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ABSTRACT 

 Particle damping is a passive vibration control strategy that possesses various pronouncing 

merits in field application due to its straightforward mechanism. This technology is achieved 

by a granular material-filled enclosure that dissipates vibration energy through the collision 

and friction effects between the particles inside the cavity. To address the noise and vibration 

issue induced by the urban railway system, a novel rail particle damper (RPD) was developed 

to alleviate the vibration of the rail track. However, the intricate motion of the particle bed 

renders the modeling of particle dampers (PDs) a daunting challenge. This study aims to 

establish the surrogate particle damping models under the deep learning (DL) framework. The 

data-driven approach circumvents the time-consuming attempt that models the movement of 

all particles inside a PD, and directly gets to the desired target. The investigation of the PD is 

carried out progressively in this thesis, i.e., from a simple case to the field application of the 

rail particle dampers, and a few issues of exploiting DL will be settled during the procedure. 

Finally, the developed RPDs will be systematically evaluated. 

 The first thing to learn about a PD is its energy dissipation ability. Various parameters 

influence the performance of a PD. A series of tests on simple cylindrical-shaped PDs were 

conducted to obtain their energy loss factor corresponding to different particle properties, 

damper cavity properties, and external excitation properties. The collected data was utilized for 

the training of the neural network (NN) surrogate model. Inductive transfer learning (TL) is 
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applied here to remedy the lack of expensive high-fidelity experimental data, as the training of 

NNs is data hungry. The TL can leverage the low-fidelity knowledge from an approximate 

governing/constitutive equation to facilitate the learning in the target task, which forms a multi-

fidelity approach for the modeling of PDs. 

 Moving one step further, exploring the response of a PD helps to understand its mechanism. 

For example, the response force of a PD exhibits hysteretic behavior under dynamic excitation. 

However, there is a long-standing pathology called spectra bias that hampers NNs from 

reproducing the complex hysteresis loops of a PD. Analyzing the NN through the neural tangent 

kernel’s (NTK) perspective reveals why NNs are perplexed in recognizing high-frequency 

features. The Fourier features are thus embedded to extricate NNs from the shackle of spectra 

bias. The Fourier features-embedded NN (ffNN) is then combined with the TL-incorporated 

PINN (TLPINN) to enhance its performance. With these treatments, it is proved that the 

proposed ff-TLPINN can reconstruct the hysteresis loops of a PD under various excitation 

levels in a broad frequency band. 

 However, the limitation of ff-TLPINN is that it can only model the response force of one 

PD. Introducing more parameters related to PD configurations into the model will make the 

task too bulky for the NN. The developed RPDs are equipped with cavities of different sizes, 

so the models for PDs with different configurations are required. Here, a divide-and-conquer 

strategy is applied. The basic model is firstly established on one PD with ff-TLPINN, the 

models for other PDs are then extended from the basic model. The mc-ESDN is proposed for 
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this model extension. The recurrent neural network (RNN) based ESDN aims to decode the 

sequential information from the experimental data, and the imposition of multi-dimensional 

and multi-scale convolutions ameliorates the feature extraction performance of the proposed 

method. With the mc-ESDN, the surrogated models for the developed RPDs of different cavity 

sizes can be established. 

 The effectiveness of the novel RPDs was thoroughly evaluated through experiments from 

laboratory to field. Numerous types of filling materials were investigated through the single-

bay rail test, and the modal analysis on the RPD studied the movement of the damper cavity 

relative to the rail. The selected filling materials were further tested on a 6 m rail testbed to 

identify the optimum type of particle and its filling ratio. A noise-sensitive urban metro line 

was selected to evaluate the PRDs’ performance on noise and vibration control of the railway 

system. Through the in-situ test, the vibration of the track and surrounding noise were 

compared before and after the installation of RPDs. The vibration wave propagation is a critical 

factor in evaluating the noise emission of the track. This factor was measured and predicted by 

a periodic track-damper coupled model with the aid of the DL surrogate model of the RPD. 

Results show that RPDs are functional in suppressing the vibration of rail tracks. 
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CHAPTER 1.  

Introduction 

 

1.1 Research Background 

 Rail transportation is widely regarded as an environmentally friendly mode of transport, 

with far less pollution, energy consumption, and carbon dioxide emissions per passenger 

kilometer than by road or air. It has been found that high-speed rail can effectively compete 

with air transport on routes that less than three hours. Railway can achieve the advantages of 

economy and environmental protection while ensuring timeliness. Public railway 

transportation systems are the key to realize urban mobility. The vigorous development of 

urban rail transit not only solves the problem of traffic congestion but also improves the 

utilization of land resources, which has incomparable advantages over other transportation 

modes. However, the environmental problems caused by urban railway transportation are 

becoming more and more severe because most of the rail lines are located in the area with a 

dense number of residents. The most crucial problem comes from the environmental problems 

caused by the noise of the railway system. The control of noise and vibration caused by urban 

rail transit has been the focus of worldwide attention. 

 The noise and vibration problem of railway systems have already been well documented 
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(Thompson, 2013). The wheel-rail contact is one of the most critical sources of railway noise. 

Wide-band vibration is generated when the track and wheel are in contact. The vibration energy 

is transferred to the environment through sound waves. In response to this mean of noise, many 

noise and vibration control related technologies have been developed. For example, sound 

barriers have been developed to block the transmission of sound waves. These products are 

effective but often expensive and are ineffective against the noise transmitted by the structure. 

Many works are focused on controlling the noise from the source, which means reducing the 

noise generation at the source by controlling the vibration of the structure, including utilizing 

composite materials wheel and rail parts, improving the smoothness of the contact surface, and 

other methods. In these vibration control technology methods, implementing damper is a 

straightforward approach. Dampers can reduce vibration and noise by dissipating vibration 

energy. Now dampers are widely used in many engineering fields, including rail transportation. 

 In numerous damping technology, particle damping is a concept that originated long time 

ago, which can be traced back to 1937. The damper was first designed to contain a single mass 

inside the cavity. The impact of the moving mass dissipates the vibration energy. However, the 

impact can also produce high-level noise and significant impact force. This kind of damper is 

sensitive to the change of excitation amplitude and coefficient of restitution (Paget, 1937). Then 

in 1945, Lieber and Jensen extended this concept by proposing multiple masses that moves 

between the walls of a container to dissipate the energy of vibrations (Lieber & Jensen, 1945). 

Following this idea, a multi-particle designed damper replaced the traditional single-mass 
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damper and thus resulting in the particle dampers (PDs). Its principle is to fill the hollow cavity 

with many solid particles. The friction and collision between particles will dissipate the energy 

of the vibration system. The concept of PD takes the advantages of good durability, high 

reliability, not being sensitive to temperature changes, can tolerate extreme environmental 

conditions, and the particle damping effect is not restricted in any directions. These advantages 

make it possible for PDs to be widely used in engineering practice. 

 PDs are particularly suitable for complicated and harsh working environments. The simple 

working mechanism makes the PD relatively insensitive to the working conditions. It can work 

in different scenes like places with very high or low ambient temperatures, underwater with 

extremely high pressure, or in outer space. It can also control a wide frequency band of 

vibration. Theoretically, PDs are effective in any form of external excitation, whether steady-

state excitation, shock excitation, or random chaos excitation. The vibration direction is also 

not limited for the PDs to be functional. Unlike some dampers, when a PD is mounted on the 

structure, it can mitigate the vibration in arbitrary directions. PDs also have irreplaceable 

advantages in terms of economy and durability. Due to their low cost, PDs have the potential 

for mass manufacture. At the same time, PDs also hold the advantage of durability, as they can 

withstand long-term wearing and tearing without affecting their effectiveness. Therefore, the 

lifecycle cost of this kind of damper remains low. More importantly, they would only add a 

little extra weight to the main structure while simultaneously ensuring the efficiency of 

vibration control. This is a significant advantage in applying many engineering fields sensitive 
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to mass. 

 Due to their various advantages, PDs have been widely used in aviation, automation, 

energy, electronics, medicine, and other industries. Applications include but are not limited to 

structural seismic protection, vibration reduction with aviation instruments, turbofan engine 

blade vibration reduction, helicopter blade vibration reduction, and vibration control with 

aerospace instruments. However, the PDs also have their shortcomings. For example, the 

particles in the traditional PD are stacked together, limiting the particles’ movement ability. 

The collision between the particles and the cavity is predominantly elastic, so the energy 

dissipation ability of the collision is limited. 

 Although PDs are convincing in enhancing the engineering application, there still lacks an 

impeccable analytical approach that can describe the PDs’ usage performance and facilitate the 

PD’s design. The essential fact for this problem is the highly nonlinear characteristics of the 

PD. As a result, in past studies, the analysis and numerical models often come to contradictory 

conclusions with experimental results. Trial and errors are still the most commonly used 

method in previous designs on PDs. At the same time, the response of the PD is very sensitive 

to external excitation, which leads to the end that no theoretical model can universally describe 

the response of the PD. Most of the past research only focus on the PD response to steady-state 

and low-frequency excitation, making the rest of the work conditions a blank area for PD 

investigation. 

 The application of PDs in rail transit has just commenced. The developed rail PDs are 
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mounted on the rail track. Track is one of the primary noise sources in railway operation, 

especially for rolling noise. However, the vibration of rail tracks is different from normal 

structures. The vibration of the rail track mainly concentrates in the vertical direction on a 

straight line since the wheels apply the excitation vertically. The vertical stiffness of a rail track 

section is quite stiff, making the vibration always has a high-frequency character. In such 

circumstances, even when the acceleration of the vibration is significant, the displacement 

amplitude of the vibration is still minimal. The micro-displacement vibration is not preferred 

for PDs to dissipate energy, since the energy dissipation is counted on the moving of the particle 

bed. It is proved that the friction effect mainly contributes to the damping mechanism of PD in 

high-frequency vibration. 

 Although Masri has established the optimal steady-state solution of the multi-particle 

impact damper model decades ago (Masri, 1969). This identified mode is related to the particle 

bed’s periodic impacts with the cavity’s two ends. Relevant experiments have revealed that in 

the working environment of rail transit, this kind of movement is not achievable for the particle 

bed inside the PD as it requires a considerable displacement amplitude. However, even though 

it is recognized that the vibration energy is mainly dissipated through the friction effect, more 

research on the mechanism of PD energy dissipation in high-frequency vibration is needed to 

guide its application in rail transit. 

 In this research, acceleration rather than displacement will be chosen to assess track 

vibration based on two primary reasons. Firstly, acceleration can be more easily measured using 
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on-site accelerometers, which offer higher precision and lower cost compared to devices used 

for measuring displacement. Displacement can be derived from the integration of 

accelerometer data, making acceleration the most common method for vibration measurement 

in the railway industry. Secondly, and more importantly, the high-frequency nature of rail track 

vibration results in minimal displacements that are often imperceptible to passengers. Typically, 

displacement amplitudes normally do not exceed 2 mm, whereas acceleration amplitudes can 

easily reach dozens of g. As a result, acceleration is the critical factor influencing passengers’ 

experience. Therefore, the research of this thesis will be carried out in this background. 

1.2 Research Objectives 

 This study aims to establish the surrogate model of the granular material-filled PDs for a 

better understanding of particle damping. This type of damper will eventually be applied to the 

railway industry for noise and vibration control. Since the noise is generated from the vibration 

of the structure, the idea of applying dampers is to suppress the structural vibration and thus 

control the noise from the source. The reason to select the granular material filled PD is that 

the granular material has been proven to be the most suitable filling material in the scope of 

high-frequency vibration. However, understanding this kind of damper and the damper 

application in this scenario is currently inadequate. Based on this situation, the detailed 

objectives of this study are: 

1. To identify the energy dissipation ability of the PDs concerning various parameters, 
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including internal parameters related to dampers’ cavity and particles, and external 

parameters related to excitation. Since the energy-dissipating ability is the primary 

factor for an engineer to consider a damper, the understanding of the granular material-

filled PD must be built in this aspect starting from a simple shape PD. The parameters 

to be investigated include particle properties, damper cavity properties, and external 

excitation properties. 

2. To propose a method for modeling the PDs with limited experimental data. After the 

experimental investigation of the PDs, the surrogate model based on the obtained 

experimental dataset is desired. However, the expensive high-fidelity data may not be 

sufficient to establish the deep learning-based surrogate model. A multi-fidelity 

modeling approach that utilizes two fidelity levels of learning resources is adopted to 

integrate low-fidelity learning resources into the model. 

3. To further test the PDs to explore their damping mechanism. The energy consumption 

factor is an indirect character of PDs for application use. The response of a PD under 

dynamic excitation reveals more about its essence of the damping mechanism, e.g., the 

hysteretic behavior of the particle damping. 

4. To propose another method for reconstructing the response of the PDs. Unlike the 

situation in the energy consumption experiment. The dynamic response test is time 

dependent. The high-frequency sampling rate will make the dataset relatively 

enormous and make the learning task too bulky for a neural network. A divide-and-



8 

 

conquer strategy is applied here to solve the problem. 

5. To thoroughly evaluate the proposed rail PD. Rail particle dampers (RPDs) are 

developed for the noise and vibration control of the railway system. Its efficacy needs 

a systematic investigation from laboratory to field. Since the damper cavity is fixed, 

different types of filling materials and their filling ratios should be tested to identify 

the optimum set. It is also required to know its real effectiveness in field applications. 

A simple model coupling the track and the dampers with the aid of the surrogate PD 

model is also needed to predict the actual performance of RPDs on the field. 

1.3 Thesis Outline 

 The thesis comprises seven chapters. A brief description of the content of each chapter is 

given as follows. 

 CHAPTER 1 gives an overall introduction to this thesis, which includes the background 

and motivation. The introduction of particle damping and the issues of applying particle 

damping in the railway industry are given. The challenges for the modeling are also briefly 

discussed. 

 CHAPTER 2 reviews the development of the PDs and the investigation conducted on 

particle damping. The PD has a long history and has been applied to various industries. Various 

improvements are invented on the PDs during their application, including the configurations 
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and materials. The attempt to model PDs is mainly carried out through the discrete element 

method (DEM). The DEM simulates the contact of particles by considering all aspects, 

resulting in a significant computational load of this approach. The various experimental 

methods to investigate PDs are also reviewed in this chapter. 

 In CHAPTER 3, a novel approach for modeling granular material-filled PDs with varying 

cavity height and particle filling ratio is presented. This approach is based on transfer learning 

(TL) and utilizes multi-fidelity techniques. The dynamic test conducted in this study 

encompassed frequencies ranging from 100 Hz to 2000 Hz. Simple cylindrical PDs were used 

in the experiment to establish fundamental knowledge about particle damping. The deep neural 

network (DNN) is proposed for the modeling task. Nonlinear dynamics have shown promising 

results with DNNs. However, a DNN relies heavily on the sufficiency of learning resources, 

i.e., the size of the training dataset. To address this, a multi-fidelity approach is proposed, which 

combines low-fidelity data from an approximate governing/constitutive equation with high-

fidelity experimental data within the framework of deep TL. Initially, a DNN is trained using 

low-fidelity data. Subsequently, the weights and biases of the pre-trained DNN are frozen 

except for a few outermost layers. The outermost layers are then re-trained using the 

experimental data to construct a multi-fidelity DNN. 

 CHAPTER 4 studies the hysteretic behavior of PDs under dynamic excitation. The 

hysteresis means that the damper’s response depends not only on the current excitation but also 

on its excitation history. The hysteresis loops of a PD vary with the excitation frequency due 
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to its nonlinear nature. To model the particle damping hysteresis, this study proposes using 

neural networks (NN) to reconstruct the hysteresis loops of a cylindrical PD. However, NNs 

suffer from a long-standing pathology called spectra bias, which means they struggle to 

recognize high-frequency components in the target function. To address this issue, the recently 

developed theory of neural tangent kernel (NTK) revealed why NNs are perplexed by the 

spectra bias. Based on this theory, Fourier features-embedded neural network (ffNN) is 

proposed to expedite the learning of NNs on high-frequency features. After implementing the 

Fourier features embedding, an investigation on the use of transfer learning (TL), incorporated 

with the physics-informed neural network (PINN), is conducted to improve the proposed 

model’s performance. These approaches formulate the proposed ff-TLPINN. 

 The limitation of ff-TLPINN is that it can only model the response force of one PD. 

CHAPTER 5 discusses a model extension from the basic model to achieve the surrogate for 

multiple dampers. In this chapter, the testing target switched from the simple cylinder-shaped 

PD to the cavities of RPDs. The experimental data collected from the dynamic experiments is 

a group of time series. However, the conventional structure of NN ignores the sequential 

information of time series. The echo state network (ESN) in the recurrent neural network (RNN) 

framework is proposed to decode the sequential information in the collected dataset. To 

strengthen the learning ability of ESN, a deep fully connected layer replaces the linear 

regression output layer and thus forms an echo state deep network (ESDN). A multi-

dimensional and scale convolution (MDSC) layer is introduced in front of the reservoir of the 

ESDN to facilitate the feature extraction. These approaches formulate the proposed mc-ESDN. 
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 CHAPTER 6 studies the effectiveness of the developed RPDs. Numerous types of filling 

materials were investigated through the single-bay rail test, and the modal analysis on the RPD 

studied the movement of the damper cavity relative to the rail track. The selected filling 

materials were further tested on a 6 m rail testbed to identify the optimum type of particle and 

its filling ratio. A noise-sensitive urban metro line was selected to evaluate the PRDs’ 

performance on noise and vibration control of the railway system. Through the in-situ test, the 

vibration of the track and surrounding noise were compared before and after the installation of 

RPDs. The vibration wave propagation is a critical factor in evaluating the noise emission of 

the track. This factor was measured on the field test, and later compared with the model 

prediction by a periodic track-damper coupled model. 

 CHAPTER 7 gives the conclusion of this study. The contributions and findings are 

summarized, followed by recommendations for future research. 
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CHAPTER 2.  

Literature Review 

 

2.1 Development of Particle Dampers 

 Lu (2020) has given a detailed summary on the development of particle dampers (Figure 

2-1), The traditional particle dampers can be roughly categorized into four types regarding the 

number of particles in the damper’s cavity according to Lu’s definition (2020): the impact 

damper (Lieber, 1945), which has only one single moving mass inside the damper and the 

vibration energy will be attenuated by the inelastic impact between the moving mass and cavity 

wall; the multi-unit impact damper (Nayeri et al., 2007), in which the working strategy is still 

inelastic impact between mass and damper cavity. However, the cavity is divided into several 

sub-cavity, and each of the sub-cavity is filled with one moving mass, so the damper can be 

regarded as an assembly of multiple impact dampers; the particle damper (Lu, 2020), which is 

filled with numerous small particles instead of one single moving mass. The advantage of this 

kind of dampers is evident, since the amount of inelastic collision and the effect of friction are 

significantly increased compared to the impact damper, without adding more extra mass to the 

damper. However, the advanced performance of the particle damper comes with a side effect: 

it is tough to model the motion of particles inside the damper while under excitation. The fourth 

type is the multi-unit particle damper (Saeki, 2005). The design is the same concept of particle 
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damper. It assembles multiple particle dampers and thus using the superimposed effect. 

 

Figure 2-1 Diagrammatic drawing of four kinds of commonly used particle dampers: (a) 

Impact damper; (b) Multi-unit impact damper; (c) Particle damper; (d) Multi-unit particle 

damper (Lu, 2020). 

 The following literature review on particle dampers’ development has referred the content 

in Lu’s book (2020). Multi-unit impact dampers are developed based on impact dampers. In 

1969, Masri (1969) successfully derived the explicit solution of the motion of a multi-unit 

impact damper under the harmonic steady-state excitation. In his calculation, he assumes the 

steady-state vibration when two collisions between particles and the cavity wall occurs every 

period. This is the condition when the multi-unit impact damper can dissipate the most energy 

and obtain its best performance, and the experimental results agreed well with his simulation 

in computer. Moreover, this kind of design is able to achieve a superior performance compared 

to the original impact damper. Based on this pioneering research, the concept of particle damper 
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has attracted more attention.  

 Particle dampers with multiple particles have been widely proven to perform better than 

impact dampers with only one particle. The factors that could influence the performance of a 

particle damper were studied (Saeki, 2005). In this study, the discrete element method was used 

to analyze the horizontal vibration of multi-unit particle dampers. The analytical results were 

compared with the experimental results to prove its reliability. In the experiment, particles were 

filled inside several cavities during vibration, and a series of tests revealed the effectiveness of 

various parameters. The results turned out that cavity radius was preferred to be lower when 

there were more cavities inside the multi-unit particle damper. Besides, the mass ratio of 

particles and the cavities numbers are key factor to the performance of particle dampers (Saeki, 

2005). 

2.1.1 Development on the shape of particle dampers 

 In the scope of traditional particle dampers, the configuration only means the particle 

damper cavity’s size and shape. However, innovating the particle dampers’ structure 

configuration can improve the vibration control performance under some specified scenarios. 

The bean bag impact damper (BBD) is a flexible restraint particle impact damper (Popplewell 

& Semercigil, 1989). Instead of directly filling particles inside a cavity, BBD utilities a soft 

bag to wrap the particles (Figure 2-2). The soft bag holds a certain elastic resilience. Therefore, 

BBD generally works as a traditional impact damper but replaces the rigid mass block with a 
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bag of particles, so that friction effect is introduced during the collision. Besides, this change 

also reduces impact force and noise generated by the impact thanks to the soft surface of the 

bag. In the study, Popplewell and Semercigil found that the vibration of the main structure 

under the action of BBD could be well analyzed through simple equivalent substitution. 

However, the deformation of the bean bag itself under the impact is beyond their ability to 

solve. 

 

Figure 2-2 Diagrammatic drawing of BBD (Popplewell & Semercigil, 1989). 

 In another modification, Shah et al added a piston that inserts into the particle bed (Shah 

et al., 2009). This piston would not move during the vibration, as a result, when the damper 

vibrates with the structure, the particle bed will interact with the rigid piston and dissipates 

more energy. It is equivalent to extend the outer cavity wall that contacts with the granular bed. 

The expanded contact area improves the damping effect. This design’s significant change is 

that the damper still has damping effect even if the external vibration is very small. Furthermore, 
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they also achieved the semi-active controlling damper by applying a magnetic field (Shah et 

al., 2011). The whole system is magnetized in the magnetic field that generated by the 

electromagnetic coil (Figure 2-3). The pistons and particles are made of ferromagnetic 

materials without hysteresis. They found that the effectiveness of the damper increases with 

the magnetization of the piston and the particle, so controlling the energy of the magnetic field 

by switching the magnitude of the current in the electromagnetic coil can achieve semi-active 

control of magnetization. 

 

Figure 2-3 (a) Diagrammatic drawing of piston-based particle damper; (b) Semi-active 

control of magnetic field damper (Shah et al., 2011). 

 Particles of different sizes are also used in particle dampers. Theoretically, particles of 

various diameters can significantly reduce the porosity of granular beds, but such an approach 

will also significantly reduce the number of effective collisions. Therefore, Gharib and Ghani 

(2013) chose to place particles with different diameter sizes on the same axis and restrict the 
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external excitation in the same direction, thus reducing the equivalent clearance in this direction 

(Figure 2-4). This treatment increases the number of impacts, and thus improves the damper 

effectiveness. 

 

Figure 2-4 Diagrammatic drawing of particle damper designed by Gharib and Ghani (2013). 

 In addition to the new particle dampers described above, researchers have also developed 

ball vibration absorber (Zuo et al., 2019), the tuned rolling ball damper (Chen & Georgakis, 

2013) etc. These dampers have achieved better vibration reduction performance through their 

novel design. 

2.1.2 Development on the material of particle dampers 

 A lot of scholars contributed to the investigation on the material development of the 

particle dampers. Li and Darby (2008) adopted a kind of innovatively designed damper by 

laying a thin layer of rubber material on the inner wall of the particle damper cavity. This kind 

of design is based on the idea to increase the energy dissipation of collision between particles 

and damper cavity. In their research background, which is the vibration control of multi-degree-

of-freedom structure control, the vibration is usually low frequency with relatively large 

amplitude. Therefore, the impact effect plays the main role in energy dissipation. But adopting 
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such a novel design, Li and Dardy (2008) managed to enhance the damping effect in a broad 

frequency band. Du and Wang (2010) made improvement to a single-particle impact damper. 

Instead of putting one steel ball inside the damper cavity, they also filled in a certain number 

of fine particles. Consequently, these fine particles serve as additional energy absorber during 

vibration and dissipates more energy compared to a single-particle impact damper. Darabi and 

Rongong (2012) applied spherical elastomeric particles in their research. The physical 

properties of elastomeric particles were tested in a special designed test rig, parameters that 

could influence the performance of the particle damper including Young’s modulus, loss factor 

and dynamic stiffness, etc. were determined before the testing of the particle damper. After the 

shaker test, they found out that energy consumption is related to the amplitude and frequency, 

but not sensitive to the friction coefficient (Darabi and Rongong, 2012). 

 Bustamante et al. (2013) also adopted elastomer particles in their research. However, they 

didn’t limit to the sphere particles, but also tested some irregular shaped elastomer particles 

with the dynamic shaker. They reported a fluidization phenomenon in their experiments. This 

phenomenon indicates the condition when the movement of particles can suppress the vibration 

of the primary structure, a beam tested in their experiments, to achieve the lowest response. 

 Michon et al. (2013) used soft hollow particles to replace traditional particles in aluminum 

honeycomb cantilever beams. They identified the viscos-elastic behavior of the particle bed 

through the hysteretic response. Abbas et al. (2014) compared the effectiveness of rubber 

material-made particle with metal particles, including aluminum, mild steel and stainless-steel 
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swarf for the vibration control of a hollow aluminum beam. 

2.2 Theoretical Analysis on Particle Damping 

 Various literatures have repeatedly emphasized that the physical modeling of particle 

dampers is a highly nonlinear problem, which brings great difficulties to the establishment of 

the damper model. One of the reasons for this situation is that the particle damper is very 

sensitive to multiple parameters, and its performance is divided into several different stages, in 

which the major damping effect is generated from different physics mechanisms. Therefore, a 

reasonable model can only accurately describe the performance of a particular stage. 

 As a matter of fact, many of the current modeling approaches are based on trial and error. 

Because the results of theoretical models are often quite different from the results of practical 

experiments. In this section, the modeling method of particle damper will be illustrated in 

analytical and numerical aspects. 

2.2.1 Analytical modeling approaches 

 A rheological-based model was proposed in the research reported by Olȩdzki et al. (1999). 

This model is established based on the assumption that particles will deform in a collision. In 

conclusion, the motion of the overall damper is described by the following rheology theory. 

The parameters in the equation are calibrated by experimental results. The model, which should 
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be used for impact dampers, was then introduced into the simulation system, and obtained a 

good agreement with the experimental results. 

 Ibrahim (2009) has concluded a series of modeling and analytical approaches regarding 

the vibration an impact. He suggested that the existence of impact and collision can make a 

linear or weakly nonlinear system becomes strongly nonlinear. In order to analyze such a 

motion, one can try with power-law phenomenological modeling, which attempts to 

comprehend the chaotic motion in the energy aspect. Besides, he also introduced other 

analytical tools including Zhuravlev non-smooth coordinate transformation, Ivanov 

transformation and Hertz contact. The last one is the foundation of the discrete element method. 

Ibrahim (2009) suggested that the challenge of impact damping could be addressed through the 

application of multi-body dynamics, which analyze the movement of every single particle in a 

stepwise manner. However, this kind of analyzation is not easy when involves the friction effect, 

as it frequently involves viscous and sliding problems related to friction effects. 

 Chung et al. (2010) added a sand-sawdust damping layer to the lightweight floor/ceiling 

system. They measured the structure with the laser to obtain its velocity response. This response 

revealed the features of the low-frequency vibration, like the natural frequency and modal 

shapes. In this analytical work on the structure equipped with particle damping, the root mean 

square velocity was selected as the indicator to evaluate the average sound power level. Other 

than the theoretical analysis of the acoustic performance of the lightweight structure, Chung et 

al. also invited recipients to give a subjective evaluation of the structure's sound-blocking 
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ability. Finally, the experiment results showed that with a proper design, the proposed 

lightweight floor/ceiling systems can reach or even surpass the performance of a concrete 

system. 

 Kollmer et al. (2013) attempted to analyze the vibration decay of a spring system by 

applying particle dampers. They derived two decay modes, including linear decay and linear 

relaxation. These decay modes are the consequence of the particle dynamics in different phases. 

Kollmer et al. (2013) adopted a high-speed camera to catch the movement of the cavity attached 

to the spring and the particle inside. Their report identified two motion modes of the particle 

bed, i.e., the collect-and-collide and gas phases. These two motion modes correspond to the 

two different decay modes of the structure on the spring. This research has provided a hint to 

the community that the movement of particle beds could go through different phases during 

vibration. 

 Wang and Wu (2016) introduced a new modeling approach for particle dampers based on 

the multi-phase flow theory. Inside the damper cavity are particles of the solid phase and air of 

the gas phase. Therefore, Wang and Wu regarded the particle bed as the solid-gas flow during 

the vibration. Following the two-phase flow theory, they separately defined and calculated the 

equivalent viscous damping of the particle bed related to collision and friction. This modeling 

approach was verified with the numerical simulation and experiments on a cantilever plate with 

a particle damper. The equivalent damping parameters concerning different factors were also 

analyzed in this study. Following this work, Lei and Wu (2017) further enhanced the theory of 
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calculating equivalent damping parameters. Compared to the previous work, they added the 

equivalent damping factor based on the particle beds kinetic. The experiment validation was 

conducted on a non-obstructive particle damping in this study. 

 Furthermore, these researchers explored the optimization design of particle dampers based 

on the two-phase flow equivalent model (Lei, Wu, & Chen, 2018). They estimate the vibration 

response of the structure concerning different damper parameters. Lei et al. reported that the 

particle dampers reached the optimum performance when the Leidenfrost effect occurred. The 

Leidenfrost effect describes that at the interaction surface between the particle bed and the 

damper cavity, the contacting layer of particles went into a fluid phase of motion at certain 

conditions. With this theory, Lei et al. (2018) identified the Leidenfrost state of particle dampers 

with the modified two-phase flow model. 

 Zhang et al. (2020) followed the two-phase flow theory in their modeling attempt. They 

also focused on the optimization of the particle dampers. However, other than the Leidenfrost 

effect, they searched for the optimum condition of particle dampers through the particle swarm 

algorithm, an optimization algorithm based on swarm intelligence. This method works by 

nominating a bunch of candidates, i.e., damper parameters in this case, and then simulating the 

evolution of these candidates through their current state to find the optimum solution. Zhang 

et al. reported a 10 dB acceleration mitigation in the target frequency range by this method. 

 Djemal et al. (2019) also utilized multi-phase flow theory to establish a numerical model. 

This work can be regarded as an application of the model proposed by Wang and Wu (2016). 
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Although, Djemal et al. used metal balls to fill inside the damper rather than the tungsten 

powder. This modification made a change in the analysis of the material aspect. 

 Zhang et al. (2018) established an equivalent model to describe the vibration of a cantilever 

beam. In this study, the novel tuned particle damper was combined with the theory of 

conventional dynamic absorber. They applied a series of sweep sinusoidal excitations to the 

cantilever beam to study the performance of the tuned particle damper, the excitation level 

being defined by amplitude and frequency. They expected the tuned particle damper to behave 

like a particle damper and a dynamic vibration absorber in different scenarios. In general, 

particle dampers are effective in a broad frequency band, while conventional vibration 

absorbers perform better when the vibration amplitude is small. By conducting this analytical 

work, Zhang et al. (2018) summarized the changing rules of the dynamic equivalent mass and 

the tuned particle damper damping. 

 Sack et al. (2020) presented an interesting study exploring particle dampers’ performance 

in microgravity. The particle damper was excited with sinusoidal excitation at different levels. 

They identified two phases of the particle’s motion. The first phase was the gas phase, in which 

particles were evenly distributed inside the damper cavity with low vibration amplitude. 

Another was the collective phase that occurred with large amplitude vibration. In the second 

phase, particles moved following the external excitation and collided periodically with the 

damper cavity. The energy dissipation was undoubtedly larger in the second phase since a larger 

number of particles impacted the cavity in each period. 
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 Wang et al. (2020) adopted particle damping to formulate the phononic crystal for vibration 

control. The phononic crystal consists of periodic distributed particle dampers filled with steel 

balls. This design utilized both bandgap features of a periodic structure and particle damping. 

For the analytical process, Wang et al. focused on equivalent modulus and Rayleigh damping 

ratio. The polynomial coefficients were fitted according to the simulation of particle dampers. 

Various parameters, including the damper’s shape, size, and filling ratio, were studied in this 

literature. They concluded that the damping ratio coefficient of this structure was a nonlinear 

function concerning the vibration frequency. 

 Huang et al. (2021) proposed an equivalent model by considering the rolling effect of a 

muti-particle damper. The mechanism of particle rolling was usually ignored in the previous 

literature due to its complexity. In this study, the rolling of particles was investigated during 

the non-collision phase of the particle motion. The inertia of particles was also discussed for 

its influence on the dynamic amplification factor, which describes the response amplitude 

amplification of a structure in harmonic excitation compared to the static load. Huang et al. 

concluded that the inertia of particles would increase the equivalent frequency of the structure 

and decrease the relative displacement. 

2.2.2 Numerical modeling approaches 

 Besides analytical models of particle dampers, scholars also endeavored to explore the 

numerical simulation methods for modeling particle damping. As a matter of fact, this approach 
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might be the first choice for a researcher who first dealt with particle damping. Numerical 

simulation is straightforward compared to the analytical approach: it transfers the intricate 

theories and phenomena into a computational load of modern computers. The primary 

numerical method is called the discrete element method (DEM). It defines the contact between 

particles and calculates the motion of particles step by step based on simulation software. 

 The study of particle damping with DEM can at least be traced back to decades ago. Olson 

(2003) simulated the motion of particles and the interaction between them based on the Hertz 

contact, this approach considered the normal force and tangential force between particles. He 

adopted Maxwell model to describe the viscos-elastic behavior of material and substituted it 

into the Hertz model. Similarly, Liu et al. (2005) defined the effective damping coefficient of 

a particle damper through the two-dimensional particle dynamics. In their simulation, the 

particle motion was calculated step by step: the moving state of each particle at each time step 

was determined by the initial condition. By this approach, the total motion of the particle bed 

was separated to the motion of individual particles. Liu et al. reported that the simulation results 

agreed well with the experimental results. However, the above mentioned two studies focused 

on the single-degree-of-freedom case. 

 Lu et al. (2012) considered both collision and friction in their simulation. They adopted 

Hertz-Mindlin model to describe the normal contact between particles. As for the friction 

between particles, Coulomb friction model was selected. They established the finite-element 

model (FEM) of the primary structure, which is a three-story steel frame structure. The particle 
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damper was installed on the top of this frame. The dynamic loads applied to this structure was 

on one direction, but since the structure contains three layers, it was still a multi-degree-of-

freedom motion. The movement of the structure was calculated by the Newmark-𝛽 approach. 

The mass ratio, volume fraction and material of particles were investigated in their simulation. 

 Sánchez et al.(2012) simulated a particle damper in the single-degree-of-freedom vibration. 

In their DEM simulation, particles were sealed inside the damper cavity enclosure. The average 

and tangential elastic coefficient, friction coefficient, and coefficient of restitution were 

adjusted to observe the amplitude of the structure vibration and motion of particles. However, 

Sánchez et al. found that the performance of the particle damper was irrelevant to the 

interaction between particles. Once the number of particles is effectively large, or the density 

of particles is large enough, the particle damper can reach a considerable performance. They 

suppose the reason for this phenomenon was related to the inelastic collapse. According to this 

theory, the particle bed could dissipate the vibration energy quickly even though the energy 

dissipation was small in each collision between particles. Sánchez et al. concluded this effect 

with a single mass equivalent model and presented a suitable situation for adopting this model. 

 These scholars further examined the nonlinear effect of particle damping (Sánchez & 

Manuel Carlevaro, 2013). Again, they adopted DEM simulation on a single-degree-of-freedom 

particle damper that was filled with multiple particles in the enclosure. After the simulation of 

the complex dynamic behavior of the particle bed, they adopted the Poincare map and 

Lyapunov exponent to investigate this chaotic motion. From the state-space reconstruction, 
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they pictured the vibration characteristics of particle beds in different excitation frequencies. 

In conclusion, they found that the particles transition from periodic to chaotic movement 

according to the excitation frequency. The optimum damping effect was achieved in the particle 

bed’s periodic phase. Therefore, they proposed an optimization strategy regarding the space of 

the cavity. In a proper damper design, the vibration of the particle bed resides in the solid phase 

with a periodic pattern. 

 Wang et al. (2015) applied a FEM-DEM coupled method in their model. The FEM for a 

spacecraft was first developed. DEM then modeled the particles inside the spacecraft. In this 

application research, they mainly explored the effect of system parameters, including mass 

ratio, particle material, depth of cavity, etc. They reported that DEM could successfully 

simulate the behavior of particle dampers that were attached to a multi-degree-of-freedom 

structure. Their work provided a reference to the design and optimization of particle dampers. 

 Wang et al. (2016) simulated the vibration of a particle damper’s motion in a two-direction, 

i.e., vertical and horizontal, vibration with DEM. Most of the research focused on the vibration 

in one direction before. They defined a term named specific damping capacity to evaluate the 

damping performance of the particle damper, this term was described as the energy 

consumption of the particle damper between two successive period. The maximum velocity of 

the structure was selected to estimate the kinetic energy. The DEM was adopted to simulate the 

energy consumption of the particle and aligned with the experimental results. Seven factors 

including acceleration amplitude, mass ratio of particles, clearance in vertical and horizontal 
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directions, coefficient of restitution, friction coefficient and excitation amplitude in vertical and 

horizontal directions were studied. This literature introduced the idea to investigate the particle 

damping in the energy aspect. 

 Masmoudi et al. (2016) also simulated the particle damping through the interaction 

between each particle. Particularly, they propose a simplification model that equips the 

particles inside the cavity to a stack of sphere balls. With this method, the interaction between 

particles was significantly reduced by Masmoudi et al. Based on the DEM simulation of this 

study, they identified the energy loss factor as a nonlinear function of the driving frequency 

and mass of the particle bed. 

 Lu et al. (2018) studied a 5-story frame structure with the free vibration and shaker 

experiments. The simulation was conducted on the designed particle dampers attached to the 

frame structure. Unlike a conventional DEM model, they equated the particle bed inside the 

damper to a single mass sphere. This simplification ignored the interaction between particles, 

and the energy was only dissipated by the collision between the single mass and the damper 

cavity. Such a method is only applied to structures with a large displacement amplitude when 

the collision effect significantly influences energy consumption. This kind of simplification 

would bring significant error to the simulation for vibration in a high-frequency regime with 

micro-displacement. However, this equivalent model reduced the computation load of the 

simulation so that there was no need to involve simulation software to obtain the result. In their 

report, this model has an acceptable accuracy and thus can be utilized in engineering 
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applications. These scholars studied the particle filling ratio, mass ratio, and density of particles 

in this literature. 

 Eberhard et al. (2019) proposed a novel design of particle damper. They used a 

stereolithography 3D printer to manufacture the tetrapod particles for damper filling. Moreover, 

the liquid was also filled inside the damper to enhance the damping performance. In order to 

simulate this configuration of particle damper, a combination of smoothed particle 

hydrodynamics and discrete element method was proposed. The first one was based on the 

Reynolds-averaged Navier-Stokes equations to describe the motion of liquids. This method 

could simulate the particle-liquid coupled movement and successfully predict the energy 

consumption of the particle damper. They reported that the addition of liquid effectively 

improved the relative displacement of particles and thus enhanced the collision and friction 

effect. 

 Wang et al.(2019) set up an experiment to test the performance of particle dampers in one 

direction. The particle dampers were installed in different locations with various response 

levels. These authors applied DEM simulation to establish the model for the particle dampers. 

A cyclic iterations approach was adopted to investigate the interaction between particles in 

different phases of the multi-unit particle dampers. In general, this approach calculates the 

damping effect at each step, and then the corresponding acceleration condition on this step is 

updated until it reaches the steady state. The model validation proved the accuracy of this DEM 

model. 
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 Moreover, this study has presented a semi-empirical prediction method based on the 

damping factor of different normalized accelerations. This prediction model was able to depict 

the nonlinearity character of particle damping. The damping increased with the normalized 

acceleration until it reached a peak. These authors claim that the advantage of this semi-

empirical method was its calculation efficiency. However, adequate experimental data is 

required to calibrate the parameters in this method. 

 Ferreyra et al.(2020) evaluated particle dampers' performance with two factors: apparent 

mass and loss factor. The modeling of particle damping was conducted with DEM, and a variety 

of boundary conditions of particle damper were explored in this simulation work. These 

boundary conditions include 3D, quasi-2D, and quasi-1D, and these conditions were compared 

with the theoretical prediction based on the inelastic bouncing ball model. This study showed 

that when the driving frequency is higher or lower than the structure's natural frequency, a 

strong nonlinearity of particle damping appears. They observed that the damping effect in the 

high-frequency regime could be well defined by a universal curve. However, the damping in 

the low-frequency regime was more complex but still obeyed to an upper limit. 

 Yan et al.(2020) studied the particle mass, coefficient of restitution, rolling friction 

coefficient, and radius of particles. The fiction effect was considered in their simulation. For 

the normal contact force, five models were compared for the numerical modeling: linear spring 

model, Kelvin model, Hertz model, Hertz-damper model, and Jan-Hertz-damper model. Based 

on the energy method, this study calculated the vibration energy of each component of the 
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single-degree-of-freedom system. They found that particle dampers were not as good as tuned 

mass dampers at the natural frequency, while in other frequency ranges, particle dampers were 

better. It was also concluded that the particle damping performed better when the coefficient 

of restitution was low. 

 Gorla and Nicoletti (2021) developed a numerical model based on the combination of FEM 

and DEM. In their experiment, a hollow beam was filled with particles of relatively large size. 

The reason for adopting large particles was to reduce the space needed in dampers. Still, this 

selection came with a side effect: increased collision noise because of the enormous inertia and 

small clearance. The model of the beam was established by FEM simulated beam and DEM 

simulated particles. The hollow cavity inside the beam was 5.1 mm and 5 mm for particles. 

Therefore, the clearance between particles and beam was only 0.1 mm. Since the collision 

effect was the central aspect of energy dissipation, this kind of damper design performed better 

in the low-frequency range where the amplitude was more significant, and damping was low 

in the high-frequency range. 

 Liao et al. (2023) proposed a coupled model by adopting DEM and muti-body dynamics. 

A slider that formed the particle damper was installed on the top of a spring supported structure. 

The simulation results were compared with benchmark vibration tests, including single-degree-

of-freedom vibration with friction, normal collision between two identical balls with different 

coefficient of restitution, and oblique collision of a ball with a rigid plane with stable resultant 

velocity but at different angles. These benchmark tests defined the interaction occurred inside 
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the particle damper. After the modeling of shear and normal contact forces between particles, 

the energy definition of particles and the cavity was also given. 

2.2.3 Neural network-based modeling approaches 

 Wang and Wu (2015) reported a new method to find the optimization design of particle 

dampers. Regarding various parameters that affect the performance of a particle damper, they 

adopted a genetic algorithm, a classical optimization method, to explore the optimum damper 

design. They considered the influence of internal parameters (filling ratio, material, and size) 

and external factors (shaker location, amplitude, and excitation frequency) in their study. In 

particular, they introduced back-propagate neural networks to explore the damping effect. To 

the authors’ knowledge, it was the first time that neural networks were utilized to model particle 

dampers. 

 Since the nonlinearity of the particle damper design parameters to the damper performance, 

the particle damper is extremely difficult to model with a simplified method. Therefore, 

Veeramuthuvel et al. (2016; 2017) employed the neural network method to investigate the 

relationship between input parameters (such as particle size, particle density, packing ratio, etc.) 

and the resulting damping ratio in particle dampers. They proposed a novel application of the 

radial basis function neural network, comparing its performance with the traditional 

backpropagation neural network. The results demonstrated that this approach offers superior 

accuracy while reducing the computational effort required. 
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2.3 Experimental Investigation on Particle Dampers 

2.3.1 Experiments for particle dampers on SDOF 

 The shaker test was widely adopted in the investigation of particle dampers. Many scholars 

chose to excite the particle damper directly without mounting it on a primary structure or a 

simple support. This approach enabled the investigation of the damper itself and could get a 

better understanding of the damper parameters. For example, Liu et al. (2005) applied 

horizontal force to a particle damper with a dynamic shaker. The particle damper was 

horizontally connected to the wall with a transverse spring. Different damper geometries were 

tested at different excitation levels to obtain their frequency response function (FRF). It was 

found that when the excitation level was high enough, the particle bed inside the damper would 

be completely excited and thus reduce the apparent mass of the damper. In this case, the natural 

frequency of the system increased. This phenomenon revealed the nonlinearity of the particle 

damping. 

 Xiao et al. (2015) tested particle dampers with a shaker that applied horizontal excitation 

force. The energy dissipation of particle dampers was calculated under this experimental setup. 

This study tested three different particle materials, including aluminum, stainless-steel, and 

tungsten. They reported that the particle density, particle diameter, and particle filling ratios 

were all influential parameters to energy dissipation. It was concluded that the energy 

consumption increased with the particle density, and there was an optimum particle diameter. 
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For the stainless-steel balls, this optimum number was 4 mm. For the filling ratio, the maximum 

energy dissipation of particle dampers occurred at the 90% filling of particles. 

 Bustamante et al. (2016) also used a shaker in their experiments. Several options were 

presented in this study for evaluation of the effectiveness of particle damping. The half-power 

bandwidth method was a conventional approach that estimated the equivalent damping ratio 

introduced by particle damping. The power input method could give the amount of energy the 

particle damper dissipates, which could generate the energy loss factor. This method required 

the damper to be directly attached to the shaker head, and the energy loss was evaluated through 

the phase difference between the excitation force and velocity. The spatial-average responses 

were also estimated for the vibration decay of the structure in this study. The white noise, sweep 

sinusoidal, and steady-state excitation were selected to test the nonlinearity of the particle 

damping. 

 Compared with the innovation in the shape and application scenarios of particle dampers, 

Snoun and Trigui (2018), improved the design method. Because the performance of a particle 

damper is affected by many different parameters, and the relationship between the parameters 

and the target is often nonlinear, it is difficult to optimize the design of a particle damper. 

However, the test results of particle dampers, whether through experiments or DEM simulation, 

can only be tested for limited parameter combinations, which means that other methods must 

be used to assist in optimizing the design parameters of particle dampers. To that end, Snoun 

and Trigu (2018) proposed the method of genetic algorithm to evaluate each design parameter. 
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 The genetic algorithm is a parameter optimization algorithm in computational mathematics. 

It randomly evolves the parameters in each iteration, evaluates the best evolution direction, 

defines it as the next evolutionary state, and searches for the optimal state through such 

continuous iteration. The engineering background they designed is relatively simple, namely a 

clamped beam coupled with a particle impact damper. Finally, their test results were compared 

and verified by numerical simulation and experimental results, and it was found that using this 

method to find the optimal damper design can be utilized. 

 Genetic algorithms are further extended in the design of particle dampers. Oltmann et al. 

(2020) also used this method to find the optimal design parameters of particle dampers. 

However, they believe using simulation methods such as DEM to model a particle damper is 

too cumbersome and cannot guarantee accuracy. Therefore, they chose a design method that 

combines numerical simulation and experiment, namely frequency-based substructuring (FBS), 

in the application of the scenario that they were faced with, i.e., small mass main structure and 

particle damper. 

 In the theory of FBS, the main structure and the particle damper are regarded as two 

independent substructures, which are defined as several significant freedom degrees, 

respectively. The frequency response function (FRF) of the two substructures is established 

according to the degrees of freedom of these substructures, respectively. Then the FRF of the 

two substructures is combined by using the Boolean matrix and Laplace operator so that the 

coupled structure of FRF is formed. Since the main structure is relatively simple, traditional 
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finite element modeling can be used to obtain the FRF function according to its corresponding 

degree-of-freedom. Moreover, the modeling of particle dampers, as mentioned above, is 

relatively complex. Therefore, Oltmann et al. chose the experimental method to obtain the FRF 

of the damper itself by applying a sine sweep excitation by shaker; this method regards the 

particle damper as a black box, ignores its internal motion model and its response can be 

measured directly as a result, reduces the difficulty of the research. 

 With the help of FBS, they can omit the complex modeling of particle damper and directly 

obtain the response of structural after coupling the damper and structure. They choose the peak 

value of FRF as the index to evaluate particle damper’s performance. When the peak value of 

the FRF function is low, it shows that the particle damper behaves a more significant effect on 

the vibration control of the structure. Based on this result, they applied genetic algorithms to 

iteratively search the optimum damper design parameters that had the best effect on vibration 

control. The results show that this design method has an excellent guiding effect on the 

problems they set. However, the limitation of this method is that it can only facilitate the 

lightweight structure and particle damper design. Once the weight of the particle damper is 

considerable, testing itself to obtain FRF function is not feasible due to the operative limitation. 

 Another problem comes from the definition of structural freedom. In the application 

scenario introduced by Oltmann et al., the main structure is a cantilever thin plate, and the 

particle damper is a small box lightweight. Both are simple structures, so they are defined as 

three-degree-of-freedom and single-degree-of-freedom, respectively. Moreover, the particle 
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damper and the main structure are point-connected, and only one degree-of-freedom is needed 

to define the connection position. However, in practical application, the main structure and 

particle damper design may be more complicated, such as the rail damper designed by Jin et 

al.. The surface contact between the damper and the rail cannot be defined with only one 

degree-of-freedom, which also makes applying FBS difficult. 

 Meyer and Seifried (2022) conducted a shaker test in the horizontal direction. The 

advantage of testing particle dampers in this direction was that the gravity of the particle bed 

could be ignored. The cubic-shaped damper cavity was connected to a linear driver with a load 

cell. The particle damper was filled with different numbers of steel balls. In this study, a variety 

of displacement amplitudes were tested; the amplitude varied from 5 mm to 50 mm with a 

frequency of 2 Hz. Each test applied excitation for 20 periods, and the first two periods were 

excluded for the steady-state analysis. 

 Meyer and Seifried identified two motion patterns of the particle bed. In the scattered mode, 

the particles’ motion was irregular, and the energy dissipation was low. In the rolling 

collection-and-collide mode, the particle bed rolled on the damper bottom and collided with 

the damper cavity as an entity. In this mode, the energy dissipation was considerably high. The 

transmission point between these two motion patterns was identified based on the complex 

power method. The filling ratio determined the transmission point, which was irrelevant to the 

excitation frequency. 
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 Recently, Hu et al. (2023) designed a simple test setup to investigate the energy dissipation 

ability of particle damper. The particle damper was vertically connected to the dynamic shaker. 

The absence of a primary structure made it a straightforward investigation of the damper itself, 

and various related characteristics were studied. An adjustment to the damper cavity was made 

in this research. They added a grid into the cavity, similar to the idea of a piston-inserted particle 

damper; this amendment improved the performance of the particle damper. 

2.3.2 Experiments for particle dampers on MDOF 

 Michon et al. (2013) created a non-obstructive particle damper based on a beam structure. 

The damper cavity was designed as a honeycomb shape that spread inside the aluminum beam. 

A small piece of the particle damper was first tested on a shaker. The cavity was directly 

attached to the shaker in the vertical direction, and the viscous equivalent damping was 

evaluated through this test. A beam structure that consisted of honeycomb cells was then tested. 

In the modeling of the beam, a combination of single-degree-of-freedom equivalent models 

generated from the shaker test was adopted, i.e., the entire beam was divided into several 

sections, and the single-degree-of-freedom model represented each section in this study. 

 Xiao et al.(2016) embedded the non-obstructive particle dampers inside gears. As a pioneer 

study of particle damping in the centrifugal field, Xiao et al. drilled holes in the exact radius 

locations of the gear and filled them with damping particles. Experiments were conducted to 

investigate particle damping in mitigating vibrations in gear transmission. The different 
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rotation speeds of the gears represented the excitation level. Special characteristics of particle 

damping were identified in the centrifugal field. For instance, the particles were extruded at the 

end from the center when the gear rotated. Xiao et al. reported that the filling ratio was a critical 

factor for the damping. An improper filling ratio could significantly reduce the damping effect. 

Based on a series of tests, they provided a guideline for optimizing the damper design in the 

centrifugal field. 

 Wang et al. (2016) designed an L-shaped cantilever beam for their experimental 

investigation. The long arm of the L-shaped beam was rigidly connected to the wall, and the 

particle damper was installed on the short arm, which pointed up. During the test, Wang et al. 

hang a certain mass at the joint of the L-shaped beam. By releasing the mass, the structure 

undergoes a two-directional (vertical and horizontal) vibration at the location of the particle 

damper. By changing the weight of the mass, this setup could achieve different excitation levels, 

which was defined as the normalized acceleration in this study. A laser vibrometer was adopted 

to measure the vibration response of the cantilever beam.  

 Duvigneau et al. (2016) introduced a granular material-filled particle damper to an oil pan 

of an automotive. The granular materials possess the advantage of being cheap and robust, and 

they are available everywhere. Most importantly, the collision effect inside a granular particle 

bed was significantly reduced. Thus, no extra noise would be generated from the interaction 

between particles. The experiment results showed the broadband vibration control ability of 

this kind of particle dampers. 
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 Other than the analytical model, Zhang et al. (2020) also provided a good reference for the 

experimental setup. They tested the particle dampers on an aluminum plate which had an 

irregular shape. Particle dampers that were filled with tungsten powder were placed in different 

locations on the plate, which bore excitation from the shaker. By this means, this study 

investigated the optimum damper configuration on the primary structure. 

 Meyer and Seifried (2020) attached a particle damper to a beam structure. The beam was 

hung on its two ends with rope to achieve a free boundary condition. Shaker excitation was 

applied to one end of the beam while the particle damper was installed on the midspan. A laser 

scanning vibrometer was selected to measure the velocity profile of the beam. 

 As mentioned in the modeling section, Lu et al. (2017) installed the particle damper on a 

5-story steel frame structure on the shaking table. The shaking table applied excitation in one 

direction and caused a multi-degree-of-freedom vibration on the frame. The particle damper 

was set on top of the frame and was divided into several sub-cavities to increase the collision 

between the particle bed and the cavity. They input four seismic wave signals to the frame, 

including EL Centro, Wenchuan, Japan 311, and SHW2. Particle dampers were capable of 

mitigating the structure response under seismic waves. 

 Lu et al. further studied the vibration mitigation of particle dampers on the frame structure 

(Lu et al., 2021). They set up a 76-story high-rise structure model that simulated a 306 m tall 

building in the wind tunnel. The frame was made of steel with a shell. This frame structure 

model weighed 19.2 kg with a first modal mass of 6.71 kg. The particle damper, a rectangular 
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cavity, was again attached to the top of the frame. The diameter of the particle balls was 6 mm. 

Lu et al. analyzed the vibration energy of the structure under wind excitation; the energy 

components include kinetic energy, elastic potential energy, and energy dissipation by 

structural damping and particle damping. The damping induced by particle damping was 

divided into the kinetic energy of particles and energy dissipation through collisions. Liu et al. 

(2023) also tested the particle damper on top of a frame structure. The frame structure consisted 

of 40 stories. The main difference between this study and the previous studies was that the 

interaction between the frame structure and the solid ground was considered in the analysis. A 

soil-structure coupled model was proposed to analyze the structure response under excitation. 

As reported in this study, a 30% vibration mitigation could be achieved by particle dampers. 

 Jin et al. (2021) designed a particle damper for pipeline vibration control. The damper 

wraps the pipeline with filling particles. The application scenarios include hydraulic power 

source pipelines and aircraft hydraulic pipelines, which vibrate under the excitation of motors. 

During the experiment, the excitation was applied to the pipeline equipped with a particle 

damper in three directions, and the response in vertical and horizontal directions was compared 

before and after the installation of the particle damper. Since the amplitude of pipeline 

vibrations was relatively low, the friction effect mainly dissipated the vibration energy. 

Therefore, a large filling ratio was preferred in this kind of application. Jin et al. reported an 

optimum filling ratio between 94.9% and 97.9%. 
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 Wang et al. (2023) also designed a vibration controller for pipelines based on particle 

damping. However, this kind of particle damper differed from the design of Jin et al. (2021). 

Wang et al. installed the particle damper on the end of an L-shaped cantilever beam. The 

vibration at this point contained vertical and horizontal components. The new design particle 

damper consisted of several cylinder-shaped cavities. Each cavity was filled with one particle. 

The clearance of each cavity was adjustable through a piston at the end of the cylinder cavity. 

Apparently, Wang et al. expected to utilize the collision between the particle and cavity to 

consume energy. This method was feasible since the vibration amplitude at the L-shaped 

pipeline was effectively large. Due to the existence of the gravity effect, two natural frequencies 

were identified in this structure. Finally, a 97.54% vibration mitigation was achieved by this 

setup based on particle damping. 

 Harduf et al. (2023) fabricated a structure with an embedded particle damper inside 

through selective laser sintering. The cross-section of the primary structure was rectangular; 

Harduf et al. drilled three pipes in this structure to formulate the embedded particle damper 

with powders as particles. During the test, the beam was hung on an elastic support, and the 

shaker applied excitation to the midspan of the beam. Various excitations with different 

frequencies and amplitudes were applied. Harduf et al. also chose a laser vibrometer to measure 

the response since this approach won’t affect the structure. The Hilbert-transform analysis was 

adopted by Harduf et al. to reveal that this target structure held a similar behavior to a two-

mass model. A threshold of excitation level divided the linear and nonlinear regimes of the 
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structure dynamics. This threshold existed when the inertial force on the particle bed exceeded 

the friction force between the particle bed and the damper cavity. 

 Papalou (2023) conducted an experimental investigation on a multi-degree-of-freedom 

structure. Papalou suspended a particle damper on a frame. The particle damper was divided 

into two cavities with different sizes. In order to express the effectiveness of particle dampers, 

Papalou replaced the particle bed with a fixed weight. The root mean square acceleration 

response under random excitation for both configurations evaluated the structure’s vibration. 

It turned out that the particle bed could suppress the vibration amplitude around the structure’s 

natural frequency. 

 Boussollaa et al. (2023) tested a particle damper on a cantilever beam. The particle damper 

was installed on the beam's end, where the vibration amplitude was most significant. The 

damper cavity was slightly larger than the particles in their damper design. Therefore, particles 

were stacked and piled up inside the damper. A small clearance was left for the particles. This 

design achieved major energy dissipation through the impacts between the particle chain. The 

parameters of particles were determined by a falling test on a particle. Generally, testing 

particle dampers on a cantilever beam is a popular approach to evaluate particle dampers. 

2.3.3 Experimental investigation in railway applications 

 Jin et al. (2020) first developed a particle damper for rail vibration and noise reduction. 

The shape of the damper is custom-designed to be more easily mounted on the track surface. 
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The damper is perforated with spherical particles of a slightly smaller diameter than the particle 

cavity. In this way, when the train passes by, and the rail vibrates, the particles in the damper 

will collide and rub with the cavity, and the vibration energy will be dissipated in the process. 

The damper design is shown in Figure 2-5. Through the modal analysis of the rail, they studied 

the effect of the damper under different mass blocks, analyzed the damping excitation of the 

damper, and also analyzed the interaction between the transverse vibration of the rail and the 

damper. 

 

Figure 2-5 Schematic digram of the rail particle damper design (Jin et al., 2020). 

 They evaluated the performance of the damper by hammering the structure into free 

vibration under damping. Since the amplitude of free vibration displacement of the damped 

system exhibits natural exponential attenuation, they fitted the vibration displacement 

attenuation envelope obtained by experiment with the least square method and identified the 



45 

 

damping coefficient. In addition, they established a multi-degree-of-freedom numerical model 

to analyze the structure’s response under the damper. They defined the contact and coefficient 

of restitution between the particle and the damper cavity through the DEM method. Their 

findings reveal that the particle damper effectively mitigates structural vibrations across a wide 

frequency range. The inelastic collisions occurring between the particles and the cavity play a 

crucial role in dissipating energy. Additionally, they analyzed the influence of the clamping 

force exerted by the damper clamp on the vibration spectrum of the entire structure. 

 Following the above work, these scholars moved one more step in the application of rail 

particle dampers (Jin et al., 2022). The particle dampers were first mounted on a 3-m length 

rail track in the laboratory. This rail track was not fastened on sleepers. Through the modal 

analysis on the damper cavity, the scholars identified two main vibration modes of the damper 

cavities that were installed on the rail track: the first one was the bouncing mode at around 620 

Hz; the second one was the torsion mode at about 1082 Hz. These two modes also correspond 

to the first and second modes of the standard UIC60 rail track. Based on this modal analysis, 

the equivalent connection model of the rail particle dampers was defined by a complex spring 

and a complex rotational spring. The complex stiffness implemented the loss factor to represent 

the modal damping. 

 Structural parameters like bending stiffness and loss factor of the coupled structure were 

studied at different damper parameters, including mass, diameter, coefficient of restitution, and 

geometry. A wave propagation theory was adopted to analyze the effectiveness of rail particle 



46 

 

dampers in mitigating rail vibration and noise emission. The rail track was considered an 

infinite periodically supported Euler beam; the fasteners were also modeled as transverse 

complex springs. The wave propagation constants were calculated based on the periodic 

segments. It was found that installing rail particle dampers can effectively increase the 

vibration wave decay on the rail. The developed rail particle dampers were installed on an 

operating line for testing; the results showed that this damper suppressed the rail track vibration 

and reduced 5.7 dBA noise in the residential area. 

 Lu et al. (2023) also attempted to explore the utilization of particle dampers in railway 

applications. However, rather than a damper cavity that fits the rail track profile, Lu et al. only 

designed a rectangular damper attached to the rail web. Lu et al. are experienced experts in the 

field of particle damping. However, this study seems to be a preliminary investigation of rail 

particle dampers since a damper fixture design was not presented in this study, and the 

installation of particle dampers hasn’t considered the safety zone of the railway operation. 

Numerical simulation-based modeling was adopted to explore the motion of the particle bed. 

Individual tests on particles determined the coefficient of restitution used in the DEM 

simulation. 

 Lu et al. defined three states of particle bed’s motion, including active state, partially active 

state, and solid-like state. The state motion pattern was determined by the excitation levels 

which involves frequency and amplitude. In different states, the energy consumption was 
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calculated through the power flow theory. The results showed that the energy dissipation ability 

of rail particle dampers increased with excitation levels. 

 Due to the high computational demand of the DEM-based numerical simulation, Lu et al. 

(2023) further proposed a simple analytical equivalent model to analyze the rail track coupled 

with particle dampers. This model was a two-degree-of-freedom vibrator in the vertical 

direction, which is the main direction for rail track vibration in straight line. The model 

parameters were fitted to align with the experimental results in the energy aspect. 

2.4 Research Gaps 

 Based on the previous review of the particle dampers development history and the 

theoretical progress of simulation analysis, and in combination with the problem this study 

focuses on, i.e., the application of particle dampers in rail vibration reduction, the following 

research gaps can be summarized: 

 There still lacks a theoretical model that can accurately describe the behavior of the particle 

damper. Because the particle damper is affected by multiple internal and external parameters 

and most of these function relations are highly nonlinear. It is not easy to model the particle 

bed motion in a theoretical way. Currently, the modeling methods can be roughly divided into 

two ideas. One is the DEM simulation method, which attempts to reproduce the motion of 

paticles inside the damper cavity. This method has a higher accuracy theoretically, but many 
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problems will occur in actual practice. First is that the DEM itself needs a standard modeling 

method, there are many alternative models and parameter choices for particle-particle and 

particle-wall contact. The existing DEM modeling mainly tunes the parameters to make the 

simulation results close to the experimental results as far as possible, making the simulation 

less useful in practice. Another defect of DEM is that it requires a tremendous amount of 

computation capacity, especially when the cavity is filled with granular material. The contact 

times in the simulation increase by several orders of magnitude, making the DEM simulation 

requires even more computation time. 

 Another approach, represented by the research of Masri and Lu, is to simplify the filling 

particle bed. That is to equivalent the whole particle bed to a single mass particle and then use 

an impact damper model to analyze the particle damper. The benefits of this approach are 

apparent, it reduces the complexity of the model and the number of parameters that need to be 

adjusted. However, the influence brought by this simplification must be addressed. For 

example, it completely ignores the friction effect between particles. Therefore, for the particle 

damper whose friction is the primary energy dissipation mode, such an analysis method is 

completely unsuitable. 

 Most of the existing models for particle dampers focus on structural vibration. Such 

vibration tends to be low frequency and have large displacement amplitude. In this 

circumstance, particle dampers work mainly in the mode of impact damping. However, the rail 

track is a structure with very high stiffness, the vibration frequency of its pin-pin mode is 
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usually around 1000 Hz, and a small displacement always accompanies its vibration. These 

conditions mean that the particle damper will mainly work in friction damping. There is not 

much literature focused on this aspect. 

 In conclusion, a numerical method that can accurately describe the particle damper’s 

behavior, especially the friction effect, is pending to be developed. A surrogate model that 

avoids the modeling of particle damper’s complex internal motion may offer the potential to 

issue this gap. 
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CHAPTER 3.  

Modeling of PDs with Limited Experimental 

Data: TL-based Multi-fidelity Deep Learning 

 

3.1 Introduction 

 Based on the review of the modeling approaches of PDs, none of the current modeling 

approaches has demonstrated the effectiveness to work under all operating conditions. Instead, 

the modeling of PDs can be well conducted in a preset and limited regime of interest (Gagnon, 

Morandini, and Ghiringhelli 2019). It is feasible to build one or a set of continuous multi-

parameter equations to link various input features of a PD with its target output as a 

representation of physical mechanism. Data-driven modeling approaches have advanced 

rapidly in recent years, among which deep learning models including 

deep/convolutional/recurrent neural networks have shown strong capability to accurately 

formulate a nonlinear mapping between observed input and output pairs, providing an 

appealing alternative to skip the challenge in modeling from physical mechanism (Ye & Yu 

2021)The latest scientific deep learning, such as physics-informed neural network (Raissi, 

Perdikaris, and Karniadakis 2019), further leverages the formidable regression ability of the 

state-of-the-art deep learning techniques to tackle the forward and inverse problems of 

nonlinear systems when their physical laws are explicitly available in terms of ordinary or 



51 

 

partial differential equations. This paradigm sheds light on system modeling in the presence of 

an understanding about the underlying physical laws.  

 In the modeling of PDs, the relevant input parameters that influence damper performance 

include three categories: particle properties, damper cavity properties, and external excitation 

properties. The output index that describes the performance of the damper can be defined freely 

as needed. Veeramuthuvel et al. (2017) were the first to use the neural network approach to 

model a PD by using experimental data and predict the vibration suppression efficiency of the 

damper on print circuit boards. To identify an accurate phenomenological model, high fidelity 

of the observed datasets must be guaranteed. However, acquisition of high-fidelity 

experimental data is often expensive and time-consuming, and thus only a limited amount of 

high-fidelity data is obtained. The commonly used deep neural network (DNN) methods for 

modeling are very data-hungry during training, and the resulting models from the limited 

amount of data may not be versatile enough to portray the physics mechanism under different 

working conditions, especially for highly nonlinear dynamic systems. In the model-based 

optimal design of PDs, a model which can accommodate varying damper cavity properties (e.g., 

different cavity height) and varying particle properties (e.g., different particle filling ratio) is 

preferred, but experiment data available for formulating such a model are always scarce since 

it is highly expensive to fabricate and test a series of PDs with various cavity and particle 

properties. 
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 One possible solution to insufficient learning resources is that, once a computationally 

efficient approximate governing/constitutive equation is available, it can provide supplemental 

information by generating extra training data from the governing/constitutive equation. 

However, the data generated by an approximate governing/constitutive equation can only 

reflect the damper behavior in an approximate manner, that is to say, they are low-fidelity data 

compared with high-fidelity experimental data. Simply merging the low-fidelity data and high-

fidelity data is naïve and not substantially helpful to enhance the model accuracy. Instead, the 

deep transfer learning (TL) technique, which enables hierarchical neural network training using 

multi-fidelity data (Chakraborty, 2021), is more promising for leveraging low-fidelity and high-

fidelity data in deep learning. The deep TL can be built on DNN. For a DNN model consisting 

of several hidden layers, each layer receives the output of the preceding layer and processes it 

with an activation function. This execution abstracts the information and outputs it to the next 

layer afterward. It is known that the lower the level of a layer is, the lesser task-specific the 

layer is (Donahue et al., 2013). This property inspires the application of TL in deep learning to 

enhance learning efficiency and lower the risk of over-fitting. 

 In this study, a TL-based multi-fidelity modeling approach in the context of DNN will be 

developed for characterizing the dynamic performance of a set of granular material-filled PDs 

with varying cavity height and particle filling ratio. With the aid of an approximate 

governing/constitutive equation depicting the dynamics of granular material-filled PDs, a 

physics-guided DNN is first trained using the numerical train data generated from the 
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governing/constitutive equation. This pre-trained DNN model captures the basis of complex 

physics mechanisms of the granular material-filled PDs yet without promising a high accuracy. 

Afterwards, deep TL is pursued to re-train the DNN with the use of high-fidelity experimental 

data, where the network parameters (weights and biases) in all layers of the pre-trained DNN 

except a few outermost layers are frozen, while those in the outermost layers are released for 

re-training using the experimental data in compliance with the deep TL philosophy, thus 

yielding a data-refined multi-fidelity DNN model. The proposed TL-based multi-fidelity 

approach enables to decode useful information about the physics of the problem from the 

approximate governing/constitutive equation and hence, enhance the ability to reflect the 

underlying physical mechanisms of the experimental results. To facilitate the understanding of 

damper, the input variables considered in the DNN model include cavity height, particle filling 

ratio, excitation amplitude and frequency, while the output variable is the energy loss factor of 

damper, which is defined as the ratio between the energy dissipated by particle damping and 

the maximum kinetic energy of the vibrating system. In the case study, a two-phase flow 

equivalent viscosity physical model is considered as the approximate governing/constitutive 

equation to generate low-fidelity numerical data, while acceleration-controlled experiments on 

granular material-filled PDs with different cavity heights and particle filling ratios are carried 

out to generate high-fidelity experimental data. The efficiency and accuracy of the formulated 

multi-fidelity DNN model are compared with those of a DNN model which is trained using 

only the experimental data, under a wide range of particle filling ratio (from 10% to 70%) and 

excitation frequency (from 100 to 2000 Hz). In particular, the modeling capability of the 
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formulated multi-fidelity model in high-frequency and micro-displacement vibrations is 

evaluated. 

3.2 Establishment of Deep TL-based Multi-fidelity Modeling 

3.2.1 Data-driven DNN 

 The data-driven DNN explored in this study aims to train a transfer learning paradigm by 

utilizing the hierarchy structure of DNN to settle the conflict between the scarceness of 

experimental data and the data-hungry nature of deep learning methods. In our study, the 

energy loss factor η will be defined as a performance indicator of PDs, i.e., the output variable 

of the DNN. Let 𝓧 =  [𝒳ଵ, 𝒳ଶ, … , 𝒳ே]:  Ω → ℝே be N input parameters of the DNN which 

represent damper cavity properties, particle properties, and excitation properties. Yet the 

expression of η about the input parameters is unknown, the nonlinear function of the energy 

loss factor η in terms of the input parameters can be expressed in the following general form 

𝜂(𝓧) + 𝒩[𝜂; 𝜆] = 0, 𝓧 ∈ Ω (3-1) 

where 𝜂(𝓧) is the latent solution for the energy loss factor; 𝒩[∙ ; 𝜆] is a nonlinear operator 

parameterized by 𝜆. In general, such a nonlinear ordinary/partial differential equation is built 

on the spatio-temporal domain; for the energy loss factor function, however, a high dimensional 

domain is considered to encapsulate the entire parameter space in which all parameters that 

influence the dynamic performance of PD are included. Suppose a series of observations in the 
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parameter space are obtained as 𝒟 = [𝓧; 𝜂], where the subscript h denotes the observed 

input and output pairs. In this setting, the goal of modeling becomes to discover the parameters 

𝜆 in Equation (3-1) that reflect the unknown latent state 𝜂(𝓧) via smoothing, filtering, or data-

driven solution. 

 Consider a DNN architecture with L hidden layers that is represented by a sequence of 

activation functions and linear transformations as follows: 

ℕ(∙ ; 𝜽) = (𝜎[] ∘ 𝑾[ାଵ]) ∘ ⋯ ∘ (𝜎[] ∘ 𝑾[ଵ]) (3-2) 

where 𝜎[]: ℝ → ℝ and 𝑾[]  denote the activation function output of the lth layer and the 

weight matrix connecting the lth and (l+1)th layers; the symbol ‘∘’ denotes the operator 

composition. For brevity, the bias of each layer has been absorbed into the weight matrix, and 

all the weight and bias parameters ൛𝑾[]ൟ
ୀଵ

ାଵ
 are concisely represented by 𝜽. In this study, the 

0th layer 𝜎[]  represents the input vector 𝓧  which includes various parameters (particle 

properties, cavity properties, and excitation properties) affecting the dynamic performance of 

PDs, while the (L+1)th layer is the DNN output 𝜂 which is the energy loss factor of PDs. With 

a set of labeled experimental data 𝒟 = [𝓧; 𝜂], the model parameters 𝜽 can be trained by 

minimizing the loss function (ℒௗ): 

 As aforementioned, the DNN-based modeling approach is data-hungry. When a data-

driven DNN model for PDs involves a lot of input parameters (particle, cavity, and excitation 

features), it is highly expensive and time-consuming to acquire complete experimental data by 

𝜽∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜽

ℒௗ(𝜽) (3-3) 



56 

 

exploring different particle, cavity, and excitation features associated with the whole parameter 

space. A DNN model formulated using insufficient data is usually incompetent to accurately 

describe the dynamic performance of PDs under various working conditions. The solution to 

this challenge is described in the next sub-section. 

3.2.2 Multi-fidelity modeling by deep TL 

 A variety of models in terms of governing or constitutive equations have been proposed in 

the past decade to characterize the physics mechanism of PDs. While being capable of 

capturing the basic physics law of PDs, all these governing/constitutive equations can only 

depict the intrinsic physics phenomenon in an approximate manner. For example, when a PD 

vibrates in a very high frequency and with micro-displacement, the friction effect between 

particles is the main mechanism of energy dissipation and this damping mechanism is hard to 

be portrayed credibly by the existing models. In this connection, we propose a deep TL-based 

multi-fidelity modeling approach which leverages the low-fidelity knowledge from the 

approximate governing/constitutive equations and high-fidelity experimental data of PDs. 

 TL aims to improve learning in a new task (target task) through the transfer and leverage 

of knowledge from a related task (source task) that has already been learned. It has been proven 

(Yosinski et al., 2014; Long et al., 2015; Chakraborty, 2021) that DNNs trained with sufficient 

data tend to learn feature representations at the low-level layers of a DNN with generality, 

which are common to similar (related) tasks, and learn feature representations at the high-level 
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layers with specificity, which depend heavily on the underlying task which the training data 

stem from. As such, one can transfer the knowledge across domains by freezing the weights 

and biases in the low-level layers of a pre-trained DNN using plentiful data from the source 

domain and fine-tuning the high-level layers using possibly scarce new data from the target 

domain. In the TL framework, given a dataset {𝑋, 𝑌}, 𝑋 = {𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥} ∈ 𝒳 consists of n 

samples and 𝑌 = {𝑦ଵ, 𝑦ଶ, ⋯ , 𝑦} ∈ 𝒴 represents the corresponding label of the samples. The 

supervised learning is to map the samples 𝑋 to their label 𝑌. The pairs 𝒳 and 𝒴 constitute the 

domain 𝒟 = {𝒳, 𝒴} of the task which is denoted as 𝒯. The TL in the context of DNN, i.e. deep 

TL, is pursued to accomplish the source task 𝒯௦ first, which aims to learn a DNN using labeled 

data from the source domain 𝒟௦ = {𝒳௦, 𝒴௦}. Since the labeled data in the source domain are 

generated from approximate governing/constitutive equations in the present study, they are 

abundant yet low-fidelity, and hence the resulting DNN (referred to as pre-trained DNN) is 

only an approximate model without promising a high accuracy. The deep TL is then to leverage 

this knowledge to facilitate the target task 𝒯  targeting a multi-fidelity DNN with the use of 

fewer new labeled data with high fidelity from the target domain 𝒟் = {𝒳் , 𝒴்}. In this study, 

the high-fidelity data in the target domain are directly obtained by experiments on actual PDs. 

The pre-trained DNN that was trained in the source domain 𝒟௦ with a large amount of labeled 

data from an approximate governing/constitutive equation of PDs extracts and retains some 

underlying physics features in the low-level layers of the DNN; these learned features are 

general and are not specific to 𝒯௦. Thus, in compliance with the deep TL philosophy, the multi-

fidelity DNN can be elicited by re-training the DNN using high-fidelity yet possibly scarce 
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experimental data in the target domain 𝒟், where the parameters (weights and biases) in the 

low-level layers of the network are frozen while those in the high-level layers (outermost layers) 

are fine-tuned with the experimental data. 

 The implementation flowchart of the proposed TL-based multi-fidelity modeling method 

for PDs in the context of DNN is shown in Figure 3-1, where the input features include various 

parameters that would influence the energy loss factor of PDs and the output is the predicted 

energy loss factor. Although the target task 𝒯  differs from the source task 𝒯௦ in multi-fidelity 

learning, they share the same input feature space. As a result, only inductive TL is needed. 

Since the model includes the damper cavity properties and particle properties as input variables, 

it is suitable for optimal parameter design of PDs. 

 

Figure 3-1 Flowchart of the TL-based multi-fidelity DNN modeling method for PDs. 
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3.2.3 Approximate governing/constitutive equation of PDs 

 Most of the current analytical models for PDs in terms of governing/constitutive equations 

are incapable of accurately describing the particle motion in damper cavity. The most popular 

modeling approach is approximating the motion of particles in the entire particle bed as an 

equivalent single impact ball inside the damper cavity. With this simplified model, Masri and 

Caffrey (2019) studied the PD’s motion pattern and optimum operation condition. This model 

has also facilitated a great deal of studies exploring the structural vibration attenuation 

effectiveness of PDs (Lu et al., 2017). Recently, a novel PD modeling approach adopting two-

phase or multi-phase flow theory has been proposed (Wang & Wu 2016; Lei et al., 2018a; Lei 

et al., 2018b) where particle motion inside the damper cavity is interpreted from the perspective 

of effective viscosity, and models developed under this philosophy have been adopted to 

evaluate the vibration characteristics of target structures mounted with grain (tungsten 

powder)-filled PDs. A comparison of the attributes of the single-ball impact model and the 

two-phase flow equivalent viscosity model is given in Table 3-1. 

Table 3-1 Attributes of single-ball impact model and two-phase flow equivalent viscosity 

model 

Single-ball impact model 
Two-phase flow equivalent viscosity 

model 
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 Contact force occurs during particle-

cavity interaction; 

 Intergranular interaction ignored and 

only particle-wall collision considered; 

 Applicative to small-quantity, large-size 

particles and low-level excitations when 

particle bed moves as an entity. 

 Continuous drag force generated and 

applied on target structure;  

 Intergranular interaction considered in 

both collision and friction effects; 

 Applicative to granular material 

particles and high-level excitations. 

 The research addressed in this study focuses on granular material-filled PDs. Since this 

kind of PDs involves constant interaction between particles, the single-ball impact model is 

apparently inapplicable. We are also interested in noise reduction using PDs, which inevitably 

involves high frequency and vibration amplitude in micro-displacement level. In such scenarios, 

the damping of PDs is mainly contributed by the friction effect inside the cavity, and the multi-

phase flow theory is more appropriate to interpret the damping mechanism. In view of this, a 

two-phase flow equivalent viscosity model proposed in (Wu et al., 2004; Wang et al., 2015; 

Wang & Wu 2016; Lei et al., 2018a; Lei et al., 2018b) will be used as the approximate 

governing/constitutive equation to generate numerical low-fidelity data for the pre-training of 

a DNN. 

 The two-phase flow equivalent viscosity model was inspired by the solid-gas flow theory 

that describes particle-particle and particle-gas interactions (Wu et al., 2004; Wang et al., 2015), 

which can predict the damping effect of granular material-filled non-obstructive PDs. In 
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general, the mixture of gas and granular particle inside the vibrating cavity can be regarded as 

low Reynolds solid-gas flow where there are highly concentrated particles, namely a dense 

multi-phase flow. Under this assumption, pseudo-shear stress and equivalent viscosity can be 

introduced to describe the momentum exchange between particles. In this formation, all 

components inside a cavity can be treated as a united entity, rather than treating every particle 

discretely, thus avoiding the computational obstacle of the latter approach where the 

computational complexity is exponentially increasing when there is a large number of particles, 

such as in the case of granular material-filled particles in PDs. 

 In the two-phase flow equivalent viscosity model, instead of addressing interparticle 

collision traversal, it exploits the kinetic theory of dense multi-phase flow (Fan & Zhu, 1998) 

to derive the equivalent viscosity 𝜇  induced by particle-particle collision. The equivalent 

viscosity is defined as (Fan & Zhu, 1998): 

𝜇 =
6

5
(1 + 𝑒)ඨ

𝛩

𝜋
𝛼

ଶ𝑔𝜌𝑑 (3-4) 

where 𝑒 denotes the coefficient of restitution which is set as 0.6 (Lei & Wu, 2017) 𝛼 is the 

volume fraction of filling particles; 𝜌  and 𝑑  are respectively the density and diameter of 

particles; 𝛩 represents the particle fluctuation rate, and in harmonic motions, it is defined as 

𝛩 =
|௫̇|మ


. The parameter 𝑔 represents the radial distribution function which is expressed as 

𝑔 =
1

1 − 𝛼
+

3𝛼

2(1 − 𝛼)ଶ
+

𝛼
ଶ

2(1 − 𝛼)ଷ
 (3-5) 

 Substituting the particle fluctuation rate expression into Equation (4) yields 
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𝜇 = 𝐾ଵ|�̇�| (3-6) 

in which |�̇�| denotes the absolute velocity of PD, and the parameter 𝐾ଵ is 

𝐾ଵ =
1

5
(1 + 𝑒)ඨ

6

𝜋
𝛼

ଶ𝑔𝜌𝑑 (3-7) 

 The equivalent shear viscosity 𝜇 generated due to the effect of interparticle friction can 

be expressed as (Lei & Wu, 2017): 

𝜇 =
𝑝 𝑠𝑖𝑛 𝜙

2ඥ𝐼ଶ

 (3-8) 

where 𝜙  is the inner friction angle of particle determined by its material; 𝐼ଶ  represents 

quadratic invariants of deviatoric stresses; 𝑝 is the solid phase pressure which is a sum of 

kinetic term and collision term and is written as 

𝑝 = 𝛼𝜌𝛩 + 2𝜌(1 + 𝑒)𝑔𝛼
ଶ𝛩 (3-9) 

 Similar to the equivalent collision viscosity 𝜇, the equivalent shear viscosity 𝜇 can be 

re-expressed as 

𝜇 = 𝐾ଶ|�̇�|ଶ (3-10) 

where, 

𝐾ଶ =
(𝛼𝜌 + 2𝜌(1 + 𝑒)𝑔𝛼

ଶ) 𝑠𝑖𝑛 𝜙

12ඥ𝐼ଶ

 (3-11) 

 With Equation (3-6) and Equation (3-10), the total equivalent viscosity of particle flow, 

𝜇, can be obtained with considering both collision and friction effects as 

𝜇 = 𝜇 + 𝜇 = 𝐾ଵ|�̇�| + 𝐾ଶ|�̇�|ଶ (3-12) 
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 It is apparent that the viscosity of gas is ignorable in regard to the particle laminar flow. 

Thus, the mixture solid-gas flow viscosity 𝜇 is approximately equal to the particle laminar 

flow 𝜇. Furthermore, the effective viscous damping force is formulated as 

𝐹ௗ = −
1

2
𝜌𝑆𝐶ௗ|�̇�|�̇� = −𝑐�̇� (3-13) 

where 𝑐 is the equivalent viscous damping coefficient; S represents the cross-section area of 

damper cavity; 𝜌 is the overall density of the mixture flow, which is expressed as 

𝜌 = ൫1 − 𝛼൯𝜌 + 𝛼𝜌 (3-14) 

 According to Sarpkaya (1986), the drag coefficient 𝐶ௗ in Equation (3-13) can be expressed 

as 

𝐶ௗ =
𝑓𝑑𝜋ଷ

|�̇�|
(
3

2
𝛽ିଵ ଶ⁄ +

3

2
𝛽ିଵ −

3

8
𝛽ିଷ ଶ⁄ ) (3-15) 

where 𝛽 = 𝜋𝑑ଶ𝑓𝜌 𝜇⁄ ; d represents the diameter of the cavity; and f is the fundamental 

frequency of the target structure. Thus, the equivalent viscous damping coefficient 𝑐 can be 

derived as 

𝑐 = 𝑐ଵ|�̇�|ଵ ଶ⁄ + 𝑐ଶ|�̇�| − 𝑐ଷ|�̇�|ଷ ଶ⁄ + 𝑐ଵଵ|�̇�| + 𝑐ଶଵ|�̇�|ଶ − 𝑐ଷଵ|�̇�|ଷ (3-16) 

where, 

𝑐ଵ = 4𝑐̅𝛼ଵ ଶ⁄ 𝑓ଵ ଶ⁄  𝑐ଶ = 4𝑐̅𝛼 𝑐ଷ = 𝑐̅𝛼ଷ ଶ⁄ 𝑓ିଵ ଶ⁄  (3-17) 

𝑐ଵଵ = 4𝑐̅𝛼ଵ
ଵ ଶ⁄ 𝑓ଵ ଶ⁄  𝑐ଶଵ = 4𝑐̅𝛼ଵ 𝑐ଷଵ = 𝑐̅𝛼ଵ

ଷ ଶ⁄ 𝑓ିଵ ଶ⁄  (3-18) 

𝑐̅ = (3 16⁄ )𝜋ଷ𝑑ଶℎ𝜌 𝐾ଷ = 𝜋𝑑ଶ𝜌 (3-19) 

𝛼 = 𝐾ଵ/𝐾ଷ 𝛼ଵ = 𝐾ଶ/𝐾ଷ (3-20) 
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 In this study, the damping performance of granular material-filled PDs is characterized by 

the energy loss factor 𝜂, which is expressed as 

𝜂 =
𝐸ௗ௦௦௧ௗ

𝐸௧
 (3-21) 

where 𝐸ௗ௦௦௧ௗ is the energy dissipated by the drag force generated from particle damping, 

𝐸௧ indicates the total maximum kinetic energy for a steady-state harmonic vibration. The 

condition for the simulation case to obtain the low-fidelity energy loss factor 𝜂 (subscript l 

denotes low-fidelity) is kept the same as in the experiment, i.e., the PD is connected rigidly to 

a dynamic exciter without any relative displacement, thus the system force of PD can be 

calculated by 

𝐹 = 𝑚�̈� + 𝑐�̇� (3-22) 

Here, the dynamic exciter is vibrating in given frequency 𝑓 and acceleration amplitude 𝑎. 

The PD’s force would contain multi-frequency components due to its nonlinearity. 

 The energy loss factor can be determined by the power input method (Bustamante et al. 

2016), where the expression of average power flow is 

𝑃 =
1

2
𝐹𝑉

∗  (3-23) 

 This quantity is calculated by the inner product of system force and system velocity in the 

frequency domain. For a single-harmonic signal, the root-mean-square (RMS) value is 1/√2 

of its peak value. In the acceleration-controlled harmonic tests, since the velocity has value 
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only at frequency 𝑓 in the frequency domain, the average power flow can be concerned only 

with the frequency 𝑓, and the average power flow can alternatively be written as 

𝑃 = 𝐹௦𝑉௦
∗  (3-24) 

where 𝐹௦ is the RMS of force (F) which is a complex number, and 𝑉௦
∗  is the RMS of V*, 

which is the complex conjugate of the velocity. The real part of 𝑃 is the value of active power, 

or “dissipated power”, which is dissipated during vibration; the imaginary part of 𝑃 is the value 

of reactive power or “trapped power”, which is stored in the vibrating system by means of 

potential energy. 

 Since power is the time derivative of energy, Equation (3-21) can be rewritten as 

𝜂 =
𝑅𝑒𝑎𝑙(𝑃)/𝜔 

𝐸௧
 (3-25) 

where 𝑅𝑒𝑎𝑙(𝑃) is the real part of the average power flow 𝑃, and 𝜔 is the angular frequency. 

3.3 Power Measurements of PDs 

 This section describes dynamic experiments on a number of granular material-filled PDs. 

The energy loss factor of the PDs is obtained based on the experimental results under various 

damper configurations and excitation conditions. 
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3.3.1 Experimental preparation 

 For the PDs used in this study, tungsten powder with a diameter of 0.2 mm was chosen as 

the grain to be filled in the damper cavity. The apparent density, instead of material density, is 

used to calculate the filling weight of the powder in the damper cavity according to the volume 

fraction. The apparent density of tungsten powder is 8.9 g/cm3, which is obtained by measuring 

the mass of the sample with the pile by a precise digital scale (Figure 3-2(a)). 

 A cylindrically shaped cavity is selected as the damper body to reduce the side-effect from 

lateral contact between the particle bed and cavity wall since the vibration generated in the test 

is limited in vertical direction. To realize a customized PD cavity, the cavity is designed to be 

an assembly of several modules which are aluminum pipes with identical diameter and height. 

This assemblage design facilitates the fabrication of PDs with different cavity heights. In the 

experiments, three PDs were tested with the cavity height equal to 30 mm, 55 mm, and 80 mm 

(Figure 3-2(b)), respectively. The number of assembled modules in the three configurations is 

one (mode-1), two (mode-2), and three (mode-3). 

 

Figure 3-2 (a) Weighing of filling particles; (b) Schematic diagram of three cavity modes. 
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 Before the experiments, all the damper cavity pieces under three cavity assembly modes 

were weighed. The weight of the damper cavity was later used to calculate the inertial force 

under acceleration excitation during the acceleration-controlled experiments. The weight and 

cavity dimension are listed in Table 3-2. 

Table 3-2 Weight and cavity dimension in three modes 

 Mode-1 Mode-2 Mode-3 

Weight (g) 275.4 321.3 367.2 

Cavity height (cm) 3.0 5.0 8.0 

Cavity volume (cm3) 48.11 88.20 128.29 

 The volume of particles to be filled in each cavity mode is determined according to the 

given filling volume fraction, and then the weight of required particles for each filling volume 

fraction is obtained for particle apparent density. Except for the empty cavity case that was 

tested for calibration, four particle volume fractions, namely 10%, 30%, 50%, and 70%, were 

considered in the test for each cavity mode. The weight of particles for different filling volume 

fractions is given in Table 3-3. The weight of the accelerometer placed on top of the cavity for 

the measurement of acceleration in the acceleration-controlled experiments is 3.0 gr. 

Table 3-3 Weight of tungsten powder for different filling volume fractions (gr) 

Volume fraction Mode-1 Mode-2 Mode-3 
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10% 42.8 78.5 114.1 

30% 128.5 235.6 342.6 

50% 214.1 392.5 570.9 

70% 299.7 549.4 799.2 

3.3.2 Experimental apparatus and setup 

 The B&K LDS V-650 vibration shaker was used in the dynamic experiments, which can 

apply sinusoidal force up to 2.2 kN with the operation frequency ranging between 5 Hz and 4 

kHz. The shaker is equipped with a built-in pneumatic support system that can accommodate 

payloads of up to 50 kg with full relative displacement. The damper was mounted on the shaker 

with an impedance head KD3001B, which acquires the force signal. The force limitation of the 

impedance head is 2.5 kN in association with the acceleration limitation of 100 g and working 

frequency ranging from 0.5 Hz to 6 kHz. The damper cavity was connected to the impedance 

head with an M5 screw. The accelerometer Dytran 3273 with its measurement range up to 100 

g is mounted on the damper cavity top to monitor the vibration of the damper. The experimental 

apparatus is shown in Figure 3-3. 
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Figure 3-3 Experimental apparatus: (a) Assembly of impedance head and shaker; (b) Setup 

of cylindrical PD; (c) Particles filling in damper cavity; and (d) Damper assembly 

components. 

 Figure 3-4 illustrates the experimental setup. In the experiment, the PD is bolted onto the 

impedance head through an M5 screw. As the KD3001B impedance head has M5 thread at 

both ends, a stainless-steel connector is used to bolt the impedance head onto the shaker head 

as well. The electrical signal output from the signal generator is amplified by a power amplifier 

and then exerted to the vibration shaker. The shaker head motivated by an electromagnet coil 
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thereby vibrates in accordance with the input signal. The amplitude of the vibration signal can 

be adjusted by switching the electrical power in the power amplifier. The acceleration signal 

from the accelerometer and force signal from the impedance head were collected by the 

DEWEsoft DAQ system. Sinusoidal signals were selected as input exerted to the shaker, with 

the excitation frequency varying from 100 to 2000 Hz with an interval of 100 Hz. The 

excitation level is controlled by acceleration amplitude to facilitate analysis and comparison. 

The peak acceleration level is set as 5 g to 25 g with an interval of 5 g. It is worth noting that 

since the peak acceleration value is manually controlled with the shaker’s gain, it is impossible 

to control the peak acceleration value to a precise value. In view of this, excitation levels 1 to 

5 will be used later to denote the five levels of acceleration amplitude around 5 g, 10 g, 15 g, 

20 g, and 25 g, respectively. In each case, five seconds of the force and acceleration signals 

were recorded, but only the middle three seconds of the signals after removing the transient 

portions are used in the subsequent analysis. 

 

Figure 3-4 Schematic diagram of experimental setup. 
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Figure 3-5 (a) Acceleration in time- and frequency-domains at f = 100 Hz; (b) Force in time- 

and frequency-domains at f = 100 Hz; (c) Acceleration in time- and frequency-domains at f = 

1000 Hz; and (d) Force in time- and frequency-domains at f = 1000 Hz. 

 

Figure 3-6 Diagram of force versus acceleration: (a) f = 100 Hz; (b) f = 1000 Hz. 

 Figure 3-5 illustrates the acceleration and force signals in both time and frequency domains 

when the acceleration amplitude is controlled around 10 g and the excitation frequency is 100 

Hz and 1000 Hz, respectively, and Figure 3-6 shows the diagrams of force versus acceleration 
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at the same excitation level and the same excitation frequencies. It is seen that while a 

sinusoidal signal was generated by the signal generator as input to the shaker, the actual force 

signals contain multi-frequency components, especially in the case of high excitation frequency, 

due to the strong nonlinearity of the PD. However, the acceleration signals keep almost single-

harmonic in the acceleration-controlled experiments. In the experiments, the PD was bolted 

directly to the shaker head without it mounting on any target structure. This test arrangement 

helps to understand the effects of PD’s design parameters straightforwardly, but the 

conventional damping indicator, e.g., damping ratio, is inapplicable. In this regard, the energy 

loss factor 𝜂, which is also easy to be derived from the two-phase flow model, is used to 

represent the damper performance of the tested PDs from the measured acceleration and force 

signals by using Equations. (3-23) to (3-25). 

3.4 Proof of Concept 

3.4.1 Pre-training of DNN using two-phase flow model 

 The first step in implementing the proposed TL-based multi-fidelity modeling method is 

to pre-train a DNN using low-fidelity data generated from an approximate 

governing/constitutive equation. In this study, the two-phase flow equivalent viscosity model 

is used to generate such training data. To comply with the experimental data, the input vector 

of the DNN is set as 𝒳 = {𝛼, 𝜌, 𝛾, 𝑎, 𝑓} , where 𝛼  is the particle filling ratio, 𝜌  is the 
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particle apparent density, 𝛾 is the cavity height, 𝑎 is the excitation (acceleration) amplitude, 

and 𝑓 is the excitation frequency (Hz). The output parameter of the DNN is the energy loss 

factor 𝜂 of PD.  

 Before training the DNN, its architecture (the number of hidden layers, ℱ, the size of each 

hidden layer, 𝒞, and the activation functions) and optimization algorithm for DNN training 

should be selected. A DNN with deep layers and large neuron numbers would gain vigorous 

regression ability but tends to be over-fitting, especially when the size of the training dataset is 

small. To be fair in comparison with the DNN model that is trained using only the experimental 

data, we determine these hyper-parameters using the experimental data. In the experiments, 𝛼 

was taken as 10%, 30%, 50% and 70%, respectively (4 settings in total); 𝜌 was constant (8.9 

g/cm3) since only tungsten powder was used as the filling particles (1 setting in total); 𝛾 was 

equal to 30 mm, 55 mm and 80 mm, respectively (3 settings in total); 𝑎 was ranging from 5 

g to 25 g with an interval of 5 g (5 settings in total); and 𝑓 was ranging from to 100 to 2000 Hz 

with an interval of 100 Hz (20 settings in total). As a result, the size of the experimental dataset 

is 1200. We apply the K-fold cross-validation (Jung, 2017) to determine the hyper-parameters. 

It first divides the training dataset into K parts with equal size. One part is used as the validation 

dataset, and the remaining 𝐾 − 1  parts are used for training. By taking each part to be the 

validation dataset in turn, an average prediction error could be obtained to evaluate the model. 

In this study, the K-fold cross-validation is applied to the experimental dataset with K = 5. With 

the total size of experimental dataset being 1200, 80% of the experiment dataset with a size of 
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960 is used for training and validation while 20% of the data with a size of 240 is used for 

testing. The candidate number of hidden layers ℱ is {3,4,5}, and the size of hidden layer 𝒞 is 

kept the same for all hidden layers and is selected from {5,10,15}. By temporarily setting the 

activation functions for all layers as “ReLU” function, the average predicted mean squared 

error (MSE) after 50 training epochs for each selection is given in Table 3-4. The hyper-

parameters {ℱ = 3, 𝒞 = 10} give rise to the minimum MSE; therefore, the DNN architecture 

is set as 3 hidden layers with 10 neurons in each hidden layer. 

Table 3-4 Average MSE under different DNN architectures after 50 training epochs 

Number of hidden layers 𝒞 = 5 𝒞 = 10 𝒞 = 15 

ℱ = 3 3.7×10-5 2.4×10-5 2.9×10-5 

ℱ = 4 4.5×10-5 4.3×10-5 3.4×10-5 

ℱ = 5 4.3×10-5 3.7×10-5 3.6×10-5 

 After determining the number of hidden layers (ℱ) and the size of each hidden layer (𝒞), 

we proceed to the selection of activation functions and optimization algorithm. We try the 

commonly used activation functions “Sigmoid”, “tanh”, and “ReLU” in different combinations 

(the activation function for the output layer is fixed as “ReLU” since the energy loss factor as 

output is always non-negative). In this study, the mini-batch technique (Li et al., 2014) will be 

used in the training of DNN. It divides the entire dataset into small batches, ensuring the 

stability of gradient descent and enhancing the calculation efficiency. One of the most 
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commonly used optimization algorithms is the stochastic gradient descent (SGD) (Bottou, 2012; 

Ketkar, 2017), which achieves enhanced training efficiency compared to the batch gradient 

descent (BGD). In combination with the mini-batch technique, the SGD can ensure high 

accuracy in gradient computation. Another well-known optimization algorithm is the adaptive 

moment estimation (Adam) (Kingma & Ba, 2014). This algorithm combines the ability to deal 

with sparse gradients and non-stationary objectives and has been proven to work well in 

practice. We compare SGD and Adam algorithms along with different combinations of the three 

activation functions. The comparison is made in terms of two indices: MSE loss and model 

accuracy. The latter is defined as the ratio between the amount of successful prediction and the 

total size of the testing dataset. Here, successful prediction implies that the predicted energy 

loss factor error is less than 10% of the true value. The performance of each setting after 50 

training epochs is shown in Table 3-5. It is concluded that the activation functions of “tanh-

tanh-ReLU” for the three hidden layers together with Adam algorithm achieves the best 

performance. This configuration in conjunction with the specified hyper-parameters 

{ℱ = 3, 𝒞 = 10} constitutes the architecture of the DNN (Figure 3-7). 

 Again, to be fair in comparison with the DNN model that is trained using only the 

experimental data, the numerical low-fidelity data used to train the physics-guided DNN will 

be generated from the two-phase flow equivalent viscosity model with the values of all input 

parameters not exceeding their corresponding ranges explored in the experiments, but sampled 
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with a higher resolution because these training data can be cheaply generated by numerical 

computation. 

 Specifically, in generating the numerical training data, 𝛼 is taken from 10% to 70% at 

intervals of 5% (13 settings in total); 𝜌 is still taken as a single value equal to 8.9 g/cm3 (1 

setting in total); 𝛾 is taken as 30 mm, 55 mm, and 80 mm same as in the experiments (3 settings 

in total); 𝑎 is taken from 5 g to 25 g at intervals of 1 g (21 settings in total); and 𝑓 is taken 

from 100 to 2000 Hz at intervals of 50 Hz (39 settings in total). As a result, the size of the 

numerical dataset is 31941, of which 3000 is used for training and the rest is used for validation. 

For each set of given input parameters, the energy loss factor is calculated from the two-phase 

flow equivalent viscosity model. Figure 3-8 shows the calculated values of energy loss factor 

under different acceleration levels and excitation frequencies. To eliminate the scale difference 

among different parameter features, the input dataset is normalized by the Z-score method 

(Gopal et al., 2015) before being presented to train the physics-guided DNN. The dataset after 

normalization will have a mean value of 0 and a standard deviation of 1. After completing the 

training of the DNN, all the weights and biases in this pre-trained DNN model (Figure 3-7) are 

specified. 

Table 3-5 Comparison of different activation functions and optimization algorithms 

Hidden layer 1 

(10 neurons) 

Hidden layer 2 

(10 neurons) 

Hidden layer 3 

(10 neurons) 

Optimization 

algorithm 

MSE 

(10-4) 

Model 

accuracy (%) 
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Sigmoid Sigmoid ReLU Adam 57 87.2 

tanh tanh ReLU Adam 24 94.4 

ReLU ReLU ReLU Adam 27 93.9 

tanh tanh tanh Adam 30 92.6 

Sigmoid Sigmoid ReLU SGD 50 90.5 

tanh tanh ReLU SGD 59 86.4 

ReLU ReLU ReLU SGD 81 82.8 

tanh tanh tanh SGD 50 89.6 

 

Figure 3-7 Architecture of DNN model. 
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Figure 3-8 Calculated values of the energy loss factor η of PD using the two-phase flow 

equivalent viscosity model: (a) η versus peak acceleration under various excitation 

frequencies; (b) η versus excitation frequency under various peak accelerations. 

3.4.2 Formulation of multi-fidelity model using deep TL 

 The pre-trained DNN, which was trained using ample numerical data (source dataset 𝒟௦) 

from the two-phase flow equivalent viscosity model, is now refined using actual experimental 

data (target dataset 𝒟்) to formulate a multi-fidelity DNN model with the same architecture as 

the pre-trained DNN. In compliance with the deep TL philosophy, all low-level layers of the 

DNN are frozen with fixed weights and biases same as in the pre-trained DNN, while the last 

hidden layer and the output layer are released with their weights and biases to be re-trained 

using the experimental data. Recall that the size of the experimental dataset is 1200 (of which 

80% is used for training and validation and 20% for testing). For verification of the formulated 

multi-fidelity DNN model, a new single-fidelity DNN model with the same architecture is also 

trained using only the experimental dataset. The former capitalizes on TL, while the latter does 
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not. Figure 3-9 provides a comparison of training process between the two DNN models in 

terms of MSE and model accuracy. It is observed that the initial MSE loss of the DNN with TL 

(multi-fidelity DNN model) is already lower than that of the DNN without (marked as W/O) 

TL (single-fidelity DNN model) at the beginning of the network training. Moreover, the DNN 

with TL converges much faster than the DNN without TL. For any number of training epochs, 

the model accuracy achieved by the DNN with TL is much better than that achieved by the 

DNN without TL. What is more, the DNN with TL can reach stable model accuracy after a 

small number of training epochs, and the model accuracy finally achieved by the DNN with 

TL after convergence is much higher than that achieved by the DNN without TL. As shown in 

Figure 3-9, the model accuracy of the DNN with TL after 50 training epochs reaches 94.4%, 

while the model accuracy of the DNN without TL is only about 75%. 

 

Figure 3-9 (a) Mean squared error (MSE) of DNN models with TL and W/O TL; (b) Model 

accuracy with TL and W/O TL. 

 After formulating the two models, all 1200 input features explored in the experiments are 

fed into the models to obtain the predicted values of the energy loss factor. Figure 3-10 shows 
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a comparison between the experimentally obtained energy loss factors and the prediction 

results obtained by the DNN model with TL and the DNN model without TL, respectively. The 

R2 score, which indicates the total variance explained by a model, reaches 0.9885 for the DNN 

model with TL and 0.9675 for the DNN model without TL. A comparison of average MSE on 

the predicted energy loss factor generated by the two models within different frequency ranges 

is given in Figure 3-11. It is seen that in all frequency ranges of interest, the average MSE 

generated by the DNN model with TL is largely less than that generated by the DNN model 

without TL. In particular, the former achieves only about one tenth of the MSE generated by 

the latter in the high frequency region of 1600 to 2000 Hz (the average MSE decrement ratio 

for the entire frequency range from 100 to 2000 Hz is 19.4%). In summary, the DNN model 

with TL is much superior to the DNN model without TL. 
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Figure 3-10 Prediction of energy loss factor by (a) TL approach, and (b) W/O TL approach; 

R2 score of the prediction results from (c) TL approach, and (d) W/O TL approach. 

 

Figure 3-11 Comparison of average mean squared error (MSE) generated by the two models 

in different frequency ranges. 
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3.4.3 Effect of damper parameters on damping performance 

 With the formulated multi-fidelity DNN model of high accuracy, we investigate the effect 

of damper parameters on the damping performance in this section, where the prediction results 

are also compared with the experimentally obtained values. Figure 3-12 illustrates the energy 

loss factor versus excitation level (acceleration amplitude) for mode-1 cavity under different 

excitation frequencies and particle filling ratios. From the results under different filling ratios, 

it is seen that the PD with more filling particles in a cavity with fixed volume leads to a larger 

energy loss factor. This is quite reasonable since, with the increase of filling particles, the 

friction effect of the particle bed would increase. Furthermore, it is discovered that the energy 

loss factor decreases with the excitation frequency. This can be explained by the fact that in 

high-frequency vibration, the velocity and displacement amplitudes are lower than those in 

low-frequency vibration for the same acceleration level in acceleration-controlled tests. Hence, 

even though the acceleration level is identical, the motion of the cavity that induces the friction 

effect is lower in a higher frequency scenario. 
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Figure 3-12 Energy loss factor versus excitation level (acceleration amplitude) for mode-1 

cavity under filling ratio of: (a) 10%; (b) 30%; (c) 50%; (d) 70%. Here ER stands for 

experimental results, and PR stands for predicted results. 

 Excitation frequency is a factor significantly affecting the damping performance of PDs. 

The energy loss factor obtained under a broad frequency band from 100 to 2000 Hz is compared 

under the same acceleration level. Since it is difficult to maintain the acceleration amplitude to 

be exactly the same under different excitation frequencies in the experiments (the acceleration 

level was controlled by manually adjusting the shaker’s gain to the nearest level), we adopt the 

term “excitation level” instead of providing the exact acceleration amplitudes. Figure 3-13 
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shows the energy loss factor versus excitation frequency for mode-1 cavity under different 

excitation levels and particle filling ratios. With the filling ratio from 10% to 70%, different 

excitation levels lead to distinct values of the energy loss factor. The relationship between the 

energy loss factor and the excitation frequency is nonlinear. It can be found that the energy 

dissipated by high-frequency vibration is less than that by low-frequency vibration at the same 

excitation level (acceleration amplitude). At higher frequencies, the difference of the energy 

loss factor induced by different excitation levels is reduced. 

 A comparison of the damping performance of the three cavity modes, i.e., the cavity mode-

1 with a height of 30 mm, cavity mode-2 with a height of 55 mm, and cavity mode-3 with a 

height of 80 mm, is explored. We have obtained the energy loss factor versus excitation level 

for the three cavity modes under excitation frequency from 100 to 2000 Hz, Figure 3-14 and 

Figure 3-15 show the results when the excitation frequency is 500 and 1500 Hz, respectively. 

Overall, the energy loss factor decreases with the cavity height. However, since the volume of 

cavity is larger for the taller cavity, more particles are filled in the PD under the same volume 

fraction so that the particle bed has a larger mass, and in this sense, the net energy dissipated 

in the taller cavity is larger. The reason why damper with a higher cavity height produces lesser 

energy loss factor can be explained by the observation that the particle bed with large mass is 

not easy to be excited under the same excitation level, thus resulting in a reduced friction effect. 
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Figure 3-13 Energy loss factor versus excitation frequency for mode-1 cavity under filling 

ratio of: (a) 10%; (b) 30%; (c) 50%; (d) 70%. Here ER stands for experimental results, PR 

stands for predicted results, and EL is the abbreviation of excitation level. 
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Figure 3-14 Energy loss factor versus excitation level for three cavity modes under excitation 

frequency of 500 Hz and filling ratio of: (a) 10%; (b) 30%; (c) 50%; (d) 70%. Here ER stands 

for experimental results, PR stands for predicted results, and CM is the abbreviation of cavity 

mode. 
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Figure 3-15 Energy loss factor versus excitation level for three cavity modes under excitation 

frequency of 1500 Hz and filling ratio of: (a) 10%; (b) 30%; (c) 50%; (d) 70%. Here ER 

stands for experimental results, PR stands for predicted results, and CM is the abbreviation of 

cavity mode. 

3.5 Summary 

 In this section, a novel transfer learning (TL)-based multi-fidelity modeling method in the 

framework of deep neural network (DNN) was proposed for characterizing the dynamic 

performance of a set of granular material-filled particle dampers (PDs) with strong nonlinearity. 

The proposed method leverages the knowledge from an approximate governing/constitutive 
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equation characterizing the PDs and that from experiments on the PDs. On account of the data-

hungry nature of DNNs, the approximate governing/constitutive equation generates low-

fidelity numerical data which supplement high-fidelity experimental data in compliance with 

the deep TL philosophy. A physics-guided DNN is first trained by using the low-fidelity yet 

plentiful data generated from the approximate governing/ constitutive equation, which inherits 

common underlying physics features in its low-level layers. Then the DNN is refined using the 

high-fidelity yet possibly scarce experimental data by freezing the low-level layers and fine 

tuning the hyper-parameters in the high-level layers (outermost layers), resulting in a multi-

fidelity DNN model. 

 The proposed multi-fidelity modeling method was applied to develop a model for a set of 

granular material-filled PDs with the use of a two-phase flow equivalent viscosity model and 

experimental data. The model establishes a nonlinear mapping between the characteristic 

features (including particle, cavity, and excitation properties) and the damper performance in 

terms of energy loss factor. The performance and capability of the formulated multi-fidelity 

DNN model were verified by comparison with the experimental data and with a single-fidelity 

DNN model that was trained using only the experimental data. The investigation comes to the 

following conclusions:  

1. The multi-fidelity model can accurately characterize the damping performance of the 

PDs across a broad frequency band from 100 to 2000 Hz and for a range of vibration 

amplitudes. The multi-fidelity model predicts the PD performance with 94.4% accuracy 
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and 2.3×10-5 MSE, while the single-fidelity DNN model trained using the same 

experimental data can only achieve 75.0% accuracy and 1.3×10-4 MSE. In particular, 

in the high frequency range of 1600 to 2000 Hz (it corresponds to micro-displacements 

in the acceleration-controlled case), the MSE arising from the multi-fidelity model is 

only one tenth of that generated by the single-fidelity model. The deep TL strategy 

benefits a lot to the enhancement of performance. 

2. The two-phase flow equivalent viscosity model is appropriate to generate low-fidelity 

data for multi-fidelity modeling of the granular material-filled particle dampers (PDs) 

under various particle, cavity, and excitation properties. Incorporating the low-fidelity 

data generated by this approximate model can significantly improve the accuracy of 

modeling and prediction. 

3. The formulated multi-fidelity model can accommodate continuously varying particle, 

cavity, and excitation features in the input parameter space; in particular, it enables both 

damper properties (particle and cavity features) and excitation properties to be cast into 

the input vector. As a result, the developed model is amenable to the optimal design of 

PD’s parameters.  

 In this study, the behavior of PDs subjected to single-frequency harmonic excitations under 

a broad frequency band was investigated. Whilst in other situations, especially in practical 

problems, such ideal excitation mode seldom appears. Dynamic loads encountered in actual 

applications often contain multiple frequency components. The principle of linear combination 

on the response spectra of single-frequency modes is not applicable to PDs because of their 
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highly nonlinear nature. However, to progressively evaluate and interpret the intricate highly 

nonlinear effects, the findings documented in this paper can serve as an intermediate step 

towards addressing the PD design problem under arbitrary excitation conditions. The particle 

damping characteristics under harmonic excitations can be considered as low-fidelity 

knowledge to other complex problems, with which TL or other multi-fidelity approaches can 

be executed to elicit high-fidelity models for the complex situations without needing much 

extra experiment data, e.g., adding a compensating DNN to explore the linear/nonlinear 

relationship between the multi-fidelity results. 
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CHAPTER 4.  

Modeling Hysteresis of a PD: ff-TLPINN for 

High-frequency Feature Recognition 

 

4.1 Introduction 

 The previous chapter has preliminarily explored the feasibility of adopting the NN to 

model the PD with limited experimental data. However, in the view of PD’s response, the 

energy loss is only an indirect factor of a PD. Following the previous work, Veeramuthuvel et 

al. (2016) introduced a framework for modeling PDs using NNs. In their research, they attached 

a particle damper capsule to a printed circuit board (PCB). They developed a backpropagation 

NN and a radial basis function NN based on the experimental database, and the established NN 

models were able to accurately predict the acceleration response of the PCB under simple 

harmonic excitation. Similarly, Wang and Wu (2015) also used back-propagation NN and 

incorporated genetic algorithms to determine the optimal damper design parameters for 

attenuating the vibration of a cantilever beam. 

 The challenge of adopting NNs to model PDs lies in the conflict that arises when there is 

a shortage of high-fidelity experimental data, making it difficult to provide the necessary 

resources to train the data hungry NNs. To address this issue, deep transfer learning (TL) was 
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introduced in the previous chapter, which aimed to establish a multi-fidelity modeling approach. 

The TL utilizes a trained model’s knowledge to nurture the learning of a new dataset (Wang et 

al., 2023). Despite the previously mentioned limitations of NNs, there is growing evidence of 

another problematic behavior exhibited by deep fully connected networks, which is known as 

spectral bias (Rahaman et al., 2018; Basri et al., 2019; Cao et al., 2019; Xu et al., 2019). The 

NNs are hindered in recognizing solution that contains high-frequency components, which has 

profoundly restricted the performance of NNs. Since PD modeling involves a broad frequency 

band. Thus, NNs require a collaborative effort to address this limitation for PD modeling. 

Recent studies (Li et al., 2020; Liu et al., 2020; Moseley et al., 2021) have attempted to alleviate 

spectra bias by scaling input features to approximate high-frequency components. Wang et al. 

(2021) introduced an alternative approach by analyzing the fundamental weakness of NNs 

using the theory of neural tangent kernel (NTK) (Jacot et al., 2018). The observation indicates 

that NNs have a bias toward learning the dominant frequencies of the most significant 

eigenvectors of the NTK. As a result, researchers have proposed the use of Fourier features 

embedding to customize the NTK of the fully connected networks (Tancik et al., 2020; Wang 

et al., 2021). The Fourier NN successfully elevated the performance of NNs. 

 Based on the findings of these recent studies, an attempt is made in this work to model the 

hysteretic response force of a PD under a shaker’s excitation in a wide frequency bandwidth 

(100-2000 Hz). Two forms of excitation, i.e., steady-state simple harmonic excitation and 

sweep-sinusoidal excitation, are applied to a PD that filled with granular material (tungsten 
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powder). The response force is investigated to reveal the hysteretic behavior of PD. To model 

PD, the Fourier NN is examined and discussed its potential to improve training accuracy. 

Additionally, the effectiveness of wavelet basis features embedding was evaluated in this study. 

These approaches formulate the Fourier/Wavelet neural network (ff/wfNN) method. Afterwards, 

this study presents an investigation on the ffNN coping with the former proposed deep TL. 

4.2 Establishment of ff-TLPINN 

4.2.1 Principles of NTK 

 Spectral bias is a ubiquitous pathology observed in neural network training. The gradient 

flow of NN becomes increasingly stiff when the objective function exhibits a high-frequency 

character. Such a bias is also associated with a broad input feature domain. As the input feature 

domain expands, the normalization of the input variables effectively turns low-frequency 

features into high-frequency features. This bias mentioned has an impact on the output of NNs 

right from their initialization stage. The derivation given in (Wong et al., 2021) proved when 

the parameters of a fully connected network 𝜽 are i.i.d. sampled from Gaussian distribution 

𝒩(0,1), the output of the initialized network is surely a flat function. This implies that an 

initialized NN’s output function already exhibits characteristics of low frequency. 

 A novel insight is built on this limitation of NNs through the perspective by analyzing their 

NTK (Wang et al., 2021). According to Jacot et al. (2018), the continuous gradient descent flow 
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is demonstrated with an infinitesimal learning rate 𝜂 (gradient flow). Then, the gradient flow 

is defined by the neural tangent kernel operator 𝑲 as follows:  

𝑲 = 𝑲൫𝑥, 𝑥൯ = 〈
𝜕𝑓(𝑥, 𝜽)

𝜕𝜽
,
𝜕𝑓(𝑥 , 𝜽)

𝜕𝜽
〉 (4-1) 

 For illustrating the effect of the neural tangent kernel operator 𝑲, a one-hidden-layer NN 

(Figure 4-1) with 𝑚 hidden neurons are considered, biases are included in the input vector 𝑎 

and output vector 𝑏. The single output of the NN is 𝑦 = 𝑓(𝒙, 𝜽) parameterized by 𝜽. 

 

Figure 4-1 One-hidden-layer NN with 𝑚 hidden neurons. 

 From this structure, the output of the network can be expressed as: 

𝑦 =  𝑏𝛿(𝑎
்𝑥)



ୀଵ

 (4-2) 

where 𝛿(∙) is the activation function. Training the network is to adjust the output to meet the 

labeled data 𝒚ෝ ∈ ℝ. Normally, the training is controlled by the L2 norm loss function, which 
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can be flexibly written in (auxiliary coefficient 
ଵ

ଶ
  is implemented to comfort the following 

derivation): 

ℒ(𝜽) =
1

2
(𝑓(𝑥, 𝜽) − 𝑦ො)ଶ



ୀଵ

 
(4-3) 

Consider the gradient descend procedure of the network parameters, which in noted as: 

𝜽௧ାଵ = 𝜽௧ − 𝜂௧∇𝜽ℒ(𝜽௧) (4-4) 

⟹ 𝜽௧ାଵ = 𝜽௧ − 𝜂௧(𝑓(𝒙, 𝜽) − 𝒚ෝ)∇𝜽𝑓(𝒙, 𝜽௧) (4-5) 

During training of the network, the input 𝒙 remains stable, and only the parameter space 𝜽௧ is 

updated every iteration. If a gradient flow of the 𝑓(𝒙, 𝜽) with an infinitely small learning rate 

𝜂௧ is defined, it is in fact a flow of the 𝜽௧. The rate of the 𝜽௧ is given by: 

𝑑𝜽

𝑑𝑡
=

𝜽௧ାଵ − 𝜽௧

𝜂௧
= −(𝑓(𝒙, 𝜽) − 𝒚ෝ)𝛻𝜽𝑓(𝒙, 𝜽௧) 

(4-6) 

 Also, the first order Taylor expansion of 𝑓(𝒙, 𝜽) around the initial parameter value 𝜽 is 

considered: 

𝑓(𝒙, 𝜽) ≈ 𝑓(𝒙, 𝜽) + 𝛻𝜽𝑓(𝒙, 𝜽) ∙ (𝜽 − 𝜽) 
(4-7) 

Therefore, the dynamic of this network output is: 

𝑑𝑓(𝒙, 𝜽)

𝑑𝑡
≈ 𝛻𝜽𝑓(𝒙, 𝜽) ∙

𝑑𝜽

𝑑𝑡
 

(4-8) 

⟹
𝑑𝑓(𝒙, 𝜽)

𝑑𝑡
≈ −𝛻𝜽𝑓(𝒙, 𝜽) ∙ 𝛻𝜽𝑓(𝒙, 𝜽)்(𝑓(𝒙, 𝜽) − 𝒚ෝ) (4-9) 

As derived by Jacot et al. (2018), the term ∇𝜽𝑓(𝒙, 𝜽) becomes deterministic and remains static 

when the network is infinitely wide. Even not like this, the parameters also hardly vary for an 
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over-parameterized network during training, which is the so-called “lazy training” (Chizat, 

Oyallon, and Bach 2018). Under such circumstances, ∇𝜽𝑓(𝒙, 𝜽) ≈ ∇𝜽𝑓(𝒙, 𝜽) can be assumed. 

Since the neural tangent kernel (NTK) operator 𝑲 is defined as: 

𝑲 = 𝑲൫𝑥, 𝑥൯ = 〈
𝜕𝑓(𝑥, 𝜽)

𝜕𝜽
,
𝜕𝑓(𝑥 , 𝜽)

𝜕𝜽
〉 

(4-10) 

The Equation (4-9) can be reformed as: 

𝑑𝑓(𝒙, 𝜽)

𝑑𝑡
≈ −𝑲 ∙ (𝑓(𝒙, 𝜽) − 𝒚ෝ) 

(4-11) 

 where 𝑓(𝒙, 𝜽) is the output of a fully connected NN that parameterized by 𝜽, and 𝒙 ∈ ℝௗ 

is the input to the NN. The training of the network is focused on the parameters 𝜽 since 𝑿𝒕𝒓𝒂𝒊𝒏 

is stable. In that case, with the asymptotic conditions (Lee et al., 2017), the dynamic of the 

𝑓(𝒙, 𝜽) can be derived by: 

𝑑𝑓(𝑿𝒕𝒓𝒂𝒊𝒏, 𝜽(𝑡))

𝑑𝑡
≈ −𝑲 ∙ (𝑓൫𝑿𝒕𝒓𝒂𝒊𝒏, 𝜽(𝑡)൯ − 𝒀𝒕𝒓𝒂𝒊𝒏) (4-12) 

It directly follows that: 

𝑓(𝑿𝒕𝒓𝒂𝒊𝒏, 𝜽(𝒕)) ≈ (𝐼 − 𝑒ି𝑲௧) ∙ 𝒀𝒕𝒓𝒂𝒊𝒏 (4-13) 

Where 𝑿𝒕𝒓𝒂𝒊𝒏 = (𝑥)ୀଵ
ே  are inputs and 𝒀𝒕𝒓𝒂𝒊𝒏 = (𝑦)ୀଵ

ே  are the corresponding outputs, N is 

the dataset size. 𝑲  is a semi-definite positive kernel, so 𝑒ି𝑲௧  can be written into 𝑸𝑻𝑒ି𝜦௧𝑸 , 

where the matrix 𝑸  is orthogonal. The ith column 𝒒𝒊  of the matrix 𝑸  is related to the 

eigenvector of 𝑲. The matrix 𝜦 is diagonal, and its diagonal entries are eigenvalues 𝜆 of the 

NTK operator 𝑲. Herein, Equation (4-13) can be reformed as: 
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⎣
⎢
⎢
⎡
𝒒𝟏

𝑻

𝒒𝟐
𝑻

⋮
𝒒𝑵

𝑻 ⎦
⎥
⎥
⎤

൫𝑓൫𝑿𝒕𝒓𝒂𝒊𝒏, 𝜽(𝒕)൯ − 𝒀𝒕𝒓𝒂𝒊𝒏൯ = 
𝑒ିఒభ௧ ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑒ିఒಿ௧

൩

⎣
⎢
⎢
⎡
𝒒𝟏

𝑻

𝒒𝟐
𝑻

⋮
𝒒𝑵

𝑻 ⎦
⎥
⎥
⎤

𝒀𝒕𝒓𝒂𝒊𝒏 (4-14) 

⟹ 𝑓൫𝑿𝒕𝒓𝒂𝒊𝒏, 𝜽(𝒕)൯ − 𝒀𝒕𝒓𝒂𝒊𝒏 = (𝑒ିఒ௧𝒒𝒊
𝑻𝒀𝒕𝒓𝒂𝒊𝒏)

ே

ୀଵ

𝒒𝒊 (4-15) 

The left-hand side of this equation represents the error of the NN model. Obviously, along the 

NTK’s eigendirections (eigenvectors) or eigenfunction of the network with a larger eigenvalue 

will earn an eminent convergence speed than others. However, in the case of a conventional 

fully connected network, the primary eigenfunctions tend to possess low frequency attributes. 

Meanwhile, as the frequency of these eigenfunctions increases, the corresponding eigenvalues 

will gradually decrease in a monotonic manner (Wang, et al., 2021). This theoretical analysis 

reveals the essence of the spectral bias and provides potential solutions to this underlying 

drawback of NNs. By manipulating the eigenspace of the NTK, it is possible to overcome the 

spectral bias that affects NNs. 

 The NTK theory suggests that when the NN width is infinitely large, the kernel 𝑲 becomes 

deterministic (Jacot et al., 2018). Unfortunately, this condition typically does not align with the 

given content. Still, the analysis on the initialization of the NN to glimpse its ability to 

recognize high-frequency components can still be exploited. The corresponding proof can be 

found in in Appendix A through an illustrative example utilizing a physics-informed neural 

network (PINN) (Raissi et al., 2019). 
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4.2.2 Fourier/Wavelet neural network 

 In this study, a Fourier NN (ffNN) is utilized, which incorporates a random Fourier 

mapping on the input features. This technique is shown to enhance the eigenspace of the NTK, 

resulting in superior performance when compared to a conventional NN. Further details 

regarding this can be found in Appendix A. Additionally, in this work, the wavelet mapping 

(Wang et al., 2013) will also be evaluated. 

 

 

Figure 4-2 (a) Flowchart of a Fourier/Wavelet network; The six leading NTK eigenvectors of 
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a fully connected NN (5 layers, 100 units per hidden layer, tanh activations): (b) With 

embedded Fourier features that initialized by 𝜎 = 10; (c) Without Fourier features 

embedding. 

1. Fourier features embedding 

 Following the work given in the literature  (Tancik et al., 2020; Wang et al., 2021). To 

consider an ffNN with 100 hidden units per hidden layer, the random Fourier mapping is 

defined by 𝛾(𝑥) = 
cos (𝑩𝑥)

sin (𝑩𝑥)
൨ , where 𝑩 ∈ ℝ×ௗ  is initialized by complying with the 

Gaussian distribution 𝒩(0, 𝜎ଶ). Here, 𝑚 = 50 is half of the layer width. The mapping 𝛾 in 

the first layer transfers the input data into Fourier feature space, which is subsequently fed into 

the fully connected NN (Figure 4-2(a)). The introduction of the hyperparameter 𝜎 results in an 

increased likelihood of initializing a value 𝑏 ∈ 𝑩 with a higher value. Figure 4-2(b) and 1(c) 

show the efficacy of this simple method in adjusting the eigenspace of the NTK. The 

eigenvectors of NTK exhibit more high-frequency features when 𝜎 is larger. The frequency 

characteristics of the leading NTK eigenvectors (eigenvectors with the largest eigenvalues) are 

the key indicator of the spectra bias of NN. This trick can enhance the NN’s ability to recognize 

the high-frequency features, as it successfully modified the shape of the leading eigenvectors 

of a NN (Figure 4-2(b) and Figure 4-2(c)). This character is determined at the initialization 

stage. 

 In order to explore the effect of Fourier features on different NN architectures, the leading 

eigenvectors of different NN with the number of hidden layers ℱ chosen from {3,4,5,6,7}, and 



100 

 

the width of the hidden layer 𝒞 chosen from {50,100,150} are depicted in Figure 4-3. It is 

observed that Fourier features can modify the eigenspace of the NN with different architectures. 

For the effect of the 𝜎 value, it can be seen that with a higher 𝜎, the frequency components of 

the leading eigenvector also extend to higher frequency range (Figure 4-4). A detailed 

discussion on the effect of 𝜎 value is given in Figure 4-7 

 

Figure 4-3 The leading NTK eigenvector of each NN architecture with and without Fourier 

features embedding. 

 

Figure 4-4  Effect of different 𝜎 values on the leading eigenvector. 
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2. Gaussian wavelet features embeddings 

𝛾(𝑥) =
𝑩𝑥 − 𝑻

√2𝜋
∙ 𝑒ି

(𝑩௫ି𝑻)మ

ଶ ,  𝑩~𝒩(0, 𝜎ଶ), 𝑻~𝒩(0,1) (4-16) 

 

Figure 4-5 Gaussian wavelet basis function (𝑏 = 1, 𝜏 = 0) 

3. Morlet wavelet features embeddings 

𝛾(𝑥) = 𝑐𝑜𝑠[1.75 ∙ (𝑩𝑥 − 𝑻)] ∙ 𝑒ି
(𝑩௫ି𝑻)మ

ଶ ,  𝑩~𝒩(0, 𝜎ଶ), 𝑻~𝒩(0,1) (4-17) 

 

Figure 4-6 Morlet wavelet basis function (𝑏 = 1, 𝜏 = 0) 

 Similar to the mapping of Fourier features, the utilization of wavelet mapping produces a 

comparable effect on the eigenspace of the NTK. For instance, a wfNN composed of 100 hidden 



102 

 

units per hidden layer is considered. The continuous wavelet transform involves the Gaussian 

(Figure 4-5) and Morlet wavelet (Figure 4-6) functions (Jin et al.,2007) which serve as basic 

functions. These functions are scaled by a same vector 𝑩 ∈ ℝ×ௗ, which is sampled from a 

normal distribution with mean 0 and variance 𝜎ଶ, 𝒩(0, 𝜎ଶ). Additionally, the wavelet basis 

function can be shifted by a translation factor 𝑻 ∈ ℝ×ଵ , where 𝜏 ∈ 𝑻  is initially sampled 

from 𝒩(0,1) and set as trainable in the wfNN. Here, 𝑚 = 100 equals to the network width. 

 The frequency analysis of the eigenvector possessing the largest eigenvalue is depicted in 

Figure 4-7. According to Equation (4-15), this eigenvector is the most representative vector for 

the spectra character of NN. The frequency analysis result can roughly reflect the NN’s ability 

to recognize high-frequency features according to different 𝜎 values. However, it should be 

noted that this frequency analysis does not represent the frequency range that NN can recognize. 

For both ffNN and wfNN, the spectrum is clearly extended with a larger 𝜎, implying that ffNN 

and wfNN are excelling in accommodating high-frequency functions with the larger 𝜎. It is 

noteworthy to mention that in our approach, the scaling vector 𝑩 is set to be trainable, which 

makes the feature embedding layer a specific hidden layer of the NN. Moreover, when 𝜎 = 1, 

the resulting network is equivalent to a plain NN, with Fourier/Wavelet activation functions 

employed in the first hidden layer. The value of these hyper-parameters will significantly 

dictate the model’s performance with different datasets. The selection of hyper-parameters will 

be discussed in section 4.4, after obtaining the experiment dataset. 
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Figure 4-7 Frequency analysis of the leading NTK eigenvector with the most significant 

eigenvalue for a NN. 

4.2.3 Incorporating ffNN with TL 

 The knowledge acquired from the source task may be leveraged to enhance performance 

on the target task through TL. Previous works (Tan et al., 2018; Zhuang et al., 2021) have 

revealed that the layers at the low level of a pre-trained NN model learn features with generality. 

The learned knowledge resides in the weights/biases of the hidden layers is transferrable across 
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tasks. After transferring the layers from the pre-trained NN, the layers at the low levels are 

frozen. In the context of the target task, only fine-tuning the high-level layers are needed. 

Analogous to the framework introduced by the authors in a prior study (Ye et al., 2022), a low 

fidelity ffNN model is pre-trained with the approximate governing equation of PD. 

Subsequently, this model is refined using the high-fidelity dataset obtained from the experiment 

observations. Specifically, the training of the source task utilizing the approximate governing 

equation is carried out through the physics-informed neural networks (PINNs) (Raissi et al., 

2019), which obviate the need for generating a database through the approximate 

governing/constitutive equations. In contrast to conventional numerical methods, PINNs 

produce a solution across an entire domain without requiring a pre-specified grid of points. The 

methodology of utilizing PINNs to address differential equations is presented upon in 

Appendix A. 

 

Figure 4-8 Flowchart of the TL-incorporated PINN modeling approach for the PD. 
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 Following the discussion presented in the prior study, the approximate constitutive 

equation for two-phase flow equivalent viscosity model is proposed by Wu et al. (Wu et al., 

2004; Lei & Wu, 2017). This equivalent model provides low-fidelity knowledge of the PD 

nature within the scope discussed in this study (high-frequency vibration). According to the 

experimental setup, the rigid connection between the PD and the shaker eliminates the relative 

displacement term in the dynamic force equation. Therefore, the force response of the PD is 

computed based on the two-phase flow model, which is given by: 

𝐹௧ = 𝑚𝑎 + 𝑐𝑣 
(4-18) 

where 𝑚  is the total mass of the damper, 𝑎  and 𝑣  are vibration acceleration and velocity, 

respectively, 𝑐 is the total equivalent viscous damping coefficient which relates to the damper 

response (velocity and frequency), it is written as: 

𝑐 = 𝑐 + 𝑐 (4-19) 

where 𝑐  represents the equivalent viscosity relates to the inter-granular collision, and 𝑐  is 

related to the inter-granular friction. These terms are calculated according to the two-phase 

flow theory (Wu et al., 2004; Lei & Wu, 2017). In this PINN, the features domain is maintained 

identical to that of the experimental setup, i.e., acceleration ranges from 5 to 25 g, and 

frequency ranges from 100 to 2000 Hz. Consequently, the features domain is kept consistently 

across both the source and target tasks, making this study a prototypical example of inductive 

TL (Pan & Yang, 2010). The domain adaption across tasks is no requirement. The PINN outputs 
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the theoretical damper force 𝐹௧  based on the two-phase flow model. Additionally, model 

testing is unnecessary for the source training task. 

4.3 Experiment on Hysteretic Response Force of a PD 

4.3.1 Experimental setup 

 At the current stage, the response-induced damping mechanism of the granular material 

bed remains an unsolved puzzle, especially in the high-frequency range. Therefore, a 

comprehensive investigation on the response of granular particle beds is required before 

applying PD. In this regard, a simple experiment was designed to obtain the interaction forces 

that the particle bed applies to the cavity during simple harmonic vibration. The recorded force 

signal consists of the interaction force between the particle bed and cavity, and the inertia force 

of the damper cavity. Since the inertia force of the damper cavity and the accelerometer is not 

of interest, it will be deduced, and the response force mentioned afterward all refer to the 

interaction force from the particle bed. 

 In this experiment, the PD used was directly attached to the acceleration-controlled shaker 

(B&K LDS V-650) without being mounted onto any primary structure. The utilization of the 

shaker on a PD allows a straightforward examination of the damper mechanism (Hu et al., 

2023). The weight of the damper was effectively small compared to the mass of the shaker 

moving element. Hence, the PD was able to vibrate synchronously with the shaker head as an 
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entity. It made the vibration of PD follow the demanded pattern. The PD was installed vertically 

on the impedance head (KD3001B) with the M5 screw. This sensor records the force and 

acceleration signal in the vertical direction. The impedance head was also bolted to a stainless-

steel connector that connects to the shaker (see Figure 4-9). An accelerometer (i.e., Dytran 3273) 

is attached to the top of the damper. This sensor records the vertical acceleration signal. This 

sensor’s purpose was to ensure the PD vibrated in sync with the shaker head. As seen in Figure 

4-11, there was no relative displacement between the PD and the shaker during vibration. The 

sampling rate of the force and acceleration signal was 10 kHz. The Dewesoft SIRIUS data 

acquisition system was applied in the test to collect data, the signal-to-noise ratio of this system 

is higher than 130 dB. 

 The vibration was constrained in the vertical direction. A cylinder shapes the damper cavity 

to mitigate the influence of contact between the particle bed and cavity in the lateral direction. 

Aluminum alloy was chosen for the material of the damper cavity wall to reduce the inertia 

force generated by the cavity. However, the support base (marked in green in Figure 4-10(c)) 

was made of stainless steel to bear the high-frequency load. The filling particle is 0.2 mm 

tungsten powder, and the filling volume was 30% of the cavity volume, making the weight of 

the filled tungsten powder 128.5 gr. 
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Figure 4-9 Schematic diagram of experimental setup. 

 

Figure 4-10 (a) Setup of the cylindrical PD; (b) Tungsten powder filling in the damper 

cavity; (c) Schematic diagram of the damper cavity. 

 

Figure 4-11 Acceleration signal recorded by the accelerometer and the impedance head. 
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 The detailed parameters of the experimental apparatus are given in Table 4-1. In this test, 

two types of excitations were adopted to excite the PD: steady-state simple harmonic excitation 

and sweep sinusoidal excitation. 

Table 4-1 Specifications of experimental apparatus 

Experimental apparatus Parameter name Parameter value 

B&K LDS V-650 shaker Sine force peak 2.2 kN 

 Max acceleration sine peak 50 g 

 Usable frequency range 5 Hz – 4 kHz 

 Mass of moving element 4,460 g 

KD3001B impedance head Max force peak 2.5 kN 

 Max acceleration peak 100 g 

 Working frequency range 0.5 Hz – 6 kHz 

 Weight 10.8 gr 

 Sensitivity 2 mV/N 

Dytran 3273 accelerometer Max acceleration peak 100 g 

 Weight 3.0 g 

Cylindrical damper cavity Inner cavity diameter 5.0 cm 

 Inner cavity height 3.0 cm 

 Weight 275.4 g 
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4.3.2 Steady-state simple harmonic excitation 

 The steady-state simple harmonic excitation frequency ranges between 100 and 2000 Hz 

with an interval of 100 Hz. The excitation amplitude is controlled manually by switching the 

gain on the amplifier; five levels of amplitude are applied to the PD: The peak acceleration 

value exhibits a range of approximately 5 g to 25 g, with intervals of 5 g. The excitation period 

is of 5 s for each condition, but only the middle 0.1 s of the signal starting at the 𝜋 phase is 

selected for the investigation, with the aim of avoiding the transient effect. Each acceleration-

based vibration signal contains 1,000 temporal stamps as the signal sampling rate is 10 kHz. 

 

Figure 4-12 (a) Recorded acceleration in time and frequency domain at 100 Hz; (b) 

Acceleration in time and frequency domain at 1500 Hz; (c) Force in time and frequency 

domain at 100 Hz; (d) Force in time and frequency domain at 1500 Hz. 
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Figure 4-13 Phase of the acceleration signal with respect to the value of acceleration and 

velocity at (a) 100 Hz; (b) 1500 Hz. 

 Figure 4-12 shows the acceleration and force signal that recorded at the frequency of 100 

Hz and 1500 Hz, with an acceleration amplitude of approximately 20 g. It can be seen that 

there contains a certain degree of multi-frequency components (ultra-harmonics, e.g., 3000 Hz 

and 4500 Hz) in a high frequency regime (see Figure 4-12). The appearance of ultra-harmonics 

is due to the nonlinear nature of the particle damping, which was generated from the complex 

interaction force of the particle bed. The reactive force inevitably influenced the vibration of 

the shaker head. However, since the mass of PD is small, the influence is limited, and the 

vibration can still be roughly regarded as simple harmonic vibration according to the 

acceleration spectrum. The acceleration signal extracted for analyzation starts from the π phase, 

and its phase goes forward on the timeline. Because the signal is periodic, its phase is equivalent 

to the range of (0,2π]. Fig. 11 illustrates the acceleration phase with respect to the value of 

acceleration and velocity at the frequency of 100 Hz and 1500 Hz. Similar as observed in Fig. 

10. At the frequency of 1500 Hz, nonlinear effects are more significant than that at the 
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frequency of 100 Hz. It is presented by a larger noise in the phase of the acceleration signal. 

This nonlinear effect-induced noise would influence the model reconstruction. For this 

uncertainty phase reconstruction, a Bayesian-based approach can be a solution, which will be 

discussed in future work. This work mainly focuses on the improvement brought by Fourier 

features embedding. 

 Figure 4-14 gives the hysteresis loop of the PD under different excitation frequencies and 

levels, where the response force is dependent on the current excitation and the history of 

excitation. Relative displacement doesn’t exist in this experimental set. The velocity amplitude 

varies 20 times in the frequency range from 100 Hz to 2000 Hz. However, since the velocity 

amplitude is negligible compared to the acceleration in such high-frequency vibration. The 

amplitude of the response force is dependent on the equivalent inertia force of PD, which 

doesn’t change with frequency. Since there was no relative displacement between PD and the 

shaker, the amplitude of the response force was mainly determined by the inertia force of the 

damper cavity. It is noted that the acceleration amplitude is manually controlled and does not 

precisely meet the desired value in the test. Therefore, the term “excitation levels” (ELs) is 

chosen to represent the different acceleration amplitudes. The nonlinear damping effect of the 

PD varies in the frequency range: it exhibits a viscous behavior at low frequencies, while at 

high frequencies, the damping effect is restrained by the hysteretic phenomenon. The 

underlying rationale for the reduced damping effect observed in the acceleration-controlled test 

scheme can be attributed to the scaling down of velocity and displacement with respect to 
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frequency. Therefore, it can be conceptualized that the particle bed emulates a lump mass 

during micro-displacement vibration, thereby contributing to the observed phenomenon of low 

damping effect. The shape of hysteresis loops in different frequencies varies a lot, which 

reflects the intricate motion of the particle bed inside the cavity. The particle bed’s movement 

is more intense in lower frequencies with the higher displacement amplitude. Thereupon, A 

larger area of the hysteresis loop can be observed due to the elevated energy dissipation level 

by the particle bed. However, it is rather hard to dissect the shape of every hysteresis loop. 

Luckily, the data-driven deep learning approach offers an opportunity to avoid expressing the 

intricate particle damping explicitly. The application of the proposed deep learning method will 

be discussed in the next section. 
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Figure 4-14 Hysteresis loop (output force versus excitation acceleration) under different 

excitation frequencies and levels. 

4.3.3 Sweep sinusoidal excitation 

 A sweep-sinusoidal signal is also selected as an input signal of the shaker. It keeps the 

same frequency range as the steady-state excitation: the signal frequency linearly sweeps from 

100 to 2000 Hz, the total sweeping time is 20 s, and the sweep-frequency rate is 95 Hz/s. The 

acceleration amplitude is not controllable during the sweeping. In the present situation, the 
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voltage applied to the shaker, which governs the electrical signal, was maintained at a 

consistent level equivalent to the first level of excitation during the steady-state condition. 

 

Figure 4-15 (a) Sweep sine acceleration signal in time; (b) Time-frequency spectrum of the 

acceleration signal; (c) Diagram of force versus acceleration at frequency range of 100 – 150 

Hz (left), 1000 – 1050 Hz (middle), and 1950 – 2000 Hz (right). 

 Nonlinear characteristics of PD can be observed through the detection of ultra-harmonic 

signals, which occur when the fundamental frequency surpasses 1000 Hz. However, the 

sweeping frequency rate is not significantly high according to the setting of 95 Hz/s. The 

resultant hysteresis loops in different frequency ranges are similar to those in the steady-state 

excitation case (see Figure 4-15(c)), which are not the smooth incline ellipse shape. 
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4.4 Proof of Concept 

4.4.1 Selection of the NN architecture 

 For selecting a network architecture, large networks (in regard to width and depth) exhibit 

greater robustness in terms of their regression capability. However, training such networks is 

inevitably more laborious due to the larger number of parameters that must be updated during 

each iteration. Meanwhile, expanding the network may result in only marginal improvements 

in performance, particularly when a smaller NN is already capable of accomplishing the given 

task. Moreover, a solid strategy to guide the network selection is currently absent to the best of 

the authors’ knowledge. Therefore, the plain NNs on the steady-state dataset (total size of 

1 × 10ହ) are tested. This dataset consists of 20 sets of frequencies (100, 200, …, 2000 Hz); 5 

sets of acceleration levels (approximately 5, 10, …, 25 g); each piece of the acceleration-

controlled vibration data is 0.1 s long starting at the 𝜋 phase with 1,000 temporal stamps. In 

consideration of representing the hysteretic effect, the excitation acceleration a, and its 

integration (i.e., velocity) v are chosen to be the input features. The purpose of inputting 

velocity is to provide the phase information of the signal. Calculating the phase directly and 

inputting it into the NN is unsuitable. Since the vibration in the test is not purely simple 

harmonic according to Figure 4-12. The additional input, excitation frequency f, is intended to 

reflect the nonlinearity of PD in the frequency domain (see Figure 4-2(a)). The network outputs 

the force response of the damper. The data corresponding to the third-level excitation (EL-3, 
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20% of the steady-state dataset) is extracted for testing the model. Training is conducted on the 

rest excitation levels (EL-1, EL-2, EL-4, EL-5, 80% of the steady-state dataset). The entire 

dataset is preprocessed by the min-max normalization (Henderi et al., 2021). 

 Various architectures with different widths and depths are empirically selected from the 

candidate set. The number of hidden layers ℱ is chosen from {3,4,5,6,7}, and the width of the 

hidden layer 𝒞  is chosen from {50,100,150} . In this study, all hidden layers in one NN 

architecture are set to be the identical width. The tanh activation function is applied for these 

NNs. The training and testing mean squared error (MSE) after 15,000 iterations for each NN 

architecture is given in Figure 4-16. The training of NN intuitively receives a reduced loss with 

a larger NN size. However, this merit also comes along with over-fitting, as demonstrated by 

the increasing testing loss after meeting the inflection point. The selection of the NN 

architecture should consider these two aspects simultaneously. By comparing the average MSE 

of different NN architectures on the entire dataset (see Table 4-2), it can be identified that NN 

with {ℱ = 5, 𝒞 = 100} obtains the best model accuracy. Therefore, the network architecture 

of 5 hidden layers with 100 neurons in this study is chosen. This selection is based on the plain 

NNs. In addition, for a fair comparison, all methodologies will adopt the selected architecture 

afterwards, and the training and testing loss are presented in MSE. 
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Figure 4-16 Training and testing MSE of each NN architecture after 15,000 iterations. 

 

Table 4-2 Average MSE on the entire dataset of each NN architecture after 15,000 iterations 

 𝒞 = 50 𝒞 = 100 𝒞 = 150 

ℱ = 3 11.02 10.90 8.93 

ℱ = 4 8.23 8.19 6.88 

ℱ = 5 7.91 6.60 6.80 

ℱ = 6 7.42 6.96 6.67 

ℱ = 7 7.05 6.69 6.83 
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4.4.2 Validation of the optimum features embedding strategy 

 As mentioned in Table 4-2, the NN architecture (ℱ = 5, 𝒞 = 100) is adopted in this section 

to explore the optimum features embedding strategy. The search is conducted on the dataset of 

steady-state excitation test (5 excitation levels, 20 excitation frequencies, and 1,000 temporal 

stamps for each set), in which the EL-3 dataset is assigned as the testing dataset while the rest 

is for training. Ten independent trial tests are conducted on the NNs embedded with Fourier 

(FF), Gaussian (Ga), and Morlet (Mo) features that are initialized by different 𝜎 ∈ [1,100]. 
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Figure 4-17 (a) Evolution of the training MSE from one trial test of a NN embedded with 

Fourier features initialized by the different 𝜎 ∈ [1,100] and a plain network; (b) Testing MSE 

with the three feature functions by the different 𝜎 ∈ [1,100] after 15,000 iterations of 

gradient descent over 10 independent trials. The black dash line represents the final testing 

loss of the plain network after 15,000 iterations. 

 The evolution of the training MSE from one trial test with various Fourier features 

embedding shown in Figure 4-17(a) reveals that with a proper 𝜎 , the ffNN is faster in 

convergence and consequently achieves a better accuracy after a certain number of iterations. 

Testing results in Figure 4-17(b) show that Fourier features embedding is more robust (thinner 

one standard band) than wavelet features embedding (i.e., Ga and Mo). The latter one even 
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shows worse performance than the plain network in most cases. A possible explanation for this 

phenomenon is that when the wavelet basis function is scaled with a large-value factor 𝑏 ∈ 𝑩, 

the function becomes a “thin” basis containing a wide range of zero values in its domain. As a 

result, the function in question exhibits limited capacity to accommodate the objective function 

effectively. Another flaw of the wfNN is that, unlike the matrix operation of the scaling factor 

𝑩, the translation factor 𝑻 can only be applied to each neuron in the embedding layer. It means 

that different dimensions of input 𝒙  must share the same translation factor 𝜏 ∈ 𝑻  on one 

neuron, which also restricts the performance of the wfNN. 

 In alignment with the preceding discussion, it can be observed that for the case where 𝜎 =

1, the ff/wfNN is virtually a variant of plain networks, with the activation functions of the first 

hidden layer being the Fourier/Wavelet features mapping. Demonstrating the validity of this 

assertion, the training and testing results of the ff/wfNNs are in the vicinity of the plain NN. 

Among the various experimental trials conducted, the Fourier features initialized with 𝜎 = 30 

yield the best performance. 

4.4.3 Validation of the optimum free layers number 

 The selected ffNN architecture (5 layers, 100 units per hidden layer, tanh activations, 𝜎 =

30) is adopted in this subsection. Remarkably, the number of frozen layers transferred from the 

source task is a crucial factor for the performance of the target task. A reduced number of free 

layers in the target model can use the low-fidelity knowledge to a greater extent and expedite 
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the training. Conversely, this approach impedes the learning capability of the high-fidelity 

dataset. 

 This section aims to explore the influence of the free-layer number and confirm the 

optimum number of free layers. The search is conducted on the same dataset from the steady-

state excitation test (EL-3 for testing and the rest for training). The performance of the different 

free-layer number 𝑛 ∈ [1,5] over 10 independent trials is tested. For the purpose of comparison, 

the mean squared error (MSE) evaluation of the plain ffNN is also provided. 
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Figure 4-18 (a) Evaluation of the training MSE from one trial test with the different free-

layer number 𝑛 ∈ [1,5] and the plain ffNN; (b) Testing MSE with the different free-layer 

number 𝑛 ∈ [1,5] after 15,000 iterations of gradient descent over 10 independent trials. The 

black dash line represents the final testing loss of the plain ffNN after 15,000 iterations. 

 The evolution history of the training MSE from one trial test in Figure 4-18(a) shows that 

the transferred layers from the source task facilitate learning in the target task with a decreased 

initial error. Nevertheless, in the case of a complex and highly nonlinear issue such as PD, a 

reduction in the number of trainable layers leads to a decline in the accuracy of both training 

and testing using the high-fidelity dataset (see Figure 4-18), even though the increased 

efficiency of training as fewer parameters are needed. The attractive advantage of TL is its 
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potential in training data hungry NNs when high-fidelity data is limited (Ye et al., 2022). It is 

noted that the present size of the steady-state dataset amounts to 1 × 10ହ, which is abundant 

for NN training purpose. An intuitive explanation is that the plain ffNN reaches almost the 

identical MSE where 𝑛 = 5 , indicating that the plain ffNN is well-driven, eventually 

converging to the performance level of the TL approach, even though its higher initial MSE. It 

is reasonable to anticipate that in the case of a smaller training dataset, the TL approach would 

be more appealing. 

 In addition, the TL provides a slightly enhanced performance where 𝑛 = 4 . Therefore, 

despite the fact that the improvement is not as significant as that achieved through proper 

Fourier features embedding, the ffNN with TL-PINN (ff-TLPINN) is chosen to incorporate as 

it ultimately yields superior results.  

 Following the discussion on the dataset size, the size of the training dataset is 8 × 10ସ 

(EL-3 extracted for testing). The considerable dataset size goes against the TL approach 

showing its merits. Herein, the training dataset is randomly cut down to lessen the dataset size, 

namely 80%, 60%, 40%, and 20%. The efficacy of the TL under different number of free layers 

is dissected on these reduced datasets based on ffNN with 𝜎 = 30. 
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Figure 4-19 (a) Efficacy of free-layer numbers on various dataset sizes on model training; (b) 

Efficacy of free-layer numbers on various dataset sizes on model testing. Evaluated with 

MSE and one standard deviation. 



126 

 

 Firstly, the most intuitive conclusion is that reducing the dataset will raise the MSE in 

training and testing. However, such influence is decreased when training the model with just 

one free layer, indicating that only limited data is required for training in this condition. But 

even though the model is well-trained to capture the features in the training dataset, the lessened 

training dataset still fails to provide a complete view of the task. So that the rising testing MSE 

with one free layer can be found when reducing the training dataset. 

 It can also be observed that the effect of TL becomes more apparent with a lessened dataset. 

Compared with the intact training dataset, the optimum free-layer number is decreased on the 

lessened dataset. It means the source task knowledge plays a more vital role when the training 

dataset of the target task is reduced. To better present this conclusion, for each dataset size, the 

result on the plain model without the TL approach is compared with the TL approach. An index 

𝜖௧/௧௦௧ is defined, which is calculated by the training/testing MSE of the non-TL model 

deducting the training/testing MSE of the TL models. When 𝜖 > 0, the TL outperforms the 

non-TL approach and vice versa. 

 The comparison in Figure 4-20 provides compelling proof that 𝜖௧/௧௦௧  is increasing 

with the decreasing dataset size. In short, the TL approach can facilitate establishing a better 

surrogate when the dataset size is small, no matter the number of free layers. 
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Figure 4-20 (a) Performance of TL and non-TL approaches on model training; (b) 

Performance of TL and non-TL approaches on model testing. 
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4.4.4 Comparison between the surrogate models 

 After the discussion on ffNN and TL, the optimum strategy is achieved by the fusion of 

ffNN and TL-PINN (ff-TLPINN), in which the first layer is the Fourier-features mapping and 

followed by the TL-PINN approach. To be acquainted with these methods, all results from the 

different methods are compared in this subsection, including the NN, ffNN, and the ff-TLPINN 

(Fourier features embedding with 𝜎 = 30, transferring layers with the free-layer number 𝑛 =

4 ). Furthermore, to reveal the effect of the TL-PINN approach on the plain NN, a similar 

discussion as in section 4.4.3 is conducted. Finally, the optimum result of pure TL-PINN is also 

obtained with 𝑛 = 4. Consequently, the results are presented for the sake of comparison. All 

surrogate models are trained using the steady-state dataset for 15,000 iterations, employing the 

same training/testing dataset and network architecture. The model evaluation is then conducted 

on the entire dataset. 

 

Figure 4-21 Prediction MSE for different approaches with the same NN architecture. 
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 Figure 4-21 shows the model prediction of the MSE on the steady-state dataset of various 

methods. It can be seen that the TL-PINN (MSE 4.92) enhanced the model accuracy regarding 

a plain NN (MSE 6.60), but a more remarkable result is presented by the properly initialized 

ffNN (MSE 1.27). Furthermore, blending the TL approach with the ffNN brings a slight 

improvement in the model accuracy (MSE 0.90) regarding the plain ffNN, indicating the most 

critical challenge for this task is the spectral bias of the NN. As a result, the best accuracy is 

given by ff-TLPINN. This method is selected to reconstruct the hysteretic effect of PD. 

4.5 Model Reconstruction for Response Force of PD 

 The damper force response is reconstructed by implementing the proposed Fourier 

features-embedded, transfer learning-incorporated PINN (ff-TLPINN). An ffNN (5 layers, 100 

units per hidden layer, tanh activations) with the Fourier feature embedding 𝛾(𝑿) initialized 

by 𝜎 = 30 was firstly trained according to the low-fidelity physics model, i.e., the two-phase 

flow equivalent viscosity model. Then, the pre-trained layers were leveraged to the second 

stage of training, where the low-level layers were frozen. The number of free layers to be 

updated by the high-fidelity experimental data is 4. The input vector 𝑿  of the steady-state 

excitation case consists of excitation frequency 𝒇 (20 settings in total), excitation acceleration 

𝒂, and the corresponding velocity 𝒗 (5 levels in total). Each set has 1,000 temporal stamps. 

After training with the steady-state dataset for 15,000 iterations on the designated training 

dataset (excluding EL-3), the sweep-sinusoidal dataset is used to validate the model. 
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4.5.1 Reconstruction of the steady-state excitation case 

 The proposed model manages to reconstruct the hysteresis loop of the PD. The hysteresis 

loop at 100 Hz shows a typical viscous effect (see Figure 4-22), while the shape of the 

hysteresis loop at 1200 Hz (see Figure 4-23) is significantly different from other frequencies 

due to the nonlinearity nature of the PD. The most considerable prediction error is found in this 

frequency case. As observed in Figure 4-24, the hysteretic phenomenon is significantly 

restrained at 2000 Hz. Since the excitation is acceleration-controlled, the PD actually undergoes 

a micro-displacement vibration at this frequency. Most of the force response is contributed by 

the inertia force of the damper. In this case, since the sampling frequency (10 kHz) happens to 

be five times the primary frequency (2 kHz), there can only be a sample of five points in one 

loop. Although the dataset contains an enormous number of temporal stamps, there are a lot of 

duplicated data since the input features are periodic signals. The error resides in these 

reduplicative cases and results in the prediction error. For instance, the force response of PD 

under the fifth level excitation at 2000 Hz (phase −𝜋 ) is shown in Figure 4-25. The 

experimental error is the systematic error in terms of the model training. 



131 

 

 

Figure 4-22 Hysteresis loop of 100 Hz: (a) Exact damper response force recorded in the 

experiment; (b) The predicted damper force response from the proposed model; (c) The 

prediction error of the surrogate model. 
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Figure 4-23 Hysteresis loop of 1200 Hz: (a) Exact damper response force recorded in the 

experiment; (b) The predicted damper force response from the proposed model; (c) The 

prediction error of the surrogate model. 
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Figure 4-24 Hysteresis loop of 2000 Hz: (a) Exact damper response force recorded in the 

experiment; (b) The predicted damper force response from the proposed model; (c) The 

prediction error of the surrogate model. 
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Figure 4-25 Exact and predicted damper force under fifth excitation level at 2000 Hz (phase 

−𝜋). 

 The above prediction error is related to the shape of the hysteresis loop and the 

experimental error. Figure 4-26 presents the MSE prediction on the entire dataset of the 

proposed surrogate model and a plain NN model for each frequency. The error is high for the 

proposed model in the 800 to 1900 Hz range. The experimental result (see Figure 4-14) shows 

that the experimental error is relatively high in this range (thick trajectory). However, the signal 

is sampled five times per period at the frequency of 2000 Hz, reducing the difficulty in 

regression. Both models find the most considerable error at 1200 Hz, reflecting the identical 

influence of the unequable hysteresis loop shape. 
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Figure 4-26 Prediction MSE of the proposed model and the plain NN model with respect to 

each frequency. 

4.5.2 Model validation using sweep-sinusoidal dataset 

 Section 4.3.3 mentioned that the hysteretic effect of PD under a slow sweep-sinusoidal 

excitation is similar to the steady-state case. Therefore, the proposed surrogate model can be 

validated by the sweep-sinusoidal dataset. After establishing the surrogate model based on the 

steady-state dataset, the excitation signal from the sweep-sinusoidal test is input to the 

surrogate model to predict the corresponding force response. The result presented in Figure 

4-27 is expressed by force response in terms of the excitation velocity in place of acceleration 

in order to have better visualization. However, the test is still acceleration controlled, as same 

as the steady-state test. In general, the model output captures the feature of the damper force. 

However, an enlarged prediction error can be observed compared to the steady-state case in 
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which the model is trained. Specifically, the MSE prediction on the two datasets is 4.83 for the 

sweep-sinusoidal dataset and 0.90 for the steady-state dataset, respectively. 

 In this case, the prediction error in the high-frequency range is more significant with 

respect to a lower frequency. The error could come from the transient effect at this range when 

the damper response tends to be more complex in high-frequency vibration. The hysteresis loop 

recorded in Figure 4-15 supports this assumption, where the shape of the hysteresis loop shows 

a thick trajectory, indicating the instability from the transient response of the PD. 

 

Figure 4-27 (a) Exact damper force response recorded in the sweep-sinusoidal experiment; 

(b) The predicted damper force response from the proposed model; (c) The prediction error of 

the surrogate model. 
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4.6 Summary 

 The framework exploiting NN to establish the surrogate model for characterizing a particle 

damper (PD) was investigated in this paper. After in-depth exploration of the long-standing 

issue of spectra bias in neural networks (NNs), the proposed Fourier neural network (ffNN) is 

equipped with the capability to acquire high-frequency features. This simple technique is 

concatenated with the TL approach, which integrated PINN. The findings indicate that the 

efficacy of TL-PINN is limited when dealing with a task that has an abundant amount of high-

fidelity experimental data. The conclusions can be summarized as follows: 

1. Compared to the wavelet features, the Fourier features embedding performs better in 

this case. Besides, the hyperparameter 𝜎 should keep in line with the frequency feature 

in the objective function. The proper imposition of this method can address the 

pathology of spectra bias of NNs. 

2. The number of free layers released in the second training step in TL-PINN influences 

the result. For a case with abundant high-fidelity learning resources, fewer free layers 

can speed up the training but hinder the accommodating ability, which worsens the 

performance of NNs. Therefore, more free layers are preferred in such situations. 

3. The concatenated method ff-TLPINN is reliable for reconstructing the hysteretic effect 

of PDs in a broad frequency band. The MSE arising from the ff-TLPINN model (0.90) 

is less than one-seventh of the plain network (6.60) with the same architecture. 

Correspondingly, the MSE is 4.92 for TL-PINN and 1.27 for ffNN. 
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 This study investigates a PD with 30% of tungsten powder under various excitations. 

However, the performance of a PD is related to plentiful parameters, e.g., particle material, 

particle diameter, filling ratio, size, and shape of the damper cavity, etc. Therefore, a surrogate 

model considering all these parameters should be presented to design an optimum PD in 

noise/vibration control. However, merging all these factors into the input feature space will 

exponentially increase the size of the input dataset. Such a task will be too bulky for NNs as 

the input size on the temporal space is enormous (1,000 stamps). Confronting the issue of 

dimension exploration, a re-design of the input-output scheme, which excludes the temporal 

space, is required. Moreover, the experimental error observed in Figure 4-25 is another burden 

for the identification by the proposed approach. The experimental error should also be 

considered in NN training. 

 The future improvement of this study can be pursued by utilizing the phase of the periodic 

signal in place of the temporal stamps as the input-related factor. This approach enables the 

response obtained at the same phase to be viewed as a distribution (see Figure 4-25). The 

experimental error can thus be integrated into model learning. This idea is naturally oriented to 

the Bayesian theory-supported neural networks, where probability is imported to regulate the 

parameters in a network that differs from a point-estimate network. In another line of work, a 

large class of hysteresis loops are described by fractional derivatives. PINN can pursue the 

equation discovery of particle damping in high-frequency range based on fractional derivation 

equations. The Fourier features embedding can also be investigated in facilitating that attempt. 
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CHAPTER 5.  

Model Extension from Basic Model: mc-

ESDN for Sequential Information Decoding 

 

5.1 Introduction 

 The rail particle damper (RPD) based on particle damping technology was developed for 

controlling the noise and vibration issues that occurred in the railway transit industry. Two 

patents have been issued on this kind of rail dampers, i.e., “modular steel rail particle damper 

for vibration and noise reduction of rail transit” (ZL202120908352.2) and “rail transit vibration 

and noise reduction method based on modular steel rail particle damper” (ZL202110466428.5). 

The inventors are Dr. Masoud Sajjadi, Prof. Yi-Qing Ni, Dr. Jason Lin and Mr. Chao Zhang. 

The damper case follows the CHN60 rail profile, which is widely used in China’s railway 

systems. The main body of the RPD is a hollow box comprising twelve cavities arranged in 

two rows with varied sizes, as shown in Figure 5-1. The rail web of the CHN60 has a curved-

shaped profile, so a tailor-made fixture with a specific clamping mechanism needs to be 

designed. The purpose is to ensure that the RPDs will be mounted tightly and safely on the rail 

track in long-term operation. To that end, a special fixture is designed and fabricated. The 

designed fixture is robust, reliable, and safe. Furthermore, it is easy to install dampers with this 

kind of fixture on all kinds of rail track systems just by using a simple screwdriver. 
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Figure 5-1 Main body of the RPD (Designed by Seyed Masoud Sajjadi Alehashem). 

 

Figure 5-2 Fixture of the RPD (Designed by Seyed Masoud Sajjadi Alehashem). 

 As shown in Figure 5-2, the fixture consists of two main components, the U-shape body 

underneath the rail track serves as the frame of the fixture, and the L-shape clamps are screwed 

on the U-shape body. By applying force to the screw, the dampers are tightly attached to the 

rail track and vibrate along with the railway during operation.  
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Figure 5-3 Dimensions of the RPD cavity (Designed by Seyed Masoud Sajjadi Alehashem). 

 The total length of the damper cavity takes half the length of the rail track bay (600 mm) 

so that it is able to apply sufficient effective area on the track while not interfering with the 

track clips (Figure 5-3). The damper cavity is divided into three different width units (30 mm, 

40 mm, and 60 mm). This design is to reflect the concept that different width units can be more 

effective in a specific frequency band. However, this concept still requires further verification. 

 In the previous chapters, the framework of adopting a data-driven deep-learning method 

based on the experimental data collected through the shaker test is proposed to establish the 

surrogate model of the particle damper. Here, a similar methodology can be applied to the 

modeling of this RPD. Still and all, several issues need to be clarified for the feasibility of 

conducting the shaker test to obtain the dataset for training. First, the RPD is not 

centrosymmetric. Such a configuration will bring a considerable side-effect during the vertical 
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excitation. Especially when the particle bed inside the damper is excited, the barycenter is not 

statical, which may bring shifting or torsion motion to the damper cavity. However, in this 

interpretation research, it is better to eliminate the multiple motion modes and constrain the 

vibration of the RPD in the vertical direction, the same as what was carried out in previous 

chapters. The solution to this issue is to connect two RPDs symmetrically to form the testing 

piece. A specialized modification to the damper configuration is thus demanded. 

 However, this modification will bring another issue, which is the weight of the testing 

piece. Taking an RPD filled with 50% 1.5 mm steel particles for example, the total weight of 

such an RPD is around 4.5 kg. The KD3001B impedance head that mounted on the shaker is 

connected with an M5 screw. For a standard M5×8 screw that made of 304 stainless steel, the 

strength of extension 𝒩௧ is 400 MPa with a yield ratio of 0.8. The yield extension force 𝐹௧ of 

this screw is calculated as follows: 

𝐹௧ = 0.8𝒩௧ ×
𝜋

4
(𝑑 −

13𝑝

24√3
)ଶ ≈ 4.5 𝐾𝑁 (5-1) 

 The weight of two RPDs, including the modified fixture, would exceed 10 kg. In this 

condition, the vibration with a peak acceleration value of 50 g would bring the inertia force 

higher than 5 KN, which is beyond the endurance limit of the standard M5×8 stainless steel 

screw. Recall the need to explore the efficacy of the cavity size. These factors motivate us to 

select the section with the same width of the RPD as a unit. With this, the RPD is divided into 

three units with different width in this way. The modified testing piece is designed as two 
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asymmetrically combined units of the same size, as shown in Figure 5-4. 

 

Figure 5-4 Drawing of the modified testing piece. 

 The testing piece is hung under the shaker to avoid the bending moment applied on the 

impedance head. The cavity is made of aluminum alloy, the same as the RPD. An M5 screw is 

set in the middle of the upper face of the testing piece for connection with the impedance head. 

This connector is made of stainless steel to bear the high-frequency load. The connector is 

embedded in the testing piece with the M8×45 screw. In the following description, each testing 

piece, according to its cavity width, will be briefed as RPD-30, RPD-40, and RPD-60, 

respectively. 
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Figure 5-5 The modified testing pieces. 

 

Figure 5-6 The cavity of the testing piece fitting the CHN-60 rail profile. 

 In the previous chapter, the hysteretic response force of the particle damper was 

reconstructed with the data-driven DNN, i.e., ff-TLPINN. However, such a model only works 

for a specific configuration of particle damper since no parameter related to the damper itself 

is fed to the training of the DNN. Nevertheless, in the confronting scenario, three particle 

dampers should be modeled. A trivial attempt in this case is to repeat the work three times and 
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obtain three models for the task. However, in this chapter, an integral model that extends the 

model from a single particle damper to another particle damper is explored. 

 In ff-TLPINN, the underlying relationship between the input and the output is analyzed 

point-wisely: every input-output pair is regarded as independent of other pairs. Yet the dataset 

obtained from the shaker test is, in fact, a group of time series. The sequential information is 

completely neglected in this way of training. The recurrent neural network (RNN) is a potent 

tool that integrates large dynamical memory and adaptable computational abilities to recognize 

sequential information (Salehinejad et al., 2018). Based on the topological structure of RNN, 

the delay loop embedded in the neurons enables RNN to form a stacked flow to process the 

series data. In the development of RNN, gating is applied in the gated recursive neuron to 

improve the long-term memory of the structure (Cho et al., 2014). The gates can link the current 

state with another state from a long temporal distance before. In the bidirectional RNN structure, 

even the future state can be linked to the current stage. Therefore, the long short-term 

relationship along the series can be reconciled by the RNN. The appearance of gates can 

enhance the states updating when facing noise-polluted data and prevent undesired updates. 

 However, conventional RNN is inherently tedious to train, especially when processing the 

long-term interrelation series. Since the parameter space updating with an extensive size are 

prone to fall into the pathology of gradients vanishing or exploding easily (Bengio et al., 1994). 

In this regard, a variation of the RNN that introduces reservoir computing is formed and 

proposed (Yeo, 2019), which is the echo-state neural network (ESN). In ESN, the reservoir is 
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defined by a large-scale latent state space, and the neurons inside this latent state space are 

sparsely connected to ensure a limited spectral radius. In practice, the connection weights inside 

the reservoir usually have only 1~2% non-zero values. Such a feature of the reservoir is 

required since the sparsity amends the decoupling of the sub-network, and in this way, the state 

space dynamics can be under control (Jaeger, 2002).  

 A typical ESN can be regarded as a three-layer network: the input signal links to the latent 

state space with input weights, and the reservoir serves as a feature extractor. Finally, the 

readout layer outputs the target signal. The input weights and the reservoir are randomly 

generated and remain unchanged during training, and only the readout layer will be updated. 

Furthermore, the readout layer usually is a linear regression from the reservoir to the target 

signal. Thus, the training load of the ESN is significantly reduced compared to standard RNN. 

The ESN is conceptually similar to the Gaussian process. They all project the input signal into 

a high-dimensional space, where the nonlinear features are decoupled and more easily captured. 

 Based on the ESN, improvements such as introducing multi-scale convolutional kernels 

are proposed (He et al., 2022). Using multiple convolutional kernels with various dimensions 

and scales (MDSC) can extract features in different receptive fields, and the different scale 

spatial-temporal correlations can be focused separately. 

 In this section, the principles of ESN and MDSC will be first discussed. Then follows the 

structure of the proposed mc-ESDN. The dynamic experiments on the RPDs are conducted to 

acquire datasets for the model establishment. Two baseline methods utilizing the plain-NN and 
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the TL-NN are compared with the proposed method in this chapter. These models are trained 

and tested on the steady-state simple harmonic dataset. The dataset obtained from the sweep-

sinusoidal experiments will be used to validate the established surrogate model. 

5.2 Establishment of mc-ESDN 

5.2.1 Principles of ESN 

 The echo state network has been extensively studied since it has pronounced the 

amendable ability in learning complex nonlinear dynamics in series signal. The nonlinearity of 

the ESN is embedded in its activation function for the state updating. As aforementioned, the 

latent state space is randomly generated, along the time axis of the series signal. Following the 

work of Yeo (2019), the evolution of the latent state is defined as: 

𝒔௧ାଵ = λ𝒔௧ + (1 − 𝜆)Ψ𝑎(𝒔௧, 𝒙௧, 𝒚௧) (5-2) 

Here, 𝒔௧ ∈ ℝேೞ represents the latent state, 𝒙௧ ∈ ℝேೣ is the input series signal to the ESN, the 

relaxation coefficient λ ∈ [0,1) aims to call back the memory from the last timestamp to pursue 

the continuity of the state evolution. 𝒚௧ ∈ ℝே is the vector or signal value of the target signal 

at the current state. The activation function Ψ(∙) , such as the common hyperbolic tangent 

function, provides nonlinear property to the ESN. The subscript 𝑡 presents the general time 

stamp. 
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Ψ(𝒔௧, 𝒙௧, 𝒚௧) = tanh(𝑾𝒓𝒆𝒔 ∙ 𝒔௧ + 𝑾𝒊𝒏 ∙ 𝒙௧ + 𝑾𝒃𝒂𝒄𝒌 ∙ 𝒚௧) (5-3) 

Aside from calling back the last state, the activation of the state space contains the information 

of all three layers. Here, 𝑾𝒓𝒆𝒔 ∈ ℝேೞ×ேೞ ,  𝑾𝒊𝒏 ∈ ℝேೞ×ேೣ , and 𝑾𝒃𝒂𝒄𝒌 ∈ ℝேೞ×ே  are 

independent weight matrices that are generated by the uniform distribution. The structure of 

ESN presented by Equations ((5-2) and ((5-3) are very similar to a standard RNN. Although in 

RNN, the weight matrices are calculated through the maximum likelihood method, the weights 

mentioned in Equation (5-2) will not be updated since they were generated. The reservoir 

weights, 𝑾𝒓𝒆𝒔, define the connectivity inside the latent space. As aforementioned, the 𝑾𝒓𝒆𝒔 

should be a sparse matrix to ensure a richer internal dynamic of the reservoir (Jaeger & Haas, 

2004). 

 In summary, the structure of a standard ESN is depicted in Figure 5-7. 

 

Figure 5-7 Structure of a standard ESN. 
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 Once the latent space is generated, it should go through a certain free-running period before 

it is ready to generate the output signal. 

𝒚ෝ௧ = 𝑾𝒐𝒖𝒕 ∙ ൣ𝒙௧ିభ
, … , 𝒙௧ାభ

, 𝒔௧ିమ
, … , 𝒔௧ାమ

, 𝒚ෝ௧ିయ
, … , 𝒚ෝ௧ିଵ൧ + 𝒃𝒀 (5-4) 

Following the observation given by Lukoševičius and Jaeger (2009), taking the input, current 

state, the previous output, and their delayed form together can improve the model accuracy. 

Here, 𝑚ଵ, 𝑚ଶ, and 𝑚ଷ are the delayed time steps of input, current state, and the previous output 

time series, respectively. Counting the output series stops at the last time step 𝒚ෝ௧ିଵ, since it is 

impossible to forecast the future output in the model output stage.  

 The model training step is only focused on the 𝑾𝒐𝒖𝒕 ∈ ℝே×(ଶభேೣାଶమேೞାయே)  in a 

standard ESN. The task is to find a linear map of the target signal. The training is relatively 

straightforward even though the reservoir has extracted plenty of information. Consider a 

training series 𝒀 = (𝒚𝟎, … , 𝒚𝑵) with N+1 segments. Here N+1 is the number of training data. 

This linear map can be determined by following the regularized optimization problem, which 

can be presented by (Yeo, 2019): 

min
𝑾𝒐𝒖𝒕


1

2
‖𝒚𝒊 − 𝒚ෝ𝒊‖ଶ

ଶ +

ே

ୀ

𝛽

2
‖𝑾𝒐𝒖𝒕‖ଶ

ଶ (5-5) 

In which ‖∙‖ி is the Frobenius norm, the regularization parameter 𝛽 ensures the sparsity of the 

calculated 𝑾𝒐𝒖𝒕 , so that the generated model has a better ability of generalization. The 

analytical solution of Equation ((5-5) is as follows: 
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𝑾𝒐𝒖𝒕 = ൭ 𝑹𝒊

𝑵

𝒊ୀ𝟏

𝑹𝒊
𝑻 + 𝛽𝑰൱

ି𝟏

൭ 𝑹𝒊

𝑵

𝒊ୀ𝟏

𝒚𝒊
𝑻൱ (5-6) 

where, 

𝑹𝒊 = ൫𝒙ିభ
, … , 𝒙ାభ

, 𝒔ିమ
, … , 𝒔ାమ

, 𝒚ෝିయ
, … , 𝒚ෝିଵ൯ (5-7) 

The free parameters of an ESN are listed in Table 5-1. 

Table 5-1 Free parameters of an ESN 

λ Temporal relaxation parameter 

𝛽 L2-norm regularization parameter 

𝜌௫ Spectral radius of 𝑾𝒓𝒆𝒔 

𝜉 𝑾𝒊𝒏~𝒰(−𝜉, 𝜉) 

𝜉௦ 𝑾𝒓𝒆𝒔~𝒰(−𝜉௦, 𝜉௦) 

𝜉 𝑾𝒃𝒂𝒄𝒌~𝒰(−𝜉, 𝜉) 

𝑚ଵ Temporal delay step for input 

𝑚ଶ Temporal delay step for states 

𝑚ଷ Temporal delay step for output 

 The ESN holds hailed good performance on lost data reconstruction from sparse 

observation data. It elucidates that ESN has a pronounced ability to recognize a nonlinear map. 

Usually, the fixed-point reconstruction with ESN starts with linear interpolating of the observed 

data as the initial output 𝒀𝟎. After each iteration of weight updating with Equation (5-5), an 

updated output 𝒀 would be obtained, which can be replaced by 𝓔(𝒀,, 𝑹). The fixed-point 
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iteration reconstruction is then formulated as (Yeo, 2019): 

𝒀,ାଵ = 𝓖(𝒀,, 𝑹) = 𝛼𝒀, + (1 − 𝛼)𝓔(𝒀,, 𝑹) (5-8) 

The newly introduced 0 < 𝛼 < 1  is to make sure the Jacobian of 𝓖  exists. Here, the 

convergence of this proposed method is derived according to the Banach fixed-point theorem, 

which gives the sufficient condition for convergence. This theorem requires a contraction 

mapping: 

‖𝓖(𝒀, 𝑹) − 𝓖(𝒀 , 𝑹)‖ ≤ 𝐿‖𝒀 − 𝒀‖ (5-9) 

In which 0 ≤ 𝐿 < 1 is a Lipschitz constant. In this part, we are trying to give the convergence 

condition in a limited scope around the fixed-point ground truth 𝒀∗, as the assumption is too 

strong that a globally uniform contraction generally meets the desired nonlinear map. The 

Jacobian of 𝓖(𝒀, 𝑹) is 𝒥𝒢(𝒀), and according to the contraction mapping theorem, the fixed-

point iteration would converge to the observed time series, 𝒀∗ , if ฮ𝒥𝒢(𝒀∗)ฮ < 1  with the 

subordinate matrix norm ‖∙‖. The convergence of ESN is based on a proper selection of the 

free parameters. The above derivations are given by Kyongmin Yeo (2019). 

5.2.2 Multi-dimensional and multi-scale convolution 

 Convolutional neural networks have emerged as the leading algorithm in recent years. Its 

merit resides in the vigorous feature extraction in high-dimensional data. Therefore, there went 

a recent surge in developing this algorithm in computer vision and other application scenarios. 
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Therefore, an extensive study has been conducted by implementing the convolutional kernel 

with a flexible receptive field (Lu et al., 2018; Elboushaki et al., 2020). 

 In the ESN, each channel is separately inputted into the reservoir. It is a limited approach, 

as the correlation across channels has been ignored. Besides, some hidden features also exist 

along a particular channel of series data. A pre-processing of the single channel can also help 

the ESN recognize the underlying pattern. Regarding these factors, the convolutional kernels 

can be applied to the input features to extract the high-dimensional information. Convolutional 

kernels of different shapes and dimensions distill unique features concerning their receptive 

field and kernel values. 

 In the input feature space, there are channels of different information. In our case, it 

includes the excitation signal and the response force of the basic damper. The combination of 

them forms the input space, 𝑿 ∈ ℝே×். Consider a convolutional kernel 𝑾𝒊 ∈ ℝ×. The 

convolution of the signal is calculated by: 

𝑋,(𝑗, 𝑘) =   𝑊(𝑢, 𝑣) × 𝑋(𝑗 − 𝑢 + 1, 𝑘 − 𝑣 + 1)



௩ୀଵ



௨ୀଵ

 (5-10) 

 After this operation, the original series would be shortened to 𝑇 − 𝑉 + 1. Therefore, the 

start and the end of the convolution should be compensated by the original signal to ensure the 

length of the convolution is equal to the original signal. With this, the convolution 𝑿𝑪  and 

original input 𝑿 can be concatenated for the ESN. 
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 There are kernels with one dimension in time, which learns the time variation laws of a 

specific channel. Kernels with one dimension in space aim to extract the correlation across 

channels (Elboushaki et al., 2020). The 2-D kernels combined the information from both 

dimensions. Moreover, the various conceptions of different scales enable the kernels to obtain 

local and general feature laws. In detail, short-scale kernels focus on short-term features, and 

more high-frequency information would be learned. The long-scale kernels serve oppositely. 

Blending the kernels formulates the muti-dimensional and multi-scale convolutional kernels 

(MDSC). 

 

Figure 5-8 Applying MDSC to the input series. 

 Up to now, a great many of useful kernel operators have been developed. The Prewitt (Song 

et al., 2019) is one of the most widely adopted convolutional detectors to approximate the 

gradient of a 2-D matrix. Besides that, there also are Robert cross operator (Albdour & Zanoon, 

2020), Sobel (Wang et al., 2018), Laplacian (Qi & Liu, 2020) and difference of Gaussian (DoG) 



154 

 

(Assirati et al., 2014) operators. In this study, various MDSCs are employed as the features’ 

extractors. The entries of the useful candidate kernels are shown in Figure 5-9. 

 

Figure 5-9 MDSC candidate kernels for feature extraction. 

5.2.3 Architecture of the mc-ESDN 

 In this section, a model extension based on the ff-TLPINN is explored. First, the ff-

TLPINN proposed in the last chapter would be applied to model the response force of one of 

the dampers based on the data collected from a similar shaker test. Next, the model will be 

extended to two other dampers. In this task, the input of the extended model contains excitation 

properties and the basic damper’s response force under such excitation, which is generated 
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through the ff-TLPINN. It should be noted that the excitation signals are not identical for 

different dampers, even though the frequency or amplitude is the same, because of the phase 

difference. The difference from the previous works is that the inputs are no longer regarded as 

individual “points” but as a set of time series according to the different excitation settings. That 

is, 100 different series (20 sets of frequencies and 5 sets of excitation levels) with a length of 

1000 would be evaluated. 

 However, the ESN, as a sequence processing method, cannot reflect the correlation of so 

many sequences with different correlations. To that end, synergizing is added to the ESN by 

replacing the linear regression readout layer with deep fully connected layers. It lets the ESN 

evolve to the echo state deep neural network (ESDN) method. Besides, MDSC was also 

adopted ahead of the reservoir to enhance the features’ distilling ability. As such, it formulates 

the proposed multi-dimensional and multi-scale convolutional echo state deep neural network 

(mc-ESDN). 

 

Figure 5-10 Framework of the mc-ESDN. 
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 Figure 5-10 shows that the basic model is established through the ff-TLPINN with the input 

of the excitation properties. The basic model’s output, the basic damper’s response force, is 

combined with the corresponding excitation properties and becomes the input of the extended 

model. The following model aims to identify the relationship between the basic damper and 

the target dampers. After the procedure of MDSC, a bunch of equal-length convolutions would 

be generated and ready to insert into the reservoir together with the input series.  

 However, since the reservoir is a large latent state space, the width of the output features 

would be very extensive (1046 in this case). The feature space’s large size would hamper the 

readout layer’s training. Moreover, due to the sparse nature of the reservoir, a considerable 

number of feature channels contain duplicated information, further reducing the readout layer’s 

performance. For a standard ESN, these sparse outputs can be easily filtered in linear regression 

by introducing norm regularization. However, the concept of norm regularization conflicts with 

the deep readout layers. Therefore, a filter after the reservoir should be manually adopted to 

reduce the width of features. 

 In this case, the original input features contain four channels: the frequency 𝒇, acceleration 

𝒂, velocity 𝒗, and response force of the basic damper 𝑭𝒅𝟏. All channels comprise 100 time 

series slices (20 sets of frequencies and 5 sets of excitation levels). These slices are cut out 

from the middle of the steady-state simple harmonic excitations with a length of 0.1 s. Since 

the sampling frequency is 10 kHz, every slice has 1000 time steps. After the original input 

features are treated by the MDSC and the reservoir, the number of channels expands to 𝑘 ≫ 4, 
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according to the hyper-parameters. For the kth channel 𝑪𝒌 ∈ ℝଵ×ଵ, we expect it provides 

more information when its 100 slices are diverse. However, if the slices in one channel are 

similar to each other, we decide it is a vain channel and should be filtered. 

 All slices 𝑺𝒊𝒌 ∈ ℝଵ×ଵ, 𝑖 ∈ [1,100] are vectors with the same dimension, so the diversity 

can be evaluated by calculating the L2 norm of the vector difference between two slices. Here 

we define the diversity value, 𝐷𝑖𝑣𝑒, which is given by: 

𝐷𝑖𝑣𝑒(𝑺𝒊𝒌, 𝑺𝒋𝒌) = ฮ𝑺𝒊𝒌 − 𝑺𝒋𝒌ฮ
ଶ
 (5-11) 

The Dive value for a channel would be a matrix, recording the diversity of every slice pair. 

Slice pairs with higher Dive values mean the pair of slices are different from each other. The 

average of this matrix represents the diversity value of one channel. 

𝑉 = 𝐸൫𝐷𝑖𝑣𝑒൫𝑺𝒊𝒌, 𝑺𝒋𝒌൯, 𝑖 ∈ [1,100], 𝑗 ∈ [1,100]൯ (5-12) 
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Figure 5-11 Framework of the diversity filter. 

 In order to make sure the diversity value is comparable across channels. All channels 

should be normalized to the range from 0 to 1 before calculating 𝑉. The diversity filter is a 

high-pass filter. Among all 𝑘  channels, only the first 𝑘௩  channels with the largest diversity 

value would be selected as the input feature channels into the deep readout layer. Notably, the 

original feature channels should be selected mandatorily. 
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5.3 Experiment on RPDs 

5.3.1 Experimental setup 

 For the PDs used in this study, stainless steel balls with a diameter of 1.5 mm were chosen 

as the particles to be filled in the damper cavity, and the filling ratio was set as 50%. Similarly, 

the amount of filling particles is determined by its apparent density (4.9 g/cm3). Thus, the 

weight of filling particles can be calculated according to the volume of the damper cavity. As 

mentioned above, there are three sizes of rail damper cavities, RPD-30, RPD-40, and RPD-60, 

respectively. According to the damper design, the damper is divided into upper and lower 

cavities inside every damper mode. The volume of the different upper and lower cavities is 

shown in Table 5-2. This experiment was conducted by Mr. Xiang-Xiong Li and me. 

Table 5-2 Volume of damper cavity in three modes 

Volume (cm3) RPD-30 RPD-40 RPD-60 

Upper cavity 51 68 102 

Lower cavity 42 56 83 

 Before the experiments, all the damper cavity modes were weighted in empty and filled 

conditions. The cavity’s weight can reflect the dampers’ inertia force during vibration. However, 

the effective mass should be determined by the response force of the damper since the particle 

bed inside the cavity are not steady. It means the damper is not a lumped mass to the primary 

structure but exhibits nonlinearity and the ability to consume vibration energy. 
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Table 5-3 Weight of damper in three modes 

Weight (g) RPD-30 RPD-40 RPD-60 

Empty 1037.6 1071.4 1167.2 

Filled 1493.3 1679.0 2073.7 

 

 

Figure 5-12 Weighting of the dampers. 

 The HEV-2000N-H high-energy constant-resistance shaker was used in the dynamic 

experiments. This kind of shaker has a wide range of working frequency bands, and its response 

phase shift lag is small. The parameters of the HEV-2000N-H shaker are listed below. 

Table 5-4 Parameters of the HEV-2000N-H shaker 

Parameter name Parameter value 

Peak excitation force 2.5 kN 

Force constant 40.9 N/A 
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Peak displacement ±8 mm 

Usable frequency range 0 – 3 kHz 

Movable mass 9.45 kg 

Total mass 147 kg 

 The shaker is hanging on the gantry. The RPD is connected vertically to the shaker head 

with an impedance head (KD3001B). This impedance head will record the force and 

acceleration signal during the dynamic test. For the parameters of this sensor: the maximum 

force peak is 2.5 kN, the maximum acceleration peak is 100 g, and the frequency range is from 

0.5 Hz to 6 kHz. A Dytran 3273 accelerometer is attached to the bottom of the RPD to monitor 

the acceleration signal. The maximum acceleration peak of this sensor is also 100 g. This 

arrangement ensures the correctness of the recorded signal from the impedance head. The 

sampling frequency of this dynamic test is 10 kHz. The experimental setup is shown in Figure 

5-13. 

 

Figure 5-13 Setup of the dynamic test of the RPD. 
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 The experiment aims to explore the response force of RPDs under a specific condition of 

steady-state simple harmonic excitation. Before the dynamic test, a transparent cap was 

installed on the RPD to observe the particles’ moving pattern inside the damper cavity. The 

observation was conducted with an excitation frequency of 100 Hz, and three excitation levels 

were applied to excite the RPD. Namely, 5 g, 20 g, and 40 g, respectively. From the recorded 

video, it can be concluded that during a steady-state simple harmonic excitation, the particle 

bed undergoes a certain vibration pattern with respect to different excitation levels. This kind 

of pattern can be regarded as the specific mode of the particle bed. This finding implies the 

need of future investigation of this complex mechanism. Also, it is found that the particle bed 

barely moves when the acceleration amplitude is 5 g. Therefore, an elevated excitation level is 

preferred in the dynamic test of the RPD. 
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Figure 5-14 Frames of RPD vibration video under 100 Hz excitation with amplitude of: (a) 5 

g, (b) 20 g, and (c) 40 g. 

 A sweep-sinusoidal test will also be applied to the three damper cases. The generated 

dataset will be used to validate the generalization ability of the established model on the 

frequency domain. Similar to the setting applied on the cylindrical damper experiment, the 

signal frequency sweeps linearly from 100 to 2000 Hz in 20 s. The sweep-frequency rate is 95 

Hz/s. 
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Figure 5-15 (a) Sweep sine acceleration signal in time; (b) Time-frequency spectrum of the 

acceleration signal. 

5.3.2 Hysteresis loops of RPDs 

 The steady-state simple harmonic excitation frequency ranges between 100 and 2000 Hz 

with an interval of 100 Hz. The excitation amplitude is controlled manually by switching the 

gain on the amplifier. Five levels of amplitude are applied to the PD in this test: The peak 

acceleration value approximately ranges from around 10 g to around 50 g with a 10 g interval. 

Similarly, the excitation level is abbreviated as “EL”. Excitation lasts 5 s on each condition, 

and 0.1 s of the signal in the middle starting at the π phase is selected for the investigation to 

prevent the transient effect. Each acceleration-controlled vibration signal piece contains 1,000 

temporal stamps as the signal sampling rate is 10 kHz. 
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Figure 5-16 Diagram of force versus excitation acceleration under different frequencies and 

excitation levels of RPD-30. 

 

Figure 5-17 Diagram of force versus excitation acceleration under different frequencies and 

excitation levels of RPD-40. 
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Figure 5-18 Diagram of force versus excitation acceleration under different frequencies and 

excitation levels of RPD-60. 

 Unlike the hysteresis loops presented by the tungsten powder, the stainless-steel balls are 

lightweight particles compared to the tungsten powder and more easily to be excited. Therefore, 

fickle hysteresis loop shapes were observed in this dynamic experiment. This finding indicates 

that the particle bed of stainless-steel balls undergoes various modes at specific excitation 

frequencies. Specifically, two “ears” appears at both ends of some hysteresis loops, e.g., RPD-

30 in the frequency of 1400 Hz, which shows an apparent non-viscous behavior. 
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Figure 5-19 Hysteresis loops of RPD-30 under various excitation levels at 1400 Hz. 

 Take the hysteresis loops of RPD-30 at 1400 Hz as an example. The appearance of two 

“ears” is dependent on the excitation level. When the excitation level is low, the particle bed 

behaves like a viscous friction-combined entity. While the acceleration rises, the ears show at 

the ends of the loops where the peaks of the acceleration values are. To understand this 

phenomenon, one must first realize that the hysteresis loop does not present the acceleration-

force relationship in one period but combines multiple periods at different phases. 

 In Figure 5-20 Time series of acceleration and damper force of RPD-30 at 1400 Hz. we 

can find that except for the primary frequency component, the damper force was superimposed 

with a lower frequency component in the time domain. This component was due to the 

nonlinearity of the damper, which can be interpreted as the response force from the particle bed 

in a specific moving mode. Influenced by the damper force, the acceleration signal also 

contains this component and is no longer a strict simple harmonic signal. 
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Figure 5-20 Time series of acceleration and damper force of RPD-30 at 1400 Hz. 

 The existence of this component results in the different peak values of acceleration and 

force signal at the primary frequency. Take the case of RPD-30 in 1400 Hz as an example. The 

force signal reaches a peak, and then after one period (consider 1400 Hz as the primary 

frequency), the next peak value would be lower or higher. On the hysteresis loop, this effect is 

presented as the separate points that caused the appearance of ears. Connecting the adjacent 

points on the hysteresis loop with lines can make the forming of the acceleration-force loop 

more straightforward. 

 Worthy of mention that the vibration is very high frequency. Moreover, the movement of 

the particle bed is challenging to describe. This theory only explains the general pattern, which 

reconditely arises in the complex high-frequency vibration. A deepen and more detailed 

investigation of this pattern is expected in future research. 
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5.3.3 Baseline methods 

 The target of this section is to extend the basic model to the target model, after the 

establishment of the basic model by ff-TLPINN. In this study, the RPD-30 is selected as the 

basic damper, and the response force models of the RPD-40 and RPD-60 are target model-1 

and target model-2. Since the dataset of these three dampers is obtained from three individual 

experiments, their input features, i.e., excitation signals, must be consistent. In this regard, 

training the two target models together is impossible because their outputs do not correspond 

to the same input. For the same reason, the basic damper force 𝐹ௗଵ input should be generated 

from the basic model with the target excitation signals rather than the original basic damper 

force. 

 

Figure 5-21 Framework of baseline method 1: compensate NN. 

 The first baseline method is based on the most fundamental NN. A compensated NN 

directly connects after the basic model, taking the excitation properties and the generated 𝐹ௗଵ 

as input. A discussion of the architecture of the compensated NN should be discussed. Since 
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all methods involve deep learning layers, the identified optimum structure will be adopted for 

all methods for easy comparison. 

 

Figure 5-22 Framework of baseline method 2: TL-NN. 

 Following the discussion in previous chapters, it is also straightforward to adopt transfer 

learning here. The basic model can be a source model in this two-step transfer learning. The 

Fourier mapping is applied to every step. However, the number of frozen layers in the second 

transfer step should differ from the ff-TLPINN. Otherwise, the first step of transfer learning 

would lose its meaning since it equals directly transferring knowledge from the approximate 

governing equations to the target models. Therefore, the number of free layers in the second 

step should be less than in the first step transfer. 
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5.4 Proof of Concept 

5.4.1 Selection of the NN architecture 

 For the choice of network architecture, large networks (in terms of width or depth) hold 

more sturdy regression ability but also are inevitably more tedious in training. An extensive 

network has more parameters to update in each iteration. Meanwhile, the enlarged network 

could bring only limited enhanced performance when a smaller NN is already qualified for the 

task. Moreover, a solid strategy to guide the network selection is currently absent to the best of 

the authors’ knowledge. Therefore, we test the plain NNs on the dataset. This dataset consists 

of 20 sets of frequencies (100, 200, …, 2000 Hz); 5 sets of acceleration levels (approximately 

10, 20, …, 50 g), a total of 100 slices, each slice of the acceleration-controlled vibration data 

is a 0.1 s long time series starting at the π phase with 1,000 temporal stamps. 

 As mentioned above, the input features to this NN include the excitation properties 

(𝒇, 𝒂, and 𝒗) and the generated response force of the basic damper 𝑭𝒅𝟏 under the corresponding 

excitation. Again, the signal slices of the third excitation level (EL-3) will be extracted as the 

testing dataset. It makes the testing dataset contains 20 slices. Before the training of the model, 

all input feature channels are normalized by the min-max method (Henderi et al., 2021). 

 In the choice of the NN architecture, the number of hidden layers is selected from ℱ =

{3,4,5,6,7}, and the width of the hidden layer is selected from 𝒞 = {50,100,150}. Again, the 

activation function is tanh. The training and testing MSE after 25,000 iterations for each 
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architecture is given in Figure 5-23. 

 

Figure 5-23 Training and testing MSE of each NN architecture after 25,000 iterations. 

Table 5-5 Average MSE on the entire dataset of each NN architecture after 25,000 iterations 

 𝒞 = 50 𝒞 = 100 𝒞 = 150 

ℱ = 3 8460 6848 6468 

ℱ = 4 3554 943.2 436.3 

ℱ = 5 1123 102.1 88.70 

ℱ = 6 342.8 67.29 87.36 

ℱ = 7 154.7 73.18 79.70 

 With the increase of the NN size, the training loss does receive a decreasing trend on the 

training dataset. However, such a trend only sometimes stands in testing, representing the 

model’s generalization ability. It can be found that when the NN is deeper, the rise of NN size 

will deteriorate the performance. By this means, the structure with {ℱ = 6, 𝒞 = 100} will be 
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selected to be applied to all methodologies for comparison, including the basic model. In the 

basic ff-TLPINN, the number of free layers is set as 4, and the initialization standard deviation 

𝜎 = 10. 

5.4.2 Performance of models 

 The second baseline method that employs transfer learning was based on the basic model 

that already conducted one stage of transfer learning from the approximate governing equations 

to the 𝐹ௗଵ. Therefore, if in the second stage transferring the free layer 𝑛 > 4, the first stage 

transferring would be pointless. Hereby in the baseline method 2 (TL-NN), the number of free 

layers will be discussed in the range of 𝑛 ≤ 4. 

 

Figure 5-24 Evolution of the training MSE with the different free-layer number 𝑛 ∈ [1,4] 

and the plain NN. 
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Figure 5-25 Evolution of the testing MSE with the different free-layer number 𝑛 ∈ [1,4] and 

the plain NN. 

 Similar conclusions as the last chapter can be confirmed here. Firstly, transfer learning 

elevated the convergence rate compared to plain NN. Partially related to the fact that the MSE 

started at a lower initial point. Identical to the last chapter, since the size of the dataset is quite 

large. The shallow free layers showed a deteriorating performance, both in terms of training 

and testing. As the mini-batch method with a batch size of 1000 is applied here for training, an 

enlarged deviation can be observed in the training evolution than the testing evolution. Note 

that when 𝑛 = 4, it is essentially a transfer from the approximate governing equations to the 

target model, where the first stage transferring is totally passed over. Consequently, we can 

observe that 𝑛 = 3  is better than 𝑛 = 4 , presenting the contribution of the first stage 

transferring. 
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 After discussing the two baseline models, we now turn to the mc-ESDN based on the ESN 

structure. Here, the size of the reservoir 𝑁௦ is set as 1000, with the spectral radius equal to 0.8. 

No time delay is applied to the input features in this case. As for the MDSC kernels, we selected 

average kernels in time with lengths of 3, 5, 7, and 9, together with the 1st derivative and 2nd 

derivative kernels for 1-D kernels of time; Average kernels in space with lengths of 2 and 3, 

the 1st derivative and 2nd derivative kernels for 1-D kernels of space; For the 2-D kernels, 

Prewitt operator with up and down directions, and the modified DoG operator are selected. 

 Afterall, the feature channel numbers expanded from 4 (𝒇, 𝒂, 𝒗, and 𝑭𝒅𝟏) to 1046 by the 

above operations. The diversity filter is applied here to choose the channels to be input to the 

deep readout layer. 

 

Figure 5-26 (a) Mean diversity values of all 1046 channels; (b) Distributions of the diversity 

value on some representative channels. 
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 As shown in Figure 5-26, many channels hold a limited diversity value, some even close 

to zero. Every channel contains 100 slices corresponding to different excitation conditions. The 

low diversity value means that in these channels, the 100 slices are quite similar to each other. 

For the deep readout layer, such characterless information harms identifying the features. 

Figure 5-26(b) shows the distribution of the 100 slices on some representative channels. Worthy 

of mentioning here that the distribution does not strictly follow the Gaussian distribution. It is 

only a straightforward presentation of each channel’s mean value and standard deviation. Based 

on the filter result here, the 𝑘௩ is set as 20 here to select the channels with high diversity value, 

in which the 4 original channels are mandatorily included. 

 Based on these settings, the evolution of the training and testing MSE of the mc-ESDN is 

shown in Figure 5-27. The deviation of the training MSE is also larger than the testing MSE 

due to the mini-batch method. Finally, at the last iteration, the training MSE equals 3.24, and 

the testing MSE equals 36.68. Therefore, for the entire dataset, the average MSE is 9.93 for the 

mc-ESDN. 
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Figure 5-27 Evolution of the training and testing MSE of the mc-ESDN. 

 For comparison, the training/testing MSE for baseline method 1 and baseline method 2 are 

34.74/137.26 and 14.41/62.51, respectively. Their average MSE are 55.20 and 24.03 for these 

two baseline models. The performance of mc-ESDN is evidently better than the baseline 

methods on the designated dataset. 
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Figure 5-28 Comparison of performance for all three methods. 

5.4.3 Model reconstruction for response force of the RPD 

 The damper response force is reconstructed by implementing the proposed mc-ESDN. 

Since the datasets of the two target models (RPD-40 and RPD-60) are collected in separate 

tests, the obtained response force of these two dampers is not corresponding to the same 

excitation features. Therefore, the deep readout layers must be trained separately for these two 

models. However, they share the parts in the mc-ESDN structure before the readout layers. The 

models are established based on the steady-state datasets, with the third excitation level as the 

testing dataset. After establishing the surrogate model, the sweep-sinusoidal dataset is applied 

to validate the model’s generalization ability on the frequency domain. 

 



179 

 

 

Figure 5-29 Reconstruction MSE of slices for the two target models. 

 There are 100 slices in the steady-state dataset for both target models. Figure 5-29 presents 

the reconstruction MSE for all slices of the two target models. Since the slices related to the 

EL-3 are the testing dataset, the MSE is higher than the other excitation levels. The proposed 

method manages to reconstruct the hysteresis loops of the target RPDs. Even considering the 

testing dataset, the recorded reconstruction error is relatively low compared to the absolute 

value. Therefore, we can find that the predicted hysteresis loops match well with the exact 

loops obtained from the experiment. It elucidates the vigorous ability of the mc-ESDN to 

reconstruct the series data. 
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Figure 5-30 Hysteresis loop of RPD-40 on 100 Hz: (a) Exact damper response force recorded 

in the experiment; (b) The predicted damper response force from the proposed model; (c) The 

prediction error of the surrogate model. 
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Figure 5-31 Hysteresis loop of RPD-40 on 1600 Hz: (a) Exact damper response force 

recorded in the experiment; (b) The predicted damper response force from the proposed 

model; (c) The prediction error of the surrogate model. 

 From the results, we find the reconstructed hysteresis loops for RPD-40. The MSE for the 

slice on 1600 Hz, EL-5 is quite large. The prediction error mainly concentrates on the lower 

part of the hysteresis loop. The reason may be the relatively large force recorded here. As deep 

learning is a typical interpolation method, the performance may be reduced outer the main 

range of the dataset. Still, the shape of the reconstructed loop is acceptable. 
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Figure 5-32 Hysteresis loop of RPD-60 on 100 Hz: (a) Exact damper response force recorded 

in the experiment; (b) The predicted damper response force from the proposed model; (c) The 

prediction error of the surrogate model. 
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Figure 5-33 Hysteresis loop of RPD-60 on 600 Hz: (a) Exact damper response force recorded 

in the experiment; (b) The predicted damper response force from the proposed model; (c) The 

prediction error of the surrogate model. 

 As for the reconstruction result of RPD-60, the MSE is considerable at 600 Hz. However, 

no particular high error section appears on the loop shape. The loop shape difference between 

this frequency and the other frequencies may be the reason for the high MSE. 
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Figure 5-34 Sweep-sinusoidal dataset validation of RPD-40: (a) Exact damper response 

force; (b) The predicted damper response force from the proposed model; (c) The prediction 

error of the surrogate model. 

 Next, the sweep-sinusoidal dataset will be input into the established model for validation. 

The excitation signals are firstly input to the basic model to generate the corresponding damper 

force of RPD-30, which is required for the extended model. The error of this reconstruction is 

two-fold: the error in the reconstruction of 𝐹ௗଵ, and the error in the reconstruction of 𝐹ௗଶ,ଷ. The 

observed MSE is significantly larger than the training datasets. 
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Figure 5-35 Sweep-sinusoidal dataset validation of RPD-40: (a) Exact damper response 

force; (b) The predicted damper response force from the baseline model 2; (c) The prediction 

error of the baseline model 2. 

 However, compared to the proposed model, baseline model 2 with transfer learning 

achieved a lower prediction error on the validation dataset. It elucidates that the proposed 

method can strongly reconstruct series data thanks to its RNN nature. However, for a series 

with different forms, such as sweep-sinusoidal to steady-state harmonic, the generalization 

ability of the proposed method is limited. Similar findings can be found from the results on 

RPD-60.
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Figure 5-36 Sweep-sinusoidal dataset validation of RPD-60: (a) Exact damper response 

force; (b) The predicted damper response force from the proposed model; (c) The prediction 

error of the surrogate model. 
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Figure 5-37 Sweep-sinusoidal dataset validation of RPD-60: (a) Exact damper response 

force; (b) The predicted damper response force from the baseline model 2; (c) The prediction 

error of the baseline model 2. 

5.5 Summary 

 This chapter exploits the using of ESN to establish the extension model based on the basic 

model, which is proposed in the last chapter, i.e., ff-TLPINN. The standard ESN is synergized 

by a multi-dimensional and multi-scale convolution feature extractor and a deep readout layer. 
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Results show that the proposed mc-ESDN can effectively establish the model for multiple 

damper cases. The conclusions can be summarized as follows: 

1. The proposed mc-ESDN is reliable in reconstructing the hysteresis loops of multiple 

RPDs based on the series data acquired from the dynamic experiments. The training 

and testing MSE on the designated dataset are 3.24 and 36.68, respectively. 

2. The two baseline models that apply the plain NN and TL-NN also accomplished the 

task of establishing the target model with the same dataset, but their performance is not 

as good as the proposed method. The training/testing MSE for the two baseline 

methods are 34.74/137.26 and 14.41/62.51, respectively. 

3. The RNN nature of mc-ESDN offers vigorous ability to reconstruct series data. But 

when confronting the dataset with a different form, the generalization ability of the 

proposed method is limited compared to the baseline method 2. The mc-ESDN 

achieves 187.09 MSE on the sweep-sinusoidal dataset, while the later method achieves 

only 130.32 MSE. 

This study investigates the sections of the RPD with different cavity sizes under various 

excitations. Moreover, the surrogate model of the RPD is established accordingly. From this 

work, we can have the basic information of the RPD, which will facilitate its application on 

rail tracks. This work concentrates the RPD filled with 50% 1.5 mm stainless steel balls. For 

other filling ratios or particle types, the concept presented in this chapter can easily be repeated 

to model the damper force.  
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CHAPTER 6.  

Evaluation of RPD from Laboratory Test to 

Field Application 

 

6.1 Introduction 

 In the CHAPTERS 3, 4 and 5, the understanding of particle damping was built up 

progressively. The surrogate models of the particle dampers were established under the deep 

learning framework. The modeling methods were explored from the cylindrical cavity damper 

to the rail particle damper (RPD) and from the energy loss factor to the damper response aspect. 

The deep learning methodology provides a vigorous mean to identify the mechanism of particle 

dampers based on experiments. The established surrogate model circumvents describing the 

specific motion of the particle bed, which is too intricate for traditional methods to achieve. 

However, deep learning methods cannot foresee cases that have not been tested. Therefore, it 

is still needed to conduct experiments to determine the optimum configuration for the rail 

particle damper. 

In this chapter, the effectiveness of RPD was first tested on a single-bay rail track. The 

vibration suppression ability of RPD was evaluated under various filling materials and ratios. 

After this step, the RPDs would be further tested on a 6 m rail testbed with a few selected filling 
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particles. The purpose of these experiments was to compare the different filling particles. Then, 

the modal analysis of the RPD cavity was conducted to reveal its displacement and deformation 

relative to the rail track. This modal test was conducted on the single-bay rail track. The full 

range of particle filling ratio would also be explored in this test.  

Finally, a field test on a noise-sensitive viaduct section of an operating urban metro line 

was conducted for a systematic noise and vibration mitigation performance evaluation of the 

RPDs. The rail track structure forms a periodic structure by implementing the RPDs. The wave 

propagation on this periodic structure can be analyzed to model the track decay rate of the rail, 

which is a crucial factor in evaluating the noise generated by the rail track. 

6.2 Laboratory Vibration Test of RPD on Rail Track 

6.2.1 Single-bay rail impact test 

 A series of impact hammer tests were meticulously designed and conducted to assess the 

vibration reduction capabilities of the rail system equipped with RPD. The performance of the 

RPD is influenced by various properties of the particles within a specific damper cavity, 

including particle density, friction coefficient, restitution coefficient, and particle size. These 

properties are determined by the particle material, making them crucial factors in the RPD’s 

performance. To comprehensively investigate the influence of these parameters, a range of 

materials with different sizes were utilized in the impact hammer experiment. The tested filling 
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substances encompassed powders (nickel and tungsten), liquids (silicone oil), and ball-shaped 

particles with varying sizes (ceramic and stainless steel). Furthermore, for each material case, 

the damper cavities were filled at different filling ratios, allowing for a thorough examination 

of their impact on the RPD’s performance. The single-bay rail impact test was conducted by 

Dr. Seyed Masoud Sajjadi Alehashem and Dr. Jason Lin. The following results and analysis are 

referring to the internal technical report of CNERC-Rail (Masoud, 2019). 

 During this test, the RPDs were installed on a single-bay rail system. The rail test specimen 

consisted of a rail section of CHN60 with a unit weight of 60 kg/m and a length of 0.8 m. The 

cut section was placed on two support pads with a distance of 0.6 m, mirroring the standard 

distance of the rail bay in the railway industry. The rail fastening system was based on a spike 

that is inserted into the concrete sleeper with a screw, which secures the clamp in place. 

 The accelerometers are mounted at three different points on the rail track to measure the 

response under the impact excitation. The measuring points include the rail head, rail web, and 

rail foot. In this test, the impact direction and response measurement focus on the vertical (Z) 

direction, the primary vibration direction in railway operations. The layout of accelerometers 

and the defined testing directions are shown in Figure 6-1. The impact point locates 25 mm 

away from the central point of the midspan of the rail head, as illustrated in Figure 6-2. 
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Figure 6-1 The layout of accelerometers. 

The hammer used in the test is equipped with a stainless steel impact tip. The choice of 

material for the impact tip determines the effective frequency band of the impact. Specifically, 

the amplitude decay of the force spectrum in this frequency band should not exceed 10 dB. 

Typically, the harder the tip, the wider the effective frequency band will be. In this particular 

test, the stainless steel impact tip has an effective frequency band of up to 2 kHz. It’s worth 

noting that the rolling noise emitted by the rail track is concentrated below 2 kHz in the straight 

rail line. 

 

Figure 6-2 Impact and measuring points. 
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Figure 6-3 Frequency spectrum of impact force with steel tip. 

 In the research on railway vibration, the rail track system is always regarded as a linear 

system even though there are various nonlinear components, including rail pads and clips (Wu 

& Thompson, 2002; Jin et al., 2022). The reason is that the stiffness of the rail track is 

considerably high, so the vibration amplitude of the rail track is generally within 2 mm. Many 

of the nonlinear effects will not appear in such a micro-displacement vibration. For example, 

the particle bed inside the damper cannot impact the cavity ceiling in this scenario. Therefore, 

the nonlinearity of the particle damper is greatly reduced. In practice, it was also found that the 

response function of the rail track-damper coupled structure barely remained stable under 

different amplitudes of impact. Consequently, the system will be regarded as a linear structure 

in this section, and the frequency response function (FRF) will be evaluated under the same 

amplitude of impact force level. 

 Various types of filling particles were tested in this experiment. For each material case, the 

damper was filled with a certain amount of particles according to the volume of each cavity. 

The filling ratio was determined according to the apparent density of the particles, i.e., 
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calculated by the weight of a pile of particles divided by the volume of this pile. Then the 

number of filling particles can be confirmed by measuring the weight of particles, which is 

more straightforward than measuring the volume, especially for solid particles. 

 

Figure 6-4 Measuring of filling particles. 

 A high-precision digital scale acquired the weight of filling particles. After filling the 

dampers with a specific amount of particles, the RPDs were mounted on the two sides of the 

rail track with the specially designed damper fixture mentioned in CHAPTER 5, shown in 

Figure 6-5. 
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Figure 6-5 The mounted RPDs on the rail track. 

 As discussed in the CHAPTER 3, an increased filling rate brings larger weight to the 

damper. However, the energy consumption efficiency is reducing with the increasing filling 

ratio, and the cost of  dampers will also be higher. Futhermore, a large weight particle bed is 

not likely to be excited, which brings a deteriorated energy consumption performance. 

Therefore, it is not preferred to set the filling ratio be too large when applying RPDs. The filling 

ratio of each material will be controlled under 50%. For the liquid case, four levels of filling 

ratios are set, i.e., 20%, 40%, 60%, and 80%, respectively. The reason is that the density of 

silicone oil is relatively small compared to the powders and balls, so weighting the 10% filling 

ratio increment is challenging. This experiment aims to compare the effectiveness of different 

materials, these results will be compared with the empty damper cases mounted on the rail 

track. The studied cases are: 

 Rail system with empty damper (indicated as Empty in comparative graphs). 
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 Rail system with RPDs filled with 0.2 mm tungsten powder (10%, 20%, 30%, 40%, 

and 50% filling ratio with powder). 

 Rail system with RPDs filled with 0.2 mm nickel powder (10%, 20%, 30%, 40%, and 

50% filling ratio with powder). 

 Rail system with RPDs filled with silicone oil (20%, 40%, 60%, and 80% filling ratio 

with silicone oil). 

 Rail system with RPDs filled with ceramic balls (10%, 20%, 30%, 40%, and 50% 

filling ratio with balls). The size of the ceramic balls includes 0.2 mm, 0.4 mm, 0.8 

mm, 1.5 mm, and 3.0 mm. 

 Rail system with RPDs filled with stainless steel balls (10%, 20%, 30%, 40%, and 

50% filling ratio with balls). The size of the stainless steel balls includes 0.5 mm, 0.8 

mm, 1.5 mm, 3.0 mm, and 5.0 mm. 

6.2.2 Test results and analysis 

 In the impact hammer testing, the response measured near the impact location serves as 

the reference point, which is the rail head in this case. The measurement of other locations can 

provide the vibration level of the structure. In this section, the response on the rail web and rail 

foot, where close to the RPDs, is worthy of analysis to obtain the effectiveness of the RPDs. 

 The FRF responses of the rail system without damper were collected and presented in this 



197 

 

section. The vertical FRF responses of the rail system on the rail web and rail foot are shown 

in Figure 6-6. Two distinct peaks around 500 Hz and 1500 Hz can be identified. These peaks 

are referring to the first bouncing mode and first bending mode (pin-pin mode) of the rail track 

(Thompson, 2002). The most significant response occurred at the second peak around 1500 Hz. 

This peak will be regarded as the target response of this structure system to evaluate the RPD’s 

performance. 

 

Figure 6-6 The vertical (Z) FRF of the rail system without damper. 

 The stiffness of the rail section makes the vibration in different locations consistent with 

each other. As shown in the FRF of rail web and rail foot, the values are almost the same at 

these two locations, indicating a similar evaluation result on these measuring points. The 
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primary purpose of this test is to compare the vibration suppression ability of RPDs filled with 

different types of materials. Therefore, the FRF with all kinds of RPDs on the rail web will be 

presented in the following content for comparison. 

 The obtained FRF result was averaged from five impacts. During the test, the impact force 

was controlled within the range from 500 N to 800 N to ensure the input energy to the rail 

system was stable. Before the test, three different force levels were applied to the rail system 

equipped with RPD to verify the linear assumption. The RPD filled with 50% 1.5 mm stainless 

steel ball was mounted on the rail in this trial test. The three excitation levels (ELs) are set as 

EL-1: 500-800 N, EL-2: 1000-1300 N, and EL-3: 1700-2000 N. 

 

Figure 6-7 The FRF of rail track under various excitation levels. 

 It can be observed that at both peaks (around 500 Hz and 1500 Hz), the different impact 

force level brought almost the same response on the structure. Therefore, the rail track system 

can be regarded as a linear structure. The reason is that the mass of particles (2.2 kg) is not 
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comparable to the mass of rail track system. Therefore, the nonlinear behaviour of particles has 

limited effect on the system. 

 Next, the FRF of the rail system equipped with various RPDs that filled with different 

types of particles and filling ratios will be discussed to evaluate the effectiveness of particles. 

 

Figure 6-8 The vertical accelerance of the rail system with empty RPD case. 

 First, the empty RPD cases were attached to the single-bay track. The adding of the empty 

case changed the rail structure system. However, it can be seen in Figure 6-8 that the empty 

RPDs barely had any influence on the first peak of the rail track. It did lower the track’s pin-

pin mode at around 1500 Hz, but the effect is relatively small, which reduced the peak by 

approximately 25%. 

 The tungsten powder used in this test is an ultra-fine powder with a particle size of 0.2 mm. 

A photograph of the RPD filled with tungsten powder is shown in Figure 6-9. 
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Figure 6-9 Tungsten powder. 

 The vertical accelerance of the rail system with RPD filled with different ratios of tungsten 

powder is shown in Figure 6-10. It can be seen that the accelerence at two peaks effectively 

decreased proportionally with the filling ratio. Also, a slight frequency shift has occurred 

because of the increment of the rail system’s mass after the filling of particles. 

 

Figure 6-10 The vertical accelerance of the rail system with RPD filled with tungsten 

powder. 
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 The nickel powder used in this test is also an ultra-fine powder with the same diameter of 

0.2 mm. A photograph of the RPD filled with nickel powder is shown in Figure 6-11. 

 

Figure 6-11 Nickel powder. 

 

Figure 6-12 The vertical accelerance of the rail system with RPD filled with nickel powder. 

 The vertical accelerance of the rail system with RPD filled with different ratios of nickel 

powder is shown in Figure 6-12. The response at the second peak was reduced but not 
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significant. Furthermore, the reduction relationship between the filling ratio is not clear. It can 

already be concluded based on these results that nickel powder is not preferred compared to 

tungsten powder to fill the RPDs. 

 Silicone oil was selected as a filling substance and was poured into the damper cavity to 

investigate the effects of the liquid substance on the performance of the RPD. The silicone oil 

is chemically stable and has no effect or reaction with the damper body. Also, the silicone oil 

is cost-effective. The used silicone oil is XIAMETER, model PMX-200. This kind of oil has a 

kinematic viscosity of 10 cSt. A photograph of the RPD filled with silicone oil is shown in 

Figure 6-13. 

 

Figure 6-13 Silicone oil.
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Figure 6-14 The vertical accelerance of the rail system with RPD filled with silicone oil. 

 To prevent any leakage between the cavities. A gasket with a thickness of 2 mm was 

applied to seal the cap of the damper. The vertical accelerance of the rail system with RPD 

filled with different ratios of silicone oil is shown in Figure 6-14. The response decreased at 

the target frequency. However, the vibration mitigation degree is low and not clearly related to 

the filling ratios. In practice, if the liquid substance does not significantly enhance the 

performance, it is usually not preferred due to the chance of leakage and the accompanying 

increase in the maintenance cost. 
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Figure 6-15 Ceramic balls. 

 

Figure 6-16 The vertical accelerance of the rail system with RPD filled with different sizes of 

ceramic balls. 

 Five sizes of ceramic balls (0.2, 0.4, 0.8, 1.5, and 3.0 mm) were investigated. Ceramic is a 
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lightweight material. Its apparent density is 5.68 g/cm3. It is found that some typical size of 

ceramic balls exhibited good performance in reducing the vibration of rail tracks. For instance, 

0.2 mm and 1.5 mm ceramic balls. The influence of the ball size is two-fold. Thanks to the 

decreased clearance inside the particle bed, more particles can be filled under the same filling 

ratio with a smaller ball. On the other hand, the reduced clearance increases the contact area 

between particles, making the friction effect more significant. The influence of the smaller ball 

size on the impact effect is hard to determine. It weaks the effect of every single impact between 

particles since the weight of the ball is reduced. However, the amount of the impact occurred 

increased. It is difficult to conclude how the impact effect would affect the damper performance. 

 However, the experimental results do not present a straightforward trend regarding the ball 

size. In general, the 0.2 mm and 1.5 mm ceramic balls performed well, and this two kinds of 

ceramic balls would be selected for further exploration. 

 

Figure 6-17 Stainless steel balls. 
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 The FRF responses of the rail system with RPD filled with stainless steel balls are 

presented here. Since the stainless steel balls smaller than 0.5 mm are uncommon in the market. 

So that a larger ball size with diameter equal to 5.0 mm is added in this case. Again, five sizes 

of stainless steel balls (0.5, 0.8, 1.5, 3.0, and 5.0 mm) were investigated. 

 

Figure 6-18 The vertical accelerance of the rail system with RPD filled with different sizes of 

stainless steel balls. 

 The stainless steel balls also show a good performance in vibration reduction. Its density 

(7.5-8.0 g/cm3) is larger than the ceramic, meaning that the weight of this kind of RPD is larger. 

The larger mass makes the stainless steel balls less likely to be excited and impact each other. 

Consequently, the friction effect plays a major role in this kind of damping. 
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 In conclusion, the energy dissipates for the liquid is based on the laminar shear of the 

liquid’s molecules. Therefore, if the excitation amplitude is not big enough in the vertical 

direction, the liquid cannot effectively contribute to energy dissipation because of the fluid’s 

weight and molecular bonding. Another energy dissipation mechanism in the liquid is fluid 

splashing, which only happens on the surface of the fluid which is insignificant in this case. 

 Energy dissipates through the friction and impact effects for powders and solid balls 

(ceramic and stainless steel). In this scenario, the amplitude of vibration in the vertical direction 

is small due to the stiffness of the rail system. The impact effect is significantly reduced in such 

micro-displacement vibration. Therefore, the friction effect plays a major role in dissipating 

energy. 

Table 6-1 Summary of the best performance of each experiment case in single bay rail track 

Substance Material 

Size 

(mm) 

Apparent 

Density 

(g/cm3) 

Optimum 

Filling 

Ratio (%) 

Average Peak 

Accelerance 

Reduction 

around 1500 

Hz (%) 

Powder 

Tungsten 0.1 8.90 50 32 

Nickel 0.1 5.15 50 17 

Liquid Silicone oil 𝜈 = 10𝑐𝑆𝑡 0.90 40 21 
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Solid ball 

Ceramic 

0.2 3.82 30 46 

0.4 3.82 30 23 

0.8 3.80 40 42 

1.5 3.80 40 43 

3.0 3.78 40 32 

Stainless 

steel 

0.5 4.99 30 36 

0.8 4.96 40 33 

1.5 4.96 40 40 

3.0 4.88 40 34 

5.0 4.74 40 28 

 By referring to Table 6-1, the performance of balls is generally better than powders and 

liquids. As mentioned above, liquid is not suitable for field applications compared to solid 

materials. Two types of the ceramic balls (0.2 mm and 1.5 mm) and one type of the stainless 

steel balls (1.5 mm) will be further tested in the next subsection to confirm the optimum filling 

substance for the RPDs. 
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6.2.3 Vibration test on 6 m full-scale rail testbed 

 After the impact hammer test on the single bay rail, three types of particles have been 

identified to hold the pronouncing ability in mitigating the rail track vibration, namely, 0.2 mm 

ceramic balls, 1.5 mm ceramic balls, and 1.5 mm stainless steel balls. These types of particles 

would be further evaluated on a full-scale rail testbed. The testbed contains a 6 m CHN60 rail 

track section, placed on 10 sleepers equipped with rail fastening systems. The distance between 

two sleepers is the same as in the railway industry, i.e., 0.6 m. 9 pairs of RPDs will be mounted 

on the rail track at every rail bay. This experiment was conducted by Dr. Masoud and me. 

 The B&K LDS V-650 shaker was hung on a gantry to apply dynamic force to the rail track. 

The shaker was the same type used in CHAPTER 3, its basic parameters are listed in Table 6-2. 

The shaker head was connected to the track with a connecting rod to transmit the force. The 

KD3001B impedance head was placed on top of the rod to record the excitation force on the 

rail. 

Table 6-2 Specifications of the dynamic shaker 

Parameter name Parameter value 

Sine force peak 2.2 kN 

Max acceleration sine peak 50 g 

Usable frequency range 5 Hz – 4 kHz 
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Figure 6-19 Setup of the rail testbed. 

 The 10 sleepers were named S1 to S10, and the rail bays between sleepers were named B1 

to B10, respectively. The dynamic shaker was attached to the rail head on B1. 9 accelerometers 

were mounted on the rail head, rail web, and rail foot on B1, B5, and B9. The layout of the 

sensors and the defined testing directions are shown in Figure 6-20. 
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Figure 6-20 Layout of the sensors and the rail track (Masoud). 

 Two forms of excitations will be applied to the testbed in this test. The dynamic shaker is 

able to apply sinusoidal sweep excitation to the structure and obtain the structural response on 

the entire frequency band in the vertical (Z) direction. Similarly, the impact hammer could 

simulate impulse excitation to the structure. For comparison, the impact location was also on 

the rail head at B1. 

 This test aims to find the most effective particle material for mitigating rail track vibration. 

The particle types mentioned above would be filled in the RPD and evaluated on this testbed. 

Again, the investigated range of particle filling ratio was set within 50% under the same reason 

in the section 6.2.1. Furthermore, to investigate the influence of the empty RPD. The empty 

RPDs without any particle filled in the cavity were also mounted on the testbed to evaluate the 

vibration of the rail track. Therefore, the studied cases in this test include: 
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 Rail testbed with empty RPDs (indicated as Empty in comparative graphs). 

 Rail testbed with RPDs filled with ceramic balls (10%, 20%, 30%, 40%, and 50% 

filling ratio with balls). The size of the ceramic balls includes 0.2 mm, and 1.5 mm. 

 Rail testbed with RPDs filled with stainless steel balls (10%, 20%, 30%, 40%, and 

50% filling ratio with balls). The size of the stainless steel balls is 1.5 mm. 

6.2.4 Test results and analysis 

 This test recorded and compared the responses of the 6 m rail track equipped with different 

RPDs. The sensors were mounted on three bays of the rail track, namely, B1, B5, and B9. The 

B1 is also the location where excitation was applied to the track. The FRF on the rail head and 

rail foot of each case will be presented in this subsection. 
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Figure 6-21 The vertical accelerance of the 6 m rail track on different locations with RPD 

filled with 0.2 mm ceramic balls under sweep sinusoidal excitation. 
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Figure 6-22 The vertical accelerance of the 6 m rail track on different locations with RPD 

filled with 0.2 mm ceramic balls under impact hammer excitation. 

 For the results with 0.2 mm ceramic balls, the rail head and rail foot responses are 

consistent, especially on the main peaks of the FRF, which are in the range of 0 to 1500 Hz. It 

indicates the results are reliable as the rail section presents uniformity during the vibration. 

 Considering the response of bare rail track without mounting any dampers, more peaks on 

FRF were excited at B1 compared to the signal-bay rail test since the 6 m rail is a more complex 
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structure that closer to the actual application. However, many of these peaks did not appear at 

B5; only the major modes related to the entire structure were observed on the middle bay. When 

it came to the end of the track, i.e., B9, the vibration energy decayed due to the damping of the 

rail system, including the clips and pads and the rail track itself. 

 The responses of the rail system under shaker and impacte hammer excitations are barely 

equal to each other. Since sweep sinusoidal excitation is quite a different form of input 

compared to impact impulse excitation in many aspects, this finding is another proof of the 

linear assumption in this circumstance. It is equivalent to presenting the FRF of the rail system 

under any form of excitation. In the following contents, the FRFs of the rail system with the 

impact hammer test will be presented since the impact hammer is the most common choice in 

the field tests of railway system. 

 More dampers were installed on the testbed compared to the single bay, increasing the total 

weight of the auxiliary weight on the rail system. However, adding particles into the damper 

did not move the peak on the frequency spectrum. This finding indicates that the particle bed 

did not perform as a lumped mass but as an energy dissipator in the dampers. Generally, a larger 

filling ratio leads to enhanced performance in mitigating vibration on the peak around 800 Hz. 
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Figure 6-23 The vertical accelerance of the 6 m rail track on different locations with RPD 

filled with 1.5 mm ceramic balls under impact hammer excitation. 

 It is observed that there was not much difference between the results of 0.2 mm and 1.5 

mm ceramic balls. Indicating the size of the particles did not play an important role in the 

performance of the RPDs in this case. 
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Figure 6-24 The vertical accelerance of the 6 m rail track on different locations with RPD 

filled with 1.5 mm stainless steel balls under impact hammer excitation. 

 Clear trend of the filling ratios can be found with the cases of 1.5 mm stainless steel balls, 

which were the heaviest particles in this test. The RPDs filled with 50% of the 1.5 mm stainless 

steel balls reduced this peak to a considerable low level. It indicates that this kind of particle is 

a suitable choice for mitigating rail vibration. 

 In conclusion, the weight of particles is heavier for the 1.5 mm stainless steel balls. 
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Compared to ceramic balls, the mass of the stainless-steel particle bed played a more significant 

role in affecting the vibration of the rail system. The influence of mass for the ceramic balls 

was limited, and it was found that a 40% filling ratio achieves the best performance with this 

type of particle. The best performance of each type of particle is presented in Table 6-3. 

Table 6-3 Summary of the best performance of each experiment case on 6 m rail testbed 

Material 
Size 

(mm) 

Apparent 

Density 

(g/cm3) 

Pin-pin 

Accelerance 

Reduction at 

B1 (%) 

Pin-pin 

Accelerance 

Reduction at 

B5 (%) 

Pin-pin 

Accelerance 

Reduction at 

B9 (%) 

Ceramic 

0.2 3.82 48 65 64 

1.5 3.80 45 72 76 

Stainless steel 1.5 4.96 50 80 85 

 After a series of laboratory experiments, it can be concluded that the 1.5 mm stainless steel 

balls are the most suitable type of particles to be applied to mitigate the rail track’s vibration 

among all tested filling substances. In the field application, a large amount of RPDs will be 

fabricated and transported. As discussed above, To demonstratively elucidate the effectiveness 

of RPDs in the railway industry, a 50% filling ratio of 1.5 mm stainless steel balls will be 

applied to control the cost. Since this configuration already presented a good performance in 

controlling the pin-pin mode of the rail track. A futher study on this filling particles considering 



219 

 

the filling ratio from 0 to 90% is presented in the next subsection. 

6.2.5 Modal analysis of the RPD on rail track 

 The 1.5 mm stainless steel ball was identified to be a suitable material as the filling 

particles in the RPD. To evaluate the effect of installing RPDs on the track, the RPD as an 

accessory component to the rail track has to be investigated. To that end, the modal analysis of 

the RPD, when it is attached to the track, is conducted here. The motivation is to understand 

the vibration mode of the damper on the track during vibration, and the modal damping ratio 

is obtained to reflect the energy dissipation by the damper, including the fixture system. 

 

Figure 6-25 Sensor arrangement for the modal analysis on the RPD. 

 The analysis result of this modal test will serve for the modeling periodical rail track 

equipped with RPDs. The infinite track consists of multiple single-bay track units is applied in 

that periodic model. Therefore, the modal analysis of the RPD was conducted on the single-



220 

 

bay rail track. As shown in Figure 6-26, six accelerometers were mounted on the damper cavity 

at its six corner points. The acceleration corrected at these points can reflect the mode shape of 

the RPD during vibration. 

 The impact was applied on the top of the rail head. This excitation aims to simulate the 

wheel-rail impact in operation. One accelerometer was placed at the impact location as the 

reference response. The 1.5 mm stainless steel ball was filled in the damper cavity in this test. 

A thorough investigation on the influence of the filling ratio was conducted, which covered the 

filling ratio from 0 (empty cavity) to 90%. Worth noting here that with the 90% filling ratio, 

the cavity was almost full of particles considering the clearance between particles. The particle 

bed could barely move at this filling ratio. 

 Upon the impact excitation, the damper cavity would exhibit various vibration modes on 

the frequency band under different filling ratios. However, according to Figure 6-18, the 

difference brought by various filling ratios can only be observed at around 1500 Hz. Therefore, 

we only focus on the mode around this frequency. 

Table 6-4 Modal analysis of the RPD on single-bay track around the pin-pin mode 

Particle filling ratio  

(%) 
Damper weight (g) 

Modal frequency 

(Hz) 

Modal damping ratio 

(%) 

0 2355.9 1422 1.19 

10 2730.6 1465 1.69 
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20 3115.8 1441 1.63 

30 3578.4 1488 3.28 

40 4007.2 1454 3.42 

50 4412.3 1465 3.62 

60 4809.1 1434 2.53 

70 5211.9 1485 2.03 

80 5606.1 1482 1.79 

90 5998.5 1478 1.70 

 The vibration of the track induced the vibration of the RPD, and the particle bed inside the 

cavity. However, the modal damping ratio of the RPD varies a lot with different filling ratios, 

indicating the influence of the particle bed inside the cavity. According to the results presented 

in Table 6-4, the 50% filling ratio achieved the highest modal damping ratio. Recall the findings 

observed in CHAPTER 3. The large mass particle bed is less likely to be excited in vibration. 

This phenomenon is not beneficial for the particle bed to dissipate energy. Consequently, the 

filling ratio higher than 50% did not dampen the track system more than the 50% filling ratio. 
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Figure 6-26 Curve fitting results of modal analysis on the damper cavity (Ao). 

 

Figure 6-27 Modal shape of the RPD cavity with 50% filling ratio of 1.5 mm stainless steel 

balls at 1465 Hz (Ao). 
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 Figure 6-26 shows the curve fitting results of the modal analysis. It is found that the damper 

cavity exhibited multiple modes. However, only the mode around the target mode of the track 

significantly affected the rail track as discuss in section 6.2.2. 

 The model shape of the RPD (Figure 6-27) reveals that the RPD mainly performs the 

bouncing movement in the vertical direction relative to the rail track. The fixtures behave like 

vertical springs that connect the dampers to the rail track. This relative displacement transmits 

the vibration energy to the RPDs, and then the energy is consumed by the vibration of the 

particle bed. 

6.3 Wave Propagation Model on Periodical Structure 

 The vibration mitigation ability of the RPD and its dynamic property has been well studied 

in the laboratory. In the following content, two remaining issues should be settled for 

developing this kind of rail damper to control the noise and vibration of the railway. First, the 

previous investigation focused on the vibration aspect. Since the vibration is the origin and 

essence of the noise and vibration problem, the rail track acoustic radiation analysis should be 

conducted based on the rail track vibration. Secondly, the RPD should be evaluated on an 

operating line to prove its effectiveness in real applications. 

 For the first issue, the acoustic radiation of the rail track is related to a factor named track 

decay rate (TDR). The TDR describes the vibration decay along the rail track, which can be 
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obtained by experimental and theoretical means. The TDR can be measured through a series of 

impact hammer tests along the rail track according to the standard BS EN 15461. Theoretically, 

the rail track system, with or without dampers, can be considered a periodical structure. The 

wave propagation along this periodical structure can be calculated through Floquet’s theorem 

(Barone et al., 1977). Eventually, the TDR can be obtained from the wave propagation constant. 

 The TDR’s practical and theoretical analysis can be achieved with a field experiment of 

the RPD. The following section selects a noise-sensitive operating urban metro line to test the 

effect of RPDs. Details will be presented afterward, and this section will mainly discuss the 

theoretical model. 

6.3.1 Relationship between TDR and rail track acoustic radiation 

 The TDR measures the vibration decay rate along the rail track. The higher TDR means 

the vibration decays rapidly on the track due to damping. The acoustic radiation of the track is 

thus lower in this condition. The acoustic radiation ability of a unit-length rail track can be 

expressed as: 

𝑊ഥ = 𝐴𝜎𝜌𝑐𝑣ଶ (6-1) 

Here, 𝑊തതത  is the acoustic radiation power of unit length rail track; 𝐴  is the area of acoustic 

radiation; 𝜎 is a constant related to the acoustic efficiency of the rail track; 𝜌 represents the 

density of air, and 𝑐 is the sound velocity; 𝑣2 is the average value of the vibration velocity on 
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the track surface. 

 Thereby, the total acoustic radiation along a track is the integration of the unit length. 

𝑊 = 𝑊ഥ න|𝑣(𝑥)|ଶ 𝑑𝑥 (6-2) 

 Consider the exponential form of the damping attenuation, and the vibration is assumed to 

decay exponentially along the track. By defining an attenuation constant or wave propagation 

constant 𝜇. We will have, 

|𝑣(𝑥)|ଶ = 𝑣(0)𝑒ିଶఓ|௫| (6-3) 

Combining the Equation (6-2) and Equation (6-3), the total acoustic radiation is expressed as: 

𝑊 = 𝑊ഥ න|𝑣(𝑥)|ଶ 𝑑𝑥 = 𝑊ഥ 𝑣ଶ(0)
1

2𝜇
 (6-4) 

 According to Equation (6-4), it is clear that with a larger 𝜇, the acoustic radiation of the 

rail track will be lower. However, it is common to use another factor to replace the 𝜇 in practice, 

which is the TDR with the unit of dB/m. The transition from wave propagation constant 𝜇 to 

TDR is expressed as: 

𝑇𝐷𝑅 = 20𝑙𝑜𝑔ଵ(𝑒ఓ) (6-5) 

 From the above derivation, it can be concluded that the TDR is an important physical factor 

in predicting the noise behavior of the railway system. The wave propagation constant 

mentioned here is the real part of the complex constant. A detailed discussion will be presented 

afterward. 
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6.3.2 Free wave propagation model 

 The rail track on site is a periodically supported infinite beam structure. Also, the RPDs 

are evenly installed on every bay of the rail track. The periodic rail structure consists of infinite 

units with a length of one bay, similar to the single-bay rail track in the laboratory experiment. 

Therefore, the single-bay rail test results are a good reference for the modeling. As seen in 

Figure 6-18, the installed RPDs mainly affect the rail track around its pin-pin mode, but have 

limited influence on the FRF at other frequency ranges, besides, according to the modal 

analysis of the installed RPDs. The mode of the RPDs around the pin-pin mode is related to 

the bouncing movement of the damper cavity. Therefore, in modeling the vertical vibration of 

the rail track mounted with RPDs, the RPDs are vertically connected to the rail track with a 

spring to reflect its influence on the track. 

 Here, a simplified model to study the wave propagation is proposed here based on a Euler- 

Bernoulli beam for practical use. The ground vibration and damping are neglected in this model, 

since the ground vibration frequency is too low to significantly affect the vibration of rail tracks. 

 The wave propagation constant 𝜇 is obtained by analyzing the periodic segment of the 

infinite track, as shown in Figure 6-28. In this case, the rail is securely attached to a concrete 

slab. The fastening system, which consists of discretely positioned rail clips, applies two 

constraints to the rail track: the translational stiffness 𝑆௧ and the rotational stiffness 𝑆. 
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Figure 6-28 Periodic model of the track placed on concrete slab with discrete supports and 

RPDs. 

 The vibration along the rail track is analyzed by the Euler-Bernoulli beam. The complex 

stiffness is applied in this model for convenient derivation, which contains the energy loss 

factor 𝜂 as the imaginary part. The relationship between the loss factor 𝜂 and damping ratio 𝜁 

is (Petrone et al., 2015): 

𝜂(𝜔) = 2𝜁(𝜔)ඥ1 − 𝜁(𝜔)ଶ (6-6) 

 Figure 6-29 illustrates the force analysis of the track segment with the length of one bay. 

The track segment is divided into five sections to analyze the vibration and force interaction 

with RPD. 
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Figure 6-29 Displacements and forces of the periodic segment on different sections. 

 Following the derivation given in the literature (Jin et al., 2022), consider the section bc, 

it’s simply a beam section. The transverse displacement is derived as follows: 

𝑢(𝑥) = 𝐴ଵ cos 𝑘𝑥 + 𝐴ଶ sin 𝑘𝑥 + 𝐴ଷcosh 𝑘𝑥 + 𝐴ସsinh 𝑘𝑥 (6-7) 

Where 𝑘 = (𝜔ଶ𝑀/𝐸𝐼)ଵ ସ⁄   is the wavenumber of the track. Here 𝐸  and 𝐼  are the elastic 

modulus and area moment of inertia of the rail section, 𝑀 is the weight of unit length track. 

According to the definition, we also can obtain the slope 𝜃(𝑥) = 𝜕𝑢(𝑥) 𝜕𝑥⁄  , the moment 

𝑀(𝑥) = 𝐸𝐼𝜕ଶ𝑢(𝑥) 𝜕𝑥ଶ⁄ , and the shear force 𝑉(𝑥) = −𝐸𝐼𝜕ଷ𝑢(𝑥) 𝜕𝑥ଷ⁄ . At the left end of the 

beam, the amplitudes are calculated as follows: 

𝐴ଵ =
𝑢

2
−

𝑀

2𝐸𝐼𝑘
ଶ , 𝐴ଶ =

𝜃

2𝑘
−

𝑉

2𝐸𝐼𝑘
ଷ, 

𝐴ଷ =
𝑢

2
+

𝑀

2𝐸𝐼𝑘
ଷ , 𝐴ସ =

𝜃

2𝑘
+

𝑉

2𝐸𝐼𝑘
ଷ 

(6-8, a-d) 

Similarly, applying Equation (6-7) and Equation (6-8, a-d) to the right end of the beam, the 
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responses at the other end of the rail segment are obtained. The relationship between the 

responses at the two ends can be provided as 𝒓𝒄 = 𝑻𝒄𝒃𝒓𝒃 . The response vector 𝒓𝒃 =

{𝑢 , 𝜃 , 𝑀 , 𝑉}் contains both displacement and force information. The wave transfer matrix 

𝑻𝒄𝒃 at this segment is calculated as follows (Wang et al., 2017): 

𝑻𝒄𝒃

=
1

2

⎣
⎢
⎢
⎢
⎡

cosh 𝛬 + cos 𝛬 𝑘
ିଵsinh 𝛬 + 𝑘

ିଵsin 𝛬 𝑃ିଵ cosh 𝛬 − 𝑃ିଵ cos 𝛬 𝑄ିଵsinh 𝛬 + 𝑄ିଵsin 𝛬

𝑘sinh 𝛬 − 𝑘 sin 𝛬 cosh 𝛬 + cos 𝛬 𝑈ିଵsinh 𝛬 + 𝑈ିଵsin 𝛬 𝑃ିଵ cosh 𝛬 − 𝑃ିଵ cos 𝛬

𝑃 cosh 𝛬 − 𝑃 cos 𝛬 𝑈sinh 𝛬 − 𝑈 sin 𝛬 cosh 𝛬 + cos 𝛬 𝑘
ିଵsinh 𝛬 + 𝑘

ିଵsin 𝛬
𝑄sinh 𝛬 + 𝑄sin 𝛬 𝑃 cosh 𝛬 − 𝑃 cos 𝛬 𝑘sinh 𝛬 − 𝑘 sin 𝛬 cosh 𝛬 + cos 𝛬 ⎦

⎥
⎥
⎥
⎤

 

 (6-9) 

Here 𝛬 = 𝑘∆𝑙/2, 𝑈 = 𝐸𝐼𝑘, 𝑃 = 𝐸𝐼𝑘
ଶ, and 𝑄 = 𝐸𝐼𝑘

ଷ. The wave transfer matrix at the third 

section is obtained as 𝑻𝒆𝒅 = 𝑻𝒄𝒃. 

 Now consider the first segment, which is actually a cross-section without length. The 

displacement is continuous at two ends of this segment. The force balance is established via 

ቂ𝑀 = 𝑀 − ቀ
ௌೝ

ଶ
ቁ 𝜃, 𝑉 = 𝑉 − ቀ

ௌ

ଶ
ቁ 𝑢ቃ. Therefore, the transfer matrix 𝑻𝒃𝒂 is established as: 

𝑻𝒃𝒂 = ൦

1 0 0 0
0 1 0 0
0 − 𝑆 2⁄ 1 0

− 𝑆௧ 2⁄ 0 0 1

൪ (6-10) 

It is also straightforward to conclude that 𝑻𝒇𝒆 = 𝑻𝒃𝒂. These two transfer matrixes represent the 

effect of the fastening system on the track. As for the interaction between the RPD and the rail 

track response, the equation of motion of the RPD are first applied: 
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𝑚ௗ�̈� = 𝑆௧(𝑢 − 𝑋) (6-11) 

Where 𝑚ௗ is the effective mass of the damper, which can be obtained from the surrogate model 

established for the RPD in the previous chapters. 𝑆௧ is the damper’s dynamic translational 

stiffness based on the damper cavity’s modal analysis together with the fixture. 𝑋 is the actual 

displacement of the RPD in vertical direction. 

 With the translational reaction force that RPD applies to the track, the transfer matrix at 

the damper-attached segment is calculated as: 

𝑻𝒅𝒄 = ൦

1 0 0 0
0 1 0 0
0 0 1 0

𝐾ௗ 0 0 1

൪ (6-12) 

Here 𝐾ௗ = 𝑆௧𝑚ௗ𝜔ଶ/(𝑆௧ − 𝑚ௗ𝜔ଶ). The boundary conditions at the rail track unit are applied, 

Assume the vibration starts at point a, the vibration wave transfer matrix between the right end 

to the left end is expressed as: 

𝒓𝒇 = 𝑻𝒇𝒆𝑻𝒆𝒅𝑻𝒅𝒄𝑻𝒄𝒃𝑻𝒃𝒂𝒓𝒂 (6-13) 

Based on the periodic boundary conditions of the rail track, the wave propagation constant of 

the rail track with RPD is derived from the transfer matrix on one track unit. When the fastening 

system is implemented with intervals of ∆𝑙, it is the length of a track unit. According to the 

Bloch theorem (Ho et al., 2003): 

𝒓(𝑥 + ∆𝑙) = 𝑒ିఓ∆𝒓(𝑥) (6-14) 
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 The wave propagation constant 𝜇 = 𝜇 + 𝑖𝜇  is a complex coefficient between two 

adjacent periodic units. The real part 𝜇 is the attenuation constant that represents the amplitude 

decay rate, and the imaginary part 𝜇 is the phase constant that represents the phase difference. 

Based on Equation (6-13) and Equation (6-14), it is derived that: 

[𝑻 − 𝑒ିఓ∆𝑰]𝒓(𝑥) = 0 (6-15) 

Where 𝑻 = 𝑻𝒇𝒆𝑻𝒆𝒅𝑻𝒅𝒄𝑻𝒄𝒃𝑻𝒃𝒂, non-trivial solutions only exist when: 

ห𝑻 − 𝑒ିఓ∆𝑰ห = 0 (6-16) 

Therefore, the propagation constant 𝜇 is calculated from the eigenvalue analyzation of the 𝑻. 

The results give two pairs of the Bloch waves (±𝜇ଵ, ±𝜇ଶ) for the periodically supported rail 

track. The two pairs of propagation constants represent exactly the same characteristic wave, 

only the travel direction along the rail track is opposite. Physically, according to the form of 

the propagation constant, three regions in the frequency domain are distinguished for each pair 

of the propagation constant (Xiao et al., 2013): 

1. Attenuation region: when 𝜇 > 0 and 𝜇 in the form of 𝑛𝜋, where 𝑛 is an integer. In 

this region, the wave attenuated along the structure with the adjacent unit vibration in 

phase or out of phase. 

2. Propagation region: when the wave propagation is purely imaginary, 𝜇 = 0  and 

2𝑛𝜋 < |𝜇| < (2𝑛 + 1)𝜋. In this region, the wave is propagating without attenuation, 

only have a phase chase on each adjacent unit. 
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3. Complex region: when 𝜇 > 0 and 2𝑛𝜋 < |𝜇| < (2𝑛 + 1)𝜋. The wave is propagating 

and attenuating simultaneously along the track. 

 Xiao et al. (2013) presented an alternative approach to calculate wave propagation 

constants, which is discussed in Appendix B. It should be noted that the above discussion 

assumes that the damping is missing in the structure. Once the damping is introduced, the wave 

propagation condition will also be changed. For instance, the wave will not be able to propagate 

to infinite distances as in the propagation region. As mentioned above, the TDR is related to 

the wave propagation constant. If use Ψ to represent the TDR, then we have: 

𝛹 = 20𝑙𝑜𝑔ଵൣ𝑒ோ{ఓ}൧ (6-17) 

6.3.3 Parametric study of the model 

 The parametric study of the model helps to understand the wave propagation on the rail 

track. In this case study, the rail is assumed to be installed on the concrete slab. The clip stiffness 

also varies according to different clip types, influencing wave propagation. Other parameters 

also have an impact on the wave constant. The baseline parameters are selected from the 

literature for a standard urban metro line in China (Zhai et al., 2009). 

Table 6-5 Main parameters of the concrete slab track 

Notation Parameter Value 

𝐸 Elastic modulus of rail 2.059 × 10ଵଵ  𝑁 𝑚ଶ⁄  
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𝜌 Density of rail 7.860 × 10ଷ  𝑘𝑔 𝑚ଷ⁄  

𝑚 Rail mass per unit length 60.64 𝑘𝑔 

∆𝑙 Sleeper spacing 0.625 𝑚 

𝐼 Torsional inertia of rail 3.741 × 10ିହ 𝑚ସ 

𝑆௧ Fastener stiffness in vertical direction 2.5 × 10  𝑁 𝑚⁄  

𝑆 Fastener rotational stiffness 7.0 × 10ସ  𝑁 𝑟𝑎𝑑⁄  

𝜂 Loss factor of rail track 0.02 

𝜂 Loss factor of fastener 0.1 

 The two pairs of wave constant ±𝜇ଵ and ±𝜇ଶ of the bare track without RPD are calculated 

based on these parameters. These two pairs of wave constants represent vertical wave 

propagation for near and far fields. The curve that depicts the wave propagation constant in the 

frequency range is called the dispersion curve, which can be seen in Figure 6-30 and Figure 

6-31. 
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Figure 6-30 Dispersion curve of the real part of the wave propagation constant. 

 

Figure 6-31 Dispersion curve of the imaginary part of the wave propagation constant. 

 The 𝜇ଵ shows the vertical wave propagation in the near field. The wave attenuates quickly 
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along the track. The 𝜇ଶ shows the wave propagation in the far field. Due to structural damping, 

the value of the real constant is higher than zero on the entire frequency band, which means the 

wave propagates with attenuation along the rail track. A band gap is observed around 1340 Hz 

on the imaginary part of the wave constant, indicating the appearance of the pin-pin mode of 

the track at this frequency. The TDR (Ψ) of the track can be calculated according to the real 

part of the 𝜇ଶ. 

 

Figure 6-32 Effect of the sleeper spacing on the track TDR. 

 First, for the effect of the sleeper spacing, a small value indicates more fasteners are 

installed on the track. The fasteners are equipped with a pad with damping. More fasteners will 

dissipate more vibration energy, so it can be seen that the TDR is more prominent with a smaller 

spacing of the fasteners. On the rail track, there is a cut-on frequency related to wave 

propagation (Thompson, 2013). When the frequency is higher than the cut-on frequency, the 



236 

 

damping in the rail has a negligible effect. According to the result, adding the fasteners will 

push the cut-on frequency to a higher value. 

 

Figure 6-33 Effect of the fastener stiffness on the track TDR. 

 Figure 6-33 shows the influence of fastener stiffness on the track TDR. The value of 𝑆௧ 

mainly affects the cut-on frequency of the track. With a smaller value of clip stiffness, the cut-

on frequency will also be smaller. When it goes to a high-frequency range, the effect of clip 

stiffness gradually wears off. 
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Figure 6-34 Effect of the fastener loss factor on the track TDR. 

 The damping pad dissipates the vibration energy whenever the wave passes a fastener. The 

results from Figure 6-34 again indicate that the influence of fasteners mainly concentrates on 

the cut-off frequency. When the frequency is larger, specifically higher than the pin-pin mode 

frequency, the properties of the track determine the wave propagation on the track. 
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Figure 6-35 Effect of the rail track loss factor on the track TDR. 

 The analysis of the effect of the rail track loss factor agrees with the statement. The track 

damping affects the wave propagation in the high-frequency range, where above the cut-on 

frequency. Of course, the TDR increases with a large track loss factor. In the frequency range 

lower than the cut-on frequency, the damping of the track barely does not affect the wave 

propagation. It can be explained by the fact that the near field vibration wave in this frequency 

range attenuates quickly on the track. The vibration is dissipated before the track damping can 

show a significant influence. 

 The results indicate a noticeable spike on the TDR around 800 Hz, signifying the presence 

of a bandgap in the periodic system. Within this bandgap range, vibrations exhibit a greater 

decay. It is clear that the positioning of supports determines the location of the bandgap, as 

alterations in spacing directly impact the structure of the periodic system. 
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6.4 Experimental Validation of RPD Performance on Field 

6.4.1 In-situ investigation 

 The selected noise-sensitive section is located in Shenzhen Metro Line 5, a viaduct with a 

slab track system between Tanglang Station and University town station. There is a residential 

area in the vicinity of this metro line. The test location is at the departing line, where about 500 

m away from the Tanglang Station. The passing train reaches the test location at approximately 

70 km/h. This experiment was conducted by Dr. Masoud, Mr. Owen Wang, Mr. Xiang-Xiong 

Li, Mr. Guang Zhou, Mr. Chao Zhang and me. 

 

Figure 6-36 Test location and the surrounding situation (Masoud). 

 The length of the main span of each bridge is 30 m. To cover the entire length of one bridge 

span, the installation length of RPD is 40 m on the rail track, which contains 67 bays of rail 

track. The RPDs were mounted on every bay on both sides of the rail track. In this test, the 

RPDs were filled with 50 % of the 1.5 mm stainless steel balls. 
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Figure 6-37 Installation of RPDs on rail track. 

 A series of acceleration sensors and microphones were deployed at the 34th bay of the test 

section (the mid-bay of the 40 m test section) to evaluate the performance of RPD in reducing 

the broadband rolling noise and controlling the rail vibration under dynamic excitation during 

a train passing by. When the train passes the test section, the installed accelerometers and 

microphones measure the rail vibration responses and the emitted noise level. The sensors and 

microphones’ deployment positions are shown in Figure 6-38. Four acceleration sensors (A1, 

A2, A3, A4) are installed on the north track; two on each rail, one on the rail web, and another 

on the rail foot. The acceleration sensors are triaxial DYTRAN accelerometers with a 1000 g 

range mounted on the rail using epoxy glue, as shown in Figure 6-39. Two microphones (M1, 

M2) were set on the rail side at the rail head level, 60 cm away from the rail, as shown in Figure 

6-40. 
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Figure 6-38 Dynamic test layout and microphones deployment position. 

 

Figure 6-39 Positions of rail web and rail foot accelerometers. 

 

Figure 6-40 Position of the rail side microphone. 
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 Three microphones (M3, M4, M5) were mounted on a pole, set 7.5 m away from the central 

line of the south track on the viaduct side, and fixed in place using a temporary scaffold (see 

Figure 6-41). The microphones’ height is set at 1.2 m, 3.5 m, and 7.5 m, respectively, from the 

top surface of the rail head, as shown in Figure 6-38. All microphones are the free-field type 

made by Brüel & Kjær. 

 

Figure 6-41 Positions of viaduct side microphones. 

6.4.2 Track vibration evaluation 

 Evaluating the track vibration before and after the RPDs installation is essential to 

evaluating the RPD. According to the laboratory investigation of the RPDs, this king of 
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dampers can suppress the vibration in relatively high frequency but have limited effect in the 

frequency range lower than 1000 Hz. 

 

Figure 6-42 Track vibration in time domain before and after the installation of RPDs. 

 Figure 6-42 shows the variation of the track vibration before and after the installation of 

RPDs. It can be seen that the RPDs have a profound vibration mitigation ability on the rail 

track. Clear peaks from the passing wheel pairs impact excitation can be observed on the 

damped track. Other than this type of vibration, the other vibrations are significantly reduced 

by the RPDs. 

 The frequency analysis is presented in Figure 6-43. The frequency components of the 

vibration signal reveal the main effective range of the RPDs. 
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Figure 6-43 Track vibration in frequency domain before and after the installation of RPDs. 

 Similar to the results observed in the laboratory, the RPDs have a limited effect on 

frequency under 500 Hz. The mode around 500 Hz is empirically identified as the bouncing 

mode of the track, which is relevant to the passing wheel pairs. However, the RPDs suppressed 

most of the vibration energy in the high-frequency range. 

 Spikes can be observed in the vibration spectrum of the track. These spikes are super-

harmonic responses of the rail track caused by nonlinear effects. This common phenomenon 

that can be identified during field tests of rail tracks. 

6.4.3 Track decay rate evaluation 

 The TDR reflects the vibration attenuation on the rail track, which is a significant factor in 
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evaluating the noise emission of the track. Following the BS EN 15461:2008+A1:2010 

standard, the TDR can be measured through a series of impact hammer tests on the track. One 

accelerometer was attached to the rail head. The vibration amplitudes were recorded under the 

impacts at gradually increased distances from the accelerometer. The result represents the 

vibration attenuation with respect to the distance. 

 

Figure 6-44 Impact locations with respect to the location of the reference accelerometer for 

the measurement of TDR (BS EN 15461 standard). 

 The measured TDR is calculated with the following equation: 

𝛹 =
4343

∑
|𝐴(𝑥)|ଶ

|𝐴(𝑥)|ଶ ∙ 𝑥
௫ೌೣ
௫ୀ

 
(6-18) 

Where 𝐴(𝑥)  is the acceleration amplitude, and 𝑥  is the distance to the accelerometer. In 
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practical, the TDR is presented in 1/3 octave frequency band. 

 

Figure 6-45 Variations in the theoretical and measured TDR with and without the installation 

of RPDs. 

 Figure 6-45 presents the variations in the theoretical and measured TDR before and after 

the installation of the RPDs. Both theoretical and measured results show that the RPDs 

increased the TDR in the frequency range higher than the cut-on frequency, indicating that the 

dampers elevated the damping effect on the rail tracks rather than the fasteners. The measured 

TDR of the damped track was increased in a wide frequency range from 1000 Hz to 5000 Hz. 

It is known that the vibration energy of the track concentrates on this range. The high-level 

vibration amplitude induces a more significant damping effect of the particle damping. 
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 However, the theoretical TDR of the damped track only showed the effect of RPDs around 

1600 Hz, which illustrates the limitation of the simplified model. The connection and 

interaction between the RPD and the rail track is much more complex. Many factors will 

introduce energy dissipation in this system, like the fixture’s deformation, the friction between 

components, etc. Moreover, the nonlinear effect of the RPD and the railway system is totally 

ignored in this simple model. In the future, it is desired to develop a more sophisticated model 

to study the effect of installing RPDs on the rail track. 

6.4.4 Near and far field noise evaluation 

 The imposition of M4 and M5 was meant to explore the noise emission in a higher 

direction. It may be tedious to show the results collected by all microphones. In this case, the 

sound pressure recorded by M1 and M3 was selected to represent the near-field and far-field 

noise. The evaluation of the RPDs on noise mitigation is based on these experimental results. 
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Figure 6-46 Variation of the near field sound pressure in time domain. 

 

Figure 6-47 Variation of the far field sound pressure in time domain. 

 According to the results, the near-field sound pressure is deservedly much higher than the 

far-field sound pressure. The noise emission includes all directions in the surroundings, while 



249 

 

the far-field microphone can only capture a part of it. The effect of passing wheel pairs can also 

be identified at the near field. The peak sound pressure can reach 45 Pa at the trackside. The 

peak sound pressure level at the far field is around 6 Pa. The installed RPDs effectively mitigate 

the sound pressure at the near and far fields. Since the installation of RPDs successfully reduces 

the vibration of the track. 

 The wavelet analysis of the sound pressure is applied to evaluate the frequency and time 

domain noise. The sound pressure level (SPL) is calculated from the sound pressure. 

 

Figure 6-48 Wavelet analysis of the SPL measured at near field without installation of RPDs. 
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Figure 6-49 Wavelet analysis of the SPL measured at near field with installation of RPDs. 

 

Figure 6-50 Wavelet analysis of the SPL measured at far field without installation of RPDs. 
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Figure 6-51 Wavelet analysis of the SPL measured at far field with installation of RPDs. 

 As shown in the figures, the noise from the wheel track interaction mainly concentrates 

around 600 Hz and 1000 Hz. Recall the vibration of the track. It is related to the bouncing mode 

and the first bending mode of the track concerning the fasteners. When there are no RPDs on 

the track, the noise at this range can reach 120 dB, which is quite a considerable level 

considering the train speed. The installation of RPDs affects mitigating the noise at the sensitive 

frequency. Around 8 dB reduction is achieved with RPDs at 600 Hz. However, it also can be 

observed that the noise energy was spread on the frequency band after the installation of RPDs. 

This kind of reduction is outstanding compared to conventional tuned mass dampers, which 

tend to require much more mass than the proposed RPDs. 

 The far-field SPL shows the same characteristic as the near-field SPL, with a reduced noise 
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level. The presented results indicate that the rail vibration reduction effectively makes a 

quiescent passenger environment. 

6.5 Summary 

 A novel rail particle damper was developed to control the noise and vibration of the railway 

system. A series of experiments were conducted to evaluate the ability of RPDs to mitigate the 

vibration of the rail track and, thus, control noise emission. The RPDs were tested on a single-

bay rail track first, and various types of particles were compared through impact hammer tests. 

Then the selected particle types were further tested on a 6 m rail testbed. Finally, the RPDs 

were mounted on an operating urban metro line to control the noise and vibration. A periodic 

structure model was produced with RPDs to predict the TDR of the rail track. The conclusions 

through these tests can be summarized as follows: 

1. The impact hammer tests on the single-bay track revealed that the granular material 

outperforms the other type of materials, including powders, solid balls, and liquid. 

Installing RPDs can effectively suppress the vibration of the track by decreasing the 

peak of the track’s FRF. 

2. The three selected material types were tested on the 6 m rail testbed. RPDs with these 

filling materials can mitigate the pin-pin mode of the rail track but have a limited effect 

on the vibration in the lower frequency band. The 1.5 mm stainless steel ball was 

identified as the best material, which can mitigate 50% of the pin-pin mode near and 
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85% at the far end. 

3. The in-situ test has proved the effectiveness of RPDs in noise and vibration control. 

The installation of RPDs elevated the TDR of the rail track, which reduced the noise 

emission of the track. To be specific, around 8 dB of noise reduction is achieved with 

RPDs at 600 Hz. 
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CHAPTER 7.  

Conclusions and Recommendations 

 

7.1 Conclusions 

 This thesis presents a study on PDs for noise and vibration control in the railway system. 

The investigation is carried out in two aspects, i.e., the experimental investigation and the 

surrogate model establishment via DL methods. Both contents are pioneering attempts in the 

development of PDs. To meet the frequency range of the rail track vibration, the experiments 

conducted on the PDs reached a high-frequency range of up to 2000 Hz. This range is seldom 

explored in previous studies since the micro-displacement vibration makes friction the main 

effect in energy dissipation. The movement of the particle bed in this high-frequency vibration 

is intricate to model, especially for the granular materials. Despite applying the DEM that 

requires a significant computational load, this study chooses the DL methods to circumvent 

describing the movement of every single particle inside the damper cavity but to surrogate the 

desired target through the experimental results. This study has presented a sophisticated DL 

modeling framework with the aid of a series of state-of-art methodologies. The primary 

contributions and findings a summarized as follow. 

 The findings from the experiments are first concluded. The granular material-filled 

dampers dissipate energy mainly by the friction between the particles during vibration. Various 
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parameters influence the energy loss factor. In general, more energy is dissipated with more 

filling particles. However, the energy loss factor decreases with the filling ratio because a large-

weight particle bed is less likely to be excited. Moreover, a high excitation level also results in 

a better performance of PDs. 

 The response force of a PD under dynamic excitation holds hysteretic behavior. The 

hysteresis loops vary with excitation frequency due to the nonlinear nature of particle damping. 

By comparing two different types of particles, namely, 0.2 mm tungsten powder and 1.5 mm 

stainless steel balls, it is found that the lightweight particle bed is more easily to be excited. 

Therefore, the hysteresis loops of stainless-steel balls exhibit more nonlinear effects. 

 Various types of particles were evaluated on impact hammers. It is found that the granular 

material outperforms the powders, solid balls, and liquids. The primary effect of the developed 

RPD is to mitigate the peak of the track’s FRF. However, for the frequency range that is away 

from the vibration mode, the effect of the RPD is limited. Therefore, it can be concluded that 

only when the primary structure has a considerable vibration, the RPDs can show its efficacy 

since the performance of RPDs is excitation-induced. Naturally, mounting RPDs on the track 

adds mass to the entire system, so the vibration mode moves toward a lower frequency. The 

modal analysis on the damper cavity reveals that the cavity performs a bouncing vibration 

relative to the rail track at the effective mode. This relative vibration between RPD and the 

track consumes the vibration energy of the system. 
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 For the field application of RPDs, the installation of RPDs can effectively reduce the 

vibration level of the rail track, except for the vibration caused by the impact excitation from 

the passing wheels. The vibration wave propagating on the rail track is attenuated with the help 

of the periodically installed RPDs. The TDR of the track is elevated after the installation of 

RPDs. The main effective frequency range is the range higher than 1000 Hz. Since the vibration 

propagation is suppressed on the rail, the noise emission of the track is consequently reduced. 

 Then, other conclusions can be made through the modeling attempts with the DL method. 

First of all, introducing TL can solve the dilemma of a lack of training resources. With a similar 

source task, the general knowledge learned in the low-level layers in a DNN can be leveraged 

to facilitate learning in another target task. Compared with the plain NN that trains from scratch, 

the NN with TL receives a higher accuracy and convergence speed. 

 When modeling the response force of a PD, the inserted Fourier features layer can enhance 

the ability of a NN to recognize the high-frequency features. As the NNs are perplexed by the 

long-standing pathology called spectra bias, their performance is significantly restricted. Based 

on the analysis of NNs from the perspective of NTK, it is revealed that NNs can identify more 

high-frequency features with the imposition of the Fourier layer. Combining this approach with 

TL-incorporated PINN, the proposed method can reconstruct the hysteresis loops of a PD. This 

surrogate model is validated with a dataset obtained from an experiment that applied different 

forms of excitation. It proves that the established model has a good generalization ability. 
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 From the experiments, the obtained dataset is a group of time series data. However, the 

aforementioned NNs ignored the sequential information. Here, the RNN-based ESN is utilized 

to decode the sequential information resides in the experimental results. The proposed ESN is 

enhanced with deep fully connected layers to formulate the ESDN. The MDSC is also placed 

in front of ESDN to facilitate feature extracting. It is found that on the training dataset, the mc-

ESDN outperforms a conventional NN. However, for another dataset with the different 

excitation form, the mc-ESDN has poorly generalization ability compared to the baseline 

methods. 

7.2 Recommendations 

 This study has laid a good foundation for investigating granular material-filled PD and its 

application in railway systems. However, this research still comes with blemishes. Therefore, 

further studies could be carried out regarding the following aspects. 

1. The most obvious limitation of this work is that the investigation of the PD focused on 

the vertical direction. In a straight rail line, the vibration is mainly concentrated on the 

vertical direction. In the curvature section of the rail line however, lateral vibration 

would play a more significant role in the rail track vibration. The dominant noise type 

will no longer be the rolling noise in this case, but the squeal noise that generated from 

the friction between wheel and track instead. It is doubtful whether PDs are effective 

in mitigating such noise. Introducing the lateral vibration to the PD will significantly 
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change the system. In this case, the vibration mode of the particle bed will be inevitably 

influenced the vibration in another direction, and more complex nonlinear 

phenomenon will be generated. How to combine the vibration in two directions could 

also be a problem. It is difficult to decided what forms and amplitudes of excitations 

should be applied in each direction to simulate the railway vibration. 

2. The simulation of the track vibration brings another problem. Currently, the modeling 

of PDs is carried out based on the datasets obtained from simple harmonic excitation 

experiments. Although the established model showed certain ability of generalization, 

it is still uncertain if these models can work in the real vibration of rail track. It should 

be noted that the vibration of tracks varies a lot with different rail lines, and always 

comes with a complex frequency component. The current models can serve as low-

fidelity knowledge to this problem by following the idea of TL. Feeding the actual 

track vibration into the NN model is still a challenge. 

3. The combination of surrogate and traditional models for the primary structure remains 

at an infant level. This study indirectly used the output of the surrogate model of PD 

as a reference to facilitate the analysis of the rail track vibration. There is currently no 

feasible way to unite the DL models into traditional theoretical calculations. The 

appearance of PINN may have provided the potential, but more endeavor is still 

expected to settle this issue. 

4. The data-driven DL reconstructs the target function through point-wise estimation, 

which means the experimental data was directly input into the model for training 
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without an analysis of the confidence level of experimental results. However, the 

experimental dataset always comes with errors. These errors will become systematic 

errors in the training of surrogate models, consequently deteriorating performance. To 

this end, introducing Bayesian methods could alleviate the cause of random error in 

experiments. This approach embeds the distribution information of the dataset and 

reconstructs the target function in a probability-based manner. As discussed in 

CHAPTER 4, the input data should be modified to accommodate the Bayesian neural 

network structure. Taking the phase of the input signal to identify data of identical 

states could be considered as a solution. 

5. In our area of interest, the vibration frequency far exceeds that of typical structures, 

reaching into the thousands of hertz. In these high-frequency vibrations, the 

displacement is minimal compared to other scenarios. In traditional application of 

particle dampers, energy consumption is primarily due to impact and collision effects. 

However, in high-frequency vibrations, friction between particles becomes the 

dominant factor in energy dissipation. This presents a challenge for particle dampers 

to achieve optimal performance. It indicates the need for future improvements in this 

technology. One potential improvement could involve developing new materials with 

enhanced friction properties to enable more efficient energy dissipation at higher 

frequencies. Additionally, optimizing the design of the particle damper itself, such as 

adjusting the size, shape, and arrangement of the particles, could better suit high-

frequency vibrations. Another potential enhancement could involve integrating 
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advanced control systems to actively adjust the damping properties of the particle 

damper in real-time, ensuring optimal performance across a wide range of frequencies. 

Overall, while high-frequency vibrations pose a challenge for traditional particle 

dampers, there are opportunities for innovation and improvement to enhance their 

performance in these conditions. 
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Appendix A 

 

 In this illustrative example, a damped SDOF vibrator under the forced vibration is 

considered. This simple case is driven by the following ordinary differential equation (ODE): 

𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝐹𝑠𝑖𝑛(𝑤𝑡) (A-1) 

With 𝑚 = 1 𝑘𝑔, 𝑘 = 200 𝑁
𝑚ൗ , damping ratio 𝜉 = 0.1, 𝐹 = 100 𝑁, 𝑤 = 120 𝑟𝑎𝑑/𝑠 . The 

initial condition is 𝑥 = 0 𝑚, �̇� = 0 𝑚/𝑠. According to these settings, the nature frequency of 

this vibrator is approximately 2.3 Hz, and the excitation frequency is roughly 19.1 Hz. Here, 

the physics-informed neural network (PINN) to pursue the solution to this ODE is adopted. As 

an emerging paradigm that promises profound influence on computational physics, PINNs 

have shown seductive efficacy in various disciplines. However, PINN also suffers from spectra 

bias in the framework of NNs. 

 To present a brief overview of the PINN, Equation (A-1) can be reformed by the general 

form: 

𝒩[𝒙](𝒕) = 𝒇(𝒕), 𝒕 ∈ Ω (A-2) 

ℬ[𝒙](𝒕) = 𝒈(𝒕), 𝒕 ∈ 𝜕Ω (A-3) 

where 𝒩[∙]  is the differential operator and ℬ[∙]  denotes the boundary condition, or initial 

condition. To seek the latent solution 𝑥(𝑡), a network with the input of 𝑡 and output of 𝑥 (see 

Figure A-1) is built. The derivative of 𝑥  with respect to 𝑡  can be obtained through auto 

differentiation (Güne¸ et al. 2018). Then, the PINN can be trained by minimizing the physics-

induced residual loss and boundary/initial condition loss. 
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Figure A-1 Structure of Fourier/Wavelet features embedded PINN. 

 The calculation of this ODE is in the range of 𝑡 ∈ [0,3]. The ff/wfPINN to solve the ODE 

is adopted, where Fourier/Wavelet features are embedded in the PINN. A vanilla PINN with 

the same architecture is also employed for comparison. The Gaussian basis function is selected 

for the wfPINN, both ffPINN and wfPINN are initialized by 𝜎 = 10 . The fully connected 

network contains 3 hidden layers, 100 units per hidden layer, and tanh activation function is 

chosen in the network. 

 

Figure A-2 (a) Calculation results of different PINNs after 50,000 iterations; (b) Evolution of 

the residual loss of different PINNs. 
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 The raw PINN fails in capturing the solution to this ODE, as its residual loss barely has no 

descending in the training. On the contrary, ffPINN and wfPINN are capable to reconstruct the 

relatively high-frequency components in the objective function. Besides, the ffPINN is also 

outperforms the wfPINN in this case. 
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Appendix B 

 

 Following the derivation given by Xiao et al. (2013). For a Euler- Bernoulli beam, consider 

its dynamic stiffness matrix as: 

𝐒𝒕𝒓𝒂𝒄𝒌 = 
𝐒ଵଵ 𝐒ଵଶ

𝐒ଶଵ 𝐒ଶଶ
൨ (B-1) 

and its entrence is written as: 

𝐒𝟏𝟏 =
𝑬𝑰

𝑳𝟑


𝜶 𝜸𝑳

𝜸𝑳 𝜷𝑳𝟐൨ , 𝑺𝟏𝟐 = 𝑺𝟐𝟏
𝑻 =

𝑬𝑰

𝑳𝟑


−𝜶ഥ 𝜸ഥ𝑳

−𝜸ഥ𝑳 𝜷ഥ𝑳𝟐൨ , 𝑺𝟐𝟐 =
𝑬𝑰

𝑳𝟑


𝜶 −𝜸𝑳

−𝜸𝑳 𝜷𝑳𝟐 ൨ (B-2) 

with 

𝜶 =
(cos 𝜦 sinh 𝜦 + sin 𝜦 cosh 𝜦)𝜦𝟑

𝚫
; 

𝜶ഥ =
(sin 𝜦 + sinh 𝜦)𝜦𝟑

𝚫
; 

𝜷 =
(− cos 𝜦 sinh 𝜦 + sin 𝜦 cosh 𝜦)𝜦

𝚫
; 

𝜷ഥ =
(− sin 𝜦 + sinh 𝜦)𝜦

𝚫
; 

𝜸 =
(sin 𝜦 sinh 𝜦)𝜦𝟐

𝚫
; 

𝜸ഥ =
(− cos 𝜦 + cosh 𝜦)𝜦𝟐

𝚫
; 

𝜦 = 𝒌𝒃𝑳; 𝜟 = 𝟏 − cos 𝜦 cosh 𝜦 

(B-3) 

 In this definition, 𝑘 = ቀ
ೝఠమ

ாூ
ቁ

భ

ర
 is the wave number solution of a rail track, and 𝑚 is the 

weight of a unit length rail track. If we substitute the left and right sides of a rail track unit on 

the periodic system into the above equations, we can have the governing equation of the track 
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unit: 


𝑺𝑳𝑳 𝑺𝑳𝑹

𝑺𝑹𝑳 𝑺𝑹𝑹
൨ ቄ

𝒖𝑳

𝒖𝑹
ቅ = ൜

𝒇𝑳

𝒇𝑹
ൠ (B-4) 

where 𝐮 = {𝑤 𝜃}, 𝐟 = {𝑉 𝑀}  denote the displacement and external force of this 

track unit. Consider the wave decay on this track unit: 

𝐮ୖ = 𝑒ఓ𝐮, 𝐟ୖ = −𝑒ఓ𝐟 (B-5) 

this gives the relationship between force and displacement on the left side: 

𝐟 = (𝑺 + 𝑒ఓ𝑺ୖ)𝐮 (B-6) 

 Substituting this relationship into above equations, we can have the similar form as 

Equation (6-14). The difference between this calculation and the derivation given in 

CHAPTER 6 is that, rather than the dynamic stiffness matrix, the wave propagation on the rail 

track structure is defined by the transfer matrix 𝑻 . However, the calculation of wave 

propagation constant is all based on the non-trivial solution of the equilibrium equation. 
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