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Abstract

Automatic Selection of Spoken Language Biomarkers for Dementia

Detection

Dementia is a severe cognitive impairment that may affect older adults’ health and

daily lives and burden their families and caretakers. The most common form of de-

mentia is Alzheimer’s disease (AD). Currently, dementia can be diagnosed through

brain imaging, identification of apolipoprotein E genotypes, measuring the level of

brain-derived neurotrophic factors, cerebrospinal fluid exams, and other laboratory

measures. However, these measures are invasive and costly. As dementia also mani-

fests itself as spoken language deficits, effective detection of early signs of the disease

through the analyses of spoken languages can facilitate timely intervention to slow

deterioration. This thesis analyzes a diverse set of features extracted from spoken

languages and selects the most discriminative ones for dementia detection. We refer

to these features as spoken language biomarkers of dementia.

This thesis proposes two deep-learning-based feature ranking (FR) methods, called

dual dropout ranking (DDR) and dual-net feature ranking (DFR), to rank and select

features. DDR and DFR are based on a dual-net architecture that performs feature

selection (FS) and dementia detection by two neural networks: Operator and Selec-

tor. The two networks are alternatively and cooperatively trained to optimize the

performance of both FS and dementia detection. Specifically, in DDR, the operator

is trained on features obtained from the selector to reduce classification loss, and the

selector is optimized to predict the operator’s performance based on automatic regu-

larization. DDR ranks features according to the probabilities that the corresponding

features should be purged (or kept). In DFR, the selector is trained to find multi-

ple subsets of features to predict the operator’s performance, and the operator uses



these feature subsets to minimize classification errors. DFR uses all of the selector’s

parameters to determine the contributions of individual features to the selector’s pre-

dictions, taking into account the non-linear relationship between the input variables

and the network’s output. It allows for evaluating the contributions of individual

input variables in a multi-layer neural network with non-linear activation functions.

We also proposed a two-step FS approach that utilizes filter methods to pre-screen

features and applies more expensive FS methods to rank the pre-screened features.

The proposed FR methods were evaluated on three dementia datasets – ADReSS,

AD2021, and JCCOCC-MoCA. Results on ADReSS and AD2021 show that the

full feature set comprises many redundant features and that feature ranking can

improve the accuracy of dementia detection. In particular, using the most dis-

criminative features discovered by DDR, we achieved an F1 score of 90.4% on the

ADReSS test set, which surpasses the official baseline performance by 15.9 percent-

age points. Similarly, using the most discriminative features discovered by DDR, we

achieve an F1 score of 86.7% on the AD2021 test set, surpassing the official base-

line performance by 8.1 percentage points. The evaluations on the JCCOCC-MoCA

dataset show that DFR can significantly reduce feature dimensionality while identi-

fying small feature subsets with performance comparable or superior to the whole

feature set. The selected features have been uploaded to https://github.com/

kexquan/AD-detection-Feature-selection, and codes are aviable at https://

github.com/kexquan/dual-dropout-ranking and https://github.com/kexquan/

dual-net-feature-ranking.
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Chapter 1

INTRODUCTION

Dementia is a severe cognitive impairment that may seriously affect the health and

daily lives of the afflicted individuals. The greatest known risk factor for dementia is

increasing age, and the most common form of dementia is Alzheimer’s disease (AD).

According to a report from the World Health Organization,1 more than 55 million

people live with dementia worldwide, and there are nearly 10 million new cases every

year. In 2019, the estimated global societal cost of dementia was $1.3 trillion, and

these costs are expected to surpass $2.8 trillion by 2030. It was reported that 33% of

seniors died with AD or dementia. It is the 6th leading cause of death. In the USA,

10% of Americans over the age of 65 were diagnosed with AD, and 66% among the

diagnoses are women. The disease has a huge impact on the quality of life, not only for

individuals with dementia but also for their families and caretakers. Fortunately, with

effective detection of early dementia, disease-modifying medications and interventions

are possible [5]. Early detection of dementia can facilitate intervention to slow the

disease progression.

Currently, dementia can be diagnosed through brain imaging [6], identification

of apolipoprotein E genotypes [7], measuring the level of brain-derived neurotrophic

factors [8], cerebrospinal fluid exams [9], and other laboratory measures. Studies

have found that dementia-induced language impairment could be found in patients

years before the disease was diagnosed [10]. Research also showed that individuals

1https://www.who.int/news-room/fact-sheets/detail/dementia
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with progressive cognitive decline exhibit subtle linguistic impairment even in the pre-

symptomatic stages of the disease [11]. These findings suggest that individuals with

dementia display language deficits in the preclinical stages of the disease, indicating

that such deficits may manifest even before the clinical diagnosis is made. Conse-

quently, early detection of dementia can be achieved through speech and language

analyses. Following early detection, interventions and disease-modifying medications

can be implemented. Although the disease progression cannot be reversed, patients

may experience a decelerated disease progression, enhanced quality of lives, decreased

medical expenses, and extended lifespans.

1.1 Automatic Detection of Dementia through Speech and Language

Analyses

Recently, automatic detection of dementia through speech and language analyses has

gathered attention in the research community. Dementia detection involves feature ex-

traction followed by classification. The features can be generally grouped into speech-

based and transcription-based, depending on the source of extraction. Speech-based

features are extracted from speech recordings. They characterize atypical changes

in the speaker’s voicing, such as decreasing pitch, decreasing jitter, shorter speech

segments, etc. Transcription-based features, on the other hand, are extracted from

transcriptions. They can be divided into linguistic, semantic, and pragmatic features,

indicating language impairments or language deficits in the patients’ spoken language.

1.1.1 Speech-Based Features

Speech-based features, such as voice quality [12,13], verbal reaction time, and silence

duration [14], are typically extracted from speech recordings. These features contain

a variety of acoustic characteristics of the speakers.

Haider et al. [15] compared different types of paralinguistic acoustic features, in-
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cluding eGeMAPS [16], ComParE 2013 [17], Emobase [17], and MRCG [18] for demen-

tia detection. As the paralinguistic acoustic features are high-dimensional, Pearson’s

correlation (PeaCorr) tests were performed to reduce the feature dimensions. They

performed dementia detection at the segment-level. More specifically, the full audio

recording of a subject was split into several short speech segments, and different par-

alinguistic acoustic features were extracted from these segments. A method called

active data representation (ADR) was adopted to model the acoustic information of

the full audio recording using the features of all speech segments. Majority voting

was applied to the predicted labels of different speech segments to make the final

decisions.

Nasreen et al. [19] distinguished AD patients from non-AD control of similar age

using speech-based features. They used two types of speech-based features: inter-

actional features and acoustic features. The former characterizes the temporal and

interactional aspects of conversations, which include pauses less than 1.5 seconds,

pauses greater than 1.5 seconds, gaps, lapses, attributable silences, etc. The acous-

tic features includes pitch, amplitude, energy, and mel-frequency cepstral coefficients

(MFCCs). They achieved a promising accuracy of 87% using the interactional features

alone.

In addition to eGeMAPS features [16], Gauder et al. [20] investigated different

speech-based embeddings for automatic detection of AD. The speech-based embed-

dings are high-level representations extracted from pre-trained models, such as the

trill model [21], the Allosaurus model [22], and the Wav2Vec 2.0 model [23]. The

authors also performed segment-level classification and obtained the final score for an

audio file by averaging the scores over all speech segments. The pre-trained Wav2Vec

2.0 model was also adopted by Balagopalan et al. [24] for recognizing English-speaking

AD patients. They fed speech segments to the pre-trained Wav2Vec 2.0 model and

extracted the embeddings from the model. They obtained embeddings for an audio

file by averaging the embeddings over all speech segments.
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Generally speaking, speech-based features used for dementia detection include par-

alinguistic acoustic features (eGeMAPS, ComParE, Emobase, MRCG, etc.), conven-

tional hand-crafted acoustic features (pitch, amplitude, energy, MFCCs, interactional

features, etc.), and speech-based embeddings extracted from pre-trained models (trill,

Allosaurus, and Wav2Vec 2.0). The paralinguistic acoustic features are adopted from

other speech-related tasks, such as speaker recognition and emotion recognition. The

conventional hand-crafted acoustic features are specially designed for dementia de-

tection. The speech-based embeddings are high-level representations extracted from

pre-trained models designed for high-level tasks. For example, the Allosaurus model

was designed for phone recognition and Wav2Vec 2.0 is an end-to-end speech-to-text

model. The extraction of speech-based embeddings avoids the manual design of fea-

tures.

1.1.2 Transcription-Based Features

In addition to the speech-based features, diverse transcription-based features have also

been used for dementia detection. The transcription-based features are extracted from

either the automatic or manual transcriptions, which capture the semantic, syntactic,

and lexical aspects of the speaker’s utterances.

Qiao et al. [25] combined linguistic complexity and disfluency features with Transformer-

based pre-trained language models for AD detection tasks. The disfluency features

(silent pauses, speed of articulation, filled pauses, and pronunciation) containing the

speakers’ articulatory characteristics were extracted from automatic speech recogni-

tion (ASR) systems. The linguistic complexity features (syntactic complexity, lexical

richness, register-based n-gram frequencies, and information-theoretic measures) were

obtained by analyzing the transcriptions using a complexity contour generator (CoCo-

Gen). The pre-trained BERT [26] and ERNIE [27] models were also fine-tuned using

the transcriptions for dementia detection.

The Transformer-based language models were extensively investigated by Syed et
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al. [28] for dementia detection. They compared the efficacy of BERT and its deriva-

tives, including DistilBERT [29] and RoBERTa [30] for capturing the structural and

linguistic properties of the transcriptions. The BART [31] model was also included.

Instead of taking the entire transcription as a single entity, the authors in [28] gener-

ated token-level embeddings and computed the embeddings for the entire transcrip-

tion by applying statistics pooling on the token-level embeddings. They introduced

a special pre-processing step that integrates silence durations into the transcriptions.

Specifically, when the duration was between 2s and 4s, they added <uhm> to the

transcriptions. If the silence was between 4s and 6s, they added <uhm uhm>. If the

silence exceeded 6s, they added <long silence>. They also combined handcrafted

features – including syntactic, readability, and lexical diversity – with the embeddings

for recognizing AD patients.

Yuan et al. [32] applied a special pre-processing step that encodes pauses in the

transcriptions for AD detection. More precisely, the pauses were divided into three

groups according to their durations: G1 (pauses less than 0.5s), G2 (pauses between

0.5s and 2s), and G3 (pauses longer than 2s). Three groups of pauses were encoded

using three punctuations <.>, <..>, and <...>, respectively. Finally, the BERT and

ERNIE models were fine-tuned using the pre-processed transcriptions as input.

In a recent study, Li et al. [33] explored the capabilities of large Transformer

models for AD detection. Rather than directly fine-tuning a model to differentiate

between healthy older adults and AD patients, the authors proposed perturbing a

small GPT-2 model [34] to create an artificially degraded GPT model called GPT-

D. Then, AD patients were detected by computing the perplexity ratio between the

two models, given the spoken languages of an unknown subject. The idea is based

on the notion that the perturbation of GPT-2 induces linguistic anomalies related

to dementia, causing the model to generate text with characteristics associated with

AD.

Generally speaking, recent studies utilized pre-trained language models (BERT,
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ERNIE, DistilBERT, RoBERTa, BART, etc) to automatically capture the structural

and linguistic properties of transcriptions. These studies usually take special pre-

processing steps to incorporate dementia-related information (self-repair terms, edit

terms, short pauses, long pauses, etc.) into the transcriptions. The hand-crafted

linguistic, lexical, and syntactic features were also used for dementia detection because

of their ability in revealing the patients’ abnormal language characteristics.

1.1.3 Combined Speech-Based and Transcription-Based Features

Some studies [35] combined speech-based and transcription-based features, e.g., par-

alinguistic features were combined with linguistic fluency features. Another approach

is to fuse the decisions from multiple modalities. For instance, in [36], the modalities

include acoustic, cognitive, and linguistic, and in [37, 38], the modalities comprise

acoustic and textual domains.

Fraser et al. [39] used a large number (370) of features to capture different linguis-

tic phenomena. The features include part-of-speech (POS) statistics, syntactic com-

plexity, grammatical constituents, psycholinguistics-related (familiarity, imageability,

and age-of-acquisition), vocabulary richness, information content, and repetitiveness.

Additionally, several acoustic features indicative of pathological speech and a set of

features based on MFCCs were extracted. To identify the fundamental structure

in the data, the authors applied factor analysis, which decomposed 50 highly corre-

lated features into four factors: semantic impairment, acoustic abnormality, syntactic

impairment, and information impairment.

Rohanian et al. [40] used bidirectional long-short term memory (BiLSTM) to

model speech-based and transcription-based features. They used the COVAREP fea-

ture set [41] as the speech-based features. The transcription-based features were text

embeddings extracted from a pre-trained GloVe model [42]. They also took a special

pre-processing step that integrates disfluency information (self-repairs and edit terms)

and pause information (short and long pauses) into the transcriptions.
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Chatzianastasis et al. [43] employed a multimodal approach to combining con-

volutional neural networks (CNNs) and pre-trained language models. The authors

used the approach to process speech recordings (as the acoustic modality) and their

corresponding transcriptions (as the text modality). The speech recordings were con-

verted to images with three channels (log-Mel spectrograms, delta, and delta-delta),

which were then inputted to the CNNs. To address the challenge of designing an

efficient CNN architecture, they leveraged neural architecture search (NAS) for iden-

tifying high-performing CNN architectures. The authors also explored various fusion

methods, such as multimodal factorized bi-linear (MFB) pooling [44] and multimodal

factorized high-order (MFH) pooling [44], to combine the speech and text modalities.

Recently, there has been increased interest in combining the acoustics, transcrip-

tion, and speech modalities. For example, to distinguish patients with progressive

neurodegenerative memory disorders from those with non-progressive functional mem-

ory disorders, Mirheidari et al. [45] extracted 12 speech features and 12 transcription

features. More importantly, they also incorporated 20 conversational features specifi-

cally designed for characterizing the differences between speaker turns. In a different

study, Ilias et al. [46] used Transformer models to combine the transcription and

speech modalities. For the transcription modality, they employed a BERT model

to automatically capture the semantic, syntactic, and lexical aspects of the speaker’s

transcriptions. For the speech modality, they converted the speech signals into log-Mel

spectrograms and utilized a vision Transformer (ViT) [47] to automatically extract

features from the spectrograms. Zhu et al. [48] explored transfer learning across mul-

tiple domains, including image, audio, speech, and language, to distinguish patients

with AD from healthy controls (HCs). They employed various transfer learning mod-

els, such as MobileNet [49] (image), YAMNet [50] (audio), Mockingjay [51] (speech),

and BERT (language). MFCCs were used as inputs for the MobileNet, and log-Mel

spectrograms were used as the input to the Mockingjay model.
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1.2 Relevance of Various Features for Dementia Detection

Several studies have investigated the relevance of various features for dementia de-

tection. The general process is feature extraction followed by feature selection (FS).

For example, Ammar et al. [52] extracted transcription-based features to identify the

early onset of AD. The researchers classified these features into three distinct cate-

gories: syntactic, semantic, and pragmatic. Syntactic features are derived from the

usage of nouns, pronouns, adjectives, and verbs. Semantic features include type-token

ratio and idea density. Pragmatic features include degree of paraphrasing, number of

repetitions, and the number of syllables spoken per minute. The authors compared

the performance of three types of classifiers: support vector machines (SVM), de-

cision trees (DT), and neural networks. They selected discriminative features from

the transcription-based features using three FS methods, including information gain,

k-nearest neighbor (k-nn), and SVM recursive feature elimination (SVM-RFE). FS

was performed on the entire training data to compute the ranking weights for all

features and delete the features with small weight. Experimental results reveal that

all classifiers exhibited improved performance using these FS methods.

Weiner et al. [53] extracted a range of speech-based and transcription-based fea-

tures from biographic interviews for AD state screening. Speech-based features com-

prise pause-based attributes, speaking rate characteristics, and i-vectors [54]. Transcription-

based features consist of lexical richness, linguistic inquiry and word counts (LIWC),

POS tags, and perplexities. To reduce the dimensionality, a nested forward FS method

was employed. Firstly, a leave-one-subject-out cross-validation (CV) was used to gen-

erate the training partitions (TR) and test partitions (TS) of the folds. Secondly,

on the TR of each fold, forward FS was conducted using a second-level leave-one-

subject-out CV. The best-performing set of features was determined from each for-

ward FS. Finally, the selection frequency of each feature was obtained by counting

how many times the feature was selected in the nested CV. Their experiments show
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that transcription-based features were often selected and among them LIWC, conver-

sational POS, i-vectors, and written POS are the most often. Additionally, they also

applied nested forward FS to select features in biographic interviews to predict AD

development in five years [55].

Alhanai et al. [56] extracted demographic, speech-based, and transcription-based

features to identify discriminative features for cognitive impairment detection. The

demographic features included the subject’s age, sex, highest level of self-reported

education, and occupation. The openSMILE toolkit [17] was used for extracting the

acoustic features, which include information on the subject’s pitch, probability of

voicing, root-mean-square (RMS) energy, MFCCs, harmonic to noise ratio (HNR),

zero crossing rate, shimmer, jitter, and the difference between the features in neigh-

boring frames. The transcription-based features comprise the number and duration

of words per speaking turn, words-per-minute (WPM), the number of question marks

(<?>) and hesitation marks (<um>) per speaking turn, the number of unique words,

and the out-of-vocabulary (OOV) ratio. A two-step FS method was adopted in a

nested leave-one-subject-out CV to select features. Firstly, a leave-one-subject-out

CV was utilized to divide the data into TR and TS partitions. Secondly, on the TR

of each fold, PeaCorr was applied to pre-screen the original feature sets, which was

followed by a binomial logistic-regression model regularized by an elastic-net [57] to

select discriminative features. Finally, feature importance was determined using the

coefficients of the regularized logistic regression model, and the selection frequencies

of individual features were also reported. The experimental results show that cogni-

tive impairment is positively correlated with decreasing pitch, decreasing jitter, short

speech segment, and an increasing number of question marks (<?>).

Table 1.1 summarizes the studies that perform FS for dementia detection. Haider

et al. [15] used speech-based features only, whereas Ammar et al. [52] employed

transcription-based features only. Haider et al. [15] and Ammar et al. [52] performed

FS using the entire training data prior to CV, whereas Weiner et al. [53, 55] and
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Alhanai et al. [56] performed FS in a nested leave-one-subject-out CV.

Table 1.1: Summary of the studies that investigate the relevance of various features
for dementia detection.

Extracted Feature FS Method FS Procedure Selected Feature

Haider et al. [15]
eGeMAPS, ComParE 2013,

Emobase, and MRCG
PeaCorr

Selecting features on

the entire training data

Features that

were not correlated

with the duration

of the speech chunks

Ammar et al. [52]
Syntactic, semantic,

and pragmatic

Information gain,

kNN,

and SVM-RFE

Selecting features on

the entire training data

The use of nouns,

the use of pronoun,

repetition, etc.

Weiner et al. [53]

Pause-based, speaking rate,

i-vectors, lexical richness,

LIWC, POS tags,

and perplexity

Forward FS
Nested

leave-one-subject-out CV

LIWC, POS,

and i-vectors

Weiner et al. [55]

Pause-based, speaking rate,

i-vectors, lexical richness,

POS tags, LIWC, perplexity,

between-speaker perplexity

Forward FS
Nested

leave-one-subject-out CV

LIWC, POS, perplexity,

between-speaker perplexity,

i-vectors, and pause-based

Alhanai et al. [56]
Demographic, speech-based,

and transcription-based features

PeaCorr,

and elastic-net

Nested

leave-one-subject-out CV

Decreasing pitch,

decreasing jitter,

shorter speech segment,

and an increasing number

of question marks (<?>)

Recent studies also identified biomarkers for healthcare and bioinformatics appli-

cations. Shen et al. [58] selected important genes from high-dimensional gene expres-

sion data. They studied the limitations of the L1 penalization-based methods such

as Lasso [59] and elastic-net [57] in identifying highly correlated features. To address

the limitations, they proposed comprehensive relative importance (CRI) [58] analysis

independent of the sample size and matrix rank. The CRI was proven to be more

effective in selecting relevant features in some high-dimensional biological datasets

compared to the L1 penalization-based methods. Qin et al. [60] assessed the speech
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and language impairments in Cantonese-speaking individuals with aphasia. They pro-

posed some text features and combined them with conventional acoustic features to

encompass various aspects of the impairments. A two-tailed paired t-test was utilized

to select ASR-aligned text features. Additionally, they used Spearman’s correlation

tests to select acoustic features that are highly corrected with the target. Palmerini

et al. [61] aimed to identify the patients with early mild Parkinson’s disease (PD) by

characterizing their postural behavior. A total of 175 features were extracted from

the accelerometer signals to quantify tremor, acceleration, and displacement of body

sway. They performed FS by exhaustively searching the subsets of these features.

Their results indicate that several subsets of these features achieve misclassification

rates as low as 5%, showcasing the efficiency of FS in improving the accuracy of PD

diagnosis. Their results also emphasize the potential of their method for monitoring

the progression of PD.

1.3 Research Objectives

As previously proposed, FS is utilized to determine the feature relevance for dementia

detection. This study also utilized FS to detect dementia. We refer to the selected

features as spoken language biomarkers of dementia. Detecting dementia through FS

offers several advantages. 1) FS helps in reducing the feature dimensions, which may

lead to a more accurate model. 2) FS can improve explanations. By selecting the

most relevant features, researchers and clinicians can understand which features are

indicative of dementia. 3) FS can offer insights into disease mechanisms. By focusing

on the selected features, we can have a deeper understanding of cognitive changes in

dementia patients. 4) FS can improve detection performance.

We summarize our research objectives as follows.

1. Diverse spoken language features can contribute to dementia detection, and our

study focuses on identifying the most discriminative features for detection.
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2. Combining different features can cause difficulties in determining the feature

relevance. To mitigate these difficulties, we explore FS methods to select the

spoken language biomarkers and better determine the feature relevance.

3. To streamline a feasible and general process to select the spoken language

biomarkers, we investigate automatic FS methods.

4. To improve detection performance, we develop more advanced FS methods,

especially the deep-learning-based methods.
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Chapter 2

FEATURE SELECTION

We are now in the era of big data, with a vast amount of ubiquitous, high-

dimensional data in various fields, such as social media, healthcare, and bioinfor-

matics. When data-mining and machine-learning algorithms are applied to high-

dimensional data, the high feature-dimensionality will easily cause overfitting in ma-

chine learning models, making the models unable to generalize to unseen data. In

bioinformatics, the high feature-dimensionality also casts difficulty in interpreting the

input variables. Feature selection (FS), a powerful dimension reduction technique,

can address overfitting and interpretability issues. Unlike principal component analy-

sis (PCA), which reduces feature dimensionality by projecting feature vectors onto a

low-dimensional space, FS reduces feature dimensionality by selecting a feature sub-

set from the original feature set. Therefore, the selected features maintain physical

meanings and provide interpretability.

This chapter investigates various FS methods, especially the deep-learning-based

methods.

2.1 Conventional Feature Selection Methods

2.1.1 Filter Methods

Filter methods are usually computationally less expensive and do not require training.

The filter methods are also independent of the machine learning models for classifi-

cation. In the cases where the feature dimension is very high, filter methods are

indispensable because they can produce a reduced set of features that can be further
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selected by other expensive FS methods.

The minimal-redundancy-maximal-relevance (mRMR) criterion [62] selects fea-

tures by assessing the max-relevance and min-redundancy between the features and

the targets. Given two random variablesX and Y , their mutual information (MutInfo)

is defined as:

I(X;Y ) =

∫∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy, (2.1)

where p(x) is the probability density function of X, and p(x, y) is the joint density

of X and Y . Max-relevance is to find a feature set that maximizes the mean of the

MutInfo between individual features xi and the class c:

max
S

D(S, c), where D(S, c) = 1

|S|
∑
xi∈S

I (xi; c) . (2.2)

Min-redundancy is to select a mutually-exclusive feature set that minimizes the de-

pendence between the features:

min
S

R(S), where R(S) = 1

|S|2
∑

xj ,xk∈S
I (xj, xk) . (2.3)

Combining max-relevance and min-redundancy, the mRMR criterion is:

max
S

Φ(D,R), where Φ = D −R. (2.4)

We can employ MutInfo for FS. When applying the MutInfo filter method, we cal-

culate the MutInfo between each feature and the target (class) variable. Afterwards,

we rank the features based on their respective MutInfo.

The Pearson correlation (PeaCorr) tests measure the linear relationships between

two random variables a and b. The PeaCorr coefficient (rab) can be calculated using
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the formula:

rab =

∑n
j=1(aj − ā)(bj − b̄)√∑n

j=1(aj − ā)2
∑n

j=1(bj − b̄)2
, (2.5)

where ā and b̄ represent the mean of the variable a and variable b respectively for

n observations. When using the PeaCorr as a filter method for FS, we find the

redundant features by sorting the PeaCorr coefficients of feature pairs.

The Fisher’s discriminant ratio (FDR) [63, 64] selects features by assessing the

within-class means and variances of each candidate feature. The formula for FDR is:

FDR(j) =
(μ+

j − μ−
j )

2

(σ+
j )

2 + (σ−
j )

2
, (2.6)

where μ+
j , μ

−
j , σ

+
j , and σ−

j represent the class-conditional means and standard deriva-

tions of the j-th feature, respectively. Features with high FDR(j) are selected.

2.1.2 Wrapper Methods

The wrapper methods assess the relevance of features according to their learning

performance on a classifier or a regression model. For example, sequential forward

selection (SFS) iteratively finds the best features that lead to maximum performance

gain. On the other hand, sequential backward selection (SBS) iteratively removes

features that do not have a significant effect on the performance. SVM-RFE [65]

ranks the coefficients of a linear SVM to eliminate features.

2.1.3 Embedded Methods

The embedded methods use the intrinsic structure of a learning algorithm to embed

FS into the underlying model. For example, the Lasso [59] imposes L1 penalty on

the coefficients of a regression model [1]. Group Lasso [66,67] make certain groups of

feature weights to be close to zero, effectively selecting or disregarding specific groups

of features altogether. Sparse Group Lasso [68] selects several group of features, but
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not all the features in the selected group will be kept. Figure 2.1 illustrates the

differences between Lasso, Group Lasso, and Spare Group Lasso.

LASSO

Group 
LASSO

Sparse Group 
LASSO

Figure 2.1: The differences between Lasso, Group Lasso, and Spare Group Lasso.
Lasso encourages sparsity at individual-feature level. Group Lasso selects several
groups of features, i.e., G1, G3, and G5. Sparse Group Lasso also selects G1, G3, and
G5, but some features in these two groups are discarded. Adopted from [1].

The elastic-net regularization [57] places L1 and L2 penalties on the coefficients of

a regression model to encourage sparsity. Random forest (RF) [69] determines feature

importance by evaluating the extent to which each feature reduces impurity.

2.2 Deep-Learning-Based Methods

2.2.1 Deep Feature Selection (DFS)

Sparsity regularization can also be adopted in deep learning models for FS. For ex-

ample, in deep feature selection (DFS) [2], elastic-net regularization [57] is imposed

on the coefficients between the input and the first hidden layer. The architecture of

DFS is depicted in Figure 2.2.
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Input:

Weighted input:

One-to-one layer:

Figure 2.2: The architecture of DFS. There is a one-to-one correspondence between
the coefficients in w and the input variables in x. w is a sparse vector. Adopted
from [2].

The learning objective of DFS is:

L(x;ψ) = l(x;ψ) + λ1

(
1− λ2

2
‖w‖22 + λ2‖w‖1

)
+ α1

(
1− α2

2

K+1∑
k=1

∥∥∥W (k)
∥∥∥2
F
+ α2

K+1∑
k=1

∥∥∥W (k)
∥∥∥
1

)
,

(2.7)

where ψ = {w,W (1), . . . ,W (K+1)} contains the network parameters, l(x;ψ) is the

cross-entropy loss for classification,w contains the coefficients corresponding to the in-

put variables in x, λ1

(
1−λ2
2
‖w‖22 + λ2‖w‖1

)
is the elastic-net regularization (the com-

bination of L1 and L2 penalties), and λ1 and λ2 are mixing parameters between the L1

and L2 penalties. The second regularization α1

(
1−α2

2

∑K+1
k=1

∥∥W (k)
∥∥2
F
+ α2

∑K+1
k=1

∥∥W (k)
∥∥
1

)
is another elastic-net-like term that helps reduce the model complexity and speed up

optimization. There is a one-to-one correspondence between the coefficients in w and

the input variables in x. Therefore, the coefficients w can reflect the importance of

the corresponding input variables.
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2.2.2 Dropout Feature Ranking (DropoutFR)

There are other deep-learning-based methods using regularization, such as dropout

feature ranking (DropoutFR) [4]. These methods rank the features according to the

probabilities (dropout rates) that the features should be purged (or kept). The higher

the dropout rates, the lower the rank of the features. Given a dropout rate vector

θ = (θ1, θ2, . . . , θj, . . . , θd) and a dropout mask vector z = (z1, z2, . . . , zj, . . . , zd), we

denote the distribution of z as

q(z) =
d∏
j=1

q (zj | θj) =
d∏
j=1

Bern (zj | θj) , (2.8)

where θj is the dropout rate for the jth feature, and zj ∈ {0, 1} is the correspond-

ing binary dropout mask. This gives us a fully factorized Bernoulli distribution for

feature-wise feature ranking (FR). Before training, the dropout rate corresponding to

each input feature is set to 0.5. During the training process, the dropout rates can be

optimized to determine the feature ranks. After training, each feature will have a dif-

ferent dropout rate, and the feature rank is based on the dropout rate. For instance,

the feature with a dropout rate of 0.1 ranks higher than the feature with a dropout

rate of 0.9, because the latter is more likely to be purged during the training process.

The idea of using dropout rates to rank features is novel because it considers the rank

of the features in a probabilistic measure instead of a deterministic measure. Different

from deterministic measures that use some coefficients to determine the feature rank,

DropoutFR uses probabilities to indicate the FR.

The learning objective of DropoutFR is to minimize the following loss:

L(M;θ) = − 1

|M|
|M|∑
i=1

l (xi � zi,yi) +
λ

|M|
|M|∑
i=1

d∑
j=1

zij, (2.9)

where θ contains trainable dropout rates that determine zi probabilistically, M is



19

a mini-batch with |M| pairs of feature vector xi and target yi, zi is the dropout

mask corresponding to xi, � is element-wise multiplication, and l(·) is the standard

cross-entropy loss for classification. The second term is a regularization (penalty)

term that encourages sparsity on the dropout masks: λ is a regularization coefficient

and d is the dimension of the input vector. The regularization on the dropout masks

is similar to LASSO regularization because both of them encourage sparsity on the

coefficients. We can see that most of the dropout masks will become 0 (sparse) if the

regularization works well. The regularization term minimizes the number of preserved

features by encouraging sparsity on the dropout masks.

A key point is that DropoutFR optimizes the dropout rates θ through the concrete

relaxation:

z(θ) = sigmoid

(
1

t
[log θ − log(1− θ) + logu− log(1− u)]

)
, (2.10)

where u ∈ R
d follows the Uniform(0,1) distribution and t is a normalization constant,

which is set to 0.1 in our experiments. Eq. 2.10 relaxes the discrete dropout mask

to a continuous function of the dropout rates, which enables the optimization of the

dropout rates through back-propagation.

2.2.3 Feature Importance Ranking (FIR)

There are other deep-learning-based methods that utilize different strategies for reg-

ularization. For example, the feature importance ranking (FIR) [3] is based on a

dual-net architecture that combines FS and classification via two neural networks

(selector and operator). The dual-net architecture of FIR is depicted in Figure 2.3.
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Learning performance

Feature subset

Operator
Net

Selector
Net

Figure 2.3: The dual-net architecture of FIR. Adopted from [3].

Figure 2.3 shows that FIR contains two neural networks to simultaneously incor-

porate FS and classification. The learning objective of FIR is:

LO (Z,M;ψ) =
1

|M| |Z|
∑
z∈Z

∑
(x,y)∈M

l(x� z,y;ψ)

LS (Z;ϕ) = 1

2 |Z|
∑
z∈Z

⎛
⎝fS(z;ϕ)− 1

|M|
∑

(x,y)∈M
l(x� z,y;ψ)

⎞
⎠

2

,

(2.11)

where LO (Z,M;ψ) is the operator’s learning objective, ψ contains the operator’s

parameters, M is a mini-batch with |M| pairs of feature vector xi and target yi,

and Z is the feature mask subset with size |Z|. LS (Z;ϕ) is the selector’s learning

objective, ϕ contains the operator’s parameters, and fS(z;ϕ) is the output of the

selector. The operator is trained to minimize the classification loss based on the

features obtained from the selector. In each iteration of training, the operator first

obtains the feature mask subset Z from the selector, and the selected features are

obtained from x � z. The operator’s learning performance based on the selected

features is obtained and passed to the selector as a feedback indicating how well the

operator performs on the features selected by the selector. The selector is trained to

select the optimal feature set for predicting the operator’s learning performance. The

selector uses input gradient [70] to rank the features and selects the optimal feature
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set. The regularization for FS is achieved by selecting a subset of features from the

original feature set based on the input gradient.
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Chapter 3

FEATURE RANKING FOR DEMENTIA DETECTION

While various type of features have been used for dementia detection, it is still

unclear which features or their combinations are more effective. We analyze a diverse

set of features extracted from spoken language and select the most discriminative

ones for dementia detection. We propose two deep-learning-based FR methods called

dual dropout ranking (DDR) and dual-net feature ranking (DFR) to rank and select

the features.

3.1 Dual Dropout Ranking (DDR)

The proposed DDR is based on a dual-net architecture that separates FS and dementia

detection into two neural networks (namely, the operator and selector). The operator

is trained on features obtained from the selector to reduce classification/regression

loss. The selector is optimized to predict the operator’s performance based on au-

tomatic regularization. In particular, the selector has dropout masks in its input

layer for which the trainable dropout rates are inversely proportional to the features’

importance.

3.1.1 Dropout for Feature Ranking

FR aims to rank the importance of individual features according to some criteria,

where the criteria typically reflect the features’ contributions to the learning perfor-

mance [3].

In dropout [71], nodes are purged according to their dropout rates. Therefore, the
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higher the dropout rate, the lower the importance of the feature, and FR amounts to

determining the dropout rates of individual input nodes. To formulate the dropout

rate of a feature, we adopt an approach similar to DropoutFR [4]. Specifically, given

a dropout rate vector θ = (θ1, θ2, . . . , θk, . . . , θd) and a dropout mask vector z =

(z1, z2, . . . , zk, . . . , zd), we denote the distribution of z as q(z) =
∏d

k=1 q (zk | θk) =∏d
k=1 Bern (zk | θk), where θk is the dropout rate for the kth feature and zk ∈ {0, 1} is

the corresponding dropout mask. This gives us a fully factorized Bernoulli distribution

that focuses on FR. Suppose x = (x1, x2, . . . , xk, . . . , xd) is an input feature vector.

During the forward pass, we place the dropout mask vector on the input layer, that

is x� z, where � is the element-wise product (Hadamard product).

3.1.2 Trainable Dropout Rates

In ordinary dropout, the dropout rates are fixed hyper-parameters. Instead of fixing

the dropout rates, we treat them as trainable parameters. To optimize the dropout

rates, we relax the binary dropout masks to soft dropout masks as follows:

z(θ) = sigmoid

(
1

t
[log θ − log(1− θ) + logu− log(1− u)]

)
, (3.1)

where u ∈ R
d follows the Uniform(0,1) distribution and t is a normalization constant,

which is set to 0.1 in our experiments. Note that this relaxation has also been used in

Concrete Dropout [72] and DropoutFR [4]. Eq. (3.1) suggests that q(z) places most of

the mass to either zk = 0 or zk = 1 to closely resemble the binary dropout mask. With

the continuous relaxation in Eq. (3.1), the dropout rates can be optimized through

back propagation, and we can gradually select the optimal features x� z along with

the optimization of the dropout rates. The relation between the features’ ranks and

trainable dropout rates is depicted in Figure 3.1.
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Feature’s
rank  

Input nodes

Dropout rates :

Top 1
Top 2

Input nodes

Dropout rates : 0.90 0.10 0.20 0.80 0.85

0.5 0.5 0.5 0.5 0.5

Dropout 
rate

training

Figure 3.1: The relationship between the features’ ranks and the trainable dropout
rates. Before training, each of the input features is assigned the same dropout rate
(e.g., 0.5). After training, the features with a lower dropout rate will be assigned a
higher rank.

3.1.3 Learning Algorithm

SupposeM = {X ,Y} is a mini-batch comprising |M| pairs of x and y, where x ∈ X
is a feature vector of size d, and y ∈ Y is the corresponding target. By sampling

the uniform distribution in Eq. (3.1), we obtain several soft dropout mask vectors

z = (z1, z2, . . . , zk, . . . , zd) and form a dropout mask subset Z of size |Z|. The learning
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objectives of the dual-net for DDR are defined as:

Operator’s objective:1

LO (M,Z;ψ) = 1

|Z||M|
∑
z∈Z

∑
(x,y)∈M

l(x� z,y;ψ) (3.2a)

Selector’s objective:2

LS (Z(θ);ϕ) = 1

|Z|
∑
z∈Z

⎧⎨
⎩
∣∣∣∣∣∣fS(z;ϕ)−

1

|M|
∑

(x,y)∈M
l(x� z,y;ψ)

∣∣∣∣∣∣
/

d∑
k=1

(1− zk)

⎫⎬
⎭

(3.2b)

where l(x�z,y;ψ) is either the cross-entropy loss for binary/multi-class classification

or the MSE loss for regression, ψ is the operator’s parameters, fS(z, ϕ) is the selector’s

output, and ϕ is the selector’s parameters. The relationship between the operator and

the selector in the dual-net architecture is depicted in Figure 3.2. During training,

the operator and selector are trained alternately. The alternate training procedure is

depicted in Appendix 1. The advantages of the dual-net architecture are as follows.

1) It can off-load the optimization of dropout rates to the selector, which lets the

operator to focus on the classification or regression tasks. 2) It can shift the FS

constraint (the denominator of Eq. (3.2b)) to the selector, and with the alternate

training procedure, it enables automatic regularization. 3) It avoids manually setting

the regularization coefficients.

Operator

The operator is trained on the features selected by the selector to reduce classification

loss. For each iteration, given the dropout mask subset Z from the selector, the

1During the optimization of the operator, θ is considered fixed. Therefore, we drop the depen-
dence of z on θ.

2For notational simplicity, we omit the dependence of z on θ on the right side of this equation.
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selected features {x� z}x∈X ,z∈Z are fed to the operator, and the operator’s learning

performance based on the selected features is obtained. Given the selected features

x� z, 1
|M|

∑
(x,y)∈M l(x� z,y;ψ) is the learning performance of the operator on the

mini-batch M. By enumerating z in Z, we obtain the average learning performance

of the operator on the mini-batch. Then, we update the operator’s parameters and

pass the operator’s learning performance to the selector as a feedback indicating

how well the operator performs on the selected features. Different from the sparsity

regularization methods that also incorporate the regularization into the network, the

operator only focuses on reducing classification loss. Given the selected features, the

operator’s architecture can be tailored to different learning tasks (classification or

regression).

Selector

The selector learns to predict the operator’s learning performance using as few se-

lected features as possible. The mean absolute error (MAE) between fS(z, ϕ) and

1
|M|

∑
(x,y)∈M l(x � z,y;ψ) requires that the selector closely predicts the operator’s

learning performance. The constraint
∑d

k=1(1− zk) on the denominator of Eq. (3.2b)

automatically causes most of the dropout masks in z to become 0; so the selector

only selects a small number of features when predicting the operator’s learning per-

formance.

After training and updating the selector’s parameters and dropout rates, we have

the updated dropout rate vector θ′. Through sampling the uniform distribution in

Eq. (3.1), we obtain several new soft dropout mask vectors z′ from the updated

dropout rate vector θ′ and form a new dropout mask subset Z ′ for the next iteration.

In practical implementation, the dropout mask vector fed to the selector is z � z′,

where z ∈ Z and z′ ∈ Z ′.
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Figure 3.2: The dual-net architecture of DDR. ψ and ϕ represent the network pa-
rameters of the operator and selector, respectively. θ comprises the dropout rates at
the input layer of the selector. X contains |M| feature vectors and Z contains |Z|
dropout masks.

3.1.4 Two-step Feature Selection

In this section, we extend the DDR in Section 3.1.3 to a two-step FS approach,

which aims to deal with the circumstance where the feature dimensions are much

larger than the number of training samples. We present a two-step FS method –

Step 1 utilizes filter methods to pre-screen features; and Step 2 uses DDR to rank
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the screened features and for selecting spoken language biomarkers. The two-step

FS method is depicted in Figure 3.3. FS can be nested inside CV, which means

that FS is conducted on the TR of individual folds instead of the entire training set.

Filter methods are usually computationally cheap and do not require training. When

the feature dimension is very high, filter methods are indispensable for obtaining a

reduced set of features for the expensive FS methods. Therefore, in Step 1, filter

methods are utilized to pre-screen the original features. Three filter methods were

evaluated in the experiments: FDR [63], PeaCorr tests, and MutInfo. In Step 2, the

proposed DDR is applied to rank the remaining features. Before training, each of the

remaining features is assigned the same dropout rate (e.g., 0.5). During training, the

DDR adjusts the dropout rates to reflect the features’ importance. After training,

we rank the features according to the dropout rates and select the features with low

dropout rates.
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Figure 3.3: The FS procedure: 10-fold CV was adopted. The training data were
divided into 10 TR. In the TR of individual folds, the two-step FS approach was
applied to select the most discriminative features. In Step 1, filter methods were
utilized to pre-screen the features. In Step 2, DDR was adopted to rank the features
selected in Step 1 (the remaining features). Features with low dropout rates were
then selected.

3.1.5 Feature Selection in Cross-validation

As illustrated in Figure 3.3, an approach termed nested FS is adopted within the

10-fold CV as opposed to the traditional approach to conducting FS outside the CV.

Specifically, within each fold of the CV, the TR is used to select features, which are

then tested using the TS. As the training data differ among the individual folds,

different features will be selected in each fold. Conducting FS on the entire training

data prior to CV introduces bias, as the TS will also be used for FS. This may

ultimately affect the CV results.
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3.2 Dual-net Feature Ranking

In this section, we first explain why the parameters of a linear regression model can

determine feature relevancy. Then, we extend the concept of feature relevancy de-

termination to deep neural networks and proposed a deep-learning-based FR method

called dual-net feature ranking (DFR). The method utilizes a dual-net architecture,

where two networks (called operator and selector) are trained to simultaneously per-

form FS and dementia detection. Specifically, the selector is trained to find multiple

subsets of features to predict the operator’s performance, and the operator uses these

feature subsets to minimize classification errors. DFR uses all of the selector’s param-

eters to determine the contributions of individual features to the selector’s predictions.

Specifically, we summarize our main contributions as follows.

1. We introduce a novel approach for interpreting the contribution of the input

variables to the neural network’s output. The approach utilizes the parameters

of the network to interpret the contribution of the input variables, taking into

account the non-linear relationships between the input variables and the net-

work’s output. It enables assessing the contribution of individual input variables

in a multi-layer neural network.

2. We propose a feature ranking method based on a dual-net architecture, consist-

ing of an operator net and a selector net. The selector net always has one linear

output node, enabling it to interpret the contribution of individual input vari-

ables. On the other hand, the operator net could have multiple output nodes,

making it suitable for classification.
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3.2.1 Variable Selection in Deep Neural Networks

We consider the usual linear regression model. Given d predictor variables x =

(x1, . . . , xj, . . . , xd)
T, the response variable f(x) is predicted by

f(x) ≈ f̂(x) = β̂0 + β̂1x1 + · · ·+ β̂jxj + · · ·+ β̂dxd, (3.3)

where f̂(x) is a linear model and β̂1, . . . , β̂j, . . . , β̂d are its parameters. Since there is a

one-to-one correspondence between the model parameters and the predictor variables,

the effect of a given predictor xj on the model f̂(x) can be evaluated through the

value of β̂j [70].
3 In particular, when the model parameter β̂j � 0, the predictor xj

may have a significant positive effect on the model. When β̂j ≈ 0, we may say that

xj contributes little to the prediction of f(x), and it can be removed from the model.

Alhanai et al. [56] determined the most predictive features for mild cognitive

impairment (MCI) detection by evaluating the values of the corresponding parameters

in a logistic-regression model. They found that decreasing pitch, decreasing jitter, and

shorter speech segment lengths are positively correlated with MCI. Following this

strategy, we first introduce the variable selection in a 1-layer fully-connected network

with one linear output node because it is equivalent to the linear regression model.

We then extend the strategy to a multi-layer fully-connected network.

3The model’s parameters are standardized so that the relevance of the predictor variables can be
meaningfully compared.
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(a) (b)

Figure 3.4: Network architectures for explaining the contributions of individual fea-
tures (input nodes) to the network’s prediction. (a) A 1-layer network with one linear
output is equivalent to the linear regression model. (b) Feature importance can be
obtained from the weights of a multi-layer network. See Section 3.2.1 for details.

A 1-layer fully-connected network with one linear output node (Figure 3.4(a)) is

equivalent to the linear regression model in Eq. (3.3). Given a d-dimensional input

vector x = (x1, . . . , xj, . . . , xd)
T, the network’s output y is (omitting the bias for

simplicity):

y = wTx = w1x1 + · · ·+ wjxj + · · ·+ wdxd, (3.4)

where w = (w1, . . . , wj, . . . , wd)
T is the network’s weight vector. As Eq. (3.4) is

equivalent to Eq. (3.3), we can also explain the effect of a given input variable xj on

the prediction of the network through the value of wj. In particular, when wj � 0,

we may say that xj has a significant positive effect on the network’s output.4 When

wj ≈ 0, we may say that xj is irrelevant to the network’s output and can be removed

from the network. We formulate a one-to-one correspondence between the input x

and the network’s weight vector w:

diag{x}w = (w1x1, . . . , wjxj, . . . , wdxd)
T, (3.5)

4We explain why considering positive weights in Section 3.2.3.
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where diag{x} is a diagonal matrix with {xj} in its diagonal. By setting x = 1 in

Eq. (3.5), we obtain a feature importance vector c:

c = diag{1}w = w = (w1, . . . , wj, . . . , wd)
T. (3.6)

Eq. (3.6) suggests that the bigger the value of wj, the more important the input

variable xj. Therefore, we can select the important input variables according to c.

Figure 3.4(b) depicts a 2-layer network with the hidden layer having l1 nodes and

the output layer having one node. Suppose W (1) is a d× l1 weight matrix connecting

the input x to the hidden layer and b(1) ∈ R
l1 is the corresponding bias vector. Also,

suppose w(2) = (w
(2)
1 , . . . , w

(2)
i , . . . , w

(2)
l1
)T is the weight vector of the output layer and

b(2) is the bias. Given a d-dimensional input vector x, the output of the hidden layer

is (omitting the bias for simplicity):

o(1) = g
((

W (1)
)T

x
)
∈ R

l1 , (3.7)

where g(·) is a non-linear activation function, e.g., sigmoid. And the output of the

network is:

y = (w(2))To(1) = (w(2))Tg
((

W (1)
)T

x
)
. (3.8)

Comparing Eq. (3.4) and Eq. (3.8) and following Eq. (3.5), we can also formulate a

one-to-one correspondence between the input x and the network’s parameters:

g
(
diag{x}W (1)

)
w(2) = [v1(x1), . . . , vj(xj), . . . , vd(xd)]

T , (3.9)

where vj(xj) =
∑l1

k=1 g
(
w

(1)
j,kxj

)
w

(2)
k .5 Again, by setting x = 1, we can obtain the

5The clarification of the one-to-one correspondence is shown in Section 3.2.3.
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feature importance vector:

c = g
(
diag{1}W (1)

)
w(2) = g

(
W (1)

)
w(2) ∈ R

d. (3.10)

Note that c is also a d-dimensional vector with cj corresponding to the input variable

xj. Similar results can be extended to an L-layer neural network with weight matrices

{W (i), i = 1, 2, . . . , L−1} for the hidden layers and weight vector w(L) for the output

layer. The feature importance vector c for the L-layer network is:

c = g
(
g
(
g
(
W (1)

)
W (2)

) · · ·W (L−1)
)
w(L) ∈ R

d. (3.11)

3.2.2 Learning Algorithm

In Section 3.2.1, we formulate a d-dimensional feature importance vector c that re-

flects the feature importance of the input variables. We use c to determine the

contribution of the input variables to the output of a deep neural network. Specif-

ically, the input variable xj with a larger cj will have a greater contribution to the

output. Based on the feature importance vector c, we propose a deep-learning-based

FS method called DFR. DFR comprises two deep neural networks (called operator

and selector), as shown in Figure 3.5. During training, the operator and selector are

trained alternately. The alternate learning algorithm is depicted in Algorithm 2.
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(a)

(b)

Figure 3.5: The training procedure (a) and block diagram (b) of DFR. The
selector network is a multi-layer fully-connected network with one linear out-
put node. At the beginning of each iteration, the selector’s parameters ϕ =
{W (1),W (2), . . . ,W (L−1),w(L)} are used to compute the feature importance vector
c. g(·) is the sigmoid activation function.
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Suppose M = {X ,Y} is a mini-batch comprising |M| pairs of x and y, where

x ∈ X is a feature vector of size d, and y ∈ Y is the corresponding target. The learning

algorithm of DFR is defined in Eq. (3.12), where LO (M,Z;ψ) is the operator’s

objective, l(x � z,y;ψ) is either the cross-entropy loss for classification or the MSE

loss for regression, and ψ denotes the operator’s parameters. LS (Z;ϕ) is the selector’s
objective, fS(z, ϕ) is the selector’s output, and ϕ = {W (1),W (2), . . . ,W (L−1),w(L)}
contains the selector’s parameters.

Operator’s objective:

LO (M,Z;ψ) = 1

|Z||M|
∑
z∈Z

∑
(x,y)∈M

l(x� z,y;ψ) (3.12a)

Selector’s objective:

LS (Z;ϕ) = 1

|Z|
∑
z∈Z

⎧⎨
⎩
∣∣∣∣∣∣fS(z;ϕ)−

1

|M|
∑

(x,y)∈M
l(x� z,y;ψ)

∣∣∣∣∣∣
⎫⎬
⎭ (3.12b)

Operator

The operator is trained on the features selected by the selector to reduce the loss

LO (M,Z;ψ). The feature mask vector z in the feature mask subset Z indicates

which features have been selected. For each iteration, given the feature mask subset

Z from the selector, the selected features {x�z}x∈X ,z∈Z are fed to the operator, and

the operator’s learning performance based on the selected features is obtained. Given

the selected features x�z, 1
|M|

∑
(x,y)∈M l(x�z,y;ψ) is the learning performance of

the operator on the mini-batchM. Then, we pass the operator’s learning performance

to the selector as a feedback indicating how well the operator performs on the selected

features.
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Selector

The selector learns to predict the operator’s learning performance using the selected

features. The MAE between fS(z, ϕ) and 1
|M|

∑
(x,y)∈M l(x � z,y;ψ) requires that

the selector accurately predicts the operator’s learning performance. At the beginning

of each iteration, the selector produces the feature mask subset Z using the following

steps:

(i) Retain the best feature mask vector. We retain the best feature mask vector

z1 that achieves the best learning performance (e.g., the smallest cross-entropy

loss) in the last iteration.6

(ii) Determine an optimal feature mask vector. We compute the feature importance

vector c using Eq. (3.11) based on the selector’s parameters ϕ. According to

the feature importance vector c, we generate an optimal feature mask vector z2

by assigning the top s features with mask 1 and the rest of d− s features with

mask 0.

(iii) Generate candidate feature mask vectors. To increase the diversity of the feature

mask vectors, we generate several candidate feature mask vectors {z3, . . . , z|Z|}
by randomly flipping p masks in z2.

(iv) Produce the feature mask subset. Finally, we produce the feature mask subset

Z = {z1, z2, z3, . . . , z|Z|}.

3.2.3 Efficiency of the Learning Algorithm

We first demonstrate that the parameters of the selector net can be used to evaluate

the contributions of input variables to the the network output. We illustrate this

6In the first iteration, z1 is randomly initialized.
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using an example in which the selector net consists of only one layer, as shown in

Figure 3.6.

Figure 3.6: An example of our dual-net architecture, in which the selector net consists
of only one layer. z = (z1, ..., zj, ..., zd)

T is the feature marks. ϕ = {w} is the selector
net’s parameters.

Given the feature marks z = (z1, ..., zj, ..., zd)
T, the output of the selector net is

(omitting the bias for simplicity) is:

fS(z;ϕ) = w1z1 + · · ·+ wjzj + · · ·+ wdzd. (3.13)

Given the feature marks z and input variables x, the operator’s learning performance

is:

	O =
1

|M|
∑

(x,y)∈M
l(x� z,y;ψ), (3.14)

whereM = {X ,Y} is a mini-batch comprising |M| pairs of x and y, and ψ represents

the operator net’s parameters. As described before, the selector learns to predict the
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operator’s learning performance using the selected features, and the selector loss is:

	S = |fS(z;ϕ)− 	O| = |w1z1 + · · ·+ wjzj + · · ·+ wdzd − 	O| . (3.15)

Given that the gradient for the absolute error loss [73] is:

sign [ypred − ytrue] =

⎧⎨
⎩ +1, if ypred > ytrue

−1, if ypred < ytrue
. (3.16)

When ypred > ytrue, the partial derivatives of 	S with respect to zj is:
7

∂	S
∂zj

= sign [ypred − ytrue] · ∂fS(z;ϕ)
∂zj

= +1 · ∂fS(z;ϕ)
∂zj

= wj. (3.17)

Computing the partial derivatives with respect to each of the elements in z, we have:

(
∂	S
∂z1

, · · · , ∂	S
∂zj

, · · · ∂	S
∂zd

)T

= (w1, ..., wj, ..., wd)
T , (3.18)

which is exactly the feature importance vector c in Eq. (3.6). Eq. (3.18) indicates

that a unit increase in zj would increase ypred by an amount wj. In such cases, we can

utilize c = (w1, ..., wj, ..., wd)
T to measure the contributions of z = (z1, ..., zj, ..., zd)

T

to ypred. In other words, we can utilize the parameters of the selector net to evaluate

the contributions of input variables to the network output.

We only consider the features with positive weights in c. We provide the reason

using a single-layer selector net consisting of one layer, as shown in Figure 3.6. Given

the feature masks z = (z1, ..., zj, ..., zd)
T (zj = 0 or 1) and the selector’s weights

w = (w1, ..., wj, ..., wd)
T, the output of the selector is (omitting the bias for simplicity):

fS(z;ϕ) = w1z1 + · · ·+ wjzj + · · ·+ wdzd. (3.19)

7When updating the parameters of the selector net, we keep the operator network fixed. There-
fore, we treat �O as a constant independent on z.
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The selector learns to predict the operator’s classification loss (cross entropy). Since

cross entropy is always non-negative, we require the selector’s prediction to be also

non-negative. In this case, if zj = 1, a larger positive weight wj will have a greater

impact on the selector’s prediction. If zj = 0, wjzj will be 0, and wj will have no effect

on the selector’s prediction. We do not select large negative weights because it may

render the prediction negative. For example, if the selector’s weights are w1 = −1.5,
w2 = 1.0, and w3 = 0.3, and we select two features with large positive weights, the

selector’s prediction will be:

fS(z;ϕ) = w1z1 + w2z2 + w3z3

= −1.5× 0 + 1.0× 1 + 0.3× 1

= 1.3 > 0.

(3.20)

Conversely, if we select two features with large positive or negative weights, the se-

lector’s prediction will be:

fS(z;ϕ) = w1z1 + w2z2 + w3z3

= −1.5× 1 + 1.0× 1 + 0.3× 0

= −0.5 < 0,

(3.21)

which is unexpected because classification loss is always non-negative. A similar

argument applies to multi-layer selector nets.

We then demonstrate that setting some elements in the feature mask vector z

to 0 is a regularization approach that leads to coefficient sparsity. We commence

with a linear regression model in which some of the inputs are masked, as shown in

Figure 3.7.
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Figure 3.7: A linear regression model in which the inputs x are masked by the feature
mask vector z.

In Figure 3.7, β̂ =
(
β̂1, ..., β̂j, ..., β̂d

)T

denotes the model coefficients, x = (x1, ..., xj, ..., xd)
T

represents the input variables, and z = (z1, ..., zj, ..., zd)
T stands for the feature mask

vector. The linear regression model takes the following masked inputs:

x� z = (x1z1, ..., xjzj, ..., xdzd)
T . (3.22)

The regression model produces an output (omitting the bias for simplicity):

f̂(x) = β̂1x1z1 + · · ·+ β̂jxjzj + · · ·+ β̂dxdzd

= β̂1z1x1 + · · ·+ β̂jzjxj + · · ·+ β̂dzdxd

= α̂1x1 + · · ·+ α̂jxj + · · ·+ α̂dxd,

(3.23)

where (α̂1, ..., α̂j, ..., α̂d)
T =

(
β̂1z1, ..., β̂jzj, ..., β̂dzd

)T

. We may consider (α̂1, ..., α̂j, ..., α̂d)
T

as the coefficients of a regression model when the inputs are masked by the feature

mask (z1, ..., zj, ..., zd)
T. When we set some elements in (z1, ..., zj, ..., zd)

T to 0, the cor-

responding coefficients in (α̂1, ..., α̂j, ..., α̂d)
T become 0. This strategy leads to sparsity

in the regression model, similar to applying L1-regularization or elastic-net. In con-

clusion, our proposed DFR achieves coefficient sparsity. This approach can be seen

as a form of regularization for FS because it only selects some of the features.

We then demonstrate that the selector net is necessary because it is designed for
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computing the feature importance vector c. The operator net is neither designed nor

trained for this purpose because it could have multiple outputs for multi-class classi-

fication. To elaborate, let us consider the three-class scenario shown in Figure 3.8.

Figure 3.8: A three-class classification task in which the operator net has three output
nodes and the selector net only has one output node.

In Figure 3.8, we cannot utilize the weights of the operator net to compute the

feature importance vector because the operator net has three output nodes.8 As a

result, the one-to-one correspondence between the input variable x and the weight

matrix W (1) of the operator net cannot be established.9 On the other hand, we

can compute the feature importance vector using the weights of the selector net,

because the selector net has one linear output node. We can establish a one-to-one

correspondence between the input variable x and the weights of the selector net. In

this simple case, the feature importance vector is c = w = (w1, w2, w3, w4, w5)
T. In

Section 3.2.1, we have explained why c can be derived from a linear regression model.

The feature importance vector c can be computed when there is one output node.

The flexibility of the dual-net architecture enables the selector and operator networks

to serve different purposes. Specifically, the one-output selector net computes the

importance vector c for FS, and the multi-output operator net performs multi-class

8The three-class classification task has three output nodes when the labels are one-hot encoded.

9The size of the weight matrix W (1) is 5×3, corresponding to 5 input nodes and 3 output nodes.
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classification.

We then demonstrate that our proposed DFR tackles the FS challenge by exploring

the correlation between the network weights and the significance of individual input

variables. Conventionally, determining the contribution of input variables in a multi-

layer neural network is challenging because of the non-linear relationships between the

input variables and the network output. Conversely, our proposed DFR is capable

of selecting input variables in a multi-layer neural network despite the non-linear

relationships. To elaborate this, we begin with a linear regression model, as shown in

Figure 3.9.

Figure 3.9: A linear regression model in which there is a one-to-one correspon-
dence between input variables x = (x1, · · · , xj, · · · , xd)T and model parameters

β̂ =
(
β̂1, · · · , β̂j, · · · , β̂d

)T

Because there is a one-to-one correspondence between the model parameters β̂

and the input variables x, we can interpret the contributions of input variable xj

to the model output through the value of parameter β̂j. However, in the multi-layer

neural network shown in Figure 3.10(a), the existing FS methods cannot determine the

contributions of input variables x to the network output y because x and y are non-

linearity related. One method for measuring the contributions of input variables x in

a multi-layer neural network is deep feature selection (DFS) [2], which is represented

in Figure 3.10(b). DFS utilizes a one-to-one layer, denoted as w, connecting x to

the first layer of the neural network to measure the contributions of x. However, the

limitation of this approach is that the one-to-one layer in DFS cannot capture the
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non-linear relationships between x and y.

(a) (b)

Figure 3.10: (a) A multi-layer neural network with non-linear activations. (b) Deep
feature selection (DFS) [2] measures the contributions of x using a one-to-one layer
w connecting x to the first layer of the neural network.

To determine the contributions of x to y in Figure 3.10(a), we propose the feature

importance vector c = g
(
g
(
W (1)

)
W (2)

)
w(3) ∈ R

d, where g (·) is a non-linear acti-

vation function. Based on the feature importance vector c, we can take into account

the non-linear relationships between x and y. We can interpret the contributions of

x to y through the feature importance vector c and select input variables.

We finally demonstrate that there is a one-to-one correspondence between the in-

put variables x and feature importance vector c. We illustrate this correspondence

using an example in which the selector net consists of two layers. As proposed be-

fore, the one-to-one correspondence of the two-layer network is g
(
diag{x}W (1)

)
w(2),

where W (1) is the weight matrix of the hidden layer, w(2) is the weight vector of the

output layer, and g(·) is the sigmoid activation function. g
(
diag{x}W (1)

)
w(2) can
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be expanded as:

g
(
diag {x}W (1)

)
w(2)

= g

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 0 · · · 0 · · · 0

0 x2 · · · 0 · · · 0
...

...
. . .

...
. . .

...

0 0 · · · xj · · · 0
...

...
. . .

...
. . .

...

0 0 · · · 0 · · · xd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w
(1)
1,1 w

(1)
1,2 · · · w

(1)
1,k · · · w

(1)
1,l1

w
(1)
2,1 w

(1)
2,2 · · · w

(1)
2,k · · · w

(1)
2,l1

...
...

. . .
...

. . .
...

w
(1)
j,1 w

(1)
j,2 · · · w

(1)
j,k · · · w

(1)
j,l1

...
...

. . .
...

. . .
...

w
(1)
d,1 w

(1)
d,2 · · · w

(1)
d,k · · · w

(1)
d,l1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w
(2)
1

w
(2)
2

...

w
(2)
k

...

w
(2)
l1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g
(
x1w

(1)
1,1

)
g
(
x1w

(1)
1,2

)
· · · g

(
x1w

(1)
1,k

)
· · · g

(
x1w

(1)
1,l1

)
g
(
x2w

(1)
2,1

)
g
(
x2w

(1)
2,2

)
· · · g

(
x2w

(1)
2,k

)
· · · g

(
x2w

(1)
2,l1

)
...

...
. . .

...
. . .

...

g
(
xjw

(1)
j,1

)
g
(
xjw

(1)
j,2

)
· · · g

(
xjw

(1)
j,k

)
· · · g

(
xjw

(1)
j,l1

)
...

...
. . .

...
. . .

...

g
(
xdw

(1)
d,1

)
g
(
xdw

(1)
d,2

)
· · · g

(
xdw

(1)
d,k

)
· · · g

(
xdw

(1)
d,l1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w
(2)
1

w
(2)
2

...

w
(2)
k

...

w
(2)
l1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑l1
k=1 g

(
x1w

(1)
1,k

)
w

(2)
k∑l1

k=1 g
(
x2w

(1)
2,k

)
w

(2)
k

...∑l1
k=1 g

(
xjw

(1)
j,k

)
w

(2)
k

...∑l1
k=1 g

(
xdw

(1)
d,k

)
w

(2)
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1(x1)

v2(x2)
...

vj(xj)
...

vd(xd)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(3.24)

Eq. (3.24) shows that there is a one-to-one correspondence between vj and xj.
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Chapter 4

EXPERIMENTS ON DUAL DROPOUT RANKING (DDR)

This chapter details the experimental setup and results on dual dropout ranking

(DDR). The DDR is evaluated on the ADReSS and AD2021 datasets.

4.1 Datasets

4.1.1 The ADReSS Dataset

The AD Recognition Through Spontaneous Speech Challenge (ADReSS) [74] provides

a benchmark dataset and a platform where the research community can compare their

methods for improving AD detection performance. The dataset comprises recordings

of the spoken-language descriptions of the Cookie Theft picture description task in

Boston Diagnostic Aphasia Examinations. 156 subjects aged between 50 to 80 par-

ticipated in the examinations, among whom 78 are AD patients and 78 are healthy

control (HC). Among these participants, 108 were grouped into the training set, and

the remaining 48 were grouped into the test set. The dataset is gender-balanced, and

the spoken language is English. Table 4.1 shows the dataset’s details.

4.1.2 The AD2021 Dataset

The AD2021 dataset [75] was released through an AD recognition competition or-

ganized by Jiangsu Normal University, SATLab of Tsinghua University, and Beijing

Haitian Ruisheng Science Technology Ltd. The dataset comprises the speech record-

ings of “Cookie Theft picture description” sessions, fluency tests, and normal conver-

sations. The training set contains 25 AD patients, 53 older adults suffering from MCI,
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and 44 HC. Each subject in the training set has several recording sessions, resulting

in 279 training sessions. The test set contains 119 subjects, of which 35 are AD pa-

tients, 39 have MCI, and 45 are HC. The spoken language of the dataset is Mandarin

Chinese. No manual transcription is provided. Table 4.1 shows the dataset’s details.

Table 4.1: The characteristics of the ADReSS and the AD2021 datasets. AD:
Alzheimer’s disease, MCI: mild cognitive impairment, HC: healthy control, M: male,
and F: female.

Dataset ADReSS AD2021

Training/test data Training data Test data Training data Test data

Class HC AD HC AD HC MCI AD HC MCI AD

Gender M F M F M F M F M F M F M F M F M F M F

Age

[50, 55) 1 0 1 0 1 0 1 0

18 26 27 27 10 15 22 23 10 29 6 29

[55, 60) 5 4 5 4 2 2 2 2

[60, 65) 3 6 3 6 1 3 1 3

[65, 70) 6 10 6 10 3 4 3 4

[70, 75) 6 8 6 8 3 3 3 3

[75, 80) 3 2 3 2 1 1 1 1

Number of samples 54 54 24 24 108 93 78 45 39 35

Spoken language English Mandarin Chinese

Task Cookie theft picture description
Cookie theft picture description,

fluency test, and normal conversation*

Manual transcriptions

provided
Yes No

*Our experiments adhered to the official guideline by utilizing all the three tasks.

4.2 Feature Engineering

We focus on two categories of features: transcription-based and speech-based. The

transcription-based features are extracted from either the manual or automatic tran-

scriptions, which capture the semantic, syntactic, and lexical aspects of the speaker’s

spoken language. The speech-based features contain a variety of acoustic character-

istics of the speakers. For the ADReSS dataset [74], the transcription-based features
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significantly outperform the speech-based features [74, 76] because accurate manual

transcriptions are provided; therefore, we focus on the transcription-based features

only. For the AD2021 dataset [75], because of erroneous transcriptions, we include

various types of speech-based features in addition to the transcription-based features.

4.2.1 Features for the ADReSS Dataset

Linguistic Features

34 linguistic features were extracted from the CHAT annotated transcriptions using

the EVAL command in the CLAN program [74]. The features include lengths of

utterances, type-token ratios, statistics of POS, etc.1 The ADReSS challenge [74] has

provided a baseline recognition performance on the linguistic features.

BERT Features

The BERT model [26], which comprises deep bidirectional Transformers, has been

widely adopted in natural language processing (NLP). A pre-trained BERT model

can be fine-tuned to suit a wide range of tasks. In [32], the authors fine-tuned a

BERT model at the transcription-level for AD recognition and achieved impressive

results. In this paper, we use the pre-trained BERT model as a feature extractor.

More specifically, we fed the subjects’ transcriptions to the pre-trained BERT model

and extracted the representations from the last layer of the model. For each sub-

ject, the model produces a 768-dimensional feature vector (called the BERT features)

that abstractly captures the semantic, syntactic, and lexical information of the tran-

scriptions. Li et al. [76] extracted BERT features from both manual and automatic

transcriptions. Their results demonstrate the effectiveness of the BERT features for

dementia detection.

1Linguistic features are listed in Appendix C.
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Pause Features

In [77], the authors demonstrated that pauses can function as word-finding, as plan-

ning at the word, phrase, and narrative levels, and as pragmatic compensation when

other interactional and narrative skills deteriorate. In [32], pause information was in-

corporated into the feature representations to improve AD recognition performance.

Thus, we included the pause features for dementia detection.

We used the pause statistics in Table 4.2 as the pause features. To obtain these

features, we followed the procedure in [32] and used the ‘chat2text’ command in

CLAN to convert the CHAT annotated transcriptions into plain words and tokens.

Then, the converted transcriptions were forced aligned with the speech recordings

using the Penn Phonetics Lab Forced Aligner [78]. The outputs of the alignments

contain the identifications and durations of the pauses.2

We divided the pauses into six duration groups: G1 (pauses between 0.05s–0.5s),

G2 (pauses between 0.5s–1s), G3 (pauses between 1s–2s), G4 (pauses between 2s–3s),

G5 (pauses between 3s–4s), and G6 (pauses longer than 4s). For each duration group,

we extracted the five pause features in Table 4.2. As a result, we had a total of

5× 6 = 30 pause features per recording.

Table 4.2: Five pause features extracted from the six duration groups (listed in Sec-
tion 4.2.1).

Pause feature Description

#p Number of pauses per minute

%p/word ratio Pause-to-word ratio

p duration Total duration of pauses per minute

p mean duration Mean duration of pauses

%p duration/word duration Pause-duration-to-word-duration ratio

2The between-word pauses are indicated by ‘sp’.
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4.2.2 Features for the AD2021 Dataset

Lexical Features

Because manual transcriptions are not available in AD2021, ASR was used before

extracting the lexical features. The Tencent Cloud ASR3 was adopted to transcribe

the Mandarin speech recordings. Based on the transcriptions, the following lexical

features were extracted:4 the number of sentences per minute, the average number

of words per sentence, the ratio of unique words to all words, and the average word

frequency. Then, the Stanford POS tagger5 was utilized to parse the transcriptions

to extract the following lexical features: POS counts per minute, POS ratio, the ratio

of pronoun to noun, the ratio of noun to verb, the maximum parsed tree height, the

mean parsed tree height, and the median parsed tree height. These lexical features

lead to a 143-dimensional feature vector per recording.6

BERT Features

Similar to the ADReSS dataset, a pre-trained Chinese BERT model7 was employed

as the feature extractor. The transcriptions were fed to the BERT model and high-

level representations were extracted from the last layer of the model, resulting in a

768-dimensional vector per recording.

3https://cloud.tencent.com/product/asr

4The lexical features are extracted using this toolbox: https://github.com/SPOClab-
ca/COVFEFE.

5https://nlp.stanford.edu/software/tagger.shtml

6Lexical features are listed in Appendix C.

7https://huggingface.co/bert-base-chinese
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Acoustic Features

We followed the standard pipelines in the COVFEFE toolbox8 to extract the acoustic

features from the speech recordings, which include formants, loudness, pitch, zero-

crossing rate, etc.

INTERSPEECH 2010 Paralinguistic Challenge Features (IS10)

IS10 [79] is a feature set for emotion recognition and bipolar disorder recognition.

In addition to the 32 low-level descriptors (LLDs) in INTERSPEECH 2009 Emotion

Challenge (IS09), 44 LLDs were added to IS10, including PCM loudness, eight log

Mel-frequency bands, eight line-spectral frequency pairs, fundamental frequency (F0)

envelope, voicing probability, jitter, and shimmer. Twelve statistics (minimum, max-

imum, mean, range, etc.) of the LLDs were computed, leading to a 1582-dimensional

feature vector per recording.

COVAREP Features

COVAREP [41] provides comprehensive acoustic features, which include prosodic

features (F0 and voicing), voice quality features, and spectral features. We extracted

COVAREP features at 100Hz; for each recording, the mean, maximum, minimum,

median, standard deviation, skew, and kurtosis of the features were computed, leading

to a 518-dimensional feature vector per recording.

Pause Features

An energy-based voice activity detector (VAD) was utilized to identify the pauses.

Similar to the ADReSS dataset, the pauses were divided into six groups, and pause fea-

tures (Table 4.2) were determined from individual groups, leading to a 30-dimensional

feature vector per recording.

8https://github.com/SPOClab-ca/COVFEFE
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4.2.3 Implementation Details of DDR

Both the operator network and selector network in DDR are feedforward neural net-

works. A batch-normalization layer followed by a dropout layer with a dropout rate

of 0.5 was added after each hidden layer in the two networks. The activation function

for the hidden layers is ReLU for both networks, while the activation function for

the last layer of the operator network is softmax and that for the selector network is

linear. An Adam optimizer with a learning rate of 0.001 was used to optimize the

networks’ parameters and the trainable dropout rates, which were initialized to 0.35.

The batch size |M| was set to 32 and the size of the dropout mask subset |Z| was
set to 32. On a Ubuntu 20.4 machine with one RTX3090 GPU, each experiment took

about 5 minutes.

4.2.4 Performance Metrics

The goal is to determine the most discriminative features that can effectively identify

individuals who are HC, those with MCI and others with AD. The two-step FS

method described in Section 3.1.4 was utilized to identify the discriminative features.

For the ADReSS dataset, the identified features were then used for training linear

SVM classifiers9 with a box constraint of 1 to classify AD and HC. For the AD2021

dataset, the selected features were used for training Gaussian SVM classifiers10 with

a box constraint of 1 to identify AD, MCI, and HC.

The performance metrics for the ADReSS dataset include precision (PRE), recall

(REC), and F1 scores for each class (AD and HC) as well as their unweighted mean

and accuracy. The performance on the training set was obtained by 10-fold CV.

For the AD2021 dataset, except for the accuracy, the performance metrics were

calculated for each class (AD, MCI, and HC) and their unweighted mean was reported.

9The classifier’s setting was adopted from [76]. The SVMs were forced to produce probabilistic
outputs when computing the predicted scores.

10The classifier’s setting was taken from the AD2021 competition baseline.
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The 10-fold CV was replaced by a leave-n-subject-out CV in which the training sam-

ples of the same speakers were grouped into either the TR or the TS for each fold.

4.3 Experiments and Results

In this section, we first evaluate DDR on a synthetic dataset and the MNIST hand-

written digit dataset and then evaluate the two-step FS approach on the ADReSS

and AD2021 datasets.

4.3.1 Analysis of Keep Probabilities on a Synthetic Dataset

A synthetic data set was designed to evaluate the capability of classifiers and FS

algorithms in solving a multi-dimensional XOR problem [80]. By grouping the eight

corners of a 3-dimensional hypercube (v0, v1, v2) ∈ {−1, 1}3 into the tuples (v0v2, v1v2),
we have 4 sets of vectors and their negations {v(c),−v(c)}4c=1, where c is the class index.

For example, the tuple (v0v2, v1v2) = (−1,−1) corresponds to c = 2, where v(2) =

[1, 1,−1]T. The points in class c are generated from the distribution 1
2
[N (v(c), 0.5I3)+

N (−v(c), 0.5I3)], where I3 is a 3× 3 identity matrix and N (μ, σ) is a Gaussian distri-

bution. Each sample is additionally accompanied by 7 Gaussian noise features with

zero mean and unit variance, leading to a 10-dimensional feature vector.

We trained a dual network (Figure 3.2) on the synthetic data for FR. After train-

ing, the keep probabilities (1− θ) of the features for 20 random seeds are depicted

in Figure 4.1. It shows that the keep probabilities associated with the valid features

(v0, v1, v2) converge to 1, whereas the noise features (v3 ∼ v9) have keep probabilities

close to 0. This result suggests that DDR can effectively identify the valid features.
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Figure 4.1: The keep probabilities (1− θ) of 10 features in the synthetic dataset for
20 random seeds. Indexes 0–2 and 3–9 correspond to the valid and invalid features,
respectively. The blue bars and the red error bars denote the means and two times
the standard deviations of 20 random seeds, respectively.

4.3.2 Visualizing the Keep Probabilities

To further demonstrate the explainability of DDR, we employed the MNIST hand-

written digit dataset for binary classification. More specifically, we utilized a subset

of the MNIST dataset to distinguish digits ‘3’ and ‘8’. We flattened the 28×28 digits

into 784-dimensional feature vectors as inputs. After training, we normalized and

reshaped the keep probabilities (1−θ) into a 28× 28 matrix to represent the feature

importance map. We applied 5-fold CV for evaluation. For each fold, we trained a

dual-net and selected 50 features. The selected features were then used to train a

Gaussian SVM with a box constraint of 1 to classify digits ‘3’ and ‘8’. We achieved

an accuracy of 0.981±0.003 based on the selected features.11 The feature importance

map is shown in Figure 4.2. It shows that DDR can identify the relevant features

despite the flattening process destroying the images’ spatial information.

11The codes are available at https://github.com/kexquan/dual-dropout-ranking.
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Figure 4.2: A Feature importance map produced by a selector trained on MNIST
data. The left picture is the normalized feature importance map. The middle and
the right pictures are the feature importance map superimposed on the mean images
of digit ‘3’ and digit ‘8’, respectively.

4.3.3 Performance of Different Feature Types

We first evaluated the recognition performance of all the feature sets before FS. We

ran 100 repetitions of 10-fold CV and averaged the performance values. The corre-

sponding results are reported in Table 4.3. The results show that on the ADReSS

training data, the linguistic features achieve the best performance before FS. On the

AD2021 training data, the IS10 feature set achieves the best performance among all

the feature sets. The transcription-based features (lexical and BERT) perform worse

than the speech-based features. This may be due to word errors in the automatic

transcriptions.
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Table 4.3: Classification performance on the ADReSS and the AD2021 training data
before FS. The numbers in the brackets are the sizes of the feature sets. ACC :
accuracy; PRE : precision; REC : recall.

Dataset Feature set
10-fold CV on training data

ACC PRE REC F1

ADReSS

Linguistic (34) 0.802 0.806 0.799 0.783

BERT (768) 0.748 0.737 0.776 0.735

Pause (30) 0.523 0.534 0.446 0.454

AD2021

Lexical (143) 0.553 0.479 0.511 0.450

BERT (768) 0.575 0.514 0.530 0.482

Acoustic (30) 0.613 0.575 0.565 0.519

COVAREP (518) 0.678 0.636 0.628 0.578

IS10 (1582) 0.666 0.638 0.642 0.587

Pause (30) 0.351 0.308 0.324 0.281

4.3.4 Performance of Filter Methods

For the ADReSS dataset, we combined all the features to form 832-dimensional vec-

tors. The dimensionality of the combined features for the AD2021 training data is

3071. When conducting 10-fold CV on the combined features, large differences in

recognition performance across CV were observed, as illustrated in Figure 4.3.
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(a) (b)

Figure 4.3: When conducting 10-fold CV based on different data splittings, large
variations in recognition performance across CV were observed on (a) the ADReSS
and (b) the AD2021 training data.

This is because during the CV, applying random splitting on a limited number of

training samples will induce great differences across TR in different folds. These large

differences suggest recognition performance on unseen data is likely to be brittle. To

mitigate this brittleness, we propose the following ensemble procedure to stabilize the

classification performance during CV. We ran I repetitions of CV based on different

data splittings. We then produced the predicted scores p(i, j) for subject j in CV i.

Finally, we averaged the predicted scores p(j) = (1/I)
∑I

i=1 p (i, j) over all the CV

for each of the J subjects, as shown in Figure 4.4.
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Figure 4.4: The ensemble procedure to stabilize the classification performance during
CV. We ran I repetitions of CV based on different data splittings and averaged the
predicted scores p(i, j) over all the CV for each of the J subjects.

To test our proposed ensemble procedure, we ran 50 repetitions of CV based

on different data splittings. From the 50 CV, we selected five CV (m = 5) and

averaged the predicted scores over the five CV. The results in the first row of Table 4.4

summarize 100 draws of the five CV. The second row is similar, except m = 10.

Comparing the legend of Figure 4.3 and Table 4.4, we can see that the ensemble

procedure increases the mean accuracy and F1 and reduces variances on both datasets.

On the ADReSS training data, when m = 25, the ensemble procedure achieves the

highest mean accuracy and boosts the minimum accuracy from 0.722 (Figure 4.3(a))

to 0.750. On the AD2021 training data, the ensemble procedure achieves the highest

mean F1 and boosts the minimum F1 from 0.514 (Figure 4.3(b)) to 0.555 when m =

10. Therefore, subsequent experiments repeated the CV 25 times and averaged the

predicted scores on the ADReSS dataset. On the AD2021 dataset, we conducted 10

repetitions of CV and averaged the predicted scores.
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Table 4.4: The proposed ensemble procedure improves mean classification perfor-
mance and reduce variances. m is the ensemble size. ACC : accuracy.

ADReSS (ACC) AD2021 (F1)

m Mean ± std Min – Max Mean ± std Min – Max

5 0.768± 0.013 0.741 – 0.796 0.571± 0.010 0.552 – 0.603

10 0.769± 0.010 0.741 – 0.787 0.573 ± 0.007 0.555 – 0.588

15 0.771± 0.009 0.750 – 0.787 0.570± 0.007 0.552 – 0.588

20 0.773± 0.009 0.750 – 0.787 0.571± 0.006 0.561 – 0.582

25 0.773 ± 0.008 0.750 – 0.787 0.570± 0.005 0.555 – 0.582

30 0.771± 0.008 0.759 – 0.787 0.571± 0.006 0.555 – 0.585

35 0.771± 0.008 0.759 – 0.787 0.572± 0.005 0.561 – 0.585

40 0.771± 0.008 0.759 – 0.787 0.571± 0.005 0.558 – 0.582

45 0.771± 0.006 0.759 – 0.787 0.571± 0.004 0.564 – 0.582

We followed the procedure described in Section 3.1.4 to evaluate the classification

performance of the filter methods (FDR, PeaCorr, and MutInfo) on the combined

feature vectors. Note that FS was performed inside the CV, and each fold may

select different features because the TR in Figure 3.3 were different for different folds.

On the TR of individual folds, we applied the filter methods to reduce the feature

dimension to n = {25, 50, 100, 150, . . . , 600}, as shown in Table 4.5. It shows that

using the filter methods to pre-screen the combined features can improve classification

performance on both datasets. On the ADReSS training data, MutInfo achieves

the highest accuracy (0.796) when the feature dimension was reduced to 50. On

the AD2021 training data, MutInfo achieves the highest F1 scores (0.641) when the

feature dimension was reduced to 100. Therefore, in the two-step FS, subsequent

experiments utilized MutInfo to pre-screen the combined feature vectors to 50 and

100 for ADReSS and AD2021, respectively.
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Table 4.5: Classification performance of the filter methods on the ADReSS and the
AD2021 training data. n: the number of selected features. ACC : accuracy.

ADReSS (ACC) AD2021 (F1)

n FDR PeaCorr MutInfo FDR PeaCorr MutInfo

25 0.741 0.741 0.778 0.559 0.596 0.623

50 0.759 0.769 0.796 0.567 0.592 0.640

100 0.769 0.769 0.759 0.586 0.588 0.641

150 0.731 0.741 0.787 0.568 0.588 0.623

200 0.741 0.741 0.787 0.568 0.604 0.601

250 0.778 0.778 0.778 0.585 0.601 0.597

300 0.778 0.778 0.787 0.586 0.592 0.602

350 0.787 0.787 0.778 0.582 0.595 0.594

400 0.778 0.778 0.787 0.594 0.595 0.583

450 0.778 0.778 0.787 0.591 0.595 0.586

500 0.787 0.787 0.769 0.585 0.592 0.585

550 0.787 0.787 0.769 0.582 0.598 0.588

600 0.796 0.796 0.759 0.577 0.588 0.579

4.3.5 Performance of Two-step FS on Training Data

This subsection reports the performance of DDR and some strong supervised FS

methods on the ADReSS and the AD2021 training data. These strong supervised

FS methods include DFS [2], DropoutFR [4], and FIR [3]. On the TR of individual

folds, after using MutInfo to pre-screen the combined features, we applied DDR and

these strong supervised FS methods on the remaining 50 features for ADReSS and 100

features for AD2021 to further select relevant features. We adopted the same network

architectures (“50–128–32–2” for ADReSS and “100–128–128–32–3” for AD2021) with

softmax outputs and default hyper-parameters in the source codes for these strong



61

supervised FS methods and DDR. During the CV, we selected the same number of

features n in each fold for each of the FS methods. The results on the ADReSS

training data are shown in Table 4.6, and results on the AD2021 training data are

shown in Table 4.7. The results show that applying DDR and these strong supervised

FS methods on the pre-screened features can further improve recognition performance.

The two-step FS significantly reduces feature dimensionality while identifying small

feature subsets that achieve comparable or superior performance compared with the

combined feature sets. The results also show that DDR performs the best on both

datasets, that is, it achieves the best mean recognition performance among these FS

methods.

Table 4.6: Recognition performance of the two-step FS on the ADReSS training data.
Features were pre-screened by MutInfo. n: the number of selected features in each
fold. ACC : accuracy.

CV on training data (ACC)

n DFS [2] DropoutFR [4] FIR [3] DDR (Ours)

5 0.778 0.769 0.778 0.815

10 0.787 0.796 0.778 0.815

15 0.787 0.787 0.778 0.787

20 0.787 0.787 0.769 0.796

25 0.787 0.806 0.769 0.787

Mean 0.785 0.789 0.774 0.800
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Table 4.7: Recognition performance of the two-step FS on the AD2021 training data.
Features were pre-screened by MutInfo. n: the number of selected features in each
fold.

CV on training data (F1)

n DFS [2] DropoutFR [4] FIR [3] DDR (Ours)

5 0.705 0.663 0.652 0.744

10 0.738 0.714 0.772 0.734

15 0.774 0.736 0.763 0.752

20 0.763 0.744 0.777 0.751

25 0.726 0.760 0.767 0.757

30 0.731 0.760 0.760 0.773

35 0.718 0.729 0.748 0.742

40 0.691 0.701 0.719 0.727

45 0.686 0.692 0.698 0.699

50 0.664 0.679 0.670 0.689

Mean 0.720 0.718 0.733 0.737

4.3.6 Performance of Two-step FS on Test Data

This subsection reports the performance of the identified feature subsets on the

ADReSS and AD2021 test data. During CV, each fold may select different feature

subsets because the TR in Figure 3.3 are different for different folds. When evalu-

ating the selected feature subsets on test data, we utilized the following soft voting

procedure to incorporate these different feature subsets. We utilized SVM classifiers

to produce the predicted scores p(k) for the k-th feature subset. We then averaged

the predicted scores p = (1/K)
∑K

k=1 p (k) over all the K feature subsets for the fi-

nal classification. We computed the results of different sizes of feature subsets and
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averaged the results in Table 4.8. We also compared our methods with some recent re-

sults in Table 4.8. On the AD2021 test data, “MutInfo + DDR” achieves the highest

recognition performance among all the methods. On the ADReSS test data, the pro-

posed two-step FS significantly performs better than the official baseline. “MutInfo

+ DDR” also outperforms the best reported results in the ADReSS challenge [32].

Additionally, Table 4.8 supports the following key findings:

1) Our method performs FS on the combined feature vectors (official baseline features

[74] + pause features + BERT features [76]). On this basis, our method not only

reduces feature dimension but also boosts the accuracy of the official baseline [74]

from 75% to 90%.

2) Compared to using the BERT features [76] only, our method can select fea-

tures that increase the accuracy from 87.5% to 90.4%, while the features selected

by“MutInfo + DFS” [2] reduce the accuracy from 87.5% to 86.3%.

3) Our method yields superior performance to “MutInfo + DropoutFR” [4]. Specif-

ically, while the features selected by the latter increase the accuracy from 87.5%

to 89.6%, the accuracy achieved by our method is even higher (90.4%).

4) While “MutInfo + FIR” [3] improves the accuracy from 87.5% to 90.0%, it reduces

the REC for the AD class from 83.3% to 80.0%. As a result, “MutInfo + FIR”

diagnoses fewer AD patients than using the BERT features alone. In contrast, our

method not only improves the accuracy to 90.4% but also maintains the REC for

the AD class.
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Table 4.8: Recognition performance of the two-step FS on the ADReSS and AD2021
test data. ACC : accuracy; PRE : precision; REC : recall.

Dataset Method Class/mean
Performance on test data

PRE REC F1 ACC

ADReSS

Official baseline (Linguistic) [74]

HC 0.700 0.870 0.780

0.750AD 0.830 0.620 0.710

Mean 0.765 0.745 0.745

Pause

HC 0.680 0.708 0.694

0.688AD 0.696 0.667 0.681

Mean 0.688 0.688 0.687

BERT [76]

HC 0.846 0.917 0.880

0.875AD 0.909 0.833 0.870

Mean 0.878 0.875 0.875

Text modality + label fusion [38] Mean – – – 0.854

ERNIE3p [32] Mean – – – 0.896

BERT + ViT [46] Mean 0.871 0.892 0.880 0.879

MutInfo + DFS [2]

HC 0.796 0.975 0.876

0.863AD 0.968 0.750 0.845

Mean 0.882 0.863 0.861

MutInfo + DropoutFR [4]

HC 0.852 0.958 0.902

0.896AD 0.952 0.833 0.889

Mean 0.902 0.896 0.895

MutInfo + FIR [3]

HC 0.833 1.000 0.909

0.900AD 1.000 0.800 0.889

Mean 0.917 0.900 0.899

MutInfo + DDR (Ours)

HC 0.855 0.975 0.911

0.904AD 0.972 0.833 0.897

Mean 0.913 0.904 0.904

AD2021

Official baseline (IS10)12 Mean 0.799 0.785 0.786 0.798

Lexical13 Mean 0.738 0.602 0.578 0.630

Pause Mean 0.422 0.425 0.421 0.437

Acoustic14 Mean 0.651 0.648 0.647 0.655

COVAREP [41] Mean 0.717 0.703 0.704 0.706

BERT15 Mean 0.674 0.620 0.615 0.639

Wav2vec 2.0 [75] Mean 0.830 0.828 0.828 0.832

Adversarial self-supervised model [81] Mean 0.838 0.837 0.837 –

MutInfo + DFS [2] Mean 0.858 0.852 0.851 0.852

MutInfo + DropoutFR [4] Mean 0.864 0.861 0.860 0.862

MutInfo + FIR [3] Mean 0.862 0.855 0.854 0.857

MutInfo + DDR (Ours) Mean 0.875 0.869 0.867 0.871
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4.3.7 Analysis of Selected Features

Figure 4.5 depicts the t-SNE plots of the ADReSS and AD2021 training data. Fig-

ure 4.5(b) shows that the selected features distinguish the two groups with a bigger

gap. Figure 4.5(d) shows that the selected features reduce the intra-group distance,

although there is still some overlap between the groups.

(a) (b) (c) (d)

Figure 4.5: 2D t-SNE plots of the ADReSS training data based on (a) all feature
sets and (b) 30 features selected by “MutInfo + DDR” with the highest selection
frequency. The selected features distinguish the two groups with a bigger gap. 2D
t-SNE plots of the AD2021 training data based on (c) all feature sets and (d) 30
features selected by “MutInfo + DDR” with the highest selection frequency. The
selected features reduce the intra-group distance.

We then depict 100 features selected by “MutInfo + DDR” with the highest selec-

tion frequency in Figure 4.6. Figure 4.6(a) shows that although none of the features

were selected in all folds, among the 1250 folds, 1083 folds selected the most common

feature. The most commonly selected features are BERT features. Additionally, two

of the pause features and some of the linguistic features were selected, as shown in

Table 4.9. Figure 4.6(b) shows that in the AD2021 dataset, still no feature was se-

12https://github.com/THUsatlab/AD2021

13The lexical features are extracted using this toolbox: https://github.com/SPOClab-
ca/COVFEFE.

14The acoustic features are extracted using this toolbox: https://github.com/SPOClab-
ca/COVFEFE.

15https://huggingface.co/bert-base-chinese
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lected in all 1000 folds, but the most common one appears in 988 folds. COVAREP

and IS10 features were the most commonly selected features. This is reasonable be-

cause COVAREP and IS10 features perform well on the training data. Only a few

transcription-based features were selected. This may be due to the transcription er-

rors. Compared with the ADReSS dataset, the performance of transcription-based

features in AD2021 is unsatisfactory. None of the pause features rank above the top

100.

(a)

(b)

Figure 4.6: 100 features selected by “MutInfo + DDR” with the highest selection
frequency on (a) the ADReSS and (b) the AD2021 training data.
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Table 4.9: The linguistic features and pause features discovered by “MutInfo + DDR”
on the ADReSS training data. The parenthesized values are the frequency of the
features being selected during the CV. AD: Alzheimer’s disease, HC: Healthy control.

Feature Known specificity

% pro: Percentage of pronouns (1068)

Ahmed et al. [82] reported changes in the number of

pronouns, and Jarrold et al. [83] reported an increase

in the proportion of pronouns in AD patients.

% Nouns: Percentage of nouns (287)
Jarrold et al. [83] reported a decrease in the proportion

of nouns in AD patients.

%p/word ratio:

(Pauses between 0.05s–0.5s)-to-word ratio (262)
–

Words/min: Words per minute (214)
AD could be detected through the analysis of voice

activity detection and speech rate tracking [84].

%p duration/word duration:

(pauses between 2s–3s)-duration-to-word-duration ratio (130)
–

noun/verb ratio: Total no. of nouns / total no. of verbs (78)

AD patients may have more difficulty naming verbs than

nouns [39], and Robinson et al. [85] found that AD

patients performed worse on a picture-naming task for

verbs than nouns.

We finally depict the box plots of top 10 selected features in Figure 4.7. Fig-

ure 4.7(a) shows that on the ADReSS training data, all the top 10 selected features

have significant differences (P -value < 0.01) between the AD and HC. Figure 4.7(b)

shows a similar result on the AD2021 training data, except for the 1th and 9th features

where no significant difference between the MCI and HC was found.
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(a)

(b)

Figure 4.7: Box plots of the top 10 features selected by “MutInfo + DDR” on (a)
the ADReSS and (b) the AD2021 training data. AD: Alzheimer’s disease, MCI:
Mild cognitive impairment, and HC: Healthy control. In each box, the central line
represents the median, and the bottom and top edges of the box represent the 25th

and 75th percentiles, respectively. Outliers are shown as blue ‘+’. The P -values (two-
tailed Wilcoxon rank-sum test) between AD, MCI, and HC for each selected feature
are given.
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4.3.8 Error Analysis

To better comprehend the limitations of our proposed approach, we analyzed the

subjects who were correctly or incorrectly predicted by the classifier using the fea-

tures selected by our FS method. Figure 4.8 illustrates the numbers of correctly

and incorrectly predicted subjects based on the test data in ADReSS and AD2021,

respectively.
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Figure 4.8: The subjects who were correctly or incorrectly predicted by the classifier
using the features selected by our FS method based on the test data in (a) ADReSS
and (b) AD2021. AD: Alzheimer’s disease, MCI: mild cognitive impairment, HC:
healthy control, FA: false alarm.

As shown in Figure 4.8(a), four subjects were incorrectly predicted (the pink

boxes). In particular, a healthy subject was considered to have AD (a false alarm).

Upon analyzing the transcription of this subject, we discovered that it is fairly short.

Because a short transcription does not provide sufficient information for classification,

it causes a false alarm. Three AD patients were considered healthy (misses). Unlike

other AD patients, these patients happen to have long utterances, confusing the
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classifier because some linguistic features implicitly contain duration information,

such as the number of words per minute (Table 4.9).

As shown in Figure 4.8(b), twelve subjects were incorrectly predicted (the pink

boxes). Among the three categories (HC, MCI, and AD), subjects having MCI were

the most likely to be incorrectly predicted, with nine of them being incorrectly pre-

dicted. Since MCI serves as an intermediate stage between HC and AD, the differences

between HC and MCI, as well as between MCI and AD, are less evident compared to

those between HC and AD. More specifically, six subjects having MCI were consid-

ered to have AD, while three subjects having MCI were considered healthy. However,

these two types of incorrect predictions have different consequences in medical prac-

tices. The former misinterprets the disease progression severity, while the latter may

fail to detect the onset of the disease, thereby preventing interventions to mitigate

its progression at the early stage of the disease. To counteract this, we may apply a

weighted loss to our FS training procedure by assigning greater weight to losses when

the subjects having MCI are considered healthy. Additionally, one of the AD patients

was considered healthy. A close analysis of the subject’s audio revealed that while

the subject was able to smoothly name several animals during the fluency test, the

subject repeated some animals like “swallow” and “goat” twice. Adding repetition

features to the feature set could help predicting this kind of subjects correctly.

We further analyze the performance of BERT features and pause features on the

ADReSS and AD2021 datasets. Table 4.8 shows that the performance of these two

feature sets on the two datasets is different. Specifically,

1) The BERT features and pause features perform well on the ADReSS dataset,

thanks to the accurate manual transcriptions and precise time alignments between

the transcriptions and speech recordings. Some of the pause features were selected

with high selection frequency (Figure 4.6(a)).

2) In contrast, the AD2021 dataset renders the performance of these feature sets
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unsatisfactory due to the erroneous automatic transcriptions. Additionally, the

timestamps detected by VAD are not sufficiently accurate for extracting the pause

features. Consequently, none of the pause features is among the top 100 (Fig-

ure 4.6(b)). Future work may develop a more efficient ASR system to improve

the reliability of the transcriptions and investigate robust methods to mark the

timestamps for speech activities.

4.4 Discussions and Conclusions

Our discussions commence with an examination of various studies on FS and its

relevance to dementia detection. To identify AD patients, Haider et al. [15] com-

bined various paralinguistic acoustic features – including eGeMAPS [16], ComParE

2013 [17], Emobase [17], and MRCG [18] – and applied PeaCorr tests to select the

relevant features. The authors utilized PeaCorr tests to reduce the feature dimen-

sionality of the combined feature vectors. However, the authors performed FS on the

entire dataset without considering the selection frequency of individual features. In

addition, they also identified the discriminative acoustic features for emotion recogni-

tion using the combined Emobase and eGeMAPS feature sets [86]. They introduced

a new FS method called active feature selection (AFS) and compared its performance

with other FS methods. Nevertheless, because AFS evaluates feature subsets only, it

cannot measure the significance of individual features. Weiner et al. [55] extracted

various speech-based and transcription-based features from biographic interviews to

predict AD after five years. The authors utilized forward FS to reduce the size

of the initial feature set. A nested leave-one-subject-out CV was performed to de-

termine the selection frequency of individual features. However, forward FS alone

cannot determine the relative importance of individual features. Additionally, nested

leave-one-subject-out CV is computationally expensive for large datasets or deep-

learning-based methods. Alhanai et al. [56] identified discriminative features from
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demographic, audio, and text information for cognitive impairment detection. They

employed a binomial logistic regression model regularized by an elastic-net for FS.

Feature importance was determined using the coefficients of the regularized logistic

regression model. Nevertheless, the use of nested leave-one-subject-out CV may be

impractical for large datasets.

Our study introduces enhancements to FS for dementia detection based on the

above researches. For Step 1 of the two-step FS, we utilized the filter methods to

pre-screen the original features. We conducted FS inside the CV instead of outside

the CV, making the FS nested inside the learning process instead of being used as a

pre-processing step. This makes individual folds select different features because the

TR of individual folds are different. It is rational to nest FS inside the CV. Because

if we conduct FS outside the CV, we will utilize both the TR and TS to select

features and test the selected features on the TS, which will bias the performance.

We adopted 10-fold CV instead of leave-one-subject-out CV for FS to avoid selection

bias, as suggested by Ambroise et al. [87]. In the future, we will evaluate nested CV

and bootstrap to see if these methods can further improve selection performance.

Our FS method has several limitations when compared with the filter methods

that do not require training. For example, in the FDR, the selection variances of

individual features depend on how we split the training data in the CV process. On

the other hand, our FS method uses two neural networks to select features. The

parameters of the trained networks depend on the initial weights and the random

seed setting, causing an extra source of variation in addition to the random splits in

the CV. Consequently, our method exhibits a higher selection variance.

In addition, during the CV, applying random splitting on a limited number of

training samples will induce great differences across the TR. To mitigate the effect of

random splittings, we propose an ensemble procedure to repeat the 10-fold CV and

average the predicted scores over all the CV. For the AD2021 dataset, we divided

the training samples of the same speakers into either the TR or TS to avoid selecting
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the features that facilitate speaker recognition instead of dementia detection. For

the ADReSS dataset, because accurate manual transcriptions are provided, we prefer

using transcription-based features, whereas for the AD2021 dataset, we include more

speech-based features in addition to the transcription-based features because of the

erroneous transcriptions.

To the best of our knowledge, this study is the first to exploit deep-learning-based

methods to select spoken language biomarkers for dementia detection under limited

training data scenarios. When the feature dimensionality is very large in relation to

the number of training samples, the two-step FS approach can significantly reduce

the feature dimensions and identify spoken language biomarkers that can achieve

superior performance. Future work may investigate the biological aspects of the

spoken language biomarkers.
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Chapter 5

EXPERIMENTS ON DUAL-NET FEATURE RANKING

(DFR)

The chapter explains the experimental setup and results on DFR. DFR is a

general-purpose feature selector. To highlight its advantages, we thoroughly eval-

uated its capabilities on different FS tasks and different datasets. We first employed

two synthetic datasets to ensure that DFR can effectively select valid features. Then,

we applied DFR to the MNIST hand-written digit dataset to visualize the feature

importance. These evaluations demonstrate that the proposed DFR can determine

the feature relevance. Finally, we applied DFR to 12 FS benchmarks to compare its

performance with some well-studied feature selectors. Finally, the DFR was evaluated

on a dementia-related Cantonese corpus called JCCOCC-MoCA [88].

5.1 DFR for Feature Selection

Table 5.1 lists the characteristics and neural network parameters utilized by our pro-

posed DFR for each dataset.
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Table 5.1: The configurations and neural network parameters utilized by our proposed
DFR for each dataset. The number of training iterations n is 10,000. The size of the
feature mask subset |Z| is 32. As a result, we have 30 candidate feature mask vectors.
The size of mini-batch |M| is 32. s is the number of selected features. p is the number
of random flips.

Dataset
Number

of samples

Feature

dimension

Number

of classes
Class ratio

Dual-net feature ranking parameters

Operator architecture Selector architecture s p

XOR 1024 10 4
0.25, 0.25, 0.25,

0.25
“10–32–32–4” “10–32–32–1” 5 2

Binary classification 1024 10 2 0.5, 0.5 “10–32–32–2” “10–32–32–1” 5 2

MNIST 11,982 784 2 0.51, 0.49 “784–32–32–2”

“784–1”

“784–32–1”

“784–32–32–1”

50 20

ALLAML 72 7,129 2 0.65, 0.35 “7,129–128–32–2” “7,129–128–32–1” 100 20

PROSTATE GE 102 5,966 2 0.51, 0.49 “5,966–128–32–2” “5,966–128–32–1” 100 20

GLI 85 85 22,283 2 0.69, 0.31 “22,283–128–32–2” “22,283–128–32–1” 100 20

LEUKEMIA 72 7,070 2 0.65, 0.35 “7,070–128–32–2” “7,070–128–32–1” 100 20

GLIOMA 50 4,434 4
0.30, 0.28, 0.28,

0.14
“4,434–128–32–4” “4,434–128–32–1” 100 20

CLL SUB 111 111 11,340 3 0.46, 0.44, 0.1 “11,340–128–32–3” “11,340–128–32–1” 100 20

COLON 62 2,000 2 0.65, 0.35 “2,000–128–32–2” “2,000–128–32–1” 100 20

LYMPHOMA 96 4,026 9

0.48, 0.11, 0.1,

0.09, 0.06, 0.06,

0.04, 0.04, 0.02

“4,026–128–32–9” “4,026–128–32–1” 100 20

SMK CAN 187 187 19,993 2 0.52, 0.48 “19,993–128–32–2” “19,993–128–32–1” 100 20

USPS 9,298 256 10

0.17, 0.14, 0.1,

0.09, 0.09, 0.09,

0.09, 0.09, 0.08,

0.08

“256–128–32–10” “256–128–32–1” 100 20

MADELON 2,600 500 2 0.5, 0.5 “500–128–32–2” “500–128–32–1” 100 20

ISOLET 1,560 617 26
0.038, 0.038, · · · ,

0.038
“617–128–32–26” “617–128–32–1” 100 20

JCCOCC-MoCA 258 1500 2 0.5, 0.5 “1500–512–128–32–2” “1500–512–128–32–1” 500 100

5.1.1 Implementation Details

We implemented the operator and selector using PyTorch [89], and their parameters

were initialized using the PyTorch’s default initialization. Specifically, the weight

matrices were initialized using the Kaiming initialization [90], while the biases were



76

drawn from a uniform distribution. As mentioned previously, we utilized the sigmoid

function as the non-linear activation function for each hidden layer of the networks.

We have also tested other activation functions, e.g., ReLU, but discovered inconsistent

performance.

The feature mask subset comprises |Z|−2 candidate feature mask vectors. There-

fore, enlarging |Z| can improve the diversity of the feature mask vectors because more

candidate mask vectors are introduced. However, this improvement is accompanied

by high computational complexity and GPU memory usage. In our experiments, we

observed that setting |Z| to 32 resulted in satisfactory performance and reasonable

computational cost on an RTX3090 GPU. To ensure an adequate training of the net-

works, we set the mini-batch size |M| to 32 and the number of training iterations n

to 10,000.

The number of selected features s, varies across datasets. In our experiments, we

set the number of flips p to 40% or 20% of s. In Section 5.1.3, we investigate the

impact of varying the number of layers in the selector network on the performance.

Except for the output layer, we made the number of hidden layers and number of

nodes per layer identical for the operator and the selector. Additionally, for a fair

comparison, we employed an identical architecture for the DFR method and other

deep-learning-based methods on the same dataset.

5.1.2 Selecting Valid Features on Synthetic Data

In this subsection, we first employed two synthetic datasets in [80] to evaluate the

capability of the proposed DFR in solving multidimensional XOR and non-linear

binary classification problems. Because we already know the valid features and in-

valid features in these synthetic datasets, we evaluated whether DFR can select the

valid features and ignore the invalid features. The two synthetic datasets are briefly

described as follows.
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• XOR. By grouping 8 corners of a 3-dimensional hypercube (v0, v1, v2) ∈ {−1, 1}3

into the tuples (v0v2, v1v2), we have 4 sets of vectors and their negations {v(c),−v(c)}4c=1,

where c is the class index. For example, the tuple (v0v2, v1v2) = (−1,−1) cor-
responds to c = 2, where v(2) = [1, 1,−1]T. The points in class c are generated

from the distribution 1
2

[N (
v(c), 0.5I3

)
+N (−v(c), 0.5I3

)]
, where I3 is a 3× 3

identity matrix and N (μ,σ) is a Gaussian distribution. Each sample is ad-

ditionally accompanied by 7 Gaussian noise features with zero mean and unit

variance, leading to a 10-dimensional feature vector.

• Binary classification. The points (X0, X1, . . . , X9) in class Y = −1 are gen-

erated from the distribution N (0, I10), where I10 is a 10 × 10 identity matrix

and N (μ,σ) is a Gaussian distribution. Given class Y = 1, X0 through X3

satisfy standard normal distribution conditioned on 9 ≤ ∑3
j=0 X

2
j ≤ 16, and

(X4, X5, . . . , X9) ∼ N (0, I6).

We thoroughly compared DFR with the following well-studied FS methods.

• Filter methods. The filter methods include FDR [63], PeaCorr test, and mRMR

criterion [62]. These methods are usually computationally inexpensive and do

not require training.

• Wrapper methods. The wrapper methods contain SFS and SBS, which adopt

a Gaussian SVM with a box constraint of 1 to sequentially add or remove one

feature in each step. We also investigated SVM-RFE [65], which ranks the

coefficients of a linear SVM with a box constraint of 1 to eliminate one feature

in each step.

• Embedded methods. The embedded methods include Lasso [59], elastic-net [57],

and random forest (RF) [69]. We utilized a logistic regression model with Lasso

regularization to evaluate the features’ importance. The L1 penalty of the
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Lasso regularization was set to 0.1. To implement the elastic-net, we utilized

a logistic regression model with L1 and L2 regularizations. The penalty of the

regularization was set to 0.1, and the mixing parameter between L1 and L2

penalties was set to 0.5. We adopted the default hyper-parameters of RF in

scikit-learn to evaluate the feature importance.

• Deep-learning-based methods. The deep-learning-based methods include DFS

[2], DropoutFR [4], FIR [3], and DDR. For these methods and DFR, we used

the same network architectures and default hyper-parameters in their source

codes.

We randomly generated 1024 samples for each dataset and applied 5-fold CV for

evaluation. On the TR of individual folds, we applied the FS methods described

above to rank and select features. As the two synthetic datasets have 3 and 4 valid

features respectively, each fold selects 5 features. Based on the selected features, we

adopted a Gaussian SVM with a box constraint of 1 for classification. We report the

performance statistics, i.e., mean and standard deviation, of the 5-fold CV. Figure 5.1

shows the recognition accuracy and the importance of top-5 features obtained by

different FS methods on the two synthetic datasets.
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(a)

(b)

Figure 5.1: Recognition accuracy and feature importance obtained by different FS
methods on two synthetic datasets. (a) XOR. Indexes 0–2 and 3–9 correspond to the
valid and invalid features, respectively. (b) Binary classification. Indexes 0–3 and 4–9
correspond to the valid and invalid features, respectively. We adopted 5-fold CV for
evaluation. Red/green colors indicate a feature selected in all of the 5 folds and in
fewer than 5 folds, respectively. For example, in (a) DFR, indexes 0–2 are selected
in all of the 5 folds and indexes 3–9 are selected in fewer than 5 folds. This indicates
that DFR can always select the valid features because indexes 0–2 correspond to the
valid features.
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Figure 5.1(a) shows that on the XOR dataset, DFR, SBS, RF, DFS, DropoutFR,

DDR, and FIR find the 3 valid features in all 5 folds. The filter methods, Lasso, and

elastic-net, on other hand, fail to find the valid features. Figure 5.1(b) shows similar

results on the binary classification dataset. The deep-learning-based methods, SBS,

and RF found the 4 valid features in all 5 folds.

While SBS, RF, and deep-learning-based methods have comparable performance,

their computational complexity differs. SBS is a greedy heuristic that begins with all

features and iteratively removes features from the set. On the two synthetic datasets,

SBS exhibits the lowest computational cost by reducing the feature dimension from

10 to 5 in just 5 iterations. However, it necessitates numerous iterations to reduce

the feature dimension in high-dimensional data. Therefore, it is not applicable to

problems with a large number of features. The computational complexity of RF is

directly proportional to the number of trees. On the two synthetic datasets, RF has

a higher computational complexity than SBS. Additionally, Figure 5.1(b) shows that

RF selected an invalid feature (feature with index 6) in all 5 folds by assigning it a

high feature importance. To some extent, it failed to differentiate the invalid features.

The deep-learning-based methods suffer from a high computational burden due to the

necessity of training deep neural networks. Among them, DFS and DropoutFR require

training the parameters of a deep neural network and computing an additional weight

vector. FIR, DDR, and the proposed DFR incur even higher computational costs due

to the involvement of the dual-net architecture and the alternate training procedure.

5.1.3 Visualizing Feature Relevance

A good FS method should effectively determine the feature relevance. In this subsec-

tion, we evaluated whether DFR can determine the feature relevance on the MNIST

hand-written digit dataset. Table 5.1 shows the characteristics of the subset.

We utilized a subset of the MNIST dataset to distinguish digits ‘3’ and ‘8’. More

specifically, we flattened the 28×28 digits into 784-dimensional feature vectors. After
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training, we normalized and reshaped the feature importance vector c into a 28× 28

matrix to represent the feature importance map. We applied 5-fold CV for evaluation.

For each fold, we adopted DFR to train a dual-net and select 50 features. The

selected features were then used to train a Gaussian SVM with a box constraint of

1 to classify digits ‘3’ and ‘8’. To demonstrate the capability of multi-layer feature

importance vector c, we kept the same architecture “784–32–32–2’ for the operator

and visualized the feature importance maps yielded by the selector with different

numbers of layers. The feature importance maps and classification results are shown

in Table 5.2.

Table 5.2: Classification results and feature importance maps yielded by the selector
with different numbers of layers. We kept the same architecture “784–32–32–2’ for the
operator. In column 3, g(·) indicates the sigmoid activation function. In column 4,
the left pictures are the normalized feature importance maps yielded by the selector.
The middle and the right pictures are the feature importance maps superimposed on
the mean images of digit ‘3’ and digit ‘8’, respectively.

Operator Selector
Selector architecture/

Feature importance vector c

Feature importance map/

Classification accuracy (mean ± std)

“784–1”

c = (w1, . . . , wj, . . . , wd)
T

“784–32–1”

c = g
(
W (1)

)
w(2)

“784–32–32–1”

c = g
(
g
(
W (1)

)
W (2)

)
w(3)
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Table 5.2 shows that though we flatten the 28 × 28 digits into 784-dimensional

feature vectors, which destroys the original spatial information, DFR can identify

the relevant features. Row 1 in Table 5.2 depicts the feature importance maps

yielded by the selector with one layer. The one-layer feature importance vector

c = (w1, . . . , wj, . . . , wd)
T can determine the feature relevance. However, the fea-

ture importance maps in row 2 and row 3 show that the selector with more layers can

better determine the relevance among the features and improve classification accu-

racy. This suggests that multi-layer feature importance vector c = g
(
W (1)

)
w(2) and

c = g
(
g
(
W (1)

)
W (2)

)
w(3) facilitate learning the relevance among the features. De-

spite the complex relationship between the network’s output and its input variables,

the feature importance vector c provides a new way to explain the contribution of

the input variables to the network’s output.

5.1.4 Performance on Feature Selection Benchmarks

We further evaluated DFR on 12 FS benchmark datasets in the FS repository [1] to

demonstrate its superior performance. The 12 FS benchmark datasets are described

below.

• ALLAML, PROSTATE GE, GLI 85, LEUKEMIA, GLIOMA, CLL SUB 111,

COLON, LYMPHOMA, and SMK CAN 187 are high-dimensional biological

datasets with a small number of samples, which are challenging for machine

learning problems.

• USPS is a hand-written image dataset, which has 9,298 samples and 10 classes.

• MADELON is an artificial dataset for binary classification, which is part of the

NIPS 2003 FS challenge.

• ISOLET is for evaluating spoken letter recognition, which has 26 classes. The

dataset comprises 1,560 samples, each with 617 features.
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Table 5.1 shows the details of the datasets. We applied 5-fold CV on each dataset

for evaluation. According to Section 5.1.2, the strong supervised FS methods (DFS

[2], DropoutFR [4], FIR [3], and DDR) can find the valid features in all folds and

achieve high classification accuracy. Thus, we adopt these FS methods and DFR for

comparison.1 We used the same network architectures and default hyper-parameters

in their source codes for these FS methods. In each fold, these methods select top n

features, where n = {10, 20, . . . , 100}. To evaluate the classification performance of

the selected features, two classifiers were adopted, including k-NN classifier (k = 1)

and linear SVM with a box constraint of 1.2 As the datasets are not class-balanced,

we adopted the balanced accuracy (balanced-ACC) [92] for evaluation. Figure 5.2

and Figure 5.3 show the classification performance of different numbers of selected

features on the 1-NN and SVM classifiers, respectively.

1SBS was excluded due to its excessive computational cost on high-dimensional features. RF was
excluded for its ineffective differentiation among invalid features.

2Classifiers’ settings were adopted from [91].
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Figure 5.2: Balanced-ACC versus the number of selected features on 12 FS bench-
mark datasets. Features were selected by various FS methods listed in the legends,
and 1-NN classifiers were used for classification. The color regions correspond to
one standard deviation from the mean. DFS: deep feature selection [2]; DropoutFR:
Dropout Feature Ranking [4]; FIR: Feature Importance Ranking [3]; DDR: Dual
Dropout Ranking; DFR: Dual-net Feature Ranking.
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Figure 5.3: Balanced-ACC versus the number of selected features on 12 FS benchmark
datasets. Features were selected by various FS methods listed in the legends, and
linear SVM classifiers were used for classification. The color regions correspond to
one standard deviation from the mean. DFS: Deep Feature Selection [2]; DropoutFR:
Dropout Feature Ranking [4]; FIR: Feature Importance Ranking [3]; DDR: Dual
Dropout Ranking; DFR: Dual-net Feature Ranking.

Figure 5.2 and Figure 5.3 shows that in most of the datasets, the balanced-ACC

tends to increase when more features are selected. The biological datasets exhibit

large fluctuation in accuracy across folds because of the small number of samples in

these sets. Also, random splitting of a small dataset will lead to the samples in the

individual folds having different statistics. As a result, different folds select different

features and thus have fluctuated classification performance.

Table 5.3 and Table 5.4 present the average classification performance of the se-

lected features using 1-NN and linear SVM classifiers, respectively. In the two tables,
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the highest average classification accuracy is highlighted in boldface and italic. Ta-

ble 5.3 and Table 5.4 show that DFR performs the best on both 1-NN and linear

SVM classifiers, that is, it achieves the best classification performance on most of

the datasets. Additionally, on some of the biological datasets (PROSTATE GE and

LEUKEMIA), DFR performs significantly better than other methods.

Table 5.3: Average balanced-ACC of the selected features on the 1-NN classifier.

DATASET DFS DropoutFR FIR DDR DFR

ALLAML 0.684 0.759 0.910 0.700 0.865

PROSTATE GE 0.610 0.691 0.712 0.646 0.854

GLI 85 0.724 0.713 0.771 0.723 0.764

LEUKEMIA 0.731 0.729 0.753 0.767 0.884

GLIOMA 0.718 0.653 0.716 0.653 0.687

CLL SUB 111 0.594 0.589 0.589 0.617 0.592

COLON 0.668 0.704 0.707 0.601 0.729

LYMPHOMA 0.641 0.722 0.730 0.769 0.781

SMK CAN 187 0.648 0.618 0.609 0.616 0.624

USPS 0.942 0.940 0.934 0.929 0.939

MADELON 0.581 0.711 0.708 0.701 0.711

ISOLET 0.844 0.767 0.822 0.771 0.831

WIN 4 1 2 1 5
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Table 5.4: Average balanced-ACC of the selected features on the linear SVM classifier.

DATASET DFS DropoutFR FIR DDR DFR

ALLAML 0.746 0.789 0.890 0.765 0.916

PROSTATE GE 0.704 0.742 0.749 0.721 0.908

GLI 85 0.691 0.744 0.770 0.672 0.785

LEUKEMIA 0.724 0.816 0.781 0.768 0.913

GLIOMA 0.709 0.683 0.688 0.749 0.688

CLL SUB 111 0.595 0.643 0.663 0.642 0.659

COLON 0.667 0.716 0.732 0.755 0.665

LYMPHOMA 0.668 0.708 0.749 0.750 0.758

SMK CAN 187 0.685 0.616 0.630 0.594 0.685

USPS 0.925 0.927 0.917 0.911 0.922

MADELON 0.589 0.586 0.600 0.598 0.605

ISOLET 0.896 0.820 0.875 0.828 0.879

WIN 2 1 1 2 7

5.1.5 Convergence of the Alternate Learning Algorithm

Our alternative learning algorithm involves the interaction between the operator net

and the selector net and requires training of both networks. However, the parameters

of the operator net and selector net are not updated simultaneously in each iteration.

We update one network’s parameters while keeping the other network’s parameters

fixed. We specifically demonstrate the learning behavior of the operator net and the

selector net on three datasets in Figure 5.4. Figure 5.4 illustrates that regardless

of datasets, the selector loss drops significantly during the first 1000 iterations and

stabilizes thereafter. This indicates that the selector net can effectively predict the
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operator’s learning performance using the selected features after 1,000 iterations. Ad-

ditionally, it was observed that the feature importance yielded by the selector remains

stable after around 1,000 iterations, indicating consistency in the selected features.

Therefore, it can be concluded that the selector converges after 1,000 iterations. The

operator loss decreases monotonically as the number of iterations increases. After the

selector has converged, the operator keeps minimizing the classification loss using the

selected features and eventually converges with additional iterations. Therefore, the

operator converges following the selector. Our studies also show that the alternate

learning algorithm enables both networks to converge on other datasets.
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(a)

(b)

(c)

Figure 5.4: The train losses of the operator and selector on (a) XOR, (b) binary
classification, and (c) MNIST hand-written digit datasets. The x-axis is to the number
of iterations.

5.2 Selecting Biomarkers on JCCOCC-MoCA dataset

This section explains speech-based dementia detection and highlights various spo-

ken language features related to dementia. The section also introduces a Cantonese
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dataset for speech-based dementia studies. The section finishes with a comprehensive

comparison between the proposed DFR and other FS methods for spoken language

biomarker selection.

5.2.1 Cantonese JCCOCC-MoCA Speech Dataset

The JCCOCC Montreal Cognitive Assessment (MoCA) Cantonese Speech corpus was

collected by the CUHK Jockey Club Centre for Osteoporosis Care and Control [88]. A

MoCA test [93] was given to each participant for assessing the MCI and dementia in

older adults. According to the assessment results and MoCA scores, the participants

were divided into four groups: (1) 205 healthy older adults; (2) 16 older adults having

mild neurocognitive disorders (mild NCD); (3) 17 older adults suffering from MCI;

and (4) 10 older adults suffering from major NCD.

For detecting dementia, we combined mild NCD, MCI, and major NCD into one

category called possible dementia. We selected 43 healthy older adults with relatively

high MoCA scores as the HC. The age distribution of the 43 selected HC and the 43

possible dementia are depicted in Figure 5.5.

Figure 5.5: The age distribution of the 43 selected HC and the 43 possible dementia.

From the speech recording of each participant, after excluding the assessor, we
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extracted three 1-minute fluency tests (animals, fruits, and vegetables), resulting in

3 samples for each participant. The transcriptions corresponding to the fluency tests

were also extracted. The data used for dementia detection are shown in Table 5.5.

Table 5.5: The characteristics of the JCCOCC-MoCA dataset. HC: healthy control.

Spoken languages Cantonese

Tasks Fluency tests (animals, fruits, and vegetables)

Number of participants 43 HC and 43 possible dementia

Number of samples 129 HC and 129 possible dementia

Manual transcriptions provided Yes

5.2.2 Spoken Language Features

We differentiate the features into two categories: transcription-based and speech-

based. The transcription-based features are described as follows.

(1) Lexical features. With the transcriptions of speech, the following lexical features

can be extracted: the number of sentences per minute and the average number

of words per sentence. Then, the PyCantonese library was utilized to parse the

transcriptions.3 After that the following features were appended to the feature

set: POS counts per minute, POS ratio, the ratio of pronoun to noun, the ratio

of noun to verb. These features lead to a 113-dimensional feature vector per

1-minute transcription.4

(2) ELECTRA features. We consider the ELECTRA model [94] pre-trained on a

large Cantonese corpus as a feature extractor.5 More specifically, we fed the

transcriptions to the ELECTRA model and extracted the representations from

3https://pycantonese.org/

4Lexical features are listed in Appendix C.
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the last layer of the model. For each 1-minute transcriptions, the model produces

a 768-dimensional feature vector (called the ELECTRA features) that abstractly

captures the semantic, syntactic, and lexical information in the transcriptions.

Similar language models, e.g., BERT [26, 76] and ERNIE [27] models, have also

been used for dementia detection.

(3) Pause features. In [77], the authors demonstrated that pauses can function as

word-finding, as planning at the word, phrase, and narrative levels, and as prag-

matic compensation when other interactional and narrative skills deteriorate.

Thus, we included the pause features for dementia detection. In the JCCOCC-

MoCA dataset, pauses and their durations have been tagged. Figure 5.6 shows

an example of 1-minute transcription tagged with pauses. We divided the pauses

into six groups according to their durations: G1 (pauses between 0.05s–0.5s), G2

(pauses between 0.5s–1s), G3 (pauses between 1s–2s), G4 (pauses between 2s–3s),

G5 (pauses between 3s–4s), and G6 (pauses longer than 4s). We used the statisti-

cal characteristics of the pauses as the pause features, as illustrated in Table 5.6.

For each duration group, we extracted the 5 statistical characteristics. As a result,

we had a total of 5× 6 = 30 pause features for each 1-minute transcription.

Figure 5.6: An example of 1-minute transcription tagged with pauses. The pauses
are tagged as ‘<PAU>’.
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Table 5.6: The 5 statistical characteristics of pauses that are extracted from 6 duration
groups.

Statistical characteristic Description

#p Number of pauses per minute

%p/word ratio Pause-to-word ratio

p duration Total duration of pauses per minute

p mean duration Mean duration of pauses

%p duration/word duration Pause-duration-to-word-duration ratio

The speech-based features are further divided into five types.

(1) Acoustic features. We followed the standard pipelines in the COVFEFE toolbox

[95] to extract the acoustic features, which include formants, loudness, pitch,

zero-crossing rate, etc.

(2) COVAREP features. COVAREP features [41] are comprehensive acoustic fea-

tures, which include prosodic features (F0 and voicing), voice quality features,

and spectral features. The COVAREP features were sampled at 100Hz, and the

mean, maximum, minimum, median, standard deviation, skew, and kurtosis of

the features were computed, leading to a 518-dimensional feature vector per 1-

minute recording. Rohanian et al. [96] used the COVAREP features for cognitive

impairment detection.

(3) INTERSPEECH 2010 Paralinguistic Challenge Features (IS10). IS10 is a feature

set useful for emotion recognition [97] and bipolar disorder recognition [98]. In

addition to the 32 LLDs in IS09, IS10 adds 44 LLD, which include PCM loudness,

8 log Mel-frequency bands, 8 line spectral frequency pairs, F0 envelope, voicing

probability, jitter, and shimmer [79]. Twelve statistics (minimum, maximum,
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mean, range, etc.) of the LLD were computed, leading to a 1582-dimensional

feature vector per 1-minute recording.

(4) Emobase. The Emobase feature set [17] comprises MFCCs, F0, F0 envelope,

line spectral pairs (LSP), etc. Wang et al. [99] used the Emobase feature set in

multi-modal attention network for AD detection.

(5) eGeMAPS. The extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS)

[16] contains 88 features that are selected based on their potential for character-

izing physiological changes in voice production.

5.2.3 Experimental Settings

We applied DFR and some other strong supervised FS methods on the JCCOCC-

MoCA dataset to select spoken language biomarkers. We used different random seeds

to repeat the experiments 5 times. In each experiment, we randomly grouped 68 par-

ticipants into the training data and the rest 18 participants into the test data. As each

participant has three 1-minute fluency tests, the training data have 204 samples, and

the test data have 54 samples. The performance metrics include accuracy, precision

(PRE), recall (REC), and F1 scores with respect to the possible dementia category.

We report the average performance metrics over the five repeated experiments.

5.2.4 Performance of Different Feature Types

We first evaluate the recognition performance of the full features before FS. On the

training data, we adopted a 5-fold CV in which the samples of the same speakers

were grouped into either the TR or the TS for each fold. We used a Gaussian SVM

with a box constraint of 1 as the classifier to distinguish the possible dementia and

the HC, as shown in Table 5.7. These results show that on the training data, the

5https://huggingface.co/toastynews/electra-hongkongese-base-discriminator
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lexical features and ELECTRA features generally outperform the speech-based fea-

tures. Additionally, the lexical features and ELECTRA features perform the best on

the test data, and using all features causes a slight performance degradation. This

suggests some inconsistency among the combined features.

Table 5.7: Classification performance of different feature types on the JCCOCC-
MoCA dataset. The numbers in the brackets are the sizes of the feature sets. ACC :
accuracy; PRE : precision; REC : recall.

Feature set
5-fold CV on training data Performance on test data

ACC PRE REC F1 ACC PRE REC F1

Transcription-based

Lexical (113) 0.653 0.662 0.660 0.642 0.719 0.726 0.719 0.717

ELECTRA (768) 0.641 0.645 0.640 0.628 0.719 0.721 0.719 0.718

Pause (30) 0.519 0.537 0.535 0.513 0.604 0.607 0.604 0.601

Speech-based

Emobase (988) 0.540 0.569 0.564 0.536 0.619 0.638 0.619 0.609

eGeMAPS (88) 0.461 0.475 0.476 0.450 0.563 0.567 0.563 0.557

Acoustic (30) 0.508 0.518 0.516 0.490 0.589 0.594 0.589 0.586

COVAREP (518) 0.476 0.502 0.499 0.471 0.504 0.505 0.504 0.497

IS10 (1582) 0.511 0.533 0.529 0.504 0.581 0.585 0.581 0.578

All features (4117) 0.621 0.631 0.625 0.609 0.715 0.724 0.715 0.712

5.2.5 Performance of Pre-screened Features

We combined all the feature sets listed in Section 5.2.2 to form 4117-dimensional fea-

ture vectors and applied a 5-fold CV on the feature vectors. On the TR of individual

folds, we applied FS methods to rank and select features. The selected features were

then used to train a Gaussian SVM with a box constraint of 1 to identify possible

dementia.

Considering that the feature dimension is very high, filter methods were utilized

to reduce the feature dimension before applying strong supervised FS methods. On

the TR of individual folds, we applied filter methods, including PeaCorr, FDR, and

MutInfo to reduce the feature dimension from 4117 to {250, 500, 1000, 1500, 2500, 3500},
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as shown in Table 5.8. Table 5.8 shows that using filter methods to pre-screen fea-

tures can reduce the inconsistency and redundancy among the combined features and

improve recognition performance. By using PeaCorr to reduce the feature dimension

to 1500, we obtained the best CV performance on the training data. Therefore, on

the TR of individual folds, subsequent experiments utilized PeaCorr to reduce the

feature dimension to 1500.

Table 5.8: Classification accuracy of different numbers of features selected by filter
methods on the JCCOCC-MoCA training data.

Feature dimension
5-fold CV on training data

FDR PeaCorr MutInfo

250 0.639± 0.050 0.631± 0.049 0.623± 0.037

500 0.621± 0.042 0.622± 0.047 0.632± 0.041

1,000 0.637± 0.038 0.639± 0.036 0.635± 0.041

1,500 0.648± 0.048 0.648± 0.046 0.640± 0.032

2,500 0.639± 0.052 0.638± 0.053 0.628± 0.039

3,500 0.626± 0.051 0.627± 0.045 0.627± 0.041

5.2.6 Performance of Deep-learning-based Methods

We report the performance of DFR and some other strong supervised FS methods

on the JCCOCC-MoCA dataset. These FS methods include DFS [2], DropoutFR [4],

FIR [3], and DDR. We used the same network architectures for all the methods.

Additionally, on the training data, we determined the best possible hyper-parameter

settings for each method using grid-search and CV. For a fair comparison, during

the leave-n-subject out CV, we selected 500 features in each fold. The recognition

accuracy of the feature subsets identified by different methods are shown in Table 5.9.
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Table 5.9: Recognition accuracy of the feature subsets identified by different deep-
learning-based methods on the JCCOCC-MoCA training data. The size of the feature
subsets is 500. The results are presented as the mean ± standard deviation of the
five repeated experiments. ACC : accuracy; PRE : precision; REC : recall.

Method
5-fold CV on training data

ACC PRE REC F1

DFS [2] 0.663± 0.038 0.664± 0.034 0.663± 0.031 0.652± 0.040

DropoutFR [4] 0.650± 0.041 0.654± 0.036 0.651± 0.033 0.638± 0.042

FIR [3] 0.663± 0.033 0.664± 0.030 0.661± 0.030 0.650± 0.036

DDR 0.638± 0.038 0.640± 0.029 0.637± 0.029 0.627± 0.038

DFR 0.651± 0.042 0.657± 0.037 0.652± 0.033 0.639± 0.043

Table 5.9 shows that all the methods achieve superior performance compared

with the combined features. Additionally, though it reduces the feature dimension

from 1500 to 500, DFS, DropoutFR, FIR, and DFR further improve classification

performance compared with PeaCorr. DFS and FIR achieve the best performance on

the training data.

5.2.7 Performance on Test Data

We then evaluated the identified feature subsets on the test data. Because each fold

uses different TR for training, the feature relevance in different folds is not the same,

and different folds will produce different feature subsets. We propose three techniques

to fuse the different feature subsets so that high performance can be achieved on the

test data. They are the union of feature subsets (Tech 1), majority voting on predicted

labels (Tech 2), and soft voting on predicted scores (Tech 3), as shown in Figure 5.7.
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(a)

(b)

(c)

Figure 5.7: Two techniques are used to fuse the feature subsets identified by the
leave-n-subject out CV. (a) Union of feature subsets (Tech 1). (b) Majority voting
on predicted labels (Tech 2). (c) Soft voting on predicted scores (Tech 3).

Tech 1 first takes the union of feature subsets identified by the leave-n-subject out

CV; and then performs prediction on the union set. Tech 2 obtains the predicted la-

bels using each of the feature subsets; then it applies majority voting on the predicted

labels to make the final decisions. Tech 3 obtains the predicted scores using each of

the feature subsets; then it averages the predicted scores to make the final decisions.

Additionally, we compared our selected features with speech-based embeddings ex-



99

tracted from pre-trained ASR models, including Wav2vec 2.06, Whisper7, HuBERT8,

and WavLM9. Given N speech frames of an utterance, we extract the embeddings

from the last hidden layer’s output of the embedding network. This operation results

in a D ×N hidden state matrix, where D is the number of hidden nodes in the last

hidden layer. The speech-based embeddings are then obtained by averaging the hid-

den state matrix across the N frames. Our approach is similar to the AD recognition

task in [20], where the hidden state matrix goes through a convolution layer before

being averaged across the N frames.

The recognition accuracy of speech-based embeddings and the feature subsets on

the test data are shown in Table 5.10. Table 5.10 shows that our selected feature

subsets generally outperform the speech-based embeddings on the JCCOCC-MoCA

test data. Table 5.10 also shows that based on the identified feature subsets, all

the methods achieve comparable performance compared with the combined features.

Additionally, after utilizing Tech 1, Tech 2, and Tech3 to fuse the feature subsets, we

obtain better performance on the test data. After utilizing Tech 2, DFR achieves the

best performance on the test data and outperforms the combined features by around

3% in terms of accuracy. This reasonable gain only relies on some small feature

subsets. Although DFS and FIR achieve the best performance on the training data,

they do not perform the best on the test data. This contradictory result reflects that

DFS and FIR are prone to over-fitting on the JCCOCC-MOCA training data.

6https://huggingface.co/facebook/wav2vec2-large-xlsr-53

7https://huggingface.co/openai/whisper-large

8https://huggingface.co/facebook/hubert-large-ll60k

9https://huggingface.co/microsoft/wavlm-large
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Table 5.10: Recognition accuracy of speech-based embeddings and the feature subsets
identified by different deep-learning-based methods on the JCCOCC-MoCA test data.
During the 5-fold CV, five feature subsets were selected, one for each fold. When
evaluating the feature subsets on the test data, we obtained one accuracy for each
feature subset and then averaged the accuracy. TECH 1: Union of feature subsets;
TECH 2: Majority voting on predicted labels; TECH 3: Soft voting on predicted
scores. See Figure 5.7 for details. The results are presented as the mean ± standard
deviation of the five repeated experiments. ACC : accuracy; PRE : precision; REC :
recall.

Performance on test data

ACC PRE REC F1

Speech-based

embeddings

Wav2vec 2.0 [23] 0.659± 0.063 0.664± 0.064 0.659± 0.063 0.656± 0.063

HuBERT [100] 0.578± 0.077 0.581± 0.081 0.578± 0.077 0.574± 0.077

WavLM [101] 0.585± 0.052 0.592± 0.056 0.585± 0.052 0.580± 0.050

Whisper [102] 0.633± 0.067 0.637± 0.069 0.633± 0.067 0.630± 0.069

FS

DFS [2] 0.714± 0.047 0.719± 0.045 0.714± 0.047 0.712± 0.049

DropoutFR [4] 0.710± 0.038 0.716± 0.036 0.710± 0.038 0.708± 0.040

FIR [3] 0.707± 0.049 0.712± 0.048 0.707± 0.049 0.705± 0.051

DDR 0.719± 0.047 0.724± 0.045 0.719± 0.047 0.717± 0.048

DFR 0.711± 0.042 0.716± 0.041 0.711± 0.042 0.709± 0.043

FS + Tech 1

DFS [2] 0.733± 0.051 0.737± 0.048 0.733± 0.051 0.732± 0.052

DropoutFR [4] 0.733± 0.040 0.738± 0.039 0.733± 0.040 0.732± 0.041

FIR [3] 0.726± 0.038 0.729± 0.036 0.726± 0.038 0.725± 0.039

DDR 0.730± 0.053 0.734± 0.051 0.730± 0.053 0.728± 0.054

DFR 0.726± 0.030 0.732± 0.029 0.726± 0.030 0.724± 0.030

FS + Tech 2

DFS [2] 0.722± 0.048 0.727± 0.046 0.722± 0.048 0.720± 0.050

DropoutFR [4] 0.730± 0.048 0.733± 0.044 0.730± 0.048 0.728± 0.049

FIR [3] 0.719± 0.066 0.722± 0.063 0.719± 0.066 0.717± 0.068

DDR 0.737± 0.050 0.740± 0.049 0.737± 0.050 0.736± 0.051

DFR 0.744± 0.066 0.747± 0.064 0.744± 0.066 0.743± 0.066

FS + Tech 3

DFS [2] 0.733± 0.036 0.738± 0.036 0.733± 0.036 0.732± 0.037

DropoutFR [4] 0.733± 0.038 0.737± 0.037 0.733± 0.038 0.732± 0.039

FIR [3] 0.730± 0.051 0.734± 0.047 0.730± 0.051 0.728± 0.052

DDR 0.722± 0.031 0.725± 0.030 0.722± 0.031 0.721± 0.032

DFR 0.726± 0.045 0.732± 0.044 0.726± 0.045 0.724± 0.045
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5.2.8 Analyzing the Selected Features

We finally depict 150 features selected by DFR with the highest selection frequency

in Figure 5.8. Figure 5.8 shows that the ELECTRA features prevail in the top 150.

This is reasonable because the ELECTRA features perform well on the training data.

However, though the lexical features perform the best on the training data, only a

few of them were selected. This suggests that not all features in a feature group are

selected even though the feature group is good for classification. Interestingly, though

the speech-based feature groups have unsatisfactory performance, some features in the

speech-based feature groups were selected. This suggests that in addition to the high-

level semantic and syntactic information obtainable from the transcriptions, there is

also low-level acoustic information that is predictive of dementia. This finding is

in line with the literature [53, 55, 56], where in addition to the transcription-based

features, low-level speech-based anomaly are also indicative of dementia.

Figure 5.8: 150 features selected by DFR with the highest selection frequency. The
maximum selection frequency is 25 because we repeated the experiment 5 times, with
a 5-fold CV for each experiment.

Through a meticulous examination of the selected features, we found that some of

them are closely correlated with previous research, as shown in Table 5.11. Although

Alhanai et al. [56] focused on discriminating English-speaking patients with MCI while
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we focus on discriminating Cantonese-speaking patients with NCD, we share some of

the selected features. The feature sharing indicates that despite the differences in the

patient populations and disease severity, some speech anomalies are presented in both

groups of patients.

Table 5.11: Some of the features selected by our proposed method are closely corre-
lated with previous research in the same field.

Selected feature Known specificity

The differential frame-to-frame jitter Alhanai et al. [56] revealed that decreasing jitter is pos-

itively correlated with MCI.

The mean of voice segment lengths per second Alhanai et al. [56] revealed that shorter speech segment

lengths is positively correlated with MCI.

Total word types Our previous research also showed that the “total word

types” was frequently selected in distinguishing AD pa-

tients in the ADReSS English corpus [103].

The ratio of nouns Jarrold et al. [83] observed a decrease in the proportion

of nouns among AD patients.

The ratio of nouns to verbs AD patients may experience more difficulty in naming

verbs as compared to nouns [39].

5.3 Discussions and Conclusions

We conducted FS inside the CV instead of outside the CV, making the FS nested

inside the learning process instead of being used as a pre-processing step. This makes

individual folds select different features because the TR of individual folds are differ-

ent. It is rational to nest FS inside the CV. This is because if we conduct FS outside

the CV, we will utilize both the TR and TS to select features and test the selected

features on the TS, which will bias the performance.
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In conclusion, we utilized a dual-net architecture along with an alternate learning

algorithm for FS. The method uses the network’s parameters to explain the con-

tribution of the input variables to the prediction of the deep neural network. This

explains the feature importance of individual variables and also allows for learning

the relevance among the variables. Thorough evaluations on the synthetic, MNIST

hand-written digit, and FS benchmark datasets manifest that the proposed method

outperforms several state-of-the-art supervised FS methods.

On the JCCOCC-MoCA dataset, we divided the training samples of the same

speakers into either the TR or TS to avoid selecting the features that facilitate speaker

recognition instead of dementia detection. The spoken language biomarkers selected

by the method achieve comparable or supervisor performance compared with the

combined features. Future work may investigate the biological aspects of the spoken

language biomarkers.
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Chapter 6

CONCLUSIONS AND FUTURE PERSPECTIVE

Investigating the detection of dementia through spontaneous speech is an im-

portant research area with potential contributions to human health and well-being.

Effective detection of early signs of the disease can facilitate timely intervention to

slow deterioration. Our study not only compares different feature sets but also aims

to automatically select the discriminative features, referred to as spoken language

biomarkers, for dementia detection. We evaluated our proposed FS methods on three

dementia-related corpora from different spoken languages, including ADReSS (En-

glish), AD2021 (Mandarin Chinese), and JCCOCC-MoCA (Cantonese). Due to the

language-specific nature of transcription-based features, we employed different extrac-

tion methods for different languages. For example, to extract the linguistic features

from the ADReSS dataset, we employed the EVAL command in the CLAN program

to parse the English transcriptions; on the other hand, when extracting the lexical fea-

tures from the JCCOCC-MoCA dataset, we utilized the PyCantonese library to parse

the Cantonese transcriptions. Extracting transcription-based features for Cantonese

is more challenging due to the limited research on linguistic features in Cantonese

compared to English. Consequently, we could only extract lexical features from the

JCCOCC-MoCA Cantonese corpus instead of linguistic features. Future work may

investigate the linguistic features specific to Cantonese to improve detection perfor-

mance.

The linguistic features for dementia detection are language-specific and can be

categorized into lexical, syntactic, and semantic features. This study utilized three

datasets on different languages. For the ADReSS English dataset, given the extensive
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research on dementia detection using English corpora, we could easily employ the

EVAL command in the CLAN program to extract the well-defined linguistic features.

Conversely, for the JCCOCC-MoCA Cantonese dataset, due to the limited research on

dementia detection using Cantonese corpora, expertise in extracting linguistic features

was scarce. For dementia detection on the Cantonese dataset, we initially referred

to research conducted on the English dataset. Our approach involved extracting

linguistic features by adapting the English’s feature extraction pipeline, resulting in

the extraction of lexical features. However, further investigations are necessary to

extract the language-specific linguistic features for Cantonese.

When extracting lexical features from the AD2021 dataset, we utilized an auto-

mated POS tagger, the Stanford POS tagger, to parse the Chinese transcriptions. The

performance of lexical features is influenced by the POS tagger because the extraction

of lexical features relies on POS tagging. POS tagging in Mandarin Chinese presents

greater challenges compared to English, as the same words may have varying POS

tags depending on the context. We observed that the lexical features in the AD2021

dataset perform much worse than linguistic features in the ADReSS dataset. This

finding could be attributed to the erroneous automatic transcriptions in the AD2021

dataset and the unsatisfied performance of the Stanford POS tagger. To improve

the performance of the lexical features, future work may improve ASR performance

and implement advanced POS taggers. For example, deep-learning-based POS tag-

gers, trained on extensive corpora, can better utilize contextual information for POS

tagging. Similarly, in the JCCOCC-MoCA Cantonese dataset, replacing the PyCan-

tonese POS tagger with advanced alternatives may improve the performance of the

lexical features.

This study computed the statistics of different durations of silent pauses as the

pause features. This was inspired from the potential of disfluencies to signify demen-

tia. Yuan et al. [32] encoded different durations of silent pauses using three punctua-

tions <.>, <..>, and <...> to emphasize the disfluencies in the transcriptions. Results
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show that adding the silent pauses can substantially improve the performance of AD

detection. Our study considered the silent pause features as candidates for FS to

identify which durations of silent pauses are indicative of dementia, and results are

shown in Table 4.9. Additionally, filled pauses could also be disfluencies of the spoken

language. Our study has also investigated the statistics of filled pauses, such as the

proportion of filled pauses, as features to detect dementia. However, experimental

results did not demonstrate their efficiency. One possible explanation is that filled

pauses may not be reliable indicators of dementia, as healthy individuals could also

use them in their speech. Another possible explanation could be that simply using

the statistics of filled pauses does not indicate dementia; instead, atypical patterns

of filled pauses, such as their misplacement within sentences by dementia patients,

may provide better insights. Future work may explore these atypical patterns and

evaluate their efficiency for dementia detection.

Detecting dementia from spontaneous speech presents a challenge due to the con-

straints of small sample size resulting from time-consuming data collection. Given the

limited number of samples, we need to address the data scarcity issue. For instance,

the proposed FS method requires training dual neural networks on a limited number

of samples, which leads to variations in the FS results across different runs. In such

cases, we ensured the reproducibility of FS results by using the same random seed for

each run. More importantly, we performed FS within CV using multiple data split-

tings to obtain the selection frequencies. The selection frequencies are meaningful as

it offers insights into the consistency and robustness of the selected features, enabling

us to assess their reliability across various iterations and data splittings. During the

evaluation on the test data, apart from assessing the classification performance of

each feature subset individually, we fused the feature subsets prior to obtaining their

performance on the test data. The fusion not only addresses the issue of evaluating

the performance of multiple feature subsets on the test data but also improves the

detection performance on the test data.



107

Our study focuses on selecting spoken language biomarkers to detect dementia.

However, the correlation between the biomarkers and the nature of dementia is weak.

Future work needs to establish the biological relevance of the selected biomarkers

to brain functions and the nature of the disease. Additionally, the entire process

is not entirely automated. For example, extracting linguistic and lexical features

necessitates manual transcriptions. Extracting BERT or ELECTRA features also

necessitates manual transcriptions. Otherwise, their classification performance may

be compromised by erroneous automatic transcriptions. Implementing our methods to

screen the disease in large populations is impractical due to the labor-intensive nature

of annotations and manual transcriptions. In future work, it would be meaningful

to research the automatic recognition of elderly speech so that accurate and fully

automatic dementia screening systems can become practical.
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Appendix A

ALTERNATE LEARNING ALGORITHM OF DDR

Algorithm 1 Alternate learning algorithm of DDR.

Require: Operator network with parameters ψ and selector network with parameters

ϕ

Require: The size of dropout mask subset |Z|, size of mini-batch |M|, and number

of training iterations n

Output: Dropout rates θn

1: Initialize dropout rates as θ0

2: for i← 1 to n do

3: Obtain a dropout mask subset Z with size |Z| using Eq. (3.1)

4: for j ← 1 to |Z| do
5: Compute the operator loss given z

(j)
i :

	
(j)
O,i =

1

|M|
∑

(x,y)∈M
l(x� z

(j)
i ,y;ψi)

6: end for

7: Compute the average operator loss on Z:

LO (M,Z;ψi) = 1

|Z|
∑
j=1

|Z|
	
(j)
O,i

8: Update operator network’s parameters:

ψi ← ψi − η∇ψLO (M,Z;ψi)|ψ=ψi
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9: for j ← 1 to |Z| do
10: Compute the selector loss given z

(j)
i :

	
(j)
S,i =

∣∣∣∣fS(z(j)
i ;ϕi)− 	

(j)
O,i

∣∣∣∣
/

d∑
k=1

(1− z
(j)
i,k )

11: end for

12: Compute the average selector loss on Z:

LS (Z(θ);ϕi) = 1

|Z|
|Z|∑
j=1

	
(j)
S,i;

13: Update selector network’s parameters:

ϕi ← ϕi − η∇ϕLS (Z(θ);ϕi)|ϕ=ϕi

14: Update dropout rates:1

θi ← θi − η

|Z|∑
j=1

∇z(θ)LS (Z(θ);ϕi)∇θz(θ)|θ=θi,z=z
(j)
i

15: end for

1The gradient is based on the chain rule: ∂LS

∂θ = ∂LS

∂z · ∂z∂θ .
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Appendix B

ALTERNATE LEARNING ALGORITHM OF DFR

Algorithm 2 Alternate learning algorithm of DFR.

Require: Operator network with parameters ψ and selector network with parameters

ϕ

Require: The size of feature mask subset |Z|, size of mini-batch |M|, number of

selected features s, number of flipping p, and number of training iterations n

Ensure: Feature importance vector c(n)

1: Randomly initialize z
(0)
1

2: for i← 1 to n do

3: Compute c(i) using Eq. (3.11) based on ϕ(i);

generate the optimal feature mask vector z
(i)
2 based on c(i);

generate |Z| − 2 candidate feature mask vectors {z(i)
3 , . . . , z

(i)
|Z|};

produce Z = {z(i−1)
1 , z

(i)
2 , z

(i)
3 , . . . , z

(i)
|Z|}

4: for j ← 1 to |Z| do
5: Compute the operator loss given z

(i)
j :

	
(i)
O,j =

1

|M|
∑

(x,y)∈M
l
(
x� z

(i)
j ,y;ψ(i)

)

6: end for

7: Compute the average operator loss on Z:

LO
(M,Z;ψ(i)

)
=

1

|Z|
|Z|∑
j=1

	
(i)
O,j
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8: Update operator network’s parameters:

psi(i) ← ψ(i) − η∇ψLO
(M,Z;ψ(i)

)∣∣
ψ=ψ(i)

9: for j ← 1 to |Z| do
10: Compute the selector loss given z

(i)
j :

	
(i)
S,j =

∣∣∣∣fS(z(i)
j ;ϕ(i))− 	

(i)
O,j

∣∣∣∣
11: end for

12: Compute the average selector loss on Z:

LS
(Z;ϕ(i)

)
=

1

|Z|
|Z|∑
j=1

	
(i)
S,j

13: Update selector network’s parameters:1

ϕ(i) ← ϕ(i) − η∇ϕLS
(Z;ϕ(i)

)∣∣
ϕ=ϕ(i)

14: Assign the best feature mask vector in Z to z
(i)
1 :

z
(i)
1 ← argmin

j
	
(i)
O,j

15: end for

1Refer to [73] for the gradient of absolute error loss.
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Appendix C

LIST OF LINGUISTIC/LEXICAL FEATURES

ADReSS dataset

Duration: total time of the sample

Total Utts: total number of utterances per minute

MLU Utts: number of utterances used to compute mean length of utterances (MLU)

MLU Words: the number of words/MLU Utts

MLU Morphemes: the number of morphemes/MLU Utts

FREQ types: total word types as counted by FREQ command

FREQ tokens: total word tokens as counted by FREQ command

FREQ TTR: type-token ratio

Words/min: words per minute (FREQ tokens/Duration converted to minutes)

Verbs/Utt: verbs per utterance

% Word Errors: percentage of words that are coded as errors [*]

Utt Errors: number of utterances coded as errors per minute

Density: measure of propositional idea density

% Nouns: percentage of nouns

% Plurals: percentage of plurals

% Verbs: percentage of verbs, including those tagged as verb, participle, and copula

% Aux: percentage of auxiliaries

% 3S: percentage of third person singular

% 1S/3S: percentage of identical forms for first and third person (e.g., I was, he was)

% Past: percentage of past tenses

% PastP: percentage of past participles
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% PresP: percentage of present participles

% prep: percentage of present prepositions

% adv: percentage of adverbs

% adj: percentage of adjectives

% conj: percentage of conjunctions

% det: percentage of determiners

% pro: percentage of pronouns

noun/verb ratio: the ratio of nouns to verbs

open/closed ratio: the ratio of open class words to closed class words

# open-class: total number of open class words per minute

# closed-class: total number of closed class words per minute

# retracing: number of retracings (self-corrections or changes) per minute

# repetition: number of repetitions per minute

AD2021 dataset

# Utts: number of utterances per minute

Words/Utt: the mean number of words per utterance

Types: total word types

Tokens: total word tokens

TTR: type-token ratio

Average Word Freq: the average word frequency

Median Word Freq: the median word frequency

% AD: percentage of adverbs

% AS: percentage of aspect markers

% BA: percentage of ba-constructions

% CC: percentage of coordinating conjunctions

% CD: percentage of cardinal numbers

% CS: percentage of subordinating conjunctions
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% DT: percentage of determiners

% ETC: percentage of words like “etc.”

% FW: percentage of foreign words

% IC: percentage of incomplete components

% IJ: percentage of interjections

% JJ: percentage of other noun-modifiers

% LC: percentage of localizers

% M: percentage of measure words

% MSP: percentage of other particles

% NN: percentage of common nouns

% NR: percentage of proper nouns

% NT: percentage of temporal nouns

% OD: percentage of ordinal numbers

% PN: percentage of pronouns

% SP: percentage of sentence final particles

% VA: percentage of predicative adjectives

% VC: percentage of be words

% VE: percentage of main verbs

% VV: percentage of other verbs

pronouns/nouns ratio: the ratio of pronouns to nouns

nouns/verbs ratio: the ratio of nouns to verbs

Max Tree Height: the maximum parsed tree height

Mean Tree Height: the mean parsed tree height

Median Tree Height: the median parsed tree height

JCCOCC-MoCA dataset

# Utts: number of utterances per minute

Words/Utt: the mean number of words per utterance
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Types: total word types

Tokens: total word tokens

TTR: type-token ratio

% Ag: percentage of adjective morphemes

% a: percentage of adjectives

% ad: percentage of adjectives as adverbial

% an: percentage of adjectives with nominal function

% Bg: percentage of non-predicate adjective morphemes

% b: percentage of non-predicate adjectives

% c: percentage of conjunctions

% Dg: percentage of adverb morphemes

% d: percentage of adverbs

% e: percentage of interjections

% f: percentage of localizers

% i: percentage of idioms

% m: percentage of numerals

% n: percentage of common nouns

% nr: percentage of personal names

% ns: percentage of place names

% o: percentage of onomatopoeias

% p: percentage of prepositions

% r: percentage of pronouns

% v: percentage of verbs

pronouns/nouns ratio: the ratio of pronouns to nouns

nouns/verbs ratio: the ratio of nouns to verbs


