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Abstract

Distributed machine learning has intrigued a booming interest and achieved rapid

development over the past decades. It allows multiple nodes with different data

sources to collaboratively train a model using their local computational resources,

which achieves linear speedup with respect to the number of nodes. However, the

distributed manner mainly has threefold challenges. First, fullprecision synchro

nizations occupy significant communication bandwidth. In particular, traditional

algorithms require global synchronization at every iteration, which consumes con

siderable communication overhead and leads to a critical slowdown in terms of

training time. Second, the computational capabilities vary among nodes, result

ing in resource underutilization because all nodes should wait for the slowest one.

Third, a conventional assumption on the data distribution is independent and iden

tical among nodes. However, in reality, the data are heterogeneous because there

is no intersection between any two clients when data sharing is not permitted.

To avoid the overwhelming communication consumption, a common practice

is to adopt a gradient compression approach, e.g., onebit compressed stochastic

gradient descent (signSGD). Traditional signSGD has made a great success in a
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star topology. However, due to cascading compression, it can not be directly em

ployed in multihop allreduce (MAR), a synchronization paradigm that has been

widely adopted in networkintensive highperformance computing systems like

public clouds. To support signSGD implementation under MAR, we propose a

learning synchronization system, Marsit. It prevents cascading compression by

employing a bitwise operation for unbiased sign aggregation and a unique global

compensation approach to accommodate the compression deviation.

Another solution to reducing the communication overhead is to allow nodes to

perform multiple but inconsistent local updates, which simultaneously settle com

putational heterogeneity. However, the strategy possibly leads to object inconsis

tency when data heterogeneity exists, which undermines the model performance.

Consequently, we design a gradient calibration approach, FedaGrac, which cali

brates the local direction to a predictive global orientation. It is guaranteed that

the aggregated model does not vary substantially from the global optimum while

fully utilizing the local updates of faster nodes by using the estimated orientation.

In a nutshell, we utilize the gradientwise approaches to optimize the training

efficiency in distributed machine learning. Theoretical results reveal our gradient

compression framework retains the same convergence rate as noncompression

mechanisms, while the gradient calibration algorithm holds an improved order of

convergence rate than the stateoftheart approaches. Extensive experiments have

demonstrated the superiority of our proposed methods.
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Chapter 1

Introduction

Over the past few years, IoT devices such as smartphones have been powerful

enough to train complex models like deep neural networks. However, training on

a single node can not be comparable with the traditional centralized training on the

cloud. With the prevalence of edge devices around the world, collaborative train

ing has now become a mainstream to expand the computational resources, induc

ing a golden period for the development of distributed machine learning (Alqah

tani and Demirbas, 2019; Chen et al., 2018b; Li et al., 2015, 2014a,b; Sergeev and

Del Balso, 2018; Verbraeken et al., 2020; Wan et al., 2020; Wu et al., 2018; Yu

et al., 2019a,b), also known as largescale machine learning (Bottou, 2010; Bottou

et al., 2018; Tang et al., 2021). Recent years have witnessed its success in both

computer vision (Agrawal et al., 2015; Campos et al., 2017; Liu et al., 2020c; Tron

and Vidal, 2011; Yu and Liu, 2019) and natural language processing (Chen et al.,

2019; Lin et al., 2021a; Liu et al., 2020a; Wu et al., 2020c). From the theoretical

1



CHAPTER 1. INTRODUCTION 2

perspective, existing optimization studies (Bottou et al., 2018; Karimireddy et al.,

2020b; Yu et al., 2019c,d) demonstrate that distributed machine learning achieves

linear speedup with respect to the number of clients, while the traditional central

ized training does not own such a characteristic.

Although distributed machine learning intrinsically achieves a nontrivial im

provement, the research on its optimization still receives increasing attention be

cause of its nonneglected disadvantages. Below discuss the drawbacks from three

dimensions:

• Communication: Traditional distributed machine learning algorithms ne

cessitate global synchronization at each iteration1 with the fullprecision

transmission. It is obvious that the process consumes a significant amount

of communication overhead and causes a considerable slowdown in training

time. In a star topology (i.e., parameter server, abbr. PS) where all nodes

communicate with the centralized server, the approaches possibly lead to

network congestion and require extra cost during the training.

• Computation: An implicit assumption in distributed machine learning is

that all devices have the same computational capability. However, a device’s

performance depends on various factors, including hardware configuration,

battery level, etc. Thus, all nodes should wait for the slowest one at every

communication round, negatively affecting training efficiency.
1In this thesis, an iteration is equivalent to a single local update; an epoch means the updates

going through the entire local training dataset, consisting of multiple iterations. A communication
round represents a global synchronization, before which each client can perform one or multiple
iterations locally.
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Aggregation node

…
Local models

Private dataset

w𝑡
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𝑁
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…

(a) An example (PS) of distributed machine learning

(b) Homogeneous Data

(c) Heterogeneous Data

Figure 1.1: Distributed machine learning and different data distributions

• Data: Traditionally, when a model trains on the cloud, the centralized entity

partitions the training dataset intomultiple nodes (or GPUs). Hence, the data

are independent and identically distributed (i.i.d.) among nodes.

When it comes to the crowdsourcing era, the data are generally held by in

dividuals. Due to privacy concerns, the raw data do not share across the

system. Therefore, the centralized server no longer controls the data dis

tribution. Considering that the data collected by each client are less likely

identical, we treat the data are heterogeneous among participants.

To avoid the overwhelming communication cost, the existing solutions are

roughly classified into two categories, namely, (1) gradient compression and (2)

communication frequency reduction. signSGD (Bernstein et al., 2018b; Liu et al.,

2018; Safaryan and Richtárik, 2021; Tang et al., 2021), a family of gradient com

pression approaches, critically reduces the communication overhead because it uti

lizes one bit to represent each element in a gradient. The stateoftheart methods
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such as SSDM (Safaryan and Richtárik, 2021) and majority vote (Bernstein et al.,

2018b) have remarkable performance under PS. However, their implementation

becomes limited under multihop allreduce (MAR), an underlying synchroniza

tion paradigm that prevails in highperformance computing (HPC) systems. In

the absence of a centralized coordinator to whom each node submits its data in

dependently, cascading compression inevitably occurs. In this process, every par

ticipant performs decompression and compression to ensure every transmission

is compressed. As a result, the cumulative error is excessively enormous when

MAR uses a sign matrix that incorporates all clients’ gradients through cascading

compression.

FedAvg (Li et al., 2019b; McMahan et al., 2017), also known as local SGD

(Stich, 2018) and parallel restarted SGD (Yu et al., 2019c,d), is another solution

that saves the communication cost by reducing the synchronization frequency. To

alleviate computational heterogeneity, we allow each client to perform inconsistent

local updates to the best of resource utilization. Under some circumstances, this

strategy can accelerate the training with the linear speedup of the averaged local

updates (Yu et al., 2019d). However, with noni.i.d. data, recent studies (Mitra

et al., 2021; Wang et al., 2020b, 2021d) discover objective inconsistency under

quadratic functions. In other words, the convergence property is destroyed, even

though the degree of data heterogeneity is mild.

As a solution, Wang et al. (2020b, 2021d) introduces an algorithm named Fed

Nova, a gradient normalization method that averages the normalized local gra

dients and accordingly updates the global model at the server. However, the
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approach cannot converge to the optimal solution due to the severe clientdrift

(Karimireddy et al., 2020b), where the global model inclines to the local model

with fewer local updates. To mitigate the clientdrift effect, SCAFFOLD (Karim

ireddy et al., 2020b) leverages variance reduced techniques (Johnson and Zhang,

2013; Liang et al., 2019; Schmidt et al., 2017) and achieves a remarkable con

vergence performance when participants perform a fixed number of local updates.

However, its performance struggles under computational heterogeneity. By utiliz

ing the intermittent results of the most recent local training, SCAFFOLD suffers

from the clientdrift effect because the bias of a client’s orientation depends on

the number of local updates such that the deviation varies. To sum up, existing

approaches suffer from a heterogeneity dilemma: The solutions to computational

heterogeneity cannot mitigate data heterogeneity, and the performance of data het

erogeneity solvers is seriously affected by computational heterogeneity.

In this thesis, we separately introduce two gradientwise approaches to break

through the aforementioned limitations:

• To avoid cascading compression and support signSGD implementation un

derMAR, we propose a gradient compression framework, Marsit. The main

idea is to use a bitwise process to accomplish unbiased sign aggregation.

The sign of an element remains unchanged if and only if it has the same

sign in both vectors; if it has different binary values, it follows a preset

probability distribution. As a result of this action, the reception and com

pression processes can run parallel. We also offer a global compensation

mechanism to minimize the compression error gap. Since data on the cloud
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can be shuffled and generated an identical distribution among workers, the

design aims to equalize the clients’ contributions to the final gradient. We

do a fullprecision transmission on a regular basis to get rid of surplus error

accumulation.

• To settle objective inconsistency and jointly overcome data and computa

tional heterogeneity, we devise a gradient calibration approach, FedaGrac.

The key idea is to calibrate each local update according to the global up

date’s predictive orientation, such that the detrimental effect of deviation on

convergence is considerably reduced.

1.1 Contributions

The contribution of this thesis are highlighted as follows.

1. Marsit: A Gradient Compression Approach

Traditional onebit compressed stochastic gradient descent can not be di

rectly employed in multihop allreduce, a widely adopted distributed train

ing paradigm in networkintensive highperformance computing systems

such as public clouds. According to our theoretical findings, due to the cas

cading compression, the training process has considerable deterioration on

the convergence performance. To overcome this limitation, we implement

a signbit compressionbased learning synchronization framework, Marsit.

It prevents cascading compression via an elaborate bitwise operation for
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unbiased sign aggregation and its specific global compensation mechanism

for mitigating compression deviation. The proposed framework retains the

same theoretical convergence rate as noncompression mechanisms. Experi

mental results demonstrate thatMarsit reduces up to 35% training timewhile

preserving the same accuracy as training without compression.

2. FedaGrac: A Gradient Calibration Approach

In the setting of federated optimization, where a global model is aggregated

periodically, step asynchronism occurs when participants conduct model

training by efficiently utilizing their computational resources. It is well ac

knowledged that step asynchronism leads to objective inconsistency under

noni.i.d. data, which degrades the model accuracy. To address this issue,

we propose a new algorithm FedaGrac, which calibrates the local direction

to a predictive global orientation. Taking advantage of the estimated orien

tation, we guarantee that the aggregated model does not excessively deviate

from the global optimum while fully utilizing the local updates of faster

nodes. We theoretically prove that FedaGrac holds an improved order of

convergence rate than the stateoftheart approaches and eliminates the neg

ative effect of step asynchronism. Empirical results show that our algorithm

accelerates the training and enhances the final accuracy.
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1.2 Organization

The rest of the thesis is organized as follows. In Chapter 2, we introduce the back

ground knowledge related to this thesis, including distributed machine learning

and the stateoftheart techniques related to gradientwise optimization. Subse

quently, Chapter 3 presents a gradient compression approach named Marsit. Then,

our study on a gradient calibration technique FedaGrac is proposed in Chapter 4.

Chapter 5 summarizes the thesis and provides the concluding remarks and poten

tial future research directions.



Chapter 2

Literature Review

This chapter briefly reviews the background knowledge related to the thesis. Sec

tion 2.1 provides an overview of distributed machine learning from a traditional

perspective. Next, in Section 2.2, we introduce federated learning (FL) and dis

cuss its underlying challenges and existing solutions. Later, the stateoftheart

techniques lying in gradient compression and gradient calibration are summarized

in Section 2.3 and Section 2.4, respectively.

2.1 Distributed Machine Learning

Distributed machine learning targets to train largescale deep learning systems

with multiple clients. This section discusses the basic components of distributed

machine learning, namely, the methodologies and the underlying synchronization

paradigms.

9
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2.1.1 Methodologies

In this field, traditional approaches can be roughly categorized as minibatch SGD

and local SGD. In minibatch SGD, each client in parallel utilizes a minibatch to

calculate the corresponding gradient to improve the training efficiency such that

minibatch training arouses serious thinking (Dekel et al., 2012; Takác et al., 2013;

Zinkevich et al., 2010). However, minibatch SGD also has the problem of low

computational efficiency. Some distributed deep learning frameworks training

with largebatch only (Goyal et al., 2017; Shallue et al., 2019; You et al., 2018) of

ten meets generalization issues, which increases training errors (Lin et al., 2019).

Therefore, local SGD (also known as FedAvg) (Dieuleveut and Patel, 2019; Had

dadpour and Mahdavi, 2019; Haddadpour et al., 2019; Stich, 2018) has become

a more practical way to perform multiple local updates on each device before

exchanging between devices. Bijral et al. (2016) analyzed the spectral norm of

different datasets and constructed a graph of different clients to study local SGD.

While Yun et al. (2021) focused on shufflingbased variants, that is, the practical

gradient can be obtained without replacing sampling.

2.1.2 Underlying Synchronization Paradigms

Parameter Server (PS) Parameter Server (PS) is one of the most common cen

tralized paradigms for largescale distributed training (Dean et al., 2012; Li et al.,

2014b; Smola and Narayanamurthy, 2010). It typically consists of one or more

server nodes and multiple worker nodes, each carrying a subset of training data.
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The worker nodes compute the gradients based on the local parameter informa

tion in parallel, and the server node processes the gradients sent by workers. The

worker nodes then update their parameters using the averaged gradients. As a

worker node only needs to exchange gradients with the server node, this paradigm

is easy to implement and maintain (Li et al., 2014b). However, since server nodes

handle all communications, the performance of PS is largely determined by the

bandwidth of server nodes.

AllReduce (AR) The workers are able to preserve a consistent model using All

Reduced (AR) paradigm without introducing central nodes (Patarasuk and Yuan,

2009). Frequently, the compute nodes are arranged in a ringlike topology, e.g.,

2DTorus or ring (Verbraeken et al., 2020). AR paradigm successfully releases the

burden of the only central node to multiple transit nodes and reveals the same train

ing efficiency as serverbased architecture. One of its successful practices, Ring

AR (BaiduResearch, 2017; Sergeev and Del Balso, 2018), keeps to a minimum

communication overhead as well as outperforms PS because it makes good use

of overlapping computation and communication (Alqahtani and Demirbas, 2019).

However, its long handshaking processes sometimes slow down the training in

high latency network (Lian et al., 2018).

Gossip As a fully decentralized model, Gossip is attracting growing attention be

cause it does not require model aggregation among all workers (Lian et al., 2017b,

2018; Tang et al., 2018). Instead, each worker solely communicates with their
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neighbors. Such a structure is promising not just because it leverages a minimal

communication overhead but because devices are increasingly connected to others

using rapid communication links in modern communication networks. For exam

ple, in 5G and beyond mobile networks, mobile devices can connect directly with

neighboring devices via highspeed devicetodevice links. Edge devices inside

the same localarea network (LAN) domain can also interact quickly without hav

ing to go via a sluggish widearea network (WAN) (Guo et al., 2021).

2.2 Federated Learning

As one of the subcategories of distributed machine learning, FL was proposed to

ensure data privacy and security with the avoidance of raw data sharing (Kairouz

et al., 2019), and now it has become a hot field in the distributed system (Avdiukhin

and Kasiviswanathan, 2021; Blum et al., 2021; Diao et al., 2020; Shamsian et al.,

2021; Yuan and Ma, 2020; Yuan et al., 2021; Zhang et al., 2021). Frequently, edge

devices such as smartphones possess abundant data, which are highly sensitive

but valuable to the model training (Guo and Qu, 2022; Han et al., 2020; Lim et al.,

2021;Wang et al., 2021c). The data are heterogeneous among clients because there

is no predefined rule for the data distribution for each client. Besides, due to the

hardware differences among devices, the computational capabilities are various as

well. In this section, we briefly investigate the flaws raised by data heterogeneity

and computation heterogeneity and review the existing work to tackle these two

issues.
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2.2.1 Data Heterogeneity

Generally, in FL settings, the data distributed among clients are agnostic, and there

fore, each data portfolio has its exclusive optimal parameters. As a classical algo

rithm that works smoothly under data heterogeneity, FedAvg inherits the training

features from local SGD (Stich, 2018; Yu et al., 2019d; Zhou and Cong, 2018), a

framework that runs for multiple local updates prior to a global synchronization.

This strategy significantly reduces the total communication overhead compared to

parallel SGD that synchronizes the gradient at every local update. Recent studies

(Gu et al., 2021; Khaled et al., 2020; Li et al., 2019b) show that FedAvg can have

a great performance from theoretical and empirical perspectives. Also, FedAvg

can seamlessly adopt the communicationefficient approaches such as quantiza

tion (Alistarh et al., 2017a; Basu et al., 2019) and sparsification (Stich et al., 2018;

Wangni et al., 2018) to further reduce the cost of transmission (Wang et al., 2021a;

Wu et al., 2020a,d; Zhou et al., 2021).

Nevertheless, numerous studies (Cheng et al., 2021; Gorbunov et al., 2020;

Karimireddy et al., 2020b; Liu et al., 2020b; Zhao et al., 2018) theoretically quan

tify how data heterogeneity affects FedAvg and degrades the convergence prop

erty. As a result, some variants of FedAvg are designed to mitigate the negative

impact. These modifications include adding a proximal term to local objective

functions (Li et al., 2020), using a decreasing learning rate (Li et al., 2019b), adap

tive server side updates (Hsu et al., 2019; Reddi et al., 2020), client clustering

sampling (Fraboni et al., 2021; Ghosh et al., 2020; Murata and Suzuki, 2021), re

inforcement learning driven incentive mechanism (Wang et al., 2020a), and etc.
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2.2.2 Computational Heterogeneity

The computation capabilities vary among clients because they use different de

vices. As a result, all clients have to wait for the slowest node to start the next

round. To minimize the computation differences, some existing works adopt a

client sampling strategy (Deng et al., 2021; Huang et al., 2020; Wu et al., 2020b;

Yang et al., 2020; Zhou et al., 2020), where only a small portion of clients transmit

the gradients to the server. Compared to the case that requires fullworker partic

ipation, this scheme possibly reduces the total training time. However, resource

underutilization still exists as the fastest client should wait for others’ completion.

Therefore, the existing solutions to overcoming computational heterogeneity can

be categorized into two types: designing an asynchronous aggregation scheme and

adopting step asynchronism.

Asynchronous Aggregation Scheme Hogwild (Recht et al., 2011) is one of the

main examples of asynchronous stochastic algorithms. It does not use the mem

ory locking protocol, so each node can modify the parameters at the same time.

(Noel and Osindero, 2014) proposed Dogwild!, which is an improvement to Hog

wild. It is distributed Hogwild for CPU and GPU. Similarly, for Hogwild, (De Sa

et al., 2015) analyzed its nonconvexity by using relaxed assumptions. With the

emergence of deep neural networks, asynchronous parallel SGD algorithms have

begun to adapt to environmental changes (Aytekin et al., 2016; Dai et al., 2018;

Lian et al., 2015; Zhang and Kwok, 2014; Zheng et al., 2017). These methods

efficiently break the barrier of heterogeneity, achieving high system throughput.
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However, asynchronous algorithms raise the staleness issue, usually deteriorating

the convergence rate.

StepAsynchronism Step asynchronism is another practical solution, where each

client performs an inconsistent number of local updates. Although FedAvg with

step asynchronism can converge to a stable point under nonconvex objectives

(Yu et al., 2019d), Wang et al. (2020b) point out that objective inconsistency takes

place under quadratic function, leading to a suboptimal convergence. To tackle this

issue, effective approaches is constituted with normalizationbased approach Fed

Nova (Wang et al., 2020b) and FedLin (Mitra et al., 2021), regularizationbased ap

proach FedProx (Li et al., 2020) and architecturebased approach HeteroFL (Diao

et al., 2020). Gradient normalization is the most ubiquitous framework that over

comes step asynchronism under noni.i.d. data settings. However, this method

cannot prevent the negative impact of statistical heterogeneity on the convergence

rate because the update deviation still exists after averaging. Figure 4.1 compares

FedNova (Wang et al., 2020b) and FedLin (Mitra et al., 2021) with our proposed

method, and we notice that the global model deviates to the one with less updates

in FedNova (Wang et al., 2020b). The reason is obvious: clients updating their

local models are biased to their local datasets such that the normalized gradients

collected by the server are sparse. Besides, when the local models approach the lo

cal minimizers, those clients with more local updates greatly influence the global

model update.
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2.3 Gradient Compression Techniques

Sparsification Existing methods for sparsification of distributed learning usu

ally sparsify the gradient sent from workers. The works in early stages for spar

sifying graident used to employ a filter to select several important dimensions,

e.g., with the largest changes, and discard the rest (Hsieh et al., 2017; Li et al.,

2014a). To improve the sparsification efficiency, recently, a large number of

works that sparsify the gradient with error compensation have been proposed (Aji

and Heafield, 2017; Alistarh et al., 2018; Chen et al., 2018a; Sattler et al., 2019;

Shi et al., 2019; Stich et al., 2018). Error compensated gradient sparsification

is to accumulate the unselect dimensions and compensate the gradient with the

accumulated error. In such a way, the convergence gap with nonsparsification

distributed SGD could be bridged. Beyond SGD, there are also some work mov

ing towards the MomentumSGD (Lin et al., 2017; Zhao et al., 2019). Different

from the methods with error compensation, Wangni et al. (2018) propose a novel

sparsification operator that the gradient could be sparsifed in an unbiased manner.

Though these gradient sparsification basedmethods havemade great achievements

in the field of communication compression through sparsification under PS syn

chronization framework, they are not compatible with multihop allreduce (e.g.,

ring allreduce).

Quantization At the cost of the gradient precision, quantization approaches (Al

istarh et al., 2017b; Basu et al., 2019; Seide et al., 2014; Suresh et al., 2017; Wen

et al., 2017; Zhang et al., 2017) reduce the number of encoding bits for each real
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number. Notwithstanding that it requires more rounds to reach the stationary point

under both PS and gossip paradigms, the method is potent from the perspective

of training efficiency and bandwidth consumption. However, it is not suitable

for multihop allreduce synchronization framework to shorten the training time.

Each client inevitably performs decoding then encoding operation for transmis

sion. Such a recursive execution results in the error accumulation and degrades

the convergence property in theoretical analysis. Without the constraint on the

number of workersM , the deterioration can be up to
√
M in comparison with the

compressionfree algorithms (Wu et al., 2020a). Although GradiVeQ (Yu et al.,

2018) utilizes singular value decomposition to achieve linear quantization under

multihop allreduce synchronization framework, the process requires consider

able computation consumption such that the receiving period cannot cover the

time length of compression.

signSGD As an extreme case of quantization, signSGD represents the elements

of a gradient using their signs, which reduces the communication overhead by

32× at every iteration (Bernstein et al., 2018a). It has remarkable performance un

der PS, including 1bit Adam (Tang et al., 2021), SSDM (Safaryan and Richtárik,

2021) and majority vote (Bernstein et al., 2018b). However, they are not suitable

for MAR since their aggregation process cannot guarantee within one bit at each

transmission.
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Other communication compression approaches There are various approaches

to reduce communication overhead, such as low rank (Vogels et al., 2019). How

ever, these approaches may not have well performance for MAR under some net

work topologies. For instance, PowerSGD (Vogels et al., 2019) requires to transmit

multiple sequential vectors at a synchronization, which undermines the training ef

ficiency under RAR.

2.4 Gradient Calibration Techniques

Gradient calibration techniques, also known as variance reduction (AllenZhu and

Hazan, 2016; Defazio et al., 2014; Fang et al., 2018; Horváth and Richtárik, 2019;

Horváth et al., 2020; Johnson and Zhang, 2013; Lan and Zhou, 2018a,b; Lei et al.,

2017; Li, 2019; Li et al., 2021b; Lian et al., 2017a; Nguyen et al., 2017; Reddi

et al., 2016; Roux et al., 2012; Wang et al., 2018; Zhang et al., 2016; Zhou et al.,

2018), are once proposed for traditional centralized machine learning to optimize

finitesum problems (Bietti and Mairal, 2017; Bottou and Cun, 2003; Robbins and

Monro, 1951) bymitigating the estimation gap between smallbatch (Bottou, 2012;

Ghadimi et al., 2016; Khaled and Richtárik, 2020) and largebatch (Mason et al.,

1999; Nesterov, 2003; Ruder, 2016). SGD randomly samples a small batch and

computes the gradient in order to approach the optimal solution. Insufficiently

large batch results in convergence rate degradation since the data are generally

noisy. GD can remove the noise affecting the training process by utilizing all data

in every update. However, it is timeconsuming because the period for a single
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GD step can implement multiple SGD updates. Based on the tradeoff, variance

reduced methods periodically perform GD steps while correcting SGD updates

with reference to the most recent GD steps.

Variance Reduction in FL. The variancereduced techniques have critically

driven the advent of FL algorithms (Gorbunov et al., 2021a,b; Karimireddy et al.,

2020a,b; Li et al., 2019a, 2021c; Liang et al., 2019; Murata and Suzuki, 2021;

Shamir et al., 2014; Wu et al., 2021) by correcting each local computed gradient

for the global orientation. However, a concern is addressed on how to attain a

proper global orientation to mitigate the update drift from the global model, espe

cially under the communicationefficient settings where clients perform numerous

local updates. SCAFFOLD (Karimireddy et al., 2020b) adjusts every local update

with the help of the global and a client’s local reference orientation such that every

local update keeps close to the global direction. However, as shown in Figure 4.1,

SCAFFOLD cannot completely remove the drift when computational heterogene

ity exists. A physical explanation for the result is that the local reference directions

of the faster nodes with more local updates lead to a significant deviation from the

orientation towards the local optimizer. Since the global reference direction is de

rived from clients’ local directions, the faster nodes dominate the entire training

process (see Figure 4.1), which betrays its origin intention. Although we use a

similar design philosophy where every local update follows the global orientation,

the global orientation consists of the gradient that depends on the number of local

updates, either the normalized gradient or the initial gradient.



Chapter 3

Marsit: A Gradient Compression

Approach

3.1 Introduction

In an era of data explosion, there is an increasing demand for various fields to

launchAIdriven applications in image classification (PérezHernández et al., 2020),

natural language processing (NLP) (Roy et al., 2021), and so forth. Behind these

applications are numerous models that have been fit in hugesize datasets such as

ImageNet (Russakovsky et al., 2015). To minimize the development cost, cloud

providers, e.g., Amazon AWS, offer various training paradigms to enable fast

AI/ML solution deployment.

Nowadays, multihop allreduce (MAR) training paradigm, including ring all

reduce (RAR) (BaiduResearch, 2017; Sergeev and Del Balso, 2018) and 2Dtorus

20
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Rounds Accuracy (%) Time (min)
cascading compression

M = 3 187 87.2 ± 2.31 11.2
M = 8 1K+ divergence NA

no compression
M = 3 129 99.1 ± 0.13 20.7
M = 8 76 99.2 ± 0.07 10.6

Table 3.1: Training MNIST over AlexNet. The results show the best test accuracy
by setting the stepsize in {0.03, 0.01, 0.005}.

allreduce (TAR) (Mikami et al., 2018), substitutes classical singlehop approaches

such as parameter server (PS) and gossip, and becomes the most pervasive syn

chronization paradigm in highperformance computing (HPC) systems. For paral

lel stochastic gradient descent (PSGD) (Li et al., 2014a), MAR achieves a better

resource utilization under multiGPU circumstance than PS. Firstly, all GPUs in

volve in both the training and synchronization in MAR, while GPUs in PS archi

tecture are categorized into two groups separately performing these two function

alities. Secondly, MAR prevents the network congestion at a single node because

each client is not required to simultaneously process tremendous transmission re

quests. As a paradigm that workers are solely permitted to communicate with their

neighbors, gossip has made great success in recent years (Lin et al., 2021b; Lu and

De Sa, 2021). However, the performance of gossip in terms of convergence rate is

much slower thanMAR, especially under sparse connections such as ring topology

(Chen et al., 2021).

In networkintensive HPC systems such as public clouds, it is challenging to

transfer a noncompressed gradient among nodes due to overwhelming bandwidth
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consumption. With the increasing size of a deep learning model, e.g., 60.2M

weights on ResNet152 (He et al., 2016) and 100T on GPT4 (Brown et al., 2020),

the problem becomes severe because data transmission takes a significant amount

of time. As a promising communication compression approach, signSGD (Bern

stein et al., 2018b; Liu et al., 2018; Safaryan and Richtárik, 2021; Tang et al., 2021)

solely uses an element’s sign to represent itself, where the number of encoding bits

for each real number is dramatically deducted, i.e., from single float precision (32

bits) to 1 bit.

Existing signSGD algorithms, albeit wellperformed under PS, have limited

performance under MAR, especially when the model is sufficiently large. With

out a centralized coordinator to which each node independently sends its data, in

formation asymmetry occurs when MAR leverages a sign matrix that includes all

clients’ gradients through cascading compression. Each client inevitably performs

decompression and then compression operation for transmission, accumulating er

rors. Although cascading compression can converge at the end for a smallscale

environment, empirical studies in Table 3.1 manifest its poor performance in com

parison with the noncompressed algorithms. Also, more workers achieves better

performance in noncompressed PSGD, whereas leading to divergence in the cas

cading compression scheme.

To alleviate information asymmetry, we propose a framework for multihop all

reduce using signbit, named as Marsit. The core idea is to achieve unbiased sign

aggregation by means of an elaborate bitwise operation: The sign of an element

remains unchanged if and only if it has the same sign in both vectors, while it
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follows a predefined probability distribution if it has different binary values. Such

an operation supports that the reception and compression processes can take place

in parallel. Furthermore, we introduce a global compensationmechanism to bridge

the gap of compression error. The design is to equalize the clients’ contribution

towards final gradient because data on the cloud can be shuffled and formed an

identical distribution among workers. To get rid of excess error accumulation, we

periodically operate a fullprecision transmission.

In this chapter, our contributions are summarized as follows:

• Based on the designed onebit operator and the global compensation scheme,

we implementMarsit to support onebit transmissionwithout cascading com

pression under MAR.

• We prove that the convergence rate for nonconvex objectives isO(1/
√
TM)

under RAR framework, where T andM represent the numbers of synchro

nizations and workers, respectively. The theoretical result indicates that

our algorithm achieves a linear speedup simultaneously with respect to the

number of workers. To the best of our knowledge, this is the first work that

addresses information asymmetry under MAR;

• We conduct an empirical study to illustrate the effect of our proposed algo

rithms on RAR and TAR. It is conducted with ResNet50 on ImageNet for

image recognition. It reduces the communication cost by around 90% as

compared with noncompressed methods while preserving the same conver

gence performance.
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The rest of the chapter is organized as follows: Section 3.2 formulates the

problem and provides the motivations via analyzing cascading compression. We

comprehensively elaborate the design details behind Marsit and analyze the con

vergence rate of Marsit in Section 3.3. An empirical setting is presented in Section

3.4, while the numerical results are presented in Section 3.5, to validate our theo

retical analysis. Section 3.6 concludes this study.

3.2 Motivation

Objectives. Under an M worker MAR, the objective is to minimize the cumula

tive expected loss, which can be formulated as

min
x∈Rd

F (x) =
1

M

M∑
m=1

Eξm∼Dm [fm(x, ξm)]︸ ︷︷ ︸
:=Fm(x)

, (3.1)

where Dm is the local data distribution on worker m, fm(x, ξm) is the empirical

loss given parameter x and stochastic sample ξm from Dm, and Fm(·) is an objec

tive function. Given that the entire training locates in the cloud, we assume that

all the local datasets have an equal size. Since the objective function is randomly

extracted over a given data distribution, it is a common practice that the bias does

not exist between the expected loss and the empirical one.
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3.2.1 Why Bit Length Expansion Occurs?

In a noncompressed algorithm, MAR naturally requires less communication over

head than PS when synchronizing a model among all nodes. For example, given a

Ddimension neural network, RAR requires the consumption of 2× (M − 1)×D

weights, while PS needs that of 2 × M × D. In Figure 3.1a, noncompressed

approach under RAR costs less time than the one under PS.

An operation compatible to MAR should be linear, which allows workers di

rectly aggregate without extra decompressioncompression process (Vogels et al.,

2019). SSDM (Safaryan and Richtárik, 2021) is one of rare signSGD approaches

that satisfy the requirement of linearity, where its aggregation is to sum up all the

sign bit. With the operation, workers do not fit the transmission elements into one

bit under MAR synchronization, but with an upper bound of ⌈log2M⌉. As shown

in Figure 3.1a, such way spends longer time than its PS solution in transmission

period due to the growing size of transmission packages. Therefore, the approach

is not efficient under MAR settings and we are dedicated to implementing a com

pression framework that restricts the transmission size by only one bit.

3.2.2 Why Not Cascading Compression?

For aDdimension vector g, SSDM (Safaryan and Richtárik, 2021) (denote byQ)

compresses an element gi (i ∈ {0, ..., D − 1}) consistent with its sign following

the probability of 1
2
+ |gi|

∥g∥2 , where ∥ · ∥ means ℓ2norm. Apparently, it is an unbi

ased compression method. To ensure each transmission limited in one bit, a client
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Figure 3.1: Training MNIST over AlexNet with 3 workers. The comparison of
existing approaches on an iteration’s training time length and matching rate.

performs the stepbystep sequence:

• Receive aggregated gradient segment(s), including corresponding ℓ2norm(s)

and sign vector(s), from the last worker(s);

• Recover the gradient segment(s) as w for full precision;

• Aggregate local gradient v with decompressed segment(s);

• Compress the assembled segment into a precisionloss one, i.e.,Q(w+v);

• Send the compressed segment to the next worker(s).

The workflow, named as cascading compression, is able to broadcast and unify the

updates among clients. Obviously, the expected result of cascading compression

is equivalent to the sum of all gradients. However, cascading compression has two

major shortcomings.
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3.2.2.1 Performance Deterioration

Notably, the second step cannot actually represent the real aggregation results. In

this case, the error accumulates and spreads over the network, which deteriorates

the training performance. Besides, it is not suitable to use the ℓ2norm to achieve

unbiased compression because its value is so large that the new compressed sign is

more likely biased to the received one, even if the actual aggregation sign should be

the opposite one. As demonstrated in Figure 3.1b, among the applicable settings,

cascading compression has the lowest matching rate (i.e., around 56%) measured

by the sign of noncompression aggregation value. Following remark compares

the performance between cascading compression under RAR and centralized train

ing under PS.

Remark. We assume that the ℓ2norm of any gradients are bounded by a non

negative scalar G. Suppose SSDM (Safaryan and Richtárik, 2021) is achieved as

unbiased estimator under centralized training and cascading compression, where

the expected update value is equivalent to the update of noncompression algo

rithm. For training a deep neural network where the value of D is quite large,

the upper bound of gradient deviation, i.e., the Euclidean distance between the ex

pected result and the actual update, for cascading compression explodes rapidly

withM , while centralized training does not exist.1

1The detailed proofs for the remark present in Appendix A.
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Figure 3.2: The workflow of Marsit under ring network topology with a total of
three workers. Each worker holds a compensation vector and a gradient, combin
ing them into a standalone vector. This vector is then segmented and exchanged
during synchronization, involving a greenhighlighted reduce period (R) and a
bluehighlighted gather period (G). During R1 and R2, a worker processes re
ceived messages with its local segment, exemplified in the gray box. The left side
of the box illustrates message transfer among workers, while the right side demon
strates the transfer from worker 3 to worker 1 (highlighted in azure), showcasing
aggregation. In the subsequent G1 and G2 gather periods, a worker replaces its
local segment with received information before transmitting it to the next worker.

3.3 Marsit

In this section, we first provide a holistic insight for Marsit. Then, in Section 3.3.1

and Section 3.3.2, we present the technical details and the theoretical analysis,

respectively.

Due to the lack of centralized server under MAR, all workers should maintain

a global model locally, the parameters of which are always consistent with others.

Figure 3.2 illustrates the pipeline of Marsit under RAR, a common paradigm for

MAR using ring network topology. Each worker possesses a compensation vector

and a gradient, and aggregates them into a standalone vector. Then, they partition
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Algorithm 1:Marsit (workerm)
Require :Synchronization index t, number of communication rounds for

fullprecision synchronizationK, gradient g(m)
t , compensation vector

c
(m)
t , global stepsize ηs

1 Calculate the update by g(m)
t ← g

(m)
t + c

(m)
t ;

2 Split g(m)
n intoM parts, and denote by g(m)

t,i , ∀i ∈ {0, ...,M − 1};
3 if mod(t, K) ̸= 0 then
4 for i← 0 toM − 1 do
5 Receive the sign vector vi in parallel with

• Calculate the sign vector by v∗i ← sgn
(
g
(m)
t,i

)
;

6 Update the transmission sign vector via vi ← vi ⊙ v∗i ;
7 Send vi to the next worker;
8 end
9 Aggregate the global update via gt ← ηs ·

(⋃M−1
i=0 vi

)
;

10 Update compensation vector via c(m)
t+1 ← g

(m)
t − gt;

11 else
12 Aggregate the global update via gt ← 1

M

∑M
m=1 g

(m)
t ;

13 Update compensation vector via c(m)
t+1 ← 0;

14 end
Return :The global update gt, compensation vector c(m)

t+1

the vector into several segments and exchanges them at the synchronization phase

which consists of a reduce period (highlighted in green and marked as R) and a

gather period (highlighted in blue and marked as G). In the reduce period, i.e.,

R1 and R2, a worker processes the received message with corresponding local

segment and sends it to the next worker. Here we exemplify with R1 and depict

the procedures in the gray box. The left part of the gray box presents how the

message transfers among workers, while the right takes the message transferring

from worker 3 to worker 1 (highlighted in azure) as an example and exhibits how
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to aggregate the received vector and the local vector. In the gather period, i.e.,

G1 and G2, a worker substitutes corresponding local segment with the received

information and transmits it to the next worker. The relevant processes have been

widely adopted in (BaiduResearch, 2017; Sergeev andDel Balso, 2018). After the

synchronization phase, all clients reach to a consensus and holds the same gradient

which is used to update the global model and the local compensation vector.

3.3.1 Implementation Details

Here we discuss the key operations with indepth justifications. Generally, the

workflow lies in two phases: onebit synchronization in each round to reduce the

communication cost, and fullprecision synchronization executed everyK rounds

to periodically eliminate the error accumulation. The full implementation is given

in Algorithm 1 to demonstrate the workflow behind Marsit, and Algorithm 2 is to

illustrate how we can apply Marsit to existing optimizers like stochastic gradient

descent (SGD).

3.3.1.1 Global Model Synchronization (Line 4–8 in Algorithm 1)

No matter which phase it is, Marsit synchronizes the gradients through MAR.

Fullprecision synchronization has been widely discussed in the previous stud

ies (BaiduResearch, 2017; Jia et al., 2018; Mikami et al., 2018; Sergeev and

Del Balso, 2018), which is equivalent to the aggregation result under PS, we

mainly focus on the synchronization using sign bit only in this part.

As illustrated in Figure 3.2, both receiving vector vi and local compression
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v∗i (Line 5 in Algorithm 1) run in parallel, which reduces a great amount of time

in comparison with the cascading compression. Since both vi and v∗i are a sign

bit vector, a problem raises on how to aggregate both vectors without additional

compressiondecompression processes. Therefore, we define a novel bitwise op

erator ⊙ to ensure these two vectors compatible with each other. In this update

process, if an index on both vectors is the same, then the transmission vector at

this points remains unchanged. However, considering element inconsistency be

tween vi and v∗i , we use a transient vector, v, which predetermines the transmitted

binary value when confronted with inconsistent elements. It follows a Bernoulli

distribution: Let bj be the probability for the element j of vector v∗i (denote by v∗i,j)

at workerm that marks as 1 in vector v:

bj =


(m− 1)/m v∗i,j = 0

1/m v∗i,j = 1

Bernoulli
=⇒ vj =


1 pr = bj

0 Otherwise
(3.2)

Note that the process can take place in parallel with the receiving stage but after

the calculation of v∗i . With the transient vector v, the updated operator ⊙ between

vi and v∗i should be expressed as: vi⊙v∗i = (vi AND v∗i ) OR (vi XOR v∗i AND v).

By mathematical analysis, the expected value of the sign bit is equivalent to the

average of the sign bits among all clients.
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(a) Epoch and Accuracy

K
Time
(min)

Acc.
(%) Bits

1 40.18 93.42 32
50 22.05 92.28 1.62
100 21.34 91.73 1.31
200 22.38 92.00 1.16
∞ 18.78 90.75 1

(b) Convergence results

Figure 3.3: Training CIFAR10 over AlexNet by evaluating various values of K.
(a) indicates the relation between epoch and accuracy; and (b) depicts the con
vergence result. K = ∞ means K is greater than the maximum communication
rounds, i.e., 400 in this case.

3.3.1.2 Global Model Update (Line 9 and Line 12 in Algorithm 1)

The value gt depends on whether the synchronization is under full precision. If the

transmission is signbit only, Line 9 returns gt that comes from a vector of signs

multiplying a global learning rate. As for fullprecision synchronization in Line

11, extra learning rate is not necessary since g(m)
t has included the local stepsize.

The purpose for this update is to eliminate the accumulated error and accelerate the

training process. In Figure 3.3, we demonstrate there exists a tradeoff between

the final accuracy and the additional communication costs due to full precision

synchronizations, by choosing different system parameterK.
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3.3.1.3 Global CompensationMechanism (Line 10 andLine 13 in Algorithm

1)

At the beginning of the model training, we initialize the local compensation gra

dient with a zero vector (Line 1 in Algorithm 2) by default. All clients have the

consensus on how to update the global model, i.e., gt at Line 9 in Algorithm 1,

which is a vector containing binary value only to indicate the sign of each element.

Unlike traditional compensation approaches under singlehop synchronization, a

client in Marsit cannot obtain how much it contributes to the aggregation under

multihop synchronization. Based on the independent and identical data distri

bution on cloud training, every client compresses and obtains the same gradient

in expectation. Thus, we apply an identical local compensation amount for each

client, which then combines into the global compensation. Considering the ac

cumulated error could be quite large, we periodically reset the error by means of

fullprecision synchronization, where the compensation vector can be set to 0. As

we can see in Figure 3.3, although greater K costs less time to reach the stable

point, they have smaller convergence accuracy. Also, greater K may not always

speed up the convergence progress, for instance, when K changes from 100 to

200, more time is required to realize the convergence feature.

3.3.2 Theoretical Guarantees

To theoretically analyze the convergence results for Marsit, we have the following

assumption for Problem (3.1), which are ubiquitously applied to (Bernstein et al.,
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Algorithm 2:Marsitdriven SGD (workerm)
Input :Initial Point x̃0, local stepsize ηl, global stepsize ηs, number of

communication rounds for fullprecision synchronizationK, number
of global synchronizations T

1 Initialize local compensation gradient c(m)
0 ← 0;

2 for t← 0 to T − 1 do
3 Randomly sample ξ(m)

k from local data Dm;
4 Compute local stochastic gradient g(m)

t ← ∇fm
(
x̃t; ξ

(m)
k

)
;

5 gt, c
(m)
t+1 ← Marsit(t, K, ηlg(m)

t , c(m)
t , ηs);

6 Update the parameters through x̃t+1 ← x̃t − gt;
7 end
Output :The final model x̃T

2018a; Guo et al., 2020; Safaryan and Richtárik, 2021).

Assumption 3.1. Problem (3.1) satisfies the following constraints:

1. Smoothness: All function Fm(·)’s are continuous differentiable and their gradi

ent functions are LLipschitz continuous with L > 0;

2. Bounded variance: For any workerm and vector x ∈ Rd, there exists a scalar

σ ≥ 0 such that Eξ∼Dm
∥∇fm(x, ξ)−∇Fm(x)∥22 ≤ σ2.

Based on the preceding assumptions, the following theorem holds:

Theorem 3.1. Under Assumption 3.1, by setting local learning rate for ηl =√
M/T and the global learning rate ηs =

√
1/TD, the upper bound for Algo

rithm 2 using RARbased should be:

min
t∈{0,...,T−1}

E ∥∇F (x̃t)∥22 ≤ O
(

1√
MT

)
+O

(
K(K + 1)

T

)
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where we treat F∗ − F (x̃1), L and σ as constants.

Proof. See Appendix B for details.

Remark. Given that the value of K is much smaller than the value of T , our

approach can achieve a convergence rate of O(1/
√
MT ), which achieves linear

speedup with the number of the workers. In other words, the more GPUs partici

pate in the model training, the faster Marsit reaches a stable point.

3.4 Experimental Setup

We evaluate our proposed framework on scenarios that meet the requirement of

current industrial needs and cover the most representative model training instances

on the public clouds. In this section, the problem we explore mainly lies in these

two categories: (i) whether there exists a significant accuracy drop in comparison

with noncompression methods; (ii) how fast a model achieves convergence in

comparison with existing compression approaches under MAR.

Datasets, models and tasks Our experiments consist of three datasets: CIFAR

10 (Krizhevsky et al., 2009a), ImageNet (Russakovsky et al., 2015) and IMDb

reviews (Maas et al., 2011). The first two datasets are frequently used for image

classification and consist of 60K 32×32 and 14M 224×224 colored images, re

spectively. The last one is for sentiment analysis with 50K movie reviews. The

models vary among the datasets: AlexNet (Krizhevsky et al., 2012) and ResNet

20 (He et al., 2016) for CIFAR10, ResNet18 and ResNet50 for ImageNet, and
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DistilBERT (Sanh et al., 2019) for IMDb reviews.

Implementation The experiments are conducted on Huawei Cloud, where we

deploy a cluster with 32 nodes and each node carries 2Nvidia T4GPUs. The under

lying training framework is supported by Pytorch distributed computing package2.

We implement Marsit on RAR (BaiduResearch, 2017; Sergeev and Del Balso,

2018), a classical MAR implementation over ring network topology, and 2Dtorus

allreduce (TAR), a stateoftheart MAR scheme over 2Dtorus network topology.

Marsit can be easily extended to other allreduce paradigms including segmented

ring allreduce (Jia et al., 2018) and tree allreduce (Vogels et al., 2019).

Baselines We implement multiple baselines to evaluate the performance of Mar

sit. PSGD (Li et al., 2014a) is implemented under MAR with full precision, i.e.,

32 bits. For EFsignSGD (Karimireddy et al., 2019), signSGD with majority vote

(Bernstein et al., 2018a) and SSDM (Safaryan and Richtárik, 2021), we extend

them to MAR by dynamically changing the bit length. We also utilize Elias cod

ing (Elias, 1975) to compact the transmission message among nodes.

Optimizers and hyperparameters To reduce the frequency of the communica

tions among nodes, clients performmultiple local updates between two successive

synchronizations. The optimizer for image classification task is Momentum, and

Adam for sentiment analysis. Marsit100 refers to the setting where local gradi

ents operate fullprecision synchronization every 100 communication rounds (i.e.,
2https://pytorch.org/tutorials/intermediate/dist_tuto.html

https://pytorch.org/tutorials/intermediate/dist_tuto.html
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Model Dataset # parameters Batch size
Top1 Accuracy (%)

PSGD signSGD EFsignSGD SSDM Marsit100 Marsit
AlexNet CIFAR10 23M 8192 82.38 80.74 82.25 81.89 82.30 81.58
ResNet20 CIFAR10 0.27M 8192 93.42 88.92 91.85 89.18 92.18 90.15
ResNet18 ImageNet 11M 6144 69.18 67.17 68.14 68.10 68.96 68.40
ResNet50 ImageNet 25M 6144 74.87 72.74 73.89 73.35 74.35 74.10
DistilBERT IMDb review 67M 512 92.16 89.12 90.57 91.41 90.13 90.26

Table 3.2: Accuracy of existing works on different models training for different
datasets.

K = 100), while Marsit does not have fullprecision synchronization. For Ima

geNet and CIFAR10, the initial learning rate is set to 0.1 and 0.03, respectively,

and decays by a factor of 10 every fullprecision synchronization. For DistilBERT,

we use a constant learning rate of 5e5.

3.5 Numerical Results and Analysis

Performance Analysis Table 3.2 summarizes Top1 accuracy of all test datasets.

Compared to PSGD, the stateoftheart compression approaches suffer from a no

ticeable accuracy drop in both image classification and sentiment analysis tasks.

For instance, signSGD has up to a 5% decreasing. Moreover, in most cases, Marsit

100 and/or Marsit outperforms the existing approaches and achieves nearly the

same final accuracy as PSGD. In CIFAR10 training, Marsit with periodical full

precision synchronization (e.g., Marsit100) has better performance than the one

without fullprecision synchronization, while they do not have distinct differences

in both ImageNet and IMDb review datasets. As for the encoderbased transformer

DistilBERT, it is noticed that our proposed method falls behind some other base
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(b) Accuracy w.r.t Overhead

Figure 3.4: Experiments for training ResNet50 on ImageNet

lines. A possible reason is that our proposed method limits the transmission to one

bit causing a significant loss for a pretrained large language model, in comparison

with those baselines that allow expandable transmission.

Figure 3.4a shows timetoaccuracy performance for ResNet50 on ImageNet.

Among these six approaches, noncompression approach, i.e., PSGD, takes a large

amount of time, while Marsit achieves large speedups (1.5x) to reach a similar

accuracy.

Communication Efficiency Marsit has a significant reduction in communica

tion cost compared to the other five baselines. From Figure 3.4b, our algorithm

requires 90% less communication budget, when compared to PSGD, and reduces

communication cost by 70%, when compared to the existing signSGD approaches.

In the mean time, with a smaller communication budget, our algorithm still pre

serves the same convergence rate as other baselines.
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(b) RAR

Figure 3.5: Experiments on training AlexNet for CIFAR10 under TAR and RAR

In Figure 3.4b, given the same amount of communication overhead, Marsit and

Marsit100 always have higher accuracy than other baselines. Specifically, when

Marsit and Marsit100 reach convergence, other signSGD methods only attain ac

curacy around 50%.

Performance under Various MAR settings Figure 3.5 presents the results of

Marsit and its baselines under RAR and TAR. For each method, we measure its

average training time in each communication round and split the time into three

phases, namely, computation (grey), compression (red) and communication (blue).

We notice that Marsit introduces minor compression overheads to prepare for the

realtime aggregation. Among these six approaches, it is clear that Marsit and/or

Marsit100 spends the least time in communication compared with other base

lines. For TAR paradigm, each baseline takes less time to communicate. For RAR

paradigm, the communication time dominates the computation time and Marsit re
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quires less training time between two successive synchronizations.

3.6 Summary

This chapter proposes a synchronization framework, Marsit, that achieves onebit

transmission under multihop allreduce. In this framework, we design a bitwise

operation to support the receiving and the compression undertake simultaneously.

Besides, we introduce a global compensation mechanism to mitigate the compres

sion deviation. Based on the structure, we offer a theoretical guarantee that it

achieves the same convergence rate as the noncompression approach using the op

timizer of SGD. Empirical studies present that our proposed approach can achieve

a similar test accuracy to the noncompression version while using less training

time by 35%.



Chapter 4

FedaGrac: A Gradient Calibration

Approach

4.1 Introduction

Federated learning (FL) is thriving as a promising paradigm that refrains the leak

age of users’ data, including raw information and label distribution. With the rapid

development of FL techniques over the past few years, a wide range of applications

for computer vision (Liu et al., 2020c; Yu and Liu, 2019) and natural language pro

cessing (Chen et al., 2019; Liu et al., 2020a; Wu et al., 2020c) have deployed over

a large set of edge devices (e.g., smartphones and tablets). Conventionally, clients

perform a fixed number of local stochastic gradient descent (SGD) steps in each

round; then, the server aggregates the updated models and finally acquires and

distributes the global one to all clients (Li et al., 2019b; McMahan et al., 2017).

41
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Table 4.1: The number of communication rounds to reach the test accuracy of 80%
under Logistic Regression (LR) and 2layer CNN on FashionMNISTwith various
settings when 10 devices participate in FedAvg. The number of local updates is
100 without step asynchronism, while under step asynchronism, clients perform at
least 100 local updates. The learning rates set for LR and 2layer CNN are 0.001
and 0.03, respectively, which are also applied to Table 4.2, Figure 4.2, and Figure
4.3.

FedAvg with LR 2layer CNN
neither 2 20
step async 1 8
noni.i.d. 91 265
both 1K+ 339

FedAvg follows the preceding procedure and has been proven to be a promising

solution to data heterogeneity.

With an increasing number of nodes participating in the training, the tradi

tional framework becomes infeasible because the computation capacities are sub

stantially diverse among devices (Chai et al., 2019). A practical framework al

lows clients to update the local model via a flexible number of local SGD steps

in each round according to its available resource capacity. And we define such a

procedure as step asynchronism (see Figure 4.1 for visualized demonstration). To

comprehensively understand the training performance of the traditional algorithm

FedAvg, Table 4.1 compares the results in terms of test accuracy in two situations

– step asynchronism and data heterogeneity. This experiment is under convex (i.e.,

logistic regression) and nonconvex (i.e., 2layer CNN) objectives using a public

dataset FashionMNIST (Xiao et al., 2017). Performance deterioration is notice

able, especially in the logistic regression model the desired test accuracy cannot
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Device Method
Utilization1

(Rounds)
Accuracy(%)2

Raspberry
Pi 4

FedNova 25% (49) 66.18
FedaGrac 100% (25) 72.07

Nvidia
Jetson Nano

FedNova 50% (50) 64.39
FedaGrac 100% (21) 72.93

Nvidia GTX
1080 Ti

FedNova 100% (40) 69.77
FedaGrac 100% (30) 72.00

Nvidia GTX
2080 Ti

FedNova 100% (29) 72.11
FedaGrac 100% (36) 72.13

1Utilization means the maximum computation capacity of Nvidia GTX 3080Ti to
achieve the test accuracy of 60% in the first 50 rounds. We obtain the value by
tuning the resource usage from 100% and looping a deduction of 5%. Rounds
quantify when the approach achieves 60% test accuracy.
2Given the utilization, we measure the test accuracy after 100 rounds.

Table 4.2: Utilization and test accuracy under the setting that one Nvidia GTX
3080Ti and nine other devices are shown in the first column. Here we evaluate
FashionMNIST with nonconvex objectives (i.e., 2layer CNN), and the data dis
tribution among clients is heterogeneous.

be reached.

A previous study (Wang et al., 2020b) owes the performance deterioration to

objective inconsistency, where the FL training converges to a stationary point that

mismatches the optimal solution. In order to alleviate the issue, Wang et al. (Wang

et al., 2020b) introduce FedNova, a normalization approach that averages the nor

malized local gradients and accordingly updates the global model at the server.

However, in Table 4.2, we empirically disclose that FedNova cannot fully utilize

the computational resources of the powerful node under heterogeneous environ

ments, which explicitly limits the number of local updates for the faster node.

In this chapter, we propose a method named FedaGrac to conquer the objec
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tive inconsistency challenge under a highly imbalanced computational setting in

FL. The core idea of our proposed algorithm is to calibrate each local update ac

cording to the global update orientation. Although the correct global direction is

not known, it can be estimated based on the clients’ local updates: If a client per

forms the local updates very fast, then the client will transmit the first gradient;

otherwise, the averaged gradient. By this means, the negative effect of deviation

on the convergence can be significantly mitigated. We conduct preliminary exper

iments and depict the comparison between our proposed algorithm and FedNova

(Wang et al., 2020b) in terms of resource utilization and test accuracy in Table 4.2.

In all cases, FedaGrac not only fully utilizes the computational resources, but also

achieves a better accuracy than FedNova (see Table 4.2).

Our key contributions to this work are listed as follows:

1. To explore the factors that lead to performance deterioration, we analyze the

convergence property under stronglyconvex objectives. The theoretical re

sult indicates that the expected loss never reaches the optimal one when both

data heterogeneity and step asynchronism exist. In other words, a constant

number of local updates eliminates the negative effect of data distribution

differentiation, while step asynchronismmagnifies the drawback of data het

erogeneity.

2. We design a novel method named FedaGrac to address the problem of ob

jective inconsistency via predictive gradient calibration, which makes the

direction of each local update close to the direction towards the global opti
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mum. For the first time, our algorithm can jointly address statistical hetero

geneity and computation heterogeneity at a time.

3. We establish the convergence rate of FedaGrac. Under nonconvex objec

tives, the algorithm achieves a convergence rate of O
(
1/
√
MTK̄

)
, where

M and T represent the number of clients and communication rounds, re

spectively, and K̄ indicates the weighted averaged number of local updates.

This convergence rate is also achieved by FedNova only under the condi

tion that Kmax/Kmin = O(M), where Kmax and Kmin separately refer to the

maximum and minimum number of local updates (Wang et al., 2020b). Oth

erwise, the actual convergence rate of FedNova should be O
(√

K̄/MT
)
.

Apparently, our algorithm can achieve a faster convergence rate by a factor

up to O(K̄).

4. We conduct extensive experiments to compare the proposed FedaGracwith

typical and latest works such as SCAFFOLD (Karimireddy et al., 2020b)

and FedNova (Wang et al., 2020b). In terms of convergence rate, FedaGrac

achieves higher convergence efficiency compared to FedAvg and FedNova,

especially in scenarios with high heterogeneity. For example, in terms of

test accuracy, our algorithm can always preserve convergence while SCAF

FOLD and FedNova cannot work in some cases.

The rest of this chapter is organized as follows. First, Section 4.2 provides

related work and background knowledge of distributed SGD and existing solutions

to heterogeneous training. Next, we state preliminaries and problem formulation
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for the heterogeneous Federated Learning in Section 4.3. Then, in Section 4.4,

we design a novel algorithm FedaGrac to solve the problem. In Section 4.5, we

analyze its convergence property. After that, we present our experimental results

to evaluate our method in Section 4.6. Finally, Section 4.7 concludes the chapter.

4.2 Related Work

Federated learning. Frequently, edge devices such as smartphones possess abun

dant data, which are highly sensitive but useful to the model training (Guo and

Qu, 2022; Han et al., 2020; Lim et al., 2021; Wang et al., 2021c). To utilize these

data, FL is conceived to search for a generalized model (Qu et al., 2021; Wang

et al., 2021b) or personalized models (T Dinh et al., 2020; Zhang et al., 2021)

while safeguarding the data privacy (Konečnỳ et al., 2015; McMahan et al., 2017).

Apparently, the data are heterogeneous among clients because there are no prede

fined rules for the data distribution for each client. Besides, due to the hardware

differences among devices, the computational capabilities are various. In this sec

tion, we briefly investigate the flaws raised by data heterogeneity and computation

heterogeneity and review the existing work to tackle these two issues.

Data Heterogeneity. Generally, in FL settings, the data distributed among clients

are agnostic and therefore, each data portfolio has its exclusive optimal parameters.

As a classical algorithm to combat data heterogeneity, FedAvg inherits the training

features from local SGD (Stich, 2018; Yu et al., 2019d; Zhou and Cong, 2018), a

framework that runs for multiple local updates prior to a global synchronization.
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SCAFFOLD FedNova FedLin FedaGrac

Client 0 Client 1 Global Optimizer Global Point

Figure 4.1: Illustration of model updating in the parameter space. For client i,
we generate a set of (x, y)s fluctuated around a linear function y = aix + bi,
where ai and bi are real numbers. Our target is to find an optimal straight line
y = ax + b, which is averagely close to all clients’ data. Starting at the same
point, each client applies mean squared error (MSE) loss and follows a predefined
algorithm to update its local model so as to optimize the global one. Regarding
the existence of data and computation heterogeneity, our proposed method does
not deviate from the direction towards a global minimizer.

Obviously, this strategy significantly reduces the total communication overhead

when compared to parallel SGD that synchronizes the gradient at every local up

date. Recent studies (Gu et al., 2021; Khaled et al., 2020; Li et al., 2019b) show

that FedAvg can have a great performance from theoretical and empirical perspec

tives. Also, FedAvg can seamlessly adopt communicationefficient approaches

such as quantization (Alistarh et al., 2017a; Basu et al., 2019) and sparsification

(Stich et al., 2018; Wangni et al., 2018) to further reduce the cost of transmission

(Wang et al., 2021a; Wu et al., 2020a,d; Zhou et al., 2021).

Nevertheless, numerous studies (Cheng et al., 2021; Gorbunov et al., 2020;

Karimireddy et al., 2020b; Liu et al., 2020b; Zhao et al., 2018) theoretically prove

that the issue raises the clientdrift effect and degrades the convergence property.

To mitigate the negative impact, existing solutions include crossclient variance re

duction (Karimireddy et al., 2020b; Liang et al., 2019), client clustering sampling
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(Fraboni et al., 2021; Ghosh et al., 2020; Murata and Suzuki, 2021) and reinforce

ment learning driven incentive mechanism (Wang et al., 2020a). Among these

approaches, SCAFFOLD (Karimireddy et al., 2020b) is a superior option that ad

justs every local update with the help of the global and a client’s local reference

orientation, such that every local update keeps close to the global direction. How

ever, as shown in Figure 4.1, SCAFFOLD cannot completely remove the drift. A

physical explanation for the result is that the local reference directions of the faster

nodes with more number of local updates lead to a significant deviation from the

orientation towards the local optimizer. Since the global reference direction is

aggregated by clients’ local ones, it is intuitively dominated by the faster nodes

(see Figure 4.1), which betrays its origin intention. Although we use a similar de

sign philosophy that ensures every local update along with the global orientation,

the global orientation consists of the gradient that depends on the number of local

updates, either the normalized gradient or the initial gradient.

Computational Heterogeneity. The computation capabilities vary among clients

because they use different devices. To minimize the computation differences,

some existing works adopt a client sampling strategy (Deng et al., 2021; Huang

et al., 2020; Wu et al., 2020b; Zhou et al., 2020), where only a small portion of

clients transmit the gradients to the server. Compared to the case that requires full

worker participation, this scheme reduces the total training time. However, there

still exists resource underutilization as the fastest client should wait for others’

completion.

A practical solution is to adopt step asynchronism, where each client performs
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an inconsistent number of local updates. Although FedAvg with step asynchro

nism can converge to a stable point under nonconvex objectives (Yu et al., 2019d),

Wang et al. (Wang et al., 2020b) point out that objective inconsistency takes place

under quadratic function. To alleviate the challenge of computational heterogene

ity, effective approaches are constituted with normalizationbased approach Fed

Nova (Wang et al., 2020b) and FedLin (Mitra et al., 2021), regularizationbased ap

proach FedProx (Li et al., 2020) and architecturebased approach HeteroFL (Diao

et al., 2020). Gradient normalization is the most ubiquitous framework that over

comes step asynchronism under noni.i.d. data setting. However, this method

cannot prevent the negative impact of statistical heterogeneity on the convergence

rate because the update deviation still exists after averaging. Figure 4.1 compares

FedNova (Wang et al., 2020b) and FedLin (Mitra et al., 2021) with our proposed

method, and we notice that the global model deviates to the one with less updates

in FedNova (Wang et al., 2020b). The reason is obvious: clients update the mod

els bias to their local datasets such that the normalized gradients collected by the

server are sparse. Besides, with the local models approaching the local minimiz

ers, the update becomes so trivial that those clients with more local updates have

a dispensable influence on the global model update.



CHAPTER 4. FEDAGRAC 50

4.3 Preliminary and Problem Formulation

Formally, the learning problem can be represented as the following distributed

optimization problem acrossM FL clients:

min
x∈Rd

F (x) =
M∑
i=1

ωiFi(x), (4.1)

where the weight ωi = |Di|/|D| is the ratio between the size of local dataset Di

and overall dataset D ≜ ∪Mi=1Di, and Fi(x) ≜ Eεi∼Di
[fi(x; εi)] is the the local

objective, i.e., the expected loss value of model xwith respect to random sampling

εi for client i.

FedAvgwith step asynchronism. Naiveweighted aggregation (Li et al., 2019b;

McMahan et al., 2017; Stich, 2018; Yu et al., 2019d) is an effective and communication

efficient way to solve Problem (4.1) for both convex and nonconvex objectives.

With the increasing number of edge devices participating in model training, the

framework is neither economic nor fair to require all clients to run a certain num

ber of local updates. Instead, a practical approach is that client i ∈ {1, ...,M} runs

for a flexible number of SGD steps (i.e., Ki) according to its resource capability

before the model aggregation at the server:

• (Pull): Pulls the current parameter x0 from the server.

• (Compute): Samples a realization ε randomly from the local datasetDi and

compute the gradient∇fi(xk, ε).

• (Update): Performs kth local update of the form η by xk+1 = xk − ηgk,



CHAPTER 4. FEDAGRAC 51

where k ∈ {0, ..., Ki} and η is the stepsize.

• (Push): Pushes the local parameter xKi
to the server.

Under this framework, we let Kmax and Kmin separately be the maximum and

theminimumnumber of local updates among all clients, i.e.,Kmax = maxi∈{1,...,M}Ki

and Kmin = mini∈{1,...,M}Ki. In addition, K̄ =
∑M

i=1 ωiKi is defined as the

weighted averaged number of local updates. Formally, step asynchronism is de

fined as the following mathematical expression:

∃i, j ∈ {1, ...,M}, Ki ̸= Kj. (4.2)

Therefore, Kmax ̸= Kmin when step asynchronism exists. Without extra explana

tions, these notations are adopted throughout the chapter.

Assumptions. To establish the convergence theory of the FL optimization, we

make the following assumptions that are adapted in previous works (Li et al., 2020,

2019b; Reddi et al., 2020; Wang et al., 2019, 2020b):

Assumption 4.1 (Lsmooth). The local objective functions are Lipschitz smooth:

For all v, v̄ ∈ Rd,

∥∇Fi(v)−∇Fi(v̄)∥2 ≤ L∥v − v̄∥2, ∀i ∈ {1, ...,M}.

Assumption 4.2 (µstrongly convex). The local objective functions are µstrongly
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convex with the value of µ > 0: For all v, v̄ ∈ Rd,

Fi(v)− Fi(v̄) ≥ ⟨∇F (v̄), (v − v̄)⟩+ µ

2
∥v − v̄∥22, ∀i ∈ {1, ...,M}

where ⟨·, ·⟩ refers to the inner product of two gradients.

Assumption 4.3 (Bounded Variance). For all v ∈ Rd, there exists a scalar σ ≥ 0

such that

E∥∇fi(v, ε)−∇Fi(v)∥22 ≤ σ2, ∀i ∈ {1, ...,M}

Assumption 4.4 (Bounded Dissimilarity). For some v ∈ Rd that ∥∇F (v)∥22 > 0

holds, there exists a scalar B ≥ 1 such that

E∥∇Fi(v)∥22 ≤ B2∥∇F (v)∥22, ∀i ∈ {1, ...,M}.

Obviously, when the data are independent and identically distributed, the value of

B should be 1.

Assumption 4.4 seems to be a little bit strong as ∥∇F (v)∥22 cannot be 0. How

ever, considering ϵaccuracy as the learning criterion, i.e., ∥∇F (v)∥22 ≤ ϵ under

nonconvex objectives such as deep neural networks which possess multiple local

minimizers, the value of ϵ cannot strictly be 0. In other words, there exists ϵ1 ≤ ϵ

such that ∥∇F (v)∥22 ≥ ϵ1 for all v always holds.

Key factor that raises objective inconsistency. Although (Wang et al., 2020b)

indicates that objective inconsistency occurs when using FedAvg with step asyn

chronism under quadratic functions, the factor that makes it happen remains a
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mystery. To explore in depth, the following theorem analyzes FedAvg with step

asynchronism under a stronglyconvex objective.

Theorem 4.1. Suppose the local objective functions are nonnegative. Denote the

parameter at tth communication round by xt. Let T be the total number of commu

nication rounds. Under Assumption 4.1, 4.2, 4.3 and 4.4, by setting the learning

rate η = O(1/µLTK̄) ≤ 1/LK̄, the output of FedAvg with step asynchronism

satisfies

lim
T→∞

E[F (xT )]− F (x∗) ≤ O

(
M∑
i=1

ωi

(
Ki

Kmin
− 1

)
Fi(x∗)

)
(4.3)

where x1 and x∗ indicates the initial and optimal model parameters, respectively.

Proof. See Appendix C for details.

Remark The theoretical result in Equation 4.3 is consistent with the result of

FedAvg analysis in (Karimireddy et al., 2020b) as the number of local updates is

identical, i.e., Ki = K̄, ∀i ∈ {1, ...,M}. Besides, when the data are identical and

independent distributed among clients, where the global optimizer is not equiv

alent to the clients’ local minimizer, we can easily induce that xT is close to x∗

when T → ∞. The conclusion holds regardless of the number of local updates.

However, when data heterogeneity and step asynchronism coexist, the righthand

side of Equation (4.3) is nonzero. As a result, when T tends to be infinite, the

model cannot converge to the optimal parameters, which can explain the result

manifested in Table 4.1 under LR. Based on the theoretical discovery, we can
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draw a conclusion that step asynchronism leads to a significant accuracy drop in

the noni.i.d. cases, which impedes normal training.

4.4 FedaGrac algorithm

To ensure that E[F (xT )] − F (x∗) is close to 0 when T → ∞, we target to re

move the constant term in the righthand side of Equation (4.3). Based on the re

mark in Section 3.2, a practical approach is to minimize the effectiveness of data

heterogeneity. In this section, we elaborate our proposed algorithm, Federated

Accelerating Gradient Calibration (FedaGrac), to avoid the objective inconsis

tency as well as enhance the convergence performance when step asynchronism

is adopted to improve the resource utilization. The implementation details are pre

sented as Algorithm 3.

At first, apart from the hyperparameters such as learning rate η and calibration

rate λ, we initialize a ddimension model with arbitrary parameters x1. Besides,

to ease the theoretical analysis in Section 4.5, we set ν(i) as ∇fi(x1,Di) for all

i ∈ {1, ...,M}. Then, we define ν as:

ν =
M∑
i=1

ωiν
(i) =

M∑
i=1

ωi∇fi(x1,Di).

In this algorithm, client i performs the local updates forKi times in parallel. Dur

ing each local update, clients calibrate the local client deviation with reference to

the global reference orientation, which is estimated at every global synchroniza



CHAPTER 4. FEDAGRAC 55

10 3 10 2 10 1 100

The value of 
70

71

72

73

74

75

76

77

78
Ac

cu
ra

cy
 (%

)
SCAFFOLD
FedaGrac
FedAvg

(a) w/ step async

λ Acc. (%)
0 77.37±0.8

0.001 77.23±1.2
0.005 77.18±0.9
0.01 77.49±0.6
0.05 78.23±0.5
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1 77.29±0.9

Increase 79.21±0.4
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Figure 4.2: Preliminary test for a 2layer CNN with the recognition of Fashion
MNIST. In the line graph, the experiments are conducted when the clients run
inconsistent updates. “Increase” in the table shows the value of λ changes over
time, i.e., 0.1 for the first 50 rounds, 0.5 for the next 100 rounds, and 1 for the rest.

tion. In the following two subsections, we separately discuss the effectiveness of

two main components, namely,

• Calibrating the local client deviation (Line 9 in Algorithm 3) migrates the

data heterogeneity;

• Estimating the global reference orientation (Line 14 in Algorithm 3) ac

celerates the training process.

4.4.1 Calibrating the local client deviation

As a classical approach, FedAvg updates the parameters using stochastic gradi

ent descent (SGD), where the gradient is computed in accordance with Line 8.
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Algorithm 3: Federated Accelerating Gradient Calibration (FedaGrac)
Require: InitializeM clients, set the initial model to be x̃1 ∈ Rd. Set ν(i) and ν

for all clients i ∈ {1, · · · ,M}. Set learning rate η > 0, calibration rate
λ > 0, the number of global synchronizations T and the number of local
iterations of each clientKi for all clients i ∈ {1, · · · ,M}.

1: On client i ∈ {1, · · · ,M}:
2: for t = 1 to T do
3: Pull x̃t, ν from server
4: Set x(i)t;0 = x̃t
5: Set c = ν − ν(i)

6: for k = 0 toKi − 1 do
7: Randomly sample a realization ε(i)k from Di

8: g(i)t;k = ∇fi(x
(i)
t;k, ε

(i)
k )

9: x(i)t;k+1 = x(i)t;k − η(g(i)t;k + λc)
10: end for
11: Set ν(i) = 1

Ki

∑Ki−1
k=0 g

(i)
t;k

12: Push x(i)t;Ki
, Ki to the server

13: Receive K̄ from the server
14: ifKi ≤ K̄, then send ν(i); else send g(i)t;0

15: end for
16: On server:
17: for t = 1 to T do
18: Push x̃t, ν to clients
19: Pull x(i)t;Ki

, Ki from client i ∈ [1, . . . ,M ]

20: x̃t+1 =
∑M

i=1 ωix(i)t;Ki

21: K̄ =
∑M

i=1 ωiKi

22: Push K̄ to clients and receive v(i)transit from clients
23: ν =

∑M
i=1 ωiv

(i)
transit

24: end for

Suppose the gradient is equivalent to the first order derivative of the true local

objective, i.e., ∇fi(v, ε) = ∇Fi(v), where ε is randomly sampled from the lo

cal dataset Di. Then, given the stepsize η, the model update follows x(i)t,k+1 =
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x(i)t,k − η∇Fi

(
x(i)t,k

)
. Previous works (Bottou, 2010; Zinkevich et al., 2010) show

that this scheme can converge to a stable point when a client performs sufficient lo

cal updates. Under a heterogeneous data setting, the points vary among clients be

cause each of them is determined by the local data distribution. Therefore, clients

are biased from the global orientation, and the phenomenon is named as client

deviation1.

Existing works to overcome client deviation mainly focus on the variance re

duction approach, i.e., SCAFFOLD (Karimireddy et al., 2020b). It is somehow

similar to our proposed algorithm when λ is set to 1. In this case, client i’s local

reference direction v(i) is assumed to be equivalent to the vector from the current

point to its local optimizer. As for the global reference orientation, v overlaps with

the gradient from the current point to the global minimizer. However, it is nearly

impossible to coincide with the case, especially when applied with the gradient cal

ibration technique. Generally speaking, using an obsolete gradient to predict the

coming gradient is not reasonable because the aggregated direction presumably

deviates from the expected one.

Therefore, we introduce a calibration rate λ for the correction term. With this

hyperparameter, a gradient can be adjusted and approximated to the global update.

Empirical results in Figure 4.2 intuitively present the effectiveness of λ. Generally

speaking, a smaller λ has a similar performance as FedAvg because the calibrated

gradient is still biased to the local computed one. For a greater λ, the test accu

racy goes down dramatically since the gradient is overcalibrated. As a result, a
1Client deviation is also known as client drift (Karimireddy et al., 2020b; Mitra et al., 2021).
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constant λ cannot be too large or too small such that the calibration term is ef

fective. Furthermore, in Figure 4.2b, we evaluate a case where λ increases over

time. Apparently, the strategy is impressive because it outperforms all other con

stant settings. The reason for the improvement is clear: at the beginning stage,

the difference between two successive updates is significant because the model is

far away from convergence. When the training comes to a stable point, the value

of λ should be 1 such that the gradient eliminates the deviation towards the local

minimizer.

4.4.2 Estimating the global reference orientation

While applying SCAFFOLD (Karimireddy et al., 2020b) to train a model, we no

tice that the model update is biased to the fastest node under stepasynchronous

settings. Given a model x, some clients, e.g., client i, are close to a stable point

such that the computed local reference orientation significantly deviates from the

expected one, i.e., ∇Fi(x). Regarding that the clients (client i) with fewer local

updates can better estimate the local orientation ∇Fi(x), the model prefers those

with more local updates, which undermines the convergence property.

At the beginning of round t ∈ {1, ..., T}, the centralized server broadcasts

the model x̃t to all clients. To obtain an exact result of ∇F (x̃t), each client i ∈

{1, ...,M} should provide an accurate estimation for ∇Fi(x̃t), or the bias of the

estimation ν(i) can be eliminated by the sum, i.e.,
∑M

i=1 ωiν
(i). Therefore, there are

two practical ways to estimate∇Fi(x̃t) for client i, namely, (i) the first stochastic

gradient, i.e., ∇fi(x̃t, ε), and (ii) the averaged stochastic gradient, i.e.,



CHAPTER 4. FEDAGRAC 59

25 50 75 100 125 150 175
Communication Rounds

75
76
77
78
79
80
81
82
83
84

Ac
cu

ra
cy

 (%
)

FedaGrac
FedaGrac_avg
FedaGrac_first
FedaGrac_reverse

(a) LR w/o step async

25 50 75 100 125 150 175
Communication Rounds

35
40
45
50
55
60
65
70
75
80

Ac
cu

ra
cy

 (%
)

(b) CNN w/o step async

25 50 75 100 125 150 175
Communication Rounds

75

76

77

78

79

80

81

Ac
cu

ra
cy

 (%
)

(c) LR w/ step async

25 50 75 100 125 150 175
Communication Rounds

35
40
45
50
55
60
65
70
75
80

Ac
cu

ra
cy

 (%
)

FedaGrac
FedaGrac_avg
FedaGrac_first
FedaGrac_reverse

(d) CNN w/ step async

Figure 4.3: Empirical evaluation for how to estimate the global reference orienta
tion using FashionMNIST with convex (i.e., LR) and nonconvex objectives (i.e.,
2layer CNN). The horizontal axis indicates the communication rounds, and the
vertical axis shows the test accuracy in percentage. (a)(b) indicate the results when
the clients run for the constant number of updates, and (c)(d) is when they perform
various numbers of SGD steps. (Zoom in for the best view)

1
Ki

∑Ki−1
k=0 ∇fi

(
x(i)t,k, ε

(i)
k

)
in Line 11 of Algorithm 3. Based on these two strate

gies, we design and empirically evaluate four different schemes to find a proper

estimation for the global reference orientation: (Note: faster or slower nodes are
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classified by whether the number of local updates is greater than the average up

dates)

• FedaGrac requires faster nodes to transmit the first stochastic gradient while

the rest push the average one;

• FedaGrac_avg (a.k.a. SCAFFOLD) requires all nodes to transmit the aver

age stochastic gradient;

• FedaGrac_first requires all nodes to transmit the first stochastic gradient;

• FedaGrac_reverse requires faster nodes to transmit the average stochastic

gradient while the rest push the first one.

Figure 4.3 presents the results of different strategies. As we can see, with

out step asynchronism, these four schemes do not have considerable differences.

However, with step asynchronism, FedaGrac outperforms another three potential

approaches under both convex and nonconvex objectives. This is why Line 14

of Algorithm 3 is introduced. To further reduce the communication overhead, the

algorithm solely requests the faster nodes to upload the first stochastic gradient,

while the rest can be computed via 1
ηKi

(
x̃t − x(i)t,Ki

)
− λ

(
ν − ν(i)

)
if ν(i) is pre

served on the server.

4.5 Theoretical Convergence Analysis

In this section, we analyze the convergence property of FedaGrac under both non

convex objectives and stronglyconvex objectives for solving Problem (4.1). The
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details of the mathematical proof are provided in the supplementary materials with

stepbystep explanations.

4.5.1 Mathematical expression for Algorithm 3

In Section 4.4, we describe the details in Algorithm 3. Below represents how to

derive the recursive function step by step.

Local reference orientation. To ensure every local update can calibrate to

the expected one, we should use the averaged local update such that after multiple

local updates, the acquired model does not deviate from the expected orientation.

Therefore, the local reference orientation is defined as:

ν(i) =


1
Ki

∑Ki−1
k=0 g

(i)
t−1;k, Ki ≤ K̄

g
(i)
t−1;0, Otherwise

(4.4)

Global reference orientation. SCAFFOLD (Karimireddy et al., 2020b) presents

a remarkable performance with the aggregation of ν(i) for all i ∈ {1, ...,M}. How

ever, the approach presumably does not work due to step asynchronism, where

local reference orientations deviated from the expected direction are dramatically

various among clients. To avoid this issue, we let the faster nodewithmore number

of local updates transfer the initial gradient while others send the local reference

orientation to the server, which can be formally written as:

ν =
∑

i,Ki≤K̄

ωi

Ki

Ki−1∑
k=0

g
(i)
t−1;k +

∑
i,Ki>K̄

ωig
(i)
t−1;0
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Recursion function. According to Line 9 in Algorithm 3, for client i, the

recursion between two successive local updates can be presented as:

x(i)t,k+1 = x(i)t,k − η
[
g
(i)
t;k + λ

(
ν − ν(i)

)]
(4.5)

Then, based on the equation above, i.e., Equation (4.5), for client i with the local

updates ofKi, x(i)t,Ki
− x̃t can be formulated in mathematical expression as:

x(i)t,Ki
− x̃t =

Ki−1∑
k=0

(
x(i)t,k+1 − x(i)t,k

)
= −η

Ki−1∑
k=0

g
(i)
t;k − ηλKi

(
ν − ν(i)

)
Finally, according to the definition in Problem (4.1), the recursion function be

tween two successive global updates is the weighted average of all clients’ models,

which is written as:

x̃t+1 − x̃t =
M∑
i=1

ωix(i)t,Ki
− x̃t = −η

M∑
i=1

Ki−1∑
k=0

ωig
(i)
t;k − ηλK̄ν + ηλ

M∑
i=1

ωiKiν
(i)

4.5.2 Nonconvex objectives

Theorem 4.2 (Nonconvex objectives). Considering the same x1 and x∗ as Theo

rem 4.1, under Assumption 4.1, 4.3 and 4.4, by setting η = O
(√

M
TK̄

)
, the con

vergence rate of Algorithm 1 with step asynchronism for nonconvex objectives

is

1

T

T∑
t=1

E∥∇F (x̃t)∥22 ≤ O
(
(F (x1)− F (x∗))

λ
√
K̄MT

)
+O

(
σ2L
√
M

λ
√
K̄3T

M∑
i=1

ω2
iKi

)
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+O

(
σ2Lλ

√
M√

K̄T

M∑
i=1

ω2
i

(
(K̄ −Ki)

2

K̄Ki

+ 1

))

+O

(
L2σ2M

λK̄2T

M∑
i=1

ωiK
4
i

)

+O

(
L2σ2λM

K̄2T

M∑
i=1

ωiK
3
i

(
Ki

M∑
j=1

ω2
j

Kj

+ 1

))
. (4.6)

Proof. See Appendix D for details.

Corollary 4.2.1. By setting ω1 = ... = ωM = 1/M and λ = O(1), the following

inequality holds under Theorem 4.2:

min
t∈{1,...,T}

E∥∇F (x̃t)∥22 ≤ O
(

1√
MTK̄

)
. (4.7)

Remark (Wang et al., 2020b) states that FedaNova can achieve the convergence

rate same as Equation 4.7, but there exists an explicit condition that
∑M

i=1(K̄/MKi)

is a constant whenω1 = ... = ωM = 1/M . Let us consider an extreme case that the

slow nodes locally update once, i.e.,Ki = 1 for all i ∈ {1, ...,M−1}while Client

M can run for a very large number of times. This case is possible, for instance, a

system consists of multiple Raspberry Pi and a single Nvidia GTX 3080Ti GPU,

the computational difference between which can be up to a thousandfold. Under

such situation, the aforementioned term should be bounded by O(K̄) instead of

O(1) and therefore, the convergence rate for FedNova should be O(
√

K̄/MT ).

In comparison with Equation 4.7, FedaGrac achieves an increment up to O(K̄).

Furthermore, the algorithms such as FedAvg (Yu et al., 2019d) and SCAF
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FOLD (Karimireddy et al., 2020b) that use the homogeneous setting achieve a

convergence rate of O(1/
√
MTKmin). Obviously, FedaGrac admits better con

vergence rate as Kmin ≤ K̄ always holds under heterogeneous computational

resources. This is because our algorithm can fully utilize the computational re

sources from all participants such that it outperforms those algorithms that solely

supports the homogeneous environment.

4.5.3 Stronglyconvex objectives

Theorem 4.3 (Stronglyconvex objectives). Considering the same x1 and x∗ as

Theorem 4.1, under Assumption 4.1, 4.2 and 4.3, by settingλ = 1, η = O(1/µLTK̄) ≤

1/LK̄, the convergence rate of Algorithm 1 with step asynchronism for strongly

convex objectives is

E[F (x̃T )]− F (x∗) ≤ Õ
(
µ∥x1 − x∗∥22 exp

(
−µT

L

)
+
H
µT

+
P

µ2T 2

)
, (4.8)

where

H =
σ2

K̄2

M∑
i=1

ω2
i

(
Ki + K̄ +

(K̄ −Ki)
2

Ki

)
,P =

L2σ2

µ

(
M∑
i=1

ωiK
3
i

)
M∑
j=1

ω2
j

Kj

.

Proof. See Appendix E for details.

Corollary 4.3.1. By setting ω1 = ... = ωM = 1/M , the following inequality holds
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under Theorem 4.3:

E[F (x̃T )]− F (x∗) ≤ Õ
(

σ2

µMTK̄

)
. (4.9)

Remark Compared to FedNova (Wang et al., 2020b) that has convergence the

ory only for nonconvex objectives, we have established the rigorous convergence

theory for our method FedaGrac on stronglyconvex objectives. Compared with

Theorem 4.1, FedaGrac not only converges to the optimal parameters, but also

obtains a better convergence rate as Õ(1/K̄) ≤ Õ(1/Kmin).

4.6 Empirical Evaluation

In this section, we conduct extensive experiments to evaluate the performance

of FedaGrac in the real cases that are widely accepted by the existing studies.

To further obtain an intuitive understanding of the numerical results, FedaGrac

competes against other uptodate benchmarks that are comparable under vari

ous settings. The code is implemented with PyTorch and available at https:

//github.com/HarliWu/FedaGrac.

4.6.1 Setup

Datasets. We leverage FashionMNIST (Xiao et al., 2017) to run the preliminary

experiments in the previous sections. This dataset comprises 60000 28×28 grey

scale training images and 10000 test images, which can be categorized into ten

https://github.com/HarliWu/FedaGrac
https://github.com/HarliWu/FedaGrac
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Layer Output Shape Trainable Parameters Activation Hyperparameters
Input (1,28,28) 0
Conv2d (10, 24, 24) 260 ReLU kernel size=5

MaxPool2d (10, 12, 12) 0 kernel size=2
Conv2d (20, 8, 8) 5020 ReLU kernel size=5

Dropout2d (20, 8, 8) 0 p=0.5
MaxPool2d (20, 4, 4) 0 kernel size=2
Flatten 320 0
Dense 50 16050 ReLU
Dropout 50 0 p=0.5
Dense 10 510 softmax

Table 4.3: Details for 2layer CNN on FashionMNIST. Typically, Fashion
MNIST consists of greyscale images possessing a single channel.

classes related to the clothes type. In this section, we utilize two more datasets:

a9a2 and CIFAR10 (Krizhevsky et al., 2009b). As a binary classification task,

a9a consists of 32561 training samples and 16281 test samples, and each sample

possesses 123 features. CIFAR10 is a 10category image classification task, con

stituting 60000 32×32 color images divided into the training and test set with the

size of 50000 and 10000, respectively.

Models. For the assessment of convex objectives, we train a logistic regression

(LR) model using a9a. In addition, we investigate the performance under non

convex objectives through an image classification task CIFAR10 (Krizhevsky

et al., 2009b) with AlexNet (Krizhevsky et al., 2012) and VGG19 (Simonyan

and Zisserman, 2014), deep neural networks with total parameters of 7.21M and

20.55M, respectively. As for FashionMNIST, 2layer CNN and LR are utilized to

evaluate the performance under nonconvex and convex objectives, respectively.

Based on the dataset used, the details for 2layer CNN, AlexNet and VGG19 are
2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Layer Output Shape Trainable Parameters Activation Hyperparameters
Input (3,32,32) 0
Conv2d (64, 8, 8) 23296 ReLU kernel size=11, stride=4, padding=5

MaxPool2d (64, 4, 4) 0 kernel size=2, stride=2
Conv2d (192, 4, 4) 307392 ReLU kernel size=5, padding=2

MaxPool2d (192, 2, 2) 0 kernel size=2, stride=2
Conv2d (384, 2, 2) 663936 ReLU kernel size=3, padding=1
Conv2d (256, 2, 2) 884992 ReLU kernel size=3, padding=1
Conv2d (256, 2, 2) 590080 ReLU kernel size=3, padding=1

MaxPool2d (256, 1, 1) 0 kernel size=2, stride=2
Flatten 256 0
Dropout 256 0 p = 0.5
Dense 2048 526336 ReLU
Dropout 2048 0 p = 0.5
Dense 2048 4196352 ReLU
Dense 10 20490 softmax

Table 4.4: Details for AlexNet on CIFAR10. Output shape follows the format of
(channel, height, width). Generally, color images like CIFAR10 dataset are with
three channels.

separately described in Table 4.3, Table 4.4 and Table 4.5.

Data Heterogeneity. As for the noni.i.d. settings, we adopt two different parti

tioned ways. The first one that we split the dataset across the clients follows the

Dirichlet distribution with parameter 0.3, denoted as DP1. This approach is suit

able for both datasets. The other method disjoints the dataset via sharding, and thus

each client holds 5 classes. We let such a method be DP2 and ensure clients carry

the same volume of data. It is worth noting that this partition is only compatible

with CIFAR10 because a9a is a binary classification challenge.

Computational Heterogeneity. To simulate a heterogeneous computing environ

ment, we suppose the computation differences amongworkers follow theGaussian

distribution. Then, the number of local updates varies among clients and follows

the normal distribution with predefined mean and variance. And the number of

local updates may change over time for each client.
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Layer Output Shape Trainable Parameters Activation Hyperparameters
Input (3,32,32) 0

2 × Conv2d (64, 32, 32) 38720 ReLU kernel size=3; padding=1
MaxPool2d (64, 16, 16) 0 kernel size=2, stride=2
2 × Conv2d (128, 16, 16) 221440 ReLU kernel size=3; padding=1
MaxPool2d (128, 8, 8) 0 kernel size=2, stride=2
4 × Conv2d (256, 8, 8) 2065408 ReLU kernel size=3; padding=1
MaxPool2d (256, 4, 4) 0 kernel size=2, stride=2
4 × Conv2d (512, 4, 4) 8259584 ReLU kernel size=3; padding=1
MaxPool2d (512, 2, 2) 0 kernel size=2, stride=2
4 × Conv2d (512, 2, 2) 9439232 ReLU kernel size=3; padding=1
MaxPool2d (512, 1, 1) 0 kernel size=2, stride=2
Flatten 512 0
Dropout 512 0 p = 0.5
Dense 512 262656 ReLU
Dropout 512 0 p = 0.5
Dense 512 262656 ReLU
Dense 10 5130 softmax

Table 4.5: Network architecture for VGG19 on CIFAR10.

Implementation andHyperparameter Settings. The experiments are conducted

with an MPIsupported cluster with the configurations of 100GB RAM, 25 CPU

cores, and 1 Nvidia P100 GPU. Based on the resource, we utilize 20 cores to

act as clients and a single core as the federated server. Besides, the batch sizes

throughout our experiments are set as 25 and 20 for CIFAR10 and a9a, respec

tively. We choose FedAvg (McMahan et al., 2017), FedNova (Wang et al., 2020b),

SCAFFOLD (Karimireddy et al., 2020b) and FedProx (Li et al., 2020) as bench

marks and present the effectiveness of our proposed approach FedaGrac. For a

fair comparison, we compare these algorithms with the results when they achieve

the best performance under the constant learning rates {0.01, 0.008, 0.005} and

{0.005, 0.001, 0.0005} for AlexNet/VGG19 and LR, respectively. And other re

quired hyperparameters are also carefully picked from a set, such as the coefficient

of the regularization term for FedProx in {1, 0.1, 0.01}. We specified other unmen
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Figure 4.4: Comparison of various setting combinations for learning rate η and
calibration rate λ using DP1 data distribution under AlexNet and LR after 100
communication rounds. The horizontal index indicates the value of λ while the
vertical index shows the value of η. The numeric in the box presents the averaged
test accuracy of the last 10 rounds under the specific hyperparameter settings. The
mean number of local updates is 500, and the variance with step asynchronism is
10000.

tioned but necessary settings in the captions of the figures and the tables.

4.6.2 Numerical Results

Performance under Various combinations for learning rate and calibration

rate. As learning rate η and calibration rate λ need tuning in FedaGrac, we first
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explore how to set both hyperparameters scientifically. Figure 4.4 depicts the test

accuracy under various relations between η and λ. As we observe, the differences

regarding the convexity are quite significant, e.g., AlexNet in Figure 4.4a and LR

in Figure 4.4b, while the computation heterogeneity has minor influence on the

selection of hyperparameters under the same model, e.g., AlexNet in Figure 4.4a

and Figure 4.4c. Based on the acquired results, we discuss how to set the hyperpa

rameters for FedaGrac under convex or nonconvex objectives.

Both Figure 4.4a and Figure 4.4c illustrate the performance under AlexNet

with and without computational heterogeneity. In both cases, most λs achieve the

highest accuracy at η = 0.05, while some have the best performance at η = 0.01.

When the learning rate initializes with a value smaller or equal to 0.001, most

AlexNets seem untrained after 100 rounds because they are less likely to escape a

saddle point. Although some portfolios successfully get out of the minima, they

still cannot outperform the aforementioned settings because theymay (i) trap into a

nonoptimal stable point or (ii) need a longer period to reach the optimal solution.

A constant λ that performs well in all learning rates does not exist. However,

when we shrink the choice of learning rate between 0.01 and 0.05, λ = 0.05 has a

remarkable performance. In our experiments, the calibration rate is chosen from

{0.01, ..., 0.05} depending on the algorithm’s performance.

Figure 4.4b and Figure 4.4d present the results under the convex objectives.

Regardless of the step asynchronism, λ = 1 always has remarkable performance

for any learning rate. And it is noticeable that FedaGrac can obtain the best per

formance when λ = 1 and η = 0.005. As for a λ ̸= 1, FedaGrac can achieve bet
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Model Data
Distribution

Target
Accuracy Variance Mode

Number of communication rounds (↓)
FedaGrac FedAvg FedNova SCAFFOLD FedProx

AlexNet DP1 68%

V = 0  113 123 127 113 145

V = 100
fixed 106 130 147 114 144
random 116 140 154 133 140

V = 10000
fixed 126 156 172 141 142
random 121 177 170 136 152

AlexNet DP2 70%

V = 0  152 183 186 160 147

V = 100
fixed 111 179 119 124 143
random 112 200+ 195 137 141

V = 10000
fixed 111 200+ 113 131 145
random 118 200+ 200+ 123 152

VGG19 DP2 80%

V = 0  73 83 79 72 90

V = 100
fixed 73 75 72 66 72
random 73 85 74 78 102

V = 10000
fixed 77 73 70 72 77
random 71 85 76 72 99

Table 4.6: The number of communication rounds when first achieving the target
test accuracy under AlexNet and VGG19. The computational capabilities among
workers follow the Gaussian distribution with a mean of 500 and different vari
ances (i.e., V = 0, V = 100, and V = 10000) using two different data distributions
(i.e., DP1 and DP2). Random mode indicates the number of local updates on a
client varies among communication rounds, while fixed mode does not possess
the feature. Each experiment runs for a maximum of 200 rounds.

ter performance as the learning rate becomes smaller. With such a phenomenon,

we hypothesize that FedaGrac cannot exactly reach the identical minimizer when

λ ̸= 1 and approaches the expected point as the learning rate reduces.

Performance under various data distributions. Table 4.6 validates our algo

rithm under different data heterogeneities, i.e., DP1 and DP2 under AlexNet. The

target accuracy is determined by the best performance that these five algorithms

can achieve when they run a constant number of updates. By comparing each algo

rithm under these two data distributions, DP2 is more challenging for FedAvg and

FedNova because the algorithms generally require more communication rounds

to achieve the target. Even worse, these two algorithms cannot achieve the goal

within 200 rounds in some DP2 settings. As for the regularizationbased approach
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(i.e., FedProx) and the variance reduction approaches (i.e., FedaGrac and SCAF

FOLD), the task shifting does not cause a distinct influence3 in terms of the re

quired communication rounds. As we can see in both cases with computational

differences, FedaGrac demonstrates the superiority over other benchmarks.

Performance under various neural networks. In addition to exploring various

data distributions based on Table 4.6, we investigate the performance of FedaGrac

under different neural networks. As we notice, the approach in VGG19 does not

outperform all benchmarks in some computation heterogeneity cases. Specifically,

it requires several more rounds than the best algorithm. An explanation for this

phenomenon is that obtaining an 80%accuracy VGG19 on CIFAR10 is not a

difficult task. In contrast to getting an AlexNet with a test accuracy of 70%, the

algorithms can adopt a greater learning rate to improve training efficiency. Since

there are some restricted terms in FedaGrac, it is reasonable that our proposed

algorithm cannot outperform the benchmarks. Meanwhile, it is common that some

benchmarks cannot outperform FedAvg (Li et al., 2021a). However, it is worth

noting that, as presented in Figure 4.5, the faster algorithm may not surpass the

slower ones in terms of the final test accuracy.

Performance under various computational capabilities. While adopting Gaus

sian distribution to tune the computation heterogeneity, we should manually set

both mean and variance. To explore whether these two hyperparameters influ

ence the algorithms’ performances, we conduct extensive experiments, and the

relevant results are presented in Table 4.6 and Figure 4.5. Table 4.6 evaluates the
3The difference between the numbers of the communication rounds is less than 15%.
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(d) LR with 1000

Figure 4.5: Test accuracy v.s. Training time under different gaussian mean w.r.t.
the fixed variance of 10000. Leftmost two figures: AlexNet using DP2; Rightmost
two figures: LR using DP1. The number of local updates on a client is fixed
and initialized at the beginning of the model training. Each algorithm runs for a
total of 200 rounds, and the gap between two markers represents an interval of 10
communication rounds.

performance under the computational capabilities with a constant mean of 500 and

different variances, while Figure 4.5 assesses the convergence tendency under a

fixed variance of 10000 and diverse means.
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Table 4.6 presents the results given different varianceswith/without timevarying

local updates. Our analysis is mainly based on AlexNet because it gives noticeable

differences when the variances or the modes switch. Admittedly, these algorithms

are not sensitive to whether the number of local updates is timevarying. However,

it is worth noting that FedNova is vulnerable to timevarying settings in DP2. This

is because a large learning rate may lead FedNova to a surrogate solution (Mitra

et al., 2021) such that FedNova has to adopt a smaller learning rate to achieve

the target accuracy. In contrast to timevarying local updates, the variance plays

an important role in training efficiency. When the variance becomes larger, it is

likely that the algorithms require more communication rounds. Nevertheless, a

greater variance sometimes improves the training efficiency of those algorithms

which mitigate the clientdrift effect, i.e., FedaGrac, SCAFFOLD, and FedProx.

Figure 4.5 illustrates the entire training progress, i.e., the test accuracy with

respect to the training time and the communication rounds under both convex and

nonconvex objectives. Our proposed algorithm achieves competitive accuracy

compared to other baselines, despite a slow start likely taking place because the cal

ibration is yet to settle the clientdrift effects properly in the beginning. Although

FedAvg and FedNova require half communication overhead as our proposed algo

rithm does, they cannot keep dominant alongside the training. Use AlexNet as an

example (Figure 4.5a and 4.5b), and FedaGrac is capable of achieving the same

performance with fewer rounds. In addition, it is interesting to see FedProx con

suming more time to implement 200 rounds than FedAvg. A reasonable explana

tion for this phenomenon is that extra computation is required by the regularization
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terms. As the model gets larger, this effect becomes minor since the communica

tion consumption asymptotically occupies most training time (compare between

LR (Figure 4.5c) and AlexNet (Figure 4.5a) for this heuristic conclusion). As a

convex objective, LR depicts the issue of objective inconsistency (the latter two

plots in Figure 4.5). The performances of FedAvg, FedNova, and FedProx are

much worse than FedaGrac and SCAFFOLD. With the increasing mean and the

unchanged variance, the deterioration gets mitigation but cannot eliminate. As

for the comparison between SCAFFOLD and our proposed method, the latter pos

sesses dominance nearly all the time.

4.7 Summary

This chapter introduces a new algorithm named FedaGrac to tackle the challenges

of both statistical heterogeneity and computation heterogeneity in FL. By calibrat

ing the local client deviations according to an estimated global orientation in each

communication round, the negative effect of step asynchronism on model accu

racy can be greatly mitigated, and the training process is remarkably accelerated.

We establish the theoretical convergence rate of FedaGrac. The results imply that

FedaGrac admits a faster convergence rate and has a better tolerance to computa

tion heterogeneity than the stateoftheart approachs. Extensive experiments are

also conducted to validate the advantages of FedaGrac.



Chapter 5

Conclusion and Future Research

5.1 Conclusion

As an active field of distributed machine learning, optimization problems have

been studied for decades, but they are still looking for more efficient algorithms.

This thesis studies the optimization problems in distributed machine learning from

the gradientwise perspectives.

Firstly, for the sake of gradient compression to reduce communication over

head, we propose Marsit, a synchronization system that achieves onebit trans

mission under multihop allreduce. We implement a bitwise operation in this

framework to facilitate simultaneous reception and compression and prevent cas

cading compression. In addition, we build a global compensation mechanism to

reduce compression deviations. Theoretically, the proposed framework retains the

same theoretical convergence rate as noncompression mechanisms. According to

76
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empirical investigations, our proposed approach can achieve equal test accuracy

to the noncompression version while requiring 35% less training time.

Furthermore, by means of gradient calibration to accelerate the model training,

we introduce FedaGrac, a new algorithm designed to jointly address the issues of

statistical and computational heterogeneity in FL. With the proposed algorithm,

clients correct the gradients based on an estimated global orientation in every local

update. As a result, the detrimental effect of step asynchronism on model accuracy

can be considerably minimized, and the training efficiency can be dramatically

improved. According to the theoretical findings, our proposed algorithm admits a

faster convergence rate and is more tolerant of computational heterogeneity than

the current stateoftheart technique. Extensive empirical studies are also carried

out to prove the benefits of FedaGrac.

5.2 Future Work

In the future, we plan to conduct the research in the following three directions:

• Arbitrary Device Unavailability. The methods in this thesis mainly focus

on the setting of full client participation. With the proliferation of edge de

vices in the FL system, the number of inactive nodes or stragglers inflates,

resulting in arbitrary device unavailability. Although they can directly apply

to partial worker scenarios where the server actively samples a constant num

ber of clients, it is unknown whether they are able to retain the convergence

property under arbitrary device unavailability. In future work, we will de
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sign a new approach for this case and avoid the past knowledge preservation

because the obsoleted information is likely harmful to the model updates.

• SecondOrderGuarantee. In this thesis, we provide proof of the firstorder

guarantee under nonconvex objectives. While the firstorder guarantee is

the most common practice in distributed machine learning, its stationary

point could be a saddle point under nonconvex objectives. This has been

identified as a challenging problem in deep learning optimization. To escape

the saddle points, we should devise an algorithm that enjoys secondorder

optimality without hurting the communication efficiency.

• Gradient Decomposition. In addition to the aforementioned gradientwise

approaches, gradient decomposition is a meaningful way to optimize dis

tributed machine learning. It not only reduces the communication overhead

but distinguishes the significant elements in model updates. In the future,

we will explore how to robustly decompose a gradient such that the training

efficiency could be greatly improved.
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Appendices

A Proof for Cascading Compression

SSDM.An element vj in vector v is compressed for {+1,−1} following the prob

ability that:

˜sign (vj) =


+1, pr = 1

2
+

vj
2∥v∥

−1, pr = 1
2
− vj

2∥v∥

where ˜sign(·) refers to the compression operator. In such an operation, the ex

pected value for ˜sign (vj) is vj/∥v∥. Therefore, E ˜sign(v) = v/∥v∥. Since the

ℓ2norm ∥v∥ is a constant, SSDM can achieve unbiased update with the gradient

∥v∥ · ˜sign(v), which we define as Q(v).

Suppose the gradients calculated by all clients are s(1), ..., s(M) ∈ RD. Follow

ing lists various model updates, including

• Noncompression approach: s1
△
= 1

M

∑M
m=1 s

(m)

• SSDM under PS: s2
△
= 1

M

∑M
m=1Q

(
s(m)

)

107
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• SSDMusing cascading compression: s3
△
= 1

M
Q
(
...Q

(
s(1)
)
+ ...+ s(M)

)︸ ︷︷ ︸
M recursive compressions

Since the compressor Q is unbiased, the equality that E(s2) = E(s3) = s1 holds.

It is universally acknowledged that the update under MAR is equivalent to that

under PS. In this part, we aim to evaluate the deviation between the compression

and the noncompression results, i.e., ∥s2−s1∥22 for SSDMunder PS and ∥s3−s1∥22

for SSDM using cascading compression. Prior to analyzing these two bounds, we

introduce a assumption that widely adopts in (Bernstein et al., 2018a; Safaryan and

Richtárik, 2021):

Assumption 1 (Bounded gradient). For any worker m ∈ {1, ...,M} and vector

x ∈ RD, a scalar G ≥ 0 satisfies

E
∥∥s(m)

∥∥2
2
≤ G2.

Next, we first analyze the upper bound for the deviation under PS paradigm:

Theorem 1. Under Assumption 1, the upper bound for ∥s2 − s1∥22 is O(DG2).

Proof. Based on the expression of the variance,

E

∥∥∥∥∥ 1

M

M∑
m=1

Q
(
s(m)

)
− 1

M

M∑
m=1

s(m)

∥∥∥∥∥
2

2

= E

∥∥∥∥∥ 1

M

M∑
m=1

Q
(
s(m)

)∥∥∥∥∥
2

2

− E

∥∥∥∥∥ 1

M

M∑
m=1

s(m)

∥∥∥∥∥
2

2

≤ E

∥∥∥∥∥ 1

M

M∑
m=1

Q
(
s(m)

)∥∥∥∥∥
2

2

≤ 1

M

M∑
m=1

∥∥s(m)
∥∥2
2
·
∥∥∥ ˜sign

(
s(m)

)∥∥∥2
2
≤ DG2
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where the second last inequality is based on Cauchy–Schwarz inequality, and the

last inequality follows Assumption 1 and the sign matrix containing D (+1)s or

(−1)s, i.e.,
∥∥∥ ˜sign

(
s(m)

)∥∥∥2
2
= D, ∀m ∈ {1, ...,M}.

Then, the following theorem analyzes the boundary of cascading compression:

Theorem 2. Under Assumption 1, the upper bound for the deviation of cascading

compression is

∥s3 − s1∥22 ≤
(2D)MG2

M
(1)

Proof. Similar to Theorem 1, we have:

E

∥∥∥∥∥ 1

M
Q
(
...Q

(
s(1)
)
+ ...+ s(M)

)
− 1

M

M∑
m=1

s(m)

∥∥∥∥∥
2

2

≤ E
∥∥∥∥ 1

M
Q
(
...Q

(
s(1)
)
+ ...+ s(M)

)∥∥∥∥2
2

≤ D

M2
E
∥∥Q (...Q (s(1))+ ...+ s(M−1)

)
+ s(M)

∥∥2
2

≤ 2D

M2
E
∥∥Q (...Q (s(1))+ ...+ s(M−1)

)∥∥2
2
+

2DG2

M2
≤ G2

M2

M∑
m=1

(2D)m ≤ G2

M
(2D)M

where the third last inequality is based on ∥a+ b∥22 ≤ 2∥a∥22 + 2∥b∥22 and follows

Assumption 1, while the last inequality is based on a common sense that D ≥ 1.

Generally speaking, the dimension of a neural network is far larger than the number

of workers, i.e., D >> M , and therefore, current bound is tighter than the result

G2(2D)M+1/M2.

Obviously, when M = 1 such that the training under PS paradigms is equiv

alent to that under cascading compression, they have consistent upper bound. Al
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though both theorems show the upper bound, PS paradigm is unlike cascading

compression approach that explodes rapidly with respect to the number of work

ersM .

B Proof for Marsit (Theorem 3.1)

By constructing an auxiliary array {ỹ} such that ỹt = x̃t−ct, where ct =
∑M

m=1 c
(m)
t /M ,

we analyze its recursive function from the following two aspects:

• ct+1 = 0:

ỹt+1 = x̃t+1 = x̃t −
1

M

M∑
m=1

(
ηlg

(m)
t + c

(m)
t

)
= ỹt −

ηl
M

M∑
m=1

g
(m)
t (2)

• ct+1 ̸= 0:

ỹt+1 = x̃t+1−ct+1 = x̃t−gt−
1

M

M∑
m=1

(
ηlg

(m)
t + c

(m)
t − gt

)
= ỹt−

ηl
M

M∑
m=1

g
(m)
t

(3)

Let g̃t =
∑M

m=1 g
(m)
t /M and g

(m)
t here only means ∇fm

(
x̃t; ξ(m)

k

)
in this proof.

Obviously, regardless the value of ct+1, the recursive function is ỹt+1 = ỹt − ηlg̃t.

According to Lsmooth assumption for the nonconvex objectives, we have:

EF (ỹt+1)− F (ỹt) ≤ E ⟨∇F (ỹt) , ỹt+1 − ỹt⟩+
L

2
E ∥ỹt+1 − ỹt∥22

= −ηlE ⟨∇F (ỹt) ,∇F (x̃t)⟩+
Lη2l
2

E

∥∥∥∥∥ 1

M

M∑
m=1

g
(m)
t

∥∥∥∥∥
2

2
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≤ −ηl
2
(1− Lηl) ∥∇F (x̃t)∥22 +

ηlL
2

2
E ∥ỹt − x̃t∥22 +

Lη2l σ
2

2M

(4)

where the last inequality is based on the unbiased estimator for the calculated gra

dient, i.e.,∇fm
(
x̃t; ξ(m)

k

)
. Next, we will find the bound forE ∥ỹt − x̃t∥22, which is

equivalent to E ∥ct∥22. Algorithm 1 performs the full precision synchronization ev

eryK rounds and therefore, there exists a t0 > t−K such that ct0 = 0. Following

analyzes the case that ct is a nonzero vector:

E ∥ct∥22 = E ∥ct−1 + ηlg̃t−1 − ηsgt−1∥22

≤
(
1 +

1

K

)
E ∥ct−1∥22 + (1 +K)E ∥ηlg̃t−1 − ηsgt−1∥22

≤
t−1∑
τ=t0

(
1 +

1

K

)t−1−τ

· (1 +K)E ∥ηlg̃τ − ηsgτ∥22

≤ 3(1 +K) ·
t−1∑
τ=t0

E ∥ηlg̃τ − ηsgτ∥22

≤ 6η2l (1 +K)
t−1∑
τ=t0

E ∥g̃τ∥22 + 6η2s(1 +K)
t−1∑
τ=t0

E ∥gτ∥22

= 6η2l (1 +K)
t−1∑
τ=t0

E ∥∇F (x̃τ )∥22 + 6η2l (1 +K)K · σ
2

M
+ 6η2s(1 +K)KD

(5)

where the first inequality is based on (a+b)2 ≤ (1+ 1
K
)a2+(1+K)b2, and the last

equality is according to ∥gτ∥22 = D because it is only constituted with {+1,−1}

for all D dimensions. Suppose the optimal solution for the nonconvex objective
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F (·) is F∗. Therefore, plugging the result from Equation 5 into Equation 4, and

summing Equation 4 for all ts from 0 to T , we have:

F∗ − F (x̃0) ≤
T−1∑
t=0

(EF (ỹt+1)− F (ỹt))

≤ −ηl
2

(
1− Lηl − 3L2η2l K(K + 1)

) T−1∑
t=0

∥∇F (x̃t)∥22

+
ηlL

2T

2

(
6η2l (1 +K)K · σ

2

M
+ 6η2s(1 +K)KD

)
+

Lη2l σ
2T

2M

By setting ηl =
√

M/T and ηs = 1/
√
TD, and assuming that T is sufficiently

large, i.e., T ≥ 9L2K2(K + 1)2, we can obtain the desired conclusion.

C Proof of Theorem 4.1

The following lemma describes the relationship among three different parameters

under stronglyconvex function:

Lemma 1. Under Assumption 4.1 and Assumption 4.2, given a,b, c ∈ Rd, the

following formula holds under the stronglyconvex objectives F :

⟨∇F (a),b− c⟩ ≤ F (b)− F (c)− µ

4
∥b− c∥22 + L∥a− c∥22 (6)

Proof. With a,b and c that are within the domain of F , we can get the following

inequalities that come from Assumption 4.1 and Assumption 4.2, respectively:
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⟨∇F (a),b− a⟩ ≤ F (b)− F (a) +
L

2
∥a− b∥22

⟨∇F (a), a− c⟩ ≤ F (a)− F (c)− µ

2
∥a− c∥22

By a formula that

∥a− b∥22 ≤ 2∥a− c∥22 + 2∥b− c∥22

we have:

⟨∇F (a),b− c⟩ ≤ F (b)− F (c)− µ

4
∥b− c∥22 +

L+ µ

2
∥a− c∥22

The inequality holds when L ≥ µ.

The update rule for FedAvg under heterogeneous steps:

xt+1 = xt − η
M∑
i=1

ωi

Ki−1∑
k=0

∇fi
(
x(i)t,k, ε

(i)
k

)
(7)

Therefore, the bound established for E ∥xt+1 − x∗∥22 should be:

E ∥xt+1 − x∗∥22 = E

∥∥∥∥∥xt − η
M∑
i=1

ωi

Ki−1∑
k=0

∇fi
(
x(i)t,k, ε

(i)
k

)
− x∗

∥∥∥∥∥
2

2

= E ∥xt − x∗∥22 + E

∥∥∥∥∥η
M∑
i=1

ωi

Ki−1∑
k=0

∇fi
(
x(i)t,k, ε

(i)
k

)∥∥∥∥∥
2

2

− 2E

〈
xt − x∗, η

M∑
i=1

ωi

Ki−1∑
k=0

∇fi
(
x(i)t,k, ε

(i)
k

)〉
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= E ∥xt − x∗∥22 + η2
M∑
i=1

ω2
iKiσ

2 (8)

+ η2E

∥∥∥∥∥
M∑
i=1

Ki−1∑
k=0

ωi∇Fi

(
x(i)t,k

)∥∥∥∥∥
2

2︸ ︷︷ ︸
A2

(9)

−2E

〈
xt − x∗, η

M∑
i=1

ωi

Ki−1∑
k=0

∇Fi

(
x(i)t,k

)〉
︸ ︷︷ ︸

A1

(10)

We first find a upper bound for A1 in accordance with Lemma 1:

A1 = 2η
M∑
i=1

Ki−1∑
k=0

ωi · E
〈
x∗ − xt,∇Fi

(
x(i)t,k

)〉
≤ 2η

M∑
i=1

ωiKi [Fi (x∗)− Fi (xt)]−
ηµK̄

2
∥xt − x∗∥22 (11)

+ 2ηL
M∑
i=1

Ki−1∑
k=0

ωiE
∥∥∥x(i)t,k − xt

∥∥∥2
2︸ ︷︷ ︸

A3

(12)

To find the maximum value for A3, we bound E
∥∥∥x(i)t,k − xt

∥∥∥2
2
for k ∈ {1, ..., Ki}

via the following inequality:

E
∥∥∥x(i)t,k − xt

∥∥∥2
2
= E

∥∥∥x(i)t,k−1 − η∇fi
(
x(i)t,k−1, ε

(i)
k−1

)
− xt

∥∥∥2
2

≤ E
∥∥∥x(i)t,k−1 − xt − η∇Fi

(
x(i)t,k−1

)∥∥∥2
2
+ η2σ2

(a)

≤
(
1 +

1

Ki − 1

)∥∥∥x(i)t,k−1 − xt
∥∥∥2
2
+ η2σ2

+Kiη
2

(
2
∥∥∥∇Fi

(
x(i)t,k−1

)
−∇Fi (x̃t)

∥∥∥2
2
+ 2 ∥∇Fi (x̃t)∥22

)
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≤
(
1 +

1

Ki − 1
+ 2Kiη

2L2

)∥∥∥x(i)t,k−1 − xt
∥∥∥2
2

+ η2σ2 + 2Kiη
2 ∥∇Fi (xt)∥22

where (a) follows triangle inequality, i.e., (x+ y)2 ≤ (1+ k)x2+(1+1/k)y2 for

all k > 0. By setting η ≤
√

1
2Kmax(Kmax−1)L2 , we have:

E
∥∥∥x(i)t,k − xt

∥∥∥2
2
≤

k−1∑
κ=0

(
1 +

2

Ki − 1

)κ (
η2σ2 + 2Kiη

2 ∥∇Fi (xt)∥22
)

=

(
1 + 2

Ki−1

)k
− 1

2
Ki−1

(
η2σ2 + 2Kiη

2 ∥∇Fi (xt)∥22
)

(a)

≤ 4Ki

(
η2σ2 + 2Kiη

2 ∥∇Fi (xt)∥22
)

(13)

where (a) is on account for:

(
1 +

2

Ki − 1

)Ki

≤ 9 for Ki ≥ 2

Based on the derivative above, we can obtain the bound for A3 with:

A3 ≤
M∑
i=1

Ki−1∑
k=0

ωi · 4Ki

(
η2σ2 + 2Kiη

2 ∥∇Fi (xt)∥22
)

= 4η2σ2

M∑
i=1

ωiK
2
i + 8η2

M∑
i=1

ωiK
3
i ∥∇Fi (xt)∥22
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Therefore, the bound for A1 can be further simplified as:

A1 ≤ 2η
M∑
i=1

ωiKi [Fi (x∗)− Fi (xt)]−
ηµK̄

2
∥xt − x∗∥22

+ 2ηL

[
4η2σ2

M∑
i=1

ωiK
2
i + 8η2

M∑
i=1

ωiK
3
i ∥∇Fi (xt)∥22

]

Next, we consider the bound for A2:

A2 ≤ 2η2 · E

∥∥∥∥∥
M∑
i=1

Ki−1∑
k=0

ωi

[
∇Fi

(
x(i)t,k

)
−∇Fi (xt)

]∥∥∥∥∥
2

2

+ 2η2 · E

∥∥∥∥∥
M∑
i=1

ωiKi∇Fi (xt)

∥∥∥∥∥
2

2

≤ 2η2L2

M∑
i=1

Ki−1∑
k=0

ωiKi · E
∥∥∥x(i)t,k − xt

∥∥∥2
2
+ 2η2

M∑
i=1

ωiK
2
i ∥∇Fi (x̃t)∥22

≤ 8η4L2σ2

M∑
i=1

ωiK
3
i + 2η2

M∑
i=1

ωiK
2
i

(
1 + 8η2L2K2

i

)
∥∇Fi (x̃t)∥22

Therefore, pluging A1 and A2 into the inequality bound for E ∥xt+1 − x∗∥22, the

bound can be simplified as:

E ∥xt+1 − x∗∥22 ≤
(
1− ηµK̄

2

)
E ∥xt − x∗∥22 + 2η

M∑
i=1

ωiKi [Fi(x∗)− Fi (xt)]

+ 8η3σ2L

M∑
i=1

ωiK
2
i + η2σ2

M∑
i=1

ω2
iKi

+ 8η4L2σ2

M∑
i=1

ωiK
3
i + 16η3L

M∑
i=1

ωiK
3
i ∥∇Fi (xt)∥22
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+ 2η2
M∑
i=1

ωiK
2
i

(
1 + 8η2L2Ki

)
∥∇Fi (xt)∥22

Divided K̄ on the both side, we can obtain the following formula:

1

K̄

M∑
i=1

ωiKi [Fi(x∗)− Fi (xt)]

≤ 1

K̄η

(
1− ηµK̄

2

)
E ∥xt − x∗∥22 −

1

K̄η
E ∥xt+1 − x∗∥22

+
8η2σ2L

K̄

M∑
i=1

ωiK
2
i +

ησ2

K̄

M∑
i=1

ω2
iKi +

8η3L2σ2

K̄

M∑
i=1

ωiK
3
i

By applying Lemma 1 from (Karimireddy et al., 2020b), we can obtain the desir

able result. It is worthwhile to mention a formula below that supports the reason

why the gap exists between a stable point and the optimal solution:

M∑
i=1

ωiKi(Fi(xt)− Fi(x∗)) ≥ Kmin

M∑
i=1

ωi(Fi(xt)− Fi(x∗))

−
M∑
i=1

ωi(Ki −Kmin)Fi(x∗)

The inequality holds when the value of the objective function is nonnegative. This

formula indicates that the data heterogeneity can be eliminated under homoge

neous computing environment since for all i ∈ {1, ...,M}, Ki = Kmin. Thus, in

this case, we can obtain the same convergence order as (Karimireddy et al., 2020b).
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D Proof of Theorem 4.2

According to Lsmooth, we have:

E [F (x̃t+1)]− F (x̃t) ≤ E ⟨∇F (x̃t) , x̃t+1 − x̃t⟩+
L

2
E ∥x̃t+1 − x̃t∥22 (14)

The first term of Equation (14). We firstly find the bound for the first term of

Equation (14):

E ⟨∇F (x̃t) , x̃t+1 − x̃t⟩

= E

〈
∇F (x̃t) ,−η

M∑
i=1

Ki−1∑
k=0

ωi∇Fi

(
x(i)t,k

)

+ ηλ

M∑
i=1

ωi

Ki−1∑
κ=0

∇Fi

(
x(i)t−1,κ

)
− ηλK̄∇F (x̃t−1)

−ηλK̄
∑

i,Ki≤K̄

Ki−1∑
k=0

ωi

Ki

(
∇Fi

(
x(i)t−1,k

)
−∇Fi (x̃t−1)

)〉

= −ηλ

K̄
E

〈
K̄∇F (x̃t) ,

M∑
i=1

Ki−1∑
k=0

ωi∇Fi

(
x(i)t,k

)

−
M∑
i=1

Ki−1∑
κ=0

ωi∇Fi

(
x(i)t−1,κ

)
+ K̄∇F (x̃t−1)

+K̄
∑

i,Ki≤K̄

Ki−1∑
k=0

ωi

Ki

(
∇Fi

(
x(i)t−1,k

)
−∇Fi (x̃t−1)

)〉

− η(1− λ)KmaxE

〈
∇F (x̃t) ,

1

Kmax

M∑
i=1

Ki−1∑
k=0

ωi∇Fi

(
x(i)t,k

)〉

= −ηλK̄

2
∥∇F (x̃t)∥22 (15)

− ηλ

2K̄
E

∥∥∥∥∥
M∑
i=1

Ki−1∑
k=0

ωi∇Fi

(
x(i)t,k

)
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−
M∑
i=1

Ki−1∑
κ=0

ωi∇Fi

(
x(i)t−1,κ

)
+ K̄∇F (x̃t−1)

+K̄
∑

i,Ki≤K̄

Ki−1∑
k=0

ωi

Ki

(
∇Fi

(
x(i)t−1,k

)
−∇Fi (x̃t−1)

)∥∥∥∥∥∥
2

2

(16)

+
ηλ

2K̄
E

∥∥∥∥∥K̄∇F (x̃t)− K̄∇F (x̃t−1)

Ki−1∑
k=0

ωi

(
∇Fi

(
x(i)t,k

)
−∇Fi

(
x(i)t−1,k

))

−K̄
∑

i,Ki≤K̄

Ki−1∑
k=0

ωi

Ki

(
∇Fi

(
x(i)t−1,k

)
−∇Fi (x̃t−1)

)∥∥∥∥∥∥
2

2

(17)

− η(1− λ)Kmax

2
∥∇F (x̃t)∥22 −

η(1− λ)

2Kmax
E

∥∥∥∥∥
M∑
i=1

Ki−1∑
k=0

ωi∇Fi

(
x(i)t,k

)∥∥∥∥∥
2

2

(18)

+
η(1− λ)Kmax

2
E

∥∥∥∥∥∇F (x̃t)−
1

Kmax

M∑
i=1

Ki−1∑
k=0

ωi∇Fi

(
x(i)t,k

)∥∥∥∥∥
2

2

(19)

Next, we bound the term of Equation (19) ignoring the coefficient term, i.e.,
η(1−λ)Kmax

2
:

E

∥∥∥∥∥∇F (x̃t)−
1

Kmax

M∑
i=1

Ki−1∑
k=0

ωi∇Fi

(
x(i)t,k

)∥∥∥∥∥
2

2

≤ E

∥∥∥∥∥
M∑
i=1

ωi

(
1− Ki

Kmax

)
∇F (x̃t)−

1

Kmax

M∑
i=1

Ki−1∑
k=0

ωi

(
∇Fi (x̃t)−∇Fi

(
x(i)t,k

))∥∥∥∥∥
2

2

(a)

≤
(
1 +

Kmin

Kmax

)
E

∥∥∥∥∥
M∑
i=1

ωi

(
1− Ki

Kmax

)
∇Fi (x̃t)

∥∥∥∥∥
2

2

+

(
1 +

Kmax

Kmin

)
T1

≤
(
1− K̄

Kmax

)
B2E ∥∇F (x̃t)∥22 +

(
1 +

Kmax

Kmin

)
T1
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where

T1 = E

∥∥∥∥∥ 1

Kmax

M∑
i=1

Ki−1∑
k=0

ωi

(
∇Fi (x̃t)−∇Fi

(
x(i)t,k

))∥∥∥∥∥
2

2

≤ L2

K2
max

M∑
i=1

Ki−1∑
k=0

ωiKiE
∥∥∥x(i)t,k − x̃t

∥∥∥2
2

and (a) follows triangle inequality, i.e., (x+ y)2 ≤ (1+ c)x2+(1+1/c)y2 for all

c > 0. We denote Equation (17) omitted the coefficient ηλ
2K̄

by T2. Therefore, its

upper bound is obtained through the following derivation:

T2

(a)

≤ 5K̄2E ∥∇F (x̃t)−∇F (x̃t−1)∥22 + 5E

∥∥∥∥∥
M∑
i=1

Ki−1∑
k=0

ωi

(
∇Fi

(
x(i)t,k

)
−∇F (x̃t)

)∥∥∥∥∥
2

2

+ 5E

∥∥∥∥∥
M∑
i=1

Ki−1∑
k=0

ωi

(
∇Fi

(
x(i)t−1,k

)
−∇F (x̃t−1)

)∥∥∥∥∥
2

2

+ 5E

∥∥∥∥∥
M∑
i=1

Ki−1∑
k=0

ωi (∇F (x̃t)−∇F (x̃t−1))

∥∥∥∥∥
2

2

+ 5K̄2E

∥∥∥∥∥∥
∑

i,Ki≤K̄

Ki−1∑
k=0

ωi

Ki

(
∇Fi

(
x(i)t−1,k

)
−∇Fi (x̃t−1)

)∥∥∥∥∥∥
2

2

≤ 5L2

(
K̄2 +

M∑
i=1

ωiK
2
i

)
E ∥x̃t − x̃t−1∥22 + 5L2

M∑
i=1

Ki−1∑
k=0

ωiKiE
∥∥∥x(i)t,k − x̃t

∥∥∥2
2

+ 5L2
M∑
i=1

Ki−1∑
k=0

ωiKiE
∥∥∥x(i)t−1,k − x̃t−1

∥∥∥2
2

+ 5K̄2L2
∑

i,Ki≤K̄

Ki−1∑
k=0

ωi

Ki
E
∥∥∥x(i)t−1,k − x̃t−1

∥∥∥2
2

≤ 10L2
M∑
i=1

ωiK
2
i E ∥x̃t − x̃t−1∥22 + 5L2

M∑
i=1

Ki−1∑
k=0

ωiKiE
∥∥∥x(i)t,k − x̃t

∥∥∥2
2
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+ 5L2
M∑
i=1

Ki−1∑
k=0

ωi

(
Ki +

K̄2

Ki

)
E
∥∥∥x(i)t−1,k − x̃t−1

∥∥∥2
2

(20)

where (a) divides
(
∇Fi

(
x(i)t,k

)
−∇Fi

(
x(i)t−1,k

))
into three terms, i.e., (each bracket

should be treated as an individual term):
(
∇Fi

(
x(i)t,k

)
−∇Fi (x̃t)

)
−(

∇Fi

(
x(i)t−1,k

)
−∇Fi (x̃t−1)

)
+(∇Fi (x̃t)−∇Fi (x̃t−1)). By observing Equation

(20), we notice that it is indispensable to acquire the upper limit ofE
∥∥∥x(i)t,k − x̃t

∥∥∥2
2
:

E
∥∥∥x(i)t,k − x̃t

∥∥∥2
2
= E

∥∥∥x(i)t,k−1 − η
[
g
(i)
t,k−1 + λ

(
ν − ν(i)

)]
− x̃t

∥∥∥2
2

≤
(
1 +

1

Ki − 1

)
E
∥∥∥x(i)t,k−1 − x̃t

∥∥∥2
2

+Kiη
2E

∥∥∥∥∥∥g(i)t,k−1 −
λ

Ki

Ki−1∑
κ=0

g
(i)
t−1,κ + λ

M∑
j=1

Kj−1∑
k=0

ωj

Kj
g
(j)
t−1,k

+λ
∑

j,Kj>K̄

Kj−1∑
k=0

ωj

Kj

(
g
(j)
t−1,0 − g

(j)
t−1,k

)∥∥∥∥∥∥
2

2

≤
(
1 +

1

Ki − 1

)
E
∥∥∥x(i)t,k−1 − x̃t

∥∥∥2
2

(21)

+Kiη
2E

∥∥∥∥∥∇Fi

(
x(i)t,k−1

)
− λ

Ki

Ki−1∑
κ=0

∇Fi

(
x(i)t−1,κ

)

+ λ
M∑
j=1

ωj

Kj

Kj−1∑
k=0

∇Fj

(
x(j)t−1,k

)

+λ
∑

j,Kj>K̄

ωj

Kj

Kj−1∑
k=0

(
∇Fj (x̃t−1)−∇Fj

(
x(j)t−1,k

))∥∥∥∥∥∥
2

2

(22)

+ 4K2
i η

2σ2 + 4λ2η2σ2 + 12K2
i η

2λ2σ2
M∑
j=1

ω2
j

Kj
(23)
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We denote the second norm in Equation (22) by T3. Similar to the derivation for

T2, i.e., Equation (20), we have the following inequality under Assumption 4.4:

T3 ≤8L2E
∥∥∥x(i)t,k−1 − x̃t

∥∥∥2
2
+

8λ2L2

Ki

Ki−1∑
κ=0

E
∥∥∥x(i)t−1,κ − x̃t−1

∥∥∥2
2

+ 16λ2L2

M∑
j=1

Kj−1∑
k=0

ωj

Kj

E
∥∥∥x(j)t−1,k − x̃t−1

∥∥∥2
2

+ 8
(
(1− λ)2B2 + λ2

)
E ∥∇F (x̃t)∥22

+ 16λ2L2E ∥x̃t − x̃t−1∥22 (24)

By setting η ≤ 1
2
√
2LKmax

and following the steps of Equation (13), we have:

E
∥∥∥x(i)t,k − x̃t

∥∥∥2
2
≤ Ki − 1

2

((
1 +

2

Ki − 1

)k+1

− 1

)
T4 (25)

where

T4 = 16λ2L2Kiη
2 ∥x̃t − x̃t−1∥22 + 8λ2L2η2

Ki−1∑
k=0

∥∥∥x(i)t−1,k − x̃t−1

∥∥∥2
2

+ 16λ2L2Kiη
2

M∑
j=1

Kj−1∑
k=0

ωj

Kj

∥∥∥x(j)t−1,k − x̃t−1

∥∥∥2
2

+ 8Kiη
2
(
(1− λ)2B2 + λ2

)
∥∇F (x̃t)∥22 + 4Kiη

2σ2

+ 4λ2η2σ2 + 12Kiη
2λ2σ2

M∑
j=1

ω2
j

Kj

.
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As a result, when the learning rate η is sufficiently small, the upper bound for T2

should be

T2 ≤

(
20L2

M∑
i=1

ωiK
2
i

)
E ∥x̃t − x̃t−1∥22

+ 20K̄2L2

M∑
i=1

Ki−1∑
k=0

ωiE
∥∥∥x(i)t−1,k − x̃t−1

∥∥∥2
2

+ 60η2L2K4
max
(
(1− λ)2B2 + λ2

)
E ∥∇F (x̃t)∥22

+ 30η2L2σ2

M∑
i=1

ωiK
4
i + 30η2L2σ2λ2

M∑
i=1

ωiK
3
i

+ 90η2L2σ2λ2

(
M∑
j=1

ω2
j

Kj

)
M∑
i=1

ωiK
4
i (26)

The second termofEquation (14). Wenowgive the upper limit forE ∥x̃t+1 − x̃t∥22:

E ∥x̃t+1 − x̃t∥22

≤ η2E

∥∥∥∥∥
M∑
i=1

Ki−1∑
k=0

ωi∇Fi

(
x(i)t,k

)
+ λ

∑
i,Ki>K̄

Ki−1∑
k=0

ωiK̄

Ki

(
∇Fi (x̃t−1)−∇Fi

(
x(i)t−1,k

))

+ λ

M∑
i=1

Ki−1∑
k=0

ωi

(
K̄

Ki

− 1

)
∇Fi

(
x(i)t−1,k

)∥∥∥∥∥
2

2

≤ 2η2λ2E

∥∥∥∥∥
M∑
i=1

Ki−1∑
k=0

ωi∇Fi

(
x(i)t,k

)
−

M∑
i=1

Ki−1∑
κ=0

ωi∇Fi

(
x(i)t−1,κ

)
+
∑

i,Ki≤K̄

ωiK̄

Ki

Ki−1∑
k=0

(
∇Fi

(
x(i)t−1,k

)
−∇Fi (x̃t−1)

)
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+K̄∇F (x̃t−1)
∥∥2
2

+ 2η2(1− λ)2

∥∥∥∥∥
M∑
i=1

Ki−1∑
k=0

ωi∇Fi

(
x(i)t,k

)∥∥∥∥∥
2

2

+ 3η2σ2

M∑
i=1

ω2
iKi + 3η2λ2σ2

M∑
i=1

ω2
i

(
5K̄2

Ki

+Ki

)
(27)

Final result. By the inequality from Equation (26) and Equation (27), we can

add two extra terms on the left hand side of Equation 14, i.e., E ∥x̃t − x̃t−1∥22 and∑M
i=1

∑Ki−1
k=0 ωiKiE

∥∥∥x(i)t−1,k − x̃t−1

∥∥∥2
2
, and obtain the following bound when the

learning rate is sufficiently small:

E[F (x̃t+1)] + p1E ∥x̃t+1 − x̃t∥22 + p2

M∑
i=1

Ki−1∑
k=0

ωiKiE
∥∥∥x(i)t,k − x̃t

∥∥∥2
2

≤ F (x̃t) + p1E ∥x̃t − x̃t−1∥22 + p2

M∑
i=1

Ki−1∑
k=0

ωiKiE
∥∥∥x(i)t−1,k − x̃t−1

∥∥∥2
2

−
(
ηλK̄

2
+

η (1− λ)Kmax

2

(
1−

(
1− K̄

Kmax

)
B2

))
∥∇F (x̃t)∥22

+ 3

(
L

2
+ p1

)
η2σ2

(
M∑
i=1

ω2
iKi + λ2

M∑
i=1

ω2
i

(
5K̄2

Ki
+Ki

))

where p1 = o
(

ηλ
K̄
L2
∑M

i=1 ωi

(
K2

i + K̄2
))

and p2 = o
(

ηλ
K̄
L2
(
1 + K̄2

K2
min

))
. There

fore, the final result is:

1

T

T∑
t=1

∥∇F (x̃t)∥22 = O
(
F (x∗)− F (x̃1)

ηλK̄T

)
+O

(
ησ2L

λK̄

M∑
i=1

ω2
iKi

)

+O

(
ησ2Lλ

K̄

M∑
i=1

ω2
i

(
K̄

Ki
− 1

)2
)

+O

ησ2Lλ
∑

i,Ki>K̄

ω2
i K̄

Ki





APPENDICES 125

E Proof of Theorem 4.3

At the very beginning, we set λ = 1 to find a valid bound. Based on the definition,

we can find a recursion function for E ∥x̃t+1 − x∗∥22:

E ∥x̃t+1 − x∗∥22 = E ∥(x̃t − x∗) + (x̃t+1 − x∗)∥22

= E ∥x̃t − x∗∥22 + E ∥x̃t+1 − x̃t∥22 + 2E ⟨x̃t − x∗, x̃t+1 − x̃t⟩

= E ∥x̃t − x∗∥22 + E ∥x̃t+1 − x̃t∥22 (28)

+ 2E

〈
x̃t − x∗,−η

M∑
i=1

Ki−1∑
k=0

ωi∇Fi

(
x(i)t,k

)〉
(29)

+ 2E

〈
x̃t − x∗, η

M∑
i=1

Ki−1∑
k=0

ωi∇Fi

(
x(i)t−1,k

)〉
(30)

+ 2E ⟨x̃t − x∗,

−ηK̄
∑

i,Ki≤K̄

ωi

Ki

Ki−1∑
k=0

(
∇Fi

(
x(i)t−1,k

)
−∇Fi (x̃t−1)

)〉
(31)

+ 2E
〈
x̃t − x∗,−ηK̄∇F (x̃t−1)

〉
(32)

We denote Equation (29) to (32) by Q1, Q2, Q3 and Q4, respec. There ativelyre

two terms in Equation (29) and Equation (30), namelyQ1 andQ2, between which

the subscript is different (i.e., one for tth update while the others for t − 1th

update). The following will present how to bound Q1 first, and then Q2.

Q1 = η
M∑
i=1

Ki−1∑
k=0

ωiE
〈
∇Fi

(
x(i)t,k

)
−∇Fi (x̃t) , x∗ − x̃t

〉



APPENDICES 126

+ η
M∑
i=1

ωiKiE ⟨∇Fi (x̃t) , x∗ − x̃t⟩

≤ η

2

M∑
i=1

Ki−1∑
k=0

ωi

(
16

µ
E
∥∥∥∇Fi

(
x(i)t,k

)
−∇Fi (x̃t)

∥∥∥2
2
+

µ

16
E ∥x∗ − x̃t∥22

)

+ η

M∑
i=1

ωiKiE ⟨∇Fi (x̃t) , x∗ − x̃t⟩

≤ 8ηL2

µ

M∑
i=1

Ki−1∑
k=0

ωiE
∥∥∥x(i)t,k − x∗

∥∥∥2
2
+

ηµK̄

32
E ∥x∗ − x̃t∥22

+ η

M∑
i=1

ωiKiE ⟨∇Fi (x̃t) , x∗ − x̃t⟩

where the first inequality refers to ⟨a, b⟩ ≤ (∥a∥22 + ∥b∥22)/2 and the last one is

according to Assumption 4.1. Likewise, we can find the bound for Q2:

Q2 ≤
8ηL2

µ

M∑
i=1

Ki−1∑
k=0

ωiE
∥∥∥x(i)t−1,k − x∗

∥∥∥2
2
+

ηµK̄

32
E ∥x∗ − x̃t∥22

+ η
M∑
i=1

ωiKiE ⟨∇Fi (x̃t−1) , x̃t − x∗⟩

As a result, we have:

Q1 +Q2 ≤
8ηL2

µ

M∑
i=1

Ki−1∑
k=0

ωi

(
E
∥∥∥x(i)t,k − x∗

∥∥∥2
2
+ E

∥∥∥x(i)t−1,k − x∗
∥∥∥2
2

)

+ η

M∑
i=1

ωiKiE ⟨∇Fi (x̃t−1)−∇Fi (x̃t) , x̃t − x∗⟩+
ηµK̄

16
E ∥x∗ − x̃t∥22



APPENDICES 127

≤ 8ηL2

µ

M∑
i=1

Ki−1∑
k=0

ωi

(
E
∥∥∥x(i)t,k − x∗

∥∥∥2
2
+ E

∥∥∥x(i)t−1,k − x∗
∥∥∥2
2

)
+

3ηµK̄

32
E ∥x∗ − x̃t∥22 +

8ηK̄L2

µ
E ∥x̃t − x̃t−1∥22

where the last inequality is based on ⟨a, b⟩ ≤ (∥a∥22 + ∥b∥22)/2 and Assumption

4.1.

For the term in Equation (31), according to the inequality that ⟨a, b⟩ ≤ (∥a∥22+

∥b∥22)/2 and the assumption of Lsmooth, we have:

Q3 = −ηK̄
∑

i,Ki≤K̄

ωi

Ki

Ki−1∑
k=0

E
〈
x̃t − x∗,∇Fi

(
x(i)t−1,k

)
−∇Fi (x̃t−1)

〉

≤ 8ηK̄L2

µ

∑
i,Ki≤K̄

Ki−1∑
k=0

ωi

Ki

E
∥∥∥x(i)t−1,k − x̃t−1

∥∥∥2
2
+

ηµK̄

32
E ∥x∗ − x̃t∥22

The last equality holds because ωi > 0 and Ki > 0 such that the sum for those

Ki ≤ K̄ is not greater than the one for all workers.

Based on Lemma 1 above, it is easy to derive the bound for Q4, which is:

Q4 = ηK̄E ⟨∇F (x̃t−1) , x∗ − x̃t⟩

≤ ηK̄
(
F (x∗)− F (x̃t)−

µ

4
E ∥x̃t − x∗∥22 + LE ∥x̃t − x̃t−1∥22

)

According to the bound forE ∥x̃t+1 − x̃t∥22 in the proof nonconvex objectives, i.e.,
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T2, we have:

E ∥x̃t+1 − x̃t∥22 ≤ 2η2λ2Q5 + 3η2σ2

M∑
i=1

ω2
iKi + 3η2λ2σ2

M∑
i=1

ω2
i

(
K̄

Ki

− 1

)2

Ki

+ 12η2λ2σ2
∑

i,Ki>K̄

ω2
i K̄

2

Ki

where

Q5 = E

∥∥∥∥∥
M∑
i=1

Ki−1∑
k=0

ωi∇Fi

(
x(i)t,k

)
−

M∑
i=1

Ki−1∑
k=0

ωi∇Fi

(
x(i)t−1,k

)

+K̄
∑

i,Ki≤K̄

ωi

Ki

Ki−1∑
k=0

(
∇Fi

(
x(i)t−1,k

)
−∇Fi (x̃t−1)

)
+ K̄∇F (x̃t−1)

∥∥∥∥∥∥
2

2

(33)

Unlike the procedure in nonconvex objectives, Q5 cannot be eliminated. There

fore, we should find a general bound for Equation (31), where we can further

simplify as:

Q5 = E

∥∥∥∥∥
M∑
i=1

Ki−1∑
k=0

ωi

(
∇Fi

(
x(i)t,k

)
−∇Fi (x̃t)

)
−

M∑
i=1

Ki−1∑
k=0

ωi

(
∇Fi

(
x(i)t−1,k

)
−∇Fi (x̃t−1)

)
+ K̄

∑
i,Ki≤K̄

ωi

Ki

Ki−1∑
k=0

(
∇Fi

(
x(i)t−1,k

)
−∇Fi (x̃t−1)

)
+ K̄ (∇F (x̃t−1)−∇F (x̃t)) + K̄∇F (x̃t)
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+
M∑
i=1

ωiKi (∇Fi (x̃t)−∇Fi (x̃t−1))

∥∥∥∥∥
2

2

≤ 6L2

M∑
i=1

Ki−1∑
k=0

ωiKiE
∥∥∥x(i)t,k − x̃t

∥∥∥2
2
+ 6L2

M∑
i=1

Ki−1∑
k=0

ωiKiE
∥∥∥x(i)t−1,k − x̃t−1

∥∥∥2
2

+ 6K̄2L2
∑

i,Ki≤K̄

Ki−1∑
k=0

ωi

Ki

E
∥∥∥x(i)t−1,k − x̃t−1

∥∥∥2
2

+ 12K̄2L2E ∥x̃t − x̃t−1∥22 + 6K̄2L2E ∥x̃t − x∗∥22

Plugging the results above, we can obtain the bound for E∥x̃t+1 − x∗∥22 as:

E ∥x̃t+1 − x∗∥22

≤
(
1− ηµK̄

4

)
E ∥x̃t − x∗∥22

+ 12η2λ2L2

M∑
i=1

Ki−1∑
k=0

ωiKiE
∥∥∥x(i)t,k − x̃t

∥∥∥2
2

+ 12η2λ2L2

M∑
i=1

Ki−1∑
k=0

ωiKiE
∥∥∥x(i)t−1,k − x̃t−1

∥∥∥2
2

+ 12η2λ2K̄2L2
∑

i,Ki≤K̄

Ki−1∑
k=0

ωi

Ki

E
∥∥∥x(i)t−1,k − x̃t−1

∥∥∥2
2

+ 24η2λ2K̄2L2E ∥x̃t − x̃t−1∥22 + 12η2λ2K̄2L2E ∥x̃t − x∗∥22

+ 3η2σ2

M∑
i=1

ω2
iKi + 3η2λ2σ2

M∑
i=1

ω2
i

(
K̄

Ki

− 1

)2

Ki + 12η2λ2σ2
∑

i,Ki>K̄

ω2
i K̄

2

Ki

+
16ηL2

µ

M∑
i=1

Ki−1∑
k=0

ωi

(
E
∥∥∥x(i)t,k − x∗

∥∥∥2
2
+ E

∥∥∥x(i)t−1,k − x∗
∥∥∥2
2

)
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+
16ηK̄L2

µ
E ∥x̃t − x̃t−1∥22 +

16ηK̄L2

µ

∑
i,Ki≤K̄

Ki−1∑
k=0

ωi

Ki

E
∥∥∥x(i)t−1,k − x̃t−1

∥∥∥2
2

+ 2ηK̄
(
F (x∗)− F (x̃t) + LE ∥x̃t − x̃t−1∥22

)
By observation, there are two recursive formulas, i.e., E ∥x̃t − x̃t−1∥22 and∑M

i=1

∑Ki−1
k=0 ωiKiE

∥∥∥x(i)t−1,k − x̃t−1

∥∥∥2
2
, and the coefficients of both of them con

tain the stepsize η. To release these formulas, we let the formula at the left hand

side be the formula as follows:

Yt+1 = E ∥x̃t+1 − x∗∥22 + u1E ∥x̃t+1 − x̃t∥22 + u2

M∑
i=1

Ki−1∑
k=0

ωiKiE
∥∥∥x(i)t,k − x̃t

∥∥∥2
2

where u1 and u2 are the coefficients containing the stepsize of η such that the co

efficient for E ∥x̃t − x̃t−1∥22 and
∑M

i=1

∑Ki−1
k=0 ωiKiE

∥∥∥x(i)t−1,k − x̃t−1

∥∥∥2
2
on the right

hand side become negative and thereby, can be omitted when finding the bound.

Also, we notice that the added term includes η2 after simplification. Therefore, the

formula can be further simplified as:

Yt+1 ≤
(
1− ηµK̄

4

)
Yt − 2ηK̄(F (x̃t)− F (x∗))

+ 6η2σ2

M∑
i=1

ω2
iKi + 6η2λ2σ2

M∑
i=1

ω2
i

(
K̄

Ki

− 1

)2

Ki

+ 24η2λ2σ2
∑

i,Ki>K̄

ω2
i K̄

2

Ki
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The rest step is similar to the proof in Theorem 4.1. Therefore, we can obtain the

expected result in Theorem 4.3. Different from Theorem 4.1, this theorem release

the term of data heterogeneity and therefore, our result can successfully converge

to the global optimizer.
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