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Abstract

The identification of user intents is a fundamental component of a task-oriented di-

alogue system, with the aim of detecting the intent underlying a user’s utterance,

according to which an appropriate response is provided. Typically, intent detection is

formulated into a text classification task, which has benefited from the success of deep

learning techniques. However, the acquisition of a large number of annotations for

training is expensive. This thesis addresses the challenge of few-shot intent detection,

whereby the goal is to develop a highly effective intent classifier using only a limited

amount of annotated data, thereby improving data efficiency.

We first study the cross-domain transferability for few-shot intent detection, exploring

the possibility of jointly utilizing abundant labeled data in a source domain and easily

available unlabeled data in a target domain to train an intent classifier with reason-

able performance. We investigate techniques of transfer learning across domains and

adapting to a new domain. Leveraging the data in public intent detection datasets,

we train IntentBERT, the backbone that transfers knowledge from diverse multiple

intent detection domains, significantly improving the performance in the target do-

main. With easily available unlabeled data in the target domain, the performance is

further enhanced.

Next, to improve the expressiveness of IntentBERT, the study focuses on a particular

property of the pre-trained language models (PLMs) – anisotropy, an undesirable

geometric property of the feature space. We discover that supervised pre-training
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yields an anisotropic feature space, which may suppress the expressive power of the

semantic representations. To mitigate the problem, we propose to enhance supervised

pre-training by regularizing the feature space towards isotropy. We propose two

regularizers based on contrastive learning and correlation matrix respectively, and

demonstrate their effectiveness through extensive experiments. Through the joint

supervised pre-training and isotropization, we achieve improved performance in few-

shot intent detection.

Then, to further improve the data efficiency, we revisit the overfitting phenomenon,

continual pre-training, and direct fine-tuning based on PLMs in the context of few-

shot intent detection. Although the prevailing approach to few-shot intent detec-

tion is continual pre-training, i.e., fine-tuning PLMs on external resources, our study

demonstrates that continual pre-training may not be necessary. Specifically, we find

that the overfitting issue of PLMs may not be as severe as previously believed, i.e.

directly fine-tuning PLMs with only a handful of labeled examples already yields

decent results, and the performance gap quickly shrinks as the number of labeled

data grows. We further enhance the performance of direct fine-tuning with context

augmentation and sequential self-distillation. Comprehensive experiments on real-

world benchmarks show that given only two or more labeled samples per class, the

enhanced direct fine-tuning outperforms many strong baselines that utilize external

data sources for continual pre-training.

Finally, to enhance the computational efficiency, we study model compression for

intent detection with limited labeled data. Traditional approaches to model compres-

sion, such as model pruning and distillation, typically rely on access to large amounts

of data. However, such datasets are not readily available under the few-shot scenario.

To overcome this challenge, we propose a scheme that capitalizes on off-the-shelf

generative PLMs for data augmentation. Furthermore, we introduce a vocabulary

pruning technique employing a nearest neighbour matching scheme. Through ex-

tensive experiments, we demonstrate the efficacy of the proposed method – we can
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compress the model by a factor of 21, and thus enable the deployment of the model

in resource-constrained scenarios, including mobile devices and embedded systems.

The results have been published in or submitted to various top natural language pro-

cessing conferences, including Findings of EMNLP-2021 [119], NAACL-2022 (oral) [118]

and Findings of ACL 2023 [117].
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Chapter 1

Introduction

Building dialogue systems with the ability to interact with users in natural languages

is a long-standing goal of artificial intelligence. Such systems can be categorized into

open dialogue (OD) systems and task-oriented dialogue (TOD) systems according

to different objectives – OD systems are designed for general chatting, while TOD

systems to assist users handle specific tasks, ranging from financial services and med-

ical consultations to online shopping. Within a TOD system, intent detection is a

critical module, as it enables accurate understanding of user intents, and thus fa-

cilitates dialogue management, supports task fulfillment, enhances natural language

understanding, handles errors, and allows customization and adaptation. It forms a

fundamental component in building intelligent conversational agents.

Intent detection is formulated into a text classification task. Contemporary machine

learning models, particularly those grounded in deep learning models, have achieved

impressive success in the task. Nevertheless, the training of such models usually

demands a huge amount of labeled data, which is prohibitive to obtain. Consequently,

over the preceding decade, few-shot intent detection, i.e. training a well-performing

intent classifier with only a few labeled data, has attracted substantial interests in

the community.
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Chapter 1. Introduction

To tackle few-shot intent detection, earlier works mainly focus on the design of

novel model architectures and training paradigms. These works encompass induction

network [32] based on capsule networks, convolutional-neural-network-based mod-

els [115], joint intent detection and slot-filling in the meta-learning framework [7] and

metric learning [72]. Since the emergence of pre-trained language models (PLMs) [17],

the landscape of natural language processing (NLP) has undergone a profound trans-

formation. This paradigm shift has engendered advancements across an extensive

spectrum of NLP tasks, including text classification, sequence labeling, machine trans-

lation, dialogue systems, and text generation. The power of PLMs lies in the general

knowledge learned from huge corpora, which is transferable to specific NLP tasks.

Concretely, a deep model is first pre-trained with massive amounts of data, often in

an unsupervised manner, thereby endowing the model with a profound understanding

of the language, including linguistic architectures, contextual inter-dependencies, and

semantic representations. Over the preceding years, PLMs have reshaped the out-

look of the NLP field, but it remains a challenge how we can apply PLMs to few-shot

intent detection.

First, although PLMs have learned extensive knowledge from huge corpus, it has

been shown that the continual pre-training on relevant corpus or tasks benefit the

down-stream tasks [36]. Efforts have been dedicated to adapting pre-trained lan-

guage models to a specific task such as intent detection by conducting continued pre-

training, with large unlabeled dialogue corpus [36], natural language inference (NLI)

tasks [121] and fake intent detection data generated from wikiHow database [122].

However, these solutions usually take a substantial volume of data for continual pre-

training. For instance, [121] adopts 1 million NLI pairs for continual pre-training.

These works neglect the existence of cross-domain intent detection data. Conse-

quently, the related issues are to be explored, including the transferability of the

knowledge learned from source domains to the semantically irrelevant domain, along

with method that considers both domain shift and domain-specific structure.

2



Second, the expressiveness of PLMs have been known to be constrained by the

anisotropy of the feature space. Anisotropy is a geometric property that semantic

vectors fall into a narrow cone. It has been identified as a crucial factor for the

sub-optimal performance of PLMs on a variety of downstream tasks [30], which is

also known as the representation degeneration problem [30]. However, the interac-

tion between the aforementioned pre-training process and isotropization of PLMs is

still under explored. Furthermore, novel techniques to perform isotropization during

continual pre-training to yield better performance are to be developed. Consequently,

we need a closer examination of the isotropy for few-shot intent detection.

Third, current main-stream approaches rely on extra data to learn the transferable

knowledge, which enhances the complexity of the pipeline, incurs the overhead of

extra computational resources. However, intuitively, as the number of the few data

increases, the necessity of the continual pre-training diminishes. Contemporary en-

deavors focus on the continual pre-training stage, neglecting how to better exploit

the few data. Therefore, a comprehensive investigation is needed to unlock the latent

potential of the few data at hands, based on which a discussion of the necessity of

the continual pre-training should be conducted.

Furthermore, a major limitation of PLMs is the large sizes, usually containing more

than one million parameters [78]. Consequently, PLM-based few-shot intent detection

solutions usually incur considerable computational overhead, necessitating substantial

computational resources, including high-performance processors, memory capacities,

and power consumption. Such overheads pose challenges when the solution is to be

deployed on resource-constrained devices such as edge devices and mobile devices.

However, PLM compression under few-shot scenario receives less attention. Some

effective model compression methods such as knowledge distillation do not work well

under few-shot scenarios. Therefore, a more comprehensive investigation into model

compression for few-shot intent detection is valuable.

In this thesis, we aim to address the issues as mentioned above. We conduct a
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Chapter 1. Introduction

comprehensive study of few-shot intent detection based on PLMs, encompassing the

dimensions of transferability, expressiveness and efficiency. Specifically, we made the

following contributions.

Contribution 1: the study of the cross-domain transferability. We study

cross-domain few-shot intent detection and demonstrate the feasibility of transferring

knowledge from abundant labeled data in source domains to tackle few-shot intent

detection. We also investigate techniques to jointly utilize data from both source do-

main and target domain, to better adapt the model to the target domain. Extensive

experiments on real-world benchmark datasets show consistent improvements of the

proposed methods over competitive baselines, demonstrating the cross-domain trans-

ferability for few-shot intent detection. Leveraging such transferability, we propose

IntentBERT, a backbone for few-shot intent detection, which is obtained by contin-

ual pre-training of BERT on labeled utterances from public dataset. IntentBERT

features not only performance superiority over various competitive baselines, but also

superior data-efficiency – it consumes much less data for continual pre-training. The

findings were published in the Findings of EMNLP-2021 [119].

Contribution 2: new isotropization techniques to boost the expressiveness.

Following the validation of cross-domain transferability, we proceed to conduct an in-

depth analysis of the impact of continual pre-training on the isotropy. It is revealed

that supervised pre-training renders the feature space more anisotropic, which sup-

presses the expressive power. To mitigate the anisotropy, we devise an innovative

framework involving joint supervised pre-training and isotropization, wherein two

regularizers are introduced to generate an isotropic feature space. The efficacy of the

framework is demonstrated through extensive experiments, showing that it is promis-

ing to regularize supervised pre-training towards isotropy to enhance the performance

of few-shot intent detection. The findings were published in NAACL-2022 [118].

Contribution 3: new technique to better exploit the few data To further

enhance the data-efficiency, we examine the prospect of eliminating the stage of con-
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tinual pre-training. We commence by the thorough analysis of direct fine-tuning

PLMs with only a few data, which is commonly perceived as a bad practice due to

severe overfitting. It is found that the process already yields decent performance,

compared to methods involving continual pre-training, and the performance gap di-

minishes rapidly as the number of labeled data increases. To better exploit the limited

available data, we propose a framework encompassing a context augmentation method

and sequential self-distillation. Comprehensive experiments show that given only two

or more labeled samples per class, direct fine-tuning outperforms many strong base-

lines that utilize external data sources for continual pre-training. The findings were

published in the Findings of ACL-2023 [117].

Contribution 4: new techniques to compress models under few-shot sce-

nario. To enhance the applicability of the model in resource-constrained scenarios,

we investigate model compression tailored for few-shot intent detection. We propose

an effective approach using generative PLMs for data augmentation, coupled with

a novel vocabulary pruning technique. Comprehensive experiments demonstrate our

method’s efficacy. Remarkably, we achieve a compression ratio of 21 with impercep-

tible loss in the performance.

Thesis organization. Chapter 2 introduces background knowledge and provides an

overview of existing literature. Chapter 3 studies the cross-domain transferablity of

few-shot intent detection under both supervised setting and semi-supervised setting,

designs IntentBERT, the backbone for few-shot intent detection. Chapter 4 gives a

thorough analysis of the anisotropy property of IntentBERT, devises the framework

to enhance the model via isotropization. Two regularizers are introduced to render

the feature space more isotropic and thus yield superior performance. Chapter 5

revisits continual pre-training with extra data and direct fine-tuning with the few

data, presents a framework to better exploit the few data with a novel context aug-

mentation mechanism and self-distillation, discusses the non-necessity of continual

pre-training. Chapter 6 investigates model compression for few-shot intent detection,

5



Chapter 1. Introduction

reveals the difficulty of model compression under few-shot scenarios, proposes a model

compression framework utilizing generative PLMs for data augmentation and a novel

vocabulary pruning technique to significantly reduce the vocabulary size. Chapter 7

concludes the thesis and discusses future research directions.
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Chapter 2

Background and Related Works

2.1 Task-oriented Dialogue System

Building machines that can interact with human beings in natural languages has been

a long-standing aspiration of artificial intelligence (AI). Nowadays, such computer

systems are referred to as dialogue systems, or conversational agents. These systems

are divided into two principal categories according to different goals: open dialogue

system and task-oriented dialogue system. The former is designed to maximize the

engagement of the users during chatting, by offering recommendations, entertainment

and emotional support, etc. [46] The latter, in contrast, focuses on accomplishing spe-

cific tasks in one or multiple domains, encompassing restaurant reservation, banking

services and technical services, etc. [126]

The implementation of a TOD system can be categorized into two methodologies: the

pipeline method and the end-to-end method. The pipeline method first constructs

discrete, independent functional components and then integrates them into the con-

versational system, while the end-to-end method designs a single model, accepting

user utterances as inputs and directly give the feedback. However, the end-to-end

structure makes the system a complete black box, engendering significant uncontrolla-

7



Chapter 2. Background and Related Works

Figure 2.1: Task-oriented dialogue system.

bility of the system behavior. As a consequence, most real-world commercial systems

adopt the more reliable and interpretable pipeline structure [126]. In the pipeline

method, the system comprises the following components: natural language under-

standing (NLU), dialogue state tracking (DST), dialogue policy (DP) and natural

language generation (NLG). Their functions are briefly described as follows [54, 10].

• NLU contains two modules, intent detection and slot filling. The two modules

maps an user utterance to a structural semantic representation including intent

label and slot-value label for each token.

• DST estimates the dialogue’s goal according to the conversation history. It is

typically a list of domain, slot and value, recording the users’ needs.

• DP maps current dialogue state to an action of the system, such as database

querying, order making and information confirmation.

• NLG generates responses in natural language according to the output of DP.

The relation of the aforementioned components is depicted in Fig. 2.1, wherein these

components cooperate to realize the function of a TOD system. Intent detection is

a critical functional module of NLU, aiming to detect the intents underlying users’

utterances, such as currency exchange rate query. The detected intent steers the

subsequent operations in TOD systems, thus exerting significant influence on the

dialogue state classification, dialogue policy making, and the quality of the generated

8



2.2. Pre-trained Language Models

responses [44, 116]. In this thesis, we study how to train a well-performing intent

classifier with limited annotated data.

2.2 Pre-trained Language Models

PLMs’ evolution. Pre-trained language models originate from the long-standing

idea of distributed representation, i.e. representing the semantic meaning of a piece

of text by low-dimensional vectors [24, 84, 85]. In the past decade, the development

of deep learning has brought significant advancements to the semantic expressive-

ness of such vectors. Researchers adopt neural networks [5] instead of traditional

methods such as latent semantic analysis and latent dirichlet allocation to learn these

vectors, which engenders the notably superior linear regularity among words and

computational efficiency [68, 128, 67]. Such advancements spawn many popular word

embeddings including GloVe [75], fastText [9] and Word2Vec [67], which serve as

the foundation of various NLP applications. However, these word embeddings fail to

model the context-dependent nature of words [77], and thus are called non-contextual

word embeddings. Subsequently, contextual word embeddings emerge. These embed-

dings dynamically map a word to a vector considering other words in the sentence,

adopting neural networks such as Transformer [97]. These models are pre-trained

with unsupervised tasks on large corpus with various tasks, including auto-regressive

language modeling [113], masked language modeling [17] and sequence-to-sequence

modeling [78]. Fulfilling these tasks push the neural model to learn general language

knowledge that has been demonstrated to be significantly helpful for down-stream

tasks. Due to the remarkable performance superiority of contextual word embed-

dings over non-contextual ones, currently, PLMs usually refer to the contextual ones,

in accordance with the terminology used in this thesis.

Architecture. Most PLMs adopt the architecture of Transformer based on self-

attention mechanism [97], including all PLMs employed in this thesis. Although other

9
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(a) The architecture of Transformer in encoders.

(b) The architecture of Transformer in generative PLMs.

Figure 2.2: The archiecture of Transformer.

neural models have been studied, consisting of convolutional neural network [48] and

recurrent models [41, 16], both of them suffer long-term dependency problem, i.e. only

the local context around the word is modeled. To mitigate this issue, Transformer

adopts a fully-connected architecture based on self-attention mechanism, as shown in

Fig. 2.2a. hi denotes the embedding of the ith token xi, and it is a mapping result

considering all other words in the sentence. However, in generative PLMs, each token

usually attends to only the preceding tokens for the generation, as shown in Fig. 2.2b.

PLMs adopted in this thesis. The study of few-shot intent detection in this thesis

is based on several PLMs. The first category is encoder that encodes the semantic of

utterances into vectors. We adopt two PLMs as follows.

• BERT [17]. BERT is among the most successful PLMs. With a Trans-

former architecture of 12 layers and 12 attention heads, BERT is pre-trained on

10
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BooksCorpus of 800 million words [130] and English Wikipedia of 2,500 million

words, adopting masked language modeling and next sentence prediction as the

pre-training tasks.

• RoBERTa [60]. RoBERTa is a more robust version of BERT. It optimizes the

hyper-parameters and pre-training configurations such as word masking scheme,

pre-training objectives, batch size and corpus size. RoBERTa matches or exceed

the performance of other concurrent models.

The second category is generative PLM that generates texts as follows.

• GPT-3 [11]. GPT-3 is an advanced auto-regressive PLM with Transformer

architecture, developed by OpenAI. It not only performs well on a wide spec-

trum of NLP tasks such as translation, question-answering without fine-tuning,

but also generates text of human-level quality. OpenAI does not release the

parameters of GPT-3, but provide only APIs for inference. In this thesis, we

adopt the Davinci version of 175 billion parameters.

• GPT-4 [73]. GPT-4 is the most advanced version of GPT series models with

around 170 trillion parameters [51]. It generates more coherent, contextual, and

appropriate text. Similar to GPT-3, GPT-4 can be accessed only via APIs.

• GPT-J [100]. GPT-J is an open-source alternative to GPT-3 with 6 billion

parameters, developed by EleutherAI. Due to smaller size, GPT-J can be de-

ployed on consumer-grade GPUs, but with competitive zero-shot performance

compared to GPT-3 of comparable size.

• OPT-30B [123]. OPT-30B is one of the OPT series of models released by

Meta AI, with 30 billion parameters, which matches the performance of the

GPT-3 class of models. We adopt the above generative models to enhance the

data-efficiency and also to obtain a small model for few-shot intent detection.

11
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2.3 Few-shot Intent Detection

Traditional methods. Because of the importance of intent detection in TOD

systems, it has been attracting interests from scholars. Early methods are based on

rules [21] and statistical features such as n-gram features [6] and salience [33], coupled

with traditional classifiers including support vector machine (SVM) [37] and boost-

ing classifier [96]. However, rule-based methods require the expensive maintenance

of the hand-crated rules. Statistical features are more convenient to obtain, but fail

to effectively encode highly abstract language semantics. Meanwhile, scholars start

to adopt neural models. [96] constructs deep convex networks with n-gram features.

[57] and [82] adopt a recurrent neural network (RNN) encoder-decoder architecture

to jointly tackle intent detection and slot filling. [111] employs a convolutional neural

network (CNN) to encode local text semantics. Nevertheless, these early explorations

use only a small-scale corpus to train the model, including word embeddings. More-

oever, neural models capitalize on large amount of labeled data, which is usually

prohibitive to obtain [27, 98]. This limitation triggers the surge of research interests

in few-shot intent detection, i.e. training a well-performing intent classifiers with a

few annotations.

Methods based on non-contextual word embeddings. Then, a series of non-

contextual word embeddings are pre-trained on large corpus and then are released

for public usage, based on which researchers focus on the design of neural model

architecture to tackle few-shot intent detection. Using Glove, RobustTC [115] adopts

CNNs to build a clustering-based dynamic metric function, Induction network [32]

introduces the capsule network and dynamic routing [86] to enhance the expressive

power of intent representations. With fastText, [72] designs a sophisticated semantic

matching and aggregation network to measure semantic similarity. Nonetheless, the

representative power of non-contextual word embeddings is limited, and thus few-shot

intent detection is still a challenge.
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Methods based on contextual word embeddings. Following BERT [17], contex-

tual word embeddings have induced a paradigm shift in NLP. To deal with few-shot

intent detection, the mainstream efforts have been dedicated to adapting PLMs to in-

tent detection by conducting continual pre-training [36, 35] on dialogue corpus or rele-

vant tasks. [63] fine-tunes a PLM on an unlabeled dialogue corpus containing millions

of conversations. [103] further pre-trains PLMs on a task-oriented dialogue corpus

of 100, 000 utterances with masked language modelling (MLM). [39, 13] investigates

a dual encoder model trained with response selection tasks on conversational input-

response pairs. [121] conducts continual pre-training with around 1 million annotated

samples for natural language inference. [122] constructs some pre-training tasks based

on the wikiHow database with 110, 000 articles. [99] propose a two-stage procedure,

adaptive conversational fine-tuning followed by task-tailored fine-tuning. [61] conduct

continual pre-training with paraphrase dataset. Besides, [106, 108] exploit off-the-

shelf BERT to generate novel utterances for intent detection. The study of few-shot

intent detection has been extended to other settings, including semi-supervised learn-

ing [20, 19], incremental learning [107] and multi-label classification [43]. However,

these works do not address the following issues for few-shot intent detection:

• Transferrability. Since TOD systems are devised for specific domains, such

as the banking service and the medical domain, it is valuable if we can transfer

the knowledge learned from source domains to the target one, to mitigate the

scarcity of annotated data, which remains under-explored. In addition, given

the easily available unlabeled utterances in the target domain, the feasibility to

jointly utilize these data and the source domain data is of interests.

• Expressiveness. The expressiveness of PLMs is harmed by the notorious

anisotropy property of the embedding space, i.e. the embeddings are distributed

in a long, narrow area. It remains on open question how the fine-tuning of PLMs

affects the property. The potential of mitigating the property for performance

enhancement is to be unearthed.
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• Efficiency, including data-efficiency and model-efficiency.

– Data-efficiency. Extra data is usually required in most aforementioned

methods in the intermediate stage of continual pre-training, besides the

few labeled data in the target task. However, the data-efficiency may

be improved if we manage to eliminate the intermediate stage without

performance deterioration.

– Model-efficiency. PLMs suffer from inferior model-efficiency due to their

gigantic parameter sizes, limiting the deployment in resource-constrained

computational scenarios. Model compression under the few-shot constraint

is still a challenge.

In this thesis, we focus on the issues as above.

2.4 Datasets

We conduct the study with five large-scale practical benchmark datasets as follows.

The dataset statistics are summarized in Table 2.1.

Dataset #Intent #Train #Dev #Test

OOS 150 15000 3000 4500

BANKING77 77 10003 0 3080

HINT3 51 1579 0 676

HWU64 64 8954 1076 1076

MCID 16 1258 148 339

Table 2.1: Dataset statistics.

OOS [52] contains labeled data of 10 domains, with 15 intents in each domain, plus

out-of-scope data that do not belong to any of the intents. All data is collected via

crowd-sourcing. Since this thesis focuses on intent classification, we do not use the

out-of-scope data.
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HWU64 [59] is a large-scale multi-domain dataset with 64 intents, collected via

crowd-sourcing. Unlike OOS which is balanced across intents, different intents in

HWU64 have different numbers of labeled data.

HINT3 [3] is created from real conversational systems with 51 intents over 3 domains.

BANKING77 [13] is a single-domain dataset focusing on banking service. It has

77 semantically close intents, and thus is challenging. Some intents partially overlap

with others, and we can hardly rely on individual word to correctly classify the intent.

This dataset requires fine-grained decision.

MCID [2] is a cross-lingual dataset for “Covid-19”, generated by annotators using

the ontology describing all intents with a few examples. It covers multiple languages:

English, Spanish, French and German. We use only the English data.

We adopt these datasets in different ways, some of them as the transferring source

while some of them for evaluation. We will go into details in each chapter.
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Chapter 3

Cross-domain Transferability

3.1 Motivation

In this chapter, we investigate the cross-domain transferrability for few-shot intent

detection. The problem is important because the acquisition of labeled data for a

novel domain to deploy a new service is expensive, while abundant labeled data from

other domains remains readily accessible. For instance, the COVID-19 pandemic

engenders the development of related chatbot systems [62], and it may be possible

to leverage labeled data from domains like ”Banking”, as shown in Fig. 3.1. On the

other hand, alternative data sources for continual pre-training have been investigated

by scholars, but the consumed data is often large and thus yields low data-efficiency.

Below, we summarize the most relevant studies in this direction.

• CONVBERT [63] finetunes BERT on an unlabeled dialogue corpus consisting

of nearly 700 million conversations.

• TOD-BERT [103] further pre-trains BERT on a task-oriented dialogue corpus

of 100, 000 unlabeled samples with masked language modelling (MLM) and

response contrastive objectives.
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Figure 3.1: Cross-domain few-shot classification.

• USE-ConveRT [39, 13] investigates a dual encoder model trained with re-

sponse selection tasks on 727 million input-response pairs.

• DNNC [121] pre-trains a language model with around 1 million annotated

samples for natural language inference (NLI) and use the pre-trained model for

intent detection.

• WikiHowRoBERTa [122] constructs some pre-training tasks based on the

wikiHow database with 110, 000 articles.

To initiate the study of cross-domain few-shot intent detection, we focus on two

aspects: 1) The mechanism to transfer knowledge from the source domains to the

target domain, and 2) The adaptation to the target domain in the presence of a lim-

ited corpus of labeled data. For the first aspect, we propose supervised pre-training

with publicly available intent detection dataset of multiple domains to learn trans-

ferablity knowledge, which generates a backbone for few-shot intent detection called

IntentBERT. For the second aspect, we design a joint pre-training scheme, which

simultaneously optimizes the classification error on the source labeled data and the

language modeling loss on the target unlabeled data.
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3.2 Method

3.2.1 Problem Definition

The objective of cross-domain few-shot intent classification is identifying novel intent

classes within the target domain, leveraging only a few labeled samples. We assume

the existence of labeled data in the source domains of a different label space, Dlabeled
source =

{(xi, yi)}, where yi is the label of utterance xi. The source and target domains may

have very different semantics. To illustrate, we give an example in Figure 3.1, wherein

the source domain is “Banking”, whereas the target domain is “Covid”. Moreover,

to adapt to the target domain, we propose exploiting the easily available unlabeled

data in the target domain, Dunlabeled
target = {xi}, as shown in Fig. 3.1.

3.2.2 Supervised Pre-training and Joint Pre-training

Our pre-training method relies on the existence of Dlabeled
source . Such data samples can

be readily obtained from public intent detection datasets such as OOS [52] and

HWU64 [59]. As will be shown in the experiments, roughly 1, 200 examples from ei-

ther OOS or HWU64 are enough for the pre-trained intent detection model to achieve

a superior performance on drastically different target domains such as “Covid”. Given

additional Dunlabeled
target , we propose a joint pre-training scheme that is empirically proven

to be highly effective.

Supervised pre-training. Given Dlabeled
source = {(xi, yi)} with N different classes, we

employ a simple method to fine-tune BERT. Specifically, a linear layer is attached on

top of BERT as the classifier, i.e.,

p(y|hi) = softmax (Whi + b) ∈ RN , (3.1)

where hi ∈ Rd is the feature representation of xi. We use the feature vector of the

[CLS] token to represent the sentence. W ∈ RN×d and b ∈ RN are parameters of
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the linear layer. Model parameters θ = {ϕ,W,b}, with ϕ being the parameters of

BERT, are trained on Dlabeled
source with a cross-entropy loss:

θ∗ = arg min
θ

Lce

(
Dlabeled

source ; θ
)
. (3.2)

After training, the fine-tuned BERT is expected to have learned general intent detec-

tion skills, and hence we call it IntentBERT.

Joint pre-training. Given unlabeled target data Dunlabeled
target , we can leverage it to

further enhance our IntentBERT, by simultaneously optimizing a language modeling

loss on Dunlabeled
target and the supervised loss in Eq. (3.2). The language modeling loss

can help to learn semantic representations of the target domain while preventing

overfitting to the source data. Specifically, we use MLM as the language modeling

loss, in which a proportion of input tokens are masked with the special token [MASK]

and the model is trained to retrieve the masked tokens. The joint training loss is

formulated as:

Ljoint = Lce(Dlabeled
source ; θ) + λLmlm(Dunlabeled

target ; θ), (3.3)

where λ is a hyperparameter. It is used to balance the supervised loss and the

unsupervised loss.

Few-shot intent classification. After pre-training, the parameters of IntentBERT

are fixed, and it can be immediately used as a feature extractor for novel few-shot

intent classification tasks. The classifier can be a parametric one such as logistic

regression or a non-parametric one such as nearest neighbor. A parametric classifier

will be trained with the few labeled examples provided in a task and make predic-

tions on the unlabeled queries. As will be shown in the experiments, a simple linear

classifier suffices to achieve very good performance, thanks to the effective utterance

representations produced by IntentBERT.
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3.3 Experiment

3.3.1 Setup

Datasets. To train IntentBERT, we continue to pre-train BERT on either OOS1 or

HWU64. Both datasets contain multiple domains, providing rich resources to learn

the general intent detection knowledge2. For evaluation, we employ three datasets:

BANKING77, MCID and HINT3.

Figure 3.2: Vocabulary overlap.

Fig. 3.2 visualizes the vocabulary overlap between the source training data and target

test data, which is calculated as the proportion of the shared words in the combined

vocabulary of any two datasets after removing stop words. It is observed that the

overlaps are quite small, indicating the existence of large semantic gaps.

Evaluation. The classification performance is evaluated by C-way K-shot tasks.

For each task, We randomly sample C classes and K examples per class to train the

classifier, and then we sample extra 5 examples per class as queries for evaluation.

The accuracy is averaged over 500 such tasks.

Baselines. We compare IntentBERT to the following strong baselines. BERT-

1The domains “Banking” and “Credit Cards” are excluded because they are semantically close

to the evaluation data.
2We have also experimented with the combination of both datasets but observed no better results.
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Method Dunlabeled
target BANKING77 MCID HINT3

BERT-Freeze ✗ 52.62(12.41) 57.84(11.72) 47.3(12.06)

CONVBERT ✗ 68.27(12.34) 67.7(11.54) 72.61(10.90)

TOD-BERT ✗ 77.66(7.35) 64.10(9.01) 68.9(11.69)

DNNC ✗ 67.54(15.40) 56.22(16.70) 64.08(14.77)

WikiHowRoBERTa ✗ 34.92(10.52) 30.82(9.93) 31.72(10.34)

IntentBERT (HWU64) (ours) ✗ 78.38(10.55) 74.54(11.89) 77.91(10.64)

IntentBERT (OOS) (ours) ✗ 82.44(8.31) 77.12(9.02) 80.09(10.40)

IntentBERT (OOS)+MLM (ours) ✓ 88.91(8.98) 86.30(9.84) 87.12(9.75)

(a) Main results for 5-way 2-shot tasks.

Method Dunlabeled
target BANKING77 MCID HINT3

BERT-Freeze ✗ 69.95(11.7) 72.43(10.72) 66.80(10.45)

CONVBERT ✗ 86.55(8.18) 83.52(7.93) 87.20(7.88)

TOD-BERT ✗ 89.44 (5.13) 77.72(11.08) 83.52(8.55)

USE-ConveRT¶ ✗ 85.22 – –

DNNC ✗ 89.84(7.53) 80.01(9.92) 87.85(8.08)

WikiHowRoBERTa ✗ 41.60(10.10) 36.36(9.68) 39.02(9.88)

IntentBERT (HWU64) (ours) ✗ 90.02(7.47) 85.92(8.82) 89.42(7.94)

IntentBERT (OOS) (ours) ✗ 91.84(4.22) 88.12(5.90) 90.18(7.38)

IntentBERT (OOS)+MLM (ours) ✓ 95.22(5.14) 92.40(6.16) 94.02(5.98)

(b) Main results for 5-way 10-shot tasks.

Table 3.1: Main results for 5-way tasks. ¶ stands for results from the original paper.

Freeze simply freeze the off-the-shelf BERT; TOD-BERT [103] further pre-trains

BERT on a huge amount of task-oriented conversations with MLM and response se-

lection tasks; CONVBERT [63] further pre-trains BERT on a large open-domain

multi-turn dialogue corpus; USE-ConveRT [39, 13] is a fast embedding-based clas-

sifier pre-trained on an open-domain dialogue corpus by dialogue response selection

tasks; DNNC [121] further pre-trains a BERT-based model on NLI tasks and then

applies a similarity-based classifier for classification; WikiHowRoBERTa [122] fur-
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ther pre-trains RoBERTa [60] on fake intent detection data synthesized from wiki-

How3. All the baselines (except BERT-Freeze) adopt a second pre-training stage, but

with different objectives and on different corpus. In our experiments, all the baselines

(except DNNC) use logistic regression as the classifier. For DNNC, we strictly follow

the original implementation4 to pre-train a BERT-style pairwise encoder to estimate

the best matched training example for a query utterance.

Training details. We use BERTbase
5 (the base configuration with d = 768) as

the encoder, Adam [49] as the optimizer, and PyTorch library for implementation.

The model is trained with Nvidia GeForce RTX 2080 Ti GPUs. For supervised pre-

training, we use validation to control early-stop to prevent overfitting. Specifically, we

use HWU64 for validation when pre-training with OOS and vice versa. The training

is stopped if no improvement in accuracy is observed in 3 epochs. For joint pre-

training, λ is set to 1. The number of training epochs is fixed to 10, since it is not

prone to overfitting.

3.3.2 Results

Main results. The main results are provided in Table 3.1. First, IntentBERT (ei-

ther pre-trained with OOS or HWU64) consistently outperforms all the baselines by

a significant margin in most cases. Take the results of 5-way 2-shot classification

on MCID for example, IntentBERT (OOS) outperforms the strongest baseline CON-

VBERT by an absolute margin of 9.4%, demonstrating the high effectiveness of our

pre-training method. The cross-domain transferability of IntentBERT indicates that

despite semantic domain gaps, most intent detection tasks probably share a similar

underlying structure, which could be learned with a small set of labeled utterances.

Second, IntentBERT (OOS) seems to be more effective than IntentBERT (HWU64),

3https://www.wikihow.com/
4https://github.com/salesforce/DNNC-few-shot-intent
5https://github.com/huggingface/transformers
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(a) BERT (b) TOD-BERT

(c) IntentBERT (ours) (d) IntentBERT+MLM (ours)

Figure 3.3: Visualization of the embedding spaces with t-SNE.

which may be due to the semantic diversity of the training corpus. Nevertheless, the

small difference in performance between them shows that our pre-training method is

not sensitive to the training corpus.

Finally, our proposed joint pre-training scheme (Section 3.2.2) achieves significant

improvement over IntentBERT (up to 9.2% absolute margin), showing the high ef-

fectiveness of joint pre-training when target unlabeled data is accessible.

3.3.3 Analysis

Visualization To obtain deeper understanding of the quality of the feature space

generated by the proposed methods, we visualize the space of 10 randomly sampled

classes with 500 data per class from BANKING77 in Fig. 3.3, comparing our methods

to strong baselines. The figure clearly demonstrates the superiority of our pre-trained

models, echoing the quantitative evaluation results in Section 3.3.2.

Amount of labeled data for pre-training. We reduce the data used for pre-

training in two dimensions: the number of domains and the number of samples per
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Figure 3.4: The impact of the labeled data quantity for pre-training.

class. We randomly sample 1, 2, 4 and 8 domains for multiple times and report the

averaged results in Fig. 3.4. The source domain is OOS dataset and the results are

evaluated on 5-way 2-shot tasks on BANKING77. It is found that the training data

can be dramatically reduced without harming the performance. The model trained

on 8 domains and 10 samples per class performs on par with that on 8 domains and

150 samples per class. In general, we need only around 1, 200 annotated utterances

to train IntentBERT, which can be easily obtained in public datasets. This finding

indicates that using small task-relevant data for pre-training may be a more effective

and efficient fine-tuning paradigm.

Figure 3.5: The impact of the unlabeled data quantity.

Amount of unlabeled data for joint pre-training. We randomly sample a frac-

tion of unlabeled utterances in the target domain and re-run the joint training. The
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results are evaluated on 5-way 2-shot tasks with OOS as the source dataset. As

shown in Fig. 3.5, the accuracy keeps increasing when the number of unlabeled sam-

ples grows from 10 to 1, 000 and tends to saturate after reaching 1, 000. Surprisingly,

1, 000 utterances in BANKING77 can yield a comparable performance than the full

dataset (13, 083 utterances). Generally, it does not need much unlabeled data to

reach a high accuracy.

Methods BANKING77 MCID HINT3

BERT→MLM(target) 80.52 62.96 72.43

IntentBERT→MLM(target) 82.04 75.91 77.92

IntentBERT+MLM(source) 84.08 75.88 78.49

IntentBERT+MLM(target) 88.92 86.34 87.11

Table 3.2: Ablation study on joint pre-training. → denotes moving to the next

training stage. + denotes joint optimization of both loss functions.

Ablation study on joint pre-training. First, we investigate a two-stage pre-

training scheme [36] where we use BERT or IntentBERT as initialization and perform

MLM in the target domain (the top two rows in Table 3.2). In the table, the data

used for the experiment (either from ”target” or ”source”) is shown in the brackets.

It can be seen that they perform much worse than our joint pre-training scheme

(the bottom row). Second, we use the source data instead of the target data for

MLM in joint pre-training (the third row), and observe consistent performance drops,

which shows the necessity of a task-specific corpus. The experiment is conducted

with 5-way 2-shot tasks using OOS as the source dataset. The result echoes the

findings in [36] which demonstrates the effectiveness of continual pre-training over

domain-specific corpora or the unlabeled data of target tasks. However, our result

of IntentBERT+MLM(source) shows that even across domains and label set, the

unlabeled utterances with underlying intents are still significantly beneficial.
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Chapter 3. Cross-domain Transferability

3.4 Conclusion

In this chapter, we give a comprehensive empirical study into cross-domain few-shot

intent detection. We have proposed knowledge transferring methods and adaptation

methods. Extensive experiments have shown the superior performance compared

to competitive baselines on various benchmark datasets. IntentBERT is developed.

It is a backbone network for few-shot intent detection, which is obtained by fine-

tuning BERT using publicly available labeled utterances. The results demonstrate

the transferability across domains for few-shot intent detection. The proposed method

is adopted to facilitate intent discovery task [125].
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Chapter 4

Mitigating Anisotropy for

Expressiveness

4.1 Motivation

In Chapter 3, we devise IntentBERT, a backbone for few-shot intent detection which

utilizes public intent datasets for continual pre-training of BERT. However, as will

be shown in this chapter, IntentBERT suffers from severe anisotropy, an undesirable

property of PLMs [30, 25, 55].

Anisotropy is a geometric property that semantic vectors fall into a long, narrow cone.

It has been identified as a crucial factor for the sub-optimal performance of PLMs on

a variety of downstream tasks [30, 4, 12, 25], which is also known as the representa-

tion degeneration problem [30]. Fortunately, isotropization techniques can adjust the

embedding space, and thus yields the significant performance improvement [91, 79].

Hence, this chapter aims to answer the question:

• Is it possible to improve supervised pre-training via isotropization for few-shot

intent detection?
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Figure 4.1: Illustration of our proposed regularized supervised pre-training.

Many isotropization techniques have been developed based on transformation [91, 45],

contrastive learning [31], and top principal components elimination [71]. However,

these methods are designed for off-the-shelf PLMs. When applied on PLMs that have

been fine-tuned on down-stream NLP tasks such as semantic textual similarity task

or intent classification, they may introduce an adverse effect, as observed in [81] and

our pilot experiments.

In this chapter, we present a comprehensive study on the isotropy property of PLMs

for few-shot intent detection. Specifically, we first study the interaction of supervised

pre-training and isotropization, and then propose to regularize supervised pre-training

with isotropic regularizer. The idea is illustrated in Fig. 4.1, wherein SPT denotes

supervised pre-training (fine-tuning an off-the-shelf PLM on a set of labeled utter-

ances), which makes the feature space more anisotropic. we devise two regularizers, a
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contrastive-learning-based regularizer (CL-Reg) and a correlation-matrix-based regu-

larizer (Cor-Reg), each of which can increase the isotropy of the feature space during

supervised training. Extensive evaluation and analysis are conducted to validate the

effectiveness of the proposed approach.

4.2 Interaction of Supervised Pre-training

and Isotropization

To deepen our understanding of the isotropy property, we first conduct pilot ex-

periments to gain some insights into the interaction between isotropization and the

supervised continual pre-training which generates IntentBERT.

4.2.1 Measuring isotropy

Following [71, 8], we adopt the following measurement of isotropy:

I(V) =
minc ∈ C Z(c,V)

maxc ∈ C Z(c,V)
, (4.1)

where V ∈ RN×d is the matrix of stacked embeddings of N utterances (note that the

embeddings have zero mean), C is the set of unit eigenvectors of V⊤V, and Z(c,V)

is the partition function [4] defined as:

Z(c,V) =
N∑
i=1

exp
(
c⊤vi

)
, (4.2)

where vi is the ith row of V. I(V) ∈ [0, 1], and 1 indicates perfect isotropy.

4.2.2 Fine-tuning Leads to Anisotropy

To observe the impact of fine-tuning on isotropy, we follow Chapter 3 to fine-tune

BERT [17] with standard supervised training on a small set of an intent detection
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Dataset BERT IntentBERT

BANKING 0.96 0.71(0.04)

HINT3 0.95 0.72(0.03)

HWU64 0.96 0.72(0.04)

Table 4.1: The impact of fine-tuning on isotropy.

benchmark OOS [52] (details are given in Chapter 3). We then compare the isotropy of

the original embedding space (BERT) and the embedding space after fine-tuning (In-

tentBERT) on target datasets. As shown in Table 4.1, after fine-tuning, the isotropy

of the embedding space is notably decreased on all datasets. Hence, it can be seen

that fine-tuning may render the feature space more anisotropic. In the table, the

mean and standard deviation of 5 runs are reported.

Figure 4.2: The impact of contrastive learning on IntentBERT with experiments on

HWU64 and BANKING77 datasets.

4.2.3 Isotropization after Fine-tuning May Be Harmful

To examine the effect of isotropization on a fine-tuned model, we apply two strong

isotropization techniques to IntentBERT: dropout-based contrastive learning [31] and

whitening transformation [91]. The former fine-tunes PLMs in a contrastive learn-
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(a) HWU64. (b) BANKING77.

Figure 4.3: The impact of whitening on IntentBERT with experiments on HWU64

and BANKING77 datasets.

ing manner1, while the latter transforms the semantic feature space into an isotropic

space via matrix transformation. These methods have been demonstrated highly ef-

fective [31, 91] when applied to off-the-shelf PLMs, but things are different when they

are applied to fine-tuned models. As shown in Fig. 4.2, contrastive learning improves

isotropy (orange lines), but it significantly lowers the performance ((blue lines) on

two benchmarks. As for whitening transformation, it has inconsistent effects on the

two datasets, as shown in Fig. 4.3. It hurts the performance on HWU64 (Fig. 4.3a)

but yields better results on BANKING77 (Fig. 4.3b), while producing nearly per-

fect isotropy on both. The above observations indicate that isotropization may hurt

fine-tuned models, which echoes the recent finding in [80].

4.3 Method

The study in Section 4.2 reveals the anisotropy of a PLM fine-tuned on intent detec-

tion tasks and the challenge of applying isotropization techiniques to the fine-tuned

model. To mitigate the anisotropy issue, in this section, we propose a joint fine-tuning

1We refer the reader to [31] for details.
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and isotropization framework. Specifically, we propose two regularizers to make the

feature space more isotropic during fine-tuning.

(a) CL-Reg. (b) Cor-Reg.

Figure 4.4: Illustration of CL-Reg (contrastive-learning-based regularizer) and Cor-

Reg (correlation-matrix-based regularizer).

4.3.1 Problem Definition

Few-shot intent detection targets to train a good intent classifier with only a few

labeled data Dtarget = {(xi, yi)}Nt , where Nt is the number of labeled samples in

the target dataset, xi denotes the ith utterance, and yi is the label. To tackle the

problem, we have proposed to learn intent detection skills by the continual supervised

pre-training on a small subset of public intent detection benchmarks in Chapter 3.

Dsource = {(xi, yi)}Ns denotes the source data used for pre-training, where Ns is the

number of examples. After the training is finished, the PLM can be directly used on

the target dataset by attaching a readily available classifier such as a linear regression

classifier, or a support vector machine. It has been shown in Chapter 3 that this

method can work well when even the label spaces of Dsource and Dtarget are disjoint.

However, our analysis in Section 4.2 uncover a critical limitation of supervised pre-

training, i.e. it makes the anisotropy property of the feature space worse.
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4.3.2 Regularizing Supervised Pre-training with Isotropiza-

tion

To mitigate the anisotropy of the PLM fine-tuned by supervised pre-training, we pro-

pose a joint training objective by adding a regularization term Lreg for isotropization:

L = Lce(Dsource; θ) + λLreg(Dsource; θ), (4.3)

where λ is a weight parameter. The aim is to learn intent detection skills while

maintaining an appropriate degree of isotropy. We devise two different regularizers

introduced as follows.

Contrastive-learning-based Regularizer. Inspired by the recent success of con-

trastive learning in mitigating anisotropy [112, 31], we employ the dropout-based

contrastive learning loss used in [31] as the regularizer:

Lreg = − 1

Nb

Nb∑
i

log
esim(hi,h

+
i )/τ∑Nb

j=1 e
sim(hi,h

+
j )/τ

. (4.4)

In particular, hi ∈ Rd and h+
i ∈ Rd are two different representations of utterance xi

generated by the PLM with built-in standard dropout [90], i.e., xi is passed to the

PLM twice with different dropout masks to produce hi and h+
i . sim(h1,h2) denotes

the cosine similarity between h1 and h2. τ is the temperature parameter. Nb is the

batch size. Since hi and h+
i represent the same utterance, they form a positive pair.

Similarly, hi and h+
j form a negative pair, since they represent different utterances.

An example is given in Fig. 4.4a. xi is the ith utterance in a batch of size 3, and is

fed to the PLM twice with built-in dropout to produce two different representations

of xi: hi and h+
i . Positive and negative pairs are then constructed for each xi, i.e.

h1 and h+
1 form a positive pair for x1, while h1 and h+

2 , h1 and h+
3 , form negative

pairs for x1. By minimizing the contrastive loss, positive pairs are pulled together

while negative pairs are pushed away, which in theory enforces an isotropic feature

space [31]. In [31], the contrastive loss is used as the single objective to fine-tune
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off-the-shelf PLMs in an unsupervised manner, while in this work we use it jointly

with supervised pre-training to fine-tune PLMs for few-shot learning.

Correlation-matrix-based Regularizer. The above regularizer enforces isotropiza-

tion implicitly. Here, we propose a new regularizer that explicitly enforces isotropiza-

tion. The perfect isotropy is characterized by zero covariance and uniform vari-

ance [91, 129], i.e., a covariance matrix with uniform diagonal elements and zero

non-diagonal elements. Isotropization can be achieved by endowing the feature space

with such statistical property. However, as will be shown later, it is difficult to

determine the appropriate scale of variance. Therefore, we base the regularizer on

correlation matrix :

Lreg = ∥Σ− I∥, (4.5)

where ∥·∥ denotes Frobenius norm, I ∈ Rd×d is identity matrix, Σ ∈ Rd×d is the

correlation matrix. Σij denotes Pearson correlation coefficient between the ith di-

mension and the jth dimension. As shown in Fig. 4.4b, Σ is estimated with hi, the

representations of utterances in the current batch. By pushing the correlation matrix

towards identity matrix during training, we can learn a more isotropic feature space.

Moreover, the proposed two regularizers can be used together as follows:

L = Lce(Dsource; θ) + λ1Lcl(Dsource; θ) + λ2Lcor(Dsource; θ), (4.6)

where λ1 and λ2 are the weight parameters, and Lcl and Lcor denote CL-Reg and Cor-

Reg, respectively. Our experiments show that better performance is often observed

when they are used together.
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4.4 Experiments

4.4.1 Setup

Datasets. To perform supervised pre-training, we follow Section 3.3 to adopt the

OOS dataset. This dataset contains diverse semantics of 10 domains, and thus

provide extensive knowledge of intent representation to learn. Also following the

configuration in Section 3.3, we exclude the domains “Banking” and “Credit Cards”

since they are similar in semantics to one of the test dataset BANKING77. We then

use 6 domains for training and 2 for validation, as shown in Table 4.2. For evaluation,

we employ four datasets: BANKING77, HINT3, MCID and HWU64.

Training Validation

“Auto commute”, “Work”, “Home”,

“Meta”, “Small talk”, “Utility”

“Travel”, “Kitchen dining”

Table 4.2: Split of domains in OOS.

Our Method. Our method can be applied to fine-tune any PLM. We conduct

experiments on two popular PLMs, BERT [17] and RoBERTa [60]. For both of

them, the embedding of [CLS] is used as the utterance representation. We employ

logistic regression as the classifier. We select the hyperparameters λ, λ1, λ2, and τ by

validation. The best hyperparameters are provided in Table 4.3.

Baselines. We compare our method to the following baselines. First, for BERT-

based methods, CONVBERT [63], TOD-BERT [103], and DNNC-BERT [121]

further pre-train BERT on conversational corpus or natural language inference tasks.

USE-ConveRT [39, 13] is a transformer-based dual-encoder pre-trained on con-

versational corpus. CPFT-BERT is the re-implemented version of CPFT [120],

by further pre-training BERT in an unsupervised manner with mask-based con-

trastive learning and masked language modeling on the same training data as ours.
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Method Hyperparameter

CL-Reg λ = 1.7, τ = 0.05

Cor-Reg λ = 0.04

CL-Reg + Cor-Reg λ1 = 1.7, λ2 = 0.04, τ = 0.05

(a) BERT-based.

Method Hyperparameter

CL-Reg λ = 2.9, τ = 0.05

Cor-Reg λ = 0.06

CL-Reg + Cor-Reg λ1 = 2.9, λ2 = 0.13, τ = 0.05

(b) RoBERTa-based.

Table 4.3: Hyperparameters selected via validation.

IntentBERT-ReImp is the re-implemented version of IntentBERT as in Chapter3,

which uses the same random seed, training data, and validation data as our methods

for a fair comparison. For RoBERTa-based baselines, WikiHowRoBERTa [122] fur-

ther pre-trains RoBERTa on synthesized intent detection data. DNNC-RoBERTa

and CPFT-RoBERTa are similar to DNNC-BERT and CPFT-BERT except the

PLM. IntentRoBERTa is the re-implemented version of IntentBERT based on

RoBERTa, with uses the same random seed, training data, and validation data as our

method. Finally, to show the superiority of the joint fine-tuning and isotropization,

we compare our method against whitening transformation [91]. BERT-White and

RoBERTa-White apply the transformation to BERT and RoBERTa, respectively.

IntentBERT-White and IntentRoBERTa-White apply the transformation to

IntentBERT-ReImp and IntentRoBERTa, respectively.

All baselines use logistic regression as classifier except DNNC-BERT and DNNC-

RoBERTa, wherein we follow the original work2 to train a pairwise encoder for nearest

neighbor classification.

2https://github.com/salesforce/DNNC-few-shot-intent
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Method BANKING77 HINT3 HWU64 MCID Val.

CONVBERT 68.27 72.61 81.75 67.70 90.54

TOD-BERT 77.66 68.90 83.24 64.10 88.10

DNNC-BERT 67.54 64.08 73.97 56.22 72.98

CPFT-BERT 72.09 74.34 83.02 72.16 89.33

IntentBERT-ReImp 80.38(.35) 77.09(.89) 90.61(.44) 76.67(.18) 93.62(.38)

BERT-White 72.95 65.70 75.98 65.12 87.33

IntentBERT-White 82.52(.26) 78.50(.59) 87.24(.18) 75.05(.57) 94.89(.21)

CL-Reg (ours) 83.45(.35) 79.30(.87) 91.46(.15) 78.13(.91) 94.43(.22)

Cor-Reg (ours) 83.94(.45) 80.16(.71) 90.75(.35) 77.65(1.2) 95.02(.22)

CL-Reg + Cor-Reg (ours) 85.21(.58) 81.20(.45) 90.66(.42) 78.20(.78) 95.41(.25)

(a) 2-shot results.

Method BANKING77 HINT3 HWU64 MCID Val.

CONVBERT 86.60 87.20 92.55 83.52 96.82

TOD-BERT 89.40 83.50 91.56 77.72 96.39

USE-ConveRT 85.20 – 85.90 – –

DNNC-BERT 89.80 87.90 90.71 80.01 95.23

CPFT-BERT 89.82 90.37 93.66 81.95 97.30

IntentBERT-ReImp 92.35(.12) 89.55(.63) 95.21(.15) 87.02(.66) 97.80(.18)

BERT-White 88.86 85.70 91.26 82.07 96.05

IntentBERT-White 92.29(.33) 90.14(.26) 94.42(.08) 86.52(.06) 98.07(.12)

CL-Reg (ours) 93.66(.22) 91.06(.30) 95.84(.12) 88.44(.51) 98.43.02)

Cor-Reg (ours) 93.98(.26) 91.38(.55) 95.82(.14) 88.53(.78) 98.47(.07)

CL-Reg + Cor-Reg (ours) 94.68(.01) 92.38(.01) 95.84(.19) 89.19(.29) 98.58(.01)

(b) 10-shot results.

Table 4.4: 5-way evaluation results using BERT. The top 3 results are highlighted.

Training Details. We use PyTorch library and Python to build our model. We

employ Hugging Face implementation3 of bert-base-uncased and roberta-base. We use

Adam [49] as the optimizer with learning rate of 2e− 05 and weight decay of 1e− 03.

3https://github.com/huggingface/transformers
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The model is trained with Nvidia RTX 3090 GPUs. The training is early stopped

if no improvement in validation accuracy is observed for 100 steps. The same set

of random seeds, {1, 2, 3, 4, 5}, is used for IntentBERT-ReImp, IntentRoBERTa, and

our method.

Method BANKING77 HINT3 HWU64 MCID Val.

WikiHowRoBERTa 32.88 31.92 30.81 26.95 34.10

DNNC-RoBERTa 74.32 68.06 69.87 62.10 58.51

CPFT-RoBERTa 80.27(.11) 79.98(.11) 83.18(.11) 70.75 86.71(.10)

IntentRoBERTa 81.38(.66) 78.20(1.72) 90.48(.69) 76.23(.89) 95.33(.54)

RoBERTa-White 79.27 73.13 82.65 67.51 89.90

IntentRoBERTa-White 83.75(.45) 79.64(1.38) 86.52(1.33) 74.90(1.15) 96.06(.58)

CL-Reg 84.63(.68) 81.10(.49) 91.67(.20) 78.63(.95) 96.32(.14)

Cor-Reg 86.92(.71) 82.20(.48) 91.10(.18) 76.65(.70) 96.82(.03)

CL-Reg + Cor-Reg 87.96(.31) 83.55(.30) 90.47(.39) 77.95(.84) 96.35(.19)

(a) 2-shot results.

Method BANKING77 HINT3 HWU64 MCID Val.

WikiHowRoBERTa 59.50 54.18 52.47 48.55 60.59

DNNC-RoBERTa 87.30 82.34 80.22 78.33 74.46

CPFT-RoBERTa 93.91(.06) 92.55(.07) 92.82(.06) 82.45(.12) 96.45(.05)

IntentRoBERTa 92.68(.24) 89.01(1.07) 94.49(.43) 87.27(.50) 98.32(.15)

RoBERTa-White 93.00 89.02 94.00 84.62 97.14

IntentRoBERTa-White 92.68(.31) 90.13(.66) 93.82(.53) 86.59(.68) 98.35(.21)

CL-Reg 94.43(.34) 91.65(.13) 95.44(.28) 89.27(.38) 98.79(.05)

Cor-Reg 95.07(.41) 92.11(.41) 95.69(.12) 89.12(.29) 98.89(.03)

CL-Reg + Cor-Reg 95.85(.02) 93.17(.23) 95.64(.28) 89.80(.28) 98.85(.07)

(b) 10-shot results.

Table 4.5: 5-way evaluation results using RoBERTa. The top 3 results are highlighted.

Evaluation. The baselines and our method are evaluated on C-way K-shot tasks.

For each task, we randomly sample C classes and K examples per class. The C ×K
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labeled examples are used to train the logistic regression classifier. Note that we do

not further fine-tune the PLM using the labeled data of the task. We then sample

another 5 examples per class as queries. Fig. 4.1 gives an example with C = 2 and

K = 1. We report the averaged accuracy of 500 tasks randomly sampled from Dtarget.

4.4.2 Results

The main results are provided in Table 4.4 and Table 4.5, wherein CL-Reg, Cor-Reg,

and CL-Reg + CorReg denote supervised pre-training regularized by the correspond-

ing regularizer. We report the mean and standard deviation of our methods and

IntentBERT variants. The following observations can be made. First, our proposed

regularized supervised pre-training, with either CL-Reg or Cor-Reg, consistently out-

performs all the baselines by a notable margin in most cases, indicating the effec-

tiveness of our method. Our method also outperforms whitening transformation,

demonstrating the superiority of the proposed joint fine-tuning and isotropization

framework. Second, Cor-Reg slightly outperforms CL-Reg in most cases, showing the

advantage of enforcing isotropy explicitly with the correlation matrix. Finally, CL-

Reg and Cor-Reg show a complementary effect in many cases, especially on BANK-

ING77. The above observations are consistent for both BERT and RoBERTa. It can

be also seen that higher performance is often attained with RoBERTa.

Method BANKING77 HINT3 HWU64

IntentBERT-ReImp .71(.04) .72(.03) .72(.03)

Supervised Pre-training+CL-Reg .77(.01) .78(.01) .75(.03)

Supervised Pre-training+Cor-Reg .79(.01) .76(.06) .80(.03)

Supervised Pre-training+CL-Reg+Cor-Reg .79(.01) .76(.05) .80(.02)

Table 4.6: The impact of the proposed regularizers on isotropy.

The observed improvement in performance comes with an improvement in isotropy.

We report the change in isotropy based on BERT by the proposed regularizers in
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Table 4.6. Both regularizers and their combination make the feature space more

isotropic compared to IntentBERT-ReImp that only uses supervised pre-training. In

addition, in general, Cor-Reg can achieve better isotropy than CL-Reg.

4.4.3 Analysis

Moderate isotropy is helpful. To investigate the relation between the isotropy

of the feature space and the performance of few-shot intent detection, we tune the

weight parameter λ of Cor-Reg to increase the isotropy and examine the performance.

As shown in Fig. 4.5 (the results are obtained with BERT on 5-way 2-shot tasks),

a common pattern is observed: the best performance is achieved when the isotropy

is moderate. This observation indicates that it is important to find an appropriate

trade-off between learning intent detection skills and learning an isotropic feature

space. In our method, we select the appropriate λ by validation.

Figure 4.5: Relation between performance and isotropy.

Correlation matrix is better than covariance matrix as regularizer. In

the design of Cor-Reg (Section 4.3.2), we use the correlation matrix, rather than

the covariance matrix, to characterize isotropy, although the latter contains more

information – variance. The reason is that it is difficult to determine the proper

scale of the variances. Here, we conduct experiments using the covariance matrix, by
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Method BANKING77 Val.

Cov-Reg-1 82.19(.84) 94.52(.19)

Cov-Reg-0.5 82.62(.80) 94.52(.26)

Cov-Reg-mean 82.50(1.00) 93.82(.39)

Cor-Reg (ours) 83.94(.45) 95.02(.22)

Table 4.7: Comparison between covariance matrix and correlation matrix to imple-

ment the regularizer for isotropy.

pushing the non-diagonal elements (covariances) towards 0 and the diagonal elements

(variances) towards 1, 0.5, or the mean value, which are denoted by Cov-Reg-1, Cov-

Reg-0.5, and Cov-Reg-mean respectively in Table 4.7. It can be seen that all the

variants perform worse than Cor-Reg. The experiment is conducted with BERT on

5-way 2-shot tasks.

Supervised Pre-training CL-Reg Cor-Reg Batch Normalization BANKING77

✓ 80.38(.35)

✓ ✓ 82.38(.38)

✓ ✓ 83.45(.35)

✓ ✓ ✓ 84.18(.28)

✓ ✓ 83.94(.45)

✓ ✓ ✓ 84.67(.51)

✓ ✓ ✓ 85.21(.58)

✓ ✓ ✓ ✓ 85.64(.41)

Table 4.8: The effect of combining batch normalization and our method.

Our method is complementary with batch normalization. Batch normaliza-

tion [47] can potentially mitigate the anisotropy problem via normalizing each dimen-

sion with unit variance. We find that combining our method with batch normalization

yields better performance, as shown in Table 4.8. The experiment is conducted with

BERT and evaluated on 5-way 2-shot tasks. In addition, to confirm the effectiveness

of the regularizers, we conduct ablation study, wherein we examine the effect of cross-
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Cross-entropy CL-Reg Cor-Reg BANKING77 Val.

✓ ✓ ✓ 85.21(.58) 95.41(.25)

✓ 80.38(.35) 93.62(.38)

✓ 77.66(.96) 88.74(.56)

✓ 76.17(2.04) 84.77(1.32)

Table 4.9: Ablation study.

entropy loss and the regularizer, respectively. As shown by Table 4.9, the optimal

performance is achieved only when they are combined, because they have different

functions: cross-entropy to deal with the task while the regularizer for isotropization.

Figure 4.6: Comparison between our methods and L2 regularization. SPT denotes

superivsed pre-training.

The performance gain is not from the reduction in model variance. Regular-

ization techniques such as L1 regularization [94] and L2 regularization [42] are often

used to improve model performance by reducing model variance. Here, we show that

the performance gain of our method is ascribed to the improved isotropy (Table 4.6)

rather than the reduction in model variance. To this end, we conduct experiments

with BERT and 5-way 2-shot tasks on BANKING77, to compare our method against

L2 regularization with a wide range of weights, and it is observed that reducing model
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Figure 4.7: Run time decomposition of a single epoch. The unit is second.

variance cannot achieve comparable performance to our method, as shown in Fig. 4.6.

The computational overhead is small. To analyze the computational overheads

incurred by CL-Reg and Cor-Reg, we decompose the duration of one epoch of our

method using the two regularizers jointly. As shown in Fig. 4.7, the overheads of

CL-Reg and Cor-Reg are small, only taking up a small portion of the time.

4.5 Conclusion

In this chapter, we have identified and analyzed the anisotropy of the feature space of a

PLM fine-tuned on intent detection tasks. Further, we have proposed a joint training

framework and designed two regularizers based on contrastive learning and correlation

matrix respectively to increase the isotropy of the feature space during fine-tuning,

which leads to notably improved performance on few-shot intent detection.
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Chapter 5

Direct Fine-tuning PLMs for Data

Efficiency

5.1 Motivation

The main obstacle for few-shot learning is commonly believed to be overfitting, i.e.

the model trained with only a few examples tends to overfit to the training data and

perform much worse on test data [98, 118]. To alleviate the problem, the mainstream

approach is to transfer knowledge from external resources such as another labeled

dataset, which has been widely used for few-shot image classification [26, 89] and

few-shot intent detection [115, 32, 72].

Since recently emerged large-scale PLMs have achieved great success in various NLP

tasks, most recent few-shot intent detection methods propose to fine-tune PLMs on

external resources before applying them on the target task, which is known as contin-

ual pre-training [36, 114], as illustrated in Fig 5.1. The external resources utilized for

continual pre-training include conversational corpus [103, 63, 99], natural language

understanding datasets [121], public intent detection datasets (Chapter 3), and para-

phrase corpus [61]. While these methods have achieved state-of-the-art results, the
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Figure 5.1: Illustration of continual pre-training (orange) and direct fine-

tuning (green).

use of external training corpora induces extra data processing effort (e.g., SBERT-

Paraphrase [61] uses 83 million sentence pairs from 12 datasets) as well as model

bias (e.g., the trained model may be biased to the intent classes used in continual

pre-training) [108, 105, 72].

It is commonly believed that directly fine-tuning PLMs with a small amount of data

may generate unacceptable variance [53, 18]. However, it has been recently found

that the instability may be caused by incorrect use of optimizer and insufficient train-

ing [70, 124]. Further, some studies [38, 56] have revealed that in sentiment analysis

and paraphrase detection tasks, when directly fine-tuned with a small dataset, PLMs

sush as BERT [17] demonstrate a certain level of resilience to overfitting.

Dataset BANKING77 HINT3 HWU64 MCID

BERT Vocabulary 0.05 0.03 0.07 0.02

Generated Data 0.30 0.18 0.27 0.23

Table 5.1: Token overlap between generated data and test partitions of datasets.

In this chapter, we conduct a thorough investigation to explore the direct fine-tuning

of PLMs for few-shot intent detection. Specifically, we take an empirical investigation

into the overfitting issue when directly fine-tuning PLMs on few-shot intent detection

tasks, which suggests that overfitting may not be a significant concern, since the test

performance improves rapidly as the size of training data increases. Further, the

model’s performance does not degrade as training continues. It implies that early

stopping is not necessary, which is often employed to prevent overfitting in few-shot
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learning and requires an additional set of labeled data for validation. In addition,

we find that direct fine-tuning (DFT) already yields decent results compared with

continual pre-training methods. We further devise a DFT++ framework to fully

exploit the given few labeled data and boost the performance.

Dataset BANKING77 HINT3 HWU64 MCID

First half 79.19 60.65 79.69 79.67

Second half 88.93 75.44 82.62 84.19

(a) Model accuracy.

Dataset BANKING77 HINT3 HWU64 MCID

Proportion 73.83% 51.18% 70.31% 70.84%

(b) The proportion of test data with features in both half-utterances.

Table 5.2: Half-utterance experiment results.

Using generative PLMs for data augmentation has been studied in NLP, but when

it turns to intent detection with tens of closely relevant labels, label shift emerges as

the obstacle [87]. We find that the generated data has contextual similarity to the

test data, as indicated by the token overlap in Table. 5.1, wherein a notably higher

token overlap is observed compared to the original vocabulary of the PLM. The novel

data is generated by GPT-J with 5 data.

On the other hand, we find that utterances with the underlying intents are of a multi-

view structure [1], i.e. there are multiple views (features) in the utterance indicating

the intent. For instance, given the following utterance of label “travel alert”,

how safe is visiting Canada this week,

both “safe” and “visiting” indicate the intent label. To verify such structure, we

conduct a half-utterance experiment, wherein the classifier is trained with only the

first-half utterance, or with the second-half. Take the above utterance as an example,
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Figure 5.2: Illustration of DFT++ with 2 classes and 2 labeled examples per class.

the first half is “how safe is”, while the second half, “visiting Canada this week”.

In this way, we tailor the training data into partial features, and then examine the

model’s performance. As shown by Table 5.2a, a highly discriminative classifier is

trainable in both cases. Furthermore, across all datasets, a large proportion of the test

data is observed that are distinguishable in both cases, with both models containing

the first half feature and the second half, as shown in Table 5.2b. These experiments

demonstrate the existence of multiple indicating features in the utterance. However,

it is likely only one of them is learned by the model because one feature may suffice

to discriminate the utterance from others, given a few training data.

According to the above two observations, DFT++ introduces a novel context aug-

mentation mechanism by using a generative PLM to generate contextually relevant

unlabeled data to enable better adaptation to target data distribution, as well as a

sequential self-distillation mechanism to exploit the multi-view structure in data. A

comprehensive evaluation shows that DFT++ outperforms state-of-the-art continual

pre-training methods with only the few labeled data provided for the task, without

resorting to external training corpora.
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5.2 Direct Fine-tuning

We investigate a straightforward approach for few-shot intent detection – directly

fine-tuning PLMs with the few-shot data at hand. However, it is a common belief

that such a process may lead to severe overfitting. Before going into detail, we first

formally define the problem.

5.2.1 Problem Definition

Few-shot intent detection aims to train an intent classifier with only a small labeled

dataset D = {(xi, yi)}N , where N is the dataset size, xi denotes the ith utterance,

and yi is the label. The number of samples per label is typically less than 10.

We follow the standard practice [92, 119] to apply a linear classifier on top of the

utterance representations:

p(y|hi) = softmax (Whi + b) ∈ RL, (5.1)

where hi ∈ Rd is the representation of the ith utterance in D, W ∈ RL×d and b ∈ RL

are the parameters of the linear layer, and L is the number of classes. We use

the representation of the [CLS] token as the utterance embedding hi. The model

parameters θ = {ϕ,W,b}, with ϕ being the parameters of the PLM, are trained on

D. We use a cross-entropy loss Lce (·) to learn the model parameters:

θ = arg min
θ

Lce (D; θ) . (5.2)

Unlike the popular approach of continual pre-training [121, 118, 120], DFT fine-tunes

PLMs directly on the few-shot data, which may experience overfitting, leading to sub-

optimal performance. To examine this issue, we conduct the following experiments.
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5.2.2 Experiments

Datasets We utilize four datasets for evaluation: HINT3, BANKING77, MCID

and HWU64. To simulate few-shot scenarios, we randomly sample K samples per

label from the training set of each dataset to form the dataset D.

Baselines To evaluate DFT, we compare it against IsoIntentBERT [118], a compet-

itive baseline applying continual pre-training with public intent detection datasets.

We follow the original work to pre-train BERT on OOS [52], a multi-domain pub-

lic intent detection dataset containing diverse semantics, and then perform in-task

fine-tuning on the small dataset D.

Results and Findings We plot the learning curves of DFT in Fig. 5.3, and the

following observations can be drawn. First, comparing the results in 1-shot and 5-

shot scenarios, the test performance of DFT improves drastically as the number of

labeled examples rises from 1 to 5, leading to a fast reduction in the performance gap

between the training and test performance. Second, the test performance does not

deteriorate as the training progresses, and the learning curves exhibit a flat trend.

These observations are consistent across a wide spectrum of datasets and different

models (BERT and RoBERTa), including both 1-shot and 5-shot scenarios. The ob-

servations also align with previous findings in sentiment analysis [56] and paraphrase

detection [38] tasks.

The flat learning curves indicate that early stopping is not necessary, which is often

used to prevent overfitting and requires an additional set of labeled data. This is

important for practitioners because model selection has been identified as a roadblock

for true few-shot learning [76], where the labeled data is so limited that it is not

worth setting aside a portion of it for early stopping. On the other hand, as shown by

Fig. 5.4, the benefit from continued pre-training decays quickly, i.e. the performance
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(a) BERT, 1-shot. (b) BERT, 5-shot.

(c) RoBERTa, 1-shot. (d) RoBERTa, 5-shot.

Figure 5.3: Training and test learning curves of DFT with BERT and RoBERTa as

text encoder respectively.

gap between DFT and IsoIntentBERT reduces rapidly, which casts doubt on the

necessity of continual pre-training. Thus, we raise an intriguing question:

• With only the given few labeled data, is it possible to achieve comparable or

better performance than continual pre-training methods?

Our attempt to answer the question leads to DFT++, a framework designed to fully

exploit the given few labeled data, which provides an affirmative answer.
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Figure 5.4: Comparison between DFT (solid lines) and IsoIntentBERT (dashed lines).

5.3 Push the Limit of Direct Fine-Tuning

To push the limit of few-shot intent detection with only a few labeled data at hand and

without using any external training corpora, DFT++ introduces two mechanisms, as

shown in Fig. 5.2. The first is a novel context augmentation mechanism, wherein

the few data are used to prompt GPT-J, a generative PLM, to generate contextually

relevant unlabeled utterances to better model target data distribution. The second

is a sequential self-distillation mechanism further boosting the performance.

5.3.1 Context Augmentation

Unlike continual pre-training methods that leverage external training corpora, we use

the few data to solicit knowledge from generative PLMs. An intuitive way is data

augmentation, which prompts the model to generate new utterances with the given

intent class. However, as suggested by [87], data augmentation for intent detection

with tens of intent classes is challenging. Hence, we propose to exploit contextual

relevance in an unsupervised manner instead. Specifically, for each intent class, we

compose the few data into a prompt and then feed it to GPT-J [100], a powerful

generative PLM, to generate novel unlabeled utterances. Fig. 5.5 gives an example of

the prompt and generated results in a 5-shot scenario, wherein the green utterances
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Figure 5.5: An example of the prompt and generated utterances.

are successful cases, while the red one is a failure case. The generated unlabeled data

is combined with the given utterances in D to compose a corpus Daug = {xi}i, which

can be used for masked language modeling (MLM). Hence, the model parameters

θ are learned by simultaneously minimizing both the cross-entropy loss Lce and the

MLM loss Lmlm:

θ = arg min
θ

(Lce(D; θ) + λLmlm(Daug; θ)) , (5.3)

where λ is a balancing parameter.

Notice that there is a critical difference between the proposed context augmentation

and conventional data augmentation methods. Context augmentation generates con-

textually relevant data (i.e., utterances with similar context to the given input but

not necessarily belong to the same label class), and we use the generated data in an

unsupervised manner via MLM. In contrast, conventional data augmentation meth-

ods generate new utterances with the same label as the given utterance and utilize

them in a supervised manner.
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5.3.2 Sequential Self-distillation

To further boost performance, we employ self-distillation [69, 1] (Fig. 5.2). The knowl-

edge in the learned model is distilled into another model with the same architecture

by matching their output logits1:

θk = arg min
θk

KL

(
f (D; θk)

t
,
f (D; θk−1)

t

)
, (5.4)

where KL(·) is the Kullback-Leibler (KL) divergence, f(·) is the output logit of the

model, and t is the temperature parameter. We adopt the born-again strategy [29]

to iteratively distill the model into a sequence of generations. Hence, the model at

kth generation with parameters θk is distilled to match the (k − 1)th generation with

parameters θk−1. Self-distillation can provably improve model performance if the data

has a multi-view structure, i.e., the data has multiple features (views) to help identify

its class [1]. Such structures naturally exist in utterances (Section 5.1). Sequential

self-distillation can help to learn all features, as shown in [1].

5.4 Experiments

5.4.1 Setup

We evaluate DFT++ on the same benchmarks used to evaluate DFT. We compare

DFT++ with state-of-the-art continual pre-training methods. Since early stopping

is not necessary, as demonstrated in the section 5.2.2, we combine the validation and

test partitions for a more comprehensive evaluation.

Baselines. We compare the proposed method against the following baselines. TOD-

BERT [103] conducts continual pre-training on dialogue corpus with MLM and

response objectives. DNNC-NLI [121] and SE-NLI [61] employ NLI datasets.

1We have also tried to add a cross-entropy term [93], but find it hurts the performance.
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DNNC-NLI is equipped with a BERT-style pair-wise similarity model and a nearest

neighbor classifier. SE-NLI employs sentence encoder [83] with siamese and triplet

architecture to learn the semantic similarity. DNNC-Intent, CPFT [120], In-

tentBERT [119] and IsoIntentBERT [118] use external intent detection datasets.

DNNC-Intent shares the same model structure as DNNC-NLI. CPFT adopts con-

trastive learning and MLM. IntentBERT employs standard supervised pre-training,

based on which IsoIntentBERT introduces isotropization to further improve model

performance. SE-Paraphrase [61] exploits a paraphrase corpus, using the same

model architecture for sentence encoding as SE-NLI. One-to-All [22] is the most

recent work that encodes the entire intent space together with the query utterance

for more accuracy classification.

For all the baselines, we download the publicly released model if available. Otherwise,

we follow the original work’s guidelines to perform continual pre-training. Next, we

perform standard fine-tuning similar to DFT, using hyperparameters searched within

the same range as our method, with three exceptions: DNNC-NLI, DNNC-Intent,

and CPFT. For these methods, we use the original design and training configuration

for in-task fine-tuning.

In addition, we compare DFT++ against CINS [66], the most recent prompt-based

method. CINS addresses intent detection by converting it into a cloze-filling problem

through a carefully designed prompt template. Similar to our method, CINS directly

fine-tunes PLMs on a limited amount of data.

Our method. We evaluate our method and the baselines based on two popular

PLMs: BERT [17] and RoBERTa [60]. The representation of the token [CLS] is used

as the utterance embedding. For a fair comparison, we select the hyper-parameters

with the same validation data as used by the baselines, i.e., we follow IsoIntentBERT

to use a portion of OOS dataset as the validation data. The best hyper-parameters

and grid search range are given in the appendix.
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Method BANKING77 HINT3 HWU64 MCID

TOD-BERT 67.69(1.37) 56.33(2.14) 74.83(1.11) 66.37(2.65)

DNNC-NLI 68.48(1.15) 59.05(1.02) 72.25(1.39) 67.35(2.09)

DNNC-Intent 70.36(1.85) 58.08(4.98) 69.86(4.27) 70.80(3.16)

CPFT 70.96(2.45) 61.63(2.64) 73.63(1.74) 71.54(4.97)

IntentBERT 70.64(1.02) 58.96(1.50) 77.60(.31) 76.67(.84)

IsoIntentBERT 71.78(1.40) 60.33(1.95) 78.26(.69) 78.28(1.72)

SE-Paraphrase 71.92(.84) 62.28(.77) 76.75(.63) 78.32(2.12)

SE-NLI 70.03(1.47) 61.69(1.59) 75.10(1.17) 74.54(1.86)

DFT 69.01(1.54) 60.65(1.60) 75.07(.53) 72.32(1.80)

DFT++ (w/ CA) 72.23(1.80) 60.53(2.73) 76.73(1.05) 77.45(1.66)

DFT++ (w/ SSD) 68.86(1.49) 61.51(1.88) 75.05(1.36) 74.17(1.09)

DFT++ (w/ CA, SSD) 72.90(.89) 63.08(1.17) 77.73(1.02) 79.43(.84)

(a) 5-shot evaluation results.

Method BANKING77 HINT3 HWU64 MCID

TOD-BERT 79.71(0.91) 66.42(2.19) 82.15(0.47) 74.66(1.52)

DNNC-NLI 74.53(4.83) 65.12(1.96) 77.91(1.11) 75.20(1.28)

DNNC-Intent 78.85(1.56) 64.56(3.64) 74.87(3.02) 78.60(1.49)

CPFT 79.44(.80) 69.85(1.21) 80.59(.61) 79.38(1.60)

IntentBERT 81.18(.34) 68.96(1.50) 83.55(.21) 81.60(1.41)

IsoIntentBERT 81.30(.50) 69.23(1.16) 83.70(.59) 82.51(1.23)

SE-Paraphrase 81.18(.33) 70.00(1.01) 82.88(.48) 83.08(1.32)

SE-NLI 80.58(1.13) 68.37(1.55) 82.57(.79) 81.20(1.80)

DFT 78.92(1.69) 66.36(3.48) 82.38(1.49) 80.53(1.15)

DFT++ (w/ CA) 82.33(.72) 70.36(1.90) 82.61(.23) 81.27(1.41)

DFT++ (w/ SSD) 80.32(.81) 68.82(2.49) 82.14(.92) 81.44(1.08)

DFT++ (w/ CA, SSD) 82.66(.50) 70.47(2.56) 83.45(.38) 82.83(.76)

(b) 10-shot evaluation results.

Table 5.3: Evaluation of DFT++ based on BERT.

Implementation details. We use Python, PyTorch library and Hugging Face li-

brary to implement the model. We adopt bert-base-uncased and roberta-base with
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Method BANKING77 HINT3 HWU64 MCID

DNNC-NLI 73.90(1.27) 59.73(0.89) 73.06(1.70) 63.74(3.79)

DNNC-Intent 72.97(1.46) 61.15(1.74) 69.74(1.85) 72.44(2.50)

CPFT 70.94(1.08) 58.17(3.44) 74.36(1.15) 78.20(1.72)

IntentRoBERTa 75.23(.89) 60.77(1.60) 78.97(1.26) 77.25(2.05)

IsoIntentRoBERTa 75.05(1.92) 59.79(2.72) 78.09(1.06) 78.40(2.03)

SE-Paraphrase 76.03(.64) 63.96(.02) 76.50(.45) 80.78(1.36)

SE-NLI 76.56(.69) 62.60(2.45) 78.53(.84) 79.43(3.17)

One-to-All¶ 79.75(.78) - 79.89(.30) -

DFT 76.11(1.16) 61.39(1.51) 76.72(.94) 76.39(1.18)

DFT++ (w/ CA) 78.74(1.00) 63.17(2.20) 79.02(.89) 76.51(2.77)

DFT++ (w/ SSD) 76.25(1.67) 61.30(2.31) 77.57(.62) 78.73(2.30)

DFT++ (w/ CA, SSD) 78.90(.50) 63.61(1.80) 79.93(.92) 80.16(2.74)

(a) 5-shot evaluation results.

Method BANKING77 HINT3 HWU64 MCID

DNNC-NLI 79.51(2.56) 64.05(2.30) 78.12(1.86) 73.72(1.82)

DNNC-Intent 77.69(5.06) 66.45(1.06) 72.30(3.61) 78.64(1.69)

CPFT 78.57(.75) 61.07(2.37) 79.46(.81) 83.04(1.74)

IntentRoBERTa 83.94(.33) 68.91(1.24) 84.26(.84) 82.67(1.43)

IsoIntentRoBERTa 84.49(.43) 69.08(1.59) 84.15(.58) 83.20(1.89)

SE-Paraphrase 82.85(.89) 69.14(2.08) 81.25(.97) 83.12(.86)

SE-NLI 84.65(.26) 69.91(1.82) 84.81(.45) 84.13(1.25)

DFT 84.77(.43) 68.40(1.21) 84.00(.34) 82.55(1.15)

DFT++ (w/ CA) 85.95(.34) 71.30(1.54) 85.49(.35) 83.981.17)

DFT++ (w/ SSD) 84.95(.53) 70.12(1.35) 84.91(.45) 83.371.64)

DFT++ (w/ CA, SSD) 86.14(.19) 71.80(1.88) 86.21(.28) 84.80(.79)

(b) 10-shot evaluation results.

Table 5.4: Evaluation of DFT++ based on RoBERTa. ¶ denotes results from [22].

around 110 million parameters. We use AdamW as the optimizer. We use different

learning rates for PLMs and the linear classifier, determined by grid-search. The

parameter for weight decay is set to 1e − 3. We employ a linear scheduler with the
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warm-up proportion of 5%. We fine-tune the model for 200 epochs to guarantee con-

vergence. The experiments are conducted with Nvidia RTX 3090 GPUs. We repeat

all experiments for 5 times, reporting the averaged accuracy and standard deviation.

5.4.2 Results

We first examine the performance using a moderately small amount of data, specif-

ically 5-shot and 10-shot scenarios. The results are summarized in Table 5.3 and

Table 5.4. Remarkably, DFT++ performs comparably to a diverse set of baselines

that leverage external resources, despite the fact that it solely utilizes the limited

few-shot data available. The superiority of DFT++ can be attributed to the effec-

tive utilization of context augmentation and sequential self-distillation, both of which

demonstrate improved results when applied independently in most cases. Similar

phenomenon is observed when using the stronger base model RoBERTa, as shown

in Table 5.4. In these tables, CA denotes context augmentation, SSD denotes se-

quential self-distillation, and we highlight the top 3 results. Moreover, as shown in

Table 5.5, in most cases, DFT++ also outperforms CINS, the most recent prompt-

based method, especially when RoBERTa is employed, despite that CINS employs

T5-base [78] with 220 million parameters, which is almost twice the size of our base

model. In the tables, we report the mean value and standard deviation.

5-shot Bank Home Utility Auto

CINS¶ 89.1 80.2 95.4 93.7

DFT++ (BERT) 91.39(.78) 82.11(4.09) 96.16(.41) 90.64(.93)

DFT++ (RoBERTa) 93.76(.46) 86.21(2.94) 97.39(.50) 93.31(1.21)

Table 5.5: The comparison of DFT++ against CINS. ¶ denotes results from [66]. The

top 2 results are highlighted.

To study the impact of the number of labeled data on performance, we reduce the

number to only 1 sample per label and present the results in Fig. 5.6. We experiment

57



Chapter 5. Direct Fine-tuning PLMs for Data Efficiency

(a) BERT-based experiments. (b) RoBERTa-based experiments.

Figure 5.6: The impact of the size of labeled data on performance.

with BANKING77, a challenging fine-grained dataset and compare DFT++ with the

top 2 baselines. When using BERT, we observe that DFT++ begins to outperform

the baselines at a crossing point of 4. When using RoBERTa, the crossing point is

even smaller, at 2, which is quite surprising. We have also observed similar phenomena

on other datasets, as detailed in the appendix. The observations confirm our claim

that the overfitting issue in directly fine-tuning PLMs for few-shot intent detection

may not be as severe as initially presumed. The performance disadvantage due to

overfitting can be effectively alleviated by leveraging other techniques to exploit the

limited available data, even without resorting to the continual pre-training approach.

However, in scenarios with an extremely small number of labeled data, the transferred

knowledge from continual pre-training still provides significantly better performance

compared to DFT++.

5.4.3 Analysis

Comparison between contextual augmentation and conventional data aug-

mentation methods. We compare our proposed context augmentation with

the following conventional data augmentation methods. Easy Data Augmentation

(EDA) [102] modifies a small number of utterances, e.g., through word swapping, to
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Method BANKING77 HINT3 HWU64 MCID

DFT 69.01(1.54) 60.65(1.60) 75.07(.53) 72.32(1.80)

EDA 68.81(1.97) 60.50(3.06) 74.68(.81) 73.10(.64)

BT 69.65(1.39) 60.50(1.40) 74.15(.84) 75.15(2.04)

PrompDA 71.62(.72) 61.51(2.20) 76.59(.89) 77.16(.98)

SuperGen 64.83(1.06) 57.30(1.41) 69.52(0.56) 72.55(1.37)

GPT-J-DA 71.84(1.41) 60.24(.83) 70.72(.78) 73.92(2.77)

Contextual Augmentation 72.23(1.80) 60.53(2.73) 76.73(1.05) 77.45(1.66)

(a) BERT-based evaluation results.

Method BANKING77 HINT3 HWU64 MCID

DFT 76.11(1.16) 61.39(1.51) 76.72(.94) 76.39(1.18)

EDA 74.74(1.08) 62.04(2.49) 75.88(1.59) 77.17(1.85)

BT 75.12(1.03) 60.83(1.16) 77.31(.72) 77.49(2.71)

PrompDA 76.56(1.15) 60.56(1.37) 77.57(1.12) 77.60(1.94)

SuperGen 70.42(0.19) 57.64(1.33) 71.28(0.78) 73.99(1.79)

GPT-J-DA 76.58(1.30) 62.16(1.83) 76.59(.94) 77.91(2.22)

Contextual Augmentation 78.74(1.00) 63.17(2.20) 79.02(.89) 76.51(2.77)

(b) RoBERTa-based evaluation results.

Table 5.6: Comparison of our proposed contextual augmentation against conventional

data augmentation methods.

generate new augmented instances. Back-translation (BT) [23] translates an utter-

ance into another language and then translates it back2. PromDA [101] and Super-

Gen [65] are recent data augmentation methods leveraging generative PLMs. GPT-

J-DA [87] exploits the data generated by GPT-J in a supervised manner. The results

in Table 5.6 show context augmentation is more robust against data shift. Note that

SuperGen is designed for coarse-grained tasks with only two or three labels, such as

2We use French as the intermediate language, and utilize T5-base [78] and opus-mt-fr-en [95] for

translation.
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Input Good Bad

“Is there a reason why my card

was declined when I attempted to

withdraw money?”, “How come I

can not get money at the ATM?”,

“Why can not I withdraw cash

from this ATM?”, “Why will not

the ATM give me cash?”, “This

morning, I wanted to make a with-

drawal before work but my card

was declined, please double check

it for me as this is the first time it

was declined.”

“ATM will not let me withdraw

my money my card as refused

please help”, “I withdrew less than

I expected from the ATM on

monday”, “My wallet was stolen

but my ATM card was within

safely”, “I spent a fortune last

week and have none left on

my card can you reverse refund

the fees”,“Please give me the code

that I can use in the ATM for my

face to use my card”

“Why did my card never get a their

villages and journey?”, “An aut-

ofill took place but there was noth-

ing to approve.”, “Can I get one

form my card after I have made a

ctifre?”, “Family needs money for

the holidays they said they can not

make it I hope you can help even

if it is not much.”

“Please order take from Jasons

Deli.”, “Can you please order some

food for me?”, “Can you look

up Chinese takeout near here?”,

“Can i order takeaway from Span-

ish place?”, “Find and order ras-

gulla of janta sweet home pvt ltd.”

“I need to get some gluten

free cookies for my daughter”,

“Can you do ticket counter take

away”, “How can I order Chinese

food”, “Delivery service please or-

der some takeaway jahdi”, “Or-

der beef kasundi bewa rasgulla and

dosa will be ready in 10 mins”

“Please make some reservation if

you want booking on myhotel-

com”, “Drive take from a taxi”,

“Warehouse 26723”, “Please make

some reservation if you want book-

ing on myhotelcom”

Table 5.7: Utterances generated by GPT-J. The first row corresponds to the label

“Declined Cash Withdrawal” from BANKING77. The second row corresponds to the

label “Takeaway Order” from HWU64. Good examples exhibit semantic relevance to

the input data, while bad examples are irrelevant. Green words are highlighted to

indicate semantic relevance, while the underlined words deviating the sentence from

the original label.

sentiment classification. As a result, it may not scale effectively to intent detection

tasks that involve a larger number of intents, typically ranging in the tens. The

comparison between context augmentation and GPT-J-DA highlights the superiority

of unsupervised exploitation of the generated data. The inconsistent effectiveness of

GPT-J-DA is also reported by [87]. The experiment is conducted with 5-shot tasks.

The best results are highlighted.

Quality of context augmentation. To demonstrate the quality of the data gener-

ated by context augmentation, we provide some good and bad examples of generated

utterances in Table 5.7. It is observed that GPT-J is able to generate grammatically

fluent utterances that exhibit a high level of contextual relevance to the input utter-
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ances, which are utilized by DFT++ to better model the target data distribution.

On the other hand, as also observed in [87], some of the generated utterances deviate

from the original label and, therefore, are not suitable for data augmentation. How-

ever, DFT++ works around this issue by focusing solely on leveraging contextual

relevance, resulting in improved robustness against data shift (Table 5.6).

IsoIntentBERT DFT++ BANKING77 HWU64

✓ 71.78(1.40) 78.26(.69)

✓ ✓ 73.53(1.33) 80.20(1.20)

SE-Paraphrase DFT++ BANKING77 HWU64

✓ 71.92(.84) 76.75(.63)

✓ ✓ 73.21(1.24) 78.34(.31)

Table 5.8: Complementarity of DFT++ and continued pre-training with experiments

conducted on 5-shot tasks.

Complementarity of continual pre-training and DFT++. Continual pre-

training and DFT++ mitigate overfitting from different aspects. The former leverages

external data, while the latter maximizes the utilization of the limited available data.

Hence, it is likely that they are complementary. To support this claim, we present

empirical results demonstrating their complementarity in Table 5.8. It is observed

that when combined with DFT++, the two competitive methods, IsoIntentBERT

and SE-Paraphrase, are both benefited.

Impact of hyper-parameters. We study the impact of several key hyper-parameters,

including the size of the generated data, the number of self-distillation generations,

the temperature of GPT-J and self-distillation. The experiments are conducted in

5-shot scenarios. As visualized in Fig. 5.7a, a positive correlation is found between

the performance and the size of the augmented data. The performance saturates

after the data size per label reaches 50. It is noted that when only the given data are

used for MLM, i.e., when the generated data size is 0, MLM has an adversarial effect

probably due to overfitting on the few given data. Such negative effect is successfully
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(a) Augmented data size. (b) Distillation generations.

(c) GPT-J temperature. (d) Self-distillation temperature.

Figure 5.7: Impact of hyper-parameters. CA denotes context augmentation.

alleviated by context augmentation. As for self-distillation generations (Table 5.7b),

we find that multiple generations of self-distillation are necessary to achieve better

performance. We show the impact of the temperature parameters in Fig. 5.7. The

temperature parameter of GPT-J controls the diversity of the generated context. A

higher temperature makes the generated text more diverse. As shown in the figure,

the best performance is reached when the diversity is moderate. For self-distillation,

both small and large temperatures produce good results.

Comparison with alternative context augmentation methods. We have also

studied alternative context augmentation methods. The first one is Easy Data Aug-

mentation (EDA) [102] with random synonym replacement, insertion, swap, and dele-

tion. The second approach involves manually collecting a domain-specific corpus. We
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Method
BANKING77

5-shot 10-shot

DFT 69.01(1.54) 78.92(1.69)

DFT + External 67.84(.82) 81.23(.66)

DFT + EDA 70.61(1.78) 81.83(.41)

DFT + GPT-J 72.22(1.80) 82.33(.72)

Table 5.9: The comparison of our proposed GPT-J-based context augmentation with

other alternatives. “External” denotes Wikipedia corpus collection.

conduct experiments on BANKING77, since it focuses on a single domain, making it

convenient to collect the corpus. We extract web pages from Wikipedia3 with key-

words that are closely relevant to “Banking”, such as “Bank” and “Credit card”. The

keywords can be found in the appendix. As shown by Table 5.9, our GPT-J-based

context augmentation outperforms the alternatives. We attribute the superiority

to the grammatical fluency achieved by leveraging the generative power of GPT-J,

which is typically compromised by EDA. Additionally, the high degree of semantic

relevance observed in our approach is rarely guaranteed in the noisy corpus collected

from Wikipedia.

5.5 Conclusion

In this chapter, we compare two approaches: direct fine-tuning and continual pre-

training. We show that the overfitting issue may not be as significant as commonly

believed. In most cases, our proposed framework, DFT++, demonstrates superior

performance compared to mainstream continual pre-training methods that rely on

external training corpora, indicating that the continual pre-training stage can be

removed to improve data-efficiency.

3https://en.wikipedia.org
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5.6 Appendix

Hyper-parameters. We determine the hyper-parameters by grid search. The best

hyper-parameters and the search range are summarized in Table 5.10 and Table 5.11,

respectively. lrPLM and lrcls denote the learning rate of the PLM and the linear classi-

fier, respectively. context size is the size of the augmented contextual utterances per

label. iteration is the number of iterations/generations in sequential self-distillation.

The grid search is performed with OOS dataset. Specifically, we follow Chapter 4 to

use the two domains “Travel” and “Kitchen dining” as the validation set. To guar-

antee a fair comparison, the same validation set is also employed for all the baselines.

PLM Hyper-parameter

BERT lrPLM = 2e − 4, lrcls = 2e − 5, λ = 1.0, con-

text size =50, t = 100, iteration=6.

RoBERTa lrPLM = 2e − 5, lrcls = 2e − 3, λ = 0.1, con-

text size =50, t = 40, iteration=5.

Table 5.10: Hyper-parameters of DFT++.

Parameter Range

lrPLM {2e− 5, 2e− 4, 2e− 3}
lrcls {2e− 5, 2e− 4, 2e− 3}
λ {0.01, 0.1, 1.0, 10.0}
context size {1, 2, 5, 10, 20, 50, 80}
t {0.1, 1, 10, 40, 80, 100, 200, 500}
iteration {1, 2, 3, 4, 5, 6, 7}

Table 5.11: Grid search range of hyper-parameters.

Impact of the number of labeled data on performance. We provide the

full results in Fig. 5.8. It is observed that DFT++ outperforms many competitive
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methods fine-tuned on extra data even when the number of labeled data is small.

“Bank”, “Credit”, “Debt”, “Payment”, “Fund”, “Credit card”, “Banking agent”,

“Bank regulation”, “Cheque”, “Coin”, “Deposit account”, “Electronic funds trans-

fer”, “Finance”, “Internet banking”, “Investment banking”, “Money”, “Wire

transfer”, “Central bank”, “Credit union”, “Public bank”, “Cash”, “Call report”,

“Ethical banking”, “Loan”, “Mobile banking”, “Money laundering”, “Narrow

banking”, “Private banking”

Table 5.12: Key words used to collect the corpus from Wikipedia.

Keywords used to collect the corpus for an alternative context augmenta-

tion method. As introduced in section 5.4.3, one alternative context augmentation

method involves manually collecting a domain-specific corpus. We experiment with

BANKING77. To collect an external corpus, we extract web pages from Wikipedia4

with keywords closely related to “Banking”, such as “Bank” and “Credit card”. The

adopted keywords are summarized in Table 5.12.

4https://en.wikipedia.org
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(a) BERT, BANKING77. (b) RoBERTa, BANKING77.

(c) BERT, HINT3. (d) RoBERTa, HINT3.

(e) BERT, HWU64. (f) RoBERTa, HWU64.

(g) BERT, MCID. (h) RoBERTa, MCID

Figure 5.8: Impact of the number of labeled data on model performance.
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Chapter 6

Compression Method for Model

Efficiency

6.1 Motivation

In previous chapters, we have achieved remarkable efficacy and data-efficiency, but

PLMs incur significant computational overheads stemming from the gigantic model

size, usually containing millions or billions of parameters [17, 78, 28]. Therefore,

the inference of PLMs usually requires high-performance processors, memory capac-

ities, and power consumption, which poses challenges when deploying the model on

resource-constrained devices such as edge devices and mobile devices [110]. However,

there are a few works to develop a small intent detector under few-shot scenario. To

our best knowledge, attempts towards this objective is restricted to [88], which as-

sumes the access to an external set of annotated intent detection data, but we focus

on a more challenging scenario that no external data is available.

To develop a small intent detector, two challenges have to be tackled. The first one is

neural model compression (excluding the vocabulary) under the few-shot constraint.

To tackle this issue, [64] adopt a generative PLM to augment the data required for
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Figure 6.1: The efficacy of the proposed approach.

model distillation [40], but it adopts convolutional neural network (CNN) as the stu-

dent model, failing to inherit the knowledge learned in the teacher model parameters.

The second challenge is vocabulary compression, because vocabulary indeed accounts

for a substantial share of the model size, especially after the neural model is well

compressed. Fig. 6.1 presents the notable proportion the vocabulary constitutes in

BERT [17], a popular PLM. The proportion becomes much more substantial after

the neural model is compressed by the recently proposed technique. Recent works

addressing this issue are restricted only to [127] and [50], which propose techniques

to obtain a small vocabulary during PLMs compression. However, both of them aim

to train a task-agnostic model, with a minimum vocabulary size of 5000. As to be

shown in our experiment, a task-specific model dedicated to intent detection has a

smaller vocabulary.

To deal with the aforementioned two challenges, we propose a framework(Fig. 6.2). In

specific, to push the limit of neural model compression with a few data, we augment

CoFi [109], the SOTA transformers distillation method with novel utterances gener-

ated by off-the-shelf PLMs. Unlike [64], which adopts CNN as the student model,

CoFi gradually prunes the teacher model parameters, keeping the learned knowledge

as much as possible. Second, to reduce the vocabulary memory footprint, we design
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Figure 6.2: Illustration of the proposed model compression framework.

a novel vocabulary pruning method, V-Prune. Comprehensive evaluations are con-

ducted to demonstrate the efficacy of the proposed methods. As shown in Fig. 6.1,

under 5-shot scenario, our method reduces the neural model size by half compared

against CoFi, and V-Prune reduces the memory footprint of the vocabulary by a factor

of 30, while almost no loss in the performance is observed over various benchmarks.

6.2 Method

The target is to train a small intent classifier with a given small labeled set D. To

this end, we first train a large teacher model with D and then distill the learned

knowledge into a small model.

6.2.1 Knowledge Distillation with Data Augmentation

Knowledge Distillation. To train the teacher model ft, we follow the common

practice to attach a linear classifier on top of the [CLS] representation of PLMs [17,

117] and optimize the parameters θt with D and cross-entropy loss function. Then,

knowledge distillation is performed via aligning the logit output:
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θ = arg min
θ

KL

(
f (D; θ)

T
,
ft (D; θt)

T

)
, (6.1)

where KL(·) is the Kullback-Leibler (KL) divergence, f(·) and ft(·) denote the output

logit of the desired model and the teacher model, respectively. T is the tunable

temperature parameter.

Vanilla knowledge distillation trains the student model from scratch, and hence re-

sults in sub-optimal performance (as shown in Table 6.1). In this work, we utilize

CoFi [109], a recently proposed Transformer compression method. CoFi gradually

prunes both coarse-grained modules and fine-grained parameters of BERT [17] to ob-

tain the student model, and thus reach a promising performance. Like classic knowl-

edge distillation, CoFi adopts the dataset D on which the output of the small model

is aligned with the teacher model. However, once again, a significant performance

drop is observed when D is small, as to be shown by the experiment.

Figure 6.3: An example of the prompt and generated utterances under 5-shot scenario.

Data Augmentation. To alleviate the scarcity of the data for model compression,

we propose augmenting D by off-the-shelf PLMs for two reasons. First, such PLMs

do not need to be fine-tuned, which requires additional engineering effort and compu-

tation resources. Second, recently published off-the-shelf PLMs such as GPT-3 have

shown promising results to generate texts with high quality. To prompt the PLMs

to generate the desired utterances with the specific intent, we adopt the prompt in
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Fig. 6.3, wherein some examples of the generated utterances are also given. Specif-

ically, the prompt contains label name, such as “cancel transfer”, followed by the

utterances with the label. We sample 5 utterances with the label from D each time,

compose the prompt and feed it into the PLM to generate one utterance each time.

This process is repeated until enough utterances are collected. Finally, we filter out

the utterances with unreasonable lengths.

6.2.2 Vocabulary Pruning (V-Prune)

It is intuitive that the original vocabulary with tens of thousand tokens is unnec-

essarily large for a given intent detection task. However, to obtain the task-specific

vocabulary, two challenges persist. First, how to estimate the target vocabulary given

tens of words in the few labeled utterances. Second, how to handle the missing tokens

during inference. To tackle the first issue, we extract the most frequent K tokens in

the augmented dataset generated in Section 6.2.1 to compose a vocabulary V ′. It is

a small fraction of the original vocabulary V . For the second challenge, we map the

missing token to the nearest tokens in V ′:

M(t) = arg min
w∈V ′

d(t, w),∀t ∈ V, (6.2)

where M(t) denotes the map from any token t in V , to a token in V ′. d(·, ·) is

the distance function, measuring the semantic distance between two tokens. We use

Euclidean distance in our experiment. Fig. 6.3 gives an example of such mapping.

In addition, to further compress the vocabulary memory footprint, we adopt prin-

cipal component analysis (PCA) transformation to reduce the dimension of word

embeddings. The transformation is applied to map all word embeddings to the low-

dimensional space, e.g. from 768 dimensions to 400 dimensions. During inference,

the low-dimensional representation is mapped back to the original one by a simple

linear mapping, before being fed into the model.
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6.3 Experiments

6.3.1 Setup

Datasets. We adopt 4 large-scale practical benchmarks across various domains, in-

cluding BANKING77 [13], HINT3 [3], HWU64 [59] and MCID [2]. We randomly

sample 5 data per label from the training partition to compose D.

Our methods. We use the following models for data augmentation. GPT-J-

6B [100] is an open-sourced generative auto-regressive text generation model with 6

billion parameters. OPT-30B [123] is a larger generative PLM with 30 billion param-

eters. GPT-3-175B [28] is one of the most powerful available generative PLMs with

175 billion parameters. GPT-4-170T [73] is the cutting-edge model with around 170

trillion parameters [51]. We adopt three architectures of student models. CNN [15]

employs convolutional neural networks to extract the semantic feature of utterances,

as in [64]. BiLSTM [34] uses the classic bidirectional long short-term memory

networks. CoFi [109] is the recently proposed powerful transformer pruning method.

Details. We follow Section 3.3 to adopt OOS dataset for validation and hyper-

parameters selection. We use T = 10 in Eq. 6.1. For V-Prune, we extract the top

2000 tokens and use the PCA transformation dimension 400. All experiments are

performed with NVIDIA’s A100 hardware and PyTorch framework.

6.3.2 Results

Data augmentation by generative PLMs is highly effective. As shown by

Table 6.1 and Table 6.2, regardless of the student architecture, the data generated

by PLMs play a key role in model compression under the few-shot scenario. The

augmented data bring significantly better performance compared to baselines with

only the few data. CoFi suffers a performance drop when the compression ratio goes
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Method BANKING77 HINT3 HWU64 MCID

BERT 68.69(1.39) 61.12(2.14) 74.72(1.40) 72.85(1.24)

CNN 56.44(.90) 51.21(1.55) 59.83(1.31) 55.40(2.04)

CNN + GPTJ-6B(ours) 63.52(1.20) 58.58(2.13) 70.26(.20) 69.40(.50)

CNN + OPT-30B(ours) 64.38(1.82) 58.04(.79) 69.41(1.21) 70.57(.59)

CNN + GPT3-175B(ours) 69.71(1.05) 57.58(1.29) 71.95(.56) 69.20(3.29)

CNN + GPT4-170T(ours) 63.37(1.69) 56.95(1.04) 69.68(1.93) 67.52(1.41)

BiLSTM 57.75(1.68) 50.98(1.54) 62.17(1.28) 60.53(2.90)

BiLSTM + GPTJ-6B(ours) 68.35(1.78) 58.43(1.52) 72.51(.85) 67.76(1.98)

BiLSTM + OPT-30B(ours) 69.21(2.07) 58.79(1.49) 71.53(.53) 67.68(2.43)

BiLSTM + GPT3-175B(ours) 68.60(2.20) 56.51(1.91) 72.05(.64) 65.95(3.84)

BiLSTM + GPT4-170T(ours) 67.39(1.64) 55.30(1.58) 70.54(1.20) 64.07(1.78)

CoFi 69.33(.02) 61.04(.02) 72.90(.07) 73.96(.02)

CoFi + GPTJ-6B(ours) 70.67(1.90) 62.10(1.46) 74.59(1.55) 73.80(1.54)

CoFi + OPT-30B(ours) 70.44(1.97) 61.42(1.35) 73.88(1.81) 72.36(2.12)

CoFi + GPT3-175B(ours) 70.92(2.02) 61.04(1.41) 74.77(.96) 72.53(2.07)

CoFi + GPT4-170T(ours) 71.34(1.34) 60.89(1.71) 74.28(.53) 72.07(2.66)

Table 6.1: Evaluation of data augmentation when compression ratio is 90%.

under 95%. However, with the augmented data, the loss can be almost eliminated.

It is also found that the generative model size does not make a notable difference,

although it is a popular belief that a larger model generates better texts – GPT-J with

only 6 billion parameters plays on par with GPT-4, which is 30 thousand times larger.

It is noteworthy that CoFi surpasses student models trained from scratch including

CNN and BiLSTM, demonstrating the performance superiority of the technical choice

over the work by [64].

V-Prune is effective. We apply V-Prune to CoFi+GPTJ-6B with the compression

ratio of 95%. As shown in Table 6.3, a tiny fraction of the vocabulary is enough

to keep a decent performance, following the intuition that task-wise vocabulary is

small. Such a reduction in vocabulary size is necessary since it is the vocabulary
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Method BANKING77 HINT3 HWU64 MCID

BERT 68.69(1.39) 61.12(2.14) 74.72(1.40) 72.85(1.24)

CNN 55.90(1.30) 50.68(1.12) 59.69(1.14) 54.17(2.21)

CNN + GPTJ-6B(ours) 63.37(1.16) 59.62(2.45) 70.35(.60) 69.94(1.22)

CNN + OPT-30B(ours) 62.71(1.44) 58.14(.67) 69.24(.74) 69.61(1.15)

CNN + GPT3-175B(ours) 64.42(1.85) 57.69(1.15) 70.91(.87) 69.20(2.9)

CNN + GPT4-170T(ours) 63.79(1.58) 56.98(.66) 69.15(.52) 69.15(.52)

BiLSTM 59.07(1.28) 51.24(1.44) 61.94(1.87) 59.10(2.60)

BiLSTM + GPTJ-6B(ours) 68.48(1.86) 58.61(.66) 71.66(.82) 68.30(1.86)

BiLSTM + OPT-30B(ours) 68.81(2.14) 58.20(.93) 70.91(.62) 67.89(2.22)

BiLSTM + GPT3-175B(ours) 68.31(2.00) 56.78(1.46) 71.44(.57) 66.37(2.10)

BiLSTM + GPT4-170T(ours) 66.95(1.73) 55.74(1.31) 70.17(.73) 64.64(1.03)

CoFi 67.05(.02) 59.20(.03) 69.78(.01) 67.05(.02)

CoFi + GPTJ-6B(ours) 70.38(1.80) 61.92(1.88) 73.78(1.14) 72.65(2.25)

CoFi + OPT-30B(ours) 70.13(1.79) 60.83(1.12) 73.38(1.41) 71.29(1.37)

CoFi + GPT3-175B(ours) 70.42(1.73) 60.33(1.70) 74.04(.70) 72.40(1.77)

CoFi + GPT4-170T(ours) 70.86(1.67) 60.74(1.32) 73.76(.63) 72.28(1.78)

Table 6.2: Evaluation of data augmentation when compression ratio is 95%.

that occupies the most memory footprint after the model is well compressed, as

shown in Fig. 6.1. In this experiment, V-Prune is configured to keep 3.4% vocabulary

parameters. In the table, ∗ denotes the vocabulary size of the original BERT, and †

denotes CoFi+GPTJ-6B with a compression ratio of 95%. Additionally, we provide

the ablation study result in Table 6.4, showing the efficacy of data augmentation and

the nearest-neighbor replacement mechanism, respectively.

Impact of model size on performance. To obtain a deeper understanding, we

visualize the impact of three hyper-parameters controlling the ultimate model size,

including compression ratio (Fig. 6.4a), vocabulary token number (Fig. 6.4b) and

word embedding dimension ( 6.4c). It is observed that even when the compression

ratio is as high as 99%, we have a loss in the accuracy less than 3 percentage points.
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Size BANKING77 HINT3 HWU64 MCID

100%∗ 68.69(1.39) 61.12(2.14) 74.72(1.40) 72.85(1.24)

99.7%† 70.38(1.80) 61.92(1.88) 73.78(1.14) 72.65(2.25)

3.4% 69.62(1.87) 59.65(.59) 71.13(.74) 71.95(1.50)

Table 6.3: Effectiveness of V-Prune.

5-shot DA NN BANKING77 HINT3 HWU64 MCID

✓ 67.79(1.80) 54.44(1.69) 67.03(.73) 61.15(2.99)

✓ ✓ 69.79(1.62) 58.85(1.17) 71.15(.62) 69.20(2.58)

✓ ✓ ✓ 70.12(1.96) 60.09(.97) 71.65(1.06) 71.38(2.19)

Table 6.4: Ablation study of V-Prune. 5-shot denotes the small labeled dataset. DA

denotes data augmentation using GPT-J. NN denotes the nearest-neighbor replace-

ment mechanism.

As for the vocabulary size, when the token number decreases under 2000 and the

dimension number under 400, the performance starts to drop drastically, confirming

the conjecture that a small vocabulary is enough given the intent detection task. The

result is significantly better than current works on vocabulary reduction, which yield

a vocabulary size of 5000 [127, 50]. As a result, we obtain a well-performing intent

classifier with around 5.1 million parameters, smaller than the original BERT by a

factor of 21, making it convenient to deploy in resource-constrained scenarios.

(a) Model size. (b) Vocabulary size. (c) Embedding dimension.

Figure 6.4: The impact of hyper-parameters on the performance.
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6.4 Conclusion

In this work, we identify the challenge of model compression for intent detection with

a few data. We provide a simple but competitive baseline of the task, which combines

the SOTA compression technique (CoFi) and data augmentation via generative PLMs.

A novel vocabulary pruning technique is also proposed. The effectiveness of the

method is demonstrated on four real-world benchmark datasets, showing that we can

achieve a decent performance with only 5.1 million parameters, 21 times fewer than

the original model.
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Conclusion and Future Work

7.1 Conclusion

This thesis provides a comprehensive study of few-shot intent detection, regarding

the aspect of transferability, expressiveness and efficiency.

Regarding the transferability, we demonstrate the feasibility of transferring across

domains for few-shot intent detection. Specifically, when the unlabeled data is not

available, we propose methods of transferring knowledge from source domains to

the target domain. When the unlabeled data is available, we propose jointly utiliz-

ing the data in source domains and the target domain to train an intent classifier

with competitive performance. We develop IntentBERT, a backbone network that

is pre-trained with data from multiple intent detection domains. IntentBERT can

significantly improve the performance in the target domain.

To boost the expressiveness of IntentBERT, we conduct a in-depth study of the

anisotropy property of IntentBERT. It is found that supervised pre-training renders

that feature space anisotropic, and isotropization hurts the performance after su-

pervised pre-training. To mitigate the anisotropy, we design a framework of joint
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training. Specifically, during supervised pre-training, we introduce two regularizers

based on contrastive learning and correlation matrix, respectively, to regularize the

feature space towards isotropy. Extensive experiments are conducted to demonstrate

the efficacy of the proposed methods.

To further enhance the data-efficiency, we attempt to minimize the reliance on the

extra data used in the continual pre-training stage. It is found that when fine-tuning

with only the few data, the overfitting issue of PLMs may not be as severe as com-

monly believed. To better exploit the few data, we propose a framework comprising

context augmentation and sequential self-distillation. Extensive experiments show

the performance superiority of the proposed framework, given only two or more la-

beled samples per class. This framework is of superior data-efficiency because it does

not exploit any extra data.

We finally focus on the computational efficiency of the solution. PLMs incur sub-

stantial computational overhead because of the substantial model size. we propose

a model compression scheme that capitalizes on off-the-shelf generative PLMs for

data augmentation. Moreover, we design a novel vocabulary pruning technique em-

ploying a nearest neighbour matching scheme. The proposed method manages to

compresses the model by a factor of 21, and thus allows the deployment of the model

in resource-constrained scenarios, such as mobile devices and embedded systems.

7.2 Future Work

7.2.1 Modular Task-oriented Dialogue Systems

A conventional task-oriented dialogue system consists of several independent modules,

primarily encompassing intent detection, dialogue state tracking, slot filling and text

generation. The future works on such systems include the following directions.
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• Evaluation of industrial standard for all the aforementioned modules. Current

evaluation datasets and protocols are mainly from the academic community,

thereby disregarding several important properties of systems deployed in real-

world scenarios. For example, the utterances may simultaneously have several

intents [14], but most intent detection datasets assume single label for each

utterance. To address the issue, it is imperative to provide industrial evalua-

tion protocols, specifying details such as intent number, annotation cost, which

encourages the research of more practical value.

• Efficient methods for dialogue systems. The introduction of PLMs have incurred

significant computational overhead, thereby making it imperative to design di-

alogue systems consuming less computational power for resource-constrained

scenarios. We have provided an early trial in Chapter 6 for intent detection.

Efficient methods for other modules in a TOD system are to be explored.

• Multi-modal task-oriented dialogue system. Such a system encompasses not

only textual data, but also images, speeches or videos. An example can be

observed in a virtual reality system, where the TOD system consists of both

utterances and videos [104]. The expansion of conventional TOD systems to

multi-modal ones poses new challenges including spatial and temporal multi-

modal reasoning, cross-modal co-reference, intent detection and slot filling con-

sidering multi-modal contexts.

7.2.2 New Era of Dialogue Systems

Most works of this thesis are undertaken prior to the era of large language mod-

els (LLMs). These models, such as GPT-4 [73], have been drastically changing the

landscape of NLP. LLMs characterized by the vast scale and remarkable learning

capabilities, have revolutionized the approach to building a dialogue system. Even

without a dedicated intent detection module, LLMs have shown the promising capa-
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bility of intent understanding and task fulfilling [74]. In this era, some of the future

works are summarized as follows.

• Facilitating the modular design of TOD systems. Although LLMs make the end-

to-end design plausible [74], the modular design presents distinctive advantages

in terms of controllability, interpretability and compressibility. It is promising

to harness the generative capability and the rich knowledge of LLMs to facilitate

the construction of a modular system. Indeed, our effort in model compression

in Chapter 6 is along the direction. Most recently, some LLMs have exhibited

innate resilience to anisotropy [58], indicating the potential value in leveraging

them to build modular TOD systems. However, exploiting these models to help

design intent detection modules still faces challenges such as uncontrollable

output and limited maximum input length.

• Efficient methods for model training and fine-tuning. Due to the cumbersome

size, the training of LLMs consumes substantial computational resources, usu-

ally hundreds of enterprise-grade servers, thereby calling for techniques, includ-

ing novel model architectures and training methods, to efficiently adapt LLMs

to specific tasks such as intent detection.
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[99] Ivan Vulić, Pei-Hao Su, Samuel Coope, Daniela Gerz, Pawe l Budzianowski,
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