Zheng

et al. [166] developed a Collocation and Try-on Network to solve the fashion

compatibility task. They proposed a distillation learning scheme to combine

all clothing items for the try-on appearance. By incorporating try-on images,

these try-on modeling methods enhance the modeling of outfit compatibility

and provide a more visually realistic representation of outfits.
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Alongside fashion images, incorporating fashion attributes enhances the

performance of fashion compatibility models. Zou et al. [169] incorporated

multiple fashion attributes, such as color, design, and print, to learn fashion

compatibility. Feng et al. [29] introduced a Partitioned Embedding Network

that considers color, shape, and texture attributes. Yang et al. [152] pre-

sented an Attribute-based Interpretable Compatibility framework, which pre-

dicts compatibility scores based on the attributes of fashion items and pairwise

matching relationships. Lu et al. [83] employed a stacked self-attention-based

method for modeling high-order interactions between items. Ak et al. [1] pro-

posed Attribute Activation Maps to learn attribute representations. Yang et

al. [150] utilized the attention mechanism, adaptively evaluating the compat-

ibility score by inferring attribute-level matching signals. In summary, previ-

ous research has predominantly focused on encoding outfits at either the item

level [128, 134] or attribute level [29, 150], failing to capture the holistic and

interconnected nature of fashion data, limiting their evaluation performance.

Incorporating fashion attributes has also prompted research efforts toward

providing explanations for evaluation results, which is crucial for practical

applications. Zou et al. [169] proposed to penalize the gradient of the judg-

ment loss to learn the evaluation reasons for the outfit only containing the

top and bottom. Plummer et al. [104] aimed to explain compatibility between

the pair of items by introducing the salient attributes. This approach com-

bined a saliency map highlighting important regions in the image with the

most relevant attribute that explains the match. Li et al. [67] introduced an

attribute-aware recommendation system that can provide fine-grained expla-

nations based on the extracted fashion attribute representations. De et al. [20]

proposed a memory network exploiting the shape and color attribute features

extracted from item images. However, these methods are constrained to pro-
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Table 2.1 Summary of the benchmark datasets for fashion compatibility modeling
task.

Dataset name # of fashion types # of outfits Source

What-to-Wear [76] 2 24,417 Shopping website
Hu et al. [54] 3 28,417 Polyvore

Journey Outfit [162] - 3,392 Travel review website
Maryland [41] 8 21,889 Polyvore
Li et al. [68] 4 195,262 Polyvore

FashionVC [121] 2 20,726 Polyvore
Type-aware [134] 19 68,306 Polyvore
Polyvore-T [143] 5 19,835 Polyvore

Shop the Look [60] 10 38,111 Pinterest
Evaluation3 [169] 2 18,108 Polyvore

cess outfits with a fixed number of items, such as only considering the top

and bottom garments. Moreover, a notable limitation is the misalignment be-

tween the explanations provided by these approaches and the fashion domain

knowledge. For example, the Salient Attribute for Network Explanation [104]

derives explanations from image properties rather than learning from a dataset

that encompasses fashion-specific knowledge.

2.1.2 Benchmark Datasets

Table 2.1 provides an overview of benchmark datasets utilized for the fashion

compatibility modeling task. The What-to-Wear [76] dataset is specifically

constructed for an occasion-oriented recommendation, encompassing annota-

tions for full-body, upper-body, and lower-body clothing. Hu et al. [54] col-

lected a dataset containing item images and text information, such as cate-

gories, names, and descriptions. Journey Outfit dataset [162] contains travel

images of several travel destinations designed for the task of Trip Outfits Ad-
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visor. The Maryland [41] dataset comprises items accompanied by images and

text descriptions. Li et al. [68] collected image, title, and category informa-

tion for each item, along with the number of likes for fashion outfits. The

FashionVC [121] dataset is annotated with category, title, and description in-

formation. The Type-aware [134] dataset provides annotations for item types,

titles, and descriptions. Polyvore-T [143] is a type-label dataset that includes

five categories: top, bottom, shoes, bag, and accessory. The Shop the Look

dataset, introduced by Kang et al. [60], contains scene-product pairs accompa-

nied by bounding boxes for the products and provides information about the

product categories. Evaluation3 [169] grades outfits into three levels (poor,

normal, and good) and annotates reasons for judgments, such as color, print,

and design. These benchmark datasets serve as valuable resources for evalu-

ating and advancing fashion compatibility modeling techniques.

2.2 Personalized Fashion Recommendation

This task involves recommendations based on the user’s preferences and

physical attributes.

2.2.1 State-of-the-art Methods

User preferences can be gleaned from various sources, including social media

and e-commerce platforms, where data such as outfit likes, user comments,

and purchase records provide valuable insights. Packer et al. [95] utilized the

visual preferences of individual users. They employed interpretable image rep-

resentations obtained through a unique feature learning process to understand

users’ previous feedback and their affinity towards specific visual attributes

and styles. Wen et al. [144] constructed a knowledge graph to recommend
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items based on the user’s context, such as occasion, weather, and require-

ments. Chen et al. [8] connected user preferences regarding individual items

and outfits using Transformer architecture. Kim et al. [63] leveraged user-

posted outfits in the Polyvore-U dataset [84] to build a knowledge distillation

framework for outfit recommendation. They aimed to distill the knowledge

from a large dataset into a smaller one for the efficient recommendation. Liu et

al. [78] incorporated visual information into the rating prediction function and

introduced a topic model to categorize words in item reviews into two groups.

One group consists of non-visual words explaining the coherent features of the

item. In contrast, the other group consists of visual words associated with

their visual appearances during different periods. Lu et al. [84] considered

fashion styles for personalized recommendation by encoding users into binary

codes. Li et al. [66] proposed a graph network to hierarchically learn relation-

ships among items, outfits, and users. They refined the representation of users

through their historical outfits. Sagar et al. [111] developed an interpretable

compatibility model that captures item-item and item-user interactions. They

encoded users into an embedding space using their IDs for personalized recom-

mendations. However, the existing research primarily focused on examining

the connection between user preferences and fashion outfits, relying solely on

user comments and purchase records to train personalized fashion recommen-

dation systems. They overlooked the significance of incorporating the user’s

physical characteristics into the modeling process.

As a result, there has been relatively little exploration of modeling relation-

ships between outfits and human physical attributes. Hidayati et al. [47, 48]

learned the compatibility of clothing styles and body shapes through a set of

celebrities’ images. Hsiao et al. [52] developed a visual body-aware embedding

framework to capture the correlation between clothing items and a wide range
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Table 2.2 Summary of the benchmark datasets for personalized recommendation.

Dataset name # of fashion types # of outfits Source

Styles and Substitutes [87] - 773,465 Amazon
He et al. [45] 3 28,417 Polyvore

Style4BodyShape [48] - 347,948 Image search
IQON3000 [122] 6 308,747 IQON
Polyvore-630 [84] 3 127,326 Polyvore
BodyFashion [24] - 75,695 Amazon

Yu et al. [156] - 208,814 Polyvore
Zheng et al. [165] 6 >178,000 Lookbook

of body shapes. Motivated by the observation that different customers pay

attention to different aspects of clothing items, Zheng et al. [165] introduced

a user-specific item-to-set metric trained on personal social media data. This

approach aims to personalize the recommendation based on the individual’s

preference. However, these studies only investigated body shapes as a physical

attribute, neglecting other attributes such as hairstyle and skin color, which

are valuable for a comprehensive understanding of outfit-person compatibility.

2.2.2 Benchmark Datasets

The benchmark datasets used in personalized recommendation tasks are sum-

marized in Table 2.2. The Styles and Substitutes dataset [87] includes product

images, categories, and co-purchase information, offering valuable insights of

user preferences and purchase behavior. He et al. [45] constructed a com-

prehensive dataset encompassing users’ review histories, purchase histories,

and thumbs-up information, providing an understanding of user preferences

and interactions. The Style4BodyShape dataset [48] combines data on female

celebrities, their body measurements, and photos, enabling exploration of the

relationship between body shape and fashion styles. Song et al. [122] intro-
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Figure 2.1 Statistics of evaluation indicators adopted in previous fashion rec-
ommendation papers. Word abbreviations are employed in the figure for a clear
illustration. Agre represents Agreeable [57]; N-best represents N-best Accuracy [56];
Simi represents Similarity [56].

duced the IQON3000 dataset, which contains 308,747 outfits created by 3,568

users. An image, category, attributes, and description accompany each fashion

item in the dataset. Additional information, such as price and number of likes,

has also been collected for each outfit. Polyvore-630 [84] offers a diverse range

of outfit styles and preferences, containing 127,326 outfits created by hundreds

of users, accompanied by user information. The BodyFashion dataset [24] in-

cludes 11,784 users and their latest historical purchase records, providing a

total of 116,532 user-item records that contain information on purchase size

and rating. Yu et al. [156] constructed a dataset of 208,814 outfits compris-

ing only top and bottom, created by 797 users. Zheng et al. [165] collected

personal profiles from 2,293 users, including age, number of likes, fans, and

garment images cropped using a detection model. While these datasets pro-

vide valuable insights into user preferences and purchase behavior, they do

not explicitly capture the intricate relationships between fashion outfits and

individual physical characteristics such as body shape and hairstyle.

2.3 Evaluation Metrics

Figure 2.1 presents statistics of evaluation indicators adopted in previous fash-

ion recommendation papers. The earliest paper was published in 2007 [114],
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while the most recent paper was published in 2023 [20]. Among the total

103 papers, 78 papers present quantitative outcomes. There are 14 different

evaluation indicators employed in the previous studies, which are: Area Un-

der Curve (AUC) [137], Error Rate (ER) [87], Lift@K [105], Agreeable [57],

Root Mean Squared Error (RMSE) [21], F1 score [145], mean Average Pre-

cision (mAP) [68], Normalized Discounted Cumulative Gain (NDCG) [54],

Recall [38], N-best accuracy [56], Fill-in-the-Blank (FITB) Accuracy [41], Sim-

ilarity [56], Hit Ratio (HR) [10], and Mean Reciprocal Rank (MRR) [73].

Among these 14 evaluation metrics, AUC is the most frequently used indica-

tor, accounting for 36% of fashion recommendation tasks. Specifically, given a

positive item pair in the testing set denoted as (hi, tig) ∈ Pt, and N negative

items {tin}Nn=1 that belongs to complementary fashion types with hi, the AUC

is calculated using the following function:

AUC =
1

N |Pt|
∑
i

∑
n

δ(s(hi, tig) > s(hi, tin)) (2.1)

where δ(x) denotes the indicator function, which outputs 0 if the input x

is false and one otherwise. s(hi, tig) calculates the score between this item

pair. |Pt| is the number of all positive pairs. However, the AUC metric

only reveals the similarity of the aesthetic tastes of models to those defined

in the training set. Other indicators, such as NDCG, mAP, and Recall, are

also popular in recommending tasks. NDCG and mAP are used for ranked

retrieval. Additionally, indicators like MRR, F1 score, and Lift@K reflect the

model’s ranking performance. Since Lift@K is not well-known, its definition

is given as follows:

Lift@K =
AP@K (model)

AP@K (random)
(2.2)
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ER is adopted in [87] to reflect the relationship of “also-bought”. Agreeable

refers to the degree to which solid and patterned queries agree with the rec-

ommendation algorithm’s output. Another metric named N-best accuracy is

defined as the rate of correct recommendation of the top (bottom) out of N

recommendations. The Similarity evaluates the average degree of similarity

between the held-out paired clothing and the recommended clothing. How-

ever, the above three indicators are rarely used in later research because of

the more complicated tasks [56, 57, 87]. Han et al. [41] first introduced the

term FITB as selecting an item that matches best with a given outfit. FITB

is suitable for tasks that require a connection between semantic and visual

information. However, the lack of previous research on objective evaluation

in modeling fashion compatibility [92, 172] has resulted in the inadequacy of

existing quantitative indicators to assess the aesthetic capabilities of trained

fashion compatibility models effectively. The existing evaluation protocols also

fail to provide detailed performance insights at more detailed fashion dimen-

sions, limiting their effectiveness.

2.4 Chapter Summary

This literature review explores the field of fashion recommendation systems,

focusing on two aspects: compatibility and personalization.

The state-of-the-art methods of fashion compatibility modeling are re-

viewed, including recommending individual fashion items and complete outfits.

Item-wise modeling approaches, such as Siamese networks and conditional sim-

ilarity networks, have been extensively explored to capture item-wise compat-

ibility. Graph modeling methods leverage the relationships and dependencies

among fashion items within an outfit. The try-on modeling methods provide
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a visually realistic representation of outfits. Incorporating fashion attributes

and using explainability techniques have also been investigated to enhance the

interpretability and performance of fashion compatibility models.

Various methods are discussed regarding personalized fashion recommen-

dations. Some methods leverage user-specific data from social media and e-

commerce platforms, such as outfit likes, comments, and purchase records. Ad-

ditionally, some studies have explored the correlation between clothing items

and body shapes to provide personalized recommendations.

This chapter also summarizes benchmark datasets for evaluating fashion

compatibility modeling and personalized recommendation systems. These

datasets provide valuable resources for training and evaluating different al-

gorithms and models in the field.

Lastly, section 2.3 provides an overview of the most commonly used evalu-

ation indicators in previous studies, which focus on either the recommending

or the retrieval performance of the fashion recommendation problem.



Chapter 3

How Good Is Aesthetic Ability

of a Fashion Model?

3.1 Introduction

Fashion compatibility modeling aims to measure the fashion compatibility of

an outfit consisting of variable fashion items [10, 17, 49, 51, 83, 153, 160, 169].

Online retailers leverage the aesthetic capabilities of these fashion compati-

bility models for cross-selling purposes, encompassing activities such as outfit

generation, evaluation, and recommendation. Therefore, a reliable and ob-

jective evaluation metric for assessing these models is critical for practical

fashion-oriented application. Present methodologies for assessing predomi-

nantly prioritize performance evaluation metrics such as mAP [68], MRR [73],

Recall [38]. The commonly adopted metric for assessing compatibility clas-

sification accuracy is the Area Under the Curve (AUC) [137]. The FITB

(Fill-In-The-Blank) accuracy is also introduced in [41] as the evaluation met-

ric. However, none of the existing metrics specifically emphasize capturing the

30
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aesthetic ability of the model, as pointed out in [92, 172].

The term ”aesthetic ability” refers to the model’s capacity to comprehend

the compatibility of fashion items and perceive their aesthetic appeal. In the

domain of fashion, the aesthetic system can be categorized into two primary

standards, which are Bottom-up and Top-down [27, 28, 43]. The bottom-up

standard implies that the fashion trend emerges from the general population

and gradually impacts the mainstream. It represents a collective consensus

that occurs when a significant number of individuals agree on a particular

fashion trend. On the other hand, the top-down standard originates from

professional expertise and will be broadly embraced by the public due to its

inherent essence. This standard adheres faithfully to the principles of beauty

as established through domain knowledge. It can be viewed as luxury fashion,

where predefined styles exert significant influence, leading the public to adopt

them. Therefore, three considerations should be taken into account when

designing an evaluation protocol for fashion aesthetics:

(1). Completeness: The evaluation protocol should establish an objective

consensus as the reference basis for quantitative assessment. It should

incorporate a systematic standard to ensure a comprehensive evaluation.

(2). Practicality. The evaluation protocol should adopt a feasible approach

to carry out the assessment. It should consider the practical constraints

and limitations to ensure the protocol can be effectively implemented.

(3). Reliability. The evaluation protocol should consist of professional and

reliable criteria. The evaluation content should be trustworthy and based

on authoritative sources to ensure accurate and credible results.
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Figure 3.1 The Aesthetic 100 (A100) is introduced to evaluate fashion compatibil-
ity models. The LAT and AAT tests of A100 correspond to two aesthetic standards
in the fashion domain. The A100 can assess the characteristic performance that
may not necessarily align with the overall performance.

To achieve this goal, as depicted in Figure 3.1, a more comprehensive eval-

uation protocol called A100 (Aesthetic 100) is proposed, which differs from

previous assessments that solely focused on overall performance. Specifically,

A100 consists of two tests which are Liberalism Aesthetic Test (LAT) and

Academicism Aesthetic Test (AAT), corresponding to the bottom-up and

top-down standards, respectively. Both these two tests are in the form of

multiple-choice questions. Images of LAT are gathered from the widely used

fashion datasets [41, 121, 134]. The questions are automatically generated and

then manually reviewed by fashion experts. Each question has only one correct

answer and a collective consensus for the answer has already been achieved

in a small group. To collect the ground truth, a website is developed to dis-
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tribute the LAT as a questionnaire among the fashion community. Due to

the variability in participant responses, the LAT contains two kinds of scores:

1). LAT score (LATs), a challenging score that aligns with the consensus of

the majority. The option with the most votes in each question is assigned

one point, while all other options are assigned zero points. 2). mean LATs

(mLATs), a soft score that considers the minority. Each option’s score is the

probability of it being chosen.

Pertaining to AAT, the construction process heavily relies on the expertise

and involvement of the fashion community due to its high level of professional

requirements. After a thorough investigation and in-depth discussions, it has

been concluded that six dimensions of the model’s aesthetic ability are exam-

ined, which are Color, Style, Occasion, Season, Material, and Balance. The

AAT’s questions and choices are then carefully formed to adhere to these six

dimensions. Each question is restricted to examining the single aesthetic di-

mension of the model, allowing A100 to showcase the model’s characteristic

performance at a fine-grained level. The accuracy of LAT is represented

by the AAT score (AATs). The accuracy on each dimension is defined as a

specific index, such as Color index.

The remainder of this chapter is structured as follows: Chapter 3.2 pro-

vides an overview of the related work on fashion compatibility evaluation.

Subsequently, Chapter 3.3 describes the construction steps of LAT and AAT

in detail. In Chapter 3.4, the experimental results of A100 are presented to

validate its effectiveness. Finally, Chapter 3.5 concludes this chapter by sum-

marizing the essential findings.
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3.2 Related Work

For practicality purposes, the A100 is formulated as the Fill-in-the-Blank

(FITB). To provide the necessary background on FITB, this section presents

a summary of the FITB tests that have been utilized in previous studies. Han

et al. [41] published the first fashion dataset focusing on fashion compatibility

in 2017, named Maryland dataset, consisting of 3,076 outfits gathered from

the Polyvore website. For each question in the Maryland FITB test, there is

an outfit with three incompatible items that are randomly selected from the

dataset. Vasileva et al. [134] improved the Maryland dataset by respecting item

types and proposed the type-aware FITB test set containing 10,000 questions.

The incompatible options are randomly selected while they share the same

fashion types as the correct option. Lu et al. [84] introduced an outfit dataset

called Polyvore-U, including user information, and it also employs the FITB

test for evaluation. A large dataset named iFashion created by fashion experts

from Taobao contains 1.01 million outfits [8]. Ten percent of the outfits are

split as the test set to obtain the FITB test. Same as for the Maryland dataset,

three incorrect choices are randomly selected from other outfits. In summary,

there are two limitations of the previous FITB test set:

(1). Completeness. These FITB tests lack uniformity in their aesthetic stan-

dard. Various online customers contribute outfits in these datasets, so

none of these issues has likely reached a consensus, such as whether an

outfit is “compatible” and whether each question’s answer is “correct”.

Additionally, two aesthetic standards (Bottom-up and Top-down) are not

covered by these FITB tests.

(2). Reliability. These FITB questions are low quality because their choices
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are created by randomly sampling several images. Therefore, the correct-

ness of the randomly selected items cannot be guaranteed.

More details can be found in Appendix A.

3.3 A100 Evaluation Protocol

The outfit generation principle and construction details of A100 are introduced

in this section

3.3.1 Outfit Generation Principle

A valid outfit should consist of clothing covering the whole body and shoes.

(Four examples are shown in Figure 3.2 (a)). Bags and accessories belong to

the complementary items (shown in Figure 3.2 (b)). Clothing is a general term

that includes top, pants, skirt, dress, jumpsuit, and outerwear. Accessories

include ring, earring, necklace, bracelet, hat, watch, eyewear, legwear, glove,

neckwear, brooch, and hair wear. Clothing and shoes are indispensable for a

valid outfit. It is ensured that each outfit consists of one and only one pair of

shoes, while the categories of pants, skirt, jumpsuit, and dress are mutually

exclusive. Some mix-and-match situations are neglected due to lacking the

universality, such as multi-layer (Figure 3.2 (c)) and special ways of mix-and-

match (Figure 3.2 (d)). Only one item from each clothing subcategory and

accessory subcategory can exist in an outfit. Bags and accessories are optional

for a complete outfit. An outfit typically consists of a single bag, disregarding

specific situations such as Figure 3.2 (e). Thus, in practice, the number of

items in an outfit usually does not exceed eight [69], and the number of clothing

items in the FITB question is limited to between one and seven. Furthermore,
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(a) top and bottom (or one piece) with a pair of shoes

(b) basic outfit in (a) with additional fashion items

(c) utilizing multiple garments to create layers

(d) dress and pants (e) multiple bags

Figure 3.2 Examples of valid outfits.
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the number of options is changed from four to five because it is observed that

using five options to create these questions achieves a compromise between the

workload and test complexity.

3.3.2 Liberalism Aesthetic Test (LAT)

Based on the insights above, the LAT is constructed as following steps:

Step 1: Collecting source images. Three popular fashion datasets are

cleaned including FashionVC Dataset [121], Type-aware Dataset [134], and

Maryland Dataset [41]. (Each image in A100 depicts one single apparel with a

plain background to be consistent with other outfit datasets.) (Note that every

image in the A100 includes a single item on a white background consistent with

other popular datasets. It takes into account the potential domain shifting

across different datasets.) These datasets are collected from websites, and

there are many decorative images in these datasets. The decorative images,

images with multiple items, and cluttered backgrounds are removed. Then,

these images are categorized into 20 categories as summarized in Table 3.1.

After rigorous categorization, a pool of clothing items is obtained with the

clothing categories. In addition, because these datasets were released a few

years ago, 8,972 item images are newly gathered from Mytheresa1 to keep up

with the trends. Combining all the datasets, a vast pool of 366,176 fashion

images is obtained.

Step 2: Generating valid outfits. The Outfit Generation Principle (OGP)

is proposed to generate outfits automatically to minimize the impact of indi-

vidual preference on the data. In accordance with the description of a valid

outfit defined in Section 3.3.1, clothing and a pair of shoes are first selected,

1https://www.mytheresa.com/
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Table 3.1 Number of items for 20 clothing categories in the cleaned Maryland
dataset [41], cleaned Type-aware dataset [134], cleaned FashionVC dataset [121],
and newly collected Mytheresa dataset.

Category Cleaned-M Cleaned-T Cleaned-F Mytheresa

Tops 19,397 26,528 9,537 1,405
Pants 8,957 12,653 4,703 833
Skirts 5,307 8,592 4,102 527
Jumpsuits 296 820 5 154
Dresses 7,480 12,649 2,607 1,922
Outerwear 10,169 14,172 2,368 961
Bags 21,268 34,882 6 719
Shoes 20,135 38,961 0 687
Rings 3,227 6,265 0 212
Earrings 5,508 12,450 0 123
Necklaces 4,664 7,781 0 352
Bracelets 5,189 7,522 0 207
Hats 2,913 5,550 0 196
Watches 2,290 3,505 0 28
Eyewear 6,685 8,990 1 156
Legwear 202 507 0 155
Gloves 386 723 0 86
Neckwear 1,189 2,778 0 189
Brooch 995 280 0 8
Hair wear 962 1,048 0 52

and then the items belonging to complementary categories are selected. Since

unusual scenarios are excluded, such as a skirt with pants or a dress with

pants, the jumpsuit and dress can be jointly referred to as one-pieces, and

the pants and skirt can be collectively referred to as lower-body. The detailed

algorithm of the Outfit Generation Principle is shown in Algorithm 1.

Step 3: Verifying valid outfits. While these generated outfits are valid,

they may not necessarily be regarded as compatible outfits. So it is essential to

manually review and evaluate them with the assistance of professional stylists.
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Algorithm 1 Generating valid outfits

Data: Clothing C, Tops Ct, Bottom Csp, Outerwear Co, One-piece Cdj, Acces-
sories A, Bag B, Shoes S

Result: n complete outfits O
i = 1 while i ≤ n do

α = random.randint(2, 8) . Length of the outfit Oi ← Oi ∪ Srand(1) .
The subscript rand(1) denotes random selecting 1 elements from the set
α = α− 1 switch α do

case 1 do
Oi ← Oi ∪ (Cdj)rand(1) . One-piece

end
case 2 do

c = (C − Co)rand(1) Oi ← Oi ∪ c. Clothing excepting Outerwear if

c ∈ Ct then
Oi ← Oi ∪ (Csp ∪ Cdj)rand(1)

else if c ∈ Csp then
Oi ← (Ct)rand(1)

else
Oi ← (Ct ∪ Co ∪ B ∪ A)rand(1)

end

end
otherwise do

c = Crand(1) . Select one clothing Oi ← Oi ∪ c if c ∈ Ct then
Oi ← Oi∪(Csp∪Cdj)rand(1) Oi ← Oi∪(Co∪B∪A)randOP (α−2). The
subscript randOP (n) denotes random selecting one element
from each category (excepting the A) in the set

end
else if Crand(1) ∈ Csp then
Oi ← Oi ∪ (Ct)rand(1) Oi ← Oi ∪ (Co ∪ B ∪ A)randOP (α−2) else
Oi ← Oi ∪ (Ct ∪ Co ∪ B ∪ A)randOP (α−1)

end

end
i = i+ 1

end
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To avoid introducing bias into the data, a coarse-to-exemplary approach is

implemented. Specifically, five experts are invited to remove the incompatible

outfits from the 50,000 randomly generated outfits (10,000 for each expert).

After the verifying process, there are 12,096 outfits remaining. The experts are

then tasked with assigning an aesthetic score between 1 and 10 to each outfit.

Finally, the top 2,000 outfits are selected based on these aesthetic scores.

Step 4: Creating questions with multiple choices. To ensure objectivity,

the initial FITB questions are created using these 2,000 outfits and randomly

blank one clothing item for each outfit. Each question’s wrong choices are

randomly selected from the remaining items sharing the same category as the

blanked item. Each question contains only one correct answer to ensure ef-

fectiveness. These 2,000 questions are then released to ten team members

(including those five experts) to complete the test. The advantage of intro-

ducing new members is that it can reduce possible bias caused by the first five

experts who have seen the questions in the process of verifying. The ques-

tions are ranked based on the answers’ consistency, and the top 500 questions

are retained. Subsequently, the team members are assigned to answer these

questions every three days. The order of choices in each question is manually

altered, and this process is repeated three times. After careful evaluation, 100

questions are chosen that exhibit 100% consistency in answers. It is important

to note that the selected questions consider the balance of different categories,

following the ratio of Top : Bottom : Outerwear : One-piece : Bags : Shoes :

Accessories = 1 : 1 : 1 : 2 : 2 : 2 : 1.

Step 5: Collecting responses from the crowd. Lastly, a website con-

taining the LAT test is developed, with responses collected from the fashion

community. The LAT score (LATs) was defined as follows:
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?

0.71 0.05 0.10 0.04 0.10

Figure 3.3 An example question in LAT where the red box indicates the ground
truth answer. These numbers refer to the proportion of participants who select the
corresponding answer (COUNT (Anwmodel(n))/x) as defined in Equation 3.2.

LATs =
100∑
n=1

δAnwmodel(n)Max(Anwexpert(n))/100 (3.1)

where Anwmodel(n) is the answer index predicted by a compatibility model for

the n-th question and δij is the Kronecker delta function. TheMax(Anwexpert(n))

refers to the ground truth answer, which is mostly chosen by the public. The

mLATs that reveal a variance in people’s fashion aesthetics is also provided.

The mLATs is defined as follows:

mLATs =
100∑
n=1

COUNT (Anwmodel(n))/x (3.2)

where the function COUNT (·) indicates how many people choose the corre-

sponding answer, and x is the total number of stylists participating in this

survey. For example, as depicted in Figure 3.3, it can be observed that the

first candidate holds the most significant proportion (0.709), indicating it as

the preferred choice among the majority. The remaining candidates’ propor-

tions are relatively minor, suggesting a collective consensus consistent with

the previously mentioned Bottom-up standard.
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3.3.3 Academicism Aesthetic Test (AAT)

The design of the Academicism Aesthetic Test is different from LAT. Close

collaboration with nine fashion designers is established to incorporate their

professional experience, thus meeting the demanding requirements of designing

such a test. The creation process follows the “Top-down” aesthetic standard,

and the steps involved are presented as follows.

Step 1: Determining Assessing Dimensions. Extensive research and

discussions are conducted to determine the specific aspects of the model’s

artistic ability that need to be examined. Given the textbook’s absence of

predefined answers, this task is challenging. Previous studies [26, 128, 134]

suggest various factors, such as material, color, and style, that have been

identified as potentially influencing outfit compatibility. These aspects serve

as valuable references for guiding the examination process. In light of this, a

thorough investigation is conducted on the FITB questions in the Type-aware

dataset [134]. Each question is analyzed in detail to determine the factors that

influenced the correctness or incorrectness of the choices. Figure 3.4 illustrates

?

gt season
color
style

material
style

material
style

Figure 3.4 A FITB example in the Type-aware test set. It can be observed that
more than two factors cause the incorrect answers.
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Table 3.2 Specified factors for evaluating the model’s ability of fashion aesthetic.

Dimension Sub-dimension Question Number

Color

Same Color 1 - 5
Warm Tone 6 - 10
Cool Tone 11 - 15

Contrast Color 16 - 20

Style

Street Wear 21 - 24
Modern 25 - 28
Vintage 29 - 32
Sweet 33 - 36
Sporty 37 - 40
Classic 41 - 44

Gender Neutral 45 - 48
Mash-up 49 - 52

Occasion

Formal 53 - 55
Cocktail 56 - 58

Smart Casual 59 - 61
Casual 62 - 64
Holiday 65 - 67

Season

Spring 68 - 70
Summer 71 - 73
Autumn 74 - 76
Winter 77 - 79

Material
Element 81 - 83
Pattern 84 - 87
Texture 88 - 91

Balance
Silhouette 92 - 94

Simple & Complicated 95 - 97
Proportion 98 - 100

one example question in the Type-aware dataset. It can be observed that

multiple factors contribute to the incorrectness of the answers. Specifically, the

army-green cotton outerwear is incompatible with the other fashion items due

to factors such as season (Winter wear vs. Spring wear), color (incompatibility

with the taro-purple bag), and style (casual outerwear vs. elegant style of the

other items). After several discussions, the remaining factors are organized

and incorporated into a tree structure, resulting in six main dimensions to

assess the model’s aesthetic ability, where the details are shown in Table 3.2.
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?

Figure 3.5 An example question in AAT where the red box indicate the ground
truth answer. The difference between the candidates in the options can only be the
dimension designed to examine (color in this case).

Step 2: Creating outfits with styling ideas. A group of nine designers

searches for new styling ideas by collecting images from various online websites,

such as SSENSE. They create 450 outfits, with 50 outfits contributed by each

designer. Subsequently, a voting mechanism is employed to select the top 100

outfits from the entire collection.

Step 3: Designing options accordingly. Based on the sub-dimensions

defined in Table 3.2, the examination aspect of each question is determined in

advance. For instance, the first 20 questions are assigned to assess the model

from the Color dimension. Through this strategy, AAT can intuitively demon-

strate the compatibility model’s specific performance. The performance on the

Color and Style questions are denoted as the color and style indexes, respec-

tively. Note that the proportion of each dimension considers both importance

and balance. When creating the incorrect answers, two criteria are adhered

to: 1) Each question has only one correct answer; 2) The incorrect answer is

solely incorrect due to the predefined factor. This ensures that the evaluation

can effectively highlight the model’s shortcomings. For instance, as shown in

Figure 3.5, the correct option for this example is “the third one”. The reason
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is that the correct item’s color matches the outfit’s overall composition. It can

be observed that the incorrect answers are identical to the correct answer in

all dimensions except for color dimension. The model performance on AAT is

defined as AATs (AAT score).

3.4 Analysis

The characteristic of the proposed evaluation protocol is demonstrated through

the qualitative and quantitative results. Specifically, two research questions

are addressed in this section.

• Reliability. Is the evaluation protocol accurate and objective?

• Explainability. How does A100 help to explain the aesthetic ability of

fashion compatibility models?

3.4.1 Analysis of Reliability

The accuracy of A100 is first examined by comparing the evaluation results of

different models on A100. Specifically, four mainstream approaches focusing

on modeling fashion compatibility are compared, including Fashion Hashing

Network (FHN) [84], Bidirectional Long Short-term Memory Networks (Bi-

LSTMs) [41], Type-aware Similarity Embedding (TSE) [134], and Similarity

Condition Embedding Network(SCE-Net) [128]. These four models are firstly

evaluated on three mainstream FITB tests: the Maryland, Polyvore-630, and

Type-aware FITB test. When the models’ performances revealed by these

tests conflict, a voting mechanism is adopted for judgment. It is worth noting

that all models are trained using default parameters and settings because their
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Table 3.3 FITB evaluation results of four state-of-the-art methods on the Mary-
land FITB test [41], Polyvore-630 FITB test [84], Type-aware FITB test [134], LAT
test, and AAT test. For TSE [134], its pre-training model is employed directly. As
for Bi-LSTMs [41], FHN [84], and SCE-Net [128], they are all retrained according
to the open-source codes.

Methods Training dataset Maryland Polyvore-630 Type-aware LATs mLATs AATs

Bi-LSTMs Maryland 53.50% 41.68% 37.46% 36% 30.82% 35%
FHN Polyvore-630 46.20% 53.13% 45.80% 54% 41.62% 40%
SCE-Net UT-Zappos50k 51.30% 42.92% 51.53% 72% 54.63% 42%
TSE Type-aware 54.97% 47.07% 57.69% 73% 56.17% 59%

training conditions and input data are different. For the sake of fairness, these

models are regarded as off-the-shelf models.

The quantitative results are reported in Table 3.3. It is observed that

the ranking of four methods, from best to worst, is as follows: TSE, SCE-

Net, FHN, and Bi-LSTMs. The performance results assessed on the A100

metric align with this order, demonstrating its accuracy in assessing the per-

formance of various compatibility models. Furthermore, the second column

of Table 3.3 indicates that Bi-LSTMs, FHN, SCE-Net, and TSE are trained

on distinct datasets, which introduces the risk of overfitting their respective

training data. For instance, When evaluated on the Maryland test set, the Bi-

LSTMs method demonstrates competitive results, with TSE being the only

method that outperforms it. However, the Bi-LSTMs method achieves the

lowest performance on the Type-aware and Polyvore-630 test set. This poses

a challenge for model generalization and transfer learning, as evaluating the

models on the same dataset they are trained on may lead to biased or false-

positive performance comparisons. To address this, additional experiments

were carried out on the POG dataset [8], which is a dataset distinct from

Polyvore. The outcomes of these experiments align with previous findings,
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(a) training on Type-aware dataset (b) training on UT-Zappos50k dataset

Figure 3.6 Experiments of finding the optimal model for TSE [134] and SCE [128]
based on AAT (red), LAT (green), and the Type-aware validation set (yellow) to
verify the objectivity of A100. Blue circles on curves represent optimal stop epochs.

as the results indicate the following rankings: Bi-LSTMs (47.21%) < FHN

(54.13%) < SCE-Net (57.27%) < TSE (66.65%). To further verify the reli-

ability of A100, other baselines such as NGNN [18] and CAS-Net were also

evaluated. NGNN, trained on the Maryland dataset like Bi-LSTMs, achieved

a FITB accuracy of 50.68% compared to Bi-LSTMs’ 53.50%, LATs of 33%

compared to 36%, mLATs of 29.88% compared to 30.82%, and AATs of 30%

compared to 35%. These results show that A100 is an effective standalone

protocol for evaluating fashion compatibility models.

To verify the objectivity of A100, a comparative experiment is conducted

using a validation set. The TSE model is retrained using the same settings

on the identical training dataset. To determine the optimal training epoch,

the model’s performance is assessed using three distinct validation sets: the

original validation set, LAT (from A100), and AAT (from A100). These check-

points saved at each optimal epoch can be used to compare the model’s per-

formance on multiple widely-used testing datasets. Figure 3.6 (a) depicts the
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Table 3.4 The performance results of optimal TSE [134] retrained on Type-aware
dataset [134], and SCE-Net [128] retrained on UT-Zappos50k dataset [128]. All
results reported below are FITB accuracy.

Training dataset Models Maryland Polyvore-630 Type-aware LATs mLATs AATs

Type-aware
AAT validated 56.93% 44.31% 53.69% 69% 52.76% 64%
LAT validated 57.41% 46.42% 52.05% 76% 57.65% 58%
Type-aware validated 56.17% 42.12% 55.58% 71% 54.81% 57%

UT-Zappos50k
AAT validated 53.84% 43.87% 55.46% 79% 63.19% 52%
LAT validated 52.11% 42.64% 51.63% 75% 59.42% 49%
Zappos validated 51.21% 41.44% 49.57% 71% 54.17% 42%

validation and training losses at each epoch. The blue circles on the red, yel-

low, and green curves indicate the optimal epoch determined by AAT (epoch

8), Type-aware (epoch 1), and LAT (epoch 4), respectively.

The quantitative results of the three models are presented in Table 3.4.

Among them, the Type-aware validated model excels in the Type-aware test,

but consistently underperforms in other indicators. This finding emphasizes

the effectiveness of A100 in identifying models with better generalization. Fig-

ure 3.6 (b) depicts a similar experiment with SCE-Net trained on the UT-

Zappos50k training set, which yields consistent patterns as shown in Table 3.4.

Notably, the optimal model obtained through AAT validation consistently

demonstrates superior performance across all test sets
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Table 3.5 AAT results of FHN [84], Bi-LSTMs [41], TSE [134], and SCE-
Net [128]. Each index score is obtained by calculating the ratio of correct answers
to the total number of questions in the index. Take Balance index for example, the
score is computed by dividing the number of correct answers in the Balance group
by 9.

Indexes FHN Bi-LSTMs TSE SCE-Net

Color (20%) 0.50 0.30 0.85 0.75
Style (32%) 0.22 0.34 0.50 0.28

Occasion (15%) 0.60 0.40 0.53 0.33
Season (12%) 0.42 0.50 0.58 0.33

Material (12%) 0.50 0.42 0.50 0.50
Balance (9%) 0.33 0.11 0.56 0.33

AATs 0.40 0.35 0.59 0.42

3.4.2 Analysis of Explainability

I. Quantitative analysis.

To validate the A100’s explainability, Table 3.5 presents the detailed perfor-

mances of FHN, Bi-LSTMs, TSE, and SCE-Net. The AAT design methodol-

ogy, introduced in Section 3.3.3, allows A100 to examine the model’s aesthetic

ability on six fine-grained dimensions. Each dimension contains a different

number of questions ensuring a balanced representation of sub-dimensions.

Some interesting insights can be observed in Table 3.5:

(1). TSE outperforms other methods primarily due to its exceptional perfor-

mance on the Color index, where TSE achieves 0.85, whereas FHN and

Bi-LSTMs only achieve 0.5 and 0.3, respectively.

(2). FHN demonstrates a better understanding of Occasion than TSE and

SCE-Net. This can be attributed to its training data of user information

being more closely related to the Occasion dimension, leading to better

performance in this aspect.
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Table 3.6 Performances comparison of FHN [84], Bi-LSTMs [41], TSE [134], and
SCE-Net [128] on the Season dimension.

FHN Bi-LSTMs TSE SCE-Net

Spring 1 2 3 1
Summer 2 1 1 1
Autumn 1 2 1 1
Winter 1 1 2 1

Total 5 6 7 4

(3). FHN has the lowest score in the Style index among the three models,

with a score of only 0.22. This can be attributed to the inclusion of

diverse users’ information, which broadens the impact of different personal

preferences and complicates the model’s comprehension of Style.

(4). Bi-LSTMs obtain a score of 0.11 in the Balance dimension, which pri-

marily focuses on assessing the shape of clothing items, such as Proportion

and Silhouette. This outcome suggests that Bi-LSTMs exhibit lower sen-

sitivity toward the item’s shape.

Through these analyses, it can be concluded that the A100’s characteristic

performance offers a more comprehensive perspective for evaluating models

compared with conventional evaluation metrics.

Table 3.6 compares performances of these four methods on Season dimen-

sion, which consists of four sub-dimensions: Spring, Summer, Autumn, and

Winter. TSE demonstrates the highest overall performance among these mod-

els, while SCE-Net appears to underperform on the Season dimension. More

specifically, the Bi-LSTMs method exhibits good performance in the Autumn

group, FHN achieves the highest scores in the Summer group, and TSE show-

cases relatively strong ability in the Spring and Winter groups.
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?

(a)
GT Bi-LSTM FHN SCE-Net CSN

(b)

?

Figure 3.7 Examples of AAT assessing performances of models on Color index.
(a). Question examining Same Color. (b). Question examining Contrast Color.

II. Qualitative analysis.

Figure 3.7 provides a further illustration of the qualitative findings regard-

ing the Color dimension. This dimension contains Cool Tone, Warm Tone,

Contrast Color, and Same Color. Upon analyzing the qualitative results, there

are several observations:

(1). Bi-LSTMs method exhibits a limited capacity for matching colors. As ev-

idenced in Figure 3.7 (a), the choice of green boots selected by Bi-LSTMs

is deemed unreasonable given the colors of the items mentioned in the

question. In contrast, TSE consistently demonstrates strong performance

within the color group. Among the 20 questions, all the incorrect answers

selected pertain to the Contrast Color subgroup.

(2). SCE-Net achieves a Color index score of 0.75, with the four incorrect

questions also falling into the Contrast Color subgroup. An example is

illustrated in Figure 3.7 (b). The army green boots are the most suitable

choice as they form an interesting color composition with the red bag and

dress.

(3). FHN performs relatively poorly on this dimension, getting 0.5 in the Color
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index. It earns 4 points for Warm Tone questions while receiving two

points for each of the other three sub-dimensions.

GT Bi-LSTM FHN SCE-Net TSE

0.08 0.75 0.04 0.03 0.09

?

Figure 3.8 Example question in LAT. The numerical values below each option
represent the selection ratio among individuals.

The results of these four models obtained on LAT aligns with the insights

obtained previously. This is evident in Figure 3.8, where it can be observed

that the Bi-LSTMs method consistently exhibits a bold taste in color match-

ing, while TSE maintains a good performance in the Color dimension. Fur-

thermore, the agreement ratios of participants in selecting each option fur-

ther validate the observations provided by the AAT. For first question, the

Bi-LSTMs method selects the answer with only 4% agreement among par-

ticipants, whereas TSE chooses the same answer with over 75% agreement.

Similarly, in the second question, options selected by Bi-LSTMs and FHN

have lower agreement percentages of 4% and 10%, respectively, while TSE se-

lects the answer with over 72% agreement. These observations emphasize the

characteristic performance of fashion compatibility models across dimensions,

not limited to Color.

By analyzing the model’s performance across various dimensions, one can
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identify the specific aspects where the model requires improvement. For in-

stance, A100 highlights the relatively weak performance of existing models in

the Balance dimension. To enhance the model, a potential approach could

involve sampling more data related explicitly to the balance aspect.

3.5 Chapter Summary

In this chapter, a new evaluation protocol named A100 is introduced to exam-

ine the aesthetic ability of the fashion compatibility model. A100 incorporates

fine-grained dimensions to examine specific areas where the models may be

lacking. By incorporating these evaluations into performance analysis, valu-

able insights can be gained for improving the models. The comprehensive anal-

ysis conducted shows its effectiveness. In the next chapter, a proposed fashion

compatibility model is compared against 14 baselines utilizing the A100 eval-

uation protocol. The new aesthetic perception indicators have the potential

to contribute to the development of modern fashion intelligence systems and

inspire practical applications in the field of real fashion AI.



Chapter 4

Hierarchical Outfit Network for

Fashion Compatibility Learning

4.1 Introduction

The continuous advancement of artificial intelligence (AI) has dramatically

accelerated the fashion industry, particularly in the context of online con-

sumption, which has maintained its dominance and continues to grow [4]. In

this online landscape, cross-selling plays a crucial role in boosting the click-

through rate (CTR) and sales revenue of online retailers. However, one of

the main challenges faced by these retailers is intelligently generating quali-

fied fashion compositions for their customers. To address this challenge, there

has been a growing body of literature focused on fashion compatibility learn-

ing, which aims to learn the compatibility of multiple clothing items in an

outfit [19, 83, 91, 160, 170].

Most of the approaches jointly utilize multi-modal information to enhance

model performance. Han et al. [41] introduces visual semantic embedding

54
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Figure 4.1 Relations of fashion outfits among attribute level, item level, and
outfit level

to learn relationships between fashion images and corresponding text descrip-

tions. The type-aware method proposed by [134] suggests incorporating fashion-

type information during the process of embedding item features. Lin et al. [71]

enhance the model performance by introducing the outfit ranking loss, which

operates on a whole outfit. However, these approaches overlook the fashion

attributes which are imperceptibly utilized by human beings in fashion com-

patibility evaluation, including color, silhouette, and sleeve length. In other

words, fashion attributes play an essential role in modeling fashion compatibil-

ity. Some studies [29, 150, 152, 169] argue that incorporating fashion attributes

can improve both the performance and explainability of fashion models. Feng

et al. [29] define the color, texture, and shape as main factors and propose a

partitioned embedding network to learn their embeddings. Yang et al. [152]

proposes an interpretable compatibility method based on fashion attributes

such as color, pattern, and shoe type. However, one limitation of these ap-

proaches is that they overlook the hierarchical structure among fashion data.

As illustrated in Figure 4.1, multi-relations exist among outfits, items, and

attributes. Yang et al. [152] connected the attribute and outfit level using the

informative attribute crosses method. However, they ignored the item level.
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Yang et al. [150] proposed an attribute-wise explainable model. Although

it adopts the Attribute Activation Map to learn the attribute-wise represen-

tations, the overall compatibility evaluation is computed on the item level,

which omits the outfit level.

To fully utilize the hierarchical structure of fashion data, the Hierarchical

Outfit Network, termed as HON, is proposed in this chapter. The HON can

process an outfit containing variable-length items. Specifically, the attention

mechanism [135] is leveraged to model hidden relationships among the at-

tribute, item, and outfit levels. Each feature vector is passed to the next level

network in the form of aggregation. The HON contains three sub-networks,

from bottom to top, namely, Attributes Level Network (ALN), Item Level

Network (ILN), and Outfit Level Network (OLN). The attribute level consid-

ers the fashion attributes from attribute dimensions, such as color, material,

and print. The ALN is designed to generate implicit attribute features from

images in a self-supervised manner. These implicit features are then concate-

nated into explicit attributes at the item level serving as the input of ILN.

The explicit fashion attributes refer to features that can be obtained without

annotations, such as the primary color. The item level considers the charac-

teristics of the item dimension, such as category, season, and brand. At this

level, ILN learns the interactions among attribute features through the atten-

tion mechanism and outputs the item embeddings. The outfit level considers

the characteristics of outfit dimension, such as style, feeling, and trend. The

outfit embedding is obtained at this level after calculating the interactions

among all item embeddings. Finally, the outfit embedding is used to calculate

the compatibility score of the given outfit.

The remainder of this chapter is structured as follows: Chapter 4.2 pro-

vides an overview of the attention mechanism applied to modeling fashion.
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Subsequently, Chapter 4.3 describes the structure of the proposed HON in

detail. In Chapter 4.4, the effectiveness of HON is validated through exten-

sive experiments. Chapter 4.5 presents qualitative results of utilizing HON for

practical applications. Finally, Chapter 4.6 concludes this chapter.

4.2 Related Work

The attention mechanism, the core block of the proposed HON, has been

widely recognized for its effectiveness in various tasks. In the context of natural

language processing, the attention mechanism was initially introduced in the

encoder-decoder framework to address the challenge of compressing variable-

length sentences into fixed-length vectors for text classification tasks [127].

One notable advancement in attention mechanism came with the introduction

of the Transformer architecture [135], which revolutionized machine transla-

tion tasks. The Transformer utilized a self-attention mechanism to capture

global dependencies in the input sequence, allowing the model to attend to

relevant information at different positions.

In the fashion domain, Lu et al. [83] employed a stacked self-attention

mechanism to model interactions among fashion items. This approach effec-

tively captured the dependencies and relationships among different elements

of an outfit. Yang et al. [150] utilized the attentive interaction mechanism

to incorporate attribute-level matching signals into the overall compatibility

evaluation dynamically.
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Figure 4.2 The overview of the proposed Hierarchical Outfit Network, consisting
of the Attribute Level Network, Item Level Network, and Outfit Level Network.
HON takes images and other metadata of an outfit as input and outputs the desired
outfit-level embedding, which is used for scoring the outfit’s fashion compatibility.

4.3 Hierarchical Outfit Network

The overview framework of the proposed Hierarchical Outfit Network (HON)

is illustrated in Figure 4.2. It contains three primary submodules, namely

Attribute Level Network (ALN), Item Level Network(ILN), and Outfit Level

Network(OLN). The ALN embeds the feature maps extracted from the item

images into the attribute-level space. The ILN embeds the attribute features

into the item-level space. The attribute features are a combination of the

output of ALN, referred to as implicit attribute features, and the explicit

attribute features. The OLN aggregates all item features and outputs the

desired outfit embedding. This section first presents the formulation of the

fashion compatibility problem. Then, detailed descriptions of the three sub-
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modules are introduced, followed by the objective function.

4.3.1 Problem Formulation

Given a set of itemsM = {pi}Np

i of Np individual items and an outfit collection

T = {Oj}mj=1 of m outfits, each outfit O = {pi}ni in collection T is defined as

a subset of M containing n items, where pi ∈ M. Each item pi ∈ M has

its corresponding image Ii and other metadata such as primary color data,

category label, and textual data, which varies depending on the datasets. The

task of modeling fashion compatibility aims to obtain the compatibility score

for a given outfit O via encoding it into an outfit feature vector g. The

proposed HON encodes an outfit as follows:

g = HON(O|ΘHON) (4.1)

where ΘHON is the parameters of model to be learned.

4.3.2 Multi-head Attention

A multi-head attention mechanism [135] is employed in the following three

networks to obtain the features in the corresponding level. Given a query

vector set Q ∈ Rn×dk , a key vector set K ∈ Rn×dk , and a value vector set

V ∈ Rn×dv , the attention mechanism outputs the weighted sum of values as

follows,

Attn(Q,K,V) = Softmax(
QKT

√
dk

)V (4.2)

Multi-head attention mechanism projects the vector sets Q, K, and V

into h subspaces through different weights. These projected vector sets in

subspaces are computed via the attention mechanism in parallel mode. The
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output from each subspace will be concatenated and then projected, yielding

final results.

MultiHead(Q,K,V) = Concat(H1, . . . ,Hh)W
O

where Hi = Attn(QWQ
i ,KWK

i ,VWV
i )

(4.3)

where WQ
i ∈ Rd×dk , WK

i ∈ Rd×dk , VQ
i ∈ Rd×dv , and WO ∈ Rhdv×d are

projection matrices.

In HON, dimensions of all vectors are the same, i.e. dk = dk = dv = d.

For the sake of simplicity, the subscripts of these dimensionality notions are

omitted. The Attention Layer serves as the fundamental module for each level

network and is defined as follows:

AttnLayer(Q,K,V) = LayerNorm(Q + MultiHead(Q,K,V)) (4.4)

4.3.3 Attribute Level Network

Attribute level network is designed to embed feature maps extracted from con-

volutional neural network (CNN) into attribute-level space. Given an image

data I which belongs to the item p ∈M, the image feature maps are obtained

by flattening the output of the final convolutional layer of the CNN:

E = Flatten(CNN(I | ΘCNN)) ∈ Rτ×d (4.5)

where τ = 49 is the flattened dimension. A learnable embedding vector set

Sa ∈ Rl×d is used to learn the implicit attribute features for the given item

since they are not explicitly learned from any fashion attribute annotations.

Here l is a hyper-parameter indicating the number of implicit attributes, and
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the superscript a indicates Sa belongs to the attribute level. The structure of

the attribute level network is defined as follows,

Fa = AttnLayer(Sa,Sa,Sa)

X = AttnLayer(Fa,E,E)
(4.6)

where Fa ∈ Rl×d. X ∈ Rl×d is the output of ALN representing that there are

l implicit attribute features with dimension d learned from the given image I.

A fashion item encompasses image data and other metadata, including

main color data, category labels, and textual data. So, the complementary

information can be separately encoded into attribute features, referred to

as explicit attribute features. Concatenating the implicit attribute features

learned from ALN and explicit attribute features, the complete attribute fea-

tures X′ = Concat(Ximp,Xexp) ∈ Rl′×d is obtained, where l′ is the new length

of attributes. In ALN, a fashion item is encoded into l′ attributes that serve

as the input of the item level network.

4.3.4 Item Level Network

Item level network aggregates complete attribute features X′ into item feature

z. A learnable embedding vector sp ∈ Rd is leveraged to represent the desired

item-level feature, where the superscript p indicates that it belongs to the item

level. The item level network can be expressed as follows:

Fp = AttnLayer(X′,X′,X′)

z = AttnLayer(sp,Fp,Fp)
(4.7)
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where Fp ∈ Rl′×d is the self-attentive output of attribute features, and z ∈ Rd

is the learned item feature. By applying ILN, the item feature is obtained after

fully considering the inter-relationships between explicit and implicit attribute

features through the attention mechanism.

4.3.5 Outfit Level Network

It is worth noting that ALN and ILN are applied to a single item, while an

outfit may contain variable-length items. To this end, for the outfit level

network, all item features are aggregated into one vector at the outfit level.

Given an outfit O = {pi}ni with n items, the concatenated item features Z =

Concat(z1, . . . , zn) ∈ Rn×d is computed through the ALN and ILN, where zi

is the output of ILN for item pi. A learnable vector so ∈ Rd is applied for

aggregation. The outfit level network can be expressed as follows:

Fo = AttnLayer(Z,Z,Z)

g = AttnLayer(so,Fo,Fo)
(4.8)

where Fo ∈ Rn×d is the self-attentive output considering the inter-relationship

between all items and g ∈ Rd is outfit feature vector in Equation 4.1. Due

to the architecture of OLN, HON is capable of handling outfits with various

items.

4.3.6 Objective Function

To obtain the fashion compatibility score of the given outfit O, a fully con-

nected layer is added to project the outfit feature vector g into a scalar

λ = FC(g | ΘFC). A margin ranking loss is applied to learn the parame-
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ters of the network, which is defined as follows:

L(O+, O−) = max(0, (λ+ − λ−) + α) (4.9)

where λ+ and λ− are compatibility scores of outfits O+ and O−, respectively.

O+ represents the positive outfit, while O− represents the negative outfit,

implying that λ+ should be greater than λ−. The hyper-parameter α is some

margin value.

In practice, every outfit O ∈ T is considered positive because they are man-

ually created. On the other hand, the negative outfits are generated according

to the following steps based on the positive outfit:

(1). Selecting one item p+ from the original positive outfit O+;

(2). Randomly picking one item p− ∈ M that shares the same category with

p+;

(3). Replacing p+ with p− from O+ to generate the negative outfit O−.

The overall cost function is defined as follows:

J(Θ) =
∑
O+∈T

∑
p∈O+

L(O+, O−) +
λ

2
‖Θ‖2

2 (4.10)

where Θ contains ΘHON, ΘCNN ,and ΘFC. λ is the L2 regularization hyper-

parameter.

4.4 Experiments

To validate the effectiveness of the proposed HON, experiments are conducted

on two mainstream datasets and the A100 evaluation protocol described in
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Chapter 3. There are three research questions to be addressed in this section:

• RQ1: Does the proposed HON outperform the state-of-the-art models?

• RQ2: Does the proposed HON leverage the advantages of the claimed

multi-layer relations and the implicit attribute features?

• RQ3: Why are the multi-layer relations helpful to enhance model per-

formance?

4.4.1 Experimental Settings

Parameter settings. HON is trained on the non-disjoint split of Type-aware

dataset [134] with a margin of 0.3, dropout of 0.1, and batch size of 60 on

NVIDIA A100 GPU. ResNet-18 is used as the image feature extractor. Both

the height and width of the images are cropped to 224. The embedding size

of features d is 512, and the number of multi-head h is 4. Adam is chosen as

the optimizer with the learning rate, beta, and weight decay as 5× 10−5, 0.9,

and 10−5, respectively. The learning rate in the training process follows an

exponentially decreasing schedule, along with adopting an early stop training

strategy. The main colors are extracted from item images by using FOCO

system [171] as the explicit feature in the item level network. It facilitates the

reduction of dependency on input data and the improvement of practicality.

Evaluation datasets. The newly introduced A100 and two mainstream test

sets are employed for evaluation: the Maryland test set [41] and the Type-

aware test set [134]. The Maryland dataset contains 21,899 outfits collected

from the Polyvore website. There are 17,316 outfits allocated for training,

1,497 allocated for validation, and 3,076 allocated for testing. For each outfit,

three incorrect choices are randomly selected from all available products. As



4.4. Experiments 65

for the Type-aware dataset, it contains two dataset variants which are disjoint

and non-disjoint sets. Unlike the strategy used to create the FITB test in [41],

it considers clothing categories when sampling wrong options. The non-disjoint

set of the Type-aware dataset is adopted for training and testing in this work.

4.4.2 Compared Methods

The HON is compared with the 14 state-of-the-art methods. Methods denoted

with the superscript ? are trained on their original dataset. In contrast, for

the methods without the superscript, their pre-trained models are utilized for

testing. All methods are tested on three test sets after necessary adaptation.

WNN? [87] learns the fashion compatibility by using a weighted Euclidean

distance over image feature dw = ‖w ◦ (xi − xj)‖2
2, where w is a vector with

the same dimension as x and ◦ is the Hadamard product.

LMT? [87] transforms image features to low-dimensional space. The dis-

tance function is defined as dY(xi,xj) = ‖(xi − xj)Y‖2
2. A shifted Sigmoid

function is employed to calculate probability over distance by optimizing the

log-likelihood on an observed relationship set.

SiameseNet [137] models the compatibility of an outfit as an average value

of item-wise feature similarity extracted from Siamese CNN. The distance

function is the cosine distance.

Pooling? [68] aggregates features extracted from multiple items of an outfit

by an average pooling operation.

Concatenation? [131] concatenates all features of items as the input.

Bi-LSTMs [41] learns the fashion compatibility by training a bidirectional

LSTM to maximize the probability of the following fashion item being condi-

tioned on previously seen items.

Self-attention? [142] uses the scaled dot-product attention [135] to learn re-
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lationships between items.

TSE [134] calculates the item-wise similarity respecting item types. Item

features are projected to the type-specific embedding space, and the distance

function is defined as duvij =
∥∥(xui − xvj ) ◦w(u,v)

∥∥2

2
. The fashion compatibility

is learned using a modified triplet loss function.

MCN [143] measures the item-wise similarity in a projected latent space using

the cosine distance function. The features generated from different layers of

the CNN network are considered different comparison aspects, and a 2-layers

predictor computes the compatibility score.

FHN [84] splits the compatibility score concerning the user into two parts: a

weighted sum of the user’s relationship to the fashion items and the compati-

bility between pairs of fashion items. Due to the absence of user information,

only the pairs-wise item relationships are computed.

NGNN [18] models the fashion compatibility by constructing a Fashion Graph.

The vertices in the graph represent categories, and the edges represent the re-

lationship between categories. The compatibility score is computed using self-

attention on the graph-level output by representing an outfit as a subgraph.

SCE-Net? [128] projects image features to masked embeddings via a masking

operation on image feature and similarity condition masks. A condition weight

branch is obtained by concatenating two item features as an assignment of the

similarity condition masks.

CAS-Net? [71] computes the fashion compatibility concerning a reference

item within the given outfit. The category-based attention networks are em-

ployed to capture multiple dimensions of similarities.

LPAE-Net? [83] utilizes the item aggregation network to encode several items

into a compatibility embedding. The self-attention mechanism is used to model

interactions among the items.
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Table 4.1 Comparing HON with different methods on the Maryland test set and
Type-aware test set. Only 21% and 26% of the data in Maryland and Type-aware
test sets are suitable for evaluating methods with the subscript †, respectively, be-
cause these methods cannot predict outfits with varied items. The experiments of
HON are repeated five times, and the values after ± are the mean square error.

Maryland test [41] Type-aware test [134]

Methods FITB Acc. AUC FITB Acc. AUC

WNN [87] 31.18% 0.52 30.06% 0.51
LMT [87] 33.22% 0.56 32.38% 0.56
SiameseNet [137] 49.00% 0.82 50.78% 0.83
Pooling† [68] 25.08% 0.51 24.85% 0.50
Concate.† [131] 24.16% 0.71 30.42% 0.67
Bi-LSTMs [41] 53.50% 0.85 37.46% 0.63
Self-atten.† [142] 23.25% 0.58 31.06% 0.58
TSE [134] 54.97% 0.85 57.69% 0.88
MCN† [143] 44.07% 0.88 42.43% 0.87
FHN [84] 46.20% 0.68 45.80% 0.70
NGNN [18] 50.68% 0.83 32.64% 0.50
SCE-Net [128] 51.30% 0.79 51.53% 0.80
CAS-Net [71] 55.85% 0.85 55.88% 0.84
LPAE-Net [83] 37.65% 0.65 40.27% 0.71

HON 60.08 ± 0.42 % 0.88 ± 0.01 59.05 ± 0.93 % 0.85 ± 0.03

4.4.3 Quantitative Results (RQ1)

Results on Mainstream datasets. Table 4.1 compares the performance of

HON with 14 state-of-the-art methods on two mainstream datasets in terms of

FITB accuracy and AUC. From this table, it can be observed that the proposed

HON outperforms the other methods on three of the four indicators. Specifi-

cally, for the FITB accuracy metric, HON achieves 60.08% on the Maryland

test set and 59.05% on the Type-aware test set, which are significant gains of

+4.23% and +3.17% FITB accuracy over CAS-Net which omits the attribute

information. Additionally, compared with another attribute-free method, e.g.,

NGNN of 50.68% on FITB accuracy and 0.83 on AUC, the gains by HON are
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Table 4.2 Comparing HON with different methods on the LAT and AAT. There
are only 40% and 32% of the data in LATs and AATs are suitable for evaluating
methods with the subscript †, respectively. The experiments of HON are repeated
five times, and the values after ± are the mean square error.

LAT AAT

Methods LATs mLATs AATs

WNN [87] 31% 28.84% 29%
LMT [87] 32% 29.70% 28%
SiameseNet [137] 63% 46.72% 32%
Pooling† [68] 27.50% 26.63% 18.75%
Concatenation† [131] 25% 23.41% 6.25%
Bi-LSTMs [41] 36% 30.82% 35%
Self-attention† [142] 32.50% 28.26% 21.88%
TSE [134] 73% 56.17% 59%
MCN† [143] 53% 41.44% 34.30%
FHN [84] 54% 41.62% 40%
NGNN [18] 33% 29.88% 30%
SCE-Net [128] 72% 54.63% 42%
CAS-Net [71] 72% 55.94% 44%
LPAE-Net [83] 31% 20.48% 28%

HON (Ours) 78% 58.20% 57%

also high, at +9.4% and +0.03 on Maryland dataset. These justify the advance

of HON, which takes advantage of utilizing attribute information. Compared

with the state-of-the-art item-wise methods, i.e., TSE, HON surpasses it with

a clear margin: +5.11% on Maryland FITB test, and +1.36% on Type-aware

FITB test. This may be attributed to the fact that HON exploits the multi-

relations among fashion data, while TSE only uses the fashion image data.

It is also noted that TSE is +0.03 better than HON on the AUC metric of

the Type-aware dataset. This may indicate that respecting the category helps

improve the AUC performance.

Results on Aesthetic 100 test. The HON is also compared with baseline

methods on the proposed A100 in Table 4.2 to demonstrate its superior aes-
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Table 4.3 Results of TSE and HON evaluated on the AAT. Indexes refer to the
performance on specific dimensions.

Detailed Indexes TSE [134] HON

Color Index (20%) 0.85 0.80
Style Index (32%) 0.50 0.53

Occasion Index (15%) 0.53 0.53
Season Index (12%) 0.58 0.50

Material Index (12%) 0.50 0.50
Balance Index (9%) 0.56 0.44

AATs 0.59 0.57

thetic ability. From this table, it can be concluded that HON outperforms

all baselines on LATs and mLATs and achieves competitive results on AATs.

Specifically, HON obtains 78% LATs and 58.2% mLATs, surpassing the re-

sults of SCE-Net by +6% LATs and 3.75% mLATs. It is also +5% LATs

and +2.03% mLATs higher than TSE. This result may be due to TSE trying

to model fashion compatibility by measuring item-wise similarities. It can be

concluded that the HON has a good generalization ability. The characteristic

performances of TSE and HON are further investigated by utilizing the ex-

plainability of AAT. The detailed results in the fine-grained dimensions are

presented in the last two columns of Table 4.3. It can be observed that HON

performs better than the TSE in the Style Index while scoring lower in the

Color, Season, and Balance indexes.
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Table 4.4 Experimental results on different structures of network.

Methods
LAT AAT Maryland test Type-aware test

LATs mLATs AATs FITB Acc. AUC FITB Acc. AUC

Drop ALN 56% 44.37% 40% 51.82% 0.81 50.36% 0.79
Drop ILN 68% 53.65% 49% 59.43% 0.87 58.00% 0.84
Drop OLN 77% 57.69% 56% 59.87% 0.81 58.55% 0.78
Drop ILN & OLN 70% 53.44% 50% 59.27% 0.81 58.43% 0.77

HON 78% 58.2% 56% 60.08% 0.88 59.05% 0.85

4.4.4 Ablation Study (RQ2)

Network Structure. The efficacy of the three sub-networks of HON is ex-

amined in this subsection. This ablation study is conducted by removing one

or two networks, and the results are reported in Table 4.4. The model per-

formance drops dramatically in all metrics when removing the attribute layer

network (Drop ALN row). It shows that the implicit attribute features ex-

tracted by ALN are critical for modeling fashion compatibility. In addition,

replacing ILN by the maximum pooling layer operating on all attribute fea-

tures causes severe damage to the model performance on the LAT and AAT

metrics (Drop ILN row). However, the performance on the other two test sets

shows only a slight decrease. Furthermore, if the OLN is removed, it can be

observed that there is also a significant decrease in the model’s performance in

the metric AUC (-7%/-7%) for the Maryland and Type-aware test set (Drop

OLN line). In contrast, dropping OLN has little effect on the performance of

LAT and AAT. It indicates that the AUC metric is highly dependent on mod-

eling item interactions. Finally, after removing the ILN and OLN (Drop ILN

& OLN line), the result shows a performance reduction on almost all metrics.

Interestingly, the negative effect applied to the model performance combines

the adverse impacts of dropping ILN and OLN independently.
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Table 4.5 Experimental results on different numbers of implicit attributes.

# Implicit
Attributes

LAT AAT Maryland test Type-aware test
LATs mLATs AATs FITB Acc. AUC FITB Acc. AUC

2 66% 51.04% 47% 59.75% 0.87 58.02% 0.85
5 78% 58.2% 56% 60.08% 0.88 59.05% 0.85
10 72% 54.92% 53% 58.55% 0.87 58.06% 0.85
25 70% 53.78% 56% 59.01% 0.86 58.26% 0.85
50 68% 51.84% 51% 60.6% 0.87 58.52% 0.85

Number of Implicit Attributes. The effect of the number of implicit

attributes in the attribute level network is examined, and the results are re-

ported in Table 4.5. It can be observed that the overall performance achieves

the best when five implicit attributes exist. This result may imply that too few

implicit features cannot capture the attribute relationship among the fashion

items. At the same time, too many implicit features may overwhelm the added

explicit attribute features. Another interesting observation is that the number

of implicit attributes has minor effects on the AUC metric.

4.4.5 Empirical analysis on qualitative results (RQ3)

To further elaborate HON for leveraging the multi-layer relations between

attributes, items, and outfits, FITB question examples answers by different

approaches are visualized in Figure 4.3. The Q1 in Figure 4.3 indicates the

importance of attribute-level information. Both choice C and choice D are

black tops. However, choice C is incompatible with this outfit because of its

type of sleeves. Specifically, the lantern sleeves design is not compatible with

wearing inside a blazer. The Q2 in Figure 4.3 indicates the importance of

item-level information. Conditioned on the sweater and high-heel sandals in
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Figure 4.3 Qualitative results of different approaches. The red bounding box
indicates the correct answer.
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Figure 4.4 Visualization results of implicit attributes (Equation 4.6).

this outfit composition, a white earring is more compatible than other items.

The Q3 in Figure 4.3 indicates the importance of outfit-level information. The

choices in Q3 are all jackets. However, there is only one correct answer when

considering the style of the whole outfit. As shown in Q4, HON consistently

performs well when changing the category to bags and can select the correct

answer. Based on these qualitative results, we conclude that the HON in-

deed learns the relations among attributes, items, and outfits, resulting in its

improvement compared with previous methods.

Figure 4.4 illustrates the visualization results of the implicit attributes

learned via ALN(Equation 4.6). Interestingly, these attention maps may indi-

cate some corresponding regions of fashion attributes, i.e., neckline region of

the top, print region of the top, sleeve length of the outerwear, and dress. It

demonstrates that our HON utilizes the attribute information hidden in item

images to benefit the learning process.
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4.5 Application

There are three practical tasks that mainly adopt fashion compatibility models,

including: 1). Fashion outfit complimentary item retrieval [71]; 2). Fashion

outfit evaluation and revision [169]; and 3). Fashion outfit generation and

recommendation [18]. Thus, this section presents these qualitative results

with a flowchart of how to utilize our HON for practical applications.

4.5.1 Complementary Item Retrieval

Task: Given an outfit with variable length and a set of items with the same

category, the aim is to find the top k most compatible items with the given

outfit. Figure 4.5 illustrates the quantitative results obtained by applying the

HON model, which involves four sequential steps:

Step 1. Enumerate in the set of items;

Step 2. Combine the chosen item with the outfit to generate a new outfit;

Step 3. Compute the compatibility score using HON and store all scores;

Step 4. Sort all scores in a non-increasing order and find the top k items.

Figure 4.5 Visualized examples of adopting HON on the Fashion outfit comple-
mentary item retrieval [71].
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Figure 4.6 Visualized examples of adopting HON on the task of Fashion outfit
evaluation and revision [169]. The red box indicates the found incompatible item.

4.5.2 Fashion Outfit Evaluation

Task: Given an outfit with variable length, the aim is to find the incompatible

item in this outfit and revise it from a set of items with the same category.

Figure 4.6 illustrates the quantitative results obtained by applying the HON

model, which involves four sequential steps:

Step 1. Compare the score of the given outfit and threshold.

Step 2. Enumerate in the given outfit;

Step 3. Replace the chosen item with a random item from the item set to

generate a new outfit;

Step 4. Compute the compatibility score using HON until the score exceeds a

threshold.

Step 5. Sort all scores in a non-increasing order and find the top k items.
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Figure 4.7 Visualized examples of adopting HON on the task of Fashion outfit
generation and recommendation [18].

4.5.3 Fashion Outfit Generation

Task: Given an initial item, the aim is to generate k compatible outfits with

variable lengths. Figure 4.7 illustrates the quantitative results obtained by

applying the HON model, which involves four sequential steps:

Step 1. According to fashion outfit generating logic, randomly choose items

from their corresponding category set.

Step 2. Repeat generation process n times;

Step 3. Compute the compatibility scores using HON and store all scores;

Step 4. Sort all scores in a non-increasing order and find the top k outfits.

4.6 Chapter Summary

This chapter focuses on the development of the fashion compatibility model

and its application in real online cross-selling scenarios. A novel network called

HON is introduced, which exploits the hidden relations among attributes,
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items, and outfits to enhance the prediction performance. The experiment

demonstrates that HON outperforms 14 baselines and performs state-of-the-

art on two widely used FITB tests and the A100 metric. The ablation studies

on network structure and implicit attributes prove the effectiveness of the pro-

posed components of HON. Furthermore, strategies for integrating the trained

fashion compatibility model into actual products for online cross-selling are

proposed. These solutions aim to bridge the gap between research and prac-

tical implementation, enabling the effective utilization of the fashion compat-

ibility model in real-world contexts.



Chapter 5

Modeling Fashion Compatibility

with Convincing Reasons

5.1 Introduction

The widespread popularity of online shopping platforms has provided people

with a vast array of clothing choices and the ability to share their fashion pref-

erences online. However, not everyone possesses the expertise to create a well-

coordinated outfit with compatible mix-and-match fashion items. Therefore,

there is a significant demand for practical solutions that can offer professional

mix-and-match recommendations to users.

Nevertheless, predicting the compatibility of fashion outfits is a complex

task in the context of artificial intelligence, as it involves multiple factors

such as visual perception, texture, and trend. Previous research has explored

various methods for compatibility prediction, with metric learning-based ap-

proaches emerging as the mainstream approach [50, 87, 134]. These methods

encode fashion items into embeddings and calculate metric distances to deter-

78
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mine compatibility. For instance, the Bi-LSTM network [41] has been utilized

to learn compatibility among fashion items by treating the outfit as a sequen-

tial input. Other approaches leverage techniques such as Conditional Random

Field [119] and clothing style modeling [2, 137] to estimate fashion compat-

ibility. However, one limitation of these methods is the lack of explanation

for their compatibility predictions, which is crucial for gaining user trust in

practical applications.

To address the need for explanations in compatibility predictions, several

studies have attempted to provide explanations alongside compatibility pre-

dictions. Lin et al. [72] offered fashion suggestions and generated abstract

comments as explanations simultaneously. Wu et al. [146] introduced the

Visual and Textual Jointly Enhanced Interpretable model to generate inter-

pretable fashion recommendations. Chen et al. [12] proposed a Co-attentive

Multi-task Learning model to generate explainable recommendations. Despite

these efforts, most of these approaches rely heavily on comments or reviews

from social network users, resulting in training data that lacks insights from

fashion experts. Consequently, the explanations provided by these models may

be inconclusive and less reliable.

Furthermore, certain studies [143, 169] have limitations in evaluating out-

fits with multiple items, restricting their flexibility and scalability. Real-world

outfits can vary significantly in the number of components they comprise, and

fixed item constraints may not capture this diversity effectively. Consequently,

the applicability of these methods becomes limited when dealing with outfits

that deviate from the fixed item constraint.

To address the above limitations, this chapter proposes a novel fashion com-

patibility modeling framework to provide convincing explanations aligned with

the expert’s knowledge. The judgment and reason are jointly trained using the
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Table 5.1 Fashion attributes of utilized in providing the prediction reason.

Top Bottom Shoes Bag

Color X X X X
Print X X × ×

Material X X X X
Design X X × ×

Silhouette X X × ×
Shoes Upper × × X ×
Heel Height × × X ×
Heel Type × × X ×

Shape of Bag × × × X

Bidirectional Long Short-term Memory (Bi-LSTM) networks. Specifically, fea-

ture vectors are first extracted from item images through ResNet models. The

color features are extracted using the FOCO system [171]. Fashion attributes

are leveraged to enhance the prediction performance and provide the predic-

tion reason. The detailed fashion attribute information is shown in Table 5.1.

Fashion compatibility modeling is learned through a one-layer Bi-LSTM, which

can process the outfit containing multiple items. Firstly, all the extracted at-

tribute features are stacked and sent to the model. Subsequently, the item

features computed at each step of Bi-LSTM model will be concatenated and

input to the inter-factor compatibility network, where the corresponding rea-

son is determined. The inter-factor compatibility network is designed to trace

back the gradients of attribute features to obtain the contribution of each el-

ement in the decision-making process. Fashion compatibility is categorized

into three levels: Good, Normal, and Poor. Through quantitative and qualita-

tive experiments, the developed network demonstrates its ability to accurately

predict compatibility levels and provide corresponding reasons.
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5.2 Related Work

5.2.1 Explainable Fashion Compatibility Model

Numerous studies have been conducted to evaluate the compatibility of outfits

using various approaches [41, 50, 116, 119, 121, 134, 137, 143]. Some of these

studies focused on learning visual compatibility through unsupervised meth-

ods [51] or measuring scene-product compatibility using CNNs and attention

mechanisms [60]. Others explored the synthesis problem, aiming to transform

outfits into more fashionable ones [53] or guide the generation process based

on compatibility [156]. There were also approaches that explicitly modeled

visual compatibility through fashion image inpainting [40] or learned compat-

ibility in a unified space using frameworks like TransNFCM [154] or Relation

Networks [93]. A graph neural network called Neural Graph Filtering was also

adopted to model fashion collocation [77].

Despite the progress made by these studies, one common limitation is the

lack of a convincing explanation for the calculated compatibility. The ability to

provide explanations is crucial in fashion compatibility modeling. Explaining

the reasoning behind compatibility evaluations helps users understand and

trust the system’s decisions. It allows users to understand why certain outfits

are deemed compatible or incompatible, enhancing their fashion sense and

decision-making process.

5.2.2 Long Short-term Memory (LSTM) networks

The LSTM, a variant of an RNN, is introduced to be capable of learning long-

term dependencies without suffering the “vanishing gradients”. The LSTM has

been proven in many applications including speech [36, 37] and video [23, 159].
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It has also been applied in the fashion domain. Heinz et al. [46] employed

LSTM to overcome the cold start problem for the fashion recommendation

method. The output layer of Bidirectional LSTM can get information from

backward and forward states simultaneously. Han et al. [41] learned the com-

patibility relationships among fashion items using Bi-LSTM. Nakamura et

al. [94] used Bi-LSTM to extract style information of an outfit.

This chapter adopts a Bi-LSTM network to learn the fashion compatibility

between fashion items as an outfit is treated as a sequence. There are two

advantages to using Bi-LSTM for modeling outfit compatibility. First, LSTM

is not limited to fixed length input, which allows modeling for sequential data

of various lengths containing item features, just as text or vision problems.

Second, adding or reducing some items in an outfit for Bi-LSTM models is

simple and easy to tune parameters end-to-end.

5.3 Approach

Given an outfit, its compatibility judgment is first evaluated, involving three

categories: Good, Normal, or Poor. Subsequently, the main reason behind

the judgment is predicted by evaluating the contribution of each attribute of

the fashion items. It is worth noting that a Normal outfit does not have

a specific reason associated with it. The set of the reason is denoted as

R = {Color,Print,Material, · · · , Shape}, encompassing the different factors

that play a role in determining the compatibility of an outfit. Each element in

the reason set represents an aggregated attribute, such as combining the colors

of the top and bottom garments into the single factor of Color. This section

introduces three modules of the proposed model: feature extraction architec-

ture, bidirectional LSTM architecture, and gradient penalty architecture.
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Figure 5.1 The pipeline of fashion compatibility network. The Bi-LSTM net-
works receive feature maps extracted from CNNs as input, where each feature is
considered a contributing factor. The output feature at the last step of the Bi-
LSTM is encoded into the compatibility judgment space using a Softmax layer. The
inter-factor compatibility network assesses the reason for judgment by taking the
output features of the Bi-LSTM as inputs. The network employs gradient penalty
to facilitate the learning process.

5.3.1 Feature Extraction Architecture

The pipeline of the compatibility network is depicted in Figure 5.1. Given

an outfit with multiple items, the feature extraction network is designed to

extract various fashion attribute features from the input images. Specifically,

Color feature is encoded using the color histogram. Five main colors are first

extracted using the Fashion Color System (FOCO) [171] and then concate-

nated to form the color attribute features. Apart from the color attribute, a

pre-trained ResNet-18 [44] model is employed to extract other attributes. The

final feature map, which is a 512-dimensional vector, is utilized to represent

fashion items.
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5.3.2 Bidirectional LSTM Architecture

The bidirectional LSTM network, as illustrated in the middle of Figure 5.1, is

employed to learn the compatibility of an outfit by leveraging the attribute fea-

tures extracted in the previous stage. Given an input sequence x = (x1, · · · ,xT ),

a standard recurrent neural network (RNN) computes the hidden vector se-

quence h = (h1, · · · ,hT ) and output vector sequence y = (y1, · · · ,yT ) by

iterating the following equations from t = 1 to T :

ht = H(Wihxt + Whhht−1 + bh + τ)

yt = Whoht + bo

(5.1)

where Wih is the input-hidden weight matrix and bh is the hidden bias vector.

H represents the hidden layer activation function.

The feature sequence of an item is denoted as F = (x1,x2, · · · ,xN), where

xt is the embedding feature extracted using a CNN model for the t-th attribute.

The Bi-LSTM Network performs several calculations to generate the desired

outputs. The Bi-LSTM Network iterates through the backward layer from

t = T to 1 and the forward layer from t = 1 to T . During this process, it

computes the forward hidden sequence
−→
h , the backward hidden sequence

←−
h ,

and the output sequence y using the following equations:

−→
h t = H(W

x
−→
h
xt + W−→

h
−→
h

−→
h t−1 + b−→

h
)

←−
h t = H(W

x
←−
h
xt + W←−

h
←−
h

←−
h t+1 + b←−

h
)

yt = W−→
h y

−→
h t + W←−

h y

←−
h t + by

(5.2)

where Wαβ is the weight matrix between vector α and β. b represents the
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bias term and H is the Long Short-Term Memory (LSTM) cell. Specifically,

H is implemented by the following composite function:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi)

ft = σ(Wxfxt + Whfht−1 + Wcfct−1 + bf )

ct = ftct−1 + ittanh(Wxcxt + Whcht−1 + bc)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo)

ht = ottanh(ct)

(5.3)

where σ is the logistic sigmoid function, and i, f , o, and c are the input gate,

forget gate, output gate, and cell activation vectors, respectively. W is the

weight matrix and b is the bias term. A softmax layer is used to compute a

separate output distribution Pr(k|t) at each step t along the input sequence

as follows:

yt = W−→
h y

−→
h t + W←−

h y

←−
h t + by

Pr(k|t) =
exp(yt[k])∑K
k′=1 exp(yt[k′])

(5.4)

where k is the number of the judgments, and yt[k] is the k-th element of the

output vector yt. The loss for a given outfit F can be calculated as:

Ljudgment = − 1

K

K∑
k=1

logPr(k|t) (5.5)
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Figure 5.2 Overview of the Inter-factor Compatibility Network. Given the com-
patibility output computed by Bi-LSTM and the stacked features as input, the
contribution of each element is determined based on the decision of judgment. This
is achieved by performing a point-wise multiplication between the stacked feature
and its backpropagation gradients.

5.3.3 Gradient Penalty Architecture

Normally, the neuron importance weight αck [112] is defined as:

αck :=
1

Z

∑
i

∑
j

∂yc

∂Akij
(5.6)

where i, j iterates over the spatial dimensions and Z is the number of pixels

in the feature map. A weighted product of forward activation maps Ak is

performed. Subsequently, a ReLU layer is performed on the weighted sum to

obtain the heatmap HGrad-CAM
c as follows:

HGrad-CAM
c := ReLU(

∑
k

αckA
k) (5.7)

The gradient penalty is exploited to predict the reason for judgment. Fig-

ure 5.2 depicts the details of the Inter-factor Compatibility Network. The
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contribution of each element, denoted as contribj, is leveraged for the decision

of judgment, which is calculated by:

contribj(xi) :=
∂yi
∂xi
� ReLU(xi) (5.8)

where yi is the logit for the judgment j ∈ J , and xi is one element of com-

patibility feature xi ∈ x. The positive contribution of xi for the judgment is

calculated using the following equation:

contrib+
j (r) :=

1

|Ir|
∑
i∈Ir

ReLU(
∂yi
∂xi

)� ReLU(xi) (5.9)

where Ir is the index set of neurons for factor r ∈ R.

The network is trained with specially designed regularizations so that the

main reason predicted by the network is aligned with pre-labeled data. Cross-

entropy regularizer is used to compute the reason loss as follows:

Fr :=
∑
j∈J

Ijgt(j) · contrib+
j (r)− contrib+

normal(r) (5.10)

Lreason = −log(
exp(Frgt)∑
r∈R exp(Fr)

) (5.11)

where Ijgt is an indicator function for ground-truth judgment. If judgment j

is the same as ground-truth label, Ijgt = 1; else, Ijgt = 0.

The total loss L is described as L = Ljudgment + αLreason, where α is a

hyper-parameter that is used to control the effect of reason regularization. As

indicated in the definition of contribution (Equation 5.9) and reason (Equa-

tion 5.10), the Bi-LSTM network and inter-factor network are jointly trained

because the loss term Lreason penalizes the gradient and the gradient penalty

directly affects the network parameters.
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5.4 Experiments

Experimental settings are first introduced in this section. Then, the effective-

ness of the proposed approach is examined from the qualitative and quantita-

tive aspects, including a detailed ablation study. Lastly, a demo website based

on this research is developed.

5.4.1 Experimental Settings

Evaluation Datasets. The dataset used for evaluating models is the ex-

panded EVALUATION3 dataset to address two limitations exhibited by the

EVALUATION3 dataset [169]. Firstly, outfits in the EVALUATION3 dataset

only contain top and bottom items. To this end, a bag and a pair of shoes are

added to each outfit. All outfits are manually annotated from scratch because

the original annotations for compatibility and reason are inappropriate for the

expanded outfits. Secondly, it lacks attribute annotations for shoes and bags.

Fashion experts are invited to annotate these added shoes and bags to address

this limitation. The taxonomy of fashion attributes is presented in Table 5.1.

To summarize, the expanded EVALUATION3 dataset contains 34,479 outfits

splitting into 29,479 for training, 3,000 for validation, and 2,000 for testing.

Each outfit has a corresponding judgment label and a reason label.

Parameter Settings. The embedding feature for each attribute is learned

using the pre-trained Resnet-18 models, which is optimized using the Adam

method with an initial learning rate of 0.001 and a weight decay of 5×10−5. As

for the Bi-LSTM, the SGD optimization method is employed with an initial

learning rate of 0.001 and weight decay of 5 × 10−4 for 140 epochs. The

learning rate is decreased by a factor of ten after 84 epochs. In learning the

corresponding reason, the regularization is applied in the form of cross-entropy.
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Table 5.2 Comparison of different methods on the updated EVALUATION3 test
set. All the evaluating experiments are repeated six times, and the values after ±
are the mean square error.

Methods reason accuracy

Multi-CLS-Part 74.8 ± 3.1
IFIV [130] 35.9 ± 4.5

Reason linear [169] 68.3 ± 2.4
Reason square [169] 73.8 ± 1.6

Reason cross-entropy [169] 76.7 ± 3.6

Bi-LSTM (Ours) 77.6 ± 3.9

5.4.2 Quantitative Analysis

The reason accuracy is used as the evaluation metric, which is defined as the

ratio of correctly predicted reasons to the number of predicted judgments. The

proposed method is compared with five baselines methods. 1). Multi-CLS-

Part method separately train the compatibility judgment and reason using

a standard multi-task classification model. 2). Item Feature Influence Value

(IFIV) [130] method determine the explanation through the output scores

of the item-feature pairs, and it is trained in an unsupervised manner. 3).

Reason linear, square, and cross-entropy are the methods introduced in [169],

where the form of reason regularization is linear, square, and cross-entropy,

respectively.

Table 5.2 reports the evaluation results on the updated EVALUATION3

test set. The results show that the proposed Bi-LSTM method achieves the

highest reason accuracy (77.6 ± 3.9), outperforming the other methods. The

Multi-CLS-Part method achieves a reasonable accuracy (74.8 ± 3.1), while the

IFIV method has a lower accuracy (35.9 ± 4.5). The reason linear, square, and

cross-entropy methods perform comparably with accuracies of 68.3 ± 2.4, 73.8

± 1.6, and 76.7 ± 3.6, respectively. These results demonstrate the effective-
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Color Print Top & Bottom Bag Shoes

0.06636 0.08392 0.00017 0.00014 0.00031

Judgment ground truth: Good

Reason ground truth: Print

Judgment ground truth: Poor

Reason ground truth: Color

Color Print Top & Bottom Bag Shoes

0.23770 0.00002 -0.0154 -0.0001 0.00007

(a) (b)

Figure 5.3 The table displays the contribution values of various candidate rea-
sons, with the maximum value highlighted in bold.

ness of incorporating a bidirectional LSTM architecture in capturing intricate

relationships and dependencies between fashion items and their features.

5.4.3 Qualitative Analysis

Figure 5.3 showcases the qualitative evaluation results obtained from the ex-

panded EVALUATION3 dataset. In Figure 5.3 (a), the ground truth judgment

and reason for the outfit are identified as Good and Print, respectively. The

corresponding table presents the model’s reason contribution scores, highlight-

ing the highest score for print in bold. This numerical evidence establishes

the model’s consistency with the ground truth.

Similarly, for the outfit depicted in Figure 5.3 (b), the ground truth com-

patibility is labeled as Poor due to the mismatched orange coat and red pants.

The predicted scores align with this observation, notably revealing a substan-

tial disparity between the values of 0.238 for color and 0.00002 for print.

This significant numerical difference attests to the method’s confidence in its

reason prediction.
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Fashion Compatibility Evaluation Demo

Choose Upper Wear Choose Bottom Wear Choose Bag Choose Shoes

• Judgment: Good

• Explanation: The plain print top and the floral print bottom make the outfit in a novel style.
(a)

Fashion Compatibility Evaluation Demo

Choose Upper Wear Choose Bottom Wear Choose Bag Choose Shoes

• Judgment: Poor

• Explanation: The yellow at the top and blue at the bottom are wrong color matching.
(b)

Fashion Compatibility Evaluation Demo

Choose Upper Wear Choose Bottom Wear Choose Bag Choose Shoes

• Judgment: Normal

• Explanation: No specific explanation for a normal outfit.
(c)

Evaluate

Evaluate

Evaluate

Choose Upper Wear Choose Bottom Wear Choose Bag Choose Shoes

Choose Upper Wear Choose Bottom Wear Choose Bag Choose Shoes

Figure 5.4 A website demo application is developed that can predict the com-
patibility of an outfit and provide the corresponding explanation.
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Website Demo. A website application based on the proposed model is devel-

oped. Figure 5.4 shows screenshots of three outfit evaluations. The operation

process of this website is as follows:

1. Users are required to upload pictures of the top, bottom, bag, and shoes.

2. After they click the Evaluate button, the webpage will present the eval-

uation results of the outfit’s compatibility and the corresponding expla-

nation.

For the outfit shown in Figure 5.4 (a), the outfit is predicted to be Good,

and the explanation states: The plain print top and the floral print bottom

create a novel style for the outfit. The explanation is generated using a pre-

designed sentence template incorporating the predicted reason. Furthermore,

the attribute values used in the explanation template, such as the print types

in this example (plain for the top and floral for the bottom), are recognized

using the feature extraction network.

Similarly, the outfit shown in Figure 5.4 (b) is predicted as Poor with

an explanation as The yellow at the top and blue at the bottom are wrong

color matching. The color name used for generating an explanation is initially

extracted by the FOCO system in the HSB (Hue, Saturation, Brightness) form.

Subsequently, the extracted main color vector undergoes a transformation into

a color name that humans can understand.

As stated at the beginning of Section 5.3, there will be no specific expla-

nation for this outfit for a Normal outfit. This website also maintains the

same setting, as illustrated in Figure 5.4 (c), the presented outfit is evaluated

as Normal, and the explanation section shows: No specific explanation for a

normal outfit.
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Figure 5.5 Learning curves of judgment accuracy and reason accuracy on the test
set for Bi-LSTM with a different number of layers.

5.4.4 Ablation study

Number of LSTM layers. A series of experiments are conducted to inves-

tigate the effect of the number of layers of the LSTM network on evaluation

accuracy. As shown in Figure 5.5, from the perspective of judgment accuracy,

LSTM with three layers tends to get slightly better results. However, it is

also observed that the reason accuracy of LSTM with three layers converges

to 60% at the training time of 130 epochs. In contrast, reason accuracy of

LSTM with one layer almost reaches 80% and gradually decreases with the

increasing training time. Based on this result, one-layer LSTM is adopted as

the architecture of the proposed model.

Dimension of LSTM hidden layer. The impact of the LSTM hidden

layer’s dimensionality on the model’s performance is investigated. The model

is trained six times with identical parameters, and the average accuracy values
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Figure 5.6 Curves of judgment accuracy and reason accuracy according to dif-
ferent dimensions of the LSTM hidden layer. Experiments include five different
dimension conditions, which are 10, 20, 100, 500, and 1000. All the evaluating ex-
periments are repeated six times on the test dataset.

on the test dataset are computed. Figure 5.6 illustrates the results, indicating

that the size of the hidden layers has minimal effect on judgment accuracy but

significantly influences reason accuracy. The highest reason accuracy of 0.76

is achieved when the size of the hidden layers is set to 500, which is selected

as the hyperparameter for the proposed model.

5.5 Chapter Summary

In conclusion, this chapter presents a novel fashion compatibility model that

combines the Bi-LSTM model and inter-factor compatibility network through

joint training. The Bi-LSTM model is utilized to predict outfit compatibility

by treating attribute features as a sequential input. The inclusion of gradi-

ent penalty regularization ensures that the generated explanations align with

expert-annotated reasons.
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The comprehensive evaluation, both qualitative and quantitative, demon-

strates the effectiveness of the proposed system in accurately predicting outfit

compatibility and providing corresponding reasons. Quantitative analysis re-

veals that the approach outperforms other methods in terms of reason accu-

racy on the updated EVALUATION3 dataset. Moreover, the numerical results

showcase the model’s ability to classify reasons based on the Bi-LSTM output

and item features.

Finally, the chapter introduces a website application that utilizes the trained

model, enabling users to upload outfit images and receive compatibility judg-

ments along with explanations. This application serves as a practical demon-

stration of the proposed system’s capabilities.



Chapter 6

Dress Well via Fashion

Cognition Learning

6.1 Introduction

Fashion exists [94] in our daily life as a tool for expressing attitude and present-

ing culture. The convergence of fashion and artificial intelligence has garnered

significant attention among researchers. While numerous studies have inves-

tigated the fashion recommendation problem, their practical application in

real-world scenarios still presents considerable challenges. One limitation of

existing models is that they primarily focus on evaluating the compatibility

between fashion items without considering the overall compatibility between

the outfit and individual customers during online shopping. As shown in

Figure 6.1 (a), different customers have varied appearances, such as heights,

hairstyles, and skin colors, directly affecting whether an outfit is compatible

with them. For example, the outfit shown in Figure 6.1 (b) consists of a long

white dress that is inappropriate to recommend to the second customer since

96
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(a) Different customers with varied appearance

(b) Precise Outfit Recommendation with fashion cognitive model
height hair style body figure hair color skin colorwell matched

Figure 6.1 Illustration of Fashion Cognition Learning task. The physical at-
tributes of customers should be considered in fashion recommendations.

she is not so high enough to wear this long dress. Thus, even though this outfit

is perfectly matched, it is inappropriate to recommend it to her.

Previous research mainly focused on the relations among fashion items via

fashion compatibility learning [41, 71, 143, 161]. Many of them [72, 169] also

focused on the explainability of fashion compatibility models. In addition, a

few works noticed the influence of personal information, such as user prefer-

ence [8, 78, 95], social media posts [123, 165], body shape [48]. However, no

prior approach systematically considered the compatibility relationships be-

tween fashion items in an outfit and the varied appearance of online shoppers.

To address the above limitations, this chapter aims to provide a precise and

appropriate fashion recommendation service to customers by considering their

personal physical information. To distinguish from previous works utilizing

the user’s personal preference for personalized recommendation, a new task is
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defined, namely Fashion Cognition Learning, that focuses on the influence

of personal physical information on the compatibility of an outfit. This task is

treated as a multi-label classification task. An end-to-end framework, Fashion

Convolutional Network (FCN), is proposed, which learns the compatible rela-

tionships between outfits and humans. The FCN contains two modules: outfit

encoder and Multi-label Graph Convolutional Networks (ML-GCN). The out-

fit encoder utilizes convolutional filters with different window sizes to encode

the outfit into an outfit embedding. Applying filters with different sizes en-

ables convolutional kernels to see different combinations of fashion attribute

features. The ML-GCN is employed to learn multi-label classifiers based on

word embeddings of physical labels. The predicted scores for all labels are

obtained by multiplying classifier vectors with outfit embeddings.

Meanwhile, to facilitate the development of the proposed framework, a new

outfit dataset is introduced covering personal physical information, namely

Outfits for You (O4U). The O4U focuses on women’s wear since women are

the largest market among all types of crowd [3], and all labels are designed

according to women’s characteristics. It includes a total of 29,352 outfits.

Each outfit is associated with two labels: 1). Whether the outfit is good or

not; 2). Which kind of physical label is incompatible with the outfit. Six

fashion experts are invited to label these outfits. The labeling procedure is

carefully designed to maintain annotation consistency. Extensive experiments

on the O4U dataset show that the proposed FCN outperforms other baselines.
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6.2 Related Work

Personalization plays a crucial role in online selling services [3]. Previous

research has focused on recommending items based on user preferences, lever-

aging various sources such as purchasing records and social media posts from

platforms like Instagram [8, 66, 78, 84, 95, 111, 123, 165]. For instance, Packer

et al. [95] developed an approach that models individual users’ visual pref-

erences using interpretable image representations, allowing for personalized

clothing recommendations. Wen et al. [144] constructed knowledge graphs to

capture correlations between clothing and context attributes, enabling per-

sonalized recommendations through the Apriori algorithm. Chen et al. [8]

employed a Transformer architecture to connect user preferences with indi-

vidual items and outfits. Zheng et al. [165] presented an item-to-set metric

learning framework that learns to compute the similarity between a set of his-

torical fashion items of a user to a new fashion item. Kim et al. [63] proposed a

knowledge distillation framework for outfit recommendation, leveraging false-

negative information from a teacher model without requiring the ranking of

all candidates.

Some prior studies also investigated the task of dressing for diverse body

shapes. Hidayati et al. [48] explored the compatibility of clothing styles and

body shapes via a set of celebrities’ photos. Hsiao et al. [52] introduced a

visual body-aware embedding to capture the affinity between clothing items

and different body shapes. However, their focus was solely on body shape, but

they overlooked other physical characteristics. In light of this, this chapter

tackles a novel task: learning the compatibility between outfits and diverse

personal physical information.
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Table 6.1 Details of personal physical features and sub-features.

Features Sub-features (N - numbers of sub-features)

Body Shape rectangle, top hourglass, athletics, round, spoon... (10)
Skin Color yellow, dark, fair, brown (4)
Hair Style long curls, long straight hair... (6)
Hair Color ginger, black, dark brown, light brown... (6)
Height high, middle, low (3)
Breasts Size big, average, small (3)
Color-contrast high, low (2)

6.3 O4U Dataset

Fashion cognition learning is based on fashion compatibility learning. It fur-

ther learns the compatibility between outfits and personal physical features.

Thus, the Outfit for You (O4U) dataset is built following the same structure

of fashion compatibility learning.

Firstly, a labeling system for what types of personal body information may

affect compatibility with garments is devised with reference to the current

practices of fashion participants. The details of the defined label system are

summarized in Table 6.1.

Secondly, to ensure the objectiveness of the created outfits to the maximum

extent, 50,000 seed outfits are randomly generated. Each seed outfit consists

of at least clothing items covering the whole body, one bag, one pair of shoes,

and n accessories (n ∈ [0, 5]). Six experts majoring in fashion are invited to

label those outfits. Determining if an outfit is well-matched is the first step. If

true, they will select which personal features are incompatible with this outfit.

Otherwise, this outfit only has a label to indicate that it is not well-matched.

An outfit is only kept if the consistent accuracy of these six experts is over 95%

in all 34 labels. The voting mechanism decides the few inconsistent annotation
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Figure 6.2 Number of examples for each physical label

results.

Finally, after the labeling process, there are 29,352 outfits retained. Mean-

while, only 15,748 outfits are labeled as well-matched, and the average un-

matched physical label of these well-matched outfits is 5.25. The dataset is

randomly divided into a training set, validation set, and test set in the form

of 8:1:1. The label distribution of the training set is shown in Figure 6.2.

6.4 Approach

6.4.1 Problem Formulation and Motivation

The newly introduced task is formulated as a multi-label classification task

to recognize whether the given outfit is compatible with multiple personal

physical labels. Specifically, given a set of itemsM = {pi}Np

i of Np individual

items and a collection T = {Oj}Nt
j=1 containing Nt outfits, each outfit O =
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Figure 6.3 An overview of the proposed Fashion Convolutional Network. It com-
prises an outfit encoder and a stacked graph convolutional network. The outfit
encoder is utilized for encoding outfits into outfit feature vectors by applying convo-
lutional operation on attribute features. The stacked graph convolutional network is
exploited to represent the classifiers of physical labels. Each physical label is treated
as a node of the graph. The predicted scores are obtained by applying these label
classifiers to the outfit feature vector.

{pi}ni in collection T is defined as a subset ofM containing n different items.

Each outfit O has a fashion compatibility label lf ∈ {0, 1} indicating whether

this outfit is well-matched or not and a set of personal physical labels lp ∈ RN ,

where N is the number of physical labels defined in Table 6.1. Each item

pi ∈M has its corresponding image Ii (unstructured data) and other metadata

such as the primary color data, the category label, and some attribute labels

la (structured data).

This research proposes the Fashion Convolutional Network (FCN) to ad-

dress this task. As shown in Figure 6.3, FCN contains two modules: outfit

encoder and stacked graph convolutional networks. In the outfit encoder, 1-

dimensional convolutional filters of different sizes are proposed to extract the

hidden features of the outfit. Two key motivations drive the design of a con-
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volutional structure for encoding outfits. Firstly, fashion data exhibits trans-

lation invariance, whereby the ordering of items or attributes within an outfit

does not impact its representation. This characteristic makes convolutional

models well-suited for learning from such data. Secondly, the compatibility

of an outfit with a physical label is contingent upon one or more fashion at-

tributes. Convolutional filters of different sizes are strategically employed to

aggregate different numbers of attribute features to capture these attributes

accurately. This approach ensures an effective encoding of outfits and facili-

tates the extraction of meaningful fashion representations.

6.4.2 Outfit Encoder

The outfit encoder consists of a set of convolutional filters utilized to encode

an outfit into an outfit embedding. Different from using a convolutional neu-

ral network (CNN) to extract features from item images, the proposed outfit

encoder is applied to fashion attribute features. Given an outfit, fashion at-

tribute features X ∈ RNa×d is extracted from each item using well pre-trained

Visual Geometry Group (VGG) [120] network on a large-scale fashion attribute

dataset, where Na is the number of fashion attributes and d is the dimension-

ality of attribute features. Each attribute feature vector is the output of the

last convolution layer after a max-pooling operation. These attribute features,

serving as the input of the outfit encoder, are fixed during the whole train-

ing process. The advantage of using these attribute features compared to raw

images is that the network can focus on the important features of items and

make the training process more efficient.

Attribute feature maps of n items are presented by stacking (padded where

necessary) all attribute features along the item dimension:

Z = X1 ⊕X2 ⊕ · · · ⊕Xn (6.1)
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where Z ∈ Rn×Na×d and ⊕ is the stacking operation. A convolutional layer

contains Nc convolutional filters with different window sizes, and each filter

has multiple convolutional kernels. The notation wj ∈ Rhj×d refers to j-th

filters in this layer, where hj means the filter is applied to a window of hj

attribute features to generate a new feature. The number of input and output

channels of each filter is n and 24, respectively. The convolution stride and

padding are fixed to 1 and 0, respectively. After the convolutional process,

a max-pooling layer along the filter moving dimension is applied, yielding a

24-dimensional vector for each filter. The final outfit embedding, denoted as

g ∈ RF , is obtained by concatenating these convolved vectors, where F is the

dimensionality of the outfit embedding.

6.4.3 Multi-label Graph Convolutional Networks

The Multi-label Graph Convolutional Networks [11] (ML-GCN) is used to

train classifiers of the physical labels. ML-GCN is a graph convolutional net-

works (GCN) [64] based model, taking the advantage of capturing the label

correlations by treating the classifiers of labels as nodes. As illustrated in

Figure 6.4, the adjacency matrix A is constructed based on the conditional

probability of label Lj when label Li appears. The i, j entry of the matrix A

is Aij = P (Lj|Li), and matrix A is a weighted and asymmetrical matrix.

The generic layer-wise propagation rule of a GCN layer is:

x(l+1) = σ(D̃−
1
2 ÃD̃−

1
2 x(l)Θ(l)) (6.2)

where Ã = A + ID is the adjacency matrix of the graph with self-connections

and D̃ =
∑

j Ãij is the degree matrix. A ∈ RN×N is the adjacency matrix

where N denotes the number of nodes in the graph. x(l) ∈ RN×C(l)
is the
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round athletic

𝑃𝑃 𝐿𝐿round 𝐿𝐿athletic) =
2512
3542

= 0.709

𝑃𝑃 𝐿𝐿athletic 𝐿𝐿round) =
2512
8113

= 0.310

Figure 6.4 Construction of adjacency matrix based on the conditional probability
of round and athletic. When athletic is not compatible with an outfit, there is a
high probability that round is also not compatible with this outfit.

matrix of activations in the lth layer with C(l) feature maps. Θ(l) ∈ RC(l)×C(l+1)

is the trainable weight matrix. σ(·) denotes the nonlinear activation function.

x(l+1) ∈ RN×C(l+1)
is the convolved feature matrix with C(l+1) feature maps.

A two-layer stacked GCN is selected to learn classifiers using the layer-

wise propagation rule of Equation 6.2. Taking the label representation with

C physical labels X ∈ RN×C and the adjacency matrix A ∈ RN×N as input, a

two-layer GCN model f(X,A) can be expressed mathematically as:

Z = f(X,A) = Â ReLU(ÂXW(0))W(1) (6.3)

where Â = D̃−
1
2 ÃD̃−

1
2 is normalized version of adjacency matrix. W(0) ∈

RC×H and W(1) ∈ RH×F are two trainable weight matrices for the first and

second layer, respectively and H is the dimension of the hidden layer. Z ∈

RN×F is the classifier matrix with F feature maps.

By applying label classifiers Z to the outfit embedding g ∈ RF , the pre-
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dicted score ŷ is a non-parametric product of them:

ŷ = Z · g (6.4)

The multi-label classification loss is computed as follows:

L1 =
N∑
n=1

yn log(σ(ŷn)) + (1− yn) log(1− σ(ŷn)) (6.5)

where y ∈ RN is the ground truth physical labels of an outfit, and σ(·) is the

sigmoid function. The overall cost function is defined as follows:

J(ΘFCN) = L1 +
λ

2
‖ΘFCN‖2

2 (6.6)

where ΘFCN is the trainable parameters of FCN and λ is the L2 regularization

hyperparameter.

6.5 Experiments

6.5.1 Experimental Settings

Implementation Details. For the outfit encoder, the convolutional layer

has five filters with different window sizes, i.e., 1, 2, 4, 6, and 8. The number

of fashion attributes Na is 14. For the GCN module, a two-layer stacked GCN

is used, and the output dimension of these two layers are 200 and 120. A pre-

trained VGG [120] is utilized as the attribute feature extractor. The images’

height and width are cropped to 224, and the dimension of the attribute feature

vectors is 512. The main color feature extracted using FOCO system [171] is

also added to the input feature maps. The physical labels are encoded by
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Glove [103] into 100-dimensional word embeddings. The FCN is trained in an

end-to-end manner on the O4U dataset with a batch size of 10 on NVIDIA

RTX 3070 GPU. The Stochastic gradient descent [108] algorithm is employed

as the optimizer with the learning rate, momentum, and weight decay are

1e−1, 0.9, and 5e-5, respectively. An exponentially decreasing schedule for

the learning rate and an early stop training strategy are adopted. The O4U

dataset introduced in this work is used for the model evaluation since the

existing datasets are inappropriate for the task of modeling fashion cognition.

Compared Approaches. 1). SVM [102]: The support vector machine

(SVM) is chosen as one of the baselines to demonstrate the effectiveness of our

approach. 2). Linear: A network consists of multiple fully connected layers

and ReLU activation functions. 3). ResNet [44]: The ResNet is retrained

by inputting the mean value of all item images. 4). Attention [135]: Several

stacked multi-head attention layers are stacked to encode an outfit with various

attribute vectors into one vector.

6.5.2 Quantitative Results

Following the general practice [11, 132, 139], the performance of models on

these metrics are reported, including mean average precision (mAP); average

per-class precision (CP), recall (CR), and F1 (CF1); average overall precision

(OP), recall (OR), and F1 (OF1). Average per-class metrics evaluate each

label individually and then average over all labels. Average overall metrics

evaluate over all examples. The results of these metrics on top-3 labels are

also reported.

The mAP results for the body shape attributes are reported in Tables 6.2,

while the mAP results for the resting physical attributes are reported in Ta-
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Table 6.2 Quantitative results on Body Shape attributes.

Methods
top

hourglass
hourglass athletics

inverted
triangle

triangle spoon round dimension

Linear 15.47 63.90 66.47 76.14 63.41 63.09 71.96 70.90
ResNet [44] 10.73 31.76 33.37 79.22 67.86 67.15 66.44 65.26
Attn [135] 9.48 30.20 31.69 69.68 59.07 57.46 61.36 61.52

FCN (proposed) 15.39 66.53 70.15 83.48 70.29 69.82 77.52 76.35

Table 6.3 Quantitative results on the physical attributes excluding body shapes.

Methods
Skin Hair color Height Breasts Contrast

yellow dark brown light brown grey high low big low

Linear 11.59 24.35 14.35 9.17 13.31 17.38 13.94 31.23 12.27
ResNet [44] 12.05 41.57 14.29 9.83 13.68 18.08 11.98 26.50 12.06
Attn [135] 12.31 11.68 14.27 8.42 12.24 14.30 12.43 27.51 12.29
FCN 13.24 46.84 15.11 9.31 13.00 21.57 23.23 31.91 12.72

ble 6.3. The proposed method FCN achieves the best performance over 14 out

of 17 labels compared with other baseline methods. Especially on labels be-

longing to the body shape category, FCN achieves a considerable improvement

compared to other methods.

Model performances covering all 17 labels are reported in Table 6.4. FCN

outperforms other baselines on almost all metrics. SVM, an effective machine

learning method, performs well regarding average overall metrics. However,

Table 6.4 Quantitative results on main metrics.

Methods
All Top-3

mAP CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1

SVM [102] - 28.07 33.10 30.38 68.70 61.54 64.90 - - - - - -
Linear 37.59 26.59 33.93 29.81 63.23 65.14 64.17 28.96 20.57 24.06 68.25 41.29 51.46
ResNet 34.22 22.83 27.55 24.97 64.29 57.18 60.53 23.98 18.80 21.08 67.52 40.06 50.29
Attn [135] 29.76 18.18 29.41 22.47 61.82 62.33 62.07 11.44 17.65 13.88 64.82 39.22 48.87
FCN 42.14 32.29 33.84 33.04 68.89 62.17 65.36 34.16 21.06 26.06 73.25 41.32 52.83
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FCN surpasses SVM by 4.22, 0.74, and 2.66 on the CP, CR, and OP. The

linear method works best in the recall indexes, indicating that this method

may have a high sensitivity to the labels. The performance of ResNet is not

good on mAP, and it indicates that treating outfits as the mean value of item

images is not a good idea for this task.

Ground Truth Proposed FCN SVM Attention Linear ResNet

Inverted triangle Inverted triangle Top hourglass Triangle Inverted triangle Triangle

Triangle Triangle Hourglass Round Round Round

Round Round Athletic Diamon Diamon Diamon

Diamon Diamon Rectangle

Bottom hourglass

Ground Truth Proposed FCN SVM Attention Linear ResNet

Triangle Triangle Triangle Triangle Round Triangle

Spoon Spoon Spoon Spoon Diamon Spoon

Round Round Bottom hourglass Round Inverted triangle Round

Diamon Diamon Athletic Diamon Diamon

Inverted triangle Bottom hourglass Bottom hourglass

Ground Truth Proposed FCN SVM Attention Linear ResNet

Triangle Triangle Bottom hourglass Triangle Round Triangle

Round Round Spoon Round Inverted triangle Round

Spoon Diamon Diamon

Diamon Spoon

Bottom hourglass Bottom hourglass

Query 3

Query 2

Query 1

Figure 6.5 Qualitative results of baseline methods and the proposed FCN. The
text in red is the wrong prediction. FCN precisely predicts all incompatible body
shapes for the query outfit.
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6.5.3 Qualitative Results

Figure 6.5 presents the qualitative results conducted on the O4U dataset. For

the first query outfit, the ground truth column reveals that individuals with In-

verted triangle, Triangle, Round, and Diamond body figures are unsuitable for

this outfit. This unsuitability arises from the mismatch between the tank top’s

silhouette and the straight-line pants concerning these specific body shapes.

Remarkably, the FCN accurately identifies all incompatible body shapes, sur-

passing the performance of other comparative methods. Similarly, for the

other two outfits, the FCN method precisely predicts the mismatched body

shapes, whereas other baseline methods provide incorrect judgments.

6.5.4 Ablation Study

Effect of filter region size. The sensitivity of different combinations of filter

region size is explored. As shown in Table 6.5, only using one convolutional

filter size shows the worst performance. Using filters with a big region size

(relative to attribute number 14) harms model performance. Using multiple

filters with the same size achieves the best result on mAP and OF1, but the

results are lower than FCN on the top-3 labels. The combination used in FCN

(1, 2, 4, 6, 8) shows the best performance on CF1 and Top-3 metrics.

Table 6.5 Effect of filter region size.

Region size
All Top-3

mAP CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1

(1) 40.68 32.55 32.99 32.77 67.68 62.50 64.99 29.56 20.27 24.05 71.29 40.53 51.67
(2) 38.93 28.36 32.42 30.25 68.67 61.28 64.77 30.64 20.44 24.52 73.01 40.24 51.89
(4,4,4,4,4) 43.11 32.82 33.46 33.13 68.70 62.02 65.19 32.30 20.82 25.32 72.30 40.87 52.22
(8,9,10) 41.38 28.29 32.72 30.35 68.83 61.29 64.85 30.29 21.19 24.93 73.12 40.96 52.51
(1,2,4,6,8) 42.14 32.29 33.84 33.04 68.89 62.17 65.36 34.16 21.06 26.06 73.25 41.32 52.83
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Table 6.6 Effect of numbers of kernels for each filter.

# Kernels
All Top-3

mAP CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1

2 35.46 26.54 35.58 30.40 62.52 68.25 65.26 27.94 19.72 23.12 66.03 39.95 49.78
12 41.67 32.19 33.91 33.03 67.96 63.09 65.44 36.09 20.77 26.37 72.31 40.95 52.29
24 42.14 32.29 33.84 33.04 68.89 62.17 65.36 34.16 21.06 26.06 73.25 41.32 52.83
48 42.65 32.55 33.10 32.82 69.17 60.90 64.77 34.75 21.02 26.20 73.75 40.78 52.52

Table 6.7 Effect of numbers of GCN layers.

# GCN
All Top-3

mAP CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1

1 40.85 34.11 32.09 33.07 68.19 61.38 64.61 25.01 18.93 21.55 71.63 39.67 51.06
2 42.14 32.29 33.84 33.04 68.89 62.17 65.36 34.16 21.06 26.06 73.25 41.32 52.83
4 40.73 28.59 32.24 30.31 69.05 60.46 64.47 30.49 20.83 24.75 73.02 40.40 52.02
8 39.45 28.00 32.29 29.99 67.73 60.19 63.74 21.25 19.55 20.36 71.18 35.54 47.41

Effect of numbers of kernels for each filter The effect of the different

numbers of kernels is also explored. The filter region size is kept the same,

and the results are reported in Table 6.6. It can be observed that the perfor-

mance achieves the best results when the number of kernels is 24. Using too

few convolutional kernels will deteriorate performance significantly. Using too

many kernels cannot dramatically improve performance, and it hurts recall

metrics.

Effect of numbers of GCN layers Finally, the effects of different num-

bers of GCN layers is examined and reported in Table 6.7. The results show

that deeper multi-layer GCNs degrade the performance on almost all metrics.

Therefore a two-layer stacked GCN is chosen in FCN.
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6.6 Chapter Summary

In summary, this chapter introduces the task of Fashion Cognition Learn-

ing, which aims to learn the compatibility between fashion outfits and per-

sonal physical information. To tackle this task, the Fashion Convolutional

Network framework is proposed, which utilizes visual-semantic embeddings of

outfit composition and appearance features of individuals to capture the re-

lationships. Additionally, a large-scale fashion outfit dataset is constructed,

encompassing comprehensive personal physical information. The extensive

experimental results demonstrate the superior performance of the proposed

framework compared to alternative methods. This research contributes to the

advancement of understanding and modeling the intricate connections between

fashion outfits and individual characteristics, paving the way for personalized

fashion recommendations and improved compatibility assessment.



Chapter 7

Learning Body-shape-Aware

Embeddings for Fashion

Compatibility

7.1 Introduction

Fashion Recommendation Systems (FRSs) [8, 55] is not a new topic, but they

still have great potential for economic benefits. Previous works have mainly

focused on fashion compatibility learning (FCL) [20, 71, 97], which only con-

siders the compatibility among fashion items. However, in addition to the

outfit itself, consumers are highly concerned about its appearance when worn.

Figure 7.1 demonstrates how fashion compatibility can vary depending on dif-

ferent body shapes. For instance, individuals with an inverted triangle body

shape may find the outfit in Figure 7.1 (a) suitable, while those with a triangle

body shape may not.

To effectively incorporate accurate body shape information into FRSs, it

113



114 7.1. Introduction

Bottom hourglass

Incompatible

Spoon

Incompatible

Top hourglass

Compatible

(a). Outfit Composition (b). Human body type

Inverted Triangle

Compatible

Triangle

Incompatible

Figure 7.1 An example of the body-shape-aware fashion compatibility task. The
outfit of a shirt and a pair of pants is compatible with the inverted triangle and top
hourglass body shapes but incompatible with others.

is essential to leverage valuable information from body images. However, pre-

vious studies [47, 48] merely rely on body measurement data, overlooking the

valuable visual features of body shape, which limits their ability to provide

precise recommendations. Moreover, accurately representing outfits is also

critical, as the scaling and spatial relationships between clothing items can

impact how they fit and flatter different body shapes. Therefore, conven-

tional outfit representation methods used in FCL, such as item-wise corre-

lations [17, 134, 151] or graph neural networks [18, 124], are insufficient for

modeling the relationships between body shape and an outfit. Lastly, pro-

viding a reasonable explanation for the evaluation is crucial for personalized

FRSs. However, previous studies [47, 90, 98] have not achieved this.

To this end, this paper proposes a Body-shape-Aware Network (BA-Net)

to model the relationships between body shape and outfit. BA-Net consists

of three modules: Body-shape Embedding Module (BEM), Outfit Embedding
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Module (OEM), and Joint Embedding Module (JEM). The BEM combines

visual and anthropometric features to obtain a general representation of the

body shape. However, obtaining accurate visual features from body images

requires a diverse dataset with explicit body shape annotations, which is cur-

rently unavailable. Thus, a new dataset is created covering five common body

shapes; each contains 4,000 3D body models with varying but similar shapes.

Every body model in the dataset is accompanied by its anthropometric data

and frontal view image. The OEM learns the outfit embedding by incorpo-

rating visual and textual features of the outfit. For the visual features, the

try-on appearance of an outfit is leveraged because it contains the scaling and

spatial relationships among individual clothing items. A Multi-layer Try-on

System (M-VTON) is developed to generate the realistic try-on image of an

outfit. For the textual aspect, the fashion attributes information is exploited

to enhance the outfit representation, where the attribute values are encoded

into word embeddings. Finally, the JEM integrates body shape and outfit

representations to compute the body-shape-aware embedding, which is then

transformed by a linear function to obtain the final compatibility score. The

core of the OEM and JEM is a cross-modal attention mechanism that allows

them to merge features from different modalities. The hierarchical design of

BA-Net facilitates the propagation of cross-modal interactions between fash-

ion attributes and body shapes through the computed attention maps. These

attention maps are utilized to generate the attribute-level explanations for the

prediction results. The proposed BA-Net is compared with the state-of-the-art

methods on the O4U dataset introduced in Chapter 6. Both qualitative and

quantitative results show the advancement of the BA-Net.
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7.2 Related Work

7.2.1 Body-shape-Aware Fashion Compatibility.

With the development of FCL, researchers are increasingly aware of the impor-

tance of body shape to practical applications. The primary challenge of this

task lies in accurately encoding and classifying human body shapes. Hidayati

et al. [48] represent the body shape using body measurements collected from

websites. They employed an affinity propagation [31] algorithm to cluster the

measurement data into several body shapes. Sun et al. [126] proposed to use

3D features consisting of 240 vectors to represent female upper body shapes.

Pang et al. [98] employed a GCN to learn body shape representations based on

statistical correlations between physical labels. Simmons et al. [118] developed

a well-known body shape classification system called the Female Figure Iden-

tification Technique (FFIT), which uses anthropometric data measured from

3D body scans for classification. Subsequent research [22, 101, 155] improved

the FFIT, which has become a widely accepted standard for body shape classi-

fication. However, these approaches neglect the informative images of human

bodies. In this chapter, the body shape is encoded into a more comprehensive

embedding incorporating both anthropometric features and visual features,

which are extracted from body images based on the newly introduced body

shape dataset.

7.2.2 Outfit Representation

Most research tried to learn item representations rather than outfit representa-

tions in modeling fashion compatibility. Vasileva et al. [134] modeled fashion

compatibility by measuring item similarities respecting item types. Cucu-
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rull et al. [17] proposed to generate item embeddings by considering product

context. Tan et al. [128] claimed to learn item embeddings without explicit

supervision to alleviate the deficiency of rich labeling costs. The graph-based

method OCM-CF proposed in [124] utilized a multi-head attention mecha-

nism to leverage the contextual information of fashion items and obtain outfit

representations. Pang et al. [98] encoded the outfit through 1-dimensional con-

volutional filters with different sizes based on the features of fashion attributes.

Hidayati et al. [47] utilized photos of female celebrities, and they embedded

the outfit through the separate items segmented from these photos.

The main limitation of these approaches in encoding the outfit is that they

omit the scaling and spatial relationships between individual clothing items.

To address the limitation, some studies proposed representing outfits using

try-on appearances to enhance the model performance. Dong et al. [25] de-

veloped a Multi-modal Try-on Template Generator (MTTG), which explores

both visual and textual modalities of fashion items. Zheng et al. [166] utilized

a teacher-student knowledge distillation scheme, where the teacher network

is trained through unsupervised self-encoding, enabling the student network

to accurately represent try-on outfits by imitating the teacher’s output and

deriving the representation directly from the discrete clothing items. How-

ever, these approaches still suffer from poor quality of try-on images due to

loss of garment details, such as print and texture, which are crucial for the

fashion recommendation task. In light of this, a new Virtual try-on frame-

work is proposed in this chapter, which can produce try-on results reliably

and expressly.
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7.3 Body Shape Dataset

Previous studies [48, 101] have introduced few body shape datasets, but the

numbers of body models they contained are insufficient to represent body

shapes. For example, Parker et al. [101] analyzed 1,679 3D body scans, while

only 10 and 62 human bodies are categorized as triangle and top hourglass

body shapes, respectively. The dataset introduced by Hidayati et al. [48]

consists of 3,150 individual celebrities with their body measurements, while no

body shape labels are provided. In light of this, a new dataset is constructed

for the body shape representation. The definition of body shape is first given.

Let Ω = {Ti}NT
i=1 be a set of human body models, where Ti represent a 3D

body model. A body shape set Uk ⊆ Ω is defined as a subset of Ω whose

models share similar characteristics and can be categorized into the same body

shape, where k ∈ [1, K] and K is the number of examined body shapes. The

newly introduced dataset covers five common body shapes, namely bottom

hourglass, inverted triangle, spoon, top hourglass, and triangle. Each body

shape set Uk contains 4,000 human body models. The detailed construction

process includes the following steps:

Step 1: Generating SMPL Model. 200,000 3D body models are generated

with diverse body sizes to ensure dataset variety by employing the Skinned

Multi-Person Linear (SMPL) model [82]. SMPL is a learned model that ac-

curately represents various human body sizes in different poses. The body

model is generated according to shape parameters β and pose parameters θ.

However, as this task focuses on variations in human body shape, the pose pa-

rameters are kept constant while generating body models. Thus, a one-to-one

correspondence exists between the body model set and the shape parameter
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Inverted triangle Top hourglass TriangleSpoonBottom hourglass

Bust

Waist

Hip

High Hip

Figure 7.2 Five common body shapes included in the newly introduced body
shape dataset. Both Bottom hourglass and top hourglass have a well-defined waist-
line, but their difference lies in their hip-to-bust ratio; triangle and inverted triangle
lack a well-defined waistline because they do not consider the bust-to-waist ratio;
Spoon is characterized by a large gap between hip and bust circumference and a
smaller bust-to-waist ratio than the hourglass.

set. Let FSMPL be the SMPL [82] model forward function, the body model is

denoted as Ti = FSMPL(βi).

Step 2. Measuring Anthropometric Data. A body measurement tool [113]

is employed to acquire the anthropometric data containing 20 dimensions from

the generated 3D model. Among these 20 measures, the bust, waist, high hip

and hip circumferences are most important because FFIT [155] is employed

to identify the body shape based on these four measures. Figure 7.2 visual-

izes these circumferences, where the circle’s size indicates the circumference’s

length. These circumferences are measured by locating body landmarks based

on the regularities of cross-sectional body shapes. The tool’s localization cri-

teria is modified to maintain consistency with the body landmarks defined

in FFIT. The obtained anthropometric data is denoted as ω = Fmeasure(T),

where Fmeasure is the measuring process.
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Step 3. Cleaning Invalid Model. To ensure the generated body mod-

els are realistic, invalid models that fall outside the standard range of human

height-weight distribution [58, 88] are eliminated. Consequently, 11.57% of

the generated body models are retained. Then, the mean and variance of the

remaining models’ shape parameters β are calculated. Using these distribu-

tions, a new set of 100,000 body models are generated. This process improves

the realism of the newly generated bodies, as the height and weight are more

closely aligned with the normal distribution of humans.

Step 4. Annotating Body Shape. The FFIT algorithm [155] is utilized to

determine the body shape of each SMPL model. However, the classification

results show that the distribution of body models across different body shapes

is non-uniform. For instance, out of the 100,000 body models, only a small

portion is identified as the top hourglass and triangle, with only 120 and 11

models, respectively. To address this imbalance issue, its specific shape pa-

rameter distributions are computed for each body shape, which is then used

to regenerate body models. This method effectively enhances the occurrence

frequencies of these underrepresented body shapes by optimizing the shape

parameters. Finally, 4,000 valid human body models for five body shapes (as

illustrated in Figure 7.2) are randomly sampled to form the dataset.

Step 5: Capturing Frontal View Image. A frontal view image of each

body model is captured by rendering it in a virtual environment using an

orthographic camera. The resulting image has a resolution of 1024×512 pixels

and is saved in PNG format. The notation Fortho represents the orthographic

projection process, and the resulting image is denoted as I = Fortho(T).
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Figure 7.3 Overview of the multi-layer try-on system. Each fashion item is first
sent to keypoint detection model to obtain fashion keypoints. The estimated key-
points are used to calculate scales and positions for garments. Meanwhile, the
segmentation model separates item images into front and back pieces. Finally, the
segmentation results are applied to scaled items to generate the try-on images.

7.4 Multi-layer Virtual Try-on System

The proposed M-VTON consists of two modules, as shown in Figure 7.3: key-

point detection model and the clothing segmentation model. Both are based

on deep learning methods.

7.4.1 Keypoint Detection

The keypoint detection task aims to detect K keypoints from an image. In

the context of fashion, detecting fashion-oriented keypoints for garments is

the primary objective. It is worth noting that fashion keypoint detection and

human pose estimation differ in some aspects, such as clothing being more

difficult because of non-rigid deformations. There are two reasons why the
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method ViPNAS [147] is employed, although it belongs to pose estimation. 1).

Images in the mainstream fashion datasets are dominated by product images

that suffer litter from non-rigid deformations. 2). One major drawback of

fashion keypoint detection methods is inefficient.

The pose estimation model ViPNAS [147] is utilized. It can provide com-

parable performances with lower computation consumption by using Neural

Architecture Search. ViPNAS contains two sub-models which are S-ViPNet

aiming to estimate keypoints on key frames, and T-ViPNet aiming to esti-

mate video-based keypoints. Since the goal is to extract keypoints from im-

ages instead of a video, only the S-ViPNet is used. Specifically, heatmaps

are firstly regressed based on the high-resolution representation extracted by

HRNetV1 [140]. The kth heatmap indicates the confidence of the location of

kth keypoint.

7.4.2 Fashion Segmentation

A fashion segmentation model can parse out apparel’s front and back pieces.

However, existing datasets are inappropriate for training the desired segmen-

tation model. Thus, a new dataset is constructed that focuses on the fashion

layer’s semantic segmentation, where details are reported in Table 7.1. Creat-

ing this dataset involves two steps. Firstly, 10,000 images of fashion items are

collected, including authentic product images and sketch images, in a ratio

Table 7.1 Split details of segmentation dataset.

Training Validation Testing

Real 1,992 87 87
Sketch 4,613 213 213
All 6,605 300 300
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Figure 7.4 Illustration of the OCR-Net [158] model employed in M-VTON for
fashion segmentation.

of 3:7. Secondly, data cleansing and pixel-level annotation are carried out.

Finally, the data are split into training, validation, and testing sets.

OCR [157] (Object-Contextual Representations) is a popular segmentation

method that fully utilizes all representations of object regions belonging to

the corresponding class to augment one pixel’s representation. Due to its

advantage, OCR is employed for garment segmentation based on the newly

created dataset. As shown in Figure 7.4, there are three steps of OCR:

(1). Soft object region. The HRNetV2 [140] is chosen as the backbone

to segment K soft object regions from the given image I. Each object region

Mk is a coarse segmentation result represented as a matrix. Each entry of Mk

means the degree to which the pixel belongs to the corresponding class k.

(2). Representation of object region. The representation of each object

region fk is obtained using the following function:

fk =
∑
i∈I

m̃kixi (7.1)

where xi is the representation of pixel pi, and m̃ki represents the normalized

degree that pi belongs to k-th object region.

(3). Representation of pixel. The representation of pixel pi is computed
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after considering the relations between it and all object regions:

yi = ρ(
K∑
k=1

ωikδ(fk)) (7.2)

where ρ(·) and δ(·) are transformation functions. ωik indicates the relation

between the pixel and object region:

ωik =
eκ(xi,fk)∑K
j=1 e

κ(xi,fj)
(7.3)

where function κ(·) is an unnormalized relation function.

The final representation of the pixel pi is obtained by aggregating xi and

yi:

zi = g([xTi yTi ]T ) (7.4)

where g(·) is the same transformation function as ρ(·). Finally, a pixel-level

cross-entropy loss is applied to learn the segmentation model.

7.4.3 Outfit Synthesis

Outfit synthesis involves synthesizing separate clothing items into a cohesive

try-on image. Firstly, the scale of each item is determined by aligning the

keypoints of the garments with the corresponding keypoints on a mannequin

to ensure proper fitting and proportions. Secondly, a layering system is imple-

mented to represent the items in a multi-layered fashion. The segmentation

results are utilized to divide the clothes into front and back pieces. Following a

predefined try-on order, the scaled items are pasted onto the target positions

piece by piece. The try-on order follows a sequence from outerwear, dress,

blouse, skirt, to trousers, representing the outermost to the innermost layers

of the outfit.
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7.5 Body-shape-Aware Network

In this section, the proposed approach of learning body-shape-aware embed-

dings is elaborated. Specifically, the task formulation is first clarified. Then,

the representations of body type, try-on image, and fashion attributes are

given. Lastly, the architecture of BA-Net is described, containing three mod-

ules: Body-shape Embedding Module (BEM), Outfit Embedding Module (OEM),

and Joint Embedding Module (JEM).

7.5.1 Task Formulation

Following [98], this task is formulated as a multi-label classification task. Given

a training set T = {Oj, Y j}Nj=1 containing N outfits, Oj = {Xj,Gj} is denoted

as the j-th outfit containing individual clothing images Xj and structured

fashion attributes Gj. Y j = {yjk|k = 1, · · · , K} refers to a set of ground truth

labels for j-th outfit conditioned on K body shapes, where yjk = 1 indicates

that outfit Oj is incompatible with k-th body shape.

The goal is to devise a learning function F to predict the compatibility

score ŷjk between a query outfit Oj and k-th body shape:

ŷjk = F({Xj,Gj,ωk, Ik}|Θ) (7.5)

where ωk and Ik are the anthropometric data and front view image of k-th

body shape, respectively. Θ is the training parameters.

7.5.2 Body-shape Representation

A Body-shape Embedding Module (BEM) is devised to compute the embed-

ding for the body shape by exploiting both visual and anthropometric features
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Figure 7.5 The proposed BA-Net consists of three modules. The Body-shape
Embedding Module represents the body shape using both body image features and
anthropometric features. In the Outfit Embedding Module, outfit visual features
are extracted from the try-on image, which is synthesized via the Multi-layer Vir-
tual Try-On Network (M-VTON). The fashion attribute features are merged with
visual features to produce the outfit embedding through a cross-modal attention
mechanism. Finally, both body shape features and outfit features are sent to the
Joint Embedding Module to learn body-shape-aware embeddings. The cross-modal
attention mechanism employed in BA-Net computes attention weights that can be
used to generate attribute-level explanations for the prediction results.

extracted from a representative body model of this body shape, as illustrated

in the top-left corner of Figure 7.5. The first step is to obtain the representa-

tive model for the k-th body shape. The shape parameters of all body models

belonging to the set Uk are averaged, and then the SMPL model [82] generates

the representative model according to the averaged parameters:

T̄k = FSMPL(β̄k) = FSMPL(
1

|Uk|
∑

Ti∈Uk

βi) (7.6)

where T̄k is the representative 3D model of k-th body shape, and β̄k ∈ R1×10

is the averaged shape parameter vector. |Uk| means the size of set Uk. Based

on the representative model, an orthographic camera is used to capture the



7.5. Body-shape-Aware Network 127

corresponding frontal view image, denoted as Īk = Fortho(T̄k).

Visual features of k-th body shape are extracted from Īk by employing a

ResNet [44] model, which is trained on the body images of the introduced

body shape dataset. This dataset is divided into the training (80%), validate

(10%), and testing (10%) sets. The visual feature extraction process can be

expressed as follows:

v̄k = Fbody(Īk) (7.7)

where v̄k ∈ R1×512 is the visual features, and Fbody refers to the forward

function of ResNet with the last linear layer discarded.

The representative model is also measured to acquire the anthropometric

data, denoted as ω̄k = Fmeasure(T̄
k) ∈ R1×20, where Fmeasure refers to the

measuring process. Since body shape parameters also contain information for

characterizing the body shape, β̄k and ω̄k are concatenated and then sent to

a linear layer consisting of a linear transformation and a Rectified Linear Unit

(ReLU) activation function. The resulting output is concatenated with v̄k to

produce the body-shape embedding, denoted as Ūk ∈ R1×1024. Formally, Ūk

is calculated using the following equation:

Ūk = Concat(ReLU(Concat(β̄k, ω̄k)WB + bB), v̄k) (7.8)

where WB ∈ R30×512 and bB ∈ R1×512 are fully connected layer’s weight

matrix and bias vector, respectively. The resulting body shape features will

be sent to the next module for joint embedding learning.
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7.5.3 Try-on Image Representation

Try-on images are generated utilizing the Multi-layer Virtual Try-On Network

(M-VTON), which can synthesize separate item images while preserving cloth-

ing details as much as possible. The generated try-on image, denoted as X̃, has

a resolution of 1040× 680 pixels. A pre-trained ResNet [44] model is utilized

to extract spatial features from the obtained try-on image. This model’s last

pooling layer and linear layer are discarded. The motivation behind encoding

it into multiple region-level features is that they can provide more accurate

representations than a single global feature. Formally, the feature extraction

process can be expressed as:

S = Foutfit(X̃) = {x1, · · · ,xn}; (7.9)

where S is the representation of try-on image containing 128 spatial features

xi ∈ R512, and Foutfit refers to the forward function of the modified ResNet.

7.5.4 Fashion Attributes Representation

Each clothing item in the O4U dataset is associated with a set of fashion at-

tributes, which are manually recognized from various attribute dimensions. For

the sake of explanation, three fashion attributes are shown in the bottom-left

part of Figure 7.5. For example, the top item (on the right side of Figure 7.5)

is categorized as long in terms of top length dimension of fashion attributes.

The union of all attributes associated with each item in an outfit is assigned

to represent the fashion attributes for the entire outfit.

For fashion attribute value, a pre-trained GloVe [103] model is employed to

encode its text into a word embedding, denoted as e ∈ Rdtext , where dtext = 300
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is the dimensionality of the word embedding. For fashion attribute dimension,

it is encoded into a one-hot vector, denoted as c ∈ RNA , where NA = 15

is the number of all fashion attributes used in this work. Then, c and e

are concatenated to represent one fashion attribute and then apply a linear

transformation to the concatenated vector. Suppose the j-th outfit possesses

Lj fashion attributes, this outfit’s attribute representation Aj ∈ RLj×512 is

computed by:

Aj = {ReLU(Concat(cl, el)WA + bA)}Lj

l=1 (7.10)

where WA ∈ R315×512 and bB ∈ R512 is the weight matrix and bias vector of

the linear transformation.

7.5.5 Body-type-Aware Network Architecture

The cross-modal attention block [85] is utilized in both the Outfit Embedding

Module (OEM) and Joint Embedding Module (JEM) of BA-Net to merge

data representations from different modalities. This mechanism improves con-

ventional attention mechanisms by introducing a learnable weight matrix in

the score function, where two modalities are connected by calculating their

compatibility scores. Specifically, it takes two inputs denoted as a query

Q ∈ RNq×dq and a value V ∈ RNv×dv . The attention weights α ∈ RNq×Nv

is computed using the following equation:

α = softmax(QWVT ) (7.11)

where W ∈ Rdq×dv is the learnable weight matrix, and the softmax opera-

tion is applied on the second dimension. According to the obtained attention
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distribution and value V, the output of this block is computed by:

V̂ = αV (7.12)

where V̂ ∈ RNq×dv is the fused feature vectors.

The OEM aims to acquire the outfit representation, denoted as Hj ∈

RLj×512, through integrating features of try-on image and fashion attributes

using the cross-modal attention block:

Hj = αo · Sj = softmax(AjWoS
jT ) · Sj (7.13)

where Wo ∈ R512×512 is the learnable weight matrix and αo ∈ RLj×128 is the

attention maps calculated in OEM. Then JEM learns the relationship between

the k-th body shape features Ūk and the j-th outfit representation and outputs

the compatibility vector between these two representations:

Ĥj
k = αb ·Hj = softmax(ŪkWbH

jT ) ·Hj (7.14)

where Ĥj
k ∈ R1×512 is the body-shape-aware embedding, and Wb ∈ R1024×512 is

the learnable weight matrix in the JEM. αb ∈ R1×Lj
is the attention maps com-

puted in JEM. It can be observed that the second dimension of αb is exactly

the same as the number of fashion attributes associated with the j-th outfit.

Based on this characteristic of the BA-Net, the corresponding explanations can

be generated based on the influence distribution of fashion attributes reflected

in the attention maps computed in JEM. αb is visualized in Section 7.6.4 to

demonstrate the explainability possessed by BA-Net.

Lastly, the compatibility score is computed by applying a linear transfor-
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mation on Ĥj
k:

ŷjk = Ĥj
k ·Ws + bs (7.15)

where Ws ∈ R512×1 and bs (scalar) denote the linear transformation’s weights

and bias, respectively. Since the task is formulated as a multi-label classifi-

cation task, the binary cross entropy loss is used to measure the difference

between predicted scores ŷjk and target scores yjk.

7.6 Experiments

This section aims to showcase the benefits of the proposed BA-Net model by

addressing several research questions:

• RQ1: Does the BA-Net superior to the current state-of-the-art methods?

• RQ2: To what extent do the individual components of BA-Net influence

the model’s performance?

• RQ3: How does the BA-Net explain evaluation results?

• RQ4: How does the proposed model perform in the perceptual study?

7.6.1 Experimental Settings

Dataset. The proposed network is evaluated on the public dataset O4U,

which contains 15,748 compatible outfits and 82,017 individual clothing items.

Each item is associated with a product image and several fashion attributes.

On average, the top item contains 6.64 fashion attributes, while the bottom

item contains 3.77 attributes. This chapter focuses on learning the relationship

between body shape and outfit. The body shape annotations are provided
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by the O4U dataset covering five common body shapes. To ensure a fair

comparison, the original training, validation, and testing data split provided

by O4U is used.

Baselines. To demonstrate the superiority of the BA-Net, it is compared

with five state-of-the-art methods:

(1). StyleMe[47], which extends AuxStyles[48] by using bidirectional sym-

metrical deep neural networks to learn a joint representation of outfits

and body shapes, and measures the compatibility score with a cosine

distance function. It is trained using separate item images and anthropo-

metric data.

(2). TDRG[163], an effective multi-object recognition model that explores

the structural and semantic aspect relations through Graph Convolutional

Network. It learns the joint relation of the try-on image.

(3). M3TR[164], a multi-modal multi-label recognition model that effectively

incorporates global visual context and linguistic information through ternary

relationship learning. The body shape labels are embedded into the word

embedding as the linguistic information and use try-on appearances as

input images.

(4). CSRA[168], which captures spatial regions of objects from different cate-

gories by effectively combining a simple spatial attention score with class-

specific and class-agnostic features. CSRA is trained using try-on images

as input.

(5). FCN[98], which employs a convolutional layer to embed the outfit based

on fashion attribute features, and utilizes a GCN to learn multi-label
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classifiers based on word embeddings of body shapes. The compatibil-

ity scores are obtained by applying the learned classifiers to the outfit

embedding.

Evaluation Metrics. Following the general practice [32, 90, 98], seven eval-

uation metrics are utilized to assess the performance of the proposed BA-Net

compared with other methods. These metrics include mean average precision

(mAP), average per-class precision (CP), recall (CR), F1 score (CF1), average

overall precision (OP), recall (OR), and F1 score (OF1). Among these metrics,

mAP, CF1, and OF1 are relatively more important, as they provide a more

comprehensive assessment.

Implementation Details. The SGD optimizer [110] with momentum factor

equalling 0.9 and weight decay 5e-4 is adopted. Moreover, the learning rate is

gradually decreased according to the formula:

lr = base lr× (1− step num/max step)0.9 (7.16)

where the base learning rate is 0.1. The maximum steps and training batch

size are set to 1,260 and 10, respectively. During the training process, the

checkpoint model is saved at the highest mAP performance achieved on the

validation set. The average evaluation results from five repeated experiments

for all experiments are reported.
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Table 7.2 Quantitative comparison among different methods.

Methods mAP CP CR CF1 OP OR OF1

Random 45.01 44.27 23.04 30.31 44.91 21.93 29.47
StyleMe [47] 49.08 37.50 56.05 44.94 62.81 77.70 69.47
TDRG [163] 54.66 50.80 63.60 56.48 65.42 78.85 71.51
M3TR [164] 61.37 55.92 61.19 58.44 69.37 79.65 74.15
CSRA [168] 61.38 56.63 61.18 58.82 71.82 76.79 74.22
FCN [98] 62.34 56.96 62.41 59.55 71.42 78.14 74.62
BA-Net (Ours) 63.14 57.30 64.85 60.84 72.02 80.73 76.13

7.6.2 Comparative Results (RQ1)

The quantitative and qualitative results of the BA-Net compared with state-

of-the-art methods are reported to demonstrate the proposed approach’s ef-

fectiveness.

Quantitative Results. Table 7.2 shows the quantitative results. All baseline

methods are trained on the O4U training set. The random method means all

predictions are given randomly. The proposed BA-Net achieves the best per-

formances across all metrics. Specifically, it surpasses StyleMe by a clear mar-

gin (+14.06 on mAP). This may be because the bidirectional symmetrical deep

neural networks utilized in StyleMe are limited in their ability to learn cross-

modal relationships. Compared with the TDRG, M3TR, and CSRA methods,

the BA-Net brings consistent +1.78˜8.5 mAP gains, +2.02˜4.36 CF1 gains,

and +1.9˜4.6 OF1 gains over them. This may be attributed to BA-Net taking

advantage of body shape features. BA-Net also outperforms the FCN method

on all metrics. This may be attributed to the fact that FCN learns body shape

representation from textual data. The quantitative analysis demonstrates the

superiority of the proposed BA-Net in modeling the relationship between body

shape and outfit.
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Figure 7.6 Qualitative comparison among different methods. The tick symbol
indicates a match between the outfit and the body shape, while the cross symbol
indicates a mismatch.
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Qualitative Results. The quantitative results are presented in Figure 7.6.

It is evident that among all baselines, the BA-Net consistently performs well

with various outfit compositions. In Figure 7.6 (a), for example, the outfit

consists of corset straps with hot pants, which might not be compatible with

people having lower body segment obesity due to tight pants. However, the

length of hot pants is short, exposing the legs, which can alleviate the feeling

of envelopment, and thus, the outfit can still be compatible with body shapes

such as bottom hourglass, spoon, and triangle. On the other hand, corset straps

are heavy for people with inverted triangle or top hourglass body shapes, which

also have big boobs. Thus, matching hot pants with the same large exposure

of skin is incompatible. In contrast, as shown in Figure 7.6 (b), changing

clothing to a tank top and A-line long skirt can solve both problems. Similarly,

in Figure 7.6 (c), the off-shoulder blouse is unsuitable for people with broad

shoulders, and the tight jeans are incompatible with those with lower body

segment obesity. Furthermore, for outfits with special silhouettes, such as the

peplum top with an H-line short skirt in Figure 7.6 (d), the BA-Net can still

accurately assess the compatibility between body shape and the outfit.

7.6.3 Ablation Study (RQ2)

In this subsection, several ablation studies are conducted to examine the ef-

fectiveness of different components in the BA-Net, including representation

learning, network structure, outfit encoding, and body shape features.

Ablation Study on Representation Learning. The effectiveness of three

data representations used in BA-Net is investigated, including the body shapes,

try-on images, and fashion attributes. The results of this ablation study are

reported in Table 7.3. Firstly, the overall contribution of BA-Net to the multi-
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Table 7.3 Ablation results on representation learning. backbone: utilizing back-
bone (ResNet-18) as multi-label classifier. w/o-body : encoding the body shape into
one-hot vector. w/o-try-on: encoding outfit using visual features from separate
items. w/o-attr : removing fashion attribute data.

Methods mAP CP CR CF1 OP OR OF1

backbone 57.71 54.47 57.54 55.96 67.53 76.39 71.68
w/o-body 60.57 55.68 60.71 57.97 67.46 73.84 70.46
w/o-try-on 61.72 56.29 62.77 59.35 71.43 78.99 75.02
w/o-attr 61.45 55.83 63.32 59.34 70.61 79.50 74.79
Full model 63.14 57.30 64.85 60.84 72.02 80.73 76.13

label classification performance is investigated by comparing it with BA-Net’s

backbone model (ResNet-18). The proposed full network brings +5.43 mAP,

+4.88 CF1, and +4.45 OF1 performance improvements. Secondly, the effec-

tiveness of the body-shape embedding method is assessed by removing body

features and encoding body shape into a one-hot vector (w/o-body). The full

model surpasses w/o-body by +2.57 mAP, +2.87 CF1, and 5.67 OF1. This

result indicates the importance of visual and anthropometric body features in

this task. Thirdly, the try-on embedding method is compared with a separate

item embedding method (w/o-try-on). The result shows that BA-Net using the

try-on embedding achieves higher scores (+1.42 mAP, +1.49 CF1, and +1.11

OF1) than the model using separate items. This result suggests that the pro-

posed try-on embedding method captures more information from the try-on

image compared with discrete items. Lastly, the impact of exploiting fashion

attributes is examined in BA-Net. The results of w/o-Attributes demonstrate

that utilizing fashion attribute data can improve the model’s overall perfor-

mance, with the full model achieving increases of +1.69 mAP, +1.50 CF1, and

+1.34 OF1. These results suggest that fashion attributes can provide valuable

cues for personalized fashion recommendation systems.
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Table 7.4 Comparison on variations of cross-modal attention.

Structure mAP CP CR CF1 OP OR OF1

dot-product 50.02 39.36 42.70 40.96 65.56 58.89 62.05
multi-layer 52.30 52.63 25.47 34.33 52.63 28.36 36.86
multi-head 58.71 54.27 60.24 57.10 68.05 79.65 73.39
cross-modal 63.14 57.30 64.85 60.84 72.02 80.73 76.13

Ablation Study on Network Structure. Furthermore, three variations of

the cross-modal attention mechanism are tested, and the quantitative results

are reported in Table 7.4. Specifically, the cross-modal attention is replaced

with the dot-product attention, i.e., and the weight W is removed from Equa-

tion 7.11. The performance of the model is observed to decrease due to this

operation. A possible reason may be attributed to the difference in input

modalities, as the attention module in BA-Net receives inputs from different

modalities, which is unsuitable for simple dot-product attention. Furthermore,

the results of adopting multi-layer and multi-head of cross-modal attention are

given. However, they fail to achieve better results.

Outfit Try-on Image Encoding Validation. Table 7.5 validates the useful-

ness of utilizing the try-on appearance of the outfit. This ablation study uses

Table 7.5 Comparison of encoding outfits with and without try-on images. The
bold numbers indicate a larger value.

Method Outfit Encoding mAP CP CR CF1 OP OR OF1

TDRG [163]
separate 49.97 37.54 56.61 45.14 62.78 78.44 69.74
try-on 54.66 50.80 63.60 56.48 65.42 78.85 71.51

M3TR [164]
separate 53.90 52.99 57.07 54.95 64.34 78.13 70.57
try-on 61.37 55.92 61.19 58.44 69.37 79.65 74.15

CSRA [168]
separate 57.38 55.92 54.59 55.24 69.31 72.81 71.02
try-on 61.38 56.63 61.18 58.82 71.82 76.79 74.22
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(a) (b)

Figure 7.7 Try-on results of outfits from the O4U dataset.

three baseline methods by comparing their performances with try-on image

encoding versus separate item encoding. From the table, it can be observed

that performance consistently improved across all methods when using the

try-on image to represent the outfit. Notably, M3TR achieves +7.47, 3.49,

and 3.58 improvements on mAP, CF1, and OF1 metrics, respectively. This is

reasonable to infer that owing to the try-on image capturing the interdepen-

dent relationships between clothing items, which allows M3TR to learn the

underlying contextual relationships better.

The qualitative try-on results of eight outfits in O4U dataset are also pre-

sented in Figure 7.7 (a). It can be observed that garments are appropriately

scaled and placed in the correct position. Figure 7.7 (b) shows a zoom-in

view of the neckline position. M-VTON accurately depicts the interaction be-

tween the mannequin’s neck and the top. More try-on results generated by the
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Table 7.6 Body shape classification accuracy comparing with available classifiers.

Available body shape classifiers
Ours

Lee et al. [155] Francis [30] Collings [14] Hidayati et al. [47]
28.63% 31.84% 37.87% 76.83% 97.60%

Visual features Anthropometric features

Figure 7.8 Visualization of different body features using t-SNE.

M-VTON system using the Type-aware dataset are visualized in Appendix B.

Comparing Visual and Anthropometric Features. Table 7.6 compares

the performance of body shape classification, showing that the visual-based

classification approach outperforms other baselines. This could be because

other baselines use anthropometric data to classify body shapes while the

proposed approach utilizes body images.

To further illustrate the difference between the visual and anthropometric

features of the body shape, Figure 7.8 visualize their t-SNE [133] projection

embeddings. The visual features are extracted from the frontal view images,
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and the anthropometric features are measured from 3D models belonging to

the testing set of the body shape dataset. It can be observed that the five body

shapes are separated more clearly from each other in the left part of Figure 7.8

compared with anthropometric features in the right part. This suggests that

the visual features contain more valuable information for characterizing the

body shape. Moreover, the Euclidean distance between similar body shapes

is closer. For instance, the distance between inverted triangle (orange star

symbol) and top hourglass (red diamond symbol) is shorter than the distance

between inverted triangle and triangle (purple triangle symbol). The main

reason is that both inverted triangle and top hourglass body shapes have a

wider upper body and a narrower lower body. In contrast, triangle body shape

typically has larger hips. These results support the proposal that incorporating

visual body features into learning body-shape-aware embeddings is effective.

7.6.4 Explainability Analysis (RQ3)

The attention maps of three query outfits are visualized in Figure 7.9. It

provides a viewpoint of which fashion attributes the BA-Net focuses on when

evaluating. Each row entry of the attention map represents attention weights

αb generated in the JEM, which indicates the significance of fashion attributes

with respect to corresponding body shapes. In the first two examples (Fig-

ures 7.9 (a) and (b)), two outfits are represented where the first query is

incompatible with the bottom hourglass, spoon, and triangle body shapes. In

contrast, the second query is compatible with them. The attention maps indi-

cate that BA-Net attends mainly to the bottom silhouette attribute dimension

(last row), i.e., Slim, and A-line, respectively. This may be because these three

body shapes all possess a larger hip measurement, congruent with an A-line



142 7.6. Experiments

(a)
(b)

(c)

F
ig
u
re

7
.9

V
isu

a
liza

tio
n

o
f

a
tten

tion
m

ap
s

com
p

u
ted

in
J
E

M
.

T
h

e
v
ertical

ax
is

rep
resen

ts
all

th
e

fash
ion

attrib
u

tes
p

o
ssessed

b
y

th
e

q
u

ery
o
u

tfi
t.

T
h

e
h

orizon
tal

ax
is

rep
resen

ts
fi

v
e

b
o
d

y
sh

ap
es,

n
am

ely,
from

left
to

righ
t,
bo
tto

m
h
o
u
rgla

ss,
in
verted

tria
n
gle,

spoo
n

,
a
n

d
to
p
h
o
u
rgla

ss.



7.6. Experiments 143

dress but not with a slim one. Additionally, Figure 7.9 (c) displays an outfit

that is incompatible with inverted triangle body shape. BA-Net suggests that

the main reason for this mismatch is that the top item contains a cold shoulder

design. From a fashion perspective, this inference is reasonable because tops

with cold shoulder designs often fail to provide adequate support for the chest

and upper body, which can be a concern for individuals with a larger bust

resulting in an unflattering and uncomfortable fit.

Interestingly, the BA-Net has varied focuses on fashion attributes belong-

ing to the bottom and top items of different body shapes. The network con-

centrates mainly on the bottom attributes for body shapes such as bottom

hourglass, spoon, and triangle. Conversely, it pays more attention to the top

attributes for the inverted triangle and top hourglass body shapes. This could

be because the bottom attributes play a more critical role in determining com-

patibility for body shapes with larger hip and thigh areas. On the other hand,

for body shapes with broader shoulders and smaller waists, the network focuses

more on the top attributes to ensure a balanced overall look that accentuates

the waistline.

7.6.5 Perceptual Study (RQ4)

Finally, a perceptual study is conducted to show the potentiality of the BA-

Net in practical applications. Specifically, ten experts working in the fashion

industry are invited to assess the results of all the compatibility models from

the following two aspects, (1) Body-shape-Aware Compatibility score (OCs):

whether the outfits are compatible with the body shape or not; (2) Explanation

Confidence score (ECs): whether the explanation reasonable or not. The score

range is [0, 1], 0.1 per level, and the final score is the weighted average of all
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Table 7.7 Perceptual results of the compatibility models.

Methods StyleMe [47] TDRG [163] M3TR [164] CSRA [168] FCN [98]BA-Net (Ours)
OCs 49% 52% 51% 53% 59% 61%
ECs - - - - - 67%

the scores given by those experts. The perceptual results are summarized in

Table 7.7. It can be seen that the BA-Net enjoys the highest performance on

Body-shape-Aware fashion compatibility while taking a unique advantage in

explainability.

In addition to the perceptual study, the prototype for applying BA-Net

in a real application is also built, as illustrated in Figure 7.10, showing the

proposed method’s practicality. Specifically, the prototype involves seven main

steps for applying BA-Net in real applications:

(a). Inputting the personal information;

(b). Generating a 3D SMPL model according to the input measurements data;

(c). Adjusting and confirming the body shape;

(d). Browsing the fashion items;

(e). Selecting one favor clothing item with corresponding outfit recommenda-

tions that consider the body shape;

(f). Visualizing the outfit composition on the size of body shape;

(g). Translating the SMPL model into a human image via generative model

such as Midjourney.

It can be seen that, with the awareness of body shape, customers can more

easily and directly accept the recommended outfits. Furthermore, connecting
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 7.10 The pipeline of a prototype for applying BA-Net in a real application.
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with the current cutting-edge techniques can generate more user-friendly and

interesting results with substantial economic potential, e.g., translating the

SMPL model into a human image via generative models such as Midjourney

or executing a call API of Large Language models such as ChatGPT to make

the explanation more like a natural conversation.

7.7 Chapter Summary

In conclusion, this chapter addresses the importance of considering body shape

in outfit recommendations for real-life applications. The proposed BA-Net of-

fers enhanced body-shape-aware embeddings to improve fashion cognition. A

comprehensive dataset is constructed to provide diverse information about

body shape. By incorporating visual features from body images, the body-

shape embedding is strengthened. Within the BA-Net framework, the outfit

is represented based on its try-on appearance, effectively capturing the scaling

and spatial relationships between fashion items and the body. Experimental

results on the O4U dataset validate the superior performance of BA-Net com-

pared to existing state-of-the-art methods. Additionally, the ablation study

validates the impact of the different component in the proposed approach. This

chapter contributes to a more personalized and effective outfit recommenda-

tion system by considering the crucial aspect of body shape in the learning

process



Chapter 8

Conclusions and Suggestions for

Future Research

In this chapter, the conclusions of this thesis are first drawn, summarizing the

key findings and contributions made throughout the research. Following the

conclusions, the limitations of the research are discussed. Finally, the chapter

ends with an outlook for future work.

8.1 Conclusions

The thesis has made progress in the field of fashion recommendation systems,

addressing various aspects of this complex domain. In Chapter 3, the in-

troduction of the A100 evaluation protocol provides valuable insights into the

aesthetic ability of fashion compatibility models. By incorporating fine-grained

indexes, A100 reveals specific areas where the models may need improvement,

paving the way for future enhancements.

Chapter 4 focuses on the practical application of the fashion compatibility

147
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model in real scenarios of online cross-selling. The proposed HON leveraging

the multi-layer relations among fashion data achieves state-of-the-art perfor-

mance compared to multiple baselines, offering a framework for integrating

the trained fashion compatibility model into actual products for online cross-

selling.

Chapter 5 presents a novel fashion compatibility model that combines the

Bi-LSTM model and the inter-factor compatibility network. The system can

accurately predict the convincing reason based on the outfit compatibility

evaluation, contributing to the development of explainable fashion recommen-

dation systems.

Chapter 6 introduces the task of Fashion Cognition Learning, aiming to

learn the relationship between fashion outfits and personal physical informa-

tion. A large-scale fashion outfit dataset is constructed for this task. The

Fashion Convolutional Network is proposed to capture the relationships among

visual-semantic embeddings and individuals’ appearance features, enabling

personalized fashion recommendations.

Chapter 7 addresses the importance of body shape in fashion recommen-

dation by proposing BA-Net. The model learns better body-shape-aware em-

beddings by incorporating visual features extracted from body images and uti-

lizing a comprehensive dataset on body shape. The outfit is encoded through

its try-on appearance to enhance the model’s performance, where the try-on

images are generated through the proposed Multi-layer Virtual Try-on system.

8.2 Limitations

The first limitation is the reliance on currently available datasets, which may

only partially encompass the wide range of fashion styles and individual prefer-
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ences in real-world scenarios. Additionally, these datasets have certain biases

or limitations in their coverage, potentially hindering the generalizability of

the models to various fashion domains and diverse user populations. For ex-

ample, the training data for the current models may not include sufficient

representation of men’s fashion, limiting the models’ applicability in that do-

main. Therefore, it is crucial to consider the potential biases and limitations

of the datasets when interpreting the findings and assessing the performance

of the models, especially when applying them to contexts beyond the scope of

the existing datasets.

The second limitation pertains to the Body-shape-Aware Network. BA-

Net takes an approach that contradicts human habits to learn the correlation

between fashion and body shape. In the real world, we typically assess the

suitability of an outfit by physically trying it on and evaluating its compatibil-

ity with our specific body shape. However, BA-Net solely relies on evaluating

compatibility based on 2D images. This disparity between BA-Net’s evaluation

approach and the natural evaluation process followed by humans introduces

a potential limitation in terms of the model’s generalizability and real-world

applicability.

The third limitation pertains to the incomplete representation of physi-

cal attributes other than body shape, such as hairstyle, skin color, and other

physical attributes. In this thesis, these attributes are predominantly de-

scribed using textual information, which limits their effectiveness in capturing

the visual aspects relevant to fashion compatibility. To address this limitation,

expanding the research scope and developing more comprehensive representa-

tions encompassing these additional bodily features is crucial.
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8.3 Suggestions for Future Research

Future work should address these limitations and explore new avenues in fash-

ion recommendation systems.

Firstly, there is a need to expand the scope of available datasets to cap-

ture better the diversity of fashion styles and individual preferences, including

underrepresented domains such as men’s fashion. By incorporating a more

comprehensive range of fashion attributes and user populations, the models

can be more robust and applicable across various real-world fashion scenarios.

Efforts should be made to collect more extensive and diverse datasets, ensuring

that they reflect the richness and complexity of fashion styles.

Secondly, an area of future exploration involves the development of ad-

vanced virtual try-on systems that can automatically generate realistic out-

fit visualizations based on given clothing items and various body shapes,

hairstyles, and other relevant attributes. By leveraging such advanced try-on

techniques, one can simulate the appearance of individuals wearing different

outfits, providing a more accurate representation of how clothes align with spe-

cific body characteristics. The compatibility between outfits and users can be

evaluated by assessing the generated images of individuals wearing the outfits,

allowing for a more objective and realistic application of personal stylists.

By addressing the limitations and pursuing these future directions, the per-

sonal stylist system can continue to evolve, providing more accurate, person-

alized, and immersive fashion recommendations that cater to diverse fashion

domains, individual preferences, and real-world fashion scenarios.
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Appendix A

Limitations of Existing FITB

Tests

This section primarily serves as a supplement to Chapter 3.2 in the main thesis,

providing visual examples to further illustrate the limitations of existing FITB

(Fill-in-the-Blank) tests in evaluating aesthetic ability.

The FITB test was first employed as the fashion compatibility modeling

task metric in [41]. Subsequently, it quickly gained popularity and became a

mainstream evaluation approach in this field. Figure A.1 randomly showcases

example questions from the Maryland FITB test. Several observations can be

made:

1. The FITB test contains some unrelated images, making it less clean.

For instance, in the first question, the items depicted belong to furniture

rather than fashion items.

2. Incorrect answers are easily eliminated from the choice set based on the

principle of creating a complete outfit. In the second example in Fig-

ure A.1, the ”black hat” cannot form a complete outfit when combined

176
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Blank

Blank

Blank

Figure A.1 Some FITB questions contained in the Maryland testing set [41]. The
correct answer is indicated by a green box.
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with the other items in the question.

3. The original outfit used to generate a particular question may not be

valid. As demonstrated in the third example in Figure A.1, it is evident

that the bottom part is missing. If factors related to aesthetic consider-

ations are excluded, the correct choice among the four candidates should

be the ”brown pants” instead of the bag.

Vasileva et al. [134] addressed the aforementioned issues by introducing

the Type-aware dataset, which includes fine-grained item types. In contrast

to the Maryland FITB test with 3,076 questions, the Type-aware FITB test

comprises a larger set of 10,000 questions. Furthermore, the creation of in-

correct choices in each Type-aware test question differs from the previous ap-

proach. In this case, the incorrect choices are sampled from items within the

same category as the correct choice. Server examples in the Type-aware FITB

testing set are visualized in Figure A.2, which reveals several limitations:

1. The examined aspects of each option are not uniform. Taking the first

question in Figure A.2 as an example, the second choice can be excluded

due to its incompatible color with the question. Similarly, the print of

both the first and third choices is incompatible.

2. The randomly generated chosen set seems questionable. As demon-

strated in the second and third cases in Figure A.2, there could be an

alternative option. For instance, the ”black bag” could also be consid-

ered compatible, as its silhouette has a style more similar to the question

than the pink flap bag.

3. The Type-aware dataset still contains unrelated images and invalid ques-

tions. The dataset initially consists of 68,306 outfits and 365,054 items.
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Figure A.2 FITB questions contained in the Type-aware testing set [134]. The
correct answer is indicated by a green box.

After the cleaning process, the remaining number of items is 206,656.

Additionally, the Type-aware FITB test involves 10,000 outfits, of which

1,875 are deemed invalid.

In addition to the mainstream FITB tests mentioned earlier, other FITB

tests are introduced in various research papers. These tests are derived from

newly introduced outfit datasets. For example, iFashion [8], a dataset collected

from Taobao.com, includes the iFashion FITB test, which follows a strategy
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similar to the Maryland test. In this case, 10% of the data is designated as

the test set. For each masked item, three items are randomly selected from

other outfits, along with the ground truth item, to create a multiple-choice

set. The FashionVC test [121], on the other hand, only includes top and

bottom images, while the Polyvore-U dataset consists of top, bottom, and

shoe images. Upon careful investigation, the following conclusions can be

drawn: 1). The aesthetic standard in all existing FITB tests is highly diverse

and lacks collective consensus. This is attributed to the fact that the outfits

used to create the questions are generated by different online users. 2). The

method used to create the choice set raises concerns. There is a significant

possibility that the masked item may not be the most compatible option among

the available choices. 3). None of these FITB tests systematically reflect the

fashion aesthetic standard.



Appendix B

Qualitative Results of M-VTON

on Type-aware Dataset

This section serves as a supplement to Chapter 7 in the main thesis, providing

qualitative results of evaluating M-VTON on the Type-aware dataset [134].

The type-aware Polyvore dataset contains 32,140 outfits and 175,485 item

images. Unlike the O4U dataset, outfits in the type-aware dataset have a varied

number of items, and there are 11 fashion categories, including outerwear,

all-body, and top. Therefore, this subsection shows the try-on images with

different item combinations. Figure B.1 (a) shows the results of trying on a

dress, and Figure B.1 (b) presents the try-on images of outfits containing one

top and one bottom. Figure B.2 (c) shows more interesting results since these

dresses should cover the outerwear. Figure B.2 (d) shows the most complicated

cases. Outfits are comprised of three garments, and these try-on results show

that the proposed M-VTON can accurately demonstrate multi-layers of an

outfit in a predefined order.
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(a). Outfit containing dress only

(b). Outfit containing two items

Figure B.1 Try-on results of outfits from the Type-aware Polyvore [134] dataset.
(a). Each outfit contains one item. (b). Each outfit contains two items.
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(c). Outfit containing outerwear and dress

(d). Outfit containing three items

Figure B.2 Try-on results of outfits from the Type-aware Polyvore [134] dataset.
(c). Each outfit contains outerwear and a dress. (d). Each outfit contains three
items.
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