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Abstract

Distributed machine learning has intrigued a booming interest and achieved rapid
development over the past decades. It allows multiple nodes with different data
sources to collaboratively train a model using their local computational resources,
which achieves linear speedup with respect to the number of nodes. However, the
distributed manner mainly has threefold challenges. First, full-precision synchro-
nizations occupy significant communication bandwidth. In particular, traditional
algorithms require global synchronization at every iteration, which consumes con-
siderable communication overhead and leads to a critical slowdown in terms of
training time. Second, the computational capabilities vary among nodes, result-
ing in resource underutilization because all nodes should wait for the slowest one.
Third, a conventional assumption on the data distribution is independent and iden-
tical among nodes. However, in reality, the data are heterogeneous because there
is no intersection between any two clients when data sharing is not permitted.

To avoid the overwhelming communication consumption, a common practice
is to adopt a gradient compression approach, e.g., one-bit compressed stochastic

gradient descent (signSGD). Traditional signSGD has made a great success in a



il
star topology. However, due to cascading compression, it can not be directly em-
ployed in multi-hop all-reduce (MAR), a synchronization paradigm that has been
widely adopted in network-intensive high-performance computing systems like
public clouds. To support signSGD implementation under MAR, we propose a
learning synchronization system, Marsit. It prevents cascading compression by
employing a bit-wise operation for unbiased sign aggregation and a unique global
compensation approach to accommodate the compression deviation.

Another solution to reducing the communication overhead is to allow nodes to
perform multiple but inconsistent local updates, which simultaneously settle com-
putational heterogeneity. However, the strategy possibly leads to object inconsis-
tency when data heterogeneity exists, which undermines the model performance.
Consequently, we design a gradient calibration approach, FedaGrac, which cali-
brates the local direction to a predictive global orientation. It is guaranteed that
the aggregated model does not vary substantially from the global optimum while
fully utilizing the local updates of faster nodes by using the estimated orientation.

In a nutshell, we utilize the gradient-wise approaches to optimize the training
efficiency in distributed machine learning. Theoretical results reveal our gradient
compression framework retains the same convergence rate as non-compression
mechanisms, while the gradient calibration algorithm holds an improved order of
convergence rate than the state-of-the-art approaches. Extensive experiments have

demonstrated the superiority of our proposed methods.
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Chapter 1

Introduction

Over the past few years, [oT devices such as smartphones have been powerful
enough to train complex models like deep neural networks. However, training on
a single node can not be comparable with the traditional centralized training on the
cloud. With the prevalence of edge devices around the world, collaborative train-
ing has now become a mainstream to expand the computational resources, induc-
ing a golden period for the development of distributed machine learning (Algah-
tani and Demirbas, 2019; Chen et al., 2018b; Li et alJ, 2015, 2014a,b; Sergeev and
Del Balso, 2018; Verbraeken et all, 2020; Wan et al., 2020; Wu et al.), 2018; Yu
et al., 2019a,b), also known as large-scale machine learning (Bottou, 2010; Bottou
et al., 2018; Tang et al, 2021)). Recent years have witnessed its success in both
computer vision (Agrawal et al., 2015; Campos et al), 2017; Liu et al., 2020g; Tron
and Vidal, 2011j; [Yu and Liu, 2019) and natural language processing (Chen et al.,
2019; Lin et al., 2021a; [Liu et al), 2020a; Wu et al., 2020¢). From the theoretical
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perspective, existing optimization studies (Bottou et alJ, 2018; Karimireddy et all,
2020b; Yu et all, 2019¢,d) demonstrate that distributed machine learning achieves
linear speedup with respect to the number of clients, while the traditional central-
ized training does not own such a characteristic.

Although distributed machine learning intrinsically achieves a non-trivial im-
provement, the research on its optimization still receives increasing attention be-
cause of its non-neglected disadvantages. Below discuss the drawbacks from three

dimensions:

* Communication: Traditional distributed machine learning algorithms ne-
cessitate global synchronization at each iteration with the full-precision
transmission. It is obvious that the process consumes a significant amount
of communication overhead and causes a considerable slowdown in training
time. In a star topology (i.e., parameter server, abbr. PS) where all nodes
communicate with the centralized server, the approaches possibly lead to

network congestion and require extra cost during the training.

* Computation: An implicit assumption in distributed machine learning is
that all devices have the same computational capability. However, a device’s
performance depends on various factors, including hardware configuration,
battery level, etc. Thus, all nodes should wait for the slowest one at every

communication round, negatively affecting training efficiency.

'In this thesis, an iteration is equivalent to a single local update; an epoch means the updates
going through the entire local training dataset, consisting of multiple iterations. A communication
round represents a global synchronization, before which each client can perform one or multiple
iterations locally.
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Figure 1.1: Distributed machine learning and different data distributions

» Data: Traditionally, when a model trains on the cloud, the centralized entity
partitions the training dataset into multiple nodes (or GPUs). Hence, the data

are independent and identically distributed (i.i.d.) among nodes.

When it comes to the crowdsourcing era, the data are generally held by in-
dividuals. Due to privacy concerns, the raw data do not share across the
system. Therefore, the centralized server no longer controls the data dis-
tribution. Considering that the data collected by each client are less likely

identical, we treat the data are heterogeneous among participants.

To avoid the overwhelming communication cost, the existing solutions are
roughly classified into two categories, namely, (1) gradient compression and (2)
communication frequency reduction. signSGD (Bernstein et al., 2018b; Liu et al.,
2018; Safaryan and Richtarik, 2021; Tang et all, 2021)), a family of gradient com-
pression approaches, critically reduces the communication overhead because it uti-

lizes one bit to represent each element in a gradient. The state-of-the-art methods
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such as SSDM (Safaryan and Richtarik, 2021)) and majority vote (Bernstein et al.,
2018b) have remarkable performance under PS. However, their implementation
becomes limited under multi-hop all-reduce (MAR), an underlying synchroniza-
tion paradigm that prevails in high-performance computing (HPC) systems. In
the absence of a centralized coordinator to whom each node submits its data in-
dependently, cascading compression inevitably occurs. In this process, every par-
ticipant performs decompression and compression to ensure every transmission
is compressed. As a result, the cumulative error is excessively enormous when
MAR uses a sign matrix that incorporates all clients’ gradients through cascading
compression.

FedAvg (Li et al), 2019b; McMahan et al., 2017), also known as local SGD
(Stich, 2018) and parallel restarted SGD (Yu et al., 2019¢,d), is another solution
that saves the communication cost by reducing the synchronization frequency. To
alleviate computational heterogeneity, we allow each client to perform inconsistent
local updates to the best of resource utilization. Under some circumstances, this
strategy can accelerate the training with the linear speedup of the averaged local
updates (Yu et all, 2019d). However, with non-i.i.d. data, recent studies (Mitra
et all, 2021; Wang et all, 2020b, 2021d) discover objective inconsistency under
quadratic functions. In other words, the convergence property is destroyed, even
though the degree of data heterogeneity is mild.

As a solution, Wang et al. (2020b, 2021d) introduces an algorithm named Fed-
Nova, a gradient normalization method that averages the normalized local gra-

dients and accordingly updates the global model at the server. However, the
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approach cannot converge to the optimal solution due to the severe client-drift
(Karimireddy et al., 2020b), where the global model inclines to the local model
with fewer local updates. To mitigate the client-drift effect, SCAFFOLD (Karim-
ireddy et al., 2020b) leverages variance reduced techniques (Johnson and Zhang,
2013; Liang et al., 2019; Schmidt et al., 2017) and achieves a remarkable con-
vergence performance when participants perform a fixed number of local updates.
However, its performance struggles under computational heterogeneity. By utiliz-
ing the intermittent results of the most recent local training, SCAFFOLD sufters
from the client-drift effect because the bias of a client’s orientation depends on
the number of local updates such that the deviation varies. To sum up, existing
approaches suffer from a heterogeneity dilemma: The solutions to computational
heterogeneity cannot mitigate data heterogeneity, and the performance of data het-
erogeneity solvers is seriously affected by computational heterogeneity.

In this thesis, we separately introduce two gradient-wise approaches to break-

through the aforementioned limitations:

* To avoid cascading compression and support signSGD implementation un-
der MAR, we propose a gradient compression framework, Marsit. The main
idea is to use a bit-wise process to accomplish unbiased sign aggregation.
The sign of an element remains unchanged if and only if it has the same
sign in both vectors; if it has different binary values, it follows a preset
probability distribution. As a result of this action, the reception and com-
pression processes can run parallel. We also offer a global compensation

mechanism to minimize the compression error gap. Since data on the cloud
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can be shuffled and generated an identical distribution among workers, the
design aims to equalize the clients’ contributions to the final gradient. We
do a full-precision transmission on a regular basis to get rid of surplus error

accumulation.

* To settle objective inconsistency and jointly overcome data and computa-
tional heterogeneity, we devise a gradient calibration approach, FedaGrac.
The key idea is to calibrate each local update according to the global up-
date’s predictive orientation, such that the detrimental effect of deviation on

convergence is considerably reduced.

1.1 Contributions

The contribution of this thesis are highlighted as follows.

1. Marsit: A Gradient Compression Approach

Traditional one-bit compressed stochastic gradient descent can not be di-
rectly employed in multi-hop all-reduce, a widely adopted distributed train-
ing paradigm in network-intensive high-performance computing systems
such as public clouds. According to our theoretical findings, due to the cas-
cading compression, the training process has considerable deterioration on
the convergence performance. To overcome this limitation, we implement
a sign-bit compression-based learning synchronization framework, Marsit.

It prevents cascading compression via an elaborate bit-wise operation for
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unbiased sign aggregation and its specific global compensation mechanism
for mitigating compression deviation. The proposed framework retains the
same theoretical convergence rate as non-compression mechanisms. Experi-
mental results demonstrate that Marsit reduces up to 35% training time while

preserving the same accuracy as training without compression.

2. FedaGrac: A Gradient Calibration Approach

In the setting of federated optimization, where a global model is aggregated
periodically, step asynchronism occurs when participants conduct model
training by efficiently utilizing their computational resources. It is well ac-
knowledged that step asynchronism leads to objective inconsistency under
non-i.i.d. data, which degrades the model accuracy. To address this issue,
we propose a new algorithm FedaGrac, which calibrates the local direction
to a predictive global orientation. Taking advantage of the estimated orien-
tation, we guarantee that the aggregated model does not excessively deviate
from the global optimum while fully utilizing the local updates of faster
nodes. We theoretically prove that FedaGrac holds an improved order of
convergence rate than the state-of-the-art approaches and eliminates the neg-
ative effect of step asynchronism. Empirical results show that our algorithm

accelerates the training and enhances the final accuracy.
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1.2 Organization

The rest of the thesis is organized as follows. In Chapter P, we introduce the back-
ground knowledge related to this thesis, including distributed machine learning
and the state-of-the-art techniques related to gradient-wise optimization. Subse-
quently, Chapter 3 presents a gradient compression approach named Marsit. Then,
our study on a gradient calibration technique FedaGrac is proposed in Chapter H.
Chapter [ summarizes the thesis and provides the concluding remarks and poten-

tial future research directions.



Chapter 2

Literature Review

This chapter briefly reviews the background knowledge related to the thesis. Sec-
tion provides an overview of distributed machine learning from a traditional
perspective. Next, in Section 2.2, we introduce federated learning (FL) and dis-
cuss its underlying challenges and existing solutions. Later, the state-of-the-art
techniques lying in gradient compression and gradient calibration are summarized

in Section P.3 and Section P.4], respectively.

2.1 Distributed Machine Learning

Distributed machine learning targets to train large-scale deep learning systems
with multiple clients. This section discusses the basic components of distributed
machine learning, namely, the methodologies and the underlying synchronization

paradigms.
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2.1.1 Methodologies

In this field, traditional approaches can be roughly categorized as mini-batch SGD
and local SGD. In mini-batch SGD, each client in parallel utilizes a mini-batch to
calculate the corresponding gradient to improve the training efficiency such that
mini-batch training arouses serious thinking (Dekel et al), 2012; Takac et al), 2013;
Zinkevich et all, 2010). However, mini-batch SGD also has the problem of low
computational efficiency. Some distributed deep learning frameworks training
with large-batch only (Goyal et al., 2017; Shallue et al., 2019; You et al), 2018) of-
ten meets generalization issues, which increases training errors (Lin et al., 2019).
Therefore, local SGD (also known as FedAvg) (Dieuleveut and Patel, 2019; Had-
dadpour and Mahdavi, 2019; Haddadpour et al., 2019; Stich, 2018) has become
a more practical way to perform multiple local updates on each device before
exchanging between devices. Bijral et al) (2016) analyzed the spectral norm of
different datasets and constructed a graph of different clients to study local SGD.
While Yun et al) (2021)) focused on shuffling-based variants, that is, the practical

gradient can be obtained without replacing sampling.

2.1.2 Underlying Synchronization Paradigms

Parameter Server (PS) Parameter Server (PS) is one of the most common cen-
tralized paradigms for large-scale distributed training (Dean et al., 2012; [Li et al,
2014b; Smola and Narayanamurthy, 2010). It typically consists of one or more

server nodes and multiple worker nodes, each carrying a subset of training data.
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The worker nodes compute the gradients based on the local parameter informa-
tion in parallel, and the server node processes the gradients sent by workers. The
worker nodes then update their parameters using the averaged gradients. As a
worker node only needs to exchange gradients with the server node, this paradigm
is easy to implement and maintain (LLi et al., 2014b). However, since server nodes
handle all communications, the performance of PS is largely determined by the

bandwidth of server nodes.

All-Reduce (AR) The workers are able to preserve a consistent model using All-
Reduced (AR) paradigm without introducing central nodes (Patarasuk and Yuan,
2009). Frequently, the compute nodes are arranged in a ring-like topology, e.g.,
2D-Torus or ring (Verbraeken et al., 2020). AR paradigm successfully releases the
burden of the only central node to multiple transit nodes and reveals the same train-
ing efficiency as server-based architecture. One of its successful practices, Ring
AR (Baidu-Research, 2017; Sergeev and Del Balso, 2018), keeps to a minimum
communication overhead as well as outperforms PS because it makes good use
of overlapping computation and communication (Algahtani and Demirbas, 2019).
However, its long handshaking processes sometimes slow down the training in

high latency network (Lian et al., 2018).

Gossip As a fully decentralized model, Gossip is attracting growing attention be-
cause it does not require model aggregation among all workers (Lian et alJ, 2017b,

2018; Tang et al), 2018). Instead, each worker solely communicates with their
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neighbors. Such a structure is promising not just because it leverages a minimal
communication overhead but because devices are increasingly connected to others
using rapid communication links in modern communication networks. For exam-
ple, in 5G and beyond mobile networks, mobile devices can connect directly with
neighboring devices via high-speed device-to-device links. Edge devices inside
the same local-area network (LAN) domain can also interact quickly without hav-

ing to go via a sluggish wide-area network (WAN) (Guo et all, 2021)).

2.2 Federated Learning

As one of the subcategories of distributed machine learning, FL. was proposed to
ensure data privacy and security with the avoidance of raw data sharing (Kairouz
etall, 2019), and now it has become a hot field in the distributed system (Avdiukhin
and Kasiviswanathan, 2021; Blum et all, 2021;; Diao et al., 2020; Shamsian et al.,
2021); Yuan and Ma, 2020; [Yuan et al, 2021; Zhang et al), 2021)). Frequently, edge
devices such as smartphones possess abundant data, which are highly sensitive
but valuable to the model training (Guo and Qu, 2022; Han et al., 2020; Lim et alJ,
2021; Wang et al., 2021¢). The data are heterogeneous among clients because there
is no predefined rule for the data distribution for each client. Besides, due to the
hardware differences among devices, the computational capabilities are various as
well. In this section, we briefly investigate the flaws raised by data heterogeneity
and computation heterogeneity and review the existing work to tackle these two

1Ssues.
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2.2.1 Data Heterogeneity

Generally, in FL settings, the data distributed among clients are agnostic, and there-
fore, each data portfolio has its exclusive optimal parameters. As a classical algo-
rithm that works smoothly under data heterogeneity, FedAvg inherits the training
features from local SGD (Stich, 2018; Yu et al., 2019d; Zhou and Cong, 2018), a
framework that runs for multiple local updates prior to a global synchronization.
This strategy significantly reduces the total communication overhead compared to
parallel SGD that synchronizes the gradient at every local update. Recent studies
(Gu et al, 2021|; Khaled et all, 2020; LLi et al., 2019b) show that FedAvg can have
a great performance from theoretical and empirical perspectives. Also, FedAvg
can seamlessly adopt the communication-efficient approaches such as quantiza-
tion (Alistarh et al), 20174; Basu et al., 2019) and sparsification (Stich et al., 2018;
Wangni et al/, 2018) to further reduce the cost of transmission (Wang et al., 2021a;
Wau et al., 2020a,d; Zhou et all, 2021)).

Nevertheless, numerous studies (Cheng et all, 2021; Gorbunov et al., 2020;
Karimireddy et al., 2020b; Liu et al), 2020b; Zhao et alJ, 2018) theoretically quan-
tify how data heterogeneity affects FedAvg and degrades the convergence prop-
erty. As a result, some variants of FedAvg are designed to mitigate the negative
impact. These modifications include adding a proximal term to local objective
functions (Li et al., 2020), using a decreasing learning rate (Li et al., 2019b), adap-
tive server side updates (Hsu et al), 2019; Reddi et al., 2020), client clustering
sampling (Fraboni et al., 2021|; Ghosh et al,, 2020; Murata and Suzuki, 2021), re-

inforcement learning driven incentive mechanism (Wang et al., 2020a), and etc.
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2.2.2 Computational Heterogeneity

The computation capabilities vary among clients because they use different de-
vices. As a result, all clients have to wait for the slowest node to start the next
round. To minimize the computation differences, some existing works adopt a
client sampling strategy (Deng et al), 2021; Huang et al., 2020; Wu et al., 2020b;
Yang et al., 2020; Zhou et all, 2020), where only a small portion of clients transmit
the gradients to the server. Compared to the case that requires full-worker partic-
ipation, this scheme possibly reduces the total training time. However, resource
underutilization still exists as the fastest client should wait for others’ completion.
Therefore, the existing solutions to overcoming computational heterogeneity can
be categorized into two types: designing an asynchronous aggregation scheme and

adopting step asynchronism.

Asynchronous Aggregation Scheme Hogwild (Recht et al., 2011) is one of the
main examples of asynchronous stochastic algorithms. It does not use the mem-
ory locking protocol, so each node can modify the parameters at the same time.
(Noel and Osindero, 2014) proposed Dogwild!, which is an improvement to Hog-
wild. It is distributed Hogwild for CPU and GPU. Similarly, for Hogwild, (De Sa
et al,, 2015) analyzed its non-convexity by using relaxed assumptions. With the
emergence of deep neural networks, asynchronous parallel SGD algorithms have
begun to adapt to environmental changes (Aytekin et al., 2016; Dai et al., 2018;
Lian et al., 2015; Zhang and Kwok, 2014; Zheng et al., 2017). These methods

efficiently break the barrier of heterogeneity, achieving high system throughput.
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However, asynchronous algorithms raise the staleness issue, usually deteriorating

the convergence rate.

Step Asynchronism Step asynchronism is another practical solution, where each
client performs an inconsistent number of local updates. Although FedAvg with
step asynchronism can converge to a stable point under non-convex objectives
(Yu et all, 2019d), Wang et al. (2020b) point out that objective inconsistency takes
place under quadratic function, leading to a suboptimal convergence. To tackle this
issue, effective approaches is constituted with normalization-based approach Fed-
Nova (Wang et al., 2020b) and FedLin (Mitra et al., 2021)), regularization-based ap-
proach FedProx (Li et al), 2020) and architecture-based approach HeteroFL (Diao
et al), 2020). Gradient normalization is the most ubiquitous framework that over-
comes step asynchronism under non-i.i.d. data settings. However, this method
cannot prevent the negative impact of statistical heterogeneity on the convergence
rate because the update deviation still exists after averaging. Figure @.1 compares
FedNova (Wang et all, 2020b) and FedLin (Mitra et al., 2021)) with our proposed
method, and we notice that the global model deviates to the one with less updates
in FedNova (Wang et all, 2020b). The reason is obvious: clients updating their
local models are biased to their local datasets such that the normalized gradients
collected by the server are sparse. Besides, when the local models approach the lo-
cal minimizers, those clients with more local updates greatly influence the global

model update.
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2.3 Gradient Compression Techniques

Sparsification Existing methods for sparsification of distributed learning usu-
ally sparsify the gradient sent from workers. The works in early stages for spar-
sifying graident used to employ a filter to select several important dimensions,
e.g., with the largest changes, and discard the rest (Hsieh et al., 2017; Li et all,
2014a). To improve the sparsification efficiency, recently, a large number of
works that sparsify the gradient with error compensation have been proposed (Aji
and Heafield, 2017; Alistarh et al, 2018; Chen et al), 2018a; Sattler et al., 2019;
Shi et al., 2019; Stich et all, 2018). Error compensated gradient sparsification
is to accumulate the unselect dimensions and compensate the gradient with the
accumulated error. In such a way, the convergence gap with non-sparsification
distributed SGD could be bridged. Beyond SGD, there are also some work mov-
ing towards the Momentum-SGD (Lin et al., 2017; Zhao et all, 2019). Different
from the methods with error compensation, Wangni et al. (2018) propose a novel
sparsification operator that the gradient could be sparsifed in an unbiased manner.
Though these gradient sparsification based methods have made great achievements
in the field of communication compression through sparsification under PS syn-
chronization framework, they are not compatible with multi-hop all-reduce (e.g.,

ring all-reduce).

Quantization At the cost of the gradient precision, quantization approaches (Al
istarh et all, 2017b; Basu et al., 2019; Seide et al|, 2014; Suresh et al., 2017; Wen

et al), 2017; Zhang et all, 2017) reduce the number of encoding bits for each real
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number. Notwithstanding that it requires more rounds to reach the stationary point
under both PS and gossip paradigms, the method is potent from the perspective
of training efficiency and bandwidth consumption. However, it is not suitable
for multi-hop all-reduce synchronization framework to shorten the training time.
Each client inevitably performs decoding then encoding operation for transmis-
sion. Such a recursive execution results in the error accumulation and degrades
the convergence property in theoretical analysis. Without the constraint on the
number of workers A/, the deterioration can be up to /M in comparison with the
compression-free algorithms (Wu et al), 2020a). Although GradiVeQ (Yu et all,
2018) utilizes singular value decomposition to achieve linear quantization under
multi-hop all-reduce synchronization framework, the process requires consider-
able computation consumption such that the receiving period cannot cover the

time length of compression.

signSGD As an extreme case of quantization, signSGD represents the elements
of a gradient using their signs, which reduces the communication overhead by
32x at every iteration (Bernstein et al., 2018a). It has remarkable performance un-
der PS, including 1-bit Adam (Tang et al., 2021), SSDM (Safaryan and Richtéarik,
2021)) and majority vote (Bernstein et al., 2018b). However, they are not suitable
for MAR since their aggregation process cannot guarantee within one bit at each

transmission.
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Other communication compression approaches There are various approaches
to reduce communication overhead, such as low rank (Vogels et al/, 2019). How-
ever, these approaches may not have well performance for MAR under some net-
work topologies. For instance, PowerSGD (Vogels et al., 2019) requires to transmit
multiple sequential vectors at a synchronization, which undermines the training ef-

ficiency under RAR.

2.4 Gradient Calibration Techniques

Gradient calibration techniques, also known as variance reduction (Allen-Zhu and
Hazan, 2016; Defazio et all, 2014; Fang et al/, 2018; Horvath and Richtarik, 2019;
Horvath et all, 2020; Johnson and Zhang, 2013; Lan and Zhou, 20184,b; Lei et al.,
2017; LLi, 2019; LLi et all, 2021b; Lian et al), 2017a; Nguyen et al., 2017; Reddi
et al), 2016; Roux et all, 2012; Wang et al., 2018; Zhang et al., 2016; Zhou et al.,
2018), are once proposed for traditional centralized machine learning to optimize
finite-sum problems (Bietti and Mairal, 2017; Bottou and Cun, 2003; Robbins and
Monro, 1951)) by mitigating the estimation gap between small-batch (Bottou, 2012;
Ghadimi et alJ, 2016; Khaled and Richtarik, 2020) and large-batch (Mason et al.,
1999; Nesterov, 2003; Rudet, 2016). SGD randomly samples a small batch and
computes the gradient in order to approach the optimal solution. Insufficiently
large batch results in convergence rate degradation since the data are generally
noisy. GD can remove the noise affecting the training process by utilizing all data

in every update. However, it is time-consuming because the period for a single
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GD step can implement multiple SGD updates. Based on the trade-off, variance-
reduced methods periodically perform GD steps while correcting SGD updates

with reference to the most recent GD steps.

Variance Reduction in FL. The variance-reduced techniques have critically
driven the advent of FL algorithms (Gorbunov et all, 2021a,b; Karimireddy et al.,
2020a,b; ILi et al), 2019a, 2021¢; Liang et al., 2019; Murata and Suzuki, 2021];
Shamir et al., 2014; Wu et al., 2021)) by correcting each local computed gradient
for the global orientation. However, a concern is addressed on how to attain a
proper global orientation to mitigate the update drift from the global model, espe-
cially under the communication-efficient settings where clients perform numerous
local updates. SCAFFOLD (Karimireddy et al., 2020b) adjusts every local update
with the help of the global and a client’s local reference orientation such that every
local update keeps close to the global direction. However, as shown in Figure §.1],
SCAFFOLD cannot completely remove the drift when computational heterogene-
ity exists. A physical explanation for the result is that the local reference directions
of the faster nodes with more local updates lead to a significant deviation from the
orientation towards the local optimizer. Since the global reference direction is de-
rived from clients’ local directions, the faster nodes dominate the entire training
process (see Figure }.1]), which betrays its origin intention. Although we use a
similar design philosophy where every local update follows the global orientation,
the global orientation consists of the gradient that depends on the number of local

updates, either the normalized gradient or the initial gradient.



Chapter 3

Marsit: A Gradient Compression

Approach

3.1 Introduction

In an era of data explosion, there is an increasing demand for various fields to
launch Al-driven applications in image classification (Pérez-Hernandez et alJ, 2020),
natural language processing (NLP) (Roy et al., 2021)), and so forth. Behind these
applications are numerous models that have been fit in huge-size datasets such as
ImageNet (Russakovsky et al,, 2015). To minimize the development cost, cloud
providers, e.g., Amazon AWS, offer various training paradigms to enable fast
AI/ML solution deployment.

Nowadays, multi-hop all-reduce (MAR) training paradigm, including ring all-
reduce (RAR) (Baidu-Research, 2017; Sergeev and Del Balso, 2018) and 2D-torus

20
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Rounds Accuracy (%) Time (min)
cascading compression
M=3 EE3 187 872+231 11.2
M=8 EEEB |K+ divergence NA
no compression
M=3 ®E3 129 99.1£0.13 20.7
M=8 ®E—3 76 99.2 £ 0.07 10.6

Table 3.1: Training MNIST over AlexNet. The results show the best test accuracy
by setting the stepsize in {0.03, 0.01, 0.005}.

all-reduce (TAR) (Mikami et al., 2018), substitutes classical single-hop approaches
such as parameter server (PS) and gossip, and becomes the most pervasive syn-
chronization paradigm in high-performance computing (HPC) systems. For paral-
lel stochastic gradient descent (PSGD) (LLi et al., 2014a), MAR achieves a better
resource utilization under multi-GPU circumstance than PS. Firstly, all GPUs in-
volve in both the training and synchronization in MAR, while GPUs in PS archi-
tecture are categorized into two groups separately performing these two function-
alities. Secondly, MAR prevents the network congestion at a single node because
each client is not required to simultaneously process tremendous transmission re-
quests. As a paradigm that workers are solely permitted to communicate with their
neighbors, gossip has made great success in recent years (Lin et al., 2021b; Lu and
De Sa, 2021)). However, the performance of gossip in terms of convergence rate is
much slower than MAR, especially under sparse connections such as ring topology
(Chen et alJ, 2021).

In network-intensive HPC systems such as public clouds, it is challenging to

transfer a non-compressed gradient among nodes due to overwhelming bandwidth
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consumption. With the increasing size of a deep learning model, e.g., 60.2M
weights on ResNet-152 (He et al), 2016) and 100T on GPT-4 (Brown et al., 2020),
the problem becomes severe because data transmission takes a significant amount
of time. As a promising communication compression approach, signSGD (Bern-
stein et alJ, 2018b; Liu et al., 2018; Safaryan and Richtarik, 202 1;; Tang et al., 2021))
solely uses an element’s sign to represent itself, where the number of encoding bits
for each real number is dramatically deducted, i.e., from single float precision (32
bits) to 1 bit.

Existing signSGD algorithms, albeit well-performed under PS, have limited
performance under MAR, especially when the model is sufficiently large. With-
out a centralized coordinator to which each node independently sends its data, in-
formation asymmetry occurs when MAR leverages a sign matrix that includes all
clients’ gradients through cascading compression. Each client inevitably performs
decompression and then compression operation for transmission, accumulating er-
rors. Although cascading compression can converge at the end for a small-scale
environment, empirical studies in Table 3.1 manifest its poor performance in com-
parison with the non-compressed algorithms. Also, more workers achieves better
performance in non-compressed PSGD, whereas leading to divergence in the cas-
cading compression scheme.

To alleviate information asymmetry, we propose a framework for multi-hop all-
reduce using sign-bit, named as Marsit. The core idea is to achieve unbiased sign
aggregation by means of an elaborate bit-wise operation: The sign of an element

remains unchanged if and only if it has the same sign in both vectors, while it
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follows a predefined probability distribution if it has different binary values. Such
an operation supports that the reception and compression processes can take place
in parallel. Furthermore, we introduce a global compensation mechanism to bridge
the gap of compression error. The design is to equalize the clients’ contribution
towards final gradient because data on the cloud can be shuffled and formed an
identical distribution among workers. To get rid of excess error accumulation, we
periodically operate a full-precision transmission.

In this chapter, our contributions are summarized as follows:

» Based on the designed one-bit operator and the global compensation scheme,
we implement Marsit to support one-bit transmission without cascading com-

pression under MAR.

« We prove that the convergence rate for non-convex objectives is O(1/v/T M)
under RAR framework, where T" and M represent the numbers of synchro-
nizations and workers, respectively. The theoretical result indicates that
our algorithm achieves a linear speedup simultaneously with respect to the
number of workers. To the best of our knowledge, this is the first work that

addresses information asymmetry under MAR,;

* We conduct an empirical study to illustrate the eftect of our proposed algo-
rithms on RAR and TAR. It is conducted with ResNet-50 on ImageNet for
image recognition. It reduces the communication cost by around 90% as
compared with non-compressed methods while preserving the same conver-

gence performance.
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The rest of the chapter is organized as follows: Section formulates the
problem and provides the motivations via analyzing cascading compression. We
comprehensively elaborate the design details behind Marsit and analyze the con-
vergence rate of Marsit in Section B.3. An empirical setting is presented in Section
B.4, while the numerical results are presented in Section B.3, to validate our theo-

retical analysis. Section B.¢ concludes this study.

3.2 Motivation

Objectives. Under an M -worker MAR, the objective is to minimize the cumula-

tive expected loss, which can be formulated as

mGRd /

v~

=Fp(x)

| M
min  F(x) = i ZEE&WDM (2, &m)], (3.1)
m=1

where D,, is the local data distribution on worker m, f,,(x,&,,) is the empirical
loss given parameter « and stochastic sample ,,, from D,,, and F,,(-) is an objec-
tive function. Given that the entire training locates in the cloud, we assume that
all the local datasets have an equal size. Since the objective function is randomly
extracted over a given data distribution, it is a common practice that the bias does

not exist between the expected loss and the empirical one.



CHAPTER 3. MARSIT 25

3.2.1 Why Bit Length Expansion Occurs?

In a non-compressed algorithm, MAR naturally requires less communication over-
head than PS when synchronizing a model among all nodes. For example, given a
D-dimension neural network, RAR requires the consumption of 2 x (M — 1) x D
weights, while PS needs that of 2 x M x D. In Figure .14, non-compressed
approach under RAR costs less time than the one under PS.

An operation compatible to MAR should be linear, which allows workers di-
rectly aggregate without extra decompression-compression process (Vogels et al,
2019). SSDM (Safaryan and Richtarik, 2021)) is one of rare signSGD approaches
that satisfy the requirement of linearity, where its aggregation is to sum up all the
sign bit. With the operation, workers do not fit the transmission elements into one
bit under MAR synchronization, but with an upper bound of [log, M|. As shown
in Figure B.14, such way spends longer time than its PS solution in transmission
period due to the growing size of transmission packages. Therefore, the approach
is not efficient under MAR settings and we are dedicated to implementing a com-

pression framework that restricts the transmission size by only one bit.

3.2.2 Why Not Cascading Compression?

For a D-dimension vector g, SSDM (Safaryan and Richtérik, 2021) (denote by Q)

compresses an element g; (i € {0, ..., D — 1}) consistent with its sign following

the probability of 5 + |||.§f||2’ where || - || means ¢;-norm. Apparently, it is an unbi-

ased compression method. To ensure each transmission limited in one bit, a client
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Figure 3.1: Training MNIST over AlexNet with 3 workers. The comparison of
existing approaches on an iteration’s training time length and matching rate.

performs the step-by-step sequence:

Receive aggregated gradient segment(s), including corresponding />-norm(s)

and sign vector(s), from the last worker(s);

Recover the gradient segment(s) as w for full precision;

+ Aggregate local gradient v with decompressed segment(s);

« Compress the assembled segment into a precision-loss one, i.e., Q(w + v);
» Send the compressed segment to the next worker(s).

The workflow, named as cascading compression, is able to broadcast and unify the
updates among clients. Obviously, the expected result of cascading compression
is equivalent to the sum of all gradients. However, cascading compression has two

major shortcomings.
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3.2.2.1 Performance Deterioration

Notably, the second step cannot actually represent the real aggregation results. In
this case, the error accumulates and spreads over the network, which deteriorates
the training performance. Besides, it is not suitable to use the /5-norm to achieve
unbiased compression because its value is so large that the new compressed sign is
more likely biased to the received one, even if the actual aggregation sign should be
the opposite one. As demonstrated in Figure B.1t, among the applicable settings,
cascading compression has the lowest matching rate (i.e., around 56%) measured
by the sign of non-compression aggregation value. Following remark compares
the performance between cascading compression under RAR and centralized train-
ing under PS.

Remark. We assume that the /,-norm of any gradients are bounded by a non-
negative scalar G. Suppose SSDM (Safaryan and Richtarik, 2021)) is achieved as
unbiased estimator under centralized training and cascading compression, where
the expected update value is equivalent to the update of non-compression algo-
rithm. For training a deep neural network where the value of D is quite large,
the upper bound of gradient deviation, i.e., the Euclidean distance between the ex-
pected result and the actual update, for cascading compression explodes rapidly

with M, while centralized training does not exist.]

!The detailed proofs for the remark present in Appendix [Al.



CHAPTER 3. MARSIT 28

4 r ; Worker 1 Legend
compensation = One-bit

compensation gradient L% 1 0 o 00D | QS8 | T
-0.01 027 -031 014 0.6 -0.08 R = - - —  Transmission
015 040 025 010 -0.43 -026 610 Sl E —50:028 KOZER NO0S
R2 —— 034 038 046 R Reduce
\-0.32 047 -0.10 -0.12 0.01 0.46 7 — e 0o 1 0 @D  cather
;
~

Worker 2

G 013 -021 -0.39 : 044 048 036 -y
_ 0.05 -0.83 -0.01 i A4
e 1 0 o4 Worker 1 ; 05 05 05
- 044 048 036 i ]
p——y 0o 1 0 |§ !
R1_-GuE2 -0.03 046 -0.23 ;
L Worker2 029 0.60 0.60 ]
i
Worker 3 N R R R i0 10 011 10 1
1 0 0 i
] 094 -0.56 0.09 i
RL — G2
- ﬁ—f 1 0 0~ Worker3 -0.48 0.08 -0.09 : ©
. 0o 1 0 |§ | 2015 012 -0.23 : 01 1

T

jaipesd
an209y
uds
0

1j;nousag

jaipesd

Figure 3.2: The workflow of Marsit under ring network topology with a total of
three workers. Each worker holds a compensation vector and a gradient, combin-
ing them into a standalone vector. This vector is then segmented and exchanged
during synchronization, involving a green-highlighted reduce period (R) and a
blue-highlighted gather period (G). During R1 and R2, a worker processes re-
ceived messages with its local segment, exemplified in the gray box. The left side
of the box illustrates message transfer among workers, while the right side demon-
strates the transfer from worker 3 to worker 1 (highlighted in azure), showcasing
aggregation. In the subsequent G1 and G2 gather periods, a worker replaces its
local segment with received information before transmitting it to the next worker.

3.3 Marsit

In this section, we first provide a holistic insight for Marsit. Then, in Section
and Section B.3.2, we present the technical details and the theoretical analysis,
respectively.

Due to the lack of centralized server under MAR, all workers should maintain
a global model locally, the parameters of which are always consistent with others.
Figure illustrates the pipeline of Marsit under RAR, a common paradigm for
MAR using ring network topology. Each worker possesses a compensation vector

and a gradient, and aggregates them into a standalone vector. Then, they partition
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Algorithm 1: Marsit (worker m)

—

7 S I )

10
11
12
13
14

Require : Synchronization index ¢, number of communication rounds for

full-precision synchronization K, gradient gt(m), compensation vector

(m

¢ ), global stepsize 7,

Calculate the update by g{™ « ¢{™ + ¢{™;

Split gflm) into M parts, and denote by ggzl),w €{0,...M —1};
if mod(t, K) # 0 then
fori < Oto M — 1do

Receive the sign vector v; in parallel with

e Calculate the sign vector by v} < sgn <g§?)>;

Update the transmission sign vector via v; <— v; © vJ;
Send v; to the next worker;
end

Aggregate the global update via g; < 7, - (Uf\io_l vl-);

Update compensation vector via cgﬂ — g™ — g

else

Aggregate the global update via g; < ﬁ Z%Zl g§m);
Update compensation vector via cgﬂ +— 0;

end

Return :The global update g;, compensation vector cgfff

the vector into several segments and exchanges them at the synchronization phase

which consists of a reduce period (highlighted in green and marked as R) and a

gather period (highlighted in blue and marked as G). In the reduce period, i.e.,

R1

and R2, a worker processes the received message with corresponding local

segment and sends it to the next worker. Here we exemplify with R1 and depict

the procedures in the gray box. The left part of the gray box presents how the

message transfers among workers, while the right takes the message transferring

from worker 3 to worker 1 (highlighted in azure) as an example and exhibits how
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to aggregate the received vector and the local vector. In the gather period, i.e.,
G1 and G2, a worker substitutes corresponding local segment with the received
information and transmits it to the next worker. The relevant processes have been
widely adopted in (Baidu-Research, 2017; Sergeev and Del Balsg, 2018). After the
synchronization phase, all clients reach to a consensus and holds the same gradient

which is used to update the global model and the local compensation vector.

3.3.1 Implementation Details

Here we discuss the key operations with in-depth justifications. Generally, the
workflow lies in two phases: one-bit synchronization in each round to reduce the
communication cost, and full-precision synchronization executed every K rounds
to periodically eliminate the error accumulation. The full implementation is given
in Algorithm [l| to demonstrate the workflow behind Marsit, and Algorithm [ is to
illustrate how we can apply Marsit to existing optimizers like stochastic gradient

descent (SGD).

3.3.1.1 Global Model Synchronization (Line 4-8 in Algorithm [I)

No matter which phase it is, Marsit synchronizes the gradients through MAR.
Full-precision synchronization has been widely discussed in the previous stud-
ies (Baidu-Research, 2017; Jia et al), 2018; Mikami et all, 2018; Sergeev and
Del Balso, 2018), which is equivalent to the aggregation result under PS, we
mainly focus on the synchronization using sign bit only in this part.

As illustrated in Figure B.2, both receiving vector v; and local compression
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v} (Line 5 in Algorithm ) run in parallel, which reduces a great amount of time
in comparison with the cascading compression. Since both v; and v] are a sign-
bit vector, a problem raises on how to aggregate both vectors without additional
compression-decompression processes. Therefore, we define a novel bit-wise op-
erator ® to ensure these two vectors compatible with each other. In this update
process, if an index on both vectors is the same, then the transmission vector at
this points remains unchanged. However, considering element inconsistency be-
tween v; and v}, we use a transient vector, v, which predetermines the transmitted
binary value when confronted with inconsistent elements. It follows a Bernoulli
distribution: Let b; be the probability for the element j of vector v;" (denote by v; ;)

at worker m that marks as 1 in vector v:

(m—1)/m vf;=0, . 1 pr=0b;
b = S Pemali, ’ (3.2)

1/m vio=1 0 Otherwise

Note that the process can take place in parallel with the receiving stage but after
the calculation of v;. With the transient vector v, the updated operator © between
v; and v} should be expressed as: v; ®v} = (v; AND v}) OR (v; XOR v} AND v).
By mathematical analysis, the expected value of the sign bit is equivalent to the

average of the sign bits among all clients.
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Figure 3.3: Training CIFAR-10 over AlexNet by evaluating various values of K.
(a) indicates the relation between epoch and accuracy; and (b) depicts the con-
vergence result. X' = oo means K is greater than the maximum communication
rounds, i.e., 400 in this case.

3.3.1.2 Global Model Update (Line 9 and Line 12 in Algorithm [f])

The value g; depends on whether the synchronization is under full precision. If the
transmission is sign-bit only, Line 9 returns g, that comes from a vector of signs
multiplying a global learning rate. As for full-precision synchronization in Line
11, extra learning rate is not necessary since gfm) has included the local stepsize.
The purpose for this update is to eliminate the accumulated error and accelerate the
training process. In Figure B.3, we demonstrate there exists a trade-off between

the final accuracy and the additional communication costs due to full precision

synchronizations, by choosing different system parameter K.
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3.3.1.3 Global Compensation Mechanism (Line 10 and Line 13 in Algorithm
i)

At the beginning of the model training, we initialize the local compensation gra-
dient with a zero vector (Line 1 in Algorithm Q) by default. All clients have the
consensus on how to update the global model, i.e., ¢; at Line 9 in Algorithm [,
which is a vector containing binary value only to indicate the sign of each element.
Unlike traditional compensation approaches under single-hop synchronization, a
client in Marsit cannot obtain how much it contributes to the aggregation under
multi-hop synchronization. Based on the independent and identical data distri-
bution on cloud training, every client compresses and obtains the same gradient
in expectation. Thus, we apply an identical local compensation amount for each
client, which then combines into the global compensation. Considering the ac-
cumulated error could be quite large, we periodically reset the error by means of
full-precision synchronization, where the compensation vector can be set to 0. As
we can see in Figure B.3, although greater K costs less time to reach the stable
point, they have smaller convergence accuracy. Also, greater X may not always
speed up the convergence progress, for instance, when K changes from 100 to

200, more time is required to realize the convergence feature.

3.3.2 Theoretical Guarantees

To theoretically analyze the convergence results for Marsit, we have the following

assumption for Problem (B.1]), which are ubiquitously applied to (Bernstein et al.,
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Algorithm 2: Marsit-driven SGD (worker m)
Input :Initial Point &, local stepsize 7;, global stepsize 75, number of
communication rounds for full-precision synchronization /K, number
of global synchronizations 7’
1 Initialize local compensation gradient c(()m) «— 0;
2 fort < 0to7 —1do

3 Randomly sample & ’gm) from local data D,,;

4 Compute local stochastic gradient gim) — Vin (:it; 19 ,gm) );

5 g, CET% < Marsit (¢, K, mgt(m), cﬁ’”), Ns);

6 Update the parameters through ;.1 < &; — g¢;
7 end
Output : The final model

2018a; Guo et alJ, 2020; Safaryan and Richtarik, 2021)).
Assumption 3.1. Problem (3.1) satisfies the following constraints:

1. Smoothness: All function F,,(-) s are continuous differentiable and their gradi-

ent functions are L-Lipschitz continuous with L > 0;

2. Bounded variance: For any worker m and vector x € RY, there exists a scalar

o > 0such that E¢.p,, ||V fn (2, &) — VEy(x)]|3 < o2
Based on the preceding assumptions, the following theorem holds:

Theorem 3.1. Under Assumption by setting local learning rate for n, =

VM /T and the global learning rate ns = +/1/T D, the upper bound for Algo-
rithm 3 using RAR-based should be:

tE{OI,T.l-l,lf}’—l}]E H F<wt)H2 © (\/M_I) © ( 1 )
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where we treat I, — F(&,), L and o as constants.

Proof. See Appendix B for details. ]

Remark. Given that the value of X is much smaller than the value of T', our
approach can achieve a convergence rate of O(1/v/MT), which achieves linear
speedup with the number of the workers. In other words, the more GPUs partici-

pate in the model training, the faster Marsit reaches a stable point.

3.4 Experimental Setup

We evaluate our proposed framework on scenarios that meet the requirement of
current industrial needs and cover the most representative model training instances
on the public clouds. In this section, the problem we explore mainly lies in these
two categories: (i) whether there exists a significant accuracy drop in comparison
with non-compression methods; (ii) how fast a model achieves convergence in

comparison with existing compression approaches under MAR.

Datasets, models and tasks Our experiments consist of three datasets: CIFAR-
10 (Krizhevsky et al., 2009a), ImageNet (Russakovsky et all, 2015) and IMDb
reviews (Maas et al., 2011)). The first two datasets are frequently used for image
classification and consist of 60K 32x32 and 14M 224 x224 colored images, re-
spectively. The last one is for sentiment analysis with S0K movie reviews. The
models vary among the datasets: AlexNet (Krizhevsky et al), 2012) and ResNet-

20 (He et all, 2016) for CIFAR-10, ResNet-18 and ResNet-50 for ImageNet, and
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DistilBERT (Sanh et al/, 2019) for IMDb reviews.

Implementation The experiments are conducted on Huawei Cloud, where we
deploy a cluster with 32 nodes and each node carries 2 Nvidia T4 GPUs. The under-
lying training framework is supported by Pytorch distributed computing packageg.
We implement Marsit on RAR (Baidu-Research, 2017; Sergeev and Del Balso,
2018), a classical MAR implementation over ring network topology, and 2D-torus
all-reduce (TAR), a state-of-the-art MAR scheme over 2D-torus network topology.
Marsit can be easily extended to other all-reduce paradigms including segmented-

ring all-reduce (Jia et alJ, 2018) and tree all-reduce (Vogels et al., 2019).

Baselines We implement multiple baselines to evaluate the performance of Mar-
sit. PSGD (Li et alJ, 2014a) is implemented under MAR with full precision, i.e.,
32 bits. For EF-signSGD (Karimireddy et all, 2019), signSGD with majority vote
(Bernstein et al), 2018a) and SSDM (Safaryan and Richtérik, 2021), we extend
them to MAR by dynamically changing the bit length. We also utilize Elias cod-

ing (Elias, 1975) to compact the transmission message among nodes.

Optimizers and hyper-parameters To reduce the frequency of the communica-
tions among nodes, clients perform multiple local updates between two successive
synchronizations. The optimizer for image classification task is Momentum, and
Adam for sentiment analysis. Marsit-100 refers to the setting where local gradi-

ents operate full-precision synchronization every 100 communication rounds (i.e.,

’https://pytorch.org/tutorials/intermediate/dist_tuto.html
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Model Dataset # parameters | Batch size - TOP_I Accuracy (%) - -
PSGD || signSGD | EF-signSGD | SSDM | Marsit-100 | Marsit

AlexNet CIFAR-10 23M 8192 82.38 80.74 82.25 81.89 82.30 81.58
ResNet-20 CIFAR-10 0.27M 8192 93.42 88.92 91.85 89.18 92.18 90.15
ResNet-18 ImageNet 11IM 6144 69.18 67.17 68.14 68.10 68.96 68.40
ResNet-50 ImageNet 25M 6144 74.87 72.74 73.89 73.35 74.35 74.10
DistilBERT | IMDb review 67M 512 92.16 89.12 90.57 91.41 90.13 90.26

Table 3.2: Accuracy of existing works on different models training for different
datasets.

K = 100), while Marsit does not have full-precision synchronization. For Ima-
geNet and CIFAR-10, the initial learning rate is set to 0.1 and 0.03, respectively,
and decays by a factor of 10 every full-precision synchronization. For DistilBERT,

we use a constant learning rate of Se-5.

3.5 Numerical Results and Analysis

Performance Analysis Table 3.2 summarizes Top-1 accuracy of all test datasets.
Compared to PSGD, the state-of-the-art compression approaches suffer from a no-
ticeable accuracy drop in both image classification and sentiment analysis tasks.
For instance, signSGD has up to a 5% decreasing. Moreover, in most cases, Marsit-
100 and/or Marsit outperforms the existing approaches and achieves nearly the
same final accuracy as PSGD. In CIFAR-10 training, Marsit with periodical full-
precision synchronization (e.g., Marsit-100) has better performance than the one
without full-precision synchronization, while they do not have distinct differences
in both ImageNet and IMDb review datasets. As for the encoder-based transformer

DistilBERT, it is noticed that our proposed method falls behind some other base-
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Figure 3.4: Experiments for training ResNet50 on ImageNet

lines. A possible reason is that our proposed method limits the transmission to one
bit causing a significant loss for a pretrained large language model, in comparison
with those baselines that allow expandable transmission.

Figure shows time-to-accuracy performance for ResNet-50 on ImageNet.
Among these six approaches, non-compression approach, i.e., PSGD, takes a large
amount of time, while Marsit achieves large speedups (1.5x) to reach a similar

accuracy.

Communication Efficiency Marsit has a significant reduction in communica-
tion cost compared to the other five baselines. From Figure B.4B, our algorithm
requires 90% less communication budget, when compared to PSGD, and reduces
communication cost by 70%, when compared to the existing signSGD approaches.
In the mean time, with a smaller communication budget, our algorithm still pre-

serves the same convergence rate as other baselines.



CHAPTER 3. MARSIT 39

w
o
o
w
o
o

I Computation Time
B Compression Time
B Transmission Time

N
w
o

N
o
o

Training Time / Epoch (s)
= =
o w
o o

Training Time / Epoch (s)
=
w

w
o

PSGD  signSGD EF-signSGD SSDM  Marsit-100  Marsit PSGD  signSGD EF-signSGD SSDM  Marsit-100  Marsit

(a) TAR (b) RAR

Figure 3.5: Experiments on training AlexNet for CIFAR-10 under TAR and RAR

In Figure .41, given the same amount of communication overhead, Marsit and
Marsit-100 always have higher accuracy than other baselines. Specifically, when
Marsit and Marsit-100 reach convergence, other signSGD methods only attain ac-

curacy around 50%.

Performance under Various MAR settings Figure 3.3 presents the results of
Marsit and its baselines under RAR and TAR. For each method, we measure its
average training time in each communication round and split the time into three
phases, namely, computation (grey), compression (red) and communication (blue).
We notice that Marsit introduces minor compression overheads to prepare for the
real-time aggregation. Among these six approaches, it is clear that Marsit and/or
Marsit-100 spends the least time in communication compared with other base-
lines. For TAR paradigm, each baseline takes less time to communicate. For RAR

paradigm, the communication time dominates the computation time and Marsit re-
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quires less training time between two successive synchronizations.

3.6 Summary

This chapter proposes a synchronization framework, Marsit, that achieves one-bit
transmission under multi-hop all-reduce. In this framework, we design a bit-wise
operation to support the receiving and the compression undertake simultaneously.
Besides, we introduce a global compensation mechanism to mitigate the compres-
sion deviation. Based on the structure, we offer a theoretical guarantee that it
achieves the same convergence rate as the non-compression approach using the op-
timizer of SGD. Empirical studies present that our proposed approach can achieve
a similar test accuracy to the non-compression version while using less training

time by 35%.



Chapter 4

FedaGrac: A Gradient Calibration

Approach

4.1 Introduction

Federated learning (FL) is thriving as a promising paradigm that refrains the leak-
age of users’ data, including raw information and label distribution. With the rapid
development of FL techniques over the past few years, a wide range of applications
for computer vision (Liu et al}, 2020c; [Yu and Liu, 2019) and natural language pro-
cessing (Chen et alJ, 2019; Liu et al., 2020a; Wu et all, 2020d) have deployed over
a large set of edge devices (e.g., smartphones and tablets). Conventionally, clients
perform a fixed number of local stochastic gradient descent (SGD) steps in each
round; then, the server aggregates the updated models and finally acquires and

distributes the global one to all clients (Li et al., 2019b; McMahan et al., 2017).

41
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Table 4.1: The number of communication rounds to reach the test accuracy of 80%
under Logistic Regression (LR) and 2-layer CNN on Fashion-MNIST with various
settings when 10 devices participate in FedAvg. The number of local updates is
100 without step asynchronism, while under step asynchronism, clients perform at
least 100 local updates. The learning rates set for LR and 2-layer CNN are 0.001
and 0.03, respectively, which are also applied to Table §.2, Figure #.2, and Figure

FedAvg with LR 2-layer CNN
neither c— 2 ) 20
step async E— | — 8
non-i.i.d. ) 9] G ) 265
both G K+ GEE 339

FedAvg follows the preceding procedure and has been proven to be a promising
solution to data heterogeneity.

With an increasing number of nodes participating in the training, the tradi-
tional framework becomes infeasible because the computation capacities are sub-
stantially diverse among devices (Chai et al., 2019). A practical framework al-
lows clients to update the local model via a flexible number of local SGD steps
in each round according to its available resource capacity. And we define such a
procedure as step asynchronism (see Figure @.1 for visualized demonstration). To
comprehensively understand the training performance of the traditional algorithm
FedAvg, Table @.1| compares the results in terms of test accuracy in two situations
— step asynchronism and data heterogeneity. This experiment is under convex (i.e.,
logistic regression) and non-convex (i.e., 2-layer CNN) objectives using a public
dataset Fashion-MNIST (Xiao et al., 2017). Performance deterioration is notice-

able, especially in the logistic regression model the desired test accuracy cannot
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Utilization'

Device Method Accuracy(%)?
(Rounds)

Raspberry FedNova 25% (49) 66.18
Pi4 FedaGrac 100% (25) 72.07
Nvidia FedNova 50% (50) 64.39
Jetson Nano FedaGrac 100% (21) 72.93
Nvidia GTX FedNova 100% (40) 69.77
1080 Ti FedaGrac 100% (30) 72.00
Nvidia GTX FedNova 100% (29) 72.11
2080 Ti FedaGrac 100% (36) 72.13

I'Utilization means the maximum computation capacity of Nvidia GTX 3080Ti to
achieve the test accuracy of 60% in the first 50 rounds. We obtain the value by
tuning the resource usage from 100% and looping a deduction of 5%. Rounds
quantify when the approach achieves 60% test accuracy.

2Given the utilization, we measure the test accuracy after 100 rounds.

Table 4.2: Utilization and test accuracy under the setting that one Nvidia GTX
3080Ti and nine other devices are shown in the first column. Here we evaluate
Fashion-MNIST with non-convex objectives (i.e., 2-layer CNN), and the data dis-
tribution among clients is heterogeneous.

be reached.

A previous study (Wang et al), 2020b) owes the performance deterioration to
objective inconsistency, where the FL training converges to a stationary point that
mismatches the optimal solution. In order to alleviate the issue, Wang et al. (Wang
et al.,, 2020b) introduce FedNova, a normalization approach that averages the nor-
malized local gradients and accordingly updates the global model at the server.
However, in Table §.2, we empirically disclose that FedNova cannot fully utilize
the computational resources of the powerful node under heterogeneous environ-
ments, which explicitly limits the number of local updates for the faster node.

In this chapter, we propose a method named FedaGrac to conquer the objec-
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tive inconsistency challenge under a highly imbalanced computational setting in
FL. The core idea of our proposed algorithm is to calibrate each local update ac-
cording to the global update orientation. Although the correct global direction is
not known, it can be estimated based on the clients’ local updates: If a client per-
forms the local updates very fast, then the client will transmit the first gradient;
otherwise, the averaged gradient. By this means, the negative effect of deviation
on the convergence can be significantly mitigated. We conduct preliminary exper-
iments and depict the comparison between our proposed algorithm and FedNova
(Wang et al], 20208) in terms of resource utilization and test accuracy in Table §.2.
In all cases, FedaGrac not only fully utilizes the computational resources, but also
achieves a better accuracy than FedNova (see Table §.2).

Our key contributions to this work are listed as follows:

1. To explore the factors that lead to performance deterioration, we analyze the
convergence property under strongly-convex objectives. The theoretical re-
sult indicates that the expected loss never reaches the optimal one when both
data heterogeneity and step asynchronism exist. In other words, a constant
number of local updates eliminates the negative effect of data distribution
differentiation, while step asynchronism magnifies the drawback of data het-

erogeneity.

2. We design a novel method named FedaGrac to address the problem of ob-
jective inconsistency via predictive gradient calibration, which makes the

direction of each local update close to the direction towards the global opti-
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mum. For the first time, our algorithm can jointly address statistical hetero-

geneity and computation heterogeneity at a time.

3. We establish the convergence rate of FedaGrac. Under non-convex objec-
tives, the algorithm achieves a convergence rate of O <1 / VMTK ), where
M and T represent the number of clients and communication rounds, re-
spectively, and K indicates the weighted averaged number of local updates.
This convergence rate is also achieved by FedNova only under the condi-
tion that Knax / Kmin = O(M), where K. and Ky, separately refer to the
maximum and minimum number of local updates (Wang et al., 2020b). Oth-
erwise, the actual convergence rate of FedNova should be O (W)
Apparently, our algorithm can achieve a faster convergence rate by a factor

up to O(K).

4. We conduct extensive experiments to compare the proposed FedaGrac with
typical and latest works such as SCAFFOLD (Karimireddy et al., 2020b)
and FedNova (Wang et al., 2020b). In terms of convergence rate, FedaGrac
achieves higher convergence efficiency compared to FedAvg and FedNova,
especially in scenarios with high heterogeneity. For example, in terms of
test accuracy, our algorithm can always preserve convergence while SCAF-

FOLD and FedNova cannot work in some cases.

The rest of this chapter is organized as follows. First, Section provides
related work and background knowledge of distributed SGD and existing solutions

to heterogeneous training. Next, we state preliminaries and problem formulation
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for the heterogeneous Federated Learning in Section #.3. Then, in Section §.4,
we design a novel algorithm FedaGrac to solve the problem. In Section §.5, we
analyze its convergence property. After that, we present our experimental results

to evaluate our method in Section §.6. Finally, Section 4.7 concludes the chapter.

4.2 Related Work

Federated learning. Frequently, edge devices such as smartphones possess abun-
dant data, which are highly sensitive but useful to the model training (Guo and
Qu, 2022; Han et al., 2020; Lim et al., 2021; Wang et al., 2021¢). To utilize these
data, FL is conceived to search for a generalized model (Qu et al., 2021}; Wang
et al., 2021b) or personalized models (I Dinh et al., 2020; Zhang et al., 2021))
while safeguarding the data privacy (Konec¢ny et alj, 2015; McMahan et all, 2017).
Apparently, the data are heterogeneous among clients because there are no prede-
fined rules for the data distribution for each client. Besides, due to the hardware
differences among devices, the computational capabilities are various. In this sec-
tion, we briefly investigate the flaws raised by data heterogeneity and computation
heterogeneity and review the existing work to tackle these two issues.

Data Heterogeneity. Generally, in FL settings, the data distributed among clients
are agnostic and therefore, each data portfolio has its exclusive optimal parameters.
As a classical algorithm to combat data heterogeneity, FedAvg inherits the training
features from local SGD (Stich, 2018; [Yu et al., 2019d; Zhou and Cong, 2018), a

framework that runs for multiple local updates prior to a global synchronization.
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Figure 4.1: Illustration of model updating in the parameter space. For client 7,
we generate a set of (x,y)s fluctuated around a linear function y = a;z + b;,
where a; and b; are real numbers. Our target is to find an optimal straight line
y = ax + b, which is averagely close to all clients’ data. Starting at the same
point, each client applies mean squared error (MSE) loss and follows a predefined
algorithm to update its local model so as to optimize the global one. Regarding
the existence of data and computation heterogeneity, our proposed method does
not deviate from the direction towards a global minimizer.

Obviously, this strategy significantly reduces the total communication overhead
when compared to parallel SGD that synchronizes the gradient at every local up-
date. Recent studies (Gu et all, 2021; Khaled et alJ, 2020; Li et al., 2019b) show
that FedAvg can have a great performance from theoretical and empirical perspec-
tives. Also, FedAvg can seamlessly adopt communication-efficient approaches
such as quantization (Alistarh et al), 2017a; Basu et al., 2019) and sparsification
(Stich et al., 2018; Wangni et all, 2018) to further reduce the cost of transmission
(Wang et all, 2021a; Wu et al,, 2020a,d; Zhou et al., 2021)).

Nevertheless, numerous studies (Cheng et al), 2021j; Gorbunov et al.), 2020;
Karimireddy et all), 2020b; Liu et al., 2020b; Zhao et all, 2018) theoretically prove
that the issue raises the client-drift effect and degrades the convergence property.
To mitigate the negative impact, existing solutions include cross-client variance re-

duction (Karimireddy et al., 2020b; Liang et al., 2019), client clustering sampling
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(Fraboni et alJ, 2021); Ghosh et al., 2020; Murata and Suzuki, 2021)) and reinforce-
ment learning driven incentive mechanism (Wang et al), 2020a). Among these
approaches, SCAFFOLD (Karimireddy et all, 2020b) is a superior option that ad-
justs every local update with the help of the global and a client’s local reference
orientation, such that every local update keeps close to the global direction. How-
ever, as shown in Figure §.1, SCAFFOLD cannot completely remove the drift. A
physical explanation for the result is that the local reference directions of the faster
nodes with more number of local updates lead to a significant deviation from the
orientation towards the local optimizer. Since the global reference direction is
aggregated by clients’ local ones, it is intuitively dominated by the faster nodes
(see Figure f.1)), which betrays its origin intention. Although we use a similar de-
sign philosophy that ensures every local update along with the global orientation,
the global orientation consists of the gradient that depends on the number of local
updates, either the normalized gradient or the initial gradient.

Computational Heterogeneity. The computation capabilities vary among clients
because they use different devices. To minimize the computation differences,
some existing works adopt a client sampling strategy (Deng et al., 2021; Huang
et al,, 2020; Wu et all, 2020b; Zhou et all, 2020), where only a small portion of
clients transmit the gradients to the server. Compared to the case that requires full-
worker participation, this scheme reduces the total training time. However, there
still exists resource underutilization as the fastest client should wait for others’
completion.

A practical solution is to adopt step asynchronism, where each client performs
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an inconsistent number of local updates. Although FedAvg with step asynchro-
nism can converge to a stable point under non-convex objectives (Yu et al), 2019d),
Wang et al. (Wang et al., 2020b) point out that objective inconsistency takes place
under quadratic function. To alleviate the challenge of computational heterogene-
ity, effective approaches are constituted with normalization-based approach Fed-
Nova (Wang et al., 2020b) and FedLin (Mitra et al., 202 1), regularization-based ap-
proach FedProx (Li et al), 2020) and architecture-based approach HeteroFL (Diao
et al., 2020). Gradient normalization is the most ubiquitous framework that over-
comes step asynchronism under non-i.i.d. data setting. However, this method
cannot prevent the negative impact of statistical heterogeneity on the convergence
rate because the update deviation still exists after averaging. Figure #.1 compares
FedNova (Wang et all, 2020b) and FedLin (Mitra et alJ, 2021)) with our proposed
method, and we notice that the global model deviates to the one with less updates
in FedNova (Wang et al., 2020b). The reason is obvious: clients update the mod-
els bias to their local datasets such that the normalized gradients collected by the
server are sparse. Besides, with the local models approaching the local minimiz-
ers, the update becomes so trivial that those clients with more local updates have

a dispensable influence on the global model update.
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4.3 Preliminary and Problem Formulation

Formally, the learning problem can be represented as the following distributed

optimization problem across M FL clients:

M

min F(x) = Y w;Fy(x), (4.1

R4
XE i—1

where the weight w; = |D;|/|D| is the ratio between the size of local dataset D;
and overall dataset D £ UM D;, and F(x) =S Ee,~p,[fi(x;€;)] is the the local
objective, i.e., the expected loss value of model z with respect to random sampling
g; for client s.

FedAvg with step asynchronism. Naive weighted aggregation (Lietall, 2019b;
McMabhan et al.,2017; Stich, 2018; Yu et al., 2019d) is an effective and communication-
efficient way to solve Problem (#.1]) for both convex and non-convex objectives.
With the increasing number of edge devices participating in model training, the
framework is neither economic nor fair to require all clients to run a certain num-
ber of local updates. Instead, a practical approach is that clienti € {1, ..., M } runs
for a flexible number of SGD steps (i.e., K;) according to its resource capability

before the model aggregation at the server:
 (Pull): Pulls the current parameter x, from the server.

* (Compute): Samples a realization € randomly from the local dataset D; and

compute the gradient V f;(xg, ).

* (Update): Performs k-th local update of the form n by X1 = X — 18k,
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where k € {0, ..., K;} and 7 is the stepsize.

* (Push): Pushes the local parameter xx, to the server.

Under this framework, we let K, and K,,;, separately be the maximum and

-----

.....

weighted averaged number of local updates. Formally, step asynchronism is de-

fined as the following mathematical expression:

3i,jef{l,..M}, K, #K; (4.2)

Therefore, K. # Kmin When step asynchronism exists. Without extra explana-
tions, these notations are adopted throughout the chapter.

Assumptions. To establish the convergence theory of the FL optimization, we
make the following assumptions that are adapted in previous works (LLi et al., 2020,

2019b; Reddi et al., 2020; Wang et al., 2019, 2020b):

Assumption 4.1 (L-smooth). The local objective functions are Lipschitz smooth:

Forallv,v € RY,

IVE(w) = VE@) < Lo —ll, Vi € {1,..., M}.

Assumption 4.2 (u-strongly convex). The local objective functions are ji-strongly
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convex with the value of ;v > 0: For all v,v € R?,
F(v) = F(®) > (VF(@), (v = ) + Sllo = o[3, Vi € {1,..., M}

where (-, -) refers to the inner product of two gradients.

Assumption 4.3 (Bounded Variance). For all v € RY, there exists a scalar o > 0
such that

E|Vfi(v,e) = VE()|3 < o? Vie{l,..,M}

Assumption 4.4 (Bounded Dissimilarity). For some v € R? that ||V F (v)|? > 0

holds, there exists a scalar B > 1 such that
E|VFi(v)ll5 < B*[VF(v)|3, Vie{l,.., M}

Obviously, when the data are independent and identically distributed, the value of

B should be 1.

Assumption #.4 seems to be a little bit strong as ||V F(v)||3 cannot be 0. How-
ever, considering e-accuracy as the learning criterion, i.e., |[VF (v)|3 < € under
non-convex objectives such as deep neural networks which possess multiple local
minimizers, the value of e cannot strictly be 0. In other words, there exists €; < €
such that |[VF (v)||3 > €, for all v always holds.

Key factor that raises objective inconsistency. Although (Wang etall,2020b)
indicates that objective inconsistency occurs when using FedAvg with step asyn-

chronism under quadratic functions, the factor that makes it happen remains a
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mystery. To explore in depth, the following theorem analyzes FedAvg with step

asynchronism under a strongly-convex objective.

Theorem 4.1. Suppose the local objective functions are non-negative. Denote the
parameter at t-th communication round by X,. Let T’ be the total number of commu-
nication rounds. Under Assumption and by setting the learning
rate n = O(1/pLTK) < 1/LK, the output of FedAvg with step asynchronism

satisfies

lim E[F(xr)] — F(x.) <O (Z W; ( K 1) E(X*)> (4.3)

T—00 - Kmin
=1
where X; and X, indicates the initial and optimal model parameters, respectively.
Proof. See Appendix [d for details. [

Remark The theoretical result in Equation is consistent with the result of
FedAvg analysis in (Karimireddy et al, 2020b) as the number of local updates is
identical, i.e., K; = K,Vi € {1,..., M }. Besides, when the data are identical and
independent distributed among clients, where the global optimizer is not equiv-
alent to the clients’ local minimizer, we can easily induce that x; is close to x,
when 1" — oo. The conclusion holds regardless of the number of local updates.
However, when data heterogeneity and step asynchronism coexist, the right-hand
side of Equation (#.3)) is non-zero. As a result, when T tends to be infinite, the
model cannot converge to the optimal parameters, which can explain the result

manifested in Table under LR. Based on the theoretical discovery, we can
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draw a conclusion that step asynchronism leads to a significant accuracy drop in

the non-i.i.d. cases, which impedes normal training.

4.4 FedaGrac algorithm

To ensure that E[F'(xr)] — F(x,) is close to 0 when T" — oo, we target to re-
move the constant term in the right-hand side of Equation (%.3). Based on the re-
mark in Section B.2, a practical approach is to minimize the effectiveness of data
heterogeneity. In this section, we elaborate our proposed algorithm, Federated
Accelerating Gradient Calibration (FedaGrac), to avoid the objective inconsis-
tency as well as enhance the convergence performance when step asynchronism
is adopted to improve the resource utilization. The implementation details are pre-
sented as Algorithm f3.

At first, apart from the hyperparameters such as learning rate 7 and calibration
rate \, we initialize a d-dimension model with arbitrary parameters x;. Besides,
to ease the theoretical analysis in Section §.3, we set () as V f;(x, D;) for all

i €{1,..., M}. Then, we define v as:

M M
Vv = Zwﬂ/(i) = Zinfi(Xl,Di).
=1 =1

In this algorithm, client ¢ performs the local updates for K; times in parallel. Dur-
ing each local update, clients calibrate the local client deviation with reference to

the global reference orientation, which is estimated at every global synchroniza-
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Figure 4.2: Preliminary test for a 2-layer CNN with the recognition of Fashion-
MNIST. In the line graph, the experiments are conducted when the clients run
inconsistent updates. “Increase” in the table shows the value of A changes over
time, i.e., 0.1 for the first 50 rounds, 0.5 for the next 100 rounds, and 1 for the rest.

tion. In the following two subsections, we separately discuss the effectiveness of

two main components, namely,

« Calibrating the local client deviation (Line 9 in Algorithm ) migrates the

data heterogeneity;

« Estimating the global reference orientation (Line 14 in Algorithm f) ac-

celerates the training process.

4.4.1 Calibrating the local client deviation

As a classical approach, FedAvg updates the parameters using stochastic gradi-

ent descent (SGD), where the gradient is computed in accordance with Line 8.
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Algorithm 3: Federated Accelerating Gradient Calibration (FedaGrac)

Require: Initialize M clients, set the initial model to be X; € R%. Set vV and v

for all clients i € {1,--- , M}. Set learning rate > 0, calibration rate
A > 0, the number of global synchronizations 7" and the number of local
iterations of each client K; for all clients i € {1,--- , M }.
1: Onclienti e {1,--- , M}:
2: fort =1to 7T do
3:  Pull x4, v from server
4. Set x% =X
55 Sete=v—v®
6: fork=0to K;—1do
7: Randomly sample a realization 5](;') from D;
s g = VAGGLE)
% X{le = Xp) — (g + Ae)
10:  end for '
e Setvld) = L3 gl
12:  Push xg(, K; to the server
13:  Receive K from the server
14:  if K; < K, then send v9; else send gfg
15: end for
16: On server:
17: fort =1to 7T do
18:  Push x;, v to clients
19:  Pull xg(, K; from clienti € [1,..., M]
200 Ko = S wixll)
2. K=" WK,
22:  Push K to clients and receive vt(;)nsit from clients
23: V= Zz]\il C’uivt(ria)nsit
24: end for

Suppose the gradient is equivalent to the first order derivative of the true local

objective, i.e., V fi(v,e) = VFEj;(v), where ¢ is randomly sampled from the lo-

cal dataset D,;. Then, given the stepsize 7, the model update follows xgl,l =
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xgl,l —nVFE; (x%) Previous works (Bottou, 2010; Zinkevich et al., 2010) show
that this scheme can converge to a stable point when a client performs sufficient lo-
cal updates. Under a heterogeneous data setting, the points vary among clients be-
cause each of them is determined by the local data distribution. Therefore, clients
are biased from the global orientation, and the phenomenon is named as client
deviation.

Existing works to overcome client deviation mainly focus on the variance re-
duction approach, i.e., SCAFFOLD (Karimireddy et al., 2020b). It is somehow
similar to our proposed algorithm when A is set to 1. In this case, client ¢’s local
reference direction v(*) is assumed to be equivalent to the vector from the current
point to its local optimizer. As for the global reference orientation, v overlaps with
the gradient from the current point to the global minimizer. However, it is nearly
impossible to coincide with the case, especially when applied with the gradient cal-
ibration technique. Generally speaking, using an obsolete gradient to predict the
coming gradient is not reasonable because the aggregated direction presumably
deviates from the expected one.

Therefore, we introduce a calibration rate \ for the correction term. With this
hyperparameter, a gradient can be adjusted and approximated to the global update.
Empirical results in Figure #.2 intuitively present the effectiveness of A\. Generally
speaking, a smaller A has a similar performance as FedAvg because the calibrated
gradient is still biased to the local computed one. For a greater \, the test accu-

racy goes down dramatically since the gradient is over-calibrated. As a result, a

I'Client deviation is also known as client drift (Karimireddy et al, 2020H; Mitra et al}, 2021)).
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constant A cannot be too large or too small such that the calibration term is ef-
fective. Furthermore, in Figure , we evaluate a case where \ increases over
time. Apparently, the strategy is impressive because it outperforms all other con-
stant settings. The reason for the improvement is clear: at the beginning stage,
the difference between two successive updates is significant because the model is
far away from convergence. When the training comes to a stable point, the value
of A should be 1 such that the gradient eliminates the deviation towards the local

minimizer.

4.4.2 Estimating the global reference orientation

While applying SCAFFOLD (Karimireddy et al., 2020b) to train a model, we no-
tice that the model update is biased to the fastest node under step-asynchronous
settings. Given a model x, some clients, e.g., client 7, are close to a stable point
such that the computed local reference orientation significantly deviates from the
expected one, i.e., VF;(x). Regarding that the clients (client 7) with fewer local
updates can better estimate the local orientation V F;(x), the model prefers those
with more local updates, which undermines the convergence property.

At the beginning of round ¢ € {1,...,T}, the centralized server broadcasts
the model X; to all clients. To obtain an exact result of VF'(X,), each client i €
{1, ..., M} should provide an accurate estimation for V F;(X;), or the bias of the
estimation (9 can be eliminated by the sum, i.e., Zf\il w; D, Therefore, there are
two practical ways to estimate V F;(X;) for client 7, namely, (i) the first stochastic

gradient, i.e., Vfi(X;,¢), and (ii) the averaged stochastic gradient, i.e.,
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Figure 4.3: Empirical evaluation for how to estimate the global reference orienta-
tion using Fashion-MNIST with convex (i.e., LR) and non-convex objectives (i.e.,
2-layer CNN). The horizontal axis indicates the communication rounds, and the
vertical axis shows the test accuracy in percentage. (a)(b) indicate the results when
the clients run for the constant number of updates, and (c)(d) is when they perform
various numbers of SGD steps. (Zoom in for the best view)

% Zf;;l Vf; < il,)ﬁ, s,g)) in Line 11 of Algorithm [. Based on these two strate-
gies, we design and empirically evaluate four different schemes to find a proper

estimation for the global reference orientation: (Note: faster or slower nodes are
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classified by whether the number of local updates is greater than the average up-

dates)

* FedaGrac requires faster nodes to transmit the first stochastic gradient while

the rest push the average one;

* FedaGrac_avg (a.k.a. SCAFFOLD) requires all nodes to transmit the aver-

age stochastic gradient;
» FedaGrac_first requires all nodes to transmit the first stochastic gradient;

* FedaGrac_reverse requires faster nodes to transmit the average stochastic

gradient while the rest push the first one.

Figure 4.3 presents the results of different strategies. As we can see, with-
out step asynchronism, these four schemes do not have considerable differences.
However, with step asynchronism, FedaGrac outperforms another three potential
approaches under both convex and non-convex objectives. This is why Line 14
of Algorithm B is introduced. To further reduce the communication overhead, the
algorithm solely requests the faster nodes to upload the first stochastic gradient,
while the rest can be computed via - (f(t - xi%) — A (v —v®) if v is pre-

served on the server.

4.5 Theoretical Convergence Analysis

In this section, we analyze the convergence property of FedaGrac under both non-

convex objectives and strongly-convex objectives for solving Problem (§.1). The
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details of the mathematical proof are provided in the supplementary materials with

step-by-step explanations.

4.5.1 Mathematical expression for Algorithm

In Section f.4, we describe the details in Algorithm [J. Below represents how to
derive the recursive function step by step.

Local reference orientation. To ensure every local update can calibrate to
the expected one, we should use the averaged local update such that after multiple
local updates, the acquired model does not deviate from the expected orientation.
Therefore, the local reference orientation is defined as:

Lyt gt(i)l;k, K; < K

) = B k=0 (4.4)

gﬁ)l;o, Otherwise

Global reference orientation. SCAFFOLD (Karimireddy et al., 2020b) presents
a remarkable performance with the aggregation of () foralli € {1, ..., M'}. How-
ever, the approach presumably does not work due to step asynchronism, where
local reference orientations deviated from the expected direction are dramatically
various among clients. To avoid this issue, we let the faster node with more number
of local updates transfer the initial gradient while others send the local reference

orientation to the server, which can be formally written as:

Kzl )
v= Z % th(z—)l,k—}_ Z Wz‘gﬁ)l;o
k=0

GKG<K ! i Ki>K
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Recursion function. According to Line 9 in Algorithm , for client 7, the

recursion between two successive local updates can be presented as:
XE,ZI)chl = XEZIZ: Ui [gt kT A (V — 0 ))] (4.5)

Then, based on the equation above, i.e., Equation (#.5), for client 7 with the local

updates of ;, XEZ}( — X; can be formulated in mathematical expression as:

Xg( — Xt = Z (XEZ])C - ) = - Z gt n)\K v— y(i))

Finally, according to the definition in Problem (#.1]), the recursion function be-
tween two successive global updates is the weighted average of all clients’ models,

which is written as:

M K;—1 M
Xe+1 — Xt Z Wi Xy - Nt =N Z wzgg,lll - 7I>\KV + 77/\ Z WZKZV 2
=1 k=0 =1

4.5.2 Non-convex objectives

Theorem 4.2 (Non-convex objectives). Considering the same x| and X, as Theo-

/ v A 4 ] — M_ -
rem under Assumption and by setting n = O (« / TK), the con
vergence rate of Algorithm 1 with step asynchronism for non-convex objectives

is

(F(x1) ~ F(x.) oLV
—ZEHVF g < o (LRI . o (A _3Tz K)
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QL)\ / 2
+0 Z ( ) + 1)>
L2 2M A
+0 BT Zle )

L2 AM <
+0 | “ szKf* (KZ J+1>>. (4.6)

Proof. See Appendix D for details. O

Corollary 4.2.1. By setting w; = ... = wyy = 1/M and A\ = O(1), the following
inequality holds under Theorem H.2:

1
E|VF <O — ). 4.7
_min, BIVFG)E< 0 (=) @)

Remark (Wang et all, 2020b) states that FedaNova can achieve the convergence
rate same as Equation .7, but there exists an explicit condition that > (K /M K;)
isaconstant whenw; = ... = wy; = 1/M. Letus consider an extreme case that the
slow nodes locally update once, i.e., K; = 1 foralli € {1, ..., M — 1} while Client
M can run for a very large number of times. This case is possible, for instance, a
system consists of multiple Raspberry Pi and a single Nvidia GTX 3080Ti GPU,
the computational difference between which can be up to a thousandfold. Under
such situation, the aforementioned term should be bounded by O(K) instead of
O(1) and therefore, the convergence rate for FedNova should be O(+/K /MT).
In comparison with Equation 4.7, FedaGrac achieves an increment up to O(K).

Furthermore, the algorithms such as FedAvg ([Yu et all, 2019d) and SCAF-
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FOLD (Karimireddy et al., 2020b) that use the homogeneous setting achieve a
convergence rate of O(1/v/MTK ;). Obviously, FedaGrac admits better con-
vergence rate as K, < K always holds under heterogeneous computational
resources. This is because our algorithm can fully utilize the computational re-
sources from all participants such that it outperforms those algorithms that solely

supports the homogeneous environment.

4.5.3 Strongly-convex objectives

Theorem 4.3 (Strongly-convex objectives). Considering the same X, and X, as
Theorem under Assumption W.2dandW.3 bysetting\ = 1,n1 = O(1/uLTK) <
1/LK, the convergence rate of Algorithm 1 with step asynchronism for strongly-

convex objectives is

- ~ wT H P
iG] - F() <O (sl - x e (<20 ) + 2s ) s
where
2 M % 2 2. 2 [ M 2
2 &L, . (K- K) 1% 3| o w3
= 2 Ko+ 4~ — K vy
H sz( R T et VL) DOF -
Proof. See Appendix [ for details. [

Corollary 4.3.1. By settingw, = ... = wy = 1/ M, the following inequality holds
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under Theorem |.3:

2

E[F(&)] - F(x.) < 0 (M AjTK) | (49)

Remark Compared to FedNova (Wang et al., 2020b) that has convergence the-
ory only for non-convex objectives, we have established the rigorous convergence
theory for our method FedaGrac on strongly-convex objectives. Compared with
Theorem M.1|, FedaGrac not only converges to the optimal parameters, but also

obtains a better convergence rate as O(1/K) < O(1/Kpi).

4.6 Empirical Evaluation

In this section, we conduct extensive experiments to evaluate the performance
of FedaGrac in the real cases that are widely accepted by the existing studies.
To further obtain an intuitive understanding of the numerical results, FedaGrac
competes against other up-to-date benchmarks that are comparable under vari-
ous settings. The code is implemented with PyTorch and available at https:

//github.com/HarliWu/FedaGrac.

4.6.1 Setup

Datasets. We leverage Fashion-MNIST (Xiao et al., 2017) to run the preliminary
experiments in the previous sections. This dataset comprises 60000 28 x 28 grey-

scale training images and 10000 test images, which can be categorized into ten


https://github.com/HarliWu/FedaGrac
https://github.com/HarliWu/FedaGrac
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Layer Output Shape Trainable Parameters Activation Hyperparameters
Input (1,28,28) 0
Conv2d (10, 24, 24) 260 RelLU kernel size=5
MaxPool2d (10, 12, 12) 0 kernel size=2
Conv2d (20, 8, 8) 5020 ReLU kernel size=5
Dropout2d (20, 8, 8) 0 p=0.5
MaxPool2d (20,4, 4) 0 kernel size=2
Flatten 320 0
Dense 50 16050 ReLU
Dropout 50 0 p=0.5
Dense 10 510 softmax

Table 4.3: Details for 2-layer CNN on Fashion-MNIST. Typically, Fashion-
MNIST consists of grey-scale images possessing a single channel.

classes related to the clothes type. In this section, we utilize two more datasets:
a9al and CIFAR-10 (Krizhevsky et all, 2009b). As a binary classification task,
a9a consists of 32561 training samples and 16281 test samples, and each sample
possesses 123 features. CIFAR-10 is a 10-category image classification task, con-
stituting 60000 32 x32 color images divided into the training and test set with the
size of 50000 and 10000, respectively.

Models. For the assessment of convex objectives, we train a logistic regression
(LR) model using a9a. In addition, we investigate the performance under non-
convex objectives through an image classification task CIFAR-10 (Krizhevsky
et all, 2009b) with AlexNet (Krizhevsky et al), 2012) and VGG-19 (Simonyan
and Zisserman, 2014), deep neural networks with total parameters of 7.21M and
20.55M, respectively. As for Fashion-MNIST, 2-layer CNN and LR are utilized to
evaluate the performance under non-convex and convex objectives, respectively.

Based on the dataset used, the details for 2-layer CNN, AlexNet and VGG-19 are

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Layer Output Shape Trainable Parameters Activation Hyperparameters
Input (3,32,32) 0
Conv2d (64, 8, 8) 23296 ReLU kernel size=11, stride=4, padding=5
MaxPool2d (64,4, 4) 0 kernel size=2, stride=2
Conv2d (192, 4, 4) 307392 ReLU kernel size=5, padding=2
MaxPool2d (192,2,2) 0 kernel size=2, stride=2
Conv2d (384,2,2) 663936 ReLU kernel size=3, padding=1
Conv2d (256, 2,2) 884992 ReLU kernel size=3, padding=1
Conv2d (256, 2,2) 590080 ReLU kernel size=3, padding=1
MaxPool2d (256, 1, 1) 0 kernel size=2, stride=2
Flatten 256 0
Dropout 256 0 p=0.5
Dense 2048 526336 ReLU
Dropout 2048 0 p=0.5
Dense 2048 4196352 ReLU
Dense 10 20490 softmax

Table 4.4: Details for AlexNet on CIFAR-10. Output shape follows the format of
(channel, height, width). Generally, color images like CIFAR-10 dataset are with
three channels.

separately described in Table §4.3, Table §.4 and Table 4.3

Data Heterogeneity. As for the non-i.i.d. settings, we adopt two different parti-
tioned ways. The first one that we split the dataset across the clients follows the
Dirichlet distribution with parameter 0.3, denoted as DP1. This approach is suit-
able for both datasets. The other method disjoints the dataset via sharding, and thus
each client holds 5 classes. We let such a method be DP2 and ensure clients carry
the same volume of data. It is worth noting that this partition is only compatible
with CIFAR-10 because a9a is a binary classification challenge.

Computational Heterogeneity. To simulate a heterogeneous computing environ-
ment, we suppose the computation differences among workers follow the Gaussian
distribution. Then, the number of local updates varies among clients and follows
the normal distribution with predefined mean and variance. And the number of

local updates may change over time for each client.
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Layer Output Shape Trainable Parameters Activation Hyperparameters
Input (3,32,32) 0
2 x Conv2d (64,32, 32) 38720 ReLU kernel size=3; padding=1
MaxPool2d (64, 16, 16) 0 kernel size=2, stride=2
2 x Conv2d (128,16, 16) 221440 ReLU kernel size=3; padding=1
MaxPool2d (128, 8, 8) 0 kernel size=2, stride=2
4 x Conv2d (256,38, 8) 2065408 ReLU kernel size=3; padding=1
MaxPool2d (256, 4, 4) 0 kernel size=2, stride=2
4 x Conv2d  (512,4,4) 8259584 ReLU kernel size=3; padding=1
MaxPool2d (512,2,2) 0 kernel size=2, stride=2
4 x Conv2d  (512,2,2) 9439232 ReLU kernel size=3; padding=1
MaxPool2d 512, 1, 1) 0 kernel size=2, stride=2
Flatten 512 0
Dropout 512 0 p=0.5
Dense 512 262656 ReLU
Dropout 512 0 p=05
Dense 512 262656 ReLU
Dense 10 5130 softmax

Table 4.5: Network architecture for VGG-19 on CIFAR-10.

Implementation and Hyperparameter Settings. The experiments are conducted
with an MPI-supported cluster with the configurations of 100GB RAM, 25 CPU
cores, and 1 Nvidia P100 GPU. Based on the resource, we utilize 20 cores to
act as clients and a single core as the federated server. Besides, the batch sizes
throughout our experiments are set as 25 and 20 for CIFAR-10 and a9a, respec-
tively. We choose FedAvg (McMahan et al/, 2017), FedNova (Wang et al/, 2020b),
SCAFFOLD (Karimireddy et al., 2020b) and FedProx (Li et al., 2020) as bench-
marks and present the effectiveness of our proposed approach FedaGrac. For a
fair comparison, we compare these algorithms with the results when they achieve
the best performance under the constant learning rates {0.01,0.008,0.005} and
{0.005,0.001,0.0005} for AlexNet/'VGG-19 and LR, respectively. And other re-
quired hyperparameters are also carefully picked from a set, such as the coefficient

of the regularization term for FedProx in {1, 0.1,0.01}. We specified other unmen-
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Figure 4.4: Comparison of various setting combinations for learning rate n and
calibration rate A\ using DP1 data distribution under AlexNet and LR after 100
communication rounds. The horizontal index indicates the value of A\ while the
vertical index shows the value of 77. The numeric in the box presents the averaged
test accuracy of the last 10 rounds under the specific hyperparameter settings. The

mean number of local updates is 500, and the variance with step asynchronism is
10000.

tioned but necessary settings in the captions of the figures and the tables.

4.6.2 Numerical Results

Performance under Various combinations for learning rate and calibration

rate. As learning rate n and calibration rate A\ need tuning in FedaGrac, we first
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explore how to set both hyperparameters scientifically. Figure §.4 depicts the test
accuracy under various relations between 1 and A. As we observe, the differences
regarding the convexity are quite significant, e.g., AlexNet in Figure and LR
in Figure 4.48, while the computation heterogeneity has minor influence on the
selection of hyperparameters under the same model, e.g., AlexNet in Figure
and Figure #.4d. Based on the acquired results, we discuss how to set the hyperpa-
rameters for FedaGrac under convex or non-convex objectives.

Both Figure and Figure illustrate the performance under AlexNet
with and without computational heterogeneity. In both cases, most As achieve the
highest accuracy at n = 0.05, while some have the best performance at n = 0.01.
When the learning rate initializes with a value smaller or equal to 0.001, most
AlexNets seem untrained after 100 rounds because they are less likely to escape a
saddle point. Although some portfolios successfully get out of the minima, they
still cannot outperform the aforementioned settings because they may (i) trap into a
non-optimal stable point or (ii) need a longer period to reach the optimal solution.
A constant A that performs well in all learning rates does not exist. However,
when we shrink the choice of learning rate between 0.01 and 0.05, A = 0.05 has a
remarkable performance. In our experiments, the calibration rate is chosen from
{0.01, ...,0.05} depending on the algorithm’s performance.

Figure and Figure present the results under the convex objectives.
Regardless of the step asynchronism, A = 1 always has remarkable performance
for any learning rate. And it is noticeable that FedaGrac can obtain the best per-

formance when A = 1 and 7 = 0.005. As for a A # 1, FedaGrac can achieve bet-
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Data Target . Number of communication rounds (J.)
Model S Variance ~ Mode
Distribution ~ Accuracy FedaGrac FedAvg FedNova SCAFFOLD FedProx
V=0 - 113 - 123 . 127 SEEEC) 113 SN (45
V=100 fixed GEEE—) 106 SN ) 130 o) 147 o) 114 SEEEN) 144
AlexNet DP1 68% random G 116 N 140 ) 154 GEEEN) 133 NN 140
V = 10000 fixed NN 126 S 156 ) 172 SEEEE) (4] . 142
random @GN 121 SN 177 ) 170 GEEEN) (36 SEEE) 152
V=0 - G (52 183 18¢ GEEEEN) 160 NN ) 147
V=100 fixed GHEE ) 111 SO 179 ) 119 SN 124 S 143
AlexNet DP2 70% random NN 112 GEEEEES 200+ SEEE 195 GEEEE) (137 EEEEN) 141
V = 10000 fixed GEEE 111 GEEEES 200+ G 113 GEEE) ]3] GEEEN 145
random NN 118 SIS 200+ SIS 200+ GEEC O (23 SN (52
V=0 - [ E—] 73 ) 83 N 79 ) 72 ) 90
V=100 fixed @l 73 W) 75 W) 72 W) 66 W) 72
VGG-19 DP2 80% random @) 73 ) KR S—] 74 N 78 W) 102
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Table 4.6: The number of communication rounds when first achieving the target
test accuracy under AlexNet and VGG-19. The computational capabilities among
workers follow the Gaussian distribution with a mean of 500 and different vari-
ances (i.e., V=0, V=100, and V = 10000) using two different data distributions
(i.e., DP1 and DP2). Random mode indicates the number of local updates on a
client varies among communication rounds, while fixed mode does not possess
the feature. Each experiment runs for a maximum of 200 rounds.

ter performance as the learning rate becomes smaller. With such a phenomenon,
we hypothesize that FedaGrac cannot exactly reach the identical minimizer when
A # 1 and approaches the expected point as the learning rate reduces.

Performance under various data distributions. Table .4 validates our algo-
rithm under different data heterogeneities, i.e., DP1 and DP2 under AlexNet. The
target accuracy is determined by the best performance that these five algorithms
can achieve when they run a constant number of updates. By comparing each algo-
rithm under these two data distributions, DP2 is more challenging for FedAvg and
FedNova because the algorithms generally require more communication rounds
to achieve the target. Even worse, these two algorithms cannot achieve the goal

within 200 rounds in some DP2 settings. As for the regularization-based approach
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(i.e., FedProx) and the variance reduction approaches (i.e., FedaGrac and SCAF-
FOLD), the task shifting does not cause a distinct influenced in terms of the re-
quired communication rounds. As we can see in both cases with computational
differences, FedaGrac demonstrates the superiority over other benchmarks.
Performance under various neural networks. In addition to exploring various
data distributions based on Table §.6, we investigate the performance of FedaGrac
under different neural networks. As we notice, the approach in VGG-19 does not
outperform all benchmarks in some computation heterogeneity cases. Specifically,
it requires several more rounds than the best algorithm. An explanation for this
phenomenon is that obtaining an 80%-accuracy VGG-19 on CIFAR-10 is not a
difficult task. In contrast to getting an AlexNet with a test accuracy of 70%, the
algorithms can adopt a greater learning rate to improve training efficiency. Since
there are some restricted terms in FedaGrac, it is reasonable that our proposed
algorithm cannot outperform the benchmarks. Meanwhile, it is common that some
benchmarks cannot outperform FedAvg (Li et al), 2021a). However, it is worth
noting that, as presented in Figure §.3, the faster algorithm may not surpass the
slower ones in terms of the final test accuracy.

Performance under various computational capabilities. While adopting Gaus-
sian distribution to tune the computation heterogeneity, we should manually set
both mean and variance. To explore whether these two hyperparameters influ-
ence the algorithms’ performances, we conduct extensive experiments, and the

relevant results are presented in Table §.6 and Figure §.5. Table §.9 evaluates the

3The difference between the numbers of the communication rounds is less than 15%.
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Figure 4.5: Test accuracy v.s. Training time under different gaussian mean w.r.t.
the fixed variance of 10000. Leftmost two figures: AlexNet using DP2; Rightmost
two figures: LR using DP1. The number of local updates on a client is fixed
and initialized at the beginning of the model training. Each algorithm runs for a

total of 200 rounds, and the gap between two markers represents an interval of 10
communication rounds.

performance under the computational capabilities with a constant mean of 500 and

different variances, while Figure assesses the convergence tendency under a

fixed variance of 10000 and diverse means.
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Table 4.6 presents the results given different variances with/without time-varying
local updates. Our analysis is mainly based on AlexNet because it gives noticeable
differences when the variances or the modes switch. Admittedly, these algorithms
are not sensitive to whether the number of local updates is time-varying. However,
it is worth noting that FedNova is vulnerable to time-varying settings in DP2. This
is because a large learning rate may lead FedNova to a surrogate solution (Mitra
et al), 2021) such that FedNova has to adopt a smaller learning rate to achieve
the target accuracy. In contrast to time-varying local updates, the variance plays
an important role in training efficiency. When the variance becomes larger, it is
likely that the algorithms require more communication rounds. Nevertheless, a
greater variance sometimes improves the training efficiency of those algorithms
which mitigate the client-drift effect, i.e., FedaGrac, SCAFFOLD, and FedProx.

Figure {.9 illustrates the entire training progress, i.e., the test accuracy with
respect to the training time and the communication rounds under both convex and
non-convex objectives. Our proposed algorithm achieves competitive accuracy
compared to other baselines, despite a slow start likely taking place because the cal-
ibration is yet to settle the client-drift effects properly in the beginning. Although
FedAvg and FedNova require half communication overhead as our proposed algo-
rithm does, they cannot keep dominant alongside the training. Use AlexNet as an
example (Figure and [1.5b), and FedaGrac is capable of achieving the same
performance with fewer rounds. In addition, it is interesting to see FedProx con-
suming more time to implement 200 rounds than FedAvg. A reasonable explana-

tion for this phenomenon is that extra computation is required by the regularization



CHAPTER 4. FEDAGRAC 75

terms. As the model gets larger, this effect becomes minor since the communica-
tion consumption asymptotically occupies most training time (compare between
LR (Figure f.5d) and AlexNet (Figure §.5d) for this heuristic conclusion). As a
convex objective, LR depicts the issue of objective inconsistency (the latter two
plots in Figure §.5). The performances of FedAvg, FedNova, and FedProx are
much worse than FedaGrac and SCAFFOLD. With the increasing mean and the
unchanged variance, the deterioration gets mitigation but cannot eliminate. As
for the comparison between SCAFFOLD and our proposed method, the latter pos-

sesses dominance nearly all the time.

4.7 Summary

This chapter introduces a new algorithm named FedaGrac to tackle the challenges
of both statistical heterogeneity and computation heterogeneity in FL. By calibrat-
ing the local client deviations according to an estimated global orientation in each
communication round, the negative effect of step asynchronism on model accu-
racy can be greatly mitigated, and the training process is remarkably accelerated.
We establish the theoretical convergence rate of FedaGrac. The results imply that
FedaGrac admits a faster convergence rate and has a better tolerance to computa-
tion heterogeneity than the state-of-the-art approachs. Extensive experiments are

also conducted to validate the advantages of FedaGrac.



Chapter 5

Conclusion and Future Research

5.1 Conclusion

As an active field of distributed machine learning, optimization problems have
been studied for decades, but they are still looking for more efficient algorithms.
This thesis studies the optimization problems in distributed machine learning from
the gradient-wise perspectives.

Firstly, for the sake of gradient compression to reduce communication over-
head, we propose Marsit, a synchronization system that achieves one-bit trans-
mission under multi-hop all-reduce. We implement a bit-wise operation in this
framework to facilitate simultaneous reception and compression and prevent cas-
cading compression. In addition, we build a global compensation mechanism to
reduce compression deviations. Theoretically, the proposed framework retains the

same theoretical convergence rate as non-compression mechanisms. According to

76
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empirical investigations, our proposed approach can achieve equal test accuracy
to the non-compression version while requiring 35% less training time.
Furthermore, by means of gradient calibration to accelerate the model training,
we introduce FedaGrac, a new algorithm designed to jointly address the issues of
statistical and computational heterogeneity in FL. With the proposed algorithm,
clients correct the gradients based on an estimated global orientation in every local
update. As aresult, the detrimental effect of step asynchronism on model accuracy
can be considerably minimized, and the training efficiency can be dramatically
improved. According to the theoretical findings, our proposed algorithm admits a
faster convergence rate and is more tolerant of computational heterogeneity than
the current state-of-the-art technique. Extensive empirical studies are also carried

out to prove the benefits of FedaGrac.

5.2 Future Work

In the future, we plan to conduct the research in the following three directions:

* Arbitrary Device Unavailability. The methods in this thesis mainly focus
on the setting of full client participation. With the proliferation of edge de-
vices in the FL system, the number of inactive nodes or stragglers inflates,
resulting in arbitrary device unavailability. Although they can directly apply
to partial worker scenarios where the server actively samples a constant num-
ber of clients, it is unknown whether they are able to retain the convergence

property under arbitrary device unavailability. In future work, we will de-
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sign a new approach for this case and avoid the past knowledge preservation

because the obsoleted information is likely harmful to the model updates.

* Second-Order Guarantee. In this thesis, we provide proof of the first-order
guarantee under non-convex objectives. While the first-order guarantee is
the most common practice in distributed machine learning, its stationary
point could be a saddle point under non-convex objectives. This has been
identified as a challenging problem in deep learning optimization. To escape
the saddle points, we should devise an algorithm that enjoys second-order

optimality without hurting the communication efficiency.

* Gradient Decomposition. In addition to the aforementioned gradient-wise
approaches, gradient decomposition is a meaningful way to optimize dis-
tributed machine learning. It not only reduces the communication overhead
but distinguishes the significant elements in model updates. In the future,
we will explore how to robustly decompose a gradient such that the training

efficiency could be greatly improved.



Bibliography

Harsh Agrawal, Clint Solomon Mathialagan, Yash Goyal, Neelima Chavali,
Prakriti Banik, Akrit Mohapatra, Ahmed Osman, and Dhruv Batra. Cloudcv:
Large-scale distributed computer vision as a cloud service. In Mobile cloud

visual media computing, pages 265-290. Springer, 2015.

Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed

gradient descent. arXiv preprint arXiv:1704.05021, 2017.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. Advances

in Neural Information Processing Systems, 30, 2017a.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. In Ad-

vances in Neural Information Processing Systems, pages 1709-1720, 2017b.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit
Khirirat, and Cédric Renggli. The convergence of sparsified gradient methods.

Advances in Neural Information Processing Systems, 31, 2018.

79



BIBLIOGRAPHY 80

Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for faster non-convex op-
timization. In International conference on machine learning, pages 699-707.

PMLR, 2016.

Salem Algahtani and Murat Demirbas. Performance analysis and comparison of

distributed machine learning systems. arXiv preprint arXiv:1909.02061, 2019.

Dmitrii Avdiukhin and Shiva Kasiviswanathan. Federated learning under arbitrary
communication patterns. In Proceedings of the 38th International Conference

on Machine Learning, pages 425-435. PMLR, 2021.

Arda Aytekin, Hamid Reza Feyzmahdavian, and Mikael Johansson. Analysis and
implementation of an asynchronous optimization algorithm for the parameter

server. arXiv preprint arXiv:1610.05507, 2016.

Baidu-Research. tensorflow-allreduce. [Source Code]. https://github.com/

baidu-research/tensorflow-allreduce, 2017.

Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-
sgd: Distributed sgd with quantization, sparsification and local computations.
In Advances in Neural Information Processing Systems, pages 1469514706,
2019.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree
Anandkumar. signsgd: Compressed optimisation for non-convex problems. In

International Conference on Machine Learning, pages 560-569. PMLR, 2018a.


https://github.com/baidu-research/tensorflow-allreduce
https://github.com/baidu-research/tensorflow-allreduce

BIBLIOGRAPHY 81

Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, and Anima Anandku-
mar. signsgd with majority vote is communication efficient and fault tolerant.

In International Conference on Learning Representations, 2018b.

Alberto Bietti and Julien Mairal. Stochastic optimization with variance reduction
for infinite datasets with finite sum structure. Advances in Neural Information

Processing Systems, 30, 2017.

Avleen S Bijral, Anand D Sarwate, and Nathan Srebro. On data dependence in

distributed stochastic optimization. arXiv preprint arXiv:1603.04379, 2016.

Avrim Blum, Nika Haghtalab, Richard Lanas Phillips, and Han Shao. One for one,
or all for all: Equilibria and optimality of collaboration in federated learning.

arXiv preprint arXiv:2103.03228, 2021.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In

Proceedings of COMPSTAT 2010, pages 177—-186. Springer, 2010.

Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the

trade, pages 421-436. Springer, 2012.

Léon Bottou and Yann Cun. Large scale online learning. Advances in neural

information processing systems, 16, 2003.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-

scale machine learning. Siam Review, 60(2):223-311, 2018.



BIBLIOGRAPHY 82

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learners. In Advances in Neural

Information Processing Systems, 2020.

Victor Campos, Francesc Sastre, Maurici Yagiies, Miriam Bellver, Xavier Gir6-i
Nieto, and Jordi Torres. Distributed training strategies for a computer vision
deep learning algorithm on a distributed gpu cluster. Procedia Computer Sci-

ence, 108:315-324, 2017.

Zheng Chai, Hannan Fayyaz, Zeshan Fayyaz, Ali Anwar, Yi Zhou, Nathalie Bara-
caldo, Heiko Ludwig, and Yue Cheng. Towards taming the resource and data
heterogeneity in federated learning. In 2019 {USENIX} Conference on Opera-
tional Machine Learning (OpML 19), pages 19-21, 2019.

Chia-Yu Chen, Jungwook Choi, Daniel Brand, Ankur Agrawal, Wei Zhang, and
Kailash Gopalakrishnan. Adacomp: Adaptive residual gradient compression
for data-parallel distributed training. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 32, 2018a.

Chia-Yu Chen, Jungwook Choi, Daniel Brand, Ankur Agrawal, Wei Zhang, and
Kailash Gopalakrishnan. Adacomp: Adaptive residual gradient compression
for data-parallel distributed training. In Thirty-Second AAAI Conference on Ar-
tificial Intelligence, 2018b.

Mingqing Chen, Ananda Theertha Suresh, Rajiv Mathews, Adeline Wong, Cyril



BIBLIOGRAPHY 83

Allauzen, Frangoise Beaufays, and Michael Riley. Federated learning of n-gram

language models. arXiv preprint arXiv:1910.03432, 2019.

Yiming Chen, Kun Yuan, Yingya Zhang, Pan Pan, Yinghui Xu, and Wotao Yin.
Accelerating gossip sgd with periodic global averaging. In International Con-

ference on Machine Learning, 2021.

Daning Cheng, Shigang Li, Hanping Zhang, Fen Xia, and Yunquan Zhang. Why
dataset properties bound the scalability of parallel machine learning training al-
gorithms. /IEEE Transactions on Parallel and Distributed Systems, 32(7):1702—
1712, 2021.

Wei Dai, Yi Zhou, Nanqing Dong, Hao Zhang, and Eric P Xing. Toward under-
standing the impact of staleness in distributed machine learning. arXiv preprint

arXiv:1810.03264, 2018.

Christopher M De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré. Taming
the wild: A unified analysis of hogwild-style algorithms. Advances in neural

information processing systems, 28, 2015.

Jeftrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale

distributed deep networks. In Advances in Neural Information Processing Sys-

tems, pages 1223-1231, 2012.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremen-



BIBLIOGRAPHY 84

tal gradient method with support for non-strongly convex composite objectives.

Advances in neural information processing systems, 27, 2014.

Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed
online prediction using mini-batches. The Journal of Machine Learning Re-

search, 13:165-202, 2012.

Yongheng Deng, Feng Lyu, Ju Ren, Huaqing Wu, Yuezhi Zhou, Yaoxue Zhang,
and Xuemin Shen. Auction: Automated and quality-aware client selection
framework for efficient federated learning. /EEE Transactions on Parallel and

Distributed Systems, 33(8):1996-2009, 2021.

Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and commu-

nication efficient federated learning for heterogeneous clients. arXiv preprint

arXiv:2010.01264, 2020.

Aymeric Dieuleveut and Kumar Kshitij Patel. Communication trade-offs for local-

sgd with large step size. Advances in Neural Information Processing Systems,

32,2019.

Peter Elias. Universal codeword sets and representations of the integers. [EEE

transactions on information theory, 21(2):194-203, 1975.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-
optimal non-convex optimization via stochastic path-integrated differential es-

timator. Advances in Neural Information Processing Systems, 31, 2018.



BIBLIOGRAPHY 85

Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. Clustered
sampling: Low-variance and improved representativity for clients selection in

federated learning. arXiv preprint arXiv:2105.05883, 2021.

Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic ap-
proximation methods for nonconvex stochastic composite optimization. Math-

ematical Programming, 155(1):267-305, 2016.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient
framework for clustered federated learning. Advances in Neural Information

Processing Systems, 33, 2020.

Eduard Gorbunov, Filip Hanzely, and Peter Richtarik. A unified theory of sgd:
Variance reduction, sampling, quantization and coordinate descent. In Inter-
national Conference on Artificial Intelligence and Statistics, pages 680—690.

PMLR, 2020.

Eduard Gorbunov, Konstantin P Burlachenko, Zhize Li, and Peter Richtarik. Ma-
rina: Faster non-convex distributed learning with compression. In International

Conference on Machine Learning, pages 3788-3798. PMLR, 2021a.

Eduard Gorbunov, Filip Hanzely, and Peter Richtarik. Local sgd: Unified theory
and new efficient methods. In International Conference on Artificial Intelli-

gence and Statistics, pages 3556-3564. PMLR, 2021b.

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,

Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large



BIBLIOGRAPHY 86

minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677,
2017.

Xinran Gu, Kaixuan Huang, Jingzhao Zhang, and Longbo Huang. Fast feder-
ated learning in the presence of arbitrary device unavailability. arXiv preprint

arXiv:2106.04159, 2021.

Jinrong Guo, Songlin Hu, Wang Wang, Chunrong Yao, Jizhong Han, Ruixuan Li,
and Yijun Lu. Tail: an automated and lightweight gradient compression frame-
work for distributed deep learning. In 2020 57th ACM/IEEE Design Automation
Conference (DAC), pages 1-6. IEEE, 2020.

Song Guo and Zhihao Qu. Edge Learning for Distributed Big Data Analytics:

Theory, Algorithms, and System Design. Cambridge University Press, 2022.

Yuanxiong Guo, Ying Sun, Rui Hu, and Yanmin Gong. Hybrid local sgd for feder-
ated learning with heterogeneous communications. In International Conference

on Learning Representations, 2021.

Farzin Haddadpour and Mehrdad Mahdavi. On the convergence of local descent

methods in federated learning. arXiv preprint arXiv:1910.14425,2019.

Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck
Cadambe. Local sgd with periodic averaging: Tighter analysis and adaptive syn-

chronization. Advances in Neural Information Processing Systems, 32, 2019.

Rui Han, Shilin Li, Xiangwei Wang, Chi Harold Liu, Gaofeng Xin, and Lydia Y



BIBLIOGRAPHY 87

Chen. Accelerating gossip-based deep learning in heterogeneous edge comput-
ing platforms. IEEE Transactions on Parallel and Distributed Systems, 32(7):
1591-1602, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In CVPR, pages 770-778, 2016.

Samuel Horvath and Peter Richtarik. Nonconvex variance reduced optimization

with arbitrary sampling. In International Conference on Machine Learning,

pages 2781-2789. PMLR, 2019.

Samuel Horvath, Lihua Lei, Peter Richtarik, and Michael I Jordan. Adaptivity
of stochastic gradient methods for nonconvex optimization. arXiv preprint

arXiv:2002.05359, 2020.

Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R
Ganger, Phillip B Gibbons, and Onur Mutlu. Gaia:{Geo-Distributed} machine
learning approaching {LAN} speeds. In /4th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 17), pages 629-647, 2017.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of
non-identical data distribution for federated visual classification. arXiv preprint

arXiv:1909.06335, 2019.

Tiansheng Huang, Weiwei Lin, Wentai Wu, Ligang He, Keqin Li, and Albert Y

Zomaya. An efficiency-boosting client selection scheme for federated learning



BIBLIOGRAPHY 88

with fairness guarantee. IEEE Transactions on Parallel and Distributed Systems,

32(7):1552-1564, 2020.

Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu Zhou,
Ligiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, et al. Highly scalable
deep learning training system with mixed-precision: Training imagenet in four

minutes. arXiv preprint arXiv:1807.11205, 2018.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using pre-

dictive variance reduction. Advances in neural information processing systems,

26, 2013.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cor-
mode, Rachel Cummings, and et al. Advances and open problems in federated

learning. arXiv preprint arXiv:1912.04977,2019.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi.
Error feedback fixes signsgd and other gradient compression schemes. In Inter-

national Conference on Machine Learning, pages 3252-3261. PMLR, 2019.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J
Reddi, Sebastian U Stich, and Ananda Theertha Suresh. Mime: Mimick-
ing centralized stochastic algorithms in federated learning. arXiv preprint

arXiv:2008.03606, 2020a.



BIBLIOGRAPHY 89

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian
Stich, and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging

for federated learning. In International Conference on Machine Learning, pages

5132-5143. PMLR, 2020b.

Ahmed Khaled and Peter Richtarik. Better theory for sgd in the nonconvex world.
arXiv preprint arXiv:2002.03329, 2020.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtérik. Tighter theory for
local sgd on identical and heterogeneous data. In International Conference on

Artificial Intelligence and Statistics, pages 4519-4529. PMLR, 2020.

Jakub Kone¢ny, Brendan McMahan, and Daniel Ramage. Federated opti-
mization: Distributed optimization beyond the datacenter. arXiv preprint

arXiv:1511.03575, 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from

tiny images. 2009a.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from

tiny images. 2009b.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Advances in Neural Information

Processing Systems, 25:1097-1105, 2012.

Guanghui Lan and Yi Zhou. An optimal randomized incremental gradient method.

Mathematical programming, 171(1):167-215, 2018a.



BIBLIOGRAPHY 90

Guanghui Lan and Yi Zhou. Random gradient extrapolation for distributed and
stochastic optimization. SIAM Journal on Optimization, 28(4):2753-2782,
2018b.

Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. Non-convex finite-sum
optimization via scsg methods. Advances in Neural Information Processing

Systems, 30, 2017.

Hao Li, Asim Kadav, Erik Kruus, and Cristian Ungureanu. Malt: distributed data-
parallelism for existing ml applications. In European Conference on Computer

Systems, pages 1-16, 2015.

Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling dis-

tributed machine learning with the parameter server. In OSDI, pages 583—598,
2014a.

Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling dis-

tributed machine learning with the parameter server. In OSDI, pages 583—598,
2014b.

Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on
non-iid data silos: An experimental study. arXiv preprint arXiv:2102.02079,
2021a.



BIBLIOGRAPHY 91

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and
Virginia Smithy. Feddane: A federated newton-type method. In 20719 53rd
Asilomar Conference on Signals, Systems, and Computers, pages 1227—-1231.
IEEE, 2019a.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and
Virginia Smith. Federated optimization in heterogeneous networks. Proceed-

ings of Machine Learning and Systems, 2:429—450, 2020.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On
the convergence of fedavg on non-iid data. arXiv preprint arXiv:1907.02189,
2019b.

Zhize Li. Ssrgd: Simple stochastic recursive gradient descent for escaping saddle

points. Advances in Neural Information Processing Systems, 32, 2019.

Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtarik. Page: A sim-
ple and optimal probabilistic gradient estimator for nonconvex optimization.
In International Conference on Machine Learning, pages 6286—6295. PMLR,
2021b.

Zhize Li, Slavomir Hanzely, and Peter Richtarik. Zerosarah: Efficient noncon-
vex finite-sum optimization with zero full gradient computation. arXiv preprint

arXiv:2103.01447,2021c.

Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel



BIBLIOGRAPHY 92

stochastic gradient for nonconvex optimization. Advances in Neural Informa-

tion Processing Systems, 28, 2015.

Xiangru Lian, Mengdi Wang, and Ji Liu. Finite-sum composition optimization
via variance reduced gradient descent. In Artificial Intelligence and Statistics,

pages 1159-1167. PMLR, 2017a.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu.
Can decentralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent. In Advances in Neural

Information Processing Systems, pages 5330-5340, 2017b.

Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized

parallel stochastic gradient descent. arXiv preprint arXiv:1710.06952, 2018.

Xianfeng Liang, Shuheng Shen, Jingchang Liu, Zhen Pan, Enhong Chen, and
Yifei Cheng. Variance reduced local sgd with lower communication complexity.

arXiv preprint arXiv:1912.12844, 2019.

Wei Yang Bryan Lim, Jer Shyuan Ng, Zehui Xiong, Jiangming Jin, Yang Zhang,
Dusit Niyato, Cyril Leung, and Chunyan Miao. Decentralized edge intelligence:
A dynamic resource allocation framework for hierarchical federated learning.

IEEE Transactions on Parallel and Distributed Systems, 33(3):536-550, 2021.

Bill Yuchen Lin, Chaoyang He, Zihang Zeng, Hulin Wang, Yufen Huang, Mahdi

Soltanolkotabi, Xiang Ren, and Salman Avestimehr. Fednlp: A research plat-



BIBLIOGRAPHY 93

form for federated learning in natural language processing. arXiv preprint

arXiv:2104.08815, 2021a.

Tao Lin, Sebastian U Stich, Kumar Kshitij Patel, and Martin Jaggi. Don’t use
large mini-batches, use local sgd. In International Conference on Learning

Representations, 2019.

Tao Lin, Sai Praneeth Karimireddy, Sebastian U Stich, and Martin Jaggi. Quasi-
global momentum: Accelerating decentralized deep learning on heterogeneous

data. In International Conference on Machine Learning, 2021b.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient
compression: Reducing the communication bandwidth for distributed training.

arXiv preprint arXiv:1712.01887, 2017.

Fenglin Liu, Xian Wu, Shen Ge, Wei Fan, and Yuexian Zou. Federated learn-
ing for vision-and-language grounding problems. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 34, pages 1157211579, 2020a.

Sijia Liu, Pin-Yu Chen, Xiangyi Chen, and Mingyi Hong. signsgd via zeroth-order

oracle. In International Conference on Learning Representations, 2018.

Wei Liu, Li Chen, Yunfei Chen, and Wenyi Zhang. Accelerating federated learning
via momentum gradient descent. /[EEE Transactions on Parallel and Distributed

Systems, 31(8):1754-1766, 2020b.

Yang Liu, Anbu Huang, Yun Luo, He Huang, Youzhi Liu, Yuanyuan Chen, Lican

Feng, Tianjian Chen, Han Yu, and Qiang Yang. Fedvision: An online visual



BIBLIOGRAPHY 94

object detection platform powered by federated learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pages 13172-13179,

2020c.

Yucheng Lu and Christopher De Sa. Optimal complexity in decentralized training.
In International Conference on Machine Learning, pages 7111-7123. PMLR,

2021.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. Learning word vectors for sentiment analysis. In Annual
Meeting of the Association for Computational Linguistics: Human Language
Technologies, pages 142—150, Portland, Oregon, USA, June 2011. Association

for Computational Linguistics.

Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. Boosting algo-
rithms as gradient descent. Advances in neural information processing systems,

12, 1999.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and statistics, pages 1273—

1282. PMLR, 2017.

Hiroaki Mikami, Hisahiro Suganuma, Pongsakorn U-chupala, Yoshiki Tanaka,
and Yuichi Kageyama. Massively distributed sgd: Imagenet/resnet-50 training

in a flash. arXiv preprint arXiv:1811.05233,2018.



BIBLIOGRAPHY 95

Aritra Mitra, Rayana Jaafar, George Pappas, and Hamed Hassani. Linear conver-
gence in federated learning: Tackling client heterogeneity and sparse gradients.

Advances in Neural Information Processing Systems, 34, 2021.

Tomoya Murata and Taiji Suzuki. Bias-variance reduced local sgd for less hetero-

geneous federated learning. arXiv preprint arXiv:2102.03198, 2021.

Yurii Nesterov. [Introductory lectures on convex optimization: A basic course,

volume 87. Springer Science & Business Media, 2003.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Tak4¢. Sarah: A novel
method for machine learning problems using stochastic recursive gradient. In /n-

ternational Conference on Machine Learning, pages 2613-2621. PMLR, 2017.

Cyprien Noel and Simon Osindero. Dogwild!-distributed hogwild for cpu & gpu.
In NIPS Workshop on Distributed Machine Learning and Matrix Computations,
pages 693-701, 2014.

Pitch Patarasuk and Xin Yuan. Bandwidth optimal all-reduce algorithms for clus-
ters of workstations. Journal of Parallel and Distributed Computing, 69(2):

117-124, 2009.

Francisco Pérez-Hernandez, Siham Tabik, Alberto Lamas, Roberto Olmos,
Hamido Fujita, and Francisco Herrera. Object detection binary classifiers
methodology based on deep learning to identify small objects handled similarly:
Application in video surveillance. Knowledge-Based Systems, 194:105590,
2020.



BIBLIOGRAPHY 96

Zhihao Qu, Song Guo, Haozhao Wang, Baoliu Ye, Yi Wang, Albert Zomaya, and
Bin Tang. Partial synchronization to accelerate federated learning over relay-

assisted edge networks. /EEE Transactions on Mobile Computing, pages 1-1,

2021. doi: 10.1109/TMC.2021.3083154.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A
lock-free approach to parallelizing stochastic gradient descent. Advances in

neural information processing systems, 24, 2011.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola.
Stochastic variance reduction for nonconvex optimization. In International con-

ference on machine learning, pages 314-323. PMLR, 2016.

Sashank J Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush,
Jakub Konec¢ny, Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive fed-

erated optimization. In International Conference on Learning Representations,

2020.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The

annals of mathematical statistics, pages 400—407, 1951.

Nicolas Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method
with an exponential convergence rate for finite training sets. Advances in neu-

ral information processing systems, 25, 2012.

Khushi Roy, Subhra Debdas, Sayantan Kundu, Shalini Chouhan, Shivangi Mo-

hanty, and Biswarup Biswas. Application of natural language processing in



BIBLIOGRAPHY 97

healthcare. Computational Intelligence and Healthcare Informatics, pages 393—

407, 2021.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747, 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. International journal of com-

puter vision, 115(3):211-252, 2015.

Mher Safaryan and Peter Richtarik. Stochastic sign descent methods: New algo-

rithms and better theory. In International Conference on Machine Learning,

pages 9224-9234. PMLR, 2021.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert,
a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint

arXiv:1910.01108, 2019.

Felix Sattler, Simon Wiedemann, Klaus-Robert Miiller, and Wojciech Samek. Ro-
bust and communication-efficient federated learning from non-iid data. /EEE

transactions on neural networks and learning systems, 31(9):3400-3413, 2019.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with

the stochastic average gradient. Mathematical Programming, 162(1-2):83-112,

2017.



BIBLIOGRAPHY 98

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gra-
dient descent and its application to data-parallel distributed training of speech
dnns. In Fifteenth Annual Conference of the International Speech Communica-

tion Association, 2014.

Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep

learning in tensorflow. arXiv preprint arXiv:1802.05799, 2018.

Christopher J Shallue, Jachoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy
Frostig, and George E Dahl. Measuring the effects of data parallelism on neural

network training. Journal of Machine Learning Research, 20:1-49, 2019.

Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed
optimization using an approximate newton-type method. In International con-

ference on machine learning, pages 1000-1008. PMLR, 2014.

Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. Personalized fed-
erated learning using hypernetworks. In Proceedings of the 38th International

Conference on Machine Learning, pages 9489-9502. PMLR, 2021.

Shaohuai Shi, Kaiyong Zhao, Qiang Wang, Zhenheng Tang, and Xiaowen Chu. A
convergence analysis of distributed sgd with communication-efficient gradient

sparsification. In IJCAI, pages 3411-3417, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.



BIBLIOGRAPHY 99

Alexander Smola and Shravan Narayanamurthy. An architecture for parallel topic

models. VLDB Endowment, 3(1-2):703-710, 2010.

Sebastian U Stich. Local sgd converges fast and communicates little. In Interna-

tional Conference on Learning Representations, 2018.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd

with memory. arXiv preprint arXiv:1809.07599, 2018.

Ananda Theertha Suresh, Felix X Yu, Sanjiv Kumar, and H Brendan McMahan.
Distributed mean estimation with limited communication. In International Con-

ference on Machine Learning. IMLR. org, 2017.

Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning
with moreau envelopes. Advances in Neural Information Processing Systems,

33:21394-21405, 2020.

Martin Takéac, Avleen Bijral, Peter Richtarik, and Nati Srebro. Mini-batch primal
and dual methods for svms. In International Conference on Machine Learning,

pages 1022-1030. PMLR, 2013.

Hanlin Tang, Shaoduo Gan, Ce Zhang, Tong Zhang, and Ji Liu. Communication
compression for decentralized training. In Advances in Neural Information Pro-

cessing Systems, pages 7652—7662, 2018.

Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, Samyam Rajbhandari, Cong-
long Li, Xiangru Lian, Ji Liu, Ce Zhang, and Yuxiong He. 1-bit adam: Com-

munication efficient large-scale training with adam’s convergence speed. In



BIBLIOGRAPHY 100

International Conference on Machine Learning, pages 10118-10129. PMLR,
2021.

Roberto Tron and René Vidal. Distributed computer vision algorithms through

distributed averaging. In CVPR 2011, pages 57-63. IEEE, 2011.

Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim
Verbelen, and Jan S. Rellermeyer. A survey on distributed machine learning.
ACM Comput. Surv., 53(2), March 2020. ISSN 0360-0300. doi: 10.1145/

3377454. URL https://doi.org/10.1145/3377454.

Thijs Vogels, Sai Praneeth Karinireddy, and Martin Jaggi. Powersgd: Practical
low-rank gradient compression for distributed optimization. Advances in Neural

Information Processing Systems, 32(CONF), 2019.

Xinchen Wan, Hong Zhang, Hao Wang, Shuihai Hu, Junxue Zhang, and Kai Chen.
Rat-resilient allreduce tree for distributed machine learning. In 4¢h Asia-Pacific

Workshop on Networking, pages 52—57, 2020.

Hao Wang, Zakhary Kaplan, Di Niu, and Baochun Li. Optimizing federated learn-
ing on non-iid data with reinforcement learning. In /EEE INFOCOM 2020-
IEEE Conference on Computer Communications, pages 1698—1707. IEEE,
2020a.

Haozhao Wang, Song Guo, and Ruixuan Li. Osp: Overlapping computation and
communication in parameter server for fast machine learning. In Proceedings

of the 48th International Conference on Parallel Processing, pages 1-10, 2019.


https://doi.org/10.1145/3377454

BIBLIOGRAPHY 101

Haozhao Wang, Song Guo, Zhihao Qu, Ruixuan Li, and Ziming Liu. Error-
compensated sparsification for communication-efficient decentralized training
in edge environment. [EEE Transactions on Parallel and Distributed Systems,

2021a.

Haozhao Wang, Zhihao Qu, Song Guo, Ningqi Wang, Ruixuan Li, and Weihua
Zhuang. Losp: Overlap synchronization parallel with local compensation for
fast distributed training. /EEE Journal on Selected Areas in Communications,

39(8):2541-2557, 2021b. doi: 10.1109/JSAC.2021.3087272.

Haozhao Wang, Zhihao Qu, Qihua Zhou, Haobo Zhang, Boyuan Luo, Wenchao
Xu, Song Guo, and Ruixuan Li. A comprehensive survey on training accelera-
tion for large machine learning models in iots. /EEE Internet of Things Journal,

2021c.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling
the objective inconsistency problem in heterogeneous federated optimization.

Advances in Neural Information Processing Systems, 33, 2020b.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. A
novel framework for the analysis and design of heterogeneous federated learn-

ing. IEEE Transactions on Signal Processing, 69:5234-5249, 2021d.

Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh. Spiderboost: A
class of faster variance-reduced algorithms for nonconvex optimization. arXiv,

2018, 2018.



BIBLIOGRAPHY 102

Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification
for communication-efficient distributed optimization. In Advances in Neural

Information Processing Systems, pages 1299—-1309, 2018.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and
Hai Li. Terngrad: Ternary gradients to reduce communication in distributed

deep learning. In Advances in Neural Information Processing Systems, pages

1509-1519, 2017.

Feijie Wu, Shiqi He, Yutong Yang, Haozhao Wang, Zhihao Qu, Song Guo, and
Weihua Zhuang. On the convergence of quantized parallel restarted sgd for cen-

tral server free distributed training. arXiv e-prints, pages arXiv—2004, 2020a.

Feijie Wu, Song Guo, Haozhao Wang, Zhihao Qu, Haobo Zhang, Jie Zhang,
and Ziming Liu. From deterioration to acceleration: A calibration approach
to rehabilitating step asynchronism in federated optimization, 2021. URL

https://arxiv.org/abs/2112.09355.

Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong Zhang. Error compen-
sated quantized sgd and its applications to large-scale distributed optimization.

In International Conference on Machine Learning, pages 5325-5333, 2018.

Wentai Wu, Ligang He, Weiwei Lin, and Rui Mao. Accelerating federated learn-
ing over reliability-agnostic clients in mobile edge computing systems. [EEE

Transactions on Parallel and Distributed Systems, 32(7):1539-1551, 2020b.


https://arxiv.org/abs/2112.09355

BIBLIOGRAPHY 103

Xing Wu, Zhaowang Liang, and Jianjia Wang. Fedmed: A federated learning

framework for language modeling. Sensors, 20(14):4048, 2020c.

Xueyu Wu, Xin Yao, and Cho-Li Wang. Fedscr: Structure-based communication
reduction for federated learning. /EEE Transactions on Parallel and Distributed

Systems, 32(7):1565-1577, 2020d.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image

dataset for benchmarking machine learning algorithms, 2017.

Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial
worker participation in non-iid federated learning. In International Conference

on Learning Representations, 2020.

Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. Ima-
genet training in minutes. In Proceedings of the 47th International Conference

on Parallel Processing, pages 1-10, 2018.

Chen Yu, Hanlin Tang, Cedric Renggli, Simon Kassing, Ankit Singla, Dan Al-
istarh, Ce Zhang, and Ji Liu. Distributed learning over unreliable networks.
In International Conference on Machine Learning, pages 7202—7212. PMLR,
2019a.

Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communica-
tion efficient momentum sgd for distributed non-convex optimization. In Inter-

national Conference on Machine Learning, pages 7184-7193, 2019b.



BIBLIOGRAPHY 104

Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communica-
tion efficient momentum sgd for distributed non-convex optimization. In Inter-

national Conference on Machine Learning, pages 7184—7193. PMLR, 2019c.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster conver-
gence and less communication: Demystifying why model averaging works for
deep learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 5693-5700, 2019d.

Mingchao Yu, Zhifeng Lin, Krishna Narra, Songze Li, Youjie Li, Nam Sung Kim,
Alexander Schwing, Murali Annavaram, and Salman Avestimehr. Gradiveq:
Vector quantization for bandwidth-efficient gradient aggregation in distributed
cnn training. In Advances in Neural Information Processing Systems, pages

5123-5133, 2018.

Peihua Yu and Yunfeng Liu. Federated object detection: Optimizing object de-
tection model with federated learning. In Proceedings of the 3rd International

Conference on Vision, Image and Signal Processing, pages 1-6, 2019.

Honglin Yuan and Tengyu Ma. Federated accelerated stochastic gradient descent.

arXiv preprint arXiv:2006.08950, 2020.

Zhuoning Yuan, Zhishuai Guo, Yi Xu, Yiming Ying, and Tianbao Yang. Federated
deep auc maximization for hetergeneous data with a constant communication
complexity. In Proceedings of the 38th International Conference on Machine

Learning, pages 12219-12229. PMLR, 2021.



BIBLIOGRAPHY 105

Chulhee Yun, Shashank Rajput, and Suvrit Sra. Minibatch vs local sgd with shuf-
fling: Tight convergence bounds and beyond. arXiv preprint arXiv:2110.10342,
2021.

Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, and Ce Zhang. Zipml:
Training linear models with end-to-end low precision, and a little bit of deep

learning. In International Conference on Machine Learning, pages 4035-4043.

JMLR. org, 2017.

Hongyi Zhang, Sashank J Reddi, and Suvrit Sra. Riemannian svrg: Fast stochastic
optimization on riemannian manifolds. Advances in Neural Information Pro-

cessing Systems, 29, 2016.

Jie Zhang, Song Guo, Xiaosong Ma, Haozhao Wang, Wenchao Xu, and Feijie
Wu. Parameterized knowledge transfer for personalized federated learning. Ad-

vances in Neural Information Processing Systems, 34, 2021.

Ruiliang Zhang and James Kwok. Asynchronous distributed admm for consensus

optimization. In International conference on machine learning, pages 1701—

1709. PMLR, 2014.

Shen-Yi Zhao, Hao Gao, and Wu-Jun Li. On the convergence of memory-based

distributed sgd. arXiv preprint arXiv:1905.12960, 2019.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chan-
dra. Federated learning with non-iid data. arXiv preprint arXiv:1806.00582,
2018.



BIBLIOGRAPHY 106

Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma,
and Tie-Yan Liu. Asynchronous stochastic gradient descent with delay compen-

sation. In International Conference on Machine Learning, pages 4120-4129.

PMLR, 2017.

Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic nested variance reduction
for nonconvex optimization. Advances in Neural Information Processing Sys-

tems, 31, 2018.

Fan Zhou and Guojing Cong. On the convergence properties of a k-step averaging
stochastic gradient descent algorithm for nonconvex optimization. In Proceed-

ings of the 27th International Joint Conference on Artificial Intelligence, pages

3219-3227, 2018.

Qihua Zhou, Song Guo, Zhihao Qu, Peng Li, Li Li, Minyi Guo, and Kun Wang.
Petrel: Heterogeneity-aware distributed deep learning via hybrid synchroniza-
tion. /IEEE Transactions on Parallel and Distributed Systems, 32(5):1030—1043,
2020.

Yuhao Zhou, Qing Ye, and Jian Cheng Lv. Communication-efficient federated
learning with compensated overlap-fedavg. IEEE Transactions on Parallel and

Distributed Systems, 2021.

Martin Zinkevich, Markus Weimer, Lihong Li, and Alex Smola. Parallelized
stochastic gradient descent. Advances in neural information processing systems,

23, 2010.



Appendices

A Proof for Cascading Compression

SSDM. An element v; in vector v is compressed for {+1, —1} following the prob-

ability that:

~ +17 p’f’ = % + 2‘
sign (v;) =

—1, pr:%—

where si~gn(') refers to the compression operator. In such an operation, the ex-
pected value for sign (v;) is v;/||v||. Therefore, Esign(v) = v/||v|. Since the
{y-norm ||v|| is a constant, SSDM can achieve unbiased update with the gradient
|| - sign(v), which we define as Q(v).

Suppose the gradients calculated by all clients are s(), ..., stM) € RP. Follow-

ing lists various model updates, including

. A M
« Non-compression approach: s; = - > " | s

- SSDM under PS: s, = L M g (s(m)

107
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- SSDM using cascading compression: s; = L0 (.Q(sW) + ... +5M)

Vv
M recursive compressions

Since the compressor Q is unbiased, the equality that E(s,) = E(s3) = s; holds.
It is universally acknowledged that the update under MAR is equivalent to that
under PS. In this part, we aim to evaluate the deviation between the compression
and the non-compression results, i.e., || s, — 1 ||5 for SSDM under PS and || s3—s1]|3
for SSDM using cascading compression. Prior to analyzing these two bounds, we
introduce a assumption that widely adopts in (Bernstein et al., 2018a; Safaryan and

Richtarik, 2021):

Assumption 1 (Bounded gradient). For any worker m € {1,..., M'} and vector

x € RP, a scalar G > 0 satisfies
2
E||s™], < G

Next, we first analyze the upper bound for the deviation under PS paradigm:
Theorem 1. Under Assumption [l the upper bound for ||sy — s1||3 is O(DG?).

Proof. Based on the expression of the variance,

1 i my _ L f: (m) 2
E||l— Q(sm)—— s\
Mm:l Mm:l 2
1 U ’ 1 U ’ 1 U ’
=E[|[—= ) Q™) —E||=) ™| <E[|=> 9(s"™)
7 2 20| Bl 2| =Bl 20|
< L Hs(m)Hz . Hsfgn (s(m))H2 < DG?
_Mmzl ? 2
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where the second last inequality is based on Cauchy—Schwarz inequality, and the
last inequality follows Assumption [I] and the sign matrix containing D (+1)s or

(—1)s, i.e.,

51gn H =D, Vme {1,..,M}. O
Then, the following theorem analyzes the boundary of cascading compression:

Theorem 2. Under Assumption [l the upper bound for the deviation of cascading

compression is

2D)MG?
s — w113 < B2 0

Proof. Similar to Theorem [I, we have:

<E Hig (.0 (s) + ..+ 500)

< SEEQ (O () ot D) 500

< 2PE(1Q (- Q(s) + ..+ s 2Dy

%%
M:
iIQ

where the third last inequality is based on ||a + b||3 < 2||a||3 + 2|/b]|3 and follows
Assumption [, while the last inequality is based on a common sense that D > 1.
Generally speaking, the dimension of a neural network is far larger than the number

of workers, i.e., D >> M, and therefore, current bound is tighter than the result

G2(2D)M+1/ M2, O

Obviously, when M = 1 such that the training under PS paradigms is equiv-

alent to that under cascading compression, they have consistent upper bound. Al-
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though both theorems show the upper bound, PS paradigm is unlike cascading

compression approach that explodes rapidly with respect to the number of work-

ers M.

B Proof for Marsit (Theorem (3.1)

By constructing an auxiliary array {§} such that j, = X,—c,, where ¢, = S cgm) /M,

m=1

we analyze its recursive function from the following two aspects:

* ¢y =0:
L~ o m o~ ()
Y1 = Xep1 = Xy MmZ:l (mgt + ¢ ) =Yt — MmZZIQt (2)
* a1 # 0
_ - . 1 o (m) | (m) R
Y1 = Xpp1—Cp1 = Xt—gt—Mmz_:l (mgt to - ) Yt _M;

€)

Let g, = M g™ /M and g{™ here only means V f,, (f(t; §,(€m)> in this proof.
Obviously, regardless the value of ¢, 1, the recursive function is 4,11 = Uy — M10:.

According to L-smooth assumption for the non-convex objectives, we have:

. B . B L_. . . B
EF(Ge1) — F(9:) SENVE (W), Y1 — Ue) + _E Y41 — yt||§

M 2

Z

m=

— —WE(VF (). VF %)) + 2LE
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M w2 L 5 Lnto?
<2 (0= L) [9F )13 + B g -3+ 20
4)

where the last inequality is based on the unbiased estimator for the calculated gra-
dient, i.e., V[, (it; 5,8”’) . Next, we will find the bound for E ||, — %, %, which is
equivalent to IE ||¢,||. Algorithm [I] performs the full precision synchronization ev-
ery KX rounds and therefore, there exists at, > ¢ — K such that ¢;, = 0. Following

analyzes the case that ¢; is a non-zero vector:

E ”CtHg =E|ci—1 + mGi—1 — Usgt_ng

1 ~
< (1 n ?) Elcially + (1+ K)E Imgi-1 — nsgr1 5

t—1 1 t—1—7
< (HE) (14 K)E |mgr — ns9- 5

T=to
t—1
<31+ K)- > Elmgr —nsg- 3
T=to
t—1 t—1
<61+ K) D E|g. )5+ 6021+ K) D> Elg.3
T=to T=to
t—1 0_2
=60/ (1+ K) Y E[VF&)|[ + 607 (1 + K)K - 7t 6n2(1 + K)KD
T=to

()

where the first inequality is based on (a+b)? < (1+ +)a?+ (1+ K )b, and the last
equality is according to ||g.||3 = D because it is only constituted with {+1, —1}

for all D dimensions. Suppose the optimal solution for the non-convex objective
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F(-) is F,. Therefore, plugging the result from Equation [§ into Equation 4, and

summing Equation [ for all ts from 0 to 7', we have:

~
L

F, — F(xp) < (EF(Gr41) — F(3:))

M

it
o

| 3
’ﬂ
._.

S (1— Ly = 3L K(K +1)) ||VF (%)

t

2T ) 0_2 )
6n (1+ K)K - -+ 6n7(1+ K)KD ) +

Il
=)

Ln}oT
2M

S
h

By setting 7, = /M /T and n, = 1/+/TD, and assuming that 7" is sufficiently

large, i.e., T > 9L?K?(K + 1)?, we can obtain the desired conclusion.

C Proof of Theorem 4.1

The following lemma describes the relationship among three different parameters

under strongly-convex function:

Lemma 1. Under Assumption and Assumption given a,b,c € RY the

following formula holds under the strongly-convex objectives F':
(VF(a),b—c) < F(b) —F(C)—%Ilb—0||§+Llla—CII§ (6)

Proof- With a, b and ¢ that are within the domain of ¥, we can get the following

inequalities that come from Assumption .1 and Assumption §.2, respectively:
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By a formula that

la — b3 < 2[la — c[l +2[[b —c|3

we have:

(VF(a),b—¢) < F(b) = F(¢) = {l[b — cf3 + =Flla — ¢

The inequality holds when L > p.

The update rule for FedAvg under heterogeneous steps:

Xi11 = Xp — nZwl ZVfZ( f, >
i=1

Therefore, the bound established for E ||x,;1 — x. || should be:

2
E | —x[l; =E

X; — ZwZZVfl< tho € >—x*
nzwzzvfz (thwglc)

=1

—2E <Xt x*,nzwz Kzl Vi (thagk >>

=1

2

=E|x; — x* Hz—i-]E

2

113

(7)
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M
=E|x —x[f3 + 7 ) wiKo®
i=1

2
+ n’E

M K;—1
> wivE (x))

i=1 k=0

2
>

Ao

M Ki-1 ‘
) ) <xt — X, 7N Zwi Z VE, <x§1,)€>>
i=1 k=0

Ay

We first find a upper bound for A; in accordance with Lemma [

M K;—1

A= 2772 Z w; - E <X* — X4, VF; <X§112:>>
i=1 k=0
= nuk
<2 Wil [Fy (x) = Fi (x,)] — 5 X — x5
=1
M K;—1 ' )
+ 277[/2 Z w;E ‘ XEZ])C —X;
i=1 k=0 .
As
. 2
To find the maximum value for A3, we bound E ‘ XEZ% —xq|| fork e {1,...
’ 2

via the following inequality:

. 2 . ) . 2
E ’ xi,)c —-x|| =E ’ x%_l —nVf; (xif,l_l,s,(glll) - x|
@ . NEOERY e
S E Xt,k‘—l Xt HVE Xt,k}—l 9 + 77 g

i)
k-1 Xt

2 2 2
+n°o
2

X,

(2) ] 1
()]

o (z |vr (x0) - VR &)

)

114

(8)

)

(10)

(11)

(12)

) K’L}

2 N2
"+ 2|VE @3
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1
< (1 2K2L2‘
_(+Ki_1+ n )

+1n%0% + 2Km* |V E; (x5

) 2
() 4
t,k—1 t

X

2

where (a) follows triangle inequality, i.e., (z +y)? < (1+k)z* 4+ (14 1/k)y? for

1

R (Bmn—1) 12> WE have:

all £ > 0. By setting n <

k—1
E‘xgz)c—xt §Z<1+K 1) (70® + 2K |V F; (x0)])
-0 3
k
142
Kz 1 2 2
(n°0? + 2K |V F; (x,) |3 )
(a)
< 4K, (77202 +2Km” |VF; (x:)])3) (13)

where (a) is on account for:

2\
(1+Ki_1) <9 for K, >2

Based on the derivative above, we can obtain the bound for A5 with:

M K;—1

As <303 wi - AK; (0 + 2K |V Fi (x)13)

i=1 k=0

M M
=4n’0” Y WK} + 80> w K] ||V, (x)|;

i=1 i=1
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Therefore, the bound for .A; can be further simplified as:

K

M
Av € 203 ks (B () = Fy ) = 55 e =l
M M
+2nL |4n*0® Y " wiK? + 80w K} ||V, (Xt)”;]
=1 i=1

Next, we consider the bound for A,:

Ki—1 2

M
Z w; [VFl- (x%) — VF; (xt)}
i=1 k=0
M
Y wiKVF; (x)
=1

M K;—1
<Y Y wik;- E‘

i=1 k=0

Ay <2 E

2
2

+2n*-E

2

M
. 2
X x| 200 Y Wk | VE ()]l
i=1

M M
< 8774L202 ZMKE + 2772 Z‘WK@Q (1 + 8772L2Ki2) IVE (it)”g

i=1 i=1

Therefore, pluging A; and A, into the inequality bound for E ||x;4; — x*||§, the

bound can be simplified as:

> M
* K * *
Elles = X1 < (1- 20 ) Bllw— x5 + 203 [F(x) - Fi (0]
=1
M M
+ 8nP0*L Z w; K? +n*o? Z wlK;
=1 i=1

M M
+ 8774L2<72 Z win’ + 16773L Z wiKig IV F; (x¢) Hg

i=1 i=1
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M
+ 2 > wik? (1+ 8P LK) [V F; (%)

=1

Divided K on the both side, we can obtain the following formula:

%i?mﬂm@ﬂ—EWﬂ

1 K i} 1 .
<z (1= 5 Bl - x1E - Bl - X
1 2 Kn
8202 & ,  no’ M ) 8320 & 5
_ K24 P A Ne

By applying Lemma 1 from (Karimireddy et all, 2020b), we can obtain the desir-
able result. It is worthwhile to mention a formula below that supports the reason

why the gap exists between a stable point and the optimal solution:

sz‘Ki(E‘(Xt) — Fi(x.)) > Knin Z%’(E‘(Xt) — Fi(x.))
- sz(Kz - Kmin)Fi(X*)

The inequality holds when the value of the objective function is non-negative. This
formula indicates that the data heterogeneity can be eliminated under homoge-
neous computing environment since for all ¢ € {1,..., M}, K; = Ky;,. Thus, in

this case, we can obtain the same convergence order as (Karimireddy et al., 2020b).
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D Proof of Theorem @

According to L-smooth, we have:

. N . . L_ . . N
E[F(X1)] — F(X) SE(VFE (X)), X1 — X)) + §E [Re1 — %ell5 (14)

The first term of Equation (14). We firstly find the bound for the first term of

Equation ([14)):

E(VE (X),X41 — X¢)

M K;—1 )
_E <VF (%), -n> Y wiVF (x})
=1 k=0

i—

M
A w Y VA (xY,) - MKV (i)
=1 ~k=0

K;—1
R S Y %(VFZ (x§ ) VE (% 1))>
K <K k=0 "
M K;—1
- _Mg <KVF (). > Y wivF (x})
i=1 k=0
M Ki—1
=3 WA (MY, + KVF (i)
i=1 k=0

- I(maxIE <VF Xt )

A
- "Kuvm )12 (15)

M K;—1

ZZMZVF( )

i=1 k=0
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M K;—1 )
=3 WV (xY,) + KVF (i)
i=1 k=0
K “ (VF,- ( §217k> _VF, (it_1)> (16)
i Ki<K k=0 " 9
A = - = - = i i
+ 3=E | KVF (%) = KVF (%1) kzzo wi (VE (x2) = VE (x2,,))
Ki—1 Wi . 2
e o (vE <x£117k> _VF, (it_1)> (17)
i Ki<K k=0 " 9
2
N(1 — A) Kinax 8 N1 =N [|em = ()
~ P | VE (&)~ T B ; kzo wVF, (x(7) 2 (18)
2
(1 — ) Kmax . 1 Q! (i)
+ SR | VF (R) — z; kzo WiV F; (xt’k) 2 (19)

Next, we bound the term of Equation ([L9) ignoring the coefficient term, i.e.,

7)(1*)\) Kiax .
-3 -

> w (1 - KKi )vm (%)

=1

K ~ Kmax
< (1 - Kmax> B’E||[VF (%,)|3 + (1 e )T1
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where

| MKl 2
T =E|—Y" wi(w«‘;( ) VF< ))
max ;-1 k=0 2
2 MoKl L
S 70 Z w; IGE ‘ Xgli — Xy

and (a) follows triangle inequality, i.e., (z +y)* < (1+ c)gs2 + (1+1/c)y? for all
¢ > 0. We denote Equation ([17) omitted the coefficient 7= by T,. Therefore, its
upper bound is obtained through the following derivation:

2
(@)
Ty < 5K*E||VF (%) — VF (X1)|]3 + 5E

S 3 (VA (30 - vF )

1=1 k=0

2

M K;—1 ' 2
+5E |3 > wi (VA (x21,) — VF (1))

i=1 k=0 2

M K;—1 2
+5E > wi (VF (X¢) = VF (X;-1))

i=1 k=0 2

K;—1 Wi 2
4 5K2E 7 (VF ( (1) ) _VF (it_1)>
ZszS k=0 2
M M K;—1 9
<52 <K2+Zwl E[% — %13 +52°5 ) wZK]EH x) —xtHZ
i=1 k=0
M K;—1
2

+522%° ZMKEH xR 1H2

=1 k=0

2
272 s
+5K2L2 Y Z l]EHt L= e
i, K; <K k=0

M K;—1

2
< 10LQZ%K2Eth — g2 52Y Y wZKJEH x) —xtH2
i=1 =1 k=0
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(2)

2
Xt~ %o | (20)

M K;—1 KQ
+5L2> > ws (K¢+K>E
i=1 k=0 ‘
where (a) divides (VF (xt k) VF; <xt 1 k)) into three terms, i.e., (each bracket
should be treated as an individual term): (VF (xt k) VF;(x ))
<VF (xt 1 k) — VE, (it,l)) +(VF; (X;) — VF; (X;—1)). By observing Equation

. 2
(20), we notice that it is indispensable to acquire the upper limit of E ‘ xgzlz; — Xy
’ 2
2 , A 2
g R e I IR
1 (i) - 12
(i) el
AN 0 LS W )
2 i i
+ Kin"E g, 11 — K, Gt-16 T )‘Z fj 9 g
k=0 =1 k=0
Kj—1 2
Wi
+A Z Z KJ (gt( )10 gt(])lk)
GE>K k=0 "7 5
1 @ |
=
+ K °E ||V F, (x,ﬁ}g 1) -2 Y VR (xgﬂm)
v k=0
M Kj—l
Wi ()
A% 2V (Xt )
j=1"7 k=0
2
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We denote the second norm in Equation (22) by 75. Similar to the derivation for

Ty, i.e., Equation (20), we have the following inequality under Assumption f.4:

2 8)\2L2

2

k—1

ZE\

Xt 1,k — X1

M K;j—1

+16xry Y %E’

j=1 k=0 J
+8((1-N?B*+ X)) E||VF (%)|3

+16)2L°E ||%, — %13

Xt 1k_xt 1H

24)

By setting n < MT and following the steps of Equation ([13)), we have:

g 1 —-1|T 25
B (<+Ki_1> ) . 0)

X

E %) - %

kX

where

2

K;—1
Ty = 16N L2 K & — %2+ 802022 ) X7~ %

k=0
K; 71
2

M
+ 16N L Ky

j=1 k=0 J

+ 8K (1= A\)?B%+ \) |[VF (%) |3 + 4Kin*o”

Xt 1k_xt 1

2

2

M
AN o 4+ 12Km° N0 L
+ 4N n%0? + n Z::K
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As a result, when the learning rate 7 is sufficiently small, the upper bound for 75

should be

i=1
M K;—1

+ 20K Y wE ‘

i=1 k=0

+ 607 L Kby (1= N2B2+ A) E||VF (%)||5

max

M
T < (20[/2 szKZQ) E % — it_1||§

2

(@) <
XiZ1p — X1

2

M M
+30° L% Y w4+ 30 L0\ ) wiK}

i=1 =1

M 2 M
w:
+ 902 L2 0% \? <§ ﬁ) § w K} (26)
j=1 "7/ i=1

The second term of Equation (14). We now give the upper limit for E ||X,,; — %|| g:

E %1 — %3

M K;—1

> v (x)

i=1 k=0

<1’E

(VE- (X,—1) = VF; ( EZ_)U’C))
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+KVF (%1)|;

M K;—1 2
+ 277 Z Z ( El )
i=1 k= 9
+37]2022W'2Ki+3772/\2022w-2 (5[(2 —|—Ki) o7
i=1 z i=1 "\ K

Final result. By the inequality from Equation (26) and Equation (27), we can

add two extra terms on the left hand side of Equation [14, i.e., E ||%; — %;_; ||3 and
M —Ki—1
Dict Dk WilGE ‘

learning rate is sufficiently small:

. 2
xf_)l » — X¢—1|| , and obtain the following bound when the
’ 2

M K;—1

2
E[F (%+1)] + p1E [ %e1 — %[5 +P2Z Z sz]EHth - X
=1 k=0 2
M K;—1 2
< P+ mE % — %l 402> Y0 w62, — %)
=1 k=0

(O D e (4 (1 Y ) o

+3<L—|—p1> (ZoﬂK +>\2§I: (E)I[((JFK))

i=1 i=1

where p; = o (%L2 M w (K?+ K2)> andp; = o <"—L (1 + % >> There-
fore, the final result is:

T . M

1 - F(x,) — F(x no?L

T > ||VF(Xt)||3:O((n))\KT(1))+O< Ve > w?&)
t=1

i=1

no“LA o K 9 wiK
— =1 L
—l—(’)( % i:1wl (Ki + O | no“LA g K,

i, Ki>K
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E Proof of Theorem 4.3

At the very beginning, we set A = 1 to find a valid bound. Based on the definition,

. . . 2
we can find a recursion function for E ||X;11 — X, |5

%1 — %2 = B||(% — %) + Rerr — x|

= E[[% — %[5 + B |Xe41 — Xl + 2 (% — X0, X1 — )

=E|% — x5 + E %141 — %3 (28)
M K;—1 )
+2E <x XY > wVE (xif,l)> (29)
i=1 k=0
M K;—1 ‘
RACE) 9 R AICONY 30)
i=1 k=0
+ 2E (x; — X4,
K;—1
z Wi () -
0K Y Y0 (VE(x) - VR <xt_1>)> G1)
GKG<KE ' k=0
+ 2E (X; — X,, —nKVF (X;-1)) (32)

We denote Equation (29) to (32) by Q;, Q,, Qs and Q,, respec. There ativelyre
two terms in Equation (29) and Equation (B0), namely Q; and Q,, between which
the subscript is different (i.e., one for ¢-th update while the others for ¢ — 1-th

update). The following will present how to bound Q; first, and then Q5.

K;—1

0 =133 wE (VF (x)) = VF (%) % — %)

i=1 k=0
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M K;—1
n K < 12
§§Z w1< EHVF( ) VE, (%) +1—6E\|X*—xt||2)
=1 k=0
M
+0 Y wiIGE(VE; (%), %, — %)
=1
877L2 — WK 2
7 * E x
zz R I - %

+7 Z wiKGEA(VE; (%), X, — X;)

=1

where the first inequality refers to (a,b) < (||a||3 + ||b]|2)/2 and the last one is

according to Assumption }.1. Likewise, we can find the bound for Q,:

8 L? K -
. o+ Ry, - %l

ZZ%]E‘

i=1 k=0
M

+1n Z Wi KGE(VE; (Xi—1) , Xt — X4)

=1

Xt 1E X«

As a result, we have:

8 L2 M K;—1
0+ 0 <MY 3w (E]
i=1 k=0

¢
— 16
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s M K;—1 i 9 i 5
_ ZZM(E]X;;_X* L[ 2)
k=0
3nuK SnKL*>
SoElx — %3 + = E % — %l

where the last inequality is based on {a,b) < (||al|3 + ||b]|3)/2 and Assumption
@1

For the term in Equation (B1]), according to the inequality that (a, b) < (||a||3+
||b]|3)/2 and the assumption of L-smooth, we have:

Qs = —77[_( Z % I:Z__OIE <3~1t — Xy, VI (Xgi_)m) — VF (it71>>

(2

i, Ki<K
SUKLQ Z Z wz ‘ (%) < 2 nuk <12
X 1k Xt—lH + o5 E lx — XI5
i, K;<K k=0 2 32

The last equality holds because w; > 0 and K; > 0 such that the sum for those
K; < K is not greater than the one for all workers.

Based on Lemma [l above, it is easy to derive the bound for Q,, which is:

Q4 =nKE(VF (X_1), X, — X¢)

E
<ok (F(x) = F(&) — YE 1% = X3 + LE[1% - %1]13)

According to the bound for E ||%;, — X;|| in the proof non-convex objectives, i.e.,



APPENDICES 128

T5, we have:

M M - 2
- - K
E(|%1 — X||5 < 20°\2Q5 + 310 E w; K; + 3n°\o? E w? (? - 1) K;
i=1 i=1 !

WiK?
K;

+ 121°M\%0? Z

i,Ki>K

where

2

(33)

Unlike the procedure in non-convex objectives, Q5 cannot be eliminated. There-

fore, we should find a general bound for Equation (B1)), where we can further

simplify as:
M K;—1
0 =E (Y Y w (VA (x)) - VR )
i=1 k=0
M K;—1
- Z Wi <V-FZ (XIE?l,k) VE (it—1)>
i=1 k=0
K Y S (VR (x) - VR (Re)
iKi<K ' k=0

+ K (VF (%,.1) — VF (x;)) + KVF (x;)
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M 2
+> Wil (VF, (%) — VF; (%1))
=1
M K;—1 ‘ ’ K;—1 9
<60’ Y wKE ‘ x| 16223 wKE ’ X =%
i=1 k=0 =1 k=0
i} w 4 2
+6RL2 Y Y R ‘ X%

+12K2L°E ||%; — %, 1|5 + 6K2L*E | % — x.||;
Plugging the results above, we can obtain the bound for E||x;;; — X.||3 as:

E [|%i+1 — x5

K -
< (1-25) s - x

M K;—1
+ 120° N2 L2 Z Z w;
i=1 k=0
M K;—1 9
+12n2/\2L2ZZwZKE’xt =%
i=1 k=0
2
2V\2 772712 o
+ 12N KP L2 Y Z ‘ — X,
i, K; <K k=0

+ 24PN K2R ||X, — %5 + 1202 2 K2LPE ||%, — x5

2 9 2 2\2 2 K ’ 2\2 2 w; K?
+ 3o ZwK+3n)\ Zw (E—l) K; +12n*X°o Z

=1 v Z',Ki>k

1677L2ZZ ( ’ Z)

— X4

+E)

Xt 1 X«
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16nKL2 . 160K L2 b
+UTE||xt—xt_1||§—l—nT Z Z ?E‘X

(2

. 2
(@) _ it 1”
t—1,k 9

i, K;<K k=0

+ 29K (F(x.) — F(%) + LE |[% — %1[3)

. . . ~ ~ 2
By observation, there are two recursive formulas, i.e., E|x; —X;_1||; and
2
M —Ki—1
S S wE |

xf_)l x — X¢t—1|| , and the coefficients of both of them con-
’ 2
tain the stepsize n. To release these formulas, we let the formula at the left hand

side be the formula as follows:

M K;—1
Vir1 = E|[Xe1 — X*Hg +wE X1 — it”i + Uz Z Z w; IGE ‘

1=1 k=0

. 2
() _ <

X X;
tk )

where u; and us are the coefficients containing the stepsize of 7 such that the co-

2
efficient for E ||X, — %, 1|3 and S0 S P wi KGR ’ on the right
2

(@) <
X, Z1e — X1

hand side become negative and thereby, can be omitted when finding the bound.
Also, we notice that the added term includes 7? after simplification. Therefore, the

formula can be further simplified as:

Vi < (1= 25 ) 9 - 2R (PR) - F(x.)
M M K 2
+ 610> Zl W2 K; + 612 \20? Zl w? (E — 1) K,
W2K?

+ 24n* N0 Z

i,Ki>K
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The rest step is similar to the proof in Theorem [&.1. Therefore, we can obtain the
expected result in Theorem .3, Different from Theorem [.1], this theorem release

the term of data heterogeneity and therefore, our result can successfully converge

to the global optimizer.
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