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Abstract

Solar energy is set to be one of the major power sources to enable deep decarbonization owing to its

sustainability. However, the integration of solar energy into power systems is still facing challenges due

to the variability and intermittency of available solar irradiance. Ground measurements are the most reli-

able data source for designing solar energy projects, but complete and long-term historical data are scarce.

Therefore, it is important to retrieve ground-level solar irradiance from modern geostationary satellites with

much improved spatio-temporal resolutions to fill the data gap. Meanwhile, solar forecasting is also a cost-

effective method to reduce the negative impacts of solar variability and help with the system integration and

management.

Both solar forecasting and resource assessment rely on the clear-sky model, which estimates the clear-

sky irradiance under cloudless conditions. To address the difficulty in applying physical clear-sky models

and the compromised performance of empirical clear-sky models, an improved turbidity estimation method

is proposed for estimating clear-sky irradiance based on common meteorological measurements. It is shown

that the clear-sky irradiance from improved turbidity estimation exhibits lower divergences compared with

the monthly climatological means. The Ineichen-Perez model based on the improved turbidity estimation is

then applied for global horizontal irradiance (GHI) estimation using semi-empirical satellite methods. The

results show the GHI estimates have comparable performance to the referenced physical solar model in the

national solar radiation database (NSRDB), but with less complexity. To further expand the applicability

of the turbidity estimation method, a transferable model is proposed for estimating turbidity and clear-sky

irradiance. The results show that clear-sky GHI estimates and day-ahead persistent forecasts are compara-

ble with the physical clear-sky models. Given that the forecasts of meteorological information are much

more accurate than solar irradiance forecasts, the transferable turbidity estimation therefore shows valuable

potential for solar energy applications.

Since clouds are the major factor attenuating available ground-level solar irradiance, the irradiance es-

timation under cloudy conditions exhibits huge uncertainties for both semi-empirical and physical models.
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To better account for the cloud effect, deep-learning models based on multispectral satellite images are

proposed for GHI and direct normal irradiance (DNI) estimations. When compared with NSRDB, deep-

learning methods show better overall results for both GHI and DNI estimations. The combination of deep

learning and remote sensing shows potential in better extracting cloud information, which can better sup-

port solar resource assessment, especially for cloudy conditions. Meanwhile, due to the spatio-temporal

nature of solar irradiance, satellite data and satellite-derived products are extensively used in solar forecast-

ing. To investigate the potential benefits of satellite-derived irradiance products and their improvements for

solar forecasting, a comparative study for deterministic solar forecasts is performed. The results show that

satellite-derived irradiance products generally outperform raw spectral satellite images, and the improved

accuracy in satellite-derived irradiance products is likely to produce better forecasts. Similarly, solar fore-

casting under frequent cloudy conditions is also associated with larger uncertainties. Nevertheless, satellite-

derived irradiance with improved accuracy might lead to better forecasts, which is beneficial to a wide range

of stakeholders in solar energy.
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Chapter 1

Introduction

1.1 Background

Factors such as energy crisis and global warming have increased the usage of renewable sources of

energy in the last few decades, owing to their properties of being sustainable and low carbon emissions.

According to the International Energy Agency (IEA) Outlook reports [1, 2, 3], several countries have in-

troduced their targets to achieve net-zero emissions by 2050 (NZE2050), and many countries are either in

discussion or in legislation phases regarding greenhouse gas (GHG) emissions reduction targets by 2050. It

is estimated that CO2 emissions from the power sector will decrease by nearly 60% between 2019 and 2030.

The importance of renewable energy sources (RES) e.g., solar and wind, is obvious as the global electricity

supplied by renewables will go from 27% in 2019 to 60% in 2030.

Among the renewable sources of energy, solar energy has gained the utmost popularity because it is

inexhaustible and considered to be one of the most promising renewable energy resources for power gen-

eration even on large scales [4]. Solar energy, as an attractive power source, not only can be used for the

electricity and heat generation but also has minimal environmental and social impacts. It is reported that

solar thermal technologies provided about 480 TWh energy in 2019, which saves an energy equivalent of 43

million tons of oil and 130 million tons of CO2 emission [5]. Meanwhile, as one of the major technologies

used for converting solar energy into electricity, photovoltaic (PV) power potential is sufficient for most re-

gions in the world (as illustrated in Fig. 1.1). The total annual solar PV additions in NZE2050 is expected to

expand from 110 GW in 2019 to nearly 500 GW in 2030 [1]. However, fossil fuels are still the dominant part

in the global energy mix at current stage, based on the statistics of global primary energy consumption in

2022 (see Fig. 1.2), just around 14% of the energy consumption was supplied by renewable sources (except

nuclear), and the amount of solar energy was only 2.07% [6].
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Figure 1.1: Solar PV power potential map from World Bank Group [7]
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Figure 1.2: Global primary energy consumption by source in 2022 [6]
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Despite the advantages of solar energy on the issues of global warming, air pollution, and health con-

cerns, its integration into electricity grids has several challenges due to the intermittency and variability in

the source availability caused by the high dependence on local atmospheric conditions [8, 9, 10, 11]. There-

fore, long-term and accurate historical solar irradiance data is of great importance for designing the solar

energy projects and related feasibility studies [8]. However, long-term and high-quality solar irradiance

measurements are scarce at most of the locations due to the technical and financial issues [12], for instance,

the equipment measuring solar irradiance is costly, the maintenance routine and data quality control (QC)

are associated with difficulties. It is necessary to employ the recent advancements in geostationary satellite

for ground-level solar irradiance estimation and reanalysis [13]. This could provide support for the feasi-

bility study, optimal system design, and the modeling of solar irradiance [8, 12]. Meanwhile, the irrdiance

variability also has an influence on the operational stage of solar projects, which could cause a mismatch

between the energy demand and power supply sides, generating issues on stability, safety, reliability and

frequency response of the electricity grids [9, 14].

To overcome issues related to the intermittency of solar energy, potential solutions involve the imple-

mentation of energy storage, demand response, and solar irradiance or power forecasting [15, 16, 17]. At

current stage, many storage technologies are still costly and somewhat inefficient, because only 70–85% of

the stored energy is recoverable [18], and demand response programs typically have significant implemen-

tation costs [18]. On the other hand, solar forecasting, i.e., solar irradiance forecasting or solar power output

forecasting, is one of the cost-effective solutions of efficiently integrating solar power [19, 20], particularly

at higher penetration levels. By forecasting future solar irradiance and power productions, the grid operators

can have more information to reliably and efficiently balance generation and demand in real-time and per-

form power scheduling [21, 14]. The study in [22] has shown that a 25% improvement in PV power output

forecast’s accuracy can lead to a net reduction of 1.56% (US$ 46.5 million) in the generation cost. More-

over, for optimal usages of energy storage and demand response systems, the forecasting of solar irradiance

and power is also necessary [23, 24].

1.2 Solar radiation

The Sun’s surface has a temperature about 5800 K that can be approximated as a blackbody [25]. Solar

radiation reaching the Earth’s top-of-atmosphere (TOA) is nearly fixed even the Sun-Earth distance varies

slightly across the year. Solar constant quantifies the energy received on a unit area of TOA surface per-

pendicular to the radiation propagation per unit time from the Sun at the mean Sun-Earth distance. Various

3



values of the solar constant have been reported in the range of 1353 - 1374 W m2, and a value of 1367 W m2

is adopted by the World radiation center (WRC) with an uncertainty of 1% [25].

Due to the complex interactions between solar radiation and the Earth’s atmosphere, the available solar

irradiance at the ground surface exhibits both temporal and spatial variations [26]. Therefore, three funda-

mental components are used to quantify the solar radiation for solar forecasting and resource assessment [8]:

• Direct normal irradiance (DNI): solar beam radiation from the Sun received by a surface normal to

the solar rays, which can be measured by a pyrheliometer.

• Diffuse horizontal irradiance (DHI): solar radiation excluding DNI from the sky dome received by

a horizontal surface, which is scattered by clouds, aerosols, and other atmospheric compositions, as

measured by a shaded pyranometer.

• Global horizontal irradiance (GHI): total solar radiation received on a horizontal surface that includes

both direct and diffuse components, which is measured by an unshaded pyranometer.

The three components are related, on any surface that is perpendicular to the solar rays, the global

irradiance is the sum of direct and diffuse irrdiance. For a horizontal surface, GHI can be expressed by:

GHI = DNI · cos(θ)+DHI (1.1)

where θ [◦] is the solar zenith angle.

1.2.1 Quality control

Several procedures are required in QC of solar irradiance, including the extremely rare limit test and

the three-component closure test [27]. Three parts are involved in the extremely rare limit test for solar

irradiance:

−2 ≤ GHI ≤ 1.2·E0n·cos1.2(θ)+50 (1.2)

−2 ≤ DHI ≤ 0.75·E0n·cos1.2(θ)+30 (1.3)

−2 ≤ DNI ≤ 0.95·E0n·cos0.2(θ)+10 (1.4)

whereas two parts are in the three-component closure test:

abs(closr)≤ 8% for θ ≤ 75◦ and GHI > 50 (1.5)
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abs(closr)≤ 15% for 75◦ < θ < 93◦ and GHI > 50 (1.6)

where GHI [W m−2], DHI [W m−2], and DNI [W m−2] are the three solar irradiance components, θ [◦] is

the solar zenith angle, E0n [W m−2] is the extraterrestrial irradiance, closr =GHI/(DNI ·cos(θ)+DHI)−1,

which defines the closure relationship of the three solar irradiance components. These QC steps are based

the theoretical aspects detailed by Long and Shi [28].

1.2.2 Surface Radiation Budget Network

The Surface Radiation Budget Network (SURFRAD) [29] is a network consisting of seven weather

monitoring stations in different climatological zones across the contiguous United States. Since its estab-

lishment in 1995, SURFRAD has focused on measuring data of solar radiation and atmospheric conditions.

SURFRAD collects a variety of meteorological and solar data with research quality, which is widely used

in climate research and applications related to renewable energy, atmospheric science, and weather stud-

ies. SURFRAD data including GHI, DNI, DHI, and meteorological measurements plays a vital role in this

thesis for both method development and validation. The detailed description of SURFRAD is presented in

Table 1.1.

Table 1.1: Summary of the seven SURFRAD stations.

Station Full name Latitude (°) Longitude (°) Altitude (m) Timezone

BON Bondville 40.05 -88.37 230 UTC-6

DRA Desert Rock 36.62 -116.02 1007 UTC-8

FPK Fort Peck 48.31 -105.10 634 UTC-7

GWN Goodwin Creek 34.25 -89.87 98 UTC-6

PSU Pennsylvania State University 40.72 -77.93 376 UTC-5

SXF Sioux Falls 43.73 -96.62 473 UTC-6

TBL Table Mountain 40.12 -105.24 1689 UTC-7

1.3 Clear-sky models

Solar radiation reaching the ground is scattered, transmitted or absorbed by the atmosphere based on the

types and amounts of intervening constituents and their radiative (or optical) properties [8, 26]. Clouds are

known as the major factor affecting the solar irradiance available at the ground level. Even cloudless skies
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produce complicated interactions between solar radiation and the variable atmospheric compositions [8, 26],

where the amount of aerosol, total precipitable water, ozone, and other gaseous constituents are the modu-

lators. The aerosol optical depth (AOD) is used to describe the aerosol property, and Linke turbidity (TL) is

used to define the transparency of the atmosphere [30]. Although the atmospheric compositions under cloud-

less sky are temporally and spatially variable, their attenuation effect of solar irradiance is well documented

in the clear-sky models [31, 32, 33]. As summarized in [34, 35], clear-sky models, that aims to estimate

solar irradiance under clear-sky conditions, can be broadly classified into two groups: physical models and

empirical models. Physical clear-sky models, for example, REST2 [33] and McClear [32], perform detailed

radiative simulations of the atmospheric attenuation processes with generally higher performance [34, 36].

While empirical models, such as Ineichen-Perez model [31], are based on simplified parameterizations of

the radiation attenuating effect [35].

Clear-sky models are a key component in both solar resourcing and forecasting applications [9]. The

ground solar irradiance, e.g., GHI, can be retrieved using satellite-based methods based on a clear-sky

model [37, 38]. Meanwhile, the clear-sky model is suggested to remove the variations of solar irradiance

by introducing the clear-sky index (CSI) in the development of solar forecasting models [21]. The clear-sky

models used in this work includes the Ineichen-Perez model [31], the McClear model [32], and the REST2

model [33], which are selected as the representatives of average, good and best clear-sky models to keep the

generality [36].

The Ineichen-Perez model is based on the TL factor, which is defined as the number of dry and clean at-

mospheres producing that equivalent attenuation to the real atmosphere [30]. Due to the simplicity, Ineichen-

Perez model (documented in PVLIB [39]) is extensively used in solar forecasting [36]. However, the clear-

sky irradiance estimation of Ineichen-Perez is unsatisfying because of the invariant TL factor based on the

SoDa monthly climatology means [40]. The divergences of TL modeled and measured clear-sky irradiance

are observed in [41, 42]. The McClear model and the REST2 model are physical clear-sky models, which

are much more complicated than empirical clear-sky models [36]. The complexity of physical clear-sky

models, e.g., prevailing the detailed atmospheric conditions, generally leads to higher performance [36].

The input parameters of McClear include solar constant (I0 [w m−2]), solar zenith angle (θ [◦]), local alti-

tude (h [m]), surface albedo (ρg), atmospheric pressure (Pa [mb]), ambient temperature (Ta [K]), AOD at

550 nm (τ550), Ångström exponent (α), total ozone amount (uO3 [atm-cm]), and total precipitable water

vapor (uH2O [cm]) [32]. McClear adopts a lookup table and libRadtran [43] to speed up the calculations

of radiative transfer models (RTMs). Both the inputs and the clear-sky irradiance of McClear are available

from the Copernicus Atmosphere Monitoring Service (CAMS) [44]. The REST2 model has been repeatedly
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validated as the one of the clear-sky models with high performance [34, 35]. The essential inputs of REST2

are I0 [W m−2], θ [◦], ρg, Pa [mb], τ550, α , uO3 [atm-cm], uH2O [cm], and total nitrogen dioxide amount uNO2

[atm-cm] [33]. These atmospheric information can be obtained via satellites and reanalyzes products, for in-

stance, the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) [45]

or Moderate Resolution Imaging Spectroradiometer (MODIS) [46].

1.4 Solar resourcing and forecasting

With the rapid expansion of solar energy projects in recent years, the availability of reliable and ac-

curate ground surface solar irradiance data is of great importance [12]. Historical data is essential for the

feasibility and optimal system design phases of a solar power conversion project, which can reduce the risk

and provide support for the project location selection and appropriate design of the solar energy conversion

technology [8].

Ground-based irradiance measurements are the most reliable data source for solar energy applications

but generally with limited availability [12]. Therefore, solar irradiance estimation and reanalysis from the

measurements of geostationary satellite can provide information for evaluating and designing the solar en-

ergy projects [47], especially for the locations with limited on-site instrumentation. As an essential part for

monitoring and modeling solar irradiance, geostationary satellites are widely used for solar resource assess-

ment and forecasting as they continuously observe the same part of the Earth’s surface, which can generate

site specific data with high time resolution for solar energy applications [8]. The advancement in modern

remote sensing technique brings data in finer temporal and spatial resolutions as well as new insights in solar

irradiance modeling [13].

1.4.1 Methods of solar resourcing

Satellite-based solar irradiance derivation models can be broadly classified as physical, empirical, and

semi-empirical [8]. Physical methods typically apply RTMs through various different layers to simulate

the interactions between solar radiation and compositions in the atmosphere, which requires accurate and

detailed information of the atmospheric constituents, such as cloud optical properties (COD), AOD, and

water vapor content [8]. Pure empirical models attempt to simulate the regression between the satellite

measurements and ground based records [8], which is straightforward and easy to implement. While semi-

empirical models are a combination of physical and empirical methods, which employ a simple RTM and

regression approach to fit the observations [8, 48].
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Many studies have been conducted to retrieve ground-level GHI from geostationary satellites’ im-

ages [49, 50, 51]. GHI can then be separated into DNI and DHI by various separation models [21] for

different applications. Both physical and semi-empirical satellite models are widely used in estimating GHI

as simple empirical methods typically have inferior performance due to the lack of generality [51, 52].

Physical models usually have better performance than semi-empirical satellite methods [51], since they

technically need the detailed atmospheric information. For example, the national solar radiation database

(NSRDB) [49], as a widely accessed and publicly available data source over most parts of the Americas with

high quality, provides satellite-derived irradiance components as well as other auxiliary variables. NSRDB

is produced using the physical solar model (PSM) and products from several other associations [49], includ-

ing the Geostationary Operational Environmental Satellite (GOES), the Interactive Multisensor Snow and

Ice Mapping System (IMS), MODIS, and MERRA-2. The Heliosat-4 method [50] is also a fully physical

model that uses a fast and approximated radiative simulation approach with high performance. Heliosat-4

method consists of two separate steps based on the libRadtran method [43] and a look-up table: the first step

relies on McClear model [32] for clear-sky solar irradiance under cloud free conditions, and the second step

is to apply McCloud for irradiance attenuation caused by clouds. The cloud and other atmospheric proper-

ties are obtained from CAMS [44]. However, although the physical models generally have better accuracy,

the complexity in models’ implementation, high demand of computing resources, and the difficulties and

uncertainties [8, 53] in retrieving the essential atmospheric inputs greatly hinder the applications [36, 54].

On the other hand, semi-empirical satellite methods are much easier to implement and generally have

comparable performance, which are widely used in solar forecasting and resource assessment [48, 55, 56].

There are mainly two steps in semi-empirical satellite method for GHI estimation, which deal with the

irradiance attenuation caused by atmospheric compositions (e.g., aerosol, water vapor, and ozone) and the

cloud’s effect separately [48]. As presented in Fig. 1.3, The first step is to estimate the clear-sky irradiance

using a clear-sky model, and the second step is to determine the cloud index (CI) from a set of satellite images

in a defined period to account for the cloud attenuation effect [8, 48]. Heliosat method series [38, 57, 58] are

examples of semi-empirical satellite models with a long history that offers easy and fast implementation and

operation [51], which can be traced back to the contribution of Cano et al. [59]. As an essential component

in semi-empirical satellite method, various clear-sky models have been used for clear-sky GHI estimation,

for instance, the Ineichen-Perez model [31] in the operational SUNY model [37], the McClear model in

the work of Jia et al. [60], and the REST2 [33] model in Solcast [61]. There are also different methods and

strategies proposed to determine the GHI based on clear-sky index (CSI) and CI in the literature [37, 48, 62].

As mentioned, the recent advancements in modern geostationary satellites provide much better data in both
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temporal and spatial resolutions, which provides new insights for solar resource assessment. However, the

empirical regression relationship and CI derivation strategies might not be suitable for modern satellites as

the spectral bands and temporospatial resolutions are much improved.

Figure 1.3: GHI is estimated by subtracting cloud attenuation from a clear-sky background (GHIcs) [8].

1.4.2 Methods of solar forecasting

Solar forecasting aims to predict the solar irradiance or power output in a future time, which can support

the system management and power scheduling [21]. The spatial and temporal resolution of different solar

forecasting methods are shown in Fig. 1.4 [21]. Based on the forecasting time horizons, solar forecasting

methods can be classified as intra-hour, intra-day, and day-ahead forecasting [21]. Intra-hour forecasting

is in the time scale of minutes (usually less than one hour), which mainly relies on the local sensed pa-

rameters, e.g., solar irradiance, meteorological data, and sky images [14]. Intra-day forecasting focuses on

the time horizon of hours, which is usually in the same day. Forecasting methods based on the satellite

are typically suitable for intra-day forecasting [21], since modern satellite with better remotely sensed data

brings new insights. Numerical weather prediction (NWP) can also give intra-day forecasts but with inferior

performance [14]. Day-ahead forecasting usually provides predictions for day or even days ahead, where
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the NPW is likely to yield better results [21]. Data driven methods are more based on historical observa-

tions [63, 64, 65], therefore, a huge amount of data is needed. While hybrid methods are combinations of

two or more independent methods, which might also require a lot of historical data [14]. Both data-driven

and hybrid methods can be applied for intra-hour, intra-day, and day-ahead forecasting as long as there are

data available with required temporal resolutions.

Figure 1.4: The classification of solar forecasting methods, modified based on Fig.3 in [21].

Since long-term and complete solar irradiance data is rarely available [12], the applications of data-

driven and local sensed forecasting methods are greatly restricted. However, data and products from geosta-

tionary satellites are available worldwide which is an essential part in solar forecasting over a large area. In

semi-empirical satellite forecasting models, the visible Earth radiance seen by the satellite is approximately

proportional to cloud opacity and cosine of the solar-zenith angle [8], the GHI is derived based on the clear-

sky irradiance and cloud attenuation (see Fig. 1.3), where clear-sky irradiance is based on the clear-sky

model and cloud attenuation is determined by the satellite information referred as CI [66, 67]. The satellite

count is used to define the dynamic range (upper and lower bounds) for each pixel at a given location, period,

and CI, then the GHI is calculated based on CI. Therefore, the key part in forecasting is to estimate the CI
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in a future time [55].

Cloud motion analysis based on sequential satellite images is widely used to generate cloud motion vec-

tors (CMVs) that can be used to predict future cloud locations and then estimate the cloud cover [68, 69].

Currently, the used methods for cloud motion analysis include phase correlation, block matching, and optical

flow [70]. These methods are originally used in computer vision, and tailored in cloud motion analysis based

on several assumptions, for instance, the pixel intensities in both images are constant, the wind fields are

smooth at the cloud height, and the formation or dissipation of clouds are not considered [8]. Phase correla-

tion is first introduced by Kuglin et al. [71], which is to find the transition between two images based on the

Fourier shift theorem. Block matching compares the neighbouring rectangular areas to detect the advection

patterns of cloud between the two subsequent images by minimizing the mean squared pixel differences [8].

Optical flow is a general image processing to detect the object motions with vectors showing the movements

of points, it uses image gradients and assumes the neighbouring points have similar motions [72].

Due to the complicated dynamics in the atmosphere since clouds not only move, but also change the

shape, form and even disappear, it is difficult to model the cloud movements. Therefore, there are many

assumptions and simplifications made in cloud motion analysis and forecast, e.g., the cloud height is as-

sumed constant, the velocity field of clouds is persistent in the forecast of next image. Actually, the CMVs

are a two-dimensional (x, y) vectors with the z axis neglected, which implicitly assumes that the clouds are

at a plane with same altitude. This assumption provides the baselines for the cloud motion analysis algo-

rithms without considering the vertical cloud motions and complex convection processes [70]. Despite these

assumptions and simplifications, cloud motion analysis and forecast based on consecutive satellite images

have been proved to be a solution for intra-day (1-5 h ahead) solar irradiance forecasting [70]. However, in

most of the cloud advection forecast models, cloud patterns and wind fields are assumed persistent over the

forecast horizon [70]. Therefore, the changes in wind speed and direction are not considered and thus can

lead to large uncertainties in a longer forecast timescale. It would be of interest to consider the change of

the velocity field of clouds in the forecast of next image, which could improve the forecasting accuracy.

In physical-based forecast models, radiative transfer simulation is applied through different layers in the

atmosphere by taking the advantage of modern satellite remote sensing [73, 74, 75]. Essential parameters

like cloud types and heights, AOD, and water vapor can be derived from the satellite measurements. Once

the properties of cloud, aerosol, water vapor as well as other minor atmospheric compositions are deter-

mined, the RTM is applied to estimate the ground-level solar radiation. NWP is the ultimate physical-based

forecasting tool, all the physical processes along with their evolution are interpreted by physical models [21].

NWP models could simulate the atmosphere with high-accuracy given correct initial state information and
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adequate computational resources. However, errors in satellite observations, insufficient information for

initial conditions and the complexity of the RTMs make the accuracy of physical-based methods unsatisfac-

tory [8]. On the other hand, the forecasts of meteorological parameters, such as ambient temperature and

humidity, are much more accurate [21], it would be beneficial to develop solar forecasting models using

NWP products that have relatively higher accuracy.

1.5 Machine learning in solar irradiance modeling

Machine learning has been widely applied in solar resource assessment and forecasting. This section is

to provide some fundamentals of the machine learning methods used in this study. Linear regression (LR),

random forest (RF), and multiple layer perception (MLP) are applied as the representatives of classical

machine learning algorithms.

LR is one of the fundamental statistical methods in machine learning that models the relationship be-

tween input and output variables by linear functions. The mathematical expression of LR is:

y = w ·X +w0 + e (1.7)

where y is the output variable, X is the input vector, w is the weight vector, w0 is the intercept term, and e is

the error term. The parameters of w and w0 can be optimized by minimizing a loss function. Although LR

is easy to implement, it might not be applicable for complex problems [76].

RF is in the category of ensemble learning methods that combines multiple decision trees to solve a

particular task. RF can reduce overfitting in decision trees and help to improve the accuracy by capturing

complex nonlinear relationships between input features and the output [77]. The final prediction is the

average result of all the individual decision trees:

y =
1
M

M

∑
m

fm(X) (1.8)

where y is the target, X is the input vector, M is the total number of trees in the ensemble, fm is the function

of the mth decision tree. Although RF has some advantages over a single decision tree, it requires more

computational resources and time in training.

MLP is a type of artificial neural networks that consists of at least three layers (an input layer, a hidden

layer, and an output layer as shown in Fig. 1.5). The node in the hidden and output layers is called neuron

that employs a nonlinear activation functions, such as ReLU, Sigmoid, and Hyperbolic tangent functions as

shown in Fig. 1.6. Neurons in MLP are interconnected by wights and biases that are updated in the learning

12



process by minimizing the difference between the predicted output and observations. Backpropagation and

gradient descent are the techniques used to optimize the weights of neurons [76].

Figure 1.5: The basic structure of MLP with an input layer, a hidden layer, and an output layer.

Figure 1.6: Some examples of activation functions. (a) ReLU. (b) Sigmoid. (c) Hyperbolic tangent.

Since the information from geostationary satellite is in a 2-dimensional form, some deep learning al-

gorithms such as convolutional neural networks (CNNs) are also applied to extract features from satellite

images. CNNs are feed-forward neural networks that can efficiently capture the features with reduced

amount of parameters by extracting properties of input images. A typical CNN has three types of layers:

the convolutional layer, the pooling layer and the fully connected layer as shown in Fig. 1.7. As the main

block of a CNN, convolutional layer applies numerous filters to extract features of input images such as

edges, corners, and complex shapes [78]. An activation function (e.g., ReLU in Fig. 1.6) is usually applied
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to introduce non-linearity on the output feature maps. The pooling layer provides a form of down-sampling

to reduce the spatial size gradually and help to control overfitting [78]. While the fully connected layer is

applied to learn the representations between the extracted input features and outputs.

Figure 1.7: The basic structure of CNN with the input, convolution, pooling, fully connected and output

layers.

1.6 Research gap and objectives

Considering the aggressive development of solar energy projects, the variability and intermittence of

solar irradiance, and the limited availability of ground-level irradiance data, it is necessary to develop solar

irradiance modeling and forecasting methods to facilitate the integration of solar energy systems. Although

there are many advanced clear-sky models, databases providing solar irradiance under clear-sky and satellite-

derived irradiance components, and various solar forecasting models developed in the solar community,

there are still some challenges in supporting the design and operation of solar energy projects.

As mentioned, ground-based solar irradiance measurements are the most reliable data source for solar

energy applications, but complete and long-term historical irradiance data is not available at most locations

due to the technical and financial constraints [12], the geostationary satellites can therefore provide support

in solar resource assessment. Meanwhile, it has been proved that satellite-derived irradiance data can be used

for the development of solar forecasting models [12]. Since the new-generation geostationary satellites show

much improvement in remote sensing, it is expected to have better reanalyses atmospheric products [13]

for solar resourcing and forecasting applications. Furthermore, satellite based solar forecasting is usually

classified as methods for intra-day irradiance forecasts. With the temporal resolution improved to 5-minute,
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geostationary satellite may also be capable of supporting the intra-hour solar forecasting applications. In this

regard, the present project aims to help with the design and operation of solar energy projects by providing

more accurate irradiance estimations and forecasts with remote sensing and machine learning methods.

The objectives of this thesis are to 1) develop methods for improved spatio-temporal solar resource

assessment with easy and fast implementation using the recent advancements of geostationary satellites for

supporting solar energy projects; 2) develop more accurate solar irradiance forecasting models using remote

sensing and deep learning techniques to support the operation of solar energy systems.

1.7 Dissertation structure

In Chapter 2, an improved method is proposed for turbidity estimation using common meteorological

measurements. The improved method to estimate turbidity shows comparable performance with physical

models in estimating clear-sky irradiance but with less complexity. Since the clear-sky model is an indis-

pensable component in solar resource assessment and forecasting, this paves the way in obtaining improved

clear-sky irradiance estimation.

As mentioned, the clear-sky model is an essential part in solar irradiance modeling, Chapter 3 evaluates

and compares four different clear-sky models (two physical, one empirical models, and the improved empir-

ical one proposed in Chapter 2) in solar irradiance estimation using a semi-empirical satellite method. The

improved method can provide irradiance estimations that have a comparable performance with the physical

model. Moreover, its applicability can be expanded to other locations covered by geostationary satellites for

solar energy projects.

The method for turbidity and clear-sky irradiance estimation proposed in Chapter 2 shows potential in

supporting solar resourcing and forecasting applications. However, one limitation that hinders the wider ap-

plicability is the need of on-site irradiance measurements. To address this limitation, a transferable turbidity

estimation method for estimating clear-sky irradiance is proposed in Chapter 4. The transferred method

shows a comparable performance with physical models but with less complexity, which provides an alter-

native in estimating clear-sky solar irradiance.

It is found in Chapter 2 that both semi-empirical and physical methods show large uncertainties in ir-

radiance estimation under cloudy conditions. To better account for the cloud effect on ground-level solar

radiation, Chapter 5 presents the application of deep learning and remote sensing in solar resource assess-

ment. Multiple selected spectral satellite images are used to extract the cloud information and estimate

global and direct solar irradiance by deep learning. The improved performance over the physical method in
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solar irradiance estimation can provide more accurate information for designing solar energy projects.

Based on the improved performance in solar resource assessment presented in Chapter 5, an solar fore-

casting model using satellite-derived spatiotemporal irradiance with improved accuracy is proposed in Chap-

ter 6. The proposed method can provide more accurate irradiance forecasts, which is beneficial to the oper-

ation and management of solar energy projects.

Chapter 7 briefly summarizes this thesis and provides recommendations for future studies.
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Chapter 2

Improved turbidity estimation from local

meteorological data for solar resourcing and

forecasting applications

2.1 Introduction

Solar radiation reaching the Earth surface is either absorbed or scattered by the atmosphere based on

the types and concentrations of the participating constituents and their radiative optical properties [8]. For

solar energy conversion systems such as photovoltaics (PV) and concentrating solar power (CSP), ground

level irradiance assessment and forecasting are crucial for their design and operation [11, 14, 79, 80]. The

attenuation of ground level solar irradiance is mainly caused by clouds, aerosols, water vapor, carbon dioxide

and ozone [26], where clouds are the major modulator followed by aerosols and water vapor. However, the

high temporal and spatial variations of the three major modulators as well as sensing difficulties of their

concentrations [81] have posed considerable challenges for solar resourcing and forecasting applications.

Therefore, a variety of clear-sky models have been developed over the years to estimate time varying ground

level global horizontal irradiance (GHI), direct normal irradiance (DNI) and diffuse horizontal irradiance

(DHI) if there were no clouds in the sky. The clear-sky models have been used extensively to quantify

the effects of local aerosols and water vapor, as well as to facilitate cloud identification and analysis for

forecasting applications [8, 9, 10, 35].

As summarized in [35, 82], clear-sky models with different complexity and performance can be broadly

classified into two main groups: physical models and empirical models. Physical models apply radiative
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transfer models (RTMs) to estimate the irradiance attenuation effect of atmospheric constituents, and the

ground level solar irradiance can be obtained through integration of the attenuation caused by different at-

mospheric components [35]. Empirical models are based on simplified parameterizations of the attenuation

processes [35], which estimate the clear-sky irradiance using some atmospheric parameters, such as the

aerosol optical depth (AOD) and precipitable water in simplified Solis model [83], and the Linke turbidity

(TL) in Ineichen-Perez model [31].

Physical models perform detailed analysis of the atmospheric attenuation processes, which generally

lead to higher accuracy [36, 82]. However, they require many inputs about local atmospheric conditions,

some of them are not widely available. For instance, the REST2 model [33] has been verified as one of the

most accurate clear-sky models [36, 82], but the required information about the atmospheric constituents,

such as AOD at 550 nm, column amount of ozone, nitrogen dioxide and precipitable water are difficult to

obtain for most locations [36, 54]. Yang [36] discussed the choice of clear-sky models in solar forecasting

applications from the perspectives of accessibility, forecast performance and statistical properties. It is

found that high-fidelity physical models like REST2 are not frequently used for solar forecasting due to its

complexity, and no evidence suggests that physical models can lead to more accurate forecast results when

compared with empirical models [36].

As a member of the empirical model family, the Ineichen-Perez model is extensively used in solar

forecasting due to its simplicity [36]. The main input of the Ineichen-Perez model is the TL factor, which is

defined as the number of clean and dry atmospheres that produce the same attenuation equivalent to the real

atmosphere [30]. The TL factor quantifies the attenuation of aerosols and water vapor [84], which typically

varies between 1 and 10 [35]. The TL factor is available worldwide as monthly climatology value from the

SoDa database [40]. In PVLIB [39], linear interpolations of the monthly values are applied to build daily TL

time series for each location when using the Ineichen-Perez clear-sky model.

The TL factor is also directly used in other clear-sky models [35, 42]. However, the invariant TL factor

based on the monthly climatology value and its linear interpolation cannot account for the short-term [41]

and long-term variations [85] of atmospheric aerosols and water vapor concentrations, resulting in unsatisfy-

ing estimation of clear-sky irradiance [34]. The discrepancy of clear-sky irradiance obtained from TL based

clear-sky models and from measurements are observed in the studies by Moldovan et al. [42] and Polo

et al. [41], and also noticeable when comparing the clear-sky solar irradiance measurements from Dessert

Rock, Nevada (DRA) with PVLIB clear-sky model output (see Fig. 2.1).
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Figure 2.1: Comparison of measured clear-sky GHI (GHIcs) with PVLIB GHIcs of the same day in two

different years. PVLIB uses the TL factor from its look-up table, which is based on constant monthly

climatology value. The PVLIB GHIcs remains the same on the same day of different years, while the

measured GHIcs are not, indicating TL factor also varies on a long term (i.e., yearly) basis.

Therefore, some studies were conducted to estimate TL factor by different means with the aim to in-

vestigate its variations or to improve the estimation accuracy. Chaâbane et al. [81] adopted pyrheliometric

measurements for the calculation of TL factor in Tunisia during three summer months, where diurnal and

monthly variations of TL factor are observed. Polo et al. [41] estimated the daily TL factor for clear days

by using global irradiance measurements at solar noon and monthly mean TL values. Using the estimated

TL to recalculate clear-sky solar irradiance results in a reduced root mean squared deviation (RMSD) when

compared with using monthly mean values. The relative RMSD (rRMSD) decreases from 17.1% to 14.2%

for the dataset of Baseline Surface Radiation Network (BSRN). For the dataset from Spanish Meteorological

Agency (AEMet), the rRMSD reduces from 24.4% to 16.8%. Hove and Manyumbu [86] calculated the TL

factor based on daily GHIcs and ESRA clear-sky model [87], which typically has a lower value than the

monthly mean. Inman et al. [88] reported a method for daily average TL estimation using broadband DNI

measurements under cloudless skies, and then applied the estimated TL in DNI forecasting during cloud-
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free periods under the assumption of a persistence of daily averaged TL within the forecasting horizon. The

relative RMSE (rRMSE) and relative mean bias error (rMBE) are smaller than 5% for both historical and

forecasted values, which are much smaller than the error range (10-20%) of SoDa monthly means. Behar et

al. [89] used ambient temperature and relative humidity to estimate TL and solar irradiance via the estimated

optical thickness of clean-dry atmosphere, water vapor and aerosol. The TL estimation has a rRMSE of

10.22% and a rMBE of 1.31%, the rRMSE and rMBE of corresponding DNI estimate are 5.21% and 0.91%,

respectively. Moldovan et al. [42] applied time dependent interpolation polynomials instead of a constant

daily TL factor to improve the clear-sky model. Two different interpolation polynomials are obtained for the

TL factor in warm and cold seasons, respectively. The result shows that the relative error is reduced from

8.12% to 4% in the warm season and from 5.02% to 4.15% in the cold season.

The derivation of TL based on irradiance and meteorological measurements offers a simpler way to es-

timate TL without the detailed information about aerosol and water vapor contents. However, the methods

summarized above still have some shortcomings to overcome. For example, the clear-sky irradiance mea-

surements are not available in a cloudy day, and only using the GHIcs at the solar noon presented by Polo

et al. [41] may lead to errors in estimating the clear-sky irradiance in other periods such as solar mornings,

evenings and cloudy days. The method also cannot be used for locations without irradiance measurements.

For the method presented by Behar et al. [89], using ambient temperature and relative humidity to estimate

perceptible water and AOD may result in error accumulations in estimating TL. For the study by Modlovan

et al. [42] , the TL interpolation polynomials for warm and cold seasons are not capable of accounting for

year-to-year TL variation as shown in Fig. 2.1.

Therefore, we propose a new TL estimation method to estimate high-fidelity TL with the consideration

of its short-term and long-term variations, and without the data dependence on local real-time irradiance

measurements. The TL factor is proposed to be estimated using local meteorological data by machine learn-

ing (ML) algorithms. In the following sections, data processing and proposed methodology are presented

in Section 2.2. Section 2.3 presents the results and discussions of TL and corresponding clear-sky irradiance

estimations. The key findings and recommendations are summarized in Section 2.4.

2.2 Methodology of turbidity estimation

This section presents the data and methods used for TL derivation and estimation. The TL derivation is

performed by applying Ineichen-Perez clear-sky model (PVLIB) reversely, i.e., taking the 1-minute aver-

aged GHIcs as the input to compute the ‘ground truth’ TL. Then the derived minute-wise TL time series is
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further averaged on the basis of daily, hourly and 5-minute as the ML model training targets. The input

meteorological data is also averaged with the same time basis for model training, tuning and testing. Fi-

nally, the trained model is applied to estimate the TL for GHIcs estimation. The flowchart of the method for

estimating the TL and clear-sky irradiance is shown in Fig. 2.2. The TL derivation and estimation can also be

applied to clear-sky DNI (DNIcs), which will be discussed in Section 2.3.3.

Quality controlled data: 

GHI, DNI, air temperature (Ta), 

relative humidity (ϕ), windspeed (V), 

local pressure (Pa)

Clear-sky days

selection

Time series clear-sky GHI 

(DNI)

Time series derived 

TL

Inversed PVLIB

calculations

Averaged TL (daily, hourly, 5-

minute)

Model training, testing 

and tuning

Input parameters:

Averaged Ta, ϕ, V, Pa; Default PVLIB TL, 

logarithm of ϕ, day of year (DOY), 

estimated precipitable water (Pwe) 

Label (target): 

Averaged TL

Trained model

Estimated TL

Clear-sky GHI (DNI)

New inputs

PVLIB

Figure 2.2: An overview of the method to derive and estimate TL. The model for estimating the daily, hourly

and 5-minute TL is trained independently, and the input meteorological data is also averaged on the same

time basis.

2.2.1 Data selection

The data used in this work is from DRA, one of the Surface Radiation Budget Network (SURFRAD)

stations [29]. DRA has a latitude of 36.62373°N, a longitude of 116.01947°W, an elevation of 1007 m, and

a time zone of UTC-8 (8 hours difference than coordinated universal time (UTC)). High resolution solar

irradiance and meteorological data collected from year 2000 to 2020 are used in this work. Among the

diverse variables in the comprehensive dataset, measurements of the downwelling global solar irradiance

(GHI), direct normal irradiance (DNI), ambient air temperature (Ta), relative humidity (φ ), wind speed

(V ) and local atmospheric pressure (Pa) are selected to build and test the proposed TL estimation model.

The selected data has high temporal resolutions (3-minute averaged from year 2001 to 2008, and 1-minute

averaged from year 2009 to 2020) and its quality is carefully controlled.

DRA is chosen among the seven SURFRAD stations due to its high occurrence of cloudless days, which
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could provide adequate learning samples for the development and validation of the proposed TL estimation

model. The same methodology can be applied to other locations if sufficient data is given.

2.2.2 Selection of clear-sky days

The clear-sky irradiance is defined as the incident radiation at the Earth’s surface under the conditions

that would occur under a perfect “cloudless sky” [90]. The presence of clouds in the sky, especially when

clouds obscure the Sun disc, will greatly affect the surface solar radiation, resulting in irradiance fluctuations.

Since TL is a factor that quantifies the attenuation of solar irradiance by atmospheric constituents (especially

water vapor and aerosols) under cloud-free conditions, we only select clear-sky days for model development

and validation.
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Figure 2.3: Examples of clear-sky days selection in DRA. Measured GHI data is from SURFRAD, GHIcs

are computed by both RadFlux and PVLIB. The clear-sky labels are from RadFlux. (a) A detected full

clear-sky day. (b) A detected clear-sky day with high solar zenith periods not labeled. (c) A wrongly labeled

clear-sky day which is removed by manual check. (d) A typical partly cloudy day.

The clear-sky days are selected following the approach developed by Long and his collaborators [91,

92, 93], and the clear-sky labels provided by RadFlux algorithm [91, 93] are publicly available on the
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website of SURFRAD network. Specifically, the days will be labelled as ”clear-sky day” if most of the time

instants within the day are ”clear” as detected by solar shortwave irradiance measurements (λ < 4µm), or

detected by atmospheric longwave irradiance measurements (λ > 4µm). The shortwave clear-sky detection

algorithm has a 160° field of view, so the clear-sky instants with high solar zenith angles could not be

detected [92]. During the daytime, the presence of clouds is more noticeable in the shortwave spectrum

when compared with the longwave spectrum [93]. Therefore, most of the clear-sky instants detected by the

longwave RadFlux algorithm [93] are in the nighttime. To verify the RadFlux clear-sky labels, we performed

an additional manual check by comparing the measured GHI, clear-sky GHI estimated by RadFlux [94] and

Ineichen–Perez clear-sky model from PVLIB [39]. Then, clear-sky detection for periods with high solar

zenith angles are performed, and wrongly labeled clear-sky days are removed, as demonstrated in Fig. 2.3.

Our training and testing datasets only contain the clear-sky days that pass both the RadFlux and manual

checks (examples are presented in Fig. 2.3).

2.2.3 Derivation of ‘ground truth’ turbidity for model training

We adapt the methodology documented in PVLIB [39] to derive ‘ground truth’ TL factor for model

development. At each clear-sky time instance, the ‘ground truth’ TL factor is derived from measured GHIcs

values by inverting the following equation provided in PVLIB (proposed in [31]),

GHIcs = c1·I0·cos(θ)·exp(−c2·AM·( f1 + f2·(TL −1))) (2.1)

Then the derived TL based on GHIcs measurement is,

TL =

[
ln
(

GHIcs

c1 · I0 · cos(θ)

)
/(−c2·AM)− f1

]
/ f2 +1 (2.2)

TL could also be derived from DNIcs by inverting the following equations from PVLIB,

B1 = I0·b·exp(−0.09·AM·(TL −1)) (2.3)

B2 = GHIcs·
[(

1− (0.1−0.2·exp(−TL))

(0.1+0.882/ f1)

)
/cos(θ)

]
(2.4)

DNIcs = Minimum(B1,B2) (2.5)

Then the derived TL based on DNIcs measurements is,
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TL = ln
(

DNIcs

I0·b

)
/(−0.09·AM)+1,(when B1 < B2) (2.6)

TL =− ln
[(

0.1−
(

1− DNIcs

GHIcs
·cos(θ)

)
·(0.1+0.882/ f1)

)
/0.2

]
,(when B1 > B2) (2.7)

with:

AM =

(
1

cos(θ)+0.50572 · (6.07995+(90−θ)−1.6364)

)
· Pa

101325
(2.8)

c1 = 5.09·10−5·h+0.868 (2.9)

c2 = 3.92·10−5·h+0.0387 (2.10)

f1 = exp(−h/8000) (2.11)

f2 = exp(−h/1250) (2.12)

b = 0.664+0.163/ f1 (2.13)

where GHIcs [W m−2] is the measured clear-sky GHI. DNIcs [W m−2] is the measured clear-sky DNI. B

[W m−2] is the normal beam clear-sky radiation (B2 is the empirical correction for low TL conditions). c1,

c2, f1, f2, b are altitude-dependant coefficients, I0 [W m−2] is the solar constant, θ [°] represents the solar

zenith angle, AM is the absolute airmass, TL is the Linke Turbidity factor, Pa [Pa] is the local atmospheric

pressure, and h [m] is local altitude.

Fig. 2.4 (a) illustrates the GHIcs-derived TL in a randomly selected clear-sky day (one can find similar

results in any other clear-sky days). Unlike the TL factor used in PVLIB default calculations, the derived TL

factor is not a constant but varies during the day. Note that for periods with large solar zenith angle (greater

than 85°), the derived TL has large variations and unrealistic values (less than 1.0 and even negative), which

are resulted from the applicable limitations of Eq. (2.2). Therefore, in the following sections when derived

TL time series are temporally averaged, the instances from the period when the solar zenith is greater than

85° are not included. Fig. 2.4 (b) shows the TL time series averaged on different time basis, where the daily

averaged TL is much lower than the value used in PVLIB. The asymmetry of estimated TL with respect to

the zenith angle is observed in Fig. 2.4 (b), especially during morning and evening periods. This is possibly

due to the high airmass effect, where the small difference in measured clear-sky irradiance will result in

large discrepancy in the derived TL values. In addition, the profile of clear-sky irradiance is not perfectly

symmetric as shown in Fig. 2.4 (b) that the measured GHIcs in the morning (e.g., 6:00-8:00) is smaller than

the ones near the evening (e.g., 16:00-18:00). Meanwhile, the water vapor content in the atmosphere is

usually higher in the morning, which results in higher TL values and thus lower GHIcs.
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Figure 2.4: Derived TL time series with different averaging modes for a clear-sky day with respect to local

standard time (LST). (a) Derived TL time series on 2020-02-26. The derived TL shows high variations and

unrealistic values in the periods with high solar zenith angles. (b) Averaged TL on different time basis (5-

minute, hourly, and daily) and the irradiance difference between measured GHIcs and PVLIB GHIcs during

the day.
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Figure 2.5: Comparison of GHIcs estimation using different TL averaging modes for the clear-sky days in

year 2019 and 2020. (a) Daily RMSE of 1-minute averaged GHIcs estimation. (b) Daily MBE of 1-minute

averaged GHIcs estimation. All the derived TL regardless of averaging mode produce more accurate GHIcs

than PVLIB.

The averaged TL derivations are then used to recalculate the 1-minute averaged GHIcs using PVLIB,

which shows noticeable improvement in estimating GHIcs, as shown in Fig. 2.5. In the clear-sky days of

2019 and 2020 (a total of 84 days are identified as clear), using PVLIB TL generally underestimates the

GHIcs with a mean bias error (MBE) of -20.48 W m−2 and a root mean square error (RMSE) of 24.02

W m−2, when computed using 1-minute averaged data when solar zenith angle is smaller than 85°. Using

derived daily mean TL yields a GHIcs estimation with overall MBE of 0.34 W m−2 and RMSE of 6.74

W m−2, a 98.3% reduction in MBE and 71.9% decrease in RMSE. As the time resolution increases, the
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recalculated results become better as expected. Hourly mean TL produces a RMSE of 2.81 W m−2 and

a MBE of 0.05 W m−2 for GHIcs estimation. The 5-minute averaged TL gives an estimation of GHIcs

with the lowest MBE of 0.01 W m−2 and lowest RMSE of 0.55 W m−2. In general, using daily mean

TL can successfully correct the bias in estimating GHIcs and reduce RMSE by 71.9%. Using temporally

finer hourly and 5-minute averaged TL can further reduce the RMSE in GHIcs estimations, but they also

substantially increased the size of training data in the following ML based TL estimation models.

2.2.4 Turbidity estimation from local meteorological data

The previous section demonstrates that improving TL estimations could substantially improve the accu-

racy of GHIcs estimations. However, the TL is derived from GHIcs measurements, which is not known as a

priori in real-time applications. Therefore, we propose to use ML methods with widely available meteoro-

logical measurements to estimate local TL.

We use three independent ML models for daily, hourly and 5-minute averaged TL factors. The label

(target) is the averaged TL derivations from Section 2.2.3, and the input parameters are: the default PVLIB

TL, ambient air temperature Ta, relative humidity φ (and its logarithm), wind speed V , atmospheric pressure

Pa, day of year (DOY), and estimated precipitable water Pwe. The meteorological time series (i.e., air

temperature, relative humidity, wind speed, pressure) are averaged on the same time basis as the TL. The

PVLIB TL is adapted to the corresponding time resolution as well. The logarithm of relative humidity is

based on its averaged value, and the estimated precipitable water is calculated from the averaged temperature

and the averaged relative humidity using the empirical model proposed by Gueymard [95, 96] with the

following equations:

Pwe = 0.1 ·Hv ·ρv (2.14)

Hv = 0.4976+
1.5265 ·Ta

273.15
+ exp

(
13.6897 ·Ta

273.15
−14.9188 ·

(
Ta

273.15

)3
)

(2.15)

ρv = 216.7 ·φ · es/Ta (2.16)

es = exp

(
22.330−49.140 · 100

Ta
−10.922 ·

(
100
Ta

)2

−0.39015
Ta

100

)
(2.17)
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where Pwe [cm] is the estimated precipitable water. Hv [km] is the apparent water vapor scale height. ρv [g,

m−3] is the surface water vapor density. φ [%] is the relative humidity. es [millibar] is the saturation water

vapor pressure. Ta [°C] is the ambient air temperature.

ML technique is a powerful tool in regression modelling, which can model the relations between input

features and target especially when the representation is complicated. ML algorithms have been widely used

in classification, prediction and pattern recognition applications [76]. Here, we apply and compare Linear

Regression (LR), Random Forest (RF), and Multilayer Perceptron (MLP) for TL estimation, which are three

commonly available and extensively used methods in real applications.

LR involves a linear combination of the input variables, which may have significant limitations for

pattern recognition, particularly for problems with high dimensionality [76]. Therefore, linear model is

extended by considering linear combinations of fixed nonlinear functions (basis function) of the input vari-

ables. Polynomial (powers of input variables) regression is one example of the extended linear models [76].

Although linear models are considered relatively simple and might not be suitable for high-dimensional

problems, they have good analytical properties and form the fundamental for more advanced models [76].

Here we apply LR as a reference method in estimating TL.

RF regressor is an ensemble method that combines several randomized regression decision trees to

achieve a better performance [77]. RF is a bagging technique, all the involved decision trees are built in

parallel and depend on the random vectors sampled from the training dataset. The predictions are averaged

using bootstrap aggregation, which is one of the most computational-efficient methods to improve stability

of the estimates [77]. RF models have been demonstrated to be robust predictors for both small sample sizes

and data with high dimensionality [77].

MLP is also known as feed-forward neural network, which consists of an input layer, one or more hidden

layers and one output layer [76]. MLP networks have high flexibility in approximation and can easily extend

the structure by adding more hidden layers. MLP networks are trained and the parameters are obtained by

back propagation [76]. There are different nonlinear activation functions of hidden layer(s), which could

differ for different applications.

Data from 2000-2018 is used as the training set (20% of which is for validation) and data from 2019-

2020 is used for testing. The model hyperparameters are tuned by using tenfold cross-validation method.

The error evaluation metrics are MBE, RMSE and their normalized counterparts. All the above-mentioned

ML models are adapted from Scikit-learn [97] and PyCaret [98], where more details regarding the applied

algorithms can be found.
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2.3 Results and discussion

The best ML model is selected separately for daily, hourly and 5-minute averaged TL estimation, and

the overall corresponding 1-minute averaged GHIcs estimation results for clear-sky days in year 2019 and

2020 are presented in Table 2.1. Compared with the GHIcs recalculation, GHIcs based on the estimated TL

yields slightly larger MBE and RMSE. Although 5-minute averaged TL has the best performance for GHIcs

recalculations, but the fine temporal resolution does not show much superior results in GHIcs estimation.

Estimating hourly averaged TL results to better GHIcs estimation with an MBE of 1.45 W m−2 and a RMSE

of 9.62 W m−2. Using daily averaged TL achieves a comparable result with slightly larger MBE of 2.09

W m−2 and RMSE of 9.94 W m−2. Given that less complexity and computational resource are required for

using daily averaged TL, the subsequent results and discussion are based on the daily averaged TL and the

associated model.

Table 2.1: Comparison of 1-minute averaged GHIcs recalculations and estimations using derived and esti-

mated TL for clear-sky days in the year of 2019 and 2020. PVLIB results are presented here for reference.

TL GHIcs recalculations1 GHIcs estimations2

RMSE [W m−2] MBE [W m−2] RMSE [W m−2] MBE [W m−2]

Daily mean 6.74 0.34 9.94 2.09

Hourly mean 2.81 0.05 9.62 1.45

5-minute mean 0.55 0.01 10.28 -0.01

PVLIB3 24.02 -20.48 24.02 -20.48

1 GHIcs recalculations are based on the averaged TL factors derived from GHIcs.
2 GHIcs estimations are based on the estimated TL factors from the ML (MLP) models with

meteorological parameters as input.
3 PVLIB uses the daily interpolated TL based on the monthly climatological TL map.

2.3.1 Estimations of daily turbidity and 1-minute averaged GHIcs in clear-sky days

When compared with the monthly climatology mean of TL, the derived daily TL generally has a lower

value and has a much higher fluctuation (see Fig. 2.6 (a)). The TL values of 2020 is different from the year of

2019, which indicates the TL also has a yearly variation. This long-term fluctuation of TL is possibly caused

by pollution [85] and the dynamics of aerosols and water vapor in the atmosphere [41]. Among the applied
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ML algorithms, MLP regressor gives the best results as shown in Table 2.2 and Fig. 2.6, with comparatively

lower testing RMSE and MBE values.The normalized RMSE (nRMSE) of TL estimation from all the ML

models are around 10%. The learning curve of MLP regressor is shown in Fig. 2.7.

Table 2.2: Training and testing errors of the applied ML algorithms for TL estimation.

ML algorithm Training Testing

RMSE MBE RMSE MBE

LR 0.2452 0.0000 0.2104 -0.0644

RF 0.2127 -0.0004 0.2098 -0.0591

MLP 0.2339 0.0044 0.2066 -0.0520
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(b) Daily TL estimation by Linear Regression
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(c) Daily TL estimation by Random Forest Regressor
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(d) Daily TL estimation by MLP Regressor
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Figure 2.6: Comparison of the derived daily TL and PVLIB TL and the performance of applied ML methods.

(a) The comparison of derived TL and PVLIB TL. The comparison between derived TL and estimated TL

from different methods (b) Linear Regression (c) Random Forest Regressor and (d) MLP Regressor.
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Figure 2.7: Learning curve of MLP regressor with tenfold cross validation. The dots represent mean values,

and the related shadows reflect the standard derivation. Both training and validation errors are decreased

with the increased training size. At the end of training, the validation error is slightly larger than training,

which indicates a good fit.

Fig. 2.8 (a) presents the sensitivity analysis of the meteorological inputs for the MLP model. The

estimated TL increases when the temperature and relative humidity become higher, while the increases in

wind speed and pressure lead to a drop in the TL estimation. Wind speed is the least sensitive parameter,

so its impact on the TL estimation is limited. Relative humidity and temperature have comparatively larger

influence than wind speed, and temperature is a more crucial input for TL estimation compared with relative

humidity. Regards to local pressure, it does not have large variance as shown in Fig. 2.8 (b), so either

increase or decrease pressure by 10% would lead it to be out of its min-max range. Since the MLP model

is trained based on data samples with a small range of pressure variation, the out-of-range pressure will

produce unrealistic TL estimation. This is why the pressure shows the relatively larger sensitivity. In practical

applications, the pressure of a certain place has limited variation, so its influence on TL estimation also

remains limited.
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Figure 2.8: Sensitivity analysis and statistical properties of the meteorological inputs for the MLP model.

(a) Sensitivity analysis based on the changes of a sole parameter, where the base is the mean value. (b) Box

chart of the normalized meteorological measurements. Statistical properties represent the Minimum, Lower

Quartile, Median, Upper Quartile, and Maximum.

32



0 1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283

10

20

30

40

R
M

SE
 (G

H
I)

 [W
/m

2 ]
Overall RMSE:
TL_derived_day: 6.74
TL_estimated_day: 9.94
TL_pvlib: 24.02

(a) RMSE of GHIcs estimation by estimated daily TL

TL_derived_day
TL_estimated_day
TL_pvlib

20
19

-0
1-

01
20

19
-0

1-
03

20
19

-0
1-

04
20

19
-0

1-
24

20
19

-0
3-

17
20

19
-0

6-
23

20
19

-0
7-

10
20

19
-0

8-
12

20
19

-0
8-

15
20

19
-0

8-
31

20
19

-0
9-

12
20

19
-0

9-
21

20
19

-0
9-

27
20

19
-0

9-
30

20
19

-1
0-

01
20

19
-1

0-
02

20
19

-1
0-

03
20

19
-1

0-
04

20
19

-1
0-

05
20

19
-1

0-
07

20
19

-1
0-

10
20

19
-1

0-
12

20
19

-1
0-

13
20

19
-1

0-
15

20
19

-1
0-

18
20

19
-1

0-
22

20
19

-1
0-

26
20

19
-1

0-
30

20
19

-1
0-

31
20

19
-1

1-
01

20
19

-1
1-

02
20

19
-1

1-
03

20
19

-1
1-

04
20

19
-1

1-
05

20
19

-1
1-

08
20

19
-1

1-
09

20
19

-1
1-

18
20

20
-0

1-
06

20
20

-0
2-

25
20

20
-0

2-
26

20
20

-0
3-

03
20

20
-0

4-
14

20
20

-0
5-

04
20

20
-0

5-
26

20
20

-0
5-

27
20

20
-0

6-
09

20
20

-0
6-

10
20

20
-0

6-
17

20
20

-0
6-

18
20

20
-0

7-
05

20
20

-0
7-

06
20

20
-0

7-
08

20
20

-0
7-

14
20

20
-0

7-
15

20
20

-0
7-

18
20

20
-0

7-
25

20
20

-0
7-

28
20

20
-0

7-
29

20
20

-0
8-

02
20

20
-0

8-
28

20
20

-0
9-

02
20

20
-0

9-
03

20
20

-0
9-

09
20

20
-0

9-
28

20
20

-1
0-

01
20

20
-1

0-
02

20
20

-1
0-

03
20

20
-1

0-
04

20
20

-1
0-

12
20

20
-1

0-
15

20
20

-1
0-

16
20

20
-1

0-
27

20
20

-1
0-

30
20

20
-1

0-
31

20
20

-1
1-

04
20

20
-1

1-
16

20
20

-1
1-

19
20

20
-1

1-
22

20
20

-1
1-

24
20

20
-1

1-
27

20
20

-1
1-

29
20

20
-1

2-
01

20
20

-1
2-

03
20

20
-1

2-
22

Date

40

30

20

10

0

10

20

M
B

E 
(G

H
I)

 [W
/m

2 ]

Overall MBE:
TL_derived_day: 0.34
TL_estimated_day: 2.09
TL_pvlib: -20.48

(b) MBE of GHIcs estimation by estimated daily TL

TL_derived_day
TL_estimated_day
TL_pvlib

Figure 2.9: The comparison of GHIcs estimation based on derived and estimated daily TL factors. (a) Daily

RMSE of GHIcs estimation. (b) Daily MBE of GHIcs estimation. Generally, the estimated TL performs

better than the default PVLIB TL factor.

When using the estimated daily TL from the MLP model to estimate 1-minute averaged GHIcs, most

of the tested clear-sky days in the year of 2019 and 2020 show noticeable improvements when compared

with the PVLIB GHIcs in terms of RMSE and MBE (see Fig. 2.9). The overall RMSE of GHIcs estimation

using the MLP-estimated TL in 2019 and 2020 is 9.94 W m−2, which is slightly higher than the RMSE (6.74

W m−2) of GHIcs recalculation from the derived TL, but much lower than the RMSE of 24.02 W m−2 from

PVLIB. Note that there are some cases of model underperformance, which are likely due to that PVLIB

TL is already close to the derived TL. Nevertheless, the GHIcs estimation using the estimated TL factor

has an overall better performance compared with PVLIB, which uses unmodified TL based on the monthly

climatology values, especially when the PVLIB GHIcs and measured GHIcs have large discrepancy.
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2.3.2 Estimations of daily turbidity and 1-minute averaged GHIcs in partially clear days

Furthermore, we test our TL estimation model in partially cloudy days when not all periods are cloudless

throughout the day. As shown in Fig. 2.10, the model is also applicable to estimate TL in this case and the

corresponding 1-minute averaged GHIcs estimation shows better agreement when compared with PVLIB

for the clear-sky instants during the day.
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Figure 2.10: Examples of GHI in partially cloudy days during (a) 2019-03-30 (b) 2029-12-27 (c) 2020-03-

31 (d) 2020-04-03. The GHIcs calculated from the estimated TL shows a higher accuracy than PVLIB when

compared with measured GHI in the clear-sky instants.

The potential explanation to this phenomenon is that the presence of clouds in partially clear days has

limited effect on local meteorological parameters as well as ground level aerosols and water vapor con-

centrations. Accordingly, using local meteorological measurements (e.g., temperature, relative humidity)

to estimate GHI with the presence of clouds may not be effective. Note that the phenomenon could be

different in fully overcast days as the meteorological parameters might be affected, which needs further

investigation. Nevertheless, the trained model works for the partially cloudy days, which would provide

more accurate clear-sky irradiance during those periods for solar resourcing and forecasting applications.

In addition, since the ML model can estimate TL in both clear-sky and partially cloudy days, the derived TL
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from the clear-sky instants in the partially cloudy days as well as corresponding meteorological variables

can be included in the dataset for model development and testing. Which in turn can provide more data for

ML model training and could potentially improve the model accuracy.

2.3.3 Estimations of daily turbidity and 1-minute averaged DNIcs

The same method is applied to estimate 1-minute averaged DNIcs using the improved TL estimations.

Since PVLIB uses the same TL value for calculating GHIcs and DNIcs, we use the GHIcs-estimated TL to

estimate DNIcs, as shown in Fig. 2.11.
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Figure 2.11: The RMSE and MBE of DNIcs estimation using the GHIcs-based derived and estimated TL.

Both recalculations and estimations have lower overall RMSE and MBE than PVLIB but with some excep-

tions.
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Both the recalculations and estimations have better overall performance than PVLIB, the RMSE is re-

duced from 76.40 W m−2 to 47.16 W m−2 and 50.77 W m−2, respectively. The MBE is decreased from

-62.45 W m−2 to 32.34 W m−2 for recalculations, and to 39.93 W m−2 for estimations. However, the error

reduction is not as effective as GHIcs estimation, as it is noticed that the derived TL from GHIcs could not

always lead to better DNIcs estimations than PVLIB. Consequently, the estimated TL could potentially lead

to large errors by accumulating uncertainties in TL estimation, as shown in Fig. 2.11.

To further improve the accuracy of DNIcs estimations, we derive TL from DNIcs and develop separate

ML models for TL estimation following the similar strategy as described in Section 2.2. TL is derived using

Eq. (2.6) and (2.7) from measured clear-sky DNI. A comparison among different TL modelling methods for

DNIcs estimation is shown in Table 2.3.

Table 2.3: Comparison of DNIcs recalculations and estimations using derived and estimated TL for clear-

sky days in the year of 2019 and 2020. Although 5-minute averaged TL has the lowest RMSE for DNIcs

recalculations, the 1-minute averaged DNIcs estimations based on daily, hourly and 5-minute averaged TL

show little difference.

TL DNIcs recalculations1 DNIcs estimations2

RMSE [W m−2] MBE [W m−2] RMSE [W m−2] MBE [W m−2]

Daily mean 18.93 -1.75 29.96 2.68

Hourly mean 8.96 -1.46 30.75 -0.04

5-minute mean 5.74 -1.36 31.96 -1.24

PVLIB3 76.40 -62.45 76.40 -62.45

1 DNIcs recalculations are based on the averaged TL factors derived from DNIcs.
2 DNIcs estimations are based on the estimated TL factors from the ML (MLP) model de-

veloped from the derived TL.
3 PVLIB uses the daily interpolated TL based on the monthly climatological TL map.

All the improved TL factors for DNIcs recalculations and estimations have superior results than default

PVLIB. The 5-min averaged TL gives the lowest RMSE of 5.74 W m−2 and a MBE of -1.36 W m−2 for

recalculating DNIcs, while daily mean TL generates a RMSE of 18.93 W m−2 and a MBE of 1.75 W m−2.

However, the developed MLP models for daily, hourly and 5-minute TL estimation yield comparable results

for estimating DNIcs, which means averaging TL on smaller time basis has limited potential to improve the

DNIcs estimation accuracy. Since using daily mean TL can generate comparable DNIcs estimations with
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less complexity, a detailed comparison of DNIcs estimation by using estimated daily TL and default PVLIB

TL is shown in Fig. 2.12.
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(a) RMSE of DNIcs estimation by estimated daily TL

TL_derived_day
TL_estimated_day
TL_pvlib

20
19

-0
1-

01
20

19
-0

1-
03

20
19

-0
1-

04
20

19
-0

1-
24

20
19

-0
3-

17
20

19
-0

6-
23

20
19

-0
7-

10
20

19
-0

8-
12

20
19

-0
8-

15
20

19
-0

8-
31

20
19

-0
9-

12
20

19
-0

9-
21

20
19

-0
9-

27
20

19
-0

9-
30

20
19

-1
0-

01
20

19
-1

0-
02

20
19

-1
0-

03
20

19
-1

0-
04

20
19

-1
0-

05
20

19
-1

0-
10

20
19

-1
0-

12
20

19
-1

0-
13

20
19

-1
0-

15
20

19
-1

0-
18

20
19

-1
0-

22
20

19
-1

0-
26

20
19

-1
0-

30
20

19
-1

0-
31

20
19

-1
1-

01
20

19
-1

1-
02

20
19

-1
1-

04
20

19
-1

1-
05

20
19

-1
1-

08
20

19
-1

1-
09

20
19

-1
1-

18
20

20
-0

1-
06

20
20

-0
2-

25
20

20
-0

2-
26

20
20

-0
3-

03
20

20
-0

4-
14

20
20

-0
5-

04
20

20
-0

5-
26

20
20

-0
6-

09
20

20
-0

6-
10

20
20

-0
6-

17
20

20
-0

6-
18

20
20

-0
7-

05
20

20
-0

7-
06

20
20

-0
7-

08
20

20
-0

7-
14

20
20

-0
7-

15
20

20
-0

7-
18

20
20

-0
7-

25
20

20
-0

7-
28

20
20

-0
7-

29
20

20
-0

8-
02

20
20

-0
9-

02
20

20
-0

9-
03

20
20

-0
9-

09
20

20
-0

9-
28

20
20

-1
0-

01
20

20
-1

0-
02

20
20

-1
0-

04
20

20
-1

0-
12

20
20

-1
0-

15
20

20
-1

0-
16

20
20

-1
0-

27
20

20
-1

0-
30

20
20

-1
0-

31
20

20
-1

1-
04

20
20

-1
1-

16
20

20
-1

1-
19

20
20

-1
1-

22
20

20
-1

1-
24

20
20

-1
1-

27
20

20
-1

1-
29

20
20

-1
2-

01
20

20
-1

2-
03

20
20

-1
2-

22

Date

125

100

75

50

25

0

25

50

75

M
B

E 
(D

N
I)

 [W
/m

2 ]

Overall MBE:
TL_derived_day: -1.75
TL_estimated_day: 2.68
TL_pvlib: -62.45

(b) MBE of DNIcs estimation by estimated daily TL

TL_derived_day
TL_estimated_day
TL_pvlib

Figure 2.12: The comparison of DNIcs estimation based on derived and estimated daily TL factors. (a)

RMSE of DNIcs estimation. (b) MBE of DNIcs estimation. Generally, the estimated TL performs better

than the default PVLIB TL factor in terms of RMSE and MBE.

From the perspective of atmospheric radiative transfer, DNI is comparatively more sensitive than GHI to

the variations of atmospheric constituents and cloud dynamics, as GHI is the sum of DHI and the horizontal

projection of DNI (GHI = DNI · cos(θ)+DHI, where θ [°] is the solar zenith angle). The rapidly changing

DNIcs in the solar morning and evening also makes the DNIcs estimation more challenging than GHIcs. As

demonstrated by our results, the default PVLIB TL yields a RMSE of 76.40 W m−2 and a MBE of -62.45

W m−2 for DNIcs estimation, which is about three times of the RMSE (24.02 W m−2) and MBE (-20.48
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W m−2) for estimating GHIcs.

Compared with GHIcs estimation from derived and estimated TL factors, DNIcs estimation generally has

comparatively larger errors of RMSE and MBE (see Table 2.1 and Table 2.3). Using the 5-minute averaged

TL factor almost produce a ”perfect” GHIcs recalculation with the RMSE of 0.55 W m−2 and MBE of 0.01

W m−2, while the RMSE is 5.74 W m−2 and MBE is -1.36 W m−2 for DNIcs recalculation. When it comes

to estimation, the ML model (MLP is chosen) estimated daily TL for DNIcs estimation has a RMSE of 29.96

W m−2, which is nearly three times of the RMSE (9.94 W m−2) of estimating GHIcs. For partially cloudy

days, the proposed DNIcs estimating method also outperforms PVLIB, but the degree of error reduction is

smaller than those of GHIcs estimation, as demonstrated by Fig. 2.13. In sum, DNIcs estimation is more

challenging than GHIcs and often has larger discrepancies, the applications that rely heavily on accurate

DNIcs estimation is recommended to adopt the methods to improved DNIcs estimation (such as the one

presented in this work).
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Figure 2.13: DNI and GHI time series in partially cloudy days during (a) 2019-03-30 (b) 2029-12-27 (c)

2020-03-31 (d) 2020-04-03. Compared with DNIcs estimation in partially cloudy days, GHIcs estimated

from improved TL factor has higher accuracy in the clear-sky instants.
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2.3.4 Generic applicability of the proposed method

Here we apply the proposed methodology at other SURFRAD stations with limited occurrences of clear-

sky days to demonstrate the generic applicability of the proposed method. The results of 1-minute averaged

GHIcs estimation for all the SURFRAD stations using the TL estimation models developed using both clear-

sky and partially clear days are presented in Table 2.4. Compared with the default PVLIB calculations, the

proposed method generally produces better GHIcs estimations for all SURFRAD stations.

Table 2.4: Results of 1-minute averaged GHIcs estimations using estimated TL for clear-sky and partially

clear days in 2019 for all the SURFRAD stations. PVLIB results from default TL are presented in brackets

for reference.

Stations Clear-sky days Partially clear days Clear-sky and
partially clear days

nRMSE[%] nMBE[%] nRMSE[%] nMBE[%] nRMSE[%] nMBE[%]

BON 3.81(10.68) -1.90(-9.08) 3.16( 9.24) -0.96(-7.80) 3.38( 9.16) -0.37(-7.58)

DRA 1.42( 4.09) -0.20(-3.33) 1.48( 3.79) -0.17(-3.02) 1.52( 3.80) -0.13(-2.99)

FPK 2.90( 7.03) -1.91(-4.83) 2.53( 5.32) -0.78(-2.97) 2.62( 5.09) -0.48(-2.59)

GWN 3.10( 8.52) -1.19(-7.52) 3.12( 7.06) -0.64(-5.27) 3.24( 7.00) -0.44(-4.97)

PSU 1.73( 8.47) -0.28(-7.81) 2.29( 7.01) -0.25(-6.07) 2.62( 7.11) -0.35(-6.04)

SXF 1.69( 7.24) -0.09(-6.66) 2.85( 6.13) -0.03(-5.01) 3.05( 6.29) -0.16(-5.14)

TBL 2.50( 2.73) 1.15(-0.75) 2.37( 2.45) 1.40(-0.47) 2.63( 2.66) 1.39(-0.24)

2.4 Conclusions

In this chapter, we present a new method to estimate turbidity factor TL using common meteorological

data by ML algorithms. The model inputs are: the default PVLIB TL, ambient air temperature, relative hu-

midity (and its logarithm), wind speed, atmospheric pressure, day of year (DOY), and estimated precipitable

water. The model output is estimated TL, which has the same temporal resolution as the input parameters.

The training target of the ML algorithms is the TL derived from measured clear-sky GHI or DNI. When

tested using data from Desert Rock, Nevada, the new method successfully captures both the short-term

and the long-term temporal variations of TL by inferring from the local meteorological measurements, thus

leading to substantial accuracy improvement in estimating clear-sky irradiance. The major findings and

recommendations are:
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• We perform TL estimation on the averaging basis of a day, an hour and every 5-minute. Although

5-minute averaged TL can better represents its temporal variation, using daily or hourly averaged TL to

estimate GHIcs or DNIcs has no significant reduction in accuracy. Therefore, we recommend using

the improved daily-averaging TL (with less complexity and less computational resource requirement)

for GHIcs or DNIcs estimations.

• Although the default Ineichen-Perez clear-sky model uses the same turbidity factor for GHIcs and

DNIcs estimations, we found that using the same values would deteriorate DNIcs estimation. There-

fore, we recommend using two separately trained ML models to generate different TL values, one for

GHIcs estimation and one for DNIcs estimation.

• During clear days, when compared with the default PVLIB TL, the RMSE of GHIcs estimation based

on the improved daily TL decreased from 24.02 W m−2 to 9.94 W m−2, a 58.6% reduction of error. The

RMSE of DNIcs estimation is reduced from 76.40 W m−2 to 29.96 W m−2, a 60.8% reduction of error.

The default PVLIB generally underestimates the GHIcs and DNIcs with an MBE of -20.48 W m−2

and -62.45 W m−2, respectively. The bias are corrected when using the improved daily TL, yielding

an MBE of 2.09 W m−2 for estimating GHIcs, and 2.68 W m−2 for estimating DNIcs, respectively.

• The daily TL estimation method is also tested in partially cloudy days (with partial clear periods and

partial cloudy periods). It is observed that the corresponding GHIcs and DNIcs estimations show

better agreement with clear-sky irradiance measurements during cloudless time instances, when com-

pared with default PVLIB results. The results indicate that the presence of clouds does not signifi-

cantly change local air temperature and relative humidity, as well as water vapor and aerosol concen-

trations. Furthermore, the results demonstrate the potential of the proposed method in assisting solar

irradiance modelling and forecasting in partially cloudy conditions, especially for cloud identification

applications.

In sum, our proposed method offers a simpler way for TL estimation without priori knowledge of aerosol

and water vapor content in the atmosphere. The estimated TL can substantially improve the accuracy of

clear-sky GHI and DNI estimations when used in an empirical clear-sky model. Our results also imply that

local meteorological data such as air temperature and relative humidity can represent column water vapor

and aerosol concentrations with high accuracy during both clear and partially cloudy days. Solar resourcing

and forecasting applications are expected to be improved when the proposed method is used to estimate

clear-sky irradiance with higher accuracy.
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Chapter 3

Estimation of high-resolution solar

irradiance data using optimized

semi-empirical satellite method and

GOES-16 imagery

3.1 Introduction

Solar radiation is a significant source of renewable energy systems, which can be directly captured to

produce heat and electricity. It is reported that solar thermal technologies produced 479 TWh energy in

2019, which is an equivalent energy savings of 43 million tons of oil and 130 million tons emissions of

CO2 [5]. Meanwhile, solar photovoltaic (PV) has also been one of the most promising renewable energy

technologies in recent years with an estimated average yearly growth of 15% between 2019 and 2030 [99].

However, the power output of a solar energy system is highly variable due to the intermittent and uncertainty

of local irradiance conditions [9, 10, 11, 14]. The variability in power production also introduces difficulties

in system operation [100]. Considering the rapid expansion of solar energy conversion applications, it is

important to have reliable and accurate ground solar irradiance data at the location of interest. Historical

data is essential for the feasibility and optimal system design phases of a solar power conversion project to

support decision making and reduce the risk [8].

Ground-based measurement is the most reliable irradiance data source for solar energy applications.

However, due to difficulties in routine calibration, data quality control, as well as the high cost associated
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with the instrumentation, complete and long-term ground-based measurements are scarce [12]. Therefore,

solar irradiance estimation and reanalysis from satellite offer an alternative to the ground measurements

for evaluating and designing the solar energy projects [47]. Despite the general belief that solar irradiance

data based on satellite observation and model reanalysis is less accurate than ground-based measurements,

satellite-derived solar irradiance data can help with model development [12].

As an essential part for solar irradiance modelling, geostationary satellites are widely used for resource

monitoring and assessment as they observe continuously the same part of the Earth [8]. The advancement

in modern remote sensing technique brings data in finer temporal and spatial resolutions as well as new

insights in solar irradiance modelling. Satellite-based solar irradiance models can be broadly classified as

physical, empirical, and semi-empirical methods [8]. Physical methods usually apply radiative transfer mod-

els (RTMs) through different layers in the atmosphere, which requires detailed and accurate information of

the atmospheric constituents, such as cloud optical properties, aerosol optical depth (AOD), and water vapor

content [8]. Pure empirical models attempt to simulate the regression between the satellite measurements

and ground based records [8]. While semi-empirical models are a combination of physical and empirical

method, which apply a simple RTM and regression approach to fit the observations [8].

Many studies have been conducted to estimate the global horizontal irradiance (GHI) from geostation-

ary satellites images [48, 49, 50, 51]. Both physical and semi-empirical models are extensively used in

estimating GHI while simple empirical methods are barely applied due to their inferior performance caused

by the lack of generality [51, 52]. Physical models usually have better performance than semi-empirical

methods [51], as they technically need the details of atmospheric compositions. For instance, the national

solar radiation database (NSRDB) [49], as a widely accessed and publicly available data source, provides

broadband irradiance and other auxiliary variables. NSRDB is produced using the physical solar model

(PSM) and products from a number of associations [49]. The Heliosat-4 method [50] is also a fully physical

model using a fast, approximated, but still accurate RTM approach. Heliosat-4 consists of two models based

on libRadtran [43] and look-up tables: the McClear [32] for solar irradiance under cloud free conditions

and the McCloud for irradiance attenuation due to clouds. However, apart from the complexity and high

computing resource requirement, the essential inputs of physical models, such as water vapor, AOD, and

cloud properties are difficult to obtain and generally associated with uncertainties [8, 54, 80].

On the other hand, semi-empirical methods typically deal with the irradiance attenuation of atmospheric

constituents and cloud extinction separately, with a clear-sky model for clear-sky irradiance and a cloud

index (CI) derived from satellite image to account for cloud attenuation [8, 48]. Heliosat method se-

ries [38, 57, 58] are examples of semi-empirical models, which offer easy implementation, fast calculation
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and operation [51]. Many clear-sky models have been used in semi-empirical models for GHI estima-

tion, such as the Ineichen-Perez model [31] in the operational model (SUNY model) developed by Perez

et al. [37], the McClear model in the work of Jia et al. [60], and the REST2 [33] model in Solcast [61].

There are also different methods proposed to calculate the GHI based on clear-sky index (CSI) and CI in the

literature [37, 48, 62].

Given that a variety of clear-sky models are available for estimating GHI in semi-empirical satellite

models with different regressions between CSI and CI, there has been a dearth of study to compare the per-

formance of different clear-sky models and empirical relationships for GHI estimation. Some related studies

from the literature are summarized as follows, Rigollier and Wald [101] compared several clear-sky models

developed at the early stages and selected the ESRA [87] model for the HelioClim project [102], which

was later replaced by McClear for improvements [56]. Laguarda et al. [52] applied the ESRA and McClear

model in hourly GHI estimation over the Pampa Húmeda with different locally adjusted CI methods. Mc-

Clear model performs better than ESRA model under clear-sky conditions, and both ESRA and McClear

models have small negative biases of -1.1% for all-sky GHI estimates while McClear yields a slightly lower

relative root mean square deviation (rRMSD, 12.5% versus 12.1%). Garniwa et al. [51] analyzed the per-

formance of different semi-empirical models for hourly GHI estimation in Korea and found the Hammer

model presented in [48] has a better result. Meanwhile, a hybrid model was also proposed with smaller

root mean square error (RMSE) than the Hammer model (97.08 W m−2 versus 103.92 W m−2). However,

limited studies have been conducted to compare and evaluate the performance of different clear-sky models,

CI and CSI derivation methods in solar resourcing. Considering the advanced clear-sky models have been

developed with high performance and much finer resolution of the data (e.g., 5-minute images) provided by

modern satellites, it would be of interest to compare and evaluate the methods and clear-sky models used in

semi-empirical model for GHI estimation with a fine spatiotemporal resolution (i.e., 5-minute and 1 km).

This chapter aims to optimize the semi-empirical satellite model for 5-minute GHI estimation via com-

paring and evaluating the performance of different clear-sky models, CI and CSI derivation methods, and

satellite bands. Ineichen-Perez, McClear, and REST2 are compared as the representatives of average, good

and best clear-sky models to keep the generality [36]. The main contributions of this chapter are summarized

as follows:

• Evaluates the performance of 5-minute all-sky GHI estimate based on different bands of GOES-16

and different empirical relationships between CSI and CI.

• Compares different methods to derive the CI based on GOES-16 data for 5-minute GHI estimation, in
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particular, the time window, the upper and lower bounds used in semi-empirical methods.

• Introduces the modified Ineichen-Perez clear-sky model based on estimated turbidity from local me-

teorological measurements [103] in all-sky GHI estimation.

• Compares and evaluates the four aforementioned clear-sky models for estimating 5-minute GHI using

semi-empirical methods under different sky conditions.

The remainder of this chapter is structured as follows: Section 3.2 describes the used data, semi-

empirical GHI estimation method, and the details of the compared clear-sky models. The performance

of different CI, CSI calculation methods, and different clear-sky models for GHI estimation and discussions

are presented in Section 3.3. Finally, the key findings of this chapter and recommendations are summarized

in Section 3.4.

3.2 Data and methods

This section describes the used data and the semi-empirical satellite method for GHI estimation. The

satellite data will first undergo a radiance conversion to eliminate the negative points, then the CI and CSI

are determined using different strategies and methods that are described in Section 3.2.2. Finally, the GHI

is calculated via the CSI and clear-sky GHI (GHIcs) from the clear-sky model as shown in Fig.3.1. Four

clear-sky models are compared, the GHIcs of REST2 and McClear are publicly available, Ineichen-Perez

documented in PVLIB [39] adopts the default calculations, while Ineichen-Perez TL model uses the es-

timated turbidity based on local meteorological measurements [103]. The detailed method for estimating

turbidity is presented in Section 3.2.3.

GOES-16 data

(Band 1, 2, 3) 

Meteorological 

measurements 

REST2 

(NSRDB)

McClear

(CAMS)

Ineichen-Perez 

(PVLIB)

Ineichen-Perez 

TL 

Turbidity 

estimation

Clear-sky global horizontal irradiance 

Dynamic range and cloud index 

(Strategy 1, 2, 3, 4 ) 

Data filter

Cloud index to clear-sky index

(Method 1, 2, 3, 4) 

Global horizontal irradiance 

Atmospheric  

constituents 

Figure 3.1: The flowchart of GHI estimation using semi-empirical methods with different clear-sky models.
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3.2.1 Data

The satellite data used in this chapter is from GOES-16, operated by National Oceanic and Atmospheric

Administration (NOOA). GOES-16 has 16 spectral bands, the Advanced Baseline Imager (ABI) provides

data with temporal resolution of 5 - 15 minutes, and spatial resolution of 0.5 - 2 km at the sub-satellite

point [13]. In this chapter, the data from two visible bands (blue, red) and one near-infrared band (veggie) in

the year of 2019 are retrieved from publicly available sources and then georeferenced to the ground location

of interest, the detailed information about the aforementioned bands is presented in Table 3.1. There are

three UTC (Universal Time Coordinated) timestamps referring the time of file creation, start and end of the

scan. To be compatible with ground measurements and real-time applications, the end timestamp is applied

to index the data after rounded to the next nearest 5-minute interval.

Table 3.1: Summary of the blue, red, veggie bands of GOES-16. All the information is obtained from the

GOES-R Series Product Definition and User’s Guide (PUG) [104].

Band No. Type Center wavelength

(Range) [µm]

Resolution

[km]

Valid
range*

Scale
factor

Add
offset

1 (Blue) Visible 0.47 (0.450-0.490) 1.0 0-1022 0.8121 -25.9366

2 (Red) Visible 0.64 (0.590-0.690) 0.5 0-4094 0.1586 -20.2899

3 (Veggie) Near-Infrared 0.87 (0.846-0.885) 1.0 0-1022 0.3769 -12.0376

* Valid range is in packed and scaled integer form. Scale factor and add offset are used to convert

scaled integer to physical quantity, which is radiance [W m−2 sr−1 µm−1] in this case.

The corresponding ground irradiance measurements are from the stations in Surface Radiation Budget

Network (SURFRAD) [29]. Detailed information of the seven stations are summarized in Table 3.2. The

initial dataset includes a variety of 1-minute averaged solar irradiance as well as meteorological information.

Ambient air temperature, relative humidity, wind speed and atmospheric pressure are averaged on a daily

basis (when solar zenith angle is less than 85°) for turbidity estimation, and GHI is averaged on a basis of

5-minute. The quality control (QC) for meteorological recordings is available in the original dataset, any

data point that does not meet the QC is excluded when calculating the daily average. The QC procedure

for GHI follows the steps detailed in [105], any 1-minute data points that do not pass the QC are discarded

when aggregating the GHI to 5-minute resolution in the round way (i.e., data points from 13:58, 13:59,

14:00, 14:01, 14:02 are aggregated and indexed as 14:00).
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Table 3.2: Summary of the seven SURFRAD stations.

Station Latitude (°) Longitude (°) Altitude (m) Timezone Snow-free period

BON 40.05 -88.37 230 UTC-6 2019-04-01 - 2019-10-31

DRA 36.62 -116.02 1007 UTC-8 2019-01-01 - 2019-12-31

FPK 48.31 -105.10 634 UTC-7 2019-05-03 - 2019-09-30

GWN 34.25 -89.87 98 UTC-6 2019-01-01 - 2019-12-31

PSU 40.72 -77.93 376 UTC-5 2019-04-01 - 2019-10-31

SXF 43.73 -96.62 473 UTC-6 2019-05-01 - 2019-09-30

TBL 40.12 -105.24 1689 UTC-7 2019-05-02 - 2019-09-30

The 5-minute satellite-derived GHI at the SURFRAD stations in the year of 2019, provided by NSRDB [49],

is also used in this chapter for comparison. NRSDB is produced using the PSM and REST2 [33] clear-sky

model (the GHIcs estimation from REST2 is also available in NRSDB), the spatiotemporal resolution is

improved to 5-minute and 2 km.

Without extra algorithm for cloud and snow detection, semi-empirical models (e.g., Heliosat method)

could not account for the significant changes in the ground surface albedo due to the snow cover, which

may introduce large uncertainty and unreliability in deriving surface solar irradiance [55]. Therefore, the

GHI estimation and comparison are performed in the snow-free periods for all the SURFRAD stations. The

information of snow depth is available from the dataset of National Aeronautics and Space Administration

(NASA) National Snow and Ice Data Center (NSIDC) [106, 107]. We use data in full months, however, a

month having only a few days detected with snow cover at the beginning (or ending) is also included after

removing the snow-present days. The detailed information of snow-free periods at all SURFRAD stations

could be found in Table 3.2.

3.2.2 Semi-empirical models

Semi-empirical models are typically developed to exploit data recorded by the visible channel of a geo-

stationary satellite [8], which can be traced from the contribution of Cano et al. [59]. Compared with physical

methods, semi-empirical models use a simplified radiative-transfer approach [8], which are extensively used

in solar resourcing [108, 109, 110] and forecasting [55, 66, 67] applications.

The underlying idea of semi-empirical method is to estimate the global surface solar irradiance from

satellite measurements considering atmospheric and cloud attenuation separately [48]. In the first step the
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clear-sky irradiance is derived for a given location and time via a clear-sky model. In the second step the

cloud attenuation is determined from the visible radiance by introducing CI, which is then correlated to CSI.

Finally, the global surface solar irradiance is calculated from the clear-sky irradiance and CSI [48].

The CI for the SURFRAD stations are calculated following the methods presented in [37]. First, the

pixel value is normalized:

norpix = pix ·AM · soldist (3.1)

where pix is the satellite pixel intensity, AM is the absolute airmass, and soldist [AU] is the Sun-Earth

distance. In the original proposed method in [37], the raw data such as digital number (digital count) is used

as the pixel intensity. In this chapter, we first convert the digital number (scaled integer) to the radiance

via the scale factor and add offset as shown in Table 3.1, and eliminate the negative data points considering

the radiance measured by the ABI sensor should not be negative. Note that this step does not show much

difference with the original method but discarding some data points, as the raw pixels are proportional to

the Earth’s radiance observed by the satellite [37] and the linear transformation does not introduce any

non-linearity.

To account for high airmass effect, the normalized pixels considered for dynamic range maintenance are

subjected to a secondary normalization:

npix = norpix/(2.283h−0.26 · exp(0.004h)) (3.2)

where h [°] is the solar elevation, which is in the range of 1.5° to 65° and the value is set to be 65° when

the solar elevation is greater than 65°. Note that although solar elevations of low and medium airmass are

included, they have different normalization extents, where the high airmass effects could be accounted for.

Then the CI value is determined by:

CI =
npix− low
high− low

(3.3)

where high is equal to the mean of the 10 highest npix values in a month to estimate the upper dynamic

range, while low is calculated as the mean of the second to the fifth lowest values for that time of the

day in a month, the lowest value is excluded due to its variation and the undetected defects in the original

image [58, 108]. Our method for determining the upper and lower bond is different from the methods

presented in [31, 67, 109], the time window is one month to better account for the seasonal variations of

the ground reflectance [48, 111]. Meanwhile, the low is calculated every 5 min for time in the day (when

the solar zenith angle is less than 80°) taking advantage of the improved time resolution of GOES-16. Four

strategies for CI derivation are compared in this chapter, where Table 3.3 details the time window used, the

determinations of upper and lower bounds in each strategy.

48



Table 3.3: Summary of the strategies used to derive CI for GHI estimation.

Strategy Time window* Upper bound Lower bound Reference

1 90 days (moving) mean of 20 highest values mean of 40 lowest values Perez et al. [37]

2 60 days (moving) mean of 20 highest values mean of 40 lowest values Harty et al. [67]

3 30 days (moving) mean of 10 highest values mean of 2nd to 5th lowest values

4 1 month (fixed) mean of 10 highest values mean of 2nd to 5th lowest values

* Time window is used to determine the dynamic range, a moving time window means it moves with the time of

interest, so the upper and lower bound will change. While the monthly fixed time window means it is fixed in the

month of interest, so the upper and lower bounds remain constant in the month.

Table 3.4: Different methods to calculate GHI via CSI, CI and GHIcs. GHIcs is estimated from a selected

clear-sky model.

Method GHI calculation Reference

1
GHI = GHIcs ·CSI

CSI = 0.02+0.98 · (1−CI)
Perez et al. [37]

2
GHI = CSI ·GHIcs · (0.0001 ·CSI+0.9)

CSI = 2.36 ·CI5 −6.3 ·CI4 +6.22 ·CI3 −2.63 ·CI2 −0.58 ·CI+1
Perez et al. [37]

3

GHI = GHIcs ·CSI

CSI = 1.2,CI ≤−0.2;

CSI = 1.0−CI,−0.2 < CI ≤ 0.8;

CSI = 2.0667−3.6667 ·CI+1.6667 ·CI2,0.8 < CI ≤ 1.1;

CSI = 0.05,1.1 < CI.

Hammer et al. [48]

4

GHI = GHIcs ·CSI

CSI = 1.2,CI ≤−0.2;

CSI = 1.0−CI,−0.2 < CI ≤ 0.8;

CSI = 1.1661−1.781 ·CI+0.73 ·CI2,0.8 < CI ≤ 1.05;

CSI = 0.09,1.05 < CI.

Mueller et al. [62]

After the derivation of CI, the next step is the conversion from CI to CSI and then to GHI. Similarly,
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there are also different methods proposed as shown in Table 3.4. In general, CI is first converted to CSI via

an empirical method, GHI is then calculated based on CSI and GHIcs, where GHIcs [W m−2] is the clear-

sky GHI estimated from the chosen clear-sky model. In the development of the CI-to-CSI methods, Perez et

al. [37] compares the old method (Method 1) and newly-developed method (Method 2) using GOES-8 and

GOES-10 satellites, and the involved ground stations are Albany (New York), Burlington (Kansas), Eugene,

Gladstone, and Hermiston (Oregon). Method 3 presented in Hammer et al. [48] and Method 4 proposed in

Mueller et al. [62] are developed using Meteosat series of satellites and ground stations in Europe. Therefore,

the use of SURFRAD stations in the comparison of the CI-to-CSI methods is acceptable since they are not

involved in the methods development.

Table 3.5: Input parameters for the used clear-sky models. The variables are the solar constant I0 [W m−2],

solar zenith angle θ [◦], altitude h [m], Linke turbidity TL, surface albedo ρg, local pressure Pa [mb], ambient

temperature Ta [K], AOD at 550 nm τ550, Ångström exponent α , total ozone amount uO3 [atm-cm], total

precipitable water vapor uH2O [cm], total nitrogen dioxide amount uNO2 [atm-cm], relative humidity φ [%],

wind speed V [m s−1].

Clear-sky model Input parameters Data source Reference

Ineichen-Perez I0, θ , h, TL SoDa database [40] Ineichen and Perez [37]

McClear I0, θ , h, ρg, Pa, Ta, τ550, α ,uO3 , uH2O CAMS [44] Lefèvre et al. [32]

REST2 I0, θ , ρg, Pa, τ550, α , uO3 , uNO2 , uH2O NSRDB [49] Gueymard [33]

Ineichen-Perez TL* I0, θ , h, Pa, Ta, φ , V Local measurements Chen and Li [103]

* Ineichen-Perez TL model is also based on TL. Instead of using the SoDa database, the TL is estimated from local

meteorological measurements (Pa, Ta, φ , V ) [103].

In this chapter, we apply and compare four clear sky models, namely, the Ineichen-Perez model [37]

documented in PVLIB [39] using default turbidity interpolated from SoDa monthly climatology mean

database [40], the McClear model [32], the REST2 model [33], and the Ineichen-Perez model using tur-

bidity estimated from the local meteorological measurements [103] (hereafter referred as Ineichen-Perez

TL model). Table 3.5 summarizes the input parameters for the aforementioned clear-sky models. The

detailed method of estimating the turbidity is introduced in the following subsection. McClear model and

REST2 model are physical models, which might be generally superior to those models taking reduced forms

or using approximations [36]. However, the physical models are of much more complexity due to their pre-

vailing atmospheric conditions on the attenuation constituents and the application of RTMs. For instance,

the REST2 model has repeatedly been validated as one of the models with high-perfromance [36], but it
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requires at least nine input parameters, and some of them such as aerosol optical depth (AOD) at 550 nm,

amount of ozone, and precipitable water are difficult to obtain [36, 54]. The clear-sky irradiance of REST2

used in this chapter is from the database of NSRDB. The McClear is also a fully physical model requiring

input parameters regarding the optical property of the atmosphere, e.g., the amount of ozone, precipitable

water, and AOD at 550 nm [32]. McClear applies a lookup table to speed up the calculation of RTMs, and

the clear-sky irradiance is available from the Copernicus Atmosphere Monitoring Service (CAMS) [44].

The time resolution is from 1 minute to 1 month in the time range of 2004-01-01 up to two days ago.

3.2.3 Turbidity estimation

The original method of estimating turbidity via local meteorological measurements is presented in [103].

Although the original model is trained based on the data samples focused on clear-sky days, the results show

that the method can also be applied to estimate the turbidity in partially clear days. In this chapter, the data

samples from partially clear days are also included in the model training following the same methodology

described in [103]. The data used in turbidity estimation for SURFRAD stations are in the year range

of 2010 to 2018. The clear-sky instants are detected by the Bright-Sun method described in [112], and

the solar zenith angle is set to be less than 85° as the turbidity exhibits high variations during sunrise and

sunset [103]. To better represent the GHIcs-derived turbidity on a daily basis, only a day with more than

one third clear-sky instants detected of the daytime are included (e.g., if the daytime of a day is 8 hours,

only when the detected clear-sky instants are more than 2.4 hours, the day will be included in the dataset).

It is also necessary to mention that the turbidity typically varies between 1 and 10 [35], so any derived

turbidity with the value less than 1 (or extremely high) should be excluded. The turbidity estimation model

for each station is trained and validated separately. However, it is possible to build a more universal model

by involving more locations using the same methodology. The estimated turbidity is then used as the input

to calculate the GHIcs using PVLIB.

Since semi-empirical model (e.g., Heliosat-2 method) can be adapted to geostationary satellite in the

visible band (0.4 - 1.1 µm) [113], the GOES-16 blue band (visible, 0.47 µm), red band (visible, 0.64

µm), and veggie band (near-infrared, 0.87 µm) are applied and compared for 5-minute GHI estimation

in this chapter. Apart from different strategies described in Table 3.3 for determining CI, there are also

different methods proposed to calculate the GHI (see Table 3.4). The detailed comparisons of the reported

strategies, the proposed methods, as well as the applied clear-sky models for GHI estimation are presented

in the following section. The performance evaluation metrics are RMSE, mean bias error (MBE), and their

normalized counterparts nRMSE and nMBE defined by the following equations:
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RMSE =

√
1
N ∑(ei −oi)2 (3.4)

nRMSE =

√
1
N ∑(ei −oi)2

1
N ∑oi

(3.5)

MBE =
1
N ∑(ei −oi) (3.6)

nMBE =
∑(ei −oi)

∑oi
(3.7)

where ei and oi are the pair of GHI estimation and ground observation, N is the total number of compared

data points.

3.3 Results and discussion

Despite difficulties associated in acquiring the input parameters, the REST2 model has been proved

as the one of the best clear-sky models for estimating clear-sky irradiance [34]. Given that the clear-sky

irradiance of REST2 is available in the dataset of NSRDB and the fact that a better clear-sky model (i.e.,

McClear) can lead to better GHI estimation results [56], we use the REST2 GHIcs in the comparison of the

GHI estimation performance based on different ABI bands, empirical regressions between CSI and CI, and

methods to determine the CI. The information of used ABI bands is presented in Table 3.1, Table 3.3 details

the strategies used for deriving CI, and the methods for GHI calculation via GHIcs, CSI, and CI are listed

in Table 3.4. The comparison of different clear-sky models used in GHI estimation with semi-empirical

method is then based on the combined approach (i.e., the ABI band, CI derivation, and GHI calculation) that

is likely to obtain superior GHI estimation results.

3.3.1 Comparison of ABI bands and derivation methods for CI and CSI

Since the GOES-16 ABI bands have different spatial resolution, Band 2 (red) is re-scaled to the same

resolution as Band 1 and Band 3. The comparison of upper and lower bounds determination based on

different ABI bands and strategies at DRA is presented in Fig. 3.2. The upper bound from Band 1 has higher

values than Bands 2 and 3, while Band 3 results in relatively lower upper bounds no matter what strategy

is applied. Similarly, lower bound based on Band 1 turns to be higher, followed by Band 2 and Band 3 has

the comparatively lower value. Unlike upper bounds that do not show many fluctuations, lower bounds have

relatively larger variations. Compared with Strategies 1 and 2, Strategies 3 and 4 generally leads to larger

upper bound and smaller lower bound. The reason could be the shorter periods and less points used for
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determining upper and lower bounds as shown in Table 3.3. This also results in wider dynamic ranges, i.e.,

the differences between upper and lower bounds, which exhibit similar trends with the upper bound, Band

1 leads to higher value than Bands 2 and 3, while Band 3 has the lowest value.
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Figure 3.2: Comparison of the upper bound and lower bound determination using different ABI bands (see

Table 3.1) and strategies at DRA (2019-01-01 to 2019-05-31). S1-S4 are the symbols of strategies presented

in Table 3.3. The differences between upper and lower bounds are also included for comparison. The lines

in the box plots are the median values.

Upper and lower bounds are used to determine CI, CSI is then calculated from CI using empirical

regressions (see Table 3.4). Fig. 3.3 shows the comparison of CSI calculations from different bands, CI

derivation strategies, and CI-to-CSI methods, where the CSI reference is the ratio between GHI measurement

and GHIcs from REST2 clear-sky model. Generally, the CSI derived from Band 1 has smaller divergences
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in terms of nRMSE and nMBE with the referenced CSI compared with the other two bands, while Band 3

shows relatively larger differences no matter what CI derivation strategy and CI-to-CSI method are applied.

Among the used CI derivation strategies, they have comparable results in terms of nRMSE, while Strategies

3 and 4 produce lower biases compared with Strategies 1 and 2. Similarly, there is no huge difference when

comparing the CI-to-CSI methods regarding nRMSE. However, Methods 3 and 4 are more likely to yield

lower nMBE values. It is worthwhile to mention that the combination of Band 1, Strategy 4, and Method 3

(or Method 4) outperforms other combinations with comparatively smaller nRMSE and nMBE.
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Figure 3.3: The nRMSE and nMBE of the CSI reference and estimation based on different bands, dynamic

range and CI derivation, and empirical regressions between CSI and CI at DRA (2019-01-01 to 2019-05-

31). The reference CSI is determined using GHI measurements and REST2 clear-sky model. S1-S4 are

the symbols of strategies presented in Table 3.3, and M1-M4 represent the empirical methods described in

Table 3.4.

A detailed comparison of different bands and methods used to estimate GHI is illustrated in Fig. 3.4.

Using Method 2 generally yields GHI estimation with larger nRMSE and nMBE values, while the rest of

the three methods have comparable GHI estimation results with similar nRMSE. Method 1 leads to slightly

higher nMBE values than Methods 3 and 4. When it comes to the dynamic range and CI determination,

all the strategies generate GHI estimation with nRMSE greater than 20% no matter which method is used,

while Strategies 1 and 2 have slightly lager values. Moreover, Strategies 1 and 2 show comparatively larger
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discrepancies in nMBE than Strategies 3 and 4, while Strategy 4 produces the lowest nMBE. There is no

significant difference (i.e., nRMSE and nMBE) in Methods 3 and 4 to calculate GHI via the relationship

between CSI and CI regardless of which strategy is applied to derive the dynamic range and CI. The combi-

nation of Strategy 4 and Method 3 (or Method 4) is likely to generate GHI estimations with lower nRMSE

and nMBE. Strategies 1 and 2 are proposed for GHI estimation at a rough time resolution (e.g., hourly),

which might be inappropriate when the time resolution is much improved to 5-minute. Therefore, the sub-

sequent results and discussion are based on the combination of Strategy 4 and Method 3 in 5-minute GHI

estimation.
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Figure 3.4: The nRMSE and nMBE between the GHI measurements and estimations based on different

bands, dynamic range and CI derivation, and empirical regressions between GHI and CI using REST2 clear-

sky model at DRA (2019-01-01 to 2019-05-31). S1-S4 are the symbols of strategies presented in Table 3.3,

and M1-M4 represent the empirical methods described in Table 3.4.

It is shown in Fig. 3.4 that Band 1 generally produces lower nRMSE and nMBE values than Bands

2 and 3 no matter which combination of method and strategy is applied in estimating GHI. The possible

explanation could be that Band 1 results in higher upper and lower bounds as well as wider dynamic ranges

(see Fig. 3.2), which are less sensitive to the uncertainties in sensor’s measurements when determining the

dynamic range for CI derivation. Therefore, the estimated CSI from Band 1 show comparatively lower

discrepancies than Bands 2 and 3 (see Fig. 3.3) and thus better GHI estimations. To further evaluate the
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performance of GHI estimation using different ABI bands, it is necessary to ensure that the used methods,

data points, and time periods are the same. Therefore, the REST2 clear-sky model, Strategy 4, and Method 3

are set as the preconditions for comparing the ABI bands used in semi-empirical model for GHI estimation.

Table 3.6: Summary of the ABI band performance in 5-minute GHI estimation using RSET2 clear-sky

model, Strategy 4, and Method 3 at DRA (2019-01-01 to 2019-05-31). The GHI estimation from NSRDB

is also included as reference.

Band RMSE [W m−2] nRMSE [%] MBE [W m−2] nMBE [%]

1 109.37 21.47 7.18 1.41

2 117.73 23.11 15.21 2.99

3 124.05 24.35 22.75 4.46

NSRDB 110.79 21.74 -13.44 -2.64

Table 3.6 details the performance of different ABI bands used for GHI estimation. Band 1 generates

the lowest divergence with a nRMSE of 21.47% and a nMBE of 1.41%, while Band 3 produces the largest

nRMSE of 24.35% and nMBE of 4.46%. The reflective spectral radiance measured by the ABI sensor

used in GHI estimation with semi-empirical models leads to decreased performance when using bands with

larger wavelength. It is worthwhile to mention that the GHI estimates based on Band 1 using semi-empirical

model have slightly lower errors of nRMSE and nMBE than the results from NSRDB, which means the

semi-empirical model may produce comparable results with physical models but with less complexity.

3.3.2 Comparison of clear-sky models for GHI estimation

Based on the results from the previous subsections, a better GHI estimation is achieved using the mea-

surements of ABI Band 1, the Strategy 4 for dynamic range and CI determination, and the Method 3 for

CI to GHI conversion. At this stage, the prerequisites for evaluating the performance of different clear-sky

models in GHI estimation using semi-empirical model have been settled. The following sections present

the comparisons between different clear-sky models applied in semi-empirical method under different sky

conditions. We use two types of methods for classifying sky conditions here: one is based on days, in which

the days are classified as cloudy, partially cloudy, and clear days [114]; The other one is based on periods,

where the instants are grouped as cloudy and clear periods [80]. In specific, clear and cloudy instants are

detected using the Bright-Sun method with ground irradiance measurements [112] and then clustered as

clear/cloudy/partially cloudy days and clear/cloudy periods.
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3.3.2.1 Comparison under cloudy, partially cloudy and clear days

The overall performance of GHI estimation using semi-empirical method with different clear-sky models

is shown in Table 3.7. There is no significant discrepancy between clear-sky models in GHI estimation under

conditions of all-sky, cloudy, and partially cloudy. REST2 is likely to generate slightly lower nRMSE in all-

sky and partially cloudy conditions, while Ineichen-Perez yields the lowest nRMSE when only cloudy days

are considered. Compared with the physical model based GHI estimation results in NSRDB, using semi-

empirical model produces GHI estimates with similar or slightly larger nRMSE no matter which clear-sky

model is applied. However, there are comparatively larger biases (i.e., nMBE) in semi-empirical methods

under most conditions.

Table 3.7: The overall nRMSE [%] and nMBE [%] between GHI estimations and measurements at seven

SURFRAD stations using semi-empirical method with different clear-sky models under four evaluation

cases (all-sky, cloudy days, partially cloudy days, and clear days). The GHI estimation from NSRDB is also

included for comparison.

All-sky1 Cloudy days2 Partially
cloudy days3

Clear days4

nRMSE nMBE nRMSE nMBE nRMSE nMBE nRMSE nMBE

Ineichen-Perez 25.43 2.03 37.60 9.20 19.54 -1.61 5.77 -4.62

McClear 25.38 5.42 38.03 11.87 19.23 1.94 2.55 0.62

REST2 25.19 4.87 37.68 11.32 19.13 1.45 2.53 -0.15

Ineichen-Perez TL 25.53 5.22 38.36 12.80 19.24 1.23 2.53 -1.11

NSRDB 25.25 -0.45 38.37 -1.50 18.75 0.23 2.37 0.45

1 ‘All-sky’ means the whole time period with cloudy, partially cloudy and clear days.
2 ‘Cloudy days’ means the days without clear-sky periods or the detected clear-sky instants are less

than one third of the daytime.
3 ‘Partially cloudy days’ includes the days with cloudless periods (more than one third of the daytime).
4 ‘Clear days’ only involves the cloudless days.

Semi-empirical methods are more possibly to have overestimated results, especially in the cloudy days.

Although Ineichen-Perez produces the lowest nMBE in all-sky and cloudy conditions, it does not mean

Ineichen-Perez provides better clear-sky irradiance estimations. The low overall bias of Ineichen-Perez in

GHI estimations is a compromise of the overestimation in semi-empirical methods and the underestimation

57



in Ineichen-Perez’s clear-sky irradiance, since the Ineichen-Perez based GHI estimations in partially cloudy

and clear-sky days show negative biases of -1.61% and -4.62%, respectively.
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Figure 3.5: The nRMSE and nMBE between the measured and estimated GHI for four clear-sky models

in semi-empirical method, seven SURFRAD stations, and four evaluated conditions (all-sky, cloudy days,

partially cloudy days, and clear days). GHI estimation from NSRDB is also included for comparison.

Fig. 3.5 presents the detailed comparison of different clear-sky models for GHI estimation using semi-

empirical method at seven SURFRAD stations under four sky conditions. The GHI estimations based on

four clear-sky models have comparable results in terms of nRMSE under all-sky, cloudy and partially cloudy

conditions, while Ineichen-Perez tends to generate larger nRMSE values in clear-sky days. Compared with

the physical model based GHI estimation results in NSRDB, using semi-empirical model produces GHI

estimates with similar or slightly lower nRMSE at most SURFRAD stations except TBL, where the occur-

rence of cloudy days is comparatively higher. For each individual station, the GHI estimation under cloudy

days is most likely associated with the largest uncertainties of nRMSE and nMBE. The lower biases of

Ineichen-Perez based GHI estimations under all-sky and cloudy conditions are shown in some of the sta-

tions (i.e., BON, GWN, PSU, and SXF), whose biases are apparently higher in partially cloudy and clear

conditions compared with other clear-sky models, proving the overestimation in semi-empirical methods

and the underestimation in Ineichen-Perez’s clear-sky irradiance.

The primary uncertainty for GHI estimation is caused by the clouds for both physical and semi-empirical
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methods. The nRMSE of GHI estimates in cloudy days are in the range of 37.60%-38.37%, which is

approximate two times of the nRMSE in partially cloudy days (18.75%-19.54%). The nRMSE in clear-sky

days are around 2.50% besides Ineichen-Perez, which has a larger value of 5.77%. Since clouds are the

primary factor affecting the solar irradiance reaching the ground level, it is necessary to improve the method

to account the irradiance attenuation caused by clouds for both physical and semi-empirical models. That

said, the future research on satellite-based solar resourcing could be the improvements of satellite-derived

cloud properties (for physical model) and cloud attenuation determinations (for semi-empirical model).

3.3.2.2 Comparison under cloudy and clear periods

To further evaluate the performance of GHI estimation using semi-empirical model under different

conditions, the sky is divided into cloudy and clear based on periods. The overall comparison at seven

SURFRAD stations is shown in Table 3.8. Similarly, the GHI estimation in cloudy periods is associated

with larger uncertainties (e.g., nRMSE), and semi-empirical model is likely to yield higher bias than the

physical model. In cloudless periods, all the clear-sky models except Ineichen-Perez produce comparable

results with NSRDB. When using GHIcs directly as the GHI estimates, Ineichen-Perez generates the largest

errors, and Ineichen-Perez TL yields better results than other three clear-sky models.

Table 3.8: The overall nRMSE [%] and nMBE [%] between GHI estimations and measurements at seven

SURFRAD stations using semi-empirical method with different clear-sky models under three evaluation

cases (all-sky, cloudy periods, and clear periods). The GHI estimation from NSRDB is also included.

All-sky1 Cloudy periods2 Clear periods3 GHIcs4

nRMSE nMBE nRMSE nMBE nRMSE nMBE nRMSE nMBE

Ineichen-Perez 25.43 2.03 31.23 5.03 5.37 -3.93 4.86 -3.29

McClear 25.38 5.42 31.36 8.87 2.98 0.56 2.54 1.22

REST2 25.19 4.87 31.12 8.23 2.91 -0.07 2.43 0.52

Ineichen-Perez TL 25.53 5.22 31.54 9.20 2.81 -0.86 2.16 -0.20

NSRDB 25.25 -0.45 31.21 -1.01 2.43 0.52 - -

1 ‘All-sky’ means the whole time period with cloudy and clear instants.
2 ‘Cloudy periods’ contains the periods are detected as cloudy.
3 ‘Clear periods’ includes all the detected cloudless periods.
4 ‘GHIcs’ is to use GHIcs directly as GHI estimation in clear periods.
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The detailed comparison of GHI estimation under cloudy and clear instants for all the SURFRAD sta-

tions is presented in Fig. 3.6. Semi-empirical model tends to overestimate GHI with comparatively larger

positive biases in cloudy periods, and the highest bias can be about 15% at TBL. In the application of semi-

empirical method, Ineichen-Perez generally produces lower bias than the other three clear-sky models under

cloudy conditions. However, in cloudless periods, Ineichen-Perez is likely to produce GHI estimation with

larger discrepancies. The possible explanation for this is the same as the phenomenon that Ineichen-Perez

produces GHI estimation with lower biases in all-sky and cloudy days as discussed in the Section 3.3.2.1.
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Figure 3.6: The nRMSE and nMBE between the GHI measurements and estimates using semi-empirical

method for four clear-sky models, seven SURFRAD stations, and three evaluation conditions (all-sky,

cloudy periods, and clear periods).

3.3.2.3 Comparison between physical and semi-empirical methods for GHI estimation

In physical model for GHI estimation, the GHIcs is directly used as the GHI estimate when the sky

is free from cloud. Where the accuracy of used clear-sky model is crucial for the overall GHI estimation

performance. Generally, physical GHI estimation methods apply physical clear-sky model, for instance,

REST2 in NSRDB, McClear in Heliosat-4. It might be of interest to compare the performance of GHI

estimation using semi-empirical and physical models under clear-sky conditions. As shown in Table 3.8, it
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is more likely to generate GHI results with relatively lower nRMSE values using GHIcs as GHI estimates

(nRMSE ranges from 2.16% to 4.86% ) than CI based method (nRMSE varies from 2.81%-5.37%). The

situation of nMBE differs, McClear and REST2 produce larger biases, while Ineichen-Perez and Ineichen-

Perez TL yield slightly lower nMBE values. It is worthwhile to mention that Ineichen-Perez TL has the

lowest nRMSE and nMBE, which means Ineichen-Perez TL has the potential to improve GHI estimation in

physical models.
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Figure 3.7: The nRMSE and nMBE between the GHI measurements and estimates in clear periods for

four clear-sky models, and seven SURFRAD stations. ‘ALL’ means all the seven stations are included.

‘Estimated GHI’ means the GHI estimates of semi-empirical model. ‘Clear-sky GHI’ means the GHIcs

directly calculated from clear-sky models.

The detailed comparison of GHI estimates using semi-empirical model and GHIcs for SURFRAD sta-

tions is presented in Fig. 3.7. Generally, both estimated and GHIcs of Ineichen-Perez show larger nRMSE

and nMBE at most of the stations except FPK. Better clear-sky models, such as McClear and REST2, are

likely to produce better GHI estimations with relatively lower nRMSE and nMBE in cloudless periods using

both semi-empirical and physical models. Ineichen-Perez tends to yield negative biases in GHI estimations

or using GHIcs directly due to its underestimation of clear-sky irradiance. Ineichen-Perez TL produces

comparable results with McClear and REST2 in terms of nRMSE, while the biases tend to be smaller. For

McClear, REST2, and Ineichen-Perez TL, using the semi-empirical model is probably to generate GHI esti-

mation with larger nRMSE and nMBE compared with the direct GHI estimates from GHIcs. Which means
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another challenge of semi-empirical method is how to improve the CI and CSI derivation considering the

variations in clear-sky irradiance caused by the dynamics of aerosol and water vapor in the atmosphere.

All the applied clear-sky models yield comparable overall results of GHI estimations (see Table 3.7 and

Table 3.8) using semi-empirical method, REST2 has the lowest nRMSE of 25.19% while Ineichen-Perez

TL has the highest nRMSE of 25.53%. Ineichen-Perez performs better than other clear-sky models in terms

of nRMSE and nMBE under cloudy conditions, while Ineichen-Perez TL produces the largest nRMSE and

nMBE. Although Ineichen-Perez has the lowest biases in GHI estimation under all-sky and cloudy condi-

tions, it does not mean that Ineichen-Perez provides better clear-sky irradiance, as there is a compromise of

the overestimation of GHI using semi-empirical model and the underestimation of Ineichen-Perez’s GHIcs.

Ineichen-Perez tends to generate negative biases in clear conditions, with the largest nMBE of -4.62% in

clear-sky days and -3.93% in cloudless periods. When comparing the two physical clear-sky models of

McClear and REST2 in the application of semi-empirical method, REST2 outperforms McClear in all the

sky conditions with slightly lower nRMSE and nMBE. Compared with Ineichen-Perez, Ineichen-Perez TL

has lower values of nRMSE and nMBE in partially cloudy days and clear conditions. The GHI estimation

in each individual station (see Fig. 3.5 and Fig. 3.6) exhibits similar results as the overall picture but with

some site-specific divergences. It is important to note that Ineichen-Perez TL generally performs better than

other clear-sky models when using GHIcs as the GHI estimations in clear periods with comparatively lower

nRMSE and nMBE.

3.4 Conclusions

In this chapter, different strategies for dynamic range and CI determination, methods to calculate GHI

via GHIcs, CSI and CI are compared in 5-minute averaged GHI estimation using semi-empirical model

and GOES-16 images. Then, a comparison of three different ABI bands (i.e., blue, red, veggie) in GHI

estimation is performed. Finally, the performance of four clear-sky models in GHI estimation using the

same semi-empirical method is evaluated under different sky conditions. The key findings are:

• More accurate 5-minute averaged GHI estimates are achieved using a fixed time window (i.e., Strat-

egy 4), Method 3 (or Method 4) of GHI conversion from CI and CSI, and Band 1 for solar resourcing

applications (e.g., GHI assessment). A fixed time window is easy to implement without much com-

puting resource, but it is not suitable for operational applications, such as solar forecasting, where a

moving time window is required.
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• There is no significant difference in GHI estimation using different clear-sky models, the semi-

empirical model yields comparable results compared with the NRSDB, but with comparatively larger

biases. Semi-empirical model tends to overestimate the GHI in cloudy conditions, the uncertainties in

cloudy periods are noticeably higher than cloud free conditions. Therefore, it is crucial to determine

the irradiance attenuation caused by clouds for both physical and semi-empirical models.

• In the application of semi-empirical method, Ineichen-Perez has lower biases under all-sky and cloudy

conditions, this does not mean Ineichen-Perez provides better clear-sky irradiance due to the compro-

mise of overestimation in semi-empirical model and Ineichen-Perez’s underestimation of clear-sky

irradiance. REST2 generally outperforms McClear under all sky conditions.

• Ineichen-Perez TL, as a modified model based on estimated turbidity, provides GHI estimation us-

ing semi-empirical method with slightly larger values of nRMSE and nMBE in all-sky and cloudy

conditions. The performance of Ineichen-Perez TL under partially cloudy day and clear periods is

comparable with McClear and REST2, and comparatively better than Ineichen-Perez. When using

clear-sky irradiance as the direct estimation of GHI, Ineichen-Perez TL has a better performance.

• A better clear-sky model (e.g., REST2 versus McClear) can generally lead to better GHI estimation

using semi-empirical method. Considering the difficulties associated in obtaining the atmospheric

inputs of REST2, and the limited divergences in GHI estimation between these two clear-sky models,

McClear is more appropriate due to its global availability. Ineichen-Perez TL provides better clear-

sky irradiance for clear-sky conditions, therefore has the potential for the improvements in physical

models where clear-sky irradiance is directly used as GHI estimation.
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Chapter 4

A transferable turbidity estimation method

for estimating clear-sky solar irradiance

4.1 Introduction

Clear-sky models, which estimate ground-level solar irradiance under clear-sky (cloudless) conditions,

are an important part in solar resourcing and forecasting applications to support solar energy projects [8,

36, 49, 55]. In solar resourcing, the ground solar irradiance, e.g., global horizontal irradiance (GHI), can be

retrieved from satellite images using either physical or semi-empirical satellite methods based on a clear-sky

model [8]. The retrieved solar irradiance data can help with the project feasibility study and optimal system

design when there is no on-site ground irradiance measurement available [8, 12, 47]; Moreover, clear-sky

models are also essential in solar forecasting to reduce the negative impact on the system operation caused

by the intermittency and variability [8, 14, 36]. The solar forecasts usually rely on the clear-sky index (CSI),

which has different definitions depending on the forecasting method. CSI is the ratio of measured GHI and

clear-sky GHI (GHIcs) in a time series forecasting [36]. Meanwhile, CSI can also be calculated from the

cloud index (CI) based on the satellite images [8, 55], which is particularly applied for locations without

sufficient solar irradiance data.

In physical-based solar resourcing methods, radiative transfer simulation is applied through through var-

ious layers in the atmosphere taking the advantage of modern satellite remote sensing technologies [49, 50].

Where the physical clear-sky models, e.g., McClear [32] and REST2 [33], are used to quantify the surface so-

lar irradiance when the sky is free from clouds. The essential inputs such as aerosol properties, atmospheric

profiles, and surface albedo can be obtained from a number of reanalysis products including the Modern-

64



Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), Moderate Resolution

Imaging Spectroradiometer (MODIS), and Copernicus Atmosphere Monitoring Service (CAMS) reanaly-

sis [49, 50]. As a major modulator attenuating the solar irradiance in the atmosphere, the cloud properties

can be derived from the geostationary satellites, for example, Geostationary Operational Environmental

Satellite (GOES) and Meteosat Second Generation (MSG) satellites. Although physical methods gener-

ally have better performance as they technically require more detailed atmospheric inputs [8], the inputs

acquisition and model implementation are typically associated with difficulties and uncertainties [36, 54].

In semi-empirical satellite methods for solar resourcing, a clear-sky model is used to determine the clear-

sky irradiance, i.e., GHIcs, which accounts for the irradiance attenuation of aerosol, water vapor content,

and other gaseous atmospheric constituents [8]. While the effect of clouds relies on the CI and CSI derived

from a set of satellite images within a period [37, 58]. Semi-empirical satellite methods are much easier

and faster to apply, and the combination with a physical clear-sky model can improve the performance [56].

In Chapter 3, we compared four clear-sky models, namely, REST2, McClear, Ineichen-Perez [31], and

Ineichen-Perez TL in GHI estimation using optimized semi-empirical satellite method and GOES-16 im-

agery. The results show the performance of semi-empirical satellite method is comparable with the physical

method, i.e., National Solar Radiation Database (NSRDB) [49]. The Ineichen-Perez TL even produces

better GHIcs estimations than McClear and REST2, therefore, has potential in supporting solar resourcing

applications. The Ineichen-Perez TL model is based on the Ineichen-Perez model using Linke turbidity (TL)

estimated from common local meteorological measurements [103].

When it comes to solar forecasting, the clear-sky model is suggested to deseasonalize the variations of

solar irradiance using CSI in the development of solar forecasting models [21]. Generally, local sensing is

particularly suitable for intra-hour forecasting with adequate on-site instrument [10, 79]; Numeric Weather

Prediction (NWP) performs better in day-ahead forecasting, but the computation is demanding and the

initial boundary conditions may inherit biases [8]; Satellite-based method is popular for intra-day forecasting

where the satellite images are used to identify and forecast the cloud distribution [8, 21]. Yang [36] discussed

the choice of clear-sky models in time series solar forecasting, it is reported that a better clear-sky model

does not yield better forecasts and McClear model is recommended due to its global availability. However,

in practical forecasting applications, the clear-sky irradiance of McClear model is not readily available

as an online service that can only be downloaded since 2004-01-01 up to two days ago [44]. Moreover,

the required atmospheric inputs of physical clear-sky models (e.g., REST2 and McClear) are difficult to

obtain [36, 54], their forecasts are therefore associated with more difficulties. In the development of solar

forecasting models, the clear-sky irradiance of the applied clear-sky model (e.g., REST2 or McClear) is
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assumed to be available, which may not be known as a priori for real-time applications.

The Ineichen-Perez model in PVLIB [39] based on TL from SoDa database [40] is extensively applied

in solar forecasting due to its simplicity in implementation [36]. Recently, a new TL estimation method is

proposed to improve the accuracy of TL estimation using meteorological measurements [103]. The improved

TL estimation is then used as the input of the Ineichen-Perez model with noticeable accuracy improvement

in estimating clear-sky irradiance. Considering that the forecasts of meteorological information such as

temperature and humidity are far more accurate than solar irradiance forecasts [21], the Ineichen-Perez

TL model based on TL estimated via meteorological information has broad potential in supporting solar

forecasting applications.

Despite the potentials of the aforementioned TL estimation method, it has one limitation that on-site

solar irradiance data is required for model development. However, solar irradiance measurements might not

be always available due to technical and financial constraints [12, 115]. To further expand the applicability

of the TL estimation method, in this work, we herein propose a transferable TL estimation model based on

the methodology presented in [103]. Instead of using local solar irradiance measurements for model devel-

opment, we first train the model involving the locations with sufficient data, and then apply the developed

model at the location of interest for TL estimation and then clear-sky irradiance estimation. The main mete-

orological inputs are ambient temperature, relative humidity, wind speed, and atmospheric pressure, which

are available at most of the weather stations or can be easily obtained using low-cost instrumentation. The

major contributions of this chapter are summarized as follows:

• Develops a transferable TL estimation method using common meteorological measurements.

• Compares and evaluates the performance of the transferable TL estimation method with SoDa inter-

polated (the default TL used in PVLIB) and locally estimated TL.

• Further compares the performance of GHIcs estimation with high-performance physical models in-

cluding McClear and REST2.

• Evaluates the performance of the transferable TL estimation model for solar forecasting applications

by comparing with physical models.

The remainder of this chapter is structured as follows: Section 4.2 describes the used data, the TL estima-

tion method, and details of clear-sky models. The performance of the TL estimation method, and clear-sky

models for GHI estimation and discussion are presented in Section 4.3. Finally, the key findings of this

chapter and recommendations are summarized in Section 4.4.
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4.2 Data and methods

This section describes the used data and the transferred TL estimation method. As shown in Fig. 4.1,

we first develop the TL estimation model involving stations with sufficient solar irradiance data, and then

apply the trained model at locations of interest where solar irradiance measurement is not available. The

meteorological inputs are ambient temperature, relative humidity, wind speed, and atmospheric pressure,

which are easy to obtain and available at most of the weather stations. There are mainly four steps involved

in the TL estimation, namely, clear-sky detection, TL derivation, model development, and model transfer for

TL and clear-sky irradiance estimations. The details of the used method for each step are presented in the

following subsections.

Data: GHI, DHI,

Zen, LST

Clear-sky 

detection

Turbidity

derivation

Model

development

Meteorological

measurements

Model

transfer

New input

data

Turbidity

estimation

Clear-sky

irradiance

① ②

③

④

① Bright-sun clear-sky detection

② Inversed PVLIB 

③Machine learning

④ PVLIB

Figure 4.1: The flowchart of transferred TL estimation model using machine learning and meteorological

measurements.

4.2.1 Data

The data used in this chapter is from the Surface Radiation Budget Network (SURFRAD) stations [29],

namely, Bondville (BON), Desert Rock (DRA), Fort Peck (FPK), Goodwin Creek (GWN), Pennsylvania

State University (PSU), Sioux Falls (SXF), and Table Mountain (TBL). The detailed information of the

SURFRAD stations is presented in Fig. 4.2. Data including GHI, diffuse horizontal irradiance (DHI), solar

zenith angle, and meteorological measurements over 2010-2020 of all the stations are downloaded and

quality controlled. The used meteorological data includes ambient temperature, relative humidity, wind

speed, and atmospheric pressure. All the aforementioned measurements are in the time resolution of 1

minute and indexed using coordinated universal time (UTC). Note that the GHI and other data at solar

zenith angles over 85◦ are removed, since the GHI value is very low, and the derived TL is unrealistic due to

the high airmass effect [103].
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Figure 4.2: Summary of the seven SURFRAD stations. The information in the brackets is (altitude [m], time

difference from UTC [hours], climate classifications), where Köppen climate classifications are: Bsk (arid,

steppe, cold), Bwk (arid, desert, cold), Cfa (temperate, without dry season, hot summer), Dfa (continental,

without dry season, hot summer), Dfb (continental, without dry season, warm summer).

4.2.2 Clear-sky models

The clear-sky models used for comparison in this chapter are REST2 [33], McClear [32], Ineichen-

Perez [31] model using default TL (available in PVLIB [39]). The physical REST2 model has repeatedly

been verified as one of the high-performance models [34, 105], and many of the required input parameters,

such as aerosol optical depth (AOD) at 550 nm, amount of ozone, and precipitable water need to be locally

measured or remotely sensed [33, 36]. The clear-sky irradiance of REST2 used in this chapter is from

the NSRDB [49] with a time resolution of 5-minute. The McClear is also a fully physical model requiring

atmospheric inputs including AOD at 550 nm, ozone amount, water vapor content, and the aerosol type [32].

McClear applies a lookup table to speed up the RTMs calculations, and the clear-sky irradiance of McClear

is available from CAMS [44], with the best time resolution of 1-minute up to two days ago since 2004-01-

01. PVLIB [39] estimates clear-sky irradiance based on the interpolated TL coefficient of SoDa monthly

means, and the time resolution used in this chapter is 1-minute.

4.2.3 Clear-sky detection and turbidity derivation

The clear-sky instants for all the SURFRAD stations are detected by the Bright-Sun clear-sky detection

algorithm [112], which is a globally applicable and freely available clear-sky detection model. The inputs

of Bright-Sun model are GHI [W m−2], GHIcs [W m−2], DHI [W m−2], clear-sky DHI (DHIcs) [W m−2],
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solar zenith angle [◦], horizontal projection of extraterrestrial irradiance [W m−2], and local standard time

(LST). Where GHI, DHI, and solar zenith angle are already available, LST is calculated based on UTC and

the timezones detailed in Fig. 4.2. GHIcs, DHIcs, and extraterrestrial irradiance are derived using PVLIB,

horizontal projection of extraterrestrial irradiance is then calculated referring the solar zenith angle. The

Bright-Sun model consists of three steps, namely, clear-sky irradiance optimization, tri-component analysis

of GHI, DHI, and direct normal irradiance (DNI), and duration filter [112]. The optimization of clear-

sky irradiance is to remove the excessive dependence on clear-sky models, the tri-component analysis is to

identify the ’clear’ periods of all the irradiance components (i.e., GHI, DNI, DHI), and the duration filter is to

further improve the accuracy of clear-sky detection by removing the cloud ramp events. More details could

be reached in [112]. After detecting the clear-sky instants, the ground truth TL is derived based on measured

GHIcs using inversed Ineichen-Perez model [31] and PVLIB [39] (see the adopted equations from [103] in

the Appendix).

4.2.4 Turbidity estimation model development

In our previous work [103], the results show that the TL estimation model developed on a daily ba-

sis yields comparable GHIcs estimations with the models developed on the time basis of hourly and 5-

minute, but with much less complexity. The daily TL estimation model can also be applied in partially clear

days [103]. That said, both data samples of clear-sky days and partially clear days can be included in the

model development following the same methodology. In specific, to better represent the GHIcs-derived TL

on a daily basis, only the days with more than one third detected clear-sky periods of the daytime are in-

volved in the model training (e.g, if the daytime of day with the solar zenith angle less than 85◦ is 8 hours,

only when the detected clear-sky instants are more than 2.4 hours, the day is included). Note that the de-

rived TL should be averaged in the clear-sky periods to represent the daily TL value, while the meteorological

measurements need to be averaged on the daily basis (when the solar zenith angle is less than 85◦).

The daily TL estimation model can be trained locally if the location has adequate data, especially the

solar irradiance measurements. In this chapter, local TL estimation model is trained, validated, and tested

independently for all the SURFRAD stations for comparison. Data in the year range of 2010-2017 is used

for training (20% of which is used for validation), data in 2018-2020 is used for testing. The transferable

TL estimation model is firstly trained and validated at stations with sufficient instrumentation, and then the

developed model is applied at another location of interest where the common meteorological measurements

are available. For instance, the TL estimation model can be trained and validated using data from BON,

DRA, FPK, PSU, SXF, TBL, and then be applied at GWN for estimating TL and then GHIcs estimation.
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The transferred TL model for each SURFRAD station is developed likewise, where the model is first trained

and validated with the other six stations (e.g., excluding GWN) and then applied at the target location (e.g.,

GWN). Data in 2010-2017 at other six stations is used for training (80%) and validation (20%), data in

2018-2020 at the target location is used for testing and comparison.

The used machine learning algorithm in this chapter is multilayer perceptron (MLP). MLP is known as

feed-forward neural network consisting of the input layer, output layer, and one or more hidden layers based

on the applications [76]. The parameters in MLP networks are obtained through back propagation [76].

MLP has a high flexibility in approximation and is widely applied in real applications. The hyperparameters

of MLP are tuned using tenfold cross-validation method. For more details on MLP algorithm and the

cross-validation method, the reader is referred to Scikit-learn [97], which is the used tool for the model

development in this chapter.

4.2.5 Turbidity and clear-sky irradiance estimations

Two TL estimation models, namely, local and transferred TL estimation models are developed for com-

parison. The daily TL is then estimated by the local and transferred models, separately. The meteorological

inputs are daily averaged ambient temperature, relative humidity, wind speed, and atmospheric pressure.

The 1-minute GHIcs at all the SURFRAD stations in 2018-2020 are then derived using Ineichen-Perez

(PVLIB) model with the estimated TL factor, for both the local and transferred TL estimation models. Since

the measured GHI at solar zenith over 85◦ are not included, the corresponding GHIcs estimations are also

removed.

The comparison of GHIcs estimated by different models is in two time resolutions. The GHIcs estimated

by PVLIB using default TL (referred as TL default), TL estimated by the local model (referred as TL local),

and TL estimated by the transferred model (referred as TL transfer) are in the time resolution of 1-minute.

Therefore, the comparison of TL default, TL local, and TL transfer is also in 1-minute resolution. Since the

clear-sky irradiance of REST2 is in a time resolution of 5-minute, then the comparison involving REST2

should have the same time resolution. Note that the aggregating measured and estimated GHIcs to 5-minute

resolution should be the round way (i.e., data points from 13:58, 13:59, 14:00, 14:01, 14:02 are aggregated

and indexed as 14:00) [105].

The error evaluation metrics are root mean squred error (RMSE), mean bias error (MBE), and their

normalized counterparts (nRMSE, nMBE) defined by the following equations:

RMSE =

√
1
N ∑(ei −oi)2 (4.1)
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nRMSE =

√
1
N ∑(ei −oi)2

1
N ∑oi

(4.2)

MBE =
1
N ∑(ei −oi) (4.3)

nMBE =
∑(ei −oi)

∑oi
(4.4)

where ei and oi are the pair of GHI estimation and ground observation, N is the total number of compared

data points.

4.3 Results and discussion

In this section, we evaluate the local and transferable TL estimation models described above through

the comparison of default TL, derived TL, and estimated TL in Section 4.3.1, the performance of GHIcs

estimation using different TL factors is presented in Section 4.3.2. We then quantitatively compare the local

and transferable TL estimation models for estimating and forecasting GHIcs with physical clear-sky models

of REST2 and McClear in Section 4.3.3, as physical models are generally considered as most accurate

models. Where the comparison of GHIcs estimation is presented in Section 4.3.3.1, and the result of GHIcs

forecasting is elaborated in Section 4.3.3.2.

4.3.1 Evaluation of turbidity estimation models

The invariant TL interpolations based SoDa monthly climatology means cannot account for the short-

term and long-term variations of the aerosols and water vapor content in the atmosphere. As shown in

Fig. 4.3, the derived and estimated TL factors generally exhibit high fluctuations during the year of 2019,

while the default TL has a comparatively smoother profile. Meanwhile, all the TL curves show a similar trend

that the TL tends to increase from the beginning of year to some peak point around the middle of the year,

then follows a drop till the year end. Apart from higher variations, the derived and estimated TL coefficients

at most stations are generally lower than SoDa interpolations with some exceptions that are likely to happen

around the third quarter of the year. The diurnal and monthly variations of TL factor were also observed in

the study of Chaâbane et al. [81], and the typically higher TL value of the monthly climatology means than

the derivations was confirmed by Hove and Manyumbu [86].

The detailed comparison between the derived TL and TL estimations is presented in Table 4.1. It is shown

that the default TL based on interpolations generally shows larger discrepancy in terms of RMSE and MBE

than the TL estimations regardless of local or transferred method is applied (excluding TBL, the possible
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reason is explained later on). For instance, at BON, default TL shows a RMSE of 1.02 and a MBE of 0.85,

the RMSE of TL estimation from the local method is 0.34 and the corresponding MBE is -0.06, while TL

estimation of the transferred method also has smaller RMSE and MBE values of 0.34 and 0.01, respectively

(see Table 4.1).

Table 4.1: The RMSE and MBE between derived TL and TL estimations from interpolation, local and trans-

ferred models at seven SURFRAD stations for both clear-sky and partially clear days in 2019.

TL defaulta TL localb TL transferc

RMSE MBE RMSE MBE RMSE MBE

BON 1.02 0.85 0.34 -0.06 0.34 0.01

DRA 0.62 0.37 0.35 -0.17 0.32 -0.04

FPK 0.69 0.46 0.33 -0.02 0.33 -0.12

GWN 0.75 0.57 0.41 -0.18 0.43 -0.20

PSU 0.91 0.77 0.27 -0.06 0.28 -0.03

SXF 0.92 0.73 0.44 -0.17 0.44 -0.05

TBL 0.73 0.05 0.64 -0.32 0.95 -0.67

a ’TL default’ means the TL interpolation of SoDa monthly

means, which is used in the default PVLIB calculations.
b ’TL local’ means the TL estimated by the local model.
c ’TL transfer’ means the TL estimated by the transferred

model.

When comparing the derived TL with TL estimations, both local and transferred TL estimations can follow

the fluctuations of the derived TL along the year with different discrepancies (see Fig. 4.3), which means the

local and transferred TL estimation methods can account for the variations of the aerosol and water vapor

concentration in the atmosphere. Generally, the transferred method tends to produce TL estimation with

larger values of RMSE and MBE since the local TL estimation method is developed based on the on-site

sensed data, which is more likely to generate better results. For example, at GWN, the locally estimated

TL has a RMSE of 0.41 and a MBE of -0.18, while the TL estimation of the transferred method yields a

result with comparatively larger RMSE and MBE of 0.43 and -0.20, respectively. Note that the transferred

method sometimes may also yield comparable or even better TL estimations (see the results of DRA in

Table 4.1). Although the transferred TL estimation method may lead to larger uncertainties when compared
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with local estimation, it is a potential way to provide more accurate TL coefficient than the default PVLIB

interpolations.
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Figure 4.3: The comparison of ground truth TL (TL derived), PVLIB TL (TL default), and TL estimations from

local (TL local) and transferred methods (TL transfer) for clear-sky and partially clear days in 2019, at seven

SURFRAD stations: (a) DRA, (b) BON, (c) FPK, (d) GWN, (e) PSU, (f) SXF, and (g) TBL. Only the results

of 2019 are presented here to show the trends, and the TL profiles in 2018 and 2020 are similar.
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The generally higher TL estimations based on the SoDa monthly means, the variations of derived TL

followed by the TL estimations, and the comparable TL estimation results of local and transferred models

are observed at most of the SURFRAD stations in Fig. 4.3 and Table 4.1. However, when it comes to

TBL, the observations change noticeably. The default TL shows relatively lower errors with a RMSE of

0.73 and a MBE of 0.05 when compared with most of the other stations. As illustrated in Fig. 4.3(g), the

derived TL is more likely to be higher than the default interpolations of SoDa monthly means during the

year. The locally estimated TL exhibits a similar profile with the TL derivation, but the overall result is

inferior to the the results at other stations, and the improvement of the TL estimation performance is also

limited. The transferred TL estimation model even fails to estimate the TL during some periods, where a clear

underestimation is observed and thus the intra-year TL variations are also not accounted for. It is most likely

that the unique climate condition at TBL leads to the under-performance of the transferred TL estimation

model.
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Figure 4.4: The statistic properties of the meteorological inputs in the year of 2019. (a) Ambient tempera-

ture, (b) Relative humidity, (c) Wind speed, and (d) Atmospheric pressure.

As presented in Fig. 4.4, the meteorological measurements show different statistic properties, such as

the maximum, the minimum, and the mean, at each station. Therefore, a better TL estimation model could

be developed when local climate features are accounted for. When there is no sufficient on-site data for
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local model development, the transferred model could be an option. Recall that the transferred TL estimation

model is first trained and validated at stations with adequate information, and then applied at the location

of interest. The transferred TL estimation method can generally work for most locations but TBL. The

possible reason could be the lower atmospheric pressure than the other stations as shown in Fig. 4.4(d).

When developing the transferable TL estimation model for TBL using data from other six stations, the

atmospheric pressure, unlike ambient temperature, relative humidity, and wind speed, stays far away from

the range of used inputs. The use of out-of-range local pressure as an input for the transferred TL estimation

method might produce a result with large discrepancy, this is why the transferable TL estimation model

underperforms. That said, it is suggested to use data from the locations with similar climate characteristics

when developing the transferable TL estimation model for practical applications.

The sensitivity analysis in the study of Chen and Li [103] shows that ambient temperature and relative

humidity have comparatively larger influence on the TL estimation than wind speed. The estimated TL goes

up with the increases in ambient temperature and relative humidity, while the increases in wind speed and

atmospheric pressure result in a drop of TL estimation. Wind speed has the least importance in TL estimation.

As for pressure, the sensitivity analysis presents relatively larger variations when changing the pressure by

10%. However, this have limited implications as the piratical atmospheric pressure for a certain place does

not has high variations compared with other meteorological parameters. Since the transferred TL estimation

follows the same methodology of the local methods, the sensitivity analysis of the transferred TL estimation

model should have similar results.

Table 4.2: The comparison of TL and GHIcs estimations at TBL in 2018-2020, including the TL estimation

models developed with and without atmospheric pressure (Pa).

TL estimation GHIcs estimation

RMSE MBE nRMSE [%] nMBE [%]

TL local with Pa 0.64 -0.32 3.23 1.55

TL local without Pa 0.70 -0.46 3.40 1.84

TL transfer with Pa 0.95 -0.67 4.43 2.84

TL transfer without Pa 1.48 -1.20 6.70 5.23

To further investigate the influence of atmospheric pressure in the TL estimation models, new local and

transferred TL estimation models for TBL are developed without using atmospheric pressure. The results of

TL and related GHIcs estimations are presented in Table 4.2. When the atmospheric pressure is excluded
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in the development of TL estimation models, both local and transferred models produce TL estimations with

larger errors of RMSE and MBE as shown in Table 4.2. Similarly, the GHIcs estimations based on TL

estimated by models without using atmospheric pressure also have comparatively larger discrepancies of

nRMSE and nMBE. Therefore, it is suggested to use the atmospheric pressure as an input parameter in the

development of TL estimation models.

4.3.2 Comparison of GHIcs estimations using different turbidity factors

Since the default TL interpolations generally have lager RMSE and MBE values and do not show many

variations along the year (see Table 4.1 and Fig. 4.3), the related GHIcs estimations are then also associated

with higher discrepancies of nRMSE and nMBE as shown in Table 4.3. It tends to underestimate the GHIcs

using default PVLIB as the interpolated TL from SoDa monthly means are typically higher than the TL

derivations. When compared with default TL interpolations, the estimated TL from both local and transferred

methods are more likely to yield better GHIcs estimations (see Table 4.3).

As discussed in Section 4.3.1, the local TL estimation models tends to generate better TL estimations via

the direct inferring to the on-site meteorological features. Therefore, the GHIcs estimation using the locally

estimated TL might also have smaller divergences in terms of nRMSE and nMBE. Since the transferred

models are developed using data from other locations, there could be more uncertainties associated in the

related TL estimations. This also introduces comparatively lager discrepancies in the GHIcs estimations

using TL estimated by the transferable models. However, there is no significant difference between the local

and transferred TL estimation methods regarding the GHIcs estimations. Consequently, the transferred TL

estimation model at TBL shows inferior performance in TL estimations, which also leads to lager errors in

estimating GHIcs.

The overall performance of GHIcs estimation at SURFRAD stations (TBL is not included due to the

under-performance) is also presented in Table 4.3. Using the default TL to generate GHIcs estimation has

comparatively larger errors with an nRMSE of 5.24% and an nMBE of -3.41%, while using the estimated

TL from local and transferred methods show noticeable improvements. The nRMSE of GHIcs estimation

based on estimated TL is reduce to 2.75% and 2.80% for the local and transferred methods, respectively.

The nMBE is improved to 0.45% for the local method, and to 0.84% for the transferred method. Although

the overall performance of locally estimated TL is slightly better than the transferred TL estimations, the

transferable model is still viable to estimate the TL and GHIcs for locations without sufficient data.
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Table 4.3: The nRMSE [%] and nMBE [%] of 1-minute averaged GHIcs estimations using different TL

factors at SURFRAD stations in 2018-2020. The used TL coefficients are default interpolations (TL default),

estimations of the local model (TL local) and transferred model (TL transfer) .

Station TL default TL local TL transfer

nRMSE [%] nMBE [%] nRMSE [%] nMBE [%] nRMSE [%] nMBE [%]

BON 8.04 -6.32 3.25 0.39 3.31 -0.18

DRA 3.40 -1.96 2.15 0.89 1.97 0.14

FPK 4.88 -2.78 2.56 0.24 2.54 0.80

GWN 5.91 -3.83 3.58 1.32 3.67 1.37

PSU 6.71 -5.29 2.86 0.25 2.78 0.36

SXF 6.76 -4.88 3.69 1.48 3.68 0.67

TBL 3.55 -0.23 3.23 1.55 4.43 2.84

ALL* 5.24 -3.41 2.75 0.45 2.80 0.84

* TBL is not included due to the under-performance of the transferred TL estimation model.

4.3.3 Comparison of GHIcs estimations and forecasts with physical models

To further evaluate the results of GHIcs estimation using improved TL estimations, we herein compare

the performance with physical models, namely, the McClear model and the REST2 model. The comparison

is in two folds: one is the real-time GHIcs estimation and the other one is persistent day-ahead GHIcs

forecasts.

4.3.3.1 Comparison of GHIcs estimations with physical models

Table 4.4 details the overall performance of 5-minute GHIcs estimations and forecasts using TL based

model and physical at SURFRAD stations, TBL is not included due to the under-performance in TL estima-

tions using the transferred method. The default TL produces a GHIcs estimation with the largest nRMSE of

4.99% and the nMBE is -3.37%, while the local TL estimation generates the best GHIcs estimation with the

nRMSE of 2.38% and the nMBE of 0.16%. As expected, the transferred TL estimation yields a result with

relatively larger discrepancies compared with the locally estimated TL, the nRMSE and nMBE are 2.44%

and 0.57%, respectively. Note that the transferred TL estimation even produces better results than the Mc-

Clear model and the REST2 model in terms of nRMSE and nMBE (see Table 4.4), while the REST2 model
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outperforms McClear with the nRMSE of 2.55% and nMBE of 1.30%. However, there is no significant dif-

ference between estimations from the transferred model and the physical models. The detailed comparison

of GHIcs estimations at each SURFRAD station is presented in Fig. 4.5. Physical models are more likely to

produce over-estimations, and the local and transferred TL estimations also tend to overestimate GHIcs but

with smaller bias.

The possible reason why the empirical model based on improved TL estimation yields comparable re-

sults with physical clear-sky models could be the avoidance of uncertainty accumulation. Physical models

require detailed atmospheric inputs such as aerosol, water vapor and ozone, these inputs are usually based

on reanalysis products such as MERRA-2. The MERRA-2 reanalysis products are derived from satellite

measurements and therefore are associated with uncertainties [116]. This means the use of reanalysis prod-

ucts for clear-sky irradiance estimation in physical models would have accumulated uncertainties. However,

the TL derivation is a one-step-through process based on quality-controlled irradiance data, which includes

embedded TL information. Therefore, it is more likely to avoid the accumulation of multi-step uncertainties.

Although physical clear-sky models are proved to have higher accuracy in GHIcs estimation, the compara-

ble results with less complexity of the transferred TL estimation model demonstrates its potential usage for

locations without sufficient on-site information.

Table 4.4: Overall results of GHIcs estimations and day-ahead persistent GHIcs forecasts with the time

resolution of 5-minute at SURFRAD stations excluding TBL in 2018-2020. Used models are the Ineichen-

Perez model with three TL inputs, the McClear model, and the REST2 model.

Model GHIcs estimation GHIcs forecasts*

nRMSE [%] nMBE [%] nRMSE [%] nMBE [%]

TL default 4.99 -3.37 4.64 -3.02

TL local 2.38 0.16 2.85 0.32

TL transfer 2.44 0.57 2.99 0.74

McClear 3.32 2.10 4.11 1.55

REST2 2.55 1.30 3.51 0.79

* The forecast is based on a day persistent method, where the day-ahead

GHIcs is assumed as the same as the present day.
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Figure 4.5: The nRMSE and nMBE between the 5-minute averaged GHIcs measurements and estimations

using different models at SURFRAD stations in 2018-2020. GHIcs is estimated by the Ineichen-Perez model

with three different TL inputs, the McClear model, and the REST2 model.

4.3.3.2 Comparison of GHIcs forecasts with physical models

Since clear-sky irradiance (clear-sky model) is also essential in solar forecasting, we also evaluate and

compare the performance of TL based forecasts with the McClear model and the REST2 model. Considering

that McClear and REST2 are physical models requiring detailed atmospheric inputs, which are difficult to

obtain and forecast, we therefore apply a day persistent method to predict the GHIcs in the coming day. In

specific, the profile of GHIcs for the coming day is assumed as the same as the present day [117, 118]. Note

that McClear is available as a web service from 2004-01-01 up to two days ago, and is recommended for

solar forecasting applications in [36]. However, in real time forecasting applications, e.g., the present day

and the coming day, the clear-sky irradiance of McClear is not available. This means the atmospheric inputs

for both McClear and REST2 should be obtained at present day, which introduces even more difficulties

in retrieving and measuring the atmospheric optical properties. To perform a fair comparison, we assume

the clear-sky irradiance (i.e., GHIcs) of REST2 and McClear could be obtained for the present day, and the

meteorological measurements are available.
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The overall result of GHIcs forecasts using the day persistent method is presented in Table 4.4. The

largest nRMSE (4.64%) and nMBE (-3.02%) are generated using the default TL, while the other two TL based

GHIcs predictions show lower nRMSE than the physical models. The local and transferred TL estimations

yield GHIcs forecasts with the nRMSE of 2.85% and 2.99%, respectively. The nRMSE of McClear based

forecasts is 4.11%, while REST2 produces a result with the nRMSE of 3.51%. GHIcs forecasts based on

estimated TL also have smaller biases, the transferred method generates a comparatively larger nMBE of

0.74%, while the local model produces a result with the nMBE of 0.32%. The physical models are likely to

produce relatively larger over-estimations in forecasting GHIcs, where the McClear shows an nMBE of 1.55

and the REST2 has an nMBE of 0.79%. Compared with GHIcs estimations (except the default TL method),

GHIcs forecasts are generally associated with larger uncertainties of nRMSE as shown in Table 4.4. The

comparison of day-ahead GHIcs forecasts at each SURFRAD station is illustrated in Fig. 4.6. The results of

local and transferred TL estimations produce comparable day-ahead GHIcs forecasts with physical models in

terms of nRMSE and nMBE. Similarly, considering the comparable results for day-ahead GHIcs forecasts

with less complexity, the uncertainty and time lag in obtaining atmospheric inputs for physical models, the

methods of improved TL estimations show potential in supporting solar forecasting applications.
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Figure 4.6: The nRMSE and nMBE between the 5-minute averaged GHIcs measurements and day-ahead

forecasts using the day persistent method at SURFRAD stations in 2018-2020.
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4.4 Conclusions

In this chapter, we propose a transferable TL estimation method for estimating GHIcs. The transferred

TL estimation model follows a similar methodology with the local TL estimation model presented in [103].

Instead of using on-site solar irradiance data for model development in the local model, the transferable

model is first trained and validated involving stations with sufficient data, and then applied at the location

of interest for TL estimation and thus the clear-sky irradiance. The main meteorological inputs of the TL

estimation model are ambient temperature, relative humidity, wind speed, and local atmospheric pressure.

As common meteorological information, they are easy to obtain and available at most of the weather stations.

Both local and transferred TL estimation models are applied at the SURFRAD stations, the performance of

GHIcs estimation is evaluated with the on-site measurements and also compared with physical McClear and

REST2 models.

The local TL estimation method shows a high performance in GHIcs estimation with the nRMSE of

2.38% and the nMBE of 0.16%, the nRMSE and nMBE of GHIcs forecasts are 2.85% and 0.32%, respec-

tively. The transferred TL estimation model yields results with slightly larger divergences for both GHIcs

estimations and forecasts. When applying the method at all the SURFRAD stations (excluding TBL), the

overall nRMSE of GHIcs estimation is reduced from 4.99% to 2.44%, and the overall nMBE is decreased

from -3.37% to 0.57% compared with the default PVLIB calculations. The result of GHIcs estimation based

on the estimated TL is also comparable with the physical clear-sky models, where the McClear yields an

overall nRMSE of 3.32% and the nMBE is 2.10%, while the REST2 produces the overall result with an

nRMSE of 2.55% and an nMBE of 1.30%. Considering the difficulties and uncertainties in forecasting the

atmospheric inputs and meteorological data, we further compare the aforementioned methods for estimating

the day-ahead GHIcs using a persistent way, where the day-ahead GHIcs is assumed as the same as the

present day. The results show that the local TL estimation has an overall forecasting with the nRMSE of

2.85% and nMBE of 0.32%, the transferred method for TL estimation generates the GHIcs forecasts with

an overall nRMSE of 2.99% and an nMBE of 0.74%, the McClear produces an nRMSE of 4.11% and an

nMBE of 1.55%, while the REST2 yields a result with the nRMSE of 3.51% and the nMBE of 0.79%.

The transferred TL estimation model does not yield similar results at TBL due to its unique climate

features, so one recommendation for developing the transferable TL estimation model is to use data from

locations with similar climate conditions. Considering the improved GHIcs estimations and day-ahead fore-

casts, the comparable results with physical clear-sky models, and the complexity and difficulty in obtaining

atmospheric inputs, both the local and transferred TL estimation methods show a potential to support the
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solar resourcing and forecasting applications. The local TL estimation method is suggested for stations with

sufficient data, and the transferred TL estimation model is therefore recommended for locations without

adequate information.
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4.6 Appendix

The equations used to derive ground truth TL are adopted from [103].

TL =

[
ln
(

GHIcs

c1 · I0 · cos(θ)

)
/(−c2·AM)− f1

]
/ f2 +1

with:

AM =

(
1

cos(θ)+0.50572 · (6.07995+(90−θ)−1.6364)

)
· Pa

101325

c1 = 5.09·10−5·h+0.868

c2 = 3.92·10−5·h+0.0387

f1 = exp(−h/8000)

f2 = exp(−h/1250)

where TL is the Linke turbidity, GHIcs [W m−2] is the measured GHIcs. c1, c2, f1, f2 are altitude-

dependant coefficients, I0 [W m−2] is the solar constant, θ [◦] represents the solar zenith angle, AM is the

absolute airmass, TL is the Linke Turbidity factor, Pa [Pa] is the local atmospheric pressure, and h [m] is

local altitude.
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Chapter 5

Global and direct solar irradiance

estimation using deep learning and selected

spectral satellite images

5.1 Introduction

Climate change, carbon neutrality and net zero emissions have drawn unprecedented attention world-

wide among the energy-related industry and academia over the past decade [119]. Many countries have

introduced their national energy policies and plans to reach the global climate goals [21]. Under such a

blueprint, the rapid expansion and integration of renewable energy sources into current power systems in

a near future could be foreseen [119]. It is predicted that the global electricity capacity of renewables will

rise more than 60% between 2020 and 2026 [120]. Solar energy, as a promising candidate with worldwide

potential, is set to be one of the primary power sources to enable the deep decarbonization in the energy

sector. Despite the variability and intermittency, both solar photovoltaic (PV) and concentrated solar power

(CSP) are important components on the pathway towards net zero emissions [121, 122]. The power produc-

tion of solar PV or CSP is heavily related to the available solar irradiance, i.e., global horizontal irradiance

(GHI) and direct normal irradiance (DNI), at the location of interest [8]. That said, as long as solar energy

is involved in the roadmap to carbon neutrality, the need for solar resource assessment and forecasting is

essential in supporting solar energy projects [21, 14].

The uncertainty and intermittency of local irradiance leads to high variability in the power output of

solar energy projects, which also introduces challenges in the system operation [10, 11, 123]. Solar resource
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assessment aims to support the feasibility study and optimal design of solar energy projects by projecting

power demand and supply potentials, analyzing techno-economic viability and minimizing the long-term

risks [8, 21, 20]. Ground irradiance measurements with careful calibrations are the most accurate data source

in solar resource assessment. However, complete and long-term on-site measurements are not available at

most locations due to associated technical and financial issues [12, 115]. Even though ground irradiance

measurements are invaluable, their limited data availability greatly hinders the wider application [124]. On

the other hand, the irradiance estimation and retrievals via remote sensing provide an alternative in the

evaluation and design of solar energy projects [12, 125].

Satellite-to-irradiance algorithms can be broadly grouped as physical methods that based on radiative

transfer and statistical methods [20, 126]. The physical solar model used in the National Solar Radiation

Database (NSRDB) [49] and Heliosat-4 method [50] are the representatives of physical models, where the

detailed interactions between solar radiation and atmospheric compositions are simulated using radiative

transfer models (RTMs). The essential atmospheric inputs such as cloud properties, aerosol optical depth

(AOD), and water vapor content can be obtained from geostationary satellites [49, 50], for instance, Geo-

stationary Operational Environmental Satellite (GOES) and Meteosat Second Generation (MSG) satellites.

Of statistical models, the pure empirical methods are of limited applications due to the inferior performance

and lack of generality [20]; Semi-empirical methods rely on separate attenuation processes of cloud and

other constituents in the atmosphere. Physical models are generally have better performance with more

complexity, while semi-empirical models are easier to implement with a compromised performance. Both

physical and semi-empirical methods show large uncertainties in estimating solar irradiance under cloudy

conditions [127].

As the ground-truth in validating solar irradiance models, on-site measurements are of great impor-

tance [117]. Moreover, the local qualified observations in just a short period could be used in the pro-

cesses to get long-term modeled data, for instance, site adaptation [128], and machine learning based mod-

els [129, 130, 131]. Given the high temporal and spatial information provided by the new generation satel-

lites and the advancements in machine learning algorithms, the combination of machine learning (especially

deep learning) and remote sensing, as an optimized statistical method, brings new insights in reducing the

uncertainties of solar irradiance modeling [125, 132, 133, 134]. Lu et al. [135] applied all the bands of

Multi-functional Transport Satellite (MTSAT) for daily GHI estimation with the aim to fully exploit the

information of visible and infared channels. Jiang et al. [132] proposed a deep learning algorithm based

on convolutional neural network (CNN) and multilayer perception (MLP) for hourly GHI estimation using

images from visible channel of MTSAT, in an attempt to reduce the spatial effects related to the approxima-
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tion of an independent pixel. Verma and Patil [136] presented a machine learning method for solar radiation

assessment using pixels of multispectral Meteosat satellite images for the target location. Similarly, the

iterative random forest model was adopted for estimating half-hourly global, direct, and diffuse components

of solar irradiance using GOES-16 data and some viewing geometrical parameters [137, 138]. Rocha and

Santos [139] reported a deep learning network based on CNN and long short-term memory (LSTM) network

for GHI and DNI estimation using GOES-16 imagery of all channels. However, the developed model could

not produce better GHI estimation than NSRDB, while the improvement of DNI estimation remains limited.

To further exploit the application of new-generation geostationary satellite with much finer spatiotempo-

ral resolution (i.e., 2-km and 5-min) in solar resource assessment, this work proposes a deep learning model

with attention layer for high-resolution (5-min) GHI and DNI estimations. It is expected that the data with

high spatiotemporal resolution and high accuracy can provide better resource information for designing so-

lar energy projects, as it better captures the variability of solar irradiance [105]. Instead of using all spectral

satellite bands, a correlation analysis is performed to select representative bands, which can improve the

modeling efficiency and thus be beneficial for large-scale applications. To address the spatial effects such as

nonlocal cloud shadows, multispectral images are applied as the input rather than single pixels. The major

contributions of this work are summarized as follows:

• A correlation analysis is applied to select the representative satellite spectral bands, which can reduce

the modeling complexity for satellite-to-irradiance mapping. This method is also beneficial for large-

scale applications that involve long time periods and/or large areas of interest.

• The application of attention mechanism [140] and spectral satellite images around the target location

aims to better account for the nonlocal cloud effect, which can improve the accuracy of irradiance

estimations by deep learning.

• The estimates of 5-min GHI and DNI are benchmarked with NSRDB and show improved overall

accuracy. Considering that NSRDB represents the state-of-the-art in satellite-to-irradiance methods,

the improvements in irradiance estimations might bring more benefits to the solar community.

• Further evaluations and error analysis of irradiance estimations are performed to identify the sources

of error and potential ways for future improvements.

The remainder of this chapter is structured as follows: Section 5.2 describes the data and the methods

for solar irradiance estimations. The performance of the proposed model for solar irradiance estimation and
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the comparisons with other models are presented in Section 5.3. Section 5.4 details the explanation and

implication of the results. Finally, key findings are summarized in Section 5.5.

5.2 Data and methods

This section describes the used data and the deep learning method for estimating ground-level solar

irradiance (i.e., GHI or DNI). As shown in the flowchart (see Fig. 5.1), the GOES-16 data of all bands are

extracted from publicly available source. Then the cropped images for a location centered in the region

of 11×11 pixels are pre-processed to be consistent in temporal and spatial resolutions. Images of selected

bands from the correlation analysis are the inputs of the deep learning model, while the labels are clear-sky

indexes obtained from irradiance measurements and Ineichen-Perez clear-sky model [31, 39]. The trained

model is applied for estimating clear-sky index via new input data of GOES-16, and the solar irradiance

estimation is obtained using the estimated clear-sky index and Ineichen-Perez clear-sky irradiance. Note

that the methodologies for estimating GHI and DNI are the same, but deep learning models should be

developed separately. The detailed descriptions of the used data and method are presented in the following

subsections.

GOES-16 data

(Bands 1-16) 

Clear-sky model

(Ineichen-Perez)

Quality controlled data

(GHI, DNI, 5-minute)

Clear-sky irradiance

(GHIcs, DNIcs, 5-minute) 
Clear-sky index

(GHI, DNI, 5-minute) 

Data with high resolution

(5-minute, 2 km, 11 by 11 pixels)

Preprocessing

Selected bands of GOES-16

(Bands 1, 3, 4, 5, 6, 7, 9, 11)

Deep neural network

(CNN + Attention + MLP) 

Ground measurements

(GHI, DNI, 1-minute)

Correlation analysis

Preprocessing

PVLIB

Trained model
New input data 

of GOES-16
Clear-sky index

(GHI, DNI, 5-minite)

Irradiance estimation

(GHI, DNI, 5-minite)

Model development

Figure 5.1: The flowchart of ground-level solar irradiance estimation using deep learning and satellite mea-

surements of GOES-16.

86



5.2.1 Data

The data used in this work mainly includes spectral satellite images of GOES-16 and ground-level

irradiance measurements from the Surface Radiation Budget Network (SURFRAD) stations [29]. GOES-16

(75.2◦ West), as one of the GOES-R series, is operated by National Oceanic and Atmospheric Association

(NOAA). The Advanced Baseline Imager (ABI) has 16 spectral bands, which provide data with much finer

temporal and spatial resolutions compared to the previous generations. The detailed information of each

spectral band is presented in Table 5.1. 5-min spectral satellite measurements of all the 16 spectral bands in

the year of 2019 are downloaded, which are then extracted as images and georeferenced to the target ground

locations.

Table 5.1: The detailed information of the ABI spectral bands of GOES-16.

Band λ [µm] Center λ

[µm]

Resolution

[km]

Nickname Type

1 0.45-0.49 0.47 1 Blue Visible

2 0.59-0.69 0.64 0.5 Red Visible

3 0.846-0.885 0.865 1 Veggie Near-Infrared

4 1.371-1.386 1.378 2 Cirrus Near-Infrared

5 1.58-1.64 1.61 1 Snow/Ice Near-Infrared

6 2.225-2.275 2.25 2 Cloud particle size Near-Infrared

7 3.80-4.00 3.90 2 Shortwave window Infrared

8 5.77-6.60 6.19 2 Upper-level water vapor Infrared

9 6.75-7.15 6.95 2 Mid-level water vapor Infrared

10 7.24-7.44 7.34 2 Lower-level water vapor Infrared

11 8.30-8.70 8.50 2 Cloud-top phase Infrared

12 9.42-9.80 9.61 2 Ozone Infrared

13 10.10-10.60 10.35 2 ”Clean” longwave window Infrared

14 10.80-11.60 11.20 2 Longwave window Infrared

15 11.80-12.80 12.30 2 ”Dirty” longwave window Infrared

16 13.00-13.30 1.378 2 CO2 longwave Infrared

The spectral satellite images are in the size of 11×11 pixels, and the target ground station locates at the

center. Note that the spectral bands have different spatial resolutions as shown in Table 5.1. The spatial
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resolution is in the range of 0.5 - 2-km at the sub-satellite point, and spectral bands with better resolutions

are therefore re-scaled to 2-km. The end timestamp of each scan in Coordinated Universal Time (UTC) is

used to index the images after rounded to the next nearest 5-min interval. This is for the compatibility with

ground irradiance measurements and real-time applications. Sample spectral images for one of the target

locations are presented in Fig. 5.2, where the images have a size of 11×11 pixels and a spatial resolution of

2-km.
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Figure 5.2: Sample satellite images including all the spectral bands of GOES-16 for Bondville (40.05◦, -

88.37◦) at 2019-01-10 20:45:00 (UTC). The image is in the size of 11×11 pixels, where Bondville is located

at the center. All the spectral images are normalized to the range of [0,1] using the Min-Max normalization.

The ground-level irradiance measurements are from SURFRAD stations, namely, Bondville (BON),

Desert Rock (DRA), Fort Peck (FPK), Goodwin Creek (GWN), Pennsylvania State University (PSU), Sioux

Falls (SXF), and Table Mountain (TBL) as summarized in Table 5.2. Measurements including GHI, DNI,

diffuse horizontal irradiance (DHI), solar zenith angle in 2019 at all the seven stations are obtained after

quality control. Note that DHI is not of interest in this work, however, it is required in the classification of

cloudy and clear periods [112] for the performance evaluation. All the measurements are in the 1-min tem-

poral resolution and indexed in UTC time. Due to the high airmass effect, all the irradiance measurements

over the solar zenith angle of 85◦ are eliminated. Note that the satellite images are in the time resolution of

5-min, GHI and DNI are therefore aggregated into the same temporal resolution.

The satellite-derived GHI and DNI provided by NSRDB [141] are used for comparison to evaluate the

performance of the applied deep learning algorithms. Both GHI and DNI estimations of NSRDB for all the

SURFRAD stations in 2019 are downloaded, with the spatiotemporal resolution of 2-km and 5-min. As a

publicly available data source that is extensively accessed for solar energy applications, NSRDB is based

on the physical solar model and the reanalysis products from many other associations [49]. Broadband

irradiance including GHI, DNI, and other auxiliary variables such as cloud type, are available in NSRDB.
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Since 2018, the spatiotemporal resolution of NSRDB has been improved to 2-km and 5-min. Meanwhile,

NSRDB represents the state-of-the-art in the satellite-based estimation of solar irradiance. Considering that

other deep learning satellite-to-irradiance models usually have different locations of interest and various

spatiotemporal resolutions, NSRDB is selected as the benchmark and its accuracy is validated against ground

measurements [105].

Table 5.2: Detailed information of the seven SURFRAD stations. The climate is based on Köppen classi-

fications. The elevation angle and azimuth angle are from the station to GOES-16, and the azimuth angle

starts from the North (0◦).

Station Latitude (°) Longitude (°) Altitude (m) Climate* Elevation (°) Azimuth (°)

BON 40.05 -88.37 230 Dfa 41.7 160.0

DRA 36.62 -116.02 1007 Bwk 29.9 124.6

FPK 48.31 -105.10 634 Bsk 47.2 155.0

GWN 34.25 -89.87 98 Cfa 27.5 142.4

PSU 40.72 -77.93 376 Dfb 42.8 175.8

SXF 43.73 -96.62 473 Dfa 35.2 150.4

TBL 40.12 -105.24 1689 Bsk 34.3 138.1

* Köppen climate classifications are: Bsk (arid, steppe, cold), Bwk (arid, desert, cold), Cfa (tem-

perate, without dry season, hot summer), Dfa (continental, without dry season, hot summer), Dfb

(continental, without dry season, warm summer).

5.2.2 Correlation analysis

In machine learning applications, feature selection is extensively applied to decrease the dimensionality

by eliminating redundant and irrelevant features [142]. Feature selection has been proved to be helpful in

understanding data, reducing the complexity, and improving the learning efficiency as well as predictive

performance of machine learning tasks [142, 143]. Typically, feature selection methods can be grouped as

filter and wrapper methods [142]. A filter method usually assesses the general characteristics of the dataset

before the application of any machine learning algorithms. While a wrapper method requires a predefined

learning algorithm in the process of feature selection, the features are selected based on the performance of

the predetermined algorithm. Therefore, the wrapper method is more computationally expensive than the

filter method [143].
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Figure 5.3: Correlation analysis among measurements of the 16 spectral bands of GOES-16 at (a) BON and

(b) All stations of SURFRAD.
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In general, a good feature is relevant to the target but is not redundant to any other input features [144].

Feature correlation is usually applied to describe the similarity and redundancy among the features [144,

145]. A feature is defined to be redundant if it is highly correlated with one or more other features [144].

Therefore, a correlation analysis is performed among the measurements of 16 spectral bands of GOES-16 to

reduce the input size. This can improve the modeling efficiency, especially for large-regional applications.

One commonly used measure of similarity between two variables (X , Y ) is the correlation coefficient

r(X ,Y ), which is defined as

r(X ,Y ) =
∑(xi − x)(yi − y)√

∑(xi − x)2
√

∑(yi − y)2
(5.1)

where (xi, yi) are the paired data of (X ,Y ), x and y are the means of X and Y , respectively. The value of

r(X ,Y ) is inclusively between -1 and 1, with the value of 1 (shows an increase in both) or -1 (shows an

increase in one but a decrease in the other) indicating X and Y are totally correlated. When X and Y are

completely independent, the value of r(X ,Y ) is 0.

The correlation analysis result for 16 spectral bands of GOES-16 is shown in Fig. 5.3. Fig. 5.3(a)

presents the correlation coefficients of the 16 spectral bands at BON. There are some bands highly corre-

lated, for instance, the coefficient of C12 and C13 is 1.00. Correlation analysis of GOES-16 bands at other

SURFRAD stations have similar results, the overall coefficients involving all SURFRAD stations are shown

in Fig. 5.3(b). Note that the correlation analysis is based on the satellite measurements at the target location

with the pixel size of 1x1. When using more pixels, for example, 3x3 or 5x5, there are limited differences

using averaged satellite measurements. It is shown in Fig. 5.3 that r(X ,Y ) = r(Y,X) and r(X ,X) = 1.00.

A threshold of 0.95 is predefined to select the representative bands. In specific, if the coefficient of two

channels is greater than 0.95, one of them is selected to represent the other. It is necessary to mention the

selection of representative band for C08, C09, and C10. Since r(C08,C09) and r(C09,C10) are above the

threshold, while r(C08,C10) is below it, C09 is selected to represent both C08 and C10. As a result, the

selected bands are C01, C03, C04, C05, C06, C07, C09, and C11.

5.2.3 Deep learning model

With the improvement of computational ability and the advancement of learning algorithms, deep learn-

ing has attracted increasing attention in solar resource assessment and forecasting in the past decade [132,

146]. Deep learning introduces simpler but more efficient representations that provide capabilities to build

complex concepts in representation learning. Meanwhile, the depth of deep neural network (DNN) enables

the multistep sequential instructions, which offer great power and flexibility in modeling complicated prob-

lems [78]. Different DNN structures have been proposed for solar irradiance modeling referring satellite
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and sky images [132, 147, 148].
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Figure 5.4: The structure of deep learning model for estimating ground solar irradiance using the GOES-16

images of selected bands.The inputs are images of 8 selected bands with size of 11×11 pixels, the output

is the clear-sky index. Note that the hyperparameters might vary for different locations, this figure is just to

show the structure.

The deep learning model proposed in this study employs convolutional, attention, and four fully con-

nected dense layers as shown in Fig. 5.4. In specific, CNNs provide specialized neural networks to deal

with data with a grid-structured topology such as images. Compared with fully connected networks, CNNs

are more computationally efficient and easier in implementation and hyperparameters tuning [78]. As feed-

forward neural networks, CNNs are powerful in extracting properties of input images, which can capture the

features efficiently and reduce the amount of parameters. Convolutional layer is the core block of CNNs to

discover local relationships via sparse connectivity, parameter sharing and equivariant representations [78].

An activation function (e.g., ReLU) is usually applied on the linear convolution results to introduce non-

linearity on the output feature maps. While the pooling layer is to extract representative characteristics over

local regions and reduce the dimension gradually [78]. The attention layer is based on attention mech-

anism [140] that has been extensively adopted in different applications such as image analysis including

satellite images [149]. The attention mechanism can process preceptual information efficiently and accu-

rately, by focusing on the target area and suppressing other useless content [150]. Similarly, the attention

mechanism in deep learning is to enable the model focus on the features that are more important to the cur-
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rent output [146], which can improve the performance of the model. While the dense layers are employed

to learn the representations between the extracted input features and the targets.

The cropped satellite images of 8 selected GOES-16 bands are the inputs for the deep learning model

based on Tensorflow [151]. As shown in Fig. 5.4, 8 images are processed parallelly via normalization, con-

volutional and attention layers. The extracted features of each image are then flattened and concatenated

as the input vector of the four fully connected dense layers. The ReLU activation is applied in convolu-

tional and dense layers, and the L2 regularization is to avoid over-fitting and improve the performance. The

output is the clear-sky index, which is defined as the ratio between measured GHI and clear-sky GHI esti-

mate. Clear-sky index is used to normalize the irradiance time series and reduce the seasonal and diurnal

variations. Note that the clear-sky index is defined based on GHI. However, when developing the deep

learning model for DNI estimation, the concept of clear-sky index is also adopted for DNI measurements

and clear-sky DNI. Clear-sky GHI and clear-sky DNI are estimated by the Ineichen-Perez model [31] due

to the simplicity. Although the Ineichen-Perez model has compromised performance in estimating clear-

sky irradiance [103, 152], the impact on the final irradiance estimation remains limited as the estimated

clear-sky index is converted back to irradiance components (i.e., GHI and DNI) by multiplying the clear-sky

irradiance [36].

0 20 40 60 80 100
Epochs

0.0

0.1

0.2

0.3

0.4

Lo
ss

Training loss
Validation loss

Figure 5.5: The loss curves of training and validation process for GHI estimation at BON. Both training loss

and validation loss decrease with the trained epochs and finally converge with a slightly higher validation

loss, which indicates a good fit.
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To better represent the yearly variations, data in March, June, September, and December are used for

testing, while the data in the remaining months in 2019 are used as training and validation sets (in which

20% of the data is used for validation). Adam is the applied optimizer and the Huber loss function is used to

update the network parameters. The numbers of layers and units, the numbers of filters and kernel size, and

other hyperparameters such as learning rate and regularization factor are optimally selected by grid search.

In training the deep learning model, the Xavier initialization method [153] is employed. After obtaining

the optimal hyperparameters, many independent trainings are conducted with data shuffling. In the end, the

model with the best performance on the validation data is selected. Fig. 5.5 presents one of the loss curves

during the training and validation process for GHI estimation at BON.

The error evaluation metrics are root mean squred error (RMSE), mean bias error (MBE), and their

normalized counterparts (nRMSE, nMBE) defined by the following equations:

RMSE =

√
1
N ∑(ei −oi)2 (5.2)

nRMSE =

√
1
N ∑(ei −oi)2

1
N ∑oi

(5.3)

MBE =
1
N ∑(ei −oi) (5.4)

nMBE =
∑(ei −oi)

∑oi
(5.5)

where ei and oi are the pair of irradiance estimation and ground observation (i.e., GHI or DNI), N is the total

number of compared data points.

5.3 Results

To evaluate the effectiveness of satellite bands selection from correlation analysis, we compare the per-

formance of GHI and DNI estimations based on the proposed deep learning network (without the attention

layer) using satellite images of 16 bands (referred as DNN16 model) and 8 selected bands (referred as DNN8

model). Similarly, to assess the application of attention mechanism in processing satellite images, the results

of deep learning model with attention layer (referred as DNNa8 model) are also included in the comparisons

in Section 5.3.1, where the reference is the irradiance estimations from NSRDB. As clouds are the dominant

factor affecting the available solar irradiance on the ground level, the comparisons of irradiance estimations

of the deep learning model and NSRDB are detailed in clear and cloudy periods in Section 5.3.2. While
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a further error analysis of irradiance estimation within different clear-sky index intervals is presented in

Section 5.3.3.

5.3.1 Comparison of different deep learning networks for irradiance estimations

The irradiance estimation results at SURFRAD stations are presented in Table 5.3 (for GHI) and Ta-

ble 5.4 (for DNI). It is shown in Table 5.3 that deep learning models for GHI estimations using 16 satellite

bands (DNN16) and 8 selected bands (DNN8) have comparable overall performance. DNN16 generates

GHI estimations at all the SURFRAD stations with the nRMSE of 20.62% and nMBE of 0.72%, while

DNN8 yields a result with slightly larger discrepancies, the nRMSE is 21.17% and the nMBE is -1.97%.

When it comes to DNI estimation (see Table 5.4), the overall results of DNN16 and DNN8 also have limited

differences. In specific, the result of DNN16 for DNI estimation has an nRMSE of 24.43% and an nMBE of

0.53%, while DNN8 produces a slightly better result with the nRMSE of 24.36% and the nMBE of 0.44%.

The integration of attention mechanism generally can improve the irradiance estimations. As shown

in Tables 5.3 and 5.4, the overall GHI estimation of DNNa8 has a lower nRMSE value of 20.57% than

DNN8 (nRMSE of 21.17%), while the nMBE is almost the same (-2.04% vs -1.97%); The DNNa8 model

also yields better DNI estimations compared with DNN8, the overall nRMSE is improved from 24.36% to

23.63%, and the nMBE is reduced from 0.44% to 0.36%.

Table 5.3: The RMSE and MBE in [W m−2], and nRMSE and nMBE in [%], of GHI estimation using

different deep learning models at SURFRAD stations. The GHI estimation error of NSRDB is included as

the benchmark.

DNN16a DNN8b DNNa8c NSRDB

RMSE (nRMSE) MBE (nMBE) RMSE (nRMSE) MBE (nMBE) RMSE (nRMSE) MBE (nMBE) RMSE (nRMSE) MBE (nMBE)

BON 89.34 (23.65) 7.53 (1.99) 91.66 (24.26) 8.20 (2.17) 89.13 (23.59) -9.27 (-2.45) 97.81 (25.89) -1.28 (-0.34)

DRA 64.64 (12.65) -5.19 (-1.02) 64.80 (12.68) -4.62 (-0.90) 66.67 (13.04) 2.83 (0.55) 86.02 (16.83) -5.05 (-0.99)

FPK 84.44 (22.40) 6.04 (1.60) 87.55 (23.23) -9.43 (-2.50) 88.65 (23.52) 0.50 (0.13) 105.05 (27.87) -1.10 (-0.29)

GWN 85.60 (19.30) 9.78 (2.21) 87.88 (19.82) -14.42 (-3.25) 88.76 (20.02) -27.58 (-6.22) 107.08 (24.15) 0.18 (0.04)

PSU 97.00 (25.73) 18.97 (5.03) 97.18 (25.78) -7.35 (-1.95) 91.13 (24.17) -10.47 (-2.78) 123.42 (32.73) 6.45 (1.71)

SXF 79.57 (20.75) -15.71 (-4.10) 84.72 (22.09) -22.12 (-5.77) 80.33 (20.95) -13.16 (-3.43) 103.12 (26.89) 19.59 (5.11)

TBL 95.84 (22.53) -0.66 (-0.15) 98.81 (23.22) -8.75 (-2.06) 92.33 (21.70) -1.91 (-0.45) 121.47 (28.55) -0.56 (-0.13)

ALL 85.78 (20.62) 2.98 (0.72) 88.05 (21.17) -8.18 (-1.97) 85.55 (20.57) -8.50 (-2.04) 106.96 (25.72) 2.43 (0.58)

a ’DNN16’ means DNN with inputs of all the 16 channels.
b ’DNN8’ means DNN with inputs of the 8 selected channels.
c ’DNNa8’ means DNN with attention layer using the 8 selected channels.
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Compared with the GHI and DNI estimations from NSRDB, deep learning based models show sub-

stantial improvements as shown in Tables 5.3 and 5.4. GHI estimation using DNNa8 reduces the nRMSE

by 5.15% from 25.72% to 20.57%, while the bias turns to be enlarged from 0.58% to -2.04%. While for

DNI estimation, deep learning models show more aggressive improvements. The nRMSE is reduced from

37.40% to 23.63% (a 13.77% reduction) using the DNNa8 model, and the bias decreases from 6.25% to

0.36%.

Table 5.4: The RMSE and nMBE, in [W m−2], nRMSE and nMBE in [%], of DNI estimation using differ-

ent deep learning models at SURFRAD stations. The DNI estimation error of NSRDB is included as the

benchmark.

DNN16a DNN8b DNNa8c NSRDB

RMSE (nRMSE) MBE (nMBE) RMSE (nRMSE) MBE (nMBE) RMSE (nRMSE) MBE (nMBE) RMSE (nRMSE) MBE (nMBE)

BON 148.26 (26.25) 33.30 (5.90) 143.01 (25.32) 22.45 (3.98) 143.70 (25.44) -1.07 (-0.19) 214.61 (38.00) 40.72 (7.21)

DRA 124.35 (17.05) 22.69 (3.11) 122.89 (16.85) 19.05 (2.61) 119.28 (16.36) 24.66 (3.38) 185.50 (25.44) 1.75 (0.24)

FPK 178.43 (29.13) -2.18 (-0.36) 174.16 (28.43) 29.10 (5.64) 165.76 (27.07) -13.32 (-2.18) 256.06 (41.81) 40.53 (6.62)

GWN 129.80 (22.40) -23.11 (-3.99) 133.64 (23.06) -27.88 (-4.81) 123.81 (21.37) 3.88 (0.67) 200.48 (34.60) 40.12 (6.92)

PSU 163.44 (29.90) -28.28 (-5.17) 165.87 (30.34) -30.22 (-5.53) 161.80 (29.60) 5.09 (0.93) 245.39 (44.89) 50.07 (9.16)

SXF 147.58 (25.68) 21.84 (3.80) 149.16 (25.95) 19.43 (3.38) 143.46 (24.96) -6.33 (-1.10) 253.93 (44.18) 73.79 (12.84)

TBL 156.15 (25.90) -6.82 (-1.13) 156.45 (25.95) -11.80 (-1.96) 154.95 (25.70) -7.36 (-1.22) 247.34 (41.02) 37.57 (6.23)

ALL 148.69 (24.43) 3.24 (0.53) 148.26 (24.36) 2.66 (0.44) 143.84 (23.63) 2.20 (0.36) 227.61 (37.40) 38.04 (6.25)

a ’DNN16’ means DNN with inputs of all the 16 channels.
b ’DNN8’ means DNN with inputs of the 8 selected channels.
c ’DNNa8’ means DNN with attention layer using the 8 selected channels.

5.3.2 Comparison under clear and cloudy sky conditions

Since the cloud is the primary atmospheric constitute affecting the available solar irradiance on the

ground level, solar resource assessment under cloudy sky conditions is generally associated with larger

uncertainties in both semi-empirical and physical satellite-based methods [127]. Therefore, it might be

of interest to evaluate the performance of deep learning based model for solar irradiance (i.e., GHI and

DNI) estimation under cloudy and clear sky conditions that are based on Bright-Sun clear-sky detection

algorithm [112].

The overall performance of GHI and DNI estimations using deep learning model (DNNa8) and physical

solar model (NSRDB) are presented in Tables 5.5 and 5.6. As shown in Table 5.5, GHI estimation of

DNNa8 has larger discrepancies than NSRDB in clear sky periods. In specific, DNNa8 has a RMSE of
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39.88 W m2 and a MBE of -9.78 W m2, while the RMSE and MBE of NSRDB are 27.09 W m2 and 2.15

W m2, respectively. In cloudy sky periods, GHI estimates of DNNa8 show better performance than NSRDB

in terms of nRMSE with the reduction of 6.92% from 32.48% to 25.56%, while the bias becomes larger

from 0.68% to -2.22%. As for DNI estimation (see Table 5.6), DNNa8 typically shows better results than

NSRDB with the exception of a larger bias in clear sky periods. Compared with NSRDB for estimating

DNI in clear skies, DNNa8 reduces the RMSE from 85.43 W m2 to 73.55 W m2, while the MBE is enlarged

from -12.28 W m2 to -20.23 W m2. When the sky is cloudy, the DNI estimation of NSRDB has a RMSE of

263.85 W m2 and the MBE is 58.17 W m2. DNNa8 yields an estimation with the errors of RMSE and MBE

decreased to 163.73 W m2 and 11.18 W m2, respectively. The results of GHI and DNI estimation on some

selected days are presented in Fig. 5.6 for clear, cloudy, and partially cloudy days. It is shown that both GHI

and DNI of DNNa8 have lower divergences compared with NSRDB in cloudy periods.

Table 5.5: The comparison of GHI estimation results under clear and cloudy periods at all SURFRAD

stations using deep learning (DNNa8) and physical solar model (NSRDB).

DNNa8 NSRDB

RMSE
[W m−2]

nRMSE
[%]

MBE
[W m−2]

nMBE
[%]

RMSE
[W m−2]

nRMSE
[%]

MBE
[W m−2]

nMBE
[%]

Clear periods 39.88 6.65 -9.78 -1.63 27.09 4.52 2.15 0.36

Cloudy periods 93.94 25.56 -8.16 -2.22 119.40 32.48 2.50 0.68

All periods 85.55 20.57 -8.18 -2.04 106.96 25.72 2.43 0.58

Table 5.6: The comparison of DNI estimation results under clear and cloudy periods at all SURFRAD

stations using deep learning (DNNa8) and physical solar model (NSRDB).

DNNa8 NSRDB

RMSE
[W m−2]

nRMSE
[%]

MBE
[W m−2]

nMBE
[%]

RMSE
[W m−2]

nRMSE
[%]

MBE
[W m−2]

nMBE
[%]

Clear periods 73.55 8.40 -20.23 -2.31 85.43 9.76 -12.28 -1.40

Cloudy periods 163.73 32.62 11.18 -2.22 263.85 52.59 58.17 11.59

All periods 143.84 23.63 2.20 0.36 227.61 37.40 38.04 6.25
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Figure 5.6: GHI and DNI estimation results on some selected days at BON and DRA. (a) and (d) are on

clear days, (b) and (e) are on cloudy days, while (c) and (f) are for partially cloudy days.
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Figure 5.7: The comparison of GHI estimation using deep learning (DNNa8) and physical solar model

(NSRDB) under clear, cloudy, all-sky conditions at all SURFRAD stations.
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Fig. 5.7 presents the detailed comparison of GHI estimation at all SURFRAD stations using deep learn-

ing and physical model. Compared with NSRDB, DNNa8 generally produces lower RMSE in cloudy and

all-sky conditions, while the RMSE value in clear periods is higher. DNNa8 turns to generates compara-

tively larger negative bias for both clear and cloudy periods (e.g., BON, GWN, and PSU). The site-specific

comparison of DNI estimation is shown in Fig. 5.8. Generally, deep learning model outperforms the physi-

cal model in cloudy sky conditions with lower values of RMSE and MBE. Similarly, DNNa8 is more likely

to yield DNI estimation with larger biases in clear periods.
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Figure 5.8: The comparison of DNI estimation using deep learning (DNNa8) and physical solar model

(NSRDB) under clear, cloudy, all-sky conditions at all SURFRAD stations.

5.3.3 Error analysis

To further evaluate the results of solar irradiance estimations using deep learning based method, we

herein compare the performance with physical model in NSRDB within different clear-sky index intervals

based on the Ineichen-Perez model. Since the intervals of clear-sky index are determined for GHI and

DNI separately, the error analysis is performed in each clear-sky index intervals for both GHI and DNI

estimations. Note that the use of other clear-sky models, e.g., McClear [32] or REST2 [33] has similar

results, as the aim is to evaluate the performance of GHI and DNI estimations under various conditions.
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Figure 5.9: The comparison of GHI estimation using deep learning (DNNa8) and physical solar model

(NSRDB) across clear-sky index intervals at all SURFRAD stations. ’ALL’ means all the stations are

included.

A detailed comparison of GHI estimation in different clear-sky index intervals at all SURFRAD stations

is presented in Fig. 5.9. Generally, DNNa8 is more likely to produce GHI estimation with lower discrep-

ancies (also see Fig. A5.1 for the joint and marginal distributions for GHI measurements and estimations,

and Fig. A5.2 for error distributions). Both DNNa8 and NSRDB generate overestimation in the conditions

of low clear-sky index and underestimation when the clear-sky index is high, especially when the clear-sky
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index exceeds 1.2 as shown in Fig. 5.9. Moreover, DNNa8 and NSRDB also exhibit high divergences in

GHI estimation when the clear-sky index is higher than 1.2.
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Figure 5.10: The comparison of DNI estimation using deep learning (DNNa8) and physical solar model

(NSRDB) across clear-sky index intervals at all SURFRAD stations.’ALL’ means all the stations are in-

cluded.

Fig. 5.10 presents the comparison of DNI estimation in different clear-sky intervals at all SURFRAD

stations. The overall trend is that both deep learning and physical model yield DNI estimations with lower

RMSE values when the clear-sky index increases. Meanwhile, DNI is generally overestimated when the
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clear-sky index is low and underestimated for high clear-sky indexes, the bias exhibits a linear approxi-

mation and decreases from positive to negative with the increase of clear-sky index. Despite some on-site

variations, for instance, high RMSE when clear-sky index exceeds 1.2 (i.e., DRA and FPK), larger diver-

gences of DNNa8 (e.g., at GWN and PSU when clear-sky index is greater than 1.2), deep learning generally

outperforms physical model (see Fig. A5.3 for the joint and marginal distributions for DNI measurements

and estimations, and Fig. A5.4 for error distributions).

5.4 Discussion

Based on the results of DNN16 and DNN8, correlation analysis is effective to select the representative

satellite bands to support solar irradiance modeling. Note that although the results of DNN16 and DNN08

show some site-specific variations as detailed in Tables 5.3 and 5.4, the overall picture is that divergences

between DNN16 and DNN8 remain insignificant. This means the information in the sub-selected bands is

still sufficient to infer the atmospheric compositions attenuating solar radiation. Therefore, it can reduce

the complexity and improve the efficiency in retrieving solar irradiance using satellite data, especially for

regional applications with long-time period. Similarly, based on the results of DNN8 and DNNa8, the

attention layer generally shows positive impact for irradiance estimation. However, the improvement is not

significant. The possible reason is that the attention mechanism is to extract information on a sub-target

area rather than the whole domain, and the ground station is located on the centered pixel in relatively

small images. Therefore, the attention mechanism can not outperform too much than the baseline model.

Since NSRDB employs physical solar model and reanalysis products to simulate the interactions between

atmospheric components and solar radiation. The improvements in both GHI and DNI estimations using

deep learning and satellite images indicate that deep learning may have the potential to simplify the radiative

transfer simulations for solar resource assessment.

When comparing the results in clear and cloudy periods, DNNa8 generally turns to produce larger bi-

ases for GHI estimations in both clear and cloudy sky conditions and therefore underestimates in the overall

results (see Table 5.5). Nevertheless, the improvements of deep learning based model for estimating GHI

in cloudy conditions are noticeable. Consequently, the overall RMSE of all-sky GHI estimation of DNNa8

is smaller than NSRDB. As for DNI estimation, DNNa8 outperforms NSRDB for all-sky conditions. Since

DNI is more sensitive than GHI to the attenuating effect of atmospheric constitutes, the estimation of DNI

is more challenging, evidenced by the generally larger variances and biases produced by both deep learn-

ing and physical models (see Table 5.6). Deep learning shows a compromised performance for irradiance
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estimation in clear sky conditions. The possible reason could be the selected satellite bands are more ef-

fective in representing the cloud properties, while the information of atmospheric aerosol and water vapor

can not be extracted as accurately as the reanalysis products used in NSRDB, especially under clear sky

conditions. Nevertheless, the application of deep learning could improve the overall performance of solar

resource assessment inferring satellite measurements compared to the physical solar model in NSRDB. The

improvements in GHI and DNI estimations might be beneficial to the solar community.
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Figure 5.11: The cloud enhancement events at the SURFRAD stations. GHI is the actual measurement,

GHI DNN and GHI NSRDB are the estimations from the deep learning model and physical solar model,

respectively. GHI EX is the extraterrestrial radiation projected on the horizontal surface.

For the high discrepancies observed in Fig. 5.9 when clear-sky index is greater than 1.2, the possible

explanation could be the cloud enhancement effect [154]. Cloud enhancements can cause the GHI to instan-

taneously exceed the clear-sky GHI and even the solar constant [123]. As shown in Fig. 5.11, the measured

GHI can be greater than the projection of extraterrestrial radiation on the horizontal surface with high fluctu-

ations due to cloud enhancement. Therefore, the clear-sky index is expected to be greater than 1.0. However,

the cloud enhancement is rather an instantaneous process, satellite sensors might not be able to capture these

phenomena. Satellite-based deep learning and physical methods could not obtain accurate GHI estimation

when cloud enhancement happens, which is the major contributor for the relatively larger errors (i.e., under-

estimation) when the clear-sky index is greater than 1.2. Meanwhile, deep learning still faces challenges in
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retrieving DNI via satellite images under cloudy conditions (low clear-sky index, see Fig. 5.10), where the

errors are comparatively larger. Although DNI estimation is generally with larger uncertainties, deep learn-

ing shows potential especially in extracting cloud information via satellite images. To further improve the

accuracy of solar irradiance estimation, cloud enhancements on GHI should be better accounted for. While

for DNI, more sophisticated methods to reveal the cloud affecting direct solar rays should be developed.

5.5 Conclusions

The 16 spectral channels of GOES-16 can be used individually or together to reveal atmospheric charac-

teristics for various applications. In this work, multispectral GOES-16 images are used for estimating solar

irradiance (i.e., GHI and DNI) by deep learning. After pre-processing, a correlation analysis is applied to

select the representative bands. The satellite images of selected bands are then used as inputs for a deep

learning model based on convolutional, attention, and dense layers. Clear-sky indexes are used as the labels

for both GHI and DNI estimation models. The performance of the proposed methods and the effectiveness

of bands selection are evaluated against the measurements and compared with irradiance estimations from

NSRDB.

Deep learning models based on 16 spectral bands (DNN16) and 8 selected bands (DNN8) have compa-

rable performance for both GHI and DNI estimations compared to the ground measurements at SURFRAD

stations. This demonstrates the effectiveness of correlation analysis in selecting representative spectral satel-

lite bands for solar irradiance estimation. It is more effective to use a subset of satellite spectral bands to

reduce model complexity and computational cost, which is especially beneficial for large-scale applications.

Furthermore, the integration of attention mechanism in deep learning (DNNa8) shows improvements in

both GHI and DNI estimations. When compared with NSRDB, DNNa8 generally produces GHI estimation

with lower RMSE in cloudy conditions, but higher RMSE in cloudless skies. Nevertheless, the improve-

ments in GHI estimation under cloudy conditions lead to an overall nRMSE reduction of 5.15%. Similarly,

the overall nRMSE for DNI estimations is reduced from 37.40% to 23.63%, and the bias is improved from

6.25% to 0.36%. Satellite images provide more spatial information (i.e., nonlocal cloud) around the target

location than a single pixel, and the attention mechanism enables the model focus on more important fea-

tures. As a result, both GHI and DNI estimations show improvements, especially in cloudy conditions. This

means the attention mechanism might be applicable for solar irradiance estimation over a larger area given

on-site data available.

When comparing DNNa8 and NSRDB in irradiance estimations across different ranges of clear-sky

104



index, deep learning models still show better overall performance in both GHI and DNI estimations. That

said, both GHI and DNI estimations with improved accuracy via deep learning might provide more benefits

in solar irradiance modeling. It is necessary to mention that both satellite-based deep learning and physical

models could not account for the cloud enhancement effects, where comparatively larger errors are observed

for GHI estimation when the clear-sky index exceeds 1.2. Although deep learning performs comparatively

better than physical models in extracting cloud information, more efforts are still needed for revealing the

cloud properties across the vertical atmospheric layers.

In summary, correlation analysis is effective in selecting representative satellite bands to reduce the

complexity and improve the efficiency in solar irradiance estimation. Although deep learning with atten-

tion mechanism provides an alternative for satellite-to-irradiance methods, there are still some limitations,

such as the need of ground measurements for model development and the incapability in capturing cloud en-

hancement events. Notwithstanding, the combination of deep learning and remote sensing shows potential in

extracting cloud information via satellite images. The high spatiotemporal resolution satellite-to-irradiance

data with improved accuracy can better capture the solar variability, which is beneficial for designing solar

energy projects.
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5.7 Appendix

Figure A5.1: Joint and marginal distributions for GHI measurements and estimations of DNNa8 and

NSRDB at all SURFRAD stations: (a) BON, (b) DRA, (c) FPK, (d) GWN, (e) PSU, (f) SXF, (g) TBL,

(h) ALL. ’ALL’ means all the stations are included. The colors show 2D kernel densities. GHI estimations

of DNNa8 generally show better agreements with GHI observations than NSRDB.
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Figure A5.2: The error distributions for GHI estimations of DNNa8 and NSRDB at all the SURFRAD

stations: (a) BON, (b) DRA, (c) FPK, (d) GWN, (e) PSU, (f) SXF, (g) TBL, (h) ALL. ’ALL’ means all the

stations are included. The density is a normalized probability density, the error is the difference between

DNI estimate and measurement. A gaussian regression is performed for each distribution. The error of

DNNa8 shows a narrower profile compared with NSRDB.
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Figure A5.3: Joint and marginal distributions for DNI measurements and estimations of DNNa8 and

NSRDB at all SURFRAD stations: (a) BON, (b) DRA, (c) FPK, (d) GWN, (e) PSU, (f) SXF, (g) TBL,

(h) ALL. ’ALL’ means all the stations are included. The colors show 2D kernel densities. DNI estimations

of DNNa8 generally show better agreements with DNI observations than NSRDB.
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Figure A5.4: The error distributions for DNI estimations of DNNa8 and NSRDB at all the SURFRAD

stations: (a) BON, (b) DRA, (c) FPK, (d) GWN, (e) PSU, (f) SXF, (g) TBL, (h) ALL. ’ALL’ means all the

stations are included. The density is a normalized probability density, the error is the difference between

DNI estimate and measurement. A gaussian regression is performed for each distribution. The error of

DNNa8 shows a narrower profile compared with NSRDB.
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Chapter 6

Improved satellite-based intra-day solar

forecasting with a chain of deep learning

models

6.1 Introduction

Renewables are expected to account for over 90% of the global electricity expansion in the next years

due to energy security concerns and climate ambitions. The total capacity of solar photovoltaic (PV) is set

to surpass coal and become the world largest power source over 2022-2027 [155]. Despite the aggressive

acceleration in the installed capacity, the operation and integration of solar power still face challenges be-

cause of its intermittency [11, 156]. To address the issues related with solar variability, one of the solutions

could be solar forecasting [8, 14]. Indeed, Solar forecasting could be cost-effective, with the aim to support

system management and scheduling to meet the changing demand and therefore mitigate the variability of

solar power, by providing predictions up to a few days ahead [21]. Generally, solar forecasting refers to

both solar irradiance forecasting and solar power forecasting [20]. As indicated by the names, the former

is focused on irradiance quantities such as global horizontal irradiance (GHI) or direct normal irradiance

(DNI), while the latter is related with the power output of PV or concentrated solar power (CSP) systems.

It is paramount to have good irradiance forecasts to get solar power forecasts with high quality [117], using

either a data-driven approach or a physical model chain [21, 157].

In solar forecasting, one of the salient features of solar irradiance is the two-frequency pattern (i.e.,

yearly and diurnal cycles). Therefore, a clear-sky model that estimates the ground-level irradiance under a
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cloud-free atmosphere is usually required to remove the seasonality [36, 152]. The spatio-temporal nature,

as another important feature of solar irradiance, should also be considered in solar forecasting models by

integrating available spatio-temporal information [21]. In fact, solar forecasts based on spatio-temporal in-

puts have demonstrated to be more beneficial than forecasts based solely on local measurements [158, 159].

This performance enhancement arises from the improved representation of cloud dynamics, as clouds are

the primary driver of solar variability [160]. Three main methods can be used to obtain the spatio-temporal

data in solar forecasting [21], namely, sky images for intra-hour forecasting [14], satellite measurements for

intra-day forecasting [55], and numerical weather prediction (NWP) data for day-ahead forecasting [21].

The utilization of remote-sensing data is one of the advanced aspects in intra-day solar forecasting [21].

Geostationary satellites, such as Geostationary Operational Environmental Satellites (GOES), Meteosat,

and Himawari, collectively offer a coverage of all the area within latitudes of ±60◦. Modern geostationary

satellites provide much finer data in both spatial and temporal resolutions with more spectral bands. The

advancement in remote sensing technology has substantially contributed to the development of satellite-

derived irradiance products, with the spatio-temporal resolution improved to 2-km and 5-minute [105, 127,

161]. To that end, satellite images and satellite-derived irrdiance products have been extensively used in

solar forecasting applications [12, 14, 21, 162].

The critical insights regarding the use of satellite data and/or satellite-derived irradiance products for

intra-day solar forecasting are summarized as follows,

• Satellite data used in solar forecasting can be from one single channel [67], two visible channels [55]

or multiple channels [133, 163]. Satellite data of visible channels are mainly used to derived cloud

index maps [55, 67], which are used to predict future cloud information via advection and extrapola-

tion, and then get the irradiance forecasts using the Heliosat method [55, 164]; While the usage of data

from multiple spectral channels is to account for the modulation effect of clouds on solar radiation,

using either a deep learning model [163] or a physical classification method [133].

• The forecasting method can be semi-empirical [55] or deep learning based [159, 163]. The semi-

empirical method mainly focuses on the determination of cloud dynamics using cloud motion analysis

based on optical flow [55, 164], and the clear-sky irradiance is quantified by a clear-sky model [55];

While deep learning can be applied to detect the cloud motion using images of multiple satellite

channels [163] or satellite-derived irradiance over the target region [159].

• Satellite-derived irradiance products can be based on semi-empirical models [165] or physical mod-

els [166, 167]. Similar to satellite images, satellite-derived irradiance can also provide spatio-temporal
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information in solar forecasting [165, 166]. The semi-empirical satellite-to-irradiance method relies

on the Heliosat model that empirically determines the cloud attenuation with historical satellite mea-

surements [165]; While the physical method applies radiative transfer models in retrieving solar ir-

radiance from satellite-derived atmospheric properties, e.g., the National Solar Radiation Database

(NSRDB) [166].

• Satellite data or satellite-derived irradiance products can be used as the single exogenous input [55,

167] or a part of the inclusive inputs [165, 168]. For example, satellite or satellite-derived data can

be used as the only input to derive and predict future cloud field and thus solar irradiance [55, 167];

To further improve the forecasting performance, some other types of data such as on-site measure-

ments [165], NWP products [165], and sky images [168] are used as additional inputs for solar fore-

casting.

• Solar forecasts can be deterministic [163] or probabilistic [167]. So far, studies on solar forecasting

are more focused on deterministic forecasts that offer single ”best-guess” values [159, 163, 165]. On

the other hand, probabilistic forecasts that quantify the uncertainty in forecasting provide valuable

information for solar energy projects, and therefore have attracted more attention in the field [167,

168].

Given the inherent spatio-temporal nature of solar irradiance, it is more likely that high-accuracy fore-

casts can be produced by incorporating spatio-temporal information, for instance, via satellite data or

satellite-derived irradiance products. However, in the selection of spatio-temporal data for intra-day so-

lar forecasting, a clear determination has not yet been made regarding whether it is better to employ raw

satellite measurements or satellite-derived irradiance products. Moreover, in our recent study [161], spectral

satellite images of GOES-16 and deep learning algorithms are applied to estimate both GHI and DNI with

the spatio-temporal resolution of 2-km and 5-minute at the ground level. The estimation results show sub-

stantial accuracy improvements when compared with NSRDB [49], which represents the-state-of-the-art in

the satellite-based estimation of solar irradiance.

Therefore, one more research question herein is that if the satellite-derived irradiance products with

improved accuracy (i.e., satellite-derived irradiance by deep learning (SAT-DL)) could lead to more accurate

solar forecasts. In this regard, a deep learning model chain method is proposed for improved intra-day

solar forecasting using spectral satellite data. The deep learning model chain consists of two deep learning

models, one is to obtain spatial GHI estimates with improved accuracy, and the other is to subsequently

produce forecasts based on the improved spatial estimates. The efficacy of the deep learning model chain
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is evaluated by the comparisons with an end-to-end deep learning model using spectral satellite images

and a hybrid physical-deep learning model based on NSRDB. The major contributions of this work are

summarized as follows:

• An innovative deep learning model chain is proposed for generating intra-day GHI forecasts using

spectral satellite measurements. This approach has improved forecast performance with high robust-

ness. Instead of utilizing all spectral satellite bands, a subset of bands is selected to improve the

modeling efficiency [161].

• The deep learning model chain comprises two parts: one for improving spatial GHI estimates and

the other for subsequently generating GHI forecasts based on these improved estimates. Initially

developed for single-location GHI estimates [161], the deep learning model has now been expanded

for regional GHI estimations.

• The deep learning model chain is benchmarked against an end-to-end deep learning model using

spectral satellite data and a hybrid physical-deep learning model using spatial NSRDB estimates.

The superior performance of our proposed method provides valuable insights into the selection of

spatio-temporal information, including satellite data and satellite-derived irradiance products, for solar

forecasting applications.

The rest of this paper is structured as follows: Section 6.2 describes the data and the methods, where data

acquisition and pre-processing procedure are presented in Section 6.2.1, the utilization of SAT-DL product

is detailed in Section 6.2.2, the forecasting setup is presented in Section 6.2.3, and performance evaluation

methods of forecasts is presented in Section 6.2.4. The forecast results are quantitatively and qualitatively

evaluated and compared in Section 6.3, and the implications are discussed in Section 6.4. Finally, Section 6.5

summarizes the key findings of this study.

6.2 Data and methods

This section describes the utilized data and methods for solar irradiance forecasting. As shown in the

methodology flowchart (see Fig. 6.1), lagged spectral satellite images, and two satellite-derived irradiance

products are used as three alternative inputs for intra-day solar irradiance forecasting from 15 minutes to 180

minutes ahead. The raw satellite data are from several selected spectral bands of GOES-16, while datasets

of NSRDB and SAT-DL are satellite-derived irradiance products from raw satellite measurements. The

main difference between NSRDB and SAT-DL is that the former applies a physical solar model (radiative
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transfer model) to derive irradiance, while the latter employs a deep learning method. The labels are ground

measurements (i.e., GHI) at the location centered in the domain of the satellite images, NSRDB and SAT-DL

irradiance matrices. Then the inputs and corresponding labels are divided into subsets of training, validation,

and testing to train and evaluate deep learning-based forecast model.
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Figure 6.1: The methodology flowchart of solar irradiance forecasting employed in this work. The deep

learning model chain derives irradiance from satellite data and subsequently generates forecasts. The end-

to-end deep learning model only applies satellite data, and the hybrid physical-deep learning model uses

physically satellite-derived NSRDB data.

The accuracy of irradiance predictions using the three alternative inputs are evaluated against ground

measurements. Note that using SAT-DL irradiance estimates as inputs for another deep learning model

forms a deep learning model chain, the end-to-end deep learning model using raw satellite measurements

and the hybrid physical-deep learning model using NSRDB are used as benchmarks. Detailed descriptions

of data pre-processing, deep learning model chain, forecasting model development and optimization are

presented in the following subsections.
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6.2.1 Publicly available data

Publicly available data used in this study includes ground-level irradiance measurements, spectral satel-

lite images, and satellite-derived irradiance products. Ground-level measurements are from the Surface

Radiation Budget Network (SURFRAD) stations [29]. Satellite images are from GOES-16, but only a sub-

set of spectral bands are selected [161]. Satellite-derived irradiance products are from NSRDB [49]. A brief

summary of the publicly available data used is presented in Table 6.1.

Table 6.1: A summary of the publicly available data used in this work.

Data type Description Time period (year)

SURFRADa Irradiance measurements On-site measurements of solar irradiance 2019, 2020

GOES-16b Satellite measured radiance Radiance of eight selected spectral bands 2019, 2020

NSRDBc Derived ground-level irradiance Satellite-derived irradiance with a physical model 2020

a Available at https://gml.noaa.gov/grad/surfrad/, can be downloaded by SolarData [27].
b Available at https://registry.opendata.aws/noaa-goes/, can be download by GOES-2-go [169].
c Available at https://nsrdb.nrel.gov/, can be downloaded by SolarData [27].

6.2.1.1 Solar irradiance measurements from SURFRAD

SURFRAD is a network of seven stations with five different climatological zones across the contiguous

United States. As one of the radiation networks with the highest data quality in the world, SURFRAD

has been supportive in widespread applications and research since its establishment in 1995 [29]. Data

of all seven stations are used, namely, Bondville (BON), Desert Rock (DRA), Fort Peck (FPK), Goodwin

Creek (GWN), Pennsylvania State University (PSU), Sioux Falls (SXF), and Table Mountain (TBL). Since

SURFRAD data has been extensively utilized and described in the literature and our previous works [103,

127, 152], the details will not be reproduced here.

Raw measurements including GHI, DNI, diffuse horizontal irradiance (DHI), solar zenith angle in 2019

and 2020 at all seven stations are downloaded. Although GHI is the forecasting target, other data of DNI,

DHI, and solar zenith angle are required for quality control (QC). The pre-processing of SURFRAD data

includes: (i) QC to remove unreasonable data points, (ii) data aggregation, and (iii) normalization, described

as follows,

• QC: Several QC procedures are considered, including the extremely rare limit test and the three-

component closure test [27]. These QC steps are based on the theoretical aspects detailed by Long
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and Shi [28].

• Data aggregation: After QC, the 1-minute averaged GHI measurements are aggregated to 5-minute

intervals and indexed in Coordinated Universal Time (UTC). This is to be compatible with satellite

data with the temporal resolution of 5-minute. Due to the high airmass effect at solar mornings and

evenings, all GHI measurements for solar zenith angle of 85◦ or greater are discarded [103].

• Normalization: It is suggested to remove the double-seasonal pattern of solar irradiance prior to fore-

casting [21]. On this point, the 5-minute GHI measurements are normalized using clear-sky GHI

(GHIcs) estimations in NSRDB to generate clear-sky indexes (CSI = GHI/GHIcs), which are used as

labels in the forecasting model.

6.2.1.2 Spectral radiance data from GOES-16

GOES-16 is one of the GOES-R series geostationary satellites with the operation location of 75.2◦W

during the investigated period of this study. The Advanced Baseline Imager (ABI) has 16 spectral bands

(two visible, four near-infrared, and ten infrared channels), which monitors the Earth with much finer tem-

poral and spatial resolutions compared with the previous generation of GOES. Among the available spectral

information, only a subset of satellite bands are selected as shown in Table 6.2. This is because some bands

are highly correlated [161], and using only the representative satellite bands can improve the learning effi-

ciency by eliminating redundant features [161]. 5-minute GOES-16 images of eight selected spectral bands

in 2019 and 2020 are extracted and georeferenced to the target SURFRAD stations with the size of 11×11

pixels (for 2019), and 21×21 pixels (for 2020), respectively. The pre-processing of GOES-16 data includes

radiance conversion and normalization:

• Radiance conversion: This is to convert the packed-scaled value into radiance received by each band of

GOES-16. The radiance for each band is obtained using the scale factor and add offset (see Table 6.2):

radiance = raw∗ scale+offset (6.1)

where raw is the packed-scaled value, scale is the scale factor, and offset is the add offset.

• Normalization: To remove diurnal effects for the benefit of training, the spectral radiance data of each

band is further normalized by the band range (i.e., the minimum and maximum spectral responses)

and solar zenith angle. This is adopted from [160] to weight each band equally:

L̃b
i j|t = 1−

Lb
i j|t −Lb

min

cos(θz|t)(Lb
max −Lb

min)
(6.2)
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where L̃b
i j|t is the normalized value at each pixel in band b at time t, Lb

i j|t is the measured radiance

of that pixel, θz|t is the solar zenith angle at time t, Lb
min and Lb

max are the minimum and maximum

spectral responses of band b, respectively.

Note that the spectral bands have different spatial resolutions at the sub-satellite point as shown in

Table 6.2, the bands with better resolutions are re-scaled as 2-km to ensure consistency among selected

bands. As a multi-band passive imaging radiometer, the radiance received by ABI cannot theoretically be

less than zero. Therefore, all negative values are discarded. The end timestamp of each scan in UTC time

is used to index the image after rounding to the next nearest 5-minute interval, to be compatible with GHI

measurements, and for real-time applications.

Table 6.2: The detailed information of the selected ABI spectral bands of GOES-16 [104].

Band λ [µm] Center λ

[µm]

Resolution

[km]

Type Valid range Scale factor Add offset

1 0.45-0.49 0.47 1 Visible 0-1022 0.8121 -25.9366

3 0.846-0.885 0.865 1 Near-Infrared 0-1022 0.3769 -20.2899

4 1.371-1.386 1.378 2 Near-Infrared 0-2046 0.0707 -4.5224

5 1.58-1.64 1.61 1 Near-Infrared 0-1022 0.0958 -3.0596

6 2.225-2.275 2.25 2 Near-Infrared 0-1022 0.0301 -0.9610

7 3.80-4.00 3.90 2 Infrared 0-16382 0.0016 -0.0376

9 6.75-7.15 6.95 2 Infrared 0-2046 0.0225 -0.8236

11 8.30-8.70 8.50 2 Infrared 0-4094 0.0334 -1.3022

6.2.1.3 Satellite-derived irradiance from NSRDB

NSRDB is a widely accessed and publicly available satellite-derived database that provides solar irra-

diance over the United States and a growing number of international locations [49, 170]. Data in NSRDB

includes broadband solar radiation of GHI, DHI, DNI, and their clear-sky expectations. Meanwhile, there

are also many other auxiliary variables, such as solar zenith angle, cloud type, and meteorological data.

NSRDB is serially complete with more than 20 years of coverage, providing data in 30-minute temporal

and 4 km spatial resolutions. Starting in 2018, the temporal and spatial resolutions of NSRDB are further

improved to 5-minute and 2-km, respectively [170]. Moreover, NSRDB is produced using a physical so-

lar model, which is a two-step model to compute solar radiation from satellite data (e.g., GOES-16) and
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products of a number of other associations [49]. The validation of 5-minute irradiance data of NSRDB

against SURFRAD measurements shows that the new 5-minute NSRDB has higher discrepancies due to its

higher temporal resolution [105]. However, it is still a remarkable milestone in solar irradiance modeling

and resource assessment.

The NSRDB GHI values and their clear-sky expectations in 2020 are downloaded for 11× 11 loca-

tions around each SURFRAD station. The temporal resolution is 5-minute and spatial resolution is 2-km.

Clear-sky GHI estimations in NSRDB are calculated using the REST2 model [33], which has been re-

peatedly identified as one of the clear-sky models with high-performance [34, 36]. The pre-processing of

NSRDB mainly includes normalization: Similar to the removal of double-seasonal effects of irradiance

measurements, the GHI estimates are normalized by the GHIcs to generate CSI, which are used as one of the

alternative inputs. The region of these 121 surrounding locations can provide spatio-temporal information

for solar forecasting at the target station.

6.2.2 Satellite-derived irradiance from SAT-DL

In our previous study [161], high spatio-temporal resolution spectral satellite images of GOES-16 are

used to estimate ground-level GHI and DNI via deep learning. The results are verified against measure-

ments at SURFRAD stations and show better performance in estimating both GHI and DNI compared with

NSRDB. There are mainly three steps: (i) mapping spectral satellite images of representative bands with

ground observations, (ii) training and optimizing the deep learning model, and (iii) obtaining irradiance

estimates from new satellite images. The deep learning model used in [161] employs convolutional neural

networks (CNNs) [78], the attention mechanism [140] and fully-connected dense layers.

The original deep learning model in [161] is developed for ground irradiance estimates at a single lo-

cation, which is centered in the domain of satellite images with 11× 11 pixels. As shown in Fig. 6.2(a),

the target is one of the SURFRAD stations (e.g., TBL), and the satellite images cover the same region

with the surrounding locations. The target station can be anywhere as long as there are on-site irradiance

measurements available. Following the same methodology, we expand the target from one station to the

11×11 surrounding area with 121 locations. As shown in Fig. 6.2(b), selected spectral satellite images of

GOES-16 (see Table 6.2) with the size of 21×21 pixels are used to obtain the GHI estimates for the whole

region (11× 11 pixels) via the pre-trained model. Specifically, datasets in 2019 are used to develop the

pre-trained deep learning model for GHI estimation at a single SURFRAD station using spectral satellite

images (11× 11 pixels) and ground measurements. The pre-trained model is then applied to obtain GHI

estimates in 2020 for the whole surrounding region (121 locations) by shifting an 11× 11-pixel window
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over the larger satellite images (21×21 pixels) as illustrated in Fig. 6.2(b). Note that the model’s output is

CSI of GHI normalized by the REST2 clear-sky model (available in NSRDB). The whole 11×11 matrices

of CSI are used as inputs for GHI forecasting of the target station. Therefore, CSI outputs are not converted

back to GHI estimates at this step.
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Figure 6.2: An illustration of solar irradiance forecasting for the Table Mountain (TBL) station using sur-

rounding spatial information. (a) The target and 121 surrounding locations with satellite-derived irradiance,

(b) The target with 121 surrounding locations and the domain of used spectral satellite images. A pixel-wise

11×11 shifting window is applied to get the SAT-DL for the 121 surrounding stations.

Forecasting using SAT-DL irradiance thus forms a deep learning model chain, i.e., satellite data are

converted to GHI estimates by a deep learning based model [161], and the resulting GHI estimates are used

subsequently to produce GHI forecasts using another deep learning model. Recall that satellite images and

ground measurements in 2019 are used to train and validate the deep learning model for GHI estimates

(SAT-DL), while SAT-DL GHI estimates in 2020 are used as inputs for solar irradiance forecasting.

The method to generate GHI estimates for a single location is efficient to implement. Using the pre-

trained model to get GHI estimates over a large region could be more time-consuming, therefore, we do not

consider larger areas around the target station. Also, the pre-trained model is developed only using ground

data at the target stations, thus the accuracy might decrease with the increased distance for locations that are
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too far away. Considering that the surrounding terrain and climate feature would not be significantly different

for a certain location, it is reasonable to assume that GHI estimates of SAT-DL have lower discrepancies

than NSRDB in the area around the SURFRAD stations. In a more general case, one can change the size of

the surrounding area to investigate the effects on GHI estimates and forecasting, but this is not considered

in this study.

6.2.3 Forecasting method

Deep learning is extensively used in solar forecasting and resource assessment applications using satel-

lite images and related products. The deep learning forecasting model applied in this work applies CNNs,

the attention mechanism and fully-connected dense layers based on Tensorflow [151]. Compared with the

deep learning irradiance estimation model in [161], the main differences are the sources of inputs and the

number of outputs. As illustrated in Fig. 6.3, three different datasets are used as inputs to generate CSI fore-

casts for lead times from 15 to 180 minutes. As mentioned before, the deep learning model chain can obtain

more accurate spatial GHI estimates from satellite data and subsequently produce GHI forecasts using the

spatial GHI estimates of SAT-DL. The end-to-end deep learning model only employs spectral satellite data

as inputs, while the hybrid physical-deep learning model applies GHI estimates of NSRDB as inputs. The

inputs are lagged spectral satellite images or satellite-derived GHI matrices in the past hour with the tem-

poral resolution of 5-minute and spatial resolution of 2-km, while the outputs are 5-minute averaged CSI

forecasts for the various forecast horizons. For example, the 5-minute average means that the CSI forecast

at t = 12:00 is the averaged value over times 11:58, 11:59, 12:00, 12:01, and 12:02 [105].

Note that the input sizes of satellite-derived GHI matrices and satellite images are different, the satellite-

derived GHI matrices are in the size of 11× 11 surrounding locations as shown in Fig. 6.2(a), while the

spectral satellite images are in the size of 21×21 pixels as illustrated in Fig. 6.2(b). This is done to perform

a fair comparison among satellite images and derived GHI products, since GHI estimates of SAT-DL is

based on the image size of 21×21.

The deep learning model F can produce multiple CSI forecasts (multiple-output model) with forecast

horizons (∆t) up to 180 minutes (i.e., 15, 30, 45, 60, 90, 120, 150, and 180-minute), which can be formulated

as,

Ît0+15, Ît0+30, ..., Ît0+180 = F(xt0 ,xt0−5, ...,xt0−60) (6.3)

where Î denotes the CSI forecast, which can be converted back to GHI by multiplying clear-sky GHI of

REST2 at time t +∆t; x represents the spatio-temporal input, i.e., x ∈R21×21×8 for spectral satellite images,

x ∈ R11×11 for GHI estimates from NSRDB or SAT-DL.
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Figure 6.3: The structure of the deep learning model for CSI forecasts using spectral satellite images or

satellite-derived GHI products. This is a model with multiple CSI forecasts (multiple outputs), where the

structures of different inputs are similar, but the hyperparameters are optimized separately using the Keras-

Tuner, as shown in Table 6.3.

Table 6.3: Hyperparameters shown in Fig. 6.3 for Bayesian optimization using the KerasTuner.

Hyperparameter Values

Optimizer Adam

Loss function Huber

Learning rate [1e-5, 1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 1e-2]

x1 range(min = 16, max = 128, step = 2)

activation1 [relu, gelu, selu, tanh]

x2 range(min = 8, max = 64, step = 2)

activation2 [relu, gelu, selu, tanh]

x3 range(min = 8, max = 64, step = 2)

activation3 [relu, gelu, selu, tanh]

x4 range(min = 8, max = 64, step = 2)

activation4 [relu, gelu, selu, linear]

Early stopping With the patience equal to 5
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Although the structures of deep learning models are shared among different forecasting scenarios, the

hyperparameters are different for each scenario. The forecasting models for each SURFRAD station with

different inputs are trained separately, and the optimal hyperparameters are obtained using Bayesian opti-

mization of the KerasTuner [171] as shown in Table 6.3. Since the forecasting model is developed using data

from year 2020, to better represent the yearly variability, data in March, June, September, and December

are utilized for testing, while the rest of the datasets in 2020 are used as training and validation subsets (in

which 20% of the data is used for validation).

One may argue that the convolutional long-short-term memory (ConvLSTM) network could capture the

spatio-temporal feature better and thus might lead to better forecasts. Indeed, the study of Gallo et al. [163]

shows that ConvLSTM performs slightly better than CNN with lower divergences for longer forecast hori-

zons. However, ConvLSTM requires larger images as inputs and thus consumes more computing power and

time. Considering the comparable performance and less computing burden, CNNs are adopted in this work.

6.2.4 Performance evaluation of forecasts

As mentioned, the model outputs are CSI forecasts, which are converted back to irradiances by mul-

tiplying the clear-sky irradiance at the predicted time stamps. That said, the final error evaluations and

visualizations are performed in terms of irradiance [W/m2]. Among the used evaluation metrics, root mean

squared error (RMSE), mean bias error (MBE), and their normalized counterparts (nRMSE, nMBE) are

used to assess the overall forecasting accuracy,

RMSE =

√
1
N ∑( fi −oi)2 (6.4)

nRMSE =

√
1
N ∑( fi −oi)2

1
N ∑oi

(6.5)

MBE =
1
N ∑( fi −oi) (6.6)

nMBE =
∑( fi −oi)

∑oi
(6.7)

where fi and oi are the pair of irradiance forecast and ground observation (i.e., GHI), N is the total number

of compared data points.

The forecast skill is to provide a relative improvement for a model’s prediction over a reference model,

which can be calculated based on RMSE:

FS =

(
1−

RMSE f

RMSEr

)
×100% (6.8)
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where FS is the forecast skill, RMSE f is based on forecasts of the evaluated model, and RMSEr is calculated

using forecasts of a reference model. Smart persistece is used as the reference model here, which assumes

the CSI for now would not change over the forecast horizon, as defined by:

CSIt+∆t = CSIt (6.9)

where ∆t is the forecast horizon, and the GHI forecast is obtained by multiply the clear-sky irradiance at

t +∆t.
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Figure 6.4: Some possible outputs of ramp forecasts. GHIcs denotes the clear-sky irradiance, 10% bounds

define the upper and lower bounds on the threshold, ∆t is the forecast horizon. Modified based on Fig. 2

in [156].

Solar irradiance exhibits huge variability with the rapid change of clouds in the sky. The ramp analysis

is to evaluate the forecasting performance for capturing the ramp events in irradiance, which can better

support the integration of solar power. A ramp event is defined by the irradiance change in the time interval

of [t, t+∆t] that exceeds a threshold (e.g., 10% of current clear-sky irradiance [156]). Some possible outputs

of ramp forecasts are shown in Fig. 6.4. Following the definitions in [156], three metrics are defined in the

ramp analysis, namely, ramp detection index (RDI), false ramp index (FRI), and ramp magnitude forecast

index (RMI) as defined by:

RDI =
Nhit

Nhit +Nmiss
(6.10)

FRI =
NFRP

NFRP +NTNR
(6.11)
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RMI = 1−

√
∑

Nr
i=1(oti+∆t − fti+∆t)2

∑
Nr
i=1(oti+∆t −oti)

2
(6.12)

where Nhit means the number of cases when ramps are detected (cases (a) and (d) in Fig. 6.4), Nmiss means

the number of cases when ramps are missed (cases (b) and (e) in Fig. 6.4), NFRP means the number of

cases when ramp is forecasted but there is no ramp ( Fig. 6.4(c)), NTNR means the number of cases when

ramp is not forecasted and is actually not presented (Fig. 6.4(f)), Nr is the number of ramp events, o is the

observation and f is the forecast. More details are available in [156].

6.3 Results

In this section, performance of GHI forecasts using the developed deep learning model is evaluated and

compared with different inputs, namely, spectral satellite images (the end-to-end deep learning model), GHI

estimates from NSRDB (the hybrid physical-deep learning model), and GHI estimates of SAT-DL (the deep

learning model chain). Three categories of evaluation are adopted: (i) the forecasting accuracy in terms

of nRMSE and nMBE is presented in Section 6.3.1, along with the comparison of forecast skill over the

smart persistence reference model, (ii) the ramp analysis of irradiance forecasts including ramp detection

and magnitude forecasts, are elaborated in Section 6.3.2, and (iii) the distribution-oriented approaches for

verifying irradiance forecasts are detailed in Section 6.3.3.

6.3.1 Forecast evaluation in terms of statistical metrics

The results of intra-day GHI forecasts using different inputs at all SURFRAD stations are presented

in Fig. 6.5 (for nRMSE) and Fig. 6.6 (for nMBE). It is shown in Fig. 6.5 that the forecasting accuracy

generally decreases with the increase of forecast horizon regardless of the used inputs. When comparing

between different inputs, deep learning models generally outperform the smart persistent reference model

(SP) in terms of nRMSE, especially for longer forecast horizons (e.g., longer than 60 minutes). Furthermore,

satellite-derived GHI products (NS and SDL) yield better forecasts than raw satellite images (SAT) in most

cases, even though the region of used satellite images are much larger (see Fig. 6.2). When comparing the

forecast results based on satellite-derived irradiance products, GHI estimates of SAT-DL typically produce

forecasts with lower nRMSE than GHI estimates in NSRDB, as reflected by the comparison between NS

and SDL in Fig. 6.5 for all SURFRAD stations.

Although satellite-derived products generally yield better GHI forecasts (in terms of nRMSE) than raw

satellite images, there are some site-specific differences across the SURFRAD stations. For instance, at
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PSU, the nRMSE values of GHI forecasts in all forecast horizons are larger than other stations, and SAT

are more accurate than NS in most conditions. However, SDL still yields the best results at PSU. When

it comes to the comparison of nMBE for irradiance forecasts (see Fig. 6.6), apart from some site-specific

divergences, there are also some differences across the forecast horizon, but no obvious trends are observed.

In general, satellite-product-based forecasts (NS and SDL) tend to have larger bias.
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Figure 6.5: Comparison of nRMSE [%] for GHI forecasts up to 180 minutes using different methods/inputs:

smart persistent (SP), spectral satellite images (SAT), NSRDB GHI estimates (NS), GHI estimates of SAT-

DL (SDL), at all the SURFRAD stations. The colors are to differ the stations, and the symbols are to

distinguish the methods.
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Figure 6.6: Same as Fig. 6.5, but for the comparison of nMBE [%] for GHI forecasts.
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Forecast skills over the smart persistent reference model for GHI forecasts with different inputs are

further compared. As presented in Fig. 6.7, the general trend is that forecast skill improves with the increase

of forecast horizon no matter which input is used. The increase of forecast skill is more obvious for the

shorter forecast horizons (i.e., less than 60 minutes), while in longer forecast horizons (e.g., longer than 60

minutes), fluctuations and even decreases in skill can be observed. When comparing the forecast skill of

inputs used, SDL generally outperforms NS and SAT at all the SURFRAD stations. One more interesting

observation is that SDL also has higher robustness than NS, evidenced by the inferior performance of NS at

BON, TBL, and especially PSU (see Fig. 6.7).
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Figure 6.7: Comparison of forecast skill for GHI forecasts using different inputs across the forecast horizons

up to 180 minutes at all the SURFRAD stations. Larger skill indicates a more accurate forecast.

6.3.2 Forecast evaluation in terms of ramp metrics

Since solar variability introduces great difficulties in the grid integration of solar power systems es-

pecially when sudden fluctuations present, it is also beneficial to perform the ramp analysis of irradiance

forecasts to evaluate the model’s ability in predicting the variability. As defined in Section 6.2.4, three

indexes are used in ramp analysis, namely, RDI to identify the successful rate of ramp detection, FRI to

evaluate the false ramp events, and RMI to quantify the magnitude of ramp predictions.

Table 6.4 shows the percentage of clear and cloud periods in 2020 at the SURDRAD stations. It is shown

that DRA has the most occurrence of clear conditions, PSU has the most occurrence of cloudy conditions,
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while the remaining sites show similar distributions of clear and cloudy periods. It has also been observed in

many studies that DRA has a higher occurrence of clear periods, while PSU shows the most frequent cloudy

skies [160, 172, 103]. Therefore, the ramp analysis is performed at DRA, PSU and SXF, which are selected

as the representatives of different cloudy conditions across the SURFRAD stations as shown in Fig. 6.8.

Table 6.4: The amount of clear and cloudy periods (in percentage) in 2020 at all the SURFRAD stations. The

clear and cloudy conditions are labeled based on 1-minute QC data and the Bright-Sun clear-sky detection

model [112].

BON DRA FPK GWN PSU SXF TBL

Clear periods [%] 27.83 49.88 22.89 27.44 14.64 28.50 29.38

Cloudy periods [%] 72.17 50.12 77.11 72.56 85.36 71.50 70.62
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Figure 6.8: The selected representative stations of SURFRAD. DRA has the most clear periods, PSU has

the most cloudy skies, and SXF is selected as it is in the geographical ’middle’ of the rest stations.

As shown in Fig. 6.9, both RDI and FRI generally increase while the RMI decreases with the extended

forecast horizons. When more frequent cloudy conditions present, the forecast method generally exhibits

more uncertainties in forecasting ramp events. Specifically, the RDI at PSU is lower than DRA and SXF,

while the FRI of PSU is comparatively larger. As for ramp magnitude forecasts, the RMI at PSU is relatively

higher than DRA and SXF, especially for longer forecast horizons (except the use of NSRDB GHI as inputs,

which will be discussed in Section 6.4).
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When comparing the inputs used for ramp forecasts, none of them shows dominant performance over

the others (see Fig. 6.9). All the inputs show similar performance for ramp detection at DRA and SXF, while

SDL typically has higher RDI at PSU, especially for longer forecast horizons. For the false ramps detected,

DRA does not present huge difference across the forecast horizons, while SXF shows some fluctuations but

the general performance is still comparable. Conversely, at PSU, NS tends to generate relatively higher false

ramp rates across all forecast horizons. Similarly, the ramp magnitude forecasts at DRA and SXF do not

differ greatly, while NS could not produce equivalent results compared with the other two types of inputs at

PSU.
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Figure 6.9: The ramp analysis for GHI forecasts across the forecast horizon up to 180 minutes. RDI, FRI

and RMI at (a) BON, (b) DRA and (c) PSU. For RDI and RMI, values closer to 100% are better. For FRI,

smaller is better.
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6.3.3 Distribution-oriented forecast evaluation

As stated by Yang et al. [172], the evaluation based only on accuracy is not always inclusive. Therefore,

other aspects of forecasting quality, for instance, distribution-oriented approaches, should be investigated. In

this section, the irradiance forecasts based on three different inputs (SAT, NS and SDL) are verified against

observations using different distribution-oriented approaches including joint, marginal, and conditional dis-

tributions of forecasts and measurements. Joint distribution enables the identification of obvious outliers

and unnatural patterns, while the verification of marginal and conditional distributions are equivalent. More

details about joint, marginal and conditional distributions can be found in [172, 173].

The joint and marginal distributions of GHI forecasts based on three different inputs (i.e., SAT, NS

and SDL) against the measurements at three SURFRAD stations (i.e., DRA, PSU and SXF) over different

forecast horizons are shown in Fig. 6.10. Compared with PSU, the joint distributions at DRA and SXF

have higher probabilities around the identity line, no matter which inputs are used. Apart from the higher

probability density under the diagonal, GHI forecasts at PSU also show sparser distributions compared with

those for DRA and SXF, which indicates that larger divergences are presented (see Fig 6.5). The histograms

in Fig. 6.10 represent marginal distributions (forecast is to the right, and measurement is on the top). If the

forecasts had no errors, the two marginal distributions would be the same. Fig. 6.10 shows different extents

of discrepancies observed for various scenarios regarding different locations and forecast horizons. When

comparing the inputs used for GHI forecasts, predictions based on SDL are distributed closer to the identity

line than SAT and NS, especially at PSU. Moreover, at PSU, NS tends to produce larger errors in forecasts,

as evidenced by the more scattered density distributions.

Fig. 6.11 shows the conditional distribution of GHI forecasts given observations at DRA, PSU and SXF,

where the forecasts are based on three different inputs (i.e., SAT, NS and SDL). The forecasts are said to

be synchronized if the centroids of the distributions align with the identity line [172]. It can be seen in

Fig. 6.11 that the distributions of GHI forecasts at DRA and SXF are more centered than those at PSU no

matter which input is used. Generally, the forecasts are associated with positive bias in the low-irradiance

range and tend to produce under-predictions for high-irradiance conditions. It is more obvious to notice

the over-prediction (for low-irradiance conditions) and under-prediction (for high-irradiance conditions) at

PSU. When comparing the forecasts based on different inputs, the results at DRA and SXF are similar,

the centroids of GHI forecasts from SDL are slightly closer to the identity line compared with SAT and NS.

However, at PSU, forecasts based on NS show more divergences than SDL, with wider forecast distributions

for given measurements and the sparser centroids dispersed around the identity line.
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Figure 6.10: Joint and marginal distributions of GHI forecasts and measurements, at (a) DRA, (b) PSU, and

(c) SXF, for forecast horizons of 30, 60, 120, and 180 minutes (only a subset of forecast horizons is selected

to be representatives). GHI forecasts are based on raw satllite data (SAT), satellite-derived GHI estimates of

NSRDB (NS) and SAT-DL (SDL). 130
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Figure 6.11: Same as Fig. 6.10, but for conditional distributions of GHI forecasts, given the measurements.
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6.4 Discussion

Based on the evaluation of GHI forecasts in terms of statistical metrics (see Section 6.3.1), NS and SDL

generally show lower discrepancies than SAT as shown in Fig. 6.5. However, deriving irradiance products

from satellite images using either physical models or deep learning methods needs extra computation time,

which should be considered in operational forecasting applications. Since GHI forecasts of SDL has com-

paratively lower errors than NS, the proposed deep learning model chain to map satellite data firstly to spatial

irradiance and then to irradiance forecasts is effective in improving intra-day GHI forecasts. Although GHI

forecasts based on NS and SDL have larger biases compared to SAT as shown in Fig. 6.6, satellite-derived

irradiance products are still valuable inputs for solar irradiance forecasting, since the bias could be further

corrected by post-processing methods [174].

GHI forecasts of SDL have higher forecast skill and higher robustness when compared to SAT and

NS (see Fig. 6.7). According to the assumption made in Section 6.2.2 that GHI estimates of SAT-DL

exhibit lower discrepancy than NSRDB in the surrounding region of a target station, one implication here

is that using surrounding spatial information (i.e., GHI estimates) with lower uncertainty could improve the

forecasting performance at the target station. That said, deep learning itself can be a feature extraction tool,

and using the extracted features (SAT-DL GHI estimates) to another deep learning model could produce

better forecasting results than the end-to-end model (directly from satellite data to irradiance forecasts) and

the hybrid physical-deep learning model (based on NSRDB). Since better forecasts can be produced with

improved accuracy in GHI estimates, it is beneficial to improve the satellite-derived irradiance products for

solar forecasting.

In terms of ramp analysis presented in Fig. 6.9, the increased detection of ramps and false ramps means

that the forecasts of ramp events for longer time horizons are relatively easier, but are also associated with

a higher likelihood of false ramp forecasts. The decrease in ramp magnitude forecasts indicates that it is

possible to detect ramp events for longer time horizons, but the accurate forecast of ramp magnitude is much

more challenging. The compromised RDI performance at PSU indicates that the ramp forecasts for locations

with frequent cloudy skies may have larger unpredictability. As for the higher RMI at PSU, the reason could

be the greater attenuation of irradiance by more frequent clouds which leads to a lower irradiance magnitude.

Therefore, the ramp magnitude forecasts at PSU perform better than at DRA and SXF.

When it comes to distribution-oriented evaluation, the distributions of forecasts at DRA and SXF are

more closely aligned along the identity line (see Figs. 6.10 and 6.11), which means that the GHI forecasts are

more calibrated at DRA and SXF than PSU. When comparing the results at each location, the distributions
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of SDL forecasts are distributed more centered than SAT and NS, especially at PSU. This indicates again the

proposed deep learning model chain can produce better forecasts. The conditional distributions in Fig. 6.11

reveal that GHI forecasts for more frequent cloudy skies (at PSU) are more challenging compared with

moderate and low cloudy conditions (at SXF and DRA) regardless of what input is used.

The results of both ramp analysis and distribution-oriented evaluation show compromised performance

when more frequent clouds are present. For instance, higher rates of false ramp detection, lower forecasts

of ramp magnitude, and enlarged biases can be observed at PSU. This is related to the difficulties in cloud

detection and prediction, as clouds are present in the three-dimensional atmosphere while geostationary

satellites can only provide two-dimensional information. It is suggested to integrate locally-sensed data

(e.g., sky images [168]) to provide additional information. Condition-based forecasting that classifies clear,

partially clear, and cloudy situations for model development might be helpful to address the issues related

with cloudy skies. Meanwhile, spatio-temporal satellite-derived irradiance products can also be used to

track cloud movements [167]. Therefore, deriving more accurate irradiance estimates from satellite data

also serves the purpose, as evidenced by the performance of the proposed deep learning model chain for

GHI estimates and forecasts. However, more work is still needed in modeling cloud movements in a three-

dimensional perspective, since the ability to predict the amount, optical depth, movements, and locations of

clouds is indispensable in improving solar forecasting [21].

6.5 Conclusions

Satellite data and satellite-derived irradiance products have been extensively used in solar forecasting,

and the inclusion of spatio-temporal information is likely to produce high-accuracy forecasts. However, the

potential benefits of satellite-derived irradiance products and their improvements for solar forecasting have

not been fully investigated in the literature. In this regard, this study proposes a deep learning model chain

for GHI forecasts, i.e., mapping satellite data to spatial GHI estimates via deep learning, and then using the

estimates as inputs to another deep learning forecasting model. Then the effectiveness of such approach

in improving intra-day GHI forecasting is evaluated by comparing verification statistics with other spatio-

temporal inputs, namely raw satellite images (the end-to-end deep learning model) and satellite-derived

irradiance products from NSRDB (the hybrid physical-deep learning model).

Compared with spectral satellite images, satellite-derived GHI estimates generally produce better fore-

casts (with lower nRMSE) in most cases, and SAT-DL GHI estimates yield forecasts with comparatively

lower nRMSE than NSRDB. However, the forecasts based on satellite-derived GHI estimates tend to have
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larger bias. Despite the presence of larger biases, GHI estimation products are still promising inputs for

solar forecasting as post-processing methods can be used for bias correction and refinement. When compar-

ing the forecast skill, the proposed deep learning model chain generally performs better and is more robust.

Given that GHI estimates of SAT-DL have higher accuracy than NSRDB in the nearby surrounding area, the

improvement in GHI estimates is more likely to generate better forecasts.

The results of ramp analysis and distribution-oriented verification show that there are larger uncertainties

and biases for locations with cloudier conditions. This is due to the higher unpredictability of irradiance

in such cloudy conditions. When there are more clouds, the forecasts are found to have compromised

performance in ramp detection. Meanwhile, GHI forecasts are also associated with larger biases for low-

and high-irradiance conditions. This indicates that more efforts are needed in detecting and predicting cloud

movements. Nevertheless, the deep learning model chain shows better forecasting performance than the

reference models.

In summary, the deep learning model chain shows great potential for improving GHI forecasts via the

derivation of more accurate spatial GHI estimates from satellite measurements. Compared with the end-

to-end deep learning model based on raw satellite measurements and the hybrid physical-deep learning

model based on NSRDB, the proposed method shows better performance, especially under frequent cloudy

conditions. However, there are still some limitations, such as the need of ground measurements and extra

computational time to obtain GHI estimates via the pre-trained deep learning model. Considering that

the physical radiative transfer model in NSRDB also requires extra time to produce GHI estimates for

operational forecasting, the deep learning model chain could be used as an alternative to obtain spatial

GHI estimates for improved intra-day solar forecasts when adequate on-site measurements are available for

model development.
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Chapter 7

Conclusions and recommendations

7.1 Conclusions

Solar energy is set as one of the main power sources to meet the growing need for clean energy and to

mitigate climate change. Solar PV, solar heating and cooling, and CSP are all important technologies on

the pathway towards carbon neutrality. As solar radiation is the fuel for all solar energy technologies and

its intermittency nature, knowledge of the quality and future reliability of the fuel is crucial for feasibility

and financial variability determination in the designing phase, as well as the scheduling, maintenance, and

gird integration in the operation phase of solar energy projects. To help with the integration of solar energy

projects into current power systems, a few studies in this thesis have been conducted to support solar resource

assessment and forecasting.

Firstly, an improved method for estimating turbidity is proposed using common meteorological mea-

surements, namely, ambient air temperature, relative humidity, wind speed, and atmospheric pressure. The

estimated turbidity is then served as the input to the Ineichen-Perez model to estimate clear-sky irradiance.

Compared with the monthly climatological means, the improved turbidity estimation better captures the sea-

sonal and annual variations, and therefore shows substantial improvements in estimating clear-sky GHI and

DNI. The RMSE of clear-sky GHI is reduced from 24.02 W m−2 to 9.94 W m−2, and the RMSE of clear-sky

DNI is decreased from 76.40 W m−2 to 29.96 W m−2. Meanwhile, the proposed method is also capable to

estimate turbidity in partially cloudy days with improved accuracy, evidenced by that the corresponding es-

timated clear-sky irradiance has smaller deviation from measurements in the cloudless periods. Considering

the improved accuracy and less complexity in implementation, the presented method brings new insights in

clear-sky irradiance estimation in both clear and partially cloudy days, providing support to solar forecasting

and resource assessment.
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To explore the benefits of the improved turbidity estimation for estimating clear-sky irradiance, an opti-

mized semi-empirical satellite method is applied to estimate GHI using GOES-16 imagery. Four clear-sky

models including REST2, McClear, Ineichen-Perez, and improved Ineichen-Perez (Ineichen-Perez TL) are

compared and evaluated in estimating GHI from satellite measurements. The results show that there is

no significant different all-sky GHI estimation for the used clear-sky models regarding nRMSE (25.19%-

25.53%), which is comparable with the referenced physical solar model in NSRDB. Clouds cause the largest

uncertainty, where the nRMSE of GHI estimation is in the range of 31.12%-31.54%, indicating that more

efforts are need in quantifying the cloud effects in semi-empirical satellite methods. When using clear-sky

GHI as GHI estimates in clear periods, Ineichen-Perez TL shows the lowest nRMSE and nMBE, therefore

has potential in physical methods where clear-sky irradiance is the irradiance estimation when the sky is

cloudless.

Although the improved turbidity estimation method shows substantial improvements in estimating clear-

sky irradiance, and has been evaluated and compared with other clear-sky models for GHI estimation using

semi-empirical satellite method, one limitation is the need of on-site irradiance measurements. To address

this limitation, a transferable turbidity estimation method is proposed. Instead of using on-site irradiance

measurements (i.e., the local model), a transferable model is developed involving stations with sufficient

information, and then applied at locations with limited data availability. Compared with the local method, the

transferable model yields results with slightly higher discrepancies regrading normalized root mean squared

error (nRMSE, 2.80% vs 2.75%). When compared with the default Ineichen-Perez model, the nRMSE

of clear-sky GHI estimation is reduced from 4.99% to 2.44%, and the nMBE is improved from -3.37%

to 0.57%. The clear-sky GHI estimation is comparable with physical models (i.e., McClear and REST2).

Further comparisons are made for day-ahead clear-sky GHI forecasts using a day persistent way. Clear-

sky GHI forecast from the transferable method has slightly lower discrepancies of nRMSE and nMBE than

the physical models. Considering the complexity of physical models, the transferable turbidity estimation

method with comparable performance demonstrates valuable potential for solar resourcing and forecasting

applications.

Since clouds are the main attenuation factor of ground-level solar irradiance, modeling clear-sky irra-

diance is just a small part in solar forecasting and resource assessment. To fully exploit the spectral infor-

mation of modern geostationary satellites and extract cloud properties, a deep learning framework based

on CNNs and attention mechanism for 5-min ground-level GHI and DNI estimations is proposed as deep

learning has been extensively applied in vision and image based tasks to learn the nonlinear relationships.

Correlation analysis is performed to select the representative satellite bands, which can improve the model-
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ing efficiency without accuracy loss when compared with the usage of all spectral bands. The results show

that the proposed model produces GHI estimation with an nRMSE of 20.57% and an nMBE of -2.04%, and

the DNI estimation has an nRMSE of 23.63% and the nMBE is 0.36%. Compared with NSRDB, the pro-

posed model produces a GHI estimation with the nRMSE reduction of 5.15%. As for DNI estimation, the

proposed method shows an nRMSE reduction of 13.77%. Meanwhile, the proposed deep learning models

generally yield better GHI and DNI estimations under different intervals of clear-sky index than NSRDB.

The combination of deep learning and remote sensing shows potential in better extracting the cloud infor-

mation via multispectral satellite images, which can better support solar resource assessment, especially for

cloudy conditions.

In addition, satellite data and satellite-derived irradiance products have been extensively used in so-

lar forecasting due to the spatio-temporal nature of solar irradiance. However, the potential advantages of

satellite-derived irradiance and its improvements in solar forecasting have not been thoroughly explored.

Therefore, a comparative study is conducted to evaluate and compare the performance of solar forecasts

based on deep learning and three different inputs, namely, spectral satellite images, satellite-derived ir-

radiance, and satellite-derived irradiance with improved accuracy. The results show that satellite-derived

irradiance products generally outperform raw spectral satellite images. The improved accuracy in satellite-

derived irradiance products is more likely to produce forecasts with lower nRMSE, higher forecast skill,

and better performance in ramp forecasts. It is found that solar forecasting under frequent cloudy conditions

is more challenging, evidenced by the enlarged nRMSE and compromised performance in ramp analysis.

Based on the results of distribution-oriented verification approaches, solar forecasts are biased under high-

and low-irradiance conditions, which is more obvious when more frequent clouds are present. Nevertheless,

satellite-derived irradiance with improved accuracy might lead to better forecasts, which is beneficial to a

wide range of stakeholders in solar energy.

It should be noted that different machine learning methods are applied for different scenarios in this

thesis. For instance, classical machine methods such as MLP are used for imporved turbidity estimation,

while deep learning algorithms, e.g., convolutional neural networks (CNNs) are adopted for solar resource

assessment and forecasting with satellite images or satellite-derived irradiance products. This is because

the data used for turbidity estimation is in an one-dimensional form and therefore the classical methods

are applied, while for solar irradiance modeling with satellite images or satellite-derived products, the data

is in a two-dimensional form and therefore CNNs are applied to better extract the features. Moreover, in

solar forecasting, the integration of spatio-temporal information is likely to produce better results than the

locally-sensed data. The spatio-temporal data is usually in a grid format, where the deep learning algorithms

137



such as CNNs are particular suitable, owing to their great performance in feature extraction of grid data.

The ultimate goal in solar resource assessment and forecasting is to obtain solar irradiance estimations

and forecasts with high accuracy, and currently it is still challenging in modeling the cloud physics and

dynamics since clouds are the major factor in affecting solar irradiance. The accurate modeling of solar irra-

diance and solar power output for the integration of solar energy systems requires efforts from atmospheric

sciences, weather forecasting, data science and also many other domains. Although there are still limita-

tions, such as the inability in the detection of cloud enhancements, the need of measurements of training

machine/deep learning models, the constraints on computation resources, the methods developed in thesis

for clear-sky irradiance modeling, solar resource assessment and forecasting with improved performance

can help with the integration of the solar energy systems.

7.2 Recommendations

This dissertation has explore the use of remote sensing and deep learning for solar resource assessment

and intra-day forecasting, there are still many aspects in which the research could be extended. Therefore,

the following recommendations for future work are based on the limitations and incomplete aspects.

• Further expansion of the improved turbidity estimation method. Although the transferable turbidity

estimation method has substantially expand the applicability, the results are only based on SURFRAD

stations with five different climate types in the contiguous United States. In the future, the method

should be tested in other Continents with more climate zones. The used machine learning methods are

just classical methods, more advanced methods might produce better results and therefore should be

tested. Meanwhile, the used inputs are common meteorological measurements, however, they might

not be available for some locations of interest.

• Improvement of the cloud properties determination. In the applications of semi-empirical satellite

method and deep learning for ground-level solar irradiance estimation, clouds are the major cause

of large uncertainties. In future work, methods to accurately quantify the cloud properties in the

atmosphere and its effect on solar radiation should be developed. Specifically, since semi-empirical

satellite methods usually apply satellite images of one visible spectral band, it might be worthwhile

to use more bands in the visible spectral bands and even the near-infrared spectrum to determine the

dynamic range and cloud index. While for deep learning based methods, the investigations on the

bands combination could be worthwhile.
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• Expansion of the deep learning based solar irradiance modeling. The deep learning models for solar

irradiance estimation and forecasting are based on satellite data of GOES-16 and the ground measure-

ments of SURFRAD stations. Theoretically, the methodology developed could also be applied using

other geostationary satellites such as Fengyun-4 and Himawari-8. Therefore, in future works, mod-

els should be developed and tested using other satellites and ground stations. However, the bands of

GOES, Fengyun and Himawari have different wavelengths and the available satellite measurements

are also different. Therefore, it is necessary to consider the correlation analysis, the size of the satellite

images, and the spatio-temporal resolutions in a different perspective.

• Investigation on the modeling three-dimensional cloud features in the atmosphere. Satellite data used

in this thesis only provides the views of the top of the atmosphere, which are two-dimensional fea-

tures. However, the interaction of solar radiation and atmosphere compositions is a three-dimensional

problem. Future studies should consider how to get or couple more information of atmospheric lay-

ers, for example, sky images which provide additional information at the ground level. Actually, the

combination of sky images and satellite images have already been been proposed for intra-hour so-

lar forecasting. Therefore, the investigation should be more focused on how to better extract useful

features.

• Integration of numerical weather prediction products for forecasting at long time scales. Geostation-

ary satellite data is only suitable for short-term solar forecasting, for example, intra-day forecasting.

Future studies that aims to extend the forecast horizon should consider more suitable data or methods,

for instance, the numerical weather prediction (NWP). Meanwhile, it could also be beneficial for so-

lar forecasting to develop hybrid deep learning models with NWP, as physics-informed machine/deep

learning is important in improving the interpretability. However, NWP products usually consists of a

large amount of data, which imposes new challenges on data storage and computing resources. There-

fore, future studies should focus on how to use NWP products and how to combine NWP and deep

learning efficiently.
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[81] M. Chaâbane, M. Masmoudi, K. Medhioub, Determination of Linke turbidity factor from solar radiation measurement in

northern Tunisia, Renewable Energy 29 (13) (2004) 2065–2076.

[82] X. Sun, J. M. Bright, C. A. Gueymard, X. Bai, B. Acord, P. Wang, Worldwide performance assessment of 95 direct and

diffuse clear-sky irradiance models using principal component analysis, Renewable and Sustainable Energy Reviews 135

(2021) 110087.

[83] P. Ineichen, A broadband simplified version of the Solis clear sky model, Solar Energy 82 (8) (2008) 758–762.

[84] P. Ineichen, Conversion function between the Linke turbidity and the atmospheric water vapor and aerosol content, Solar

Energy 82 (11) (2008) 1095–1097.

[85] L. Narain, S. N. Garg, Estimation of Linke turbidity factors for different regions of india, International Journal of Environ-

ment and Waste Management 12 (1) (2013) 52–64.

[86] T. Hove, E. Manyumbu, Estimates of the Linke turbidity factor over Zimbabwe using ground-measured clear-sky global

solar radiation and sunshine records based on a modified ESRA clear-sky model approach, Renewable Energy 52 (2013)

190–196.

[87] C. Rigollier, O. Bauer, L. Wald, On the clear sky model of the ESRA—European Solar Radiation Atlas—with respect to the

Heliosat method, Solar energy 68 (1) (2000) 33–48.

[88] R. H. Inman, J. G. Edson, C. F. M. Coimbra, Impact of local broadband turbidity estimation on forecasting of clear sky direct

normal irradiance, Solar Energy 117 (2015) 125–138.

[89] O. Behar, D. Sbarbaro, A. Marzo, L. Moran, A simplified methodology to estimate solar irradiance and atmospheric turbidity

from ambient temperature and relative humidity, Renewable and Sustainable Energy Reviews 116 (2019) 109310.

[90] C. A. Gueymard, J. M. Bright, D. Lingfors, A. Habte, M. Sengupta, A posteriori clear-sky identification methods in solar

irradiance time series: Review and preliminary validation using sky imagers, Renewable and Sustainable Energy Reviews

109 (2019) 412–427.

[91] C. N. Long, T. P. Ackerman, Identification of clear skies from broadband pyranometer measurements and calculation of

downwelling shortwave cloud effects, Journal of Geophysical Research: Atmospheres 105 (D12) (2000) 15609–15626.

[92] C. N. Long, K. L. Gaustad, The shortwave (SW) clear-sky detection and fitting algorithm: Algorithm operational details and

explanations, Pacific Northwest National Laboratory, 2004.

[93] C. N. Long, D. D. Turner, A method for continuous estimation of clear-sky downwelling longwave radiative flux developed

using ARM surface measurements, Journal of Geophysical Research: Atmospheres 113 (D18).

144



[94] L. D. Riihimaki, K. L. Gaustad, C. N. Long, Radiative Flux Analysis (RADFLUXANAL) Value-Added Product: Retrieval

of Clear-Sky Broadband Radiative Fluxes and Other Derived Values, Tech. rep., ARM Data Center, Oak Ridge National

Laboratory (ORNL), Oak Ridge, TN (United States) (2019).

[95] C. A. Gueymard, Analysis of monthly average atmospheric precipitable water and turbidity in Canada and northern United

States, Solar Energy 53 (1) (1994) 57–71.

[96] C. A. Gueymard, Assessment of the accuracy and computing speed of simplified saturation vapor equations using a new

reference dataset, Journal of Applied Meteorology and Climatology 32 (7) (1993) 1294–1300.

[97] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, et al., Scikit-learn: Machine learning in python, the Journal of Machine Learning Research 12 (2011) 2825–

2830.

[98] M. Ali, PyCaret: An open source, low-code machine learning library in python, PyCaret version 2.

[99] IEA, Solar PV [online], Available: https://www.iea.org/reports/solar-pv, (Accessed on 17/03/2022) (2020).

[100] Y. Chu, H. T. Pedro, C. F. M. Coimbra, Hybrid intra-hour DNI forecasts with sky image processing enhanced by stochastic

learning, Solar Energy 98 (2013) 592–603.

[101] C. Rigollier, L. Wald, Selecting a clear-sky model to accurately map solar radiation from satellite images, in: EARSeL

Symposium 1999 “remote sensing in the 21st Century: economic and environmental applications”, Balkema, 1999, pp.

131–137.

[102] C. Rigollier, L. Wald, The HelioClim Project: from satellite images to solar radiation maps, in: Proceedings of the ISES

Solar World Congress, Citeseer, 1999.

[103] S. Chen, M. Li, Improved turbidity estimation from local meteorological data for solar resourcing and forecasting applica-

tions, Renewable Energy 189 (2022) 259–272.

[104] GOES R SERIES PRODUCT DEFINITION AND USERS’ GUIDE (PUG) VOLUME 3: LEVEL 1B PRODUCTS, Avail-

able at: https://www.goes-r.gov/users/docs/PUG-L1b-vol3.pdf (2019).

[105] D. Yang, Validation of the 5-min irradiance from the National Solar Radiation Database (NSRDB), Journal of Renewable

and Sustainable Energy 13 (1) (2021) 016101.

[106] P. Broxton, X. Zeng, N. Dawson, Daily 4 km gridded SWE and snow depth from assimilated in-situ and modeled data over

the conterminous US, version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO.

[107] X. Zeng, P. Broxton, N. Dawson, Snowpack change from 1982 to 2016 over conterminous United States, Geophysical

Research Letters 45 (23) (2018) 12–940.

[108] T. Albarelo, I. Marie-Joseph, A. Primerose, F. Seyler, L. Wald, L. Linguet, Optimizing the Heliosat-II method for surface

solar irradiation estimation with GOES images, Canadian Journal of Remote Sensing 41 (2) (2015) 86–100.

[109] A. T. Lorenzo, M. Morzfeld, W. F. Holmgren, A. D. Cronin, Optimal interpolation of satellite and ground data for irradiance

nowcasting at city scales, Solar Energy 144 (2017) 466–474.

[110] D. Mouhamet, A. Tommy, A. Primerose, L. Laurent, Improving the Heliosat-2 method for surface solar irradiation estimation

under cloudy sky areas, Solar Energy 169 (2018) 565–576.

[111] S. Williamson, S. Businger, D. Matthews, Development of a solar irradiance dataset for Oahu, Hawai’i, Renewable Energy

128 (2018) 432–443.

[112] J. M. Bright, X. Sun, C. A. Gueymard, B. Acord, P. Wang, N. A. Engerer, Bright-Sun: A globally applicable 1-min irradiance

clear-sky detection model, Renewable and Sustainable Energy Reviews 121 (2020) 109706.

145

https://www.iea.org/reports/solar-pv
https://www.goes-r.gov/users/docs/PUG-L1b-vol3.pdf


[113] M. Lefèvre, M. Albuisson, L. Wald, Description of the software Heliosat-2 for the conversion of images acquired by Meteosat

satellites in the visible band into maps of solar radiation available at ground level.
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