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Abstract

Smart city operations focus on integrating modern technologies and collected data to

enhance the quality, efficiency, and sustainability of life for inhabitants in cities. In this

thesis, we present three recent studies on the shared mobility and electrical power grid,

which are at the crux of smart city operations. Through these studies, we hope to address

some challenges in transportation and sustainability in urban areas.

In the first study, we consider two shared micromobility firms competing in the same

service area, each providing micromobility vehicles (e.g., bikes and scooters) to satisfy

uncertain demands. Each firm solves an integrated vehicle allocation and relocation

problem, in which the total number of vehicles allocated by the two firms together in

each service region is restricted by the city regulator, and provides a Nash equilibrium.

Each firm’s decision-making problem is formulated as a two-stage stochastic program on

a spatial-temporal network, with the objective of maximizing her expected profit. To

improve firms’ operations with the limited number of allocated vehicles, we propose an

innovative capacity-sharing agreement, under which a firm can share spare capacity for

a fee with her opponent. Extensive numerical experiments based on real data reveal that

regulator restrictions impact firms’ profitability and service level. Capacity sharing can

reduce the number of relocated vehicles and also improve firms’ profitability. To promote

the capacity-sharing agreement, the regulator should provide incentives to the firms.

In the second study, we focus on a shared mobility system with electrical vehicles (EVs).

Unlike micromobility vehicles, EVs face additional challenges in managing their battery

levels. They must charge adequately to meet trip demands and can discharge electric-

ity to the power grid through vehicle-to-grid (V2G) technology to earn revenue. We

frame the operator’s EV planning and operation under correlated uncertainties as a two-

stage distributionally robust optimization (DRO) problem. To increase computational

efficiency, we propose inner and outer approximations for the DRO problem and develop
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an algorithmic approach incorporating time-based decomposition techniques. Numerical

results based on real data suggest that EVs majorly charge electricity during the early

hours when electricity prices and consumer trips are low. Conversely, they discharge elec-

tricity when prices are high. Faster charging decreases the number of allocated vehicles,

improves the vehicle utilization rate, and reduces total costs. Comparing two pricing

schemes for charging EVs, electricity-based and time-based, we observe more frequent

charging and discharging under the time-based scheme than the electricity-based scheme.

In the third study, we explore a grid-vehicle integration (GVI) system employing V2G

while managing uncertainties in renewable generation, power load, and EV trip demand.

We formulate the problem of operating a GVI system as a two-stage robust mixed-integer

program. In the first stage, the grid operator, aiming to minimize the worst-case total

cost, decides whether to start up a generator. In the second stage, the grid decides power

generation levels and charging/discharging interactions with EVs to satisfy the power

load. Meanwhile, the mobility operator utilizes the EV fleet to fulfill the interactions and

satisfy EV trip demands. To address a significant computational challenge, we propose a

machine learning-driven optimization approach. Our approach outperforms a commercial

solver in both computational time and solution quality for large-scale instances based

on real data. Out-of-sample tests reveal that V2G can reduce the number of required

generators and stabilize power generation by “filling” the low power load and “shaving”

the peak power load. Moreover, V2G helps achieve a substantial reduction in carbon

emissions compared to the case without V2G. The impact of V2G is more pronounced

under a bimodal power load pattern than a unimodal pattern. We also find that achieving

carbon neutrality in this integration system is feasible yet challenging.
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Chapter 1

Introduction

1.1 Background

The twenty-first century witnesses an unprecedented wave of urbanization, marked by

rapid growth and an ever-expanding urban landscape. Recent trends indicate that this

urbanization is accelerating globally (Zhang et al. 2022b). According to data from the

World Bank (The World Bank 2023), more than half of the world’s population resides

in urban areas, contributing over 80% of the global GDP. Data also indicates that by

2050, the urban population will double. However, the remarkable speed and scale of

urbanization come with societal and environmental challenges. Issues like transportation

congestion and pollution have become increasingly prevalent, perplexing both citizens and

city regulators. As a result, citizens and regulators all have growing expectations towards

cities to address these challenges and enhance the quality, efficiency, and sustainability

of modern urban life. The recent popularity of “smart city” is an obvious evidence

reflecting the urge for the development of cities. Wikipedia (2023) introduces that smart

cities integrate modern technologies and collected data to enhance the quality, efficiency,

and sustainability of life for inhabitants in cities. In pursuit of such a vision, cities across

the world have emerged construction of smart cities. According to a report by Deloitte

(2018), there are over 1000 smart city projects have been initialized worldwide. Within

the framework of a smart city, two critical components are shared mobility and electrical

power grid, which focus on addressing challenges in transportation and sustainability in

urban areas (Qi and Shen 2019).

Shared mobility is a transportation system where firms provide shared vehicles for
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rentals and consumers can rent available shared vehicles around the city by paying a

rental fee, which is much lower than the costs associated with ownership and mainte-

nance. Popular shared vehicles include bicycles, scooters (classified as micromobility

vehicles), and electrical vehicles (EVs). To efficiently serve consumer trips, shared mo-

bility firms need to optimize their allocation capacity, such as micromobility vehicles and

EVs, and subsequent fleet operations. Despite some similarities between micromobility

vehicles and EVs, the operations of systems running these two vehicle types are fun-

damentally different. For example, (i) Micromobility vehicles should stay ready for the

coming consumers, so their services are not provided on-demand like shared EVs; (ii)

Rental prices for shared micromobility are much lower than those for shared EVs, so the

shared micromobility firm often bears high investment and operational costs with low

rental prices; (iii) Unlike micromobility vehicles, EVs encounter challenges in managing

their battery levels during operations. Therefore, our study delves into the shared micro-

mobility system (Chapter 2) and EV-sharing system (Chapter 3) separately to address

their distinct operational challenges.

Electrical power grid focuses on planning unit commitments status (start-up/shut-down

of generators), power generations, and transmissions intelligently to satisfy consumer’s

load (i.e., power demand), with the aim of minimizing costs (Fang et al. 2011). The

growing popularity of EVs highlights the interactions between shared mobility and the

power grid, signaling the potential for bridging these two systems, which supports smart

city operations. Specifically, EVs should charge electricity from the power grid adequately

to ensure sufficient battery capacity to meet trip demands. Conversely, they can also

discharge electricity to the power grid through vehicle-to-grid (V2G) technology to earn

revenue. Simultaneously, the activities of EVs, including both charging and discharging,

may contribute to the power grid in its power generation. Consequently, this forms a

grid-vehicle integration system. In this thesis, we investigate this integration system from

the perspectives of shared mobility and power grid, respectively. Specifically, Chapter 3

focuses on shared mobility operations in this system, while Chapter 4 focuses on power

grid operations in this system.
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1.2 Thesis Outline

In Chapter 2, we consider two shared micromobility firms competing in the same service

area, each providing micromobility vehicles to satisfy uncertain demands. These two

firms own vehicles and bear high investment and operational costs with low rental prices.

They also experience competition among themselves and are subject to vehicle allocation

restrictions imposed by city regulators. These factors require the firms to efficiently

perform initial allocation and subsequent relocation of vehicles to ensure commercial

sustainability. The work in this chapter aims to understand the shared micromobility

firms’ operations under competition and provide managerial guidance to the firms and

the regulator. To enhance the firms’ operational efficiency with allocation restrictions,

we propose an innovative capacity-sharing agreement between the firms, where a firm can

share its spare capacity for a fee with the other firm. Each firm solves an integrated vehicle

allocation and relocation problem, where the total number of vehicles allocated by the

firms in each region is constrained by the city regulator, and reaches a Nash equilibrium.

Each firm’s decision-making problem is modeled as a two-stage stochastic program on

a spatial-temporal network, where the firm initially allocates vehicles for service regions

in the first stage and subsequently relocates vehicles as recourse in the second stage

observing realized demands. We explore the optimality condition of each firm’s decision-

making and seek a Nash equilibrium by optimizing certain objectives (i.e., criteria for

selecting an equilibrium) over the joint optimality conditions of both firms. We prove

that capacity sharing helps reduce the total demand loss in the entire system. Extensive

numerical experiments based on real data suggest that regulator restrictions impact firms’

profitability and service level. After introducing capacity sharing, one firm may act like

a free rider that relies on the vehicles transferred from her opponent. Meanwhile, many

vehicles are shared in periods and regions with high trip demands. Capacity sharing can

reduce the number of relocated vehicles by serving as a substitution for relocation and

also improves the firms’ profitability. To promote the capacity-sharing agreement, the

regulator should provide incentives to the firms.

In Chapter 3, we focus on an EV-sharing mobility system incorporating V2G tech-

nology. In this system, an operator provides a fleet of EVs to satisfy consumer trips

in a service area over an operational horizon, meanwhile, it needs to manage the charg-

ing/discharging of EVs during operations. The consumer trips across regions in all periods
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are uncertain and correlated. We jointly optimize vehicle initial allocation and subsequent

operation, including charging and discharging, under uncertainties. To make a reliable

solution under uncertainty with a limited amount of available data, we construct a two-

stage distributionally robust optimization (DRO) model. To increase the computational

efficiency, we first introduce outer and inner approximations for the DRO problem and

then develop an algorithmic approach that incorporates time-based decomposition tech-

niques. Through numerical experiments using real-world data, we show that our proposed

approaches can obtain high-quality solutions in significantly short computational time.

Our out-of-sample results reveal that most EVs charge electricity during the early hours

of the day when electricity prices and trip demands are low. Conversely, EVs discharge

electricity during periods of high electricity prices. Additionally, an increased charging

speed contributes to a reduction in the number of allocated vehicles, an enhancement in

the vehicle utilization rate, and a drop in total costs. We further compare two different

pricing schemes for charging EVs: electricity-based and time-based pricing schemes. We

find that EVs process charging and discharging more frequently under the time-based

pricing scheme than the electricity-based pricing scheme.

In Chapter 4, we consider a grid-vehicle integration (GVI) system employing V2G while

managing uncertainties in renewable generation, power load, and EV trip demand. We

formulate the problem of operating a GVI system as a two-stage robust mixed-integer

program. In the first stage, the grid operator, aiming to minimize the worst-case total

cost, decides whether to start up a generator. In the second stage, the grid decides power

generation levels and charging/discharging interactions with EVs to satisfy the power

load. Meanwhile, the mobility operator utilizes the EV fleet to fulfill the interactions

and satisfy EV trip demands. The inherent complexity arising from discrete decisions,

uncertainties, and robustness requirements poses a significant computational challenge,

prompting the proposal of a machine learning-driven optimization approach. Our ap-

proach outperforms a commercial solver in both computational time and solution quality

for large-scale instances based on real data. Conducting out-of-sample tests with data

from New York City, we reveal that V2G can reduce the number of required generators

and stabilize power generation by “filling” the low power load and “shaving” the peak

power load. Moreover, the V2G helps achieve a substantial 21.66% average reduction

in carbon emissions compared to the case without V2G. The impact of V2G is more
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pronounced under a bimodal power load pattern than a unimodal pattern. We also find

that achieving carbon neutrality in this integration system is feasible yet challenging.

In Chapter 5, we provide concluding remarks for this thesis.
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Chapter 2

Integrated Vehicle Allocation and

Relocation for Shared Micromobility

under Competition and Demand

Uncertainty

2.1 Introduction

A shared micromobility system consists of lightweight vehicles (e.g., bikes, e-bikes, e-

scooters) and well supports urban short-distance travel (e.g., last-mile transportation),

alleviating city congestion because of its eco-friendliness and sustainability (McKinsey

2021). Note that 60% of today’s total passenger miles traveled in China, Europe, and

the U.S. are less than 8 kilometers (McKinsey 2019), and the energy prices and public

interest in social distancing are growing. Thus, the shared micromobility system becomes

a significant transportation solution for society.

The shared micromobility system allows consumers to conveniently pick up and drop off

vehicles in any service region at any time, offering short-term self-service rental programs

(Fishman et al. 2013). A consumer can rent a micromobility vehicle by paying a low

rental cost (much lower than the ownership and maintenance costs) for a short-distance

trip. Motivated by such convenience, over 1,000 cities worldwide have established similar

programs (Wang and Lindsey 2019). For example, nearly seventy bike-sharing companies

were operating in China as of July 2017 (Sago 2020); six e-scooter companies (i.e., Lime,
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Bird, Tier Mobility, Wind Mobility, Flash, and Hive) are competing in Vienna, and five

companies (i.e., Lime, Bird, Lyft, Skip by Helbiz, and Spin) in Washington, DC (Schellong

et al. 2019).

A shared micromobility system differs from other shared mobility systems (e.g., car-

sharing and ride-hailing) mainly because of the following three features. First, shared

micromobility services are not provided on-demand like ride-hailing due to the lack of self-

regulated owners for each vehicle. Each micromobility vehicle should stay ready for the

coming consumers, significantly challenging the operators to allocate and relocate vehicles

efficiently for high service quality and profitability. Second, the convenience of free pick-up

and drop-off often creates vehicle supply and demand imbalance in different regions (Jin

et al. 2023). For instance, consumers often drop off micromobility vehicles near subway

stations, leading to an oversupply of vehicles, while there may be insufficient vehicles in

regions far away from central business regions. This can significantly mitigate the firm’s

operational efficiency, service quality, and profitability. Thus, a shared micromobility

firm (referred to as “she”) must relocate her vehicles across the service regions efficiently.

Third, the shared micromobility firm often owns the vehicles and bears high investment

and operational costs with low rental prices (Hasija et al. 2020), and is further responsible

for carefully operating the system to match supply with demand. The firm cannot simply

raise rental prices to cover these high costs because consumers can easily switch to other

mobility services. For example, Indego, a bicycle-sharing system serving Philadelphia,

has maintained the price of its annual pass at $156 since April 2018, despite adding

approximately 1,000 new bicycles to its system since then (City of Philadelphia 2018,

Indego 2023). Thus, efficient vehicle allocation and relocation across regions to ensure

profitability and service quality are significantly important for a shared micromobility

firm.

Currently, multiple shared micromobility firms operate in a city. The fierce competi-

tion among firms brings additional challenges to both the firms and the regulator. On

the one hand, such a competition, along with the aforementioned three features of the

shared micromobility system, requires the firms to efficiently perform initial allocation

and subsequent relocation of vehicles to ensure commercial sustainability. On the other

hand, the regulator faces the challenge of regulating the shared micromobility industry to

avoid too many vehicles blocking traffic and causing safety issues while maintaining the
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benefits of the shared micromobility services to city residents. In many cities worldwide,

e.g., Barcelona (Valdivia 2020), San Diego (Hargrove and Ahn 2022), Chicago (City of

Chicago 2022), and Boston (American Legal Publishing 2019), regulators limit the num-

ber of shared micromobility vehicles allocated in the city via licenses issued to the firms.

Each firm should apply for a portion of these licenses. In addition, the City of Chicago

requires that the licensed vehicles be allocated relatively fairly in the service regions based

on consumer demands to ensure that vehicles can be available to all city residents. They

further periodically adjust the number of licensed vehicles by reviewing the utilization

rate (City of Chicago 2022). Furthermore, they divide the service area into different types

of areas (e.g., equity priority and core areas), each with sub-areas. The regulator sets a

specific allocation limit for each sub-area.

With a limited number of vehicles due to the regulator’s restriction on vehicle alloca-

tion, shared micromobility firms are challenged to provide consumers with high-quality

services. To address this challenge, we suggest an innovative capacity-sharing agreement

between the firms, under which a firm can share spare capacity (i.e., micromobility vehi-

cles) for a fee with her opponent when both of them are competing in the same market.

To the best of our knowledge, we are among the first to integrate the initial allocation

and subsequent relocation of shared micromobility vehicles under firm competition, reg-

ulator restrictions, and demand uncertainty. For such a case, we are interested in the

following research questions: How should a shared micromobility operator integrate ve-

hicle allocation and relocation? How do the firm competition and regulator restrictions

affect the firms’ performance? How does capacity sharing affect the firm’s profitability

and operations? Should the regulator intervene in the shared micromobility industry to

balance social welfare and the industry’s economic viability, and if so, what are possible

approaches?

To answer these questions, we consider two shared micromobility firms competing in

the same service area that is divided into multiple regions (He et al. 2017, Qi and Shen

2019). Each firm provides a fleet of micromobility vehicles to satisfy consumer demands

in the service area over an operational horizon with multiple periods. Motivated by the

practices in the shared micromobility industry, we consider uncertain consumer demands,

and the market consists of two types of consumers (hereafter, we refer to a consumer as

“he”): loyal consumers and disloyal consumers. A loyal consumer of a firm always chooses
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that firm when renting micromobility vehicles, whereas a disloyal consumer may choose

either firm. The reasons for a loyal consumer’s preference vary. For instance, he may

prefer the firm’s vehicles if the two firms offer different ones, or he may be ineligible to

rent the other firm’s vehicles if he has not paid a deposit fee yet.

We formulate a two-stage model. In the first stage, each firm builds her capacity by

initially allocating micromobility vehicles across service regions without knowing the ac-

tual demands in each period. The regulator limits the number of vehicles allocated in

each service region by the two firms together. We call this stage the capacity-development

stage. In the second stage, after the demands are realized, each firm operates her vehicles

by subsequently relocating vehicles across service regions in each period to rebalance the

vehicles toward satisfying the demands. We call this stage the operation stage. Moreover,

following the study by Kabra et al. (2020) that examines the impact of bike accessibil-

ity and availability upon bike-share ridership, we consider that the consumer demands

partially depend on the vehicle capacity (i.e., the number of allocated vehicles). The

mismatch between vehicle supply and demand may cause parking costs for idle vehicles

and lost-sale penalties. Each firm maximizes her total expected profit over the entire

operational horizon, including the revenue from serving consumers and the costs incurred

in the two stages. We make the following contributions:

(i) Each shared micromobility firm solves an integrated vehicle allocation and reloca-

tion problem and provides a Nash equilibrium. Each firm’s decision-making problem is

formulated as a two-stage stochastic program on a spatial-temporal network (Fan 2014,

Mahmoudi and Zhou 2016, Lu et al. 2017). In the capacity-development stage (1st stage),

the firm decides initial vehicle allocation for service regions. In the operation stage (2nd

stage), the firms make subsequent vehicle relocation as recourse across service regions

to match supply with demand after the demands are realized in each period. We also

consider transferred micromobility vehicles when both firms share their capacities (i.e.,

vehicles). To the best of our knowledge, our formulated spatial-temporal network is the

first that incorporates the flows between the two firms.

(ii) We explore the optimality condition of each firm’s decision-making and seek the Nash

equilibrium by optimizing certain objectives (i.e., criteria for selecting an equilibrium)

over the joint optimality conditions of both firms. Specifically, we consider two criteria

preferred by the regulator and the firms, respectively: minimizing the total demand loss
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and minimizing the total number of allocated vehicles.

(iii) We propose an innovative capacity-sharing agreement between the shared micro-

mobility firms. Under this agreement, each firm can share abundant vehicles with her

opponent for a fee. We demonstrate the feasibility and effectiveness of the capacity-

sharing agreement.

(iv) We perform numerical experiments based on real data collected from Citi Bike (2022)

and obtain the following managerial insights for the regulator and the firms. The regu-

lator restrictions impact firms’ profitability and service level. The competition benefits

the firm with fewer loyal consumers by increasing her profit. After introducing capacity

sharing, one firm may act like a free rider that allocates fewer vehicles and asks for ve-

hicles transferred from her opponent if needed. Meanwhile, many vehicles are shared in

periods and regions with high trip demands. Capacity sharing can reduce the number of

relocated vehicles by serving as a substitution for relocation and also improves the firms’

profitability.

The remainder of the chapter is organized as follows. Section 2.2 reviews related studies.

Section 2.3 introduces the problem formulation. We conduct numerical experiments in

Section 2.4 based on real data from Citi Bike (2022). Section 2.5 concludes the chapter.

2.2 Literature Review

Our work builds on the prior Operations Management (OM) studies on shared mobility.

With the advanced development of disruptive technologies and data analytics, the smart

city paradigm is shifting from new technology adoption to decision optimization, focusing

on improving operational efficiency (Qi and Shen 2019, Mak 2022). In line with this shift,

a growing body of OM literature studies smart city problems.

Shared mobility, a component of smart cities, proliferates in industry and has also

received attention in recent literature. Most studies on shared mobility focus on car

sharing, with which people rent cars from individual car owners (often also drivers) for

trips (e.g., see He et al. 2017, Chang et al. 2017, Lu et al. 2017, Qi et al. 2018, Yu and

Shen 2020, and Benjaafar et al. 2022a). Shared micromobility, complementary to car

sharing, also brings challenges and opportunities to OM researchers (Hasija et al. 2020).

Shared micromobility is fundamentally different from car sharing in the ownership of as-
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sets. Shared micromobility firms are asset-based, having the ownership of micromobility

vehicles (e.g., bikes or scooters), whereas car-sharing firms are often two-sided platforms

that provide services to match supply with demand. Recently, Kabra et al. (2020) and He

et al. (2021b) study how the bike supply impacts end-user behavior. Kabra et al. (2020)

empirically investigate the impact of bike accessibility and availability upon bike-share

ridership and find that higher bike availability and a more condensed bike station network

would help increase the ridership. Following this study, He et al. (2021b) further take bike

stations’ geographic locations into account and provide the designing guidance for a bike-

share network by examining the relationship between ridership and station density. Our

work is more related to Shu et al. (2013), and they formulate two linear programming

models to optimize the number of bikes in each dock and the fleet operation, respec-

tively. However, the initial allocation and fleet operations are not independent, especially

for the new entrants of the shared micromobility market. In this chapter, each shared

micromobility firm integrates the capacity development (i.e., initial vehicle allocation)

and fleet operations (i.e., subsequent vehicle relocation) in a two-stage stochastic pro-

gramming model. Different from another relevant study by Jin et al. (2023), we consider

such an integration under firm competition and consumer demands depend on capacity

development decisions.

This chapter extends the literature on fleet operation in shared mobility. There is

a strand of studies that analyze fleet operation in car sharing. For example, Lu et al.

(2017) study the car allocation problem under demand uncertainty. Nair and Miller-

Hooks (2011) address the least-cost car redistribution problem to neutralize the imbal-

ance demand at various stations. The fleet operation in shared micromobility, however,

depends on capacity decisions (e.g., the number of allocated bikes) due to the difference

in asset ownership. Bearing high capacity-development and maintenance costs of the

physical assets (i.e., bikes), shared micromobility firms must carefully determine capacity

development and operation together to achieve economic viability and sustainability as

mentioned in Section 2.1. In addition, it is feasible to consider capacity decisions and

study sharing capacities in shared micromobility because the firms can easily decide and

adjust the capacity as they often own the assets. In contrast, car-sharing firms have to

use incentive instruments to affect the capacity, e.g., motivating more drivers to provide

service by increasing their salaries. Several works dedicate to the fleet operation in shared
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micromobility (e.g., see Zhang et al. 2017, Lu 2016, and Schuijbroek et al. 2017). For in-

stance, He et al. (2021c) formulate a model wherein a two-sided matching platform (e.g.,

a free-float bike-sharing company) determines the spatial allocation of parking spaces and

the design of incentive instruments that can affect the supply (e.g., price and rewards to

users). However, to the best of our knowledge, none of these studies explicitly considers a

firm’s capacity decision (e.g., bike allocation), which is more critical in shared micromo-

bility than in other shared mobility (e.g., car sharing). Motivated by the necessity and

feasibility, our work contributes to this stream of literature by integrating the capacity

decision and fleet operation for shared micromobility.

Our study contributes to the steam of literature on competition in shared mobility.

Most of the prior works focus on the competition in ride-sharing (e.g., see Nikzad 2017

and Zhang et al. 2022a. The competition in shared micromobility is vastly observed in

practice while receiving limited attention in the literature. Most of the related studies on

competition in shared micromobility mainly focus on the demand side. Cao et al. (2021)

use staggered entry of two deckles bike-sharing firms and observe a positive network effect

in demand between the firms. Reck et al. (2022) analyze the impact of competition on

demand between different mode choices (i.e., dockless e-scooters and e-bikes and docked

e-bikes and bikes). Martin et al. (2021) address a car-sharing relocation problem where

multiple operators compete for the deterministic demand while collaborating in relocating

their fleets. Our work contributes to this stream of literature by considering the supply

side—the capacity decisions. While there is extensive literature on capacity investment

under competition and uncertainty (see Van Mieghem 2003 and Chevalier-Roignant et al.

2011 for a detailed literature review), to the best of our knowledge, we are the first to con-

sider competitive capacity investment and operational decisions of shared micromobility

firms under demand uncertainty.

2.3 Model

We consider two competing shared micromobility firms (indexed as k ∈ K = {A,B}) that

just expand their business into a city. Each firm provides shared micromobility service

for a set of regions M = {1, 2, . . . ,M} in each period t ∈ T = {0, 1, . . . , T}.
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2.3.1 Sequence of Events

We formulate a two-stage model, in which we call the first stage the capacity-development

stage and the second stage the operation stage. We introduce the sequence of events and

the firms’ decisions below.

(a) Capacity-development stage: Each firm k ∈ K simultaneously decides the number

of micromobility vehicles to be allocated in each region i ∈ M, denoted by xki .

We assume that each firm k is endowed with a budget that can afford at most

x̂k vehicles. In addition, based on approximated trip demands in each region, the

regulator (e.g., the city government) restricts the numbers of micromobility vehicle

licensing plates and available parking spaces to avoid traffic chaos. Thus, both firms

together allocate at most x̄i vehicles in each region i ∈ M.

(b) Operation stage: In each period t ∈ T , consumers arrive to rent micromobility

vehicles. Each firm simultaneously decides (i) the number of vehicles that fulfill

the consumers’ rental requests; (ii) the number of vehicles that are relocated across

regions to balance the vehicle inventories with the demands in each period; and (iii)

the number of vehicles that stay idle in each region.

2.3.2 Vehicle Movement: A Spatial-temporal Network

We model the vehicle movements among regions and across periods at the operation stage

as flows in a spatial-temporal network G = (N , E), where N is the set of nodes and E

is the set of directed arcs on the network (see Figure 2.1). A node nk
i,t ∈ N represents

service region i ∈ M in period t ∈ T for firm k ∈ K. For each firm k, the flow on the

directed arc (nk
i,t, n

k
i′,t′) ∈ E represents the number of micromobility vehicles moving from

region i in period t (i.e., node nk
i,t) to region i′ in period t′ (i.e., node nk

i′,t′).

Based on how vehicles are moved between two nodes, we define three types of arcs in

E for each firm k ∈ K: (i) Rental arcs : The flow on each rental arc (nk
i,t, n

k
i′,t′) ∈ Ek

R

represents the number of rental trips from region i in period t to region i′ ̸= i in period

t′ = t + ℓi,i′ , where ℓi,i′ represents the number of periods that a micromobility vehicle

rider needs to move from region i to region i′ and (i, i′, t, t′) ∈ ZR = {M × M × T ×

T | i ̸= i′, t′ = t + ℓi,i′}. (ii) Idle arcs : The flow of each idle arc (nk
i,t, n

k
i,t+1) ∈ Ek

I

represents the number of idling vehicles in region i from period t to period t + 1, where
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Figure 2.1. Spatial-Temporal Network G

(i, t) ∈ ZI = {M× T | t ∈ T \ {T}}. (iii) Relocation arcs : The flow of each relocation

arc (nk
i,t, n

k
i′,t′) ∈ Ek

L represents the number of vehicles relocated by the firm from region

i in period t to region i′ ̸= i in period t′ = t + ri,i′ , where ri,i′ represents the number of

periods that a vehicle needs to be relocated from region i to region i′ and (i, i′, t, t′) ∈

ZL = {M×M×T ×T | i ̸= i′, t′ = t+ri,i′}. Let A = {R, I,L}. We have Ek = ∪∀ a∈AEk
a ,

Ek
a1
∩Ek

a2
= ∅ for given k ∈ K, a1 ̸= a2, a1, a2 ∈ A, and EA

a ∩EB
a = ∅ for given a ∈ A. Note

that both Firm A and Firm B use similar micromobility vehicles and relocation methods

and share the geographic regions in M, the values of ℓi,i′ and ri,i′ are firm-independent

for any i, i′ ∈ M. Thus, for any arc (nA
i,t, n

A
i′,t′) ∈ EA, we have a corresponding arc

(nB
i,t, n

B
i′,t′) ∈ EB, and these two arcs represent two flows from region i in period t to

region i′ in period t′ for Firm A and Firm B, respectively.

2.3.3 Consumer Types

We consider two types of consumers: loyal consumers and disloyal consumers. A loyal

consumer of a firm always chooses that firm to rent micromobility vehicles from, regard-

less of the rental prices. The reasons for such a preference are various. For instance,

the consumer may prefer the firm’s vehicles if the two firms offer different ones, or the

consumer is ineligible to rent the other firm’s vehicles if he has not paid a deposit fee yet.

Let αk ∈ [0, 1] and α−k ∈ [0, 1] denote the percentage of consumers who are loyal to firm k

and firm −k, respectively. We assume that the remaining consumers (i.e., a percentage of

1−αA−αB ≥ 0 of all the consumers) are disloyal to both firms, and they choose the firm

with more available vehicles. The assumption comes from the phenomenon that many

consumers are more likely to choose a shared micromobility firm due to easier access to
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the vehicles (Kabra et al. 2020) instead of lower rental prices because the price difference

is usually insignificant across firms.

2.3.4 Mathematical Formulation

We formulate the decision-making model of each firm k ∈ K as a two-stage stochastic

program. In the capacity-development stage, each firm k ∈ K makes the vehicle allocation

decision xk = [xk1, x
k
2, . . . , x

k
M ]⊤ such that the following constraints are satisfied:

∑
i∈M

xki ≤ x̂k; xki + x−k
i ≤ x̄i, ∀ i ∈ M; xki ≥ 0, ∀ i ∈ M. (2.1)

Given firm −k’s decision x−k, we let X k(x−k) =
{
xk ∈ RM

+

∣∣ (2.1)}. Thus, the vehicle

allocation decision of one firm depends on that of the other.

In the operation stage, time-dependent demands arrive at each region i ∈ M at the

start of each period t ∈ T \ {0, T}. For each rental arc e = (nk
i,t, n

k
i′,t+ℓi,i′

) ∈ Ek
R, let w

k
e

denote the demand (i.e., the number of consumers) from region i in period t to region

i′ in period t + ℓi,i′ . The firm receives a revenue hkR ≥ 0 whenever it completes serving

a consumer. If the number of micromobility vehicles available in region i cannot satisfy

the demands of the region in period t, the unsatisfied demand for e = (nk
i,t, n

k
i′,t+ℓi,i′

) ∈ Ek
R

is lost and the firm k bears a penalty cost hkP ≥ 0 per consumer lost. The penalty

cost accounts for the side effects of demand loss, which cannot be captured solely by

revenue loss. For instance, unfulfilled consumers may feel disappointed about their loss,

negatively affecting a firm’s reputation. In addition, the penalty cost motivates shared

micromobility firms to actively serve consumers. If the number of consumers is fewer than

the number of vehicles in region i in period t, an idle cost hkI ≥ 0 (e.g., the maintenance

cost of idle vehicles) is incurred for each idling vehicle on the arc e = (nk
i,t, n

k
i,t+1) ∈ Ek

I .

When each firm k ∈ K relocates a vehicle, it pays a cost hkL ≥ 0, including labor and

trucking costs.

Anticipating demand uncertainty in the operation stage, each firm k ∈ K makes her

initial vehicle allocation decision xk and subsequent relocation decisions to maximize her

expected profit. The profit equals the total revenue minus the total cost. The total cost

includes the initial vehicle allocation cost c⊤xk in the capacity-development stage (where

ck = [ck1, c
k
2, . . . , c

k
M ]⊤) and demand-loss penalty, idle, and vehicle relocation costs in the

operation stage. Given the initial vehicle allocation xk, let φk(xk) denote the optimal
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expected net cost of the operation stage (i.e., the total cost minus the total revenue of

the operation stage). Thus, maximizing the firm k’s total expected profit is equivalent to

minimizing the summation of c⊤xk and φk(xk). Each firm k ∈ K optimizes her vehicle

allocation decisions by solving the following problem:

−Ψk = min
xk

{
ck

⊤
xk + φk(xk)

∣∣∣ xk ∈ X k(x−k)
}
, (Dk(x−k))

where Ψk ≥ 0 represents the total expected profit of each firm k ∈ K and φk(xk) is

realized in the operation stage when each firm k ∈ K relocates her micromobility vehicles

across regions. Problem (Dk(x−k)) is an integrated vehicle allocation and relocation

problem. Solving problem (Dk(x−k)) for each firm k ∈ K simultaneously gives us a Nash

equilibrium. We now describe the details of φk(xk) below.

First, we discuss the rental demand of each firm k ∈ K. For any given time-space range

(i, i′, t, t′) ∈ ZR, (i) we have eA = (nA
i,t, n

A
i′,t′) ∈ EA

R and eB = (nB
i,t, n

B
i′,t′) ∈ EB

R sharing

the same time-space range; (ii) we let Y k
i,i′,t,t′ denote the number of loyal consumers of

firm k ∈ K on each rental arc e = (nk
i,t, n

k
i′,t′) ∈ Ek

R; (iii) we let Y 0
i,i′,t,t′ denote the total

number of disloyal consumers on the arcs eA and eB together. Thus, the total market

demand (i.e., the total number of consumers) for any (i, i′, t, t′) ∈ ZR (i.e., on the arcs

eA = (nA
i,t, n

A
i′,t′) and eB = (nB

i,t, n
B
i′,t′) together) is Y A

i,i′,t,t′ + Y B
i,i′,t,t′ + Y 0

i,i′,t,t′ . Recall that∑
i∈M x̄i is the maximum number of micromobility vehicles allowed in the service area by

the regulator’s restriction, and it approximates the size of trip demands in the area (City

of Chicago 2022). We thus assume that firm k ∈ K wins the share (
∑

i∈M xki )/(
∑

i∈M x̄i)

of the total number of disloyal consumers over any given time-space range (i, i′, t, t′) ∈ ZR,

while firm −k wins the remaining disloyal consumers. 1 Thus, the more capacity a firm

has, the more disloyal consumers she wins. Then we can describe the rental demand for

each firm k ∈ K as follows:

we = Y 0
i,i′,t,t′

∑
i∈M xki∑
i∈M x̄i

+ Y k
i,i′,t,t′ , ∀ e = (nki,t, n

k
i′,t′) ∈ Ek

R, k ∈ K. (2.2)

Equations (2.2) reflect the impact of vehicle accessibility and availability on consumer

demands, as examined by Kabra et al. (2020).

1It would be interesting to consider the location proximity that the number of disloyal consumers orig-
inating from region i ∈ M and choosing vehicles from firm k depends on the number of firm k’s available
vehicles in this region divided by the number of both firms’ available vehicles in i (i.e., xki /(x

A
i + xBi )).

However, it will break down the linear programming-based formulation, creating significant computa-
tional difficulty.
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Second, for each arc e ∈ E , we let we denote its realized flow. Given any nonnegative

integers a and b, we let [a, b]Z denote the set of all integers between a and b; that is,

[a, b]Z = {a, a+1, . . . , b} if a ≤ b, and [a, b]Z = ∅ if a > b. Thus, given any node nk
i,t ∈ N ,

the number of micromobility vehicles flowing into this node should be the same as the

number of vehicles flowing out from this node:

∑
e∈f+(nk

i,0)

we − xki = 0, ∀ i ∈ M, k ∈ K, (2.3)

∑
e∈f+(nk

i,t)

we −
∑

e∈f−(nk
i,t)

we = 0, ∀ t ∈ [1, T − 1]Z, i ∈ M, k ∈ K, (2.4)

−
∑

e∈f−(nk
i,T )

we + xki = 0, ∀ i ∈ M, k ∈ K, (2.5)

where f+(nk
i,t) and f

−(nk
i,t) denote the sets of arcs that originate and terminate at node

nk
i,t, respectively. Constraints (2.3) state that in period t = 0, the outflow of node

nk
i,0 equals the number of vehicles initially allocated in region i ∈ M by firm k ∈ K.

Constraints (2.5) state that the number of vehicles of firm k ∈ K in region i ∈ M and

period T (i.e., the end of the operational horizon) returns back to the original status in

period 0.

Finally, we have the following three constraints:

we ≤ we, ∀ e ∈ Ek
R, k ∈ K, (2.6)

we ≤ xki , ∀ e ∈ Ek
I , k ∈ K, (2.7)

we ≥ 0, ∀ e ∈ Ek, k ∈ K. (2.8)

Constraints (2.6) ensure that the number of vehicles used to fulfill the demand on each

rental arc is no larger than the number of rental requests. Constraints (2.7) ensure that

the number of idling vehicles on each arc is no larger than the number of vehicles allocated

in region i ∈ M. That is, each firm is not allowed to park too many vehicles in each

region during the operational horizon, thereby avoiding traffic congestion. Constraints

(2.8) ensure that the realized flow on each arc is non-negative.

In the operation stage, we consider that both loyal and disloyal consumer trips across

regions and periods are uncertain. We model the uncertainty by stochastic optimization,

because we have substantial historical data to estimate the true probability distribution
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of the uncertainty. Specifically, with the widespread adoption of shared micromobility, we

have sufficient data to estimate the true distribution of the uncertain consumer trips with

sample-average approximation (SAA). The SAA approach has significant performance,

as it guarantees convergence to the optimal solution when the amount of samples is large

enough (Shapiro et al. 2021). In this stochastic problem, we take into account a finite

number of discrete scenarios of these uncertain trips, all of which are contained in the

sample set S. Each scenario s ∈ S denotes a possible realization of the uncertain loyal and

disloyal consumer trips, with a probability θs = 1/|S|. We do not consider realizations of

uncertain loyal and disloyal consumer trips independently, because we assume these two

types of consumers have the same trip pattern. This is supported by the fact that loyal

and disloyal consumers are in the same system, and thus, their demands are affected by

the same broad set of factors (e.g., road conditions and weather).

In the operation stage, each firm k ∈ K relocates micromobility vehicles with respect

to any possible scenario to maximize her expected profit subject to uncertain demands

we for each rental arc e ∈ Ek
R. We approximate the joint distribution of random variables

(Y A
i,i′,t,t′ , Y

B
i,i′,t,t′ , Y

0
i,i′,t,t′) over any given time-space range (i, i′, t, t′) ∈ ZR using a set of

finite scenarios S. Each scenario s ∈ S has a probability θs ≥ 0 with
∑

s∈S θs = 1. For

each scenario s ∈ S, each firm k ∈ K makes recourse decisions (e.g., vehicle relocation)

for all the periods in T . We reuse the aforementioned notation and add a superscript s

to each decision variable in the operation stage for each scenario. For each s ∈ S and

k ∈ K, we letwk,s = [ws
e, ∀ e ∈ Ek]⊤ andW k,s(xk) = {wk,s ∈ R|Ek

R|+|Ek
L |+|Ek

I | | (2.2)−(2.8)},
where |Ek

R| =
∑

i∈M
∑

j∈M\{i}max{0, T − ℓi,j}, |Ek
L| =

∑
i∈M

∑
j∈M\{i}max{0, T − ri,j},

and |Ek
I | = M(T − 1). Given the initial vehicle allocation xk for each firm k ∈ K, the

expected net cost φk(xk) in the operation stage can be determined by solving the following

network flow optimization problem:

φk(xk) =min
wk,s∈Wk,s(xk),

∀ s∈S

∑
s∈S

θs

∑
e∈Ek

R

(
hkP(w

s
e − ws

e)− hkRw
s
e

)
+
∑
e∈Ek

I

hkIw
s
e +

∑
e∈Ek

L

hkLw
s
e

 . (Ok)

2.3.5 Equivalent Reformulation

Each firm k ∈ K simultaneously solves her decision-making model (Dk(x−k)) to the opti-

mality, and eventually, both firms reach a Nash equilibrium between them. To examine

such an equilibrium, we first represent the optimality condition of problem (Dk(x−k))

for each firm k ∈ K and then integrate the optimality conditions of both firms to seek
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a feasible solution (xA,xB) from the integrated model that satisfies both conditions. It

follows that firm k’s vehicle allocation strategy xk must be the best response to the other

firm’s strategy x−k. Note that problem (Dk(x−k)) is a linear program for each firm k ∈ K.

Thus, we represent its optimality condition using the Karush-Kuhn-Tucker (KKT) con-

ditions and use W0 to denote the feasible region defined by the KKT conditions of model

(Dk(x−k)) for any k ∈ K (see Appendix A.2 for details).

As many equilibria may exist, we can adopt a certain criterion to choose an equilibrium

that satisfies such a criterion. In this chapter, we consider two criteria. First, both the

regulator and the firms care about the demand loss. On the one hand, the regulator

hopes to see more residents use shared micromobility services, thereby supporting a highly

convenient and sustainable society. On the other hand, shared micromobility firms hope

to satisfy more consumers, thereby generating higher revenues. Thus, while minimizing

the net cost (i.e., maximizing the profit) in Problem (Dk(x−k)), each firm k ∈ K would

prefer an equilibrium strategy that minimizes the expected total demand loss in the

market.That is, we solve the following optimization problem:

ΓDL
0 = min

Λ0∈W0

∑
k∈K

∑
s∈S

θs
∑
e∈Ek

R

(ws
e − ws

e) , (2.9)

where Λ0 denotes the vector of all variables associated with both firms in K (see Appendix

A.3).

Second, both the regulator and the firms care about the number of allocated micromo-

bility vehicles. On the one hand, the regulator would not prefer too many vehicles that

may cause traffic chaos. On the other hand, some shared micromobility firms, including

non-profit organizations, may concern about both surviving in the industry and balanc-

ing between reducing the traffic and serving the public. Thus, each firm k ∈ K would

prefer an equilibrium strategy that minimizes the total number of allocated vehicles in

the city while maintaining a certain service level. Specifically, we consider the following

optimization problem:

ΓTA
0 = min

Λ0∈W0

∑
k∈K

∑
i∈M

xki

∣∣∣∣∣∣
∑
e∈Ek

R

ws
e ≥ ϵ

∑
e∈Ek

R

ws
e, ∀ k ∈ K, s ∈ S

 , (2.10)

by which we eventually choose an equilibrium such that the total number of allocated

vehicles is minimized and each firm k ∈ K guarantees a minimum service level ϵ ∈ [0, 1].
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2.3.6 Capacity Sharing

We further extend the model (Dk(x−k)) for each firm k ∈ K by considering capacity

sharing between the two firms in K. Under a capacity-sharing agreement, each firm

k ∈ K can share her spare vehicles with firm −k if the latter is in shortage of vehicles to

satisfy her demands. To prevent the abuse of this agreement (e.g., a firm does not build

any capacity), the firms are required to return the borrowed vehicles within a period of

∆ = max{ℓij | ∀, i, j ∈ M, i ̸= j}. Thus, in addition to the operational decisions of each

firm k ∈ K in the problem (Ok), the firm k makes two more decisions in each period

and service region: (i) the number of vehicles that the firm shares with her opponent

(i.e., firm k sends her own vehicles to firm −k); (ii) the number of vehicles that the firm

returns to her opponent (i.e., firm k returns firm −k’s vehicles back).

We expand the spatial-temporal network G by adding two more types of arcs in the set

E (see Figure 2.2): (i) Transfer arcs : The flow on each transfer arc e = (nk
i,t, n

−k
i,t ) ∈ Ek

T

represents the number of vehicles transferred from firm k ∈ K to firm −k in region i ∈ M

in period t ∈ T to satisfy the consumer demands of firm −k, by which firm −k pays firm

k a compensation hT ≥ 0 for each vehicle. (ii) Return arcs : The flow on each return arc

e = (nk
i,t, n

−k
i,t ) ∈ Ek

Nδ
for any δ ∈ {1, 2, . . . ,∆} represents the number of vehicles that firm

k receives in period t ∈ [1, T − 1]Z and returns back to region i ∈ M in period t+ δ ≤ T .

No cost is incurred in the return arcs. Thus, the set A in Section 2.3.2 is expanded to

{R, I,L,T,Nδ, ∀ δ = 1, 2, . . . ,∆}, by which Ek = ∪∀ a∈AEk
a is also updated.

Figure 2.2. Expanded Spatial-Temporal Network G

With the expanded network G and settings above, the two-stage stochastic program-
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ming model for each firm k ∈ K is updated as follows:

−Ψk = min c⊤xk +
∑
s∈S

θs

∑
e∈Ek

R

(
hkP(w

s
e − ws

e)− hkRw
s
e

)
(Ck)

+
∑
e∈Ek

I

hkIw
s
e +

∑
e∈Ek

L

hkLw
s
e −

∑
e∈Ek

T

hTw
s
e +

∑
e∈E−k

T

hTw
s
e


s.t. (2.1); (2.2)− (2.4), (2.6)− (2.8), ∀ s ∈ S,∑

e∈f+(nk
i,T )

ws
e −

∑
e∈f−(nk

i,T )

ws
e + xki = 0, ∀ k ∈ K, i ∈ M, s ∈ S, (2.11)

∑
i∈M

∑
e∈E−k

T (t)

ws
e −

∑
i∈M

min{∆,T−t}∑
δ=1

∑
e∈Ek

Nδ
(t)

ws
e = 0,

∀ k ∈ K, t ∈ [1, T − 1]Z, s ∈ S, (2.12)

where Ek
T(t) = {(nk

i,t, n
−k
i,t ) ∈ Ek

T | ∀ i ∈ M} and Ek
Nδ
(t) = {(nk

i,t, n
−k
i,t ) ∈ Ek

Nδ
| ∀ i ∈ M} for

any t ∈ T , k ∈ K, and δ ∈ [1,min{∆, T − t}], constraints (2.11) are updated from (2.5)

because of the inclusion of return arcs in the network G, and constraints (2.12) ensure that

all the vehicles that firm k ∈ K borrows from firm −k should be returned back to firm

−k. Note that it is easy for both firms to comply with the proposed capacity-sharing

agreement because each firm can easily receive idling vehicles from her opponent and

return them to the opponent in any service region. For instance, if a given firm k ∈ K

receives 10 and 20 vehicles from two regions in a period, respectively, she can return all of

these vehicles to firm −k in any region inM, giving firms the flexibility to use the received

vehicles. Indeed, a firm can repeatedly use the received vehicles to fulfill multiple rental

requests if the requested trips are short enough. Thus, this capacity-sharing agreement

is practically feasible.

We can then examine the Nash equilibrium of the game between Firm A and Firm B

under the capacity-sharing agreement by formulating the KKT conditions of model (Ck)

for any k ∈ K, where the feasible region defined by the KKT conditions is denoted by

W1 (see Appendix A.4 for details). We also use the two criteria in Section 2.3.5 (i.e., the

expected total demand loss and the total number of allocated micromobility vehicles) to

select the corresponding Nash equilibria, respectively. For the first criterion concerning
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the expected total demand loss, we solve the following optimization problem:

ΓDL
1 = min

Λ1∈W1

∑
k∈K

∑
s∈S

θs
∑
e∈Ek

R

(ws
e − ws

e) , (2.13)

where Λ1 denotes the vector of all variables associated with both firms in K (see Ap-

pendix A.5 for details). For the second criterion concerning the total number of allocated

micromobility vehicles, we solve the following optimization problem:

ΓTA
1 = min

Λ1∈W1

∑
k∈K

∑
i∈M

xki

∣∣∣∣∣∣
∑
e∈Ek

R

ws
e ≥ ϵ

∑
e∈Ek

R

ws
e, ∀ k ∈ K, s ∈ S

 . (2.14)

The following proposition shows that the capacity-sharing agreement between both

firms in K benefits the entire system by reducing the expected total demand loss.

Proposition 1. When ΓDL
0 exists, we have ΓDL

1 − ΓDL
0 ≤ 0.

In addition to Proposition 1, which discusses the impact of capacity sharing on the

total demand loss of the two firms, we further investigate its impact on each individual

firm in the subsequent section. Specifically, in Section 2.4.5, we analyze the impact of

capacity sharing on the relocation of each firm (see Figure 2.15) and its impact on the

cost of each firm (see Figure 2.17).

2.4 Numerical Experiments: A Case Study

We conduct numerical experiments based on real operational data from Citi Bike (2022).

We first discuss the parameter settings and then obtain managerial insights from various

experiments based on the settings. All the numerical experiments are performed on a

computing node with 24 2.3-GHz Intel Xeon E5-2670 processors and 32 GB of memory

in a high-performance computing cluster. IBM ILOG CPLEX 12.10, under its default

setting, is used as the mixed-integer programming (MIP) solver.

2.4.1 Parameter Settings

We collect data from Citi Bike (2022) in New York City (NYC) from January 1 to

December 31 in 2019. We focus on Midtown Manhattan in a rectangular area formed by

four intersecting streets in NYC: First Avenue, Eleventh Avenue, Twenty-third Street,
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and Fifty-seventh Street (see Figure 2.3), and obtain 2,320,205 trips in this area. We

specify the geographical locations of all bike docking stations in Figure 2.3 and divide the

area into six service regions (i.e.,M = 6) using k-means clustering based on the Euclidean

distance between any two stations. Two stations that are close to each other can be

clustered together. The dots of different sizes indicate the station locations and their

demand levels, i.e., a larger dot indicates a higher demand level. Note that considering

six service regions helps us retain practical features in our models while not leading to a

large-scale and expanded spatial-temporal network G, under which the models are difficult

to solve.

Based on the trip data, we find that the average trip duration from one region to a

neighboring region is 9.77 minutes. For simplicity, we assume the traveling speed between

any two neighboring regions is the same and set each period as 10 minutes (leading to

144 periods per day). Table 2.1 summarizes the trip duration in terms of the number of

periods (i.e., ℓij) between any two service regions i, j ∈ M and i ̸= j.

Figure 2.3. Service Regions in Midtown
Manhattan

Regions 1 2 3 4 5 6
1 — 1 1 2 1 2
2 1 — 1 1 2 1
3 1 1 — 1 1 1
4 2 1 1 — 1 1
5 1 2 1 1 — 1
6 2 1 1 1 1 —

Table 2.1. Trip Duration Across Service Regions

Figure 2.4 shows the average number of consumer trips in the entire area in a day, with

the consumer trips between any starting and destination regions summarized in Figure

A.1 (see Appendix A.7). We note that most trip demands occur during the daytime,

especially from early morning (approximately 06:00) until night (approximately 22:00),

while the demand from 22:00–6:00 is almost negligible. We also note that the demand

pattern in the late afternoon exhibits similarity with that in the early morning in most

of the regions. Hence, hereafter we assume that the operational horizon for each firm

k ∈ K is 8 hours, from 6:00 to 14:00 (i.e., the shaded area in Figure 2.4), leading to

T = 48 periods in our models. It is worth noting that there is at least one peak in
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one day, i.e., high volumes of trip demands, regardless of the starting and destination

regions. Because the range from 6:00–14:00 covers at least one peak for any starting and

destination regions, this operational horizon is appropriate enough to capture both the

demand trend and traffic peak.
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Figure 2.4. Average Number of Consumer Trips in a Day in Midtown Manhattan

For any given 3-tuple (starting region, destination region, starting period), we use the

data to obtain the average number of trips (i.e., demands) over all the given data samples

between the given starting and destination regions in the given starting period. We let

Di,j,t denote the average demands from region i ∈ M to region j ∈ M\{i} in period t ∈ T

(see Figure A.1 for a summary of all these average demands). We let D̂i,t =
∑

j∈M\{i}Di,j,t

for any i ∈ M and t ∈ T , representing the total number of trips originating from region

i in period t. Figure 2.5 illustrates the total number of trips originating from each region

in three periods: t = 6 (low demand level), t = 18 (high demand level), and t = 36 (low

demand level). Clearly, the demands in t = 18 represent a peak, and regions 2 and 3 are

the busiest regions. We further let ϕi,t,j = Di,j,t/D̂i,t for any i ∈ M, j ∈ M \ {i}, and

t ∈ T , representing the percentage of all the trips originating from region i in period t

that eventually go to region j. Figure 2.6 illustrates the values of ϕi,t,j for any i ∈ M

and j ∈ M \ {i} when t ∈ {6, 18, 36}.
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(b) t = 18 (9:00–9:10)
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(c) t = 36 (12:00–12:10)

Figure 2.5. The Number of Trips Originating From Each Region

For each firm k ∈ K, we estimate her cost parameters in USD as follows: The micro-
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Figure 2.6. Trip Percentages

mobility vehicle allocation cost2 for any i ∈ M is cki = 0.16. The revenue per vehicle trip3

is hkR = 0.4 and the penalty cost per unsatisfied demand4 is hkP = 0.1. The relocation

cost per relocated vehicle5 is hkL = 0.12 and the idle cost per idling vehicle6 is hkI = 0.06.

The transfer cost per vehicle7 is hT = 0.12. Given a budget limit to allocate vehicles in

M, we set x̂k = 1500, which is sufficiently large because the number of vehicles that each

firm eventually allocates is less than x̂k.

The upper bound x̄i of the total number of vehicles allocated by the two firms in K

in each region i ∈ M, i.e., initial vehicle allocation quota, is not available in the data.

Nevertheless, we have max{
∑

i∈M D̂i,t | ∀t ∈ T } = 358. To have a proper number of

vehicles in the area to satisfy the trip demands of both firms while not creating traffic

chaos on the street, we set
∑

i∈M x̄i = 360. Given the total number of trips originating

from region i in period t, D̂i,t, for any i ∈ M and t ∈ T , we further set x̄i = 360 ×

(
∑

t∈T D̂i,t)/(
∑

i∈M
∑

t∈T D̂i,t) for any i ∈ M. For any two regions i, i′ ∈ M and i ̸= i′,

2We follow Jin et al. (2023) to estimate the vehicle allocation cost by dividing 150 dollars over 300
operational days and multiplying by 48/144 (i.e., scaling down the cost to our operational horizon),
leading to 150/300× (48/144) ≈ 0.16.

3We assume the revenue generated per trip in the area remains fixed, regardless of the trip’s duration.
This is because (i) Citi Bike charges a monthly fee of 17 from each consumer and allows this consumer
to freely ride bikes for any trip in less than 45 minutes and (ii) all the trips in the area take less than
45 minutes. The revenue per trip is then estimated by assuming that each consumer has two rides per
operational day, leading to 300/12× 2 = 50 trips per month and 17/50 ≈ 0.4 per trip.

4We test different values of hkP from 0.1 to 1, and the results are presented in Appendix A.8. The
entire system’s performance remains relatively consistent across different penalty values. Therefore, we
set hkP = 0.1 for simplicity.

5Citi Bike’s Bike Angels Rewards Program uses rewards to hire individual riders to relocate vehi-
cles. Specifically, one point is rewarded after one relocation is completed, and every ten points can be
exchanged for 1.2 dollars, leading to 1.2/10 = 0.12 dollars per relocation.

6The hourly car-parking rate in Manhattan is usually 4 dollars, leading to 4/6 ≈ 0.6 dollars per
period (i.e., 10 min). A car-parking spot is assumed to accommodate 10 micromobility vehicles, leading
to 0.6/10 = 0.06 per vehicle per period.

7The firm pays her opponent the transfer cost for receiving a vehicle to satisfy its demand. However,
in cases where capacity sharing is not available, the firm may relocate a vehicle from another region to
meet this demand. Thus, we assume that the transfer cost equals the relocation cost.
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we set ri,i′ = ℓi,i′ .

We further generate scenarios in S. We use a random parameter D̃i,t to represent

the number of trips (i.e., market demands) originating from region i ∈ M in period

t ∈ T . We assume that (D̃1,t, . . . , D̃M,t)
⊤ follows a multivariate normal distribution;

that is, (D̃1,t, . . . , D̃M,t)
⊤ ∼ N (D̂t,Σt), for any t ∈ T , where D̂t = (D̂1,t, . . . , D̂M,t)

⊤

and Σt represents the corresponding covariance matrix estimated from the given data in

each period t. Following this distribution, we randomly generate 1, 000 samples of trip

demands and use k-means clustering to cluster them into three groups, where we use the

center of each group to represent a demand scenario in S and thus set |S| = 3. Note

that we do not choose a large number of scenarios for two reasons. First, as our models,

i.e., (2.9)–(2.10) and (2.13)–(2.14), are large-scale MIPs that can be difficult to solve,

our model will become computationally intractable if using a large number of scenarios.

Second, the real data shows an apparent demand trend, and thus a few scenarios can well

represent the demand uncertainty. We will also discuss the impact of |S| on computational

performance in detail in Section 2.4.2.

Now, given the market demand originating from region i ∈ M in period t ∈ T and

scenario s ∈ S, denoted by Ḋi,t,s, we let Di,i′,t,t′,s = Ḋi,t,sϕi,t,i′ for any (i, i′, t, t′) ∈ ZR

and s ∈ S, representing the trip demand from region i in period t to region i′ in period

t′ = t+ℓi,i′ in scenario s ∈ S. Then, given a percentage (αk) of consumers who are loyal to

each firm k ∈ K, we have the number of firm k’s loyal consumers Y k
i,i′,t,t′,s = αkDi,i′,t,t′,s and

the number of disloyal consumers Y 0
i,i′,t,t′,s = (1−αA−αB)Di,i′,t,t′,s over any (i, i

′, t, t′) ∈ ZR

and in any scenario s ∈ S.

2.4.2 Computational Performance

We consider Problem (2.9) and examine the impact of |S| on its computational per-

formance, thereby demonstrating that setting |S| = 3 is effective enough. Given the

multivariate normal distribution N (D̂t,Σt) for any t ∈ T , we let Ω represent the num-

ber of samples that we randomly generate from this distribution. Here, we consider

Ω ∈ {100 × i, ∀ i ∈ [1, 10]Z}. Given Ω randomly generated samples, we solve two in-

stances of Problem (2.9): (i) S collects all the samples, with each sample representing a

separate scenario, i.e., |S| = Ω; (ii) we use k-means clustering to cluster these Ω samples

into three groups, with the center of each group representing a separate scenario, i.e.,
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|S| = 3. For each i ∈ M and k ∈ K, we let x̂k
∗

i (resp. xk
∗

i ) represent firm k’s optimal

initial allocation decision in region i after solving the first (resp. second) instance above.

For each firm k ∈ K, we use (
∑

i∈M(xk
∗

i − x̂k
∗

i )2/|M|)1/2 to measure the relative error of

the solutions (i.e., solution difference) between the above two instances. Figure 2.7 shows

the results.
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Figure 2.7. Relative Error and Computational Time

For each firm k ∈ K, the relative error is around 1 and always less than 2, regardless of

the value of Ω. Note that the optimal solutions of both the above two instances are to allo-

cate 360 vehicles in all regions by the two firms, i.e.,
∑

k∈K
∑

i∈M x̂k
∗

i =
∑

k∈K
∑

i∈M xk
∗

i =

360, leading to 60 vehicles in each region on average. Thus, when the relative error is 1,

it accounts for only 1.67% ( = 1/60 × 100%) of all the allocated vehicles. Such a small

error indicates that choosing three scenarios via clustering is effective and representative

enough compared to choosing all the available samples. More importantly, Figure 2.7

shows that when |S| is larger, solving Problem (2.9) becomes more challenging. For in-

stance, when |S| = 1, 000 in the first instance, the computational time (see the red solid

line) is 252 minutes, while the computational time (see the red dashed line) is only 1.45

minutes when |S| = 3 in the second instance. Thus, choosing three scenarios also helps

us efficiently obtain the solutions, enabling practical applications in the industry. As a

result, in the subsequent numerical experiments, we focus on using the three scenarios

(|S| = 3) we select in Section 2.4.1.

2.4.3 Impact of Initial Vehicle Allocation Quota

We examine the impact of the initial vehicle allocation quota on the firms’ performance

under the parameter settings in Section 2.4.1. We vary the quota for the entire area∑
i∈M x̄i and the percentages of the two firms’ loyal consumers (αA, αB), while keeping

other parameters unchanged and not adopting capacity sharing. With
∑

i∈M x̄i given at

27



360, representing a proper-quota case, we also consider
∑

i∈M x̄i takes half and double of

this quota, leading to 180 and 720, representing the low-quota and large-quota cases, re-

spectively. When
∑

i∈M x̄i is given, we let x̄i =
∑

i∈M x̄i×(
∑

t∈T D̂i,t)/(
∑

i∈M
∑

t∈T D̂i,t)

for any i ∈ M.

First, we consider the two firms in K are symmetric with respect to (αA, αB), which

can be (0, 0), (0.25, 0.25), and (0.45, 0.45). Given x̄i for any i ∈ M and (αA, αB), we

solve Problem (2.9) (that minimizes the expected total demand loss) and Problem (2.10)

(that minimizes the total number of allocated micromobility vehicles). Table 2.2 shows

the equilibrium results. For each instance, we use a 3-tuple (Firm A’s result, Firm B’s

result, Summation of both firms’ results) to show both firms’ performance in the initial

vehicle allocation, profit, and service level.

Table 2.2. Impact of Initial Vehicle Allocation Quota on Symmetric Firms

(αA, αB)

Allocation Profit Service Level (%)

Min.
Demand Loss

Min.
Allocation

Min.
Demand Loss

Min.
Allocation

Min.
Demand Loss

Min.
Allocation

Low
(180)

(0, 0) (0, 180, 180) (0, 180, 180) (0, 1801.5, 1801.5) (0, 1801.5, 1801.5) (-, 94.3, 94.3) (-, 94.3, 94.3)
(0.25, 0.25) (90, 90, 180) (90, 90, 180) (900.3, 900.3, 1,800.6) (900.3, 900.3, 1,800.6) (94.3, 94.3, 94.3) (94.3, 94.3, 94.3)
(0.45, 0.45) (90, 90, 180) (90, 90, 180) (900.2, 900.2, 1,800.4) (900.2, 900.2, 1,800.4) (94.3, 94.3, 94.3) (94.3, 94.3, 94.3)

Proper
(360)

(0, 0) (0, 360, 360) (0, 360, 360) (0, 1,415.3, 1,415.3) (0, 1,415.3, 1,415.3) (-, 99.7, 99.7) (-, 99.7, 99.7)
(0.25, 0.25) (180, 180, 360) (180, 180, 360) (707.7, 707.7, 1,415.4) (707.7, 707.7, 1,415.4) (99.7, 99.7, 99.7) (99.7, 99.7, 99.7)
(0.45, 0.45) (180, 180, 360) (180, 180, 360) (707.7, 707.7, 1,415.4) (707.7, 707.7, 1,415.4) (99.7, 99.7, 99.7) (99.7, 99.7, 99.7)

Large
(720)

(0, 0) (0, 720, 720) (0, 720, 720) (0, 329.4, 329.4) (0, 329.4, 329.4) (-, 100, 100) (-, 100, 100)
(0.25, 0.25) (360, 360, 720) (65, 65, 130) (164.6, 164.6, 329.2) (521.7, 521.7, 1043.4) (100, 100, 100) (97.3, 97.3, 97.3)
(0.45, 0.45) (360, 360, 720) (83, 83, 166) (164.6, 164.6, 329.2) (830.9, 830.9, 1,661.8) (100, 100, 100) (94.2, 94.2, 94.2)

Table 2.2 suggests that setting a proper quota that approximates trip demands can help

the firms achieve a high service level and profit simultaneously. Specifically, compared

to the low-quota case, the service level of each firm is increased by around 5% under the

proper-quota case regardless of the equilibrium criterion and loyal consumer percentages.

Compared to the large-quota case, the proper-quota case performs better under different

cases: (i) the profit of each firm is increased regardless of the equilibrium criterion when

αA ∈ {0, 0.25} and under the criterion of demand loss when αA = 0.45; (ii) the service

level of each firm is also increased under the criterion of initial allocation when αA ∈

{0.25, 0.45}.

Both firms use up the quota under the low- and proper-quota cases regardless of the

equilibrium criterion and loyal consumer percentages. For such cases, the number of

disloyal consumers each firm can attract by allocating one more vehicle, i.e., 1/
∑

i∈M xi,

is relatively large, motivating the firms to allocate as many vehicles as possible to attract

disloyal consumers. Under the large-quota case with a large loyal consumer percentage

(i.e., αA ∈ {0.25, 0.45}), both firms use up the quota under the criterion of demand
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loss and use the quota partially under the other criterion. When the initial vehicle

allocation quota is large, 1/
∑

i∈M xi is relatively small, discouraging firms from allocating

a large number of vehicles to attract disloyal consumers. Thus, when we aim to find

an equilibrium minimizing the total number of allocated vehicles, we may not use up

the quota, while a large number of vehicles may be required to achieve an equilibrium

minimizing the expected total demand loss.

Table 2.3. Impact of Initial Vehicle Allocation Quota on Asymmetric Firms

(αA, αB)

Allocation Profit Service Level (%)

Min.
Demand Loss

Min.
Allocation

Min.
Demand Loss

Min.
Allocation

Min.
Demand Loss

Min.
Allocation

Low
(180)

(0.1, 0.15) (72, 108, 180) (72, 108, 180) (719.5, 1,082.0, 1,801.5) (719.5, 1,082.0, 1,801.5) (94.3, 94.3, 94.3) (94.3, 94.3, 94.3)
(0.1, 0.45) (33, 147, 180) (49, 131, 180) (327.3, 1,473.9, 1,801.2) (386.2, 1,386.9, 1,773.1) (94.3, 94.3, 94.3) (96.3, 92.5, 93.3)
(0.1, 0.8) (20, 160, 180) (20, 160, 180) (200.0, 1,601.4, 1801.4) (200.0, 1,601.4, 1801.4) (94.2, 94.3, 94.3) (94.2, 94.3, 94.3)
(0.3, 0.4) (76, 104, 180) (80, 100, 180) (771.5, 1,030.0, 1,801.5) (763.3, 1,000.7, 1,764.0) (94.3, 94.3, 94.3) (93.5, 92.8, 93.1)
(0.3, 0.6) (60, 120, 180) (65,115,180) (600.2, 1,201.3, 1,801.5) (602.2, 1,195.2, 1,797.4) (94.3, 94.3, 94.3) (95.2, 93.6, 94.1)

Proper
(360)

(0.1, 0.15) (151, 209, 360) (103, 257, 360) (582.2, 833.1, 1,415.3) (471.7, 939.2, 1,410.9) (99.7, 99.7, 99.7) (99.2, 99.7, 99.5)
(0.1, 0.45) (69, 291, 360) (55, 305, 360) (258.1, 1157.2, 1,415.3) (251.4, 1,159.9, 1,411.3) (99.8, 99.7, 99.7) (98.9, 99.7, 99.6)
(0.1, 0.8) (39, 321, 360) (20, 161, 181) (158.4, 1256.7, 1,415.1) (189.9, 1,519.1, 1,709.0) (99.7, 99.7, 99.7) (95.2, 95.2, 95.2)
(0.3, 0.4) (156, 204, 360) (87, 116, 203) (605.0, 810.2, 1,415.2) (651.0, 868.0, 1,519.0) (99.7, 99.7, 99.7) (97.9, 97.9, 97.9)
(0.3, 0.6) (131, 229, 360) (60, 121, 181) (447.8, 967.5, 1,415.3) (569.7, 1,139.3, 1709.0) (99.9, 99.6, 99.7) (95.2, 95.2, 95.2)

Large
(720)

(0.1, 0.15) (343,377,720) (35, 53, 88) (108.7, 219.4, 328.1) (231.9, 347.8, 579.7) (100, 100, 100) (98.7, 98.7, 98.7)
(0.1, 0.45) (77, 643, 720) (26, 116, 142) (137.8, 190.4, 328.3) (205.1, 923.1, 1,128.2) (100, 100, 100) (97.4, 97.4, 97.4)
(0.1, 0.8) (43, 677, 720) (19, 149, 168) (134.4, 194.2, 328.6) (184.9, 1479.1, 1,664.0) (100, 100, 100) (94.4, 94.4, 94.4)
(0.3, 0.4) (64, 86, 150) (64, 86, 150) (586.3, 781.8, 1368.1) (586.3, 781.8, 1,368.1) (95.7, 95.7,95.7) (95.7, 95.7,95.7)
(0.3, 0.6) (56, 112, 168) (56, 112, 168) (554.6, 1109.3, 1663.9) (554.6, 1109.3, 1,663.9) (94.4,94.4,94.4) (94.4,94.4,94.4)

Next, we consider the two firms in K are asymmetric with respect to (αA, αB), i.e.,

αA ̸= αB. Table 2.3 shows the equilibrium results. We obtain the following results that

are consistent with the symmetric case in Table 2.2: (i) under the proper-quota case,

each firm can attain a high service level and profit; (ii) under the low-quota case, the

firms use up the allocation quota; and (iii) under the large-quota case, the firms may

not use up the quota, and the total number of allocated vehicles and profits increase

with the loyal consumer percentage. We also obtain results that are inconsistent with

the symmetric case. Specifically, under the proper-quota case, both firms do not use up

the quota when αA + αB is large (e.g., 0.7 and 0.9) under the equilibrium criterion of

the initial allocation. This happens mainly because the market competitiveness under

the asymmetric case when αA + αB is large is weaker than that under the symmetric

case, where neither firm dominates the market, and both firms have to halve the market

equally. That is, under the symmetric case, both firms allocate as many vehicles as

possible to attract disloyal consumers and thus use up the quota. In contrast, when

αA + αB is large under the asymmetric case, both firms are less willing to compete for

limited disloyal consumers.
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2.4.4 Impact of Competition

We examine the impact of competition by comparing the performance of the models

with and without competition. Specifically, we consider Problems (2.9) and (2.10) as the

models with competition. We let x̃ki = x̄i × αk/(αA + αB) for each firm k ∈ K in region

i ∈ M, and for each firm k ∈ K, we define

min
xk

{
ck

⊤
xk + φk

(
xk
) ∣∣∣∣∣ ∑

i∈M
xki ≤ x̂k; xki ≤ x̃ki , ∀ i ∈ M; xki ≥ 0, ∀ i ∈ M

}

as the model without competition. Given an initial vehicle allocation quota and loyal

consumer percentages, (i) we solve the above model and show the results in Table 2.4

(see the columns “W/O Competition”); (ii) we select the equilibrium result that yields

the highest profit by Problems (2.9) and (2.10) (see the columns “W/ Competition” in

Table 2.4). Note that here we consider the “highest profit” because the model with-

out competition minimizes the total cost, i.e., maximizes the total profit, ensuring fair

comparisons.

Table 2.4. Impact of Competition Under Asymmetric Cases

(αA, αB)

Allocation Profit Service Level (%)

W/
Competition

W/O
Competition

W/
Competition

W/O
Competition

W/
Competition

W/O
Competition

Low
(180)

(0.1, 0.15) (72, 108, 180) (70, 110, 180) (719.5, 1,082.0, 1,801.5) (705.7, 1095.8, 1801.5) (94.3, 94.3, 94.3) (94.1, 94.3, 94.2)
(0.1, 0.45) (33, 147, 180) (31, 149, 180) (327.3, 1,473.9, 1,801.2) (319.6, 1481.6, 1801.2) (94.3, 94.3, 94.3) (93.7, 94.4, 94.2)
(0.1, 0.8) (20, 160, 180) (17, 163, 180) (200.0, 1,601.4, 1801.4) (195.3, 1603.8, 1799.1) (94.2, 94.3, 94.3) (91.2,94.5,94.2)
(0.3, 0.4) (76, 104, 180) (74, 106, 180) (771.5, 1,030.0, 1,801.5) (762.4, 1038.3, 1800.7) (94.3, 94.3, 94.3) (93.7, 94.6, 94.2)
(0.3, 0.6) (60, 120, 180) (59, 121,180) (600.2, 1,201.3, 1,801.5) (599.5, 1201.9, 1801.4) (94.3, 94.3, 94.3) (94.0, 94.4, 94.3)

Proper
(360)

(0.1, 0.15) (151, 209, 360) (142, 218, 360) (582.2, 833.1, 1,415.3) (561.7, 853.7, 1415.3) (99.7, 99.7, 99.7) (99.7,99.7,99.7)
(0.1, 0.45) (69, 291, 360) (64, 296, 360) (258.1, 1157.2, 1,415.3) (257.0, 1158.3, 1415.3) (99.8, 99.7, 99.7) (99.6, 99.7, 99.7)
(0.1, 0.8) (20, 161, 181) (20, 161, 181) (189.9, 1519.1, 1709.0) (189.9, 1519.1, 1709.0) (95.2, 95.2, 95.2) (95.2, 95.2, 95.2)
(0.3, 0.4) (87, 116, 203) (87, 116, 203) (651.0, 868.0, 1519.0) (651.0, 868.0, 1519.0) (97.9, 97.9, 97.9) (97.9, 97.9, 97.9)
(0.3, 0.6) (60, 121, 181) (60, 121, 181) (569.7, 1,139.3, 1709.0) (569.7, 1,139.3, 1709.0) (95.2, 95.2, 95.2) (95.2, 95.2, 95.2)

Large
(720)

(0.1, 0.15) (35, 53, 88) (35, 53, 88) (231.9, 347.8, 579.7) (231.9, 347.8, 579.7) (98.7, 98.7, 98.7) (98.7, 98.7, 98.7)
(0.1, 0.45) (26, 116, 142) (26, 116, 142) (205.1, 923.1, 1128.2) (205.1, 923.1, 1128.2) (97.4, 97.4, 97.4) (97.4, 97.4, 97.4)
(0.1, 0.8) (19, 149, 168) (19, 149, 168) (184.9, 1479.1, 1,664.0) (184.9, 1479.1, 1,664.0) (94.4, 94.4, 94.4) (94.4, 94.4, 94.4)
(0.3, 0.4) (64, 86, 150) (64, 86, 150) (586.3, 781.8, 1,368.1) (586.3, 781.8, 1,368.1) (95.7, 95.7,95.7) (95.7, 95.7,95.7)
(0.3, 0.6) (56, 112, 168) (56, 112, 168) (554.6, 1109.3, 1663.9) (554.6, 1109.3, 1663.9) (94.4,94.4,94.4) (94.4,94.4,94.4)

When αA ̸= αB, we call the firm with a lower loyal consumer percentage the weak firm

and the other the strong firm. For instance, when (αA, αB) = (0.1, 0.45), Firm A is the

weak firm and Firm B is the strong firm. Table 2.4 suggests that the weak firm benefits

from the competition, which hurts the strong firm though. When no competition exists,

the weak firm is given a small quota to allocate vehicles, while she has the opportunity

to use the entire quota to allocate more vehicles and earns a higher profit after the

competition is introduced. It follows that the strong firm is left with a smaller quota to

allocate vehicles than before. Such changes after introducing the competition are more

significant when the disloyal consumer percentage (i.e., 1 − αA − αB) is large under the
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proper-quota case. This is intuitive because more disloyal consumers lead to a more

competitive market, where the competition will have a greater impact on the two firms.

We further analyze how each firm allocates vehicles in each region when the competition

is present. For each instance of the model with competition described above, we let xk
∗

i

be the equilibrium allocation decision of firm k ∈ K in region i ∈ M that achieves the

highest profit as mentioned above, and define xk
∗

i /(x
k∗
i + x−k∗

i ) as the allocation ratio

of firm k in region i. For each firm k ∈ K, we compare this ratio with αk/(αA + αB),

which defines the proportion of quota issued to firm k when there is no competition; a

larger allocation ratio indicates that the competition facilitates more allocated vehicles.

Specifically, we consider Problem (2.9) with αB = 0.45 and αA ∈ {0.1, 0.2, 0.3, 0.4}, where

Firm A is the weak firm. Figure 2.8 shows the two firms’ allocation ratios in every region

(see the gray and white bars), where the red dashed line shows the value of αA/(αA+αB).

Thus, when the grey bar of region i ∈ M exceeds (i.e., is higher than) the red line, i.e.,

xA
∗

i /(xA
∗

i + xB
∗

i ) > αA/(αA + αB), we say the weak firm (i.e., Firm A) allocates more

vehicles in region i after the competition is introduced.
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Figure 2.8. Initial Allocation in Each Region

Figure 2.8 shows that the weak firm allocates more vehicles in regions 5 and 6 and

allocates less in regions 2 and 3 (i.e., the busiest regions with the largest consumer trips),

compared to the case without competition. That is, regarding vehicle allocation in each

region, the strong firm dominates the busy regions while the weak firm focuses on the non-

busy ones. Note that allocating more vehicles in the busy regions is crucial to meet more

trip demands, motivating the strong firm to prioritize the vehicle allocation there and

allocate less in the non-busy regions. As a result, the weak firm allocates more vehicles

to the non-busy regions. As αA grows, Firm A becomes more comparably competitive

with Firm B, which becomes more difficult to allocate vehicles in the busy regions, and

eventually, the two firms’ performance becomes similar.
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2.4.5 Impact of Capacity Sharing

We investigate the impact of capacity sharing on firms’ operations by comparing the

results of Problem (2.9) (that does not consider capacity sharing) and Problem (2.13)

(that considers capacity sharing). First, we consider the two firms in K are symmetric

with respect to (αA, αB), i.e., αA = αB ∈ {10%+ i×5%, ∀ i ∈ [0, 7]Z}. For any given αA,

we obtain the same symmetric equilibrium result after solving Problem (2.13) (see Table

2.5). In this equilibrium, neither firm would like to share vehicles with her opponent.

Table 2.5. Symmetric Equilibrium for Symmetric Firms

Allocation Profit Transfer Demand Service Level

Firm A Firm B Firm A Firm B Firm A Firm B Firm A Firm B Firm A Firm B

180 180 707.67 707.67 0 0 2724.04 2724.04 99.70 99.70

For any given αA, we also obtain an asymmetric equilibrium (see Table 2.6). Firm A

allocates fewer vehicles and has fewer total demands than Firm B. Despite fewer allocated

vehicles, Firm A can receive vehicles transferred from Firm B due to the capacity-sharing

agreement and thus achieves a high service level. Furthermore, when each firm has more

loyal consumers, i.e., αA is larger, the two firms’ performance becomes closer, and the

number of vehicles shared between the two firms drops. Thus, even when two firms are

symmetric, one firm may act like a free rider that allocates fewer vehicles and asks for

vehicles transferred from her opponent if needed.

Table 2.6. Asymmetric Equilibrium for Symmetric Firms

αA(αB)

Allocation Profit ($) Transfer Demand Service Level (%)

Firm A Firm B Firm A Firm B Firm A Firm B Firm A Firm B Firm A Firm B

10% 74 286 193.35 1221.98 0 4.37 1440.72 4007.37 99.94 99.61
15% 108 252 409.07 1006.26 0 2.54 1961.31 3486.77 99.78 99.65
20% 150 210 554.64 860.69 0 1.95 2457.52 2990.57 99.80 99.61
25% 164 196 626.10 789.23 0 1.32 2601.46 2846.62 99.80 99.60
30% 171 189 650.22 765.11 0 1.02 2668.38 2779.71 99.72 99.67
35% 173 187 668.51 746.82 0 0.71 2693.76 2754.32 99.68 99.71
40% 176 184 687.50 727.83 0 0.51 2713.15 2734.94 99.73 99.67
45% 178 182 705.49 709.84 0 0.13 2719.91 2728.17 99.67 99.72

Next, we consider the two firms in K are asymmetric with respect to (αA, αB), i.e.,

αA ̸= αB. We fix αB = 45% and vary αA from 10% to 40%; that is, Firm B is the

strong firm and Firm A is the weak firm. For ease of exposition, we define Symmetry

Level (denoted by SL) as αA/αB, measuring the similarity between Firm A and Firm B.

We further consider the factors that reflect the strong firm’s ability to attract more loyal

consumers. Specifically, the strong firm may use more advanced vehicles and provides
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better services during operations, leading to a higher unit allocation cost and higher

penalty, relocation, and idle costs, respectively. Thus, we set higher cost parameters

for the strong firm in the following experiments by multiplying the strong firm’s cost

parameters (i.e., unit allocation, penalty, relocation, and idle costs) by a factor of u ≥ 1.

Detailed managerial insights are provided in the following sections.

Vehicle Transfers

First, we examine how the symmetry level SL and factor u affect the number of trans-

ferred vehicles. Figure 2.9 displays the number of transferred vehicles averaged over all

the regions and periods with respect to different values of SL and u. No matter what u

is, the number of transferred vehicles first increases and then decreases as SL increases.

Specifically, when SL is small, i.e., αA is small, the number of trip demands that Firm A

should satisfy is small and can be mostly covered by her own allocated vehicles, leading

to a small number of transferred vehicles. When SL grows, i.e., αA increases, Firm A

sees a larger demand to satisfy, leading to an increased need for available vehicles to sat-

isfy demands and hence an increased number of transferred vehicles. When SL further

grows, i.e., αA becomes large, the number of disloyal consumers in the market shrinks.

The weak firm, i.e., Firm A, becomes more comparable to her opponent and tends to

build capacity to serve her loyal consumers. Meanwhile, the strong firm is reluctant to

build a high capacity because the shrinkage of disloyal consumers in the market limits

her benefits. It follows that both firms become less likely to share their vehicles.
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Figure 2.9. Number of Transferred Vehicles

Next, we examine the temporal and spatial features of transferred vehicles in detail. We

consider u = 1.25 and αA = 0.25 and show the system’s performance in Figures 2.10 and
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2.11. Note that we choose u = 1.25 because shared micromobility firms do not have such

large cost differences and choose αA = 0.25 because the number of transferred vehicles is

significant (see Figure 2.9). Figure 2.10 shows the number of transferred vehicles averaged

over all service regions during the entire operational horizon. The number of transferred

vehicles is substantial during peak hours (i.e., t ∈ [12, 18]Z or 8:00–9:00) and remains

low during other periods, which is consistent with the trend of trip demands in Figure

2.4. A high trip demand indeed leads to a substantial need for available vehicles and an

increased number of transferred vehicles, and vice versa.
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Figure 2.10. Vehicle Transfers

Region 2 Region 4 Region 6

Region 1 Region 3 Region 5

4

6

8

10

12

14

16

18

20

(a) t = 6 (7:00–7:10)

Region 2 Region 4 Region 6

Region 1 Region 3 Region 5

4

6

8

10

12

14

16

18

20

(b) t = 18 (9:00–9:10)

Region 2 Region 4 Region 6

Region 1 Region 3 Region 5

4

6

8

10

12

14

16

18

20

(c) t = 36 (12:00–12:10)

Figure 2.11. Spatial Features of Vehicle Transfers

Figure 2.11 shows the number of transferred vehicles in each region in periods t ∈

{6, 18, 36}. Regions 2 and 3 are the regions where most vehicles are shared and transferred

between the two firms. Note that these two regions also have the largest trip demands

that originate from them (see Figure 2.5). Therefore, in the period and region with

high trip demands, we also see a large number of transferred vehicles. This indicates

that capacity sharing can help firms to satisfy demands and potentially reduce traffic

congestion on streets. We further examine the impacts of capacity sharing on firms’

operations by comparing the results of Problem (2.9) and Problem (2.13) in the following

three sections.

Impact on Relocation

We examine the benefits of capacity sharing in reducing the number of relocated vehicles

(i.e., relocation reduction). When capacity sharing is adopted, one might expect a firm to
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reduce her relocation because she can use vehicles from her opponent to satisfy demands

instead of relocating her own vehicles. This expectation is confirmed by the results in

Figure 2.12, showing that the total relocation reduction is positive and first increases

then decreases with SL. This pattern with SL coincides with that in the number of

transferred vehicles (see Figure 2.9). To obtain detailed insights into this pattern, we

further investigate the temporal and spatial features of relocation reduction by fixing

u = 1.25 and αA = 0.25.
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Figure 2.12. Impact of Capacity Sharing on Relocation Reduction
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Figure 2.13. Impact of Capacity Sharing on Relocation Reduction in Each Period

Figure 2.13 shows the total number of relocated vehicles (i.e., total relocation) when

capacity sharing is not considered (see the blue line) and the total relocation reduction

(see the green/red bars) when capacity sharing is adopted in each period. The relocation

reduction is positive in most periods and slightly negative in others. Meanwhile, the

relocation reduction is limited during peak hours (i.e., t ∈ [10, 20]Z or 7:40–9:20), but it

is large right before and after the peak hours. To explain this phenomenon, we analyze

the number of relocated vehicles that occur before, during, and after the peak hours

when capacity sharing is not considered. (i) Before the peak hours, many vehicles are

relocated, preparing for the upcoming high trip demands. After introducing capacity

sharing, a firm can receive vehicles from her opponent to satisfy demands during peak

hours (see many transferred vehicles during peak hours in Figure 2.10), by which the total

relocation before the peak hours is reduced, i.e., the relocation reduction is significant. (ii)

During the peak hours, the number of relocated vehicles is small because many vehicles
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are used to satisfy the high demands and few vehicles can be relocated. Meanwhile, since

the demands decrease significantly after the peak hours, a large-scale relocation during

peak hours is unnecessary. Due to the small number of relocated vehicles, the relocation

reduction by capacity sharing is also limited. (iii) After the peak hours, the number of

relocated vehicles becomes large. This happens because vehicles can be clustered in some

regions after many consumer trips are completed and must be relocated to other regions

for the upcoming demands there. After introducing capacity sharing, a firm can receive

vehicles from her opponent and hence does not need to relocate as many vehicles as when

capacity sharing is not adopted, leading to significant relocation reduction again.

Figure 2.14(a) displays the number of relocated vehicles in each region averaged over

all the periods when capacity sharing is not adopted. We focus on the demand features

in three clusters of regions (see Figures 2.5 and 2.6) and the corresponding relocation

features. (i) In the first cluster with regions 2 and 3, which are the busiest pick-up

regions, many consumers need to travel from there and hence each firm relocates many

vehicles to this cluster to satisfy demands. (ii) In the second cluster with regions 4 and 5,

which are the busiest destination regions, vehicles are cluttered there and hence each firm

relocates many vehicles from this cluster to other regions. (iii) In the third cluster with

regions 1 and 6, which are neither the busiest pick-up regions nor the busiest destination

regions, each firm relocates vehicles both from and to this cluster. Figure 2.14(b) shows

the relocation reduction in each region averaged over all the periods after introducing

capacity sharing. Clearly, the relocation reduction mainly occurs in the regions where

the total relocation is high, which confirms that capacity sharing is a substitute for

relocation.
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Figure 2.15 provides an example to demonstrate how capacity sharing can substitute

36



for relocation. We consider a simplified case where Firm A operates in regions i and j

from periods t to t+ 3. The number of trip demands from region j to i in period t+ 1 is

d1, and the numbers of trip demands from region i to j in periods t+ 1 and t+ 2 are d2

and d3, respectively. We assume that d3 ≥ d1 ≥ d2 and show the number of vehicles on

each arc in Figure 2.15. For example, in Figure 2.15(a), the number of vehicles on the

arc from nA
i,t+1 to nA

j,t+2 is 0, while the trip demand from nA
i,t+1 to nA

j,t+2 is d2.
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Figure 2.15. Capacity Sharing Reduces Relocation

Figure 2.15(a) shows an optimal solution when capacity sharing is not adopted. Firm

A relocates d1 vehicles in advance from region i in period t to serve the d1 consumers

originating from region j in t+ 1. These vehicles are then reused to serve some of the d3

consumers originating from region i in period t+ 2. Note that none of the d2 consumers

originating from region i in period t + 1 is served. The total cost corresponding to this

optimal solution costa = hALd1+h
A
P(d2+d3−d1)−2hARd1. Figure 2.15(b) shows a solution

with d1−w vehicles relocated from region i in period t to region j when capacity sharing
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is not adopted, where 0 ≤ w ≤ d1, leaving w vehicles idle in region i and period t. The

total cost corresponding to this solution

costb = hAL (d1 − w) + hAP(w + d3 − d1 + d2) + 2hAI w − hAR(d1 − w + d1)

= costa +
(
hAR + hAP + 2hAI − hAL

)
w.

As hAR+h
A
P+2hAI −hAL > 0 by the parameter setting in Section 2.4.1, we have costb > costa.

This explains why Firm A relocates d1 vehicles, instead of fewer ones, from region i

in period t when capacity sharing is not adopted. In addition, following the solution

in Figure 2.15(a), Firm A serves 2d1 consumers in total, but she serves only 2d1 − w

consumers following the solution in Figure 2.15(b). Thus, a good relocation decision

helps the firms serve more consumers and maximizes profit.

Figure 2.15(c) shows an optimal solution when capacity sharing is adopted. Firm A

relocates d1 − d2 vehicles from region i in period t to region j, where 0 ≤ d2 ≤ d1, and

receives d2 vehicles from her opponent (i.e., Firm B) to serve the d1 consumers originating

from j in t+ 1. Some of the d3 consumers originating from i in t+ 2 are served, and the

received d2 vehicles are returned to Firm B in period t+3. The total cost corresponding

to this solution

costc = hAL (d1 − d2) + hAP(d3 − d1) + 2hAI d2 + hTd2 − hAR(2d1 + d2)

= costa − (hAR + hAP − 2hAI + hAL − hT)d2.

As hAR + hAP − 2hAI + hAL − hT > 0 by the parameter setting in Section 2.4.1, we have

costc < costa. Therefore, by adopting capacity sharing, a firm can reduce the number

of relocated vehicles while satisfying more consumers (i.e., 2d1 + d2) than that (i.e., 2d1)

when capacity sharing is not adopted.

Impact on Total Costs

We further examine the benefits of capacity sharing in saving the firms’ costs. The cost

saving by capacity sharing is defined as the difference between the minimum total cost

(i.e., the maximum total profit) without capacity sharing and that with capacity sharing.

A positive cost saving means that capacity sharing improves the firms’ profitability.

Figure 2.16 shows that the total cost saving (i.e., the summation of cost savings for
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Figure 2.16. Impact of Capacity Sharing on Cost Saving

both firms) is always positive, regardless of SL and u. This confirms the effectiveness

of capacity sharing in introducing cost savings to the industry. Meanwhile, the cost-

saving benefit shrinks as the two firms become more symmetric (i.e., SL becomes larger).

Specifically, as αA becomes closer to αB, the weak firm (i.e., Firm A) tends to build

her own capacity to serve her loyal and disloyal consumers. Meanwhile, the strong firm

is also reluctant to build a high capacity because the shrinkage of disloyal consumers

limits the benefits. Thus, firms are less likely to share their capacities when they become

more symmetric, and the benefit of the capacity-sharing scheme is insubstantial compared

to the case without capacity sharing. The above observations demonstrate two effects

that the capacity-sharing scheme brings: (i) the demand uncertainty reduction effect, i.e.,

capacity sharing can align the excessive supply and demand; (ii) the free-rider effect, i.e.,

a weak firm with fewer loyal consumers can free-ride the strong opponent’s capacity to

serve consumers, especially disloyal consumers. More importantly, we should promote the

capacity-sharing agreement when the two firms have different numbers of loyal consumers,

specifically when the discrepancy is large.

In addition, the cost saving increases with u. Note that capacity sharing can improve

the two firms’ operations, such as facilitating vehicle transfers (see Section 2.4.5) and

reducing vehicle relocation (see Section 2.4.5). When the cost parameters of the strong

firm increase, the cost that capacity sharing can reduce for her during the operation also

increases. Thus, the cost-saving benefit is more significant as u increases, demonstrating

that the unit cost of the strong firm affects the effectiveness of capacity sharing. We fur-

ther investigate how capacity sharing affects each firm’s total cost in detail. Specifically,

we consider u = 1.25 and vary the value of SL.

39



Figure 2.17(a) continues to show that the total cost saving is positive and decreases

with SL, whereas Figure 2.17(b) surprisingly shows that asymmetric firms cannot obtain

better profitability simultaneously. Specifically, Firm A, the weak firm, has a negative

cost saving, and Firm B, the strong firm, has a positive cost saving by capacity sharing.

That is, capacity sharing benefits the strong firm and hurts the weak firm regarding cost

reduction. Therefore, some interventions should be provided to incentivize both firms

to reach a capacity-sharing agreement. For example, the strong firm that benefits may

charge a lower transfer cost hT from the weak firm. Moreover, the regulator may reduce

some costs for the weak firm (i.e., Firm A), such as the plate registration cost (included

by cA) and the idle cost (i.e., hAI ), to incentivize the weak firm that suffers increased costs

to reach the capacity-sharing agreement.
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Figure 2.17. Impact of Capacity Sharing on Cost Saving When u = 1.25

Impact of Budget

In the above studies, we set x̂k = 1500, a sufficiently large limit for firm k ∈ K to

allocate vehicles. Here we consider a budget limit that constrains the firms to allocate

vehicles. Specifically, we vary the values of x̂A and x̂B and examine how they affect the

firms’ demand loss and the effectiveness of capacity sharing in reducing demand loss. We

let u = 1.25 and (αA, αB) = (0.15, 0.45) and compare the results of Problem (2.9) and

Problem (2.13).

First, we fix x̂A + x̂B = 360 and vary the value of x̂A from 160 to 60, by which x̂B

changes from 200 to 300. Figure 2.18 shows positive demand loss reduction, and such a

reduction effect diminishes as x̂B increases. Specifically, when x̂B is small, Firm B, the

strong firm, has large trip demands but is constrained from allocating enough vehicles to

satisfy them, leading to significant demand losses. After capacity sharing is adopted, Firm
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Figure 2.18. Demand Loss Reduction When x̂A and x̂B Change

B can receive vehicles from her opponent to satisfy the demands, leading to significant

demand loss reduction. When x̂B increases, Firm B is allowed to allocate more vehicles

to satisfy her trip demands, reducing her reliance on capacity sharing and alleviating the

demand loss reduction effect.

Next, we examine the impact of allocation budgets by fixing x̂k fixed and varying the

value of x̂−k. We consider (x̂A, x̂B) = (60, 300) and the following two cases: (i) fixing

x̂B = 300 and decreasing the value of x̂A from 60 to 20; (i) fixing x̂A = 60 and decreasing

the value of x̂B from 300 to 260. Figure 2.19(a) shows the total demand loss of the

two firms for the above two cases when capacity sharing is not adopted. Specifically,

decreasing x̂A only (the weak firm) results in a greater demand loss than decreasing x̂B

only (the strong firm). When capacity sharing is further adopted, the total demand loss

is reduced only for the first case. Figure 2.19(b) shows the corresponding demand loss

reduction for the first case, where the reduction increases as x̂A decreases. This implies

that when the weak firm’s allocation budget is severely limited, adopting capacity sharing

can significantly reduce the entire market’s demand loss. Therefore, we should promote

the capacity-sharing agreement when the two firms have different allocation budgets,

specifically when the discrepancy is large.
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Figure 2.19. Demand Loss When One Firm’s Budget Changes
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2.5 Conclusion

Different from other shared mobility systems, a shared micromobility system often (i)

bears the high investment cost of heavy assets (e.g., micromobility vehicles) while charg-

ing a low rental price, (ii) offers the convenience of vehicle pick-ups and drop-offs that

may lead to a severe imbalance between supply and demand under uncertain consumer

demands though, and (iii) provides micromobility services not on an on-demand basis like

ride-hailing, while the micromobility vehicles can be centrally managed and even shared

with the competitors to serve demands. These three features draw attention to the ini-

tial allocation and subsequent operation of vehicles in the shared micromobility system.

Currently, multiple shared micromobility firms operate in a city. The fierce competition

among firms brings additional challenges to firms’ decisions to allocate and relocate vehi-

cles. Meanwhile, the city regulator (i) restricts the total number of vehicles in the market

allocated to each service region to avoid traffic congestion on streets and (ii) expects to

provide sustainable transportation services to as many city residents as possible. Such a

restriction and expectation further challenge firms’ vehicle allocation and relocation.

We consider two shared micromobility firms competing in the same service area with

several service regions over an operational horizon. Each firm provides micromobility

vehicles to satisfy the uncertain demands of two types of consumers: loyal consumers and

disloyal consumers, capturing the demand heterogeneity in consumer loyalty. Each firm

solves an integrated vehicle allocation and relocation problem, in which the total number

of vehicles allocated by the two firms together in each service region is constrained by the

city regulator, and provides a Nash equilibrium. Each firm’s decision-making problem

is formulated as a two-stage stochastic program on a spatial-temporal network, with

the objective of maximizing her expected profit. In the capacity-development stage (1st

stage), each firm decides initial vehicle allocation for service regions. In the operation

stage (2nd stage), the firm makes subsequent vehicle relocation decisions as recourse

across service regions to match supply with demand after the demands are realized in each

period. Specifically, consumer demands depend on capacity decisions (i.e., the number of

allocated vehicles), capturing the demand features in the shared micromobility market.

We explore the optimality condition of each firm’s decision-making and provide a

tractable optimization formulation to obtain the Nash equilibrium by optimizing certain

objectives (i.e., criteria for selecting an equilibrium) over the joint optimality conditions
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of both firms. In addition, to improve firms’ operations with the limited number of allo-

cated vehicles, we propose an innovative capacity-sharing agreement, under which a firm

can share spare capacity for a fee with her opponent when both of them are competing

in the same market. We prove that the capacity-sharing agreement between both firms

benefits the entire system by reducing the expected total demand loss (see Proposition

1).

Based on real data collected from Citi Bike (2022), we perform numerical experiments

to obtain managerial insights for the regulator and the firms with respect to two criteria

for selecting an equilibrium: (i) minimizing the total demand loss of both firms and (ii)

minimizing the total number of allocated vehicles. We discover the following insights

that may provide valuable guidance for city regulations and for vehicle allocations and

operations of shared micromobility firms in the competitive market.

(i) It is critical to set a proper initial vehicle allocation quota that approximates con-

sumer trip demands, by which each firm can achieve a high service level and profit

simultaneously. A small quota may restrict firms from serving consumers, leading to a

low service level, and a large quota may push firms to allocate many vehicles, leading to

a high cost and traffic congestion (see Section 2.4.3).

(ii) The competition benefits the weak firm with a few loyal consumers because she

can allocate more vehicles to earn a higher profit than before when no competition exists.

Such a benefit is more significant when the number of disloyal consumers is large and a

proper quota for initial vehicle allocation is enforced. Regarding vehicle allocation in each

region, the strong firm dominates the busy regions with high consumer demands, while the

weak firm focuses on non-busy regions. When the weak firm becomes more comparably

competitive with the strong firm, the two firms’ performance becomes similar (see Section

2.4.4).

(iii) After introducing capacity sharing, one firm may act like a free rider that allocates

fewer vehicles and asks for vehicles transferred from her opponent if needed when the

two firms are symmetric. Meanwhile, many vehicles are shared in periods and regions

with high trip demands. Capacity sharing can reduce the number of relocated vehicles by

serving as a substitution for relocation and also improves the firms’ profitability. However,

the two firms cannot obtain better profitability simultaneously from the capacity-sharing

agreement. Some interventions from the city regulator are needed to incentivize both
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firms to reach the agreement. In addition, capacity sharing can reduce the entire market’s

demand loss when the firms’ allocation budgets are limited (see Section 2.4.5).

Although our numerical experiments are based on Citi Bike (2022), our proposed mod-

els and solution approaches are general enough for any typical shared micromobility

market with two or more competing firms, thereby offering valuable insights for other

shared micromobility systems with similar operational and competitive features. Note

that the number of consumers firm k ∈ K attracts depends on the total number of al-

located vehicles divided by the initial vehicle allocation quota (i.e.,
∑

i∈M xki /
∑

i∈M x̄i

in constraints (2.2)) because the quota approximates the size of trip demands, thereby

manifesting the firm’s ability in attracting consumers. In addition, the loyal consumer

percentages (αA, αB) are exogenously given because we focus on how the firms compete

for disloyal consumers and further operate the system. It would be appealing to consider

the decision to create loyal consumers. For instance, loyal consumers may be created by

firms’ advertising efforts and we can then endogenize the number of loyal consumers (Baye

and Morgan 2009) in our models. We leave these for future research. Note that we con-

sider no return cost in this study. Paying an additional positive return cost is equivalent

to increasing the unit transfer cost hT, because we assume the unit transfer cost remains

fixed, regardless of the vehicle’s transfer region or return period. We have conducted

numerical tests to validate this equivalence. Our numerical results further demonstrate

that a slight increase in transfer price does not significantly affect the operations of firms.

Consequently, considering a positive return cost has no substantial impacts on the re-

sults. In future research, we plan to explore varying unit transfer costs across different

regions. Additionally, we will consider a positive return cost that is dependent on the

return period.
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Chapter 3

Data-Driven Operations for Electric

Vehicle-Sharing System with

Vehicle-to-Grid Electricity

Discharging

3.1 Introduction

A shared mobility system offers consumer services of picking up a vehicle nearby and

dropping it off in any permitted service region at any time, offering short-term rental

programs. Due to its flexibility and cost-effectiveness, the shared mobility system has

gained popularity in numerous cities worldwide, with an annual growth rate of 30%

(Soppert et al. 2022). Driven by the advances in electrical vehicles (EVs), which promise

zero carbon emissions and low operation costs, EVs are transforming the shared mobility

industry. Many car-sharing companies are transitioning from a fleet of fossil-fuel vehicles

to a fleet comprised of EVs. For example, Zipcar, a leading car-sharing company, has

allocated over 600 EVs across London and aims to upgrade its fleet to fully electric by

2025 (Zipcar 2024).

Despite the benefits, EVs introduce additional operational challenges for the system

operator. The electric nature of EVs necessitates effective battery management to ensure

they maintain sufficient capacity to meet trip demands. Managing the battery charging

in the EV fleet operation poses a significant challenge because EVs can only be charged
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at specific locations equipped with charging facilities, and the charging process is time-

consuming, rendering EVs idle and unusable for serving consumer trips during this period.

In addition to charging, EVs can also discharge stored electricity back to the power grid

using vehicle-to-grid (V2G) technology, generating revenue for the system. However, this

feature further adds complexity and challenges to the EV fleet operation. Consequently,

the EV-sharing mobility system requires a reliable and advanced model to optimize its

EV fleet management.

In addition to the above challenges posed by battery charging/discharging, the system

operator also faces challenges from uncertain consumer trips. The uncertain consumer

trips across all service regions and periods are dependent, leading to high-dimensional

and correlated uncertainties. Consequently, estimating the exact probability distribution

of uncertain trips requires a significant amount of historical data. However, such data is

usually challenging to acquire in practice, especially considering EV-sharing mobility is a

relatively new industry. Therefore, there is a need for an optimization method that can

generate a reliable solution without requiring a large number of data. Distributionally

robust optimization (DRO) takes into account certain information about the uncertain

parameter, including its support, mean, and covariance. It can generate a reliable solution

even when the optimization problem incorporates information with estimation errors.

Furthermore, increasing the sample size in DRO problems improves its solution quality

without increasing the problem size (Fathabad et al. 2020). These suggest that DRO

is well-suited for addressing the above challenges in the EV-sharing mobility system.

Because this system has limited available data, which may lead to estimation errors, and

the problem size in this system is significant even in a deterministic scenario.

In this chapter, we focus on an EV-sharing mobility system incorporating V2G tech-

nology. In this system, an operator provides a fleet of EVs to satisfy consumer trips in

a service area over an operational horizon, meanwhile, it needs to manage the charg-

ing/discharging of EVs during operations. The consumer trips across regions in all pe-

riods are uncertain and correlated. We jointly optimize vehicle initial allocation and

subsequent operation, including charging and discharging, under uncertainties. To make

a reliable solution under uncertainty with a limited amount of available data, we con-

struct a two-stage DRO model. Our contributions and main results are summarized as

follows:
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(i) We present a formulation of operations in an EV-sharing mobility system incorporat-

ing V2G technology through a two-stage DRO model. In the first stage, we decide the

initial vehicle allocation for the service regions, whereas in the second stage, we determine

the subsequent charging and discharging operations over the horizon. In our DRO model,

the true distribution of uncertain consumer trips lies in a set of distributions with known

support and first- and second-moment information, which is estimated from historical

data.

(ii) We introduce an exact semidefinite programming (SDP) reformulation of the two-

stage DRO model. We derive outer and inner approximations for the DRO problem and

propose algorithmic approaches to obtain high-quality solutions efficiently. Our numerical

experiments based on data collected from TLC (2024) in New York City (NYC) suggest

that our approaches yield high-quality solutions in a significantly short computational

time. The outstanding performance of DRO, as compared to stochastic optimization and

robust optimization, is demonstrated by the obtained results.

(iii) Our study yields the following managerial insights for the EV-sharing system incor-

porating V2G technology. EVs majorly charge electricity during the early hours when

electricity prices and consumer trips are low. Conversely, they discharge electricity when

prices are high. Faster charging reduces the number of allocated vehicles, improves the

vehicle utilization rate, and decreases total costs. Comparing two pricing schemes for

charging EVs, electricity-based and time-based, we observe more frequent charging and

discharging under the time-based scheme than the electricity-based scheme.

After reviewing the related literature in Section 3.2, we formulate the problem in Sec-

tions 3.3 and 3.4. Section 3.5 proposes our approaches. Section 3.6 conducts numerical

experiments to examine the performance of our proposed approaches and the mobility

system. Section 3.7 concludes this chapter.

3.2 Related Literature

The field of shared mobility has drawn numerous attention because of its value in urban

transportation and sustainability. In such a system, a customer can rent a vehicle from an

individual vehicle owner for a short trip (e.g., Nair and Miller-Hooks 2011 and Benjaafar
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et al. 2022b). Shu et al. (2013) develop two linear programming models to optimize

bicycle allocation and bicycle fleet operation in a bicycle-sharing system. Lu et al. (2018)

propose a two-stage stochastic model to optimize fossil-fuel vehicle allocation and fleet

operation under uncertain demand.

Different from bicycle sharing or fossil-fuel vehicle sharing, EV sharing sees additional

challenges in managing battery levels during operations. He et al. (2017) study a service

region design problem by incorporating both the customer adoption rate for EVs and fleet

operations, including charging, under uncertainty. He et al. (2021a) develop an optimiza-

tion model to jointly plan battery charging plots and manage fleet charging operations

in an EV-sharing mobility system. Dong et al. (2022) develop a Markov decision process

model to dynamically employ EVs with a low battery level for charging and EVs with a

high battery level for serving customers, aiming to minimize customer waiting time and

customer loss. Abouee-Mehrizi et al. (2021) investigate a shared mobility system that

incorporates both fossil-fuel vehicles and EVs, allowing customers to choose between the

two. They develop a queueing model to examine in what conditions it is optimal to

replace fossil-fuel vehicles with EVs.

Recently, some studies further extend the work in the EV-sharing system by incor-

porating V2G technology. Zhang et al. (2021) develop a two-stage stochastic program

to optimize EV allocation and fleet operation in an EV-sharing mobility system with

V2G. Their stochastic model considers a small number of discrete scenarios, whose cor-

relations are omitted, and is solved by the sample average approximation approach. Qi

et al. (2022) explore an EV-sharing mobility system connected with an urban microgrid

through V2G. They formulate deterministic models to optimize EV fleet dispatch and

electricity exchange. Our work further extends the existing studies on operations in the

EV-sharing mobility system with V2G, providing a comprehensive consideration of un-

certainty by capturing the correlations of uncertain trips across all service regions and

periods.

Uncertainty poses challenges to decision making in many real-life problems. To over-

come such challenges, advanced optimization approaches are proposed by existing studies.

Among them, stochastic optimization (SO), robust optimization (RO), and DRO prevail

nowadays (Fathabad et al. 2020). SO assumes knowledge of the probability distribution

of uncertain parameters, which is hard to be precisely estimated in practice due to the
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limited available data (Shapiro et al. 2021). RO assumes knowledge of the uncertainty

set and hedges against the worst-case scenario within this set, leading to a conservative

solution possibly (Ben-Tal et al. 2009). DRO relaxes the assumption of known proba-

bility distribution in SO and reduces the conservativeness of RO (Scarf 1958, Rahimian

and Mehrotra 2019). It optimizes decisions against the worst-case distribution within

a distributional ambiguity set. Delage and Ye (2010) propose a general moment-based

DRO problem with an ambiguity set considering the information of support, mean, and

covariance of uncertain parameters. They further reformulate the problem as a semidefi-

nite program (SDP), which can be solved in polynomial time. Recognizing the benefits of

DRO approach proved by existing studies, our study adopts this approach to effectively

address the challenges posed by uncertainties in the EV-sharing mobility system with

V2G.

3.3 Problem Formulation

Consider a shared electrical vehicle (EV) firm that operates an EV fleet, where each EV

owns a range of state-of-charge (SoC) denoted by the set S = {1, 2, . . . , S}. The firm

provides shared mobility service for a set of service regions Z = {1, 2, . . . , Z} in each

period t ∈ T = {0, 1, . . . , T}. We first study the movement of EVs with different SoC

across service regions in the operation horizon and then construct an optimization model.

3.3.1 Vehicle Movement: A Time-Space-SoC Network

We model the movement of EVs with different SoC across regions and periods as the flow

in a time-space-SoC network G = (N ,A), where N is the set of nodes and A is the set of

directed arcs on the network as shown in Figure 3.1. A node nz,t,s ∈ N represents region

z ∈ Z in period t ∈ T and SoC s ∈ S. The directed arc (nz,t,s, nz′,t′,s′) ∈ A represents

the number of EVs moving from node nz,t,s to node nz′,t′,s′ .

Based on how EVs are moved between two nodes, we define five types of arcs in A in

the time-space-SoC network:

(i) Rental arcs : The flow on each rental arc (nz,t,s, nz′,t′,s′) ∈ AR represents the number

of EVs from region z in period t and SoC s to region z′ ̸= z in period t′ = t+ ℓz,z′

and SoC s′ = s− bz,z′ for rental trips, where ℓz,z′ and bz,z′ represent the number of
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periods and number of SoC units an EV needs to move from region z to region z′.

We have (z, z′, t, t′, s, s′) ∈ WR := {Z ×Z ×T ×T ×S ×S | (nz,t,s, nz′,t′,s′) ∈ AR}.

(ii) Idle arcs : The flow of each idle arc (nz,t,s, nz,t+1,s) ∈ AI represents the number of

idling EVs in region z from period t to period t + 1. We have (z, t, s) ∈ W I :=

{Z × T × S | (nz,t,s, nz,t+1,s) ∈ AI}.

(iii) Relocation arcs : The flow of each relocation arc (nz,t,s, nz′,t′,s) ∈ AL represents the

number of EVs relocated from region z in period t and SoC s to region z′ ̸= z in

period t′ = t+ ℓz,z′ and SoC s. We have (z, z′, t, t′, s) ∈ WL := {Z × Z × T × T ×

S | (nz,t,s, nz′,t′,s) ∈ AL}.

(iv) Charging arcs : The flow of each charging arc a = (nz,t,s, nz,t+1,s′) ∈ AC represents

the number of EVs in region z, period t, and SoC s charged to s′ = s + δC after

one period, where δC represents the charging rate per period. We have (z, t, s) ∈

WC := {Z × T × S | (nz,t,s, nz,t+1,s) ∈ AC}.

(v) Discharging arcs : The flow of each discharging arc a = (nz,t,s, nz,t+1,s′) ∈ AS repre-

sents the number of EVs in region z, period t, and SoC s discharged to s′ = s− δS

after one period, where δS represents the discharging rate per period. We have

(z, t, s) ∈ WS := {Z × T × S | (nz,t,s, nz,t+1,s) ∈ AS}.

Hence, we have A = AR ∪ AI ∪ AL ∪ AC ∪ AS.

n1,1,3 n1,2,3 n1,3,3

n1,1,2 n1,2,2 n1,3,2

n1,1,1 n1,2,1 n1,3,1

n2,1,3 n2,2,3 n2,3,3

n2,1,2 n2,2,2 n2,3,2

n2,1,1 n2,2,1 n2,3,1

Timet=1
t=2

t=3

SoC

s=3

s=2

s=1

Timet=1
t=2

t=3

SoC

s=3

s=2

s=1

Region 1

Region 2

Rental arc

Idle arc

Relocation arc

Charging arc

Discharging arc

Figure 3.1. An Example of Time-Space-SoC Network
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We formulate the problem as a two-stage model. In the first stage, we decide the

initial number of EVs allocated to each service region. In the second stage, we decide

EVs operations during the whole operational horizon.

3.3.2 First-stage Formulation

The operator is endowed with a budget that can afford at most X EVs. In the first stage,

the operator makes the allocation decisions xz,s in region z ∈ Z with SoC s ∈ S so that

∑
z∈Z

∑
s∈S

xz,s ≤ X. (3.1)

A cost cs(≥ 0) is incurred for allocating an EV with SoC s ∈ S to any region. The gov-

ernment regulates parking spaces by establishing parking lots. These lots are categorized

into three types: the lots without charging/discharging facilities (denoted by N), the lots

with charging facilities (denoted by C), and the lots with discharging facilities (denoted

by S). We denote the set of parking lots by K = {N,C, S}. We denote the number of

parking lots k ∈ K in region z ∈ Z by Xk
z . Then due to the regulations on the parking

space, we have

∑
s∈S

xz,s ≤
∑
k∈K

Xk
z , ∀ z ∈ Z. (3.2)

Facing uncertain demands, the operator makes its initial vehicle allocation decisions

in the first stage and subsequent operational decisions in the second stage to minimize

its expected profit under a known distribution P. Given the first-stage decisions x =

(xz,s, ∀ z ∈ Z, s ∈ S)⊤ and a realization of uncertainty ξ, we let f(x, ξ) denote the optimal

operation costs in the second stage. The operator optimizes its allocation decisions by

solving the following problem:

min
x

{∑
z∈Z

∑
s∈S

csxz,s + EP [f (x, ξ)]

∣∣∣∣(3.1)− (3.2)

}
. (P0)

3.3.3 Second-stage Formulation

At the beginning of the second stage, the uncertainty ξ is realized. Hence, the op-

erator knows the time-space-dependent demands dz,t,z′(ξ) arriving at each region z ∈
Z at the start of each period t ∈ T and going to z′ ∈ Z, z′ ̸= z. We let M :=

{(z, t, z′)|∃(nz,t,s, nz′,t′,s′) ∈ AR} denote the set of all trip demands. We introduce a con-
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tinuous decision variable wa(ξ) to represent the number of vehicles on the flow a ∈ A
with respect to realization ξ. We let [a, b]Z denote the set of all integers between any two

nonnegative integers a and b, that is, [a, b]Z = {a, a+ 1, . . . , b} if a ≤ b, and [a, b]Z = ∅ if

a > b. Thus, given any node nz,t,s ∈ N , the number of EVs flowing into this node should

be the same as the number of vehicles flowing out from this node:

∑
a∈A+(nz,0,s)

wa(ξ) = xz,s, ∀ z ∈ Z, s ∈ S, (3.3)

∑
a∈A+(nz,t,s)

wa(ξ) =
∑

a∈A−(nz,t,s)

wa(ξ), ∀ t ∈ [1, T − 1]Z, z ∈ Z, s ∈ S, (3.4)

∑
z∈Z

∑
s∈S

∑
a∈A−(nz,T,s)

wa(ξ) =
∑
z∈Z

∑
s∈S

xz,s, (3.5)

where A+(nz,t,s) and A−(nz,t,s) denote the sets of arcs that originate and terminate at

nz,t,s ∈ N , respectively. Constraints (3.3) state that in period t = 0, the outflow of nz,0,s

equals the number of EVs with SoC s ∈ S initially allocated in region z ∈ Z. Constraints

(3.5) state that the sum of EVs in all regions with any SoC at the end equals the total

number of EVs initially allocated.

For any trip demands dz,t,z′(ξ) where (z, t, z′) ∈ M, the operator can employ EVs

with different SoC s ∈ S to serve them, represented by different rental arcs. For any

(z, t, z′) ∈ M, we let ÂR(z, t, z′) := {(nz,t,s, nz′,t′,s′) ∈ AR} denote the set of rental arcs

for satisfying demands dz,t,z′(ξ). Thus, we have

∑
a∈ÂR(z,t,z′)

wa(ξ) ≤ dz,t,z′(ξ), ∀ (z, t, z′) ∈ M. (3.6)

Finally, we have the following constraints:

∑
s∈S

∑
a∈∪k∈KAk

+(nz,t,s)

wa(ξ) ≤
∑
k∈K

Xk
z , ∀ z ∈ Z, t ∈ T , (3.7)

∑
s∈S

∑
a∈AC

+(nz,t,s)

wa(ξ) ≤ XC
z +XS

z , ∀ z ∈ Z, t ∈ T , (3.8)

∑
s∈S

∑
a∈AS

+(nz,t,s)

wa(ξ) ≤ XS
z , ∀ z ∈ Z, t ∈ T , (3.9)

wa ≥ 0, ∀ a ∈ A, (3.10)

where Ak
+(nz,t,s) for any k ∈ K and nz,t,s ∈ N denotes the set of arcs in Ak that origi-
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nate at nz,t,s. Constraints (3.7)–(3.9) ensure that the number of vehicles that stay idle,

charging, and discharging in each region does not exceed the capacity of the respective

parking lots. That is, the firm is prohibited from parking, charging, or discharging more

vehicles than the available space allows in each region throughout the operational horizon.

Constraints (3.10) ensure that the realized flow on each arc is non-negative.

We let w = {wa, ∀ a ∈ A}. Therefore, we have

f (x, ξ)=min
w

∑
a∈A

cawa(ξ)+cP
∑

(z,t,z′)∈M

dz,t,z′(ξ)−∑
a∈ÂR(z,t,z′)

wa(ξ)

∣∣∣∣(3.3)− (3.10)

 , (P2)

where ca denotes the unit cost produced by flow a ∈ A and cP denotes the unit penalty

for unsatisfied trip demands. Specifically, (i) For rental arc a = (nz,t,s, nz′,t′,s′) ∈ AR,

we set ca = −cR × ℓz,z′ , where cR is the unit revenue for rentals. (ii) For idle arc

a = (nz,t,s, nz,t+1,s) ∈ AI, we set ca = cI, where cI is the unit idle cost. (iii) For relocation

arc a = (nz,t,s, nz′,t′,s) ∈ AL, we set ca = cL × ℓz,z′ , where cL is the unit relocation cost.

(iv) For charging arc a = (nz,t,s, nz,t+1,s′) ∈ AC, we set ca = cCt = (PC
t + cdeg)× δC, where

PC
t is the electricity charging price in period t and cdeg is the degeneration cost of battery.

(v) For discharging arc a = (nz,t,s, nz,t+1,s′) ∈ AS, we set ca = cSt = (−P S
t + cdeg) × δS,

where P S
t is the electricity selling price in period t.

3.4 Distributionally Robust Optimization Approach

The uncertain trip demands across all service regions and all periods are dependent.

As a result, d(ξ) = {dz,t,z′(ξ), ∀ (z, t, z′) ∈ M}, the vector of uncertain trip demands,

has high dimensionality. For example, even if we cluster the area into |N | = 5 service

regions and consider a daily operation of |T | = 144, d(ξ) is a random vector of dimension

2, 880. Consequently, to accurately estimate the joint distribution of d(ξ), a significant

amount of historical data is necessary. However, such data is usually difficult to acquire

in practice, if possible, especially considering that the EV sharing is a relatively new

industry. Hence, we are confronted with the issue of limited information, which hampers

our efforts to accurately estimate the distribution of demands. In this section, we address

the issue of limited information by developing the framework of distributionally robust

optimization (DRO).
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DRO is a modeling framework that integrates the optimization method and statistical

information about the uncertain parameters (Jiang et al. 2023). Under this framework,

one can relax the assumption of the perfect knowledge of the true distribution, i.e., P in

Problem (P0), and only assume that P runs in a distributional ambiguity set constructed

based on the statistical information and then optimize decisions against the worst-case

distribution within this set. In the following, we introduce how to apply DRO in our

study in detail.

3.4.1 Ambiguity Set

The ambiguity set plays a crucial role in linking the optimization model with the statis-

tical information, and it can significantly affect the performance of DRO (Esfahani and

Kuhn 2017). The ambiguity sets can be categorized into two typical groups: moment-

based and discrepancy-based ambiguity sets (Rahimian and Mehrotra 2019). Specifically,

the moment-based ambiguity set includes all distributions whose mean and covariance

satisfy the prescribed condition, and the discrepancy-based ambiguity set contains the

distributions that are close to the empirical distribution in the sense of a discrepancy

measure. While these two types of ambiguity sets have distinct properties and perfor-

mances (for detailed information, we refer interested readers to Rahimian and Mehrotra

(2019)), they both should (i) contain the true distribution P and (ii) keep as small as

possible to control the conservatism of the problem.

In our study, the available data is limited, which may yield an unreliable empirical

distribution with a significant discrepancy from the true distribution. This suggests that

the discrepancy-based ambiguity set is not a proper choice in this study. Because in

this case the discrepancy-based ambiguity set is required to be large enough to contain

P, potentially leading to a highly conservative solution. Conversely, a moment-based

ambiguity set is a proper choice since reliable mean and covariance information of the

uncertainty can be easily estimated, even with limited data. Consequently, the set can be

small yet contain P, controlling the conservatism of the problem. Furthermore, as noted in

Delage and Ye (2010), using the moment information to construct the ambiguity set, one

can obtain reliable solutions and formulate the DRO problem as a semidefinite program

(SDP) which is efficiently solvable by commercial solvers including Mosek. Therefore, we
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construct the moment-based ambiguity set in our study, which is defined below:

D(Ω,µ,Σ, γ1, γ2) =


P (ξ ∈ Ω) = 1,

P (EP [ξ]− µ)⊤Σ−1 (EP [ξ]− µ) ≤ γ1,

EP

[
(ξ − µ) (ξ − µ)⊤

]
⪯ γ2Σ

 ,

where Ω denotes the support set, µ denotes the mean vector, and Σ denotes the co-

variance matrix, which is a positive definite matrix. Parameters γ1 ≥ 0 and γ2 ≥ 1 are

obtained from historical data and used to control the size of the ambiguity set and the

conservatism of optimal solutions. The three constraints in D state that (i) any ξ lies

in support Ω; (ii) the mean of ξ lies in an ellipsoid of size γ1 centered at µ; and (iii)

the centered second-moment matrix is bounded by γ2Σ in a PSD sense. We assume Ω is

polyhedral, i.e., Ω = {ξ ∈ R|M| | blb ≤ Aξ ≤ bub}, with at least one interior point.

3.4.2 Distributionally Robust Model and Its Reformulation

Given an ambiguity set of probability distributions D, we may seek to minimize the worst-

case expected cost overD, instead of solving Problem (P0) with a given distribution. That

is,

Γ = min
x

{∑
z∈Z

∑
s∈S

csxz,s +max
P∈D

EP [f (x, ξ)]

∣∣∣∣(3.1)− (3.2)

}
. (PM)

It is clear that in Problem (PM), we have an inner max-min problem, i.e., maxP∈D EP[f(x, ξ)].

As such, it is not straightforward to solve Problem (PM) in its present form. Next, we

derive an equivalent reformulation of Problem (PM) that is solvable. First, in Theorem

1, we introduce an equivalent reformulation of the inner max-min problem in (PM).

Theorem 1. maxP∈D EP[f(x, ξ)] in (PM) is equivalent to

min
Q⪰0,q,r

r +
(
γ2Σ+ µµ⊤

)
•Q+ µ⊤q+

√
γ1

∥∥∥Σ 1
2 (q+ 2Qµ)

∥∥∥
2

(Pin)

s.t. r ≥ f (x, ξ)− ξ⊤Qξ − ξ⊤q, ∀ ξ ∈ Ω,

where Q ∈ R|M|×|M|,q ∈ R|M|, r ∈ R denote the dual variables associated with con-

straints in D.
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Proposition 2. Problem (Pin) is equivalent to

min
Q⪰0,q,r

r +
(
γ2Σ+ µµ⊤

)
•Q+ µ⊤q+

√
γ1

∥∥∥Σ 1
2 (q+ 2Qµ)

∥∥∥
2

(P ′
in)

s.t. r ≥ ψ (x,π, ξ)− ξ⊤Qξ − ξ⊤q, ∀ ξ ∈ Ω,π ∈ vert (Y) . (3.11)

We let maxπ∈Y ψ(x,π, ξ) denote the dual problem of the second-stage problem (P2).

Specifically, π, ψ(·), and Y denote the vector of variables, the objective function, and the

feasible region of the dual problem of (P2), respectively. vert(Y) denotes the set of all

vertices of feasible region Y (see Appendix B.2 for details).

Problem (P ′
in) is not straightforward to solve, since constraints (3.11) in it consider

any ξ ∈ Ω. Consequently, in Proposition 3, we transform problem (P ′
in) to an SDP

formulation and combine it with the outer minimization problem in (PM), finally yielding

the equivalent formulation of Problem (PM) that is solvable.

Proposition 3. Problem (PM) is equivalent to

Γ =min
x,π∈vert(Y)
Q⪰0,q,r
λ1,λ2≥0

∑
z∈Z

∑
s∈S

csxz,s+r+
(
γ2Σ+ µµ⊤

)
•Q+µ⊤q+

√
γ1

∥∥∥Σ 1
2 (q+ 2Qµ)

∥∥∥
2

(PF)

s.t. (3.1)− (3.2),r − ψ1 (x,π)− λ⊤
1 b

ub
+ λ⊤

2 b
lb 1

2

(
q+A⊤ (λ1 − λ2)− ψ2 (π)

)⊤
1
2

(
q+A⊤ (λ1 − λ2)− ψ2 (π)

)
Q

 ⪰ 0,

where ψ1(x,π) + ψ2(π)
⊤ξ = ψ(x,π, ξ) (see Appendix B.3 for details).

3.5 Solution Approaches

Problem (PF) admits an SDP reformulation that is solvable. However, in practice, it

is very challenging to solve Problem (PF), especially when we consider a large time-

space-SoC network G = (N ,A). This is because it considers a large-size PSD matrix,

a significant number of vertices in Y , i.e., |vert(Y)|, and numerous decision variables.

Therefore, we propose three approaches to boost the solving process: (i) We consider

outer and inner approximations of (PM) (i.e., Problem (PF)) that have a PSD matrix

with a small size and generate a high-quality solution. (ii) We adopt Algorithm 1 that

considers only a small part of vert(Y) and generates a high-quality solution. (iii) We
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decompose G = (N ,A) into L sub-networks along the operational horizon, and each

sub-network l ∈ {1, 2, . . . , L} has a shorter time horizon. Thus, we will solve a sequence

of smaller SDP problems, each corresponding to a sub-network, in a backward manner

from the last sub-network to the first one.

In the following, we derive an outer (resp. inner) approximation of Problem (PF) (i.e.,

Problem (PM)), leading to a lower (resp. upper) bound, in Section 3.5.1 (resp. Section

3.5.2). Then we present the details of the delayed constraint generation algorithm, i.e.,

Algorithm 1, and the temporal decomposition algorithm, i.e., Algorithm 2, in Section

3.5.3.

Before processing outer and inner approximations of Problem (PF), we introduce a re-

formulation of Problem (PM). We perform an eigenvalue decomposition on the covariance

matrix, i.e., Σ ∈ R|M|×|M|, by Σ = UΛU⊤ = UΛ1/2(UΛ1/2)⊤. Here, U ∈ R|M|×|M| is an

orthogonal transformation matrix and Λ ∈ R|M|×|M| is a diagonal matrix whose diagonal

elements are in decreasing order. By letting ξI = (UΛ−1/2)⊤(ξ − µ), we reformulate

Problem (PM) as

Γ = min
x

{∑
z∈Z

∑
s∈S

csxz,s + max
PI∈DI

EPI

[
f
(
x,UΛ

1
2 ξI + µ

)] ∣∣∣∣(3.1)− (3.2)

}
, (PI)

where

DI (ΩI, γ1, γ2) =


PI (ξI ∈ ΩI) = 1

PI EPI

[
ξ⊤I
]
EPI

[ξI] ≤ γ1

EPI

[
ξIξ

⊤
I

]
⪯ γ2I|M|

 ,

with ΩI := {ξI ∈ R|M| : UΛ1/2ξI + µ ∈ Ω} and I|M| denoting an identity matrix of size

|M|.

3.5.1 Outer Approximation for DRO Problem

We use principal component analysis (PCA), which approximates a high-dimensional

matrix to a low-dimensional one, to reduce the size of Problem (PF) while maintaining a

high solution quality. Specifically, we approximate ξ by capturing the major variability

of UΛ1/2ξI by considering only the first m1 random variables of ξI, i.e.,

ξ = UΛ
1
2 ξI + µ ≈ UΛ

1
2 [ξm1

;0|M|−m1
] + µ = U|M|×m1

Λ
1
2
m1ξm1

+ µ,
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where 0|M|−m1 represents a zero vector of size |M| − m1, U|M|×m1 ∈ R|M|×m1 and

Λ1/2
m1

∈ Rm1×m1 are upper-left submatrices of U and Λ1/2, respectively, and ξm1
∈ Rm1

consists of the first m1 entries of ξI. As the uncertainty of the last (|M| −m1) entries of

ξI vanishes, we have a relaxation of Problem (PM):

min
x

{∑
z∈Z

∑
s∈S

csxz,s+ max
Pm1∈Dm1

EPm1

[
f

(
x,U|M|×m1

Λ
1
2
m1ξm1

+µ

)] ∣∣∣∣(3.1)− (3.2)

}
, (3.12)

where

Dm1 (Ωm1 , γ1, γ2) =


Pm1

(
ξm1

∈ Ωm1

)
= 1

Pm1 EPm1

[
ξ⊤m1

]
EPm1

[
ξm1

]
≤ γ1

EPm1

[
ξm1

ξ⊤m1

]
⪯ γ2Im1

 ,

with Ωm1 := {ξm1
∈ Rm1 : U|M|×m1Λ

1/2
m1

ξm1
+ µ ∈ Ω}.

Theorem 2. Problem (3.12) has the same optimal value as the following problem:

min
x,Qm1 ,qm1 ,r

∑
z∈Z

∑
s∈S

csxz,s + r + γ2Im1 •Qm1 +
√
γ1∥qm1∥2 (3.13)

s.t. (3.1)− (3.2),

r ≥ f

(
x,U|M|×m1

Λ
1
2
m1ξm1

+ µ

)
− ξ⊤m1

Qm1ξm1
− ξ⊤m1

qm1 , ∀ ξm1
∈ Ωm1 ,

Qm1 ⪰ 0,

where qm1 ∈ Rm1 and Qm1 ∈ Rm1×m1. Furthermore, we have the following: (i) Problem

(3.13) provides a lower bound for the optimal value of Problem (PM); (ii) the optimal

value of Problem (3.13) is nondecreasing in m1; and (iii) if m1 = |M|, then Problems

(3.13) and (PM) have the same optimal value.

Proposition 4. Problem (3.13) has the same optimal value as the following SDP formu-
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lation

min
x,π∈vert(Y)
Qm1⪰0,qm1 ,r

λ1,λ2≥0

∑
z∈Z

∑
s∈S

csxz,s + r + γ2Im1 •Qm1 +
√
γ1∥qm1∥2 (3.14)

s.t. (3.1)− (3.2),M1 M⊤
2

M2 Qm1

 ⪰ 0,

where M1 = r − ψ1(x,π) − λ⊤
1 b

ub
+ λ⊤

2 b
lb − ψ2(π)

⊤µ + (λ1 − λ2)
⊤Aµ and M2 =

1/2× (qm1 + (U|M|×m1Λ
1/2
m1

)⊤(A⊤(λ1 − λ2)− ψ2(π))).

Comparing Problem (3.14) (i.e., Problem (3.13)) with Problem (PF) (i.e., Problem

(PM)) in terms of size, it can be noted that Problem (3.14) is significantly easier to solve

than Problem (PF) because the size of PSD matrices in Problem (3.14) is significantly

smaller than the one in Problem (PF), i.e., (m1 + 1)2 vs. (|M|+ 1)2.

3.5.2 Inner Approximation for DRO Problem

We further split the random vector ξI into several pieces to reduce the size of PSD matrices

in Problem (PF). Specifically, we split ξI into U pieces, i.e., ξI = (ξ⊤I1 , ξ
⊤
I2
, . . . , ξ⊤IU )

⊤, where

ξIi ∈ Rmi for any i ∈ [1, U ]Z, and
∑U

i=1mi = |M|. Accordingly, we revise the second-

moment constraint in DI with respect to these smaller pieces, leading to the following

ambiguity set:

DU (ΩI, γ1, γ2) =


PU (ξI ∈ ΩI) = 1

PU EPU

[
ξ⊤I
]
EPU

[ξI] ≤ γ1

EPU

[
ξIiξ

⊤
Ii

]
⪯ γ2Imi , ∀ i ∈ [1, U ]Z

 .

The set DU is a superset of DI because we ignore the correlations among ξIi and ξIj for

any i, j ∈ [1, U ]Z with i ̸= j. This leads to the following inner approximation of Problem

(PM):

min
x

{∑
z∈Z

∑
s∈S

csxz,s + max
PU∈DU

EPU

[
f
(
x,UΛ

1
2 ξI + µ

)] ∣∣∣∣(3.1)− (3.2)

}
. (3.15)

59



Theorem 3. Problem (3.15) has the same optimal value as the following problem:

min
x,Qi,q,r

∑
z∈Z

∑
s∈S

csxz,s + r + γ2

U∑
i=1

Imi •Qi +
√
γ1∥q∥2 (3.16)

s.t. (3.1)− (3.2),

r ≥ f
(
x,UΛ

1
2 ξI + µ

)
−

U∑
i=1

ξ⊤IiQiξIi − ξ⊤I q, ∀ ξI ∈ ΩI,

Qi ⪰ 0, ∀ i ∈ [1, U ]Z,

where q ∈ R|M| and Qi ∈ Rmi×mi for any i ∈ [1, U ]Z. Furthermore, Problem (3.16)

provides an upper bound for the optimal value of Problem (PM).

Proposition 5. Problem (3.16) has the same optimal value as the following SDP formu-

lation

min
x,π∈vert(Y)
Qi,qi,q,ri,r
λ1,λ2≥0

∑
z∈Z

∑
s∈S

csxz,s + r + γ2

U∑
i=1

Imi •Qi +
√
γ1∥q∥2 (3.17)

s.t. (3.1)− (3.2), ri Mi⊤
2

Mi
2 Qi

 ⪰ 0, ∀ i ∈ [1, U ]Z,

U∑
i=1

ri = r − ψ1(x,π)− λ⊤
1 b

ub
+ λ⊤

2 b
lb − ψ2(π)

⊤µ+ (λ1 − λ2)
⊤Aµ,

Qi ⪰ 0, ∀ i ∈ [1, U ]Z,

where Mi
2 = 1/2 × (qi + (U|M|×mi

Λ1/2
mi

)⊤(A⊤(λ1 − λ2) − ψ2(π))), qi ∈ Rmi , q =

(q⊤
1 , . . . ,q

⊤
U)

⊤, and Qi ∈ Rmi×mi for any i ∈ [1, U ]Z.

3.5.3 Solution Algorithms

It is not practical to enumerate all vertices of the feasible region, i.e., vert(Y), in Problems

(PF), (3.14) and (3.17). To overcome this challenge, we adopt “Delayed Constraint

Generation Algorithm” introduced in (Fathabad et al. 2020), which solves the problems

by considering a reduced set of vertices, denoted by Vr ⊆ vert(Y). In the following, we

introduce this algorithm, which is designed to solve Problem (PF). Similar ones can be

developed to solve Problems (3.14) and (3.17).
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Algorithm 1 Delayed Constraint Generation Algorithm

1: Find initial vertices of the feasible region Y , denoted by π∗. Set Vr = ∅.
2: do
3: Vr = Vr ∪ {π∗}.
4: Solve Problem (PF) considering the vertices only in Vr. Then, save the optimal

value Γ∗ and optimal solution (r∗,Q∗,q∗,x∗).
5: Solve the following biconvex problem using (r∗,Q∗,q∗,x∗):

min
π∈Y, ξ∈Ω

r∗ + ξ⊤Q∗ξ + ξ⊤q∗ − ψ (x∗,π, ξ) , (3.18)

and save the optimal value as s∗ and optimal solution as π∗.
6: while s∗ < 0
7: Γ∗ is optimal for Problem (PF).

Algorithm 1 initially solves a relaxation of the SDP problem by considering Vr, whose

size is always significantly smaller than vert(Y). Before converging, it iteratively adds

vertices of Y to the reduced set Vr and solves the SDP problem with Vr. Note that

in the beginning, we can obtain the initial vertices of Y by solving linear programming

problems that are subject to Y but have different objective functions. Problem (3.18)

is nonlinear because of the bilinear terms in ψ(x∗,π, ξ) (see Appendix B.2 for details).

We can solve this problem to a near-optimal solution by using the alternating direction

search algorithm or alternating direction method of multipliers (ADMM).

Algorithm 1 needs to solve Problem (PF) with Vr iteratively. Even though the size

of Vr is significantly smaller than vert(Y), Problem (PF) is still hard to get solved due

to the large number of variables and constraints induced by the large time-space-SoC

network G = (N ,A). We thus adopt a temporal decomposition approach introduced in

(Jin et al. 2023) to iteratively solve a sequence of subproblem, each of which considers

only a part of G. Specifically, we decompose G into L sub-networks, each sub-network

l ∈ {1, 2, . . . , L} has time horizon with Tl, where
∑L

l=1 Tl = T . For recording purposes,

we name T1 = {0, . . . , T1} and Tl = {
∑l−1

i=1 Ti + 1, . . . ,
∑l

i=1 Ti} for any l ∈ {2, . . . , L}.

Likewise, for any l ∈ {1, . . . , L}, we name Nl = {nz,t,s ∈ N|z ∈ Z, t ∈ Tl, s ∈ S},

Al = {(nz,t,s, nz′,t′,s′) ∈ A|nz,t,s, nz′,t′,s′ ∈ Nl}, and Gl = (Nl,Al). For any sub-network

Gl, l ∈ {1, . . . , L}, we name Problems (P0) and (PF) based on it as (P0
l) and (PF

l),

respectively (see Appendix B.8 for details).

In Algorithm 2, we solve smaller and thus simpler SDP problems over each sub-network

l ∈ {L,L − 1, . . . , 1} in a backward sequence, from the last sub-network l = L to the
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Algorithm 2 Temporal Decomposition Algorithm

1: Use Algorithm 1 to solve Problem (PF
L), and save the optimal solution as xL.

2: for l = L− 1, . . . , 1 do
3: Add constraints

∑
z∈Z

∑
s∈S xz,s ≥

∑
z∈Z

∑
s∈S x

i+1
z,s , ∀ i ∈ {l, . . . , L− 1} to Prob-

lem (PF
l).

4: Use Algorithm 1 to solve the updated Problem (PF
l), and save the optimal solution

as xl.
5: end for
6: Return x1.

first l = 1. In each iteration l ∈ {L − 1, . . . , 1}, we add constraints
∑

z∈Z
∑

s∈S xz,s ≥∑
z∈Z

∑
s∈S x

i+1
z,s , ∀ i ∈ {l, . . . , L − 1} to Problem (PF

l), i.e., the total initial allocation∑
z∈Z

∑
s∈S xz,s of the sub-network l is lower bounded by maxi∈{l,...,L−1}

∑
z∈Z

∑
s∈S x

i+1
z,s .

The intuition behind such constraints is that (i) the vehicle allocation solution of the SDP

problem over the sub-network l should approximate that over the sub-networks from l to

L, (ii) the trip demand over the sub-network l is no less than that over the sub-networks

from l to L, and (iii) the larger trip demand often needs more allocated vehicles. We

finally obtain x1 for Problem (PF).

3.6 Numerical Experiments: A Case Study

We conduct numerical experiments with the real data of taxi trip demands in NYC. We

first discuss parameter settings and then examine the computational performances of the

approaches proposed in Section 3.5. We finally obtain managerial insights from various

experiments based on the settings.

3.6.1 Parameter Settings

We have collected data from TLC (2024) in NYC from January 1, 2011 to February 29,

2020. We focus on Midtown and Lower Manhattan, a traffic-intensive area in NYC, and

divide this area into |Z| = 5 service regions, as shown in Figure 3.2. Based on the collected

data, the average trip duration from one region to a neighboring one is approximately

10 minutes. For simplicity, we assume the traveling speed between any two neighboring

regions is the same and set each period as 10 minutes (leading to T = 144 periods per

day). Table 3.1 introduces the trip duration in terms of the number of periods (i.e., ℓz,z′)

between any two service regions z, z′ ∈ Z and z ̸= z′.
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Figure 3.2. Service Regions in Manhattan

Regions 1 2 3 4 5
1 — 1 1 2 2
2 1 — 1 2 2
3 1 1 — 1 1
4 2 2 1 — 1
5 2 2 1 1 —

Table 3.1. Trip Duration Across Regions

Regions 1 2 3 4 5
1 — 1 1 2 2
2 1 — 1 2 2
3 1 1 — 1 1
4 2 2 1 — 1
5 2 2 1 1 —

Table 3.2. SoC Unit Usage Across Regions

Figure 3.3 shows the number of consumer trips throughout the day averaged over the

service regions. It is observed that trip demands remain high for the majority of the day,

except around 5:00 when they reach their lowest point. Figure 3.4 shows the number of

trips across service regions averaged over the whole operational horizon.
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Figure 3.4. Average Consumer Trips Across
Regions

We set the upper bound X of the total number of EVs allocated to all service regions

as 4000. 1 In each region z ∈ Z, the number XN
z of parking stations, the number XC

z of

charging stations, and the number XS
z of bi-directional charging stations are set as 800,

320, and 160, respectively. 2

1We randomly select 30 samples from TLC (2024) and observe that the largest trip in one period
among these 30 samples is 3928. Consequently, we set the upper bound as 4000.

2We assume the total number of parking stations equals the upper bound, i.e.,
∑

z∈Z X
N
z = X = 4000.
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Each EV has a battery capacity of 40 kWh, allowing it to run for 6.5 hours or equiv-

alently 38 periods. We assume that the vehicle’s travel within 1 period consumes 1 SoC

unit, leading to a maximum of 38 SoC units for each EV. Under this assumption, the SoC

units usage in the travel between any two service regions z, z′ ∈ Z and z ̸= z′ (i.e., bz,z′)

remains consistent with the respective trip duration (i.e., ℓz,z′), as shown in Table 3.2.

We set the charging rate as 19 SoC units per period (i.e., δC = 19) and the discharging

rate as 2 SoC units per period (i.e., δS = 2). 3

We estimate cost parameters in USD. The EV allocation cost in any region z ∈ Z

and SoC s ∈ S is cs = 21.6 + 0.1s. 4 The revenue per EV trip per period is cR = 2.8,

the penalty cost for an unsatisfied consumer trip is cP = 3cR, the relocation cost per

relocated EV per period is cL = 1.2, the idle cost per idling EV per period is cI = 0.01,

the battery degeneration cost per SoC unit is cdeg = 0.07. We assume PC
t = P S

t for

any t ∈ T . We collect the electricity price in Kansas Central from (Evergy 2022) to

set PC
t (P

S
t ). They divide one day into four time intervals: super off-peak interval (0:00

– 6:00), off-peak interval (6:00–14:00 and 20:00–24:00), and peak interval (14:00–20:00),

each having a distinct price. Specifically, PC
t (P

S
t ) is set as 0.1/kWh for t ∈ [1, 36]Z (i.e.,

0:00 – 6:00), 0.15/kWh for t ∈ [37, 84]Z ∪ [121, 144]Z (i.e., 6:00–14:00 and 20:00–24:00),

and 0.27/kWh for t ∈ [85, 120]Z (i.e., 14:00–20:00).

3.6.2 Computational Performance of Our Solution Approach

We perform all the numerical experiments on a computing node with 2.3-GHz Intel Xeon

E5-2670 processor in a high-performance computing cluster using Mosek with C++ API

under its default settings. In this section, we demonstrate the computational efficiency

of our solution approach introduced in Section 3.5.

We then divide all the parking stations to each region equally, leading to XN
z = 4000/5 = 800 for any

z ∈ Z. NYC DOT (2021) state that 40% of urban parking spaces will be equipped with charging piles by
2030. Therefore, we set XC

z = 0.4XN
z = 320 for any z ∈ Z. We observe that the number of bi-directional

charging stations is smaller than the number of charging stations. We assume XS
z = 0.5XC

z = 160.
3Due to the popularity and rapidly increasing trend of fast chargers, we consider fast charging in our

experiments. We consider a common fast-charging rate of 120 kW, which can charge a total of 120 kW
× 1/6 hours = 20 kWh in one period. This amount is equivalent to 20/40 × 38 = 19 SoC units. We
consider a common discharging rate of 15 kW, which can discharge a total of 15 kW × 1/6 hours = 2.5
kWh in one period. This amount is equivalent to 2.5/40× 38 ≈ 2 SoC units.

4The cost of allocating an EV with SoC s ∈ S to any service region z ∈ Z equals the EV purchasing
cost, i.e., 21.6, plus the cost of charging the EV to SoC s, i.e., 0.1s. We follow Jin et al. (2023) to estimate
the EV purchasing cost by dividing 40000 dollars over 5×365 = 1825 days, leading to 40000/1825 ≈ 21.6.
The electricity price at the beginning of the day is 0.1/kWh.
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We compare the performances of the following approaches: (i) “Outer α:” Algorithm

1 combined with outer approximation with m1 = ⌊α|M|⌋, (ii) “Inner U :” Algorithm 1

combined with inner approximation with U pieces, (iii) “Sub L:” Temporal decomposition

algorithm, i.e., Algorithm 2, with L sub-networks, and (iv) “Original:” Algorithm 1. We

follow the setting in Section 3.6.1 and perform experiments to compare the optimal profit,

allocation decision (i.e., x), and computational time obtained by each approach.

Note that “Original” approach can only solve small instances to the optimality within

24 hours, we thus first consider a small instance with |Z| = 3 and |T | = 6 and show

the results in Table 3.3. We set the results obtained by “Original” approach as the

benchmark and subsequently calculate the gap between the benchmark results and the

results obtained by the other approaches. For example, we calculate the profit gap

between “Inner 2” and “Original” by

(the profit by “Inner 2”)− (the profit by “Original”)

(the profit by “Original”)
× 100%.

Table 3.3 suggests that compared with “Original” approach, the “Inner 2,” “Outer

80%,” and “Sub 2” approaches can solve the instance with a significantly reduced com-

putational time (reduced by more than 74.93%) and obtain very high-quality solutions

(profit gap within 2.90% and allocation solution gap within 4.10%). Among these three

approaches, “Sub 2” performs the best, reducing the most computational time (i.e.,

96.12%) and achieving the smallest profit gap (i.e., 1.07%) and a very small solution

gap (i.e., 3.26%). This suggests that our proposed approaches can all generate a high-

quality solution with a dramatically reduced computational time. Notably, Algorithm 2

stands out as the best approach among the three, obtaining a very high-quality solution

with the smallest computational time.

Table 3.3. Computational Performance When |Z| = 3 and |T | = 6

Profit x Time

Val ($) Gap (%) Val Gap (%) Val (s) Gap (%)

Original 2621.77 0 463 0 11893 0
Inner 2 2697.85 2.90 454 1.94 1861 84.35

Outer 80% 2661.10 1.50 444 4.10 2982 74.93
Sub 2 2649.73 1.07 479 3.46 462 96.12

We next consider a larger case with |Z| = 3 and |T | = 12. Since “Original” approach

cannot solve this instance to the optimality within 24 hours, we set the results obtained by

“Sub 2” approach as the benchmark, as it demonstrates the best performance in the above
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experiments. We show the results in Table 3.4. It can be observed that most approaches

can solve the instance within 5 hours, with some even achieving it within 1 hour, e.g., “Sub

3” and “Sub 4” approaches. The approach with the smallest computational time is “Sub

4” approach, solving the instance in 776 seconds, approximately 13 minutes. In contrast,

“Original” approach fails to solve the instance within 24 hours. Table 3.4 confirms the

efficiency of the proposed approaches and points out the outstanding performance of

Algorithm 2 in this new larger-scale instance. Table 3.4 also highlights that increasing the

number of sub-networks in Algorithm 2, increasing the number of splitting pieces in inner

approximation, and reducing the principle component considered in outer approximation

all lead to shorter computational time.

Table 3.4. Computational Performance When |Z| = 3 and |T | = 12

Profit x Time

Val ($) Gap (%) Val Gap (%) Val (s) Gap (%)

Sub 2 4211.15 0 432 0 15720 0
Sub 3 4052.81 -3.76 423 -2.08 2858 -81.82
Sub 4 4102.47 -2.58 454 5.09 776 -95.06
Inner 2 - - - - 24h -
Inner 3 3956.49 -6.05 406 -6.02 18157 15.50
Inner 4 3945.70 -6.30 433 0.23 3778 -75.97

Outer 40% 4448.02 5.62 417 -3.47 17550 11.64
Outer 60% - - - - 24h -
Outer 80% - - - - 24h -
Original - - - - 24h -

In summary, our proposed approaches can all obtain a high-quality solution in a dra-

matically reduced computational time. This highlights their potential to support urban

shared mobility operations. In the following sections, we investigate the out-of-sample

performance of the problem with |Z| = 5 and |T | = 144 by using Algorithm 2 combined

with outer and inner approximations and obtain managerial insights.

3.6.3 Comparison of Different Optimization Methods

We conduct a comparison between our proposed DRO model (PF) with models that

use stochastic optimization (referred to as “SO”) and robust optimization (referred to as

“RO”) to model uncertainty. The SO model is solved using sample average approximation

(SAA). SAA is widely known to be computationally expensive, especially for a large-scale

model. In our numerical studies, we can only solve an SO model under 3 scenarios within

24 hours. To ensure that the 3 scenarios are adequately representative, we utilize K-means

algorithm to cluster all consumer trip samples into 3 groups based on the size of the trip
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and then randomly select one scenario from each group. We consider the RO model as

a deterministic model under the scenario with the largest consumer trips. We first solve

our proposed DRO model, SO model, and RO model based on the training data. Then

we use the obtained vehicle allocations to check the out-of-sample performance of each

model. Their out-of-sample performance is presented in Tables 3.5 and 3.6.

Table 3.5. Comparison of Different Methods Overview

Costs ($)

Allocation Operation Total

DRO 181,080 -307,985 -126,905
SO 189,864 310,773 -120,909
RO 209,448 -314,055 -104,607

Table 3.5 presents the allocation costs (i.e., the cost of allocating vehicles), the oper-

ation costs (the cost minus the revenue generated in the operation stage), and the total

costs (i.e., the summation of the allocation costs and operation costs). From Table 3.5, it

is evident that DRO shows the best out-of-sample performance as it generates the lowest

total costs. This signifies that DRO is able to provide more reliable decisions, i.e., vehicle

allocation decisions, than both SO and RO. DRO outperforms the other two methods by

taking into account all distributions in the constructed ambiguity set, whereas SO and

RO have little information on distributions and consider a restricted number of scenarios.

Table 3.5 also suggests that RO yields the most conservative decision as it generates the

highest allocation costs and total costs.

Table 3.6. Comparison of Different Methods in Operations

Service level (%) Utilization rate
Costs ($)

Rental Charging Discharging Relocation Idle

DRO 99.8 34.9 -360,451 36,348.1 -802.9 12,583.6 609.6
SO 99.8 33.4 -361,041 35,409.9 -379.2 12,613.7 665.6
RO 99.9 30.4 -361,549 35,116.9 -767.3 11,790.2 921.7

Table 3.6 provides more details on the operation results of these three methods. We

calculate the rental costs and discharging costs as negative revenues generated from vehi-

cle rentals and discharging, respectively. A system with efficient operations should have a

high expected service level EP[
∑

m∈M
∑

a∈ÂR(m)wa(ξ)/
∑

m∈M dm(ξ)] and a high expected

utilization rate EP[
∑

m∈M
∑

a∈ÂR(m)wa(ξ)/
∑

z∈Z
∑

s∈S xz,s]. DRO model achieves a high

service level that is almost identical to that in the other models, reaching nearly 100%.

This is attributed to a higher utilization rate generated in DRO model. A higher utiliza-

tion rate indicates that each vehicle is used more frequently, resulting in increased needs
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for charging and relocation and reduced idle time during operations. Hence, DRO model

generates higher charging costs and relocation costs, while also yielding lower idle costs,

as validated by Table 3.6.

3.6.4 Operational Features of Charging and Discharging

We now examine the system’s performance in charging (i.e., electricity from grid to

vehicle) and discharging (i.e., electricity from vehicle to grid) over the whole operational

horizon (i.e., one day).
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Figure 3.5. Charging in A Day

Figure 3.5 shows the amount of charging electricity and electricity prices over the oper-

ational horizon. It is clear that a substantial number of vehicles undergo charging during

the early hours (i.e., 0:00 – 6:00), which finishes very rapidly, but are seldom charged

afterward. During the early hours, both trip demands and charging prices remain low.

Therefore, charging a significant number of vehicles during that period does not affect

serving consumer trips and takes a low cost. This motivates the operator to charge a large

number of vehicles during this time. Subsequently, both charging prices and consumer

trips rise, resulting in higher charging costs and an increased number of vehicles being

occupied with serving trips. As a result, the amount of charging stays limited. However,

we can still observe some vehicles are charged before prices rise and after prices drop.

This indicates that the electricity charged during early periods is insufficient for a full

day of operation, necessitating the need for vehicles to get charged during the subsequent

operation. EVs are charged several times with a small amount, instead of one time with

a large amount. This is because consumer trips are high during operations which keep
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most vehicles occupied and restrict the number of vehicles available for charging.
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Figure 3.6. Discharging in A Day

Figure 3.6 shows the amount of discharging electricity and electricity prices over the

operational horizon. It is evident that vehicles only sell electricity to the grid when

discharging prices are at their peak, with the majority of electricity sales occurring during

late periods when discharging prices are high. Delaying the sale of electricity minimizes

the risk of electricity shortages that could impact consumer trip fulfillment.
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Figure 3.7. Overview of Charging and Discharging in A Day

In Figure 3.7, we provide an overview of the trends in amounts of charging and discharg-

ing electricity, as well as the changes in electricity price, over the operational horizon. We

show the average amounts of charging and discharging electricity that occurred in each

of the four time intervals introduced in Section 3.6.1. It is clear that charging exhibits an

inverse correlation with prices, whereas discharging demonstrates a positive correlation

with prices. Additionally, we can observe that the amount of discharging is obviously

smaller than that of charging.
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3.6.5 Impact of Charging Speed

In practice, it is common to see variations in charging speeds for electric vehicles due to

different charger technologies. For instance, Tesla offers diverse charging options such as

V2 Supercharger stations with a maximum power of 125 kW and Wall connectors with

a maximum power of 11 kW (Tesla 2024a). We now examine the performance of the

system when vehicles are charged at a low speed, i.e., 2 SoC per period, in this section.

Table 3.7. Comparison of Performances at Different Charging Speeds

x Service level (%) Utilization rate
Costs ($)

Rental Charging Discharging Relocation Idle Total

Fast 2,515 99.8 34.9 -360,451 36,348.1 -802.9 12,583.6 609.6 -126,905
Slow 2,783 99.9 31.8 -361,366 36,413.3 -1,493.8 12,004.2 918.1 -112,166

Table 3.7 compares the system performance at fast-charging and slow-charging speeds.

It shows that a greater number of vehicles are allocated when using slow charging, leading

to a slightly higher service level. However, the utilization rate is lower when the charging

speed is slow. Benefiting from a larger fleet when the charging speed is slow, the system

can generate higher revenues from renting vehicles and selling electricity to the grid.

However, it has to spend higher costs on charging, relocation, and idling. Consequently,

when considering the total cost, the system incurs higher expenses with slow charging

compared to fast charging.
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Figure 3.8. Charging and Discharging in Slow Speed

Figure 3.8 shows amounts of charging and discharging electricity, as well as electricity

price levels, over the operational horizon. It shows that during periods of low charging

prices, the amount of charging remains consistently high. This is very different from

the performance in the fast-charging case, where the peak charging amount reaches a
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significantly higher level (approximately 25 × 103 kWh) and the charging process has

an obviously shorter duration. This discrepancy arises because slow charging can only

charge a small amount of electricity in one period, so it requires more time to reach the

same SoC compared to fast charging. Additionally, we can observe that the amount of

charging electricity remains pronounced when prices are medium. This differs from the

performance in the fast-charging case, where the amount of charging electricity becomes

pronounced only before prices rise and after prices drop. This difference is also attributed

to the longer time required for slow charging to reach the same SoC compared to fast

charging. Regarding discharging, it is evident that the system sells electricity to the grid

when the discharging prices are at their peak. Similarly to fast charging, in the case of

slow charging, most electricity is discharged during later periods when discharging prices

are high.

3.6.6 Impact of Pricing Scheme of Charging

It is common to see different pricing schemes for charging EVs in practice, including those

based on electricity (i.e., measured in kWh) and those based on time (i.e., measured in

minute) (Tesla 2024b). Having examined the system’s performance under the electricity-

based pricing scheme in the above, we next investigate its performance under the time-

based pricing scheme. Given that the rate of fast charging is 19 SoC units per period and

the charging electricity price per SoC unit is PC
t at each period t ∈ T , we can determine

the charging electricity price per period PT
t by multiplying the charging electricity price

per SoC unit by 19, i.e., PT
t = 19PC

t .
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Figure 3.9. Charging in A Day Under Time-based Pricing Scheme
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Figure 3.9 shows the amount of charging electricity over the operational horizon under

the time-based pricing scheme. We can observe two significant peaks during the early

hours (i.e., 0:00 – 6:00) when charging prices are low. Specifically, one peak occurs in

the early periods while the other peak occurs in the late periods when charging prices

are low. The charging pattern observed here differs from that under the electricity-based

pricing scheme, where only one peak occurs during the early hours and the peak value

is notably higher. After the early hours, we can observe that the amounts of charging

electricity before the price rises and after the price drops are obviously higher under the

time-based pricing scheme compared to the electricity-based pricing scheme.

To understand these performance discrepancies, it is helpful to note the economies of

scale in charging under the time-based pricing scheme. Under this scheme, a fixed cost

PT
t is paid if a vehicle is charged at period t ∈ T , regardless of the amount of SoC units

it charges. Since we assume that charging will stop once the vehicle’s SoC reaches its

upper limit (i.e., 38), the amount of SoC units charged in a period may vary, depending

on the vehicle’s SoC before charging. Given that the rate of fast charging is 19 SoC units

per period, the charged SoC units in a period may range from 1 to 19. It is obvious

that charging 19 SoC units in a period leads to the lowest average cost per charged

SoC unit, demonstrating the economies of scale in charging. In order to charge 19 SoC

units in a period, the vehicle’s SoC before charging should not exceed 38 − 19 = 19.

Consequently, in the case of the vehicle with an SoC greater than 19, it is more beneficial

to use or sell some SoC units before its level drops to 19 or smaller and then proceed with

charging. As a result, under the time-based pricing scheme, some vehicles are not charged

initially until their SoC drops to a low level, leading to a smaller number of vehicles

being charged initially and a larger number of vehicles being charged later. Therefore,

under the time-based pricing scheme, we observe the first peak of charging becomes lower

and a second peak of charging occurs after vehicles have been in operation for several

hours. Additionally, the time-based pricing scheme incentivizes the system to charge

more electricity than needed to serve consumer trips. This is because, under this scheme,

charging small and large SoC units in a period costs the same, but charging larger SoC

units can generate higher revenues by selling the excess electricity to the grid. Therefore,

we can observe that amounts of charging before prices rise and after prices drop are

obviously higher under the time-based pricing scheme compared to the electricity-based
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pricing scheme. Additionally, from Figures 3.9 and 3.10, we can observe a large amount

of charging and discharging electricity occurring before the electricity price rises at 14:00.

Discharging before charging allows EVs to obtain revenue and charge more electricity in

one period, pursuing economies of scale in charging. In Figure 3.10, we can also observe

a large amount of discharging electricity occurring at the end of the day. This shows that

under the time-based pricing scheme, EVs charge a large amount of excess electricity,

which they finally need to sell.
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Figure 3.10. Discharging in A Day Under Time-based Pricing Scheme

3.7 Conclusion

In this chapter, we study an EV-sharing mobility system with V2G technology, which

enables EVs to release their stored electricity back to the power grid. We formulate

an integrated vehicle allocation and operation problem under consumer trip uncertainty

as a two-stage DRO problem on a time-space-SoC network. The DRO approach only

needs the support and first- and second-moment information of uncertain parameters.

We reformulate the two-stage DRO problem as a SDP model. To deal with the sig-

nificant computational difficulty of the SDP reformulation, we first introduce outer and

inner approximations for it to reduce the size of PSD matrices. We then propose an

algorithmic approach that incorporates time-based decomposition to further strengthen

the solving process. Through numerical experiments using real-world data, we show that

our proposed approaches can obtain high-quality solutions in significantly short com-

putational time. Results also suggest that our DRO model outperforms SO and RO,

generating a solution that incurs the lowest total cost. Our out-of-sample results re-
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veal that most EVs charge electricity during the early hours of the day when electricity

prices and trip demands are low. Conversely, EVs discharge electricity during periods of

high electricity prices. Additionally, an increased charging speed contributes to a reduc-

tion in the number of allocated vehicles, an enhancement in the vehicle utilization rate,

and a drop in total costs. We further compare two different pricing schemes for charg-

ing EVs: electricity-based and time-based pricing schemes. We find that EVs process

charging and discharging more frequently under the time-based pricing scheme than the

electricity-based pricing scheme. In the future, as the amount of available data increases,

potentially yielding a more reliable empirical distribution, we may explore the adoption

of a discrepancy-based ambiguity set. For example, we can consider an ambiguity set

using the Wasserstein metric, as introduced in Esfahani and Kuhn (2017).
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Chapter 4

Robust Grid-Vehicle Integration: A

Machine Learning-Driven

Optimization Approach

4.1 Introduction

Renewable energy sources (e.g., wind and solar) have become increasingly prevalent in

the power grid system due to their economic and environmental advantages (Panwar et al.

2011). As of 2020, these sources contribute to a noteworthy 29% of global power genera-

tion, with an annual expansion rate of approximately 7% (IEA 2021a). Nevertheless, the

inherent intermittency of renewable energy (e.g., wind energy’s variable nature and solar

energy’s dependence on sunny weather) presents formidable challenges for grid opera-

tions. The unpredictable power load (i.e., demand) further exacerbates these complexi-

ties. Specifically, the power grid should decide whether generators start up a day ahead

of real-time operations, considering the power load and renewable generation uncertain-

ties. The escalating uncertainties amplify the intricacy of making day-ahead decisions.

Meanwhile, the fluctuation pattern of the power load diverges from that of wind and

solar energy. This misalignment in timing poses a significant operational challenge for

the power grid, with the load peaking in the evening, while solar energy reaches its zenith

at noon and diminishes by evening, and wind energy fluctuates irregularly throughout

the day (CAISO 2016).

Addressing these challenges will ensure a seamless integration of renewable energy into
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the power grid while maintaining its reliability. To that end, the grid may strategically

invest in additional infrastructures to expand its generation and transmission capacity,

enhancing overall flexibility and resilience. However, such investment requires substan-

tial time and resources to construct facilities, which may be under low utilization during

most operational hours. In addition, the grid can leverage regulation reserves (as a form

of capacity provided by power generators) obtained from an ancillary service market

(Huang et al. 2021a) to augment power generation (i.e., regulation-up reserves) or curtail

it (i.e., regulation-down reserves) during real-time operations when facing the uncertain-

ties. While this approach provides increased flexibility in adjusting generation levels,

the remote transmission of regulation reserves over the geographically dispersed power

network may lead to substantial energy loss and network congestion.

In this chapter, we consider integrating the power grid with increasing electric vehicles

(EVs) to enhance the flexibility and resilience of the grid without incurring the drawbacks

mentioned earlier. EVs rely on electricity charged from the grid, and their charging not

only serves mobility demands whenever needed but also helps store excess electricity when

the power generation exceeds the power load. Conversely, through the emerging vehicle-

to-grid (V2G) technology, EVs can discharge electricity to supplement the grid’s supply

during periods of insufficient generation. More importantly, compared to the power gen-

erators often situated far from urban areas, the EVs are in much closer proximity to

the power load, facilitating convenient power transfers without reliance on the power

transmission network and minimizing energy loss and network congestion. This symbi-

otic relationship between EVs and the grid presents a promising avenue for bolstering

flexibility and resilience without investing in additional power grid infrastructures.

EVs are increasingly popular globally, with 74.7% of new cars sold in Norway in 2020

being EVs (Wikipedia 2023). Despite a 16% drop in car sales due to the COVID-19

pandemic, EV sales expand by 41% worldwide in 2021 (IEA 2021b). Notably, 24 countries

and leading car manufacturers committed to ending sales of fossil-fuel-powered vehicles

by 2040 (The Guardian 2021). Shared mobility firms also embrace EVs, exemplified by

Zipcar’s commitment to upgrading their fleet to fully electric by 2025 (Zipcar 2024). The

popularity of EVs has prompted power grids in various countries to initiate grid-vehicle

integration through V2G. In China, State Grid launches a large V2G project in Baoding

in 2021, with nearly 50 additional projects established in 15 provinces and cities across
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China (Grasen 2021). In the U.S., Pacific Gas and Electric Company (PG&E) obtains

regulatory approval to establish the nation’s first V2G export rate (i.e., incentives) for

commercial EVs in California in 2022 (Nasdaq 2022). In the U.K., E.ON, a major energy

network operator, collaborates with Nissan to deploy 20 V2G points in Cranfield in 2020

(Zapmap 2020). Therefore, integrating the power grid with EVs is not only practical

but also gaining momentum, and we term such an integration system the grid-vehicle

integration (GVI) system.

Our primary focus centers on the operational dynamics of the GVI system across mul-

tiple periods under uncertainties. Specifically, we are interested in the following research

questions: When integrated with EVs, how should the power grid strategically optimize

its planning and operations to robustly align the power supply with demand, with the

objective of minimizing costs, in the face of uncertain renewable generation, power load,

and mobility trip demand? How does implementing V2G technology influence the power

grid’s decisions concerning initial generator start-up and subsequent power generation?

With the V2G technology adopted, are there noteworthy temporal features in the power

transfer dynamics (i.e., charging/discharging interactions) between the grid and EVs?

How do system parameters (e.g., power load patterns) impact the GVI system’s overall

performance? To what extent can the GVI system contribute to sustainability, and can

carbon neutrality be achieved within this system?

To answer the questions, we study a GVI system where the grid operates power gen-

erators to satisfy the power load, leveraging the assistance of EVs across an operational

horizon with multiple periods. The renewable generation, power load, and EV trip de-

mand in each period are uncertain. At the start of the horizon, the grid operator first

decides whether a dispatchable (i.e., thermal) power generator starts up in each period

before the uncertainty is realized. Subsequently, after the uncertainty is realized in each

period, the grid determines power generation levels and charging/discharging interactions

with EVs to satisfy the power load. Meanwhile, the mobility operator utilizes the EV fleet

to execute charging/discharging operations and meet trip demands. To ensure the EVs’

economic viability, the grid ensures that the EV fleet attains a predefined service level

after fulfilling the requested power interactions; otherwise, the grid operator is obligated

to provide subsidies to the other. To ensure power generation meets demand under any

scenario of the random parameters while maintaining the reliability of the grid and EV
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fleet, the GVI system should exhibit robustness against uncertainty. Thus, we employ

a two-stage robust optimization model for the decision-making process, by which the

power grid operator minimizes the worst-case total cost throughout the operational hori-

zon. Note that solving a two-stage robust optimization model, which could be NP-hard

(Ben-Tal and Nemirovski 1999), is significantly challenging. To address this challenge,

we present an innovative machine learning-driven optimization approach as a pragmatic

solution to overcome the computational hurdles. The main contributions of this chapter

are summarized as follows:

(i) We present a novel formulation of the GVI system’s operations through a two-stage

robust mixed-integer programming (MIP) model. In the first stage, we decide whether

each thermal generator starts up; in the second stage, we determine the subsequent power

generation, charging/discharging interaction, and EV fleet operation over the horizon.

(ii) We introduce an innovative machine learning-driven optimization approach where we

can first identify a worst-case scenario and then iteratively select a few more scenarios to

derive a provably optimal solution efficiently. With theoretical guarantees, our numerical

experiments, utilizing data from the New York Independent System Operator (NYISO)1

and the Taxi and Limousine Commission (TLC) in New York City (NYC), show that our

approach yields optimal solutions much more efficiently than a commercial solver.

(iii) Our study yields the following managerial insights for the GVI system. Introducing

V2G technology effectively reduces the number of online generators and extends their

operational periods, enhancing grid stability. The V2G helps stabilize the subsequent

power generation by using EVs to “fill” the low power load and “shave” the peak across

different periods. Furthermore, V2G contributes to sustainability by curbing carbon

emissions, with the most significant impact observed during hours of moderate power

load. The impacts of V2G are notably more pronounced under a bimodal power load

pattern compared to a unimodal pattern. We also find that achieving carbon neutrality

in this integration system is feasible yet challenging.

We organize the remainder of this chapter as follows. In Section 4.2, we review the

related literature. In Section 4.3, we formulate the problem. In Section 4.4, we propose

1Website: https://www.nyiso.com/
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the machine learning-driven optimization approach. In Section 4.5, we conduct numer-

ical experiments to examine the performance of our proposed approach and the GVI

system. In Section 4.6, we conclude this chapter. All proofs are presented in the Online

Supplement.

4.2 Related Literature

This chapter is closely related to the Operations Management (OM)/Operations Research

(OR) literature on power grid operations. Existing studies highlight the operational chal-

lenges posed by the increasing penetration of intermittent renewable generation into the

power grid (Huang et al. 2022). To address such challenges, various studies consider

expanding the grid infrastructures to hedge against uncertainties. Qi et al. (2015) design

energy storage systems and transmission lines to optimize total cost and enhance system

robustness under uncertain renewable generation. Salas and Powell (2018) optimize stor-

age device distribution in the power system, and Zolan et al. (2021) design cost-effective

microgrids with photovoltaic and battery storage systems to counter renewable uncer-

tainty. Peng et al. (2021) investigate the relationships among fossil fuel, renewable, and

battery storage capacities in a distributed power system, employing stochastic optimal

control theory to explore their joint operations and investment relations. In addition,

several studies utilize regulation reserves from the existing ancillary service market to

address the uncertainty issue. For instance, Huang et al. (2021a,0) explore a stochas-

tic problem co-optimizing power generation and regulation reserves, providing valuable

insights via polyhedral study results.

As highlighted in Section 4.1, investing in additional infrastructures or soliciting regu-

lation reserves to increase the power grid’s capacity entails significant time and cost and

causes potential energy loss and network congestion. In contrast, integrating the power

grid with EVs avoids these drawbacks while presenting significant benefits. The follow-

ing three papers consider deterministic grid-EV interactions. Tomić and Kempton (2007)

evaluate the EV fleet’s economic potential in ancillary service markets via charging and

discharging. Both Saber and Venayagamoorthy (2010) and Ma et al. (2012) explore sce-

narios where EVs serve as loads, energy sources, or energy storage for the grid; the former

examines how EV adoption can reduce grid costs and emissions, and the latter analyzes
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the most efficient utilization of EV battery storage when supporting the power system.

The above studies underscore the benefits of incorporating both regulation reserves and

EVs in enhancing power grid operations. Our work builds upon these insights, address-

ing power grid operations under uncertainties by integrating both regulation reserves and

EVs into our study.

Our work aligns more closely with studies on V2G. Early literature approached V2G

from a social perspective, delving into social barriers, benefits, and net economic wel-

fare associated with V2G (e.g., see Lund and Kempton 2008 and Sovacool and Hirsh

2009). Recently, V2G has gained attention in the OM/OR studies. Broneske and Woz-

abal (2017) examine the impacts of V2G contract parameters (e.g., plug-in duration)

on the cooperation between EVs and the grid. Mak and Tang (2021) tackle a pricing

optimization problem, studying how a platform operating a V2G network decides incen-

tives for driver participation. Widrick et al. (2018) utilize the Markov decision process

to optimize the number of batteries charged or discharged at an EV battery swap station

during operations when V2G is involved. Zhang et al. (2021) focus on an EV-sharing

mobility system with V2G, formulating a two-stage stochastic program to optimize EV

allocation and fleet operation. Qi et al. (2022) consider an urban microgrid connected

with an EV-sharing mobility system, formulating deterministic models to optimize EV

fleet dispatch and electricity exchange, thereby enhancing microgrid self-sufficiency and

resilience. While these studies provide valuable insights into the value of V2G, primarily

from the perspective of the EV-sharing mobility system, they generally do not incorporate

the power grid’s decisions in planning and operations. They often overlook uncertain-

ties in the power grid. In contrast, this chapter focuses on power grid operations while

considering uncertainties in renewable generation, power load, and EV trip demand.

This chapter also contributes to the literature on robust optimization (RO). Given an

uncertainty set with some information of uncertain parameters, RO is to find a solution

feasible for any realization within this set while optimizing for the worst-case scenario

(Ben-Tal et al. 2009, Bertsimas et al. 2011). The degree of conservatism in the robust

solution can be fine-tuned through the choice of the uncertainty set (Bertsimas and

Sim 2004), rendering RO widely applicable in various fields, including power systems

(e.g., see Lorca et al. 2016 and Yang et al. 2021) and network/transportation systems

(e.g., see Atamtürk and Zhang 2007 and Erera et al. 2009). However, solving two-
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stage (or multi-stage) RO models poses significant computational challenges. Thus, two

existing schemes are provided: (i) the approximation scheme that employs affine policies

or assumes decision variables in subproblems are simple functions of uncertainties (e.g.,

see Ben-Tal et al. 2004, Bertsimas et al. 2010, and Lorca et al. 2016), and (ii) the exact

scheme (e.g., see Zeng and Zhao 2013 and Yang et al. 2021), exemplified by the cutting

plane method in the decomposition framework, which dynamically creates cuts using

primal/dual solutions of the subproblem and incorporates them into the master problem.

This chapter opts for the second scheme. We improve this approach by incorporating

machine learning techniques to quickly identify a sufficient yet small number of scenarios

from the uncertainty set to construct a support set of the problem, thereby significantly

reducing the number of added cuts and enhancing solving efficiency.

4.3 Problem Formulation

Consider a power grid network with a set of nodes (termed “power bus”) B and a set of

bidirectional power transmission lines L, where each line links two buses. The power grid

operator (she) manages a set of thermal generators G to provide electricity to the public

and ancillary services to maintain the grid reliability in each period t ∈ T = {1, 2, . . . , T}.

Meanwhile, she manages a set of renewable generators (i.e., wind and solar farms) that

intermittently feed electricity via each bus b ∈ B and interacts with a mobility operator

(he) that manages a fleet of electric vehicles (EVs) and provides shared mobility services

to the public.

Figure 4.1 illustrates the sequence of events regarding the operations and demand ar-

rivals of the power grid and mobility fleet in each period t ∈ T : (i) At the start of period

t, grid and mobility demands arrive and generation amounts of renewable generators are

realized. (ii) Knowing the realized grid demands and renewable generation, the power

grid operator determines the generation amount of each thermal generator (e.g., coal-

and gas-fired ones) in the power grid and the amounts of electric power charged from

and discharged to the EVs. (iii) Knowing the realized mobility demands and charg-

ing/discharging interactions with the power grid, the mobility operator determines the

number of EVs to complete the charging/discharging operations and satisfy mobility de-

mands, respectively. (iv) Any demand loss is observed, and the grid-vehicle integration
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(GVI) system is updated for the period t+ 1.

Facing significant uncertainty and reliability requirements to supply electricity, the

power grid operator makes initial generator commitment (i.e., on/off) and subsequent

generator dispatch and interactions with the mobility fleet to minimize the worst possible

total cost. We formulate the problem as a two-stage robust optimization model. In the

first stage, we decide the commitment status of each thermal generator in the power grid.

In the second stage, when time-dependent demands arrive, we decide the generator and

EV dispatch and their interactions in each period for the entire operational horizon as a

recourse against the worst possible scenario.

(i) Grid and mobility demands arrive and

the renewable generation is realized

(ii) Grid determines the power generation and power

charging/discharging interactions with mobility

(iii) Mobility utilizes EVs to complete the charg-

ing/discharging operations and satisfy demands

(iv) System is updated

for period t+ 1

time

Period t Period t+ 1

Figure 4.1. Sequence of Events

4.3.1 First-stage Formulation

For each generator g ∈ G, the grid operator makes a decision ugt in each period t ∈ T to

determine the generator starts up (i.e., ugt = 1) or not (i.e., ugt = 0). When a generator

g starts up in period t, its commitment status becomes online in this period and may

stay online during the coming periods. We define a binary variable ygt such that ygt = 1

if generator g ∈ G is online in period t ∈ T and ygt = 0 otherwise. Thus, if generator g is

online in period t (i.e., ygt = 1) but not in period t − 1 (i.e., ygt−1 = 0), then clearly this

generator starts up in period t (i.e., ugt = 1):

ugt − ygt + ygt−1 ≥ 0, ∀t ∈ T \ {1}, g ∈ G. (4.1)

After staying online for several periods, a generator can shut down and its commitment

status becomes offline. When generator g ∈ G starts up (resp. shuts down), a start-up

cost SUg (resp. a shut-down cost SDg) is incurred and this generator has to stay online

(resp. offline) for a minimum number of Lg (resp. ℓg) periods with Lg, ℓg ≤ T −1. Thus,
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we have

t∑
i=t−Lg+1

ugi ≤ ygt , ∀t ∈ [Lg + 1, T ]Z, g ∈ G, (4.2)

t∑
i=t−ℓg+1

ugi ≤ 1− ygt−ℓg , ∀t ∈ [ℓg + 1, T ]Z, g ∈ G, (4.3)

where we let [a, b]Z denote the set of all integers between any two nonnegative integers

a and b; that is, [a, b]Z = {a, a + 1, . . . , b} if a ≤ b, and [a, b]Z = ∅ if a > b. The

above two constraints, i.e., minimum-up and minimum-down time limits, respectively,

are respected due to physical limits and maintenance requirements. We further restrict

ugt to be nonnegative:

ugt ≥ 0, ∀t ∈ T \ {1}, g ∈ G, (4.4)

and restrict ugt and ygt to be binary:

ugt ∈ {0, 1}, ∀t ∈ T \ {1}, g ∈ G; ygt ∈ {0, 1}, ∀t ∈ T , g ∈ G. (4.5)

Facing uncertain grid and EV demands and intermittent renewable generation in the

second stage, the grid operator considers a set of possible scenarios of the random param-

eters, denoted by S. Given the first-stage decisions u = (ugt , ∀t ∈ T \ {1}, g ∈ G)⊤ and

y = (ygt , ∀t ∈ T , g ∈ G)⊤ and a realization ξ ∈ S, we let Ψ(u,y, ξ) denote the optimal

operational cost in the second stage. Thus, the grid operator makes its commitment

decisions (u,y) and subsequent operational decisions in the second stage to minimize the

total costs, including the first-stage and worst possible second-stage costs, by solving the

following problem

Θ = min
u,y

∑
g∈G

T∑
t=2

(
SUgugt + SDg(ygt−1 − ygt + ugt )

)
+max

ξ∈S
Ψ(u,y, ξ)

∣∣∣∣∣∣ (4.1)− (4.5)

 . (M)

Here the term “SUgugt” (resp. “SDg(ygt−1 − ygt + ugt )”) represents the start-up (resp.

shut-down) cost of generator g in period t. Constraints (4.1)–(4.2) and the minimization

objective ensure that the shut-down cost SDg is incurred in period t (i.e., ygt−1−y
g
t+u

g
t = 1)

if and only if ygt−1 = 1 and ygt = 0. In addition, maxξ∈S Ψ(u,y, ξ) represents the worst

possible operational cost in the second stage.
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4.3.2 Second-stage Formulation

Given a realization ξ ∈ S, we let pwb,t, p
s
b,t, and qb,t denote the realized wind generation,

solar generation, and power load (i.e., electric demand) in bus b ∈ B and period t ∈ T ,

respectively, and let dt denote the realized EV trip demand in period t ∈ T . We then

describe the power grid and EV fleet operations, respectively, in the following two sections.

Power Grid Operations

In each period t ∈ T , when generator g ∈ G is online, i.e., ygt = 0, this generator has to

generate a minimum amount of electricity (denoted by Cg) and then the grid operator

decides how much electricity (denoted by pgt ) should be additionally generated; that is,

the total generation amount is Cg+pgt . To ensure that electricity can be supplied reliably

to satisfy uncertain demands, when generator g is online in period t, the grid operator

decides to reserve an amount of electricity (denoted by rg
+

t ) for potential real-time de-

mand increase (termed “regulation-up”) and an amount of electricity (denoted by rg
−

t )

for potential real-time demand decrease (termed “regulation-down”). The total genera-

tion amount of each generator is constrained by its minimum and maximum generation

outputs Cg and C
g
, respectively:

pgt − rg−t ≥ 0, ∀t ∈ T , g ∈ G, (4.6)

pgt + rg+t ≤
(
C

g − Cg
)
ygt , ∀t ∈ T , g ∈ G, (4.7)

where C
g
> Cg for any g ∈ G.

In addition, when generator g increases (resp. decreases) its generation amount, termed

“ramp up” (resp. “ramp down”), from period t − 1 to period t, the increment (resp.

decrement), termed “ramp-up rate” (resp. “ramp-down rate”), should be bounded due

to physical constraints. Specifically, when generator g is online in periods t − 1 and t,

the ramp-up/-down rate limit is denoted by V g; when generator g is online in one of the

periods t− 1 and t and offline in the other, i.e., starts up or shuts down in period t, the

ramp-up/-down rate limit is denoted by V
g
. We assume that Cg < V

g
< Cg + V g for

any g ∈ G, which holds in most industrial settings (Pan et al. 2022). Considering each

generator’s power output and reserve amounts (i.e., regulation-up and regulation-down),
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the ramping constraints (Carlson et al. 2012, Huang et al. 2021a) can be represented by

(
pgt + Cgygt + rg+t

)
−
(
pgt−1 + Cgygt−1

)
≤V gygt−1+V

g
(1− ygt−1), ∀t ∈ T \ {1}, g ∈ G, (4.8)(

pgt−1 + Cgygt−1

)
−
(
pgt + Cgygt − rg−t

)
≤ V gygt + V

g
(1− ygt ), ∀t ∈ T \ {1}, g ∈ G. (4.9)

To ensure high system reliability, in each period t, the grid operator often reserves

enough regulation-up and regulation-down amounts contributed by all the generators in

G:

∑
g∈G

rg+t ≥ R+
t ,
∑
g∈G

rg−t ≥ R−
t , ∀t ∈ T , (4.10)

where R+
t and R−

t denote the minimum required regulation-up and regulation-down

amounts in the power grid, respectively. A unit cost RUg (resp. RDg) is incurred when

reserving regulation-up (resp. regulation-down) for each generator g ∈ G.
Furthermore, the grid operator manages four energy sources to satisfy power load qb,t

in each bus b ∈ B and period t ∈ T . First, a set of thermal generators Gb ⊆ G in each bus

b generate electricity. Second, a set of renewable generators contribute pwb,t and p
s
b,t from

wind and solar farms, respectively. Third, power generation flowing from any other buses

in B \ {b} into bus b. Specifically, we use βb,t to denote the phase angle in each bus b ∈ B
and period t ∈ T and Xb′,b the reactance of power transmission line (b′, b) ∈ L. Then the

power flow from buses b′ to b through line (b′, b) can be calculated by (βb′,t − βb,t)/Xb′,b.

Fourth, the EV fleet discharges (resp. charges) an amount of electricity, denoted by v+t

(resp. v−t ), into (resp. from) the power grid in each period t ∈ G. Thus, the power load

balance constraints can be represented by

∑
g∈Gb

(pgt + Cgygt ) + pwb,t + psb,t +
∑

∀b′∈B: (b′,b)∈L

βb′,t − βb,t
Xb′,b

+ v+t − v−t = qb,t,

∀t ∈ T , b ∈ B. (4.11)

Each transmission line (b′, b) ∈ L has a capacity Cb′,b on both directions:

−Cb′,b ≤
βb′,t − βb,t
Xb′,b

≤ Cb′,b, ∀t ∈ T , (b′, b) ∈ L. (4.12)
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In addition, we restrict all the decision variables within certain ranges:

pgt , r
g+
t , rg−t ≥ 0, ∀t ∈ T , g ∈ G, (4.13)

v+t , v
−
t ≥ 0, ∀t ∈ T ; βb,t ∈ [−π, π], ∀b ∈ B, t ∈ T . (4.14)

By constraints (4.6)–(4.7) and (4.13), when ygt = 0, i.e, generator g is offline in period t,

we clearly have pgt = rg+t = rg−t = 0.

Finally, power generation cost f g
t is incurred in each period t ∈ T when each thermal

generator g ∈ G produces electricity:

fgt := ϕ(pgt , y
g
t ) = ag

(
pgt + Cgygt

)2
+ bg

(
pgt + Cgygt

)
+ cgygt , ∀t ∈ T , g ∈ G, (4.15)

where ag, bg, and cg are given cost parameters of generator g ∈ G. Commonly, (4.15) is

approximated by a piecewise linear function with H segments (Carrión and Arroyo 2006).

Specifically, for each generator g ∈ G, we consider ygt = 1 and divide the interval [0, C
g −

Cg] intoH segments, each with length τ g = (C
g−Cg)/H. For any h ∈ H = {1, 2, . . . , H},

we approximate ϕ(pgt , 1) in the hth segment [σg
h−1 := (h − 1)τ g, σg

h := hτ g] with a linear

function passing through points ((h−1)τ g, ϕ((h−1)τ g, 1)) and (hτ g, ϕ(hτ g, 1)). Let ζgh =

(ϕ(hτ g, 1)−ϕ((h−1)τ g, 1))/τ g denote the slope of this linear function. Therefore, because

we would like to minimize the generation costs, constraints (4.15) can be approximated

as follows:

fgt ≥
(
ag(Cg)2 + bgCg + cg

)
ygt +

∑
h∈H

ζghp̄
g
t,h, ∀t ∈ T , g ∈ G, (4.16)

0 ≤ p̄gt,h ≤ σgh − σgh−1, ∀t ∈ T , g ∈ G, h ∈ H, (4.17)

pgt =
∑
h∈H

p̄gt,h, ∀t ∈ T , g ∈ G, (4.18)

where p̄gt,h indicates the generation amount in the segment h ∈ H.

EV Fleet Operations

In each period t ∈ T , knowing the power transfer requests v+t and v−t from the power grid,

the mobility operator schedules x+t and x−t EVs to satisfy the requests, respectively, and

meanwhile, schedules xrt EVs to satisfy the realized trip demand dt. Unsatisfied demands
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are lost. Given X EVs in total in the fleet, we have

xrt + x+t + x−t ≤ X, xrt ≤ dt, ∀t ∈ T . (4.19)

The discharging and charging amounts in each period are constrained by facility capaci-

ties:

x+t ≤ X
+
, x−t ≤ X

−
, ∀t ∈ T , (4.20)

We define a variable st to denote the state of charge (SOC) of the EV fleet in each

period t ∈ T ∪ {0}, where the fleet’s initial SOC is given as S0. When satisfying trip

demands, the EV fleet consumes electricity at an amount of er per period. The EV fleet

charges and discharges electricity at amounts of e− and e+ per period, respectively. We

use δ to denote the time length of a period. Then, the following constraints illustrate the

SOC balance between any two consecutive periods:

st = st−1 +
(
−erxrt + e−x−t − e+x+t

)
δ, ∀t ∈ T , (4.21)

s0 = S0. (4.22)

Clearly, the SOC level st is constrained by the EV battery capacity S:

st ≤ S, ∀t ∈ T . (4.23)

When interacting with the mobility operator, the grid operator promises to ensure

that the former can maintain a given service level α ∈ [0, 1], while the latter offers the

mobility operator subsidies at a rate Csub per unit of demand to compensate the service

level discrepancy (denoted by ot for each period t ∈ T ) if the mobility operator cannot

reach the level α. Thus, we have

xrt
dt

+ ot = α, ∀t ∈ T . (4.24)

Through this mechanism, the mobility operator will fully satisfy the power transfer re-

quests v+t and v−t from the power grid:

v+t = x+t e
+δ, v−t = x−t e

−δ, ∀t ∈ T . (4.25)
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When the grid receives electricity from the EV fleet in period t, the grid operator pays

the mobility operator at a unit price P+
t . In contrast, when the EV fleet charges from

the grid in period t, the mobility operator pays the grid operator at a unit price P−
t .

Note that constraints (4.25) link the number of EVs (e.g., x+t ) to the power output level

(e.g., v+t ). Similarly, we introduce vrt = xrte
rδ for any t ∈ T to represent the power output

level needed to satisfy EV trip demands. In addition, we restrict all the variables to be

nonnegative:

xrt, x
+
t , x

−
t , st ≥ 0, ∀t ∈ T . (4.26)

Finally, to keep consistent with the grid operations focusing on power output levels,

we can reformulate the above constraints (4.19)–(4.26) as (4.22)–(4.23) and

vrt
erδ

+
v+t
e+δ

+
v−t
e−δ

≤ X,
vrt
erδ

≤ dt,
v+t
e+δ

≤ X
+
,
v−t
e−δ

≤ X
−
, ∀t ∈ T , (4.27)

st = st−1 − vrt + v−t − v+t ,
vrt
erδdt

+ ot = α, vrt ≥ 0, st ≥ 0, ∀t ∈ T . (4.28)

In the second stage, the power grid operator schedules thermal generators and interacts

with the EV fleet to minimize the worst possible cost toward a robust power grid subject

to uncertain grid and EV demands and intermittent renewable generation. We assume

that there is a finite support for the joint distribution of the uncertain parameters across

all the periods and accordingly re-define S as the set of scenario indices. For each scenario

j ∈ S, we reuse the above notation for the second-stage problem and add a subscript j to

each decision variable and random parameter. We use bold symbols to represent vectors.

For example, ξj = (pwb,t,j, p
s
b,t,j, qb,t,j, dt,j,∀b ∈ B, t ∈ T )⊤ and v+ = (v+t,j,∀t ∈ T , j ∈ S)⊤.

Given initial commitment decisions (u,y) and a scenario index j ∈ S, Ψ(u,y, ξj) can be

obtained by solving the following optimization problem:

Ψ(u,y, ξj) = min
∑
t∈T

∑
g∈G

(
fgt,j +RUgrg+t,j +RDgrg−t,j

)
+ P+

t v
+
t,j − P−

t v
−
t,j

 (P)

+ Csub

∑
t∈T

ot,jdt,j

s.t. (4.6)− (4.14), (4.16)− (4.18), (4.22)− (4.23), (4.27)− (4.28).
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Now, by introducing an auxiliary variable z ∈ R, we can reformulate Problem (M) into:

Θ = min
∑
g∈G

T∑
t=2

(
SUgugt + SDg(ygt−1 − ygt + ugt )

)
+ z (4.29)

s.t. (4.1)− (4.5),

z ≥
∑
t∈T

∑
g∈G

(
fgt,j +RUgrg+t,j +RDgrg−t,j

+ P+
t v

+
t,j − P−

t v
−
t,j

)
+ Csub

∑
t∈T

ot,jdt,j ,

∀j ∈ S, (4.30)

(4.6)− (4.14), (4.16)− (4.18), (4.22)− (4.23), (4.27)− (4.28), ∀j ∈ S.

Constraints (4.30) are robust constraints because they are satisfied with respect to all

the scenarios in S. All the variables except z and f g
t,j (∀g ∈ G, t ∈ T , j ∈ S) in the

feasible regions of the above model and its linear programming (LP) relaxation are clearly

bounded, while the optimal values of z and f g
t,j (∀g ∈ G, t ∈ T , j ∈ S) are bounded

because of the minimization objective and constraints (4.30).

4.4 Machine Learning-Driven Optimization

To ensure constraints (4.30) are satisfied for all the scenarios in S, we are specifically

concerned about the worst-case scenarios and the scenarios in the support set (see the

following definitions).

Definition 1. Let (u∗,y∗) denote the optimal first-stage solution of Problem (M). Sce-

nario j ∈ S is a worst-case scenario if Ψ(u∗,y∗, ξj) ≥ Ψ(u∗,y∗, ξj′) for any j′ ∈ S.

Definition 2. Let Θ(S) denote the optimal value of Problem (M) when constraints

(4.30) are satisfied with respect to all the scenarios in S. A set S0 ⊆ S is a support set if

Θ(S0) = Θ(S).

Once we have a support set S0 (preferably in a small size), constraints (4.30) should

be satisfied with respect to the scenarios in S0 only, by which solving Problem (M), i.e.,

Problem (4.29), becomes more efficient because S0 may include much fewer scenarios than

S. Thus, it would be appealing to have a support set S0 before solving Problem (M). As

any support set includes at least one worst-case scenario, we derive a machine learning

approach to identify a worst-case scenario in S and an iterative optimization process

89



to construct a support set by selecting more scenarios from S, leading to a machine

learning-driven optimization approach as follows.

First, as the power grid and mobility systems have accumulated extensive data via

historical operations, we use historical data to construct various instances of Problem

(M) considering various scenario samples in set S. For each given instance of set S, we

derive an efficient algorithm in Section 4.4.1 to solve Problem (M) offline and identify a

worst-case scenario (note that we generally have a unique worst-case scenario based on

the real data), by which we obtain a set of training data for the next step. Second, given

offline input instances and output solutions, we perform linear regression to characterize

the relationship between the statistical features of the worst-case scenario (i.e., output)

and of the scenario samples in S (i.e., input). Given this linear regression relationship and

a new instance of set S, we identify a worst-case scenario j∗ in this new set, after which

we derive an efficient algorithm in Section 4.4.2 to solve Problem (M) to optimality.

Third, to further improve the efficiency of the derived algorithm in the previous step, we

derive several families of strong valid inequalities in Section 4.4.3.

4.4.1 Alternating Direction Method of Multipliers for Training

We rewrite Problem (M) in the following abstract form:

Θ = min
u,y,z

{
F(u,y) + z

∣∣∣ H1(u,y) ≤ 0, u ∈ {0, 1}(|T |−1)×|G|, y ∈ {0, 1}|T |×|G|;

H2(y, z,γj , ξj) = 0, ∀j ∈ S
}
, (M1)

where γj denotes all the second-stage variables with respect to scenario j ∈ S. Specif-

ically, for any j ∈ S, γj = (fj, pj, p′
j, βj, r+j , r−j , v+

j , v−
j , vr

j, sj, oj,κj)
⊤, where

κj denotes slack variables that transform the inequalities into equalities. The inequality

H1(u,y) ≤ 0 represents the first-stage constraints (4.1)–(4.4) and H2(y, z,γj, ξj) = 0

represents the second-stage constraints (4.6)–(4.14), (4.16)–(4.18), (4.22)–(4.23), (4.27)–

(4.28), and (4.30).

Consider a positive integer N ≤ |S| and N = {1, . . . , N}. We divide S into N

nonempty and disjoint subsets S1, . . . ,SN such that Sn ⊆ S (n ∈ N ) and ∪N
n=1Sn = S.

We further define u′
n = u, y′

n = y, and zn ∈ R for any n ∈ N and then reformulate
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Problem (M1) as follows:

Θ = min
u,y,z

{
F(u,y) + z

∣∣∣ H1(u,y) ≤ 0, u ∈ {0, 1}(|T |−1)×|G|, y ∈ {0, 1}|T |×|G|,

u = u′
n, y = y′

n, z ≥ zn, ∀n ∈ N ;

H2(y′
n, zn,γj , ξj) = 0, ∀n ∈ N , j ∈ Sn

}
. (M2)

Note that the second-stage constraints are now separated in N groups and constraints

u = u′
n, y = y′

n (n ∈ N ) link these groups. By relaxing these linkage constraints, we

have the augmented function for Problem (M2), L(u,y, z,u′,y′,π,λ) :=

F(u,y)+z+

N∑
n=1

π⊤
n (u− u′

n)+

N∑
n=1

λ⊤
n (y − y′

n)+
ρ1
2

N∑
n=1

∥∥u− u′
n

∥∥2+ρ2
2

N∑
n=1

∥∥y − y′
n

∥∥2 , (4.31)

where πn ∈ R(|T |−1)×|G|, λn ∈ R|T |×|G| are multiplier vectors, and ρ1, ρ2 > 0 are penalty

parameters. We let u′ = (u′
n, ∀n ∈ N )⊤, y′ = (y′

n,∀n ∈ N )⊤, π = (πn,∀n ∈ N )⊤, and

λ = (λn,∀n ∈ N )⊤. Then, we obtain the corresponding augmented Lagrangian problem

(ALP) as follows:

min
{
L(u,y, z,u′,y′,π,λ)

∣∣∣ H1(u,y) ≤ 0, u ∈ {0, 1}(|T |−1)×|G|, y ∈ {0, 1}|T |×|G|,

z ≥ zn, ∀n ∈ N ;

H2(y′
n, zn,γj , ξj) = 0, ∀n ∈ N , j ∈ Sn

}
. (ALP)

To solve Problem (ALP), we apply the alternating direction method of multipliers (ADMM)

and decompose Problem (ALP) into two subproblems, which will be solved iteratively to-

ward convergence. The first subproblem is given by fixing (z,u′,y′,π,λ) = (z,u′,y′,π,λ):

min
{
L(u,y, z,u′,y′,π,λ)

∣∣∣ H1(u,y) ≤ 0, u ∈ {0, 1}(|T |−1)×|G|, y ∈ {0, 1}|T |×|G|
}
, (Fsub)

and the second subproblem is given by fixing (u,y,π,λ) = (u,y,π,λ):

min
{
L(u,y, z,u′,y′,π,λ)

∣∣∣ z ≥ zn, ∀n ∈ N ;

H2(y′
n, zn,γj , ξj) = 0, ∀n ∈ N , j ∈ Sn

}
. (Ssub)

Theorem 4. Problem (Fsub) has the same optimal solution as the following linear pro-
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gram:

min

{∑
g∈G

T∑
t=2

(
SUgugt + SDg

(
ygt−1 − ygt + ugt

) )
+
∑
n∈N

∑
g∈G

T∑
t=2

(
πn,g,tu

g
t +

ρ1
2

(
ugt − 2ug′n,tu

g
t

))
+
∑
n∈N

∑
g∈G

∑
t∈T

(
λn,g,ty

g
t +

ρ2
2

(
ygt − 2yg′n,ty

g
t

)) ∣∣∣∣ (4.1)− (4.4)

}
. (FsubR)

Theorem 4 shows that Problem (Fsub), an integer program, can be solved as a linear

program, which reduces the computational difficulty and facilitates the convergence of

the ADMM algorithm. Meanwhile, with (u,y) = (u,y), Problem (Ssub) is separable

with respect to each subset Sn (n ∈ N ), further reducing the computational difficulty.

Specifically, for each n ∈ N , we define Ln(u,y, z,u
′
n,y

′
n,πn,λn) :=

F(u,y) + z + π⊤
n

(
u− u′

n

)
+ λ⊤

n

(
y − y′

n

)
+
ρ1
2

∥∥u− u′
n

∥∥2 + ρ2
2

∥∥y − y′
n

∥∥2 ,
by which the nth subproblem of Problem (Ssub) can be represented by

min
{
Ln(u,y, z,u

′
n,y

′
n,πn,λn)

∣∣∣ z ≥ zn, H2(y′
n, zn,γj , ξj) = 0, ∀j ∈ Sn

}
. (Ssubn)

With Problems (FsubR) and (Ssubn) (n ∈ N ), we present the details of the ADMM

algorithm in Algorithm 3, where we use superscript m to denote the iteration step.

Algorithm 3 ADMM

Input: ϵ > 0, ρ1, ρ2, iteration index m = 0, initial solutions (u0,y0), and multipliers (π0,λ0).
Output: Optimal solution (u∗,y∗).
1: do
2: Set (u,y,πn,λn) = (um,ym,πm

n ,λ
m
n ), ∀n ∈ N .

3: Solve Problem (Ssubn) to obtain an optimal solution (zm+1, zm+1
n ,u′

n
m+1

,y′
n
m+1

,γm+1
j ,∀j ∈ Sn)

for any n ∈ N .
4: Set u′ = (u′

1
m+1

, . . . ,u′
N

m+1
)⊤, y′ = (y′

1
m+1

, . . . ,y′
N

m+1
)⊤, and z = max{zm+1

1 , . . . , zm+1
N }.

5: Solve Problem (FsubR) to obtain an optimal solution (um+1,ym+1).

6: Set πm+1
n = πm

n + ρ1(u
m+1 − u′

n
m+1

) and λm+1
n = λm

n + ρ2(y
m+1 − y′

n
m+1

) for any n ∈ N .
7: Set m = m+ 1.
8: while

∑N
n=1(∥um − u′

n
m∥2 + ∥ym − y′

n
m∥2) > ϵ.

Algorithm 3 generates a set of sequences: {(um,ym), ∀m} and {(u′
n
m,y′

n
m), ∀m} for

any n ∈ N . Note that we can always set the upper bound of z to be a sufficiently large

but finite value while not changing the optimal solution and value of Problem (M). That

is, we can consider the feasible region of Problem (ALP)’s LP relaxation is bounded. We

have the following proposition holds.
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Proposition 6. If
∑∞

m=1

∑N
n=1 ∥πm+1

n −πm
n ∥2 <∞ and

∑∞
m=1

∑N
n=1 ∥λ

m+1
n −λm

n ∥2 <∞,

then

∥∥um − um+1
∥∥2 → 0,

∥∥ym − ym+1
∥∥2 → 0, as m→ ∞,∥∥u′

n
m − u′

n
m+1∥∥2 → 0,

∥∥y′
n
m − y′

n
m+1∥∥2 → 0, as m→ ∞, ∀n ∈ N .

Let eu = (1, . . . , 1)⊤ ∈ R(|T |−1)|G|, ey = (1, . . . , 1)⊤ ∈ R|T ||G|, Hy(y, z,γj, ξj) = 0

represent the second-stage constraints involving y, i.e., (4.7)–(4.9), (4.11), and (4.16),

M1 =
∑

g∈G(2|T | − Lg − ℓg) + 2(|T | − 1)|G| representing the number of constraints

(4.2)–(4.4), and M2 = 4|T ||G| − 2|G| + |T ||B| representing the number of constraints

represented by Hy(y, z,γj, ξj) = 0. Let (u∗,y∗,π∗,λ∗) denote any accumulation point

of sequence {(um,ym,πm,λm), ∀m} generated by Algorithm 3. We show that (u∗,y∗)

satisfies certain conditions in the following theorem.

Theorem 5. Assume
∑∞

m=1

∑N
n=1 ∥πm+1

n −πm
n ∥2 <∞,

∑∞
m=1

∑N
n=1 ∥λ

m+1
n −λm

n ∥2 <∞,

{(πm
n ,λ

m
n ), ∀m} is bounded for any n ∈ N , and the objective value of the dual problem of

Problem (Ssubn) for any n ∈ N is bounded. Then, there exist θ∗
n,j ∈ RM2 (∀n ∈ N , j ∈

Sn) and η∗ ∈ RM1
+ such that

▽u F (u∗,y∗) +
Nρ1
2

(eu − 2u∗) +
(
▽uH1 (u∗,y∗)

)⊤
η∗ = 0, (4.32)

▽y F (u∗,y∗) +
Nρ2
2

(ey − 2y∗) +
(
▽yH1 (u∗,y∗)

)⊤
η∗ +Q⊤

N∑
n=1

∑
j∈Sn

θ∗
n,j = 0, (4.33)

η∗ ⊙H1 (u∗,y∗) = 0, (4.34)

where Q := ▽y′
n
Hy(y′

n, zn,γj, ξj) for any n ∈ N and j ∈ Sn and ⊙ denotes the Hadamard

product.

4.4.2 Machine Learning for Optimality

For each instance of Problem (M) solved by Algorithm 3 offline, we use xin ∈ Rdin

to denote the statistical information (e.g., expectation and standard deviation) of all

the scenarios in S and yout ∈ Rdout the statistical information of an obtained worst-

case scenario, where din and dout are appropriate dimensions. Thus, for any instance

n(= 1, 2, . . .) of Problem (M) with set Sn, we collect a training data set {(xn
in,y

n
out),∀n =

1, 2, . . .}, by which we construct a linear regression model yout = c⊤xin. Given this
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model and a new instance with the scenario information x̃in ∈ Rdin of S, we predict

the information ỹout ∈ Rdout of a worst-case scenario. By computing the statistical

information of each scenario j ∈ S (denoted by ỹj
out ∈ Rdout), we identify this worst-

case scenario j∗ = argminj∈S̃(
∑dout

i=1 |ỹ
j,i
out − ỹiout|/ỹiout), i.e., the scenario with information

closest to our prediction.

With the above new instance of set S and the identified worst-case scenario j∗, we

derive Algorithm 4 to solve Problem (M). Algorithm 4 reuses the definition of γj for

any j ∈ S in Section 4.4.1. The following theorem shows that Algorithm 4 iteratively

improves the lower bound for Problem (M) until converging to the optimal solution.

Algorithm 4 Machine Learning-Driven Optimization

Input: Scenario sample set S, worst-case scenario j∗, and iteration index m = 1.
Output: Optimal solution (u∗,y∗) and the optimal value Θ.
1: Set Sw

m = {j∗} and Snw
m = S \ {j∗}.

2: Solve Problem (M) with sample set Sw
m to obtain optimal solution (um,ym,γm

j ,∀j ∈ Sw
m) and the

optimal value Θ
m
.

3: Solve Problem (P) with (u,y) = (um,ym) and ξj for any j ∈ Snw
m to obtain the optimal value

Ψ(um,ym, ξj) and optimal solution γm
j for any j ∈ Snw

m .

4: Set S f
m = {j ∈ Snw

m | F(um,ym) + Ψ(um,ym, ξj) > Θ
m}.

5: while S f
m ̸= ∅ do

6: Randomly select a scenario jfm ∈ S f
m and set Snw

m+1 = Snw
m \ {jfm} and Sw

m+1 = Sw
m ∪ {jfm}.

7: Solve Problem (M) with sample set Sw
m+1 to obtain optimal solution (um+1,ym+1,γm+1

j ,∀j ∈
Sw
m+1) and the optimal value Θ

m+1
.

8: Solve Problem (P) with (u,y) = (um+1,ym+1) and ξj for any j ∈ Snw
m+1 to obtain the optimal

value Ψ(um+1,ym+1, ξj) and optimal solution γm+1
j for any j ∈ Snw

m+1.

9: Set S f
m+1 = {j ∈ Snw

m+1 | F(um+1,ym+1) + Ψ(um+1,ym+1, ξj) > Θ
m+1}.

10: Set m = m+ 1.
11: end while
12: (u∗,y∗) = (um,ym) and Θ = Θ

m
.

Theorem 6. For Algorithm 4, we have (i) Θ ≥ Θ
n ≥ Θ

m
for any iteration n > m ≥

1 and (ii) when the algorithm terminates, the obtained solution (u∗,y∗) is optimal to

Problem (M).

At each step m, Algorithm 4 iteratively selects a scenario jfm from S f
m, a subset of

Snw
m such that F(um,ym) + Ψ(um,ym, ξj) > Θ

m
. This condition helps collect enough

scenarios to construct a support set efficiently and obtain an optimal solution of Problem

(M) correspondingly. Clearly, we can naively select a scenario jfm directly from Snw
m

(i.e., naive selection), while the size of this set can be much larger than that of S f
m

and hence the algorithmic convergence will be delayed. Meanwhile, at step m, because

Snw
m \S f

m may also include a scenario in the support set that we will eventually have when
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the algorithm terminates, we can strategically select a scenario from either S f
m or Snw

m .

However, making such a strategic selection between S f
m and Snw

m is difficult because we

have limited information to determine which set contains a higher proportion of scenarios

in the support set. Thus, we select a scenario jfm from S f
m consistently at each step.

Note that a practical and large-scale instance of Problem (M) may satisfy certain con-

ditions to help analyze the properties of the above naive selection and strategic selection.

Specifically, we assume that Problem (M) has a unique minimum support set S∗ that

has the smallest size among all the support sets, with |S∗| = K. Hence, any support set

contains S∗. We also assume that (i) Problem (M) with S has a unique optimal solution

or (ii) Problem (M) with S and Problem (M) with any support set share the same set

of optimal solutions. Thus, at each step m of Algorithm 4, we have the following two

observations: (i) The size of Snw
m becomes |S| −m and hence at most K/(|S| −m) of the

scenarios in Snw
m are from S∗; (ii) The set S f

m contains at least one scenario from S∗ and

hence at least 1/|S f
m| of the scenarios in S f

m are from S∗. We then update the strategic

selection as follows: At each step m of Algorithm 4, we randomly select a scenario from

S f
m if 1/|S f

m| ≥ K/(|S| − m) and from Snw
m otherwise. The following two results hold

accordingly.

Lemma 1. Algorithm 4 is expected to terminate after 1+(K−1)|S|/K steps if it adopts

naive selection and there exists a unique worst-case scenario.

Theorem 7. Algorithm 4 is expected to terminate in fewer steps by adopting strategic

selection than naive selection.

Lemma 1 and Theorem 7 provide structural results on the expected number of steps for

Algorithm 4 to terminate. Lemma 1 indicates that naive selection may not be efficient,

though the algorithm is more efficient when K is smaller. Theorem 7 suggests that it is

better to adopt strategic selection when we have some information on the minimum sup-

port set of Problem (M). Note that determining the exact value of K can be challenging

in practice, while an upper bound for K can be provided (Anderson and Zachary 2023),

facilitating the application of strategic selection.

It’s important to highlight that our proposed machine learning-driven optimization

approach, i.e., Algorithm 4, exhibits general applicability across a wide range of stochastic

problems. For example, Algorithm 4 is applicable for solving the target-oriented model
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for robust optimization in the framework of robust satisficing, which is proposed by Long

et al. (2023). We formulate the robust satisficing variant of Problem (M) and introduce

how to use Algorithm 4 to solve it in Section 4.6 and leave it for future study.

4.4.3 Strong Valid Inequalities for Efficiency

Algorithm 4 needs to solve Problem (M) with the sample set Sw
m, which is an MILP

and can be computationally challenging, at each step m. To improve the efficiency of

solving the MILP, we derive several families of strong valid inequalities to tighten the

linear relaxation of Problem (4.29). On the one hand, a tighter linear relaxation can

often improve computational efficiency by reducing the amount of enumeration required

to find and prove an optimal solution (Knueven et al. 2020). On the other hand, the

derived inequalities can be used as cutting planes in the branch-and-cut framework to

improve the computational efficiency (Wolsey and Nemhauser 1999).

We study the properties of an individual generator’s feasible region, as strong valid

inequalities for the physical constraints of each individual generator are valid for Problem

(4.29) and can be used to tighten its linear relaxation. Thus, we drop the superscript g

and subscript j here and consider the following set of physical constraints:

D :=
{(

p, r+, r−,y,u
)
∈ RT × RT × RT × {0, 1}T × {0, 1}T−1 :∑t

s=t−L+1 us ≤ yt, ∀t ∈ [L+ 1, T ]Z, (4.35a)∑t
s=t−ℓ+1 us ≤ 1− yt−ℓ, ∀t ∈ [ℓ+ 1, T ]Z, (4.35b)

−yt−1 + yt − ut ≤ 0, ∀t ∈ T \ {1}, (4.35c)

pt − r−t ≥ 0, ∀t ∈ T , (4.35d)

pt + r+t ≤
(
C − C

)
yt, ∀t ∈ T , (4.35e)(

pt + Cyt + r+t
)
− (pt−1 + Cyt−1) ≤ V yt−1 + V (1− yt−1), ∀t ∈ T \ {1}, (4.35f)

(pt−1 + Cyt−1)−
(
pt + Cyt − r−t

)
≤ V yt + V (1− yt), ∀t ∈ T \ {1}, (4.35g)

pt, r
+
t , r

−
t ≥ 0, ∀t ∈ T

}
. (4.35h)

We use conv(D) to denote the convex hull of D. Clearly, a valid inequality for the

polytope conv(D) is also valid for Problem (4.29) for any generator g in any scenario

j. Hence, the strong valid inequalities developed for conv(D) can be used to tighten

the formulation of Problem (4.29). We let
∑b

t=a pt =
∑b

t=a r
+
t =

∑b
t=a r

−
t =

∑b
t=a yt =
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∑b
t=a ut = 0 if a > b and ς = ⌊(C − V )/V ⌋ ≥ 0. The following lemmas provide some

preliminary results that entail polyhedral properties of D.

Lemma 2. For any k ∈ [1, L]Z and t ∈ [k + 1, T ]Z, we have
∑t

s=t−k+1 us ≤ yt.

Lemma 3. For any k ∈ [1, ℓ]Z and t ∈ [k + 1, T ]Z, we have
∑t

s=t−k+1 us ≤ 1− yt−k.

Lemmas 2 and 3 generalize the minimum-up and minimum-down constraints (4.35a)

and (4.35b), respectively. They state that (i) a generator starts up at most once within

an operational horizon up to L periods and (ii) if a generator is currently online, then it

does not start up within the subsequent operational horizon up to ℓ periods. Thus, the

following corollary holds.

Corollary 1. For any t ∈ [2, T ]Z, we have yt ≥ ut, yt−1+ut ≤ 1, and yt ≥
∑t

s=max{2,t−L+1} us.

Lemma 4. For any t ∈ [2, T ]Z, we have pt − pt−1 ≤ V .

Lemma 4 shows that a generator’s generation increment between any two consecutive

periods is bounded by V regardless of this generator’s online/offline status. With the

above lemmas, we first present a family of strong valid inequalities that provide an upper

bound on the total amount of generation regulation-up and regulation-down r+t + r−t for

each period t.

Proposition 7. For any t ∈ [3, T ]Z, the inequality

r+t + r−t ≤
(
V − C

)
yt + V (yt − ut) +

(
C + V − V

)
(yt−1 − ut−1) (4.36)

is valid for conv(D). Furthermore, it is facet-defining for conv(D) when L = 1 and

C − C > 2V .

Inequality (4.36) links the generation regulation-up r+t and regulation-down r−t that

are not considered simultaneously in a single constraint in D. Nevertheless, the inequality

in the following proposition explicitly tightens the existing constraints (4.35e) in D.

Proposition 8. For each k ∈ [1,min{L, ς + 1}]Z and t ∈ [k + 1, T ]Z, the inequality

pt + r+t ≤
(
C − C

)
yt −

k−1∑
s=0

(
C − V − sV

)
ut−s (4.37)

is valid for conv(D). Furthermore, it is facet-defining for conv(D) when one of the

following two conditions holds: (i) L = 1 and (ii) k = L = 2 and V + V ≤ C ≤ V + 2V .
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Inequality (4.37) is tighter than (4.35e) because
∑k−1

s=0(C−V − sV )ut−s ≥ 0 and hence

the right-hand side of (4.37) is not larger than that of (4.35e). The following proposition

provides a family of strong valid inequalities to bound the potential generation increment

from period t− k to period t.

Proposition 9. For each t ∈ [2, T ]Z and k ∈ [1,min{t− 1, ς}]Z, the inequality

pt + r+t − pt−k ≤ kV yt −
min{L,k}−1∑

s=0

(
C + (k − s)V − V

)
ut−s (4.38)

is valid for conv(D). Furthermore, it is facet-defining for conv(D) when L = 1.

Finally, we derive a family of strong valid inequalities in the following proposition to

bound the potential generation decrement from period t−k to period t, while considering

both the generation regulation-up r+t−k and regulation-down r−t .

Proposition 10. For each k ∈ [1,min{T − 2, ς}]Z and t ∈ [k + 2, T ]Z, the inequality

pt−k + r+t−k − pt + r−t ≤
(
V − C

)
yt−k + 2V

(
yt−k −

t−k∑
s=max{2,t−k−L+1}

us

)

+

k−1∑
i=1

V

(
yt−i −

t−i∑
s=max{2,t−i−L+1}

us

)
+ (C + V − V )

(
yt −

t∑
s=max{2,t−L+1}

us

)

+
t−k−1∑

s=max{2,t−k−L+1}

(t− k − s)V us (4.39)

is valid for conv(D).

4.5 Numerical Experiments

We conduct numerical experiments using real data in New York City (NYC) from January

1, 2020 to June 30, 2022 to demonstrate the daily operations of a GVI system, with each

period representing one hour and hence T = 24. We first introduce parameter settings

and then validate our proposed algorithms and obtain managerial insights via various

experiments.
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4.5.1 Parameter Settings

First, we introduce the power grid setting. As NYC includes five subdivisions (i.e., Staten

Island, Manhattan, Bronx, Brooklyn, and Queens), we consider a 5-bus power grid with

each bus representing a subdivision (see Figure 4.2), i.e., B = {1, 2, . . . , 5}.

We have collected daily power demand (load) data in NYC from New York Independent

System Operator (NYISO). Note that nuclear power plants (e.g., R. E. Ginna Nuclear

Power Plant and Nine Mile Point Nuclear Station) and hydroelectric generators (e.g.,

Robert Moses Niagara Hydroelectric Power Station) are always online near NYC to serve

the base load (EIA 2023). These power generators, with a capacity larger than 5, 000MW,

run in 7 × 24h. Thus, we operate the power grid to satisfy only the peak load (i.e., the

total load minus the base load). Specifically, we set 99% of the minimum load during each

day as its base load. Thus, we hereafter use the term “load” to denote the peak load. In

each period, we set the load at each subdivision (bus) as the total load multiplying this

subdivision’s GDP portion over the entire NYC’s GDP (see Figure 4.3).

Figure 4.2. 5-Bus Power Grid in NYC
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Figure 4.3. Power Load
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Figure 4.4. Solar Generation
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Figure 4.5. Wind Generation
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Figure 4.7. EV Trip Demands

We have also collected daily wind and solar power generation data from NYISO and

Pennsylvania–New Jersey–Maryland Interconnection (PJM)2, respectively. As the wind

power is mainly produced by offshore wind farms (NYSERDA 2023), we assume that

in each period t ∈ T , each bus b ∈ B in Figure 4.2 contributes the same amount of

wind power and shares 1/5 of the total wind power (see Figure 4.5), i.e., pwb1,t = pwb2,t

2Website: https://www.pjm.com/
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for any b1, b2 ∈ B. In addition, the PJM data provides the daily solar generation data

in the Mid-Atlantic region, where the installed solar capacity is around 8, 222.6MW in

2020. As NY Solar Map (2023) provides the installed solar capacities in each subdivision

(bus) of NYC, we set psb,t as the total solar generation in period t divided by 8, 222.6 and

multiplying the installed solar capacity in bus b (see Figure 4.4).

As shared mobility systems can serve as regulation-up/-down reserves for the power

grid to help balance power supply and demand, we collect hourly market clearing prices

of regulation-up/-down energy from the Electric Reliability Council of Texas (ERCOT)3

to set the electricity purchasing/selling prices P+
t /P

−
t . Specifically, we set P+

t (resp. P−
t )

as the price of regulation-up (resp. regulation-down) reserve in each period t ∈ T (see

Figure 4.6). In addition, ten thermal generators operating in NYC are considered to

serve the 5-bus power grid, and we collect their physical parameters from EIA (2023)

(see details in Appendix C.16).

Second, we introduce the EV fleet setting. We estimate EV trip demand dt using the

taxi trip demands from the NYC Taxi and Limousine Commission (TLC). As the NYC

Department of Transportation (NYC DOT 2019) shows that 56% of all vehicles crossing

into the CBD are private, and we assume that the remaining 44% are taxis, which are all

promoted to be electrical in the near future for societal sustainability. Thus, we set dt as

the current taxi demands divided by 44% in each period t ∈ T (see Figure 4.7). We further

set relevant cost parameters in USD: the unit rental price Cr = 12 following the rental

price of Zipcar (Zhang et al. 2021) and the penalty cost Cp = 12 and the unit subsidy

Csub = Cr+Cp = 24 for an unsatisfied trip demand. In addition, the number of allocated

EVs X = 221, 180, and the corresponding charging/discharging facility capacity4 upper

bounds X
+
= X

−
= 20%×X. We set the EV fleet’s battery capacity S = 22, 118MWh

and initial SOC S0 = 50%× S. We also set er = 15kW, e− = 170kW, and e+ = 6kW for

each EV’s electricity consumption, charging, and discharging rates5, respectively. We set

3Website: https://www.ercot.com/
4Report (NY DMV 2018) suggests that there are 221,180 registered private vehicles in Manhattan.

In addition, Qi et al. (2022) show that vehicle-share trip demands in Manhattan dominate in the city.
Thus, we assume the total number of EVs is 221,180. Qi et al. (2022) show that charge and discharge
plots account for 40% of all parking plots. We assume each EV has a parking plot and amounts of charge
and discharge plots are equal, each of which thus accounts for 20% of total allocations.

5Most popular EVs (e.g., Tesla Model X and Volkswagen ID.6) equip a battery with a capacity
ranging from 80kWh to 100kWh. Because the EV industry is developing quickly, we set each EV’s
battery capacity to be 100kWh, i.e., 0.1MWh. Several BYD EV models can easily keep a charging
rate of 170kW and a discharging rate of 6kW. Tesla Model X 100D with a 100 kWh battery drives 295
miles in ideal condition, and the speed in urban areas generally is 30mph. Thus, the ideal average EV’s

100

https://www.ercot.com/


service level α = 0.97 to ensure the EV fleet’s profitability and the power grid’s flexibility

(see Appendix C.19 for details).

Therefore, we collect 912 data samples from January 1, 2020, to June 30, 2022, with

each day representing a sample. For the random parameters (pw,ps,q) in the power

system (resp. d in the mobility system), we use SG (resp. SEV) to collect all the relevant

data samples we have. We use each data sample (pw,ps,q,d) to represent a single scenario

in S. We divide all these data samples into four groups: Group 1 (for constructing the

linear regression model), Group 2 (for computational performance demonstration), Group

3 (for in-sample tests), and Group 4 (for out-of-sample tests). We randomly select 200

data samples from January 1, 2020 to July 31, 2021 (578 days) to construct Group 2, 60

data samples from January 1, 2020 to July 31, 2021 to construct Group 3, and 60 data

samples from August 1, 2021 to Jun 30, 2022 (334 days) to construct Group 4. All the

remaining 616 data samples go to Group 1.

Third, we introduce our computational setting. We perform all the experiments on a

computing node with a 2.3-GHz Intel Xeon E5-2670 processor and a 64GB of memory

using CPLEX 12.10 with C++ API under default settings as the optimization solver. We

use the data in Group 1 to construct our linear regression model yout = c⊤xin introduced

in Section 4.4.2 (see Appendix C.17 for the detailed setting), the data in Group 2 to show

the computational performance of our proposed solution approaches (see Section 4.5.2),

the data in Group 3 to compute the first-stage solution (u,y) by solving Problem (M),

and the data in Group 4 to perform out-of-sample tests by solving Problem (P) with the

above given (u,y) to obtain managerial insights.

4.5.2 Computational Performance

We demonstrate the computational efficiency of our proposed solution approaches, i.e.,

Algorithm 3 (ADMM) in Section 4.4.1 and Algorithm 4 (Machine Learning-Driven Opti-

mization) in Section 4.4.2, for solving Problem (M) by comparing them with benchmarks.

Our derived strong valid inequalities in Section 4.4.3 are applied in Algorithm 4 to im-

prove the solution process.

We perform experiments under various scenario sizes. Specifically, with the data in

electricity consumption rate is 100kWh / (295miles / 30mph) ≈ 10.2kW. Note that the ideal condition
is rare to meet in practice. We hence consider a slightly larger electricity consumption rate in the trip
at 15kW.
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Group 2, we have 200 data samples from both SG and SEV. We create an augmented

scenario set S by defining S := SG × SEV = {(jG, jEV) | jG ∈ SG, jEV ∈ SEV}, leading

to 40, 000 scenarios in S in total. By randomly selecting samples from SG and SEV (i.e.,

varying |SG| and |SEV|) to create such an augmented set S, we consider various instances

of Problem (M) with S, with |S| ranging from 10 to 5, 000. For each computational run,

the time limit is set as two hours when |S| < 5, 000 and three hours when |S| = 5, 000.

We report the total cost, computational time in seconds, and optimality gap for each

approach with respect to each instance.

First, we compare Algorithm 3 with the CPLEX solver under default settings, i.e.,

“ADMM” and “CPLEX” in Table 4.1. The CPLEX solver reports the terminating gap,

i.e., “MIP Gap (%),” defined by the relative gap between the best lower and upper

bounds. For each instance solved by the ADMM approach, we define

ADMM Gap (%) =
(the cost by “ADMM”)− (the cost by “CPLEX”)

(the cost by “ADMM”)
× 100%.

As the ADMM does not return an optimal solution of Problem (M) in general, we set

ϵ = 0.001 in Algorithm 3 to ensure a feasible (u∗,y∗) to Problem (M) is returned for

each instance. Given (u∗,y∗), we solve Problem (M) to report its upper bound. Table

4.1 shows that the CPLEX approach solves all the instances to the optimality when

|S| ≤ 1, 000 (see Appendix C.18 for the results with small and medium instances). Our

ADMM approach solves all these instances and returns the ADMM Gap within 0.9%,

while it takes a much shorter computational time than the CPLEX. When |S| ≥ 2, 000,

the CPLEX cannot solve any instances to the optimality within the time limit and returns

average terminating gaps at 69.093% (|S| = 2, 000) and 270.617% (|S| = 5, 000). In

contrast, our ADMM approach solves all the instances within around one hour (resp.

two hours) with an ADMM Gap at −1.095% (resp. −1.658%) when |S| = 2, 000 (resp.

|S| = 5, 000). As the CPLEX does not obtain an optimal solution of Problem (M)

for these large instances, the ADMM Gap becomes negative, indicating that the upper

bound obtained by the CPLEX is worse than that from the ADMM. Therefore, our

ADMM approach can provide high-quality solutions very efficiently, which are further

used as the training instances for our machine learning model.

Second, we demonstrate the effectiveness of machine learning in solving Problem (M)

by comparing the following three approaches: (i) the ADMM approach based on the
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Table 4.1. Computational Performance of CPLEX and ADMM

|S| |SG| |SEV|
CPLEX ADMM

Cost ($) MIP Gap (%) Time (s) Cost ($) ADMM Gap (%) Time (s)

500

50 10 453,343 0.009 852.7 457,903 0.990 635.7
25 20 428,342 0 782.7 430,446 0.489 265.3
20 25 428,342 0 788.8 430,900 0.594 215.8
10 50 412,853 0.004 1,405.4 414,844 0.480 304.1

Average 430,720 0.003 957.4 433,523 0.638 355.2

1,000

50 20 453,343 0.003 2,515.8 458,002 1.017 1,898.4
40 25 453,307 0.007 2,185.7 458,253 1.079 1,179.8
25 40 428,884 0 2,956.5 431,062 0.505 504.7
20 50 428,884 0 2,563.3 432,364 0.805 1,028.6

Average 441,105 0.003 2,555.4 444,920 0.852 1,152.9

2,000

100 20 498,508 270.617 7,200 492,608 -1.198 5,592.5
50 40 463,498 2.226 7,200 458,556 -1.078 3,201.0
40 50 453,307 0.019 7,200 458,279 1.085 2,275.2
20 100 444,375 3.509 7,200 430,639 -3.190 5,469.7

Average 464,922 69.093 7,200 460,021 -1.095 4,134.6

5,000

200 25 498,508 270.617 10,800 488,173 -2.073 7,950.0
100 50 498,508 270.617 10,800 492,316 -1.242 8,503.6
50 100 - - 10,800 457,875 - 4,373.8
25 200 - - 10,800 430,808 - 9,770.6

Average 498,508 270.617 10,800 467,293 -1.658 7,649.5

Average - - 458,814 84.929 5378.2 451,439 -0.316 3323.05

aforementioned setting; (ii) “Random Algorithm:” We adopt Algorithm 4 except that

the input scenario j∗ is a scenario randomly selected from S, instead of the worst-case

scenario returned by our machine learning model; (iii) “Learning Algorithm:” We adopt

Algorithm 4 with a refinement applied to the scenario selection from S f
m (see line 6 in

Algorithm 4) based on the construction of S as follows. At step m in Algorithm 4, the

Learning Algorithm approach randomly selects a subset of scenarios S f
m

′
(instead of a

single scenario) from S f
m such that (i) for any j = (jG, jEV) ∈ S f

m, there exists and

only exists one scenario (jG, jEV
′
) ∈ S f

m
′
, and (ii) for any jn = (jGn , j

EV
n ) ∈ S f

m
′
and

jl = (jGl , j
EV
l ) ∈ S f

m
′
with jn ̸= jl, we have jGn ̸= jGl . Such a refinement helps select more

diversified scenarios from S f
m and reduce computational time significantly.

For the Random Algorithm and Learning Algorithm approaches, we report their per-

formance when (i) only the initial scenario j∗ is considered in Problem (M) and (ii) the

algorithm terminates. For case (i) (resp. case (ii)), we report the optimal value of Prob-

lem (M), labeled “Initial Cost” (resp. “Final Cost”), terminating optimality gap, labeled

“Initial Gap” (resp. “Final Gap”), and computational time, labeled “Initial Time” (resp.

“Final Time”). Specifically, for each instance solved by each of the two approaches, we

define

Initial Gap (%) =
(“Initial Cost” by the given approach)− (the cost by “CPLEX”)

(“Initial Cost” by the given approach)
× 100%,

Final Gap (%) =
(“Final Cost” by the given approach)− (the cost by “CPLEX”)

(“Final Cost” by the given approach)
× 100%.
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Table 4.2 shows that when |S| ≤ 1, 000, both the Random Algorithm and Learning

Algorithm approaches solve all the instances to have a Final Gap within 0.01%, i.e., solved

to the optimality under the CPLEX’s optimality criteria. This result validates Theorem 6.

When |S| ≤ 2, 000, the Random Algorithm approach outperforms the ADMM approach

because the former terminates with a better Final Gap and a shorter computational time,

whereas the former performs worse when |S| = 5, 000 because too many scenarios added to

Problem (M) leads to a challenging solution process. The Learning Algorithm approach

can find a lower bound with an Initial Gap at −1.573% for the optimal cost within 0.5

seconds on average and solve any of the instances within 34 seconds on average using

only around 1% of the computational time by the above two approaches. The reasons are

twofold. (i) Our machine learning model provides Algorithm 4 with an input scenario j∗

that is very close to (even same as) a worst-case scenario of Problem (M) (see Definition

1). (ii) With a good input scenario j∗, Algorithm 4 quickly finds enough (while not

many) scenarios to construct a support set of Problem (M) (see Definition 2). As a

result, the value of Initial Cost is close to that of Final Cost and the computational time

is very short, demonstrating the value of machine learning. In the following sections,

we apply the Learning Algorithm approach to support the GVI system operations and

obtain managerial insights via out-of-sample experiments.

Table 4.2. Computatinal Performance of Solution Approaches

|S| |SG| |SEV|
ADMM Random Algorithm Learning Algorithm

Cost ($) ADMM
Gap (%)

Time (s)
Initial

Cost ($)
Final

Cost ($)
Initial

Gap (%)
Final

Gap (%)
Initial

Time (s)
Final

Time (s)
Initial

Cost ($)
Final

Cost ($)
Initial

Gap (%)
Final

Gap (%)
Initial

Time (s)
Final

Time (s)

500

50 10 457,903 0.990 635.7 411,803 453,343 -10.087 0 0.5 40.8 453,260 453,343 -0.018 0 0.6 9.4
25 20 430,446 0.489 265.3 152,873 428,342 -180.195 0 0.8 393.2 428,321 428,342 -0.005 0 0.4 6.2
20 25 430,900 0.594 215.8 402,154 428,342 -6.512 0 0.4 75.8 428,321 428,342 -0.005 0 0.4 7.3
10 50 414,844 0.480 304.1 320,923 412,866 -28.646 0.003 0.9 583.2 412,173 412,866 -0.165 0.003 0.4 7.5

Average 433,523 0.638 355.2 321,938 430,723 -56.360 0.001 0.7 273.2 430,519 430,723 -0.048 0.001 0.4 7.6

1,000

50 20 458,002 1.017 1,898.4 72,004 453,343 -529.610 0 1.3 1,769.1 453,260 453,343 -0.018 0 0.6 14.6
40 25 458,253 1.079 1,179.8 317,065 453,307 -42.970 0 0.9 979.7 453,260 453,307 -0.010 0 0.6 12
25 40 431,062 0.505 504.7 200,639 428,884 -113.759 0 0.5 772.8 428,321 428,884 -0.131 0 0.4 11.2
20 50 432,364 0.805 1,028.6 314,202 428,884 -36.499 0 0.5 483.8 428,321 428,884 -0.131 0 0.4 11.1

Average 444,920 0.852 1,152.9 225,977 441,105 -180.710 0 0.8 1,001.3 440,791 441,105 -0.073 0 0.5 12.3

2,000

100 20 492,608 -1.198 5,592.5 180,407 483,802 -176.324 -3.040 30.8 5,706.2 482,184 483,802 -3.385 -3.040 0.6 57.7
50 40 458,556 -1.078 3,201.0 173,545 453,343 -167.077 -2.240 0.6 3,315.2 453,260 453,343 -2.259 -2.240 0.5 24.4
40 50 458,279 1.085 2,275.2 317,065 453,307 -42.970 0 0.8 3,803.8 453,260 453,307 -0.010 0 0.6 22.4
20 100 430,639 -3.190 5,469.7 302,429 428,884 -46.935 -3.612 0.4 2,800.1 428,321 428,884 -3.748 -3.612 0.4 21.5

Average 460,021 -1.095 4,134.6 243,362 454,834 -108.326 -2.223 8.1 3,906.3 454,256 454,834 -2.351 -2.223 0.5 31.5

5,000

200 25 488,173 -2.073 7,950.0 348,969 - -42.852 - 1.9 10,800 478,185 481,807 -4.250 -3.466 0.6 128.0
100 50 492,316 -1.242 8,503.6 166,492 - -199.419 - 1.4 10,800 482,184 483,802 -3.385 -3.040 0.7 93.4
50 100 457,875 - 4,373.8 424,276 453,343 - - 0.6 1,185.6 453,260 453,343 - - 0.8 61.6
25 200 430,808 - 9,770.6 201,116 - - - 0.5 10,800 428,321 428,884 - - 0.5 55.9

Average 467,293 -1.658 7,649.5 285,213 453,343 -121.135 - 1.1 7,856.4 460,488 461,959 -3.818 -3.253 0.7 84.7

Average - - 451,439 -0.316 3323.05 269,123 445,001 -116.633 - 2.7 3,259.3 446,514 447,155 -1.573 -1.369 0.5 34.0

4.5.3 Impact of V2G

We examine the impact of V2G on the system performance under the parameter settings

in Section 4.5.1 by considering two strategies: (i) No V2G, i.e., Problem (M) with

v+ = 0, and (ii) V2G, i.e., Problem (M). First, we study how the V2G technology

affects the initial generator commitment decisions (u,y) (see Figure 4.8). We observe
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that online generators are prepared in the morning with low power and mobility demands

when V2G is adopted. Thus, the EV fleet saves more electricity into its batteries in the

morning, which further feeds back to the power grid via V2G in the afternoon with

high power demands, by which two fewer generators are online compared to the case

of No V2G. As a result, the average online periods of each online generator when V2G

is adopted (i.e., 16.8) is larger than the case of No V2G (i.e., 15.3), indicating a more

stable grid operation because frequent generator start-up/shut-down may cause reliability

issues in the power grid. Meanwhile, online generators start up later in the morning (e.g.,

t = 9, . . . , 12) and shut down earlier in the afternoon (e.g., t = 21, . . . , 24), by which the

power generation cost is reduced when V2G is adopted. That is, V2G ensures a more

stable and cost-effective power grid operation with fewer online generators. It follows that

fewer carbon emissions are produced and more generators are standing by to address

potential contingencies (e.g., natural disasters).
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Figure 4.8. Total Number of Online Generators
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Figure 4.10. Power Generation

Second, we study how the V2G technology affects the subsequent generator dispatch

and interactions (p,v+,v−) with the EV fleet. We investigate the out-of-sample perfor-

mance over all the samples (see Figure 4.10(a)) and the three high-power-load samples

(jGi , j
EV
0 ) ∈ S for i ∈ [1, 3]Z (see Figure 4.10(b)), where jG1 , j

G
2 , and j

G
3 have the highest

average power loads in SG and jEV0 is randomly selected from SEV. During the valley
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hours (i.e., low-power-load periods t = 2, . . . , 6), we observe larger and more stable gen-

erations when V2G is adopted than the case of No V2G, leading to valley-filling effect

driven explicitly by the following two factors. (i) Excess EVs can charge from the power

grid because EV trip demands are low (see Figure 4.7) and the electricity purchase prices

(P−
t ) are also low during the valley hours (see Figure 4.6), thereby saving enough elec-

tricity in the batteries to satisfy future trip demands or return back to the power grid.

(ii) The power loads during the valley hours fluctuate significantly (see Figure 4.3) and

hence require power generators to start up and shut down frequently, thereby increasing

operational cost and causing potential reliability issues; that is, stable operations benefit

the power grid.

During the peak hours (i.e., high-power-load periods t = 16, . . . , 19), we observe smaller

and more stable generations when V2G is adopted than the case of No V2G, leading to

peak-shaving effect, even for the high-power-load samples (see Figure 4.10(b)). Specif-

ically, excess EVs can discharge to the power grid through V2G, by which the latter

turns on fewer thermal generators to satisfy the power loads, thereby saving the oper-

ational cost and increasing the system flexibility. Note that the peak-shaving effect is

not as significant as the valley-filling effect due to the following two reasons. (i) The

power transfer prices (P+
t ) for V2G are very high during the peak hours (see Figure 4.6),

leading to a high cost when electricity is discharged from EVs. (ii) EV trip demands

remain high during these hours (see Figure 4.7), limiting the number of EVs available for

discharging. Thus, the grid operator purchases necessary electricity only towards turning

on as a fewer number of generators as possible (see Figure 4.8). Note that power genera-

tion is also reduced by the V2G adoption during the other periods (i.e., t = 7, . . . , 15 and

t = 20, . . . , 24), thereby enhancing the power grid’s stability and reducing the operational

cost.
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Figure 4.11. Power Transfer
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Third, we study the temporal features of power transfer (v+,v−) when V2G is adopted.

For each period t ∈ T , we define Net Load =
∑

b∈B(qb,t − pwb,t − psb,t) and V2G Load =

Net Load + v−t − v+t ; that is, the electric power is transferred from the power grid to the

EV fleet when V2G Load > Net Load and vice versa. Figure 4.11 shows power transfers

from the power grid to the EV fleet during the valley hours and reverse power transfers

during the non-valley hours, echoing the aforementioned valley-filling and peak-shaving

effects. It follows the V2G Load is flatter than the Net Load, demonstrating the more

stable power generation in Figure 4.10.

Finally, we study the V2G’s potential to improve societal sustainability by reduc-

ing carbon emissions. We compute the emissions in each period t ∈ T (denoted by

CE1
t and CE0

t for the cases of V2G and No V2G, respectively) by multiplying 0.433

by the total power generation in t (i.e.,
∑

g∈G(p
g
t + Cgygt )), which is a common for-

mula proposed by EPA (2023). For each period t ∈ T , we define Emissions Reduc-

tion per Period (%) = (CE0
t − CE1

t )/CE
0
t × 100% and Cum. Emissions Reduction (%)

=
∑t

i=1

(
CE0

i − CE1
i

)
/
∑T

i=1CE
0
i × 100%. Figure 4.12 shows that the V2G helps reduce

carbon emissions by 21.66% by the end of the day (see the red lines), while the amount of

reduced carbon emissions over the high-power-load samples (i.e., 2, 647.04tons) is higher

than over all the samples (i.e., 2, 069.99tons). In addition, the carbon emissions are in-

creased during the valley hours due to the valley-filling effect (see the blue bars), while

significant carbon emissions are reduced during the non-valley and non-peak hours.
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Figure 4.12. Carbon Emission Reduction

4.5.4 Impact of Temporal Power Load Pattern

While the power load in NYC shows a unimodal pattern (see Figure 4.3), we observe a

bimodal pattern in California. Thus, we examine the impact of temporal load pattern

in this section. We have collected 180 data samples from California Independent System
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Operator (CAISO)6 from January 1, 2021, to March 31, 2021, and from January 1, 2022,

to March 31, 2022, with each day representing a sample (scenario) of power load. We

denote these samples from early to late by q′
1, . . . ,q

′
180, where q′

j = (q′t,j,∀t ∈ T )⊤ for

any j ∈ [1, 180]Z. Note that the data samples of the NYC power load (q) introduced in

Section 4.5.1 are on a different scale from q′ here. To see impacts caused only by the load

pattern, we process the bimodal load samples (q′) so that they are on the same scale as

the unimodal load samples (q). Specifically, we consider the new bimodal load samples

q̃′ as follows:

q̃′t,j = q′t,j ×
1

|SG||T |
∑

k∈SG

∑
t∈T

∑
b∈B qb,t,k

1
180|T |

∑180
k=1

∑
t∈T q

′
t,k

, ∀t ∈ T , j ∈ [1, 180]Z.

Figure 4.9 shows q̃′ averaged over all data samples. Following the parameter settings

in Section 4.5.1, in each period t ∈ T and scenario j ∈ [1, 180]Z, we set the bimodal

load at each subdivision (bus) as the total load (q̃′t,j) multiplying this subdivision’s GDP

portion over the entire NYC’s GDP. Meanwhile, we randomly select 60 samples from

q̃′
1, . . . , q̃

′
90 (resp. q̃′

91, . . . , q̃
′
180) and combine them with the 60 data samples (pw,ps,d)

in Group 3 (resp. Group 4) in Section 4.5.1 to form a new data group for in-sample (resp.

out-of-sample) tests under the bimodal load pattern.

First, we investigate power transfers under the bimodal load pattern. Figure 4.13 shows

the valley-filling and peak-shaving effects under the bimodal pattern too. Specifically, the

EV fleet charges significantly more power at noon than in the morning. The reasons are

twofold. (i) The power load at noon fluctuates larger than in the morning, requiring more

power to “fill” the valley. (ii) The EV trip and power demands during the second peak

hours are higher than those during the first; hence, the EV fleet needs to first charge and

prepare more power before the second peak comes and then return the power back to the

power grid during the second peak hours.

Second, we compare the GVI system’s operational efficiency and sustainability under

the unimodal and bimodal patterns. We define the proportion of electricity consumption

satisfied by green power (i.e., solar, wind, and EVs) as

greenness(%) =

∑
t∈T

(∑
b∈B qb,t + vrt

)
−
∑

t∈T
∑

g∈G(p
g
t + Cgygt )∑

t∈T
(∑

b∈B qb,t + vrt
) × 100%,

where the denominator calculates the total electricity consumption by the EV trip and

6Website: https://www.caiso.com/
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power demands and the numerator calculates the electricity consumption satisfied by

green power. A greenness value of 100% indicates the so-called carbon neutrality. Under

each load pattern, we investigate the following three measures: (i)#Online Generator Re-

duction (%) =
∑

t∈T
∑

g∈G(y
g
t with No V2G−ygt with V2G)/(

∑
t∈T
∑

g∈G y
g
t with No V2G)×

100%; (ii) Cum. Emissions Reduction defined in Section 4.5.3; (iii) Greenness Improve-

ment (%) = (greenness with V2G−greenness with No V2G)/(greenness with No V2G)×

100%. Table 4.3 shows the following two insights. (i) The V2G technology reduces slightly

more online generators under the bimodal pattern. This is because V2G reduces the num-

ber of online generators mainly during peak hours (see Figure 4.8) and the bimodal load

has more peak hours than the unimodal load. (ii) V2G reduces carbon emissions and

improves greenness more under the bimodal pattern than under the unimodal pattern.

This is because the EV fleet stores electricity during the valley hours and returns it back

to the power grid via V2G during the peak hours. With two valley hours, the bimodal

pattern offers an additional opportunity for the EV fleet to perform the power transfers,

thereby expanding the EV fleet’s storage turnover rounds and enhancing its charging

flexibility.
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Figure 4.13. Power Transfer under Bimodal Load Pattern

Table 4.3. Impact of Temporal Power Load Pattern

Load Pattern #Online Generator Reduction Cum. Emissions Reduction Greenness Improvement

Unimodal 12.41% 21.66% 37.81%

Bimodal 12.79% 26.50% 49.17%

4.5.5 Toward Carbon Neutrality

Motivated by the significant potential of V2G in improving the greenness in Section 4.5.4,

we examine the conditions under which the GVI system achieves carbon neutrality, i.e.,
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greenness = 100%. Specifically, we consider the impacts of the renewable share (i.e.,

(
∑

b∈B
∑

t∈T p
w
b,t + psb,t)/

∑
b∈B
∑

t∈T qb,t × 100%) and EV fleet size (i.e., X) when V2G is

adopted.

Figure 4.14 shows an increase in greenness with a higher renewable share or EV fleet

size, while the increasing rate diminishes as these two parameters become larger. While

achieving carbon neutrality by simply increasing the renewable share and EV fleet size

is challenging, a high level of greenness can be achieved easily. For instance, a greenness

of 0.72 can be achieved when the EV fleet size is 106 and the renewable share reaches

100% under the unimodal power load pattern (or 80% under the bimodal pattern). We

also estimate the costs associated with various levels of greenness and find that achieving

carbon neutrality incurs an extremely high cost (see Appendix C.20 for the details). This

highlights the considerable challenge in achieving carbon neutrality.
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Figure 4.14. Impacts of The Renewable Share and EV Fleet Size on Greenness
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Figure 4.15. Carbon Neutrality

To examine the condition of carbon neutrality, we consider a variant of Problem (M)

as follows. (i) We consider |S| = 1, i.e., a deterministic case; (ii) The objective function
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is to minimize the total generation contributed by all the thermal generators, where we

exclude regulation reserves (i.e., r− = r+ = R− = R+ = 0), as carbon neutrality implies

zero such power generation. (iii) We set the initial SOC of EVs as 0 (i.e., S0 = 0),

i.e., relying on solar and wind only as the energy sources. Thus, Problem (M) can be

rewritten as

min

{∑
t∈T

∑
g∈G

(pgt + Cgygt )

∣∣∣∣ (4.1)− (4.14), (4.16)− (4.18), (4.22)− (4.23), (4.27)− (4.28),

rg−t = rg+t = 0, ∀t ∈ T , g ∈ G
}
.

Solving the above Problem (M), we illustrate the results in Figure 4.15. We observe

that carbon neutrality can be achieved when the renewable share is larger than 100% and

the EV fleet size is 106 under either power load pattern. As the renewable generation and

power load follow different temporal trends and dynamics, the renewable share should be

larger than 100% here, where the EV fleet helps charge and discharge the electrical power

if needed. Note that all the above results show significant challenges to achieving carbon

neutrality in a GVI system. For instance, Norway, one of the world’s most sustainable

countries, has a renewable share of around 60% and around 6 × 105 EVs in use (IEA

2023, Wikipedia 2023), but this status-quo is still not enough. Although a considerable

gap between industrial practices and global promises of carbon neutrality still exists, we

believe the gap will quickly vanish because of the rapid growth of renewable generation,

EVs with V2G, and other technologies.

4.6 Conclusion

The increasing prevalence of renewable energy presents significant challenges for power

grid operations due to its inherent uncertainties. To address the challenges, the grid

may invest in additional infrastructures to expand its capacity or utilize regulation re-

serves from an ancillary service market to help adjust power generation levels. However,

these strategies may cause significant time/resource investment, energy loss, and net-

work congestion. Thus, we consider integrating the power grid with EVs to enhance the

grid’s flexibility and resilience without incurring these drawbacks. EVs rely on electricity

charged from the grid to serve mobility demands and help store excess electricity when
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the power generation exceeds the power load. Conversely, through V2G technology, EVs

can discharge electricity to supplement the grid’s supply. Moreover, EVs are close to

the power load, facilitating convenient power transfers and minimizing energy loss and

network congestion. We term this integrated system “the grid-vehicle integration (GVI)

system.”

We formulate the GVI system’s operations under uncertainties in renewable generation,

power load, and EV trip demand as a two-stage robust MIP model (see Problem (M)),

which minimizes the worst-case total cost throughout the operational horizon. The first

stage decides whether each thermal generator starts up, and the second stage decides

the subsequent power generation, charging/discharging interaction, and the EV fleet op-

eration over the horizon. Note that solving a robust optimization model is significantly

challenging. Thus, we propose a machine learning-driven optimization approach, which

initially uses a machine learning technique to identify a worst-case scenario (see Defini-

tion 1) from the uncertainty set S and iteratively construct a support set (see Definition

2) of the problem. This approach is derived as follows. First, we propose an ADMM

algorithm to efficiently solve Problem (M) offline (see Theorems 4–5 and Proposition 6)

and identify a worst-case scenario, by which we obtain a set of data for the subsequent

learning process. Second, given offline input instances and output solutions, we perform

linear regression to characterize the relationship between the worst-case scenario (i.e.,

output) and the scenario samples in S (i.e., input). With this linear regression relation-

ship, we derive an efficient algorithm to solve Problem (M) to optimality (see Theorems

6–7 and Lemma 1). Third, we further derive several families of strong valid inequalities

to tighten the linear relaxation of Problem (4.29) (i.e., Problem (M)) (see Propositions

7–10). Numerical experiments suggest that our approach can find an optimal solution in

a significantly shorter computational time than the CPLEX solver.

Based on the data set from NYISO and TLC in NYC, we investigate the impact of

V2G and the GVI system’s overall performance under various system parameters. We first

solve the two-stage problem (M) to obtain the online/offline status of thermal generators.

Given the first-stage solution, we then solve the second-stage problem (P) to determine

out-of-sample operation decisions. We reveal the following insights that may shed light

on the GVI system’s operations and provide suggestions for improving sustainability in

our society.
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(i) V2G technology effectively reduces the number of online generators and extends their

operational periods, thereby enhancing grid stability and reliability. In addition, V2G

stabilizes the subsequent power generation through the valley-filling effect and peak-

shaving effect. Specifically, we use EVs to store excess electricity in EV batteries during

low-trip-demand hours and returning it to the grid when needed. V2G contributes to

sustainability by curbing carbon emissions, with the most significant impact observed

during hours of moderate power load (see Section 4.5.3).

(ii) The power load pattern impacts the GVI system performance with V2G adopted.

Specifically, V2G reduces more online generators, decreases more carbon emissions, and

improves more greenness under a bimodal power load pattern than a unimodal pattern

(see Section 4.5.4).

(iii) A higher renewable share or EV fleet size increases the greenness, but the rate of

increase diminishes as these two parameters become larger. We find that a greenness of

0.72 can be achieved when the EV fleet size is 106 and the renewable share reaches 100%

under the unimodal power load pattern (or 80% under the bimodal pattern). However,

achieving carbon neutrality by simply increasing the renewable share and EV fleet size is

challenging. Considering a variant of Problem (M), we find that carbon neutrality can

be achieved when the renewable share is larger than 100% and the EV fleet size is 106

under either power load pattern (see Section 4.5.5).

Our model and approach are sufficiently general for any typical GVI systems and two-

stage robust MIP problems. For example, we can use Algorithm 4 to solve the following

robust satisficing variant of Problem (M) with a prescribed target Z of the total cost

and a given finite distribution set W :

min ω

s.t.
∑
g∈G

T∑
t=2

(
SUgugt + SDg(ygt−1 − ygt + ugt )

)
+ EP [Ψ (u,y, ξ)]− Z ≤ ω∆(P,P0) , ∀P ∈ W ,

(4.1)− (4.5),

where P0 denotes the empirical distribution based on observations in S, i.e., P0(ξ =

ξj) = 1/|S| for any j ∈ S, and ∆ (P,P0) measures the distance between P and P0. The
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selection of ∆ varies in different applications, and a popular choice is the Wasserstein

metric (Esfahani and Kuhn 2017). By applying Algorithm 4, we can first predict the

worst-case distribution inW , and solve the robust satisfying problem with only the worst-

case distribution. We can finally obtain its optimal solution by iteratively taking more

distributions in W into consideration. As the data from NYISO and TLC in NYC is quite

representative, we believe the above insights shall hold for other GVI systems with similar

operational features. Furthermore, our study opens avenues for potential extensions in

several directions. First, we can explore integrating the GVI system with other systems

to further enhance the power grid’s flexibility and resilience and easily achieve carbon

neutrality. Second, we can incorporate additional ancillary service products of the power

grid into the GVI system. Third, we may derive alternative machine learning techniques

to further enhance the solving process. We leave these for future research.
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Chapter 5

Conclusions

In this thesis, we present three studies on the shared mobility and electrical power grid,

which are at the crux of smart city operations.

The first study considers the shared micromobility firms’ operations under competition.

Each firm provides micromobility vehicles to satisfy the uncertain demands of two types of

consumers: loyal consumers and disloyal consumers, whose demands depend on capacity

decisions. Each firm solves an integrated vehicle allocation and relocation problem, in

which the total number of vehicles allocated by the two firms together in each service

region is constrained by the city regulator, and provides a Nash equilibrium. Each firm’s

decision-making problem is formulated as a two-stage stochastic program on a spatial-

temporal network, with the objective of maximizing her expected profit. To improve

firms’ operations with the limited number of allocated vehicles, we propose an innovative

capacity-sharing agreement, under which a firm can share spare capacity for a fee with

her opponent. Numerical results based on real data reveal that regulator restrictions

impact firms’ profitability and service level. Capacity sharing can reduce the number

of relocated vehicles and also improve the firms’ profitability. To promote the capacity-

sharing agreement, the regulator should provide incentives to the firms.

The second study explores an EV-sharing mobility system incorporating V2G technol-

ogy under high-dimensional and correlated uncertainties. The operator’s EV planning

and operation problem is formulated as a two-stage DRO problem on a time-space-soc

network. We further reformulate the DRO problem as a SDP model. To deal with the

significant computational difficulty of the SDP reformulation, we introduce outer and

inner approximations for it to reduce the size of PSD matrices. We further propose an
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algorithmic approach that incorporates time-based decomposition to further strengthen

the solving process. Numerical results based on real data suggest that EVs majorly

charge electricity during the early hours when electricity prices and consumer trips are

low. Conversely, they discharge electricity when prices are high. Faster charging reduces

the number of allocated vehicles, improves the vehicle utilization rate, and decreases total

costs. Comparing two pricing schemes for charging EVs, electricity-based and time-based,

we observe more frequent charging and discharging under the time-based scheme than

the electricity-based scheme.

The third study considers a grid-vehicle integration (GVI) system employing V2G

while managing uncertainties in renewable generation, power load, and EV trip demand.

We formulate the problem of operating a GVI system as a two-stage robust mixed-

integer program. To address a significant computational challenge, we propose a machine

learning-driven optimization approach. Our approach outperforms a commercial solver in

both computational time and solution quality for large-scale instances based on real data.

Conducting out-of-sample tests with data from NYC, we reveal that V2G can reduce the

number of required generators and stabilize power generation by “filling” the low power

load and “shaving” the peak power load. Moreover, V2G helps achieve a substantial

reduction in carbon emissions compared to the case without V2G. The impact of V2G is

more pronounced under a bimodal power load pattern than a unimodal pattern. We also

find that achieving carbon neutrality in this integration system is feasible yet challenging.
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Appendix A

Supplements for Chapter 2

A.1 Table of Notation

Table A.1. Summary of Notation

Notation Description

Sets:

K set of shared micromobility firms K = {A,B}

M set of service regions M = {1, 2, . . . ,M}

T operational horizon T = {0, 1, . . . , T}

G time-space network G = (N , E)

N set of nodes on the network G

E set of directed arcs on the network G

Ek
R, Ek

I , E
k
L rental arcs, idle arcs, relocation arcs for each firm k ∈ K

Ek
T, E

k
Nδ

transfer arcs, return arcs for each firm k ∈ K with δ ∈ {1, 2, . . . ,∆}

A A = {R, I,L,T,Nδ, ∀ δ = 1, 2, . . . ,∆}

ZR ZR = {M×M× T × T : i ̸= i′, t′ = t+ ℓi,i′}

ZL ZL = {M×M× T × T : i ̸= i′, t′ = t+ ri,i′}

ZI ZI = {M× T : t ∈ T \ {T}}

S set of scenarios of uncertain demands in all the service regions across all the periods

W0 feasible region of problems (2.9) and (2.10)

W1 feasible region of problems (2.13) and (2.14)

Parameters:

ℓi,i′ duration for a rental trip from region i ∈ M to region i′ ∈ M

ri,i′ duration to relocate a vehicle from region i ∈ M to region i′ ∈ M

αk the percentage of consumers who are loyal to firm k ∈ K

x̂k upper bound for the number of vehicles allocated by firm k ∈ K

x̄i upper bound for the number of vehicles allocated to region i ∈ M by both firms in set K

hk
R revenue of firm k ∈ K for serving a consumer

hk
P penalty cost of firm k ∈ K per consumer lost

hk
I idle cost of firm k ∈ K (e.g., the maintenance cost of idle vehicles) for each idling vehicle

hk
L cost for relocation a vehicle for firm k ∈ K
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hT cost of receiving a vehicle for firm k ∈ K from firm −k

cki cost incurred for allocating a vehicle for firm k ∈ K to region i ∈ M

Di,i′,t,t′ the total market demand over any given time-space range (i, i′, t, t′) ∈ ZR

Y k
e the number of loyal consumers of firm k ∈ K on each rental arc e = (nk

i,t, n
k
i′,t′ ) ∈ Ek

R

Y 0
i,i′,t,t′ the total number of disloyal consumers to both firms in set K over any given time-space range

(i, i′, t, t′) ∈ ZR

θs probability of each scenario s ∈ S

ϵ the minimum service level provided by each firm on all rental arcs over the whole operational horizon

Variables:

xk
i number of vehicles allocated to region i ∈ M by firm k ∈ K

we realized flow on each arc e ∈ E

wk
e consumer demand (the number of consumers) of firm k ∈ K from region i in period t to region i′ in

period t+ ℓi,i′ for each rental arc e = (nk
i,t, n

k
i′,t+ℓi,i′

) ∈ Ek
R

τk, βk,i, κk,i dual multipliers with respect to constraints (2.1)

ρk,i,i′,t,t′,s, γk,i,t,s dual multipliers with respect to constraints (2.2)–(2.3)

ηR
k,i,i′,t,t′,s, η

I
k,i,t,s dual multipliers with respect to constraints (2.4)–(2.5)

vR
k,i,i′,t,t′,s, v

L
k,i,i′,t,t′,s dual multipliers with respect to constraints (2.6)–(2.7)

vIk,i,t,s dual multipliers with respect to constraint (2.8)

Λ0 vector of all variables associated with both firms in K in problems (2.9) and (2.10)

Λ1 vector of all variables associated with both firms in K in problems (2.13) and (2.14)

Objective:

Ψk the profit of each firm k ∈ K

ΓDL
0 (ΓTA

0 ) the total demand loss (allocated vehicles) of both firms when the capacity-sharing agreement is not

adopted

ΓDL
1 (ΓTA

1 ) the total demand loss (allocated vehicles) of both firms when the capacity-sharing agreement is adopted

A.2 KKT Conditions of Model (Dk(x−k)), ∀ k ∈ K

First, we have the primal feasibility condition represented by the constraints (2.1)–(2.8).

Second, to represent the dual feasibility condition, we define the following dual multipliers
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with respect to constraints (2.1)–(2.8):

τk ≥ 0, ∀ k ∈ K, (A.1)

βk,i ≥ 0, ∀ k ∈ K, i ∈ M, (A.2)

κk,i ≤ 0, ∀ k ∈ K, i ∈ M, (A.3)

ρk,i,i′,t,t′,s ∈ R, ∀ k ∈ K, (i, i′, t, t′) ∈ ZR, s ∈ S, (A.4)

γk,i,0,s ∈ R, ∀ k ∈ K, i ∈ M, s ∈ S, (A.5)

γk,i,t,s ∈ R, ∀ k ∈ K, i ∈ M, t ∈ [1, T − 1]Z, s ∈ S, (A.6)

γk,i,T,s ∈ R, ∀ k ∈ K, i ∈ M, s ∈ S, (A.7)

ηRk,i,i′,t,t′,s ≥ 0, ∀ k ∈ K, (i, i′, t, t′) ∈ ZR, s ∈ S, (A.8)

ηIk,i,t,s ≥ 0, ∀ k ∈ K, i ∈ M, t ∈ [1, T − 1]Z, s ∈ S, (A.9)

vRk,i,i′,t,t′,s ≤ 0, ∀ k ∈ K, (i, i′, t, t′) ∈ ZR, s ∈ S, (A.10)

vLk,i,i′,t,t′,s ≤ 0, ∀ k ∈ K, (i, i′, t, t′) ∈ ZL, s ∈ S, (A.11)

vIk,i,t,s ≤ 0, ∀ k ∈ K, i ∈ M, t ∈ [1, T − 1]Z, s ∈ S. (A.12)

Here, the multipliers defined in (A.1)–(A.9) correspond to constraints (2.1)–(2.7), respec-

tively. The multipliers defined in (A.10)–(A.12), respectively, correspond to the following

three parts of constraints (2.8): (i) we ≥ 0, ∀ e ∈ Ek
R, k ∈ K, (ii) we ≥ 0, ∀ e ∈ Ek

L, k ∈ K,

and (iii) we ≥ 0, ∀ e ∈ Ek
I , k ∈ K.

Third, we have the following constraints to represent the complementary slackness

condition:(∑
i∈M

xki − x̂k

)
τk = 0, ∀ k ∈ K, (A.13)

(
xki + x−k

i − x̄i

)
βk,i = 0, ∀ k ∈ K, i ∈ M, (A.14)

xki κk,i = 0, ∀ k ∈ K, i ∈ M, (A.15)(
wR
k,i,i′,t,t′,s − wR

k,i,i′,t,t′,s

)
ηRk,i,i′,t,t′,s = 0, ∀ k ∈ K, (i, i′, t, t′) ∈ ZR, s ∈ S, (A.16)(

wI
k,i,t,s − xki

)
ηIk,i,t,s = 0, ∀ k ∈ K, i ∈ M, t ∈ [1, T − 1]Z, s ∈ S, (A.17)

wR
k,i,i′,t,t′,sv

R
k,i,i′,t,t′,s = 0, ∀ k ∈ K, (i, i′, t, t′) ∈ ZR, s ∈ S, (A.18)

wL
k,i,i′,t,t′,sv

L
k,i,i′,t,t′,s = 0, ∀ k ∈ K, (i, i′, t, t′) ∈ ZL, s ∈ S, (A.19)

wI
k,i,t,sv

I
k,i,t,s = 0, ∀ k ∈ K, i ∈ M, t ∈ [1, T − 1]Z, s ∈ S, (A.20)
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where we rewrite

wR
k,i,i′,t,t′,s := ws

e, ∀ k ∈ K, (i, i′, t, t′) ∈ ZR, s ∈ S, e = (nki,t, n
k
i′,t′) ∈ Ek

R,

wL
k,i,i′,t,t′,s := ws

e, ∀ k ∈ K, (i, i′, t, t′) ∈ ZL, s ∈ S, e = (nki,t, n
k
i′,t′) ∈ Ek

L,

wI
k,i,t,s := ws

e, ∀ k ∈ K, (i, t) ∈ ZI, s ∈ S, e = (nki,t, n
k
i,t+1) ∈ Ek

I .

Fourth, we derive the Lagrangian stationarity conditions. Note that for each k ∈ K,

the Lagrangian function of model (Dk(x−k)) can be written as:

Lk =
∑
i∈M

cki + τk + βk,i −
∑

(i,i′,t,t′)∈ZR

∑
s∈S

Y 0
i,i′,t,t′,s∑
i∈M x̄i

ρk,i,i′,t,t′,s +
∑
s∈S

(
γk,i,T,s − γk,i,0,s −

T−1∑
t=0

ηIk,i,t,s

)
+κk,i

xki

+
∑

(i,i′,t,t′)∈ZR

∑
s∈S

(
θsh

k
P + ρk,i,i′,t,t′,s − ηRk,i,i′,t,t′,s

)
wk,i,i′,t,t′,s

+
∑

(i,i′,t,t′)∈ZR

∑
s∈S

(
−θshkR − θsh

k
P + γk,i,t,s − γk,i′,t′,s + ηRk,i,i′,t,t′,s + vRk,i,i′,t,t′,s

)
wR
k,i,i′,t,t′,s

+
∑

(i,i′,t,t′)∈ZL

∑
s∈S

(
θsh

k
L + γk,i,t,s − γk,i′,t′,s + vLk,i,i′,t,t′,s

)
wL
k,i,i′,t,t′,s

+
∑

(i,t)∈ZI

∑
s∈S

(
θsh

k
I + γk,i,t,s − γk,i,t+1,s + ηIk,i,t,s + vIk,i,t,s

)
wI
k,i,t,s

− x̂kτk +
∑
i∈M

(
x−k
i − x̄i

)
βk,i −

∑
(i,i′,t,t′)∈ZR

∑
s∈S

Y k
i,i′,t,t′,sρk,i,i′,t,t′,s. (A.21)

Thus, the stationarity conditions can be described by the following constraints:

− cki = τk + βk,i −
∑

(i,i′,t,t′)∈ZR

∑
s∈S

Y 0
i,i′,t,t′,s∑
i∈M x̄i

ρk,i,i′,t,t′,s

+
∑
s∈S

(
γk,i,T,s − γk,i,0,s −

T−1∑
t=0

ηIk,i,t,s

)
+ κk,i,∀ k ∈ K, i ∈ M, (A.22)

− θsh
k
P = ρk,i,i′,t,t′,s − ηRk,i,i′,t,t′,s, ∀ k ∈ K, (i, i′, t, t′) ∈ ZR, s ∈ S, (A.23)

θsh
k
R + θsh

k
P = γk,i,t,s − γk,i′,t′,s + ηRk,i,i′,t,t′,s + vRk,i,i′,t,t′,s,

∀ k ∈ K, (i, i′, t, t′) ∈ ZR, s ∈ S, (A.24)

− θsh
k
L = γk,i,t,s − γk,i′,t′,s + vLk,i,i′,t,t′,s, ∀ k ∈ K, (i, i′, t, t′) ∈ ZL, s ∈ S, (A.25)

− θsh
k
I = γk,i,t,s − γk,i,t+1,s + ηIk,i,t,s + vIk,i,t,s, ∀ k ∈ K, (i, t) ∈ ZI, s ∈ S. (A.26)

We useW0 to denote the feasible region defined by the above KKT conditions, including

(2.1) for any k ∈ K, (2.2)–(2.8) for any s ∈ S, (A.1)–(A.12), (A.13)–(A.20), and (A.22)–
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(A.26). That is, W0 characterizes the set of possible equilibria of the Nash game between

Firm A and Firm B.

Note that the complementary slackness conditions (A.13)–(A.20) are nonlinear. We can

exactly linearize them for tractable computation. Specifically, we reformulate them into

linear constraints by employing auxiliary binary variables. For example, for equation

xki κk,i = 0, given k ∈ K, i ∈ M, we define a binary variable zk,i to indicate whether

κk,i = 0 (i.e., zk,i = 1) or xki = 0 (i.e., zk,i = 0). With an arbitrarily large positive number

Gk,i, the equations xki κk,i = 0, ∀ k ∈ K, i ∈ M can be reformulated by the following

linear constraints:

−Gk,izk,i ≤ xki ≤ Gk,izk,i, ∀ k ∈ K, i ∈ M, (A.27)

−Gk,i(1− zk,i) ≤ κk,i ≤ Gk,i(1− zk,i), ∀ k ∈ K, i ∈ M, (A.28)

zk,i ∈ {0, 1}, ∀ k ∈ K, i ∈ M. (A.29)

Following the same way, we can also reformulate the remaining equations (A.13)–(A.20).

We omit the details for simplicity.

A.3 Vector Definition for Problem (2.9)

For Problem (2.9), we let x = (xki , ∀ i ∈ M, k ∈ K)⊤ denote the vector of both firms’

initial vehicle allocation decisions in all regions, and w = (ws
e, ∀ e ∈ ∪k∈KEk, ws

e, ∀ e ∈

∪k∈KEk
R, s ∈ S)⊤ denote the vector of both firms’ subsequent operational decisions on all

types of arcs and in all scenarios. We further let τ = (τk, ∀ k ∈ K)⊤ denote the vector of

dual multipliers defined in constraints (A.1). For the other dual multipliers, we similarly

let β, κ, ρ, γ, ηR, ηI, vR, vL, and vI denote the vectors of dual multipliers defined in

(A.2)–(A.12), respectively. In particular, the vectors β, κ, ρ denote the dual multipliers

defined in (A.2)–(A.4), respectively. The vector γ denotes the dual multipliers defined

in (A.5)–(A.7). The vectors ηR, ηI, vR, vL, and vI denote the dual multipliers defined

in (A.8)–(A.12), respectively. In addition, we let y = (τ ,β,κ,ρ,ηR,ηI,vR,vL,vI)⊤ and

Λ0 = (x,w,y,γ)⊤. That is, we use Λ0 to denote a solution of Problem (2.9).
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A.4 KKT Conditions of Model (Ck), ∀ k ∈ K

First, we have the primal feasibility condition represented by the constraints (2.1), (2.2)–

(2.4) and (2.6)–(2.8) for any s ∈ S, and (2.11)–(2.12). Second, to represent the dual

feasibility condition, we continue to use the dual multipliers defined in (A.1)–(A.12),

where γk,i,T,s ∈ R, ∀ k ∈ K, i ∈ M, s ∈ S in constraints (A.7) now correspond to

constraints (2.11) that are updated from (2.5). In addition, we introduce the following

new dual multipliers:

ζk,t,s ∈ R, ∀ k ∈ K, t ∈ [1, T − 1]Z, s ∈ S, (A.30)

vTk,i,t,s ≤ 0, ∀ k ∈ K, i ∈ M, t ∈ [1, T − 1]Z, s ∈ S, (A.31)

vEk,i,t,δ,s ≤ 0,

∀ k ∈ K, i ∈ M, t ∈ [1, T − 1]Z, δ ∈ [1,min{∆, T − t}]Z, s ∈ S, (A.32)

where the multipliers in (A.30) correspond to the new constraints (2.12), the multipliers

in (A.31) correspond to a new part ws
e ≥ 0, ∀ e ∈ Ek

T, s ∈ S in the updated constraints

(2.8) for any s ∈ S, and the multipliers in (A.32) correspond to a new part ws
e ≥ 0, ∀ e ∈

Ek
Nδ
, δ ∈ [1,min{∆, T − t}]Z, t ∈ [1, T − 1]Z, k ∈ K, s ∈ S in the updated constraints

(2.8) for any s ∈ S.
Third, to represent the complementary slackness condition, we continue to use con-

straints (A.13)–(A.20) and further introduce the following two constraints:

wT
k,i,t,sv

T
k,i,t,s = 0, ∀ k ∈ K, i ∈ M, t ∈ [1, T − 1]Z, s ∈ S, (A.33)

wE
k,i,t,δ,sv

E
k,i,t,δ,s = 0,

∀ k ∈ K, i ∈ M, t ∈ [1, T − 1]Z, δ ∈ [1,min{∆, T − t}]Z, s ∈ S, (A.34)

where

wT
k,i,t,s := ws

e, ∀ k ∈ K, i ∈ M, t ∈ [1, T − 1]Z, s ∈ S, e = (nki,t, n
−k
i,t ) ∈ Ek

T,

wE
k,i,t,δ,s := ws

e,

∀ k ∈ K, i ∈ M, t ∈ [1, T − 1]Z, δ ∈ [1,min{∆, T − t}]Z, s ∈ S, e = (nki,t, n
−k
i,t ) ∈ Ek

Nδ
.

Note that constraints (A.33)–(A.34) can also be reformulated as linear constraints fol-

lowing the same way in Appendix A.2.
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Fourth, for the stationarity conditions, we continue to use constraints (A.22)–(A.26)

and further introduce the following new constraints:

θshT = γk,i,t,s + vTk,i,t,s, ∀ k ∈ K, i ∈ M, t ∈ [1, T − 1]Z, s ∈ S, (A.35)

0 = γk,i,t+δ,s − ζk,t,s + vEk,i,t,δ,s,

∀ k ∈ K, i ∈ M, t ∈ [1, T − 1]Z, δ ∈ [1,min{∆, T − t}]Z, s ∈ S. (A.36)

In summary, the KKT conditions of the model (Ck) for any k ∈ K are represented by

constraints (2.1), (2.2)–(2.4) and (2.6)–(2.8) for any s ∈ S, (A.1)–(A.12), (A.13)–(A.20),

(A.22)–(A.26), (2.11)–(2.12), and (A.30)–(A.36). We use W1 to denote the feasible region

defined by these constraints.

A.5 Vector Definition for Problem (2.13)

For Problem (2.13), we adopt the vector definitions in A.3 and make the following addi-

tional definitions. We let wT = (ws
e, ∀ e ∈ ∪k∈KEk

T, s ∈ S)⊤ denote the vector of both

firms’ operational decisions on all transfer arcs and in all scenarios, and wE = (ws
e, ∀ e ∈

∪k∈K,δ∈{1,...,∆}Ek
Nδ
, s ∈ S)⊤ denote the vector of both firms’ operational decisions on all re-

turn arcs and in all scenarios. We further let ζ = (ζk,t,s, ∀ k ∈ K, t ∈ [1, T −1]Z, s ∈ S)⊤

denote the vector of dual multipliers defined in constraints (A.30). For the other dual

multipliers, we similarly let vT and vE denote the vectors of dual multipliers defined in

(A.31) and (A.32), respectively. In addition, we let Λ1 = (x,w,y,γ,wT,wE,vT,vE, ζ)⊤.

That is, we use Λ1 to denote a solution of Problem (2.13).

A.6 Proof of Proposition 1

Proof. Consider an optimal solution Λ∗
0 = (x∗,w∗,y∗,γ∗)⊤ of Problem (2.9) with the

corresponding optimal value ΓDL
0 . Based on this solution, we would like to construct a

feasible solution Λ̂1 = (x̂, ŵ, ŷ, γ̂, ŵT, ŵE, v̂T, v̂E, ζ̂)⊤ of Problem (2.13).

We let x̂ = x∗, ŵ = w∗, ŷ = y∗, and ŵT = ŵE = 0. We also let

γ̂k,i,t,s = γ∗k,i,t,s + λk,s, ∀ k ∈ K, i ∈ M, t ∈ T , s ∈ S, (A.37)
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where

λk,s = max
∀ i∈M,t∈[1,T−1]Z

(θshT − γ∗k,i,t,s)
+, ∀ k ∈ K, s ∈ S, (A.38)

and let

v̂Tk,i,t,s = θshT − γ̂k,i,t,s, ∀ k ∈ K, i ∈ M, t ∈ [1, T − 1]Z, s ∈ S, (A.39)

ζ̂k,t,s = min
∀ i∈M,δ∈[1,min{∆,T−t}]

γ̂k,i,t+δ,s, ∀ k ∈ K, t ∈ [1, T − 1]Z, s ∈ S, (A.40)

v̂Ek,i,t,δ,s = ζ̂k,t,s − γ̂k,i,t+δ,s,

∀ k ∈ K, i ∈ M, t ∈ [1, T − 1]Z, δ ∈ [1,min{∆, T − t}]Z, s ∈ S. (A.41)

It is easy to check that Λ̂1 satisfies constraints (2.1) for any k ∈ K, (2.2)–(2.4) and

(2.6)–(2.8) for any s ∈ S, (A.1)–(A.12), and (A.13)–(A.20). In addition, by (A.37), we

have

γ̂k,i,T,s − γ̂k,i,0,s = γ∗k,i,T,s + λk,s − γ∗k,i,0,s − λk,s = γ∗k,i,T,s − γ∗k,i,0,s,

∀ k ∈ K, i ∈ M, s ∈ S, (A.42)

γ̂k,i,t,s − γ̂k,i′,t′,s = γ∗k,i,t,s + λk,s − γ∗k,i′,t′,s − λk,s = γ∗k,i,t,s − γ∗k,i′,t′,s,

∀ k ∈ K, (i, i′, t, t′) ∈ ZR, s ∈ S, (A.43)

γ̂k,i,t,s − γ̂k,i,t+1,s = γ∗k,i,t,s + λk,s − γ∗k,i,t+1,s − λk,s = γ∗k,i,t,s − γ∗k,i,t+1,s,

∀ k ∈ K, (i, t) ∈ ZI, s ∈ S. (A.44)

With (A.42)–(A.44), we can clearly show that Λ̂1 satisfies constraints (A.22)–(A.26).

Moreover, as ŵT = ŵE = 0, clearly Λ̂1 satisfies (2.11)–(2.12). It is trivial that Λ̂1

satisfies constraints (A.30).

For any k ∈ K, i ∈ M, t ∈ [1, T − 1]Z, s ∈ S, we have

v̂Tk,i,t,s = θshT − γ̂k,i,t,s = θshT − γ∗k,i,t,s − λk,s ≤ θshT − γ∗k,i,t,s − (θshT − γ∗k,i,t,s)
+

=


0, if θshT − γ∗k,i,t,s > 0

θshT − γ∗k,i,t,s, if θshT − γ∗k,i,t,s ≤ 0

, (A.45)

where the first equality holds by (A.39), the second equality holds by (A.37) and [1, T −

1]Z ⊆ T , and the first inequality holds by (A.38). Clearly, (A.45) shows that v̂Tk,i,t,s ≤

0, ∀ k ∈ K, i ∈ M, t ∈ [1, T − 1]Z, s ∈ S. Thus, Λ̂1 satisfies constraints (A.31).
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For any k ∈ K, i ∈ M, t ∈ [1, T − 1]Z, δ ∈ [1,min{∆, T − t}]Z, s ∈ S, we have

v̂Ek,i,t,δ,s = ζ̂k,t,s − γ̂k,i,t+δ,s = min
∀ i∈M,δ∈[1,min{∆,T−t}]

γ̂k,i,t+δ,s − γ̂k,i,t+δ,s ≤ 0,

where the first equality holds by (A.41) and the second equality holds by (A.40). Thus,

Λ̂1 satisfies constraints (A.32).

Since ŵT = ŵE = 0, it is trivial that Λ̂1 satisfies constraints (A.33)–(A.34). By (A.39)

and (A.41), we have Λ̂1 satisfies constraints (A.35)–(A.36).

In summary, we have shown that Λ̂1 satisfies all the constraints of Problem (2.13),

including (2.1) for any k ∈ K, (2.2)–(2.4) and (2.6)–(2.8) for any s ∈ S, (A.1)–(A.12),
(A.13)–(A.20), (A.22)–(A.26), (2.11)–(2.12), and (A.30)–(A.36). That is, Λ̂1 is feasible

to Problem (2.13), and the corresponding objective value equals

∑
k∈K

∑
s∈S

θs
∑
e∈Ek

R

(
ŵ

s
e − ŵs

e

)
=
∑
k∈K

∑
s∈S

θs
∑
e∈Ek

R

(
ws∗

e − ws∗
e

)
= ΓDL

0 .

Given that Problem (2.13) has a feasible solution Λ̂1, we have that the feasible region

W1 is non-empty. Meanwhile, W1 is clearly bounded. It follows that Problem (2.13) has

an optimal solution with the corresponding optimal value ΓDL
1 . Because Problem (2.13)

is a minimization problem, the optimal value ΓDL
1 is no larger than the objective value

ΓDL
0 with respect to the feasible solution Λ̂1, i.e., Γ

DL
1 ≤ ΓDL

0 .

A.7 Summary of All Trip Demands

Figure A.1 shows the summary of all the trip demands, where a subfigure in a cubic

represents the trip demands from a region i ∈ M to another region j ∈ M.

A.8 Impact of Penalty and Demand Level

We conduct experiments by varying the penalty cost (i.e., hkP, k ∈ K) and demand level

to examine how different penalty costs affect firms’ performance under different demand

sizes. The demand level refers to the extent to which the trip demand is increased. For

example, a level of 10 corresponds to multiplying the trip demand set in Section 2.4.1

by 10. With (αA, αB) = (0.1, 0.45) and u = 1.25, we solve Problem (2.9) and Problem
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Figure A.1. The Sketch of Demand

(2.13) and show the results in Table A.2 and Table A.3, respectively. We define

Gap(%) =
|the result when penalty is 0.1− the result when penalty is not 0.1|

the result when penalty is 0.1
× 100%,

with respect to each instance with a given demand level and penalty cost.

Table A.2 shows that when the demand level is 1 and the penalty cost varies from 0.1

to 1, the Gap (%) of allocation, profit, demand loss, or relocation remains within 1%.

This suggests that varying the penalty cost has a limited impact on firms’ performance

when the demand level is 1 and capacity sharing is not adopted. We observe very similar

results in Table A.3 where capacity sharing is adopted. The table shows that when the

demand level is 1, the Gap (%) remains within 1.6% as the penalty cost varies.

When the demand level is 1, which aligns with the trip demand setting in Section

2.4.1, the two firms’ performance is weakly affected by changes in penalty cost, no matter

whether capacity sharing is adopted. Therefore, we set the penalty cost at 0.1 in numerical

experiments for the sake of simplicity while ensuring the obtained results are promising

and generalizable.

Table A.2 and Table A.3 also reveal that as the demand level increases, indicating trip

demand rises, firms’ performance is impacted by the penalty cost, specifically in terms of
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vehicle relocation and transfer. Therefore, it is crucial to carefully estimate the penalty

cost in the case where the trip demand is very large.

Table A.2. Performance Without Sharing

Level Penalty

Allocation Profit Demand Loss Relocation

Value Gap (%) Value ($) Gap (%) Value Gap (%) Value Gap (%)

1 0.1 360 0 1250.32 0 16.88 0 75.00 0
0.4 360 0 1246.86 0.28 16.88 0 75.29 0.39
0.7 360 0 1243.20 0.57 16.88 0 75.31 0.42
1 360 0 1241.51 0.71 16.88 0 75.44 0.58

4 0.1 1440 0 5000.32 0 67.53 0 305.38 0
0.4 1440 0 4980.20 0.40 67.53 0 306.56 0.39
0.7 1440 0 4950.80 0.99 67.53 0 307.06 0.55
1 1440 0 4932.60 1.35 67.53 0 307.48 0.69

7 0.1 2520 0 8876.45 0 118.19 0 478.97 0
0.4 2520 0 8720.34 1.76 118.19 0 468.19 2.25
0.7 2520 0 8760.17 1.31 118.19 0 503.91 5.21
1 2520 0 8770.05 1.20 118.19 0 506.95 5.84

10 0.1 3600 0 12621.60 0 168.84 0 707.32 0
0.4 3600 0 12581.80 0.32 168.84 0 689.52 2.52
0.7 3600 0 12488.30 1.06 168.84 0 677.07 4.28
1 3600 0 12452.90 1.34 168.84 0 750.55 6.11

Table A.3. Performance With Sharing

Level Penalty

Allocation Profit Demand Loss Relocation Transfer

Value Gap (%) Value ($) Gap (%) Value Gap (%) Value Gap (%) Value Gap (%)

1 0.1 360 0 1408.69 0 16.88 0 64.58 0 3.29 0
0.4 360 0 1407.07 0.12 16.88 0 64.63 0.06 3.31 0.61
0.7 360 0 1402.81 0.42 16.88 0 64.00 0.91 3.31 0.61
1 360 0 1392.20 1.17 16.88 0 65.21 0.96 3.34 1.52

4 0.1 1440 0 5640.85 0 67.53 0 273.19 0 16.13 0
0.4 1440 0 5626.29 0.26 67.53 0 275.58 0.88 16.33 1.26
0.7 1440 0 5605.46 0.63 67.53 0 277.29 1.50 16.04 0.57
1 1440 0 5591.74 0.87 67.53 0 277.02 1.40 16.14 0.05

7 0.1 2520 0 9893.03 0 118.19 0 423.67 0 24.93 0
0.4 2520 0 9858.58 0.35 118.19 0 431.29 1.80 26.13 4.80
0.7 2520 0 9820.18 0.74 118.19 0 428.83 1.22 27.13 8.80
1 2520 0 9787.94 1.06 118.19 0 432.10 1.99 26.59 6.63

10 0.1 3600 0 14130.90 0 168.84 0 610.08 0 34.91 0
0.4 3600 0 14071.20 0.42 168.84 0 614.31 0.69 36.10 3.41
0.7 3600 0 14024.30 0.75 168.84 0 621.88 1.93 38.05 9.00
1 3600 0 13978.10 1.08 168.84 0 660.63 8.28 37.90 8.57
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Appendix B

Supplements for Chapter 3

B.1 Proof of Theorem 1

Proof. This result is deduced from Lemma 1 in Delage and Ye (2010).

B.2 Proof of Proposition 2

Proof. We define the following dual multipliers with respect to constraints (3.3)–(3.9):

π0z,s ∈ R, ∀ z ∈ Z, s ∈ S,

πz,t,s ∈ R, ∀ z ∈ Z, t ∈ [1, T − 1]Z, s ∈ S,

πT ∈ R,

ωz,t,z′ ≤ 0, ∀ (z, t, z′) ∈ M,

ϕz,t ≤ 0, ∀ z ∈ Z, t ∈ T ,

ϕCz,t ≤ 0, ∀ z ∈ Z, t ∈ T ,

ϕSz,t ≤ 0, ∀ z ∈ Z, t ∈ T .

We use π to denote the vector of all the above dual variables.

With any given (x, ξ), we can formulate the dual problem of the second-stage problem
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(P2) as

f ′(x, ξ)=max
∑
z∈Z

∑
s∈S

π0z,sxz,s+π
T
∑
z∈Z

∑
s∈S

xz,s+
∑
z∈Z

∑
t∈T

ϕz,t
∑
k∈K

Xk
z (Pd)

+
∑
z∈Z

∑
t∈T

ϕCz,t
(
XC

z +XS
z

)
+
∑
z∈Z

∑
t∈T

ϕSz,tX
S
z

+
∑

(z,t,z′)∈M

dz,t,z′(ξ)ωz,t,z′ + cP
∑

(z,t,z′)∈M

dz,t,z′(ξ)

s.t. π0z,s + ϕz,0 ≤ cI, ∀ (z, 0, s) ∈ WI, (B.1)

π0z,s + ωz,0,z′ ≤ −cRℓz,z′ − cP, ∀ (z, z′, 0, t′, s, s′) ∈ WR, (B.2)

π0z,s ≤ cLℓz,z′ , ∀ (z, z′, 0, t′, s) ∈ WL, (B.3)

π0z,s + ϕz,0 + ϕCz,0 ≤ cC0 , ∀ (z, 0, s) ∈ WC, (B.4)

π0z,s + ϕz,0 + ϕSz,0 ≤ −cS0 , ∀ (z, 0, s) ∈ WS, (B.5)

πz,t,s − πz′,t′,s′ + ωz,t,z′ ≤ −cRℓz,z′ − cP,

∀ t′ ∈ [2, T − 1]Z, (z, z
′, t, t′, s, s′) ∈ WR, (B.6)

πz,t,s − πz,t+1,s + ϕz,t ≤ cI, ∀ t ∈ [1, T − 2]Z, (z, t, s) ∈ WI, (B.7)

πz,t,s − πz′,t′,s ≤ cLℓz,z′ , ∀ t′ ∈ [2, T − 1]Z, (z, z
′, t, t′, s) ∈ WL, (B.8)

πz,t,s − πz,t+1,s′ + ϕz,t + ϕCz,t ≤ cCt ,

∀ t ∈ [1, T − 2]Z, (z, t, s) ∈ WC, (B.9)

πz,t,s − πz,t+1,s′ + ϕz,t + ϕSz,t ≤ −cSt ,

∀ t ∈ [1, T − 2]Z, (z, t, s) ∈ WS, (B.10)

πT + ωz,T−ℓz,z′ ,z
′ ≤ −cRℓz,z′ − cP,

∀ (z, z′, T − ℓz,z′ , T, s, s
′) ∈ WR, (B.11)

πT + ϕz,T−1 ≤ cI, ∀ (z, T − 1, s) ∈ WI, (B.12)

πT ≤ cLℓz,z′ , ∀ (z, z′, T − ℓz,z′ , T, s) ∈ WL, (B.13)

πT + ϕz,T−1 + ϕCz,T−1 ≤ cCT−1, ∀ (z, T − 1, s) ∈ WC, (B.14)

πT + ϕz,T−1 + ϕSz,T−1 ≤ −cST−1, ∀ (z, T − 1, s) ∈ WS, (B.15)

ωz,t,z′ ≤ 0, ∀ (z, t, z′) ∈ M; ϕz,t, ϕ
C
z,t, ϕ

S
z,t ≤ 0, ∀ z ∈ Z, t ∈ T . (B.16)
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Thus, we define

ψ (x,π, ξ) =
∑
z∈Z

∑
s∈S

π0z,sxz,s + πT
∑
z∈Z

∑
s∈S

xz,s +
∑
z∈Z

∑
t∈T

ϕz,t
∑
k∈K

Xk
z +

∑
z∈Z

∑
t∈T

ϕCz,t
(
XC

z +XS
z

)
+
∑
z∈Z

∑
t∈T

ϕSz,tX
S
z +

∑
(z,t,z′)∈M

dz,t,z′(ξ)ωz,t,z′ + cP
∑

(z,t,z′)∈M

dz,t,z′(ξ), (B.17)

and use Y to denote the feasible region defined by constraints (B.1)–(B.16). Then we

can write problem (Pd) in the abstract form: maxπ∈Y ψ(x,π, ξ).

By the strong duality theorem, we have f(x, ξ) = f ′(x, ξ) = maxπ∈Y ψ(x,π, ξ), with

any given (x, ξ). Therefore, we can equivalently rewrite Problem (Pin) as

min
Q⪰0,q,r

r +
(
γ2Σ+ µµ⊤

)
•Q+ µ⊤q+

√
γ1

∥∥∥Σ 1
2 (q+ 2Qµ)

∥∥∥
2

s.t. r ≥ max
π∈Y

ψ (x,π, ξ)− ξ⊤Qξ − ξ⊤q, ∀ ξ ∈ Ω.

It is well known that the optimal solution of a linear programming problem with a

non-empty and compact feasible set is adopted at a vertex (Esfahani and Kuhn 2017).

This means maxπ∈Y ψ(x,π, ξ) = maxπ∈vert(Y) ψ(x,π, ξ). Thus, we have Proposition 2

holds.

B.3 Proof of Proposition 3

Proof. Constraints (3.11) in Problem (P ′
in) are equivalent to minξ∈Ω g(ξ,π) ≥ 0 for any

π ∈ vert(Y), where g(ξ,π) = r − ψ(x,π, ξ) + ξ⊤Qξ + ξ⊤q. Given that Ω = {ξ ∈
R|M| | blb ≤ Aξ ≤ bub}, we consider the Lagrange dual problem of minξ∈Ω g(ξ,π),

i.e., maxλ1,λ2≥0 minξ∈R|M| g(ξ,π) + λ⊤
1 (Aξ − bub) − λ⊤

2 (Aξ − blb). Note that g(ξ,π)

is convex in ξ because Q ⪰ 0. It follows that constraints (3.11) are equivalent to the

following ones:

max
λ1,λ2≥0

min
ξ∈R|M|

g (ξ,π) + λ⊤
1

(
Aξ − bub

)
− λ⊤

2

(
Aξ − blb

)
≥ 0, ∀π ∈ vert (Y) ,

which are further equivalent to the following constraints:

∃λ1,λ2 ≥ 0, r − ψ (x,π, ξ) + ξ⊤Qξ + ξ⊤q+ λ⊤
1

(
Aξ − bub

)
− λ⊤

2

(
Aξ − blb

)
≥ 0,

∀ ξ ∈ R|M|, π ∈ vert (Y) . (B.18)
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By definition of ψ(x,π, ξ), i.e., (B.17), we can rewrite (B.18) as:

∃λ1,λ2 ≥ 0, r −
∑
z∈Z

∑
s∈S

π0z,sxz,s − πT
∑
z∈Z

∑
s∈S

xz,s −
∑
z∈Z

∑
t∈T

ϕz,t
∑
k∈K

Xk
z −

∑
z∈Z

∑
t∈T

ϕCz,t
(
XC

z +XS
z

)
−
∑
z∈Z

∑
t∈T

ϕSz,tX
S
z −

∑
(z,t,z′)∈M

dz,t,z′(ξ)ωz,t,z′ − cP
∑

(z,t,z′)∈M

dz,t,z′(ξ) + ξ⊤Qξ + ξ⊤q

+ λ⊤
1

(
Aξ − bub

)
− λ⊤

2

(
Aξ − blb

)
≥ 0, ∀ ξ ∈ R|M|, π ∈ vert (Y) ,

which are equivalent to

∃λ1,λ2 ≥ 0, ξ⊤Qξ + r − ψ1 (x,π)− λ⊤
1 b

ub
+ λ⊤

2 b
lb +

(
q+A⊤ (λ1 − λ2)− ψ2 (π)

)⊤
ξ ≥ 0,

∀ ξ ∈ R|M|, π ∈ vert (Y) , (B.19)

where

ψ1 (x,π) =
∑
z∈Z

∑
s∈S

π0z,sxz,s + πT
∑
z∈Z

∑
s∈S

xz,s +
∑
z∈Z

∑
t∈T

ϕz,t
∑
k∈K

Xk
z +

∑
z∈Z

∑
t∈T

ϕCz,t
(
XC

z +XS
z

)
+
∑
z∈Z

∑
t∈T

ϕSz,tX
S
z ,

ψ2 (π) = ω + cP.

Thus, we have

(B.19) ⇔ ∃λ1,λ2 ≥ 0,
(
1, ξ⊤

)
V
(
1, ξ⊤

)⊤
≥ 0, ∀ ξ ∈ R|M|, π ∈ vert (Y) , (B.20)

⇔ ∃λ1,λ2 ≥ 0,V ⪰ 0, ∀π ∈ vert (Y) , (B.21)

where

V =

r − ψ1 (x,π)− λ⊤
1 b

ub
+ λ⊤

2 b
lb 1

2

(
q+A⊤ (λ1 − λ2)− ψ2 (π)

)⊤
1
2

(
q+A⊤ (λ1 − λ2)− ψ2 (π)

)
Q

 .

The first equivalence (B.20) holds due to the definition of V. For the second equiva-

lence, ⇐ follows from the definition of a positive semidefinite (PSD) matrix. To prove

⇒, we consider an arbitrary vector (ζ0 ∈ R, ζ⊤ ∈ R|M|)⊤ ∈ R|M|+1: (1) if ζ0 = 0,

then (ζ0, ζ
⊤)V(ζ0, ζ

⊤)⊤ = ζ⊤Qζ ≥ 0 because Q is PSD; (2) if ζ0 ̸= 0, then we have

(ζ0, ζ
⊤)V(ζ0, ζ

⊤)⊤ = ζ20 (1, ζ
⊤/ζ0)V(1, ζ⊤/ζ0)

⊤ ≥ 0, because of (B.20). Therefore, ⇒
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holds.

We obtain Problem (PF) by replacing constraints (3.11) in Problem (P ′
in) with (B.21)

and further combine Problem (P ′
in) with the outer minimization problem in (PM).

B.4 Proof of Theorem 2

Proof. The proof of the reformulation (3.13) is the same as that of Theorem 1 and thus

is omitted here. By Theorem 2 in Cheramin et al. (2022), we have

max
Pm1∈Dm1

EPm1

[
f

(
x,U|M|×m1

Λ
1
2
m1ξm1

+ µ

)]
≤ max

P∈D
EP [f (x, ξ)] ,

for any x. This follows that

∑
z∈Z

∑
s∈S

csxz,s + max
Pm1∈Dm1

EPm1

[
f

(
x,U|M|×m1

Λ
1
2
m1ξm1

+ µ

)]
≤
∑
z∈Z

∑
s∈S

csxz,s +max
P∈D

EP [f (x, ξ)] ,

for any x satisfying constraints (3.1) – (3.2).

Therefore,

min
x

{∑
z∈Z

∑
s∈S

csxz,s + max
Pm1∈Dm1

EPm1

[
f

(
x,U|M|×m1

Λ
1
2
m1ξm1

+ µ

)] ∣∣∣∣(3.1)− (3.2)

}

≤ min
x

{∑
z∈Z

∑
s∈S

csxz,s +max
P∈D

EP [f (x, ξ)]

∣∣∣∣(3.1)− (3.2)

}
.

Therefore, the optimal value of Problem (3.12) (i.e., Problem (3.13)) provides a lower

bound for the optimal value of Problem (PM).

By Theorem 2 in Cheramin et al. (2022), we have Dm1 ⊂ Dm2 for m1 < m2. This

follows that

max
Pm1∈Dm1

EPm1

[
f

(
x,U|M|×m1

Λ
1
2
m1ξm1

+ µ

)]
≤ max

Pm2∈Dm2

EPm2

[
f

(
x,U|M|×m2

Λ
1
2
m2ξm2

+ µ

)]

for any x. Therefore, we have

min
x

{∑
z∈Z

∑
s∈S

csxz,s + max
Pm1∈Dm1

EPm1

[
f

(
x,U|M|×m1

Λ
1
2
m1ξm1

+ µ

)] ∣∣∣∣(3.1)− (3.2)

}

≤ min
x

{∑
z∈Z

∑
s∈S

csxz,s + max
Pm2∈Dm2

EPm2

[
f

(
x,U|M|×m2

Λ
1
2
m2ξm2

+ µ

)] ∣∣∣∣(3.1)− (3.2)

}
.
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That is, the optimal value of Problem (3.13) is nondecreasing in m1.

Finally, Problem (3.12) is equivalent to Problem (PI) (i.e., Problem (PM)) when m1 =

|M|. Then, Problems (3.13) and (PM) have the same optimal value.

B.5 Proof of Proposition 4

Proof. The proof is similar with that of Propositions 2 and 3 and thus is omitted here.

B.6 Proof of Theorem 3

Proof. The proof of the reformulation (3.16) is the same as that of Theorem 1 and thus

is omitted here. By Theorem 4 in Cheramin et al. (2022), we have DI ⊂ DU. Therefore,

for any x, we have

max
PI∈DI

EPI

[
f
(
x,UΛ

1
2 ξI + µ

)]
≤ max

PU∈DU

EPU

[
f
(
x,UΛ

1
2 ξI + µ

)]
.

This follows that

∑
z∈Z

∑
s∈S

csxz,s + max
PI∈DI

EPI

[
f
(
x,UΛ

1
2 ξI + µ

)]
≤
∑
z∈Z

∑
s∈S

csxz,s + max
PU∈DU

EPU

[
f
(
x,UΛ

1
2 ξI + µ

)]
,

for any x satisfying constraints (3.1) – (3.2). Therefore,

min
x

{∑
z∈Z

∑
s∈S

csxz,s + max
PI∈DI

EPI

[
f
(
x,UΛ

1
2 ξI + µ

)] ∣∣∣∣(3.1)− (3.2)

}

≤ min
x

{∑
z∈Z

∑
s∈S

csxz,s + max
PU∈DU

EPU

[
f
(
x,UΛ

1
2 ξI + µ

)] ∣∣∣∣(3.1)− (3.2)

}
.

Therefore, the optimal value of Problem (3.15) (i.e., Problem (3.16)) provides an upper

bound for the optimal value of Problem (PI) (i.e., Problem (PM)).

B.7 Proof of Proposition 5

Proof. This result is deduced from Proposition 5 in Cheramin et al. (2022).
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B.8 Formulations of Problems in Algorithm 2

For any sub-network Gl, l ∈ {1, . . . , L}, we formulate Problem (P0
l) based on it as the

following:

min
x

{∑
z∈Z

∑
s∈S

csxz,s + EP [fl (x, ξ)]

∣∣∣∣(3.1)− (3.2)

}
,

where

fl (x, ξ) = min
w

∑
a∈Al

cawa(ξ) + cP
∑

(z,t,z′)∈Ml

dz,t,z′(ξ)− ∑
a∈ÂR

l (z,t,z′)

wa(ξ)


s.t.

∑
a∈Al+(nz,t0,s)

wa(ξ) = xz,s, ∀ z ∈ Z, s ∈ S,

∑
a∈Al+(nz,t,s)

wa(ξ) =
∑

a∈Al−(nz,t,s)

wa(ξ), ∀ t ∈ [t0 + 1, t′ − 1]Z, z ∈ Z, s ∈ S,

∑
z∈Z

∑
s∈S

∑
a∈Al−(nz,t′,s)

wa(ξ) =
∑
z∈Z

∑
s∈S

xz,s,

∑
a∈ÂR

l (z,t,z′)

wa(ξ) ≤ dz,t,z′(ξ), ∀ (z, t, z′) ∈ Ml,

∑
s∈S

∑
a∈∪k∈KAk

l+(nz,t,s)

wa(ξ) ≤
∑
k∈K

Xk
z , ∀ z ∈ Z, t ∈ Tl,

∑
s∈S

∑
a∈AC

l+(nz,t,s)

wa(ξ) ≤ XC
z +XS

z , ∀ z ∈ Z, t ∈ Tl,

∑
s∈S

∑
a∈AS

l+(nz,t,s)

wa(ξ) ≤ XS
z , ∀ z ∈ Z, t ∈ Tl,

wa ≥ 0, ∀ a ∈ Al,

where t0 = 0 if l = 1 and t0 =
∑l−1

i=1 Ti + 1 otherwise, and t′ =
∑l

i=1 Ti.
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Appendix C

Supplements for Chapter 4

C.1 Table of Notation

Table C.1. Summary of Notation

Notation Description

Sets:

S set of scenarios

T operational horizon T = {1, 2, . . . , T}

B set of nodes (termed “power bus”) in the power grid system

L set of bidirectional power transmission lines in the power grid system

G set of thermal generators in the power grid system

Parameters:

SUg , SDg start-up and shut-down costs of generator g ∈ G, respectively

Lg , ℓg minimum-up/-down time limits of generator g ∈ G

pwb,t, p
s
b,t, qb,t wind generation, solar generation, and power load in bus b ∈ B and period t ∈ T , respectively

Cg , C
g

generation lower/upper bounds of generator g ∈ G

V g , V
g

ramp-up/down rate limit of generator g ∈ G when it is online and starts up/shuts down, respectively

R+
t , R−

t minimum required regulation-up and regulation-down amounts in period t ∈ T , respectively

Xb′,b, Cb′,b reactance and capacity of power transmission line (b′, b) ∈ L

ag , bg , cg cost parameters of generator g ∈ G

RUg , RDg regulation-up and regulation-down cost of g ∈ G, respectively

P+
t , P−

t unit price the grid pays to the EV fleet and the EV fleet pays to the grid in period t ∈ T , respectively

Csub unit subsidy offered by the grid system to the mobility system

X, S0 the EV fleet’s size and initial SOC, respectively

dt EV trip demand in period t ∈ T

X
+
, X

−
discharging and charging amounts limits, respectively

S EV battery capacity

α service level promised by the grid system to the mobility system

e−, e+, er electricity consumed in charging, discharging, and satisfying trip demands in a period, respectively

δ time length of a period

Variables:

ug
t ug

t = 1 if generator g ∈ G starts up in period t ∈ T and ug
t = 0 otherwise
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ygt ygt = 1 if generator g ∈ G is online in period t ∈ T and ygt = 0 otherwise

pgt amount of electricity generated by generator g ∈ G in period t ∈ T

rg
+

t , rg
−

t regulation-up and regulation-down amounts reserved by generator g ∈ G in period t ∈ T , respectively

βb,t phase angle in bus b ∈ B and period t ∈ T

v+t , v−t amounts of electricity the EV fleet discharges to the power grid and the EV fleet charges from the

power grid in period t ∈ T , respectively

fg
t power generation cost of generator g ∈ G in period t ∈ T

xr
t number of EVs to satisfy the realized trip demand dt in period t ∈ T

x+
t , x−

t number of EVs to satisfy the power transfer requests from the power grid in period t ∈ T

st SOC level of the EV fleet in period t ∈ T

ot service level discrepancy between the realized level and the promised level (α) in period t ∈ T

vrt power output level needed to satisfy EV trip demands in period t ∈ T

Abbreviations:

EV electric vehicle

V2G vehicle-to-grid

GVI grid-vehicle integration

RO robust optimization

MIP mixed-integer programming

LP linear programming

MILP mixed-integer linear programming

ADMM alternating direction method of multipliers

C.2 Proof of Theorem 4

Proof. For any g ∈ G, we have (ugt )
2 = ugt for any t ∈ T \ {1} and (ygt )

2 = ygt for any

t ∈ T when ugt ∈ {0, 1} and ygt ∈ {0, 1}. Thus, the objective function of Problem (Fsub)

can be rewritten as

L
(
u,y, z,u′,y′,π,λ

)
=
∑
g∈G

T∑
t=2

(
SUgugt + SDg

(
ygt−1 − ygt + ugt

))
+ z

+
∑
n∈N

∑
g∈G

T∑
t=2

πn,g,t
(
ugt − ug′n,t

)
+
ρ1
2

∑
n∈N

∑
g∈G

T∑
t=2

(
ugt − 2ug′n,tu

g
t + ug′n,t

2
)

+
∑
n∈N

∑
g∈G

∑
t∈T

λn,g,t
(
ygt − yg′n,t

)
+
ρ2
2

∑
n∈N

∑
g∈G

∑
t∈T

(
ygt − 2yg′n,ty

g
t + yg′n,t

2
)
.
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By rearranging the terms in L(u,y, z,u′,y′,π,λ), we can rewrite Problem (Fsub) as

min

{∑
g∈G

T∑
t=2

(
SUgugt + SDg

(
ygt−1 − ygt + ugt

))
+ z +

∑
n∈N

∑
g∈G

T∑
t=2

(
πn,g,tu

g
t +

ρ1
2

(
ugt − 2ug′n,tu

g
t

))

+
∑
n∈N

∑
g∈G

∑
t∈T

(
λn,g,ty

g
t +

ρ2
2

(
ygt − 2yg′n,ty

g
t

))
−
∑
n∈N

∑
g∈G

T∑
t=2

(
πn,g,tu

g′
n,t −

ρ1
2
ug′n,t

2
)

−
∑
n∈N

∑
g∈G

∑
t∈T

(
λn,g,ty

g′
n,t −

ρ2
2
yg′n,t

2
) ∣∣∣∣∣ (4.1)− (4.5)

}
. (C.1)

Because ρ1, ρ2, z, u
g′
n,t, πn,g,t for any n ∈ N , g ∈ G, and t ∈ T \ {1}, and yg′n,t, λn,g,t

for any n ∈ N , g ∈ G, and t ∈ T are all given parameters, solving Problem (C.1) is

equivalent to solving the following problem:

min

{∑
g∈G

T∑
t=2

(
SUgugt + SDg

(
ygt−1 − ygt + ugt

))
+
∑
n∈N

∑
g∈G

T∑
t=2

(
πn,g,tu

g
t +

ρ1
2

(
ugt − 2ug′n,tu

g
t

))

+
∑
n∈N

∑
g∈G

∑
t∈T

(
λn,g,ty

g
t +

ρ2
2

(
ygt − 2yg′n,ty

g
t

)) ∣∣∣∣∣ (4.1)− (4.5)

}
. (C.2)

Theorem 2.10 in Rajan et al. (2005) shows that (4.1)–(4.4) define the convex hull of

(4.1)–(4.5). Note that the objective function of Problem (C.2) is linear in ugt for any

t ∈ T \{1} and g ∈ G and ygt for any t ∈ T and g ∈ G. Thus, Problem (C.2) is equivalent

to the following problem:

min

{∑
g∈G

T∑
t=2

(
SUgugt + SDg

(
ygt−1 − ygt + ugt

))
+
∑
n∈N

∑
g∈G

T∑
t=2

(
πn,g,tu

g
t +

ρ1
2

(
ugt − 2ug′n,tu

g
t

))

+
∑
n∈N

∑
g∈G

∑
t∈T

(
λn,g,ty

g
t +

ρ2
2

(
ygt − 2yg′n,ty

g
t

)) ∣∣∣∣∣ (4.1)− (4.4)

}
,

which is Problem (FsubR).

C.3 Proof of Proposition 6

Proof. We consider the augmented Lagrangian functions L(u,y, z,u′,y′,π,λ) for Prob-

lem (M2) and Ln(u,y, z,u
′
n,y

′
n,πn,λn) for Problem (Ssubn) with each n ∈ N and

examine how the values of these functions update after each iteration.

First, for any n ∈ N and iteration step m ≥ 1, (zm, zmn ,u
′
n
m,y′

n
m,γm

j , ∀j ∈ Sn) and

(zm+1, zm+1
n ,u′

n
m+1,y′

n
m+1,γm+1

j ,∀j ∈ Sn) solve Problem (Ssubn), which is convex, in the

137



iteration steps m − 1 and m, respectively. By the first-order optimality condition of a

convex optimization problem, we have

▽z Ln

(
um,ym, zm+1,u′

n
m+1

,y′
n
m+1

,πm
n ,λ

m
n

)⊤ (
zm − zm+1

)
+▽u′

n
Ln

(
um,ym, zm+1,u′

n
m+1

,y′
n
m+1

,πm
n ,λ

m
n

)⊤ (
u′
n
m − u′

n
m+1

)
+▽y′

n
Ln

(
um,ym, zm+1,u′

n
m+1

,y′
n
m+1

,πm
n ,λ

m
n

)⊤ (
y′
n
m − y′

n
m+1

)
≥ 0, ∀n ∈ N . (C.3)

The derivative terms in (C.3) correspond to variables z, u′
n, and y′

n for any n ∈ N ,

respectively. To better represent these derivative terms, for any n ∈ N , we define

U
(
u,u′

n,πn

)
= π⊤

n (u− u′
n) +

ρ1
2

∥∥u− u′
n

∥∥2 ,
Y
(
y,y′

n,λn

)
= λ⊤

n

(
y − y′

n

)
+
ρ2
2

∥∥y − y′
n

∥∥2 , Z (z) = z,

and rewrite Ln(·) as follows:

Ln

(
u,y, z,u′,y′,πn,λn

)
= F (u,y) + U

(
u,u′

n,πn

)
+ Y

(
y,y′

n,λn

)
+ Z (z) .

Thus, we can rewrite (C.3) as

▽zZ
(
zm+1

)⊤ (
zm − zm+1

)
+▽u′

n
U
(
um,u′

n
m+1

,πm
n

)⊤ (
u′
n
m − u′

n
m+1

)
+▽y′

n
Y
(
ym,y′

n
m+1

,λm
n

)⊤ (
y′
n
m − y′

n
m+1

)
≥ 0, ∀n ∈ N . (C.4)

Note that Z(z) is convex in z and U(u,u′
n,πn) and Y(y,y′

n,λn) are strongly convex

in u′
n and y′

n, respectively, for any n ∈ N . Therefore, there exist ϵ1 > 0 and ϵ2 > 0 such

that

Z (zm)−Z
(
zm+1

)
≥ ▽zZ

(
zm+1

)⊤ (
zm − zm+1

)
,

U
(
um,u′

n
m
,πm

n

)
− U

(
um,u′

n
m+1

,πm
n

)
≥ ▽u′

n
U
(
um,u′

n
m+1

,πm
n

)⊤ (
u′
n
m − u′

n
m+1

)
+ ϵ1

∥∥∥u′
n
m − u′

n
m+1

∥∥∥2 ,
Y
(
ym,y′

n
m
,λm

n

)
− Y

(
ym,y′

n
m+1

,λm
n

)
≥ ▽y′

n
Y
(
ym,y′

n
m+1

,λm
n

)⊤ (
y′
n
m − y′

n
m+1

)
+ ϵ2

∥∥∥y′
n
m − y′

n
m+1

∥∥∥2 .
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It follows that

Ln

(
um,ym, zm,u′

n
m
,y′

n
m
,πm

n ,λ
m
n

)
− Ln

(
um,ym, zm+1,u′

n
m+1

,y′
n
m+1

,πm
n ,λ

m
n

)
= Z (zm) + U

(
um,u′

n
m
,πm

n

)
+ Y

(
ym,y′

n
m
,λm

n

)
−Z

(
zm+1

)
− U

(
um,u′

n
m+1

,πm
n

)
− Y

(
ym,y′

n
m+1

,λm
n

)
≥ ▽zZ

(
zm+1

)⊤ (
zm − zm+1

)
+▽u′

n
U
(
um,u′

n
m+1

,πm
n

)⊤ (
u′
n
m − u′

n
m+1

)
+ ϵ1

∥∥∥u′
n
m − u′

n
m+1

∥∥∥2
+▽y′

n
Y
(
ym,y′

n
m+1

,λm
n

)⊤ (
y′
n
m − y′

n
m+1

)
+ ϵ2

∥∥∥y′
n
m − y′

n
m+1

∥∥∥2
≥ ϵ1

∥∥∥u′
n
m − u′

n
m+1

∥∥∥2 + ϵ2

∥∥∥y′
n
m − y′

n
m+1

∥∥∥2 ,
where the second inequality holds by (C.4). Thus, we further have

L
(
um,ym, zm,u′m,y′m,πm,λm

)
− L

(
um,ym, zm+1,u′m+1

,y′m+1
,πm,λm

)
= zm − zm+1 +

N∑
n=1

(
πm
n

⊤ (um − u′
n
m)

+ λm
n

⊤ (ym − y′
n
m)

+
ρ1
2

∥∥um − u′
n
m∥∥2 + ρ2

2

∥∥ym − y′
n
m∥∥2)

−
N∑

n=1

(
πm
n

⊤
(
um − u′

n
m+1

)
+ λm

n
⊤
(
ym − y′

n
m+1

)
+
ρ1
2

∥∥∥um − u′
n
m+1

∥∥∥2 + ρ2
2

∥∥∥ym − y′
n
m+1

∥∥∥2)

=
N∑

n=1

(
Ln

(
um,ym, zmn ,u

′
n
m
,y′

n
m
,πm

n ,λ
m
n

)
− Ln

(
um,ym, zm+1

n ,u′
n
m+1

,y′
n
m+1

,πm
n ,λ

m
n

))
−

N∑
n=1

(
zmn − zm+1

n

)
+ zm − zm+1

≥
N∑

n=1

(
ϵ1

∥∥∥u′
n
m − u′

n
m+1

∥∥∥2 + ϵ2

∥∥∥y′
n
m − y′

n
m+1

∥∥∥2)− N∑
n=1

(
zmn − zm+1

n

)
+zm−zm+1, (C.5)

where zm = maxn∈N{zmn } and zm+1 = maxn∈N{zm+1
n }. The inequality (C.5) suggests

how the objective value of Problem (Ssub) is updated after we solve Problems (Ssubn)

for any n ∈ N in each iteration step m.

Second, as (um+1,ym+1) solves Problem (FsubR) in the iteration step m and (um,ym)

is feasible to Problem (FsubR), we have

L
(
um,ym, zm+1,u′m+1

,y′m+1
,πm,λm

)
− L

(
um+1,ym+1, zm+1,u′m+1

,y′m+1
,πm,λm

)
≥ 0. (C.6)

Note that Algorithm 3 updates πm+1
n = πm

n + ρ1(u
m+1 − u′

n
m+1) and λm+1

n = λm
n +
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ρ2(y
m+1 − y′

n
m+1) for any n ∈ N in the iteration step m. Thus, we have

L
(
um+1,ym+1, zm+1,u′m+1

,y′m+1
,πm,λm

)
− L

(
um+1,ym+1, zm+1,u′m+1

,y′m+1
,πm+1,λm+1

)
=

N∑
n=1

πm
n

⊤
(
um+1 − u′

n
m+1

)
+

N∑
n=1

λm
n

⊤
(
ym+1 − y′

n
m+1

)
−

N∑
n=1

πm+1
n

⊤
(
um+1 − u′

n
m+1

)
−

N∑
n=1

λm+1
n

⊤
(
ym+1 − y′

n
m+1

)
=

N∑
n=1

((
πm
n − πm+1

n

)⊤ (
um+1 − u′

n
m+1

)
+
(
λm
n − λm+1

n

)⊤ (
ym+1 − y′

n
m+1

))
= −

N∑
n=1

(
1

ρ1

∥∥πm
n − πm+1

n

∥∥2 + 1

ρ2

∥∥λm
n − λm+1

n

∥∥2) . (C.7)

The inequality (C.6) suggests how the objective value of Problem (FsubR) is updated in

the iteration step m. The equality (C.7) suggests how the value of L(·) is updated after

we update multipliers πm and λm to πm+1 and λm+1 in the iteration step m.

Third, by (C.5), (C.6), and (C.7), for any iteration step m ≥ 1, we have

L
(
um,ym, zm,u′m,y′m,πm,λm

)
− L

(
um+1,ym+1, zm+1,u′m+1

,y′m+1
,πm+1,λm+1

)
= L

(
um,ym, zm,u′m,y′m,πm,λm

)
− L

(
um,ym, zm+1,u′m+1

,y′m+1
,πm,λm

)
+ L

(
um,ym, zm+1,u′m+1

,y′m+1
,πm,λm

)
− L

(
um+1,ym+1, zm+1,u′m+1

,y′m+1
,πm,λm

)
+ L

(
um+1,ym+1, zm+1,u′m+1

,y′m+1
,πm,λm

)
− L

(
um+1,ym+1, zm+1,u′m+1

,y′m+1
,πm+1,λm+1

)
≥

N∑
n=1

(
ϵ1

∥∥∥u′
n
m − u′

n
m+1

∥∥∥2 + ϵ2

∥∥∥y′
n
m − y′

n
m+1

∥∥∥2)−
N∑

n=1

(
zmn − zm+1

n

)
+ zm − zm+1

−
N∑

n=1

(
1

ρ1

∥∥πm
n − πm+1

n

∥∥2 + 1

ρ2

∥∥λm
n − λm+1

n

∥∥2) .
Summing up both sides of the above inequality from m = 1 to m = ∞, we have

L
(
u1,y1, z1,u′1,y′1,π1,λ1

)
− L

(
u∞,y∞, z∞,u′∞,y′∞,π∞,λ∞)

≥
∞∑

m=1

N∑
n=1

(
ϵ1

∥∥∥u′
n
m − u′

n
m+1

∥∥∥2 + ϵ2

∥∥∥y′
n
m − y′

n
m+1

∥∥∥2)−
N∑

n=1

(
z1n − z∞n

)
+ z1 − z∞

−
∞∑

m=1

N∑
n=1

(
1

ρ1

∥∥πm
n − πm+1

n

∥∥2 + 1

ρ2

∥∥λm
n − λm+1

n

∥∥2) .
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That is,

L
(
u1,y1, z1,u′1,y′1,π1,λ1

)
− L

(
u∞,y∞, z∞,u′∞,y′∞,π∞,λ∞)+ N∑

n=1

(
z1n − z∞n

)
− z1 + z∞

+
∞∑

m=1

N∑
n=1

(
1

ρ1

∥∥πm
n − πm+1

n

∥∥2 + 1

ρ2

∥∥λm
n − λm+1

n

∥∥2)

≥
∞∑

m=1

N∑
n=1

(
ϵ1

∥∥∥u′
n
m − u′

n
m+1

∥∥∥2 + ϵ2

∥∥∥y′
n
m − y′

n
m+1

∥∥∥2) ≥ 0. (C.8)

As the feasible region of Problem (ALP)’s LP relaxation is bounded, we have um,

ym, u′m, y′m, zm, and zmn for any n ∈ N and m ≥ 1 are all bounded. Meanwhile,

by the assumption that
∑∞

m=1

∑N
n=1 ∥πm+1

n − πm
n ∥2 < ∞ and

∑∞
m=1

∑N
n=1 ∥λ

m+1
n −

λm
n ∥2 < ∞, we have πm

n and λm
n for any n ∈ N and m ≥ 1 are also bounded. Thus,

L(um,ym, zm,u′m,y′m,πm,λm) is bounded for any iteration step m and the left-hand

side of (C.8) is bounded. It follows that

∞ >

∞∑
m=1

N∑
n=1

(
ϵ1

∥∥∥u′
n
m − u′

n
m+1

∥∥∥2 + ϵ2

∥∥∥y′
n
m − y′

n
m+1

∥∥∥2) ≥ 0, (C.9)

which implies that

∥∥∥u′
n
m − u′

n
m+1

∥∥∥2 → 0,
∥∥∥y′

n
m − y′

n
m+1

∥∥∥2 → 0, as m→ ∞, ∀n ∈ N . (C.10)

As
∑∞

m=1

∑N
n=1 ∥πm+1

n − πm
n ∥2 < ∞ and

∑∞
m=1

∑N
n=1 ∥λ

m+1
n − λm

n ∥2 < ∞, we further

have

∥∥πm+1
n − πm

n

∥∥2 → 0,
∥∥λm+1

n − λm
n

∥∥2 → 0, as m→ ∞, ∀n ∈ N ,

which indicates that

∥∥∥um+1 − u′
n
m+1

∥∥∥2 = 1

ρ21

∥∥πm+1
n − πm

n

∥∥2 → 0, as m→ ∞, ∀n ∈ N , (C.11)∥∥∥ym+1 − y′
n
m+1

∥∥∥2 = 1

ρ22

∥∥λm+1
n − λm

n

∥∥2 → 0, as m→ ∞, ∀n ∈ N . (C.12)

By the triangular inequality, we have

∥∥um − um+1
∥∥2 ≤ ∥∥um − u′

n
m∥∥2 + ∥∥∥u′

n
m − u′

n
m+1

∥∥∥2 + ∥∥∥u′
n
m+1 − um+1

∥∥∥2 , ∀n ∈ N ,

which, by (C.10) and (C.11), indicates that ∥um−um+1∥2 → 0 as m→ ∞. Similarly, we
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can show ∥ym − ym+1∥2 → 0 as m→ ∞.

C.4 Boundedness of Dual Multipliers of Problems

(FsubR) and (Ssubn) for any n ∈ N

To prove Theorem 5, we discuss the boundedness of dual multipliers of Problems (FsubR)

and (Ssubn) for any n ∈ N in this section. First, we consider Problem (FsubR). Note

that Problem (FsubR) is separable with respect to each generator g ∈ G. It suffices to

drop the superscript g here and consider the following problem:

min

T∑
t=2

(SUut + SD (yt−1 − yt + ut)) +
∑
n∈N

T∑
t=2

(
πn,tut +

ρ1
2

(
ut − 2u′n,tut

))
+
∑
n∈N

∑
t∈T

(
λn,tyt +

ρ2
2

(
yt − 2y′n,tyt

))
s.t. ut − yt + yt−1 ≥ 0, ∀t ∈ T \ {1}, (C.13a)

t∑
i=t−L+1

ui − yt ≤ 0, ∀t ∈ [L+ 1, T ]Z, (C.13b)

t∑
i=t−ℓ+1

ui + yt−ℓ ≤ 1, ∀t ∈ [ℓ+ 1, T ]Z, (C.13c)

ut ≥ 0, ∀t ∈ T \ {1}. (C.13d)

We use η1t ≤ 0 (∀t ∈ T \ {1}), η2t ≥ 0 (∀t ∈ [L + 1, T ]Z), η
3
t ≥ 0 (∀t ∈ [ℓ + 1, T ]Z), and

η4t ≤ 0 (∀t ∈ T \ {1}) to denote the dual multipliers with respect to constraints (C.13a)–

(C.13d), respectively. We use the above four groups of notations with a superscript ∗ to

denote the corresponding optimal dual multipliers when Problem (C.13) is solved. We

have the following proposition holds.

Proposition 11. Given bounded u′, y′, π, and λ, we have η1t
∗
(∀t ∈ T \ {1}), η2t

∗

(∀t ∈ [L+ 1, T ]Z), η
3
t
∗
(∀t ∈ [ℓ+ 1, T ]Z), and η

4
t
∗
(∀t ∈ T \ {1}) are bounded.

Proof. First, we consider η3t
∗
for any t ∈ [ℓ+1, T ]Z. Note that the dual problem’s objective

value equals
∑

t∈[ℓ+1,T ]Z
η3t

∗
, which is bounded by strong duality. Thus, η3t

∗
is bounded

for any t ∈ [ℓ+ 1, T ]Z.

Second, we consider η1t
∗
for any t ∈ T \ {1}. Note that the stationary condition with
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respect to y1 is

SD +
∑
n∈N

(
λn,1 +

ρ2
2

(
1− 2y′n,1

))
+ η12

∗
+ η3ℓ+1

∗
= 0.

Because η3ℓ+1
∗
is bounded and the given parameters, i.e., λ and y′, are bounded, we have

η12
∗
is bounded. For any t ∈ T \ {1, T}, the stationary condition with respect to yt can

be formulated as

η1t+1
∗ − η1t

∗
= W2(t)−W3(t)−

∑
n∈N

(
λn,t +

ρ2
2

(
1− 2y′n,t

))
:= δ′(t)

where W2(t) = η2t
∗
if t ∈ [L + 1, T ]Z and W2(t) = 0 otherwise, and W3(t) = η3t+ℓ

∗
if

t ∈ [1, T − ℓ]Z and W3(t) = 0 otherwise. Clearly, δ′(t) > −∞ for any t ∈ T \ {1, T}.

Thus, we have η1t+1
∗
= η12

∗
+
∑t

s=2 δ
′(s) > −∞ for any t ∈ T \ {1, T}. That is, η1t

∗
is

bounded for any t ∈ T \ {1}.
Third, we consider η2t

∗
for any t ∈ [L + 1, T ]Z. With respect to yt for any t ∈ [L +

1, T − 1]Z, the stationary condition is

η2t
∗
=
∑
n∈N

(
λn,t +

ρ2
2

(
1− 2y′n,t

))
+ η1t+1

∗ − η1t
∗
+W3(t),

which follows that η2t
∗
is bounded for any t ∈ [L+ 1, T − 1]Z. In addition, with respect

to yT , the stationary condition is

η2T
∗
= −SD +

∑
n∈N

(
λn,T +

ρ2
2

(
1− 2y′n,T

))
− η1

∗
T ,

which follows that η2T
∗
is bounded.

Fourth, we consider η4t
∗
for any t ∈ T \ {1}. With respect to ut for any t ∈ T \ {1},

the stationary condition is

SU + SD +
∑
n∈N

(
πn,t +

ρ1
2

(
1− 2u′n,t

))
+ η1t

∗
+

min{t+L−1,T}∑
s=max{t,L+1}

η2
∗

s +

min{t+ℓ−1,T}∑
s=max{t,ℓ+1}

η3
∗

s = −η4t
∗
.

As all the terms on the left-hand side of the above equation are bounded, we conclude

that η4t
∗
is bounded for any t ∈ T \ {1}.

Next, we consider Problem (Ssubn) for any n ∈ N . For any n ∈ N , we let S ′ denote

the set Sn and z′ denote the variable z in Problem (Ssubn), by which we rewrite Problem
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(Ssubn) as

min

{
Ln(u,y, z

′,u′
n,y

′
n,πn,λn)

∣∣∣∣ z′ ≥ zn, H2(y′
n, zn,γj , ξj) = 0, ∀j ∈ S ′

}
.

For simplicity, we drop the subscript n and then the problem becomes

min F(u,y) + z′ + π⊤ (u− u′)+ λ
⊤ (

y − y′)+ ρ1
2

∥∥u− u′∥∥2 + ρ2
2

∥∥y − y′∥∥2 (C.14a)
s.t. z′ ≥ z, (C.14b)

H2(y′, z,γj , ξj) = 0, ∀j ∈ S ′.

Thus, it suffices to study the dual multipliers of Problem (C.14). Specifically, we focus on

the multipliers corresponding to the constraints involving y′, i.e., constraints (4.7)–(4.9),

(4.11), and (4.16) applied for any j ∈ S ′. For ease of exposition, we list such constraints

as follows:

pgt,j + rg+t,j −
(
C

g − Cg
)
yg

′

t ≤ 0, ∀t ∈ T , g ∈ G, j ∈ S ′,

pgt,j + rg+t,j − pgt−1,j −
(
V g + Cg − V

g)
yg

′

t−1 + Cgyg
′

t ≤ V
g
, ∀t ∈ T \ {1}, g ∈ G, j ∈ S ′,

pgt−1,j − pgt,j + rg−t,j −
(
V g + Cg − V

g)
yg

′

t + Cgyg
′

t−1 ≤ V
g
, ∀t ∈ T \ {1}, g ∈ G, j ∈ S ′,∑

g∈Gb

Cgyg
′

t +
∑
g∈Gb

pgt,j +
∑

∀b′∈B: (b′,b)∈L

βb′,t,j − βb,t,j
Xb′,b

+ v+t,j − v−t,j = qb,t,j − pwb,t,j − psb,t,j ,

∀b ∈ B, t ∈ T , j ∈ S ′,

fgt,j −
(
ag(Cg)2 + bgCg + cg

)
yg

′

t −
∑
h∈H

ζghp̄
g
t,h,j ≥ 0, ∀t ∈ T , g ∈ G, j ∈ S ′.

We define θ1t,g,j ≥ 0 (∀t ∈ T , g ∈ G, j ∈ S ′), θ2t,g,j ≥ 0 (∀t ∈ T \ {1}, g ∈ G, j ∈ S ′),

θ3t,g,j ≥ 0 (∀t ∈ T \ {1}, g ∈ G, j ∈ S ′), θ4b,t,j (∀b ∈ B, t ∈ T , j ∈ S ′), and θ5t,g,j ≤ 0

(∀t ∈ T , g ∈ G, j ∈ S ′) to represent the dual multipliers corresponding to the above five

groups of constraints, respectively. We use the above five groups of notations with a

superscript ∗ to denote the corresponding optimal dual multipliers when Problem (C.14)

is solved, where the optimal primal solution is y′∗. We have the following proposition

holds.

Proposition 12. Given bounded u, y, π, and λ, if the objective value of Problem

(Ssubn)’s dual problem is bounded for any n ∈ N , then θ1
∗

t,g,j (∀t ∈ T , g ∈ G, j ∈ S ′), θ2
∗

t,g,j

(∀t ∈ T \ {1}, g ∈ G, j ∈ S ′), θ3
∗

t,g,j (∀t ∈ T \ {1}, g ∈ G, j ∈ S ′), θ4
∗

b,t,j (∀b ∈ B, t ∈ T , j ∈

S ′), and θ5
∗

t,g,j (∀t ∈ T , g ∈ G, j ∈ S ′) are bounded.
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Proof. For any t ∈ T \ {T} and g ∈ G, we write the stationary condition with respect to

yg
′

t as

− λt,g − ρ2

(
ygt − yg

′

t

∗)
−
(
C

g − Cg
)∑
j∈S′

θ1
∗

t,g,j + Cg
∑
j∈S′

θ2
∗

t,g,j −
(
V g + Cg − V

g)∑
j∈S′

θ2
∗

t+1,g,j

−
(
V g + Cg − V

g)∑
j∈S′

θ3
∗

t,g,j + Cg
∑
j∈S′

θ3
∗

t+1,g,j + Cg
∑
j∈S′

θ4
∗

ω(g),t,j

−
(
ag(Cg)2 + bgCg + cg

)∑
j∈S′

θ5
∗

t,g,j = 0, (C.15)

where ω(g) = b if g ∈ Gb for any g ∈ G. Because each generator g ∈ G locates in only one

bus, ω(g) returns a unique value in B. For any g ∈ G, we write the stationary condition

with respect to yg
′

T as follows

− λT,g − ρ2

(
ygT − yg

′

T

∗)
−
(
C

g − Cg
)∑
j∈S′

θ1
∗

T,g,j + Cg
∑
j∈S′

θ2
∗

T,g,j −
(
V g + Cg − V

g)∑
j∈S′

θ3
∗

T,g,j

+ Cg
∑
j∈S′

θ4
∗

ω(g),T,j −
(
ag(Cg)2 + bgCg + cg

)∑
j∈S′

θ5
∗

T,g,j = 0. (C.16)

First, we consider θ5
∗

t,g,j for any t ∈ T , g ∈ G, and j ∈ S ′. With respect to constraint

(C.14b), we define a dual multiplier θz
′ ≤ 0. Then the stationary condition with respect

to z′ is 1 + θz
′∗

= 0, i.e., θz
′∗

= −1. With respect to constraints (4.30) for any j ∈ S ′,

we define a dual multiplier θzj ≤ 0. Then the stationary condition with respect to z is

−θz′∗ +
∑

j∈S′ θz
∗

j = 0, i.e.,
∑

j∈S′ θz
∗

j = θz
′∗
= −1. Thus, θz

∗
j is bounded for any j ∈ S ′.

Now, for any t ∈ T , g ∈ G, and j ∈ S ′, we write the stationary condition with respect to

f g
t,j as θ

5∗
t,g,j − θz

∗
j = 0, indicating that θ5

∗
t,g,j is bounded.

Second, note that the right-hand sides of constraints (4.8)–(4.9) and (4.11) include non-

negative constants. By the assumption that the objective value of Problem (Ssubn)’s dual

problem is bounded for any n ∈ N , we have θ2
∗

t,g,j (∀t ∈ T \ {1}, g ∈ G, j ∈ S ′), θ3
∗

t,g,j

(∀t ∈ T \ {1}, g ∈ G, j ∈ S ′), and θ4
∗

b,t,j (∀b ∈ B, t ∈ T , j ∈ S ′) are bounded.

Third, in (C.15) and (C.16), as all the terms except those involving θ1
∗

t,g,j for any t ∈ T ,

g ∈ G, and j ∈ S ′ are bounded, we have θ1
∗

t,g,j is also bounded.

C.5 Proof of Theorem 5

Proof. By Proposition 6 and the conditions of Theorem 5, there exists a subsequence

{(um,ym,πm,λm), ∀m ∈ K} that converges to (u∗,y∗,π∗,λ∗) as m → ∞ and m ∈ K.
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By (C.11) and (C.12), we also have {(u′
n
m,y′

n
m), ∀m ∈ K} converges to (u∗,y∗) as

m→ ∞ and m ∈ K for any n ∈ N . Now, we analyze the stationary and complementary

slackness conditions of Problems (FsubR) and (Ssubn) for any n ∈ N . First, we consider

Problem (FsubR) and rewrite it in the following abstract form:

min F (u,y) +

N∑
n=1

π⊤
nu+

N∑
n=1

λ
⊤
ny +

ρ1
2

N∑
n=1

(
eu − 2u′

n

)⊤
u+

ρ2
2

N∑
n=1

(
ey − 2y′

n

)⊤
y (C.17)

s.t. H1 (u,y) ≤ 0,

where eu = (1, . . . , 1)⊤ ∈ R(|T |−1)|G| and ey = (1, . . . , 1)⊤ ∈ R|T ||G|.

In the iteration step m of Algorithm 3, (um+1,ym+1) solves Problem (FsubR), i.e.,

Problem (C.17), when (u′
n,y

′
n) = (u′

n
m+1,y′

n
m+1), πn = πm

n , and λn = λm
n for any

n ∈ N . Thus, there exists ηm ∈ RM1
+ such that

▽uF
(
um+1,ym+1

)
+

N∑
n=1

πm
n +

ρ1
2

N∑
n=1

(
eu − 2u′

n
m+1

)
+
(
▽uH1

(
um+1,ym+1

))⊤
ηm = 0, (C.18a)

▽yF
(
um+1,ym+1

)
+

N∑
n=1

λm
n +

ρ2
2

N∑
n=1

(
ey − 2y′

n
m+1

)
+
(
▽yH1

(
um+1,ym+1

))⊤
ηm = 0, (C.18b)

ηm ⊙H1
(
um+1,ym+1

)
= 0, (C.18c)

where ⊙ denotes the Hadamard product (or elementary-wise product). Note that u′
n

and y′
n are bounded for any n ∈ N . We also have πn and λn are bounded for any n ∈ N

by our assumption. Therefore, Proposition 11 shows that ηm is bounded. By assuming

that ηm → η∗ as m → ∞ and m ∈ K and taking limits for m ∈ K on (C.18a)–(C.18c),

we obtain

▽uF (u∗,y∗) +
N∑

n=1

π∗
n +

Nρ1
2

(eu − 2u∗) +
(
▽uH1 (u∗,y∗)

)⊤
η∗ = 0, (C.19a)

▽yF (u∗,y∗) +
N∑

n=1

λ∗
n +

Nρ2
2

(ey − 2y∗) +
(
▽yH1 (u∗,y∗)

)⊤
η∗ = 0, (C.19b)

η∗ ⊙H1 (u∗,y∗) = 0. (C.19c)

Next, we consider Problem (Ssubn) for any n ∈ N . In Problem (Ssubn) for any

n ∈ N , the constraints involving y′
n are represented by Hy(y′

n, zn,γj, ξj) = 0 for

any j ∈ Sn. For any n ∈ N and j ∈ Sn, let θn,j ∈ RM2 denote the dual mul-
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tipliers with respect to constraints represented by Hy(y′
n, zn,γj, ξj) = 0. We have

(zm+1, zm+1
n ,u′

n
m+1,y′

n
m+1,γm+1

j ,∀j ∈ Sn) solves Problem (Ssubn) for any n ∈ N when

(u,y) = (um,ym), πn = πm
n , and λn = λm

n in the iteration step m of Algorithm 3. It

follows that

▽u′
n
Ln

(
um,ym, zm+1,u′

n
m+1

,y′
n
m+1

,πm
n ,λ

m
n

)
=−πm

n − ρ1

(
um − u′

n
m+1

)
=0, ∀n ∈ N , (C.20a)

▽y′
n
Ln

(
um,ym, zm+1,u′

n
m+1

,y′
n
m+1

,πm
n ,λ

m
n

)
+
∑
j∈Sn

(
▽y′

n
Hy
(
y′
n
m+1

, zm+1
n ,γj

m+1, ξj

))⊤
θm
n,j

=−λm
n − ρ2

(
ym − y′

n
m+1

)
+
∑
j∈Sn

(
▽y′

n
Hy
(
y′
n
m+1

, zm+1
n ,γj

m+1, ξj

))⊤
θm
n,j=0, ∀n ∈ N . (C.20b)

For ease of exposition, we define

Q := ▽y′
n
Hy
(
y′
n
m+1

, zm+1
n ,γj

m+1, ξj

)
, ∀n ∈ N , j ∈ Sn.

Note that u and y are bounded. We also have πn and λn are bounded for any n ∈ N
and the objective value of Problem (Ssubn)’s dual problem is bounded for any n ∈ N by

our assumption. Therefore, Proposition 12 shows that θm
n,j is bounded for any n ∈ N

and j ∈ Sn. By assuming that θm
n,j → θ∗

n,j for any n ∈ N and j ∈ Sn as m → ∞ and

m ∈ K and taking limits for m ∈ K on (C.20a)–(C.20b), we obtain

− π∗
n − ρ1 lim

m→∞

(
um − u′

n
m+1

)
= 0, ∀n ∈ N ,

− λ∗
n − ρ2 lim

m→∞

(
ym − y′

n
m+1

)
+Q⊤

∑
j∈Sn

θ∗
n,j = 0, ∀n ∈ N ,

which, by Proposition 6, (C.11), and (C.12), indicate

π∗
n = 0, ∀n ∈ N , (C.21a)

−λ∗
n +Q⊤

∑
j∈Sn

θ∗
n,j = 0, ∀n ∈ N . (C.21b)

Finally, combining (C.19a)–(C.19c) and (C.21a)–(C.21b) leads to

▽u F (u∗,y∗) +
Nρ1
2

(eu − 2u∗) +
(
▽uH1 (u∗,y∗)

)⊤
η∗ = 0,

▽y F (u∗,y∗) +Q⊤
N∑

n=1

∑
j∈Sn

θ∗
n,j +

Nρ2
2

(ey − 2y∗) +
(
▽yH1 (u∗,y∗)

)⊤
η∗ = 0,

η∗ ⊙H1 (u∗,y∗) = 0,
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which completes the proof.

C.6 Proof of Theorem 6

Proof. First, for any n > m ≥ 1, we have Sw
m ⊆ Sw

n ⊆ S, indicating that Θ
m ≤ Θ

n ≤ Θ.

Next, consider Algorithm 4 terminates at step m ≤ |S|, where (um,ym,γm
j ,∀j ∈ Sw

m)

solves Problem (M) with sample set Sw
m and γm

j solves Problem (P) with (u,y) =

(um,ym) and ξj for any j ∈ Snw
m . By the terminating condition, we have S f

m = ∅.

This implies F(um,ym) + Ψ(um,ym, ξj) ≤ Θ
m

for any j ∈ Snw
m . Meanwhile, because

(um,ym,γm
j , ∀j ∈ Sw

m) solves Problem (M) with sample set Sw
m, we have F(um,ym) +

Ψ(um,ym, ξj) ≤ Θ
m

for any j ∈ Sw
m. Therefore, F(um,ym) + Ψ(um,ym, ξj) ≤ Θ

m
for

any j ∈ S, as Sw
m ∪ Snw

m = S.

Now let zm = Θ
m −F(um,ym). Then, (um,ym, zm,γm

j ,∀j ∈ S) is feasible to Problem

(4.29), which reformulates Problem (M). This feasible solution realizes an objective

value at Θ
m
. Because Problem (M) (i.e., Problem (4.29)) is a minimization problem,

we have Θ
m ≥ Θ. Note that we have Θ

n ≤ Θ for any n ≥ 1. Thus, Θ
m

= Θ. That is,

(u∗,y∗) = (um,ym) is optimal to Problem (M).

C.7 Proof of Lemma 1

Proof. First, we show that Algorithm 4 terminates if and only if a support set is obtained.

On the one hand, Theorem 6 suggests that Algorithm 4 terminates with an optimal solu-

tion of Problem (M). That is, a support set is obtained when the algorithm terminates.

On the other hand, if a support set is obtained at step m, i.e., Sw
m is a support set, then

the solution obtained at step m, i.e., (um,ym), is optimal to Problem (M) with S and

Θ
m
= Θ(S). This is because we assume that (i) Problem (M) with S has a unique opti-

mal solution or (ii) Problem (M) with S and Problem (M) with any support set share

the same set of optimal solutions. It follows that S f
m = ∅ and Algorithm 4 terminates.

Note that S∗ is a unique minimum support set; that is, a support set is obtained if and

only if all the elements (i.e., scenarios) in S∗ are obtained. Thus, Algorithm 4 terminates

if and only if all the elements in S∗ are obtained. It follows that the expected number of

steps for Algorithm 4 to terminate equals the expected number of steps to collect all the
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K scenarios in S∗.

Next, we note that there exists a unique worst-case scenario j∗. That is, Ψ(u∗,y∗, ξj∗) >

Ψ(u∗,y∗, ξj′) for any j′ ∈ S and j′ ̸= j∗, where (u∗,y∗) is the optimal first-stage solu-

tion of Problem (M) with S. We show that j∗ ∈ S∗. By contradiction, suppose that

j∗ /∈ S∗. We can solve Problem (M) with S∗ and obtain the optimal first-stage solution

(u∗,y∗) and Θ(S∗). Clearly, there exists j0 ∈ S∗ such that j0 ̸= j∗ (because j∗ /∈ S∗) and

Ψ(u∗,y∗, ξj0) = Θ(S∗) = Θ(S), where the second equality holds because S∗ is a support

set. It follows that Ψ(u∗,y∗, ξj∗) ≤ Θ(S) = Ψ(u∗,y∗, ξj0), leading to a contradiction.

Because Algorithm 4 selects the worst-case scenario initially, we only need to collect

the remaining K − 1 scenarios in S∗ before the algorithm terminates. Thus, it suffices

to calculate the expected number of steps to collect the remaining K − 1 scenarios in S∗

from all the |S| − 1 scenarios in S \ {j∗}. To complete this calculation, we transform it

into the following problem.

Select red balls (SRB): Given a set of K − 1 red balls and |S| −K black

balls, we randomly select a ball from the set at each step until all |S| − 1 balls

are selected. Let no represent the number of balls in total from the first selected

ball to the last selected red ball, inclusive of both. What is E[no]?

steps

First selected ball Last selected red ball

. . . . . .

no

|S| − 1

Figure C.1. Problem SRB

Here we show that E[no] in the Problem SRB equals the expected number of steps to

collect the K−1 scenarios from all the |S|−1 scenarios as mentioned above. Specifically,

the K − 1 red balls (resp. |S| −K black balls) in the Problem SRB can be considered

the K − 1 scenarios in S∗ (resp. |S| − K scenarios in S \ S∗). Randomly selecting a

ball at each step in the Problem SRB is equivalent to randomly selecting a scenario in

Algorithm 4 with naive selection.

Clearly, the smallest possible value of no is K − 1 and the actual realization of no

(increases based on K − 1) depends on the number of selected black balls when selecting

the K−1 red balls. We consider that all the K−1 red balls are sequentially aligned over a
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Bowl 1 Bowl 2 Bowl 3

. . .
Bowl K − 2 Bowl K − 1 Bowl K

w.p. 1
K

w.p. 1
K

w.p. 1
K

w.p. 1
K

w.p. 1
K

w.p. 1
Kw.p. K−6

K

increase no not increase no

Figure C.2. A Black Ball Falls into A Bowl

horizonal line (see Figures C.1 and C.2) and there is a bowl before and after each red ball

to collect the selected black balls, leading to a total of K bowls. Because we randomly

select a ball at each step, i.e., each ball has the same probability of being selected at each

step, then a black ball falls into each bowl with the same probability at 1/K. If a black

ball falls into the first K − 1 bowls, i.e., Bowl 1 to Bowl K − 1 in Figure C.2, then the

value of no increases by 1. Otherwise, i.e., the black ball falls into Bowl K, then the value

of no remains unchanged.

We define a random variable Yj to represent the increase in n
o due to a possibly selected

black ball j = 1, . . . , |S| −K. We have

Yj =

1, with probability K−1
K

0, with probability 1
K

, ∀j = 1, . . . , |S| −K.

Thus, E[no] = 1 + (K − 1) +E[
∑|S|−K

j=1 Yj] = K +
∑|S|−K

j=1 E [Yj] = K +
∑|S|−K

j=1 (1× (K −

1)/K + 0× 1/K) = K + (|S| −K)× (K − 1)/K = 1+ |S| × (K − 1)/K. This completes

the proof.

C.8 Proof of Theorem 7

Proof. Note that the expected number of steps for Algorithm 4 to terminate equals the

expected number of steps to collect all the K scenarios in S∗ when using either of the

naive selection and strategic selection (see the proof of Lemma 1). At any iteration step

i > 0 of Algorithm 4, we use (i) a binary variable Xi to denote whether a scenario in

S∗ is selected at this step (Xi = 1) or not (Xi = 0) and (ii) an integer variable Si to

denote the number of scenarios in S∗ that have not been selected until this step. Clearly,

S0 = K and Sj = Si −
∑j

n=i+1Xn for any j > i ≥ 0.
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Now, we use two parts to complete the proof. In the first part, we construct a binary

tree to describe the process of randomly selecting a scenario at each step until collecting

all the K scenarios in S∗ from all the |S| scenarios in S. In the second part, based on

the constructed binary tree, we compare the expected number of steps to collect all the

K scenarios under the naive selection with that under strategic selection.

First, we construct a binary tree (see Figure C.3) with each node describing the status

of the random process until the current step. Specifically, each node at each iteration

step i ≥ 0 on the tree denotes the numbers of scenarios in S and S∗ that have not been

selected until the step i by (|S|− i, Si). For instance, at step i0 in Figure C.3, the bottom

node shows that |S| − i0 scenarios in S and S∗
i0
scenarios in S∗ have not be selected. We

use V to denote the set of all the nodes on the tree.

(|S|,K)

Step 0

(|S| − 1,K − 1)

(|S| − 1,K)

Step 1

(|S| − i0, Si0 )

(|S| − i0, S∗
i0
)

Step i0. . .

(|S| − i0 − 1, Si0 − 1)

(|S| − i0 − 1, Si0 )

(|S| − i0 − 1, S∗
i0

− 1)

(|S| − i0 − 1, S∗
i0
)

Step i0 + 1

(|S| − j, 1)

(|S| − j, |S| − j)

Step j. . .

(|S| − j − 1, 0)

(|S| − j − 1, 1)

(|S| − j − 1, |S| − j − 1)

Step j + 1

(|S| − j − 2, 0)

(|S| − j − 2, |S| − j − 2)

Step j + 2

(0, 0)

Step |S|. . .

X1 = 1

X1 = 0

Figure C.3. The Constructed Binary Tree

Each node in the tree has up to two branches (child nodes) to describe the status at

the next step. If a node has two child nodes, then one child node specifies that a scenario

in S∗ is selected at the next step and the other specifies that a scenario in S \ S∗ is

selected. More specifically, at each step i ≥ 1, each node satisfies one of the following

three conditions:

• Si = 0. All the scenarios in S∗ have been selected until this step. Such a node

hence has no child node. We define V1 = {(|S|− i, Si) ∈ V | Si = 0, i ≥ 0} to collect

all such nodes.

• |S| − i = Si > 0. Some scenarios in S∗ have not been selected and all the scenarios

in S \ S∗ have been selected until this step. Such a node hence has only one child
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node: (|S|−i−1, Si−1). We define V2 := {(|S|−i, Si) ∈ V | |S|−i = Si > 0, i ≥ 0}

to collect all such nodes.

• |S| − i > Si > 0. Some scenarios in both S∗ and S \ S∗ have not been selected

until this step. Such a node hence has two child nodes: (|S| − i − 1, Si − 1) and

(|S| − i − 1, Si). We define V3 := {(|S| − i, Si) ∈ V | |S| − i > Si > 0, i ≥ 0} to

collect all such nodes.

Clearly, ∪3
i=1Vi = V and Vi ∩ Vj = ∅ for any i, j ∈ {1, 2, 3} and i ̸= j. The root node is

(|S|, K) and V1 also represents the set of all leaf nodes of the constructed tree.

Note that we go from a node in the tree to this node’s child node after we select a

scenario from S. For instance, we go from node (|S| − i, Si) to node (|S| − i− 1, Si − 1)

(resp. (|S| − i − 1, Si)) if a scenario in S∗ (resp. a scenario in S \ S∗) is selected at

step i ≥ 0, i.e., Xi = 1 (resp. Xi = 0). We let P denote the transition probability

measure that returns the probability of transitioning from a node in V2 ∪V3 (i.e., the set

of non-leaf nodes) to one of its child nodes. For instance, P((|S|− i, Si), (|S|− i−1, Si+1))

measures the probability that node (|S| − i, Si) ∈ V2 ∪ V3 transitions to its child node

(|S| − i− 1, Si+1). The following properties hold:

P ((|S| − i, Si) , (|S| − i− 1, Si − 1)) = 1, ∀ (|S| − i, Si) ∈ V2,

P ((|S| − i, Si) , (|S| − i− 1, Si)) + P ((|S| − i, Si) , (|S| − i− 1, Si − 1)) = 1,

∀ (|S| − i, Si) ∈ V2 ∪ V3. (C.22)

Based on the constructed binary tree and given 0 ≤ i < j, we define a sequence of

nodes {(|S|−i, Si), (|S|−i−1, Si+1), . . . , (|S|−j, Sj)} as a path if the following conditions

are satisfied: (i) (|S| − n, Sn) ∈ V for any n such that i ≤ n ≤ j, (ii) Sj = 0, and (iii)

Sn − Sn+1 ∈ {0, 1} for any n such that i ≤ n ≤ j − 1. Clearly, the number of paths

is limited because the number of nodes is limited, i.e., |V| < ∞. We define the length

of a path as the number of transitions along the path. For instance, the length of the

path {(|S| − i, Si), (|S| − i − 1, Si+1), . . . , (|S| − j, Sj)} is j − i. In addition, we define

function µ : V → R to return the expected length of all the paths that start from a

node (|S| − i, Si) ∈ V . As no path starts from any node (|S| − i, Si) ∈ V1, we have

µ((|S| − i, Si)) = 0.

Note that the process of collecting all the scenarios in S∗ can be represented by a path
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from the root node (|S|, K) to a leaf node of the tree. Thus, to calculate the expected

number of steps for Algorithm 4 to terminate, it suffices to calculate the expected length of

all the paths starting from the root node. Figure C.4 shows an instance of the constructed

binary tree with (|S|, K) = (4, 2), all possible paths starting from (|S|, K), and their

expected length.

(4, 2)

Step 0

(3, 1)

(3, 2)

Step 1

(2, 0)

(2, 1)

(2, 1)

(2, 2)

Step 2

(1, 0)

(1, 1)

(1, 0)

(1, 1)

(1, 1)

Step 3

(0, 0)

(0, 0)

(0, 0)

Step 4

(1, 1), w.p. 2
4
× 1

3
= 1

6
.

(1, 0, 1), w.p. 2
4
× 2

3
× 1

2
= 1

6
.

(1, 0, 0, 1), w.p. 2
4
× 2

3
× 1

2
× 1 = 1

6
.

(0, 1, 1), w.p. 2
4
× 2

3
× 1

2
= 1

6
.

(0, 1, 0, 1), w.p. 2
4
× 2

3
× 1

2
× 1 = 1

6
.

(0, 0, 1, 1), w.p. 2
4
× 1

3
× 1× 1 = 1

6
.

X1 = 1, w.p. 2
4

X1 = 0, w.p. 2
4

X2 = 1, w.p. 1
3

X2 = 0, w.p. 2
3

X2 = 1, w.p. 2
3

X2 = 0, w.p. 1
3

X3 = 1, w.p. 1
2

X3 = 0, w.p. 1
2

X3 = 1, w.p. 1
2

X3 = 0, w.p. 1
2

X3 = 1, w.p. 1

X4 = 1, w.p. 1

X4 = 1, w.p. 1

X4 = 1, w.p. 1
Expected Step:
1
6
× (2 + 3 + 4 + 3 + 4 + 4) = 10

3
.

Figure C.4. Paths of a Binary Tree

Second, based on the constructed binary tree above, we now compare the expected

number of steps to collect all the K scenarios in S∗ under the naive selection with that

under strategic selection. To differentiate the transition probability measure P under

these two selection methods, we use Pn (resp. Ps) to denote the transition probability

measure when the naive selection (resp. strategic selection) is adopted. Correspondingly,

we use µn (resp. µs) to denote the function µ that returns the expected length of all

the paths starting from a node in V under Pn (resp. Ps). Therefore, µn((|S|, K)) (resp.

µs((|S|, K))) represents the expected number of steps for Algorithm 4 to terminate under

the naive selection (resp. strategic selection).

Recall that under strategic selection, at any step i ≥ 0, we randomly select a scenario

from S f
i if 1/|S f

i | ≥ K/(|S|−i) and from Snw
i otherwise. Note that at any step i ≥ 0 before

Algorithm 4 terminates, S f
i includes at least one scenario in S∗. Hence, the probability

that a selected scenario from S f
i belongs to S∗ is no smaller than 1/|S f

i |. Thus, at any step

i ≥ 0 with (|S| − i, Si) ∈ V2 ∪ V3 before Algorithm 4 terminates, if 1/|S f
i | ≥ K/(|S| − i),
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then

Ps ((|S| − i, Si), (|S| − i− 1, Si − 1)) ≥ 1

|S f
i |

≥ K

|S| − i

≥ Si
|S| − i

= Pn ((|S| − i, Si), (|S| − i− 1, Si − 1)) ;

otherwise, then Ps((|S|− i, Si), (|S|− i−1, Si−1)) = Pn((|S|− i, Si), (|S|− i−1, Si−1)).

That is,

Pn ((|S| − i, Si), (|S| − i− 1, Si − 1)) ≤ Ps ((|S| − i, Si), (|S| − i− 1, Si − 1)) ,

∀(|S| − i, Si) ∈ V2 ∪ V3. (C.23)

We complete the proof by induction. We define C ⊆ V2 ∪ V3 to collect all the nodes

(|S|−i, Si) ∈ V2∪V3 satisfying Pn((|S|−i, Si), (|S|−i−1, Si−1)) < Ps((|S|−i, Si), (|S|−

i−1, Si−1)). By (C.23), we have Pn((|S|−i, Si), (|S|−i−1, Si−1)) = Ps((|S|−i, Si), (|S|−

i− 1, Si − 1)) for any (|S| − i, Si) ∈ V2 ∪V3 \ C. Note that any node (|S| − i, Si) ∈ V2 has

only one child node (|S|−i−1, Si−1), indicating that Pn((|S|−i, Si), (|S|−i−1, Si−1)) =

Ps((|S|−i, Si), (|S|−i−1, Si−1)) = 1 for any node (|S|−i, Si) ∈ V2. Thus, C∩V2 = ∅ and

C ⊆ V2 ∪ V3 \ V2 = V3. More specifically, any node (|S| − i, Si) ∈ V3 has two child nodes:

(|S|− i−1, Si−1) and (|S|− i−1, Si); that is, the probability that (|S|− i, Si) transitions

to (|S| − i− 1, Si − 1) may vary depending on the naive or strategic selection. Thus, it is

possible that Pn((|S| − i, Si), (|S| − i− 1, Si − 1)) < Ps((|S| − i, Si), (|S| − i− 1, Si − 1))

for any node (|S| − i, Si) ∈ V3. It follows that C may contain all the nodes in V3 and the

maximum possible value of |C| equals to |V3| <∞.

We perform induction on |C|. First, we consider |C| = 0, i.e., C = ∅. Thus, Pn((|S| −

i, Si), (|S|−i−1, Si−1)) = Ps((|S|−i, Si), (|S|−i−1, Si−1)) for any (|S|−i, Si) ∈ V2∪V3,

indicating that µn((|S|, K)) = µs((|S|, K)).

Second, we consider |C| = 1. Without loss of generality, we assume C = {(|S|−i0, S∗
i0
)},
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where (|S| − i0, S
∗
i0
) is an arbitrary node in V2 ∪ V3. In this case, we have

µn
((
|S| − i0, S

∗
i0

))
= µn

((
|S| − i0 − 1, S∗

i0 − 1
))

Pn

((
|S| − i0, S

∗
i0

)
,
(
|S| − i0 − 1, S∗

i0 − 1
))

+ µn
((
|S| − i0 − 1, S∗

i0

))
Pn

((
|S| − i0, S

∗
i0

)
,
(
|S| − i0 − 1, S∗

i0

))
+ 1

= µn
((
|S| − i0 − 1, S∗

i0 − 1
))

Pn

((
|S| − i0, S

∗
i0

)
,
(
|S| − i0 − 1, S∗

i0 − 1
))

+ µn
((
|S| − i0 − 1, S∗

i0

)) (
1− Pn

((
|S| − i0, S

∗
i0

)
,
(
|S| − i0 − 1, S∗

i0 − 1
)))

+ 1

= µn
((
|S| − i0 − 1, S∗

i0 − 1
))

Pn

((
|S| − i0, S

∗
i0

)
,
(
|S| − i0 − 1, S∗

i0 − 1
))

− µn
((
|S| − i0 − 1, S∗

i0

))
Pn

((
|S| − i0, S

∗
i0

)
,
(
|S| − i0 − 1, S∗

i0 − 1
))

+ µn
((
|S| − i0 − 1, S∗

i0

))
+ 1

> µn
((
|S| − i0 − 1, S∗

i0 − 1
))

Ps

((
|S| − i0, S

∗
i0

)
,
(
|S| − i0 − 1, S∗

i0 − 1
))

− µn
((
|S| − i0 − 1, S∗

i0

))
Ps

((
|S| − i0, S

∗
i0

)
,
(
|S| − i0 − 1, S∗

i0 − 1
))

+ µn
((
|S| − i0 − 1, S∗

i0

))
+ 1 (C.24)

= µs
((
|S| − i0 − 1, S∗

i0 − 1
))

Ps

((
|S| − i0, S

∗
i0

)
,
(
|S| − i0 − 1, S∗

i0 − 1
))

− µs
((
|S| − i0 − 1, S∗

i0

))
Ps

((
|S| − i0, S

∗
i0

)
,
(
|S| − i0 − 1, S∗

i0 − 1
))

+ µs
((
|S| − i0 − 1, S∗

i0

))
+ 1 (C.25)

= µs
((
|S| − i0 − 1, S∗

i0 − 1
))

Ps

((
|S| − i0, S

∗
i0

)
,
(
|S| − i0 − 1, S∗

i0 − 1
))

+ µs
((
|S| − i0 − 1, S∗

i0

))
Ps

((
|S| − i0, S

∗
i0

)
,
(
|S| − i0 − 1, S∗

i0

))
+ 1

= µs
((
|S| − i0, S

∗
i0

))
, (C.26)

where the reasons why (C.24)–(C.25) hold are described as follows. Specifically, (C.24)

holds because µn((|S| − i0 − 1, S∗
i0
− 1)) < µn((|S| − i0 − 1, S∗

i0
)) due to Lemma 1 and

Pn((|S| − i0, S
∗
i0
), (|S| − i0 − 1, S∗

i0
− 1)) < Ps((|S| − i0, S

∗
i0
), (|S| − i0 − 1, S∗

i0
− 1)). To

show (C.25) holds, we note that the paths starting from nodes (|S| − i0 − 1, S∗
i0
− 1) and

(|S|−i0−1, S∗
i0
) at step i0+1, which are the child nodes of (|S|−i0, S∗

i0
), do not pass (|S|−

i0, S
∗
i0
) (see Figure C.3). Thus, we have µn((|S|−i0−1, S∗

i0
−1)) = µs((|S|−i0−1, S∗

i0
−1))

and µn((|S|− i0−1, S∗
i0
)) = µs((|S|− i0−1, S∗

i0
)), as Pn((|S|− i, Si), (|S|− i−1, Si−1)) =

Ps((|S| − i, Si), (|S| − i− 1, Si − 1)) for any (|S| − i, Si) ∈ V2 ∪ V3 \ {(|S| − i0, S
∗
i0
)}.

We let µn((|S|, K) | (|S|− i, Si)) (resp. µs((|S|, K) | (|S|− i, Si))) for any (|S|− i, Si) ∈
V2 ∪ V3 denote the conditional expected length of the paths starting from (|S|, K) under

Pn (resp. Ps), given that the paths pass (|S| − i, Si) at step i. By the law of total

expectation, we have µn((|S|, K)) = EPn [µ((|S|, K) | (|S| − i, Si))] and µs((|S|, K)) =

EPs [µ((|S|, K) | (|S| − i, Si))]. Meanwhile, for any (|S| − i, Si) ∈ V2 ∪ V3, it is clear
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that Si ≥ K − i because K − i is achieved only when a scenario in S∗ is selected at

every step from 1 to i. Moreover, we have Si ≤ K and Si ≤ |S| − i. It follows that

Si ∈ {K − i, . . . ,min{K, |S| − i}}. For any (|S| − i, Si) ∈ V2 ∪V3, we let P′
n((|S| − i, Si))

(resp. P′
s((|S| − i, Si))) denote the probability of starting from (|S|, K) and passing node

(|S| − i, Si) at step i under Pn (resp. Ps). Thus, we have

µs ((|S|,K)) = EPs [µs ((|S|,K)|(|S| − i0, Si0))]

=
∑

Si0
∈{K−i0,...,min{K,|S|−i0}}

P′
s ((|S| − i0, Si0))µs ((|S|,K)|(|S| − i0, Si0))

=
∑

Si0
∈{K−i0,...,min{K,|S|−i0}}

P′
s ((|S| − i0, Si0)) (i0 + µs ((|S| − i0, Si0)))

= i0 +
∑

Si0
∈{K−i0,...,min{K,|S|−i0}}\{S∗

i0
}

P′
s ((|S| − i0, Si0))µs ((|S| − i0, Si0))

+ P′
s

((
|S| − i0, S

∗
i0

))
µs
((
|S| − i0, S

∗
i0

))
< i0 +

∑
Si0

∈{K−i0,...,min{K,|S|−i0}}\{S∗
i0
}

P′
s ((|S| − i0, Si0))µs ((|S| − i0, Si0))

+ P′
s

((
|S| − i0, S

∗
i0

))
µn
((
|S| − i0, S

∗
i0

))
(C.27)

= i0 +
∑

Si0
∈{K−i0,...,min{K,|S|−i0}}\{S∗

i0
}

P′
n ((|S| − i0, Si0))µn ((|S| − i0, Si0))

+ P′
n

((
|S| − i0, S

∗
i0

))
µn
((
|S| − i0, S

∗
i0

))
(C.28)

=
∑

Si0
∈{K−i0,...,min{K,|S|−i0}}

P′
n ((|S| − i0, Si0)) (i0 + µn ((|S| − i0, Si0)))

= µn ((|S|,K)) ,

where (C.27) holds by (C.26). To show (C.28) holds, we note that for any node (|S| −

i0, Si0) ∈ V2 ∪ V3, any paths that start from (|S|, K) and pass (|S| − i0, Si0) at step i0 do

not pass (|S| − i0, S
∗
i0
) before step i0 (see Figure C.3). As a result, P′

s((|S| − i0, Si0)) =

P′
n((|S|− i0, Si0)) for any (|S|− i0, Si0) ∈ V2∪V3, because Pn((|S|− i, Si), (|S|− i−1, Si−

1)) = Ps((|S| − i, Si), (|S| − i− 1, Si − 1)) for any (|S| − i, Si) ∈ V2 ∪V3 \ {(|S| − i0, S
∗
i0
)}.

Meanwhile, for any node (|S|− i0, Si0) ∈ V2∪V3 \{(|S|− i0, S
∗
i0
)}, the path starting from

this node clearly does not pass its parent node (|S| − i0, S
∗
i0
) (see Figure C.3). Thus,

µs((|S| − i0, Si0)) = µn((|S| − i0, Si0)) for any (|S| − i0, Si0) ∈ V2 ∪ V3 \ {(|S| − i0, S
∗
i0
)},

indicating that (C.28) holds. Therefore, we have µn((|S|, K)) > µs((|S|, K)) when |C| =

1.

Third, we assume that µn((|S|, K)) > µs((|S|, K)) when |C| =M and 1 ≤M ≤ |V3|−1.
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We further consider |C| =M +1. For notational brevity, we use a superscript index that

equals |C| to distinguish C, P, P′, and µ across different induction cases with respect to |C|.
Without loss of generality, we assume CM+1\CM = {(|S|−iM , S∗

iM
)}, where (|S|−iM , S∗

iM
)

is an arbitrary node in V2 ∪ V3 \ CM . The only difference between the cases |C| =M and

|C| =M+1 is the probability of transitioning from (|S|−iM , S∗
iM
) to (|S|−iM−1, S∗

iM
−1)

or (|S|−iM−1, S∗
iM
) under strategic selection. Thus, for any (|S|−i, Si) ∈ V2∪V3, we have

PM+1
n ((|S|− i, Si), (|S|− i− 1, Si − 1)) = PM

n ((|S|− i, Si), (|S|− i− 1, Si − 1)), indicating

that µM+1
n ((|S|, K)) = µM

n ((|S|, K)). For any (|S| − i, Si) ∈ V2 ∪ V3 \ {(|S| − iM , S
∗
iM
)},

we have PM+1
s ((|S| − i, Si), (|S| − i− 1, Si − 1)) = PM

s ((|S| − i, Si), (|S| − i− 1, Si − 1)).

For (|S| − iM , S
∗
iM
), we have

PM+1
s

((
|S| − iM , S

∗
iM

)
,
(
|S| − iM − 1, S∗

iM
− 1
))
> PM+1

n

((
|S| − iM , S

∗
iM

)
,
(
|S| − iM − 1, S∗

iM
− 1
))

= PM
n

((
|S| − iM , S

∗
iM

)
,
(
|S| − iM − 1, S∗

iM
− 1
))

= PM
s

((
|S| − iM , S

∗
iM

)
,
(
|S| − iM − 1, S∗

iM
− 1
))
,

where the inequality holds because (|S| − iM , S
∗
iM
) ∈ CM+1 and the last equality holds

because (|S| − iM , S
∗
iM
) /∈ CM .

Similar to the case |C| = 1, we can now show that µM
s ((|S|, K)) > µM+1

s ((|S|, K)).

Specifically,

µMs
((
|S| − iM , S

∗
iM

))
= µMs

((
|S| − iM − 1, S∗

iM
− 1
))

PM
s

((
|S| − iM , S

∗
iM

)
,
(
|S| − iM − 1, S∗

iM
− 1
))

− µMs
((
|S| − iM − 1, S∗

iM

))
PM
s

((
|S| − iM , S

∗
iM

)
,
(
|S| − iM − 1, S∗

iM
− 1
))

+ µMs
((
|S| − iM − 1, S∗

iM

))
+ 1

> µMs
((
|S| − iM − 1, S∗

iM
− 1
))

PM+1
s

((
|S| − iM , S

∗
iM

)
,
(
|S| − iM − 1, S∗

iM
− 1
))

− µMs
((
|S| − iM − 1, S∗

iM

))
PM+1
s

((
|S| − iM , S

∗
iM

)
,
(
|S| − iM − 1, S∗

iM
− 1
))

+ µMs
((
|S| − iM − 1, S∗

iM

))
+ 1

= µM+1
s

((
|S| − iM − 1, S∗

iM
− 1
))

PM+1
s

((
|S| − iM , S

∗
iM

)
,
(
|S| − iM − 1, S∗

iM
− 1
))

− µM+1
s

((
|S| − iM − 1, S∗

iM

))
PM+1
s

((
|S| − iM , S

∗
iM

)
,
(
|S| − iM − 1, S∗

iM
− 1
))

+ µM+1
s

((
|S| − iM − 1, S∗

iM

))
+ 1

= µM+1
s

((
|S| − iM , S

∗
iM

))
.

157



Based on this result, we can show that

µM+1
s ((|S|,K)) = iM +

∑
SiM

∈{K−iM ,...,min{K,|S|−iM}}\{S∗
iM

}

PM+1′
s ((|S| − iM , SiM ))µM+1

s ((|S| − iM , SiM ))

+ PM+1′
s

((
|S| − iM , S

∗
iM

))
µM+1
s

((
|S| − iM , S

∗
iM

))
< iM +

∑
SiM

∈{K−iM ,...,min{K,|S|−iM}}\{S∗
iM

}

PM+1′
s ((|S| − iM , SiM ))µM+1

s ((|S| − iM , SiM ))

+ PM+1′
s

((
|S| − iM , S

∗
iM

))
µMs

((
|S| − iM , S

∗
iM

))
= iM +

∑
SiM

∈{K−iM ,...,min{K,|S|−iM}}\{S∗
iM

}

PM ′
s ((|S| − iM , SiM ))µMs ((|S| − iM , SiM ))

+ PM ′
s

((
|S| − iM , S

∗
iM

))
µMs

((
|S| − iM , S

∗
iM

))
= µMs ((|S|,K)) .

Therefore, we have µM+1
s ((|S|, K)) < µM

s ((|S|, K)) < µM
n ((|S|, K)) = µM+1

n ((|S|, K)),

where the second inequality holds by induction. It follows that µM
n ((|S|, K)) > µM

s ((|S|, K))

for any |C| =M ∈ [1, |V3|]Z. That is, µn((|S|, K)) ≥ µs((|S|, K)) and Algorithm 4 termi-

nates in fewer steps by adopting strategic selection than naive selection.

C.9 Proof of Lemma 2

Proof. When t ∈ [L+ 1, T ]Z, we have yt ≥
∑t

s=t−L+1 us =
∑t−k

s=t−L+1 us +
∑t

s=t−k+1 us ≥∑t
s=t−k+1 us, where the first inequality holds by (4.35a) and the second inequality holds

because us ≥ 0 for any s ∈ [2, T ]Z. When t ∈ [k + 1, L]Z, we have yt =
∑L

s=t(ys −

ys+1 + us+1) + (yL+1 −
∑L−1

s=0 uL+1−s) +
∑t

s=2 us ≥
∑t

s=2 us =
∑t−k

s=2 us +
∑t

s=t−k+1 us ≥∑t
s=t−k+1 us, where the first inequality holds by (4.35a) and (4.35c) and the second in-

equality holds because us ≥ 0 for any s ∈ [2, T ]Z.

C.10 Proof of Lemma 3

Proof. When t−k+ℓ ≤ T , we have yt−k+
∑t

s=t−k+1 us ≤ yt−k+
∑t

s=t−k+1 us+
∑t−k+ℓ

s=t+1 us ≤

1, where the first inequality holds because us ≥ 0 for any s ∈ [2, T ]Z and the second

inequality holds by (4.35b). When t − k + ℓ ≥ T + 1, we have yt−k +
∑t

s=t−k+1 us ≤

yt−k +
∑T

s=t−k+1 us = (yT−ℓ +
∑T

s=T−ℓ+1 us) +
∑t−k

s=T−ℓ+1(ys − ys−1 − us) ≤ 1, where the

first inequality holds because us ≥ 0 for any s ∈ [2, T ]Z and the second inequality holds
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by (4.35b) and (4.35c).

C.11 Proof of Lemma 4

Proof. Consider any t ∈ [2, T ]Z. As yt ∈ {0, 1} for any t ∈ T , we divide the analysis into

the following three possible cases.

Case 1: yt = 0. We have pt = 0 by (4.35e) and (4.35h). Clearly, pt− pt−1 = −pt−1 ≤ V

because pt−1 ≥ 0 by (4.35h).

Case 2: (yt−1, yt) = (0, 1). We have pt − pt−1 ≤ pt + r+t − pt−1 ≤ V − C < V , where

the first inequality holds because r+t ≥ 0, the second inequality holds by the ramp-up

constraint (4.35f) at t, and the third inequality holds by the problem setting in Section

4.3.2.

Case 3: (yt−1, yt) = (1, 1). We have pt − pt−1 ≤ pt + r+t − pt−1 ≤ V , where the

first inequality holds because r+t ≥ 0 and the second inequality holds by the ramp-up

constraint (4.35f) at t.

C.12 Proof of Proposition 7

Proof. To prove that inequality (4.36) is valid for conv(D) for any t ∈ [3, T ]Z, it suffices

to show that it is valid for D for any t ∈ [3, T ]Z. Consider any element (p, r+, r−,y,u)

of D and any t ∈ [3, T ]Z. We show that (p, r+, r−,y,u) satisfies (4.36). We divide the

analysis into the following four possible cases.

Case 1: yt = 0. By the problem setting in Section 4.3.2, we have V − C ≥ 0 and

C + V − V ≥ 0. By Corollary 1, we have yt − ut ≥ 0 and yt−1 − ut−1 ≥ 0. Thus, the

right-hand side of inequality (4.36) is nonnegative. Because yt = 0, by (4.35d), (4.35e),

and (4.35h), we have r+t = r−t = 0. Therefore, in this case, (p, r+, r−,y,u) satisfies (4.36).

Case 2: yt = 1 and ut = 1. By Corollary 1, we have yt−1 ≤ 1 − ut = 0, implying

that yt−1 = 0. It further implies that ut−1 = 0 because yt−1 ≥ ut−1 by Corollary 1 and

that pt−1 = 0 by (4.35e) and (4.35h). Thus, the right-hand side of inequality (4.36) is

V −C. Because pt−1 = yt−1 = 0 and yt = 1, by (4.35f), we have pt + r+t ≤ V −C. Thus,

r+t + r−t ≤ r+t + pt ≤ V − C, where the first inequality holds by (4.35d). Therefore, in

this case, (p, r+, r−,y,u) satisfies (4.36).
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Case 3: yt = 1, ut = 0, and ut−1 = 1. We have yt−1 ≥ ut−1 = 1 and yt−2 ≤ 1−ut−1 = 0

by Corollary 1, implying that yt−1 = 1 and yt−2 = 0. Thus, the right-hand side of

inequality (4.36) is V −C+V . Because yt−2 = 0, we have pt−2 = 0 by (4.35e) and (4.35h).

Because yt−1 = 1 and yt−2 = pt−2 = 0, by (4.35f) at t− 1, we have pt−1 + r+t−1 ≤ V − C,

implying that pt−1 ≤ V −C because r+t−1 ≥ 0. Because yt−1 = yt = 1, by (4.35f) at t, we

have pt + r+t − pt−1 ≤ V . Thus, r+t + r−t ≤ r+t + pt ≤ pt−1 + V ≤ V − C + V , where the

first inequality holds by (4.35d). Therefore, in this case, (p, r+, r−,y,u) satisfies (4.36).

Case 4: yt = 1, ut = 0, and ut−1 = 0. We have yt−1 ≥ yt − ut = 1 by (4.35c),

implying that yt−1 = 1. Thus, the right-hand side of inequality (4.36) is 2V . Because

yt−1 = yt = 1, (i) by (4.35f) at t, we have pt + r+t − pt−1 ≤ V , and (ii) by (4.35h) at t, we

have pt−1+r
−
t −pt ≤ V . It follows that r+t +r−t = (pt+r

+
t −pt−1)+(pt−1+r

−
t −pt) ≤ 2V .

Therefore, in this case, (p, r+, r−,y,u) satisfies (4.36).

Coonsider any t ∈ [3, T ]Z. To prove inequality (4.36) is facet-defining for conv(D) when

C−C > 2V and L = 1, it suffices to create 5T −1 affinely independent points in conv(D)

that satisfy (4.36) at equality. Because 0 ∈ conv(D) and 0 satisfies (4.36) at equality,

it suffices to create the remaining 5T − 2 nonzero linearly independent points. We let

θ̀ = (p̀, r̀+, r̀−, ỳ, ù) and denote the sth component of p̀, r̀+, r̀−, ỳ, and ù by p̀s, r̀
+
s , r̀

−
s ,

ỳs, and ùs. Similarly, we define θ́, θ̂, θ, and θ̇. We denote the 5T − 2 nonzero linearly

independent points by θ̀
α
for α ∈ T , θ́

α
for α ∈ T \{t}, θ̂

α
for α ∈ T , θ

α
for α ∈ T , and

θ̇
α
for α ∈ T \ {1}. We let ϵ = min{C + V − V , V − C, C − C − 2V } > 0 and divide

the 5T − 2 points into the following 16 groups.

(A1) For each α ∈ [1, t− 1]Z, we create a point θ̀
α
as follows:

p̀αs =

V − C, s ∈ [1, α]Z

0, s ∈ [α + 1, T ]Z

, ỳαs =

1, s ∈ [1, α]Z

0, s ∈ [α + 1, T ]Z

,

r̀+,α
s = r̀−,α

s = 0 for any s ∈ T , and ùαs = 0 for any s ∈ T \ {1}. It is easy to verify

that θ̀
α
satisfies (4.35a)–(4.35h). Thus, θ̀

α
∈ conv(D). It is also easy to verify that

θ̀
α
satisfies (4.36) at equality.
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(A2) For α = t, we create a point θ̀
α
as follows:

p̀αs =



V, s ∈ [1, t− 2]Z

V + ϵ, s = t− 1

V − C, s = t

0, otherwise (o.w.)

, r̀+,α
s =

2V − V + C + ϵ, s = t

0, o.w.

,

r̀−,α
s =

V − C − ϵ, s = t

0, o.w.

,

ỳαs = 1 for any s ∈ [1, t]Z and ỳαs = 0 otherwise, and ùαs = 0 for any s ∈ T \ {1}.

Note that C − C > 2V and C < V < C + V . Thus, θ̀
α
satisfies (4.35a)–(4.35h),

i.e., θ̀
α
∈ conv(D). It is also easy to verify that θ̀

α
satisfies (4.36) at equality.

(A3) For each α ∈ [t+ 1, T ]Z, we create a point θ̀
α
as follows:

p̀αs =


V, s ∈ [1, t− 1]Z

V − C, s ∈ [t, α]Z

0, o.w.

, r̀+,α
s =

2V − V + C, s = t

0, o.w.

, r̀−,α
s =

V − C, s = t

0, o.w.

,

ỳαs = 1 for any s ∈ [1, α]Z and ỳαs = 0 otherwise, and ùαs = 0 for any s ∈ T \ {1}.

It is easy to verify that θ̀
α
satisfies (4.35a)–(4.35h). Thus, θ̀

α
∈ conv(D). It is also

easy to verify that θ̀
α
satisfies (4.36) at equality.

(A4) For each α ∈ [1, t− 1]Z, we create a point θ́
α
as follows:

ṕαs =

V − C, s ∈ [1, α]Z

0, o.w.

, ŕ+,α
s =

V − C, s ∈ [1, α]Z

0, o.w.

,

ŕ−,α
s = 0 for any s ∈ T , ýαs = 1 for any s ∈ [1, α]Z and ýαs = 0 otherwise, and

úαs = 0 for any s ∈ T \{1}. It is easy to verify that θ́
α
satisfies (4.35a)–(4.35d) and

(4.35f)–(4.35h). Note that 0 < 2V − 2C < 2(C + V ) − 2C = 2V < C − C. Thus,

θ́
α
also satisfies (4.35e), implying that θ́

α
∈ conv(D). It is also easy to verify that

θ́
α
satisfies (4.36) at equality.
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(A5) For each α ∈ [t+ 1, T ]Z, we create a point θ́
α
as follows:

ṕαs =


V, s ∈ [1, t− 1]Z

V − C, s ∈ [t, α]Z

0, o.w.

, ŕ+,α
s =


V − C, s ∈ [1, α]Z \ {t}

2V − V + C, s = t

0, o.w.

,

ŕ−,α
s =

V − C, s = t

0, o.w.

,

ýαs = 1 for any s ∈ [1, α]Z and ýαs = 0 otherwise, and úαs = 0 for any s ∈ T \ {1}.

It is easy to verify that θ́
α
satisfies (4.35a)–(4.35d) and (4.35f)–(4.35h). Note that

V + V − C < V + (C + V ) − C = 2V < C − C. Thus, θ́
α
also satisfies (4.35e),

implying that θ́
α
∈ conv(D). It is also easy to verify that θ́

α
satisfies (4.36) at

equality.

(A6) For α = 1, we create a point θ̂
α
as follows:

p̂αs =

V − C, s = 1

0, o.w.

, r̂−,α
s =

V − C, s = 1

0, o.w.

, ŷαs =

1, s = 1

0, o.w.

,

r̂+,α
s = 0 for any s ∈ T , and û+,α

s = 0 for any s ∈ T \ {1}. It is easy to verify that

θ̂
α
satisfies (4.35a)–(4.35h). Thus, θ̂

α
∈ conv(D). It is also easy to verify that θ̂

α

satisfies (4.36) at equality.

(A7) For each α ∈ [2, t− 2]Z, we create a point θ̂
α
as follows:

p̂αs = r̂−,α
s =

V − C, s = α

0, o.w.

, ŷαs = ûαs =

1, s = α

0, o.w.

,

and r̂+,α
s = 0 for any s ∈ T . It is easy to verify that θ̂

α
satisfies (4.35a)–(4.35h)

because L = 1. Thus, θ̂
α
∈ conv(D). It is also easy to verify that θ̂

α
satisfies (4.36)

at equality.
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(A8) For each α = t− 1, we create a point θ̂
α
as follows:

p̂αs =


V − C, s ∈ [t− 1,min{t+ 1, T}]Z \ {t}

V + V − C, s = t

0, o.w.

, r̂−,α
s =


V − C, s = t− 1

V + V − C, s = t

0, o.w.

,

ŷαs =

1, s ∈ [t− 1,min{t+ 1, T}]Z

0, o.w.

, ûαs =

1, s = t− 1

0, o.w.

,

and r̂+,α
s = 0 for any s ∈ T . Note that V +V −C < (C+V )+V −C = 2V < C−C.

Thus, θ̂
α
satisfies (4.35a)–(4.35h) and θ̂

α
∈ conv(D). It is also easy to verify that

θ̂
α
satisfies (4.36) at equality.

(A9) For each α = t, we create a point θ̂
α
as follows:

p̂αs =

V − C − ϵ, s = t

0, o.w.

, r̂+,α
s =

ϵ, s = t

0, o.w.

, r̂−,α
s =

V − C − ϵ, s = t

0, o.w.

,

and ŷαs = ûαs = 1 for s = t and ŷαs = ûαs = 0 otherwise. It is clear that θ̂
α
satisfies

(4.35a)–(4.35h) because L = 1. Thus, θ̂
α
∈ conv(D). It is also easy to verify that

θ̂
α
satisfies (4.36) at equality.

(A10) For each α ∈ [t+ 1, T ]Z, we create a point θ̂
α
as follows:

p̂αs =

V − C, s = α

0, o.w.

, r̂−,α
s =

V − C, s = α

0, o.w.

, ŷαs = ûαs =

1, s = α

0, o.w.

,

and r̂+,α
s = 0 for any s ∈ T . It is easy to verify that θ̂

α
satisfies (4.35a)–(4.35h)

because L = 1. Thus, θ̂
α
∈ conv(D). It is also easy to verify that θ̂

α
satisfies (4.36)

at equality.
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(A11) For each α ∈ [1, t− 1]Z, we create a point θ
α
as follows:

pαs =

V − C − ϵ, s ∈ [1, α]Z

0, o.w.

, yαs =

1, s ∈ [1, α]Z

0, o.w.

,

r+,α
s = r−,α

s = 0 for any s ∈ T , and uαs = 0 for any s ∈ T \ {1}. It is easy to verify

that θ
α
satisfies (4.35a)–(4.35h). Thus, θ

α ∈ conv(D). It is also easy to verify that

θ
α
satisfies (4.36) at equality.

(A12) For each α ∈ [t, T ]Z, we create a point θ
α
as follows:

p̄αs =


V, s ∈ [1, t− 1]Z

V − C − ϵ, s ∈ [t, α]Z

0, o.w.

, r+,α
s =

2V − V + C + ϵ, s = t

0, o.w.

,

r−,α
s =

V − C − ϵ, s = t

0, o.w.

,

yαs = 1 for any s ∈ [1, α]Z and yαs = 0 otherwise, and uαs = 0 for any s ∈ T \ {1}.

It is easy to verify that θ
α
satisfies (4.35a)–(4.35h) because 2V < C − C. Thus,

θ
α ∈ conv(D). It is also easy to verify that θ

α
satisfies (4.36) at equality.

(A13) For each α ∈ [2, t− 2]Z, we create a point θ̇
α
as follows:

ṗαs =

V − C, s = α

0, o.w.

, ẏαs = u̇αs =

1, s = α

0, o.w.

,

and ṙ+,α
s = ṙ−,α

s = 0 for any s ∈ T . It is easy to verify that θ̇
α
satisfies (4.35a)–

(4.35h) because L = 1. Thus, θ̇
α ∈ conv(D). It is also easy to verify that θ̇

α

satisfies (4.36) at equality.
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(A14) For α = t− 1, we create a point θ̇
α
as follows:

ṗαs =


V − C, s ∈ [t− 1,min{t+ 1, T}]Z \ {t}

V + V − C, s = t

0, o.w.

, ṙ−,α
s =

V + V − C, s = t

0, o.w.

,

ẏαs =

1, s ∈ [t− 1,min{t+ 1, T}]Z

0, o.w.

, and u̇αs =

1, s = t− 1

0, o.w.

,

and ṙ+,α
s = 0 for any s ∈ T . Note that V +V −C < (C+V )+V −C = 2V < C−C.

Thus, θ̇
α
satisfies (4.35a)–(4.35h) and θ̇

α ∈ conv(D). It is also easy to verify that

θ̇
α
satisfies (4.36) at equality.

(A15) For α = t, we create a point θ̇
α
as follows:

ṗαs =

V − C, s = t

0, o.w.

, ṙ−,α
s =

V − C, s = t

0, o.w.

, ẏαs = u̇αs =

1, s = t

0, o.w.

,

and ṙ+,α
s = 0 for any s ∈ T . It is easy to verify that θ̇

α
satisfies (4.35a)–(4.35h)

because L = 1. Thus, θ̇
α ∈ conv(D). It is also easy to verify that θ̇

α
satisfies (4.36)

at equality.

(A16) For each α ∈ [t+ 1, T ]Z, we create a point θ̇
α
as follows:

ṗαs =

V − C, s = α

0, o.w.

, ẏαs = u̇αs =

1, s = α

0, o.w.

,

and ṙ+,α
s = ṙ−,α

s = 0 for any s ∈ T . It is easy to verify that θ̇
α
satisfies (4.35a)–

(4.35h) because L = 1. Thus, θ̇
α ∈ conv(D). It is also easy to verify that θ̇

α

satisfies (4.36) at equality.

Table C.2 shows a matrix with 5T − 2 rows, where each row represents a point created

above. This matrix can be transformed into the matrix in Table C.3 via the following

Gaussian elimination process:
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Table C.2. Matrix with The Rows Representing 5T − 2 Points in conv(D) That Satisfy Inequality (4.36) at Equality

Point Group Index α
p r+ r− y u

1 2 · · · t − 2 t − 1 t t + 1 · · · T 1 2 · · · t − 1 t t + 1 · · · T 1 2 · · · t − 2 t − 1 t t + 1 · · · T 1 2 · · · t − 2 t − 1 t t + 1 · · · T 2 · · · t − 2 t − 1 t t + 1 · · · T

θ̀
α

(A1)

1 V − C 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

2 V − C V − C · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 1 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0
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.
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.
.
.

.

.

.

t − 1 V − C V − C · · · V − C V − C 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 1 · · · 1 1 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

(A2) t V V · · · V V + ϵ V − C 0 · · · 0 0 0 · · · 0 2V − V + C + ϵ 0 · · · 0 0 0 · · · 0 0 V − C − ϵ 0 · · · 0 1 1 · · · 1 1 1 0 · · · 0 0 · · · 0 0 0 0 · · · 0

(A3)

t + 1 V V · · · V V V − C V − C · · · 0 0 0 · · · 0 2V − V + C 0 · · · 0 0 0 · · · 0 0 V − C 0 · · · 0 1 1 · · · 1 1 1 1 · · · 0 0 · · · 0 0 0 0 · · · 0
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.
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.

T V V · · · V V V − C V − C · · · V − C 0 0 · · · 0 2V − V + C 0 · · · 0 0 0 · · · 0 0 V − C 0 · · · 0 1 1 · · · 1 1 1 1 · · · 1 0 · · · 0 0 0 0 · · · 0

θ́
α

(A4)

1 V − C 0 · · · 0 0 0 0 · · · 0 V − C 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

2 V − C V − C · · · 0 0 0 0 · · · 0 V − C V − C · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 1 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0
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t − 1 V − C V − C · · · V − C V − C 0 0 · · · 0 V − C V − C · · · V − C 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 1 · · · 1 1 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

(A5)

t + 1 V V · · · V V V − C V − C · · · 0 V − C V − C · · · V − C 2V − V + C V − C · · · 0 0 0 · · · 0 0 V − C 0 · · · 0 1 1 · · · 1 1 1 1 · · · 0 0 · · · 0 0 0 0 · · · 0
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T V V · · · V V V − C V − C · · · V − C V − C V − C · · · V − C 2V − V + C V − C · · · V − C 0 0 · · · 0 0 V − C 0 · · · 0 1 1 · · · 1 1 1 1 · · · 1 0 · · · 0 0 0 0 · · · 0

θ̂
α

(A6) 1 V − C 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 V − C 0 · · · 0 0 0 0 · · · 0 1 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

(A7)

2 0 V − C · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 V − C · · · 0 0 0 0 · · · 0 0 1 · · · 0 0 0 0 · · · 0 1 · · · 0 0 0 0 · · · 0
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t − 2 0 0 · · · V − C 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · V − C 0 0 0 · · · 0 0 0 · · · 1 0 0 0 · · · 0 0 · · · 1 0 0 0 · · · 0

(A8) t − 1 0 0 · · · 0 V − C V + V − C V − C · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 V − C V + V − C 0 · · · 0 0 0 · · · 0 1 1 1 · · · 0 0 · · · 0 1 0 0 · · · 0

(A9) t 0 0 · · · 0 0 V − C − ϵ 0 · · · 0 0 0 · · · 0 ϵ 0 · · · 0 0 0 · · · 0 0 V − C − ϵ 0 · · · 0 0 0 · · · 0 0 1 0 · · · 0 0 · · · 0 0 1 0 · · · 0

(A10)

t + 1 0 0 · · · 0 0 0 V − C · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 V − C · · · 0 0 0 · · · 0 0 0 1 · · · 0 0 · · · 0 0 0 1 · · · 0
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T 0 0 · · · 0 0 0 0 · · · V − C 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · V − C 0 0 · · · 0 0 0 0 · · · 1 0 · · · 0 0 0 0 · · · 1

θ
α

(A11)

1 V − C − ϵ 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0
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t − 1 V − C − ϵ V − C − ϵ · · · V − C − ϵ V − C − ϵ 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 1 · · · 1 1 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

(A12)

t V V · · · V V V − C − ϵ 0 · · · 0 0 0 · · · 0 2V − V + C + ϵ 0 · · · 0 0 0 · · · 0 0 V − C − ϵ 0 · · · 0 1 1 · · · 1 1 1 0 · · · 0 0 · · · 0 0 0 0 · · · 0

t + 1 V V · · · V V V − C − ϵ V − C − ϵ · · · 0 0 0 · · · 0 2V − V + C + ϵ 0 · · · 0 0 0 · · · 0 0 V − C − ϵ 0 · · · 0 1 1 · · · 1 1 1 1 · · · 0 0 · · · 0 0 0 0 · · · 0
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T V V · · · V V V − C − ϵ V − C − ϵ · · · V − C − ϵ 0 0 · · · 0 2V − V + C + ϵ 0 · · · 0 0 0 · · · 0 0 V − C − ϵ 0 · · · 0 1 1 · · · 1 1 1 1 · · · 1 0 · · · 0 0 0 0 · · · 0

θ̇
α

(A13)
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.

t − 2 0 0 · · · V − C 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 1 0 0 0 · · · 0 0 · · · 1 0 0 0 · · · 0

(A14) t − 1 0 0 · · · 0 V − C V + V − C V − C · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 V + V − C 0 · · · 0 0 0 · · · 0 1 1 1 · · · 0 0 · · · 0 1 0 0 · · · 0

(A15) t 0 0 · · · 0 0 V − C 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 V − C 0 · · · 0 0 0 · · · 0 0 1 0 · · · 0 0 · · · 0 0 1 0 · · · 0

(A16)

t + 1 0 0 · · · 0 0 0 V − C · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 1 · · · 0 0 · · · 0 0 0 1 · · · 0
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T 0 0 · · · 0 0 0 0 · · · V − C 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 1 0 · · · 0 0 0 0 · · · 1
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Table C.3. Lower Triangular Matrix Obtained From Table C.2 via Gaussian Elimination

Point Group Index α
p r+ r− y u

1 2 · · · t − 2 t − 1 t t + 1 · · · T 1 2 · · · t − 1 t t + 1 · · · T 1 2 · · · t − 2 t − 1 t t + 1 · · · T 1 2 · · · t − 2 t − 1 t t + 1 · · · T 2 · · · t − 2 t − 1 t t + 1 · · · T

θ̀
α (B1)

1 ϵ 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

2 ϵ ϵ · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0
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.
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.

.

t − 1 ϵ ϵ · · · ϵ ϵ 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

t 0 0 · · · 0 ϵ ϵ 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

t + 1 0 0 · · · 0 0 0 ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

.

.

.

.

.

.

.

.

.
.
. .
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. .

.

.
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T 0 0 · · · 0 0 0 ϵ · · · ϵ 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

θ́
α (B2)

1 ϵ 0 · · · 0 0 0 0 · · · 0 V − C 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

2 ϵ ϵ · · · 0 0 0 0 · · · 0 V − C V − C · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0
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t − 1 ϵ ϵ · · · ϵ ϵ 0 0 · · · 0 V − C V − C · · · V − C 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

t + 1 0 0 · · · 0 0 0 ϵ · · · 0 V − C V − C · · · V − C 0 V − C · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0
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T 0 0 · · · 0 0 0 ϵ · · · ϵ V − C V − C · · · V − C 0 V − C · · · V − C 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

θ̂
α (B3)

1 ϵ 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 V − C 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

2 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 V − C · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0
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.
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t − 2 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · V − C 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

t − 1 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 V − C 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

t 0 0 · · · 0 0 −ϵ 0 · · · 0 0 0 · · · 0 ϵ 0 · · · 0 0 0 · · · 0 0 −ϵ 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

t + 1 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 V − C · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0
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T 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · V − C 0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

θ
α (B4)

1 V − C − ϵ 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

2 V − C − ϵ V − C − ϵ · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 1 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0
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t − 1 V − C − ϵ V − C − ϵ · · · V − C − ϵ V − C − ϵ 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 1 · · · 1 1 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

t V V · · · V V V − C − ϵ 0 · · · 0 0 0 · · · 0 2V − V + C + ϵ 0 · · · 0 0 0 · · · 0 0 V − C − ϵ 0 · · · 0 1 1 · · · 1 1 1 0 · · · 0 0 · · · 0 0 0 0 · · · 0

t + 1 V V · · · V V V − C − ϵ V − C − ϵ · · · 0 0 0 · · · 0 2V − V + C + ϵ 0 · · · 0 0 0 · · · 0 0 V − C − ϵ 0 · · · 0 1 1 · · · 1 1 1 1 · · · 0 0 · · · 0 0 0 0 · · · 0

.

.

.

.

.

.

.

.

.
.
. .

.

.

.

.

.

.

.

.

.

.

.

.
.
. .

.

.

.

.

.

.

.

.

.
.
. .

.

.

.

.

.

.

.

.

.
.
. .

.

.

.

.

.

.

.

.

.
.
. .

.

.

.

.

.

.

.

.

.

.

.

.
.
. .

.

.

.

.

.

.

.

.

.
.
. .

.

.

.

.

.

.

.

.

.

.

.

.
.
. .

.

.

.

.

.

.
.
. .

.

.

.

.

.

.

.

.

.

.

.

.
.
. .

.

.

.

T V V · · · V V V − C − ϵ V − C − ϵ · · · V − C − ϵ 0 0 · · · 0 2V − V + C + ϵ 0 · · · 0 0 0 · · · 0 0 V − C − ϵ 0 · · · 0 1 1 · · · 1 1 1 1 · · · 1 0 · · · 0 0 0 0 · · · 0

θ̇
α (B5)

2 0 V − C · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 1 · · · 0 0 0 0 · · · 0 1 · · · 0 0 0 0 · · · 0
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t − 2 0 0 · · · V − C 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 1 0 0 0 · · · 0 0 · · · 1 0 0 0 · · · 0

t − 1 0 0 · · · 0 V − C V + V − C V − C · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 V + V − C 0 · · · 0 0 0 · · · 0 1 1 1 · · · 0 0 · · · 0 1 0 0 · · · 0

t 0 0 · · · 0 0 V − C 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 V − C 0 · · · 0 0 0 · · · 0 0 1 0 · · · 0 0 · · · 0 0 1 0 · · · 0

t + 1 0 0 · · · 0 0 0 V − C · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 1 · · · 0 0 · · · 0 0 0 1 · · · 0
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T 0 0 · · · 0 0 0 0 · · · V − C 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 1 0 · · · 0 0 0 0 · · · 1
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(i) For each α ∈ [1, T ]Z, the point with index α in group (B1), denoted by θ̀
α
, is

obtained by setting θ̀
α
= θ̀

α
−θ

α
for any α ∈ [1, t]Z, θ̀

α
= θ̀

α
−θ

α
+ θ̂

t
− θ̇

t
for any

α ∈ [t+1, T ]Z when t < T . Here θ̀
α
is the point with index α in groups (A1)–(A3),

θ
α
is the point in groups (A11)–(A12), θ̂

t
is the point in group (A9), and θ̇

t
is the

point in group (A15).

(ii) For each α ∈ [1, T ]Z \ {t}, the point with index α in group (B2), denoted by θ́
α
, is

obtained by setting θ́
α
= θ́

α
−θ

α
for any α ∈ [1, t− 1]Z and θ́

α
= θ́

α
−θ

α
+ θ̂

t
− θ̇

t

for any α ∈ [t+1, T ]Z when t < T . Here θ́
α
is the point in groups (A4)–(A5), θ

α
is

the point in groups (A11)–(A12), θ̂
t
is the point in group (A9), and θ̇

t
is the point

in group (A15).

(iii) For each α ∈ [1, T ]Z, the point with index α in group (B3), denoted by θ̂
α
, is

obtained by setting θ̂
1
= θ̂

1
− θ

1
and θ̂

α
= θ̂

α
− θ̇

α
for any α ∈ [2, T ]Z. Here θ̂

α
is

the point in groups (A6)–(A10), θ
1
is the point in group (A11), and θ̇

α
is the point

in groups (A13)–(A16).

(iv) For each α ∈ [1, T ]Z, the point with index α in group (B4), denoted by θ
α
, is

obtained by setting θ
α
= θ

α
. Here θ

α
is the point in groups (A11)–(A12).

(v) For each α ∈ [2, T ]Z, the point with index α in group (B5), denoted by θ̇
α
, is

obtained by setting θ̇
α
= θ̇

α
. Here θ̇

α
is the point with index α in groups (A13)–

(A16).

The matrix shown in Table C.3 is lower triangular; that is, the position of the last

nonzero component of a row of the matrix is greater than the position of the last nonzero

component of the previous row. This indicates that the 5T−2 points in groups (A1)–(A16)

are linearly independent. Therefore, inequality (4.36) is facet-defining for conv(D).

C.13 Proof of Proposition 8

Proof. To prove that inequality (4.37) is valid for conv(D) for any k ∈ [1,min{L, ς+1}]Z
and t ∈ [k + 1, T ]Z, it suffices to show that it is valid for D for such k and t. Consider

any element (p, r+, r−,y,u) of D and any k ∈ [1,min{L, ς +1}]Z and t ∈ [k+1, T ]Z. We

show that (p, r+, r−,y,u) satisfies (4.37). We divide the analysis into the following three

possible cases.
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Case 1: yt = 0. By Lemma 2, we have
∑k−1

s=0 ut−s = 0 and hence ut−s = 0 for any

s ∈ [0, k − 1]Z. Thus, the right-hand side of (4.37) is 0. Because yt = 0, by (4.35e) and

(4.35h), we have pt = r+t = 0. Therefore, in this case, (p, r+, r−,y,u) satisfies (4.37).

Case 2: yt = 1 and ut−s = 0 for any s ∈ [0, k − 1]Z. The right-hand side of (4.37) is

C − C. Because yt = 1, by (4.35e), we have pt + r+t ≤ C − C. Therefore, in this case,

(p, r+, r−,y,u) satisfies (4.37).

Case 3: yt = 1 and ut−s′ = 1 for some s′ ∈ [0, k − 1]Z. By Lemma 2, we have ut−s = 0

for any s ∈ [0, k− 1]Z \ {s′}. Thus, the right-hand side of (4.37) is V −C + s′V . For any

s ∈ [0, s′]Z, we have yt − yt−s = yt − yt−s −
∑s−1

i=0 ut−i =
∑s−1

i=0 (yt−i − yt−i−1 − ut−i) ≤ 0,

where the first equality holds because ut−i = 0 for any i ∈ [0, k − 1]Z \ {s′} and the

inequality holds by (4.35c). Because yt = 1, we have yt−s = 1 for any s ∈ [0, s′]Z.

Because ut−s′ = 1, by Corollary 1, we have yt−s′−1 = 0, which, by (4.35e) and (4.35h),

implies that pt−s′−1 = 0. Thus,

pt + r+t = pt + r+t − pt−s′−1 ≤
t∑

s=t−s′

(
ps + r+s − ps−1

)
≤

t∑
s=t−s′

(
V +

(
C + V − V

)
ys−1 − Cys

)
= (s′ + 1)V +

s′+1∑
i=1

(
C + V − V

)
yt−i −

s′∑
i=0

Cyt−i

= (s′ + 1)V + s′
(
C + V − V

)
− (s′ + 1)C = V − C + s′V,

where the first inequality holds by (4.35h) and the second inequality holds by the ramp-up

constraints (4.35f). Therefore, in this case, (p, r+, r−,y,u) satisfies (4.37).

Consider any k ∈ [1,min{L, ς + 1}]Z and t ∈ [k + 1, T ]Z. To prove inequality (4.37) is

facet-defining for conv(D) when one of the following two conditions holds: (i) L = 1 and

(ii) k = L = 2 and V +V ≤ C ≤ V +2V , it suffices to create 5T − 1 affinely independent

points in conv(D) that satisfy (4.37) at equality. Because 0 ∈ conv(D) and 0 satisfies

(4.37) at equality, it suffices to create the remaining 5T − 2 nonzero linearly independent

points.

First, we consider L = 1, implying that k = 1. We let θ̀ = (p̀, r̀+, r̀−, ỳ, ù) and denote

the sth component of p̀, r̀+, r̀−, ỳ, and ù by p̀s, r̀
+
s , r̀

−
s , ỳs, and ùs. Similarly, we define

θ́, θ̂, θ, and θ̇. We denote the 5T − 2 nonzero linearly independent points by θ̀
α
for

α ∈ T \ {t}, θ́
α
for α ∈ T , θ̂

α
for α ∈ T , θ

α
for α ∈ T , and θ̇

α
for α ∈ T \ {1}. We

let ϵ = min
{
C + V − V , V − C

}
> 0 and divide the 5T − 2 points into the following 11
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groups.

(A1) For each α ∈ [1, t− 1]Z, we create a point θ̀
α
as follows:

p̀αs =

V − C, s ∈ [1, α]Z

0, o.w.

, ỳαs =

1, s ∈ [1, α]Z

0, o.w.

,

r̀+,α
s = r̀−,α

s = 0 for any s ∈ T , and ùαs = 0 for any s ∈ T \ {1}. It is easy to verify

that θ̀
α
satisfies (4.35a)–(4.35h). Thus, θ̀

α
∈ conv(D). It is also easy to verify that

θ̀
α
satisfies (4.37) at equality.

(A2) For each α ∈ [t+ 1, T ]Z, we create a point θ̀
α
as follows:

p̀αs =

V − C, s ∈ [t, α]Z

0, o.w.

, ỳαs =

1, s ∈ [t, α]Z

0, o.w.

, ùαs =

1, s = t

0, o.w.

,

and r̀+,α
s = r̀−,α

s = 0 for any s ∈ T . It is easy to verify that θ̀
α
satisfies (4.35a)–

(4.35h). Thus, θ̀
α
∈ conv(D). It is also easy to verify that θ̀

α
satisfies (4.37) at

equality.

(A3) For each α ∈ [1, t− 1]Z, we create a point θ́
α
as follows:

ṕαs =

V − C − ϵ, s ∈ [1, α]Z

0, o.w.

, ŕ+,α
s =

ϵ, s = α

0, o.w.

, ýαs =

1, s ∈ [1, α]Z

0, o.w.

,

ŕ−,α
s = 0 for any s ∈ T , and úαs = 0 for any s ∈ T \ {1}. It is easy to verify that

θ́
α
satisfies (4.35a)–(4.35h). Thus, θ́

α
∈ conv(D). It is also easy to verify that θ́

α

satisfies (4.37) at equality.

(A4) For α = t, we create a point θ́
α
as follows:

ṕαs =

V − C − ϵ, s = t

0, o.w.

, ŕ+,α
s =

ϵ, s = t

0, o.w.

, ýαs = úαs =

1, s = t

0, o.w.

,

and ŕ−,α
s = 0 for any s ∈ T . It is easy to verify that θ́

α
satisfies (4.35a)–(4.35h).

Thus, θ́
α
∈ conv(D). It is also easy to verify that θ́

α
satisfies (4.37).
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(A5) For each α ∈ [t+ 1, T ]Z, we create a point θ́
α
as follows:

ṕαs =


V − C, s = t,

V − C − ϵ, s ∈ [t+ 1, α]Z

0, o.w.

, ŕ+,α
s =

ϵ, s = α

0, o.w.

, ýαs =

1, s ∈ [t, α]Z

0, o.w.

,

úαs =

1, s = t

0, o.w.

,

and ŕ−,α
s = 0 for any s ∈ T . It is easy to verify that θ́

α
satisfies (4.35a)–(4.35h).

Thus, θ́
α
∈ conv(D). It is also easy to verify that θ́

α
satisfies (4.37) at equality.

(A6) For each α ∈ [1, t− 1]Z, we create a point θ̂
α
as follows:

p̂αs =

V − C − ϵ, s ∈ [1, α]Z

0, o.w.

, r̂−,α
s =

ϵ, s = α

0, o.w.

, ŷαs =

1, s ∈ [1, α]Z

0, o.w.

,

r̂+,α
s = 0 for any s ∈ T , and ûαs = 0 for any s ∈ T \ {1}. It is easy to verify that

θ̂
α
satisfies (4.35a)–(4.35h). Thus, θ̂

α
∈ conv(D). It is also easy to verify that θ̂

α

satisfies (4.37) at equality.

(A7) For each α ∈ [t, T ]Z, we create a point θ̂
α
as follows:

p̂αs =


V − C, s = t

V − C − ϵ, s ∈ [t+ 1, α]Z, t < T

0, o.w.

, r̂−,α
s =

ϵ, s = α

0, o.w.

, ŷαs =

1, s ∈ [t, α]Z

0, o.w.

,

r̂+,α
s = 0 for any s ∈ T , and ûαs = 1 for s = t and ûαs = 0 otherwise. It is clear that

θ̂
α
satisfies (4.35a)–(4.35h). Thus, θ̂

α
∈ conv(D). It is also easy to verify that θ̂

α

satisfies (4.37) at equality.
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(A8) For each α ∈ [1, t− 1]Z, we create a point θ
α
as follows:

pαs =

V − C − ϵ, s ∈ [1, α]Z

0, o.w.

, yαs =

1, s ∈ [1, α]Z

0, o.w.

,

r+,α
s = r−,α

s = 0 for any s ∈ T , and uαs = 0 for any s ∈ T \ {1}. It is easy to verify

that θ
α
satisfies (4.35a)–(4.35h). Thus, θ

α ∈ conv(D). It is also easy to verify that

θ
α
satisfies (4.37) at equality.

(A9) For α = t, we create a point θ
α
such that pαs = C −C, r+,α

s = r−,α
s = 0, and yαs = 1

for any s ∈ T , and uαs = 0 for any s ∈ T \ {1}. It is easy to verify that θ
α
satisfies

(4.35a)–(4.35h). Thus, θ
α ∈ conv(D). It is also easy to verify that θ

α
satisfies

(4.37) at equality.

(A10) For each α ∈ [t+ 1, T ]Z, we create a point θ
α
as follows:

pαs =


V − C, s = t

V − C − ϵ, s ∈ [t+ 1, α]Z

0, o.w.

, yαs =

1, s ∈ [t, α]Z

0, o.w.

, uαs =

1, s = t

0, o.w.

,

and r+,α
s = r−,α

s = 0 for any s ∈ T . It is easy to verify that θ
α
satisfies (4.35a)–

(4.35h). Thus, θ
α ∈ conv(D). It is also easy to verify that θ

α
satisfies (4.37) at

equality.

(A11) For each α ∈ [2, T ]Z, we create a point θ̇
α
as follows:

ṗαs =

V − C, s = α,

0, o.w.

, ẏαs = u̇αs =

1, s = α,

0, o.w.

,

and ṙ+,α
s = ṙ−,α

s = 0 for any s ∈ T . It is easy to verify that θ̇
α
satisfies (4.35a)–

(4.35h). Thus, θ̇
α ∈ conv(D). It is also easy to verify that θ̇

α
satisfies (4.37) at

equality.

Table C.4 shows a matrix with 5T − 2 rows, where each row represents a point created

above. This matrix can be transformed into the matrix in Table C.5 via the following
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Gaussian elimination process:

(i) For each α ∈ [1, T ]Z \ {t}, the point with index α in group (B1), denoted by θ̀
α
, is

obtained by setting θ̀
α
= θ̀

α
− θ

α
for any α ∈ [1, T ]Z \ {t}. Here θ̀

α
is the point

with index α in groups (A1)–(A2) and θ
α
is the point with index α in groups (A8)

and (A10).

(ii) For each α ∈ [1, T ]Z, the point with index α in group (B2), denoted by θ́
α
, is

obtained by setting θ́
α
= θ́

α
− θ

α
for any α ∈ [1, T ]Z \ {t} and θ́

t
= θ́

t
− θ̇

t
. Here

θ́
α
is the point with index α in groups (A3)–(A5), θ

α
is the point with index α in

groups (A8) and (A10), and θ̇
t
is the point in group (A11).

(iii) For each α ∈ [1, T ]Z, the point with index α in group (B3), denoted by θ̂
α
, is

obtained by setting θ̂
α
= θ̂

α
− θ

α
for any α ∈ [1, T ]Z \ {t} and θ̂

t
= θ̂

t
− θ̇

t
. Here

θ̂
α
is the point with index α in groups (A6)–(A7), θ

α
is the point with index α in

groups (A8) and (A10), and θ̇
t
is the point in group (A11).

(iv) For each α ∈ [1, T ]Z, the point with index α in group (B4), denoted by θ
α
, is

obtained by setting θ
α
= θ

α
for any α ∈ [1, t − 1]Z, θ

t
= θ

t
when t = T , θ

t
=

θ
t − θ

T
+ θ̇

t − θ
t−1

when t < T , and θ
α
= θ

α − θ̇
t
for any α ∈ [t + 1, T ]Z when

t < T . Here θ
α
is the point with index α in groups (A8), (A9), and (A10), and θ̇

t

is the point in group (A11).

(v) For each α ∈ [2, T ]Z, the point with index α in group (B5), denoted by θ̇
α
, is

obtained by setting θ̇
α
= θ̇

α
. Here θ̇

α
is the point with index α in group (A11).

The matrix shown in Table C.5 is lower triangular; that is, the position of the last

nonzero component of a row of the matrix is greater than the position of the last nonzero

component of the previous row. This indicates that the 5T − 2 points in groups (A1)–

(A11) are linearly independent. Therefore, inequality (4.37) is facet-defining for conv(D)

when L = 1.
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Table C.4. Matrix with The Rows Representing 5T − 2 Points in conv(D) That Satisfy Inequality (4.37) at Equality When L = 1

Point Group Index α
p r+ r− y u

1 2 · · · t − 1 t t + 1 · · · T 1 2 · · · t − 1 t t + 1 · · · T 1 2 · · · t − 1 t t + 1 · · · T 1 2 · · · t − 1 t t + 1 · · · T 2 · · · t − 1 t t + 1 · · · T

θ̀
α

(A1)

1 V − C 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

2 V − C V − C · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0
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.

.

.

.

t − 1 V − C V − C · · · V − C 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 0 0 · · · 0 0 · · · 0 0 0 · · · 0

(A2)

t + 1 0 0 · · · 0 V − C V − C · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 0 0 · · · 0 1 0 · · · 0
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.
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.

.

.

.

T 0 0 · · · 0 V − C V − C · · · V − C 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 0 · · · 0 1 0 · · · 0

θ́
α

(A3)

1 V − C − ϵ 0 · · · 0 0 0 · · · 0 ϵ 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

2 V − C − ϵ V − C − ϵ · · · 0 0 0 · · · 0 0 ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0
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.

.

t − 1 V − C − ϵ V − C − ϵ · · · V − C − ϵ 0 0 · · · 0 0 0 · · · ϵ 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 0 0 · · · 0 0 · · · 0 0 0 · · · 0

(A4) t 0 0 · · · 0 V − C − ϵ 0 · · · 0 0 0 · · · 0 ϵ 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 · · · 0 1 0 · · · 0

(A5)

t + 1 0 0 · · · 0 V − C V − C − ϵ · · · 0 0 0 · · · 0 0 ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 0 0 · · · 0 1 0 · · · 0
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T 0 0 · · · 0 V − C V − C − ϵ · · · V − C − ϵ 0 0 · · · 0 0 0 · · · ϵ 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 0 · · · 0 1 0 · · · 0

θ̂
α

(A6)

1 V − C − ϵ 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 ϵ 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0
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t − 1 V − C − ϵ V − C − ϵ · · · V − C − ϵ 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · ϵ 0 0 · · · 0 1 1 · · · 1 0 0 · · · 0 0 · · · 0 0 0 · · · 0

(A7)

t 0 0 · · · 0 V − C 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 ϵ 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 · · · 0 1 0 · · · 0
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Table C.5. Lower Triangular Matrix Obtained From Table C.4 via Gaussian Elimination

Point Group Index α
p r+ r− y u

1 2 · · · t − 1 t t + 1 · · · T 1 2 · · · t − 1 t t + 1 · · · T 1 2 · · · t − 1 t t + 1 · · · T 1 2 · · · t − 1 t t + 1 · · · T 2 · · · t − 1 t t + 1 · · · T
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Next, we consider k = L = 2 and V + V ≤ C ≤ V + 2V . We let θ̀ = (p̀, r̀+, r̀−, ỳ, ù)

and denote the sth component of p̀, r̀+, r̀−, ỳ, and ù by p̀s, r̀
+
s , r̀

−
s , ỳs, and ùs. Similarly,

we define θ́, θ̂, θ, and θ̇. We denote the 5T − 2 nonzero linearly independent points by

θ̀
α
for α ∈ T \ {t}, θ́

α
for α ∈ T , θ̂

α
for α ∈ T , θ

α
for α ∈ T , and θ̇

α
for α ∈ T \ {1}.

We let ϵ = min
{
C + V − V , V − C

}
> 0 and create the 5T − 2 points as follows.

For each α ∈ T \ {t, t+ 1}, we create the same point θ̀
α
as in groups (A1) and (A2).

For each α ∈ T \ {t}, we create the same point θ́
α
as in groups (A3) and (A5), For

each α ∈ T \ {t}, we create the same point θ̂
α
as in groups (A6) and (A7), For each

α ∈ T \ {t, t+1}, we create the same point θ
α
as in groups (A8) and (A10). We further

create the following points.

(N1) For α = t+ 1, we create a point θ̀
α
as follows:

p̀αs =


V − C, s = t

V − C − ϵ, s = t+ 1

0, o.w.

, ỳαs =

1, s ∈ [t, t+ 1]Z

0, o.w.

, ùαs =

1, s = t

0, o.w.

,

and r̀+,α
s = r̀−,α

s = 0 for any s ∈ T . It is easy to verify that θ̀
α
satisfies (4.35a)–

(4.35h). Thus, θ̀
α
∈ conv(D). It is also easy to verify that θ̀

α
satisfies (4.37) at

equality.

(N2) For α = t, we create a point θ́
α
as follows:

ṕαs =

V − C − ϵ, s ∈ [t,min{t+ 1, T}]Z

0, o.w.

, ŕ+,α
s =

ϵ, s = t

0, o.w.

,

ýαs =

1, s ∈ [t,min{t+ 1, T}]Z

0, o.w.

,

ŕ−,α
s = 0 for any s ∈ T , and úαs = 1 for s = t and úαs = 0 otherwise. It is easy

to verify that θ́
α
satisfies (4.35a)–(4.35h). Thus, θ́

α
∈ conv(D). It is also easy to

verify that θ́
α
satisfies (4.37).
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(N3) For α = t, we create a point θ̂
α
as follows:

p̂αs =


V − C, s = t

V − C − ϵ, s = t+ 1, t < T

0, o.w.

, r̂−,α
s =

ϵ, s = α

0, o.w.

, ŷαs =

1, s ∈ [t,min{t+ 1, T}]Z

0, o.w.

,

r̂+,α
s = 0 for any s ∈ T , and ûαs = 1 for s = t and ûαs = 0 otherwise. It is clear that

θ̂
t
satisfies (4.35a)–(4.35h). Thus, θ̂

t
∈ conv(D). It is also easy to verify that θ̂

t

satisfies (4.37) at equality.

(N4) For α = t, we create a point θ
α
as follows:

pαs =


C − C − V, s ∈ [1, t− 1]Z

V − C, s = t

0, o.w.

, r+,α
s =

C − V , s = t

0, o.w.

, yαs =

1, s ∈ [1, t]Z

0, o.w.

,

r−,α
s = 0 for any s ∈ T , and uαs = 0 for any s ∈ T \ {1}. It is easy to verify that

θ
α
satisfies (4.35a)–(4.35f). Note that (C − C − V ) − (V − C) = C − V − V ≤

(V + 2V )− V − V = V , where the first inequality holds by the assumption. Thus,

θ
α
satisfies (4.35g). Note also that C − C − V ≥ (V + V )− C − V = V − C > 0,

where the first inequality holds by the assumption. Thus, θ
α
satisfies (4.35h) and

θ
α ∈ conv(D). It is also easy to verify that θ

α
satisfies (4.37) at equality.

(N5) For α = t + 1, we create a point θ
α
such that pαs = C − C, r+,α

s = r−,α
s = 0, and

yαs = 1 for any s ∈ T , and uαs = 0 for any s ∈ T \ {1}. It is easy to verify that

θ
α
satisfies (4.35a)–(4.35h). Thus, θ

α ∈ conv(D). It is also easy to verify that θ
α

satisfies (4.37) at equality.

(N6) For each α ∈ [2, t− 2]Z, we create a point θ̇
α
as follows:

ṗαs =

V − C, s ∈ [α, α + 1]Z,

0, o.w.

, ẏαs =

1, s ∈ [α, α + 1]Z,

0, o.w.

, u̇+,α
s =

1, s = α

0, o.w.

,

and r+,α
s = r−,α

s = 0 for any s ∈ T . It is easy to verify that θ̇
α
satisfies (4.35a)–
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(4.35h). Thus, θ̇
α ∈ conv(D). It is also easy to verify that θ̇

α
satisfies (4.37) at

equality.

(N7) For each α = t− 1, we create a point θ̇
α
as follows:

ṗαs =


V − C, s ∈ [t− 1,min{t+ 1, T}]Z \ {t},

V − C + V, s = t,

0, o.w.

, ẏαs =

1, s ∈ [t− 1,min{t+ 1, T}]Z,

0, o.w.

,

r+,α
s = r−,α

s = 0 for any s ∈ T , u̇+,α
s = 1 for s = t− 1 and u̇+,α

s = 0 otherwise. Note

that V −C + V ≤ C −C. Thus, θ̇
α
satisfies (4.35a)–(4.35h) and θ̇

α ∈ conv(D). It

is also easy to verify that θ̇
α
satisfies (4.37) at equality.

(N8) For each α ∈ [t, T ]Z, we create a point θ̇
α
as follows:

ṗαs =

V − C, s ∈ [α,min{α + 1, T}]Z,

0, o.w.

, ẏαs =

1, s ∈ [α,min{α + 1, T}]Z,

0, o.w.

,

r+,α
s = r−,α

s = 0 for any s ∈ T , and u̇+,α
s = 1 for s = α and u̇+,α

s = 0 otherwise. It

is clear that θ̇
α
satisfies (4.35a)–(4.35h). Thus, θ̇

α ∈ conv(D). It is also cleare that

θ̇
α
satisfies (4.37) at equality.

Table C.6 shows a matrix with 5T − 2 rows, where each row represents a point created

by above. This matrix can be transformed into the matrix in Table C.7 via the following

Gaussian elimination process:

(i) For each α ∈ [1, T ]Z \ {t}, the point with index α in group (B1), denoted by θ̀
α
, is

obtained by setting θ̀
α
= θ̀

α
−θ

α
for any α ∈ T \ {t, t+1}, θ̀

t+1
= θ̀

t+1
− θ̇

t
when

t < T . Here θ̀
α
with α ∈ [1, T ]Z \ {t, t + 1} is the point with index α in groups

(A1) and (A2), θ̀
t+1

with t < T is the point in group (N1), θ
α
with α ∈ [1, t− 1]Z

is the point with index α in group (A8), θ
α
with α ∈ [t + 2, T ]Z and t ≤ T − 2 is

the point in group (A10), and θ̇
t
is the point in group (N8).

(ii) For each α ∈ [1, T ]Z, the point with index α in group (B2), denoted by θ́
α
, is

obtained by setting θ́
α
= θ́

α
− θ

α
for any α ∈ [1, T ]Z \ {t, t+ 1}, θ́

α
= θ́

α
− θ̇

t
for

any α ∈ [t,min{t + 1, T}]Z. Here θ́
α
with α ∈ [1, T ]Z \ {t} is the point with index
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α in group (A3) and (A5), θ́
t
is the point in group (N2), θ

α
with α ∈ [1, t− 1]Z is

the point with index α in group (A8), θ
α
with α ∈ [t+ 2, T ]Z and t ≤ T − 2 is the

point in group (A10), and θ̇
t
is the point in group (N8).
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Table C.6. Matrix with The Rows Representing 5T − 2 Points in conv(D) That Satisfy Inequality (4.37) at Equality When L = 2

Point Group Index α
p r+ r− y u

1 2 · · · t − 1 t t + 1 · · · T 1 2 · · · t − 1 t t + 1 · · · T 1 2 · · · t − 1 t t + 1 · · · T 1 2 · · · t − 1 t t + 1 t + 2 · · · T 2 · · · t − 1 t t + 1 · · · T

θ̀
α

(A1)

1 V − C 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

2 V − C V − C · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

.
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.
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. .

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
. .
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.

.

.

.

.

.
.
. .

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

t − 1 V − C V − C · · · V − C 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

(N1) t + 1 0 0 · · · 0 V − C V − C − ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 0 · · · 0 0 · · · 0 1 0 · · · 0

(A2)

t + 2 0 0 · · · 0 V − C V − C · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 1 · · · 0 0 · · · 0 1 0 · · · 0
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.
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.

.

.
. .
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

T 0 0 · · · 0 V − C V − C · · · V − C 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 1 · · · 1 0 · · · 0 1 0 · · · 0

θ́
α

(A3)

1 V − C − ϵ 0 · · · 0 0 0 · · · 0 ϵ 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

2 V − C − ϵ V − C − ϵ · · · 0 0 0 · · · 0 0 ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0
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.

t − 1 V − C − ϵ V − C − ϵ · · · V − C − ϵ 0 0 · · · 0 0 0 · · · ϵ 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

(N2) t 0 0 · · · 0 V − C − ϵ V − C − ϵ · · · 0 0 0 · · · 0 ϵ 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 0 · · · 0 0 · · · 0 1 0 · · · 0

(A5)

t + 1 0 0 · · · 0 V − C V − C − ϵ · · · 0 0 0 · · · 0 0 ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 0 · · · 0 0 · · · 0 1 0 · · · 0
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T 0 0 · · · 0 V − C V − C − ϵ · · · V − C − ϵ 0 0 · · · 0 0 0 · · · ϵ 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 1 · · · 1 0 · · · 0 1 0 · · · 0

θ̂
α

(A6)

1 V − C − ϵ 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 ϵ 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

2 V − C − ϵ V − C − ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 ϵ · · · 0 0 0 · · · 0 1 1 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0
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t − 1 V − C − ϵ V − C − ϵ · · · V − C − ϵ 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · ϵ 0 0 · · · 0 1 1 · · · 1 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

(N3) t 0 0 · · · 0 V − C V − C − ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 ϵ 0 · · · 0 0 0 · · · 0 1 1 0 · · · 0 0 · · · 0 1 0 · · · 0

(A7)

t + 1 0 0 · · · 0 V − C V − C − ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 ϵ · · · 0 0 0 · · · 0 1 1 0 · · · 0 0 · · · 0 1 0 · · · 0
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T 0 0 · · · 0 V − C V − C − ϵ · · · V − C − ϵ 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · ϵ 0 0 · · · 0 1 1 1 · · · 1 0 · · · 0 1 0 · · · 0

θ
α

(A8)

1 V − C − ϵ 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

2 V − C − ϵ V − C − ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0
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t − 1 V − C − ϵ V − C − ϵ · · · V − C − ϵ 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

(N4) t C − C − V C − C − V · · · C − C − V V − C 0 · · · 0 0 0 · · · 0 C − V 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 1 0 0 · · · 0 0 · · · 0 0 0 · · · 0

(N5) t + 1 C − C C − C · · · C − C C − C C − C · · · C − C 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 1 1 1 · · · 1 0 · · · 0 0 0 · · · 0

(A10)

t + 2 0 0 · · · 0 V − C V − C − ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 1 · · · 0 0 · · · 0 1 0 · · · 0
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T 0 0 · · · 0 V − C V − C − ϵ · · · V − C − ϵ 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 1 · · · 1 0 · · · 0 1 0 · · · 0

θ̇
α

(N6)

2 0 V − C · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 1 · · · 0 0 0 0 · · · 0 1 · · · 0 0 0 · · · 0
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.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

(N7) t − 1 0 0 · · · V − C V − C + V V − C · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 1 1 1 0 · · · 0 0 · · · 1 0 0 · · · 0

(N8)

t 0 0 · · · 0 V − C V − C · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 0 · · · 0 0 · · · 0 1 0 · · · 0
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T 0 0 · · · 0 0 0 · · · V − C 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 1 0 · · · 0 0 0 · · · 1
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Table C.7. Lower Triangular Matrix Obtained From Table C.6 via Gaussian Elimination

Point Group Index α
p r+ r− y u

1 2 · · · t − 1 t t + 1 · · · T 1 2 · · · t − 1 t t + 1 · · · T 1 2 · · · t − 1 t t + 1 · · · T 1 2 · · · t − 1 t t + 1 t + 2 · · · T 2 · · · t − 1 t t + 1 · · · T

θ̀
α (B1)

1 ϵ 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

2 ϵ ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0
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(iii) For each α ∈ [1, T ]Z, the point with index α in group (B3), denoted by θ̂
α
, is

obtained by setting θ̂
α
= θ̂

α
− θ

α
for any α ∈ [1, T ]Z \ {t, t+ 1}, θ̂

α
= θ̂

α
− θ̇

t
for

any α ∈ [t,min{t + 1, T}]Z. Here θ̂
α
with α ∈ [1, T ]Z \ {t} is the point with index

α in group (A6) and (A7), θ̂
t
is the point in group (N3), θ

α
with α ∈ [1, t− 1]Z is

the point with index α in group (A8), θ
α
with α ∈ [t+ 2, T ]Z and t ≤ T − 2 is the

point in group (A10), and θ̇
t
is the point in group (N8).

(iv) For each α ∈ [1, T ]Z, the point with index α in group (B4), denoted by θ
α
, is

obtained by setting (i) θ
α
= θ

α
for any α ∈ [1, t]Z, where θ

α
with α ∈ [1, t− 1]Z is

the point with index α in group (A8), θ
t
is the point in group (N4), (ii) θ

t+1
= θ

t+1

when t = T − 1, where θ
t+1

is the point in group (N5), θ
t+1

= θ
t+1 − θ

T
+ θ̇

t

when t ≤ T − 2, where θ
t+1

and θ
T
are points in group (N5) and group (A10),

respectively, and (iii) θ
α
= θ

α − θ̇
t
for any α ∈ [t + 2, T ]Z when t ≤ T − 2, where

θ
α
is the point in group (A10). Here θ̇

t
is the point in group (N8).

(v) For each α ∈ [2, T ]Z, the point with index α in group (B5), denoted by θ̇
α
, is

obtained by setting θ̇
α
= θ̇

α
. Here θ̇

α
is the point with index α in groups (N6)–

(N8).

The matrix shown in Table C.7 is lower triangular; that is, the position of the last

nonzero component of a row of the matrix is greater than the position of the last nonzero

component of the previous row. This indicates that the 5T − 2 points created above

are linearly independent. Therefore, inequality (4.37) is facet-defining for conv(D) when

k = L = 2 and V + V ≤ C ≤ V + 2V .

C.14 Proof of Proposition 9

Proof. To prove that inequality (4.38) is valid for conv(D) for any t ∈ [2, T ]Z and k ∈

[1,min{t− 1, ς}]Z, it suffices to show that it is valid for D for such t and k. Consider any

element (p, r+, r−,y,u) of D and any t ∈ [2, T ]Z and k ∈ [1,min{t − 1, ς}]Z. We show

that (p, r+, r−,y,u) satisfies (4.38).

First, we show
∑min{L,k}−1

s=0 ut−s ≤ yt. Specifically, when k ≥ L, we have
∑min{L,k}−1

s=0 ut−s =∑L−1
s=0 ut−s =

∑t
s=t−L+1 us ≤ yt, where the inequality holds by (4.35a). When k < L, we

have
∑min{L,k}−1

s=0 ut−s =
∑k−1

s=0 ut−s =
∑t

s=t−k+1 us ≤ yt, where the inequality holds by

182



Lemma 2. Next, we divide the analysis into the following three possible cases.

Case 1: yt = 0. Because
∑min{L,k}−1

s=0 ut−s ≤ yt, we have
∑min{L,k}−1

s=0 ut−s = 0, implying

that ut−s = 0 for any s ∈ [0,min{L, k} − 1]Z. Thus, the right-hand side of (4.38) is 0.

Because yt = 0, by (4.35e) and (4.35h), we have pt = r+t = 0. Therefore, in this case,

(p, r+, r−,y,u) satisfies (4.38).

Case 2: yt = 1 and ut−s = 0 for any s ∈ [0,min{L, k} − 1]Z. The right-hand side

of (4.38) is kV . By (4.35c), we have yt−1 = 1. Therefore, we have pt + r+t − pt−k =

pt + r+t − pt−1 +
∑k−1

s=1 (pt−s − pt−s−1) ≤ V +
∑k−1

s=1 (pt−s − pt−s−1) ≤ kV , where the first

inequality holds by (4.35f) and the last inequality holds by Lemma 4. Therefore, in this

case, (p, r+, r−,y,u) satisfies (4.38).

Case 3: yt = 1 and ut−s′ = 1 for some s′ ∈ [0,min{L, k} − 1]Z. By Lemma 2, we have

ut−s = 0 for any s ∈ [0, k−1]Z\{s′}. Thus, the right-hand side of (4.38) is V −C+s′V . For

any s ∈ [0, s′]Z, we have yt−yt−s = yt−yt−s−
∑s−1

i=0 ut−i =
∑s−1

i=0 (yt−i − yt−i−1 − ut−i) ≤ 0,

where the first equality holds because ut−i = 0 for any i ∈ [0, k − 1]Z \ {s′} and the

inequality holds by (4.35c). Because yt = 1, we have yt−s = 1 for any s ∈ [0, s′]Z.

Because ut−s′ = 1, by Corollary 1, we have yt−s′−1 = 0, which, by (4.35e) and (4.35h),

implies that pt−s′−1 = 0. Thus,

pt + r+t − pt−k ≤ pt + r+t = pt + r+t − pt−s′−1 ≤
t∑

s=t−s′

(
ps + r+s − ps−1

)
≤

t∑
s=t−s′

(
V +

(
C + V − V

)
ys−1 − Cys

)
= (s′ + 1)V +

s′+1∑
i=1

(
C + V − V

)
yt−i −

s′∑
i=0

Cyt−i

= (s′ + 1)V + s′
(
C + V − V

)
− (s′ + 1)C = V − C + s′V,

where the first and second inequalities hold by (4.35h) and the third inequality holds by

the ramp-up constraints (4.35f). Therefore, in this case, (p, r+, r−,y,u) satisfies (4.38).

Consider any t ∈ [2, T ]Z and k ∈ [1,min{t−1, ς}]Z. To prove (4.38) is facet-defining for

conv(D) when L = 1, it suffices to create 5T − 1 affinely independent points in conv(D)

that satisfy (4.38) at equality. Because 0 ∈ conv(D) and 0 satisfies (4.36) at equality,

it suffices to create the remaining 5T − 2 nonzero linearly independent points. We let

θ̀ = (p̀, r̀+, r̀−, ỳ, ù) and denote the sth component of p̀, r̀+, r̀−, ỳ, and ù by p̀s, r̀
+
s , r̀

−
s ,

ỳs, and ùs. Similarly, we define θ́, θ̂, θ, and θ̇. We denote the 5T − 2 nonzero linearly

independent points by θ̀
α
for α ∈ T \ {t− k}, θ́

α
for α ∈ T , θ̂

α
for α ∈ T , θ

α
for α ∈ T ,
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and θ̇
α
for α ∈ T \ {1}. We let ϵ = min

{
C + V − V , V − C

}
> 0 and divide the 5T − 2

points into the following 14 groups.

(A1) For each α ∈ [1, t− 1]Z \ {t− k}, we create a point θ̀
α
as follows:

p̀αs =

V − C, s ∈ [1, α]Z \ {t− k}

0, o.w.

, ỳαs =

1, s ∈ [1, α]Z

0, o.w.

,

r̀+,α
s = r̀−,α

s = 0 for any s ∈ T , and ùαs = 0 for any s ∈ T \ {1}. It is easy to verify

that θ̀
α
satisfies (4.35a)–(4.35h). Thus, θ̀

α
∈ conv(D). It is also easy to verify that

θ̀
α
satisfies (4.38) at equality.

(A2) For α = t, we create a point θ̀
α
as follows:

p̀αs =


V − C, s ∈ [1, t− k]Z

V − C + (s− t+ k)V, s ∈ [t− k + 1, t]Z

V − C + kV, o.w.

,

r̀+,α
s = r̀−,α

s = 0 for any s ∈ T , ỳαs = 1 for any s ∈ T , and ùαs = 0 for any s ∈ T \{1}.

Note that k ≤ (C − V )/V and hence V − C + kV ≤ C − C. Thus, θ̀
α
satisfies

(4.35a)–(4.35h) and θ̀
α
∈ conv(D). It is also easy to verify that θ̀

α
satisfies (4.38)

at equality.

(A3) For each α ∈ [t+ 1, T ]Z, we create a point θ̀
α
as follows:

p̀αs =

V − C, s ∈ [t, α]Z

0, o.w.

, ỳαs =

1, s ∈ [t, α]Z

0, o.w.

, ùαs =

1, s = t

0, o.w.

,

and r̀+,α
s = r̀−,α

s = 0 for any s ∈ T . It is easy to verify that θ̀
α
satisfies (4.35a)–

(4.35h). Thus, θ̀
α
∈ conv(D). It is also easy to verify that θ̀

α
satisfies (4.38) at

equality.
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(A4) For each α ∈ [1, t− 1]Z, we create a point θ́
α
as follows:

ṕαs =

V − C − ϵ, s ∈ [1, α]Z \ {t− k}

0, o.w.

, ŕ+,α
s =

ϵ, s = α

0, o.w.

, ýαs =

1, s ∈ [1, α]Z

0, o.w.

,

ŕ−,α
s = 0 for any s ∈ T , and úαs = 0 for any s ∈ T \ {1}. It is easy to verify that

θ́
α
satisfies (4.35a)–(4.35h). Thus, θ́

α
∈ conv(D). It is also easy to verify that θ́

α

satisfies (4.38) at equality.

(A5) For each α ∈ [t, T ]Z, we create a point θ́
α
as follows:

ṕαs =


V − C, s ∈ [t, α− 1]Z

V − C − ϵ, s = α

0, o.w.

, ŕ+,α
s =

ϵ, s = α

0, o.w.

, ýαs =

1, s ∈ [t, α]Z

0, o.w.

,

úαs =

1, s = t

0, o.w.

,

and ŕ−,α
s = 0 for any s ∈ T . It is easy to verify that θ́

α
satisfies (4.35a)–(4.35h).

Thus, θ́
α
∈ conv(D). It is also easy to verify that θ́

α
satisfies (4.38) at equality.

(A6) For each α ∈ [1, t− 1]Z \ {t− k}, we create a point θ̂
α
as follows:

p̂αs =

V − C − ϵ, s ∈ [1, α]Z \ {t− k}

0, o.w.

, r̂−,α
s =

ϵ, s = α

0, o.w.

, ŷαs =

1, s ∈ [1, α]Z

0, o.w.

,

r̂+,α
s = 0 for any s ∈ T , and ûαs = 0 for any s ∈ T \ {1}. It is easy to verify that

θ̂
α
satisfies (4.35a)–(4.35h). Thus, θ̂

α
∈ conv(D). It is also easy to verify that θ̂

α

satisfies (4.38) at equality.
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(A7) For α = t− k, we create a point θ̂
α
as follows:

p̂αs =


V − C, s ∈ [1, t− k]Z

V − C + (s− t+ k)V, s ∈ [t− k + 1, t]Z

V − C + kV, o.w.

, r̂−,α
s =

ϵ, s = t− k

0, o.w.

,

r̂+,α
s = 0 for any s ∈ T , ŷαs = 1 for any s ∈ T , and ûαs = 0 for any s ∈ T \ {1}. It

is easy to verify that θ̂
α
satisfies (4.35a)–(4.35h). Thus, θ̂

α
∈ conv(D). It is also

easy to verify that θ̂
α
satisfies (4.38) at equality.

(A8) For α = t, we create a point θ̂
α
as follows:

p̂αs =

V − C, s = t

0, o.w.

, r̂−,α
s =

ϵ, s = t

0, o.w.

, ŷαs =

1, s = t

0, o.w.

, ûαs =

1, s = t

0, o.w.

,

and r̂+,α
s = 0 for any s ∈ T . It is easy to verify that θ̂

α
satisfies (4.35a)–(4.35h).

Thus, θ̂
α
∈ conv(D). It is also easy to verify that θ̂

α
satisfies (4.38) at equality.

(A9) For each α ∈ [t+ 1, T ]Z, we create a point θ̂
α
as follows:

p̂αs =


V − C, s ∈ [t, α− 1]Z

V − C − ϵ, s = α

0, o.w.

, r̂−,α
s =

ϵ, s = α

0, o.w.

, ŷαs =

1, s ∈ [t, α]Z

0, o.w.

,

ûαs =

1, s = t

0, o.w.

,

and r̂+,α
s = 0 for any s ∈ T . It is easy to verify that θ̂

α
satisfies (4.35a)–(4.35h).

Thus, θ̂
α
∈ conv(D). It is also easy to verify that θ̂

α
satisfies (4.38) at equality.

(A10) For each α ∈ [1, t− 1]Z, we create a point θ
α
as follows:

pαs =

V − C − ϵ, s ∈ [1, α]Z \ {t− k}

0, o.w.

, yαs =

1, s ∈ [1, α]Z

0, o.w.

,
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r+,α
s = r−,α

s = 0 for any s ∈ T , and uαs = 0 for any s ∈ T \ {1}. It is easy to verify

that θ
α
satisfies (4.35a)–(4.35h). Thus, θ

α ∈ conv(D). It is also easy to verify that

θ
α
satisfies (4.38) at equality.

(A11) For α = t, we create a point θ
α
as follows:

pαs =


(s− t+ k)V, s ∈ [t− k + 1, t]Z

kV, s ∈ [t+ 1, T ]Z

0, o.w.

,

r+,α
s = r−,α

s = 0 for any s ∈ T , yαs = 1 for any s ∈ T , and uαs = 0 for any s ∈ T \{1}.

Note that C < V and k ≤ (C − V )/V , we have k < (C − C)/V , i.e., kV < C − C.

Thus, θ
α
satisfies (4.35a)–(4.35h) and θ

α ∈ conv(D). It is also easy to verify that

θ
α
satisfies (4.38) at equality.

(A12) For each α ∈ [t+ 1, T ]Z, we create a point θ
α
as follows:

pαs =


V − C, s ∈ [t, α− 1]Z

V − C − ϵ, s = α

0, o.w.

, yαs =

1, s ∈ [t, α]Z

0, o.w.

, uαs =

1, s = t

0, o.w.

,

and r+,α
s = r−,α

s = 0 for any s ∈ T . It is easy to verify that θ
α
satisfies (4.35a)–

(4.35h). Thus, θ
α ∈ conv(D). It is also easy to verify that θ

α
satisfies (4.38) at

equality.

(A13) For each α ∈ [2, T ]Z \ {t− k}, we create a point θ̇
α
as follows:

ṗαs =

V − C, s = α

0, o.w.

, ẏαs =

1, s = α

0, o.w.

, u̇αs =

1, s = α

0, o.w.

,

and ṙ+,α
s = ṙ−,α

s = 0 for any s ∈ T . It is easy to verify that θ̇
α
satisfies (4.35a)–

(4.35h) when L = 1. Thus, θ̇
α ∈ conv(D). It is also easy to verify that θ̇

α
satisfies

(4.38) at equality.

(A14) For α = t − k ∈ [2, T ]Z, we create a point θ̇
α
such that ṗαs = ṙ+,α

s = ṙ−,α
s = 0 for
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any s ∈ T and ẏαs = u̇αs = 1 for s = t − k and ẏαs = u̇αs = 0 otherwise. It is easy

to verify that θ̇
α
satisfies (4.35a)–(4.35h). Thus, θ̇

α ∈ conv(D). It is also easy to

verify that θ̇
α
satisfies (4.38) at equality.

Tables C.8–C.10 show matrices with 5T − 2 rows, where each row represents a point

created above, when k = 1, k = 2, and k ≥ 3, respectively. These matrices can be

transformed into the matrices in Tables C.11–C.13 via the following Gaussian elimination

process:

(i) For each α ∈ [1, T ]Z \ {t − k}, the point with index α in group (B1), denoted

by θ̀
α
, is obtained by setting θ̀

α
= θ̀

α
− θ

α
for any α ∈ [1, T ]Z \ {t − k, t},

θ̀
t
= θ̀

t
− θ

t − ((V − C)/ϵ)
∑T

n=t+1(θ̀
n
− θ

n
) when t < T , and θ̀

t
= θ̀

t
− θ

t
when

t = T . Here θ̀
α
is the point with index α in groups (A1)–(A3) and θ

α
is the point

with index α in groups (A10) and (A12).
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Table C.8. Matrix with The rows Representing 5T − 2 Points in conv(D) That Satisfy Inequality (4.38) at Equality When k = 1

Point Group Index α
p r+ r− y u

1 2 · · · t − 1 t t + 1 · · · T 1 2 · · · t − 1 t · · · T 1 2 · · · t − 1 t t + 1 · · · T 1 2 · · · t − 1 t t + 1 · · · T 2 · · · t − 1 t t + 1 · · · T

θ̀
α

(A1)

1 V − C 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

2 V − C V − C · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0
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.
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.

.

.

.

t − 2 V − C V − C · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

(A2) t V − C V − C · · · V − C V − C + V V − C + V · · · V − C + V 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 1 1 · · · 1 0 · · · 0 0 0 · · · 0

(A3)

t + 1 0 0 · · · 0 V − C V − C · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 0 0 · · · 0 1 0 · · · 0
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.
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.

.

.

T 0 0 · · · 0 V − C V − C · · · V − C 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 0 · · · 0 1 0 · · · 0

θ́
α

(A4)

1 V − C − ϵ 0 · · · 0 0 0 · · · 0 ϵ 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

2 V − C − ϵ V − C − ϵ · · · 0 0 0 · · · 0 0 ϵ · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0
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.

.

t − 1 V − C − ϵ V − C − ϵ · · · V − C − ϵ 0 0 · · · 0 0 0 · · · ϵ 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 0 0 · · · 0 0 · · · 0 0 0 · · · 0

(A5)

t 0 0 · · · 0 V − C − ϵ 0 · · · 0 0 0 · · · 0 ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 · · · 0 1 0 · · · 0
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T 0 0 · · · 0 V − C V − C · · · V − C − ϵ 0 0 · · · 0 0 · · · ϵ 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 0 · · · 0 1 0 · · · 0

θ̂
α

(A6)

1 V − C − ϵ 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 ϵ 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

2 V − C − ϵ V − C − ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 ϵ · · · 0 0 0 · · · 0 1 1 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0
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.

(A7) t − 1 V − C V − C · · · V − C V − C + V V − C + V · · · V − C + V 0 0 · · · 0 0 · · · 0 0 0 · · · ϵ 0 0 · · · 0 1 1 · · · 1 1 1 · · · 1 0 · · · 0 0 0 · · · 0

(A8) t 0 0 · · · 0 V − C 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 ϵ 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 · · · 0 1 0 · · · 0

(A9)

t + 1 0 0 · · · 0 V − C V − C − ϵ · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 ϵ · · · 0 0 0 · · · 0 1 1 · · · 0 0 · · · 0 1 0 · · · 0
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T 0 0 · · · 0 V − C V − C · · · V − C − ϵ 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · ϵ 0 0 · · · 0 1 1 · · · 1 0 · · · 0 1 0 · · · 0

θ
α

(A10)

1 V − C − ϵ 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

2 V − C − ϵ V − C − ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0
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t − 1 V − C − ϵ V − C − ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 0 0 · · · 0 0 · · · 0 0 0 · · · 0

(A11) t 0 0 · · · 0 V V · · · V 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 1 1 · · · 1 0 · · · 0 0 0 · · · 0

(A12)

t + 1 0 0 · · · 0 V − C V − C − ϵ · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 0 0 · · · 0 1 0 · · · 0
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T 0 0 · · · 0 V − C V − C · · · V − C − ϵ 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 0 · · · 0 1 0 · · · 0

θ̇
α

(A13)
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(A14) t − 1 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 1 0 0 · · · 0 0 · · · 1 0 0 · · · 0

(A13)

t 0 0 · · · 0 V − C 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 · · · 0 1 0 · · · 0

t + 1 0 0 · · · 0 0 V − C · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 1 · · · 0 0 · · · 0 0 1 · · · 0
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Table C.9. Matrix with The Rows Representing 5T − 2 Points in conv(D) That Satisfy Inequality (4.38) at Equality When k = 2

Point Group Index α
p r+ r− y u

1 2 · · · t − 2 t − 1 t t + 1 · · · T 1 2 · · · t − 1 t t + 1 · · · T 1 2 · · · t − 2 t − 1 t t + 1 · · · T 1 2 · · · t − 1 t t + 1 · · · T 2 · · · t − 2 t − 1 t t + 1 · · · T

θ̀
α

(A1)

1 V − C 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

2 V − C V − C · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 1 · · · 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0
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.

t − 1 V − C V − C · · · 0 V − C 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 1 · · · 1 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

(A2) t V − C V − C · · · V − C V − C + V V − C + 2V V − C + 2V · · · V − C + 2V 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 1 · · · 1 1 1 · · · 1 0 · · · 0 0 0 0 · · · 0

(A3)

t + 1 0 0 · · · 0 0 V − C V − C · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 0 0 · · · 0 0 1 0 · · · 0
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T 0 0 · · · 0 0 V − C V − C · · · V − C 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 0 · · · 0 0 1 0 · · · 0

θ́
α

(A4)

1 V − C − ϵ 0 · · · 0 0 0 0 · · · 0 ϵ 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

2 V − C − ϵ V − C − ϵ · · · 0 0 0 0 · · · 0 0 ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 1 · · · 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0
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t − 1 V − C − ϵ V − C − ϵ · · · 0 V − C − ϵ 0 0 · · · 0 0 0 · · · ϵ 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 1 · · · 1 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

(A5)

t 0 0 · · · 0 0 V − C − ϵ 0 · · · 0 0 0 · · · 0 ϵ 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 · · · 0 0 1 0 · · · 0

t + 1 0 0 · · · 0 0 V − C V − C − ϵ · · · 0 0 0 · · · 0 0 ϵ · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 0 0 · · · 0 0 1 0 · · · 0
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T 0 0 · · · 0 0 V − C V − C · · · V − C − ϵ 0 0 · · · 0 0 0 · · · ϵ 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 0 · · · 0 0 1 0 · · · 0

θ̂
α

(A6)

1 V − C − ϵ 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 ϵ 0 · · · 0 0 0 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

2 V − C − ϵ V − C − ϵ · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 ϵ · · · 0 0 0 0 · · · 0 1 1 · · · 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0
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(A7) t − 2 V − C V − C · · · V − C V − C + V V − C + 2V V − C + 2V · · · V − C + 2V 0 0 · · · 0 0 0 · · · 0 0 0 · · · ϵ 0 0 0 · · · 0 1 1 · · · 1 1 1 · · · 1 0 · · · 0 0 0 0 · · · 0

(A6) t − 1 V − C − ϵ V − C − ϵ · · · 0 V − C − ϵ 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 ϵ 0 0 · · · 0 1 1 · · · 1 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

(A8) t 0 0 · · · 0 0 V − C 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 ϵ 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 · · · 0 0 1 0 · · · 0

(A9)

t + 1 0 0 · · · 0 0 V − C V − C − ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 ϵ · · · 0 0 0 · · · 0 1 1 · · · 0 0 · · · 0 0 1 0 · · · 0
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T 0 0 · · · 0 0 V − C V − C · · · V − C − ϵ 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · ϵ 0 0 · · · 0 1 1 · · · 1 0 · · · 0 0 1 0 · · · 0

θ
α

(A10)

1 V − C − ϵ 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

2 V − C − ϵ V − C − ϵ · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 1 · · · 0 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0
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t − 1 V − C − ϵ V − C − ϵ · · · 0 V − C − ϵ 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 1 · · · 1 0 0 · · · 0 0 · · · 0 0 0 0 · · · 0

(A11) t 0 0 · · · 0 V 2V 2V · · · 2V 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 1 1 · · · 1 1 1 · · · 1 0 · · · 0 0 0 0 · · · 0

(A12)

t + 1 0 0 · · · 0 0 V − C V − C − ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 0 0 · · · 0 0 1 0 · · · 0
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T 0 0 · · · 0 0 V − C V − C · · · V − C − ϵ 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 0 · · · 0 0 1 0 · · · 0

θ̇
α

(A13)

2 0 V − C · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 1 · · · 0 0 0 · · · 0 1 · · · 0 0 0 0 · · · 0
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(A14) t − 2 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 1 0 0 0 · · · 0

(A13)

t − 1 0 0 · · · 0 V − C 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 1 0 0 · · · 0 0 · · · 0 1 0 0 · · · 0

t 0 0 · · · 0 0 V − C 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 · · · 0 0 1 0 · · · 0

t + 1 0 0 · · · 0 0 0 V − C · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0 0 1 · · · 0 0 · · · 0 0 0 1 · · · 0
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Table C.10. Matrix with the Rows Representing 5T − 2 Points in conv(D) That Satisfy Inequality (4.38) at Equality When k ≥ 3

Point Group Index α
p r+ r− y u

1 2 · · · t − k · · · t · · · T 1 · · · t · · · T 1 · · · t − k · · · t · · · T 1 2 · · · t − k · · · t · · · T 2 · · · t − k · · · t · · · T

θ̀
α

(A1)

1 V − C 0 · · · 0 · · · 0 · · · 0 0 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0 1 0 · · · 0 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0
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(A2) t V − C V − C · · · V − C · · · V − C + kV · · · V − C + kV 0 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0 1 1 · · · 1 · · · 1 · · · 1 0 · · · 0 · · · 0 · · · 0
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T 0 0 · · · 0 · · · V − C · · · V − C 0 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0 0 0 · · · 0 · · · 1 · · · 1 0 · · · 0 · · · 1 · · · 0

θ́
α

(A4)

1 V − C − ϵ 0 · · · 0 · · · 0 · · · 0 ϵ · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0 1 0 · · · 0 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0
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(A5)

t 0 0 · · · 0 · · · V − C − ϵ · · · 0 0 · · · ϵ · · · 0 0 · · · 0 · · · 0 · · · 0 0 0 · · · 0 · · · 1 · · · 0 0 · · · 0 · · · 1 · · · 0
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T 0 0 · · · 0 · · · V − C · · · V − C − ϵ 0 · · · 0 · · · ϵ 0 · · · 0 · · · 0 · · · 0 0 0 · · · 0 · · · 1 · · · 1 0 · · · 0 · · · 1 · · · 0

θ̂
α

(A6)
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(A7) t − k V − C V − C · · · V − C · · · V − C + kV · · · V − C + kV 0 · · · 0 · · · 0 0 · · · ϵ · · · 0 · · · 0 1 1 · · · 1 · · · 1 · · · 1 0 · · · 0 · · · 0 · · · 0
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(A8) t 0 0 · · · 0 · · · V − C · · · 0 0 · · · 0 · · · 0 0 · · · 0 · · · ϵ · · · 0 0 0 · · · 0 · · · 1 · · · 0 0 · · · 0 · · · 1 · · · 0
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T 0 0 · · · 0 · · · V − C · · · V − C − ϵ 0 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · ϵ 0 0 · · · 0 · · · 1 · · · 1 0 · · · 0 · · · 1 · · · 0

θ
α

(A10)
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(A11) t 0 0 · · · 0 · · · kV · · · kV 0 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0 1 1 · · · 1 · · · 1 · · · 1 0 · · · 0 · · · 0 · · · 0

(A12)
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T 0 0 · · · 0 · · · V − C · · · V − C − ϵ 0 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0 0 0 · · · 0 · · · 1 · · · 1 0 · · · 0 · · · 1 · · · 0

θ̇
α

(A13)

2 0 V − C · · · 0 · · · 0 · · · 0 0 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0 0 1 · · · 0 · · · 0 · · · 0 1 · · · 0 · · · 0 · · · 0

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

(A14) t − k 0 0 · · · 0 · · · 0 · · · 0 0 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0 0 0 · · · 1 · · · 0 · · · 0 0 · · · 1 · · · 0 · · · 0

(A13)

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.
. .
.

.

.

.
.
.
.

.

.

.

.

.

.
. .
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.
. .
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

T 0 0 · · · 0 · · · 0 · · · V − C 0 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0 0 0 · · · 0 · · · 0 · · · 1 0 · · · 0 · · · 0 · · · 1
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Table C.11. Lower Triangular Matrix Obtained From Table C.8 via Gaussian Elimination

Point Group Index α
p r+ r− y u

1 2 · · · t − 1 t t + 1 · · · T 1 2 · · · t − 1 t · · · T 1 2 · · · t − 1 t t + 1 · · · T 1 2 · · · t − 1 t t + 1 · · · T 2 · · · t − 1 t t + 1 · · · T

θ̀
α (B1)

1 ϵ 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

2 ϵ ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0
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t V − C V − C · · · V − C V − C 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0
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T 0 0 · · · 0 0 0 · · · ϵ 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

θ́
α (B2)

1 0 0 · · · 0 0 0 · · · 0 ϵ 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0
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t − 1 0 0 · · · 0 0 0 · · · 0 0 0 · · · ϵ 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0
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T 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · ϵ 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

θ̂
α (B3)

1 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 ϵ 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

2 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0
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t − 1 V − C V − C · · · V − C V − C V − C · · · V − C 0 0 · · · 0 0 · · · 0 0 0 · · · ϵ 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

t 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 ϵ 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0
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T 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · ϵ 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

θ
α (B4)

1 V − C − ϵ 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0

2 V − C − ϵ V − C − ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0
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t − 1 V − C − ϵ V − C − ϵ · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 0 0 · · · 0 0 · · · 0 0 0 · · · 0

t 0 0 · · · 0 V V − V + C · · · V − V + C + ϵ 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 1 0 · · · 0 0 · · · 0 0 0 · · · 0
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T 0 0 · · · 0 0 V − C · · · V − C − ϵ 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 1 · · · 1 0 · · · 0 0 0 · · · 0

θ̇
α (B5)
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t − 1 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 1 0 0 · · · 0 0 · · · 1 0 0 · · · 0

t 0 0 · · · 0 V − C 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 · · · 0 1 0 · · · 0

t + 1 0 0 · · · 0 0 V − C · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 1 · · · 0 0 · · · 0 0 1 · · · 0

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

T 0 0 · · · 0 0 0 · · · V − C 0 0 · · · 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 1 0 · · · 0 0 0 · · · 1

192



Table C.12. Lower Triangular Matrix Obtained From Table C.9 via Gaussian Elimination

Point Group Index α
p r+ r− y u

1 2 · · · t − 2 t − 1 t t + 1 · · · T 1 2 · · · t − 1 t t + 1 · · · T 1 2 · · · t − 2 t − 1 t t + 1 · · · T 1 2 · · · t − 1 t t + 1 · · · T 2 · · · t − 2 t − 1 t t + 1 · · · T
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α (B1)
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Table C.13. Lower Triangular Matrix Obtained From Table C.10 via Gaussian Elimination

Point Group Index α
p r+ r− y u
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θ
α (B4)
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T 0 · · · 0 · · · V − C − ϵ 0 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0 0 · · · 0 · · · 1 0 · · · 0 · · · 0

θ̇
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T 0 · · · 0 · · · V − C 0 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0 0 · · · 0 · · · 1 0 · · · 0 · · · 1
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(ii) For each α ∈ [1, T ]Z, the point with index α in group (B2), denoted by θ́
α
, is

obtained by setting θ́
α
= θ́

α
− θ

α
for any α ∈ [1, T ]Z \ {t} and θ́

t
= θ́

t
− θ̇

t
. Here

θ́
α
is the point with index α in groups (A4)–(A5), θ

α
is the point with index α in

groups (A10) and (A12), and θ̇
t
is the point in group (A13).

(iii) For each α ∈ [1, T ]Z, the point with index α in group (B3), denoted by θ̂
α
, is

obtained by setting θ̂
α
= θ̂

α
− θ

α
for any α ∈ [1, T ]Z \ {t− k, t}, θ̂

t−k
= θ̂

t−k
− θ

t
,

and θ̂
t
= θ̂

t
− θ̇

t
. Here θ̂

α
is the point with index α in groups (A6)–(A9), θ

α
is the

point with index α in groups (A10) and (A12), and θ̇
t
is the point in group (A13).

(iv) For each α ∈ [1, T ]Z, the point with index α in group (B4), denoted by θ
α
, is

obtained by setting θ
α
= θ

α
for any α ∈ [1, t− 1]Z, θ

t
= θ

t − θ
T
+ θ̇

t
when t < T ,

θ
t
= θ

t
when t = T , and θ

α
= θ

α − θ̇
t
for any α ∈ [t+ 1, T ]Z. Here θ

α
is the point

with index α in group (A10), (A11), and (A12), and θ̇
t
is the point in group (A13).

(v) For each α ∈ [2, T ]Z, the point with index α in group (B5), denoted by θ̇
α
, is

obtained by setting θ̇
α
= θ̇

α
. Here θ̇

α
is the point with index α in groups (A13)–

(A14).

The matrices in Tables C.11–C.13 are lower triangular; that is, the position of the last

nonzero component of a row of the matrix is greater than the position of the last nonzero

component of the previous row. This indicates that the 5T − 2 points created above

are linearly independent. Therefore, inequality (4.38) is facet-defining for conv(D) when

L = 1.

C.15 Proof of Proposition 10

Proof. To prove that inequality (4.39) is valid for conv(D) for any k ∈ [1,min{T −2, ς}]Z
and t ∈ [k + 2, T ]Z, it suffices to show that it is valid for D for such k and t. Consider

any element (p, r+, r−,y,u) of D and any k ∈ [1,min{T − 2, ς}]Z and t ∈ [k+2, T ]Z. We

show that (p, r+, r−,y,u) satisfies (4.39). For ease of exposition, for any n ∈ T \ {1},

we define ψ(n) = yn −
∑n

s=max{2,n−L+1} us, which is nonnegative by Corollary 1. For any

n ∈ T , we define to(n) = max{2, n− L+ 1}. By the above definitions and our problem

setting, we have the right-hand side of (4.39) is nonnegative. Next, we divide the analysis

into the following four possible cases.
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Case 1: yt−k = 0. By (4.35e) and (4.35h), we have pt−k = r+t−k = 0. Thus, pt−k+r
+
t−k−

pt + r−t = r−t − pt ≤ 0, where the inequality holds by (4.35d). Therefore, in this case,

(p, r+, r−,y,u) satisfies (4.39).

Case 2: yj = 1 for any j ∈ [t − k, t]Z and ui = 0 for any i ∈ [to(t − k), t − k]Z.

Because yj = 1 for any j ∈ [t − k, t]Z, by Corollary 1, we have us = 0 for any s ∈
[t− k + 1,min{t + 1, T}]Z. It follows that us = 0 for any s ∈ [to(t− k),min{t + 1, T}]Z.
Thus, the right-hand side of (4.39) is V − C + 2V + (k − 1)V + C + V − V = (k + 2)V .

Because yt−k = 1 and ut−k = 0, by (4.35c), we have yt−k−1 = 1. Thus,

pt−k − pt + r−t + r+t−k ≤
k∑

s=1

(
pt−s − pt−s+1 + r−t−s+1

)
+ r+t−k

≤
k∑

s=1

(
V +

(
C + V − V

)
yt−s+1 − Cyt−s

)
+ r+t−k

= kV +

k∑
s=1

(
C + V − V

)
yt−s+1 −

k∑
s=1

Cyt−s + r+t−k = kV + k
(
C + V − V

)
− kC + r+t−k

= kV + r+t−k ≤ kV + r+t−k + r−t−k = kV +
(
pt−k + r+t−k − pt−k−1

)
+
(
pt−k−1 − pt−k + r−t−k

)
≤ kV +

(
V +

(
C + V − V

)
yt−k−1 − Cyt−k

)
+
(
V +

(
C + V − V

)
yt−k − Cyt−k−1

)
= (k + 2)V,

where the first inequality holds by (4.35h), the second inequality holds by (4.35g), the

third inequality holds by (4.35h), and the last inequality holds by (4.35f) and (4.35g).

Therefore, in this case, (p, r+, r−,y,u) satisfies (4.39).

Case 3: yt−k = 1, ui = 0 for any i ∈ [to(t − k), t − k]Z, and yj = 0 for some j ∈
[t − k + 1, t]Z. Let j0 = min{j ∈ [t − k + 1, t]Z | yj = 0}, i.e., ys = 1 for any s ∈
[t − k, j0 − 1]Z. By Corollary 1, we then have us = 0 for any s ∈ [t − k + 1, j0]Z,

implying that us = 0 for any s ∈ [to(t− k), j0]Z. For any i ∈ [t− j0 + 1, k − 1]Z, we have

to(t− i) ≥ to(t− k + 1) ≥ to(t− k) and t− i ≤ t− (t− j0 + 1) = j0 − 1. Therefore, we

have [to(t− i), t− i]Z ⊆ [to(t− k), j0 − 1]Z ⊆ [to(t− k), j0]Z for any i ∈ [t− j0 +1, k− 1]Z.

Because us = 0 for any s ∈ [to(t−k), j0]Z, we then have us = 0 for any s ∈ [to(t−i), t−i]Z
and i ∈ [t − j0 + 1, k − 1]Z. Thus,

∑t−i
s=to(t−i) us = 0 for any i ∈ [t − j0 + 1, k − 1]Z. For

any i ∈ [t − j0 + 1, k − 1]Z, we also have t − i ≥ t − k + 1 ≥ t − k and t − i ≤ j0 − 1,

implying that t − i ∈ [t − k, j0 − 1]Z. Thus, yt−i = 1 for any i ∈ [t − j0 + 1, k − 1]Z, as

ys = 1 for any s ∈ [t− k, j0 − 1]Z. Therefore, we have ψ(t− i) = yt−i −
∑t−i

s=to(t−i) us = 1
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for any i ∈ [t− j0 + 1, k − 1]Z. Then we have

k−1∑
i=1

V ψ(t− i) =

t−j0∑
i=1

V ψ(t− i) +
k−1∑

i=t−j0+1

V ψ(t− i) =

t−j0∑
i=1

V ψ(t− i) + (j0 − t+ k − 1)V,

and the right-hand side of (4.39) is

V − C + 2V + (j0 − t+ k − 1)V +

t−j0∑
i=1

V ψ(t− i) + (C + V − V )ψ(t) +

t−k−1∑
s=to(t−k)

(t− k − s)V us.

Because yj0 = 0, by (4.35e) and (4.35h), we have pj0 = 0. Thus,

pt−k + r+t−k − pt + r−t ≤ pt−k + r+t−k = pt−k − pj0 + r+t−k ≤
k−1∑

s=t−j0

(
pt−s−1 + r−t−s − pt−s

)
+ r+t−k

≤
k−1∑

s=t−j0

(
V +

(
C + V − V

)
yt−s − Cyt−s−1

)
+ r+t−k

= (j0 − t+ k)V +

k−1∑
s=t−j0

(
C + V − V

)
yt−s −

k−1∑
s=t−j0

Cyt−s−1 + r+t−k

= (j0 − t+ k)V + (j0 − t+ k − 1)
(
C + V − V

)
− (j0 − t+ k)C + r+t−k

= V − C + (j0 − t+ k − 1)V + r+t−k ≤ V − C + (j0 − t+ k − 1)V + r+t−k + r−t−k

= V − C + (j0 − t+ k − 1)V +
(
pt−k + r+t−k − pt−k−1

)
+
(
pt−k−1 − pt−k + r−t−k

)
≤ V − C + (j0 − t+ k − 1)V +

(
V +

(
C + V − V

)
yt−k−1 − Cyt−k

)
+
(
V +

(
C + V − V

)
yt−k − Cyt−k−1

)
= V − C + (j0 − t+ k − 1)V + 2V ≤ the right-hand side of (4.39),

where the first inequality holds by (4.35d), the second inequality holds by (4.35h),

the third inequality holds by (4.35g), the fourth inequality holds by (4.35h), the fifth

inequality holds by (4.35f) and (4.35g), and the last inequality holds by the assumption

of V < C + V and Corollary 1. Therefore, in this condition, (p, r+, r−,y,u) satisfies

(4.39).

Case 4: yt−k = 1 and ui0 = 1 for some i0 ∈ [to(t − k), t − k]Z. By Lemma 2, we have∑t−k
s=to(t−k) us ≤ 1. Thus, we have ui0 = 1 and us = 0 for any s ∈ [to(t− k), t− k]Z \ {i0}.

It follows that
∑t−k−1

s=to(t−k)(t − k − s)V us = (t − k − i0)V . Thus, the right-hand side of
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(4.39) is

V − C + 2V ψ(t− k) +
k−1∑
i=1

V ψ(t− i) + (C + V − V )ψ(t) + (t− k − i0)V.

For any s ∈ [i0, t−k]Z, we have to(s) ≤ to(t−k) ≤ i0, implying that i0 ∈ [to(s), s]Z. Then,

by Corollary 1, for any s ∈ [i0, t− k]Z, we have ys ≥
∑

i∈[to(s),s]Z ui =
∑

i∈[to(s),s]Z\{i0} ui +

ui0 ≥ 1, implying that ys = 1. Because ui0 = 1, by Corollary 1, we have yi0−1 = 0, which,

together with (4.35e) and (4.35h), indicates pi0−1 = 0. Thus,

pt−k + r+t−k − pt + r−t ≤ pt−k + r+t−k = pt−k + r+t−k − pi0−1 ≤
t−k∑
s=i0

(
ps + r+s − ps−1

)
≤

t−k∑
s=i0

(
V +

(
C + V − V

)
ys−1 − Cys

)
= (t− k − i0 + 1)V +

t−k∑
s=i0

(
C + V − V

)
ys−1 −

t−k∑
s=i0

Cys

= (t− k − i0 + 1)V + (t− k − i0)
(
C + V − V

)
− (t− k − i0 + 1)C

= V − C + (t− k − i0)V ≤ the right-hand side of (4.39),

where first inequality holds by (4.35d), the second inequality holds by (4.35h), the third

inequality holds by (4.35f), and the last inequality holds by the assumption of V < C+V

and Corollary 1. Therefore, in this condition, (p, r+, r−,y,u) satisfies (4.39).

C.16 Data Summary

We consider the following ten thermal generators in NYC (see Table C.14) and set their

physical parameters (see Table C.15) based on the data in Table C.14 and IEEE 6-bus

system (Jiang et al. 2011).

Table C.14. Ten Thermal Generators in NYC (EIA 2023)

Location Utility Name Plant Name Nameplate Capacity (MW) # Units
Staten Island NRG Arthur Kill Operations Inc Arthur Kill Generating Station 536 & 342 2
Manhattan Consolidated Edison Co-NY Inc East River Generating Station 200 & 200 2
Bronx New York Power Authority Hell Gate 56 & 56 2
Brooklyn Brooklyn Navy Yard Cogen PLP Brooklyn Navy Yard Cogeneration 145 & 145 2
Queens Helix Ravenswood, LLC Ravenswood No. 3 (Big Allis) 400 & 250 2

C.17 Machine Learning Setting

First, we define several functions to compute the statistical information of any given

random parameter. Consider an arbitrary random parameter w = (wt,j,∀t ∈ T , j ∈ S)⊤
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Table C.15. Physical Parameters of The Ten Generators

Gen No. C (MW) C (MW) L&ℓ V (MW/h) V (MW/h) SU ($) SD ($) a ($/MW2) b ($/MW) c ($)
1.1 65 540 10 250 260 2000 0 0.0033 12.11 26.96
1.2 45 340 6 150 160 1200 0 0.0063 13.55 39.36
2.1 30 200 4 100 110 800 0 0.0130 15.21 43.84
2.2 30 200 4 100 110 800 0 0.0128 15.24 43.87
3.1 10 60 1 28 28 200 0 0.0597 17.26 74.11
3.2 10 60 1 28 28 200 0 0.0593 17.31 74.15
4.1 20 145 2 70 70 500 0 0.0191 15.81 50.14
4.2 20 145 2 70 70 500 0 0.0189 15.82 50.15
5.1 50 400 8 200 210 1500 0 0.0039 13.07 30.02
5.2 35 250 4 120 120 1000 0 0.0123 14.32 42.01

with a set of data samples {w̃t,j,∀t ∈ T , j ∈ S}. For any j ∈ S, we define wj =

(wt,j,∀t ∈ T )⊤, ET [wj] = (
∑

t∈T w̃t,j)/|T |, and σT [wj] =
√
(
∑

t∈T (wt,j − ET [wj])2)/|T |.

We further define

ESET [w] =
1

|S|
∑
j∈S

ET [wj] , σSET [w] =

(
1

|S|
∑
j∈S

(ET [wj]− ESET [w])2
) 1

2

,

ESσT [w] =
1

|S|
∑
j∈S

σT [wj], σSσT [w] =

(
1

|S|
∑
j∈S

(σT [wj]− ESσT [w])2
) 1

2

.

Next, for any t ∈ T and j ∈ S, we let q′t,j =
∑

b∈B(qb,t,j − pwb,t,j − psb,t,j) denote the

net load in period t and scenario j. With the data in Group 1, we have 616 data

samples from both SG and SEV. We consider a set of instances of Problem (M) with

various scenario sizes of S. Specifically, we augment the scenario set S by defining

S := SG × SEV = {(jG, jEV) | jG ∈ SG, jEV ∈ SEV}, leading to 616× 616 scenarios in S

in total. By randomly selecting samples from SG and SEV to create such an augmented

set S, we create 4, 424 instances of Problem (M) with Sn (n ∈ [1, 4, 424]Z) and consider

|Sn| ∈ [10, 1, 000]Z. For each instance with Sn for some n ∈ [1, 4, 424]Z, we consider 12

features (i.e., din = 12) of the scenarios in Sn, i.e., xin = (x1in, . . . , x
12
in )

⊤. Specifically,

(i) x1in = |SG| (i.e., the number of scenarios in SG); (ii) x2in = |SEV| (i.e., the number

of scenarios in SEV); (iii) x3in = ESnET [q
′] (i.e., net load averaged over first T and then

Sn); (iv) x4in = σSnET [q
′] (i.e., net load averaged over T then the standard deviation over

Sn); (v) x5in = ESnσT [q
′] (i.e., net load’s standard deviation over T then averaged over

Sn); (vi) x6in = σSnσT [q
′] (i.e., net load’s standard deviation over T then the standard

deviation over Sn); (vii) x7in = maxj∈Sn{
∑

t∈T q
′
t,j} (i.e., the largest total net load in Sn);

(viii) x8in = ESnET [d] (i.e., EV trip demand averaged over T then averaged over Sn);

(ix) x9in = σSnET [d] (i.e., trip demand averaged over T then the standard deviation over
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Sn); (x) x10in = ESnσT [d] (i.e., EV trip demand’s standard deviation over T then averaged

over Sn); (xi) x11in = σSnσT [d] (i.e., EV trip demand’s standard deviation over T then the

standard deviation over Sn); (xii) x12in = maxj∈Sn{
∑

t∈T dt,j} (i.e., the largest total trip

demand in Sn).

For each instance with Sn for some n ∈ [1, 4, 424]Z, we solve Problem (M) with Sn

and obtain an optimal first-stage solution (u∗,y∗), by which we can identify a worst-case

scenario j∗ ∈ Sn with the largest cost Ψ(u∗,y∗, ξj∗). We consider four features (i.e.,

dout = 4) of this scenario j∗, i.e., yout = (y1out, . . . , y
4
out)

⊤. Specifically, (i) y1out = ET [q
′
j∗ ]

(i.e., net load in scenario j∗ averaged over T ); (ii) y2out = σT [q
′
j∗ ] (i.e., the standard

deviation of net load in scenario j∗); (iii) y3out = ET [dj∗ ] (i.e., EV trip demand in scenario

j∗ averaged over T ); (iv) y4out = σT [dj∗ ] (i.e., the standard deviation of EV trip demand

in scenario j∗). After solving all the 4, 424 instances of Problem (M), we obtain a set

{(xn
in,y

n
out)}4424n=1 , by which we build the linear regression model yout = c⊤xin.

C.18 Computational Performance of Solution Approaches

Table C.16 provides computational results for the CPLEX and ADMM approaches when

|S| ≤ 200.

Table C.16. Computational Performance of CPLEX and ADMM When |S| ≤ 200

|S| |SG| |SEV|
CPLEX ADMM

Cost ($) MIP Gap (%) Time (s) Cost ($) ADMM Gap (%) Time (s)

10

10 1 409,180 0.002 43.1 411,072 0.460 3.2
5 2 409,071 0.004 101.1 411,705 0.640 6.5
2 5 409,077 0.005 26.1 411,747 0.648 4.0
1 10 184,798 0.004 49.7 185,875 0.579 3.2
Average 353,032 0.004 55.0 355,100 0.582 4.2

50

50 1 447,878 0.010 122.3 450,246 0.526 22.2
25 2 428,342 0.000 15.2 430,190 0.430 17.6
10 5 409,907 0.007 63.0 413,281 0.816 19.1
5 10 409,788 0.002 34.2 413,161 0.816 25.6
2 25 412,172 0.008 80.6 412,478 0.074 51.9
1 50 186,258 0.006 92.4 188,124 0.992 6.0
Average 382,391 0.006 68.0 384,580 0.609 23.7

100

50 2 447,878 0.010 328.1 450,246 0.526 69.0
20 5 426,082 0.005 268.4 428,890 0.655 57.0
10 10 409,909 0.004 141.1 411,773 0.453 85.1
5 20 410,447 0.002 234.5 413,067 0.634 113.8
2 50 412,172 0.002 259.6 412,995 0.199 90.1
Average 421,298 0.004 243.0 423,394 0.493 83.0

200

40 5 446,661 0.010 306.8 448,965 0.513 98.8
20 10 428,342 0 317.4 430,129 0.415 54.7
10 20 412,312 0.004 349.1 414,867 0.616 192.0
5 40 412,173 0.003 286.7 413,860 0.408 190.6
Average 424,872 0.004 315.0 426,955 0.488 134.0

Average - - 395,398 0.005 170.0 397,507 0.543 61.2

Table C.17 provides computational results for the ADMM, Random Algorithm, and

200



Learning Algorithm approaches when |S| ≤ 200.

Table C.17. Computational Performance of Solution Approaches When |S| ≤ 200

|S| |SG| |SEV|
ADMM Random Algorithm Learning Algorithm

Cost ($) MIP
Gap (%)

Time (s)
Initial

Cost ($)
Final

Cost ($)
Initial

Gap (%)
Final

Gap (%)
Initial

Time (s)
Final

Time (s)
Initial

Cost ($)
Final

Cost ($)
Initial

Gap (%)
Final

Gap (%)
Initial

Time (s)
Final

Time (s)

10

10 1 411,072 0.460 3.2 409,063 409,180 -0.029 0 0.4 1.3 389,452 409,184 -5.066 0.001 0.4 2.7
5 2 411,705 0.640 6.5 402,862 409,063 -1.541 -0.002 1.1 4.7 409,063 409,063 -0.002 -0.002 0.4 0.4
2 5 411,747 0.648 4.0 409,063 409,063 -0.003 -0.003 0.4 0.4 409,063 409,063 -0.003 -0.003 0.4 0.4
1 10 185,875 0.579 3.2 184,798 184,798 0 0 0.4 0.4 184,798 184,798 0 0 0.4 0.4
Average 355,100 0.582 4.2 351,447 353,026 -0.393 -0.001 0.6 1.7 348,094 353,027 -1.268 -0.001 0.4 1.0

50

50 1 450,246 0.526 22.2 409,813 447,878 -9.288 0 0.4 8.5 447,730 447,878 -0.033 0 0.5 5.0
25 2 430,190 0.430 17.6 221,631 428,342 -93.268 0 1.1 14.5 428,321 428,342 -0.005 0 0.3 1.6
10 5 413,281 0.816 19.1 184,798 409,905 -121.814 0 0.4 14.1 409,794 409,928 -0.028 0.005 0.4 1.5
5 10 413,161 0.816 25.6 184,798 409,811 -121.749 0.006 0.4 17.6 409,794 409,794 0.001 0.001 0.4 0.6
2 25 412,478 0.074 51.9 184,798 412,173 -123.039 0 0.3 10.4 412,173 412,173 0 0 0.4 0.7
1 50 188,124 0.992 6.0 184,798 186,269 -0.790 0.006 0.6 1.9 186,269 186,269 0.006 0.006 0.4 0.6
Average 384,580 0.609 23.7 228,439 382,396 -78.325 0.002 0.5 11.2 382,347 382,397 -0.010 0.002 0.4 1.7

100

50 2 450,246 0.526 69.0 365,066 447,878 -22.684 0 0.9 37.5 447,730 447,878 -0.033 0 0.6 5.3
20 5 428,890 0.655 57.0 374,342 426,082 -13.822 0 0.4 18.1 426,061 426,082 -0.005 0 0.4 2.5
10 10 411,773 0.453 85.1 374,342 409,905 -9.501 -0.001 0.4 32.6 391,162 409,928 -4.793 0.005 0.8 6.7
5 20 413,067 0.634 113.8 374,342 410,439 -9.645 -0.002 0.4 40.6 410,450 410,450 0.001 0.001 0.4 0.9
2 50 412,995 0.199 90.1 184,798 412,173 -123.039 0 0.4 21.8 412,173 412,173 0 0 0.4 0.9
Average 423,394 0.493 83.0 334,578 421,295 -35.738 -0.001 0.5 30.1 417,515 421,302 -0.966 0.001 0.5 3.3

200

40 5 448,965 0.513 98.8 401,588 446,661 -11.224 0 0.4 22.6 446,560 446,661 -0.023 0 0.4 5.2
20 10 430,129 0.415 54.7 314,202 428,342 -36.327 0 0.6 44.1 428,321 428,342 -0.005 0 0.3 3.6
10 20 414,867 0.616 192.0 389,452 412,311 -5.870 0 0.4 62.5 395,397 412,311 -4.278 0 0.4 15.7
5 40 413,860 0.408 190.6 402,862 412,173 -2.311 0 1.3 117.3 412,173 412,173 0 0 0.4 1.7
Average 426,955 0.488 134.0 377,026 424,872 -13.933 0 0.7 61.6 420,613 424,872 -1.076 0 0.4 6.5

Average - - 397,507 0.543 61.2 322,873 395,397 -32.097 0 0.6 26.2 392,142 395,400 -0.830 0.001 0.4 3.1

C.19 Impact of Service Level on The Mobility Sys-

tem’s Profit

We study the impact of service level α on the mobility system’s profit. First, we consider

the following problem on EV fleet operations where V2G is not adopted:

Π0 = max
{ 1

|S|
∑
j∈S

∑
t∈T

crxrt,j − cpen
(
dt,j − xrt,j

)
− P−

t x
−
t,j

∣∣∣ (4.19)− (4.23), (4.26), (V0)

x+t,j = 0, ∀t ∈ T , j ∈ S
}
,

where cr denotes the unit revenue of serving demands and cpen denotes the unit penalty

for unsatisfied demands; we set their values following Zhang et al. (2021). Problem (V0)

maximizes the mobility system’s expected profit. Given the data in Group 3 in Section

4.5.1, we have 60 data samples in both SG and SEV. We use them to construct a scenario

set S := SG×SEV = {(jG, jEV) | jG ∈ SG, jEV ∈ SEV} and obtain |S| = 3, 600. We solve

Problem (V0) with this set S and obtain Π0.

Second, given α ∈ [0, 1], we consider the following EV fleet problem where V2G is

adopted:

Π(α) = max
1

|S|
∑
j∈S

∑
t∈T

crxrt,j − cpen
(
dt,j − xrt,j

)
− P−

t x
−
t,j + P+

t x
+
t,j (V1)

s.t. (4.19)− (4.23), (4.26), ∀j ∈ S,

x+t,je
+δ = v+t,j (α) , x

−
t,je

−δ = v−t,j (α) , ∀t ∈ T , j ∈ S,
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where v+t,j(α) and v
−
t,j(α) are given parameters. To determine these parameters, we solve

Problem (M) with α ∈ [0, 1] and the optimal solutions of v+t,j and v−t,j in Problem (M)

are set equal to v+t,j(α) and v
−
t,j(α) for any t ∈ T and j ∈ S.
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Figure C.5. Profit Changes for Different Service Levels

Given α ∈ [0, 1], we define Profit Change(%) = (Π(α) − Π0)/Π0 × 100%; a positive

Profit Change(%) indicates that the mobility system generates a higher profit when V2G

is adopted in the GVI system, compared to the case without V2G. Figure C.5 shows

that when α = 0.97, the Profit Change is slightly larger than 0, thereby ensuring the EV

fleet’s profitability. A further increase in α imposes greater requirements on the power

grid’s operation, which hurts the power grid’s flexibility. Therefore, to ensure the EV

fleet’s profitability and the power grid’s flexibility, we set service level α = 0.97 in our

numerical experiments in Section 4.5.

C.20 Costs for Various Levels of Greenness

We estimate the cost associated with various levels of greenness to offer more straightfor-

ward insights into the challenge of achieving carbon neutrality. We sum up the optimal

cost of Problem (M) (i.e., Θ), EV fleet purchase cost, and renewable generation cost.

We compute the EV fleet purchase cost by multiplying the EV fleet size by the EV pur-

chase cost averaged to a day. Note that each EV costs $42, 645 with an average life

of 8 years (Qi et al. 2022). As a result, the EV purchase cost averaged to a day is

$42, 645/(8 × 365) ≈ $14.6. We estimate the renewable generation cost by multiplying

the total renewable generation by the levelized cost. The levelized cost of wind energy

is $32/MWh in 2021 (U.S. DOE 2022) and that of solar is estimated at $30-42/MWh

in 2021 (Bellini 2021). Here we set the levelized cost of solar as $32/MWh. Figure C.6

shows how the cost changes with various levels of greenness. We observe a dramatic cost

increase when the greenness is high under either power load pattern. That is, achieving
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carbon neutrality can be challenging for the GVI system if only increasing the renewable

share and EV fleet size.
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Figure C.6. Costs Associated With Various Levels of Greenness
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