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Abstract
This thesis presents a comprehensive approach to facilitate breast

biomechanics research and ergonomic sports bra design. The study

involves three main components: dynamic 4D scanning of the female subject

during running, dense tracking of breast deformation, and finite element

modeling with material properties fine-tuning using 4D scanning data. The

innovative use of 4D scanning technology captures whole-surface information

of the human body during dynamic activities, providing high-temporal and

spatial resolutions mesh data for analysis. Based on the anthropometric

landmarks labelled from the 4D scanning sequence, the overall trajectories

and the accumulated regional displacement of the breast soft tissues, as

well as the distribution of deformation intensity can be precisely analyzed.

Results indicated that the accumulated trajectory lengths of different

landmarks range from 50 cm to 80 cm. Of which, the vertical and lateral

swinging are the primary movement trends of the breasts during running.

The large trajectory differences (48.6%) amongst the landmarks also confirm

the highly nonlinear deformation patterns of the breasts during dynamic

motion.

A robust dense tracking method, the Ultra-dense Motion Capture

(UdMC) algorithm, is proposed to capture the dense whole-surface

deformation profile of the breasts, advancing the traditional motion

capture technology from the sparse landmark level to the dense surface

level. Comprehensive evaluation shown that our approach significantly

outperforms previous works in accuracy, consistency, and efficiency. With

reference to the complete 120 fps dataset, the average errors are found as

0.43cm for the control-landmarks and 0.78cm for the non-control (arbitrary)

points. As compared to the traditional approach, the calculation speed of

the proposed UdMC algorithm is 40-200 times faster.

Lastly, a subject-specific finite element (FE) model is constructed

and fine-tuned with the dense deformation profile captured by UdMC,

making it capable to align with the realistic breast behavior more reliably.

To facilitate efficient determination of the subject-specific Mooney-Rivlin

material parameters, the principle parameters inflation scheme was proposed

ii



to transform the optimization problem from the 5 dimensional space search

to the 2 dimensional space search. This FE breasts model has successfully

simulated and predicted the characteristics and response of the breasts when

wearing different sports bra with varying design factors, which has significant

application value in breasts soft tissue biomechanics research as well as

validating and optimizing sports bras prototype designs.
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Chapter 1

Introduction

1.1 Background

Today, athleisure and activewear have become important segments in the

global apparel industry due to the ever-increasing health and fitness concerns.

Since the structure of the breasts provides little anatomic support, when there

is breast motion (caused by torso movement), the skin stretches and the

breasts show viscous damping and hyper-elastic behaviors, which may lead

to negative effects (McGhee & Steele, 2010). To protect the structure of the

breasts and reduce the risk of breast sagging, the sports bras are designed

for the female customers and it can also increase confidence and improve

performances (Page & Steele, 1999; Starr et al., 2005; White et al., 2009).

However, the forces transferred from the torso during locomotion are highly

complex. Moreover, considering the unique rheological and biomechanical

behaviors of the breast tissues of each female user, it’s very challenging to

effectively control the breast motion (Gefen & Dilmoney, 2007; Haake &

Scurr, 2010, 2011) without applying excessive pressure onto the breasts. To

date, the breast displacement, elevation, acceleration, and bra-breast contact

pressure caused by physical activity still cannot be effectively controlled,

which leads to risk factors of breast discomfort, pain, and sagging.

Breasts consist of skin, fat, and glandular tissues, with a structure that

has a complex tree-like architecture with both elastic and viscous components

that contribute to the complex deformation pattens of the breasts. To

1



develop more ergonomically desired sports bra, it’s vital to understand the

dynamic breast deformation patterns during active activities. Though has

gathered lots of information on the breasts dynamic deformation patterns,

previous studies are typically based on the MoCap systems (Zhang et al.,

2021; Zhou et al., 2012), which has several limitations: (i) MoCap systems

depend upon physical markers attached at anatomical points, limiting the

number and density of trackable landmarks; (ii) motions and deformations

at unmarked locations are not captured or analyzed, resulting in ignoring

the complete surface deformation; (iii) it remains uncertain whether sparse

discrete landmarks is adequate for capturing the complex deformation

pattern of breast movement. In this research, four-dimensional (4D) scanning

technology is introduced to record whole surface deformation information of

the breasts, furthering the understanding of the breast deformation patterns

from the sparse landmark level to continues surface level.

To support sports bra design, merely recording and analysing breasts

deformation patterns are not enough. Previous studies on breast motion

have developed biomechanical finite element (FE) models to simulate the

interaction between the bra and breasts (Chen et al., 2013; del Palomar

et al., 2008; Sun et al., 2019b; Sun et al., 2019c) to provide comprehensive

evaluation of the sports bra’s performance during different kinds of activities

or under different activity intensities. FE modelling has been applied to

biomechanics research to predict the pressure and temperature distributions,

soft tissue deformations, and the influence of a specific design factor on the

overall performance of the sports bra, such as the influence of tightly fitted

apparel on body reshaping and comfort sensation (Dan et al., 2011; Wittek

et al., 2015; Zhang et al., 2002).

Nevertheless, the application of the FE method in sports bra design is

still in its infancy, since proper description, representation, and simulation

of the highly complex non-linear attributes of the breast, which inherent

from its highly irregular geometry, are still challenging. The accuracy of

the constructed FE breasts model greatly depends on the accuracy of the

parameterization of the breast material properties, including the viscous

damping and hyper-elastic behaviors of the breast tissues, which can diverge
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significantly in different breast size, age, and even hormonal status. Due to

these difficulties, the mechanical properties of the breasts that are derived

from ex-vivo material tests and in-vivo methods significantly vary with

invalidated parameters (Eder et al., 2014; Kalra & Lowe, 2016; Ramião et al.,

2016).

1.2 Research gaps and objectives

To improve the prediction of the mechanical properties through in vivo

behaviors, different experimental techniques has been proposed to determine

the material properties of the breasts for constructing subject-specific

FE models of the breasts (Doyley, 2012; Han et al., 2011; Sun et al.,

2019b). However, comparing with the advances in numerical simulation,

the techniques for obtaining input data of the simulation systems, i.e. the

capturing, tracking, and analyzing of the complex movement and deformation

of the breasts, are relatively lagging behind. In most of the related studies,

only static three-dimensional (3D) data are captured by the 3D scanning

devices and a limited number of landmarks’ movements are captured by

the motion capture (MoCap) systems. The limited density of captured

landmarks inevitably limits its capability to represent the highly dynamic

deformation behaviors of the breasts, therefore inhibiting the accuracy

of breasts material properties determination and therefore affected the

applicability of the constructed FE model in biomechanics simulations for

sports bra design.

To advance the current state of research, suitable devices that can reliably

and efficiently capture the higher granularity information of the dynamic

breast motion are needed to be adopted. And customized algorithm is needed

to be developed for analyzing the obtained information, eventually leading to

a better understand of the breast support requirements and advance sports

bras designs for optimal breast protection.

To achieve such an objective, the research is separated into 5 parts:

1. To effectively capture the surface changes and stretching of the skin of
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the breasts, and changes of the geometry of the breast shape during

dynamic motion (walking) by using 4D body scanning technology.

2. To develop Ultra-dense Motion Capture (UdMC) algorithms which can

efficiently track specific key points in arbitrary positions to characterize

the surface motion and deformation of the soft tissues of the breasts to

model the biomechanics of the breasts.

3. To establish a subject-specific FE model for a bra size of 80C to simulate

the contact mechanics between a sports bra and the breasts on the basis

of the behavior and motion of the breasts.

4. To evaluate the regional deformation and contact pressure of the

breasts in response to different bra materials, through FE analyzes

and experimental measurements.

5. To compare and validate the breast deformation results of a

computational FE model with the experimental results.

1.3 Outline of the thesis

Following the introduction chapter, Chapter 2 provides comprehensive

literature reviews on sports bra design, breast biomechanics study, FE

model for biomechanics breasts simulation, and the point cloud registration

problem.

Chapter 3 presents the application of 4D scanning technology for

capturing dynamic breast deformation in vivo with high temporal and spatial

resolutions. Based on the data collected data and the mesh4d toolkit, a

breast anthropometric dataset named DynaBreastManual was constructed.

In-depth analysis of the in vivo breast deformation patterns were carried

out based on this dataset, confirming existing studies on breast deformation

patterns as well as extending them to a detailer and clearer presentation of

the dynamic characteristics of the breast with 4D scanning data.

In Chapter 4, a semi-automatic method, the UdMC algorithm, is

proposed for tracking the complex deformation of breasts during dynamic
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activity with a 4D scanning sequence marked with sparse anatomical

landmarks. Comprehensive evaluation ot the proposed methods indicates

that the UdMC significantly excels the comparison baselines in terms of

accuracy, consistency, and efficiency. Two downstream tasks are introduced

to demonstrate the practical application of the UdMC algorithm: (i) tracking

virtual landmarks in an arbitrary position without attaching physical markers

to the region, and (ii) estimating deformation intensity for fine-granularity

during dynamic activities.

In Chapter 5, a subject-specific FE biomechanics model of the breast

was constructed. For the first time, 4D scanning sequences were introduced

as supervision signals for determining subject-specific hyper-elasticity

parameters for breasts. Three evaluation metrics were created for

optimization: surface-to-surface distance, nodal coordinates deviation and

nodal displacement deviation based on the UdMC algorithm. With the

optimized material properties for breasts, a bra-breast interaction model

was constructed for simulating the ergonomic performance of sports bras

made from different materials, leading to critical information previously

only obtainable through time-consuming wear trials.

The last chapter, Chapter 6, provides summarization of conclusions

derived from the research discussed in this thesis. It also discussed the

contributions to the existing knowledge body as well as its limitations.

Suggestions on future research directions are thereafter provided.
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Chapter 2

Literature Review

2.1 Introduction

Sports bras are anatomically engineered and designed to offer high levels of

breast support and physical freedom during physical activities. Inadequate

breast support for a long period of time results in discomfort, sagging,

pain, and structural damage of the breasts. Physically active women

are therefore invariably frustrated in their attempts to find a comfortable

and supportive sports bra. To improve the functional design of sports

bras, the biomechanical parameters of breast motion and movement are

particularly important in the design and development process. Biomechanical

studies have confirmed that the breasts move substantially in the vertical,

medial-lateral and anterior-posterior directions during treadmill running

(Risius et al., 2015; Scurr et al., 2009, 2011; Zhou et al., 2011, 2012).

Wearing a suitable sports bra can effectively minimise the amount of breast

displacement that occurs during running and/or physical activities. Despite

the importance of sports bra design in breast support, technologies that

examine the biomechanical aspects of the breasts have been largely absent

in the field. analyzes of three-dimensional (3D) body images, breast motion

captured by motion capture (MoCap) devices, and computational simulation

systems have been used for understanding the complex deformation patterns

of the breasts. Nevertheless, these technologies either only provides static

images of the breasts surface or only provides limited spatial resolution
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information of the breasts’ dynamic movements. Due to the lack of

comprehensive understanding of the breasts biomechanical properties, sports

bras that reduce the breast deformation the most todate have been also

perceived to be the most uncomfortable to wear. The current sports bra

designs are not sufficiently catering to the needs of active women, thus

resulting in a high occurrence of breast pain in many studies.

This chapter reviews studies on the design of sports bras and their

breast support performance. The conventional approach of using 3D body

scanning systems, MoCap systems and the robust four-dimensional (4D)

body scanning approach for analysis of breast motion during dynamic

movement of the body are presented. The image processing and registration

techniques, as well as biomechanics research of breast support are also

comprehensively reviewed.

2.2 Sports bras

Despite the new advancements in breast biomechanics, a dilemma still exists

in that a high performance sports bra design can reduce breast movement but

results in bra fit problems, discomfort, lack of flexibility in body movement

or even health disorders (Coltman et al., 2018). The use of sport bras is

significantly restricted by the complex shape geometry and motion behavior

of the breasts so that designing a sports bra to reduce the repetitive

movement of the breasts during sporting activities with minimal compression

is highly challenging (Gefen & Dilmoney, 2007; Haake & Scurr, 2010, 2011).

Sports bras are traditionally designed to compress and/or encapsulate the

breasts to reduce breast movement, Figure 2.1. Compression sports bras

which consist of rigid bra cups uniformly flatten the two breasts together

against the chest wall, and tight shoulder straps are usually used. These

inevitably induce a high level of pressure to the body, which interferes with

breathing, blood circulation and lymph flow with reinforced motion during

high intensity exercise. Compared to compression sports bras, encapsulated

sports bras which have an underwire, padded cups, and adjustable shoulder

straps and underband have proven to reduce breast displacement more
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effectively by encasing each breast in a separate structured cup (Yip, 2016).

However, due to the lack of information on breast geometry, the breast

base and the corresponding design of the underwire are assumed to be

semi-circular. Wire related problems for fit, and poor wear sensation and

wear comfort are often reported. In a study of 309 women of various breast

sizes, 90% of the participants failed the fit assessment of encapsulated style

bras (Coltman et al., 2018). Combination sports bras integrate the features

of compression and encapsulation bras into one that elevates and supports

each breast independently, covered with an external layer of material that

compresses the breasts against the chest wall. Breast elevation can reduce

tension and loading of the passive anatomical breast support structures,

whilst breast compression can decrease the flexion torque generated by the

breasts about the thoracic spine. The distance between the centre of the

breast mass and the thoracic spine is reduced.

(a) (b)

Figure 2.1: Sports bras: (a) compression bra, and (b) encapsulation bra.

Unfortunately, due to limited biomechanical methods used to quantify

complex 3D breast motion, most breast biomechanics research has focused

on breast movement during treadmill running and/or women with large

sized breasts. Understanding the breast biomechanics and displacements

in relation to body position, speed of movement and posture changes

during different sporting activities and movements is relatively novel.

Typical running activities, short duration of exercise and limited number

of participants do not represent the diverse range and at the elite level of

sports with different breast support needs in different planes of motion.
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Moreover, athletes typically perform high intensity movements over an

extended duration of training and competition hours.

Irrespective of the type of bra, suitable bra designs and structural

features, together with good fabrication and elasticity behavior are closely

linked to control over breast movement, as well as a good fit and comfort.

For example, a high neckline can effectively reduce upward breast movement,

while adequate tension and elongation of the shoulder straps made of elastic

woven tapes can effectively hold a bra in place. Fabric with good stretching

and shape retention behaviors can minimise bra displacement during motion.

To support the mass of the breasts, support components are a necessity in bra

design. The use of cushioning wires and support elements made of plastic

and multiple layers of foam, however, not only affects the fit of bras with

substantial gapping in the cups due to the extra thickness, but also results in

bra displacement (Bowles & Steele, 2013; Bowles et al., 2012; Zhang et al.,

2021; Zhou et al., 2013). Inducing excessive amounts of compression and

pressure onto the body with the use of rigid materials may lead to internal

organ displacement and muscle strain. It is therefore important to control

the amount of compression induced by bras and the amount of pressure in bra

designs to balance comfort and support. However, to date, there has been

very little scientific work that provides accurate and objective techniques to

evaluate the impact of various bra features and the types of materials used

to avoid breast displacement and provide breast support.

2.3 Current methods in breast biomechanics

studies

In terms of biomechanics, breast motion is linked to trunk movement during

dynamic movements (Zhou et al., 2011, 2012). When women run on a

treadmill without external breast support, the momentum of the movement is

transferred from the feet to the torso. The breast and trunk therefore move

simultaneously together with a small delay at different moving speeds or

activity levels. Biomechanical studies have confirmed that when the trunk
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is ascending, the breasts are descending (Zhou et al., 2012). The forces

generated from the breast motion are influenced by a number of variables,

such as the structure and properties of the soft breast tissues, size of the

breasts, internal forces associated with the level, speed and type of activities,

etc. (McGhee & Steele, 2020) Women with large breasts experience more

breast pain and pressure generated by the bra shoulder straps so that more

support is necessary (Coltman et al., 2018; McGhee et al., 2013). They are

also subjected to more frictional skin injuries from their bra and have greater

difficulties in achieving optimal bra fit. The level of breast support also

needs to be increased for older women to compensate for reduced anatomical

support due to changes in their breast composition, density and elasticity

with aging. The magnitude and frequency of breast motion together with

body positioning in different sports have a major influence on the unique

breast support requirements for the different planes of motion. More vertical

support is required for jumping and horseback riding as compared to cycling

and walking (McGhee et al., 2013).

Information on the direction and magnitude of the body and breast

movements during various sporting activities helps to identify the amount

of breast support needed for an optimal sports bra design. However, due

to the complex nature of the soft tissues of the breasts, evaluation methods

of the dynamic movement of the breasts and the control requirements of

the entire breast during various sports activities are still lacking (McGhee &

Steele, 2020).

2.3.1 3D body scanning technology

The use of 3D body scanning technology allows a variety of angles and

shapes as well as linear measurements to be reliably and accurately obtained

within a few seconds of time. As reported in the product page of 3dMDbody

scanning system adopted in this research, the reconstruction error is under

0.7 mm 1. The 3D scanned body images can be presented in different forms:

point, line, surface, shape, and volume. As compared to traditional manual

1https://3dmd.com/products/#3dmdbody-system-product-specifications
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measurements, 3D scanners are capable of obtaining information on complex

body shapes and providing more precise and reproducible data for assessment

of bra fit problems (Bowles et al., 2012; Kim & Kang, 2003; Lee et al., 2004;

Zhang et al., 2021).

Nevertheless, considering the end-use and range of motion during sporting

activities, the extent of body movement during a particular activity must be

more accurately quantified when designing sports bras. The amount of body

expansion and contraction at skin stretch during sporting activities should

also be considered. For example, the changes in the upper body surface

measurements between a standard anthropometric position and various

active postures such as shoulder flexion, scapula protraction, and scapula

elevation have been examined by using a 3D body scanner in previous

studies (Chi & Kennon, 2006; Choi & Ashdown, 2011; Lee et al., 2001).

Significant changes in body measurements are found, which correspond to

the body movement at the joints. However, it is noted that the use of

body scanning technology to obtain precise body measurement data during

dynamic postures is still challenging as the measurement data could be

collected in selected postures. The system merely shows the body surface

changes between a static controlled posture and a number of limited static

poses (Lee & Ashdoon, 2005). The reproducibility of the measurements is

greatly affected by posture differences throughout the scanning process and

the quality of the image registration and re-orientation for the evaluation of

body and breast movements.

2.3.2 3D motion capture system

The problems of body scanning technologies are resolved by using MoCap

systems which allow researchers to measure the changes in the surface of the

body over time and during continuous movement (Zhou et al., 2012). As for

the accuracy of 3D motion capture systems, as an example, Vicon motion

capture system reported a measurement error down to 0.017 mm 2. Even

2https://www.vicon.com/wp-content/uploads/2022/07/Vicon-Metrology-Solutions.
pdf
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though physical movement and posture changes can be consistently tracked,

the results cannot be translated to body surface measurements. The number

and placements of body landmarks are vital for motion analyzes while the

control of landmarks is always time consuming and troublesome. Hence,

many current studies generally use a single reference point on the nipple

in relation to the sternal notch to capture the movement of the breasts.

However, the breasts consist of non-uniform and soft-tissue masses that are

likely to move in complex 3D patterns (Arch et al., 2018; Sohn & Bye, 2014;

Zhou et al., 2011, 2012), while the regional displacement of the breasts is

substantially different from that of the marker placed over the nipple. With

reference to a total of 54 retro-reflective markers (Arch et al., 2018), the

magnitude of breast motion in the X, Y and Z directions during treadmill

running was measured and analyzed. The results indicated that most of the

breast movement occurs above or below the nipple region and at the interface

between the bra strap and body.

2.3.3 Computational modelling of human body

More recently, computer modelling such as finite element (FE) simulation

has been used to predict the biomechanical interactions between the body

and bras. The analysis can be detailed as a body consists of skin, fat tissues,

bones, organs, as well as a simple rigid body. The simulation process of

breast deformation by using FE modelling is however more challenging and

time-consuming since the interactions between the elastic fabric and breasts

which are viscoelastic, are highly complex. The ability to simulate the human

body and/or breasts strongly depends on the accuracy of the characterisation

of the breast properties including the different viscous damping values and

hyperelastic behavior of the breast tissues and their continuous changes in

properties with breast size, age and even hormonal status (Chen et al., 2013;

del Palomar et al., 2008; Domingo et al., 2014; Eder et al., 2014).
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2.4 Finite element method for breast

biomechanics modeling

2.4.1 Ex-vivo and In-vivo Biomechanical Properties of

the Human Breast

FE Model for Modelling Breast Biomechanics Figure 2.2. The tissues

and macro- or micro-structure of the breasts directly contribute to their

deformation, thus constituting rather complex elastic and viscous properties

and behavior. Therefore, accurately determining the material properties of

the breast tissues is very important for reliable biomechanical modelling.

Various experiments have been conducted for this purpose. There are

basically two types: (i) ex-vivo and (ii) in-vivo measurements.

Figure 2.2: Illustration of female breast anatomy illustration (Hipwell et al.,
2016).

The measurements of the biomechanics properties of ex-vivo tissues are

usually obtained through tension and compression experiments. Uniaxial

compression experiments have been conducted on 150 ex-vivo specimens of

healthy, cancerous, and fibroadenomatous tissues (source). The results show
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that the fibroadenomas are 4 times stiffer than normal tissues, and cancerous

tissues are nearly 7 times stiffer than normal tissues (Sarvazyan et al., 1995,

pp. 223–240). Stiff breast tissue may point to the risk of breast disease. In

term of the biomechanics properties, research has shown that the Young’s

modulus of normal breast fibroglandular and fat tissues are equivalent; to

be specific, around 3 kPa, under small compression. On the other hand, the

stiffness of the malignant tumours and high-grade, invasive, ductal carcinoma

shows 30% to 60% and 130% increments, respectively (Samani et al., 2003;

Samani & Plewes, 2007).

Although the biomechanics properties of ex-vivo breast tissues have

been measured in various research, it is generally accepted that among the

population and across the life-time of an individual that the mechanical

properties of living tissues vary widely (Hipwell et al., 2016). Elasticity

imaging techniques that can implement in-vivo measurements have been

developed, including sono- and magnetic resonance elastography, shear wave

elasticity imaging and mechanical imaging (Parker et al., 2012). The

elasticity parameters of in-vivo tissues are estimated by solving the inverse

solution based on the detected displacement/strain fields (Doyley, 2012).

2.4.2 Construction of the biomechanics FE model

In computational modelling, the FE method shows a clear, explainable

physical picture and is built on a very robust mathematic foundation.

From a mathematics point of view, a FE model can be seen as the weak

form of a partial differential equation. Reynaldi et al. (2012) showed an

example of transforming the intractable differential equation into a clear,

lite-weight linear equation. showed an example of transforming an intractable

differential equation into a clear, lightweight linear equation. In terms of the

importance of differential equations in a wide range of disciplines, FE models

have been used with great success in numerical simulation, physical modelling

and engineering (Logan, 2012, pp. 2–4).

With all of these advantages, FE modelling is considered to be a

very useful method for biomechanics research, including the biomechanical
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modelling of the breasts. The mainstream construction of biomechanics

FE models is elasticity-based, including hyperelasticity models like the

neo-Hookean (Chen et al., 2013) and Mooney-Rivlin (Eder et al., 2014)

models. For model parameter estimation, early studies usually adopted

the material properties measured from ex-vivo or in-vivo experiments as the

initial values, and then manually adjusted them according to the difference

between the prediction of the FE model and the experimental results.

Nevertheless, manually adjusting the parameters is not only time-consuming

but also cannot ensure global optimum parameters. del Palomar et al. (2008)

found that with the proportion of each tissue set as its weight, the weighted

average of the entire breast can be adopted without losing drastically

accuracy. To estimate the proportion, computed tomography (CT) was

introduced. Sun et al. (2019b) proposed a systematic parameter method

to iteratively estimate the nonlinear Mooney-Rivlin material coefficients.

Other than elasticity-based models, innovative modelling ideas are also

available. For example, the heat transfer model is used as an approximation

of the mechanical behavior of the breast, since to some extent, the expansion

of breast tissues is similar to the diffusion of heat (Unlu et al., 2005). The

breasts may also be thought of as fluid with filled fibres so that the fluid

mechanism model can be used to approximate the breast behavior (Costa,

2012).

More recently, machine learning (ML) has been introduced to enhance

the capabilities of FE models, especially in terms of speed, since the clinical

application has very high requirements for real-time processing capability.

Mart́ınez-Mart́ınez et al. (2017) used FE modelling to generate simulations

for the breasts of 10 subjects, and each simulation required 10 or more steps,

which finally summed up to 162 deformations. Then all of these simulations

were separated as nodal data and used to train the ML model as a more

rapid alternative in lieu of the time-consuming FE simulation. The results

showed that amongst the various ML models, extremely randomised trees

(ERTs) perform well with the error of most node distances under 2 mm and

an average computational time of 0.1 s.
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2.5 Problems of 3D data registration in 4D

body scanning Technology

The dynamic 4D body scanner uses a novel scanning technology which

provides 360-degree full body coverage capturing of a range of poses in 4

dimensions, see Figure 2.3. The scanner is a technical solution for recording

high time-resolution 4D data, i.e. a series of 3D data scanned at a specific

time interval. The 3D data, in this context, are a form of data that represents

the geometric shape and characteristics.

Figure 2.3: 3dMD system setup and contour shapes of breast during motion
in sagittal plane.

As indicated by Pei et al. (2021b), the fourth dimension given by 4D

scanning technology is particularly crucial in breast motion analyzes. During

physical activities, the breasts usually have a time delay in displacement

with the torso when the relative displacement of the breasts is determined.

Although the displacement of breasts has been extensively examined,

conventional 3D body scanning systems merely show the body surface

changes between a static controlled posture and a number of limited static

poses. Motion capture systems with multiple markers attached onto the body

only provide limited spatial resolution and surface geometry information
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and a large number of body landmarks for motion analysis are required.

The control and placement of markers are time consuming, thus posing

technical difficulties for marker identification and tracking of breast motion

and changes in breast morphologies. Most breast motion analyzes therefore

quantify the movement of the nipples in relation to the sternal notch as a

measurement of breast movement. However, this method only provides a

gross measure of the overall breast movement. It is apparent that nipple

displacement as a measure only provides a gross indication of the overall

breast motion in that the non-uniform properties of the soft tissues of

the breasts and the complex behavior of the breasts are largely neglected.

Four-dimensional scanning technology makes it possible to track the entire

breast with movement which offers more information on the changes of breast

shape during physical activity.

Nevertheless, with 120 frames taken per second, technical problems can

arise in handling and managing a large number of 3D scans or frames. Pei

et al. (2021b) only extracted 3 keyframes within a running cycle. The head

and the limbs were also manually removed for each of the selected scans. Due

to posture changes such as body rotation during motion, registration of the

key points from multiple 3D images and point clouds is also challenging and

time consuming.

Basically, there are two major types of 3D data: point clouds and meshes.

A point cloud is a set of 3D points in space and each point is expressed by

a vector that contains the Cartesian coordinates of the point as defined in

Equation 2.1. Moreover, a mesh is a structural build of a 3D model that

consists of polygons and, of course, each polygon is constructed by a set of

linked points. Examples are shown in Figure 2.4.

C = {pi|pi = (xi, yi, zi) ∈ R3, i = 1, 2, ..., n} (2.1)

There are various ways to transform a point cloud to a mesh and vice

versa. Yuksel (2015) proposed a method of evenly sampling a mesh to a point

cloud. The process starts with numerous sampling points and removes points

according to the distributed sampling criteria so that eventually desirable
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(a) (b)

Figure 2.4: (a) example of a mesh of a complex 3D twisted tube, and (b)
example of a point cloud of a bunny.
From Open3D Documentation
http://www.open3d.org/docs/release/tutorial/geometry/mesh.html

samples of point clouds can be obtained. On the contrary, various methods

inspired by different geometric perspectives have been proposed to implement

an inverse procedure, i.e. surface reconstruction. Edelsbrunner et al. (1983)

proposed the alpha shape method to construct mesh from a point cloud

based on the alpha shape theory, which is a generalisation of a convex

hull, and the resultant mesh consists of caps, arcs, and points. Since the

original shape of the object may not fit with the assumed alpha shape, the

surface reconstructed by such an algorithm may deviate from the real one.

Bernardini et al. (1999) also proposed the ball pivoting algorithm (BPA)

which starts with a seed triangle with a ball pivoting around the edges of the

triangle but maintains contact with the endpoints of the edges. When the

ball touches any 3 points but does not fall through them, a local triangle of

the mesh is created. Compared with the alpha shape method, BPA delivers

a more refined mesh, even though the entire surface still has bulges and

unevenness. To address the problem of surface smoothness, Kazhdan et al.

(2006) proposed Poisson surface reconstruction based on solving regularised

optimisation problems.

Compared with meshes which consist of partial polygons that are defined

by a complex inter-point topological relationship, point clouds are a simpler

representation of the geometric structure of a 3D object. Thus, in 3D data
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processing, point clouds are a more desired format to contain geometric

information. They have become the primary data format to represent the

3D world and various high-resolution sensors like LiDAR and Kinect which

are developing rapidly (Huang et al., 2021).

2.5.1 Point cloud registration problems

In 4D body scanning, the dynamic changes of the body are represented

by a series of 3D frames; and in this case, 3D point clouds. Therefore,

before taking the 3D data for any meaningful analysis of body and breast

motion, the first task is to reveal the correspondence between frames (ideally,

point-wise corresponding).

Point cloud registration involves many steps that align a number of

overlapping point clouds. Typically, a point cloud registration algorithm

consists of three components: (i) a transformation model Tθ(p) over the

spatial domains p, x ∈ R3, where θ denotes the set of model parameters;

(ii) a cost function Ψ to estimate the similarity between the between the

deformed frame and the target frame, as defined in Equation 2.2, where the

D function is a pure distance estimation function and the λ function is the

optional regulation function; and (iii) an optimization strategy arg min
θ

(Ψ)

to minimise the cost function (Hipwell et al., 2016).

Ψ = D(I(Tθx), R(x)) + λ(Tθ(x)) (2.2)

Once the transformations between frames are revealed, the part of

the object in a frame that can be moved to another part in that frame

is determined, therefore revealing the correspondence between frames.

According to the deformation model type, the registration methods can be

roughly classified into two groups (Hipwell et al., 2016):

1. Rigid Registration

Only allows rigid transformation, including rotating, scaling, or

affine transformation which are all linear transformations. Thus the

transformation model can be expressed by dot multiplying the original
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point pi with a 3 × 3 transformation matrix; and translating which

can be described by adding the original point pi with a 3 × 1 vector.

For example, the slicing of a box on the conveyor can be regarded as a

rigid transformation.

2. Non-rigid Registration

Allows non-rigid transformation, which means that every part of the

object can move in different directions and for different distances. For

example, the deformation of the soft tissues during activity can be

regarded as a non-rigid transformation.

Since this project focuses on the breasts, a typical type of soft tissue

complexity, the development of a non-rigid point cloud registration method

will be first reviewed in Subsection 2.5.2. The development of rigid point

cloud registration, which also has certain application value in this project,

will be reviewed in Subsection 2.5.3. Point cloud registration with auxiliary

modalities is also an interesting direction towards more reliable and accurate

point cloud registration, which will be reviewed in Subsection 2.5.4.

2.5.2 Non-rigid point cloud registration

The difficulty of non-rigid point cloud registration has been described as a

chick-and-egg problem: the corresponding relationship can be determined

if the optimal transformation is known, while on the contrary, the

determination of the corresponding relationship, in the first place, needs the

optimal transformation (Huang et al., 2021). Non-rigid transformation needs

every part of the object to freely deform, but this should not be too free so

that there is it is beyond the realm of reality, which is a contradiction. As

a result, the core challenges of proposing reliable non-rigid registration are

(i) proposing a deformation model and a corresponding optimisation scheme

that can well align two frames; and (ii) applying effective regularisation to

avoid unrealistic deformation - such as the head in the first frame should

not deform itself to the position of the foot in the next frame, although such

transformation may align the two frames quite meticulously.
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Rueckert et al. (1999) proposed one of the earliest non-rigid point cloud

registration methods based on a free-form deformation model defined by

a set of control points and using B-splines to produce a smooth varying

deformation. The distance between the deformed cloud point and the

target point cloud are estimated and the B-spline parameters are then

optimized. Applying B-spline deformation to an object is similar to twisting

the space according to a control point. The smoothness of B-splines as

a geometric property can constrain deformation from creating excessive

distortion. This B-spline based method has been widely used in the

field of medical image registration, such as MRI-CT registration, PET-CT

registration, and registration between breast X-ray images before and after

compression (Behrenbruch et al., 2003; Diez et al., 2010; Pinto et al., 2010).

An example is shown in Figure 2.5 (Behrenbruch et al., 2003). Note that a

key limitation is that when it comes to objects. the movement of different

partials are highly independent, such as the legs and arms of a running man.

The Gaussian mixture model (GMM) based registration is another widely

used non-rigid cloud point registration method. Various approaches under

this method have been proposed to tackle a wide range of non-rigid point

cloud registration challenges, including overcoming the effect of noise and

outliers (Bishop, 2016; Rasoulian et al., 2012). The Coherent Point Drift

(CPD) method proposed in Myronenko et al. (2006) deals with point cloud

registration as a probability estimation problem. The point cloud is converted

to a Gaussian mixture distribution around the 3D space. The goal of the

algorithm is shifting point cloud A to optimize its probability to generate

another point cloud B. To apply effective and systematic yield constraint to

the deformation, the motion coherence theory (MCT) (Yuille & Grzywacz,

1988; Yuille & Grzywacz, 1989) was introduced, which is based on the

assumption that the points close to each other tend to move coherently.

By implementing regularization on the displacement (or velocity) field, the

transformation is forced to be smooth. Figure 2.6 shows an example of CPD

non-rigid registration. Note that 2D cloud points are used because they

are more clearer and easier to read on printed pages. In recent years, deep

learning enhanced GMM models have been introduced to conduct non-rigid
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(a) reference (b) true transformation

(c) source (d) result

Figure 2.5: The (a) reference image under (b) transformation generated (c)
source image. After B-spline non-rigid registration between (c) source and
(a) reference, the untwisted (d) result is recovered (Behrenbruch et al., 2003).

registration tasks, such as DeepGMR which uses a deep neural network to

learn the correspondence between points and the GMM components and the

GMM parameters can be determined in forward propagation through the

network, which increases the speed of parameter optimization and reduces

the computational cost (Yuan et al., 2020).

2.5.3 Rigid point cloud registration

Compared with non-rigid registration, rigid registration only allows rigid

transformation, including rotating, scaling, affine transformation, and

translating (Hipwell et al., 2016), as shown in Figure 2.7. All of these

transformations Tθ(p) can be expressed in:
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(a) Noiseless fish point sets registration (91× 2 points, w = 0);

(b) Registration of 2D fish point set with missing points (w = 0.5);

(c) Registration of 2D fish point set in presence of outliers (w = 0.5).

Figure 2.6: Non-rigid CPD registration of 2D fish point sets. Initial state
and state after 10, 20, 40, and 50 iterations (a to c) (Myronenko et al., 2006).

Tθ(p) = T · p+ d (2.3)

where p is a point from a source point cloud, T is a 3 × 3 matrix that

can express the linear transformation including rotating, scaling, and affine

transformation, and d is the translation from the original position to the

target position. More specifically, there are certain constraints to T in

different kinds of rigid transformations:

1. Rotation with Scaling

T should be orthogonal, which means that all of the columns of T

should be orthogonal with each other, i.e. tTi tj = 0 if i 6= j, where

ti, tj denote the i-th and j-th columns of T , respectively. Thus a more

concise requirement can be laid out that T TT should be a diagonal

matrix.

2. Rotation without Scaling

T should be unity orthogonal. In addition to the orthogonal
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requirement, unity requires that the each column of T should be a

unit vector. i.e. ‖ti‖22 = tTi ti = 1. Thus a more concise requirement

can be laid out that T TT = I.

3. Affine Transformation

T can be any 3 × 3 matrix, which means that each dimension can

be scaled and rotated independently. However, generally speaking, we

don’t want a transformation that compresses a 3D point cloud into

a 2D plane, is not desirable so usually a constraint is added where

det(T ) 6= 0.

(a) Rotation with
translation;

(b) Scaling with
translation;

(c) Affine
transformation with
translation.

Figure 2.7: Examples of (a) rotation with translation, (b) scaling with
translation, and (c) affine transformation. Source: Denis Fedorov
https://vicuesoft.com/blog/titles/Affine Motion/

According to Equation 2.3, there is only a 3×3 matrix and a 3×1 vector

is needed to be estimated, i.e. only 12 parameters to determine a rigid

transformation. Thus, the realisation of rigid registration is comparatively

simpler Besl and McKay (1992) proposed the iterative closest point (ICP)

that shows optimized parameters can be identified in an iterative way.

Firstly, according to a given initial transformation, finding the closest points

correspondence between the transformed source point cloud and the target

point cloud are marked. Secondly, with the point-wise correspondence,

using the least-squares method is used to estimate new parameters for

the transformation. These two steps are implemented repeatedly until the
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cost function is minimized to an acceptable level. Apart from estimating

point-wise correspondence according to the closest point-to-point distance,

some variants use the closest point-to-plane distance as the estimation

criterion (Chen & Medioni, 1992; Khoshelham, 2016; Ramalingam &

Taguchi, 2013). Other than these variants of ICP, CPD that has been

reviewed in can also be used to implement the rigid registration (Myronenko

& Song, 2010).

Objects are assumed to only endure rigid transformation in rigid

registration. From the perspective of the application, such deformation

between different point clouds of the same object is usually introduced

by different scanning positions, orientations, and devices. For example, a

handheld 3D scanner device can only scan part of an object, thus the 3D

point clouds scanned from different perspectives shall be registered so that

they can be aligned together to form the entire object (Kleiner et al., 2014;

Park et al., 2010a; Park et al., 2010b). An interesting similar application

scenario is the map reconstruction for autonomous driving (He et al., 2021;

Wang et al., 2019; Zheng et al., 2022).

Pei et al. (2021b) conducted an exploratory study on automatic bust

measurements during running by using 4D scanned data. Since the upper

torso does not face the front all the time during running, reorientation was

carried out on the selected body frames. They tried to automate this task by

utilising the positional information of the physical markers. The process was

found to be very challenging since the markers easily and frequently went

missing. Although the running body is not a rigid object, its deformation

is minimal since the time-resolution of the 4D scanning is up to 120 frames

per second (fps). Therefore, the body can be approximately considered as a

rigid object. Rigid rotation and translation of the human body can then be

estimated by using the rigid registration method.

2.5.4 Surface registration with auxiliary modalities

The task of revealing the dense correspondence between surfaces can be

particularly challenging when dealing with highly flexible and featureless
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surfaces, such as the human breasts. Prior research has attempted to

tackle this problem by incorporating information from other modalities (Bogo

et al., 2014; Kovnatsky et al., 2013). The Extended Coherent Point Drift

(ECPD) method was proposed by Golyanik et al. (2016), which embeds

sparse prior correspondence information within the CPD framework to offer

additional guidance for registration. Besides directly incorporating prior

correspondence, a number of studies have utilized texture information to

provide further guidance or rectification for registration (Bogo et al., 2014;

Bogo et al., 2017; Gall et al., 2008). Both FAUST (Bogo et al., 2014) and

Dynamic FAUST (Bogo et al., 2017) enhance body textures by printing

high-frequency patterns onto the subject’s skin. This results in more precise

and resilient registration compared to methods that solely rely on geometric

data (Pons-Moll et al., 2015). However, these techniques require laborious

and uncomfortable skin preparation before and after the scanning procedures.

Furthermore, due to the lack of ground-truth correspondence data, these

methods are assessed based on certain checking criteria (Bogo et al., 2017),

which may not sufficiently meet the reliability standards required for breast

anatomical and biomechanics research purposes.

2.6 Conclusion

Although plenty of biomechanical studies have been carried out on breast

motion analyzes during dynamic motion to optimize the design of sports bras,

the amount of breast displacement greatly varies with size, age and level of

physical activity of the wearer. Many breast biomechanical research studies

are limited by an inadequate research design and biomechanical methods

that fail to quantify the complexities of 3D breast motion. More valid and

reliable methods that accurately measure the complexities of 3D body and

breast motions are necessary to improve the design of sports bras to better

support the breasts of women with different physical exercises. With the

development of 4D body scanning technology, the 4D data facilitate studies of

dense surface deformations and postures. Dynamic anthropometric data can

be recorded and systematically analyzed. To do so, an efficient and accurate
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approach for 3D data registration is particularly necessary to process and

analyze 4D data. This study offers a new scientific approach to advance

understanding on breast motion for FE modelling the biomechanics of the

breasts. Design features and materials of sports bras can be strategically

optimized to better control breast displacement during physical exercise.
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Chapter 3

4D Scanning of Breast

Deformation In Vivo

3.1 Introduction

The human breasts are complex organs that experience significant

deformations during physical exercise and daily activities, potentially

leading to discomfort or even harm (Greenbaum et al., 2003). Sports bras

have been designed to protect the breast tissues from excessive deformations

(Mason et al., 1999; Page & Steele, 1999; Starr et al., 2005), mitigating

the bouncing, sagging, and swinging of the breasts during active activities.

However, these bras may impose a high level of pressure on the wearer

which could lead to negative effects (McGhee & Steele, 2010). Therefore, in

order to design sports bras that effectively restrict breast movement while

reducing strain on breast tissues, it is crucial to thoroughly understand the

dynamic patterns of breast motion and deformation.

With advancements in motion capture (MoCap) technology, various

studies have captured and analyzed dynamic behavior of breasts based

on anatomical landmarks, confirming their complex three-dimensional (3D)

movements due to non-uniform soft-tissue masses (Sohn & Bye, 2014;

Zhou et al., 2011, 2012). Nevertheless these studies possess three inherent

limitations: (i) MoCap systems depend upon physical markers attached at

anatomical points, limiting the number and density of trackable landmarks;
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(ii) motions and deformations at unmarked locations are not captured

or analyzed, resulting in ignoring the complete surface deformation; (iii)

it remains uncertain whether sparse discrete landmarks is adequate for

capturing the complex deformation pattern of breast movement.

On the other hand, 3D scanning technology can provide comprehensive

surface area data. This technique has been applied in anthropometric studies

on human body surface. The primary types of 3D scanning systems include

laser-based systems, structure-light systems, as well as multi-view stereo

systems (Bartol et al., 2021). All these techniques necessitate subjects

maintaining specific static positions during scanning after which the collected

signals are used to reconstruct the scanned surfaces. Results are typically

exported as mesh data - comprising arrays of vertices, edges, and faces

to represent the surface topology. Post-processing, feature extraction,

and measurement can subsequently be conducted on the mesh data for

extracting geometric information. For example, it can provide accurate

and reproducible data assessing bra fit issues(Bowles et al., 2012; Kim

& Kang, 2003; Lee et al., 2004; Zhang et al., 2021). Despite offering

detailed information of the subtle geometric features, its application is

restricted to static postures, thus limiting its applicability on the study

of dynamic movement and deformation patterns of the breasts. Some

researchers attempted to overcompensate limitation by having the subjects

maintain intermediate postures of the activity during scans (Choi & Hong,

2015; Chowdhury et al., 2012; Nasir et al., 2015). However, this approach

poses difficulties for the subjects who are required to hold these postures.

Furthermore, it may not accurately represent realistic movements in free

motion.

Recent advancements in 3D scanning technology have speedup the

capture of 3D images to the millisecond level, thereby allowing for continuous

scanning of human subjects during dynamic activities. i.e. four-dimensional

(4D) scanning (Yang et al., 2020). This technique enhances 3D scanning by

incorporating an additional dimension: time. The output of 4D scanning is

typically a series of mesh data that represents the scanned surface recorded

at different times, as illustrated in Figure 3.1. Commercial systems offering
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(a) 0.0s (b) 0.3s

(c) 0.6s (d) 1.0s

(e) From left to right are frames of 0.0s, 0.1s, ..., 1.0s.

Figure 3.1: 4D scanning mesh sequence recorded in the experiment.

high scan rates and precision are now accessible, including the 3dMD body

scanner (3dMD Ltd., Atlanta, U.S.), capable of performing up to 120 frames

per second (fps) with a system error below 0.7mm 1. The primary focus

of this chapter is to introduce the application of 4D scanning technology for

capturing dynamic breast deformation in vivo with high temporal and spatial

resolutions. A breast anthropometric dataset namely DynaBreastManual

was constructed, which stimulating in-depth analysis of breast deformation

1https://3dmd.com/products/#3dmdbody-system-product-specifications
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patterns as well as further studies in the following chapters.

It should be noted that parts of this chapter are derived from a submitted

manuscript titled An exploratory semi-automatic approach for dense tracking

of breast motion in 4D.

3.2 Construction of DynaBreastManual

dataset

3.2.1 Data acquisition

In order to capture real-time data on the dynamic deformation of the breasts

during active movement, a female participant of age 31, height 168 cm,

weight 65 kg, and breast size 80C was recruited for dynamic 4D body

scanning. Prior to her participation in the study, informed consent was

secured in writing. The experiment received ethical clearance from The

Hong Kong Polytechnic University Ethics Committee (HSEAR20210305003).

To construct the motion model by recording anatomical landmarks, 26

pearl hard base markers were attached around breast-related anatomical

landmarks that could be captured by optical cameras and aligned as texture

of the reconstructed meshes. This method is more time-efficient and easier

to clean up after scanning compared to Dynamic FAUST (Bogo et al.,

2017), which involves painting features onto skin. Moreover, it allows precise

marking of anatomical landmark positions.

3.2.2 4D scanning and landmarks labelling

A 3dMD body scanner (3dMD Ltd., Atlanta, U.S.) equipped with 30 optical

cameras surrounding the scanning area was utilized for capturing images from

various angles and reconstructing a dynamic surface mesh of human surface

based on multi-view stereo. The subject performed 6km/h fast walking in

braless condition on a treadmill while being scanned at the scanning rate of

120 fps - the maximum scanning rate offered by the system. A 121 frames
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sub-sequence comprising approximately one gait cycle was selected for further

analysis.

The selected meshes were then imported into mesh4d, a software package

developed during this research for 4D data processing 2. It was observed

that holes/breaches were occasional appeared in lower areas of the breasts

due to insufficient camera coverage towards these perspectives. For better

visibility and image quality considerations, only 18 out of 26 markers were

selected as shown in Figure 3.2. The selection of anatomical landmarks is

based on previous research on breast biomechanics (Sun et al., 2019a; Zhou

et al., 2012) and their anatomical descriptions are summarized in Table 3.1.

These landmarks are grouped into the clavicle, right breast, left breast, and

rib cage bottom areas for further analysis.

During the landmark labeling stages, the frame sequence were divided

into adjacent chunks each containing 12 frames covering 100 ms per chunk.

Landmarks coordinates of the first frame of each chunk were manually

labeled, while those of the subsequent frames were estimated using quadratic

interpolation. Given the high sampling rate of manual labeling, these

estimated coordinates should have ground-truth accuracy.

Utilizing these accurately labeled landmark coordinates, a lightweight

dynamic 4D human breast anthropometric dataset was created and named

DynaBreastManual 3. This dataset comprises 18 anthropometric landmarks

across 121 frames of reconstructed 3D scenes - totaling up to 2178

ground-truth landmark coordinates. The data instances in this set follow

a specific referencing convention: the i-th frame’s mesh matrix is denoted

as V
(i)
body ∈ R3×N(i)

, where column v
(i)
j represents the three-dimensional

coordinates for vertex j, with superscript indicating frame index. Similarly,

attached landmarks for this particular frame are represented by landmark

matrix C(i) ∈ R3×K ; here column c
(i)
k denotes three-dimensional coordinates

for landmark k, with subscript indicating landmark index and superscript

representing frame index. It should be noted that corresponding landmarks

2The source code can be accessed via GitHub: https://github.com/liu-qilong/mesh4d.
3The dataset can be accessed via https://github.com/liu-qilong/udmc. Please note

that due to privacy considerations, mesh texture has been withheld.
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Figure 3.2: The labelled anatomical landmarks. Landmarks on the clavicle,
left breast, right breast, and rib cage bottom regions are represented as
yellow, green, blue, and pink lines, respectively.

across different frames share identical indices, i.e. the landmark c
(i)
k is

directly corresponding to c
(i+1)
k in the next frame.

3.2.3 Automatic breast cropping scheme

The breast area was automatically cropped out based on the contour

landmarks of the breasts:

Approach. Automatic breast cropping

1. For the i-th frame of the mesh, the landmarks

c
(i)
0 , c

(i)
2 , c

(i)
3 , c

(i)
14 , c

(i)
15 , c

(i)
17 are selected as breast area contour.

The landmark indices is combined as a set K = {0, 2, 3, 14, 15, 17}
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Table 3.1: Anatomical descriptions (ISO 8559-1:2017 (2017)) of the labelled
landmarks. The selection of anatomical landmarks are based on (Sun et al.,
2019a; Zhou et al., 2012).

Index Description Region

0 Acromion of the left shoulder
Clavicle1 Front neck point

2 Acromion of the right shoulder

3 Breast outermost point

Right breast
4 Upper breast point over the right nipple
5 Middle breast point over the right nipple
6 Nipple point of the right breast
7 Right cleavage dot
8 Breast innermost point

9 Left cleavage dot

Left breast
10 Breast innermost point
11 Upper breast point over the left nipple
12 Middle breast point over the left nipple
13 Nipple point of the left breast
14 Breast outermost point

15 Beneath the right breast
Rib cage bottom16 The front processus xiphoideus

17 Beneath the left breast

2. Upper bound cropping

Calculate the maximum height hmax of all contour landmarks, crop

out the mesh part under the level plane at height hmax + ψ, where

ψ is an adjustable factor for slightly enlarging the cropping area.

Appropriate ψ is empirically selected as 30 mm.

3. Lower bound cropping

Calculate the minimum height hmin of all contour landmarks, crop

out the mesh part above the level plane at height hmin − ψ.

4. Estimate the approximate breast plane based on the contour

landmarks:
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(a) The center point of all contour landmarks c
(i)
o = 1

6

∑
k∈K c

(i)
k

is regarded as one point on the breast plane.

(b) In an ideal scenario, all contour landmarks are on the breast

plane. In this case, the normal vector n of the plane should

be perpendicular to (c
(i)
k −c

(i)
o ), which forms 4 linear equations

(c
(i)
k − c

(i)
o )Tn, k ∈ K.

(c) To exclude 0 vector from the solution space, an extra linear

equation ‖n‖1 = 1 is added.

(d) In practical scenarios, the contour landmarks may not coplane.

Therefore, the 5 linear equations are solved with least-square

method 4and then rescale the solution as a unit vector,

adopted as the optimized estimation of the norm vector n̂.

Together with point c
(i)
o , the breast plane is defined.

(e) For the sake of geometric completeness, the point c
(i)
o is slightly

moved towards the inverse direction of the norm vector n̂:

ĉo = c
(i)
o − ψn̂. With ĉo, n̂, the breast plane is estimated.

5. Crop the body mesh with the approximate breast plane and

removed all disconnected parts. Then the breast area of the mesh

is extracted from the body mesh.

The i-th frame of the cropped out breast is denoted as mesh matrix

V
(i)
breast ∈ R3×N(i)

. The automatically cropped out breast areas are shown in

Figure 3.3.

3.3 Result

With the coordinates of the anthropometric landmarks labelled from the

4D scanning sequence, different aspects of the dynamic patterns including

the overall trajectories, accumulated regional displacement, and deformation

intensity distribution can be analyzed. The statistical results based on the

4The implementation of the least-square method is based on NumPy (Harris et al., 2020).
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(a) 0s (b) 1/3 s

(c) 2/3 s (d) 1 s

(e) From left to right are frames of 0.0s, 0.1s, ..., 1.0s.

Figure 3.3: Breast area cropped out based on contour landmarks.

sparse landmark trajectories can be interpolated and projected onto the

automatically cropped breast areas (Figure 3.3), thus providing a detailer and

clearer illustration of the dynamic breast deformation pattern as compared

with previous works (Zhou et al., 2012).

3.3.1 Overall movement of anthropometric landmarks

As shown in Figure 3.4, the variation of landmarks coordinates of z-axis

(caused by forward and backward movements) is significantly less than
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those of x-axis (caused by lateral movements) and y-axis (caused by vertical

movements), indicating that the vertical and lateral swinging are the primary

movements trends of the breasts during fast walking. Figure 3.5a shows the

frame-wise coordinates curve of different landmarks, illustrating a coherent

movement trends in x-axis and y-axis but incoherent movement trend in

z-axis. By separating the z-axis curves according to the region of the

landmark, as shown in Figure 3.5b, we found that the incoherency of

landmarks movement in z-axis originates in the opposite movement trends

of the left and right breast areas - due to the swinging movement during fast

walking.

To prominently illustrate the overall movement of the landmarks, the

spatial trajectories of different landmarks are shown in Figure 3.6. These

trajectories constitute a butterfly-like spatial pattern which is consistent with

previous research on breast movement patterns (Zhou et al., 2012), thus

confirming that the highly dynamic and complex nature of breast soft-tissue

deformation patterns.

Figure 3.4: Coordinates distribution of 17 body landmarks in x, y and z axis.

3.3.2 Accumulated displacement of anthropometric

landmarks

Figure 3.7a and Figure 3.7b show the accumulated trajectory length of

different landmarks and the accumulated trajectory length of different
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(a) (b)

Figure 3.5: Regional motion in anterior-posterior direction throughout the
121 frames: (a) x, y, z-axis curves with all landmarks plot together; (b)
z-axis curves with landmarks from different regions plotted separately.

landmarks across frames, respectively. The results show that the

accumulated trajectory lengths of the different landmarks range from

50 cm to 80 cm, which is a significant deformation considering the fact that

all of the landmarks are recorded from nearly 1 second of recording. On

the other hand, the longest trajectory (Landmark 13) is 48.6% longer than

the shortest trajectory (Landmark 0) within the same recording period,

thus confirming highly nonlinear deformation patterns of the breasts during

dynamic motion.

3.3.3 Deformation intensity distribution

The accumulated displacement can be regarded as an indicator of

deformation intensity. In Figure 3.8, sparse landmark accumulated

displacements are interpolated and mapped to the continuous breast surface

based on the Thin Plate Spline (TPS) interpolation (Duchon, 1977),

illustrating the deformation intensity distribution over the breast surface.

Two characteristics of the breast deformation patterns can be observed: (i)

the deformation intensity increases smoothly from the chest to nipple areas,

and (ii) soft tissues are significantly more deformable than the rigid torso
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Figure 3.6: Spatial trajectories of different landmarks. Landmarks on the
clavicle, left breast, right breast, and rib cage bottom regions are represented
as yellow, green, blue, and pink lines, respectively.

areas. These patterns are consistent with the previous research on breast

deformation patterns (Pei et al., 2020).

3.3.4 Directional deformation distribution

Other than the overall deformation, the directional analysis of the breast

deformation is also interesting because it provides insightful information

for sports bra design. To illustrate the directional deformation patterns of

the breasts, landmark trajectories were projected to the x, y, and z-axies

and the accumulated displacements were calculated accordingly. The sparse

landmark accumulated displacements in different axes were interpolated and

mapped them onto the continuous breast surface using TPS interpolation,

as shown in Figure 3.9. The results present different deformation patterns
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(a) (b)

Figure 3.7: Accumulated trajectory length: (a) accumulated trajectory
length of different landmarks; (b) accumulated trajectory length of different
landmarks across frames.

Figure 3.8: Accumulated displacement distribution of the surface skin at
torso.

in various directions: the entire breast area and the chest area is subjected

to large medial-lateral deformations (x-axis), while only the soft tissues of

the breasts are subjected to obvious vertical deformation (y-axis). Both the

lateral and vertical deformations are more pronounced on the front side of

the body. In contrast, significant deformations in the forward and backward

directions are observed on the side-parts of the torso. These observations may

inspire sports bra designs with better support features like reinforced sections

or more appropriate textile materials to better control breast displacement.
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(a) x-axis

(b) y-axis

(c) z-axis

Figure 3.9: Directional displacement distribution of the whole breast area.
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3.4 Conclusion

This chapter presents the application of 4D scanning technology for

capturing dynamic breast deformation in vivo with high temporal and

spatial resolutions. The experiment is conducted with a female subject

while fast walking, and demonstrates the practicality and effectiveness of

this approach.

For processing the 4D scanning sequence, a toolkit named mesh4d was

developed in this research work, which offers features from landmark labeling

to automatic breast area cropping. This tool was instrumental in processing

the data captured through 4D scanning.

Based on the collected data and the mesh4d toolkit, a breast

anthropometric dataset named DynaBreastManual was constructed.

In-depth analysis of the in vivo breast deformation patterns were carried

out based on this dataset, confirming existing studies on breast deformation

patterns as well as extending them to a detailer and clearer presentation of

the dynamic characteristics of the breast with 4D scanning data.

Overall, these findings emphasize not only the potential but also

the versatility of 4D scanning technology in studying dynamic body

deformations. Compared with previous works on breast dynamic deformation

patterns based on MoCap (Sohn & Bye, 2014; Zhou et al., 2011, 2012), the

recording and analyzing of the breast dynamic behavior was advanced from

sparse landmarks level to the continues surface levels, providing much higher

granularity data for breast anthropometric measurements and analysis.

Future research can build upon these results by increasing the sample size

or exploring other physical activities to further enrich current understanding

on human body dynamics.
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Chapter 4

Dense Tracking of Dynamic

Breast Deformation

4.1 Introduction

Highly accurate commercial systems with rapid scanning capabilities are now

accessible, an example being the 3dMD body scanner (3dMD Ltd., Atlanta,

U.S.). This system can scan at a rate of up to 120 fps and has an error

margin of less than 0.7 mm 1. Such precision is sufficient for capturing subtle

deformation in breasts, and several studies have already started to leverage

this rich data source (Al-Anezi et al., 2013; den Herrewegen et al., 2014;

Novak et al., 2014). However, despite advancements in four-dimensional (4D)

data collection technology, two significant challenges persist related to data

processing: (i) the absence of automated processes. Given that the scanning

rate can reach up to 120 frames per second (fps) (or 7200 frames per minute),

manually processing such vast amounts of generated data to extract crucial

anthropometric measurements is not feasible. Current research typically

only extracts a handful of frames from each scan for analysis (Pei et al.,

2020, 2021a; Pei et al., 2021b; Zhang et al., 2023), which results in loss

of nuanced information on the dynamic procedures and undermines the

potential benefits offered by high-speed scanning, and (ii) the lack of a

precise and consistent method to show the dense correspondence between

1https://3dmd.com/products/#3dmdbody-system-product-specifications

43

https://3dmd.com/products/#3dmdbody-system-product-specifications


different frames. Although adjacent frames correspond with one another -

meaning that one frame of human body mesh deforms into the next - it

remains unclear how vertex points within these individual frames correspond

exactly. This gap in understanding poses difficulties when attempting to

develop automated methods for processing 4D data like tracking anatomical

landmark trajectories during dynamic activities.

In this research work, a semi-automatic approach named Ultra-dense

Motion Capture (UdMC) is proposed to address the research gap. This

method uncovers the dense correspondence between vertices/points across

different frames by enhancing sparse, manually-labelled landmarks to serve

as initial dense correspondence and subsequently refining the correspondence

through an advanced post-alignment scheme. To the best of my knowledge,

this is the first systematic procedure designed for the dense tracking of

breast motion based on 4D scanned data of an entire surface, which

holds considerable promise for studies related to breast biomechanics,

anthropometry and ergonomics.

It should be noted that parts of this chapter are derived from a submitted

manuscript titled An exploratory semi-automatic approach for dense tracking

of breast motion in 4D.

4.2 Ultra-dense motion capture algorithm

4.2.1 Mesh morphing and post-alignment

In order to realistically establish a dense correspondence between different

mesh frames, each frame of the breast mesh is transformed into the

subsequent one. This transformation is based on the Thin Plate Spline (TPS)

motion model guided by landmarks and a post-alignment scheme Figure 4.1.

Note that in the following sections, the math notation follows the convention

that is described in Section 3.2.
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(a) TPS motion model based on sparse landmarks

The TPS kernel, a variant of the radial basis function (RBF), is frequently

used to interpolate continuous high-dimensional fields from a limited set of

control point/value pairs (Duchon, 1977). The derivation of TPS stems

from the physical analogy of bending a thin metal sheet and provides

several advantages. First, the derivation of TPS can generate an infinitely

differentiable field of smooth values. Secondly, its energy function has a

physical interpretation. Lastly, manual adjustment of the free parameters

is not needed. Owing to these merits, TPS has found extensive use in

estimating and characterizing non-rigid transformations (Yang, 2011; Ying

et al., 2016). As such, the TPS kernel is used in building the motion model

in this study.

The TPS motion model is constructed by using the sparsely labelled

landmarks c
(i)
k , k = 1, 2, ..., K in the i-th frame as the control points and

their corresponding landmarks in the subsequent frame c
(i+1)
k , k = 1, 2, ..., K

as the value points. These form a set of control point - value point pairs.

This motion model allows for determining the coordinates of an arbitrary

point in the next mesh frame:

x̂(i+1) = f (i)(x(i)) = a0 + aTx(i) +
K∑
k=1

ωiφ(‖x(i) − c(i)k ‖2) (4.1)

where a0, a, ωi, i = 1, ...K, represent the coefficients of the TPS model; ‖ · ‖2
denotes the Euclidean norm; and the function φ(·) represents a pre-defined

kernel function with φ(r) = r2 log r. The coefficients are solved under

constraints that when inputting landmarks c
(i)
k , their corresponding values

should be outputted as c
(i+1)
k

2.

Utilizing the established f(·), every column of Vbreast is transformed to

its estimated corresponding coordinates in the subsequent mesh frame, thus

yielding a mesh matrix V
(i)
morph.

2Implementation of TPS model and its solution is based on SciPy (Virtanen et al.,
2020)
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(b) Post-alignment with the target mesh

Despite the fact that the TPS motion model f (i)(·) can capture the overall

movement pattern of the breasts based on identified anatomical landmarks,

the model merely provides a rough estimate that depends on the sparse

landmarks and may fail to offer well-granularity dynamic characteristics of

the breast. To incorporate higher granularity dynamic breasts information

into this motion model, 4D scanning sequences for post-alignment are

introduced: each column of V
(i)
morph is further aligned with the target mesh

V
(i+1)
breast, where each column from V

(i)
morph is substituted by using its closest point

from the target mesh with a point-to-plane search (Sullivan & Kaszynski,

2019), culminating in an aligned mesh matrix denoted as V
(i)
align.

4.2.2 Full-field mapping of continuous dense

correspondence

The dense correspondence between the i-th and (i+1)-th frames of the mesh

is established by using the mesh matrices V
(i)
breast and V

(i)
align. However, this

only provides correspondence with discrete vertices/points. To construct a

full-field map of continuous dense correspondence, TPS (Duchon, 1977) is

used for transformation, as follows:

x̂(i+1) = F (i)(x(i)) = a0 + aTx(i) +
M∑
j=1

ωiφ(‖x(i) − v(i)j ‖2) (4.2)

where v
(i)
j , j = 1, 2, ...,M is the M nearest points of x from Vbreast and ‖ · ‖2

denotes the Euclidean norm. Given that point movement should be coherent

and smooth, it is reasonable to interpolate the motion of any given point

based on its neighboring points from within this set. The coefficients (a0, a,

ωi, where i ranges from 1 through K) are determined by solving with the

constraints derived from the corresponding pairs; each pair forms one linear

equation. This local interpolation scheme proves more efficient than utilizing

all of the corresponding pairs in both sets for mapping.

At this stage, we have constructed a function that maps an arbitrary
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point denoted as x(i) in frame i to its equivalent position in frame i + 1

is constructed, which is denoted as x̂(i+1). The revelation of such dense

correspondence across the 4D scanning sequence facilitates a systematic

analysis of the dynamic characteristics of the breasts. Two basic downstream

tasks are illustrated in the following sections to show its application value.

(a) Virtual landmarks tracking

Traditional MoCap technology relies on physical markers attached directly

onto the human body which limits the density of landmarks used for analysis

purposes (Section 3.1). With the UdMC, however, dense movements on the

anatomical landmarks without physical markers can be tracked based on the

dense-correspondence information between frames:

Approach. Virtual landmarks tracking

1. Select a virtual landmark p(1) from the first frame of breast V
(1)
breast.

2. Use the dense-correspondence mapping F (1)(·) to estimate its

corresponding point p̂(2) in the 2-nd frame of the mesh.

3. With p̂(2), estimate its corresponding point p̂(3) in the 3-rd frame

of mesh in the same way, and so on.

(b) Deformation intensity analysis

The deformation intensity of the breasts is related to discomfort and

adverse symptoms (McGhee & Steele, 2010). Understanding the degree of

deformation intensity based on different factors can provide insights into

the dynamic characteristics as well as inspire designers to design more

comfortable bras. To measure the deformation intensity, as in Chapter 3, the

trajectory lengths of the anatomical landmarks on the surface of the breast

is used as an indicator. Using the results of virtual landmark tracking, the

deformation intensity can be determined at fine granularity:
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Approach. Deformation intensity analysis

1. Evenly sample V 1
breast as 100 virtual landmarks with quadric

decimation (Garland & Heckbert, 1997).

2. Track the trajectory of these virtual landmarks and calculate the

trajectory length as a metric for measuring deformation intensity.

3. Coloring each surface-partial as a visual illustration of the

estimated deformation intensity.

4.3 Result

4.3.1 Construction of comparison baselines

As discussed in Chapter 2, probabilistic methods for surface registration

such as the Coherent Point Drift (CPD) algorithm (Myronenko & Song,

2010), produce relatively more reliable and precise outcomes. The CPD

along with its recent variants, the Bayesian Coherent Point Drift (BCPD)

algorithm (Hirose, 2021), are therefore selected as comparison baselines for

geometry-only registration. The Extended Coherent Point Drift (ECPD)

registration algorithm (Golyanik et al., 2016) is also chosen as a baseline

due to its similarity to the work in this study in terms of introducing prior

correspondence 3. However, texture-based methods like FAUST (Bogo et al.,

2014) and Dynamic FAUST (Bogo et al., 2017) are not considered for the

comparison baselines since the pattern of the texture is not changed by

painting the skin of the subject.

These baselines are used to replace mesh morphing and post-alignment

(Subsection 4.2.1) in the approach in this study to construct the comparison

baselines. Moreover, given that the computation time for the CPD, BCPD,

and EPCD algorithms increases significantly with an increase in the number

of vertices, the breast meshes were sub-sampled to 1000 vertices by using

3The implementation of the CPD, BCPD, and EPCD algorithms is based on the
probreg package (Kenta-Tanaka, 2019)
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quadric decimation (Garland & Heckbert, 1997) 4. UdMC alongside the

comparison baselines were implemented on a MacBook Air (M1, 2020) (Apple

Ltd., California, U.S.) with Python 3.9.16. To assess the performance at

varying temporal resolutions and sequence lengths of 4D data, 3 versions of

the datasets at frame rates of 10 fps, 60 fps, and 120 fps were created by

loading one frame from every chunk of 12 frames, 2 frames, and 1 frame

respectively from DynaBreastManual. The sub-datasets are referred to as

DBL-10, DBL-60, and DBL-120, respectively. The code along with the

dataset can be accessed at https://github.com/liu-qilong/udmc.

The quantitative evaluation metrics of all of the approaches for each

sub-dataset are summarized in Table 4.1. The results indicate that UdMC

significantly excels all comparison baselines across all sub-datasets. A

comprehensive description and analysis will be provided in the following

sections of this thesis.

Table 4.1: Quantitative evaluation metrics

UdMC ECPD CPD BCPD
Dataset Metric

DBL-10
time (s) 0.49 20.62 17.84 84.88
acc-c (cm) 0.11 0.75 – –
acc-nc (cm) 0.91 6.11 2.96 4.05

DBL-60
time (s) 3.19 108.66 120.60 639.47
acc-c (cm) 0.37 0.68 – –
acc-nc (cm) 0.78 5.32 7.64 2.67

DBL-120
time (s) 5.62 230.22 254.51 1270.08
acc-c (cm) 0.43 0.71 – –
acc-nc (cm) 0.78 7.24 9.55 3.18

The metrics are dumped for clarity: time refers to computation time, acc-c
refers to alignment error on control landmarks, and acc-nc refers to

alignment error on non-control landmarks. Note that the acc-nc metric is
not appropriate for the CPD and BCPD algorithms since they do not use

prior correspondence information during the registration procedure.

4PyVista (Sullivan & Kaszynski, 2019) was used for implementing the quadric
decimation
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4.3.2 Quantitative estimation

(a) Computation time

The computation time was evaluated during mesh morphing and

post-alignment, with consideration of data loading, the pre-processing

stages, and downstream task implementation are the same across all

methods. As depicted in Table 4.1 and Figure 4.2, the UdMC algorithm

consistently requires significantly less computation time across all of the

sub-datasets which range from 10 fps to 120 fps (sequence length of 11

to 121), with recorded times being 0.49s for DBL-10, 3.19s for DBL-60,

and 5.62s for DBL-120. This result shows that the UdMC algorithm is a

more viable and efficient option for breast biomechanical studies, ergonomic

research as well as clinical applications.

Figure 4.2: Computation time on all frames of DynaBreastManual.

(b) Alignment of control landmarks

Both the ECPD and UdMC algorithms use prior-corresponding landmarks

(control landmarks) to enhance the estimation of dense correspondence over

frames. To assess their performance in following prior correspondences,

alignment estimation with virtual landmark tracking was carried out as

follows:
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Approach. Alignment evaluation on control landmarks

1. Implement virtual landmark tracking based on initial positions of

control landmarks from the first frame of data.

2. Compared trajectories of virtual landmarks with ground-truth

control landmark trajectories.

3. Estimated average error (deviation from ground truth) and the

standard deviation (SD) of the error.

As illustrated in Table 4.1 and Figure 4.3, the UdMC algorithm shows the

lowest alignment error across all sub-datasets. The plotted alignment error

for each frame suggests that the UdMC aligns the control landmarks more

precisely throughout all of the frames, which demonstrates the reliability and

consistency of the UdMC in accurate alignments.

(a) (b)

Figure 4.3: Alignment error on control landmarks. (a) Box plot of overall
alignment error: upper/lower boundary of the box represents the third/first
quartile of the alignment error; solid/dotted middle line represents the
mean/median error; the whiskers extend the box by 1.5 IQR; (b) frame-wise
alignment error curve. The solid line represents the mean error of that
timestamp, while the shaded region denotes one standard deviation above
and below the mean, illustrating variability in alignment errors over time.
Noted that CPD and BCPD are neglected from comparison because they
don’t utilize prior-correspondence information.
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(c) Generalization to non-control landmarks

The motion model of the UdMC is established based on the control

landmarks, which provides specific ground-truth corresponding points to

guide the alignment process. In this case, it is not surprising that the UdMC

algorithm provides a good alignment for these particular points. However,

the real value of algorithms is in their ability to reveal dense-correspondence

on non-control points, i.e. the arbitrary anatomical landmarks on the

breast. Therefore, it is crucial to assess the accuracy of the alignment

of the non-control points, i.e. the algorithm’s capability to generalize

to non-control landmarks. To quantitatively determine this accuracy,

leave-one-out validation was implemented on all of the landmarks, as follows:

Approach. Alignment evaluation on non-control landmarks

1. For registration methods that utilize prior-correspondence

information (UdMC and ECPD):

(a) Each landmark ck is excluded one at a time from the dense

correspondence estimation procedure.

(b) Implement virtual landmark tracking on ck, and compared

the tracking result with the ground-truth trajectory of ck.

Estimated average error (deviation from ground truth) and

the standard deviation (SD) of the error.

(c) Since ck was not included in the dense correspondence

estimation procedure, we regarded its estimated error as a

sample of non-control landmark tracking accuracy.

2. For registration methods that only use geometric information (CPD

and BCPD):

Since these algorithms do not incorporate control points into

their dense correspondence estimation, the differences between the

results of the virtual landmark tracking for the labelled landmarks
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and their actual trajectories can be regarded as an estimation of

the accuracy of the non-control points.

The UdMC consistently surpasses the other baseline models by a

significant margin according to Table 4.1 and Figure 4.4. When the frame

rate increases from 10 fps to 120 fps (sequence length extends from 11 to

121 frames), there is noticeable deterioration in the performance of the

CPD algorithm while the performance of the ECPD and BCPD algorithms

fluctuates at about their original level. Only the UdMC demonstrates

continuous improvement under these conditions, thus indicating its superior

scalability with higher frame rates and longer 4D sequences – a vital factor

for practical applications. In addition to the overall alignment errors, it is

also critical to examine the plotted alignment errors for each frame since

they reflect the consistency of the method across frames due to cumulative

tracking errors. As illustrated in Figure 4.4b, the errors of the CPD, ECPD,

and BCPD algorithms rapidly accumulate over successive frames whereas the

UdMC has both few errors and a stable performance throughout the entire

process, which suggest that the method in this study is more reliable and

robust for tracking breast motion.

(a) (b)

Figure 4.4: Alignment error on non-control landmarks. (a) Box plot of overall
alignment error; (b) frame-wise alignment error curve. Plotting configuration
follows Figure 4.3;
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4.3.3 Qualitative estimation on downstream tasks

The qualitative assessment of the performance of all the methodologies on

the downstream tasks is presented in Subsection 4.2.2.

(a) Virtual landmarks tracking

To demonstrate the efficacy of tracking the virtual landmarks, 5 random

points from the initial frame of a mesh were chosen as the virtual landmarks.

Their trajectories were then tracked in the subsequent frames, as depicted in

Figure 4.5. The videos of the tracking results for all of the methods can be

found at https://github.com/liu-qilong/udmc.

Note that these virtual landmarks are chosen solely for their visual

lucidity. Under the hood, every point on the surface of the breast can

be densely tracked based on the full-field mapping of continuous dense

correspondence outlined in Subsection 4.2.2. The results indicate that the

UdMC successfully aligns the points trajectories to the swinging motion of

the breasts while the ECPD algorithm causes distorted points layout during

the latter half of the breast movement. The CPD algorithm also tends to

allocate all of the points towards the bottom, whereas the BCPD algorithm

tends to cluster all of the points together.

To show the overall pattern of the breast movement captured by each

algorithm, the continuous trajectory of each virtual landmark is plotted

as shown in Figure 4.6. While the ECPD and BCPD algorithms create

unordered and overlapping trajectories (particularly at higher frame rates

and longer sequences), the UdMC and BCPD show smooth butterfly-like

patterns consistent with previous research on breast movement patterns

(Zhou et al., 2012). However, it was observed earlier that the BCPD

requires a significantly longer calculation time and tends to cluster all of

the landmarks together which introduces severe artifacts into the estimated

trajectories. These observations suggest that only the proposed approach in

this study effectively and accurately captures the complex dynamics of breast

motion.
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DBL-10

(a) UdMC (b) ECPD

(c) CPD (d) BCPD
DBL-60

(e) UdMC (f) ECPD

(g) CPD (h) BCPD
DBL-120

(i) UdMC (j) ECPD

(k) CPD (l) BCPD

Figure 4.5: Virtual landmarks tracking results of UdMC and baselines. For
each plot, from left to right are frames of 0.0s, 0.1s, ..., 1.0s.
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DBL-10

(a) UdMC (b) ECPD (c) CPD (d) BCPD
DBL-60

(e) UdMC (f) ECPD (g) CPD (h) BCPD
DBL-120

(i) UdMC (j) ECPD (k) CPD (l) BCPD

Figure 4.6: Tracked trajectory of the virtual landmarks.
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(b) Deformation intensity illustration

Deformation intensity graphs were generated by using all of the algorithms.

As shown in Figure 4.7, the ECPD algorithm fails to provide a smooth and

consistent deformation pattern while the CPD and BCPD show a gradual

increase in the deformation intensity from the chest area towards the nipple

areas but do not distinguish between the deformations that occur within the

breast and the rib cage area beneath the breast. In contrast, the UdMC

algorithm identifies variations between the soft tissue deformations within

the breast compared to the comparatively rigid rib cage areas. This aligns

with the breast deformation patterns observed in Pei et al. (2020) on 4D

mesh sequences. These results indicate that the UdMC algorithm provides

a more accurate measurement of the intensity of the breast deformation.

4.4 Conclusion

In this chapter, a semi-automatic method, the UdMC algorithm, is proposed

for tracking the complex deformation of breasts during dynamic activity

with a 4D scanning sequence marked with sparse anatomical landmarks.

DynaBreastManual, a dynamic 4D anthropometric dataset of the human

breasts constructed in the research as discussed in Chapter 3, is used to

benchmark the UdMC along with 3 other baseline methods adapted from

previous studies. The results indicate that the UdMC significantly excels the

comparison baselines in terms of accuracy, consistency, and efficiency. For the

complete 120 fps dataset, average errors of 0.43 cm for the control-landmarks

and 0.78 cm for the non-control (arbitrary) points are found at calculation

speeds between 40-200 times faster than the other methods.

Two downstream tasks are introduced to demonstrate the practical

application of the UdMC algorithm: (i) tracking virtual landmarks in an

arbitrary position without attaching physical markers to the region, and

(ii) estimating deformation intensity for fine-granularity during dynamic

activities. The qualitative assessment reveals that only the UdMC can

provide realistic outcomes. To confirm the applicability of the proposed
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DBL-10

(a) UdMC (b) ECPD (c) CPD (d) BCPD
DBL-60

(e) UdMC (f) ECPD (g) CPD (h) BCPD
DBL-120

(i) UdMC (j) ECPD (k) CPD (l) BCPD

Figure 4.7: Breast deformation intensity illustration.
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method across different frame rates and sequence lengths, evaluations are

also conducted on datasets with frame rates of 10 fps and 60 fps where

consistent improvements in performance are observed.

The significantly enhanced performance suggests that using 4D scanning

sequences with landmarks is a promising strategy for developing a motion

model of the surface of the body. This further highlights the potential to

advance anthropometry studies at the sparse-landmark level to dense-surface

level, thus enabling more comprehensive analyses and understanding of the

dynamic deformation patterns and properties of breasts.
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Chapter 5

4D Fine-tuned FE Virtual

Breast for Sports Bra Design

5.1 Introduction

In previous chapters, four-dimensional (4D) scanning sequences of in vivo

breast deformation obtained during treadmill fast walking at a speed of

6 km/h have been systematically analyzed (Chapter 3) and the dense

displacement profile of the entire breasts surface was constructed thereafter

(Chapter 4), based on the DynaBreastManual dataset and the proposed

Ultra-dense Motion Capture (UdMC) algorithm during this research. These

works have paved the way towards systematic and comprehensive analyses of

the patterns of the dynamic deformation of the breasts, which leverage the

capability of a 4D scanning system to continuously scan dynamic surface with

high temporal and spatial resolutions. Nevertheless, merely observing the

dynamic patterns presented in a scanning trial is not the end goal. The soft

tissues of the breasts can behave in a highly diverged ways during different

kinds of activities or under different activity intensities. Conducting scanning

trials that cover all circumstances of interest can be very time-consuming and

resource-demanding. Therefore, the transformation from observations of the

scanned data to the ability to accurately predict the dynamic behavior of

the breasts under different circumstances is crucial for breast biomechanical

research as well as facilitating better sports bra designs.
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The finite element (FE) method is a well-known approach grounded

on solid mathematical foundations. The FE method is used to simulate

real-world physical systems, including simulating the soft tissues that higly

deformable for research and clinical purposes (Khaniki et al., 2023). With

proper construction and application of the boundary conditions, a FE model

of the breast can simulate the biomechanical response of the soft tissues of

the breasts, such as displacement (del Palomar et al., 2008) and pressure

(Sun et al., 2021), under different physical activities and conditions with

reasonable accuracy. For example, del Palomar et al. (2008) reported a mean

deviation of 2.4 mm between the simulated and ground-truth human body

surface and Sun et al. (2019b) reported the root mean square error (RMSE)

for a nipple point distance of 0.33% during forward leaning. Aside from

simulating the biomechanical response of the breasts itself, the constructed

breast model can be further assembled with an FE model of a sports bra or

other wearable products, which have tremendous application value in virtual

try-on systems and sports wear design validation and optimization (Sun et al.,

2019a; Sun et al., 2019c).

A critical challenge in realistically simulating the breast biomechanics

is modeling and parameterization of the highly nonlinear hyper-elastic

characteristics. A number of strain energy density models have been

well developed to describe the hyper-elasticity of materials, including

neo-Hookean, Mooney-Rivlin, Ogden, etc. (Khaniki et al., 2023). However,

the dynamic characteristics of soft tissues can vary drastically accross the

population so it can be very challenging to configure the strain energy

density model with the proper parameters for a subject-specif simulation.

Traditionally, breast material parameters have been obtained via ex-vivo

material tests on small adipose and glandular samples (Samani et al., 2003;

Samani & Plewes, 2007). However, these approaches require the intrusive

extraction of human tissue samples and the parameters measured on ex-vivo

non-bioactive tissue may not provide reliable results. Han et al. (2003)

developed a technique to estimate the in-vivo material parameters based

on ultrasonic scanning, which only reflects the elasticity. Nevertheless,

hyper-elasticity is vital for modelling breast tissue, especially during large

62



deformation.

To accurately parameterize the subject-specific material properties,

various researchers have investigated the approach of the iterative

determination of material parameters based on the deviation between

the simulation results and the ground-truth data. Sun et al. (2019b)

utilized a MoCap system to record the trajectories of the left and right

nipple points of a female subject during forward leaning. The FE model

was used to predict the distance between the nipple points and thereby

compared with the ground-truth data. Optimal material parameters were

obtained after 7 rounds of golden section search (GSS) iterations and a 9

segments fine-tuning. The resulting subject-specific parameters were shrunk

by a factor of 7.25, which is a significant change, thus confirming the need

for the subject-specific setting of breast material parameters. Since these

approaches rely on external observations (e.g. landmark trajectories) to

fine-tune the material parameters, the capability of the external observations

to represent the dynamic characteristics of the soft tissues is crucial for

optimizing the material parameters accurately and reliably. However, in

Sun et al. (2019b)’s work, only the distance between 2 landmarks (the left

and right nipple points) was used as the optimization supervision signal,

which may not be sufficient for capturing the complex surface deformation

information of the highly deformable soft tissues of the breasts.

Figure 5.1 shows the overall workflow of this chapter. The 4D

scanning sequence with high temporal and spatial resolutions information

of the entire surface of the breasts will be introduced to determine the

subject-specific Mooney-Rivlin material parameters. Based on the dense

dynamic displacement profile obtained via the UdMC algorithm as discussed

in Chapter 4, surface-to-surface distance, nodal coordinates deviation, and

nodal displacement deviation are constructed as the evaluation metrics,

which would provide supervision signals with high granularity. To the best

of my knowledge, this is the first approach that introduces sophisticated

dynamic deformation information for the entire surface from the 4D

scanning data to determine the material properties for construction of the

subject-specific breast biomechanics simulation system.
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4D Scanning Sequence
Bra-less treadmill fast walking

FE Simulation
Bra-less treadmill fast walking

Mooney-Rivlin Parameter Samples
Breasts material parameterization

(C10, C01, C11, C20, C02)

Deviation Evaluation
dshape, dcoord, ddisp

Parameters Iteration

Section 5.2 4D fine-tuned FE virtual breast

FE sports bra
Sub-model

FE Sports Bra Materials
...

E = 0.10 MPa
E = 0.50 MPa
E = 1.00 MPa

...

FE breasts & torso
Sub-models

Bra-breast Interaction Simulation

Optimized
Parameters

Section 5.3 Bra-breast interaction simulation

Figure 5.1: Flowchart of Chapter 5.
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5.2 4D fine-tuned FE virtual breast

5.2.1 Construction of subject-specific FE model

(a) Parameterization of material properties of the breast

To represent the nonlinear hyper-elasticity of the breast for realistic

simulation, a Mooney-Rivlin model was adopted for parameterizing the

breast material. To represent the hyper-elasticity of a material, the

relationship between stress and strain can be described by using the

stress-strain density function (Sun et al., 2019b):

W (I1, I2) =
n∑

i,j=0

Cij(I1 − 3)i(I2 − 3)j (5.1)

where Cij are the adjustable material parameters that characterize the

nonlinear hyper-elastic material property and I1, I2 are the first and second

invariants of the Cauchy-Green deformation tensor B:

I1 = tr(B) (5.2)

I2 =
1

2
[tr(B)2 − tr(B2)] (5.3)

where B = F · F T and F denotes the deformation gradient.

When n = 2, the model is referred to as a Mooney-Rivlin material model

with 5 adjustable parameters p = (C10, C01, C11, C20, C02). The initial values

of the parameters were adopted from the ex-vivo material test of the breast

in Samani and Plewes (2004):

porigin = (0.30, 0.31, 2.25, 4.72, 3.80)(kPa) (5.4)

(b) Construction of FE model of the female subject

During the 4D scanning experiment discussed in Chapter 4, aside from

scanning during treadmill fast walking, the female subject was also scanned

during static standing to acquire a geometric model of the body in the
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static state. One frame of the reconstructed mesh of the body was imported

into software (Geomagic Studio 12, USA) for refinement, rectification, and

meshing. The meshed body was segmented into the torso, the peripheral

torso soft tissue, and the breasts soft tissue parts to construct the FE model,

as shown in Figure 5.3. Finite element types of the torso part and the breast

part were summarizedd in Table 5.1.

Braless FE body model M0

Gravity-free body model

Validation model with gravity

Error < ε

Validated gravity-free FE model

Apply upward gravity

Apply downward gravity

Compare with M0

Yes

No

Apply external

adjustment force

Figure 5.2: Flowchart of iterative gravity compensation scheme to obtain
gravity-free FE model.

Table 5.1: Element types of the sub-models of the FE virtual breasts

FE Sub-model Body Type Mesh Type Mesh Size

Breasts soft tissue Deformable body Tetrahedron 8 mm
Peripheral torso soft tissue Deformable body Tetrahedron 8 mm
Rigid torso Rigid body – –
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(a) (b) (c)

Figure 5.3: Subject-specific FE model of the female subject: (a) breast
sub-model, (b) soft tissue around breasts sub-model, and (c) rigid torso
sub-model.

Then the iteratively compensation scheme shown in Figure 5.2 (Sun et al.,

2019c) was implemented on the FE model to obtain the gravity free FE model

for FE further simulation.

(c) Boundary conditions obtained from 4D scanning sequence

MSC Marc (Hexagon Ltd. Stockholm, Sweden) was used as the FE analysis

solver. To simulate breast deformation during fast walking, two loadcases

were applied to the FE model sequentially:

Loadcases. Breast deformation during fast walking

1. Apply gravity force on the gravity-free FE model.

This load case is simulated as static analysis.

2. Apply displacement to the torso part.

The displacement data was obtained from the landmark 1 from

the DynaBreastManual dataset constructed in Chapter 3. Noted

that the contact type of the breast soft tissue and the torso part

are set as glued interaction so that the displacement of torso part

will thereby initiate the displacement and deformation of the breast

tissue. Total increment steps are set as 200 and each step contains

a time interval of 5 ms, simulating totally 1s of fast walking as
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compatible with the 4D scanning sequence. This load case is

simulated as dynamic analysis.

5.2.2 Evaluation metrics derived from 4D scanning

sequence

To evaluate the accuracy of the simulation results, a 4D scanning sequence

was introduced to construct 3 evaluation metrics. A loss function of

the parameter optimization process was then constructed based on these

3 evaluation metrics 1. All of the functionalities related to 4D data

processing described in the following sections are provided by the 4D data

processing package mesh4d developed during this research: https://github.

com/liu-qilong/mesh4d.

(a) Data preprocessing

Considering that the FE simulation results consist of inner nodes while the 4D

scanning sequence only consists of the surface nodes of the scanned body, the

surface nodes of the FE simulation results should be first extracted for further

comparison. The node indexes of the surface nodes of the FE sub-model of

the breast was extracted for further analysis. Moreover, since the frame

rates of FE simulation (200 fps) and the 4D scanning sequence (120 fps)

are different, the nodal trajectories of the FE simulation results were firstly

interpolated and reframed as 120 fps based on the linear RBF interpolation.

(b) Surface-to-surface distance

Surface-to-surface distance is the most direct estimation of the deviation

between the simulated dynamic breast behavior and the ground-truth data:

Approach. Surface-to-surface distance evaluation

1. Frame-wise surface-to-surface distance estimation.

1For implementation details, please refer to the evaluation code: https://github.com/
liu-qilong/code2023-fe-virtual-breast/blob/main/asset/eval.py.
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(a) For j-th node n
(i)
j the i-th frame of the simulated trajectories,

the nearest point m
(i)
j from the corresponding 4D scanning

mesh is obtained by nearest point-to-plane search.

(b) Surface-to-surface distance of the i-th frame of the simulated

results is defined as the averaged distance between the nodes

and their nearest point from the 4D scanning mesh: d
(i)
shape =

1
Nnode

∑Nnode

j ‖n(i)
j − m

(i)
j ‖2, where Nnode is the total nodes

number and ‖ · ‖2 denotes the Euclidean distance.

2. The overall surface-to-surface distance is estimated as the average

surface-to-surface distances of different frames:

dshape =
1

Nframe

Nframe∑
i=1

d
(i)
shape (5.5)

where Nframe is the total number of frames.

(c) Nodal coordinates deviation

Although the surface-to-surface distance can be used to estimate the overall

shape deviation from the simulation results, this measurement doesn’t

provides an estimation of the deviation of the dynamic movements at the

sophisticated nodal level. For example, the FE surface may align well with

the real surface of the human body, but the specific movements of the

simulated nodes may greatly diverge with ground-truth movements. This

may lead to the issue of identifying the true optimum material parameters,

which is confirmed with the results in Subsection 5.4.1. In addressing this

issue, the dense nodal coordinates were introduced for evaluation as follows:

Approach. Nodal trajectory deviation evaluation

1. Randomly select 100 nodes from the surface nodes as the

representative landmarks.

2. Implement virtual landmark tracking (subsubsection (a)) at the
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initial positions of these representative landmarks on the 4D

scanning sequence. The estimated trajectories are considered as

the ground-truth landmark trajectories.

3. Extract the trajectories of the representative landmarks from the

FE simulation results. Estimate the averaged deviation from the

ground-truth landmark trajectories:

dcoord =
1

NframeNnode

Nframe∑
i=1

Nnode∑
j=1

‖n̂(i)
j − m̂

(i)
j ‖2 (5.6)

where n̂
(i)
j is the j-th representative in the i-th frame and m̂

(i)
j is

its corresponding ground-truth positions provided by the virtual

landmark tracking.

(d) Nodal displacement deviation

Aside from the dense nodal trajectory, the dense nodal velocity is also

important for describing the dynamic behavior/response of the soft-tissues

of the breasts. Since the time intervals between the 4D scanning frames

are identical, the nodal velocity is proportional to the frame-wise nodal

displacement. Therefore, the deviation of the nodal displacement can be

used to estimate the deviation of the FE simulation results on dense nodal

velocity. The approach to evaluating the changes in nodal displacement is as

follows:

Approach. Nodal displacement deviation evaluation

1. Randomly select 100 nodes from the surface nodes as the

representative landmarks.

2. Implement virtual landmark tracking (subsubsection (a)) at the

initial positions of these representative landmarks on the 4D

scanning sequence. The estimated trajectories are considered as

the ground-truth landmark trajectories.
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3. Extract the trajectories of the representative landmarks from the

FE simulation results. Estimate the averaged deviation from the

ground-truth landmark trajectories:

ddisp =
1

NframeNnode

Nframe∑
i=1

Nnode∑
j=1

‖∆n̂(i)
j −∆m̂

(i)
j ‖2 (5.7)

where ∆n̂
(i)
j is the frame-wise displacement of the j-th

representative in the i-th frame and ∆m̂
(i)
j is its corresponding

ground-truth landmarks’ frame-wise displacement.

5.2.3 Full domain optimization of material properties

(a) Principal parameters inflation scheme

As discussed in Subsection 5.2.1, the material properties of the soft

tissues of the breasts are parameterized as a 5-dimensional vector:

p = (C10, C01, C11, C20, C02). Therefore, the optimization of the material

parameters can be seen as a search problem in a 5-dimensional space.

However, since the simulation of an FE model can typically take a few hours

to complete depending on the complexity of the model and the simulated

duration, it can be very time-consuming to obtain enough evaluation

samples for an optimum parameter search. To address this issue, principal

parameters inflation is proposed to transform the 5-dimensional space search

problem to a 2-dimensional space search problem:

Approach. The principal parameters inflation scheme

1. Since the first 2 parameters (C10 and C01) are the most influential

parameters in Mooney-Rivlin material model, they are selected as

the principal parameters.

2. Given value of C10 and C01, other 3 parameters C11, C20, and C02

is inflated with a self-adjusting factor:

(a) Generate the inflation factor β based on the ratio of Euclidean
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lengths of (C10, C01) and (Corigin
10 , Corigin

01 ):

β =
‖(C10, C01)‖2

‖(Corigin
10 , Corigin

01 )‖2
(5.8)

where (Corigin
10 , Corigin

01 ) is the original parameters presented in

Subsection 5.2.1.

(b) Multiply C11, C20, and C02 with the inflation factor β to obtain

the complete 5-dimension Mooney-Rivlin material parameter

vector:

p = (C10, C01, βC
origin
11 , βCorigin

20 , βCorigin
02 ) (5.9)

With principal parameters inflation, the search for the optimal parameters

is conducted only on the principal parameters and the other parameters

are generated accordingly. Although this method limits the searchable

parameters to a subset of all applicable parameters, the approach can

effectively reduce the resources needed for parameter optimization with

physically reasonable near-optimum solutions.

(b) Loss function constructed with normalized metric fusion

For parameter optimization, the above mentioned 3 evaluation metrics

(Subsection 5.2.2) need to be merged into a loss function. Since these

metrics are estimated on different modalities, i.e. shape, coordinate, and

displacement deviations, they typically result in different value ranges and

are not appropriate to be summed up directly. In this case, normalization was

introduced to the metric fusion algorithm for constructing the loss function:

Approach. Normalization based metric fusion

1. Given simulation results generated with a set of parameter vectors

P = {pa, pa, ...}, the evaluation results form 3 sets:

Dshape = {dashape, dbshape, ...} is a set of surface-to-surface distances.

Dcoord = {dacoord, dbcoord, ...} is a set of nodal coordinates deviations.

Ddisp = {dadisp, dbdisp, ...} is a set of nodal displacement deviations.
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2. Obtain maximum and minimum value of Dshape, Dcoord and Ddisp

and use them to define the metric normalization function:

(a) Normalization function of surface-to-surface distance:

Nshape(d) =
d−min(Dcoord)

max(Dcoord)−min(Dcoord)
(5.10)

(b) Normalization function of nodal coordinates deviation:

Ncoord(d) =
d−min(Dcoord)

max(Dcoord)−min(Dcoord)
(5.11)

(c) Normalization function of nodal displacement deviation:

Ndisp(d) =
d−min(Ddisp)

max(Ddisp)−min(Ddisp)
(5.12)

3. Define the metric fusion function (loss function):

L(dshape, dcoord, ddisp) =
∑

metric∈{shape,coord,disp}

αmetricNmetric(dmetric)

(5.13)

where αshape, αcoord, αdisp are adjustable weights of different metrics.

It’s required that αshape + αcoord + αdisp = 1.

The complete workflow of the loss function estimation is illustrated in

Figure 5.4.

(c) Interpolation based parameter optimization scheme

The loss function estimation workflow is firstly carried out on initial

parameter samples. Based on these data samples, the continues metric plane

on 2-dimension principal parameter space can be interpolated based on Thin

Plate Spline (TPS) (Duchon, 1977). With the interpolated continues loss

function plane, the material parameters can be optimized on the 2-dimension

principal parameters space:
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Principle Parameters
(C10, C01)

Mooney-Rivlin Parameters
(C10, C01, C11, C20, C02)

FE simulation results

4D scanning sequence

Evaluation metrics
dshape, dcoord, ddisp

Loss function
L(dshape, dcoord, ddisp)

Principle parameters inflation

FE simulation with MSC Marc

Metric fusion

Figure 5.4: Flowchart of loss function estimation

Approach. Interpolation based parameter optimization scheme

1. Estimate loss function on the initial parameter samples.

2. Implement parameter optimization.

(a) Interpolate the continues loss function plane on the principal

parameters space.

(b) Search the minimum loss value over the principal parameters

space based on Nelder-Mead method (Gao & Han, 2010).

Implement principal parameter inflation scheme on the

corresponding principal parameters (Coptim
10 , Coptim

01 ) to

obtained the iterated material parameters poptim.

(c) Search the material parameters in all simulated samples

that provides the smallest loss value and denoted as

(Csample
10 , Csample

01 ). Implement principal parameter inflation
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scheme on it to obtained the optimized material parameters

from samples psample.

3. Optimization convergence check.

(a) Calculate the Euclidean distance between poptim and psample.

Since the measurement of distance is in 5 dimensional

Euclidean space with MPa as unit, the unit of the distance

shall be MPa.

(b) If the distance is lesser than 10−4 MPa, the optimization is

converged and psample is outputted as the optimum material

parameters.

(c) Otherwise, the optimization isn’t converged and the poptim will

be added as the parameter samples. Actual FE simulation

and Loss function estimation will be carried out on this new

parameters sample and repeat the optimization procedure

from step 2(a).

5.3 Bra-breast interaction simulation

5.3.1 Construction of bra-breast contact model

While wearing a sport’s bras, it typically undergoes significant deformation

in order to conform with its wearer’s body shape and size; therefore, it is

inappropriate for us just simply scan an isolated one for constructing its

three-dimensional (3D) geometric model. In our study , we have instead

extracted surfaces from scanned images where female subjects wore them

(as shown in Figure 5.5). We assume that these materials exhibit linear

elasticity characterized by two key parameters - Young’s Modulus E (MPa)

and Poisson ratio ν (Sun et al., 2019a; Sun et al., 2021; Sun et al., 2019c).

Combining with the breast FE model constructed in Section 5.2, the

complete bra-breast interaction model is contracted and its element types

are summarized in Table 5.2.
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Figure 5.5: FE sub-model of the sports bra.

Table 5.2: Element types of the sub-models of the FE bra-breast interaction
model

FE Sub-model Body Type Mesh Type Mesh Size

Breasts soft tissue Deformable body Tetrahedron 8 mm
Peripheral torso soft tissue Deformable body Tetrahedron 8 mm
Rigid torso Rigid body – –
Sports bra Shell body Quadrilateral 8 mm

5.3.2 Simulation of breast deformation and bra-breast

contact pressure

MSC Marc (Hexagon Ltd. Stockholm, Sweden) was used as FE simulation

solver. To simulate the bra-breast interaction during fast walking activity,

three load cases were applied to the FE model sequentially:

Loadcases. Bra-breast interaction during fast walking

1. Interference fit to simulate the pre-tension force.

Pre-tension force exists when a sports bra is worn. This force can

be simulated in FE analysis using an interference fit method. This

load case is simulated as static analysis :

(a) Shrink the bra sub-model with ratio of 0.97.
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(b) Expand the area that requires assembly, i.e. the bra

sub-model, through material elasticity.

(c) Once the assembly is complete, the bra sub-model reverts to

its original size creating a connection and generating some

pressure.

2. Apply gravity force on the gravity-free FE model.

This load case is simulated as static analysis.

3. Apply displacement to the torso part.

The displacement data was obtained from the landmark 1 from

the DynaBreastManual dataset constructed in Chapter 3. Noted

that the contact type of the breast soft tissue and the torso part

are set as glued interaction so that the displacement of torso part

will thereby initiate the displacement and deformation of the breast

tissue. Total increment steps are set as 200 and each step contains

a time interval of 5 ms, simulating totally 1s of fast walking as

compatible with the 4D scanning sequence. This load case is

simulated as dynamic analysis.

5.4 Result

5.4.1 Construction of subject-specific FE breast model

(a) Evaluation metrics on initial parameter samples

17 samples were taken from the principal parameter space, as illustrated

in Figure 5.6. The loss function estimation workflow discussed in

Subsection 5.2.3 was first applied to these initial parameter samples,

summarized in Table 5.3. To enhance efficiency, a simulation management

package named FEcluster was developed for automatic material

properties editing, simulation tasks scheduling and distribution across

multiple computers.The code for this package can be accessed at

https://github.com/liu-qilong/FEcluster.
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Figure 5.6: Initial parameter samples.

As shown in Figure 5.7, all evaluation metrics show a peak when dealing

with smaller parameters (approximately when C01 and C10 are less than

0.3 kPa). For both surface-to-surface distance and nodal displacement

deviation measures,the deviation stabilizes as parameters increase.This

indicates that these metrics do not effectively differentiate between optimal

parameters.However,the nodal trajectories metric displays a clear valley

area which effectively narrows down the search area for optimal material

parameters.

(a) (b) (c)

Figure 5.7: The interpolated continues metric plane on 2-dimension principal
parameter: (a) surface-to-surface distance; (b) nodal coordinates deviation;
and (c) nodal displacement deviation.
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Table 5.3: Evaluation metrics on initial parameter samples

Mooney-Rivlin Parameters (kPa) Evaluation Metric (cm)

C10 C01 C11 C20 C02 dshape dcoord ddisp

0.09 0.09 0.68 1.42 1.14 1.22 2.67 0.69
0.15 0.15 1.12 2.36 1.90 1.20 2.64 0.69
0.30 0.31 2.25 4.72 3.80 1.19 2.63 0.70
3.00 3.10 22.50 47.20 38.00 1.18 2.63 0.66
4.50 4.65 33.75 70.80 57.00 1.18 2.64 0.65
6.00 6.20 45.00 94.40 76.00 1.18 2.64 0.65
7.50 7.75 56.25 118.00 95.00 1.18 2.64 0.65
9.00 9.30 67.50 141.60 114.00 1.18 2.64 0.65
1.50 1.55 11.25 23.60 19.00 1.18 2.62 0.66
0.15 4.65 24.26 50.90 40.98 1.18 2.62 0.66
0.15 9.30 48.51 101.77 81.93 1.18 2.64 0.65
3.00 6.00 34.99 73.40 59.09 1.18 2.63 0.65
4.50 0.15 23.48 49.27 39.66 1.18 2.62 0.66
4.50 9.30 53.89 113.04 91.01 1.18 2.64 0.65
6.00 3.00 34.99 73.40 59.09 1.18 2.63 0.65
9.00 0.15 46.95 98.49 79.29 1.18 2.63 0.65
9.00 4.65 52.84 110.84 89.23 1.18 2.64 0.65

(b) Optimized Mooney-Rivlin coefficient

Considering various metrics’ abilities to distinguish optimal parameters, we

set αshape, αcoord, αdisp at 0.2, 0.8, and 0.2 respectively for metric fusion

purposes. The data samples from our loss function along with its continuous

interpolated plane are depicted in Figure 5.8.

As per our discussion on optimization schemes in Subsection 5.2.3,

during our first round of optimization we determined that

(1.029, 1.022, 7.565, 15.870, 12.777) were indeed optimized Mooney-Rivlin

material properties (Figure 5.9a). However since this particular parameter’s

proximity to its minimum within all sampled parameters stood at

1.06 × 10−2 MPa, the optimization wasn’t converged and the actual loss

function evaluation was carried out on these new parameter sample.

At the second round of optimization, the optimized Mooney-Rivlin
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Figure 5.8: Metric fusion on the initial parameter samples.

material properties was (1.031, 1.019, 7.563, 15.866, 12.774), as shown in

Figure 5.9b. Since the distance of this parameter to the minimum in the

parameter samples was 6.48× 10−6 (MPa), the optimization was converged.

The minimum in the parameter samples, (1.029, 1.022, 7.565, 15.870, 12.777),

was outputted as the optimized Mooney-Rivlin material parameters of the

subject-specific FE model.

(c) Verification of breast material parameters

As shown in Table 5.4, the optimized Mooney-Rivlin material parameters

achieved the lowest deviation values for surface-to-surface deviation dshape

and nodal coordinates deviation dcoord. For nodal displacement deviation

ddisp, though the optimized parameters doesn’t achieved the lowest value

but remains in compatible range with the optimum parameters. For metric

fusion value, the optimized material parameters achieve a significantly lower

value comparing with other parameter samples, indicating a generally more

realistic parameterization of the breast dynamic characteristics of the female

subject.

For qualitatively evaluation, the breast deformation simulation results

with the optimized material parameters were plotted with the ground-truth

4D scanning sequence. As shown in Figure 5.10, the movement of the breast

aligned well with the swinging movement of the female subject during the fast
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(a) Iteration 1

(b) Iteration 2

Figure 5.9: Parameter iterations. Note that the red dots represent the
evaluated parameter samples while the red rectangle represents the estimated
optimized parameter.

walking, verifying the applicability of the constructed FE model for breast

biomechanics simulations.

5.4.2 Control performance analysis of sports bra based

on FE contact model

With the optimized breast Mooney-Rivlin parameters, the bra-breast contact

model can then be constructed. By modifying material properties of the

sports bra, the biomechanical performance of the sports bras with different
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Table 5.4: Evaluation metrics on initial parameter samples and the optimized
parameter. The optimized parameters are marked with *.

Mooney-Rivlin Parameters (kPa) Evaluation Metric (cm) Metric Fusion

C10 C01 C11 C20 C02 dshape dcoord ddisp L

0.09 0.09 0.68 1.42 1.14 1.22 2.67 0.69 0.98
0.15 0.15 1.12 2.36 1.90 1.20 2.64 0.69 0.49
0.30 0.31 2.25 4.72 3.80 1.19 2.63 0.70 0.32
3.00 3.10 22.50 47.20 38.00 1.18 2.63 0.66 0.21
4.50 4.65 33.75 70.80 57.00 1.18 2.64 0.65 0.33
6.00 6.20 45.00 94.40 76.00 1.18 2.64 0.65 0.40
7.50 7.75 56.25 118.00 95.00 1.18 2.64 0.65 0.43
9.00 9.30 67.50 141.60 114.00 1.18 2.64 0.65 0.44
1.50 1.55 11.25 23.60 19.00 1.18 2.62 0.66 0.10
0.15 4.65 24.26 50.90 40.98 1.18 2.62 0.66 0.15
0.15 9.30 48.51 101.77 81.93 1.18 2.64 0.65 0.34
3.00 6.00 34.99 73.40 59.09 1.18 2.63 0.65 0.33
4.50 0.15 23.48 49.27 39.66 1.18 2.62 0.66 0.15
4.50 9.30 53.89 113.04 91.01 1.18 2.64 0.65 0.42
6.00 3.00 34.99 73.40 59.09 1.18 2.63 0.65 0.33
9.00 0.15 46.95 98.49 79.29 1.18 2.63 0.65 0.33
9.00 4.65 52.84 110.84 89.23 1.18 2.64 0.65 0.42
1.03* 1.02* 7.56* 15.87* 12.78* 1.18 2.61 0.66 0.03

material properties can therefore be realistic simulated.

Sun et al. (2019c) conducted material tests on different bra components’

fabrics. The Young’s modulus values are ranging from 0.1 to 1 MPa with

almost identical Poisson ratio of 0.3. In this research, to simulate the

performance of bra materials with different stiffness, 3 settings of the sports

bra material properties were selected for simulation, with increasing Young’s

modulus from 0.10 MPa to 1.00 MPa and an identical poisson ratio of 0.30.

The breasts nodal displacement related to the torso and the contact pressure

with the sports bra are selected as the evaluation metrics of the sports bras’

performance.
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(a) 0.000s (b) 0.125s (c) 0.250s

(d) 0.375s (e) 0.500s (f) 0.625s

(g) 0.750s (h) 0.875s (i) 1.000s

Figure 5.10: Breast deformation simulation results plotted with the
ground-truth 4D scanning sequence. Note that the simulated nodes are
colored with surface-to-surface distance and the unit is mm.

(a) Overall breasts displacement and pressure pattern

As shown in Table 5.5 and Figure 5.11, with the increment of the Young’s

modulus, the sports bras materials become more rigid and the relative

displacements of the breasts become lower, while the contact pressures

become larger. However, when the Young’s modulus are larger than 0.50

MPa, the reduce of the breasts’ relative displacements become non-significant

while the contact pressure still increases prominently: the averaged relative

displacement of 1.00 MPa Young’s modulus bra decreases 6.08% comparing

with 0.50 MPa Young’s modulus bra, while the contact pressure increases

78.57%. According to previous studies, the acceptable range for comfortable
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clothing pressure on the human body is typically between 1.96 and 3.92 kPa,

taking into account individual variations and different body areas (Song &

Feng, 2006). The contact pressure of the 1.00 MPa Young’s modulus bra is

significantly larger than this range, indicating that the bra with such a large

Young’s modulus may cause discomfort to the wearer.

Table 5.5: Statistical analysis of relative displacement and contact pressure
of different sports bra materials properties (Young’s modulus E and Poisson
ratio ν).

Material Properties Relative Displacement (cm) Peak Contact Pressure (kPa)

E (MPa) ν min max mean std min max mean std

0.10 0.30 13.25 51.37 19.12 7.08 0.00 7.42 0.07 0.31
0.50 0.30 13.24 38.12 18.09 5.48 0.00 18.89 0.28 0.65
1.00 0.30 13.24 36.42 17.98 5.20 0.00 27.82 0.50 0.93

Figure 5.11: Curves of relative displacement and contact pressure across
different Young’s modulus of sports bra.

The distribution of contact pressure is illustrated in Figure 5.12. As

Young’s modulus increases from 0.10 MPA to 1.00 MPa, there is a rapid

increase in contact pressure on both the side and front areas of the breasts, as

well as on the shoulder straps; however, changes near the sternum area remain

negligible. This suggests an increasingly uneven distribution of pressure

which could potentially lead to discomfort or even negative health effects.

The result indicates that although increasing the Young’s modulus of the

sports bra can enhance the sports bra’s performance on controlling breasts
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(a) 0.10 MPa (b) 0.50 MPa (c) 1.00 MPa

Figure 5.12: Contact pressure distribution of different sports bra materials
with different settings of Young’s modulus.

movement, a too large Young’s modulus may also expose risk on posing

too much contact pressure onto the wearer. This relative displacement and

contact pressure curves obtained in this research may provide data for the

designer to select a proper sports bra material with optimum stiffness with

balancing performance on the breasts movement control and the contact

pressure control.

(b) Breasts regional displacement and pressure pattern

To facilitate more detailed understanding of the breasts displacement and

contact pressure in different breasts area when wearing sports bras with

different stiffness, simulation results of the shoulder straps, bra band, and

the bottom breasts areas were extracted for further analysis, as shown in

Table 5.6 and Figure 5.13. Results shown that the bottom breasts area

undergoes the largest relative displacement as well as the largest contact

pressure, with all settings of bra materials. As the Yound’s modulus of the

bra material increases, the contact pressure of all breasts areas increases

significantly while the relative displacements of the breasts only has slight

decreases for the bottom breasts area and has almost imperceivable changes

for the shoulder straps and the bra band areas.

This indicates that sports bra design should place more attention on the

bottom breasts area as it’s more susceptible to displacement and pressure.

The material stiffness of the sports bra also plays a crucial role in determining

the comfort and support level for wearers. While stiffer materials may
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Table 5.6: Regional statistical analysis of relative displacement and contact
pressure of different sports bra materials properties (Young’s modulus E and
Poisson ratio ν).

Material Properties
Region

Relative Displacement (cm) Peak Contact Pressure (kPa)

E (MPa) ν min max mean std min max mean std

0.10 0.30
strap 13.25 13.34 13.27 0.02 0.00 0.21 0.07 0.06
band 13.25 13.75 13.32 0.09 0.07 0.42 0.05 0.05

bottom 13.26 42.37 33.59 6.53 34.21 2.59 0.21 0.29

0.50 0.30
strap 13.24 13.68 13.38 0.14 0.00 1.03 0.33 0.30
band 13.25 14.03 13.41 0.16 54.01 0.92 0.24 0.14

bottom 13.26 38.08 31.47 5.44 36.67 2.22 0.66 0.34

1.00 0.30
strap 13.22 14.08 13.53 0.28 0.00 1.87 0.63 0.56
band 13.26 14.47 13.54 0.26 97.67 1.57 0.44 0.22

bottom 13.26 35.88 30.53 4.54 41.96 2.16 1.14 0.46

Figure 5.13: Curves of relative displacement and contact pressure across
different Young’s modulus of different sports bra areas.

provide better support by reducing relative displacements, they can also

lead to increased contact pressure which might cause discomfort or even pain

during physical activities. Therefore, an optimal balance between material

stiffness and comfort needs to be achieved in sports bra design. Moreover,

it’s worth noting that despite the slight decrease in relative displacements

with increasing Young’s modulus, there are almost no changes observed for

shoulder straps and bra band areas. This suggests that these areas are

less affected by the material properties of the bras compared to the bottom
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breasts area. In conclusion, our findings suggest that more focus should be

placed on designing sports bras that offer adequate support at the bottom

breasts area without causing excessive contact pressure. Further studies

could explore different combinations of materials or innovative designs to

achieve this goal while ensuring overall comfort for wearers during physical

activities.

5.5 Conclusion

In this chapter, a subject-specific FE biomechanics model of the breast was

constructed. For the first time, 4D scanning sequences were introduced

as supervision signals for determining subject-specific hyper-elasticity

parameters for breasts. Three evaluation metrics were created for

optimization: surface-to-surface distance, nodal coordinates deviation and

nodal displacement deviation based on the UdMC algorithm proposed in

Chapter 4. With these metrics achieving distances and deviations within

acceptable ranges during testing, we verified that our optimized hyper-elastic

properties are applicable for realistic breast biomechanics simulation.

Using these verified material properties for breasts allowed us to construct

a bra-breast interaction model which simulates ergonomic performance of

sports bras made from different materials - providing critical information

previously only obtainable through time-consuming wear trials. This chapter

investigated how changes in a sports bra’s modulus affected relative breast

displacement and bra-breast contact pressure. Results showed that while

increasing sportswear material’s Young’s modulus can improve movement

control of breasts; too large a Young’s modulus may risk applying excessive

contact pressure onto wearers and the pressure distribution may become

increasingly uneven.

To the best of our knowledge, this is the first approach that using

high-temporal and spatial dynamic scanning of breasts to determine

subject-specific parameters for biomechanical simulation models – offering

significant potential towards comprehensive understanding of breast

biomechanics research as well as supporting wearable product design.
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Chapter 6

Conclusions and Suggestions

for Future Research

6.1 Conclusions

The primary goal of the research was to advance the FE model on the basis

of the novel 4D body scanning technology. With reference to the regional

deformation behaviour of the soft breast tissues during continuous body

movements, bra designers can better understand the effects of bra features

and materials on control of breast displacements for optimal support and

protection.

The project objectives, which are discussed in detail in Section 1.2, have

been realized and the achievements of the research are summarized as follows:

1. In Chapter 3, to effectively capture the dynamic breast deformation in

vivo with high temporal and spatial resolutions, the 4D body scanning

technology was applied. The surface changes and stretching of the

skin of the breasts, and changes of the geometry of the breast shape

during dynamic motion were analyzed. Based on the data collected

data and the mesh4d toolkit, a breast anthropometric dataset named

DynaBreastManual was constructed. In-depth analysis of the in vivo

breast deformation patterns were carried out based on this dataset,

confirming existing studies on breast deformation patterns as well as

extending them to a detailer and clearer presentation of the dynamic

88



characteristics of the breast with 4D scanning data. Several conclusions

are drawn from the obtained data:

(a) The study found that the primary movements of breasts during

fast walking are vertical and lateral swinging, with less variation

in forward and backward movements.

(b) The landmarks on the left and right breast areas show opposite

movement trends due to the swinging motion during fast walking.

(c) Spatial trajectories of different landmarks form a butterfly-like

pattern, confirming previous research on complex breast

movement patterns.

(d) Accumulated trajectory lengths range from 50 cm to 80 cm within

nearly one second of recording, indicating significant deformation.

(e) Deformation intensity increases smoothly from chest to nipple

areas; soft tissues are more deformable than rigid torso areas.

(f) Directional analysis shows large medial-lateral deformations in

entire breast area and chest area while only soft tissues experience

obvious vertical deformation. Forward-backward deformations

occur mainly on side-parts of torso.

2. In Chapter 4, to efficiently track specific key points in arbitrary

positions to characterize the surface motion and deformation of the

soft tissues of the breasts to model the biomechanics of the breasts,

a semi-automatic method is proposed namely the Ultra-dense Motion

Capture (UdMC) algorithm. With a 4D scanning sequence marked

with sparse anatomical landmarks, UdMC can reveal the dense

whole-surface deformation profile of the scanned object robustly.

Comprehensive evaluation of the proposed methods indicates that

the UdMC significantly excels the comparison baselines in terms of

accuracy, consistency, and efficiency:

(a) The UdMC algorithm shows the lowest alignment error across

all sub-datasets, demonstrating its reliability and consistency in
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accurate alignments.

(b) Compared to other models, the UdMC consistently performs

better, especially as frame rates increase and sequences lengthen.

This indicates its superior scalability - a crucial factor for practical

applications.

(c) Unlike other algorithms whose errors rapidly accumulate over

successive frames, the UdMC maintains stable performance

throughout the entire process. This suggests that it is more

reliable and robust for tracking breast motion.

(d) In terms of capturing overall pattern of breast movement,

only proposed approach effectively captures complex dynamics

accurately.

(e) Two downstream tasks are introduced to demonstrate the

practical application of the UdMC algorithm: (i) tracking virtual

landmarks in an arbitrary position without attaching physical

markers to the region, and (ii) estimating deformation intensity

for fine-granularity during dynamic activities.

3. In Chapter 5, a subject-specific FE model to simulate the contact

mechanics between a sports bra and the breasts on the basis of

the behavior and motion of the breasts is established. For the

first time, 4D scanning sequences were introduced as supervision

signals for determining subject-specific hyper-elasticity parameters for

breasts. Three evaluation metrics were created for optimization:

surface-to-surface distance, nodal coordinates deviation and nodal

displacement deviation based on the UdMC algorithm. With the

optimized material properties for breasts, a bra-breast interaction

model was constructed for simulating the ergonomic performance

of sports bras made from different materials, leading to critical

information previously only obtainable through time-consuming wear

trials. Several conclusions are draw from the obtained data:

(a) Only with 2 iterations, the optimized subject-specific
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Mooney-Rivlin material properties are converged at

(C10, C01, C11, C20, C02) = (1.029, 1.022, 7.565, 15.870, 12.777)

(KPa).

(b) This study provides data that can help designers select optimal

stiffness level for sports bra materials balancing performance

on controlling breast movement and managing contact pressure

effectively.

4. To evaluate the regional deformation and contact pressure of the

breasts in response to different bra materials, through FE analyzes

and experimental measurements, in Subsection 5.4.2, the breast

displacement control performance and the contact pressure levels with

different bra material settings are simulated and analyzed:

(a) Three settings of sports bra material properties were selected for

simulation with increasing Young’s modulus from 0.10 MPa to

1.00 MPa and shared poisson ratio of 0.30. As Young’s modulus

increased, sports bras became more rigid leading to lower relative

displacements but higher contact pressures on breasts.

(b) However beyond a certain point (Young’s modulus larger

than 0.50MPa), reduction in relative displacement becomes

insignificant while contact pressure continues to increase

significantly indicating potential discomfort or harm to wearer

due to excessive pressure despite better control over breast

movement.

(c) Regional analysis showed that as Young’s modulus increases from

0.10 MPA to 1.00 MPa, there is a rapid increase in contact pressure

on both the side and front areas of the breasts, as well as on the

shoulder straps; however, changes near the sternum area remain

negligible. This suggests an increasingly uneven distribution

of pressure which could potentially lead to discomfort or even

negative health effects.
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(d) Among the shoulder straps, the bottom breasts, and the bra

band areas, the study found that the bottom breasts area

experiences the most displacement and pressure when wearing

sports bras of varying stiffness, indicating a need for designs that

provide adequate support in this area without causing excessive

discomfort.

5. To compare and validate the breast deformation results of a

computational FE model with the experimental results, in

Subsection 5.4.1, the deviation between the simulated breasts

behaviors and the ground-truth data extracted from the 4D scanning

sequence are systematically evaluated:

(a) In all simulated parameter samples, the optimized parameters

achieved lowest deviation values for surface-to-surface deviation

and nodal coordinates deviation while maintaining a compatible

range with optimum parameters for nodal displacement deviation.

(b) Qualitative evaluation showed good alignment between simulated

breast movement and actual movement during fast walking

which verifies applicability of constructed FE model for breast

biomechanics simulations.

6.2 Contributions

In Chapter 3, we investigated the potential of dynamic breast deformation

analysis based on the high-temporal and spatial resolution 4D scanning

sequence. Compared with previous works on breast dynamic deformation

patterns based on MoCap (Sohn & Bye, 2014; Zhou et al., 2011, 2012), the

recording and analyzing of the breast dynamic behavior was advanced from

sparse landmarks level to the continues surface levels, providing much higher

granularity data for breast anthropometric measurements and analysis.

In Chapter 4, we investigated the registration of dynamic surface in the

4D scanning sequence to provide the dense whole-surface deformation profile.
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Establishing dense-correspondence between deformable surfaces remains a

challenging problem. While geometric shape information can provide crucial

information, this alone cannot completely solve this problem. For example,

if a cylinder rotating along its axis is scanned, the outputs will be identical

three-dimensional (3D) meshes over time. In this case, it is not possible to

identify the rotation movement solely based on the scanned geometric shapes.

As reported in Bogo et al. (2017), a significant accuracy gap was observed

between geometric-only versus texture incorporated registration schemes,

thus emphasizing the importance of incorporating other modalities when

establishing dense correspondence between surfaces. The approach in this

study involves anatomical landmarks with known inter-frame correspondence

which provides an initially near-optimal alignment, and leads to a large

margin of improvement in efficiency and accuracy compared with the

calculation costly iterations in geometric-only registration methods.

Designing an approach that effectively merges information from

different modalities is challenging. The ECPD algorithm (Golyanik et al.,

2016) integrates sparse prior correspondence information within the CPD

framework by multiplying the alignment term of the prior correspondence

with the surface alignment term as an objective function, thereby resulting

in surface alignment optimization by following guidance from the prior

correspondence. However, as demonstrated in Section 4.3, this method

does not yield superior quantitative and qualitative results compared to

state-of-the-art geometric-only methods such as the CPD (Myronenko &

Song, 2010) and BCPD (Hirose, 2021) algorithms. This is likely due to the

sparse nature of prior correspondence - where the alignment term of the

prior correspondence has less influence than the surface alignment term. In

contrast, the proposed approach uses TPS interpolation for establishing the

initial prior dense correspondence which is then rectified by using geometric

information from a 4D scanning sequence. This technique is an improvement

over prior correspondence information. The evaluation results indicate that

this simple technique significantly improves both accuracy and calculation

efficiency.

With 4D scanning technology and the proposed UdMC algorithm, we
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provide a rigour tool to record, digitize, and analyze the dynamic surface of

a deformable object. Comparing with traditional methods like MoCap and

3D scanning, our proposed approach provides the most holistic information,

as summarized in Table 6.1. In lights of the advantages it provides, the

proposed approach may have great potentials to advance anthropometry

studies at the sparse-landmark level to dense-surface level, thus enabling

more comprehensive analyses and understanding of the dynamic deformation

patterns and properties of breasts.

Table 6.1: Comparison between different techniques/approaches for record,
digitize, and analyze the an object’s motion and geometry.

Landmark Tracking Surface Scanning

Device Sparse Dense Static Dynamic

MoCap X × × ×
3D scanner × × X ×
4D scanner × × X X
4D scanner with UdMC X X X X

In Chapter 5, a complete workflow was established for fine-tuning the

subject-specific hyper-elasticity parameters based on 4D scanning sequences.

A bra-breast interaction model was then constructed to simulate sports

bras’ Young’s modulus effects on relative breast displacement and bra-breast

contact pressure. Compared to prior work (del Palomar et al., 2008; Sun

et al., 2019a; Sun et al., 2019b; Sun et al., 2021; Sun et al., 2019c)

that only utilized static 3D images scanned with a 3D scanner and sparse

landmark locations recorded with MoCap systems, this approach provides

dynamic deformation information about breasts at much higher granularity

levels leading to more realistic and reliable determinations of breast material

parameters - crucial for realistic biomechanical simulations of breasts for

biomechanics research as well as providing design insights for wearable

product designers.
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6.3 Suggestions for future research

Due to the pioneering nature of this approach, several limitations need to be

addressed in future work.

For the constructed dynamic breasts anthropometric dataset

DynaBreastManual in Chapter 3: (i) the method depends on manually

labelling the anatomical landmarks, so that it is only semi-automatic and

potentially introduces errors due to human intervention. Even though

the UdMC is not fully automatic, manually labeling a few landmarks to

establish a dense motion profile of the entire surface of the breast may

serve as an effective alternative compared with entirely manual approaches.

Future research could investigate the use of motion capture (MoCap) devices

to automate the labelling process, which would enhance both efficiency and

accuracy; (ii) occasionally, it was observed that the scanned mesh sequence

contains holes and breaches in the lower area of the breast due to insufficient

optical cameras pointing towards these perspectives. Consequently, some of

the landmarks were discarded as discussed in Subsection 3.2.2. To rectify

this issue, it is crucial to create a more comprehensive multi-view camera

setting by increasing camera density and balancing their placement; (iii)

although we scanned the entire surface area of each breast, our analysis

focused solely on displacement at sparse landmark points. To address

this limitation, the UdMC algorithm was proposed to reveal the dense

whole-surface deformation profile, as will be discussed in Chapter 4.

For the proposed UdMC algorithm in Chapter 4: (i) the registration

implementation in this study uses a simple sequential alignment scheme

that might suffer from cumulative inter-frame errors. More advanced long

and short range alignment techniques (Bogo et al., 2017) could further

improve the accuracy; and (ii) the DynaBreastManual dataset used for

evaluation consists of 18 anthropometric landmarks across 121 frames of

3D reconstructed scenes that total 2178 ground-truth landmark coordinates.

However, it should be noted that all of the data were collected from one

subject fast walking at a speed of 6 km/h. This dataset was created

specifically for validating the proposed method with carefully constructed
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ground truth but currently remains limited to the subject- and case-specific

levels. In future studies, the plan is to expand this dataset by including more

subjects and covering a broader range of dynamic activities to facilitate data

diversity.

For the 4D data supervised breast hyper-elasticity parameter

determination workflow proposed in Chapter 5: (i) as shown in

Subsection 5.4.1, optimized material parameters achieved surface-to-surface

distances of 1.18 cm, nodal coordinates deviation of 2.61 cm, and nodal

displacement deviations of 0.66 cm, indicating there is still significant room

for accuracy improvement. Nevertheless, since the accuracy evaluations are

carried out with high-granularity dynamic information from the 4D scanning

sequence, the evaluation of the simulation accuracy is actually much stricter

than previous works (del Palomar et al., 2008; Sun et al., 2019a; Sun et al.,

2019b; Sun et al., 2021; Sun et al., 2019c). It is understandable that the

evaluation metrics seem worse than those from previous studies; and (ii)

For treadmill fast walking simulations, only the torso displacement was

inputted as boundary conditions while the torso rotation was neglected.

As rotation constitutes a large portion of torso movement during treadmill

fast walking, this omission limits the simulation system’s accuracy. Future

research may investigate on introducing rotational movement for more

realistic biomechanical breast simulations which in turn would guarantee

more accurate determination of subject-specific hyper-elastic parameters for

breasts.

96



Bibliography

Al-Anezi, T., Khambay, B., Peng, M., O’Leary, E., Ju, X., & Ayoub, A.

(2013). A new method for automatic tracking of facial landmarks in

3d motion captured images (4d). International Journal of Oral and

Maxillofacial Surgery, 42 (1), 9–18. https://doi.org/10.1016/j.ijom.

2012.10.035

Arch, E. S., Colón, S., & Richards, J. G. (2018). A comprehensive method to

measure 3-dimensional bra motion during physical activity. Journal

of Applied Biomechanics, 34 (5), 392–395. https://doi.org/10.1123/

jab.2017-0111

Bartol, K., Bojanic, D., Petkovic, T., & Pribanic, T. (2021). A review of

body measurement using 3d scanning. IEEE Access, 9, 67281–67301.

https://doi.org/10.1109/access.2021.3076595

Behrenbruch, C. P., Marias, K., Armitage, P. A., Yam, M., Moore, N.,

English, R. E., Clarke, J., & Brady, M. (2003). Fusion of

contrast-enhanced breast MR and mammographic imaging data.

Medical Image Analysis, 7 (3), 311–340. https ://doi .org/10.1016/

s1361-8415(03)00015-x

Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., & Taubin, G.

(1999). The ball-pivoting algorithm for surface reconstruction. IEEE

Transactions on Visualization and Computer Graphics, 5 (4), 349–359.

https://doi.org/10.1109/2945.817351

Besl, P., & McKay, N. D. (1992). A method for registration of 3-d shapes.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

14 (2), 239–256. https://doi.org/10.1109/34.121791

97

https://doi.org/10.1016/j.ijom.2012.10.035
https://doi.org/10.1016/j.ijom.2012.10.035
https://doi.org/10.1123/jab.2017-0111
https://doi.org/10.1123/jab.2017-0111
https://doi.org/10.1109/access.2021.3076595
https://doi.org/10.1016/s1361-8415(03)00015-x
https://doi.org/10.1016/s1361-8415(03)00015-x
https://doi.org/10.1109/2945.817351
https://doi.org/10.1109/34.121791


Bishop, C. M. (2016). Pattern recognition and machine learning. Springer

New York.

Bogo, F., Romero, J., Loper, M., & Black, M. J. (2014). Faust: Dataset

and evaluation for 3d mesh registration. Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).

Bogo, F., Romero, J., Pons-Moll, G., & Black, M. J. (2017). Dynamic

FAUST: Registering human bodies in motion. 2017 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). https://doi.

org/10.1109/cvpr.2017.591

Bowles, K. A., & Steele, J. (2013). Effects of strap cushions and strap

orientation on comfort and sports bra performance. Medicine &

Science in Sports & Exercise, 45 (6), 1113–1119. https ://doi . org/

10.1249/mss.0b013e3182808a21

Bowles, K. A., Steele, J., & Munro, B. (2012). Features of sports bras that

deter their use by australian women. Journal of Science and Medicine

in Sport, 15 (3), 195–200. https://doi.org/10.1016/j.jsams.2011.11.248

Chen, L. H., Ng, S. P., Yu, W., Zhou, J., & Wan, K. (2013). A study

of breast motion using non-linear dynamic fe analysis. Ergonomics,

56 (5), 868–878. https://doi.org/10.1080/00140139.2013.777798

Chen, Y., & Medioni, G. (1992). Object modelling by registration of multiple

range images. Image and Vision Computing, 10 (3), 145–155. https:

//doi.org/10.1016/0262-8856(92)90066-c

Chi, L., & Kennon, R. (2006). Body scanning of dynamic posture.

International Journal of Clothing Science and Technology, 18 (3),

166–178. https://doi.org/10.1108/09556220610657934

Choi, J., & Hong, K. (2015). 3d skin length deformation of lower body

during knee joint flexion for the practical application of functional

sportswear. Applied Ergonomics, 48, 186–201. https://doi .org/10.

1016/j.apergo.2014.11.016

Choi, S., & Ashdown, S. (2011). 3d body scan analysis of dimensional

change in lower body measurements for active body positions. Textile

Research Journal, 81 (1), 81–93. https : / / doi . org / 10 . 1177 /

0040517510377822

98

https://doi.org/10.1109/cvpr.2017.591
https://doi.org/10.1109/cvpr.2017.591
https://doi.org/10.1249/mss.0b013e3182808a21
https://doi.org/10.1249/mss.0b013e3182808a21
https://doi.org/10.1016/j.jsams.2011.11.248
https://doi.org/10.1080/00140139.2013.777798
https://doi.org/10.1016/0262-8856(92)90066-c
https://doi.org/10.1016/0262-8856(92)90066-c
https://doi.org/10.1108/09556220610657934
https://doi.org/10.1016/j.apergo.2014.11.016
https://doi.org/10.1016/j.apergo.2014.11.016
https://doi.org/10.1177/0040517510377822
https://doi.org/10.1177/0040517510377822


Chowdhury, H., Alam, F., Mainwaring, D., Beneyto-Ferre, J., & Tate, M.

(2012). Rapid prototyping of high performance sportswear. Procedia

Engineering, 34, 38–43. https://doi.org/10.1016/j.proeng.2012.04.008

Coltman, C., Steele, J., & Mcghee, D. (2018). Which bra components

contribute to incorrect bra fit in women across a range of breast

sizes? Clothing and Textiles Research Journal, 36 (2), 78–90. https :

//doi.org/10.1177/0887302x17743814

Costa, I. F. (2012). A novel deformation method for fast simulation of

biological tissue formed by fibers and fluid. Medical Image Analysis,

16 (5), 1038–1046. https://doi.org/10.1016/j.media.2012.04.002

Dan, R., Fan, X. R., Xu, L. B., & Zhang, M. (2011). Numerical simulation

of the relationship between pressure and material properties of the

top part of socks. Journal of the Textile Institute, 104 (8), 844–851.

https://doi.org/10.1080/00405000.2012.758516

del Palomar, A. P., Calvo, B., Herrero, J., López, J., & Doblaré, M. (2008).
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