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Abstract

In the era of emerging technologies, a variety of innovative transport policies and mobility
services have been implemented and promoted in the transition to future transportation systems,
such as road pricing, customized bus, e-hailing, bike sharing, and shared parking. The fusion
of emerging technologies has created opportunities to not only improve the transportation
service level but also provide unprecedented service features, which can exert a transformative
impact on the multi-dimensional travel behavior and hence the multi-level travel demand

pattern in multi-modal transportation systems.

Transportation planning, which is crucial to address the fundamental needs of emerging
technologies, requires advanced network equilibrium models for accurate analysis of travel
demands. Equilibrium models analyze aggregate travel demand considering the effect of
interactions among travelers in the individual choice. The classical random utility models
(RUMS), such as the multinomial logit model and its variants, have been primarily embedded
in equilibrium models for reproducing individual travel choices with conventional mobility
services. Despite allowing the computationally manageable mathematical programming (MP)
formulation for equilibrium models, the embedded RUMs are restrictive in modeling the
complex travel behavior with the features of emerging mobility services, including distinct
magnitudes of travel disutility, provisions of loyalty subscription schemes, and mobility
bundling strategies. In addition, the classical closed-form RUMSs are mainly based on an
additive utility function and restrictive assumptions that the random errors are identically and
independently Gumbel distributed, which are inadequate to reflect the way individuals perceive
travel disutility in emerging choice contexts. Although open-form choice models can address
some of the issues, the lack of an analytical probability expression poses additional difficulties
for model estimation, interpretation, and evaluation. Also, owing to the computationally
burdensome evaluation of open-form probabilities, the equilibrium problem becomes
intractable when the choice set contains more than a handful of alternatives in real-world

applications using large-scale transportation networks.

This research aims to advance the travel demand modeling considering both the multi-
dimensional travel choice behavior with emerging service features at the disaggregate level
and the mobility operational features and interactions among travelers at the aggregate level.
To achieve this goal, the objectives of this research lie in the developments of (1) advanced

RUMs with relaxed model assumptions, alternate utility functional form, and alternate



distributional assumptions, to reproduce the heterogeneous multi-dimensional behavioral
changes facing with different emerging mobility services, and (2) advanced equilibrium models
with computationally manageable MP formulations while retaining consistent with the

individual choices reproduced by the developed RUMs based on endogenous travel disutility.
The contributions of this research are summarized as follows:

(1) The properties and derivation of the state-of-the-art multiplicative random utility models
(MRUMs) are investigated to facilitate the development of advanced travel choice models.
On this basis, the applications of MRUM in accessibility and vulnerability assessment are
proposed, facilitating the analyses of transportation system performances under both
normal and abnormal conditions.

(2) Advanced RUMs are developed to reproduce individual travel choices in multi-modal
transportation systems with emerging mobility services. Different from conventional travel
choice models, the proposed models can simultaneously address various behavioral issues
arisen with the introduction of emerging policy and mobility services. Specifically, the
heterogeneous perceptions of travel distance, scale heterogeneity with respect to mobility
service quality, perceptual correlation in path cost perceptions, mode correlation among
similar travel modes, spatial correlation among adjacent locations and overlapped routes,
effect of mobility bundling strategies, and repeated choice behavior arisen from loyalty
subscription schemes, are considered to reflect the behavioral reactions to various emerging
mobilities at different choice dimensions. Further, an innovative closed-form MRUM with
alternate distributional assumptions is proposed, which can capture the choice context with
an emerging travel alternative that has unprecedented service features. The innovative
closed-form MRUM can provide new behavioral insights into various decision-making
scenarios in the transition to future transportation system.

(3) Advanced network equilibrium models are developed to analyze aggregate travel demand
patterns consistent with the individual travel choice behavior while considering interactions
among travelers. Specifically, the proposed models respectively consider the equilibrium
bi-criteria route choice in tolled networks, equilibrium mode choice in multi-modal systems
with customized bus services, equilibrium of joint bundle and mode choice in multi-modal
systems with various emerging mobility services, and equilibrium of joint destination and
parking choice among spatially distributed locations with shared parking services.
Benefiting from the properties of the developed RUMs, the proposed equilibrium models

are formulated as equivalent MP problems. The MP formulation facilitates the



understanding and interpretation of the equilibrium models, enables the application to real-
world case studies using convergent and efficient solution algorithms, and facilitates the
sensitivity analysis-based evaluation of transportation system performances.
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Chapter 1 Introduction

1.1 Background

Modeling individual travel choices and analyzing the corresponding aggregate
equilibrium travel demands play an important role in the analysis and planning of
transportation system. The choice modeling and equilibrium analysis of transportation
systems are facing with new challenges in the era of emerging technologies, where
various innovative transport policies and mobility services have been implemented and
promoted, such as road pricing, customized bus (CB), shared parking, bike sharing, and
e-hailing. They may not only enhance transportation system performances, but also
reshape individual travel behaviors owing to their innovative service features, such as
the distinct magnitudes of travel disutility, provision of loyalty subscription schemes,
and new promotion strategies like mobility bundling. To facilitate the decision-making
in the transition from current to future transportation systems, it is imperative to
advance the individual travel choice and network equilibrium models to account for the
disaggregate-level behavioral changes and its impact on aggregate travel demand

stemmed from the emerging service features.

In the well-established four-step transportation planning method, individual travel
behaviors are often modeled at four choice dimensions, including the travel choice
(whether to travel), destination choice, mode choice, and route choice. The individual
travel behavior can be simply reproduced as deterministic choices of the minimum-
disutility travel alternative. However, this approach unrealistically assumes travelers to
have perfect knowledge of the actual travel time, which is inadequate to capture the
limited cognitive ability of travelers and may generate inaccurate results. The random
utility models (RUMSs) are developed and widely used to consider the stochasticity in
travel choices (e.g., perception error of travel disutility). Based on the principle that
travelers choose the alternatives which maximize their stochastic perceived travel
utility (or equivalently, minimize the perceived travel disutility), RUMs can accurately
obtain travel choice probabilities with sound behavioral foundations (Domencich and

McFadden, 1975; Ben-Akiva and Lerman, 1985; Orttzar and Willumsen, 2011).
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The additive random utility models (ARUMSs) are dominant in existing
transportation research, where the perceived travel disutility is expressed as the sum of
a deterministic disutility and a random perception error. Assuming random errors to
follow the Gumbel and normal distributions respectively lead to the well-established
logit and probit choice models (Domencich and McFadden, 1975; Daganzo, 1979).
Compared with the probit model, the logit model is less flexible owing to its restrictive
model assumptions, namely the random errors are assumed to be independently and
identically Gumbel distributed (11D), making it difficult to capture the heterogeneity in
travel perceptions and correlations among similar alternatives. Despite these limitations,
the logit model has the merit of closed-form probability expression, making it more
computationally manageable than the probit model and more commonly adopted in

travel choice and equilibrium analyses (Prashker and Bekhor, 2004).

Based on the individual choices at the four dimensions, travel demands can be
analyzed at the corresponding spatial levels, i.e., trip generation, trip distribution, modal
split, and traffic assignment. Simply aggregating the individual choice probabilities
may lead to an aggregation bias, as the choice probabilities resulting from exogeneous
travel disutility will be inconsistent with the actual travel disutility under the realized
travel demand pattern. Thus, it is necessary to consider the interactions among
individuals in congested transportation networks. For instance, by integrating the flow-
dependent travel time in different route choice models, the stochastic user equilibrium
(SUE) models have been developed and applied in the traffic assignment problem
(Daganzo and Sheffi, 1977; Sheffi, 1985; Prashker and Bekhor, 2004). The road travel
time is endogenously generated as a function of road traffic volume, which guarantees

the consistency between travel choice and travel disutility.

In particular, the SUE model can be formulated as an equivalent mathematical
programming (MP) problem when the conventional multinomial logit (MNL) choice
model and its extensions are incorporated (Fisk, 1980; Prashker and Bekhor, 2004). The
MP formulation is valuable as it is easily understandable and highly interpretable based
on the explicit objective function, constraints, decision variables, and Kuhn-Tucker
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optimality conditions. Further, many convergent and efficient solution algorithms are
enabled by the MP formulation, where the objective function helps find the searching
direction and updating step size, as well as the stopping criteria for convergence
examination (Patriksson, 1994). Beyond the traffic assignment level, the SUE models
with MP formulation have been extended to combined travel demand models that
simultaneously consider any combinations of the four demand analysis levels
(Oppenheim, 1995). Thus, the equilibrium models serve as an important component in
transportation system analysis and decision-making processes (Bell and lida, 1997;

Yang and Huang, 2005; Ortuzar and Willumsen, 2011).

However, existing logit-based equilibrium models with MP formulation inherit the
limitations from closed-form logit models, namely the inadequacy to simultaneously
address the heterogeneity and similarity issues, which are important concerns in
capturing the complex multi-dimensional behavioral responses to the emerging service
features. Although the two issues can be addressed via open-form choice models like
probit and mixed logit models, the lack of analytical choice probability poses additional
difficulty to their application in equilibrium analyses. As travel disutility is a function
of travel demand in congested networks, the equilibrium model can be viewed as a
fixed-point problem where choice probabilities exist on both sides of the equation.
Solving such models often requires an iterative procedure to update the demand pattern
with choice probabilities evaluated at each iteration. Owing to the computationally
burdensome evaluation of open-form choice probabilities, the equilibrium travel
demand models become intractable when the choice set contains more than a handful
of alternatives, particularly impractical for large-scale transportation networks with
thousands or even millions of routes. The computational burden will become even
heavier in the network design problem embedded with a network equilibrium model,
which can be formulated as a bi-level program with an equilibrium traffic assignment
model at the lower level, or a single-level mathematical programming with equilibrium
constraints (Yang and Bell, 1998). In summary, existing equilibrium analyses are

inadequate for analyzing travel demands in the era of emerging technologies. This calls

3



for advancing both the individual choice model and equilibrium model for system

analysis and decision-making in the transition to future transportation networks.

Besides extending the logit-based models with an additive utility function, the
multiplicative random utility models (MRUMS) have been proposed based on the
multiplicative disutility function. Compared with the ARUM, MRUM is consistent with
the psychophysical laws that can better reflect the way travelers perceive different
magnitudes of disutility (Fosgerau and Bierlaire, 2009; Chakroborty et al., 2021). By
assuming Weibull distributed perception errors, the closed-form weibit choice model
was recently developed to inherently address the heterogeneity issue and can be
extended to consider more complex similarity issues at different choice dimensions
(Castillo et al., 2008; Kitthamkesorn and Chen, 2013, 2017). Therefore, it is beneficial
to advance the weibit-based MRUM and develop corresponding equilibrium models to
simultaneously address different behavioral issues with various emerging mobility

services while retaining the valuable MP formulation.

1.2 Research objectives

This research aims to advance the travel demand modeling in transition to the future
transportation system with emerging mobility services. The advancements are to be
made from two modeling perspectives, namely (1) the individual choice modeling to
better consider complex multi-dimensional travel choice behaviors at the disaggregate
level, and (2) the equilibrium modeling with MP formulations for travel demand
analysis considering interactions among travelers and operational features of emerging
mobilities at the aggregate level. The specific objectives to achieve this aim are as

follows:

1. To investigate the properties of distributional assumptions made for the closed-
form additive and multiplicative RUMs, to facilitate the development of advanced
travel choice models with considerations of complex behavioral issues.

2. To develop an alternate closed-form MRUM for modeling choice contexts with

the oddball effect, where an “oddball” alternative with emerging service features exists
4



in the choice set and competes with conventional alternatives with only common
service features.

3. To develop an advanced route choice model and the corresponding traffic
assignment models for tolled networks, where the path correlations are considered with
respect to both travel time and monetary costs, the two choice criteria that are likely to
be considered in the road network with road pricing schemes.

4, To develop an advanced mode choice model and the corresponding equilibrium
model for multi-modal transportation systems with CB services while considering the
effect of loyalty CB subscription schemes and operational features of CB services.

5. To develop an advanced joint bundle and mode choice model and the
corresponding equilibrium model for the analysis of multi-modal transportation
systems with various emerging mobilities, considering the effects of flexible mobility
bundling strategies and loyalty bundle schemes.

6. To develop an advanced joint destination and parking choice model and the
corresponding combined travel demand model for the transportation system with shared
parking services, where the spatial correlations are considered at both choice
dimensions, including the substitution effect among adjacent locations and the overlap

among parking spaces of neighboring destinations.
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The thesis organization is shown in Figure 1.1. The remainder of this thesis is as follows:

e Chapter 2 overviews related studies on the research topics considered in this thesis,

including: (1) closed-form individual travel choice models with illustrations of their

development and applications based on the random utility theory, and (2)

equilibrium models with MP formulation for different levels of aggregate travel

demand analyses.

» The first part of the proposed methodology includes Chapters 3-4, which focuses

on the development of advanced closed-form individual choice models for

emerging choice contexts based on the random utility theory.

e Chapter 3 develops advanced “Luce-form” choice models with closed-form

probability expressions for reproducing individual travel behaviors at multiple

dimensions of emerging choice contexts. The developed models include an ordered
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Chapter 4 develops a closed-form choice model based on an alternate distributional
assumption to specifically account for the “oddball” alternative in choice set (e.g.,
an emerging mobility service), which has unique service features compared with
the other regular alternatives (e.g., conventional travel modes).

The second part of the proposed methodology includes Chapters 5-9, which focuses
on the development of advanced equilibrium models with MP formulation. The
developed equilibrium models are consistent with the advanced individual choice
models developed in Chapter 3, while interactions among travelers and operational
service features of emerging mobilities are endogenously considered for aggregate-
level travel demand analyses.

Chapter 5 illustrates the development of the Beckmann-type MP formulation for
general equilibrium models, including the deterministic UE model, the basic logit
SUE model, and various extensions of the logit SUE model corresponding to the
advancements in individual choice models.

Chapter 6 develops the OPSGEV SUE model for traffic assignment in tolled road
networks, which is consistent with the OPSGEV route choice model considering
both perceptual and physical path correlations.

Chapter 7 develops the DNW equilibrium modal split model for multi-modal
transportation systems with CB services, which considers the effect of passenger
loyalty and constraints on CB service demand.

Chapter 8 develops an equilibrium analysis framework for various emerging
mobility services consistent with the DCNW choice model, which considers the
effect of mobility bundling and loyalty subscription schemes in both aggregate
travel demand analyses and system performance evaluations.

Chapter 9 develops an SCW-PSW combined travel demand model for investigating
the effects of shared parking services on the joint destination and parking choice at
adjacent locations with spatial correlations.

Chapter 10 presents concluding remarks and directions for future research.



Chapter 2 Literature review and preliminaries

This chapter reviews related studies and provides preliminaries for the thesis in two
parts, i.e., the random utility models (RUMs) for travel choice modeling at the
individual level, and the equilibrium models for travel demand analysis at the aggregate
level. This chapter is structured as follows. Section 2.1 overviews the development and
application of RUMs with “Luce-form” probabilities and their generalizations. Section
2.2 overviews the development of network equilibrium models with MP formulation

that are consistent with the class of Luce-form RUMs discussed in Section 2.1.

2.1 Random utility models with Luce-form probability

In transportation research, an understanding of individual travel choices is critical for
estimating and forecasting travel demand at different spatial levels. RUMs are the
mainstream of travel choice models, where travelers are considered to make decisions
that maximize/minimize their perceived travel utility/disutility (Haghani et al., 2021).
To model the stochasticity in travel choice behavior, the perceived travel
utility/disutility is often considered as a random variable that can be separable into a
deterministic term denoting the actual travel utility/disutility, and a random term
denoting the travel perception error. Based on the functional relationship between the
deterministic and random terms, RUMs used in transportation studies can be classified
as (1) the additive RUM (ARUM) where the perceived utility is the sum of deterministic
and random terms, and (2) the multiplicative RUM (MRUM) where the perceived

disutility is the product of deterministic and random terms.

With different distributional assumptions for the random error term, different
choice models can be developed. In the literature, the normal and Gumbel distributions
are dominant in ARUMs (Domencich and McFadden, 1975; Daganzo, 1979), while the
distributions defined at the positive domain (e.g., the Log-normal, Fréchet, and Weibull
distributions) are used in MRUMSs (Fosgerau and Bierlaire, 2009; Mattsson et al., 2014).

Specifically, by assuming random errors to identically and independently follow the
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“Luce class” distribution, the well-established Luce-form models can be developed

(Luce and Suppes, 1965; Lindberg, 2012):

P 2.1)

where wi denotes the positive “strict utility” term associated with alternative i.

Luce-form models are beneficial owing to their simple and closed-form choice
probability expressions. Compared with the choice models with open-form probability,
the analytical solution to Luce-form models enables exact and efficient estimation
methods such as the maximum likelihood method. While the open-form models must
be estimated using the simulation method (Train, 2003) or numerical approximation
method (e.g., Bhat, 1995), which requires large computational burden and may lead to
estimation errors due to simulation errors or approximation errors. Also, the estimation
of open-form models suffers from the reproducibility issue, i.e., the estimation result
may not be replicated through different numerical methods or in different trials of the
simulation method, which leads to unreliable model interpretation and behavioral
insights (Diethelm, 2012). Also, the closed-form choice probability plays a critical role
in defining the solution properties and the generalization of model outcomes (Mondal
and Bhat, 2021). Furthermore, the analytical model solution largely reduces the
computational burden of choice probability evaluation and significantly facilitates
applications in higher-level optimization problems, such as the equilibrium analysis of
transportation systems. Therefore, this section focuses on the mostly used Luce-form
ARUMs and MRUMs, i.e., logit and weibit models, as well as their generalizations that

address more complex behavioral issues.

2.1.1 Logit-based additive RUM

The additive utility function is adopted in logit-based models:

V.=V, +¢, (2.2)



where Vi denotes the perceived travel utility, viand &, are respectively the deterministic

utility and random error of alternative i. Assuming ¢, as 11D Gumbel variables leads to

the multinomial logit (MNL) model. Section 2.1.1.1 illustrates properties of the Gumbel

distribution and the development of binary and multinomial logit models on this basis.

2.1.1.1 Properties of the Gumbel distribution and development of MNL model
Table 2.1 presents the probability density function (PDF), cumulative distribution

function (CDF), and six properties of the Gumbel distribution (77,60 ) with location

parameter 7 and scale parameter ¢ (Ben-Akiva and Lerman, 1985).

Table 2.1. Properties of the Gumbel distribution

Property Gumbel (77,6) (77: location parameter; @ : scale parameter)
PDF f(x):eexp{—e(x—n)—exp[—e(x—n)}}

CDF F(x) :exp{—exp[—e(x—n)]}

1. Mode n

2. Mean n+y/0

3. Variance 7% /66

4. Linear If X is Gumbel distributed with parameters (,0), then X +v
transformation : I :

of variable is also Gumbel distributed with parameters (7 +v,0)

5. Comparison
of variables

Absolute difference between two independent Gumbel
distributed variables X1 and X2 with the same scale parameter &
follows the Logistic distribution with CDF as follows:

- 1
1+exp{0~[(X2 =%)=(m, —’71)]}

6. Stableness
under
maximization

The maximum of N independent Gumbel-distributed variables
Xy Xy With parameters (7,,60) , ..., (7,0) is Gumbel

N
distributed with parameters [% In> exp(6-n,), Qj
i=1
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The first three properties indicate the statistical features of the Gumbel distribution,

i.e., mode, mean, and variance. Given the value of scale parameter &, the mean of a

Gumbel variable is determined by the location parameter (where y is the Euler

constant), while the variance is fixed disregarding the value of mean. Property 4 shows
that the linear transformation of a Gumbel variable merely changes its location
parameter without influencing the value of scale parameter, implying the applicability
of the Gumbel distribution to ARUMs. By adding different deterministic utility to the
Gumbel error term of each travel alternative, the total perceived travel utility is still

Gumbel distributed with the same scale parameter among all alternatives.

Properties 5 and 6 facilitates the development of logit choice model. The binary
logit choice probability can be derived making use of Property 5. The probability of
choosing alternative i over alternative j can be expressed as the probability that

alternative i has a larger perceived travel utility than alternative j:

R =Prob(V, >V;)
=Prob(v; +& >V, +¢;). (2.3)

= Prob(gj -& <V —Vj)

From Property 5, ¢; —¢; is Logistically distributed. The binary choice probability can

then be derived based on the CDF of the Logistic distribution:

P=F (vi —vj)
_ 1
1+exp[6’(vj v, )]
_ exp(ov)
exp(6v, ) +exp(6v, )’
1

(2.4)

exp| O(v; -V,

%,_/
absolute diff
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From Eq. (2.4), the logit choice probability is dependent on the absolute difference in
travel utility and the scale parameter 8. The scale parameter can be interpreted as the

dispersion parameter indicating the degree of uncertainty in perceiving travel utility.

The binary logit choice probability shown in Eq. (2.4) can be extended to the
multinomial case using Property 6 of the Gumbel distribution. The MNL probability of
choosing alternative i in a multinomial choice set | is the probability that the perceived
travel utility of alternative i is larger than the maximum perceived utility of all other

alternatives in set I, which can be expressed as

P= P[v > Tﬁg(vj)}

P{v +&>max(v, +¢ )} )

jziel

Based on Property 6, max(v,+¢;) is Gumbel distributed with location parameter

j=iel

1 : : : -
=In z exp(@-vj) and scale parameter 6. Hence the multinomial choice probability

jziel

can be obtained following the binary case:

p exp(&v.)
exp(6v;) +exp{ In;E:Iexp( )}

_ exp(6v;) 2.6)
exp(6v;)+ Y exp(6v,)

jziel
exp(6ov;)

i > exp(ov,)

jel

From Eq. (2.6), MNL model has the Luce-form choice probability as presented in Eq.

(2.1), where the strict utility term wi is an exponential function of the deterministic

utility vi, i.e., exp(6v,).

12



2.1.1.2 Extended closed-form logit models

Despite the computationally manageable closed-form probability expression, the MNL
model has limitations arisen from its restrictive 11D assumption. The independently
distributed assumption makes the MNL model inadequate to capture correlations
among similar alternatives. On the other hand, the MNL model cannot capture travelers’
heterogeneous perceptions owing to the fixed perception variance arisen from the

identically distributed assumption and properties of the Gumbel distribution.

Due to the analytical tractability of the MNL model, various closed-form
extensions of the logit model have been developed to handle the first limitation: the
inability to model correlation among travel alternatives. These models either (1) add
correction terms reflecting alternative correlations in the deterministic part of utility
function, or (2) use a more flexible nested choice structure incorporating additional

random errors to reflect alternative correlations in the stochastic part of utility function.

(1) Extended logit models with correction terms

One mainstream of the closed-form extended logit models is to introduce correction
terms that penalize the similarity among alternatives. This method is mainly applied to
the route choice problem where alternative correlation is often represented by the
overlaps among paths. Cascetta et al (1996) proposed the C-logit model that subtracts
a positive commonality factor (CF) from the deterministic utility to penalize the degree

of path overlapping, which can be expressed as

V.=V, -CF +¢,. (2.7)
The value of CF can be derived based on the proportion of overlapped length of each
path. The path with a higher degree of overlapping will have a larger value of

commonality, leading to a lower deterministic utility and a lower choice probability,

which reflects the effect of path overlapping:

13



Similarly, the path-size logit (PSL) model considers the effect of path overlapping
by introducing a path-size (PS) factor to the path utility function (Ben-Akiva and
Bierlaire, 1999):

V, :vi+%ln PS, +¢,. (2.8)

The PS factor is derived from the concept of elemental and aggregate alternatives based
on the random utility theory (Ben-Akiva and Lerman, 1985). Each path i is considered
as an aggregate alternative composed by elemental alternatives with a size of PSi. The
paths having no overlaps are considered as “full” alternatives with a size of 1, which
does not influence the path utility. While the overlapped paths cannot be considered as
a distinctive alternative and have sizes 0<PSi<1, which leads to a negative correction
term that penalizes the path overlapping. Various approaches have been proposed to
derive the value of PS factor based on the length of overlapped fraction (Ben-Akiva
and Bierlaire, 1999; Ramming, 2002; Hoogendoorn-Lanser, 2005). Alternatively, Bovy
et al. (2008) proposed the path size correction factor, which is derived as an
approximation of the nested choice models described below. Duncan et al. (2020)
proposed the adaptive PSL model with a PS factor that further weighs the contributions

of excessively long paths while consistent with the relative path attractiveness.

(2) Extended logit models with a nested choice structure

The other mainstream of closed-form extended logit models is the generalized extreme
value (GEV) family of models based on a nested choice structure with multiple choice
levels (McFadden, 1978). The nested logit (NL) model is the mostly used GEV model,
where similar travel alternatives at the lower (conditional) choice level are collected in
the same upper-level nest (marginal level) and share a common part of travel utility
perception (Ben-Akiva and Lerman, 1985). Figure 2.1 shows an example choice

structure of the two-level NL model.

14



Conditional
choice

Figure 2.1. Example choice structure of NL model

The utility function of alternative i in nest u is expressed as follows:

V=V, +&,+V, +¢&,, (2.9)

where vui and vu respectively denote the individual deterministic utility of alternative i
and the common deterministic utility of nest u. &, and &, are random errors at the
conditional and marginal choice levels, respectively.

The NL choice probability can then be expressed as the product of marginal choice

probability Py and conditional choice probability Piju derived following the derivation

of MNL model:
Pl = I:)u : I:)||u
_ exp[@u (v +T, )] _ exp(6,V;) , (2.10)
>expl6,(v,+T)] > exp(@kvj)
teU jel,

where 6, and 6, are scale parameters at the marginal and conditional choice levels,

respectively. I', denotes the composite utility obtained at the conditional choice level,

which is derived based on Property 6 of the Gumbel distribution:

1
I, ==—In> exp(6v;). (2.11)
k iel,
Although the NL model can account for correlations among alternatives in the
same nest, the nests are independent of each other, i.e., the correlation among
alternatives in different nests cannot be handled. The cross-nested logit (CNL) model

has been proposed to consider more flexible correlation structures by allowing overlaps
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among nests, i.e., a single alternative can be collected in different nests to model its
correlations to different groups of alternatives (Vovsha, 1997). The cross-nested choice
structure can be specified for modeling different alternative correlations, such as the
ordered GEV (OGEV) model for modeling order correlations among similarly ranked
alternatives (Small, 1987), the paired-combinatorial logit (PCL) model for modeling
correlations between each pair of alternatives (Chu, 1989), and the spatially correlated
logit (SCL) for modeling spatial correlations between adjacent locations (Bhat and Guo,
2004). The CNL model can be further generalized to estimate more flexible competition
effect among alternatives via more flexible model parameters (generalized nested logit
(GNL) model, Wen and Koppelman 2001), or by incorporating more choice levels

(network GEV model, Daly and Bierlaire, 2006).

2.1.2 Weibit-based multiplicative RUM

The extended logit models mainly focus on the similarity issue stemming from the
independently distributed assumption; while the second limitation, i.e., the inability to
handle heterogeneous travel perceptions due to the identically distributed assumption,
is seldom discussed in closed-form logit models. Galvez (2001) developed the “Powit”
model with a power function-based Luce-form choice probability. Castillo et al. (2008)
independently proposed and derived the weibit model based on the Weibull distribution,
which has the same form of the Powit model, to address the heterogeneity issue when
modeling route choices. Unlike the MNL model, which uses the additive utility function,
the basic multinomial weibit (MNW) model is based on a multiplicative form of the

disutility function (Fosgerau and Bierlaire, 2009):

V=v-g, (2.12)

where vi denotes the deterministic disutility of alternative i. Assuming the error term ¢,

to be 11D Weibull variables leads to the multinomial weibit (MNW) model. The
multiplicative error structure presented in Eq. (2.12) evaluates the relative differences

in disutility, which has been found to outperform the additive utility function used in
16



logit models in various choice contexts, such as travel mode choice, expressway road
choice, and railway itinerary choice (Fosgerau and Bierlaire, 2009; Kurauchi and Ido,

2017; Li et al., 2020; Wen et al., 2021).

2.1.2.1 Properties of the Weibull distribution and development of MNW model

This section illustrates properties of the Weibull distribution and development of binary
and multinomial weibit models on this basis. Analogous to the properties of the Gumbel

distribution presented in Table 2.1 (Ben-Akiva and Lerman, 1985), Table 2.2 presents

the PDF, CDF, and six properties of the Weibull distribution («,f ) with scale

parameter « and shape parameter £.

Table 2.2. Properties of the Weibull distribution

Property Weibull (e, B) (« : scale parameter; j3: shape parameter)
1
p-1)s
1. Mode a'( B J £>1
0 p<1
2. Mean a-l“(1+l}
| B
2 1
3. Variance o’ F(l+—}—r2[1+_ﬂ
e rors

4. Multiplicative
transformation of
variable

If X is Weibull distributed with parameters (a,/?) , then kX' is
also Weibull distributed with parameters (ka, £)

5. Comparison of
variables

Relative difference of two independent Weibull distributed
variables X1 and X2 with the same shape parameter £ follows

the Log-logistic distribution with CDF:
1

()]

6. Stableness
under
minimization

The minimum of N independent Weibull distributed variables
Xy, Xy With parameters (o, 8), ..., (e, B) is Weibull

5| B
distributed with parameters [Z(ai) ﬁ} B
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The first three properties are statistical features of the Weibull distribution.
Compared to the Gumbel distribution with a fixed variance independent of the mean,

the Weibull distribution has a variance determined by the scale parameter « and shape

parameter £ (Property 3), which is a function dependent on the mean derived from

Property 2. This implies that unlike the Gumbel distribution, the Weibull distribution
has non-identical variances that depend on the alternative disutility, which facilitate to

reflect the heterogeneous travel disutility perceptions of distinct travel alternatives.

Property 4 shows that the multiplicative transformation of a Weibull variable
merely changes its scale parameter without influencing the value of shape parameter,
implying the applicability of the Weibull distribution to MRUMSs. By multiplying the
Weibull distributed error term with a deterministic disutility of each travel alternative,
the total perceived travel utility is still Weibull distributed while retaining the same

shape parameter among all alternatives.

Analogous to the logit model, the weibit model can be developed using Properties
5 and 6 of the Weibull distribution. The binary weibit choice probability can be derived
making use of Property 5. Unlike the absolute difference-based Property 5 of the
Gumbel distribution, Property 5 of the Weibull distribution relates to the relative
difference between two random variables, which is suitable for the MRUM with a
multiplicative error structure. The probability of choosing alternative i over alternative
Jj can be expressed as the probability that alternative i has a lower perceived travel

disutility than alternative j:

P P(vi & <V, ~ej)

= P[(ei/ej)5<vj/vi)]

(2.13)

From Property 5, gi/gj is Log-logistically distributed. The binary choice probability

can be obtained based on the CDF of the Log-logistic distribution as follows:

18



B
) N (2.14)

ey )

—
relative diff

The weibit choice probability is dependent on the relative difference in travel disutility

and the shape parameter £ . The shape parameter can be interpreted as the dispersion

parameter of weibit model, which indicates the degree of uncertainty in perceiving

travel disutility.

The MNW model can be derived by combining the binary weibit choice
probability with Property 6 of the Weibull distribution. The MNW probability of
choosing alternative i in a multinomial choice set I is the probability that the perceived
travel disutility of alternative i is lower than the minimum perceived disutility among

all other alternatives in set I, which can be expressed as

jziel

:P[vi-si Smi”("i'gi)}

jziel

p_ p[vi <min(V, )} (2.15)

where min (vj -gj) is Weibull distributed with the same shape parameter £ and scale

j#iel

| B
parameter [Z(vj) ﬂ} . The multinomial choice probability can be obtained

jziel

following the binary case:

(2.16)



Like the widely used MNL model, MNW model also retains the Luce-form choice

probability as presented in Eq. (2.1). Instead of the exponential function used in the
MNL model, a power function of disutility vi, (v, )’ﬂ , is used to express the strict utility

term wi in the MNW model.

2.1.2.2 Extended closed-form weibit model — Nested weibit model

This section presents extended weibit models that further relax the independently
distributed assumption. In the literature, the weibit model can be advanced using the
techniques of extending logit models (as presented in Section 2.1.1.2) to account for
correlations among travel alternatives, such as the PSW model (Kitthamkesorn and
Chen, 2013) and NW model (Kitthamkesorn and Chen, 2017). Together with the
inherent ability to consider heterogeneous travel perceptions, the advanced weibit
models can simultaneously address both the similarity and heterogeneity issues arising
from the 11D assumptions while retaining a closed-form probability expression. As the
development of PSW model is similar to the PSL model, this section focuses on the

development and properties of the NW model.

(1) Development of NW model

The NW model adopts the nested choice structure of the NL model, where similar
alternatives are collected in the same nest. From the choice structure, the NW disutility
of alternative i in nest u includes disutility at both the upper and lower levels in a

multiplicative form, which can be written as
Vi =Vui "c"ui 'Vu .‘C"u ' (217)
The perceived disutility of choosing alternative i in nest u is decomposed into two

parts, the individual part related to alternative i and the common part related to nest u.

In Eq. (2.17), vui and vu represent the deterministic individual disutility of alternative i

and common disutility of alternatives in nest u; &, and &, are the related random error
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terms. Analogous to the development of the NL model (Ben-Akiva and Lerman, 1985),

the following distributional assumptions are made for the NW model: (1) ¢, and &,
are independent; (2) ¢, are independently Weibull distributed with shape parameter
B.: (3) & are independently distributed such that ¢,-¢,, follows the Weibull

distribution with shape parameter /3, where ¢, is the random error associated with

u
min(v, - &, ).

iel,

The NW choice probability can then be expressed as the product of marginal

probability and conditional probability:
R=PPy. (2.18)
The marginal probability of choosing nest u can be expressed as

iel, jely i
= P[(gu )/ (Eu-eu ) < (Vi Vi )/ (Vo Vi ), YW U EU]

From Property 6 of the Weibull distribution, the term v, denoting the expectation of

+£,), YW= U eU}
2.19)

min(v,; -&,) can be expressed as

iel,

1

. A B
Va=| 2 () | (2.20)

iel,
From distributional assumption (3) of the NW model, the marginal choice probability
can be obtained following the derivation of the MNW model with shape parameter £, :
(Vu 'V:i )_ﬂ“

> (VW Vi )_ﬂ“

wel

P =

B

(v,)"- {Z (V) ™ Tk

iel,

(2.21)

By

> (v) " {Z (V) Tk

wel jely
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The conditional probability of choosing alternative i given that nest u is chosen

can be expressed as

P.Iu = P[vui €4 SV €

1 uj !

:P[gui/guj SVUJ/Vui ,Vj #ie IU:II

viziel,] 02

From distributional assumption (2) of the NW model, the conditional choice probability

can be obtained following the derivation of the MNW model with shape parameter g, :

B (VUi)*ﬁk
I:)ilu - Z (Vuj)*/”k ' (223)

jely,

The ratio of the shape parameters at different levels, 3, /4, , can be estimated as

a whole number for practical purposes (Ben-Akiva and Lerman, 1985). Hence, the

dissimilarity parameter ¢, = 3,//, can be introduced to indicate the degree of
competition effect among alternatives in nest u. For normalization, we can set g, =1
and ¢, =g, . By definition, g, <, and g, >0, ¢, is bounded by O and 1.

Assuming no nest-specific disutility, i.e., v, =1,VYueU , the NW model can be

alternatively expressed as

P = . (2.24)

(2) Variance and covariance of NW model

Although the nested choice structures of the NW and NL models are identical, the
former model has different performances owing to the mode disutility-dependent
variances and covariances. Figure 2.2 illustrates the difference between the variance-

covariance matrices of the two models based on a travel choice example with two nests
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and five alternatives. The nested choice structure can lead to a block-diagonal variance-
covariance matrix, i.e., there is zero covariance between alternatives belonging to
different nests. According to the identically distributed assumption and statistical

properties of the Gumbel distribution, the variances of the NL model are fixed, which
2

equal % assuming 6, =1 for the total error term ¢, + &, of alternative i. In addition,

the covariances between alternatives i and j in the same nest u are also identical, as the

correlation coefficient is a function of the dissimilarity parameter only, i.e., o, =1- ?,’

2
and cov; =0, 0, - p; :%-(1—(0”2) (Ben-Akiva and Lerman, 1985).

Travel choice

1 2 3 4 5 1 2 3 4 5
1 T £(1_¢,{'] £[1_¢,('] 0 0 W ViV, ‘\Pl: ViVs s Pis 0 0
) 0 ¢ ) 6. WVa - Pr v VaVs* Py 0 0
b 2 T b : 3
E ?(1_?’1‘] r ?[1—?’(] 0 0 ViVt O VoVt Py v 0 0
2 2 - 0 0 0 v; V,vs -
3 |Z0-a) T0-a) T 0 0 Lo
6 6 0 0 0 VyVs © Pys Vi
4 0 0 0 - E(l—@j] Disutility-dependent o /
) 6 6 ' covariances for modes Disutility-dependent
5 0 0 0 IT‘[I_@I-] T(_ in the same nest variance for all modes
L f ‘I / il 4

Fixed covariance for

modes in the same nest Fixed variance for all modes

Figure 2.2. Variance-covariance structures of the NL and NW models

On the other hand, based on the statistical properties of the Weibull distribution,

the NW model has disutility-dependent variances. Specifically, by normalizing the
shape parameter S, =1 for the total random error ¢, - ¢, of alternative i in nest u, the
variance of alternative i is
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ol =(v,), (2.25)

where v, =v,, -V, isthe total deterministic disutility. The NW covariance of alternatives
i and j in the same nest u is
cov; = E[Vi 'Vj]_ E[Vi]- E[Vi]
= E[vi £y €,V Ey -gu]— E[vi-e,-&] E[vj & -5u] . (2.26)

=V, (e ey e ]-Elar-al Efay o)

By assumption, g, are independent variables, ¢, and ¢, are independent of each
other, hence the correlation coefficient can be written as

cov;

Pij =
0,0,

:E[gui-guj-guz}—E[gui-gu]-E[guj-gu], (2.27)

=E[g,]- E[guj]-{E[guzj— Ez[eu]}
where E[¢,] and E[g,] can be obtained based on the assumptions that &, follow the

Weibull distribution (1, 5,) and &, follow the Weibull distribution (1,1):

E[gui]zl“(l+ﬁiJ:F(l+¢)u), (2.28)
Ele, -gu]zl“(1+%j:l, (2.29)
PR — (2:30)

Ele,] - I(l+¢,)
E[ &, | can be obtained based on the variance of the total error term &, -¢, :

D(&,-€,)

ul

E[(gui )2 '(gu )Z}_ E’ [gui 'EU]
~E[(a)’ ] E[(a) ] (2.31)

=1
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where E [(gui )Z} can be expressed as follows:

E[(24)'|=D[(a,) ]+ E*[20]

=D
=T (1+2¢,)-T*(1+¢,)+I* (1+9,). (2.32)
=T (1+2¢,)

Substituting Eqg. (2.32) into Eq. (2.31) leads to the expression of E[guz]:

r(1+2,)E[(5,) |-1-1
5 5 . - (2.33)

= E[(gu)z B I'(1+2¢,) - 20,-T(20,) o, T(29,)

Substituting Egs. (2.28), (2.30), (2.33) into Eq. (2.27) gives the correlation coefficient:

2 1 1 |
p, =T (1+<ou){(pu.r(z%){F(lqu }

_I+p)al(e) , _ (2.34)

Py ~F(2(pu)
_ F(1+¢)U)-F(¢)u)_l
I'(20,)

Therefore, the correlation coefficient is positive and depends on the dissimilarity
parameter ¢, . The covariance of alternatives i and j in the same nest u is a function of
their disutility and the correlation coefficient. This implies that the NW model allows
alternatives to have disutility-dependent degrees of correlation in the same nest, which

can simultaneously consider the heterogeneity issue while addressing the similarity

issue based on the nested choice structure.

2.1.2.3 Relationship between the weibit and logit models

This section illustrates the characteristics of the weibit model based on the comparison
with the widely used logit model in terms of model development, probability

expressions, and properties.
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(1) Comparison of model development

Figure 2.3 graphically compares the derivations of the MNL and MNW models using
a trinomial choice problem. Consider a case with three alternatives, A1, A2, and A3,
which independently follow the Gumbel/Weibull distributions with the same
scale/shape parameter. The disutility of the three alternatives is set to 2, 4, and 6,
respectively. The scale parameter of the Gumbel distributions is set to 1. The shape
parameter of the Weibull distribution is set to 3.3. The choice probability of Al in the
multinomial case can be obtained by comparing Al with the alternative A*, which
denotes the maximum utility or the minimum disutility of alternatives A2 and A3.
Property 6 shows that the Gumbel/Weibull distribution is stable under the
maximum/minimum operation, i.e., the alternative A* remains Gumbel/Weibull
distributed with the same scale/shape parameter. Hence, Property 5 can be used to

derive the choice probability of Al as the binary choice between Al and A*.
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025 04 1
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Figure 2.3. Derivation of multinomial choice models

(2) Comparison of probability functions

Figure 2.4 illustrates this relationship between the weibit and logit models based on the

general “logit-type” probability function as discussed by Brathwaite and Walker (2018):

(2.35)

The MNL model can be expressed by directly using 6-v; to represent S(vi), where

the scale parameter is often set as & =1. S(vi) of the MNW model is in a logarithmic

form: S(v.)=-4-In(v.) . The weibit model can thus be deemed as a logarithmic

transformation of the logit model (Castillo et al., 2008; Fosgerau and Bierlaire, 2009).

Logit
Symmetric Linear utility

- -4 0 4 8
-5
|
-10 ]

Asymmetric Logarithmic utility

S()y=-£-In(v)

S(V o

Weibit 0

—Logit
Weibit (f=4)

= «Weibit ( f=10)

AP’

AP=AP"!
Symmetric
gain & loss

AP < AP’
Asymmetric
gain & loss

Figure 2.4. Relationship between logit and weibit choice models

As can be seen from Figure 2.4, the logarithmic form of utility function leads to

the asymmetric probability curve of the weibit model, which is governed by the shape

parameter £ . Unlike the symmetric logit model providing an equal rate of

increasing/decreasing choice probability with equal gains/losses, the weibit model

gives a higher decrease than increase in probability when alternative utility is
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decreasing/increasing to the same degree. The asymmetric property might be preferred
in the evaluation of travel behavior, which is beneficial for analyses of transportation

system accessibility and vulnerability as described in Section 2.1.3.

(3) Comparison of model properties

Owing to the differences in model development and probability function discussed
above, the weibit model has distinct properties and performances than the logit model.
Figure 2.5 compares the performances of the weibit and logit models. An illustrative
binary mode choice example is presented in the typical short and long networks shown
in Figure 2.5(a). The two modes are assumed to have the same absolute travel disutility
difference but different magnitudes of mode disutility in the two networks (10 and 15
versus 100 and 105). As shown in Figure 2.5(b), because the logit model has a fixed
variance, the PDFs of the perceived travel utility have the same shape for different
networks. Using the absolute difference-based binary logit model, the same choice
probability is derived for the two networks (Figure 2.5(c)). On the other hand, the
disutility-dependent Weibull perception variances lead to different PDF shapes and
hence distinct mode choice probabilities for the two networks (Figures 2.5(d) and
2.5(e)). Therefore, the weibit model can inherently address the heterogeneity issue

embedded in the logit model.

Mode 1 Mode 1°
(Disutility =10) (Disutility =100)

& o Y @ .

(@) Short (left) and long (right) networks
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Figure 2.5. Comparison between weibit and logit models in short and long networks

29



Mode 1 disutility = X —5)

1400 4 I r 0.5

L 0.45
1200 4 043 2
04 =
g ' E
E 1000 4 - 0.35 5
g 300 4 I [0 =
= L 025 3
2 =
2. 600 - I L 02 £
g 400 - - 015 G
~ , L 01 2
200 A L 005 =
0+ 0
15 25 35 45 55 65 75 85 95 105
Mode 2 disutility
mmm Mode 1 perception variance-Weibit — wwm Modes 1 & 2 perception variance-Logit
Mode 2 perception variance-Weibit Mode 2 probability-Logit

=@=NMode 2 probability-Weibit

Figure 2.6. lllustration of the difference between perception variance and choice
probability of weibit and logit models

Figure 2.6 further illustrates the different performances of the weibit and logit
models based on a more general case where the travel disutility of mode 2 is X, and that
of mode 1 is (X - 5). The logit model has a fixed perception variance for the two modes,
which results in the unchanged model choice probability disregarding the varying
magnitudes of mode disutility. The weibit model, on the other hand, generates different
perception variances for the two modes that are changing with the variation in mode
disutility, which leads to the mode choice probability dependent on the disutility of both
modes. This weibit outcomes seem to conform with real-world conditions, as the same
difference in the travel disutility is likely to have a more significant effect in a short
network but can be ignored in a long network. It shows the potential of the weibit model
to outperform the logit model for considering heterogeneous perceptions of travel
disutility when modeling the choice between distinct travel alternatives in future multi-

modal transportation systems.
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(4) Comparison of model elasticities
This section investigates the direct and cross elasticities of logit-based and weibit-based
models to further explore the differences between these models. We assume that the

alternative disutility is a linear function of a series of attributes:

V=Y on,Viel, (2.36)

kekK;
where 7, denotes the k™" attribute of alternative i, and «, is the coefficient associated

with 7z, . The direct elasticity measures the effect of a change in an attribute of

alternative i on the choice probability of alternative i, which can be written as

p_OP 7
= '
o or P

m

,VkeK, ,meM. (2.37)

On the other hand, the cross elasticity measures the effect of a change in an attribute of
alternative i on the choice probability of another alternative j, which can be written as

P 4
Ef =—L. 5 vkeK,ijel. (2.38)
. or, P

]

The direct and cross elasticities of the MNL, MNW, NL, NW, CNL models, as
well as the cross-nested weibit (CNW) model that will be developed in Section 3.3.2.1,
are compared in Table 2.3. The NW and CNW models based on nested choice structures
have larger elasticities than the MNW model when more than one nest exists.
Furthermore, the cross elasticities among alternatives in the same nest are larger than
those among alternatives in different nests, which suggests that alternatives are more
sensitive to changes in alternatives in the same nest than in alternatives outside the nest.
The effects of nested and cross-nested structures on the weibit choice probability are in

line with those for logit models summarized by Wen and Koppelman (2001).

The major difference between logit models and weibit models is that the
elasticities of weibit models also depend on the alternative disutility vi, which implies
that as the alternative disutility increases, a unit change in the attribute may affect the

choice probability less. This feature allows the weibit models to also consider the effect
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of distinct magnitudes of alternative disutility on choice behavior, i.e., the
heterogeneous perceptions of different alternatives. This is consistent with the intuition
that the same degree of change might seem less significant for an alternative with a
higher original disutility than for an alternative with a lower disutility. Since the term
vi is used to denote the utility in logit models and the disutility in weibit models, the

elasticities of the two groups of models have opposite signs.
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Table 2.3. Direct and cross elasticities of logit-based models and weibit-based models
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2.1.3 Utility-based accessibility and vulnerability analysis

This section introduces the applications of logit and weibit models in transportation
system accessibility and vulnerability analyses based on the random utility theory.
Accessibility is a critical concept widely used for assessing transportation systems
under normal conditions, which describes the potential for users to reach spatially
distributed opportunities, assessed from the perspective of either individuals or
locations using a variety of measures. This section focuses on the utility-based measure
stemmed from the random utility theory, which assesses accessibility as the utility
travelers gain from the travel alternatives provided in the transportation system.
Compared with other accessibility indices, the utility-based measure is advantageous
as it has sold behavioral interpretations from the perspective of travelers and is
consistent with the choice behavior modelled in travel demand models. In addition, the
utility-based accessibility measure uses monetary terms to reflect changes in
accessibility, thus can be directly used for cost-benefit analysis in decision-making

(Van Wee, 2016; Winkler, 2016).

Vulnerability is an important measure of the operability of a transportation system
under abnormal conditions, quantifying the network’s susceptibility to disruptions
(Berdica, 2002). Transportation system vulnerability is often measured based on the
consequences of serious disruptions, e.g., removal of infrastructure and transportation
services, in terms of degradation in certain performance measures (Jenelius et al., 2006).
This section focuses on the accessibility-based vulnerability analysis, which assesses
system vulnerability based on the reduction in utility-based accessibility measure after
the removal of network components (e.g., nodes and links) (Jenelius et al., 2006; Chen
et al., 2007; Jansuwan and Chen, 2015; Xu et al., 2021). Benefiting from the utility-
based accessibility measure, the system vulnerability can be comprehensively analyzed
considering changes on both the supply side (e.g., network topology) and the demand
side (e.g., the complex choice behavior and travel demand patterns) (Mattsson and

Jenelius, 2015; Taylor, 2017; Gu et al., 2020).
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In this section, the logit-based accessibility and vulnerability measures based on
choice models are first reviewed with discussions on their properties and limitations.
Advanced accessibility and vulnerability analyses are then proposed based on the state-
of-the-art weibit models. Benefiting from the appealing properties of weibit choice
model (Section 2.1.2), the proposed weibit-based measures are inherently suitable for
assessing the relative variation in system performance and are appropriate to assess the
vulnerability of networks with distinct scales. The weibit-based measures are further
advanced in consistent with extended weibit choice models, which can simultaneously
address the similarity and heterogeneity issues embedded in the traditional logit-based

transportation system analyses.

2.1.3.1 Logit-based vulnerability measure

We first briefly demonstrate the traditional logit-based accessibility and vulnerability
measures stemming from the MNL choice model. Based on Property 6 of the Gumbel
distribution (Table 2.1), the maximum perceived utility of a set of Gumbel distributed
travel alternatives is still Gumbel distributed. The expected maximum utility gained
from the travel choice set | can then be expressed in an additive form in line with the

additive error structure in the logit model (Williams, 1977):

E(max; {V,,Viel})=A"+C", (2.39)
where Ct is a constant and At is the logsum measure expressed as follows:

1

At = 3 In > exp(6v;) . (2.40)
iel

Logsum is used as the accessibility measure, which can be interpreted as the consumer

surplus. The variation in logsum can be applied to assess the social benefit in specific

planning scenarios with development of certain transportation infrastructure or policy

(Williams, 1977; Ben-Akiva and Lerman, 1985; De Jong et al., 2007).
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The transportation system vulnerability can be measured based on the absolute
difference between post- and pre-disruption logsum measures:

AA" = A - AY = %{In > exp(=07,")-1In Zexp(—erio)} : (2.41)

iel iel

where z°, 7", Ab, A" respectively denote the travel disutility (opposite of utility) of

alternative i and the logsum before and after disruption. AA" can be directly used as

the vulnerability measure and can be interpreted as a kind of “average” degradation in
the expected maximum travel utility. In line with the absolute utility difference—
dependent logit choice probability, the logsum can accurately reflect the vulnerability

when there is an absolute utility degradation of each travel alternative, i.e.,

r.' =1"+ AA", (2.42)

AY = —%In Zexp(—@ri ') = —%In Zexp[—e(ri‘) +AAL)] (2.43)

iel iel

To account for the proportional degradation in network performance, the
vulnerability measure V- has also been widely used to derive the relative reduction in
logsum after disruption:

AA"

VL:AJL

(2.44)

However, owing to the 11D assumptions embedded in the logit choice model, the
logit-based vulnerability measure is still insufficient for reflecting the relative
degradation in post-disruption network performance in networks with distinct scales

and/or similar travel alternatives.

2.1.3.2 Issues associated with logit-based vulnerability measure

The logit-based vulnerability measure is affected by several issues stemming from the

1D assumption of the logit choice model. In particular, the identically distributed
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assumption causes difficulty in application to transportation networks with distinct
scales and hinders the reflection of relative changes in network performance. The
independently distributed assumption leads to the underestimation of the importance of

independent travel alternatives. These issues will be discussed in this section.

(1) Distinct network scale

The Gumbel distributed random perception error with scale parameter 6 gives a
fixed perception variance o = 7%/66° (Table 2.1). In this regard, a single value of &

may not be sufficient to reproduce the travel utility perception and travel choice
probabilities for networks with distinct scales (Chen et al., 2012). This limitation may

lead to biased logsum measures and vulnerability analysis outcomes.

Figure 2.7 illustrates the effect of network scale on the outcome of logit-based
vulnerability analysis based on short and long networks shown in Figure 2.7(a). The
scale parameter is set as € = 0.3. The vulnerabilities under the removals of Alternative
1 and Alternative 2 are separately assessed to examine the importance of each
alternative. Figure 2.7(b) depicts the distribution of perceived travel utility and the
logsum under each scenario (colored digits in bold). Figure 2.7(c) summarizes the
vulnerability assessment outcomes including the absolute logsum differences based on
Eq. (2.41), the relative logsum reduction derived from Eq. (2.44), and the relative
importance of the two alternatives calculated as the ratio between the absolute logsum
differences after removal of each alternative. The higher relative importance of
Alternative 1 (or 1') indicates that the removal of Alternative 1 (or 1") will cause greater
damage to the network than the removal of Alternative 2 (or 2'). The absolute difference
in logsum is not sufficient to compare the vulnerability of different networks with
heterogeneous scales. Although the relative reduction in logsum can partly handle the
effect of distinct network scales, the outcome network vulnerability and the component

importance are still inconsistent with the actual change in network scale.
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(c) Logit-based vulnerability outcomes of short (left) and long (right) networks

Figure 2.7. Effect of network scales on logit-based vulnerability analysis

The inadequacy of logit-based model to account for the difference in network

scales may prohibit the applicability of logsum measures to vulnerability analysis, in
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that the network scale, i.e., the magnitude of the network travel disutility, can change
significantly under serious disruptions. Furthermore, the inability to correctly handle
distinct network scales will hinder the comparison of vulnerability between different

networks and influence the transferability of the vulnerability analysis outcomes.

(2) Relative network performance degradation

This section illustrates the inadequacy of the logit-based measure to reflect the relative
degradation in network performance. As the logit model is unable to reflect the relative
disutility difference in choice probability (Kitthamkesorn and Chen, 2013), the
resulting logsum may lead to biased vulnerability outcome under relative performance

degradation.

Consider a case with two alternatives with travel disutility z, and z,. The logsum
of the two alternatives can be expressed as below:
1
A= gln [exp(—6r,)+exp(—0r,) ]

| (2.45)
=—1, +%In {l+ exp[ -0z, - Tl):l}

Assume that under disruption, the ratios between the post- and pre-disruption cost

of all alternatives are v >1, i.e., the post-disruption travel costs become vz, and vz,.

It is reasonable to expect that the post-disruption accessibility A’ becomes v-A:

A=y 2 In [exp(—Ql'l) +exp(-0r, )]
6 . (2.46)
=—Vr, +V % In {1+ eXp[—H(Tz _Tl)]}

However, if we incorporate the post-disruption travel disutility to derive the

logsum measure, a value different from A" will be obtained:
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Al = 1|n I:exp(—@-VTl)'f'eXp(_e'VTZ )]
0 ) . (2.47)
=—-VT +5|n {1+ eXp[_e'V(TZ _Tl)]}

The difference between the logit-based post-disruption accessibility, A, and the

reference value, A’, can be expressed as follows:

AY — A :%In {1+exp[-0-v(z,—7)]}-v %In {1+exp[-0(r,—7,) ]} . (2.48)

Theterm A" — A’ is monotonically increasing with 7, —z, >0 and monotonically
decreasing with z,—7,<0 . When z,—7, >+w or 7,-7, >- , A" —~A'=0 .

Therefore, the term A" — A’ is always non-positive, i.e., the post-disruption

accessibility is always underestimated by logsum. An illustrative example with scale

parameter 8 =0.3 is shown in Figure 2.8. The blue line shows the values of term
A" — A" under different disutility differences (z, —z,). The gap between the blue line
and the x axis denotes the overestimated absolute reduction in accessibility (i.e.,

overestimated vulnerability), which reaches the maximum when z, —z, =0. Note that

the overestimated vulnerability is also influenced by the value of & . As 6 approaches

infinity, the overestimated vulnerability approaches zero.
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Figure 2.8. Overestimated vulnerability owing to logit-based measure
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(3) Similar travel alternatives

Because of the independence assumption in the MNL model, the widely used
MNL-based logsum measure ignores the correlation among similar travel alternatives;
thus, it may generate biased choice probability and vulnerability analysis outcomes.
Figure 2.9 presents an illustrative example of the effect of alternative similarity on

vulnerability analysis in the context of mode choice.

MNL - Non-disrupted scenario NL — Non-disrupted scenario
/" ( ;. Nest .(‘ ~~
dmu = disu=12 dmu— 10 di‘;l.l = d|su =12 dlsu— 10
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(b) Comparison between logsum reductions from the NL and MNL models

Figure 2.9. Effect of similarity on the logit-based vulnerability measure

Three modes are considered in the illustrative example: metro, bus, and private
car. The accessibility reduction owing to the removal of the car mode is assessed. The
MNL model, which neglects mode correlation, is compared with the NL model, in

which similar alternatives are nested together (e.g., metro and bus are nested as transit
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modes). The mode correlation is modeled by a dissimilarity parameter ¢ satisfying
0 <@ <1. Alower value of ¢ indicates a higher correlation between alternatives in the

same nest. The NL model collapses to the MNL model when ¢ =1. From Figure 2.9(b),

the NL model leads to a greater reduction in accessibility with the decrease in the
dissimilarity parameter, which implies that the neglect of correlation may lead to

underestimation of the importance of an independent mode (the car mode in this case).

2.1.3.3 Weibit-based accessibility and vulnerability measure

To address the aforementioned issues associated with the logit-based measure, this
section proposes accessibility-based vulnerability measures stemming from the weibit-
based choice model, which is also derived based on the random utility theory. Based
on Property 6 of Weibull distribution (Table 2.2), the minimum disutility of a set of
Weibull distributed travel alternatives is still Weibull distributed, with the same shape
parameter but different scale parameters. The expected minimum disutility gained from

the travel choice set | can be expressed as:

E(min;{V,,Viel})=A".C", (2.49)

where C" is a constant dependent on the shape parameter A, and AW is the weibit-based

accessibility measure, which can be expressed as follows:

AV :{Z(ri )y’ rﬂ. (2.50)

iel

Different from the logsum which takes the log of the denominator of the logit
choice probability, the weibit-based accessibility measure takes the root of the
denominator of the weibit choice probability. The proposed weibit-based vulnerability

measure is derived based on the ratio between the post- and pre-disruption weibit-based

accessibility, AA" :
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VY = AAY :[Z(Ti’)ﬁrﬂ / [Z(r?)‘ﬂ rﬁ. (2.51)

iel iel
A higher value of the vulnerability measure VW indicates a larger increase in disutility

under disruption, namely, a larger system performance degradation. AA" can then be

interpreted as the average increase rate in alternative travel disutility:

A = [Z(v{ )ﬂ rﬂ - {Z(v? AAv) Tﬂ . (2.52)

iel iel

Different from the logit model, the weibit model allows alternative-specific
perception variances and has a relative disutility difference-dependent choice
probability (Section 2.1.2). Thus, the weibit-based vulnerability measure is inherently
suitable to reflect the performance degradation when there is a relative degradation in
the service level of each travel alternative. Figure 2.10 illustrates the effect of the
proposed weibit-based measure. The short and long networks depicted in Figure 2.7(a)
are used to present an illustrative example. The vulnerabilities under the removals of
Alternatives 1 and 2 are separately assessed to examine the importance of each
alternative. Figure 2.10(a) depicts the distribution of perceived travel disutility,
perception variance, and the weibit-expected disutility under each scenario (colored
digits in bold). Figure 2.10(b) summarizes the vulnerability assessment outcomes,
including the relative differences in the weibit-expected disutility shown in Figure
2.10(a) and the relative importance of the two alternatives denoted by the ratio between
the performance degradations after removal of each alternative. With alternative-
specific perception variances, the weibit-based measure can derive different
vulnerabilities (relative differences) for different alternatives in different networks.
Furthermore, the relative importance of Alternative 1 and 1’ is consistent with the

disutility ratio between Alternative 1/1’ and Alternative 2/2.
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(b) Weibit-based vulnerability analysis outcomes of short and long networks

Figure 2.10. Effect of weibit-based vulnerability analysis

In summary, the weibit-based vulnerability measure allows a comparison between

outcomes from networks with distinct scales and overcomes the issues of the logit-

based measure associated with heterogeneous network scales and relative change in

network performance. However, the measure based on the MNW model is still affected

by the similarity issue (3) in Section 2.1.3.2. To deal with this limitation, the advanced
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weibit models introduced in Section 2.1.2.2 can be incorporated in the accessibility-

based vulnerability measure.

2.1.3.4 Accessibility and vulnerability measures based on extended weibit models

This section presents the accessibility and vulnerability measures derived from
extended weibit models, which can simultaneously address the similarity and
heterogeneity issues in logit-based measures. The PSW model commonly used in route
choice problems and the NW model commonly used in mode choice problems are

adopted to exemplify the derivation of accessibility measures.

(1) PSW-based accessibility measure
In the PSW model, a PS factor PS;®is introduced to the disutility function of path k

between OD pair rs:
1

V,* =(PSZ) A -z gf, Yk e K™ rse RS, (2.53)

which leads to the PSW choice probability as follows:

rs

Py (o) "
,Vke K", rseRS. (2.54)

CoYese ()"

keK"™

The PS factor is a correction term that only influences the deterministic disutility. Thus,
the accessibility measure based on the PSW model can be obtained based on Property

6 of the Weibull distribution (Table 2.2) following Eq. (2.50):

1

Akw{z Pska-(rk“)ﬁ“} " VKeK® rseRs. (2.55)

keK™

(2) NW-based accessibility measure

As illustrated in Section 2.1.2.2, the NW model adopts a nested structure and a

multiplicative error structure (Eqg. (2.17)). As an example, a two-level NW mode choice
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model is considered in this section, where individual modes belonging to the same type
of mobility service are collected in the same nest. Travelers are considered to make
marginal choice of service type and conditional choice of individual mode belonging
to the selected type of service. The NW-based accessibility measures are then separately
derived from different choice levels. First, the accessibility measure of service type u
between OD pair rs can be obtained as the expected minimum disutility from the

conditional choice level:

| A

A‘VSV”{Z (Z‘J;]) ﬁu:l ,YueU" rseRS. (2.56)
meMl'Jrs

Due to the nested structure of the NW model, the accessibility at the marginal

choice level is dependent on the accessibility at the conditional level. If there exists no

nest-specific disutility, the accessibility measure between OD pair rs can be obtained

as the expected minimum disutility from the marginal choice level:

A { > (A )‘ﬂ“ y VrseRS. (2.57)

ueu "™

Based on the advanced weibit-based accessibility measures shown in Egs. (2.55)-
(2.57), the corresponding accessibility-based vulnerability measures can be obtained as
the relative difference between the post- and pre-disruption accessibility following Eq.

(2.51).
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2.2 Network equilibrium models with MP formulation

Network equilibrium models have been exhaustedly studied for aggregate-level travel
demand analysis, where individual travel choice models can be integrated to reproduce
the disaggregate-level travel behavior. Instead of the travel choice models that derive
choice probabilities based on exogeneous travel disutility v, equilibrium models
consider the interactions among travelers via endogenous travel disutility dependent on
travel demand, i.e. v=v(q). At the equilibrium, the travel demand pattern is consistent
with the travel choices derived based on the demand-dependent travel disutility. Hence,
the equilibrium condition can be represented as a fixed-point problem with the travel

demand existing on both sides of the equation:
q=D-P(v(a)), (2.58)

where D denotes the total travel demand in transportation system. g, v, and P denote
the vectors of investigated travel demand, travel disutility, and travel choice probability,
respectively. Different equilibrium models have been developed based on different
choice models reproducing choice probability P. In the literature, equilibrium models
are mainly applied in traffic assignment problems, which assign OD travel demands
onto links following certain selfish route choice behavior in congested networks. Figure

2.11 summarizes the network equilibrium models with Beckmann-type MP formulation.

Equilibrium traffic assignment model with
Beckmann-type MP formulation
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Figure 2.11. Summary of network equilibrium models with MP formulation
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In the deterministic network equilibrium analysis, travelers are assumed to have
perfect knowledge of transportation systems and no perception error. All travelers
choose the paths with the minimum travel disutility between each OD pair, which leads
to the user equilibrium (UE) assignment following Wardrop’s first principle (Wardrop,
1952). Beckmann et al. (1956) formulated the UE model as a mathematical
programming (MP) problem with a convex objective function and linear constraints.
Beckmann’s MP formulation guarantees the equivalence and uniqueness of solutions
while facilitating model interpretation and development of convergent and efficient
solution algorithms.

The other line of equilibrium model is the stochastic user equilibrium (SUE)
principle suggested by Daganzo and Sheffi (1977). Instead of unrealistically assuming
travelers to have perfect knowledge of transportation system, the SUE problem
considers imperfect knowledge and hence perception errors on travel disutility. At SUE,
travelers are assumed to choose the paths with the minimum perceived travel disutility,
where the perceived travel disutility is assumed to follow certain distribution, e.g., the
normal distribution, Gumbel distribution, and Weibull distribution. The normal
distributed perception error results in the multinomial probit (MNP) SUE model
(Daganzo and Sheffi, 1977). Maher (2001) extended the unconstrained SUE
formulation to the elastic demand version, which can be applied to both types of
perception error distributions, i.e., both probit-based and logit-based SUE problems
Rosa and Maher (2002) investigated the MNP SUE-ED problem with multiple user
classes. Meng and Liu (2011, 2012) and Meng et al. (2014) extended The MNP SUE
model has been further extended to consider specific issues including elastic demand
(Maher, 2001), multiple user classes (Rosa and Maher, 2002), link interactions (Meng
and Liu, 2011), continuously distributed value of time (Meng et al., 2012), and link
capacity constraints (Meng et al., 2014). However, studies on the MNP SUE model are
relatively limited owing to the absence of an MP model formulation and a closed-form
expression of MNP choice probability, which largely increases the computational
burden for simulating the route choice probability in large-scale networks.

Comparing with other types of SUE model formulations, such as the variational
inequality, nonlinear complementary problem, and fixed-point formulations, the MP
formulation is desirable owing to its various appealing properties: readily interpretable

and easily understandable optimality conditions; solvable by existing convergent and
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efficient algorithms; and the convex objective function that can be used to obtain
appropriate step size and stop criterion for the solution procedure (Kitthamkesorn and
Chen, 2017). Therefore, the MP formulation has been widely adopted by SUE studies
for various applications, and thus is the focus of the proposed research. This section
reviews the SUE models with Beckmann-type MP formulation based on different route
choice models, followed by the extensions to combined demand that incorporate higher
choice dimensions in equilibrium analysis. The method of developing Beckmann-type

SUE formulations based on different choice models will be introduced in Section 5.

2.2.1 SUE models with MP formulation

2.2.1.1 Logit-based SUE models

Assuming Gumbel distributed path disutility perception errors leads to the MNL route
choice model, which is most adopted in SUE problems (Dial, 1971). Owing to the Luce-
form logit choice probability, the MNL SUE model can be represented by a Beckmann-
type MP formulation, where an entropy term is additionally incorporated to account for
the stochasticity in route choice behavior at the aggregate level (Fisk, 1980). Despite
the appealing properties of having an MP formulation, the MNL SUE model inherits
limitations from the MNL choice model, namely the inadequacy to consider the
heterogeneous travel disutility perception and correlations among paths (e.g., path
overlaps) (Chen et al., 2012).

To deal with the limitations of the MNL SUE model, many extended logit choice
models introduced in Section 2.1.1.2 have been integrated to deal with path correlations.
The extended logit models with correction term can be integrated by adding an
objective term with respect to the path disutility correction, such as the C-logit SUE
model (Zhou et al., 2012) and PSL SUE model (Chen et al., 2012). On the other hand,
the extended logit models with nested choice structure can be integrated by specifying
decision variables corresponding to the adopted structure and adding entropy terms
with respect to different choice levels in the objective function. For instance, Bekhor
and Prashker (1999) developed the MP formulation of the PCL SUE and CNL SUE
models; Bekhor and Prashker (2001) develops the GNL SUE model formulation.
However, the heterogeneity issue cannot be inherently addressed by the extended logit

SUE models. Chen et al. (2012) proposed to scale the logit dispersion parameter & for
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each OD pair (i.e., a common scaled dispersion parameter for the route set between
each OD pair), which showed the scaled logit models can outperform the unscaled ones
by distinguishing the magnitudes of trip lengths between different OD pairs. However,
scaling the dispersion parameters for different OD pairs may be cumbersome as there
are many OD pairs in a typical large-scale transportation network (e.g., a medium-sized
network known as the Winnipeg network has 154 zones, 2535 links, and 4345 OD
pairs).

2.2.1.2 Weibit-based SUE models

The weibit-based SUE model has been recently proposed that inherently addresses the
heterogeneity issue embedded in logit-based SUE models. In a pioneering work,
Castillo et al. (2008) proposed the SUE problem based on the MNW route choice model,
which accounts for the heterogeneity issue via route-specific perception variances and
relative difference-dependent probability. Many equilibrium analyses have been
developed to advance the MNW SUE model based on extended weibit choice models
that further relax the independently distributed assumptions. For instance,
Kitthamkesorn and Chen (2013, 2014) used the path-size factor of the PSL model to
develop the PSW model, applying it to the SUE problem using the constrained convex
program in 2013 and the unconstrained nonlinear program in 2014. Kitthamkesorn et
al. (2015) extended the PSW SUE model to the elastic OD demand case to explain the
interaction between supply and demand. Xu et al. (2015) developed the hybrid weibit-
logit model to take advantage of both the relative difference-based weibit model and

the absolute difference-based logit model in the traffic assignment.

Another stream of studies focused on the theoretical analysis and practical
applications of weibit-based SUE models. For example, Yao and Chen (2014) analyzed
the stochastic assignment paradox based on the logit and weibit choice models. Cheng
et al. (2022) explored the stochastic assignment paradox using the multiplicative hybrid
weibit-logit model. Wang et al. (2021a) analytically and empirically investigated the
effect of traveler’s prior knowledge or information on the performance of weibit-based

SUE models. Weibit models have also been applied to various traffic assignment and
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related network design problems. For example, link-based stochastic network loading
algorithms have been customized for applying the weibit-based SUE models to road
traffic assignment (Kitthamkesorn and Chen, 2014; Sharifi et al., 2015; Liu etal., 2017).
Kitthamkesorn et al. (2021) further considered the MNW travel choice behavior in the
design of park and ride facilities. Weibit route choice can also be incorporated in day-
to-day traffic assignment (Ye, 2022), which can be applied to network vulnerability
analysis (Xu et al., 2021) and road congestion pricing (Qu et al., 2021). Xie et al. (2020)
applied the weibit model to schedule-based stochastic passenger assignment for train

schedule optimization in a high-speed railway network.

2.2.2 Combined travel demand model

The SUE models discussed in Section 2.2.1 focus on the level of traffic assignment
with respect to the route choice dimension. Efforts have also been made to develop
combined travel demand models that flexibly incorporate more levels in the sequent
four-step model dimensions with respect to other choice dimensions, i.e., trip
generation, trip distribution, and modal split (Safwat and Magnanti, 1988; Oppenheim,
1995; Boyce and Bar-Gera, 2004; Zhou et al., 2009). Different from the sequent four-
step model considering different choice dimensions in a separate manner, the combined
model can reproduce the joint travel, destination, mode, and route choice in a consistent
way based on the random utility theory. Besides considering all four choice dimensions,
many combined models focus on some of the interacting dimensions for specific
applications, such as the combined distribution and assignment (CDA) model and the

combined modal split and traffic assignment (CMSTA) model.

(1) Combined distribution and assignment model

The CDA model considers the joint destination and route choice, where the destination
choice is reproduced based on the OD travel cost consistent with the route choice
behavior. Tomlin (1971) proposed an MP formulation of CDA model using an entropy
term standing for the equilibrium trip distribution based on the gravity model, while the
route choice follows the system optimal principle. Florian et al. (1975) further

developed an CDA model considering selfish route choice behaviors, in which the route
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choice is modeled following the UE principle. However, the gravity-based trip
distribution model used in such CDA models can also be interpreted from the
perspective of the random utility theory as an MNL destination choice, which is
inconsistent with the deterministic UE route choice. Efforts have been made to
guarantee the consistency between destination and route choices by integrating the
logit-based SUE traffic assignment model (e.g., Oppenheim 1995). Yao et al (2014)
further developed a general unconstrained formulation for the CDA model. Further
extensions have been made to incorporate specific considerations, such as multiple user
and vehicle classes (Friesz, 1981; Lam and Huang, 1992), variable destination cost
(Oppenheim, 1993), different types of location choices (Yang and Meng, 1998),
capacity constraints (Tam and Lam, 2000), and network uncertainty (Yim et al., 2011).

Several efforts have been made to advance the CDA model by incorporating
advanced destination and route choice models. For example, Chu (2011) adopted the
dogit model for reproducing destination choice with both compulsory and discretionary
trip purposes. Yao et al. (2014) adopted the spatially correlated logit model to account
for the similarity among spatially adjacent locations. The PSL model was also adopted

for route choice with consideration of path overlaps.

(2) Combined modal split and traffic assignment model

The CMSTA model considers both mode choice and route choice together. The mode
choice is influenced by the aggregate cost stemmed from the equilibrium route choice.
Similar to the development of CDA models, many CMSTA models first combine the
stochastic mode choice following the binary logit choice model and the deterministic
route choice following the UE principle (Florian, 1977; Florian and Nguyen, 1978;
Abdulaal and LeBlanc, 1979). The CMSTA model was then extended to consider
multiple modes (Oppenheim, 1995) and stochastic route choice (Oppenheim, 1995; Wu
and Lam, 2003).

Many advanced choice models have been integrated in the CMSTA model for
considering various behavioral issues. For instance, Kitthamkesorn et al. (2016)
developed the NL-CNL CMSTA model to simultaneously consider the similarity issues
at both dimensions, where the mode correlation is considered via the NL model and the
path overlap is considered by the CNL model. Liu et al. (2018) developed a CNL-UE
CMSTA model to specifically account for the similarity between the park & ride service

52



and other travel modes. Wang et al. (2020a) developed a dogit-PSL CMSTA model,
where the dogit model is adopted to consider mode choice captivity and the PSL model
is adopted to account for path overlap. Du et al. (2022) developed a CNL-PSL CMSTA
model for network capacity analysis, where the CNL model is adopted for the mode
choice with various emerging mobility services. Besides the extended logit-based
CMSTA models that are inadequate to reflect heterogeneous travel perceptions,
Kitthamkesorn and Chen (2017) proposed an advanced weibit-based CMSTA model to
simultaneously consider similarity and heterogeneity issues at both mode and route
choice dimensions. The NW model was developed for the mode choice behavior,

whereas the route choice was reproduced using the PSW model.
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Methodology Part I. Modeling individual travel choices: Development

of advanced random utility models with emerging choice behavior
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Chapter 3 Closed-form choice models based on “Luce class” of error
distributions

This chapter focuses on the development of advanced individual choice models with
random errors identically following the “Luce class” distributions, which leads to the
generalized “Luce-form” choice probabilities that are efficient for probability
evaluation. For applications in emerging choice contexts with different innovative
transport policies or mobility services, the independently distributed assumption is
relaxed in different manners to consider various correlations among travel alternatives
in the emerging transportation system.

In particular, Section 3.1 develops an ordered path-size generalized extreme value
model for the route choice in road networks with road tolls. Besides incorporating
correction terms to penalize the physical correlation (overlap) among paths, a specific
ordered nested choice structure is incorporated to account for the perceptual correlation
among paths with closely ranked tolls. By taking advantage of the two ways of
developing extended logit models as illustrated in Section 2.1.1.2, i.e., adding
correction terms and introducing a nested choice structure, the developed model is able
to address different path correlations in an integrated manner.

Section 3.2 develops a dogit-nested weibit mode choice model for multi-modal
systems with customized bus services. Instead of the commonly used Gumbel error
distribution, this section shows the MRUM development based on the Weibull error
distribution, a “Luce class” distribution that fits the MRUM framework. Furthermore,
a nested choice structure is introduced to model the mode similarity. The dogit mode,
an alternative probabilistic choice system, is embedded in the MRUM framework to
develop a closed-form choice model that considers the issue of passenger loyalty.

Section 3.3 develops a dogit-cross-nested weibit model for joint mobility bundle
and mode choice with various emerging mobility services. On the basis of the advanced
dogit-nested weibit model developed in Section 3.2, this model considers the effect of
mobility bundling, an emerging marketing strategy for promoting emerging mobilities,
on both the mode similarity issue and the passenger loyalty issue.

Section 3.4 develops a spatially correlated weibit—parking-size weibit model for

joint destination and parking choice with shared parking services. In addition to the
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single-dimensional choice behaviors considered in Sections 3.1-3.3, this section
develops a combined destination and parking choice model based on a hierarchical
choice structure. The two ways of modeling correlations illustrated in Section 2.1.1.2
are adapted based on the features of different choice dimensions considered. The
developed model is still within the weibit-based MRUM framework. Thus, it retains
the computationally efficient generalized “Luce-form” choice probability that
facilitates further applications in the equilibrium analysis in real-world networks.

3.1 Route choice in tolled networks
3.1.1 Background and related studies

Route choice models play a critical role in travel demand analysis. Besides the
extensively used multinomial logit (MNL) model which has a closed-form probability
expression but fails to capture the correlation among paths, various extended logit
models have been developed and adapted for the route choice in the stochastic user
equilibrium (SUE) analysis (Prashker and Bekhor, 2004). The commonly used

extended logit route choice models include:

e C-Logit (Cascetta et al, 1996): Add a correction term representing the utility
reduction due to commonality with overlapped paths.

e Path-size logit (PSL, Ben-Akiva and Bierlaire, 1999): Add a factor representing
the “size” of an overlapped path compared with a “full” path without overlapping.

e Paired combinatorial logit (Chu, 1989): Use a nested choice structure with each
pair of overlapped paths collected in the same nest.

e Cross-nested logit (Vovsha, 1997): Use a nested choice structure with all paths

passing the same link collected in the same nest.

In summary, the existing logit-based route choice models are dominated by the
consideration of physical correlation among paths, namely the path overlap associated
with the length or travel time attribute of each path. However, few studies have
considered the perceptual path correlation triggered by other attributes that can also

exert significant effects on route choice behaviors (Frejinger and Bierlaire, 2007). For
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example, the path order based on the ranking of monetary travel cost, which is an
important attribute in conjunction with travel time, has been considered in the route
choice in tolled networks (Leurent, 1993; Glavic et al., 2017; Xie et al., 2021). There
are likely correlations among the random utility components of adjacently ordered
alternatives (Small, 1987). Specifically, in the tolled network with a ranking of toll,
there may exist path order correlation, i.e., the perceptual correlation among paths
with adjacent orders of toll. Figure 3.1 illustrates this issue based on a route choice
example between an OD pair in Hong Kong, where the navigation software suggests
three paths using three cross-harbor tunnels with a ranking of tolls (WHC for Western
Harbour Crossing, CHT for Cross-Harbour Tunnel, and EHC for Eastern Harbour
Crossing, respectively). In addition to the physical overlaps among the three
alternatives, travelers choose routes considering the tradeoff between cost and time
based on the perceptual correlation between paths with close rankings of toll, which has
been overlooked in the route choice literature. For instance, Paths 2 and 3 are
perceptually correlated as they both rank low in road tolls (first and second,
respectively), thus are likely to be considered as competing alternatives by price-
sensitive travelers. Therefore, in addition to the physical path overlap, the perceptual
path order correlation is also imperative to be incorporated in the route choice model
for tolled networks.

This section aims to model the route choice in tolled networks while specifically
accounting for the effect of road toll ordering and path order correlations. The
integration of path order information is based on the discovery that the ordered
generalized extreme value (OGEV) model (Small, 1987) can naturally account for the
correlation among ordered choice alternatives, which matches the route choice with a
known ranking of toll. On this basis, an advanced route choice model is developed to

consider perceptual and physical path correlations simultaneously.
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Toll order and route overlap in real world
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Figure 3.1. An illustration of path perceptual and physical correlations in the Hong

Kong road network

3.1.2 Route choice considering perceptual correlation and physical overlap

In this section, the OGEV model, which is suitable for incorporating the ordering
information of choice alternatives, is extended to the ordered path-size generalized
extreme value (OPSGEV) model for modeling both the perceptual order correlation and
the physical overlap in the route choice problem. The perceived path travel utility
function is defined for accounting for different correlations via different deterministic

disutility and random error terms:

VE = VP 4SS st st Vke K ueU® rseRS, (3.1)
H—J

Systematic K u Error

o aig—;

utility Path Path order ~ COMponents
overlap correlation

where RS, U™, and K[ denotes the set of OD pairs, the path subsets between OD pair
rs, and the paths in subset u between OD pair rs, respectively; v,® is the systematic path

utility measuring the tradeoff between travel time and road toll; ¢; and & are error
components associated with the individual path and the subset of adjacently ordered
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paths, respectively. Following the development of the nested logit model (Ben-Akiva

and Lerman, 1985), three distributional assumptions are made: (1) ¢, and &;° are
independent; (2) ¢, are independently and identically distributed (11D) Gumbel

variables with scale parameter 6, ; (3) ¢;° are distributed so that ¢, +¢;° are IID

u

Gumbel variables with scale parameter 6, .

PS,® denotes the path-size (PS) factor, which penalizes the physical correlation
(overlap) among individual paths together with scale parameter 6, (Ben-Akiva and
Bierlaire, 1999). The PS factor is measured based on the total path length and the
lengths of links shred by different paths as follows:

PSE =" l, 15rs VkeK™ rseRS, (3.2)
a,k

aeA{SK. z

keK™
where la and Ik are the length of link a and path k, respectively; A denotes the set of
links on path k; o, is the binary variable indicating the link-path incidence

relationship, ¢, =1 if link a is on path k, otherwise ¢;, =0. Paths with a heavy

overlap have a smaller PS factor, indicating a higher penalty on path utility. Other
functional forms of PS factor can also be included (see Bovy et al., 2008; Prato, 2009).

The allocation parameter w;; denotes the membership of path k in path subset u
between OD pair rs, which influences the competition effect between path k and its
adjacently ordered paths. The allocation parameter w;, and scale parameter 6,
together reflect the path order correlation. To guarantee unbiased model specification,

w,, can be normalized as Z w;, =1 (Abbe etal., 2007). In the standard OGEV model,

uel"™

w,, can be specified as

YISk where M denotes the number of adjacently ordered
+

paths that are considered correlated to each path and M+1 is the maximum number of
paths in a subset (Small, 1987).
Based on the utility function (3.1) and the three distributional assumptions, the

OPSGEV model can be analytically derived. Figure 3.2 illustrates the simultaneous
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consideration of path correlations arising from toll ranking and physical overlap in the
proposed OPSGEV model. The path order correlations are considered via the nesting

structure at the marginal choice level, while the path overlaps are modeled via the utility
correction terms at the conditional choice level. The OPSGEV probability R” is a

product of the marginal choice probability of subset u and the conditional probability
of choosing path k from subset u.

P =Y P(u)-P(k|u),vk e K", rseRS, (3.3)

where K™ denotes the path set between OD pair rs. The marginal and conditional

choice probabilities, P(u) and P(k |u) can be expressed as follows.

%

%

oy | B osta)

YueU"® rseRS, (3.4)
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> PS®-(w ) exp (G, )

leK,

P(k|u)= ,VkeK,ueU® rseRS. (3.5)

Define the dissimilarity parameter p =6, /6, that indicates the order correlation

among paths in the same subset, which is positive and ranges from zero to one as

0<6, <6, (Ben-Akiva and Lerman, 1985). A lower value of p indicates a higher

degree of correlation, i.e., an increased competition among adjacently ordered paths.

With a normalization of 6, =1, the OPSGEV probability can be analytically expressed
by substituting Eqgs. (3.4) and (3.5) to Eq. (3.3) and replacing 6,,6, with p:
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Figure 3.2. Hlustration of the OPSGEV model with both perceptual and physical
correlations

The effect of the OPSGEV model in considering both perceptual and physical path

correlations is illustrated in Figure 3.3 via a three-path example.
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Figure 3.3(a) explores the effect of p based on a comparison between the
OPSGEV model and the commonly used MNL model, in scenarios with the same order

of path toll and equal v,” but different perceptual correlation among paths. Given a

membership parameter w;; , the path order correlation is influenced by the dissimilarity
parameter p as shown in Eq. (3.6). Unlike the MNL model which ignores path

correlations and provides the same route choice probability (i.e., 1/3 for all three paths),
the OPSGEV model can capture the difference in path order correlation by varying the
values of dissimilarity parameter p . With the increase of p, the OPSGEV choice

probability of less correlated paths increases (e.g., Path 1 correlated only with Path 2),
while the highly correlated path (e.g., Path 2 correlated with both Paths 1 and 3) tends
to have a lower choice probability due to its increasing competition among adjacently

ranked paths. Figure 3.3(b) further compares the OPSGEV and OGEV models to

illustrate the effect of considering the path overlap (Link 3). Path travel utility v;* is

specialized as a linear combination of time and toll. With an increasing length of Link
3, the choice probability of overlapped Paths 2 and 3 decreases, while the probability
of non-overlapped Path 1 increases. The combined effect of considering the two types
of path correlations is then presented based on the comparison between the OPSGEV
and MNL models. In summary, the developed OPSGEV model can capture both types
of path correlations, which can exert significant effects on route choice and are
important for modeling the route choice in tolled networks.
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3.2 Mode choice of customized bus services with loyalty subscription schemes
3.2.1 Background and related studies

Customized bus (CB) is an emerging on-demand transit mode that provides advanced,
cost-effective, and environmentally friendly transportation services with innovative
service features (Liu and Ceder 2015; Liu et al. 2016). This section aims to model
travelers’ mode choice behavior in multi-modal transportation systems considering the

emerging behavioral issues arising from the operation of CB services.

CB services meet the requirements of passengers via allowing them to subscribe
to CB lines with their preferred origin—destination (OD) stops and departure/arrival
times. Compared with conventional transit modes, CB may decrease passengers’
walking distance for access, and reduce their waiting time and in-vehicle travel time.
In addition, CB services increase passenger loyalty by offering a loyalty scheme for
long-term (e.g., monthly) subscription and eliminating in-vehicle crowding discomfort
by guaranteeing a seat for every passenger. When comparing to the private car, CB
services are more economical and environmentally friendly and are often allowed to
travel in dedicated bus lanes to alleviate the effect of road congestion on in-vehicle

travel time (Liu et al., 2016).

Another unique characteristic of CB services is that they require passengers to
subscribe to book a seat. To attract passengers, CB operators offer two types of
subscription schemes: (1) one-time subscription schemes, which enable subscribers to
purchase a one-way ticket at the original price, and (2) loyalty subscription schemes,
which enable subscribers to purchase a ticket for a long period (e.g., a monthly ticket)
at a discounted price. For instance, the CB operators in Beijing offer 20%-discounted
monthly subscriptions (Liu and Cedar, 2015). Subscribers to CB loyalty schemes must
pay fares for the entire subscription period in advance and are therefore likely to
subsequently travel only on CB lines, without considering other modes. This travel
choice behavior is different from that of those who purchase one-time CB subscriptions,

as the latter remain open to considering other modes in their choice set.
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Previous travel choice analyses have typically modeled mode choice based on the
disutility minimization rule, which compares the travel disutility of day-to-day or
within-day subscriptions to one-time CB services with the utility of other travel modes
(e.g., Djavadian and Chow, 2017; Gu et al., 2018; Li et al., 2018b; Huang et al., 2020b).
However, this modeling method ignores passenger loyalty to CB services that is
captured by loyalty subscription schemes with price incentives, which drives
passengers to repeatedly purchase the same product/service without considering other

alternatives.

Passenger loyalty has long been considered an important determinant of travel
choice behavior and has been widely studied in transportation systems, such as logistics
(e.g., Ellinger et al., 1999; Chang and Thai, 2016) and air transport (e.g., Chang and
Hung, 2013; Vlachos and Lin, 2014). In the context of urban transportation networks,
passenger loyalty is primarily investigated in the PT system (e.g., Li et al., 2018a; van
Lierop et al., 2018). However, emerging shared-transportation modes are distinct from
conventional PT modes, as shared modes can develop high passenger loyalty by
offering loyalty schemes that have cheaper fares and higher usefulness for long-term
users (Nguyen-Phuoc et al., 2020; Lee and Wong, 2021; Su et al., 2021). For example,
CB services are an emerging sharing mode, and their long-term loyalty subscription
schemes were shown to attract a stable and high number of loyal passengers (Wang et
al., 2019). Wang et al. (2020b) also used empirical data collected in Dalian, China, to
investigate the relationship between a monthly subscription scheme and passenger
loyalty to CB services. However, most studies have empirically investigated the
determinants of passenger loyalty, and little effort has been made to incorporate the
choice behavior of loyal passengers into mode choice models. This under investigated
aspect must be explored when modeling CB services with loyalty subscription schemes.
As a loyalty subscription scheme can significantly increase passenger loyalty to CB
services, distinct choice behaviors are exhibited by passengers with and without loyalty.
Loyal passengers may repeatedly use CB services without considering other

alternatives, whereas non-loyal passengers tend to use the mode that minimizes their

65



travel disutility. Therefore, passenger loyalty must be explicitly considered in the mode

choice model.

Mode correlation and heterogeneity are also important for mode choice modeling,
as they were found to significantly affect the decision-making of passengers who seek
to minimize their disutility (YYan et al., 2019b). Efforts have recently been devoted to
modeling mode choice in a network that offers both conventional and emerging modes
of transport (e.g., Cantarella et al., 2015; Lu et al., 2015; Kitthamkesorn et al., 2016; Li
et al., 2018b). However, many of these studies fail to simultaneously account for mode
correlation and heterogeneity owing to the 11D assumption embedded in the traditional
multinomial logit (MNL) model. If mode correlation is not considered, the choice
probability of similar modes may be overestimated (e.g., the red bus/blue bus problem).
If heterogeneity is ignored, the mode choice probability will be derived from only the
absolute differences between the mode disutility, which may be inaccurate if the
magnitudes of service quality vary between modes. Many empirical studies adopt
mixed logit models to simultaneously address the correlation and heterogeneity issues
when investigating travel choice behaviors involving emerging on-demand modes (e.g.,
Choudhury et al., 2018; Xie et al., 2019; Yan et al., 2019a; Sweet, 2021). However, the
mixed logit models lack the closed-form probability expression that enables the
efficient and exact estimation of the choice model and provides a clear understanding
of model outcomes. In addition, the lack of closed-form probability hinders the
integration of mixed logit models in the network equilibrium model, which requires to
iteratively approximate many open-form choice probabilities and significantly increase
the computational burden. Existing studies on mode choice equilibrium mainly focus
on addressing the mode correlation by using closed-form logit models with a
hierarchical choice structure, e.g., the nested logit (NL) model, while few studies
(Kitthamkesorn and Chen, 2017) have devised an equilibrium mode choice model to

simultaneously address mode correlation and heterogeneity.

To address the above research gaps, this section aims to develop and advanced

closed-form choice model for simultaneously considering the following behavioral
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issues with the advent of CB services: (1) the passenger loyalty to CB services due to
loyalty subscription schemes; (2) correlations among modes in multi-modal
transportation systems; and (3) heterogeneous perceptions of different travel modes

with distinct magnitudes of travel disutility.

To facilitate the presentation of the essential ideas, the notations used in this

section are listed below.

Set
RS Set of OD pairs.
ur Set of types of modes between OD pair rs.
M Set of type U modes between OD pair rs.
M Set of all modes.

Inputs and parameters

v Travel disutility of mode m between OD pair rs.
v Travel disutility of nest u between OD pair rs.
i Shape parameter of mode m under nest u between OD pair rs.
i Shape parameter of nest u between OD pair rs.
Uy Loyalty proportion of mode m between OD pair rs.
7 Loyalty parameter for mode m between OD pair rs in the dogit-based
model.
pre Choice probability of mode m between OD pair rs in the previous
" period.
PSk A positive correction factor that penalizes the overlapped section on

alternative k in the path-size weibit model.

Variables
i Probability of choice passengers choosing mode m belonging to nest
A u between OD pair rs.
AT Probability of choice passengers choosing mode m between OD pair

mju

rs, given that nest u is chosen.
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Al Probability of choice passengers choosing nest u between OD pair rs.

A Probability of choice passengers choosing mode m between OD pair
rs.

R" Choice probability of mode m between OD pair rs given that mode |
is chosen previously.

b Probability of loyal passengers choosing mode m between OD pair

m Is.

v Aggregate disutility gained from a set of choice alternatives.

3.2.2 Mode choice behavior with consideration of passenger loyalty, mode

correlation, and mode heterogeneity

This section develops an advanced mode choice model that accounts for the
characteristics of each mode, especially the emerging CB service with loyalty
subscription schemes. As mentioned in Section 3.2.1, CB passengers subscribing to
different schemes may behave distinctly. Thus, CB passengers are divided into two
groups according to the scheme they subscribe to: (1) loyal passengers, who subscribe
to a CB loyalty scheme (e.g., a monthly subscription), and (2) choice passengers, who
subscribe to a one-time CB service. The characteristics of these two groups are depicted
in Figure 3.4. Each column in Figure 3.4 denotes the choice sets of loyal and choice
passengers for each trip in the whole period of a loyalty CB scheme. Loyal passengers
pay in advance for CB services throughout the whole period of the loyalty scheme and
are thus likely to only use CB services without considering any other modes, i.e., their
choice set consists of only the CB mode for each trip. In contrast, choice passengers
only pay for a one-time CB service each time they need it and thus make mode choices
based on the generalized travel time of each mode, i.e., they consider the full choice set

comprised of CB, private car, and conventional PT for each trip.
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Figure 3.4. Characteristics of passengers subscribing to two different CB schemes

As discussed in Section 3.2.1, it is imperative to consider mode correlation and
mode heterogeneity when modeling the behavior of choice passengers. In this section,
we adopt the weibit-based model to account for mode heterogeneity, which allows
mode-specific variations dependent on the perceived modal disutility. A nested choice
structure is adopted to account for mode correlation, which collects similar modes into

the same upper nest. The overall mode choice structure modeled in this section is shown

rs
T

[1+ > ’7:)

meM

in Figure 3.5. The proportion of loyal passengers, , and that of choice

1

B

meM

passengers, A" = , are derived based on a customer loyalty model as will
be shown in Sections 3.2.2.3-3.2.2.4. The marginal mode type (upper nest) choice
probability and conditional mode choice probability of choice passengers, A;° and A

mlu !

are derived based on the nested weibit (NW) model in Section 3.2.2.1.
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Figure 3.5. Overall structure for modeling mode choice with CB services

3.2.2.1 Mode choice of choice passengers

As discussed above, a NW model is adopted in this chapter to address mode correlation
and mode heterogeneity and thereby reproduce the mode choice of choice passengers
(Kitthamkesorn and Chen, 2017). As shown in Figure 3.5, the correlation between the
conventional travel modes that are familiar to travelers, i.e., conventional PT and
private car, is modeled in the same upper nest. In contrast, CB services are considered

as a distinct emerging type of mode due to their innovative service characteristics. The

NW choice probability of choice passengers, A, , can be expressed as a product of the
marginal probability of choosing mode type (upper nest) u, A;°, and the conditional

probability of choosing mode m within nestu, A" :

mlu -

Aim = Ay A YMEMZueU® rseRS. (3.7)

The conditional probability can be expressed based on the multinomial weibit

(MNW) model (Castillo et al., 2008; Kitthamkesorn and Chen 2013):

A
v
rs =(L vmeM"®,ueU® rseRS, (3.8)

mlu z (Vrs )‘ﬂJrsn ’
m

rs
meM,

where v denotes the travel disutility of mode m between OD pair rs, . is the shape

parameter of the NW model at the conditional choice level (individual mode).
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The marginal probability of nest choice is expressed as follows:

)
A= YueU"”,rseRS, (3.9)

where £ is the shape parameter of the NW model at the marginal choice level (upper

nest). The disutility of choosing nest u between OD pair rs, v.°, can be obtained as the

expected minimum disutility of choosing a mode within the nest, which is expressed as

follows:

v :{ > (v;;)‘ﬁ“ﬂ H meMP ucU™ rscRs. (3.10)

rs
meM,

Substituting Egs. (3.8-3.10) into Eq. (3.7) gives the NW mode choice probability, as

follows:
i
s\ s\ Ao [Fim
(o) ™| 2 (vn)
Mrs
= el —,VmeM;,ueU" rseRS. (3.11)
I

_prs ﬂrs

ﬂum um
> 2 ()
uel | meM®

By definition, 4 is smaller than g, i.e., B /B <1, which indicates that modes

belonging to the same type (upper nest) are more sensitive to each other than to the

modes of different types.

3.2.2.2 Effect of considering mode correlation and heterogeneity

This section describes the effects of considering mode correlation and heterogeneity in
the NW model. First, we illustrate the effect of using a weibit-based model to address
the heterogeneity issue via the three-mode case depicted in Figure 3.6. Consider a

choice set comprising two existing modes with similar levels of travel disutility (30 vs.
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27). The logit and the weibit models provide similar modal splits for this set. Next, a
new mode with a distinct service quality is introduced into the network. The NL and
the NW models are then applied to estimate the choice probability of new mode at
different magnitudes of disutility. The following can be concluded from Figure 3.6:

e The weibit model obtains similar outcomes to the commonly used logit model if the
new mode offers a similar level of service to existing modes, which verifies the
applicability of the weibit model for estimating mode choice.

e The weibit model better reflects the effect of heterogenous perceptions of mode
service than the logit model. Specifically, even if the new mode offers a
significantly higher level of service than existing modes, the logit model continues
to estimate a non-negligible share for the existing modes. This is because the logit
mode assumes there is an identical perception variance for all modes, even if they
offer distinct levels of service. In contrast, the weibit model allows mode-specific
perception variance dependent on mode disutility, in keeping with the heterogenous

perceptions of varying mode service levels (Kitthamkesorn and Chen, 2017).

OD demand

30
< 27
30
- 2
g% -
rs é 20
B Nest 1 Nest 2 S 15
o
/\ é 10
s
ﬁ}:;:} Mode 1 Mode 2 New mode 0
Mode 1 Mode 2 New mode
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. . . . B 5o igher choice probability
exp(-0.1% v,/ )|: Z exp(-0.1% v,/ ):| g 3; with significantly higher ~~—~—, 1
L = il — z level of service
- 207
Z z exp(—0.1%v") T 06
wel!™ | meM? 2 .
E 0.5 =——NL choice
- £ 04 _ probability
NW: 0.5-1 £03 o -~ - ~—=NW choice
re \-185 s )28 D02 *~._ Similar outcome with SR
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Figure 3.6. Effect of considering heterogeneity in mode choice
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We illustrate the use of the NW model to consider mode correlation in Figure 3.7.
In this case, it is assumed that the new mode has correlations with the existing mode 2,
which is analogous to the well-known red bus/blue bus problem (Ben-Akiva and
Lerman, 1985). The neglect of correlation between mode 2 and the new mode leads to
underestimation of the choice probability of mode 1. By introducing a nested choice

structure, the NW model can reflect different degrees of mode correlation in terms of
the ratio between the shape parameters B and S . A higher value of /g%

indicates a lower degree of correlation between modes in the same nest.
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Figure 3.7. Effect of considering mode correlation

3.2.2.3 Mode choice with loyal CB passengers

We use the Colombo/Morrison (C/M) model (Colombo and Morrison, 1989), which is

widely used to model customer loyalty in the context of marketing, to describe the

choice behaviors of loyal passengers and choice passengers. Let x4~ be the loyalty
proportion, which can be interpreted as the proportion of previous passengers of mode
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m that continue to use mode m between OD pair rs, despite the unattractiveness of this
mode (Bordley, 1990). Let A~ denote the probability that choice passengers select
mode m. Then, the choice probability of mode m, given that mode | is chosen previously,

can be expressed as the probability that the choice passengers previously use mode |

but currently choose mode m, as follows:
R =(1-4*)- A%, VI=meM,rseRS. (3.12)

This section focuses on the loyal passengers of CB services, i.e., only the CB services

have a positive loyalty proportion s :

{ugf [0,), m=CB (313)

ur =0, m =bus, car

Given that mode m is chosen in the previous period, the choice probability of mode
m can be expressed as the sum of the probability that choice passengers will select mode

m and the proportion of passengers loyal to mode m, as follows:

Prn =(1= sty )- A+, Yme M, rs e RS . (3.14)

3.2.2.4 Interpreting loyalty of CB passengers using dogit-based model

This section incorporates passenger loyalty into the mode choice model. As proved by
Bordley (1990), the C/M model with A expressed by the MNL choice probability can
be interpreted as the dogit model, which is a well-established model that is widely used
to consider captive mode choices (Gaudry and Dagenais, 1979; Wang et al., 2020a). In
a similar way, we interpret the NW choice probability of choice passengers and the

choice behavior of loyal passengers using a dogit-NW (DNW) model. This DNW

model is expressed as follows:
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rs
meM,

pro_ M, 1 (3.15)

B ’
1 rs 1 rs s J'_;
(ﬂ%””‘j (ﬂ%"mJ Z{Z(vgf)_ﬂ“mr

. rs
Loyal passengers Choice passengers uels | meMy

Nested weibit choice probability

where 7> represents the loyalty (or termed as captivity) parameter in the dogit model.

The first term on the right-hand side of Eq. (3.15) denotes the mode share from the loyal
passengers with a deterministic mode choice, and the second term denotes the mode
share from the choice passengers with a random mode choice. This expression is based
on the dogit model (Gaudry and Dagenais, 1979; Wang et al., 2020a) but with the MNL
choice probability replaced by the NW choice probability in the second term on the

RHS. The DNW model presented in Eq. (3.15) can also be expressed as follows:

B B

| - [P
S I I
Pu';:: uel™ [ mem® — meM® . (316)
rs ~Bim fim rs
202 (w) " X
uel™ [ mem® meM

We have the following proposition.

Proposition 3.1. Given the choice probability of mode m in the previous period, the
mode choice behavior of choice passengers and loyal passengers shown in Egs. (3.11)-

(3.14) can be interpreted using the DNW model.

Proof. Let P™ denote the choice probability of mode m in the previous period. The

mode choice probability considering loyal passengers and the nested choice structure

of choice passengers can be written as follows:

P =Py + 40> (1-4*)R™,Vme M, ueU® 1seRS,  (3.17)

leM
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where the term A used in Egs. (3.12)—(3.14) is replaced by the NW choice probability

Ao given in Eqg. (3.11). As proposed by Bordley (1990), the new parameter 7,, is

defined as follows, based on the proportion of loyal passengers and previous choice

probabilities:

rsprs’

Ny = i ¥YmeM,rseRS.

The following two relationships can be derived from Eqg. (3.18):

1 Z ) IZM(l_ﬂlrs)Plrs'_'_leﬂlrsPIrs'
2 M = -

oy’ Z (1_ lulrs ) Plrs’

leM )

1

2 (1-n")R”

leM

HePy =m -y (1-4*)R™,VmeM,rseRS.

leM

Mode choice probability Pum can then be expressed as:

P = > (1= )R™ + A - > (1= 44° )R™

leM leM

=(n:+zuf;)~z(1 )R

leM

=(77m ﬂ'urr;) 1+ 277

meM

(3.18)

(3.19)

(3.20)

(3.21)

Substituting the NW probability A, given in Eq. (3.11) into Eq. (3.21), the DNW

choice probability can be obtained as expressed in Eq. (3.15). This completes the proof.

Figure 3.8 graphically illustrates the general interpretation of passenger loyalty using

the dogit-based choice model.
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Figure 3.8. Interpretation of passenger loyalty using the dogit-based choice model

3.2.2.5 Alternative interpretations of passenger loyalty

In addition to the interpretation using the DNW model as shown in Section 3.2.2.4, we

present an alternative interpretation of passenger loyalty when there lacks exogenous

information on previous choice probability P"*'. By replacing P with current choice

probability P in Eqg. (3.17), the mode choice probability can be expressed as follows:

P = s Py + A - > (1-4° )R, vme M ,ueU® rseRS.  (3.22)

" leM
We have the following proposition.

Proposition 3.2. Without considering the choice probability of mode m in the previous
period, the mode choice behavior of choice passengers and loyal passengers shown in
Eq. (3.22) can be either in a similar form to the DNW model, or interpreted via Eq.

(3.23) as follows:

It
_gs | fim
e -
o L rs |~ Aim rs . .
SO () e 300 )

ueU™ mEMJS

Proof. We first derive the expression in Eq. (3.23). Without loss of generality, A, is
replaced with A in Eq. (3.22), from which the following relationships can be derived:
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(L=p)- P =2 - > (1-p®)R", (3.24)

leM

Prrrls: ﬁnl;s .Z(l—MrS)PIrS' (3.25)

1_ /ur:S leM

Summing up both sides of Eq. (3.25) for all modes leads to following expressions:

1= z ﬂrs Z( Irs)PIrS ’ (326)

mEM m leM
rs s 1
2 (1= )R = (3.27)
leM z m
meM 1- lur:f

Taking Eqg. (3.27) into Eq. (3.25) gives the expression of mode choice probability:
P = ﬂ”‘ — L — . (3.28)
1_:um Z j’m
meM l_/ur;s

Substituting A7 by the NW choice probability (Eq. (3.11)), , and considering the

nested choice structure in Eq. (3.28), the choice probability expression given in Eq.

(3.23) can be obtained.
Next, we show that the choice probability given in Eq. (3.23) can also be expressed

in the form of Dogit-based model. Define parameter 7,° as follows (Bordley, 1990):
py = 2nt (3:29)

which leads to the following relationship:

1+ > ne 1+ZA’S( i 1}

meM meM
ST IR (3.30)
meM meM
AI‘S

=2 1

meM
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P:* can be expressed as:

s _ s [ Hm 1
P, =4, (1_#;‘5 +1] I Z "
meM ] (331)
=(77rs +er).;
" Y

meM

Specifying A; as the NW choice probability (Eq. (3.11)) gives the DNW choice
probability in Egs. (3.15) and (3.16). Note that the specification of parameter 7, in Eq.

(3.29) is based on the value of A, which is dependent on modes other than m. Thus,

s
m

the > used in Eqgs. (3.29)-(3.31) is different from the loyalty parameter in standard

Dogit-based models. This completes the proof.

The difference between Eqg. (3.23) and the original NW choice probability in Eq.
(3.11) is the inclusion of the correction term (1— ) in the conditional probability of
choosing mode m given nest u. This correction term can be regarded as the decrease in
the disutility of mode m due to passenger loyalty, which can be interpreted based on the
concept of aggregate alternatives in the random utility theory. Choosing mode m can be

considered as an aggregate alternative comprising two types of elemental alternatives,

namely choosing mode m because of loyalty, and choosing mode m because of its
disutility. It is assumed that the elemental alternatives have the same mean disutility v, ,
and that the probability of choosing the aggregate alternative is equal to the probability
of choosing any of the elemental alternatives. Let v denote the aggregate disutility

gained from the two types of elemental alternatives. v can be expressed as the minimum

expected disutility of elemental alternatives based on the Weibull distribution:
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N-v,”) 7 (3.32)

1
where N 7 is a correction term ranging from 0 to 1, which represents the effect of the

size of aggregate alternative (denoted as N, N > 1) on the decrease in disutility. Figure

3.9 illustrates the value of N in this study.

Mode / Mode 2 Mode m
@ |[Sizc= . Size = @ | size-
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passengers 1
+ N B
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Figure 3.9. lllustration of correction term with respect to passenger loyalty

In a transportation system containing both loyal and choice passengers, loyal
passengers only consider one mode in their choice set, which may lead to different

values of N for different modes, given the variation in their loyalty to different modes.

Considering modes 1, ..., m with different proportions of loyal passengers 4, ..., ., ,

the ratio between loyal passengers and choice passengers in each mode is

1'ul ,...,1’u”‘ . The size of each elemental alternative for choice passengers is the
—H — Hy,

same and is normalized as 1, the total size of aggregate alternative m (comprising choice

and loyal passengers) can be expressed as 1+ o g ! . By using N =
1_,um 1—,le 1_:um

in the utility function, the weibit-based mode choice probability can be expressed as:
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which gives the conditional mode choice probability stated in Eq. (3.23).

The form of probability function (3.33) is similar to the path-size weibit (PSW)

model (Kitthamkesorn and Chen, 2013), which can be expressed as follows:

PS,-(v)”

SR
2 PSi+(v)

leK

(3.34)

PSk is a positive correction factor lower than 1, which is a penalty term that decreases

the choice probability of path k with increases in the number and length of overlapped

paths (Ben-Akiva and Bierlaire, 1999; Ramming, 2002). In contrast, the term 1— 4 in

Eq. (3.33) ranges from 0 to 1; thus, (1—,um )_1 >1 can be regarded as a bonus term that

increases the choice probability of mode m with increases in the loyal proportion, ..
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3.3 Joint bundle and mode choice with various emerging mobility services
3.3.1 Background and related studies

In addition to focusing on the single customized bus (CB) service, this section extends
the DNW model in Section 3.2 to further consider various shared and on-demand
emerging mobility services operated in the multi-modal transportation system, such as
ride-hailing (Wang and Yang, 2019), and bike sharing (Shui and Szeto, 2020). The
emerging mobility services offer innovative and attractive service features, including
different levels of service, limited capacity of service (Du et al., 2022), integration of
mobilities in digital platforms (van den Berg et al., 2022; Zhou et al., 2022), and
provision of long-term loyalty subscription schemes (Wang et al., 2020b; Chen et al.,
2023). These features distinguish emerging mobility services from conventional travel
modes, which are expected to influence individual travel choices. This calls for
development of advanced travel choice models to capture the complex choice behaviors

led by the innovative service features.

Emerging mobility services are often operated on digital platforms, where multiple
mobility services operated by different providers can be simultaneously accessed by
travelers. This enables the development of mobility bundles, in which different mobility
services are packaged by the platform and offered to travelers with promotion strategies.
Different from the conventional one-time ticket or pay-as-you-go (PAYG) scheme of a
single mode, mobility bundles offer a long-term (e.g., monthly) loyalty bundle scheme
that provides incentives and allows subscribers to use the bundled modes at lower costs
(Nguyen-Phuoc et al., 2020; Tang et al., 2023). Thus, the bundling of mobilities can
affect travelers’ perception of bundled travel modes and lead to changes in individual
choice behaviors owing to the bundle choice, which has attracted increasing research
attention (Kriswardhana and Esztergar-Kiss, 2023). Caiati et al. (2020) and Jang et al.
(2021) used the portfolio choice model to investigate the customized configuration of
mobility bundles and the choice of mode within customized bundles. Many studies
focus on the bundle and mode choices with fixed mobility bundles offered by service

providers. The choices between the PAYG scheme and different mobility bundles are
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mainly reproduced via logit-based models, including the closed-form multinomial logit
(MNL) model (Ho et al., 2018; Tsouros et al., 2021; Hensher et al., 2021) and the open-
form mixed logit models for considering more complex behavioral issues like
heterogeneities and mode correlations (Matyas and Kamargianni, 2019; Ho et al., 2021;
Feneri etal., 2022). However, the effect of traveler loyalty arising from bundle schemes
is often ignored in choice modeling. Furthermore, there still lacks an individual choice
model that can simultaneously address the heterogeneity and similarity issues with the
operation of various emerging mobilities while retaining the valuable closed-form

probability expression.

To address the above research gaps, a dogit-cross-nested weibit (DCNW) model
is proposed for reproducing the individual joint bundle and mode choices. various
complex behavioral issues stemmed from mobility bundling are specifically considered,
including (1) travelers’ loyalty to the subscription-based mobility bundles; and (2)
heterogeneous perceptions and correlations among mobility services in different

bundles provided by different operators.

To facilitate the presentation of the essential ideas, the notations used in this

section are listed below.

Sets
R Set of origin zones.
S Set of destination zones.
u® Set of mobility bundles/mode nests between OD pair rs.
M"™ Set of modes operated between OD pair rs.
M Set of modes in nest u between OD pair rs.
B® Set of loyalty schemes of bundle u between OD pair rs.
Inputs
Vi, Travel disutility of mode m in nest u between OD pair rs.
7’ Nest-specific cost of nest u between OD pair rs.
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= Probability of choosing bundle u between OD pair rs in the current
period given that bundle w is chosen in the previous period.

pre Choice probability of bundle u between OD pair rs in the previous
’ period.

Pb Proportion of travelers using loyalty scheme b.

Parameters

i Shape parameter at the conditional choice level between OD pair rs.

i Shape parameter at the marginal choice level between OD pair rs.

L Membership of mode m in bundle u between OD pair rs.

v Loyalty proportion of bundle u between OD pair rs.

Yo, Loyalty proportion of scheme b of bundle u between OD pair rs.

Ny Loyalty parameter for bundle u between OD pair rs in the dogit model.

e Loyalty parameter for scheme b of bundle u between OD pair rs in the

dogit model.
Variables

P Choice probability of mode m between OD pair rs.

0 Probability of choice travelers to choose mode m between OD pair rs.

o Marginal probability of choice travelers to choose nest u between OD
v pair rs.

o Conditional probability of choice travelers to choose mode m in nest u
i between OD pair rs.

v Disutility of nest u between OD pair rs.

Ve, Disutility of loyalty scheme b of bundle u between OD pair rs.

(vjﬁn ) Composite disutility obtained of nest u between OD pair rs.

Acc;’ Accessibility of nest u between OD pair rs.
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3.3.2 Joint bundle and mode choice modeling for emerging mobility services with

loyalty bundle schemes

This section proposes a DCNW choice model for emerging services with loyalty bundle
schemes. Figure 3.10 exemplifies the overall choice structure of the proposed DCNW
model. The proposed modeling structure considers both conventional (private car,
private bike, bus, taxi) and emerging mobility services (e-hailing, CB, bike sharing),
where each type of emerging mobility can be operated by multiple service providers,
and each mobility service can be bundled by different platforms. As an example, Figure
3.10 includes e-hailing services by two different providers (i.e., e-hailing 1 and e-
hailing 2) and mobility bundles on two platforms (i.e., Bundle 1 provided by a ride-

hailing platform and Bundle 2 provided by a shared mobility platform).

Section 3.3.2.2 | Travelers |
Dogit model for integrating choice
of loyal and choice travelers Choice travelers | | Loyal travelers

Section 3.3.2.1
r CNW model for joint

1 .
bundle and mode choice

Buridle 1 Buitle 2
Marginal choice Conventional Pay-as- Loyalty Pay-as- Loyalty
_\-'ou-go pmgrﬂm }'Oll-gl'l program

(Bundle/Nest choice)

1

1

1

1

1

1

1

1

X -
1

1 - we .

1 Conditional choice
: (Mode choice)

1

L

Figure 3.10. Overall structure for modeling emerging mobility services with loyalty
bundle schemes

The bundle loyalty stemmed from loyalty bundle schemes is modeled considering
the different choice behaviors of two types of travelers: (1) choice travelers, i.e., users
of the PAYG bundle schemes that are considered with no loyalty and tend to choose
from all the mobility bundles to minimize travel disutility, and (2) loyal travelers, i.e.,
users of the loyalty bundle schemes that tend to repeatedly choose their subscribed

bundle without considering other alternative bundles. Thus, the two types of travelers
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are considered to have the same conditional mode choice probability but different
marginal bundle choice behaviors due to bundle loyalty. The DCNW model will be
described from a bottom-up structure in this section. Section 3.3.2.1 first develops the
cross-nested weibit (CNW) model for the joint bundle and mode choice of choice
travelers based on the random utility theory. The dogit model for integrating the

repeated bundle choice behavior of loyal travelers is then presented in Section 3.3.2.2.

3.3.2.1 Cross-nested weibit model for choice travelers

Analogous to Section 3.2, this section adopts the weibit-based model to account for the
effect of the heterogeneous perceptions of emerging and conventional mobility services.
The effect of bundling strategies on mode correlation is considered via the cross-nested
choice structure of the CNW model as presented in Figure 3.11. The mobility services
that can be accessed via the same bundle/platform are considered as correlated with
each other and are collected in the same nest. The conventional modes are not packaged
as a bundle but are considered within the same nest, as they are existing transportation
services and are likely to share common features when perceived by travelers. The
cross-nested choice structure is also flexible to model the correlation among
bundles/nests, where travel modes can be integrated in multiple nests/bundles (e.g., taxi
and e-hailing 2 in Figure 3.11). Furthermore, the proposed choice structure can jointly
model the bundle and mode choices as well as the interaction therebetween. The choice
of bundle/nest is considered at the upper (marginal choice) level, which determines the
demand for conditional choices at the lower level. The conditional choice determines
the composite mode disutility, which reciprocally influences the disutility of mobility
bundle and hence the choice behaviors at the upper level. On this basis, the marginal

and conditional choice probabilities can be determined based on the weibit models with

shape parameters f;° and g, atcorresponding choice levels. Finally, the mode choice

probability can be obtained by summarizing the choice probability of each service

provider of that mode.
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Figure 3.11. Choice structure of CNW model

The detailed formulation of the CNW model for modeling joint bundle and mode

choices is illustrated below. The perceived mobility service disutility V> is expressed

in a multiplicative form as follows:

1

V=V () A el o ef YmeM P ueU® rseRS,  (3.35)

um :
where v and z;° respectively denote the deterministic disutility of individual mode

m and cost of nest/bundle u between OD pair rs; ¢, and ¢;° are the corresponding

m

error terms. ¢, are assumed to independently and identically follow the Weibull

distribution with shape parameter S ; ¢ are assumed as independent random

m ? u

variables such that &, -&;° follows the Weibull distribution with shape parameter 5" .

Parameter . indicates the membership of mode m in nest/bundle u, which is

normalized as ) u; =1 (Abbe etal., 2007).

ueU”™

The CNW mode choice probability of choice travelers 6;° can be expressed based
on the product of the marginal probability of choosing bundle/nest u, 8;°, and the

conditional probability of choosing individual mode m, 67 :

mju "

O => 00, YmeM® rseRS. (3.36)

mju ?
ueu"
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The marginal choice probability can be obtained as the probability that bundle/nest

u has the minimum perceived disutility among all bundles/nests:
o7 =P[ve-&r <v5 g5, vw=ueU” ]

=P| " .(Vrs

u um

rs
w wm

— VwzueU”

) ep Srvrf-(vvrfm)*-gvrf,VW;tUGU“] (3.37)

(‘f)_‘
N
@
—_
<

=Pl

(vljfn ) denotes the composite disutility obtained at the conditional choice level, which
is derived from the conditional choice model as will be shown in Eq. (3.41). When there

is no nest/bundle-specific cost, z;° =1 and the marginal choice probability is

*_ s
rs) B

um

ped

> ()

wel ™

YueU",rseRS. (3.38)

The conditional probability of choosing mode m in bundle/nest u can be obtained
as the probability that individual mode m has the minimum perceived disutility among

all modes in nest u, which can be expressed as

1 1
0, = PV (1) 7 e <V () e Y= me M
L . (3.39)
grs lurs B .Vrs
=p[lm<fn m vnzmeM”
gun rs _F rs
u _V

um um

Based on the distributional assumption of ¢, and properties of the Weibull distribution,

the conditional choice probability is derived as

1 ~Bam
rs B \,rs
{/uum 'Vum]
or =

mu

2

neM;®

_L
rs Ae
Hyn

-’
rs
“Vin \]

VmeMF,ueU" rseRS. (3.40)
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Based on the conditional choice model presented above, the composite disutility
(vljﬁ1 ) can be obtained as the expected minimum disutility from the individual modes

within bundle/nest u, which can also be used as the utility-based accessibility measure

for bundle/nest u between OD pair rs:

1

u um

1 ’ﬂurrsn 7ﬂTrsn
ACCrS:(VrS) = z [ﬂ:ﬁq ﬁurs-vgfn] ,VmeM;,ueU" rseRS. (3.41)

meMurs
Substituting Egs. (3.38), (3.40), and (3.41) into Eq. (3.36) gives the CNW choice
probability of choice travelers:

ﬁ.rs
Su

ﬂi | fum . Sy
rs rs -

oy s ﬂurs rs

Z Hym um { Hom “Vim J

rs
meM,

el’S —

um ﬂrs

Pu 1 —Bim
1 ~Bm | B, rs_ﬁTS rs
s BY IS Z Hin “Vun
Z Z Him 'Vum neM;®

welU "™ mer

3.42
B (3.42)

1 ~Bin B ~Bin |
rs AP\ rs s BY I8
(luum 'VumJ ’ Z [:uum 'Vumj

rs
meM,

ﬂrs
u

1 ~Bam | B,
22 (Mﬁ ﬂ”rs-VJinJ

wel " meMJS

Egs. (3.37) and (3.39) implies the marginal (bundle) and conditional (mode)
choice probabilities are derived based on the relative differences in bundle and mode
disutility. Compared to the logit models with absolute difference-based choice
probability, the relative difference-based weibit choice probability can better reflect the
heterogeneous perceptions of different magnitude of travel disutility (Kitthamkesorn
and Chen, 2013, 2017). Furthermore, the disutility function (3.35) can account for a
single mobility service in different bundles/nests, which enables the consideration of
mode correlation among bundles under different bundling strategies. In summary, the

developed CNW model can effectively consider the heterogeneity and similarity issues
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with mobility bundling in modeling the joint bundle and mode choice behavior of

choice travelers.

3.3.2.2 Dogit model for considering bundle loyalty

This section further incorporates the repeated choice behavior of loyal travelers via the
dogit model, which can be integrated with the developed CNW choice model while
retaining consistency with the widely used Colombo/Morrison (C/M) model (Colombo
and Morrison, 1989; Bordley, 1990). Different from Section 3.2 that considers loyalty
to single modes, this section models bundle loyalty considering both the incentives of
multiple loyalty schemes and the composite mode disutility of each bundle. Figure 3.12
illustrates using the dogit model for integrating the bundle choice behavior of loyal

travelers from a bottom-up structure.

Dogit Choice o Loyalty 77” .
model share I+ Z share 1+ Z ?7"
uelU” ucli”™

Consider all bundles

Bundle «

=2 X pa(l-vi )R

well”™* aeB,;

Loyal ves Choice
1-y,

Composite
disutility

Loyalty  Choice
schemes 1-y,

Bundled Mode 1 Mode 2 Mode m
modes disutility disutility disutility

Figure 3.12. Illustration of dogit model for considering bundle loyalty

In the C/M model, loyal travelers are considered to repeatedly choose the same

product from period to period. In the context of bundle choice, the choice proportion of
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bundle u in the current period can then be expressed as the sum of the proportion

sticking to bundle u, P"

u,u?

and the proportion shifting from another bundle w, B’ :

P*=P*-P5+ > Pr-Pr,VueU® rseRS, (3.43)

w,u?
wzuelU "™

where P is the choice proportion of bundle u between OD pair rs in the previous

period. Analogous to Section 3.2.2.3, P"

u,u’?

and P> can be expressed as follows:

,u

P =(1-wy) 07, vw=ueU" rseRs, (3.44)
RS =(1-y)- 07 +y, YueU" rseRS. (3.45)

where 6;° is the bundle choice probability derived in Eq. (3.38) based on the random

disutility minimization principle. > denotes the proportion of loyal travelers who
repeatedly choose bundle u without comparing the disutility of each bundle.

Substituting Egs. (3.44)—(3.45) into Eq. (3.43) gives the choice probability of bundle u:

Re =y R +67- Y (1-wy)-R VueU" rseRs. (3.46)

welU "™

Following Proposition 3.1, the dogit model is used to integrate the repeated bundle

choice behavior represented in Eq. (3.46) as follows:

rs nrs 1 rs rs
P® = u + -0°,YueU”,rseRS, 3.47
S D R E D D (3.47)
wel ™ wel ™

where 7 is the loyalty parameter of the dogit model as follows:

rs Prs’
R VueU™ rseRS. (3.48)

> (1) 7

wel "

Alternatively, »;° can be defined to account for a more general case where the

bundle loyalty is imperfect, i.e., loyal travelers have different preferences to multiple

loyalty bundle subscription schemes with different levels of incentives (Bordley, 1990):
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Z Py Wea PbLSI
T VueU® rseRS, (3.49)

i PIDITNRZALE

weU ™ aeBj;

where p, is the proportion of subscribers to loyalty scheme b; . is the parameter

denoting the proportion of loyal travelers to loyalty scheme b, which is defined in

consistent with the weibit-based bundle choice model described in Eq. (3.38):

rs \ A _ A
(Vbu) (VU ) YueU"”™,rseRS. (3.50)

-BE B -pe
rs rs
> () () T - (w)

welU "™

rs __
V/bu -

V., denotes the disutility perceived by the subscribers to the loyalty scheme b of bundle

u, which can be obtained based on the service quality and discounts of bundled modes

and is assumed to be lower than bundle disutility without preference (v.*). In case that
the previous choice probability P’ is unavailable, the overall loyalty parameter 7
can be alternatively expressed as the weighted sum of the loyalty parameters to different
loyalty schemes 7,: (Bordley, 1990):

77bu
Z Po- 1+ Zn

beBy

ne = uU®  YueU™,rseRS, (3.51)
b
bg\[f 1+ Z o
ueu”™

where 7, is derived from the weibit-based bundle choice model as follows:

()| 0e) )|
]

wel "™

rs

Moy =

,VbeB,ueU® rseRS. (3.52)
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By summarizing Egs. (3.36), (3.38), and (3.47), we can obtain the overall

nest/bundle choice probability P* and hence the individual mode choice probability

P, of the DCNW model as follows:

welU "™ meMJs

ﬁrs
Pu_
1 ~Bim | B
rs B° Vi
D | i Vi
meMJS
o 1y o
u ﬂrs
1+ z N 1+ Z Ny g o
weu's wel'™s 1 um | Bum
rs /iu's Vi
2 2 v
wel ™ meMJS
p . (3.53)
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(3.54)
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3.4 Joint destination and parking choice with shared parking services
3.4.1 Background and related studies

Shared parking is an emerging parking service that has recently received increasing
interest in the sharing economy era. The shortage of parking spaces is often a serious
transportation problem in congested metropolitan areas. Shared parking services
encourage private parking lot owners to share unused residential parking lots, thereby
increasing the utilization rate of private parking spaces, alleviating the parking supply
shortage, and decreasing the cruising time required to search for parking spaces. Owing
to these benefits, shared parking services are being widely implemented in many
countries, such as Australia, China, the Netherlands, and France (Ardeshiri et al., 2021;
Liu et al., 2022). The development of shared parking requires significant planning,
policymaking in the areas of pricing and bidding (Xiao et al., 2018; Liu et al., 2021,
2022), platform design (Gao et al., 2022), and parking space allocation (Wang et al.,
2022). To promote the development of shared parking, it is necessary to understand and
model the effect of shared parking services on multi-dimensional individual travel

choices, which is the focus of this section.

In addition to the parking choice, quality of parking services may influence travel
disutility and behaviors at other choice dimensions (Lam et al., 2006; Jiang et al., 2014;
Leurent and Boujnah, 2014; Liu, 2018; Liu et al., 2018). Specifically, the parking
choice may affect the utility gained at the destination and hence interact with destination
choice. In a pioneering work, Liu et al. (2021) modeled the effect of shared parking
services on the combined destination and parking choice. The destination choice was
reproduced based on the random utility theory through the multinomial logit (MNL)
choice model, whereas the parking choice was modeled deterministically based on the
user equilibrium (UE) principle. The destination choice directly determines the parking
demand at each destination, whereas the parking disutility resulting from the parking
choices reciprocally affects the destination attractiveness, and thus, the destination

choice.
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Nevertheless, research on modeling the joint destination and parking choice with
shared parking services remains limited. To the best of the authors’ knowledge, Liu et
al. (2021) is the only work on this topic, and the following research gaps remain. (1)
An inconsistency exists between the destination and parking choice dimensions in the
model proposed by Liu et al. (2021). The MNL destination choice model considers the
perception error of the destination attractiveness; in contrast, the UE-based parking
choice model assumes that travelers have perfect traffic information and no perception
error. (2) The MNL model cannot fully capture the heterogeneities in perceived
destination and parking disutility, which are important to be considered in modeling
both destination and parking choice behaviors (Barros et al., 2008; Ibeas et al., 2014).
Furthermore, the MNL model is inadequate to capture the correlation in spatial
dimensions (e.g., location adjacency), which has been found to have significant effects
on the choice of spatially correlated alternatives (Bhat and Guo, 2004; Bekhor and

Prashker, 2008; Sener et al., 2011; Perez-Lopez et al., 2020, 2022).

This section aims to develop an advanced closed-form random utility model to
consistently consider the destination and parking choice behaviors and their interactions
based on the random utility theory. The effects of heterogeneous travel perceptions and
spatial correlations are specifically considered among closely spaced destination

locations and parking lots at both destination and parking choice dimensions.

To facilitate the presentation of the essential ideas, the notations used in this

section are listed below.

Sets
R Set of origins.
S Set of destinations.

Lo Loy  Setof shared parking/curbside parking lots at destination s.

ST Set of destination pairs.
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Inputs and parameters

r

A Total disutility of traveling from origin r to destination s.
Vo Total disutility of traveling from origin r to destination s using shared
SPTIS® - parking/curbside parking.
Vs.spr Vs.op Disutility of using shared parking/curbside parking at destination s.
Ve o Individual disutility of destination s in destination pair st.
Ty Common cost of destination pair st.
W, Attractiveness of destination s.
al, Allocation parameter indicating the proportion of destination s in
destination pair st.
' Shape parameter with respect to the marginal destination choice level.
B, Shape parameter with respect to the conditional destination choice
level.
H Dissimilarity parameter.
Wit Spatial correlation between destinations s and t.
PS, ., PS, ., Parking-size factor of shared/curbside parking at destination s.
Ny Ngi  Parking space provided by parking lot i of shared/curbside parking.
N Ngo Total shared/curbside parking space at destination s.
Oy Indicator of whether parking lot i is used by destination s.
B Shape parameter with respect to the parking choice.
Variables
A Accessibility between OD pair rs.
P’ Choice probability of destination s from origin r.
P Marginal choice probability of destination pair st from origin r.
P, Conditional choice probability of destination s in destination pair st
from origin r.
o Pacy  Choice probability of shared/curbside parking between OD pair rs.
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3.4.2 Joint destination and parking choice with spatial correlation

3.4.2.1 Hierarchical destination and parking choice structure

The joint destination and parking choice is modeled on the hierarchical choice structure
shown in Figure 3.13. The destination choice is modeled at the upper level, which
determines the demand for the lower-level parking choice. The accessibility (composite
disutility) obtained at the lower level is incorporated in the total disutility of traveling
to a certain destination, which reciprocally influences the destination choice. The
spatially correlated weibit (SCW) model is developed at the destination choice level to
consider the spatial correlation among destinations, i.e., greater substitution occurs
among adjacent destinations than among those located at large spatial distances. At the
parking choice level, the parking-size weibit (PSW) model is developed to consider the
overlaps among the parking space of adjacent destinations. The destination and parking

choice models are described in Sections 3.4.2.2 and 3.4.2.3, respectively.

Origin r

o o — ————— = = ————— - - —_-——— —_———

1 . . .
1 Destination choice
! (SCW)

Accessibility
pueuRp qO

, Parking choice
L (PSW)

Figure 3.13. Joint destination and parking choice structure

3.4.2.2 Destination choice behavior
(1) Effect of weibit-based destination choice model

The logit-based model, which is widely used to model destination choices at the
individual level, is associated with the aggregate gravity-type trip distribution model
with a negative exponential deterrence function (Wilson, 1967). Notably, both the logit-
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based model and the gravity model based on the exponential impedance function suffer
from the following issues (Fotheringham and O’Kelly, 1989). (1) The model outcomes
depend on the unit used for measuring the travel cost, which can influence the
comparability of the outcomes. (2) The exponential impedance function cannot reflect
the effect of the additive travel cost increase on destination demands. These problems
are attributable to the fact that logit-based destination choice models implicitly assume
homogenous perception variance in travel impedance, which might not be realistic

when there exist multiple OD pairs with distinct scales of travel disutility.

The weibit-based destination choice model is adopted in this section to address the
heterogeneity issue embedded in the logit-based model. The weibit-based model is
equivalent to the gravity model with a negative power deterrence function, which is
scale-independent and can effectively model destination choices that consider distinct
trip distances (Choukroun, 1975, Xu et al., 2015). Figure 3.14 shows the effect of using
a weibit model on considering heterogeneity by comparing the outcomes from the MNL
and multinomial weibit (MNW) models in an illustrative example. Consider two OD
pairs R-S1 and R-S2 with the same destination attractiveness but different OD travel
impedances. Assuming a constant difference in the travel impedance, the choice
probabilities from the two models are shown in the right panel of Figure 3.14. The
destination choice probability yielded by the MNL model is constant and thus cannot
capture the heterogeneous perceptions of OD travel disutility. In contrast, the MNW
model can reflect the changes in OD travel disutility scale, with the effect of the
disutility difference decreases with the increase in the disutility scale. This outcome is
more realistic than that of the MNL model because travelers may become less sensitive

to the same disutility difference at larger scales (Masin et al., 2009).
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Figure 3.14. Effect of considering heterogeneity in destination choice

(2) SCW model formulation

To consider the spatial correlation among adjacent destinations together with the
heterogeneity issue, the SCW model is developed based on the nested choice structure
of the spatially correlated logit model (Bhat and Guo, 2004). Figure 3.15 illustrates the
SCW choice structure for an example involving one origin and four adjacent

destinations.

Colsls |y
Example network: R * I
NS s S

SCW destination ’_‘
choice model =

Marginal choice of
destination pairs

Conditional choice }T"
of destinations

Figure 3.15. Choice structure of SCW model
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Following the two-level choice structure shown in Figure 3.15, the perceived
disutility of traveling from origin r to destination s belonging to destination pair st can

be expressed as

Vi =(aly) Vel 7l el VreR,steST, (3.55)

s, s,st st st

where o

s,st

is the allocation parameter indicating the membership of destination s in

pair st, which is positive and satisfies Z a! . =1. V', is decomposed into two parts:

s,st s,st
steST

(1) the individual disutility related to destination s with deterministic and random error

and &!

s,st?

terms v!

s,st

respectively; and (2) the common cost related to destination pair st

r
st?

with deterministic and random error terms z;, and &, respectively.

Following three distributional assumptions are made for developing the SCW

r
s,st

model: (1) &, and & are independent of each other; (2) ¢

s,st

independently follows

the Weibull distribution with shape parameter £,; and (3) & is distributed such that

r
s,st

(! )*-8; follows the Weibull distribution with shape parameter 5. (& )* denotes

s,st
the random error term associated with the minimum disutility of choosing a destination

), where U] z(ar )71-vr & . Based

s,st s,st s,st ’ s,st *

within the destination pair st, i.e., mip(Ur
SES

s,st

on the hierarchical choice structure shown in Figure 3.15, the SCW probability of
choosing destination s from origin r can be expressed based on the product of marginal

and conditional choice probabilities:

P'=> PP, VreR,;seS. (3.56)

t#seS

The marginal probability of choosing destination pair st from origin r can be

derived based on the disutility minimization principle, as follows:

r r r H r r.ar I
Pst =P T Et .mln(US,st)S Tij  &ij -min

sest ieij

(Ui

),Vij;«tsteST}

_p| Lol ) PR ) Vij=steST - B
K '(gir,ij) 7y '(Vsr,st
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According to properties of the Weibull distributions, min (U '

sest S:st

) is Weibull distributed

with the same shape parameter £, and the following scale parameter:

{[a;& (Ve )Ts . [a;st (v )lr }_’2 . (3.58)

Based on distributional assumption (3), the marginal choice probability is

1A

r r ro\1! A r ro\t 4 71
Tgt |:as,st'(vs,st) :| +|:at,st'(vt,st) :|

P = = ,VreR,steST. (3.59)

1

o {[ ol (v gst)‘lr+[a;st-(v;st)‘l} }ﬂ :

If no common disutility exists within each destination pair, 7, =1,Vst € ST and can be

St 8|

s=1 t=s+1

omitted from Eq. (3.59).

Similarly, the conditional probability of choosing destination s given that

destination pair st is chosen can be expressed as

sst _PI:Vsst & st —Vtst tst’Vt¢S€S:|

(3.60)
= Pl:gsst/ S S tst/vsst ’Vt;’tSES]
Based on distributional assumption (2), P, can be derived as follows:
r ro\1 A
[as,st '(Vs,st) J
= ,VreR,steST. (3.61)

s r ro\1 A r ro\1t
|:as,st'(vs,st) j| +|:at,st'(vt,st) }

Let the dissimilarity parameter  denote the ratio between the shape parameters
at the marginal and conditional choice levels, i.e., u=p"/p, . By definition,
S>>0, and u is a positive parameter bounded by zero and one (Ben-Akiva and

Lerman, 1985). For normalization, we set " =1 and S, =1/ . The SCW probability

given by Egs. (3.56), (3.59), and (3.61) can be expressed as
101



1 1 1yt
et ) T {f0) o[ 0 |
=3 — ; S VreRses, (362)
55 [t Fo{wt) P

is substituted by v; .

where v’

s,st

r
s,st

The allocation parameter «  can be derived as

o =5 \reR,steST, (3.63)

s,st =
D Wy

steST
where wst indicates the spatial correlation between destinations s and t. The spatial
correlation can be derived based on the number of adjacent destinations, i.e., wst= 1 if

s and t are adjacent and 0 otherwise (Bhat and Guo, 2004).

(3) Effect of considering spatial correlation among destinations

A small network (Figure 3.16) is considered to illustrate the effect of spatial correlation
among adjacent destinations and the way this problem is addressed by the SCW model.

Three spatial distribution patterns of the four adjacent destinations are used to show the

r
s,st !

calculation of the allocation parameter «! ., which influences the SCW destination

choice probability.
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Figure 3.16. Illustrative example of allocation parameter in SCW model

Figure 3.17 shows the effect of considering spatial correlation based on the SCW
model. The demand for a destination is likely to be diverted by its neighbors. Assuming
that the four adjacent destinations have the same utility and same travel impedance to
the origin, the numbers of adjacent destinations and choice probabilities of these four
destinations are presented in Figure 3.17. The MNW model is insensitive to the spatial
allocation of the destinations. In contrast, the SCW model can reflect the differences
among the allocation patterns. A destination with a larger number of adjacent

destinations (i.e., higher spatial correlation) corresponds to a lower choice probability.
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(a) Spatial correlations in the different patterns (b) Comparison of choice probabilities

Figure 3.17. Effect of considering spatial correlation via SCW model
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3.4.2.3 Parking choice behavior

This section focuses on the choice between the two parking modes: curbside and shared
parking services. To ensure behavioral consistency with the destination choice model,
the weibit-based model is adopted at the parking choice level to inherently consider the
effect of heterogeneity (i.e., heterogeneous perceptions of different parking disutility

magnitudes) on parking choice behavior.

(1) Spatial correlation among parking spaces

In addition to spatial correlation at the destination choice level, it is important to
also account for spatial correlation at the parking choice level, which stems from the
overlap among parking spaces. Figure 3.18 demonstrates spatial correlation among
parking spaces with the shared parking service as an example (which is similar for
curbside parking). Consider the shared parking lots in the catchment areas of
destinations s1, S2, and ss3. Several parking lots (i.e., 1, I2, I3, and l4) located between
adjacent destinations can be reached by travelers at either destination. In particular,
parking lot s exhibits a significant overlap as it can be used by travelers at all three
destinations. Thus, the overlapped parking lot must not be considered a “full parking
alternative” for each destination, as it cannot contribute as much to the parking service

as a distinct parking lot that only serves a single destination.

Overlapped parking space shared
by adjacent destinations

Parking space for each
destination

Nsp3 Tota[l space of S].lam.d
parking for destination s

“ @ Distinct parking lots

- e Overlapped parking lots

Figure 3.18. Spatial overlap among parking spaces
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(2) PSW model formulation

The PSW model is developed to consider the effect of spatial correlation on parking
disutility. A parking-size (PS) factor is introduced to penalize the overlapped parking
space, which provides a smaller size of parking alternative than the distinct parking
space that has the “full” size of parking alternative. The derivation and interpretation of
the PS factor are analogous to those of the well-established path-size factors (Ben-
Akiva and Bierlaire, 1999; Frejinger and Bierlaire, 2007). Following the theory for a
choice model with aggregate alternatives (Ben-Akiva and Lerman, 1985), we consider
each type of parking service (i.e., curbside parking and shared parking) at each
destination as an aggregate alternative and each parking lot as an elemental alternative.
Assuming that each aggregate alternative consists of sufficient elemental alternatives,
each elemental alternative has the same mean disutility, and the random error of each
elemental alternative independently follows the identical Weibull distribution, the

disutility of an aggregate alternative can be expressed as

V= (Zv{"” j_ﬂ

iel

(MY (3.64)

1
M 7Z .y

where vi is the mean disutility of the elemental alternative i, £ is the shape parameter,

1
and M is the number of elemental alternatives. M 7 represents the effect of alternative

size on disutility of aggregate alternative. To account for the negative effect of overlap

in the parking choice problem, we define the full size as 1 for each distinct parking lot

and penalized size as

<1 for each overlapped parking lot, where &, ; is a binary

1
255,i

seS

indicator of whether parking lot i can be used by destination s. Subsequently, we can
derive the PS factor as the aggregate size of each type of parking service at destination

s, which depends on the total weighted size of parking lots belonging to that parking

105



service. Taking the shared parking service as an example, the PS factor for shared

parking at destination s can be expressed as

N,
PS,, = >, —> —tvses, (3.65)

ielg g Ns,sp Z 5s,i

seS

where Nssp and Nsp,i denote the total shared parking space at destination s and the shared
parking space provided by parking lot i, respectively. The perceived shared parking

disutility can be expressed as

1

Voo =(PS) 7 v VseS. (3.66)

s,sp s Sp?
where v, . and ¢, are the deterministic disutility and random error term of shared
parking service at destination s, respectively. £ is the shape parameter at the parking

choice level. The perceived curbside parking disutility V, , can be derived by

substituting the corresponding PS factor, deterministic disutility and random error term

(ie., PS and ¢__ ) into Eq. (3.66), where the PS factor of the curbside parking

sop? Vsep s,cp

service at destination s, PSscp, can be derived by substituting Ns.cp and Nep,i in Eq. (3.65).
Based on the principle of random disutility minimization, the choice probability of
shared parking/curbside parking service can be expressed as the probability that shared
parking/curbside parking service has the minimum perceived parking disutility at

destination s. Taking shared parking probability as an example,
Ps ,Sp = P[Vs: - ]
1

=P(PSSSp) Voo Esp <(PSep) 7 Vogp  Eurp |- (3.67)

s,Cp s,cp

=p| <
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Following the same logic as that of deriving the binary weibit model (Section

2.1.2.1) and incorporating the in-vehicle travel cost to calculate the OD travel disutility

v ., the PSW choice probability of shared parking service can be derived as follows:

s,sp !

(vsrySp )7ﬂm -PS

P = i ,\VrseRsS. 3.68
) s,

s,sp

s,cp
The same derivation is applicable to evaluating the PSW choice probability of curbside
parking service.

Based on the property of the Weibull distribution, the composite travel disutility

at the parking choice level derived based on the PSW model can be expressed as follows:

s,sp s,cp

1
A =[(Vr )‘ﬁm -PS, 4, +(Vr )‘ﬂm .PSS]CpJ fn rseRS. (3.69)

Note that A’ can also be considered as the accessibility measure (as illustrated in

Section 2.1.3) and is incorporated into the total disutility considered at the destination

choice level (Eq. (3.55)). Thus, Al connects the destination choice and parking choice

and reflects the interaction between the two choice dimensions while consistent with

the random utility theory.
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Chapter 4 Closed-form weibit-based choice model for assessing
oddball effect with alternate distributional assumptions

This chapter proposes a weibit-based model that relaxes the identically distributed
assumption to model the choice set with a single “oddball” alternative that has unique
attributes to other conventional alternatives. While retaining the closed-form
probability expression, the proposed model handles the oddball alternative using a
multiplicative random disutility function assuming Weibull distributed random
components. The proposed model thus allows alternative-specific perception variances
for both the conventional and oddball alternatives and a flexible variance ratio between
them. This gives the proposed model high flexibility to consider various heterogeneity
issues, including the heterogeneity among conventional alternatives, heterogeneity
between conventional and oddball alternatives, and heterogeneity between the unique
and common attributes of the oddball alternative. The empirical application of the
proposed model is explored to figure out its practical performance. The proposed model
could further provide new behavioral insights into various decision-making scenarios
of transportation networks, such as transportation mode choices in the current era of

emerging technologies and destination choices in urban agglomerations.

4.1 Introduction

With significant progress in transportation technologies and rapid lifestyle changes,
travelers are likely to consider innovative transportation alternatives that have different
attributes to the conventional alternatives, which are thus labeled “oddball” in the
choice set. For example, emerging technologies such as autonomous vehicles are set to
be added to the multi-modal transportation network, which will lead to new travel
modes with uncommon service features, such as automated navigation, that cannot be
obtained from conventional travel modes. In another case, with the development of
urban agglomeration, more travelers now tend to choose destinations located in
neighboring cities (Huang et al., 2020c). Differing from the traditional destination
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choices within a city, choosing a destination in a neighboring city involves inter-city

trips that may lead to unique opportunities for work, education, and entertainment.

The oddball alternative with unique attributes can be handled via alternative-
specific random components in open-form choice models, such as the heteroscedastic
extreme-value (HEV) model (Bhat, 1995). However, these models often require
additional model parameters and lack a closed-form probability expression, which pose
additional difficulties to model estimation, interpretation, and evaluation. Furthermore,
the closed-form choice probability is valuable for the applications to higher-level
optimization problems where the stochastic choice behavior of travelers is embedded.
In contrast, conventional closed-form travel choice models, such as the multinomial
logit (MNL) model and generalized extreme value (GEV) (e.g., the nested logit, NL)
models, can significantly reduce the computational requirement for choice probability
evaluation and are frequently adopted in travel demand forecasting and network design
studies. However, MNL and GEV models mainly assume identically Gumbel
distributed total random errors and an identical variance across alternatives with distinct
magnitudes of disutility, which are inadequate to capture the oddball effect (Ben-Akvia
and Lerman, 1985; Prashker and Bekhor, 2004; Koppelman and Sethi, 2008). Therefore,
it is imperative to develop a closed-form choice model that can explicitly assess travel

choice behavior with the new oddball alternatives of modern transportation networks.

In a pioneering study, Recker (1995) proposed a multinomial logit model with an
oddball alternative (hereafter referred to as the MNL-O model), which explicitly
accounts for the random utility associated with the unique features of a single oddball
alternative while retaining a closed-form probability expression, with the oddball
alternative’s unique attributes considered separately in random components. The
closed-from probability expression allows a straightforward interpretation of the
relationship between the observed variables and choice probabilities, enabling the
efficient and precise maximum likelihood estimation approach to be applied,
eliminating the computational burden of needing additional numerical or simulation
approaches for the probability evaluation (Koppelman, 2008; Mondal and Bhat, 2021).
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With these advantages, the closed-form MNL-O model could be applied to distinguish
the oddball alternative in econometric studies or be incorporated into transportation
models that require efficient computation of many choice probabilities, such as the

well-established network equilibrium models (Prashker and Bekhor, 2004).

However, the MNL-O model inherits some limitations from the MNL model with
an additive utility function. First, it assumes an identical perception variance for all
conventional alternatives, which is inadequate for addressing the heterogeneity issue.
Second, although a different perception variance is assumed for the oddball alternative,
it is still fixed and independent of alternative utility, keeping the variance ratio between
oddball and conventional alternatives fixed. This could lead to an unrealistic
expectation that the common and unique features of the oddball alternative have equal
and fixed contributions to the random utility of the oddball alternative with the service
level disregarded. Finally, the choice probabilities of the MNL-O model are dependent
on the absolute differences in utility, which are inadequate to model distinct magnitudes
of alternative utility in large-scale networks. These limitations make it difficult for the
MNL-O model to reflect the heterogeneous perceptions of various travel modes or the
distinct trip lengths associated with different destinations, which could hinder its

application to the complex decision-making scenarios in modern transportation systems.

This chapter proposes an alternate weibit-based model for assessing travel choice
with an oddball alternative, addressing the inherent heterogeneity issues in the MNL-O
model while retaining the closed-form probability expression. Based on the
multiplicative disutility function with Weibull distributed random components, the
proposed model allows disutility-dependent variances for all alternatives. Thus, the
model can naturally consider various heterogeneity issues, including the heterogeneous
perceptions of conventional alternatives, heterogeneous perceptions of unique and
common attributes of the oddball alternative, and distinct service features of
conventional and oddball alternatives. Also, the multiplicative error structure adopted
in the proposed model coincides with the psychophysical laws on how individuals
perceive different magnitudes of travel disutility, and thus can have better behavioral
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interpretations than the additive error structure in commonly used logit models
(Chakroborty et al., 2021; Nirmale and Pinjari, 2023). Herein, derivations of closed-
form choice probabilities of both conventional and oddball alternatives are proposed.
The perception variances and elasticities with respect to both conventional and oddball
alternatives are also analytically derived, illustrating the appealing theoretical

properties of the proposed model.

The remainder of this chapter is organized as follows. Section 4.2 briefly reviews
the formulation, properties, and limitations of Recker’s MNL-O model. In Section 4.3,
a weibit-based model with an oddball alternative is then developed, with detailed
derivations of closed-form choice probabilities of both conventional and oddball
alternatives provided. The theoretical properties and advantages of the proposed model
are then thoroughly discussed via comparisons with some existing closed-form travel
choice models that also focus on addressing the heterogeneity issues. Section 4.4
investigates the empirical performance of the proposed model. Finally, Section 4.5
concludes the chapter, discusses potential applications of the proposed model, and

provides some directions for future research.

4.2 Problem statement

To facilitate the presentation of the essential ideas, the notations used are listed in
Section 4.2.1. Recker’s (1995) logit choice model with an oddball alternative is then

introduced in Section 4.2.2, together with a discussion on its properties and limitations.

4.2.1 Notations

Sets
A Set of all travel alternatives
A-r Set of conventional travel alternatives without the oddball alternative
I Set of common attributes shared by all alternatives
J Set of unique attributes of the oddball alternative
Ty Set of attribute levels of alternative k

111



Parameters and variables

4
P(k|A)

RmNL-0

Rmnw-o

gPKA)

Tk

g PKA)

4l

Vk

\Y

r

Euler’s constant
Choice probability of alternative k in choice set A
Variance ratio of the MNL-O model

Variance ratio of the MNW-O model

Direct elasticity of alternative k with respect to attribute i

Cross elasticity of alternative k with respect to attribute i of alternative |

Total perceived utility/disutility of alternative k

Perceived utility/disutility of the common attributes of oddball alternative
r

Perceived utility/disutility of the unique attributes of oddball alternative r
Total system utility/disutility of alternative k

System utility/disutility of the common attributes of oddball alternative r
System utility/disutility of the unique attributes of oddball alternative r
Random error associated with the common attributes of alternative k

Random error associated with the unique attributes of oddball alternative
r

Level of attribute i of alternative k

Level of common attribute i of alternative k

Level of unique attribute j of oddball alternative r

Coefficient of attribute i

Location parameter of the Weibull distribution

Scale parameter of the Weibull distribution of alternative k
Shape parameter of the Weibull distribution

Location parameter of the Gumbel distribution of alternative k

Scale parameter of the Gumbel distribution
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4.2.2 Basis for Recker’s logit choice model with an oddball alternative

4.2.2.1 Additive perceived utility of oddball alternative
A homogeneous choice set A is assumed in the MNL model, in which each conventional

alternative shares a common set of attributes ?={?1,?2,...,?”‘} . Let

T, =T, = {?kl,?f,...,ﬁm} denote the level of attributes of the k™" alternative. Then, a

linear-in-parameters specification is assumed for the deterministic utility of k:

v, =V, =Y. '7, . The additive utility function of conventional alternative k is

iel

V.=V, +5,VkeA, (4.1)

where ¢, is the random error term that is assumed to be independently and identically

distributed (11D) Gumbel variable with the same scale parameter 4, i.e., & ~G(7,,6).

However, not all alternatives necessarily share the same set of attributes. Recker

(1995) further considered a single oddball alternative, which additionally possessed a

unique set of attributes T = {f”‘“,f”‘”,...,f”} in addition to the common attributes 7.

Suppose that the r'" alternative is the oddball in the choice set. Then, let V. = Zwii‘

iel
and &, respectively denote the deterministic utility and random error that are associated
with the common attributes of the oddball alternative. Let V. = Za)jfrj and &
jed
respectively denote the deterministic utility and random error that are associated with

its unique attributes. Hence, the additive utility function of the oddball alternative is

V. =V +V, =(V 4 )+ (V48 ). (4.2)

By assuming ¢ and & are IID Gumbel variables, ie., & ~G(n,,60) and

g ~G(77r2,9) (Recker, 1995), the oddball alternative differs from conventional

alternatives in that its random error term is a summation of two 11D Gumbel variables.
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4.2.2.2 Formulation of logit choice model with an oddball alternative

Based on the additive utility function and distributional assumptions given in Section

4.2.2.1, the MNL-O model can be developed. Letting v +V, denote the total

deterministic utility and setting =1, the choice probabilities of the oddball and

conventional alternatives can be derived as follows (Recker, 1995):

er 1k

Pan-o (K|A) = | 1= Ei(o)
";“e [ } . (43)

=P (K|A=1)[1-4"e% -E,(g) | Wk e A

Punt-o (r |A) = ¢rL e E, (¢rL) ' (4.4)

Ve 771412

2 eVI +y "

l#£reA

which has already been tabulated (Harris, 1957).

- o
where ¢- = :I —dx is the exponential integral, the value of
x X

4.2.2.3 Properties and limitations of the logit-based approach

The MNL-O model is demonstrated in Figure 4.1 via a comparison with the basic MNL
model. The MNL-O model tends to estimate a higher choice probability of the oddball
alternative, while the MNL model always results in a higher choice probability for a
conventional alternative (Recker, 1995). In addition, Egs. (4.3) and (4.4) clearly show
that the independence from irrelevant alternatives (I11A) property no longer holds for
the oddball alternative in the MNL-O model. Instead, the 1A property only remains

within the subset of conventional alternatives in the MNL-O model.
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(a) MNL model (b) MNL-O model

Figure 4.1. Oddball choice probability derived from different models.

Figure 4.2 illustrates the different ways to consider an oddball alternative in the
MNL and MNL-O models. As shown in Figure 4.2(a), the MNL model treats the
oddball alternative in the same way as conventional alternatives. Because of the 11D

assumption and the properties of the Gumbel distribution, the MNL model has a fixed
perception variance of 7z2/ 60> for all alternatives given the scale parameter 6. By

comparison, the MNL-O model associates the oddball alternative with an additional
random error term, which implies a higher uncertainty owing to the unique attributes
that distinguishes the oddball alternative from conventional alternatives (Figure 4.2(b)).
Because the random errors of common and unique attributes are assumed to be 11D

Gumbel variables (Recker, 1995), the variance of the oddball alternative is

Dun o (V:)=D(V, +V,)=D(V,)+D(V, )= 7°/60" + 2°/66° = n* /30" . (4.5)

Conventional alternatives Conw,ntlonal alternatives  Oddball alternative

r————’

! Perception variance ' Pcru.plmn variance .

Travel utility Travel utility

(a) MNL model (b) MNL-O model

Figure 4.2. Choice sets considered in different logit-based models.
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Remark. In the MNL-O model, the assumption of identical variance remains within
the subset of conventional alternatives. Although a different variance is assumed for the
oddball alternative, it is still fixed and independent of the common and unique features.
This leads to a fixed variance ratio between oddball and conventional alternatives:

7*/36° B

Runo = Iy 2. (4.6)

In summary, despite its ability to specifically handle the oddball alternative, the
MNL-O model still inherits some limitations from the MNL model. First, the identical
and fixed perception variance among conventional alternatives is inadequate for
modeling the heterogeneity issue among alternatives with distinct scales of utility.
Second, the fixed variance ratio may not fully capture the different contributions of
common and unique features to the choice of an oddball alternative. Third, the issues
discussed above result in a choice probability function dependent on absolute utility
differences, which might generate unrealistic travel choice probabilities when applied
to transportation networks with distinct trips lengths or service levels (Kitthamkesorn

and Chen, 2013).

4.3 Weibit-based model for assessing travel choice with an oddball alternative

This chapter proposes a closed-form weibit-based model to explicitly address the
inherent heterogeneity issues in the MNL-O model. In contrast to the additive utility
assumed in the logit-based models, the weibit-based model adopts a multiplicative form
of disutility function (Fosgerau and Bierlaire, 2009). Taking the basic multinomial

weibit (MNW) model as an example, the random perceived disutility can be expressed

by the multiplication of the deterministic disutility v, and the random error &, :
V, =V, -&,VkeA. (4.7)

The random errors are assumed 1D Weibull variables with the same parameter, i.e.,

& ~W (e, ). o, and S are scale and shape parameters of the Weibull distribution.
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Thus, the properties of the Weibull distribution enable the MNW model to
inherently address the heterogeneity issue by allowing disutility-dependent perception
variances (Castillo et al., 2008). As shown in Figure 4.3(a), the perception variance of
each alternative is proportional to its squared mean disutility. However, the identical
proportionality between variance and squared mean disutility is unsuitable for
distinguishing the oddball alternative from conventional alternatives. To address this
issue, a multinomial weibit model with an oddball alternative (MNW-QO) is developed
in Section 4.3.1 to account for the oddball alternative’s unique features with a distinct

proportionality between variance and mean disutility (as shown in Figure 4.3(b)).

Conventional alternatives Conventional alternatives  Oddball ‘1|l(.ll‘l"ill\£.
______ Travel disutility T T T T T Travel disutility
(@) MNW model (b) MNW-O model

Figure 4.3. Choice set considered in different weibit-based models.

4.3.1 Model formulation

Consistent with the MNW model, the proposed MNW-O model is also based on a
multiplicative specification of disutility perception. The conventional alternatives share
the same disutility function with the MNW model, as given in Eq. (4.7), while the
disutility function of the oddball alternative additionally includes the perceived

disutility of its unique features, which is expressed as

V.=V, -V, =(7-¢) (V.- &), (4.8)

r r r

where V, and &, respectively denote the deterministic disutility and random error that
are associated with the common attributes of the oddball alternative, and v, and &,
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respectively denote the deterministic disutility and random error that are associated with
its unique attributes. Following the principle of disutility minimization, the MNW-O
choice probability of a conventional or oddball alternative is equivalent to the
probability that the chosen alternative has lower disutility than all other alternatives,

which can be expressed as
Puwwo (K|A)=P(V -5 <V, &, VI =k, re Ay 5 <V, & &)

. . . (49)
=P(€, > Vi i NVl£k,reAe, ka—gkj
Vi Vr'fr

PMNW—O(r|A)= P(Vr'é‘r'fr SVk~8k,Vk¢reA)

o , (4.10)
_ P(gk SVeEor Yy re A]
Vk

where v. =V_-V. denotes the total system disutility of the oddball alternative r. The
random errors, including ¢, , ¢,, and &, , are assumed to be 11D Weibull variables with

the same shape parameter, S : & ~W(0,¢,8) , & ~W(0,¢,,6) , and

(Vr Oy Oy )_ﬂ

& ~W(0,a,,,8) . Thus, by defining 4" = , the following two

propositions are reached.

Proposition 4.1. The choice probability of conventional alternative k from the MNW-

O model is:

-B
Vi - & WA w
PMNW—O(k|A): Z(:(Voio)ﬁ)ﬂ.[l_(ér e 'E1(¢r )} ( )
b . (411

I#£reA

=P, (k|A—r)-[1—¢rW e E (g )]Vk #reA

Proof. The MNW-O choice probability of conventional alternative k expressed in Eq.

(4.9) can be derived as follows based on the independence assumption:
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P(k|A) =" [T (&) file)- HP(g,ZV"V'S"j-P(gr > Y Z;kjd de

T F = [ Vi &
=[] f(&) R 1 {1 F[ y H-{l—ﬁ(vréﬂdgkdg

Izk,reA
where f_ and f, are the PDFs of &, and & , F, and F, are the CDFs of & and &, .

(4.12)

Based on the Weibull distributional assumption, P(k |A) can be derived as

P(k|A) fm ’ (5 jﬂl & ds IMﬂ( j 19_[:'k2]ﬂ’e_'*;““(&:‘i'kj .e‘[vﬂﬂ]ﬁdek

a,

(4.13)

The double integral in Eq. (4.13) can be evaluated sequentially based on the integration

B
_|
by substitution. Let u=¢ [“'2} , we have

a

r

P(k|A)= -/ [ifl (éj dgj u'kz“:] u[T] du (4.14)

1y {Mjﬂ 5y [ujﬁ
_ ekrea\ Vo) = (v
Let w=u =Uu , we have

S Jﬂl [f] dfj—ﬂ‘w léA[tTfZTj N
(229 Z (Vk gk}
lerea\ V) - @

P(k|a)=]" p (

a, T(v-a)/(v é )]
|Z‘A[V a)/(v - al)]ﬂ
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Let ¢W :(Vr ! 0(._2)_ . with +m£(ij e [a’ZJ dgr =1, Eg. (4.15) can be
. 2

-p 1 (&Y PR
P(k|A):Lk)ﬁ +w£(i] e (arZJ 41= (Vr f}r arl) - d(-fr
Z (VI 'a|) O o\ o (Vr & 'arl) + Z (V| 'a|)
-p p1 (&Y W
— (Vk -ak) g 1_!+®£[i} e (arzj . - ¢r 5 dgr
Z (VI 'C¥|) 0 AN ¢r +(§r/0{r2)
(4.16)
Let x=¢" +(& /a,,) , then
(Vk ak { ~(x-a") :N }
k =— d :
P(k|A) S (4a) j el X (4.17)

Substituting E _[ —dx into Eq. (4.17) gives the MNW-O choice probability of

the conventional alternative shown in Eq. (4.11). This completes the proof.

Proposition 4.2. The choice probability of oddball alternative r from the MNW-O

model is

Panw o (r|A) = ¢|\rN ef E1(¢:N ) (4.18)
Proof. Based on the independence assumption, the MNW-O choice probability of
oddball alternative r expressed in Eq. (4.10) can be derived as follows:

P(ria)=["[ "t (&) T1 P(deadgx

k#reA Vk

=["[ ") (&) T1 {H (V L Hdgdg

k#reA k

(4.19)
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Based on the identically Weibull distributed assumption, P(r|A) can be derived as

P(r[A)=]," ﬂ( j [““] az ], 2 (of_rjﬂ_le[;J ey de, . (4.20)

° a,

Let u=e“/* Eq. (4.20) can be written as

- s V- rﬂrlﬁ
p(rla) [ L ( ) ' g ﬂukg(m N

p1 (&Y : 421
(s ) 1) 1 (4.21)
- e ~dg
0 A\ Ay 1 z (Vr'gr (04
kzreA Vk C Oy
-p
p (Ve -a) 5
Let w=1+ Z (Mj =14 Kered )fﬂ [ o ] , EQ. (4.21) can be written
kzreA Vk'ak V AUy a,.,
as
(v,~ar1-a,2)7ﬁ
—(w—l)-Tk_/Z
(Vr QO )_ﬁ € kg;‘A( |
P(r|A)= S o) 1. - dw. (4.22)
Vi oy

+00 ei'u'X

with  E, (u)=]

dx (Gradshteyn and Ryzhik, 2007), substituting
X

g =\ % %2)  neg Eq. (4.22) gives the MNW-O choice probability of the

oddball alternative in Eq. (4.18). This completes the proof.

Thus, Egs. (4.11) and (4.18) demonstrate that the MNW-O choice probabilities
have a similar form to probabilities of the MNL-O model given in Egs. (4.3) and (4.4),
which enables the proposed MNW-O model to address the oddball effect. The

difference lies in the expression of term ¢, . The ¢- in the MNL-O model is dependent
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on an exponential function, which implies an absolute difference—based choice

probability expression. By comparison, the MNW-O model adopts a power function—
based 4" , implying that the MNW-O choice probability is dependent on the relative

differences of travel disutility. This difference suggests that the MNW-O model inherits
its ability to consider the heterogeneity issue from the MNW model (Kitthamkesorn

and Chen, 2013). This property is discussed in detail in Section 4.3.2.

4.3.2 Model properties

This section discusses the properties of the proposed MNW-O model. First, the
properties inherited from the MNL-O model are discussed, i.e., the logical consistency
conditions and asymptotic values, in Section 4.3.2.1. Then, the perception variance of
the conventional and oddball alternatives in the proposed MNW-O model are provided
in Section 4.3.2.2. Finally, the theoretical advantages the proposed model gains from
the properties of weibit-based models are discussed in Sections 4.3.2.3 to 4.3.2.5,
including its more flexible perception variances, its ability to consider the heterogeneity

issue, and its disutility-dependent model elasticities.

4.3.2.1 Logical consistency conditions and asymptotic values
This section shows the proposed MNW-O model has similar logical consistency and

asymptotic properties to the MNL-O model. The exponential integral incorporated in

the choice probability expression is known to have the following limits:

-X

e

lim E, (x)=—, (4.23)
X—>+00 X
leilg E.(X)=—y—-Inx, (4.24)

where y is Euler’s constant. Clearly, the MNW-O model can satisfy the logical

consistency conditions for discrete choice models, i.e., for every alternative Kk,
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0<Pyw-o(Kk|A)<land > P, o (k|A)=1. The MNW-O choice probabilities of the

keA

oddball alternative are further derived at asymptotic values in two important cases.

Case 1. Disutility of oddball alternative approaches zero: v, — 0°

In this case, the oddball alternative is extremely superior with negligible travel disutility.

Because lim ¢" — +oo, the choice probability of the oddball alternative is

v, —>0"

lim P o (1|A)= lim g e .S =1, (4.25)

v, —>0" ' >+

and the choice probabilities of the conventional alternatives are

o )’ -4
lim P(k|A)= lim M 1-g-e¥ .2 _|=0.  (4.26)
v, —>0" B’ —-+o0 Z (VI 'al) ¢r

In this case, the choice probability of the oddball alternative approaches one, which is
consistent with the conventional discrete choice models when there is an alternative

dominating the choice set with extremely high utility/low disutility.

Case 2. Disutility of oddball alternative approaches infinity: v, — +o

When the oddball alternative is extremely inferior with high disutility, i.e., v, — 4o,

then limg" — 0" and the choice probability of the oddball alternative becomes

Vo

lim P, o (r|A)= lim ¢"-e% -(-y-Ing")=0, (4.27)

W +
V, =40 A0

and the choice probability of conventional alternative is
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. _ﬂ w
Jim, PMNWo(kIA)=¢;igg+%~[l—¢:“-e¢r (~7-ng")]
| |

l£reA . (428)

In this case, because the 1A property is held within the set of conventional alternatives,
the MNW-O model degenerates to the MNW model when the oddball alternative has

extremely high disutility and negligible choice probability.

4.3.2.2 Perception variances

This section provides the perception variance of conventional and oddball alternatives
in the proposed MNW-O model. The conventional alternatives in the MNW-O model

share the same form of variance as in the MNW model, which can be expressed as

D(V,)=E*(V,)-[x(B)-1]. (4.29)

where E(V, ) denotes the mean disutility and « () = T+2/p)

r’(1+Yp)
Remark. The variance of the conventional alternative is proportional to the squared

mean disutility. The proportionality is K‘(,B)—l, which is dependent on the shape

parameter £ and remains the same for all the conventional alternatives.

Proposition 4.3. The perception variance of the oddball alternative in the MNW-O

model is proportional to the squared mean disutility of both its common and unique

features. The proportionality is dependent on the shape parameter £ and differs from
the proportionality of conventional alternatives.

Proof. The perception variance of the oddball alternative can be expressed as
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(4.30)

Dumi-o (V) =[ E*(V,)-x(8) | E*(V, )-<(8)]-E* (V)-E*(V,)
—E*(V,)-E*(V,)-[<*(B)-1 . (4.32)
=E*(V,)[«*(B)-1]

Thus, the variance of the oddball alternative is a function of both the shape parameter

and the mean disutility, and the proportionalities of the oddball and conventional

alternatives are different, i.e., *(8)-1=x(8)-1.

Proposition 4.4. The variance ratio between the oddball and conventional alternatives
in the MNW-O model is flexible. The variance ratio is no lower than two when the

oddball and conventional alternatives have the same mean disutility.

Proof. The variance ratio between the oddball and conventional alternatives in the

MNW-O model is

(4.33)

Rmnw-o is therefore flexible, which is dependent on both the squared mean disutility of

oddball and conventional alternatives and the shape parameter, £. Then, the variance
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ratio is derived with the same mean disutility. By definition, g is positive, hence

I'(1+2/B)>0 and I'(1+1/3)>0. Therefore,

de(p) 2 T(1+2/p)
dg

2
=7 g YA v sdp)]<0. 439

where (x)= is the digamma function. Thus, when >0, x(B) is a

decreasing function with respect to . The asymptotic value of x(3) is

2
Jimmx(ﬁ)=ﬂlirpm%=l. (4.35)

Therefore, () >1 within the domain of 4. The variance ratio between the oddball

and conventional alternatives with the same mean disutility is

K—:K(,B)+1, (4.36)

which is no lower than two, completing the proof.

The higher variance ratio between the oddball and conventional alternatives
indicates that the oddball alternative is considered to have a higher uncertainty than
conventional alternatives. Proposition 4.4 reveals that the proposed MNW-O model
provides a disutility-dependent variance ratio, which highlights the heterogeneous
perceptions of the common and unique features and is more realistic than the fixed
variance ratio provided by the MNL-O model. When the oddball and conventional

alternatives have the same disutility, the variance ratio in the MNW-O model decreases

with the increase of £. This property is also intuitive, as a larger value of S can be

interpreted as better knowledge of the transportation system, which reduces uncertainty.
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4.3.2.3 Demonstration of the heterogeneous perception variances

This section demonstrates the disutility-dependent perception variances and non-
identical variance ratio provided in Propositions 4.3 and 4.4. The effects these
properties have on handling the heterogeneity issue in choice modeling is then

illustrated for networks with different scales of travel disutility.

(1) Demonstration of perception variances with respect to alternative disutility

Figure 4.4 shows an example of the perception variance of an oddball alternative with
respect to travel disutility in the MNL, MNL-O, MNW and MNW-O models. The

following properties can be observed from Figure 4.4:

(a) Given the scale parameter 4, constant and utility-independent perception variances
are used in the logit-based models, which indicates its inability to reflect the
heterogeneous perceptions of utility for different alternatives or attributes.

(b) By contrast, the weibit-based models have disutility-dependent perception
variances. Specifically, in the MNW-O model, the oddball alternative has a
different variance to the conventional ones, implying that the MNW-O model can

consider the heterogeneities with respect to these alternatives in different ways.

4 1 — Var: MNL Var: MNL-O
3
= 2 2
§ a /39 Fixed perception variance
Z 5 | independent of travel disutility
o
E ———————————————
8 7 /66’
)
=T
O T I T I 1
1 2 3 4 5 6

Mean disutility

(a) Logit-based models with =1
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10 - =  Var: MNW Var: MNW-0O

8 g
=
2 Alternative-specific perception variance
z 6 - dependent on travel disutility
)
S 4
= o) [ - / \,
£z
0 = T T T 1
1 2 3 4 5 6

Mean disutility
(b) Weibit-based models with g =3.7

Figure 4.4. Perception variance of the oddball alternative with respect to its mean
disutility in different models.
(2) Demonstration of perception variances with respect to the shape parameter

Figure 4.5 further explores the perception variance with respect to the shape parameter
in weibit-based models and the variance ratio between oddball and conventional

alternatives in the MNW-O model. Two conclusions can be drawn from Figure 4.5:

(a) With the same disutility, the perception variance of an oddball alternative is always
larger in the MNW-O model than in the MNW model. This indicates the MNW-O
model considers the oddball alternative to have higher uncertainty than

conventional alternatives, which is consistent with the feature of the MNL-O model.

(b) An increasing shape parameter, S, causes the perception variances of the oddball

alternatives in both models and the variance ratio in the MNW-O model to decrease.

When S — +oo , the variance ratio between the oddball and conventional

alternatives approaches two, which is the variance ratio in the MNL-O model. The

variances of both the MNW and MNW-O models approach zero with f — +o,

implying that when travelers have perfect knowledge of all travel alternatives then

they deterministically choose the alternative with the lowest disutility.
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3.5 1 Var: MNW-O (Eq. (4.32))
5 31 5 = Var: MNW (Eq. (4.29))
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<25 A %2.8
E 2 Edo 2.6 MNW-0O variance ratio
S15 4 = 24 1 \ (Eq. (4.36))
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Figure 4.5. Perception variance of the oddball alternative with respect to the shape
parameter in different models.

(3) Effect of considering the heterogeneity issue

Based on the non-identical perception variances and flexible variance ratio given in
Propositions 4.3 and 4.4, the MNW-O model inherits the ability to consider the
heterogeneity issue from the MNW model and could outperform the MNL-O model in
networks with distinct scales of travel disutility. Consider a trinomial choice problem
with two conventional alternatives that have the same disutility vk, and one oddball
alternative with disutility vr. Then, assume a constant disutility difference between the
conventional and oddball alternatives: vr = vk — 5. Figure 4.6 shows the evolution of the
oddball choice probabilities derived from different models with vr varying from 0 to

100, leading to the following observations:

(a) The MNL-O model provides a constant choice probability for varying scales of
disutility, which can be attributed to its absolute difference-dependent choice
probability function. This result seems unrealistic in this case because the constant
difference between the oddball and conventional alternatives should become
increasingly negligible when the scale of disutility becomes larger.

(b) The weibit models can indicate the effect of variation in the disutility scale via their
variation in choice probability. This property makes the MNW-O model provide
more realistic outcomes than the MNL-O model, which is consistent with the

difference identified between MNW and MNL models in short and long networks
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(Kitthamkesorn and Chen, 2013).

(c) Given the same system disutility, the MNW-O model tends to calculate a higher
oddball choice probability than the MNW model, which is consistent with the
difference between MNL-O and MNL models (Recker, 1995).

MNL-O = -MNW MNW-O
] -
09 4 \ Unchanged probabilities w.r.t. /‘Lq. (4.4)
0s 1 \ heterogenous trip lengths
— \
0.7 1
% \ Changing probabilities w.r.t.
0.6 1 \ « heterogenous trip lengths
0.5 - N - -
0.4 T Eq- (2.]6) = - -_—en o - e
0.3

0 10 20 30 40 50 60 70 80 90 100
Travel disutility

Figure 4.6. Effect of heterogeneity on oddball choice probability.

4.3.2.4 Model elasticities

This section compares the elasticities of the proposed model with related models,
including the MNL, MNL-O, and MNW models. The direct elasticity of P(k|A) with
respect to attribute i of alternative k can be expressed as

EPi(k\A) _ aF)(k_|A)_ Tli ’V'[li et keA. (4.37)
o or,  P(k|A)

The cross elasticity of alternative k with respect to attribute i of alternative | is

OP(1A i .
P(A) ( ! ) b Vr, et kleA. (4.38)
i or,  P(I|A)
. dE(x) e : _— :
With d— =———, the direct and cross elasticities are derived for the MNL-O and
X X

MNW-O models that involve the exponential integral in their choice probability
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functions. Because of the different probability expressions, the direct and cross

elasticities with respect to conventional and oddball alternatives are derived separately.

Table 4.1 compares the direct and cross elasticities of the MNL, MNL-O, MNW,

and MNW-O models, highlighting the following properties:

()

Analogous to the elasticities of the MNW model (Table 2.3), the elasticities of the
MNW-0O model are also dependent on the alternative disutility. This property makes
an alternative with higher disutility less sensitive to an equivalent perturbation than
alternatives with lower disutility, which indicates the ability of the MNW-O model
to account for the heterogeneity issues, as discussed in Section 3.2.3. Moreover, the
elasticities of both the MNW and MNW-O models share the opposite signs to their
logit-based counterparts. This is because the term v denotes utility in logit-based

models, whereas it denotes disutility in weibit-based models.

(b) Both the direct and cross elasticities of the MNW-O model involve terms related to

(©)

the oddball alternative r. This indicates that the effects of an oddball alternative on
the choice probabilities are specifically considered in the MNW-O model. By
contrast, the MNL and MNW models do not make this distinction and only account
for conventional alternatives.

In the MNL and MNW models, the cross elasticities for all alternatives k with
respect to a change in alternative | remain constant, implying that the I1A property
holds for all alternatives in the choice set. By comparison, the MNL-O and MNW-

O models possess different cross elasticities when the oddball alternative r is

involved, i.e., EX"™ differs from EF™* and is dependent on a term related to

oddball alternative r. This indicates that the 1A property is circumvented between

the oddball and conventional alternatives.
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Table 4.1. Comparison of direct and cross elasticities of MNL, MNW, MNL-O, and MNW-O models

Model Direct elasticity Cross elasticity
MNL 0-0'z, [1-P (K|A) ] ~0-0't} Py (1|A)
-1 i
MNW _(Vk)il'ﬂwlrll'[l_ Punw (k|A):| (VI) f o7 - By (||A)
Cross elasticity of conventional alternative k with respect to
Direct elasticity of conventional alternative k, E PkA) attribute i of conventional alternative I, E | PKA)
o P (F|A) i L PMNL—O( |A)
0-'t 11— P (K|A=T) | (144" ) - —22 —0-0'7) Py (1 |A—'f)'{(1+¢r )—
k { MNL( | ) {( ) 1— PMNL—O(r|A) 1- PMNL—O(r|A)
Cross elasticity of conventional alternative k with respect to
Direct elasticity of oddball alternative r, E (18 . attribute i of oddball alternative r, E A
MNL-O

H.Q)iz-; -I:(1+ ¢r'-)_ PMNL_ir(r|A)j|

9-a)i7i.|:¢L_ Puni_o (T|A) }

"1 1-Pio (r|A)

Cross elasticity of oddball alternative r with respect to
attribute i of conventional alternative I, E (F1A).

_(9-a)i2'|i : PMNL(I|A_r)'{(l+¢rL)_#(r|A)}
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MNW-O

Direct elasticity of conventional alternative Kk, E

—(v,) " p-o'7 -{1— P (K|A- r)-[(1+¢rw )-

Direct elasticity of oddball alternative r, E

—(Vr)l'ﬂ-wifi~[(1+¢fv)—

¢

Punw -0 (I’ | A)

|

P(rIA) .

(KIA) .

PMNW—O (I‘ |A)

1- PMNW—O (I’|A)

}}

Cross elasticity of conventional alternative k with respect to
attribute i of conventional alternative I, E] PUA) -

(%) " B-@'r - Py (]A=T)- {(1+¢¥V)— Puwi-o (*|A) }

1-Punwo (T|A)
Cross elasticity of conventional alternative k with respect to
attribute i of oddball alternative r, E] PA) -

—(Vr)l‘ﬂ'a’i‘[:'|:¢r 1PN|;,)\1W o(r|A) :|

o (T[A)

Cross elasticity of oddball alternative r with respect to
attribute i of conventional alternative I, E (18 .

( ) fa'r MNW( |A r) {(“@N)_#W(rwl
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4.4 Empirical application

The proposed MNW-O model is applied to the Swissmetro data set (Bierlaire et al.,
2001) that has been widely used in transportation studies (e.g., Fosgerau and Bierlaire,
2009; Li, 2011; Mabit, 2017; Sifringer et al., 2020; Han et al., 2022). The data set
described mode choice scenarios among three alternative modes: train, car, and
Swissmetro. We have selected the respondents who have access to all three mode
alternatives in the choice set. The Swissmetro is an emerging travel mode that can be
considered as an oddball alternative with unique attributes (i.e., headway and seat
availability). The number of observations is 3987. A brief description of the used data

set can be found in Table 4.2.

Table 4.2. Description of the Swissmetro data set

Alternatives Attributes

Train Travel cost, Travel time
Car Travel cost, Travel time
Swissmetro

(oddball) Travel cost, Travel time, Headway, Seats availability

The alternative utility can be formulated as:

Vv, =V, = @° -travel cost + o' - travel time, (4.39)

V. = " -headway + o° - seats availability (4.40)

where @ are the parameters to be estimated.

4.4.1 Estimation results

We compare the estimation results of the MNW-O model against MNL and other
advanced choice models, including the NL model that relaxes the independently
distributed assumption, the MNL-O model for capturing one oddball alternative in the

choice set, the HEV model (Bhat, 1995) that is flexible to relax the identically
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distributed assumption for all alternatives, and the MNW model that inherently allows
disutility-dependent perception variances for all individuals. All the models are
estimated using Apollo (Hess and Palma, 2019)®. Following Fosgerau and Bierlaire
(2009), the coefficient of travel cost is normalized to minus unity and the scale/shape
parameters of the logit/weibit-based models are estimated. Two socio-demographic
attributes, namely gender (male or female) and age (over 54 or not), were considered
in the model estimation. The alternative specific constants were not significantly

estimated, therefore excluded. The estimation results are reported in Table 4.3.

Among the four logit-based models (MNL, NL, HEV, and MNL-O), the HEV
model shows a better model fit than others. This result makes sense as the HEV model
considers more generalized heteroscedasticity in the error variance between alternatives.
The NL model allows covariances among similar alternatives and performs better than
the basic MNL model. However, it still assumes an identical variance for all alternatives
and is inadequate to account for the oddball effect. Although the MNL-O model also
considers heteroscedasticity, it focuses on the non-identical variance of the oddball
alternative and is less flexible than the HEV model. On the other hand, the weibit-based
models (MNW and MNW-0O) show better model fits than the logit-based models. This
may be because the weibit-based models adopt the multiplicative error structure, which
allows disutility-dependent perception variances (See Figure 4.4) and can better reflect
the way travelers perceive travel disutility (Chakroborty et al., 2021; Nirmale and
Pinjari, 2023). Finally, the proposed MNW-O model shows a better model fit than all
other competing models. It suggests that the MNW-O model can successfully capture
both the oddball effect and the heterogeneous perceptions of different alternatives and

service features in the Swissmetro data set.

! To estimate the HEV and MNW-O models, we extend the input code in Apollo to represent their choice
probabilities by integrating external functions in the R library, i.e., the Gaussian quadrature function for
the HEV model (following the estimation procedure suggested by Bhat, 1995) and the exponential
integral function for the MNW-O model.
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Table 4.3. Estimation results

MNL NL HEV MNL-O MNW MNW-O
Attributes Estimates Estimates Estimates Estimates Estimates Estimates

(t-value) (t-value) (t-value) (t-value) (t-value) (t-value)
e 332 Ao asmoamoam
oy O 009 oo ame om oo
sy OS2 O 0% om e ons
Male Gy @Sy Goy  Gs) (e (o
sow S om em om om0
SO - R
Scale_Car . ; (0110?67) _ _ )
Scale_Train - ) 820?3) ) _ ]
Scale_SM - - 820392) - - -
Logsum - 85272) - - - -
Shape - - - i (335%3) (2287;58
Model fit
Final LL -3625.77 -3620.26  -3589.91 -3609.07 -3562.96 -3552.31

Adj. rho-squared 0.171 0.172 0.179 0.175 0.185 0.188

BIC 7301.28  7298.56  7246.15  7267.88  7175.66  7154.36

In addition, we applied statistical tests proposed by Vuong (1989) and Clarke

(2003) to compare the models. Both tests are common in that their null hypothesis
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indicates the competing models are equally close to the actual model. On the other hand,
they are distinguished in that the Vuong test assumes the asymptotic normality of the
log-likelihood ratio between the two competing models, while the Clarke test is
distribution-free considering the sum of the signs of the log-likelihood difference for

each observation.

The statistic of the Voung test is

Z[Lmi ((’om)_ Lo ((‘)m'):l

ZVoung = > (441)
1 2 |1
\/ﬂ Z[Lmi (mm ) - I-m’i (wm' ):I - {n Z[Lmi (mm ) - I-m’i (mm' ):I}
where L (o) is a loglikelihood value by a model m for an observation i.
On the other side, the Clarke test is
23 sgn| L (@,) Ly (0,)]-n
z ! (4.42)

Clarke — \/ﬁ !

where n is the number of observations and sgn denotes the sign function. Common to

both tests, a large negative value of z means that model m’ statistically outperforms

model m.
Table 4.4. Results of Voung and Clarke tests

Model 1 Model 2 Tests
Voung Clarke
MNL MNW-O -85.229 -42.673
NL MNW-O -52.105 -30.988
HEV MNW-O -27.308 -20.330
MNL-O MNW-O -38.296 -36.934
MNW MNW-O -14.165 -12.283

Table 4.4 shows the values of test statistics zvoung and zciarke for the comparison

between the MNW-O model and other competing models. Consistent with the model
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fit results, both tests clearly confirm that the proposed MNW-O model is superior to all
other models. These results demonstrate that the proposed MNW-O model has a clear
advantage of simultaneously capturing the oddball effect and the disutility-dependent
perception variance, while the competing models can either consider only one of the

two issues (HEV, MNL-O, and MNW models) or none of them (NL and MNL models).

4.4.2 Validation results

To validate the estimation results, a cross-validation test was conducted. First, we
randomly created five subsets of data which includes about 20% of all observations. Of
the five subsets, four were used as a training set to estimate models. Then the parameter
estimates were applied to the remaining single subset (as a test set). This process is

repeated 5 times to guarantee all subsets were used as the testing set.

Table 4.5. Results of cross-validation test
(@) Training sets

Avg. Adj. rho-squared Avg. BIC

MNL 0.169 5847.90
NL 0.171 5843.28
HEV 0.175 5800.24
MNL-O 0.174 5819.47
MNW 0.182 5745.64
MNW-O 0.186 5725.08

(b) Testing sets

Avg. Adj. rho-squared Avg. BIC
MNL 0.134 1465.15
NL 0.139 1463.47
HEV 0.148 1454.27
MNL-O 0.148 1455.19
MNW 0.157 1433.64
MNW-O 0.163 1425.77

Table 4.5 shows the results of the cross-validation test. The estimation results in

training sets are consistent with the general interpretation of the results from the full
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data set. The MNW-O model is superior to all other models in terms of the model fit
measures in all cases. The results in testing sets based on prediction performance also
reveal the consistent outperformance of the MNW-O model against the competing
models. In summary, we can conclude that the MNW-O model outperforms the
competing models in the Swissmetro data set with respect to both model fit and
prediction performance. It is therefore important to consider the heterogenous
perceptions of not only the conventional alternatives but also the unique features of

oddball alternative to better understand the choice behavior with an oddball alternative.

Table 4.6. Elasticities of MNW-O model?

Class 1 Alternatives Elasticities

Train Car Swissmetro

Travel cost Train -0.775 0.239 0.147

Car 0.094 -0.581 0.051

Swissmetro 0.074 0.074 -0.624

Travel time Train -0.174 0.022 0.045

Car 0.049 -0.391 0.033

Swissmetro 0.055 0.055 -0.410

Headway Swissmetro 0.204 0.204 -1.308

Seat availability ~ Swissmetro 0.181 0.181 -1.026

Table 4.6 reveals the results of elasticities in the MNW-O model based on Table
4.1. The direct elasticities are italicized in the table to distinguish from the cross
elasticities. As discussed in Section 4.3.2.4., the 1A property is not valid between
conventional and oddball alternatives. Therefore, the cross elasticities with respect to
change in an attribute of oddball alternative are equal between conventional alternatives,
while the cross elasticities with respect to change in an attribute of a conventional
alternative is not the same between conventional and oddball alternatives. The results
indicate that the choice probability of the oddball alternative (Swissmetro) is more
sensitive to the changes in the unique attributes (headway and seats availability) than

in the common attributes (travel cost and travel time).

2 Direct elasticities are italicized.
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4.5 Conclusions

This chapter proposed a weibit-based model to assess choice behavior when there is an
oddball alternative with unique features in the choice set. This proposed approach
retains the closed-form choice probability expression, which ensures the computational
efficiency of the probability evaluation and model estimation while facilitating model
interpretation. Inspired by Recker’s (1995) MNL-O model, the proposed MNW-O
model can specifically handle the oddball alternative as well as the asymptotic values
and logical consistency conditions. Furthermore, the proposed MNW-O model also
provides improved performance by enabling disutility-dependent perception variances
for both the conventional and oddball alternatives and allowing a flexible variance ratio
between them. These advantageous properties lead to relative difference-based choice
probabilities, which allow the proposed model to further consider various heterogeneity
issues that are ignored in the MNL-O model but are important for applications in
modern transportation systems. The applicability of the proposed model is empirically
demonstrated in a mode choice case study based on the Swissmetro data set (Bierlaire
et al., 2001). The statistical results revealed that considering the advantageous
properties of the MNW-O model is important for the understanding and prediction of

choice behavior when an oddball alternative is included in choice set.

The proposed model has numerous potential applications. In the context of mode
choice, the MNW-O model is suitable for modeling the decision-making scenario
where an emerging travel mode is introduced to a multi-modal transportation system.
The emerging mode is likely to be associated with new attributes that are not familiar
to travelers, which brings additional uncertainty and should be treated as an oddball
alternative (Song, 2019). For instance, connected and autonomous vehicles (CAVSs) are
planned to be introduced to transportation systems in the future. CAVs are expected to
provide unprecedented service features, such as avoidance of potential crashes due to
the smooth driving and effective utilization of in-vehicle travel time due to the fully
autonomous driving technologies. Such unique attributes may provide incremental
travel utility but also a higher perceived uncertainty. Thus, it would be suitable to model
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the CAVs as an oddball alternative and predict the market penetration via the proposed
MNW-O model. Alternatively, the rapid development of urban agglomeration can
make traveling to locations in neighboring cities more frequent, providing travelers
with extra opportunities via inter-city trips, which may also form an important oddball
alternative in the destination choice problem (Huang et al., 2020c). Additionally, the
effect of heterogeneity has been extensively recognized as an important issue in
destination choice behavior (e.g., Schmid et al., 2019). The proposed model is thus
applicable to assessing travelers’ decision-making among destination locations within
an urban agglomeration that have distinct travel distances, different service levels, and

unique opportunities.

The proposed model opens up the following potential research directions for future
studies: (1) further handling the independence assumption and the IIA property
remaining in the subset of conventional alternatives; (2) considering the oddball
alternative with decremental utility perception of their unique features that lower the
choice probability, e.g., the range anxiety of electric vehicle drivers; and (3) analogous
to the development of mixed logit models (McFadden and Train, 2000), generalizing
the proposed model by mixing the Weibull distributed error term with additional error
terms with various distributional assumptions, e.g., the Fréchet distribution, the Log-
logistic distribution, and the family of Log-normal distributions (Varela et al., 2018;
Xie et al., 2020; Nirmale and Pinjari, 2023). On this basis, the outcome models may
reproduce more general oddball effects based on the more flexible total error
distributions while benefiting from the multiplicative error structure, which is
consistent with the psychophysical laws of how individuals perceive attribute levels

with varying magnitudes (Chakroborty et al., 2021).
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Methodology Part 1lI. Modeling aggregate travel demand:

Development of equilibrium models in future transportation systems
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Chapter 5 From disaggregate travel choice to aggregate network
equilibrium: Development of Beckmann-type equilibrium model
formulation based on generalized Luce-form RUMs

5.1 Beckmann’s MP formulation for UE: A retrospective

This section revisits Beckmann’s mathematical programming (MP) formulation for the
user equilibrium (UE) model that endogenously accounts for the flow-dependent route
disutility in traffic assignment (Beckmann et al., 1956). To obtain the Beckmann-type

MP formulation, the following assumptions are made:

UAL. Link travel disutility is separable, continuously differentiable, nonnegative, and

increasing with respect to link flow.

UA2. Path travel disutility is an additive function of link disutility, i.e., 7° = > 7, .
aehA,

Given the UE condition that assumes every traveler to be rational and have perfect
knowledge of travel disutility, the UE problem is to minimize the path disutility for
every unit of incremental OD demand. Figure 5.1 illustrates the UE condition between

a single OD pair.

T(O).,.... LG

q

Figure 5.1. Illustration of equilibrium condition

In Figure 5.1, g denotes the trip rate between the OD pair, v denotes the travel

disutility. The orange line indicates the demand curve, which is the inverse OD demand
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function D™(q) . In the UE problem with elastic demand (UE-ED) in multi-OD

networks, the demand function is assumed to be separable, i.e., D" (qrs) between OD
pair rs depends only on g™ and is independent of demands between other OD pairs. The
blue line indicates the supply curve as the demand-dependent OD travel disutility
function z(q), which is defined as the average path travel disutility between the OD
pair (Beckmann et al., 1956) and equals to the disutility of each used path under the

equilibrium condition. In the multi-OD network, owing to the congestion effect on
disutility (e.g., flow-dependent road travel time), the OD travel disutility is a function
of demands between all OD pairs, i.e., °(q), where q denotes the vector of OD
demands. The UE condition is reached when the size of the shaded area in Figure 5.1
is maximized, which is depicted by the shaded area as the difference between the area
under demand curve and the blank area under supply curve. This condition is analogous
to the solution to competitive equilibrium that maximizes the total aggregate consumer
surplus in the transportation network. Hence, the objective of UE problem can be

expressed as maximizing the size of the shaded area as follows:

maxZ = 3 ["' 0% (w)do-[, Y r(a)da", (5.1)

rseRS rseRS

where C1 denotes some integration path with respect to OD demands from (O, ..., 0, ...,
0) to (g*%, g2, ..., ).
At the UE condition, the following conservation constraints should be satisfied:

> f=0"VrseRS, (5.2)

keK"™

where f,”* denotes the flow on path k between OD pair rs, K denotes the path set

between OD pair rs. Path flows should satisfy the following nonnegativity constraints:

f©>0,vke K® rseRS. (5.3)
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Then we focus on the second term on the right-hand side of Eq. (5.1), which is a
line integral that indicates the total area under demand curves. By definition, the supply

curve indicates the average path disutility, i.e., z*(q)= > B -7’ (f). 7 () is the

keK"™

path disutility function, and f denotes the vector of all path flows in the network. R" is

the choice proportion of path k between OD pair rs, such that f* =R"-q" and

df,” =B, -dg". The line integral J' Z " (q)dq" can then be expressed as follows:

1 rseRS

> e (f)df”, (5.4)

€2 rers keK's

where Cz is some path of integration with respect to path flows between (0, 0, ..., 0)
and (£, f,*, ..., £). Hence, the UE objective function can be expressed as:

maxz =Y [* D% (@)do-[_ ¥ X o (F)d. (5.5)

rseRS 2 rseRS keK'™

In the problem with fixed OD demands, the term " Iqm D" (w)do isfixed (i.e.,

rseRS

a constant) and can be removed from the maximization problem. Objective function

(5.6) can then be equivalently expressed as

minZ =[_ > >« (f)dfe. (5.6)

? rseRS keK"™
For the dimensions other than route choice, such as the destination choice and mode
choice, the separable destination disutility function z*(q*) and mode disutility
function 7 (q;f) are often adopted instead of the non-separable disutility term z,° (f)

to formulate the equilibrium trip distribution and modal split model, respectively.
Taking the equilibrium modal split problem as an example, the objective function (5.6)

can be expressed based on regular integrals as follows:

minz=Y Y [" e (0)do. (57)

rseRS meM "™
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In the route choice problem, the line integral term cannot be derived in a
straightforward way as the OD disutility depends on path disutility. By the assumption
of additive path disutility (UA2), path disutility is determined by the link disutility that

is dependent on link flow Xa.

o (f)= D D o5 (% (f)). vkeK®, rseRs, (5.8)

rseRS keK™
where &7 is a binary variable denoting the link-path incidence relationship. o, =1 if

link a is on path k between OD pair rs; 6, =0, otherwise. The link flow is determined

by the path flows based on the following definitional constraint:

X (f)=> > &5 -f° vaeA. (5.9)

rseRS keK"™

To obtain the objective function (5.6), we first show that the line integral therein is

independent of integration path, where the notation rs is omitted in this paragraph for

Jr, or,  O0r, Or,
of, of, o,

.« =1), we have

a

8ri:%226r3

i,j denotes the set of common
of, of & X

links used by paths i and j. Hence, the Jacobian matrix VT is symmetric, and the line
integral in Eq. (5.6) is independent of integration path.
Therefore, by selecting an arbitrary path of integral, e.g., ( f**, 0, ..., 0), ( f**, %,

0,...,0), ... (f**, 5, ..., £), objective function (5.6) can be written as
min Z :j“nq“(a),o ,0)dw+.. +j (. o e)deo,  (5.10)
0

Taking Eqg. (5.8) into Eqg. (5.10), the objective function can be expressed as

Ifl 7,(03 - 0+0+..+0)do
minZ =>| + . (5.11)

acA

+j (O 4SS B 08 ) de
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By SUbStltUtlng a);fll =5;i.a), ey @ =0y fali_i_“._i_é'l’s CfTS

a,k-1 a,k-1

+6% -, Eq. (5.11)

can be rewritten as

g ULl 1l grs

11 11 al’ 1 ak’ 'k 11 11
T (a) )da) +_[ T (a) )da)
0 a al a,l 0;11 f111+---+5§,1k71' £, 2 a,k a,k

TS o (5.12)
:EAJ.O kek 7,(w)do
Integrating constraints (5.9), Eq. (5.12) can be further expressed as
min Z =sz“ 7, (0)do, (5.13)

acA

which is the Beckmann transformation for the UE model with fixed OD demand.

5.2 Development of Beckmann-type SUE formulation: Disutility function,

composite disutility, and entropy

In the SUE problem, the assumption that travelers have perfect knowledge of travel
disutility is relaxed, and travelers’ perception error of travel disutility is additionally
considered. Under the SUE condition, travelers choose the paths that can minimize their

perceived travel disutility. Different from the UE model where the average path travel

disutility is used as OD travel disutility, the satisfaction function S™, i.e., the composite

utility/disutility indicating the expectation of the maximum travel utility (or minimum
travel disutility) between each OD pair, is used to represent the OD travel utility at SUE.

The satisfaction function can be expressed as follows:

s*(a)= Y R"-Sf; (f). ¥rseRs, (5.14)

kek"™

where S(ﬁf) (f) is the achieved path utility, i.e., the expected utility conditional on the

event that path k between OD pair rs is chosen. The SUE objective function can be
obtained by replacing the deterministic path disutility in Eq. (5.6) with the achieved
path disutility. Embedding different RUMSs in the SUE problem will lead to different

satisfaction and different SUE model formulations.
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This section focuses on the entropy-based Beckmann-type MP formulations of the
SUE models that integrate RUMSs with “Luce-form” choice probabilities (Luce, 1959)
and their generalizations. Owing to the invariance property of the “Luce class” error

distributions underlying these RUMs, the satisfaction functions have closed-form

expressions and satisfy S, (f)=S"(a),vk e K", rse RS (Mattsson et al., 2014),

which enables the incorporation of stochasticity via entropy terms. This section
showcases the formulations of SUE models embedded with commonly used RUMSs in
literature, including the MNL model, MNW model, and extended logit models that

address the correlation among alternatives.

5.2.1 MNL-SUE formulation

We start with the MNL model, which is the mostly used Luce-form model with an
additive utility function. Taking the route choice problem as an example, the perceived

travel utility of path k between OD pair rs can be expressed as follows:

Ve (F)=—7(f)+&°, Vke K™, rseRS . (5.15)

V,* denotes the perceived travel utility in the MNL model, which is an additive function

of the deterministic utility v;° =—z,° (f) and the 11D Gumbel random error &°.

Random utility model Beckmann-type SUE
formulation
Deterministic  Flow-dependent Additive
utility travel disutility Beckmann term
k a'
, Additive Z Z f,‘
Perceived o * 1seRS keK'™
utility utility
prs function
k
Random Composite Entropy term
error utility

& _ 2 2 i (g =)

Figure 5.2. lllustration of Beckmann-type MNL-SUE formulation development
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The development of the objective function of MNL-SUE model is illustrated in
Figure 5.2. Instead of the deterministic path utility, the MNL-SUE model considers the
perceived path utility achieved from the MNL model, which is expressed as follows

(Anas and Feng, 1988):

1 f (5.16)
vk e K® rse RS

The objective function of the SUE model is then expressed as follows:

maxZ—_[ D> s ()t

2 rseRS keK'™

L g . (5.17)
:jcz rSEzRSkEZK'S Tk (f)__l Z frs dfk
keK™

Based on the Beckmann transformation introduced in Section 5.1 and the conservation

constraint q" = Z f°,Vrse RS , Eq. (5.17) can be rewritten as the following

keK'™

minimization problem:

minzzgj:% o)do+ Y I [" —Ina)d > —Inpdp

rseRS keK"™ rseRS . (518)
_ZJ' da)+—z > frs(lnf“—l)——Zq (Ing®-1)
acA I'SERS keK'™ I’SERS

In the case of fixed OD demand, q" is constant and can be removed from the objective

function, Eq. (5.18) can be rewritten as

minZ = ZI da)+— > Y £ (Infe-1), (5.19)

acA rseRS kek'

which gives the objective function of Fisk’s (1980) MNL-SUE formulation. The
conservation, nonnegativity, and definitional constraints of the MNL-SUE model are

Egs. (5.2), (5.3), and (5.9) inherited from the UE model.
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Alternatively, the MNL-SUE objective function can be developed based on the

additively separable utility function (5.15). Given that the deterministic term is related

to the Beckmann term as shown in Section 5.1, we focus on the error term &,°. For
travelers choosing path k between OD pair rs, the value of perceived utility V,” is the

maximum among all paths, i.e., (&°) =max{-z]* +7° +&°,~1; +7° + &5 60 | -
kek"™

Based on Property 6 of the Gumbel distribution (Table 2.1), (gf ) is still identically

Gumbel distributed with scale parameter 6. The expectation of (gkrs ) is

=(a) = S oplo- [T (1) 57 ()]

EKrS

> exp[—erlrs (f )}

_In leK"™

6 exp [—erk“ (f )] ’

(5.20)

where the third equality is obtained based on the MNL route choice probability

o __he_ exp[—Hrkrs(f)]

Y > exp[—@r{s (f)]

leK"™ leK™

. Taking Eq. (5.20) into the integral in Eq. (5.6), the

objective function of Fisk’s MNL-SUE objective function can be obtained following

Egs. (5.18)~(5.19).

5.2.2 Extended SUE formulations

This section discusses the MP formulation of some extensions to the basic MNL-SUE
model. The SUE model development based on the MNW choice model was first
introduced as a variant of MNL-SUE model that addresses the heterogeneity issue via
the multiplicative disutility function. Development of SUE models is then presented

based on two types of extended logit models, which address the correlations among
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travel alternatives by introducing either additional correction terms or a nested choice

structure.

5.2.2.1 MNW-SUE formulation

In the MNW model, instead of the additive utility function (5.15), the multiplicatively

separable disutility function is adopted (Fosgerau and Bierlaire, 2009):

VS () =V &%, Vk e K™, rseRS . (5.21)

In weibit-based models, V,* denotes the perceived travel disutility, v,° =z,° (f) is the

deterministic disutility, & is the random error assumed to be 11D Weibull variables.
The development of the MNW-SUE formulation is analogous to that of the MNL-

SUE model. For travelers choosing path k between OD pair rs, the value of V,* is the

.. . * . T. T
minimum among all paths, ie., (&) :mln{L-gf,L-ef,...,gE}. Based on

Property 6 of the Weibull distribution (Table 2.2), the expectation of (z; ) is

1

el) - By )|

= [ , (5.22)

where £ is the shape parameter. The third equality is obtained by substituting the

o (1)]”

MNW route choice probability R”* = [ — - Taking Eg. (5.22) into the

2 [Tlrs (f)}

leK™
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integral in Eq. (5.6) and removing " in the case of fixed OD demand, the objective

function of MNW-SUE model can be expressed as

minZ—j > ZS“ )df,”

2 1seRS keK ™

- > > f&s(f)-(Z(flfs)];.(fkrs); g

2 1seRS keK '™ leK'™

(5.23)

Alternatively, the MNW-SUE model formulation can be obtained based on the

logarithmic transformation relationship between weibit and logit models (Figure 5.3).

Random utility model Beckmann-type SUE
formulation
Deterministic Deterministic  Flow-dependent Multiplicative
disutility disutility travel disutility Beckmann term
n? 3 3 e (0
Vv
Mt % Log —) | > 2, Inz} (f)d
. . 15" ;L
Perceived -cative transformation
disutility wiliy 3§ ) e
prs function
k
Random Random Composite Entropy term
error error disutiltiy

7 wey  — ;> > A ()

Figure 5.3. Hlustration of Beckmann-type MNW-SUE formulation development
The weibit multiplicative disutility function (5.21) can be transformed to an
additive one by taking the log on both sides of the equation as follows:

InfV*(f)|=In| 0 (f) |+Ing’,Vke K*, rseRS.. (5.24)
k k k

As g follows the Weibull distribution with shape parameter £, —Ing,.” is Gumbel

distributed with scale parameter equal to £ . Following the development of the MNL-

SUE model formulation shown in Section 5.2.1, the objective function of the MNW-

SUE model can be obtained as follows:

minZ =] 3 3 Ing?(F)df+ 3 Zj —Ina)da) (5.25)

2 1seRS keK ' rseRS keK"™
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where the term regarding g' is removed in the fixed-demand problem. Inz® () is the
multiplicative Beckmann term (Kitthamkesorn and Chen, 2013).

In a higher-level travel demand analysis, such as trip distribution and modal split
problems, the destination and mode disutility are functions only dependent on the
corresponding destination and mode demands and Eg. (5.25) can be derived based on

regular integrals with respect to the demand. Taking the modal split problem as an

example, let g~ and 7, (q;f) denote the mode demand and demand-dependent

disutility function, the objective function can be written as

minz=Y 3 [“Ine (o da)+—z > (ngi-1),  (5.26)

rseRS meM ™ I’SERS meM "™

While in the traffic assignment problem, the path disutility cannot be directly
expressed based on the path flows. However, it is difficult to separate the path disutility
into link disutility owing to the inconsistency between the multiplicative disutility
function and the assumption (UA2) of additive path disutility. To obtain an MP

formulation, Kitthamkesorn and Chen (2013) assumes multiplicative path disutility, i.e.,

T, = Hra . Hence, the log of path disutility is an additive function of the log of link
achA,

disutility: Inz,® = Z Inz, . Eg. (5.25) can then be expressed as
aehA

minZ = Zj Inz, ( da)+—z > £5(In e -1). (5.27)

acA rseRS keK™

Eq. (5.27) is in accordance with the MNW-SUE formulation with the multiplicative

Beckmann transformation (Kitthamkesorn and Chen, 2013).

5.2.2.2 Extended logit SUE formulation with correction terms

Figure 5.4 illustrates the SUE formulation based on the path-size logit (PSL) model,
where a path-size (PS) factor is incorporated as a correction term that penalizes the

correlation (overlap) among paths.
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Random utility model Beckmann-type SUE

with correction term formulation
Deterministic Additive
ulility Flow-dependent Beckmann term
travel disutility I Z z d rs
1ddi Concton ) s )4l
y; itive rse e
Perceived utility [I“-m
age ¥ s
utility function _EPS*' - Z Z S -InPS;
v O iks iex
I Composite
Random Entropy term

error utility
m— ; >, > /(0
rscRS}\ K-

Figure 5.4. Hlustration of Beckmann-type PSL-SUE formulation development

The utility function of PSL model is expressed as

VE(F)=-7¢ (f)+%ln PS;° +¢&.,Vke K® rseRS. (5.28)

The correction term is added to the deterministic utility without influencing the

random error; hence, it can be directly integrated into the objective function (5.17):

maxZ_j Y. 2 S (f)die

2 rseRS keK'™
i , - (5.29)
= -7 (f In PS:° ——In df."”®
ICZ rseZRS kezl('s k ( ) Z frs k
keK'™
which can be rewritten as follows in the case of fixed OD demand:

minz =3 [z, da)+1 DD IR AR (L —1)—1 DY PSP . (5.30)

aeA 9 rseRS keK"™ 9 rseRS keK"™

5.2.2.3 Extended logit SUE formulation with a nested choice structure

This section illustrates the SUE formulation based on the nested logit (NL) model,
where the travel choice is considered in a nested structure with multiple choice levels.
The two-level NL model with marginal and conditional choice levels is adopted to

exemplify the SUE formulation. The utility function of NL model is
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A (f,q):—zﬁ (f)—rrs(q)+guri +¢,;,Vke K ,ueU® rseRS, (5.31)

u

where z;; and z;° are the utility of individual alternative k and common disutility of

nest u; ¢, and &;° are random errors at the conditional and marginal choice levels.

Based on the distributional assumptions of NL model (Ben-Akiva and Lerman, 1985),
g, and g, are independent, ¢; are IID Gumbel variables with scale parameter 6, ,

e, +¢&, are 11D Gumbel variables with scale parameter 6, satisfying 0< 6, <6, .

The NL choice probability can be expressed as the product of marginal choice

probability and conditional choice probability:

P =P B, VkeK,ueU® rseRs, (5.32)

where the conditional choice probability of choosing alternative k given nest u is chosen

can be obtained via the MNL model with scale parameter 6, :

e exp -0 (F)]

> Y exp[ 6,05 (F)]

rs
leKy leK[®

Rl = VkeKPueU® rseRS. (5.33)

The marginal choice probability of nest u is obtained via the MNL model with scale

parameter 6, :

,YueU"® rseRS, (5.34)

where S° denotes the composite utility of nest u between OD pair rs obtained at the

conditional choice level:

S (F) - Y exp| -6,z ()] vueU® rseRs. (5.35)

u
k keK®
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The NL-SUE model can thus be obtained following the development of MNL-

SUE formulation at different choice levels as illustrated in Figure 5.5.

Random utility model with Beckmann-type SUE
nested choice structure formulation
Deterministic Additive
individual utility Beckmann term
s
Vi Flow-depend
pendent I o (£)df;
Deterministic travel disutility ,,ZR; ; kz;‘ ¢ "

common utility — d s
(!
. Z z

Perceived S -
utility + “ ('
v Random error — Entropy term
individual Composite _
& utility — Z Z Z [ (luj',k —1) (lnq;’ —l)}

ERS wel™ kek
Random error —

common I — Z Zq (]11 q”—])

(;’ * u rseRS well
M

Figure 5.5. Hlustration of Beckmann-type NL-SUE formulation development

Based on the distributional assumptions and Property 6 of the Gumbel distribution

(Table 2.1), the expectations of error terms can be written as follows:
> exp( —G,r; (f )
E|: Js *:|=_In|eKrs
(e2) =5 exp(~0,z5 (7))
1

- —H—kln Ry , (5.36)
L fre +Lin > e
Hk k keK{®

> exp[—@u (rv'f (a)+Sy (f ))}

sy -1 ey
E[(gu ) }_ 0, ! exp| -6, (7;° (a)+ 87 (f)) ]

1

=——InP"™ . 5.37
g " (5.37)
1

=——Ing” +—In >y
HU uel™

Substituting Egs. (5.36) and (5.37) into the integral in Eq. (5.17) gives the objective
function of the NL-SUE model:
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maxZ =] 3 > Z{ Inf'5+9—In >t }dff

2 rseRS ueU™ keK' k keK®

gy z[rm)—%mq En s o

. (5.38)

rseRS yey ™ ueu’

where the first integral corresponds to the conditional choice level and the second

integral corresponds to the marginal choice level. In Eq. (5.38), C1 and C2 denote some
integration path between (0, 0, ..., 0) and (q,*, @;', ..., "), and between (0, 0, ..., 0)
and ( f3', f3', ..., f)), respectively. Considering separable nest-specific utility
72*(9;°) and fixed OD demand g, and using link disutility to express path disutility

via the Beckmann transformation, Eq. (5.38) can be rewritten as

minZ = ZJ' da)+0—2 > Y fe(infr-1)

acA k rseRSueuU'™ kEKrs

-3 ¥ [ lopon 21| % S oy

rseRS ueU" rseRS yeU "™

(5.39)

which gives the objective function of the NL-SUE model. Compared with the MNL-
SUE model, the NL-SUE model has additional definitional constraints for the

relationship between path flow and nest-level demand as follows:

qr =Y, fi,vueU™ rseRS. (5.40)

keKy®

Alternatively, the NL-SUE formulation can be directly obtained via the

satisfaction function. The NL satisfaction function between OD pair rs is as follows:

e S| -a - tn 3 0) |

u ueu™ k keK®
al - (5.41)
O
L > exp(—@urf)-[ > exp(-O,7; )J
eu ueu”™ keK®

From the marginal choice probability function in Eq. (5.34), we have the following:
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HLI

G
( JZi qrs -exp(—@urf)-[ z exp(_ekzﬁ )]

(5.42)

> exp(-O,7y) e

keK®

> exp(-0,z7):

ueu”™

G
From the conditional choice probability function in Eq. (5.32), we have the following:

> exp(-6,25 )= U 'exi(rs_gkr“ri) . (5.43)
uk

rs
leK]

Substitute Eq. (5.43) into Eq. (5.32), we have

6LI

o q° -exp(—eururs)-[qurs -exp(-gr; )JB
6,
(5.44)

) furS
> exp(—@urf)( > exp(—Herfﬁ)J = = :
ueu™ keK{® G

The NL composite utility can be re-expressed by substituting Eq. (5.41) into Eq. (5.38)

O

oa(-ass)| T 2L
uk

0, dy

(5.45)

= —iln q° +iln q, +7, —iln q’ +iln fo+z,
eu 0u u u Hk u ek uk uk

Following the invariance property, the achieved perceived disutility of path k in nest u

between OD pair rs satisfies S(rjk) =S8",Vke K ,ueU", rseRS. Replacing 7,° with

S In Eq. (5.6) and removing q" in the case of fixed OD demand lead to the NL-SUE

objective function:
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which is consistent with the objective function developed in Eq. (5.39).

5.3 A partial linearization algorithm for solving the Beckmann-type SUE

formulation

Different from the variational inequality or fixed-point formulation, the Beckmann-type
MP formulation of equilibrium model is a convex program that enables many readily
available convergent and efficient solution algorithms. The objective function can be
utilized to obtain appropriate search directions and facilitate the determination of step
size and stopping criterion in the solution algorithm. Taking advantage of this property,
this section describes a partial linearization algorithm embedded with a self-regulated
averaging (SRA) scheme for solving the equilibrium models considered in this research.
Compared with the complete linearization algorithm and sequential solution procedure
widely used for solving the equilibrium models, the partial linearization algorithm is
more efficient while guaranteeing convergence (Evans, 1976; LeBlanc and Farhangian,

1981, Patriksson, 1994).

The partial linearization algorithm involves the search direction finding for
deriving auxiliary flow pattern and the line search for determining step size and
updating decision variables. The search direction is determined by solving a partial
linearized subproblem as a first-order approximation of the original problem. Given the

decision variables (travel demands) and corresponding travel disutility at iteration n-1,
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g™ and r(f”'l), the search direction (i.e., auxiliary travel demand y) at iteration n is
determined the subproblem with following objective function:
min Z =27, (y)+Z,(y)

- Z Y T, (qi”1)+zgi- y; (Iny, -1)

(5.47)

The constraints remain the same for the auxiliary demands y. In the subproblem, the

Beckmann term Z1 is linearized via a first-order approximation, which fixes the travel

disutility ri(qi”’l) based on the current demand pattern ™. In the multiplicative

Beckmann term, the travel disutility is fixed as Inz, (qi”’l). Z> represents the entropy

terms, where decision variables are directly substituted by auxiliary travel demand y.
Thus, the subproblem is a convex program with linear inequality constraints. In the line
search, the moving step size is determined based on the SRA scheme, which improves
the efficiency of the widely used method of successive average scheme (Liu et al.,

2009). The procedure of partial linearization algorithm involves the following steps:

Step 0. Initialization.

. Initialize primal variables g°=0, and the free-flow travel disutility;

J Set outer iteration counter n = 1;

. Derive auxiliary flow pattern y* by solving the partial linearized subproblem;
. Initialize step size: ¢" =1, y' =1. Update primal variables: gq'=y.

Step 1. Direction finding.

. Update travel disutility based on the current demand pattern g";
o Setn=n+1;
. Derive auxiliary flow pattern y" by solving the partial linearized subproblem.

Step 2. Line search.

. Derive the step size ¢" based on the SRA scheme:
P"=1/y" (5.48)
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n-1 n-2

>

-q

n-1 'f n_ n-1
: {7 v, it fy"-q™ 2]y | 5.49)

a "o, otherwise
where o, >1 and o, <1.
Step 3. Update primal variables.
q"=q"" +¢"(y"~q"").

Step 4. Convergence test.

. If max{qn -q™ } <9, terminate the algorithm, where & is a convergence

tolerance at which the procedure stops. Otherwise, go to step 1.

Specifically, the optimality conditions of the MP formulation give rise to
analytical expressions of the decision variables based on dual variables, which enables
the iterative balancing scheme for direction finding. The iterative balancing scheme is
an efficient algorithm to obtain both primal and dual variables, which has been widely
used for solving SUE models with side constraints (Bell, 1995; Bell and lida, 1997;
Chen etal., 2009; Ryu et al., 2014). The dual variables associated model constraints are
iteratively adjusted based on the primal variables derived from the MP model
formulation. The convergence of the iterative balancing scheme has been well proved
(Bell and lida, 1997). As will be described in Chapters 7-9, the partial linearization
algorithm is further embedded with an iterative balancing scheme to solve advanced
equilibrium models with side constraints (e.g., capacity constraints). The adjustment
factor for the dual variable associated with the conservation constraint is derived
following Ryu et al. (2014); while the adjustment factor for the dual variable associated

with the side constraint is derived following Chen et al. (2009).
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Chapter 6 Considering path order and perceptual correlations in a
tolled network with ordered GEV model

6.1 Introduction

Based on the ordered path-size generalized extreme value (OPSGEV) model developed
in Section 3.1, this chapter proposes an advanced bi-criteria stochastic user equilibrium
(BSUE) model for congested road networks with tolls. In equilibrium traffic assignment
considering the tradeoff between cost and time, most of existing models are formulated
using path flows as the decision variables (Dial, 1996; Yang and Huang, 2004; Huang
and Li, 2007; Sun et al., 2019). While few efforts have been made to incorporate the
information of ranking of path toll. Leurent (1993) proposed an MP formulation that
implicitly considers the order of path toll in the objective function. On this basis, Xie
et al. (2021) modified Leurent’s MP formulation to consider the path order information
by using the cut-off points to distinguish the travel demand assigned to each pair of
paths with adjacent orders of tolls. With the integration of path ordering, the model
formulation can better capture the time-cost tradeoff among the heterogenous travelers.
However, the path order information is mainly introduced at the aggregate level of the
MP formulation, which lacks behavioral interpretation at the individual route choice

level that can explicitly consider both perceptual and physical correlations.

Furthermore, the equilibrium route choice in tolled networks is often modeled by
combining travel time and monetary cost in a generalized travel cost/time term, which
cannot fully capture travelers’ decision-making behavior. Wang and Ehrgott (2013)
proposed a more general concept, i.e., time surplus, which has solid foundation from
the decision-making theory and can be adopted in the Beckmann-type MP formulation
to flexibly replicate the bi-objective user equilibrium (BUE) condition. However, it
assumes travelers have perfect knowledge of the transportation network condition and
ignores subjective uncertainties of travelers. Ehrgott et al. (2015) proposed a multi-
objective stochastic user equilibrium model to further consider the random perceptions

of all path attributes. However, the MNL-based MSUE model cannot capture the
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various types of path correlations, and it also lacks an MP formulation that allows for
easy interpretation of optimality conditions and development of efficient solution

algorithm.

Motivated by the abovementioned issues, this chapter aims to develop an advanced
BSUE traffic assignment model while specifically accounting for the effect of path
ordering information, which is an important path attribute in tolled networks. A new
Beckmann-type MP formulation is developed to bridge the OPSGEV route choice
model developed in Section 3.1 to the aggregate time-surplus-based BSUE model.
Benefiting from the integrated OPSGEV model, the perceptual correlation associated
with ranking of path toll and the physical correlation arising from path overlap can be
simultaneously considered. Furthermore, to model subjective uncertainties in the
tradeoff between cost and time, the time surplus concept is extended to consider random
perception of the path travel time together with physical and perceptual path
correlations. In the developed MP formulation, the path order information is explicitly
integrated in the decision variables and both types of path correlations are considered
in the objective function, which provides a behavioral interpretation of individual route

choice behavior in tolled networks following the random utility maximization principle.

6.2 Integrating the OPSGEV model in the time-surplus-based bi-objective
equilibrium analysis

6.2.1 Perceived time surplus maximization bi-objective stochastic user
equilibrium

This section introduces the perceived time surplus to further account for the tradeoff
between cost and time. To start with, we briefly review the concept of time surplus
originally proposed by Wang and Ehrgott (2013), which is more general than the

commonly used generalized travel cost and has sound economic interpretation for

decision making. The time surplus on path k between OD pair rs, TS.®, is defined as
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the difference between the maximum travel time travelers willing to spend, t™ (CE) :

and the actual travel time t.”:
TS =t™ (cf)—tkrs, (6.1)

where t™ (ck’s) can be obtained based on a decreasing indifference curve with respect

to the path toll ¢, (Wang and Ehrgott, 2013). Figure 6.1 provides a simple illustration

of time surplus used in the BUE analysis.

Indifference curve

Time
= « == Travel time of Path 1

Travel time of Path 2

Negative
time surplus

Posi L:i ve
time ,surplus{

Toll of  Toll of Toll
Path 1 Path 2

Figure 6.1. Hlustration of time surplus in BUE analysis

The above time surplus illustration is constructed based on deterministic monetary
cost and travel time, which does not consider the subjective uncertainties of travelers.
Although the tolling scheme is predetermined and well disseminated, travelers may
have imperfect knowledge of the travel time in the tolled network. In this chapter, we
consider travelers have random perception errors on the flow-dependent travel time but
know the toll on each path. Hence, the perceived time surplus can be defined as the
difference between the maximum travel time willing to spend and the perceived travel
time. Consistent with the widely used logit-based travel choice models, the travel time
perception is assumed to follow the reversed Gumbel distribution. The perceived time

surplus can then be expressed as follows:
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PTS? (o, ) =t™ (¢ )-T,* ()

) 6.2
™ (o) =t (F) & | =TSP (F) + 67, Vk € K™, rs e RS (6.2)

where T, (f) denotes the perceived travel time, and ¢ is the Gumbel distributed error

term. Compared with the time surplus described in Figure 6.1, the perceived time
surplus illustrated in Figure 6.2 is no longer deterministic, but Gumbel distributed due

to the consideration of random travel time perception.

/ Perceived travel time
Time _ /. distribution of Path |

Perceived travel time
distribution of Path 2

Perceived
time surplus

. ¥ =
Perdeived *y

. | 1
time surplus; |
i 4

1
Toll of  Toll of Toll
Path 1 Path 2

Figure 6.2. Hlustration of perceived time surplus

On this basis, we define the perceived time surplus maximization bi-objective

stochastic user equilibrium (PTSmaxBSUE) as follows:

Definition 1. Under the PTSmaxBSUE conditions, all individuals are travelling on the
path with the maximum perceived time surplus among all the paths between each OD

pair, i.e.,
f* =" B[ PTS? (¢ f) = PTS? (¢, f), ¥l # ke K™ |, vk eK®,rseRS.  (6.3)
The OPSGEV route choice model can then be encapsulated in the PTSmaxBSUE

condition to account for both path order correlation and path overlap in the perceived

time surplus framework. The utility function (3.1) is substituted with the perceived time
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surplus, where the systematic utility v,° is represented by time surplus TS, . Owing to
Property 4 of the Gumbel distribution (Table 2.1), subtracting a constant from each
alternative will not change the logit-based choice probability. An equivalent OPSGEV
utility function can be obtained by subtracting t™ (0) from TS;® in Eq. (3.1):
Vi +0i|n PS™ +0i|nw;; 46" 15" Wk e K, ueU®,rseRS, (6.4)
k u

where the systematic utility v,” is represented by TS,* and hence replaced with —z,°.

rs

7. Is a disutility term introduced to facilitate constructing the equivalent Beckmann-

type MP formulation for the PTSmaxBSUE condition:
7 =TS +1™ (0)

[t ()= ()|

Based on the utility function (6.4), the OPSGEV model can be incorporated into Eq.

(6.5)

(3.6) to derive the corresponding route choice probability P”.

6.2.2 Formulation of OPSGEV-based PTSmaxBSUE model

Figure 6.3 demonstrates bridging the OPSGEV individual route choice model to the
MP formulation of the aggregate path-correlation-based PTSmaxBSUE model. Based
on the utility function (6.4) and choice structure of the OPSGEV model (Figure 3.2),

the decision variable f,’ inherently incorporates path order information based on the

path subset u determined using the ranking of path tolls. The conservation, definitional,
and nonnegativity constraints can be written according to the decision variable. Terms
in the objective function can be derived associated with the marginal and conditional
choice levels and composite disutility in consistent with the hierarchical choice

structure.
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Figure 6.3. Hlustration of formulating aggregate traffic assignment model based on

OPSGEYV route choice model

Following Figure 6.3, the OPSGEV-based PTSmaxBSUE model is formulated as

min Z = ZIOXa t,

s.t.

rseRS keK'

w)do+ Z Z fk's-g(rkrS

)

K™ +M
+—Z > tee(Infy-1)
k rseRS  u=l keK
- Z > £ InPS? (6.6)
k rseRS kek ™
K'S+M
(2D (s ulfns e
rseRS u=l keK® keK®
‘K'S+M
__z S OY EEnwg
u rseRS u=l kEKrs
k+M
D>t =10 vkeK® rseRS (6.7)
u=k
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> D on i =x,VaeA (6.8)

rseRS keK '

> £*=0"VrseRS (6.9)

keK"™
fr>0,vke K" ueU®, rseRS (6.10)

Obijective function (6.6) corresponds to the equilibrium route choice pattern based on
the OPSGEV model given in Eg. (3.6). Constraints (6.7) and (6.8) are the definitional
constraints. Constraint (6.9) is the conservation constraint. Constraint (6.10) is the
nonnegative constraint. To show some qualitative properties of the proposed MP

formulation, two propositions are stated as follows:

Proposition 6.1. The proposed MP formulation (6.6)—(6.10) gives the equilibrium path
flow pattern of the OPSGEV model.

Proof. See Appendix Al for detailed proof.

Proposition 6.2. The path and link flow solutions to the MP formulation (6.6)—(6.10)

are unique.

Proof. See Appendix B1 for detailed proof.

6.3 Numerical examples
6.3.1 Toy network

This section illustrates the properties of the proposed equilibrium model based on the

small network as shown in Figure 6.4. The model parameters are 6, =0.1, 6, =0.05,

M =2, w, =0.5. The travel demand from node 1 to node 6 is 100 veh/hour. The link

attributes and path attributes are presented in Tables 6.1 and 6.2. The link travel times

are calculated via the Bureau of Public Roads (BPR) function:
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t,(x,)=t° -{1+0.15£ Xa ﬂ (6.11)

Cap,

There are three paths connecting nodes 1 and 6, i.e., path 1 with no toll, path 2 with a

medium toll $20, and path 3 with a high toll $40. The indifference travel times t™ (cf)

are specified at the last column of Table 6.2.

Figure 6.4. Toy network with tolled roads
(adapted from Li et al., 2023)

Table 6.1. Link attributes of toy network
Link Free-flow travel time (min) Capacity (veh/hour) Toll ($)

1-2 20 50 0
1-4 20 50 0
2-3 20 50 0
2-5 20 50 0
3-6 20 50 0
4-5 10 50 20
5-6 10 50 20

Table 6.2. Path attributes of toy network

ID Path Free-flow travel time (min) Toll (§) Rank t™ (C;s )
1 1-2-3-6 60 0 3 70
2 1-2-3-5-6 50 20 2 60
3 1-4-5-6 40 40 1 50

6.3.1.1 Model outcomes

This section presents the outcomes of the proposed OPSGEV-PTSmaxBSUE model
and compares it with competing models, including the TSmaxBUE model without

considering perception error, the MNL-PTSmaxBSUE model without considering path
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correlations, the PSL-PTSmaxBSUE model focusing on the physical correlation only,

and the OGEV- PTSmaxBSUE focusing on the perceptual correlation only.

The values of objective terms are summarized in Table 6.3. The objective function

is separated into three parts, i.e., Zl:Zonata(a))da)Jr > fkfs.g(rkrs) as the

rseRS keK"

Beckmann term representing deterministic path disutility (opposite of time surplus),

‘K%M

z, _1 DI -(In fre —1)—i > > £2-InPS? asthe entropy term that

gk rseRS u=1 kgKJS k rseRS kekK"™

corresponds to the conditional choice level considering physical correlations, and
K™ K"™+M

o-(f-H)2 S (Dol T rT Y e s

rseRS u=1 keK® keK® u rseRS u=l keKy®

the entropy term that corresponds to the marginal choice level considering perceptual
correlations. As can be expected, the consideration of perception error increases the
usage of inferior paths and hence increases the values of Z:1 in the four PTSmaxBSUE
models. By incorporating different path correlations, the PSL-, OGEV-, and OPSGEV-
PTSmaxBSUE models have lower values of Z1 than the MNL-PTSmaxBSUE model.
In particular, the proposed OPSGEV-PTSmaxBSUE model accounts for both physical
and perceptual path correlations and has the lowest value of Beckmann term (Z1) but

the highest value of entropy terms (Z2 + Z3).

Table 6.3. Comparison of objective terms

MNL- PSL- OGEV- OPSGEV-
TSmaxBUE
PTSmaxBSUE PTSmaxBSUE PTSmaxBSUE PTSmaxBSUE
Z1 6129.644 6157.045 6148.413 6151.492 6144.563
Z2 \ 2523.659 2736.924 1844.468 2054.621
Z3 \ \ \ 3614.754 3613.163

Figure 6.5 further compares the time surplus and flow of each path resulted from
the different models. The TSmaxBUE model leads to an equal time surplus for each

path, a relatively low traffic flow on Path 2, and relatively high flows on Paths 1 and 3.
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The PTSmaxBSUE models tend to have more diverse path flow patterns and different
path time surplus. Owing to the incorporation of perception error, Path 2 carries a larger
travel demand with lower time surplus. The PSL-, OGEV-, and OPSGEV-
PTSmaxBSUE models have more similar time surplus and path flow patterns to the
TSmaxBUE model than the MNL-PTSmaxBSUE model. These results are consistent
with the observations from Table 6.3, which can be attributed to the consideration of

path correlations. The introduction of objective terms with respect to path correlations,

including the term related to physical correlation (i.e., 1 z Z £ -InPS.S) in Z2,

k rseRS keK"™

and term Zs related to perceptual correlation, lowers the ratio of the diversification term

indicating travelers’ completely random choice behavior without considering path

‘Kr5‘+M

disutility(i.e.,eiz > ¥ fe(Infp-1)).
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Figure 6.5. Results of different bi-criteria traffic assignment models

6.3.1.2 Effect of path correlations

Time surplus

This section investigates the effect of physical and perceptual path correlations on the

equilibrium assignment pattern. Figure 6.6 compares the performances of the four

PTSmaxBSUE models in the toy network under varying degrees of physical path

correlations (Figure 6.6(a)). With the decrease in path overlap, i.e., increasing value of

the PS factor as shown in Figure 6.6(b), the OPSGEV- and PSL-PTSmaxBSUE models

degenerate to the OGEV- and MNL-PTSmaxBSUE models, respectively. In the case

when path overlap is extremely high (i.e., x=0), the physical correlation dominantly

influences the route choice behavior, making the OPSGEV- and PSL-PTSmaxBSUE

models result in similar path flows.

20 (104+2)*(1/3) (50-x)*(1/3)

(a) Toy network with varying path overlaps
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Figure 6.6. Comparison of model outcomes under varying path overlaps

Figure 6.6(c) investigates the difference in link flow patterns between the four
PTSmaxBSUE models and the TSmaxBUE model. The root mean square error (RMSE)
is adopted to compare the model results:

RMSE = \/2£p|—Ai°UEJ , (6.12)

acA

where p, and p.F denote the choice proportions of link a (ratio between link flow and

total demand) that are obtained from the PTSmaxBSUE model and the TSmaxBUE
model, respectively. |A| is the number of links in the network. The comparison results
are presented in Figure 6.6(c). The OPSGEV- and PSL-PTSmaxBSUE models have
varying RMSE values dependent on the degree of path overlap, while the RMSE of
OGEV- and MNL-PTSmaxBSUE models owing to the neglect of physical correlation.

173



The difference between the RMSE values of the four PTSmaxBSUE models implies

different effects when considering physical and perceptual path correlations.

==0PSGEV-Z1 PSL-Z1 OPSGEV-(Z22+Z3) PSL-Z2
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Figure 6.7. Effect of perceptual correlation

Figure 6.7 illustrates the effect of perceptual correlation based on the values of
different objective terms. The x axis is the ratio between dispersion parameters 6, /6, ,
which is the dissimilarity parameter in the OPSGEV-PTSmaxBSUE model. A higher
value of the dissimilarity parameter implies lower perceptual path correlation and a

lower degree of competition among adjacently ranked paths. With an increase in the

dissimilarity parameter, the impact of perceptual correlation decreases, as the value of

entropy terms decreases while the value of Beckmann term increases. When 6, /6, =1,

the OPSGEV-PTSmaxBSUE model degenerates to the PSL-PTSmaxBSUE model.

6.3.2 Nguyen-Dupuis network

This section illustrates the applicability of the proposed model in the Nguyen-Dupuis
network (Nguyen and Dupuis, 1984) as shown in Figure 6.8. Four OD pairs are
considered, i.e., 1-2, 1-3, 4-2, and 4-3, with OD travel demands equal to 400, 800, 600,

and 200 vehicles per hour, respectively. The link travel times are calculated as follows:
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Figure 6.8. Nguyen-Dupuis network

(6.13)

In this experiment, the roads in the city center (i.e., links 5, 6, 7, 8, 10, 12, 14) are

tolled. The values of o, and g, of each link and link tolls are presented in Table 6.4.

Based on the road tolls, the toll on each path can be obtained. Between each pair, the

paths are ranked according to path tolls. Attributes of the 25 paths connecting the four

OD pairs are shown in Table 6.5.

Table 6.4. Link attributes of Nguyen-Dupuis network

Link a, B, Toll ($) | Link a, B Toll ($)
1 7 0.0125 0 11 9 0.0125 0
2 9 0.01 0 12 10 0.005 10
3 9 0.01 0 13 9 0.005 0
4 12 0.005 0 14 6 0.0025 6
5 3 0.0075 3 15 9 0.005 0
6 9 0.0075 9 16 8 0.01 0
7 5 0.0125 5 17 7 0.0125 0
8 13 0.005 13 18 14 0.01 0
9 5 0.0125 0 19 11 0.01 0
10 9 0.0125 9
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Table 6.5. Path attributes of Nguyen-Dupuis network

OD ID Path Free-flow travel time (min) Toll ($) Rank t™ (ck“)
1 2-18-11 32 0 8 50
2 1-5-7-9-11 29 8 6 46
3 1-5-7-10-15 33 17 4 415
1.2 4  1-5-8-14-15 38 22 2 39
5 1-6-12-14-15 41 25 1 37.5
6 2-17-7-9-11 35 5 7 475
7 2-17-7-10-15 39 14 5 43
8 2-17-8-14-15 44 19 3 40.5
9 1-6-13-19 36 9 6 455
10 1-5-7-10-16 32 17 4 415
1.3 11  1-5-8-14-16 37 22 2 39
12 1-6-12-14-16 40 25 1 37.5
13 2-17-7-10-16 38 14 5 43
14 2-17-8-14-16 43 19 3 40.5
15 4-12-14-15 37 16 4 42
16  3-5-7-9-11 31 8 5 46
4-2 17 3-5-7-10-15 35 17 3 415
18 3-5-8-14-15 40 22 2 39
19 3-6-12-14-15 43 25 1 37.5
20 4-13-19 32 0 6 50
21  4-12-14-16 36 16 4 42
43 22  3-6-13-19 38 9 5 455
23 3-5-7-10-16 34 17 3 415
24 3-5-8-14-16 39 22 2 39
25 3-6-12-14-16 42 25 1 37.5

We first investigate the effect of considering perception error on the bi-criteria
traffic assignment in tolled networks. The link V/C ratios derived from the TSmaxBUE
and MNL-PTSmaxBSUE models are compared in Figure 6.9. As shown in Figure
6.9(a), the TSmaxBUE model considers the deterministic choice of paths with the
highest time surplus, which tends to assign traffic volumes on several key roads and
lead to high V/C ratios on these links. On the other hand, the PTSmaxBSUE model
tends to generate a more diverse path flow pattern, which diverts the flows on extremely

congested road to relatively uncongested ones.
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Figure 6.9. Link V/C ratio patterns from different models

13

We then investigate the effects of path correlations based on the link flow
difference patterns as shown in Figure 6.10. Figure 6.10(a) shows the link flow
difference between the OPSGEV- and PSL-PTSmaxBSUE models, which implies the
effect of considering the perceptual path correlation. Figure 6.10(b) shows the link flow
difference between the OPSGEV- and OGEV-PTSmaxBSUE models, implying the
effect of considering the physical path correction. In this experiment, both types of path
correlations can significantly influence the model outcomes. The perceptual correlation
has a more significant impact than the commonly modeled physical correlation, which
implies the importance of considering both correlations in the bi-criteria traffic

assignment for tolled networks.
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Figure 6.10. Link flow difference between different models

6.4 Conclusions

This chapter makes an initial effort to introduce the perceptual path correlation in
traffic assignment problem and to simultaneously consider the perceptual and physical
path correlations in the bi-criteria equilibrium assignment for tolled networks. The two
types of path correlations arise from the two important route choice criteria in tolled
networks, namely the monetary cost and travel time. The time surplus concept recently
proposed for bi-criteria traffic assignment (Wang et al., 2013) is extended to the
perceived time surplus that considers the perception error of travel time, which has long
been recognized an important concern in the traffic assignment (Sheffi, 1985). In this
chapter, we focus on the single-class traffic assignment problem where all travelers are

assumed to share the same time surplus function. On this basis, an advanced BSUE
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model is proposed that integrates the OPSGEV route choice model (Section 3.1) to
consider the travel time perception error as well as perceptual and physical path
correlations. An equivalent Beckmann-type MP formulation is developed that
facilitates the understanding and evaluation of the proposed BSUE model. Numerical
experiments are conducted based on two networks to illustrate the advantages of the

proposed model over existing models.

The proposed model could be explored in several other directions in future studies,
as follows. (1) Besides the specific perceptual correlation arising from the ranking of
path tolls, more types of perceptual correlation in different route choice contexts can be
integrated in the proposed modeling framework. For instance, the paths traversing the
same important link (e.g., bridge or tunnel) are likely to be perceived as correlated
alternatives, which can be an important issue to consider in the traffic assignment
(Habib et al., 2013). (2) In addition to focusing on a single user class, it is important to
extend the proposed model to consider multiple classes of travelers with heterogeneous

values of time (Wang et al., 2013; Li et al., 2023).
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Chapter 7 Modeling mode choice of customized bus services with
loyalty subscription schemes in multi-modal transportation systems

7.1 Introduction
7.1.1 Background

Based on the dogit-nested weibit (DNW) individual mode choice model developed in
Section 3.2, this chapter models the long-term equilibrium mode choice in multi-modal
transportation systems with the emerging customized bus (CB) services. In recent years,
CB services have been extensively promoted in China to increase transit ridership and
alleviate road congestion. CB services were first implemented in 2013 in Qingdao, and
have since spread to over 30 Chinese cities, including Beijing, Shenzhen, and Nanjing,
where they play important roles in public transportation (Huang et al., 2017). For
example, more than 400 CB lines are operated in Beijing to meet commuting, education,
and tourism demands, transporting 37,000 passengers per day (China National Radio,
2018). This rapid development of CB services might attract travelers who would
otherwise use conventional modes, such as private cars and conventional public transit
(PT), thereby influencing the modal demand pattern in urban multi-modal
transportation systems. It is therefore imperative to understand the long-term effect of

CB services on the modal split patterns of multi-modal transportation systems.

Table 7.1 summarizes innovative characteristics of CB services, which are thus
considered a distinct travel mode that should be modeled differently to conventional
travel modes (Gu et al., 2018; Huang et al., 2020a). As has been introduced in Section
3.2, CB services are an intermediate mode between conventional PT modes and the
private car mode in terms of travel time, travel cost, and in-vehicle congestion. When
compared to the conventional PT, CB has shorter travel time, higher fee, and more
restricted operating times and lines only serving travelers with similar OD and
departure/arrival time choices. When comparing to the private car, CB services are
more economical and environmentally friendly and are often allowed to travel in
dedicated bus lanes to alleviate road congestion (Liu et al., 2016).
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Table 7.1. Characteristics of CB services and other transport modes.

Conventional PT  Private car CBs
Access distance Long NA Short
Waiting time Long NA Short
In-vehicle travel time  Long Short Medium
In-vehicle congestion  High None None
Service coverage Medium High Low
Monetary cost Low High Medium
Subscription Not required Not required Required
Loyalty scheme No No Yes

Note: PT = public transit.

Another unique characteristic of CB services is that they require passengers to
subscribe to book a seat. As the number of seats on a CB line are limited, a subscription
may not be available if all seats on a CB line are booked. A CB line will be considered
as inoperable if the number of subscriptions fails to ensure a profitable occupancy rate.
As illustrated in Section 3.2, the passenger loyalty stemming from the loyalty
subscription scheme of CB services is also an important determinant of travel behavior.
In summary, it is necessary to account for the characteristics of CB services when
modeling mode choice in multi-modal systems that encompass conventional travel

modes and emerging CB services.

7.1.2 Related studies

An increasing number of studies have been conducted on CB services and similar on-
demand modes provided by transportation network companies (TNCs). Table 7.2
summarizes the studies on CB services. Many studies have focused on the tactical or
operational level of CB services, and extensive efforts have been devoted to the design
and optimization of CB operations, such as the service coverage, routes, stops,

timetables, fleet sizes, passenger—vehicle assignment, and pricing of CB services.
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Another important stream of studies has considered CB services in the contexts of travel

demand analysis and the evaluation of transportation network performance. However,

these studies have examined the day-to-day and within-day dynamics of the CB

subscription process (i.e., operational aspects), which may not be adequate for modeling

the long-term effects of CB services at the strategic level.

Table 7.2. Summary of CB service studies

Aim References Consideration Main feature
Network Tong et al., 2017; Guo  Service coverage, Flexible and
design and etal.,, 2018; Lyuetal.,,  route, stop, timetable, dynamic service
optimization  2019; Qiu etal., 2019;  fleet size, passenger design
Huang et al., 2020a; assignment, and fare
Dou et al., 2021; Maet pricing
al., 2021; Wang et al.,
2021b
Travel Djavadian and Chow, Effect of introducing  Day-to-day and
demand 2017; Gu et al., 2018; CB services on traffic  within-day
modeling Lietal, 2018b; Huang  flow and system dynamic CB
et al., 2020b performance service
subscriptions
Empirical Lietal., 2019; Effect of CB services  Increased level
choice Gadepalli et al., 2020; on travel choice of service;
behavior Wang et al., 2019, behavior and long-term
analysis 2020b passenger loyalty subscription
scheme
Reviews Liu and Ceder 2015; Characteristics and All of the above

Liuetal., 2016; Huang
etal., 2017

development of CB
services

To investigate the long-term effects of CB services and other emerging on-demand

modes (e.g., ride-hailing and ridesharing) on travelers’ travel choice behavior, many

studies have adopted statistical methods based on stated- and revealed-preference travel

surveys and other supporting data (e.g., Choudhury et al., 2018; Xie et al., 2019; Yan

et al., 2019a; Sweet, 2021; Erhardt et al., 2022). Equilibrium modeling framework has
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also been developed for on-demand modes which share similar characteristics with the
CB services. For instance, Pi et al. (2019) proposed a general dynamic equilibrium
assignment model for short-term mode and route choices in the network with both
conventional travel modes and emerging on-demand services. Di and Ban (2019)
developed a unified equilibrium model focusing on the behavior of drivers and
passengers of ridesharing and ride-hailing, where the travel choices are derived based
on game theory. The market equilibrium approach has also been used to analyze the
customer behavior of conventional and emerging on-demand services, such as taxis and
ride-hailing (e.g., Yang et al., 2002; Yang and Yang, 2011; Wang et al., 2020c; Ke et
al., 2021). Wang and Yang (2019) provided a systematic review of the ride-sourcing
system and the equilibrium models for analyzing transportation systems with this
emerging on-demand mode. However, to the best of the authors’ knowledge, few
equilibrium models have been developed for modeling the long-term mode choice in
multi-modal systems with CB services based on the random utility theory. In addition,

the effect of passenger loyalty is often not captured in existing equilibrium models.

7.1.3 Objectives and contributions

This chapter aims to make an initial effort to model the long-term modal split in multi-
modal transportation systems while specifically considering innovative characteristics
of the emerging CB services. As discussed above, the subscription process of CB
services calls for the consideration of the limited numbers of available seats and the
occupancy rate requirements, which should be regarded as tight constraints on the lower
and upper limits of CB demand. Owing to the loyalty CB subscription schemes,
passenger loyalty to CB services is to be explicitly considered in the developed

equilibrium mode choice model.

A comprehensive mathematical model is developed for the long-term mode choice
equilibrium problem in multi-modal transportation systems with emerging shared
mobility modes like CB. An equivalent mathematical programming (MP) problem with

tight constraints on the lower and upper limits of CB demand is formulated while
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retaining consistent with the DNW choice model developed in Section 3.2. Benefiting
from the embedded DNW model, various behavioral issues arising from CB services
can be simultaneously addressed in the equilibrium analysis, including passenger
loyalty, mode correlation, and heterogeneous mode perceptions. This enables the
developed equilibrium model to better reproduce the distinct choice behaviors of
members of CB loyalty subscription schemes and those who purchase one-time CB

subscriptions.

7.2 Problem statement

To facilitate the presentation of the essential ideas without the loss of generality, the
main model assumptions and multi-modal transportation system considered in this

chapter are presented in Sections 7.2.1 and 7.2.2.

7.2.1 Assumptions

A7.1: This chapter considers three independent travel modes in the urban transportation

system: a private car mode, conventional transit mode, and a CB mode.

AT7.2: The conventional modes, i.e., private car mode and conventional transit mode,
have sufficient capacity to accommodate all potential demand. The generalized travel
times of conventional modes are separable, continuous, and monotonically increasing
functions of modal demand. Drivers of private cars have demand-dependent in-vehicle
travel time and OD-specific monetary costs for parking and fuel consumption.
Passengers on conventional transit modes have fixed in-vehicle travel times, waiting
times and access (walking) times, but have an in-vehicle crowding disutility dependent
on the in-vehicle travel time and number of passengers (Lo et al., 2003; Li and Hensher,

2011; Liu and Lam, 2014; Wang et al., 2018).

A7.3: The in-vehicle travel time of CB is fixed. Because a seat is reserved for each
passenger, CB passengers do not experience disutility from in-vehicle crowding.
However, this characteristic leads to a tight capacity constraint for CB services, due to
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the limited CB fleet size between each OD pair and the limited number of seats per CB.
The CB capacity is designed to accommodate all long-term subscriptions but may not
be enough for one-time subscriptions. If all CB seats are fully booked, the excess CB
passengers will be unable to subscribe to their preferred services and will thus be forced

to use less preferable travel modes (Gu et al., 2018; Huang et al., 2020a).

AT7.4: Subscribers who purchase long-term CB tickets must pay the entire fare in
advance; thus, they will be loyal to CB services, and tend not to consider using other

modes (Wang et al., 2020b).

7.2.2 Notations

Set
RS Set of OD pairs.
ur Set of types of modes between OD pair rs.
M Set of modes of type U between OD pair rs.
M Set of all modes.

Inputs and parameters

t> Generalized travel time of mode m between OD pair rs (minute).
vot Value of time (CNY/hour).

fce, Fuel consumption of car between OD pair rs (CNY/km).

drs Travel distance between OD pair rs (km).

pc Car-parking cost (CNY).

o Fare of mode m between OD pair rs (CNY).

ti In-vehicle travel time of mode m between OD pair rs (minute).
g (qLST) In-vehicle crowding discomfort cost per unit time (CNY/minute).
totm Waiting time of mode m between OD pair rs (minute).

thkm Access (walking) time of mode m between OD pair rs (minute).
T Travel disutility of mode m between OD pair rs.
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Acc™
ACCrS'b,
Acc'?
ErS

Travel disutility of nest u between OD pair rs.

Required seat-occupation rate of a CB line between OD pair rs
Number of seats on one CB vehicle (persons/vehicle).

Maximum number of CB vehicles between OD pair rs (vehicle).
Normal number of vehicles in a CB fleet between OD pair rs (vehicle).

Capacity of mode m between OD pair rs (person).

Lower limit of demand for operating CB between OD pair rs (person).
Travel demand between OD rs (person).

Shape parameter of mode m under nest u between OD pair rs.

Shape parameter of nest u between OD pair rs.

Loyalty parameter for mode m between OD pair rs in the dogit-based
model.

Utility-based accessibility between OD pair rs.

Utility-based accessibility between OD pair rs before and after
implementation of certain policies.

CO emissions between OD pair rs (gram/hour).

Decision variable

rs
qum

rs

qcum
ac,’

rs rs

, Ay

cap’

rs

rs
O

Travel demand of type u mode m between OD rs (person).

Number of choice passengers choosing mode m under nest u between
OD pair rs.

Number of choice passengers choosing nest u between OD pair rs.
Lagrangian variables associated side constraints on CB capacity and
lower limit of CB demand between OD pair rs.

Lagrangian variables associated with conservation constraints between

OD pair rs.

Travel demand of mode m between OD rs (person).

Note: PT = public transit; CB = customized bus.
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7.2.3 Multi-modal transportation system with customized bus services
7.2.3.1 Private car

In accordance with A7.2, the generalized travel time of private car drivers between OD

rs is as follows:

tI'S — tI'S

car iv,car

0o )+ d, - fcg, + pc)/vot,Vrs e RS, (7.1)
(a5 )+ )/

car

where t;, t5 .. (), A5 and fcg;, respectively denote the generalized travel time, in-

car livcar car
vehicle travel time, travel demand, and fuel consumption of the car mode between OD
pair rs; drs denotes the travel distance between OD pair rs; pc denotes the car-parking
cost; vot denotes the value of time, which is measured by cost/time (e.g., CNY/hour).
The first term on the right-hand side (RHS) represents the increase in in-vehicle travel

time with respect to car demand, and the latter terms give the distance-based cost for

fuel consumption and the fixed parking cost (Liu et al., 2016). The car demand q;, is

derived from the equilibrium mode choice model developed in Section 7.3.

7.2.3.2 Conventional PT

In accordance with Assumption A7.2, the generalized travel time of conventional PT

between OD pair rs is expressed as follows:
5 = (thpr +taer )+[ 9(a5 ) ther + 15 | Vot WrseRS,  (7.2)

S

where t;, Oqr, tyer . and 3o respectively denote the generalized travel time, travel

demand, in-vehicle travel time, and fare of conventional PT between OD pair rs; t}, .;

and t,, ., are the access (walking) and waiting time of conventional PT modes between

OD pair rs; g(.) denotes the in-vehicle crowding discomfort cost per unit time. The
terms on the RHS separately represent the access and waiting time, and the generalized
travel time of in-vehicle traveling, which is affected by in-vehicle crowding discomfort

and fare. The in-vehicle crowding discomfort cost is an increasing function with respect
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to the in-vehicle travel time and the PT demand (Li and Hensher, 2011; Liu and Lam,

2014; Wang et al., 2018). The derivation of PT demand g, is based on the equilibrium

mode choice model developed in Section 7.3.

7.2.3.3 Customized bus
(1) CB operators

As this chapter focuses on the demand analysis rather than the design of CB services,
it is assumed that the service characteristics of CB lines (e.g., route, timetable, fleet size,
and fare price) are exogenously pre-determined by CB operators. Thus, two operational

characteristics of CB services are considered:

@ CB operators accept subscriptions if there are seats available in their fleet of

CBs. A subscription will be rejected if all seats have been booked, i.e., the number of

rs

passengers that can subscribe to the CB line between OD pair rs, g, cannot exceed

the capacity of the CB line between OD pair rs:

0 <caps, Vrse RS, (7.3)
where capg, denotes the CB line capacity, which is given by the maximum fleet size
between OD pair rs, N , and the number of seats on each CB vehicle, nseat, as follows:

Capeg = Ngg *Nears VISERS . (7.4)

seat !

(b) A CB line between OD pair rs is put into operation only if the demand for this

line is profitable, i.e., the number of passengers reaches a lower limit, 1d2®.
Ocg 2 1d5, Vrse RS, (7.5)

In practice, the lower limit is defined by a CB service operator’s required threshold of

seat-occupation rate:
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rs _ IS rs /!
ld& =y " -ng -

vrseRS, (7.6)

nseat 1

where " is the required seat-occupation rate and ng," is the normal size of a CB fleet

operated between OD pair rs.

(2) CB passengers
The CB travel disutility includes on the generalized travel time, as well as the penalty
and incentives incurred by the operational limits stated above, such as the risk of failed

subscription owing to the limited capacity and the improved service quality to attract

rs

enough passengers. The generalized travel time of CB, t;, can be derived based on the

CB in-vehicle travel time, waiting time, access time, and the CB fare:

1o =t +io cp +t o5 + flo /VOt, Vrse RS . (7.7)

Although the CB generalized travel time is not explicitly dependent on the CB demand
for a given in-vehicle travel time and fare price, the travel disutility of CB services is
implicitly influenced by the disutility incurred when CB demand violates the upper

limit (Eq. (7.3)) or lower limit (Eq. (7.5)). This will be discussed in Section 7.3.2.

7.3 Equilibrium mode choice model with passenger loyalty
7.3.1 Model formulation

This section presents the equivalent MP of the equilibrium mode choice model for the
multi-modal transportation system with CB services described in Section 7.2.3. The
DNW probability presented in Section 3.2 is adopted in the equilibrium mode choice
model because it suitably reflects the period-to-period subscription of loyal passengers
to loyalty schemes and provides a direct interpretation of the effect of loyalty. Different
from the individual DNW choice model with exogeneous travel disutility, the demand-

dependent mode disutility is endogenously reproduced in the equilibrium model to
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consider interaction among travelers. Based on the method introduced in Chapter 5, the
MP formulation of the equilibrium model is developed as follows:
mnz=Y 3 3 [“Ihe(@)do-
rseRS ueU"™ meM®
rs__rs rs__rs

PP L L

rseRS ueU"™ meM®

meM mem "

+2, 2,

qrsnrs qrsnrs
T m | O B 1
rseRS ueU ™ (ﬂrs ﬂ j mgl‘:s qum 1+ z nrs n Z qum s

m mer 1+ 77m
mem " mem "
(7.8)
S.t.

> D dp=0",VrseRS (7.9)

uel”™ meM®
Oog < Capsy, VIs e RS (7.10)
e = 1d5, Vrs e RS (7.11)
m=0,YmeMF,ueU” rseRS (7.12)

Objective function (7.8) aims to find the equilibrium modal demand based on the DNW
model. The first term in Eq. (7.8) is the multiplicative Beckmann term, which indicates
the mode travel disutility. The link-level travel time function is implicitly considered in
the mode travel disutility as the route choice dimension is not focused by this chapter.
The second and third terms are entropy terms that collectively account for the dogit-
based choice behavior of loyal passengers and the nested choice structure of choice
passengers. Conservation constraint (7.9) indicates the relationship between modal
demand and OD demand. Capacity constraint (7.10) provides the upper limit of the
number of CB passengers that can be served by the CB line between each OD pair. The
lower limit of demand for maintaining the operation of an existing CB line is given by

constraint (7.11). Constraint (7.12) is the nonnegative constraint. To show some
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qualitative properties of the proposed MP formulation, the following two propositions

are stated.

Proposition 7.1. The proposed MP formulation (7.8)—(7.12) gives the equilibrium
mode choice solution of the DNW model presented in Egs. (3.15)— (3.16).

Proof. See Appendix A2 for the detailed proof.

Proposition 7.2. If Assumptions A7.2 and A7.3 hold, the modal demand solutions to
the MP formulation (7.8)—(7.12) are unique.

Proof. See Appendix B2 for detailed proof.

7.3.2 Effect of operational limits of CB lines

Unlike the explicitly demand-dependent generalized travel time of conventional modes,
the CB disutility is not only determined by a demand-independent generalized travel
time ¢, (owing to the fixed fare and in-vehicle travel time), but also implicitly
influenced by the limits of CB demand. As shown in the proof of Proposition 7.1, the
and oy,

cap’ ap

CB disutility v, (25, @05, @ ) also includes two Lagrangian variables o
which are related to the tight constraints (7.10) and (7.11) on CB demand, respectively.

The effect of the upper and lower limits of CB demand is depicted in Figure 7.1.

L(}g 'y

cost ——Non-CB travel cost CB travel cost
Insufficient : Operable : Excessive
CB demand : CB demand : CB demand
- > 1
1 1
) ' Increased
. s . g N
Incentive to ! @ disutility owing
1

attract more CB to failed CB

A rs . .
demand (M : subscription
1

1

) & .
Lower limit of Upper limit of  Demand
CB demand CB demand

Figure 7.1. Hlustration of tight constraints on CB demand
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In the proposed model, w;

. and @y can be interpreted as the potential increase

and decrease in travel disutility, respectively, when CB demand violates the upper or

rs

lower limit. Specifically, @"  represents the potential fare increase or the risk of failed

cap
subscription when all seats are booked, i.e., the increased disutility of a passenger being

unable to choose his/her preferred CB services, whereas w,; represents the potential

incentives set by operators (e.g., a fare decrease) to attract sufficient passengers to make

CB line operation viable.

7.3.3 Model degeneration

This section presents the relationship between the developed DNW equilibrium model

and other equilibrium choice models shown in Figure 7.2. First, the DNW model can

rs
m

be degenerated by ignoring passenger loyalty: if the loyalty parameter 7" is set to zero,

the DNW model degenerates to the NW model. This further degenerates to the MNW

model if A°/B® =1 . Another approach is to ignore mode correlation and

heterogeneity. If B°/4" =1, the DNW model degenerates to the dogit-MNW

(DMNW) model, which assumes there is no correlation between modes. Alternatively,
by assuming the DNW model contains a Gumbel-distributed random error term, the
DNW model degenerates to the dogit-NL (DNL) model and the dogit model, which

assumes no heterogeneity in mode perceptions (Gaudry and Dagenais, 1979; Wang et

al., 2020a). Then, if 7. is set to zero, the dogit model further degenerates to the well-
known MNL model. Finally, the equilibrium mode choice model collapses to the user

equilibrium (UE) model if travelers have no perception error (i.e., 8., — +o).
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Figure 7.2. Relationship between DNW and other equilibrium choice models

7.3.4 Solution algorithm

The proposed model (7.9)-(7.12) is solved by the partial linearization algorithm as
introduced in Section 5.3. An iterative balancing procedure is developed to find the

search direction for the equilibrium DNW choice model with side constraints (Ryu et

rs__rs

rs =qu _ q 77m
um um 1+ Z 77[;3

meM

al., 2014). For simplicity, we use qc to represent the choice

passengers choosing mode m under nest u, qc;’ = 2 qc,, to represent the choice

meM®

passengers choosing nest u, and qc” = Z qc,’ to represent the choice passengers

ueu"

between OD pair rs. The iterative balancing procedure are specified as follows:

Step 0. Initialization.
e Set iteration counter n = 0;
e Initialize dual variables associated with constraints (7.9)-(7.11):
Set (ﬂ'rs )0 ,(a)cr,flp )O ,(a),zs )O =0,VrseRS;

e |Initialize primal variables based on free-flow mode disutility and dual variables:
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ﬂl’S
u

N -
(qCJS)O{ 2 (TJ;(O).e(wcaMa)j T s

meM®

rs 0_ rs . (*”rs‘fwcr;p’“’lﬁs) i X rs [Lﬁm
(ach ) =[ zim (0)-e (acr ) A

Step 1. Update dual variables.
The dual variables can be viewed as corrections to the travel disutility, which can be

used to adjust the primal variables (Egs. (A2.3) and (A2.6)). Specifically, dual variables

rs

o, and «w; are zero if the capacity constraint (7.10) and lower limit of CB demand

cap

(7.11) are satisfied by the resulted primal variables. If constraints (7.10)—(7.11) are

binding, ., and @; will become non-zero. Following equations are used in this step

cap

to adjust each dual variable that can steer primal variables to meet constraints (7.9)—

(7.11) (Ryu et al., 2014):

. (a)l[f)n+1= Max 10, (@ ) +—=In| —C2—

Step 2. Update primary variables.

Based on the Lagrangian of the proposed model, the primal variables can be analytically
expressed based on the dual variables (Egs. (A2.3) and (A2.6)). Following equations
are used to update the primal variables using the dual variables:

ﬂl’S

. (acr)" { ) {c;; (a4 r“r*}”“ﬁ T

rs
meM,
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nil nit ne1 1~ Bim _Pm
e (qc3 )”*1{%;1 ((qurrsn )").e(ﬂ's) H(ol) (k) }ﬂ -[(qcu“)”ﬂ}[l ﬂf]

Step 3. Convergence test.

e First derive the maximum adjustment among all dual variables. If
r n+l rs\N r n+l r n
Max{‘(;zs) _(”s) (a)c;p) _(a)csp)

the algorithm, where ¢ is a convergence tolerance (e.g., 10°) at which the

(a)lif)m (e )n‘} <& , terminate
iterative balancing procedure stops. Otherwise, set n =n + 1 and go to step 1.

7.4 Numerical experiments

This section illustrates the properties of the proposed model and verifies its applicability
using two numerical examples. The first example is a single-OD case and demonstrates
the model’s ability to consider mode correlation, heterogeneity, and passenger loyalty.
The second example is based on the CB services provided in Nanjing, China, and
demonstrates the potential applicability of the proposed model for evaluating and

designing CB operation schemes.

7.4.1 Example 1: Single OD pair system
7.4.1.1 Experiment setting

In this example, the proposed model is used to investigate the equilibrium mode choice
among a private car, conventional PT, and an existing CB line for a single OD pair. The
input data for this example are as follows:

g™ = 1,000 (persons), vot = 60 (CNY/hour), d = 20 (km), fc;;, =0.3(CNY/km), pc =
15 (CNY), ty.r =40 (minutes), t .. =3 (minutes), t,; ., =3 ( minutes), f; =2
(CNY), t&., +t0 o+t o =32 (minutes), & =24 (CNY), y*=06, ng =10

(vehicles), ng, = 20 (vehicles), nseaat = 20 (persons/vehicle). The in-vehicle travel time
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iv,car

rs 4
function for private car is t® (qC’;)ZO-[HO.lS(%] } and the in-vehicle

rs 2
crowding discomfort cost for the PT mode is g (g, )-tier =tirer -[1+ O.SLS)%] ]

(Liuand Lam, 2014; Wang et al., 2020a). The default model parameters are 75, =0.05,

S =3.7,and £ =1.85 (Kitthamkesorn and Chen, 2017; Wang et al., 2020a).

um

Without loss of generality, we adopt the following exponential function as the

mode disutility function (Hensher and Truong, 1985; Mirchandani and Soroush, 1987):

7y =exp(0.075t7 ), yme M ", rs e RS . (7.13)

As the logit model is an additive random utility model (RUM), whereas the weibit
model is a multiplicative RUM, for comparison we use the following travel disutility

function in the logit-based model (Kitthamkesorn and Chen, 2017):

h® =0.25-t°, YmeM"™, rseRS. (7.14)

7.4.1.2 Effect of considering mode correlation

This section investigates the effect of considering the correlation between different

modes via the nested choice structure. Figure 7.3 shows the choice probability obtained

at different values of 5*/4" , where a higher value indicates a lower correlation

between modes in the same nest. It is obvious that the consideration of mode correlation
significantly influences the estimated share of the CB service. Without considering
correlation, the estimated share is lower than the lower limit of demand, which requires
CB operators to provide incentives to attract more passengers. However, the estimated
CB demand might reach the capacity constraint if there is high correlation between
conventional modes, in which case CB operators may increase the fare to decrease the
excess demand. Thus, the consideration of mode correlation may have a significant

effect on estimated shares and CB services’ operation.
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Figure 7.3. Effect of considering mode correlation in equilibrium choice model

7.4.1.3 Effect of considering heterogeneity

The effect of considering the heterogeneity issue is seen from Figure 7.4 by comparing

the results from the DNL and the DNW model. In the left panel of Figure 7.4, although

the loyalty parameter 7~ in the dogit-based model can partly account for the

heterogeneity issue, the conditional mode choice probability of choice passengers from
DNL model remains nearly unchanged due to the homogenous perception variance that
IS assumed to exist in the same nest. The minor change is attributed to the asymmetric
alleviation of congestion effect due to demand shift from conventional modes to CB.
This nearly unchanged conditional probability means that there are only minor changes
in the CB mode share derived by the DNL model. In contrast, the DNW model accounts
for the heterogeneity issue by allowing mode-specific perception variance dependent
on mode disutility. As shown by the mode choice probability curve of CB in the right
panel of Figure 7.4, this ability of the DNW model and its nested choice structure mean
that it can simultaneously account for heterogeneity and mode correlation, thus better
reproduce the mode choice behavior of the choice passengers than the commonly used

dogit model.
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Figure 7.4. Effect of considering heterogeneity issue in equilibrium choice model

7.4.1.4 Effect of passenger loyalty

In this section, we investigate the effect of passenger loyalty on the mode share and the
system performances. In addition to the share of the collective mode (conventional PT
and CB modes), three other metrics are used to evaluate various aspects of a multi-
modal system with CB services. First, the total travel time (TTT) is used to reflect the
change in mobility. Second, as accessibility is also an important performance measure
that has attracted increasing attention in transportation and urban planning, it is
evaluated using the following utility-based measure proposed in Section 2.1.3, which

is consistent with the proposed weibit-based choice model:

1
Acc® { 3 (rf)‘ﬂ“ﬁ} " VrseRs, (7.15)
ueu™
where
_1
" { > (e )‘ﬂ " YueU® rseRs. (7.16)
meM®

The weibit-based accessibility measure is then normalized to satisfy both scale and
level conditions. Analogous to the normalization of logit-based accessibility measure
based on the absolute difference (Dong et al., 2006), the weibit-based accessibility
measure is normalized based on the relative difference in weibit expected disutility

owing to the property of weibit choice models:
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AAcc™ = Acc™®/Acc™?,Vrs e RS, (7.17)

where Acc? and Acc2 denote the weibit-based accessibility measure before and after

consideration of passenger loyalty.

Third, environmental friendliness is considered a critical issue for the development
of sustainable transportation systems. As such, we use the following expression for
carbon monoxide (CO) emissions to evaluate the effect of transportation modes on the

environment (Wallace et al., 1998):

E®= Y qp-0.2038-t7° -exp(0.7962-d" /), Vrs € RS . (7.18)
meM "™
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Figure 7.5. Effects of loyalty parameter

Figure 7.5(a) shows the modal shift from conventional modes to the CB mode with

an increase in the loyalty to the CB mode (indicated by the value of loyalty parameter

negs )- Figure 7.5(b) further compares the system performance with and without loyalty

to the CB mode. As different performance measures have different magnitudes, we
show the ratio between the measures with and without CB loyalty. A higher ratio
indicates a lower TTT, lower CO emissions, a higher accessibility, and a higher
collective mode share, after consideration of passenger loyalty. A high CB loyalty
affords a marginal decrease in mobility (i.e., increase in the TTT), which can be
attributed to the significant increase in the share of collective modes that are operated

at lower speeds than private cars. However, the CB service can increase accessibility
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of its passengers, while the collective modes can transport more travelers in one vehicle
than a private car. The increasing collective mode share thus can lead to higher system

accessibility and lower total CO emissions.

7.4.1.5 Mode share and CB service profit under different loyalty schemes

This section further investigates how the pricing of CB loyalty schemes affects the CB

mode share and the profit of CB services. With the absence of time-series CB ridership

data for estimation, we approximate the proportion of loyal CB passengers i, (r{fB’ls)

based on the choice probability of loyalty subscription schemes. The choice probability

is derived by the NW model adopted in this chapter, which is based on the free-flow
disutility of the conventional mode and the disutility of the CB loyalty scheme 7,
given the price of loyalty subscription scheme. On this basis, we can obtain the loyalty

parameter 72, and investigate the effect of discounts provided by CB loyalty schemes.

o Lovalty parameter ™88 Loyalty proportion =#=CB demand
300 - r 0.8

] [

o A

=] =3
<
=}

CB demand (persons)
>
=
=
.
Loyalty proportion

&
[}

0 01 02 03 04 05 06 07 08 09
Discount of loyalty scheme

(a) Effect on CB demand and loyalty
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Figure 7.6. Effects of pricing of loyalty scheme

Figure 7.6(a) shows that a discounted loyalty scheme greatly increases the
proportion of loyal passengers, which leads to an increase in the overall share of CB
services. However, the increase in demand does not necessarily lead to an increase in
revenue and profit. We assume that the fixed cost of a CB line is CNY 1,000 and that
the variable cost of adding a vehicle to the fleet is CNY 60, and then derive the evolution
of revenue (from the CB fare) and profit (the difference between the revenue and the
cost) with respect to varying loyalty scheme prices, as shown in Figure 7.6(b). This
reveals that although a higher discount may increase the share of CB and collective
modes, the operator might incline to provide a discount of approximately 30% at which
their profit is maximized. This implies that the government may have to subsidize CB
operators to provide a higher discount, and thus encourage more drivers of private cars

to become CB passengers.

7.4.2 Example 2: Multi-OD pair case study
7.4.2.1 Experiment setting

In this section, the proposed model is applied to a real-world system with CB lines
connecting eight OD pairs in Nanjing, China (adapted from Huang et al., 2020a). Figure

7.7 shows the study area and the CB lines selected in this section. Four of the eight CB
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lines (indicated by solid lines) are existing lines that have loyal passengers, whereas the
remaining four lines (indicated by dotted lines) are new CB lines with no passenger
loyalty. The attributes of the eight OD pairs, and the travel time and monetary cost of

conventional PT modes between each OD pair, are presented in Table 7.3. The

monetary cost of car fuel consumption is fc =0.4(CNY/km). The in-vehicle travel

car

time function for a car is t"°

iv,car

rs 4
(qcr;): 20.[1+ 0_15(Mj ] The value of capcar is
Capcar

200 for OD pairs 1-4, 2-8, 3-8, 6-7, and 100 for the other OD pairs. The in-vehicle

rs 2
crowding function for PT mode is g (g )-tiver =tirer -{1+ O.S(qLJ } The value
e cap,;

of caper is 200 for OD pairs 1-4, 2-8, 3-8, 4—7, 6-7, and 500 for the other OD pairs.

The other inputs and default model parameters are the same as in Experiment 1.

> B New O/D nodes
-~ @  Existing O/D nodes
=== NewCB lines
—f O\ —  Existing CB lines
4} e Rail transit

Figure 7.7. Study area with CB services
(adapted from Huang et al., 2020a)
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Table 7.3. Inputs of ODs and conventional modes in multi-OD case study

Travel _ Private car Conventional PT
O[_) demand Distance In-\{ehicle Parking In-\{ehicle Ac_:cess Wz_;liting Fare
pair (persons) (km) t|n_1e cost tlme tlme tlrr_le (CNY)
(min) (CNY) (min) (min)  (min)
1-4 300 17.6 22 30 65 11 7 3
2-8 420 17.4 21 20 56 22 4 7
3-8 310 11 17 15 55 21 3 4
4-7 300 13.4 17 15 46 22 6 11
5-9 350 14.9 26 20 18 9 1 4
5-11 300 26 40 20 52 10 6 7
6-7 450 5.7 12 10 15 54 5 2
10-11 300 9.1 20 15 30 8 4 2

Table 7.4 presents the attributes of the eight CB lines. The existing CB lines are

set to have higher capacity and passenger loyalty: nZ," is set as five vehicles for new

=S

lines and six vehicles for existing lines; and N is set as 10 vehicles for new lines and
12 vehicles for existing lines. The lower limit and capacity of CB demands are then

obtained based on " =0.6 and n__ = 20 (persons/veh). The loyalty parameters for

seat
CB services are 7, =0.1 for all OD pairs with existing CB lines and 75, =0 for all

OD pairs with new CB lines. The fixed cost of operating a CB line is set as CNY 1,200,
whereas the variable cost of adding a CB vehicle is CNY 100. The model parameters
and inputs used in the numerical examples are selected consistent with previous studies
(Kitthamkesorn and Chen 2017; Huang et al., 2020a; Wang et al., 2020a) since the
empirical model calibration and validation are not the focus of this chapter. The
quantitative insights discussed in this section are to illustrate the proposed model is able
to consider the effects of passenger loyalty, mode correlation, and heterogeneity, and is
potential to be used for the evaluation of CB planning scenarios with different CB lines

and pricing policies.
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Table 7.4. Inputs of CB services in multi-OD case study

Line OD  In-vehicle Fare Lower Capacity Existing Loyalty
ID pair  time (min)  (CNY) limit line? Nes
1 1-4 44 31 54 180 Existing 0.1
2 2-8 42 31 54 180 Existing 0.1
3 3-8 28 22 45 150 New 0
4 4-7 34 25 45 150 New 0
5 5-9 38 27 45 150 New 0
6 5-11 46 32 54 180 Existing 0.1
7 6-7 18 20 54 180 Existing 0.1
8 10-11 30 20 45 150 New 0

7.4.2.2 Evaluation of CB operation plans

Table 7.3 shows that most of the CB lines are operated between OD pairs with poor
conventional PT services, i.e., the OD pairs have either an excessive in-vehicle travel
time (e.g., OD pair 1-4) or an excessive access time (e.g., OD pair 6-7). The exceptions
are OD pairs 5-9 and 10-11, between which the conventional PT modes provide a
relatively high level of service. The proposed model is first applied to perform a cost-
effectiveness analysis of whether to open new CB lines for OD pairs 5-9 and 10-11.

The following four plans are considered:

Plan 1: All CB lines are operated.
Plan 2: CB line No. 5 for OD pair 5-9 is not operated.
Plan 3: CB line No. 8 for OD pair 10—11 is not operated.

Plan 4: CB lines Nos. 5 and 8 are not operated.
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Figure 7.8. Comparison of different CB operation plans

The plans are evaluated in terms of the CB profit and system performance
measures, i.e., the share of collective modes (CB and conventional PT services), the
average OD-level accessibility, and CO emissions. The results, shown in Figure 7.8,
reveal that Plan 2 has similar performance to Plan 1 in terms of collective mode share
and accessibility, but has higher environmental friendliness. This is because the PT
service for OD pair 5-9 is superior to that of private car mode and can thus attract the
majority of the OD demand. The operation of CB services mainly attracts passengers
from the more environmentally friendly conventional PT modes rather than the drivers
of private cars. In addition, Plan 2 obtains a significantly higher profit than Plan 1, as
CB line No. 5 cannot attract sufficient passengers to cover its cost of opening. In
contrast, the PT service level for OD pair 10-11 is insufficient, and the CB service
serves as an effective supplement for this OD pair. In summary, this experiment shows
the applicability of the proposed model in evaluating different CB operations for the
service design. The results indicate that Plan 2 is the most cost-effective plan; thus, this

plan is adopted in this case study.
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7.4.2.3 Effect of passenger loyalty and pricing of loyalty scheme

This section investigates the effect of passenger loyalty to existing CB lines and new

CB lines. Figure 7.9 shows the CB revenue and system performance with respect to the

evolution of loyalty parameter 7, for existing CB lines. Figure 7.9(a) shows that an

increase in passenger loyalty may lead to increased CB demand and hence increased
revenue for CB operators. The increase in CB demand mainly comprises former drivers
of private cars, as the mode share of conventional PT remains nearly unchanged when
the CB share increases rapidly. This modal shift results in increased accessibility,
increased accessibility-based equity (a lower modified Gini index indicates higher

equity), and a reduction in CO emissions (as shown in Figure 7.9(b)).

0.6 - mmCB s Conventional PT  =@=Revenue 30,000
0.5 - 25,000
g04— oF 20,000 ~
e T
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; 4
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(b) Effect on system performances
Figure 7.9. Effect of passenger loyalty on existing CB lines
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We further investigate the effect of a pricing policy (i.e., the discount applied to a
loyalty scheme) on passenger loyalty and profit for the new CB lines, which need to
attract loyal passengers to increase their mode share. As presented in Figure 7.10, a
higher discount leads to an increase in the proportion of loyal passengers compared to
choice passengers. This may increase CB demand and enhance system performance, as
revealed in Figure 7.9. However, a discounted loyalty scheme may not necessarily
result in increased profits. For example, Figure 7.10 indicates that a 10%-30% discount
may generate a relatively high profit, which is consistent with the practical pricing of
loyalty schemes (Liu and Ceder, 2015). On the other hand, discounts greater than 50%
may lead to a rapid decrease in the profit, as the revenue is reduced by the discounted
fare and operation costs are increased due to the need to run additional vehicles to meet

the increased CB demand.

Choice passengers Loval passengers =#=Profit
6,500 1 r 1,200
5 5,954
4
5,500 - 900 &
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Figure 7.10. Effect of loyalty scheme pricing of new CB lines

7.5 Conclusions

This chapter presents an initial effort to model the effect of emerging CB services on
long-term mode choice equilibrium in multi-modal transportation systems. The
characteristics of CB services, such as the lower and upper limits of demand for
operating a CB line and the passenger loyalty resulting from long-term loyalty

subscription schemes, are specifically considered in the proposed model. To model
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passenger loyalty, travelers are categorized as loyal passengers and choice passengers
to reflect their distinct choice behaviors. Specifically, the mode choice behavior of loyal
passengers is modeled as the repeated choice of CB services without considering other
modes, which is interpreted using a dogit-based discrete choice model. In contrast, the
behavior of choice passengers is modeled based on the disutility minimization rule by
considering all modes in the transportation system, which is reproduced using a weibit-

based model to account for the effects of mode correlation and heterogeneity.

This chapter can be extended to address several limitations. First, the input and
parameters of the proposed model used for the numerical experiments are set only for
illustrative purposes. Further empirical studies are required to calibrate and validate the
proposed model based on real-world dataset. Second, besides considering the penalty
of limited CB to service capacity choice passengers, the proposed model can be
extended to further account for the effect of possibly denied booking (when CB
demands exceed CB capacity) on loyal CB passengers. Third, the proposed model aims
to evaluate long-term equilibrium after introducing CB services, while the short-term
operations of CB services, including flexible timetable and adjustable vehicle routing,
are not considered. It will be interesting to develop short-term mode choice model to

consider and optimize these real-time CB operations (Huang et al., 2020a).
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Chapter 8 Equilibrium analysis for emerging mobility services with
loyalty bundle schemes

8.1 Introduction

This chapter proposes an advanced equilibrium analysis framework for emerging
mobility services based on the dogit-cross-nested weibit (DCNW) individual choice
model developed in Section 3.3. Many network equilibrium models have been
developed for the analysis and optimization of multi-modal transportation systems with
emerging mobility services, where travel choices are reproduced based on the
embedded choice model with endogenous travel disutility dependent on the aggregate
travel demand. Table 8.1 summarizes the choice modeling in the equilibrium analyses
for emerging mobility services. Most of the existing equilibrium models focus on the
mode and route choice dimensions, while few explicitly consider the bundle choice
dimension (Xi et al., 2022). Many equilibrium analyses model travel choices based on
the user equilibrium (UE) principle, which assumes deterministic choice behavior and
fails to capture the subjective uncertainty of travelers. The stochasticity in choice
behavior is mainly considered via logit models, which have closed-form choice
probabilities but may be inadequate to account for travelers’ heterogeneous mode
disutility perceptions and the correlations among modes (e.g., commonality among
modes in the same platform/bundle). Extended logit models, e.g., the nested logit (NL)
and cross-nested logit (CNL) models, have been adapted to consider different
correlations among modes, including the correlation between the driver and passenger
roles in ridesharing, correlation among modes in the same trip, and correlation among
modes belonging to same service type. However, the correlation among modes in the
same mobility bundle has not been explicitly considered. Also, the extended logit
models adopted in existing equilibrium analyses are still inadequate to address the
heterogeneous perceptions of conventional and emerging mobility services.
Furthermore, equilibrium analyses often ignore the effect of traveler loyalty, which can

be cultivated by the long-term loyalty bundle schemes and increase the usage of
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bundled mobilities (Nguyen-Phuoc et al., 2020; Tang et al., 2023). Gu and Chen (2023)
made an initial effort to consider passenger loyalty to customized bus (CB) services in
the mode choice equilibrium analysis via a dogit-nested weibit (DNW) model (see
Section 3.2 and Chapter 7). The heterogeneous mode disutility perceptions and
correlations among conventional modes can be considered together while retaining a
closed-form choice probability. However, Gu and Chen (2023) focused on a single
emerging mobility service (i.e., CB) without considering the behavioral impacts of the
bundling of various travel modes, including the choice of mobility bundles, flexible
mode correlations stemmed from different bundling strategies, and repeated choice of

mobility bundles owing to bundle loyalty.
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Table 8.1. Summary of choice modeling considered in equilibrium analyses for emerging mobility services

Study C.hO'Ce. Mode choice Perception Heterogeneity =~ Mode correlation considered Loyalty
dimension

Diand Ban, 2019  Mode choice,
route choice

Ban et al., 2019 Trip choice o

Xi et al., 2022 Bundle choice Deterministic | ! ! !

Wang et al., 2022 Mode choice

Najmi et al., 2022  Trip choice

Lietal., 2015 Mode choice
Mode choice, MNL \ \ \ \

Zhu et al., 2022 .
route choice

Bahat and Bekhor, . o :
Correlation among roles in ridesharing

2016
Pi et al.. 2019 Correlation among modes within the
. NL same type of service
Mode choice, v \ Correlation between pooling and non- \
Lietal., 2022 route choice o yveen pooiing
pooling ride-hailing services
Mori et al., 2022 Correlation among access modes to rail
Du et al.. 2022 CNL Corre!atlon among_modes used in the
same intermodal trip
Gu and Chen, 2023  Mode choice Dogit-NW \ Correlation among conventional modes ;'Qg;e
This chapter Bundle choice, Dogit-Cross- N J Flexible correlation structure among Mobility
P mode choice nested weibit all modes based on bundling strategies bundle

Note: MNL = multinomial logit, NL = nested logit, NW = nested weibit, CNL = cross-nested logit
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This chapter aims to propose an equilibrium analysis framework, including an
equilibrium demand model and a system performance analysis for emerging mobility
services with consideration of following effects of mobility bundling: (1) travelers’
loyalty to the subscription-based mobility bundles; (2) heterogeneous perceptions and
correlations among mobility services in different bundles provided by different
operators; and (c) effects of different mobility services on system performances. In
particular, the DCNW model developed in Section 3.3 is integrated in the equilibrium
model for reproducing the joint bundle and mode choices while considering the
complex behavioral issues stemmed from mobility bundling and the interactions among
individual travelers. A multi-modal transportation system analysis method is then
developed based on the equilibrium model to assess bundling effect (c). The overall

structure of the proposed equilibrium analysis framework is demonstrated in Figure 8.1.
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Figure 8.1. Overall structure of the proposed equilibrium analysis framework for
emerging mobility services with loyalty bundle schemes

The contributions of the proposed analysis framework are as follows:

(a) Benefiting from the DCNW choice model, the repeated choice behavior of loyal

travelers to mobility bundles is explicitly considered together with the disloyal

travelers. As for disloyal travelers, the heterogeneous mode, flexible correlations

among bundled modes, and interaction between bundle and mode choices are

simultaneously modeled based on the random utility theory.

(b) An equilibrium model is developed consistent with the DCNW choice model. The

equilibrium model is formulated as a mathematical programming (MP) problem,

which guarantees solution equivalence and uniqueness, facilitates understandable

interpretation, and is solved by a convergent and efficient solution algorithm.
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(c) An effective analysis method is developed for multi-modal transportation systems
with emerging mobility services based on the sensitivity analysis of the developed
equilibrium model. The analysis outcomes can facilitate the evaluation of mode
demand pattern and its impact on system performance in different scenarios, which

provide insights into the planning and operations of emerging mobility services.

8.2 Multi-modal transportation system with both conventional and emerging

mobility services

To facilitate the presentation of the essential ideas, the notations used in this paper are
presented in Section 8.2.1. The travel disutility and physical characteristics of

considered conventional and emerging mobility services are described in Section 8.2.2.

8.2.1 Notations

Sets
R Set of origin zones.
S Set of destination zones.
u® Set of mobility bundles/mode nests between OD pair rs.
M "™ Set of modes operated between OD pair rs.
M Set of modes in nest u between OD pair rs.
Inputs
T Travel disutility of mode m between OD pair rs.
t> Generalized travel time of mode m between OD pair rs.
to In-vehicle travel time of mode m between OD pair rs.
totm Waiting time of mode m between OD pair rs.
o Access (walking) time of mode m between OD pair rs.
Cim Monetary cost i for mode m between OD pair rs.
geT In-vehicle crowding discomfort of conventional transit mode.
OBk Discomfort from the physical fatigue of riding bike.
vot Value of time.
cap; Capacity of mode m between OD pair rs.
drs Travel distance between OD pair rs.
q”° Travel demand between OD pair rs.
Parameters
iz Shape parameter at the conditional choice level between OD pair rs.
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i Shape parameter at the marginal choice level between OD pair rs.
Hom Membership of mode m in bundle u between OD pair rs.
. Loyalty parameter for bundle u between OD pair rs in the dogit model.

System performance measures

TTT System total travel time.
E™ CO emission between OD pair rs.

Acc  Accessibility of nest u between OD pair rs.
Acc's Accessibility of OD pair rs.

Primal and dual variables

A Travel demand of mode m in nest u between OD rs.
ar Travel demand of mode m between OD rs.
qr Travel demand of nest u between OD pair rs.
qc,” Number of choice travelers choosing nest u between OD pair rs.
Dual variables with respect to definitional constraints.
o Dual variables with respect to capacity constraints on mode m between
m OD pair rs.

8.2.2 Description of conventional modes and emerging mobility services

This chapter considers a multi-modal transportation system with both conventional
travel modes (i.e., private car, private bike, conventional transit, and street-hailing taxi)
and emerging mobilities (i.e., e-hailing services, bike sharing, and customized bus).
Each type of shared and on-demand mobility can be offered by different service
providers, and each mobility service can be integrated in different bundles provided by
different platforms. Travelers can either subscribe to long-term loyalty bundle schemes
or choose pay-as-you-go (PAYG) schemes for one-time rides. The subscribers of long-
term schemes are assumed to be loyal and tend to repeatedly use the subscribed bundle
due to the pre-paid subscription fee (Matyas and Kamargianni, 2019) and different
levels of incentives for bundled modes (Nguyen-Phuoc et al., 2020). The PAYG users
are open to consider all bundles and modes in the transportation system and make
choices to minimize the perceived travel disutility. The travel disutility and physical
characteristics of mobility services considered in this chapter are described in Figure
8.2 and introduced in detail in Sections 8.2.2.1-8.2.2.5
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Figure 8.2. Travel disutility and physical characteristics of considered conventional
and emerging mobility services in Chapter 8

8.2.2.1 Private car

The disutility of private car trips is composed of monetary costs and in-vehicle travel
time. The in-vehicle travel time of private car is assumed to be a separable, continuous,
and monotonically increasing function of car demand. The generalized travel time of

private car between OD rs is expressed as

1.

th =toq (0 )+ - (d™ -l car + Cpear ), VIS € RS, (8.1)
where t3, t5 . (-), Ci . and c; . respectively denote the generalized travel time,

demand-dependent in-vehicle travel time, fuel cost, and parking cost of driving between

OD pair rs; d' is the travel distance between OD pair rs; vot is the value of time; g,

denotes the road traffic volume comprised by the volumes of private car and ride-

hailing vehicles, which is derived from the equilibrium model presented in Section 8.3.

8.2.2.2 Conventional transit

The generalized travel time of conventional transit modes (e.g., bus) between OD pair

s, tr. , is expressed as follows:

1
8 =t L +E-[g(q; Aoer)+Cpr | WISERS,  (8.2)
where t7 .., t05r, ti e Opy, and cf o respectively denote the generalized travel time,

in-vehicle travel time, access (walking) time, waiting time, travel demand, and fare of

the conventional transit service between OD pair rs. g(.) denotes the in-vehicle
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crowding discomfort cost, which is an increasing function with respect to the in-vehicle

travel time and the transit demand (Li and Hensher, 2011).

8.2.2.3 Customized bus

The disutility of CB services is considered to include the generalized travel time and

rs

risk of failed subscription. The generalized travel time of CB, t.;, can be derived based

on the trip travel time and the CB fare f.; as follows:
rs rs rs rs 1 rs

teg =tics Tlacs Tlu CB+_t'Cf e VISERS, (8.3)
, , e ot h

where the trip travel time is the summation of fixed in-vehicle travel time, waiting time,

rs

and access time of CB, i.e., t& =t g+ o +tocs -

As demonstrated in Section 7.3.2, although the CB generalized travel time is not
explicitly dependent on the number of CB passengers, it is implicitly influenced by the

risk of failed subscription incurred when the demand of CB reaches its capacity, i.e.,

the number of subscribers to the CB line between OD pair rs (g, ) cannot exceed the

capacity of CB line between OD pair rs (cap$’ ):

Ocg <Capgg, VISeRS. (8.4)

8.2.2.4 Ride-hailing services

This chapter considers both the conventional street-hailing taxi and the internet-based
e-hailing service. The disutility of ride-hailing services is considered to include the

generalized travel time and delay due to matching difficulty. The generalized travel

rs

time of both ride-hailing services, t, , is obtained based on the demand-dependent in-

rs

vehicle travel time t , waiting time for pick-up t;, ., , and a distance-based fee

iv,rd ?

Cray (d°) (Pietal., 2019; Wang et al., 2022):

1
ten :tiz/s,rd (qrr; )+t\;/st,RH +V_'C|;S,RH (drs)- (8.9)

The delay due to matching difficulty is considered depending on the supply and

demand of the ride-hailing services in the origin zone, which is modeled as the dual
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variable associated with the capacity constraint of ride-hailing service at origin (Ban et

al., 2019). The capacity of street-hailing taxi at origin r is expressed as

> g <Capj,VreR. (8.6)

seS

There can be multiple e-hailing services operated by different providers at each

origin. The capacity of e-hailing service at origin r by provider i is expressed as

> qs; <Capy,VueU,reR. (8.7)

seS

8.2.2.5 Bicycles

The disutility of cycling is considered to include the generalized travel time and
difficulty to search for an available shared bike (for bike sharing services). As an active

travel mode, the generalized travel time of cycling is considered to include the in-
vehicle cycling time t;; ;. and riding fatigue disutility g, (t{jBK) during cycling (Li et
al., 2015). Two cycling modes are considered in this chapter, namely the conventional

private bike and the emerging bike sharing service. The generalized travel times of the

two modes are respectively written as follows:

o =t | G (o )+ . 9
1 =t [ G (1 )+ s (€0 )] (5.9)

where c5, denotes the cost of owning of private bike; cf (t{v‘fBK) is the time-

dependent fare of bike sharing. Similar to the ride-hailing service, there is limited bike
sharing supply at each zone. Thus, a capacity constraint on the zonal demand of bike

sharing is considered:

D 0g <Capg,VueU,reR. (8.10)

seS

The associated dual variable acts as an additional travel disutility of the bike
sharing service, which can be interpreted as difficulty to search for an available shared

bike due to the insufficient supply in the origin zone.
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8.3 Joint bundle and mode choice equilibrium analysis
8.3.1 Equilibrium model formulation

As described in Section 8.2.2, the disutility of mobility services considered in this
chapter are dependent on the travel demand. Directly deriving the aggregate demand
pattern from the DCNW model choice model developed in Section 3.3 may lead to a
bias, as the mode choice probability derived based on exogenous free-flow disutility
will be inconsistent with the mode disutility dependent on traveler interactions in the
transportation system. In this section, an equilibrium DCNW choice model is developed
to obtain the aggregate mode demand pattern dependent on the endogenous travel
disutility. Following the method described in Chapter 5, the equilibrium model is

formulated as an equivalent MP problem as follows:

mnzZ=2,+2,+2,+Z,+Z7Z,

—z ZI Inz'rS

rseRS memM "™

LSS Y g (Ing -1)

ﬂum rseRS ueU™ mem®

1
2,2, 2, dnInu (8.11)

ﬂl’S
u rseRS yeU "™ meM

—ﬂlrs > Z( > qunJ-('n 2 qJ%—lJ

um rseRSueU™ \ meM® meM

1 7, -q"

rs q I'In . —fu T

ﬂu r;s u; m% Z 77 mgﬂlrs q 1+ Z 77
weU " weU "™

s.t.

Egs. (8.4), (8.6), (8.7), (8.10),

> > ab =9, VrseRs, (8.12)
uey" meMurs
D g =0, VmeM"”,rseRS, (8.13)
ueu”™
qn >0,YmeM>F,ueU” rseRS. (8.14)
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Obijective function (8.11) aims to obtain the mode demand pattern consistent with the
proposed DCNW choice probability derived from endogenous mode disutility. The first
term Z:1 is the multiplicative Beckmann term for considering the demand-dependent
mode disutility (Kitthamkesorn and Chen, 2013). Terms Z2 and Zs are entropy terms
which together determine the DCNW conditional choice probability. Term Zs4
corresponds to the interaction between the marginal and conditional choice levels of
the DCNW model. Term Zs determines the marginal choice probability of choice
travelers while considering the effect of bundle loyalty via the dogit model. Egs. (8.12)
and (8.13) are conservation and definitional constraints, respectively. Eq. (8.14)
guarantees the positivity of decision variables. Egs. (8.4), (8.6), (8.7), (8.10) are
incorporated as explicit constraints on the capacities of corresponding mobility services.
Two propositions are stated below for illustrating qualitative properties of the proposed

equilibrium model:

Proposition 8.1. The solutions to the proposed MP model formulation give the
equilibrium mode demand pattern consistent with the DCNW model.

Proof. See Appendix A3 for detailed proof.

Proposition 8.2. The solutions to the proposed MP model formulation are unique.

Proof. See Appendix B3 for detailed proof.

8.3.2 Solution algorithm

Benefiting from the developed MP formulation, the relationship between primal and
dual variables of the equilibrium model can be analytically derived (as shown in
Appendix A3), and the value of objective function can be easily evaluated to find the
search direction for updating solution variables. Making use of these desirable
properties, the proposed equilibrium model is solved based on the partial linearization
method embedded with an iterative balancing scheme for direction finding and the self-

regulated averaging scheme for step size determination as introduced in Section 5.3.

The iterative balancing procedure is specified as follows to obtain the auxiliary

variables y for direction finding:
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Step 0. Initialization. Set number of iterations I=1. Set initial primal variables y©=0,

and dual variables ©® =0, % =0.
Step 1. Update primal variables.

ﬂrs
ﬂl’S .
um

g )\~ B Bim
rs(n) _ ﬂurs-i's(" Y rs w,;,s(" Y um rs \ prs
yc*W =e DI - -(ﬂum)ﬂu ,

rs
meM;

yss(n) _ yCJs(n)'i' . -9

rs !
1+ Z M
welU "™
_Pim

Bim
VT =y (yert)

rs oY ~Pim rs \ grs
. Tm.e '(qum)ﬂu

) eﬂursmirs(n—l)

Step 2. Update dual variables.

" = max {0, " —%In[%j :
ﬂum ym

Z ycrs(n—l)
u
P YU B e R

B ye

Step 3. Convergence test.

If certain convergence criterion (e.g., max{‘co(”) —o™

,‘;\’(“) _)\‘(”—1)

}gg)is

met, stop. Otherwise, go to Step 1.

8.3.3 Sensitivity analysis-based multi-modal transportation system analysis

The proposed equilibrium model is applied to the decision-making in multi-modal
transportation systems with various emerging mobilities. The infrastructure planning
and mobility operation strategies can be evaluated by comparing the system
performances in different planning scenarios measured based on the equilibrium
demand pattern. Instead of repeatedly solving the proposed model in different scenarios,
the sensitivity-analysis-based method is an effective post-analysis tool that can
approximate the changes in system performance under perturbations in model
inputs/parameters (Yang and Chen, 2009; Du and Chen, 2022). The analysis outcomes
can reveal the effects of managing supply and demand of mobility services and the
criticality of different planning/operation strategies. The sensitivity analysis of the
proposed model is first introduced in Section 8.3.3.1, followed by the illustration of the
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sensitivity analysis-based multi-modal transportation system performance evaluation in
Section 8.3.3.2.

8.3.3.1 Sensitivity analysis of equilibrium DCNW model
Benefiting from the properties of the developed MP formulation, the sensitivity analysis
for nonlinear program can be applied to the proposed model (Fiacco, 1983; Yang and

Chen, 2009; Du and Chen, 2022). The definitional constraint q° = > qZ is

rs
meM,

introduced to represent the decision variable at the nest/bundle choice level, the

Lagrangian of the proposed MP can then be expressed as

L:zm“-{zzqf—q“} { um-qu}zz (g —capyy), (8.15)

rseRS yeU ™ rseRS meM "™

where 1" and A;° are dual variable with respect to the definitional constraints; for

simplicity, we use @, to denote the OD-level dual variable with respect to the capacity

constraint of each mode. The partial derivatives of the Lagrangian with respect to

primal and dual variables are as follows:

1 1
V . L=——o-:In - = —-Ing; +A" - 47, (8.16)
h ﬁu 1+ Z um ﬂum

VL= . L U+ A"+ of, (8.17)

v, L= > qn —cap,,m=BS,EH; V. L =0c —Capg;., (8.18)
s

Vel= Z A -0y (8.19)

Vab=2 2 a’-a". (8.20)

rseRS yeu "™

Let J1 denote the Jacobian of Egs. (8.16)—(8.20) with respect to the primal and dual

variables, which can be expressed as
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v(ju,sL 0 0 -I I
0 V&L ® AT O
=l o o 0 0 of (8.21)
-1 A 0 0 0
T 0 0 0 0]

where | denotes the identity matrix; @ denotes the incidence relationship between the
decision variable g and activated capacity constraints; I and A are the incidence
matrix between OD pair and nest, and that between nest and mode, respectively. The

second partial derivatives Vé,s L and Vz,s L are obtained as follows:

VL= 1r5~diag 1rs — |- 1rs ~diag[im}, (8.22)
G u qrs_ -9 ﬂum 0y
Y14 z n
wel"®
VZYSL:i-V ST+ L -diag( L J (8.23)
gy ST B m

Let J2 denote the Jacobian of Egs. (8.16)—(8.20) with respect to perturbation £ in

the model inputs or parameters, which can be referred to as changes in the supply and
demand of mobility services, such as infrastructure capacity, fleet size, fare price, travel

time, bundle loyalty, and travel demand. J2 can be written as

)
L=Vl VoL VL VoL Vv, L] (8.24)

Gim &

rs

Lety= [qufs Om On A A T indicate the vector of solution variables, the

derivatives of y with respect to perturbation & can be obtained (Yang and Chen, 2009):

Vy=-3*1,. (8.25)
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8.3.3.2 Sensitivity analysis-based transportation system performance evaluation

(1) System performance measures

In this chapter, the performance of multi-modal transportation system is measured from
different perspectives based on the bundle and mode demand patterns derived from the
proposed equilibrium model. The performance measures include mobility, accessibility,
and environmental friendliness. The mobility is measured by the system total travel

time (TTT) expressed as follows:

TIT=> > ar-tr(q). (8.26)

rseRS mem "™

The accessibility is evaluated using the utility-based measure introduced in
Section 2.1.3, which is consistent with the developed choice model and obtained as the

weibit-based composite disutility (i.e., the expected minimum disutility from the CNW

model) at each choice level. The bundle-level accessibility measure, Acc,’, is obtained

via Eq. (3.41) using the endogenous travel disutility z,° (q) . The OD-level accessibility
measure Acc” is obtained as

Acc" ={ > (Ace? )_ﬁ“rs} ¥ VrseRs. (8.27)

ueu™

The accessibility at each level can then be evaluated based on the relative difference in
normalized weibit-based composite disutility:
Acc

Acc’(&)

where Acc’((f) denotes the weibit-based composite disutility after a perturbation & in

AAcC = ,Vrse RS, (8.28)

the examined model inputs or parameters, which is derived based on the sensitivity
analysis outcomes as will be illustrated below.

The environmental friendliness is measured based on CO emission. The OD-level

CO emission is derived as follows (Wallace et al., 1998):

E®= Y e,-qn-0.2038-t -exp(0.7962-d"/t7 ), vrseRS,  (8.29)

m
meM "™

where e, denotes the passenger car unit of mode m, d” is the travel distance between
OD pair rs.
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(2) Sensitivity analysis-based evaluation of performance measures

As all the performance measures are demand-dependent, the system performances after
the implementation of a certain plan or policy can be obtained given the corresponding
equilibrium demand pattern under the perturbation in corresponding model
inputs/parameters. The derivatives of mode demand, total travel time, accessibility, and

CO emission can be obtained based on the sensitivity analysis of decision variable g,

(as derived in Section 8.3.3.1) and the chain rule as follows:

vgqrrns = Z qul:?n

ueu”™

vITT =% % V§q§~(tﬁ+q;f-vqﬁr;s)
rseRS meM "

1 _ﬁJsm _ﬁm B
Tars Lum -Bim-1
s __ s B rs rs rs rs rs rs um
V. Acc; = E M ™ Th, : E V.:Qp -(,uum)ﬂu -Vqﬁrm -(Tm)
meM meM{®

v <] 3 (ae) | v e (o)

L ueU™ ueu”™

VE-Y quzossp(wnq(lwﬂ

rs tI’S
meM " m m

(8.30)

The corresponding performance measure X' (e) (X can indicate mode demand,

total travel time, accessibility, or CO emission) after a perturbation & can be

approximated based on the first-order Taylor expansion:

X'(§)=X(&%)+VeX|, (6-&), (8.31)

where VX : denotes the derivatives of performance measure X evaluated at the

original perturbation level &,.

8.4 Numerical experiments

This section applies the proposed equilibrium model and sensitivity analysis-based
system analysis method to two transportation systems with multiple emerging
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mobilities. The mobility services and bundles considered in the numerical experiments
are as shown in Figure 8.3. A single-OD example is first conducted to illustrate the
properties of the proposed equilibrium analysis framework. A multi-OD case study is
then carried out to verify the applicability of the proposed framework in real-world
scenarios with different OD-level mobility service qualities and multiple bundle loyalty
schemes.

Bundle 1 urmdle 2

‘ . Pay-as- Loyalty Pay-as- Loyalty
Conventional : S '
YOu-go program YOu-go program

Bike
sharing

Figure 8.3. Mobility services and bundles considered in numerical experiments

8.4.1 Single-OD system example

In this example, the effectiveness and features of the proposed methods are
demonstrated in a single-OD transportation system with two mobility bundles and a

single loyalty scheme for each bundle. The model parameters are 7, =0.1, 7, =0.05,

B =37, B =1.85 (Kitthamkesorn and Chen, 2017; Wang et al., 2020a). The input

data for this example are as follows:

q=1000 (travelers), vot=60 (CNY/h), d” =10 (km), cf. =0.6 (CNY/km),
Cocar =15 (CNY); t0or =25 (min), t; or =5 (min), t2.; =5 (min), ¢y =2 (CNY);
tice =20 (min), t7 =3 (Min), t; ;=3 (Min), cf =12 (CNY); ti oy =2 (Min),

Cran (%) =Cf +at,(d™ —3), where ¢, =9 (CNY), iy, =10 (CNY), ¢5, =15

(CNY), ag, =2.2(CNY/KM), aq,, =1.6 (CNY/KM), cty,, =1.1(CNY/km); t°,, =34

' Tiv,BK

rs

t
(min), ciy =4 (CNY), ¢ g6 (tr e ) = 15+%(CNY).

The road in-vehicle travel time is given by the BPR function:

rs \*
|v rd (qrd) trd 0 [1+O 15(2810] ]7 (832)
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where t/ , =12 (min) is the free-flow travel time.

The in-vehicle crowding in bus is computed as (Wang et al., 2020a):

rs 2
g(qlgST7ti:/S,PT):ti:/s,PT ‘[1+0-5(1%%j } (8.33)

The riding fatigue during cycling is expressed as (Li et al., 2015):
rs rs rs 2
Ok (tiv,BK ) =0yt g T, '(tiv,BK ) , (8.34)

where a, =2 (HK$/hour), a, =4 (HK$/hour?).

Without loss of generality, we adopt the following function for evaluating mode
travel disutility (Hensher and Truong, 1985; Mirchandani and Soroush, 1987):

7y =exp(0.075-177),vme M, rs e RS . (8.35)

rs?

8.4.1.1 Numerical results and evaluation

This section shows model outputs and corresponding system performance measures
under sufficient supplies of mobilities (i.e., capacity constraints (8.4), (8.6), (8.7), (8.10)
are not activated). The model outputs in terms of the equilibrium bundle and mode
demands are presented in Figure 8.4 (where e-hailing 1 and e-hailing 2 are abbreviated
as EH1 and EH2).

Travelers

Traveler type 870.4 \29.6

| Choice travelers | | Loyal travelers |

o

Mobility Mobility
Bundlel Bundle2

Conventional

Conditional-level
demand

Modal demand 168.5 37.9 122.1 63.9 276.4 108.7 93.3 130.2

Figure 8.4. Travel demand pattern of single-OD example at each choice level
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The bundle and mode shares are respectively summarized in the left and right
panels of Figure 8.5. The effect of bundling is reflected in the results. Owing to a larger
bundle loyalty, bundle 1 attracts more loyal travelers than bundle 2. Due to the
correlations among modes within nests/bundles, the street-hailing taxi and e-hailing 2
services attract much fewer passengers than e-hailing 1 in mobility bundle 1. Their
demands are diverted by travel modes in other bundles/nests because of the higher

degrees of competition therein.

27.8%

5 PC 12.8% 16.8%
= PB ’

Taxi 1
= EHI1 lI.4"n‘ 12.3%
EH2
L ¥ N -
Ul y = BS 6.8%
=CB

36.8% 27.1%

® Conventional
® Bundle 1
Bundle 2

Figure 8.5. Shares of mobility bundles and individual modes in single-OD example

——Without bundling Bundling
Go-green
1
1
CO emission 0.8 Transit
TTT

Figure 8.6. Effect of bundling in system performances

The system performance measures, including shares of transit services (i.e., bus
and CB) and go-green modes (i.e., private bike, bus, CB, and bike sharing), system total
travel time, and system CO emission, are analyzed in Figure 8.6 to further demonstrate
the effect of bundling. For comparison, the equilibrium travel demand pattern in the
same system but with no mobility bundle is derived using the basic multinomial weibit
equilibrium model (Kitthamkesorn and Chen, 2013). From Figure 8.6, the mobility

bundling with corresponding loyalty schemes can enhance the attractiveness of bundled

227



modes, which significantly increases the shares of transit and go-green modes. This
leads to a slight reduction in the system travel time by alleviating road congestion and

a significant enhancement in environmental friendliness.

8.4.1.2 Sensitivity analysis with respect to inputs and parameters

The section examines the effects of different parameters and inputs on model outcomes
through the sensitivity analysis method introduced in Section 8.3.3.1. In this section,
the emerging mobilities are considered to have sufficient capacities, such that the
differences in attractiveness among bundles and modes are entirely based on the

demand-dependent travel disutility.

Figure 8.7 shows the increase in share of bundles and modes under a unit increase
in the OD travel demand. E-hailing service 1 will attract more incremental demand due
to its superior service quality compared with other ride-hailing services. Compared with
the mode share pattern of the existing demand (as shown in Figure 8.5), the sensitivity
analysis results show that the go-green modes, such as bus, customized bus, and bike
sharing, will attract relatively larger proportion of the incremental travel demand as

they are less influenced by the increased road congestion.

5 PC 7.5%

19.8% 0%
34.8% 35.9% B
. Bus
u Conventional

«Bundle | Taxi o
® Bundle — 14.2% 20.4%
Bundle 2 EHD
n
o Y

s

= BS Uu\‘/ N 0,
4.9% Q_Z//\ 4.2%
29.3% =CB 22.0%

Figure 8.7. Sensitivities to total travel demand

Figure 8.8 investigates the sensitivities of bundle and mode demands with respect
to bundle loyalty. Compared with other parameters and inputs, the increase in bundle
loyalty can exert a much more significant impact on the equilibrium bundle demand
pattern. This implies that loyalty is an important factor to be considered in the travel
demand analysis. As for decision-makers, promoting policies/strategies for improving
the loyalty to bundles of shared mobilities (e.g., Bundle 2) shows great potential to

reduce road traffic and encourage the usage of active (cycling) and go-green modes.
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Figure 8.8. Sensitivities to loyalty parameter of each mobility bundle

Figure 8.9 examines the sensitivities to the dissimilarity parameter ¢° = 8 / %

which associates with the degree of competition among modes in the same nest/bundle.
An increase in the dissimilarity parameter implies a lower competition among modes
within the same bundle. The results indicate that in this example, the ride-hailing modes
are more sensitive to the competition between each other. Specifically, taxi and e-
hailing 2 are most negatively influenced by the competition as they are bundled/nested
with more competitive modes that can divert more demands from them. While e-hailing
1 benefits most from the competition as it has the most significant advantage in service

quality compared to the other modes in the same bundle.

-20

Sensitivity

Figure 8.9. Sensitivities to dissimilarity parameter

8.4.1.3 Sensitivity analysis considering mobility supplies

This section uses the sensitivity analysis-based method to investigate the effects of
supplies, i.e., capacities of both conventional and emerging travel modes. Figure 8.10

investigates the effect of considering emerging mobility capacity on the sensitivities
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with respect to the loyalty parameter 7. When the capacities of emerging mobilities are

insufficient (capacities of all on-demand modes are set as 100 travelers), the effects of
enhancing bundle loyalty significantly decrease. Compared to the results in Figure 8.8,
the improvement of loyalty cannot influence the go-green mode share and road traffic

as the limited supply becomes the bottleneck of shared mobility attractiveness.

600 4 ® Uncapacitated ™ Capacitated 800 4 B Uncapacitated ™ Capacitated

400 - 600+

400 -+
200 A

IConventional
mode

Go-green

2
Bundle 2 mode 200 1

Road
traffic

“onventional
mode Bundle 1

Sensitivity
Sensitivity

Road
traffic Go-green

mode

-200 A 2200 A

-400 - -400 -

(a) Loyalty to bundle 1 (b) Loyalty to bundle 2

Figure 8.10. Sensitivities of modal demands under different capacitated conditions

Figure 8.11 further investigates the sensitivities to road capacity, which indirectly
influences road traffic via road congestion instead of directly restricting modal demands.
As can be expected, the improvement in road capacity can reduce congestion, enhance
attractiveness of car modes, and divert travel demand from shared mobilities and active
modes. Specifically, the private car can attract more demands in the case where on-
demand modes are capacitated and ride-hailing services cannot benefit from the

enhancement of attractiveness.

0.6 1 B Uncapacitated ® Capacitated

0.4 -
02 -JI Collecuive  Go-green I
mode mode
0 T T T T T - 1
, Private car Ride- Emerging
0.2 4 hailing  mobility

-0.4 A

-0.6 A

-0.8 -

Figure 8.11. Sensitivities of modal demands with respect to road capacity
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We further investigate and compare the sensitivities of system performance
measures with respect to capacities of both conventional and emerging modes. The
outcomes are shown in Figure 8.12, which reflects the criticality of supply improvement
for each mobility service. Increasing road capacity still has the most significant positive
impacts on system travel time and accessibility. It can even slightly reduce CO
emissions by alleviating road congestion. On the other hand, it is worthy to note that
comparing to road capacity, the capacity of emerging shared mobilities, i.e., bike
sharing and customized bus, can have comparable or even greater positive effect on
accessibility and CO emission. Considering the relatively lower cost of increasing
capacities of shared mobilities, this result implies that providing enough shared
mobility supplies may have higher priority in the planning of future transportation
systems. Furthermore, adding capacity of ride-hailing services can have negative
effects on the examined performance measures, implying that promoting ride-hailing

services may not be a good choice in congested transportation systems.

Cap_EH2
Cap EHI

Cap_Taxa
Cap Bus
Cap Road Cap Road
-0.6 -0.4 -0.2 0 02 0.4 06 -6 -4 -2 0 2 4
Sensitivity of go-green mode share Sensitivity of total travel time
(a) Go-green mode share (b) total travel time
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Figure 8.12. Sensitivities of system performances with respect to capacities
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8.4.2 Case study in multi-OD transportation system

This section verifies the application of the proposed model in a multi-OD case study
based on a multi-modal network extracted from Nanjing, China (Huang et al., 2020a).
The study area is shown in Figure 8.13, where eleven zones, eight OD pairs are

considered in the case study.

Nodes with insufficient
shared bikes
Origin/Destination nodes
CB lines

=== Busroutes

Figure 8.13. Study area with emerging mobility services
(adapted from Huang et al., 2020a)

Table 8.2. Inputs of multi-OD case study

Travel Car Road Bus Bus Bike CB CB

O[.) demand [i)<|stance Time  Capacity Time Capacity Time Time Fare
pair (person) (km) (min)  (veh) (min) (person)  (min) (min)  (CNY)
1-4 300 17.6 22 200 65 300 70.4 44 10

2-8 420 17.4 21 200 56 300 69.6 42 10

3-8 310 11 15 200 41 300 44 33 8

4-7 300 13.4 17 100 46 300 53.6 40 8

5-9 350 14.9 26 100 48 500 59.6 43 8

5-11 300 26 40 100 50 500 104 52 14

6-7 450 5.7 10 200 15 300 22.8 18 6
10-11 300 9.1 15 100 30 500 36.4 30 6

The input data used in the numerical experiments are presented in Table 8.2. The

model parameters and computations of mode travel disutility are consistent with
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Section 8.4.1. All eight mobility services and three mobility bundles shown in Figure
8.3 are operated between each OD pair with different service qualities and are
considered to have the same degree of loyalty and sufficient capacity in Section 8.4.2.1.
The effects of pricing of multiple loyalty bundle schemes and capacity of emerging

mobilities are then investigated in Section 8.4.2.2.

8.4.2.1 Model outcomes and system performances

Figure 8.14 shows the equilibrium mode shares between each OD pair. Consistent with
the insights from existing studies, CB services tend to have higher attractiveness when
travel distance is long (e.g., OD pair 5-11), while cycling modes (both private bike and
bike sharing) have higher attractiveness in trips with short distance (e.g., OD pairs 10-
11 and 6-7). The performances of bus and CB highly depend on the service quality. For
instance, the bus and CB lines between OD pairs 4-7 and 5-9 have less detour than those
between 1-4 and 2-8, and thus can attract much more demands in the competition with

private car and ride-hailing services.

60% - MPrivate car ®Ride-hailing ®mBus = CB ®Cycling

50% A

40% A

20% 1 - -|' .l
10% - I I I --h
0% B L i

Mode share
('S
<
=

L T T - T+  __r  _ r 1
5-11 14 2-8 59 4.7 3-8 10-11 6-7
OD pair
Long OD travel distance Short

Figure 8.14. Mode share between each OD pair in multi-OD case study

Figure 8.15 examines the sensitivity of performance measures with respect to the
free-flow in-vehicle travel time of each mode. Cycling modes and CB services have a
more significant impact on the CO emission and system travel time, respectively.

Consistent with the discussions on Figure 16, cycling modes are more important for
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accessibility of short-distance OD pairs (6-7), while CB services play a critical role in
the accessibility of distant OD pairs (5-11). In addition, the reduction in bus travel time
has similar but slightly larger effects on CO emission and accessibility. These outcomes
can provide insights for deciding the implementation and priority of infrastructure

design and policymaking for different mobilities in transportation planning.

Car Car
1 1.01
1
0.99
0.9
Cycling Bus Cycling 0. Bus
CB CB
(a) System travel time (b) CO emission
— Accessibility (5-11) =——Accessibility (6-7)
Car
1.08
1.04
j oy
Cycling 0.9</ Bus
CB

(c) OD-level accessibility

Figure 8.15. Effect of a unit reduction in mode travel time

8.4.2.2 Effect of emerging mobility supply

This section evaluates the effect of supplies of emerging mobilities in terms of service
capacity and pricing of loyalty bundle scheme. Figure 8.16 shows the cycling demands
and CO emissions between the two short-distance OD pairs (6-7, 10-11) with the
evolution of bike sharing capacity. Nodes 6 and 10 are schools and transit hubs that are
considered to have insufficient bike sharing supply (capacity = 50 bikes). Before
accommodating all potential bike sharing requests, increasing bike sharing capacity can

stably increase cycling demand and reduce CO emissions.
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Figure 8.16. Effect of bike sharing capacity

We further consider the case when bike sharing and customized bus services are
newly introduced to OD pairs 5-9 and 10-11, where travelers have no loyalty to the
corresponding mobility bundle 2. A discount on CB and bike sharing fares is to be
implemented to enhance loyalty to bundle 2. In this case, Egs. (3.51)—(3.52) are used to
obtain the loyalty parameter based on the preference to loyalty scheme when previous
mode choice probabilities are absent. The bundle demands and OD-level accessibility

are evaluated in Figure 8.17 under varying levels of discounts.

180 ® Choice traveler ® Loyal traveler 150 7 mChoice traveler ® Loyal traveler
= 160 = 130
: :
3 140 3 110
3
= 120 = 90
£ =
= =
2100 a 70

80 50

0 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 0 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Discount on fare Discount on fare
(a) OD pair 5-9 (b) OD pair 10-11

Figure 8.17. Effect of loyalty scheme pricing on demand of mobility bundle 2

From Figure 8.17, the effect of discounts is more significant between OD pair 5-9
where the CB service is preferred. Although bike sharing plays a critical role between
OD pair 10-11, the decrease in bike sharing fare has a lower impact than CB fare. It is

because that the attractiveness of bike sharing depends more on the cycling time. Unlike
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bike sharing, the CB fare is a greater concern for CB passengers Thus, fare discount
can have a more significant impact on the bundle preference, leading to a larger increase
in bundle loyalty and bundle demand. Compared to fare discount, reducing in-vehicle
travel time and riding fatigue might be more effective for the bike sharing service. This
implies that the incentives for different emerging mobilities need to be customized

based on the service features.

8.5 Conclusions

This chapter proposes an equilibrium analysis for the joint bundle and mode choice in
multi-modal transportation systems with emerging mobilities. The loyalty to mobility
bundles and correlations among different modes are specifically considered. To derive
the aggregate demand pattern, an equilibrium model is developed and formulated as an
equivalent MP problem, which guarantees equivalence and uniqueness of solutions and
enables the application of convergent and efficient solution algorithms. The sensitivity
analysis of the proposed equilibrium model is developed based on the MP model
formulation, which facilitates the post-analysis of transportation systems via various

performance measures.

Various numerical experiments are conducted to illustrate the proposed choice
model and sensitivity analysis-based system evaluation method in a single-OD system
and a real-world case study extracted from Nanjing, China. The results show the effect
of bundle loyalty and mode correlations can be effectively considered by the proposed
model. Mobility bundling and bundle loyalty are found to be important influencing
factors of the demand distribution and system performance. The sensitivity analysis-
based method can efficiently reveal the effects of different model parameters and inputs
on model outcomes, which facilitates understanding the criticalities of different
mobility service planning/operation schemes. The outcomes can provide insights for
the decision-making on emerging mobility services. For example, the capacity of shared
mobility services and incentives to loyalty schemes of shared mobility bundles are
found to play an important role in the alleviation of road congestion and the
improvement of environmental friendliness and accessibility. The discount on fares is
an effective but not necessarily the most appropriate way to enhance the effect of bundle
loyalty. The incentives to loyalty bundle schemes should be customized by decision-

makers dependent on the features of different emerging mobilities.
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Chapter 9 Modeling shared parking services at spatially correlated
locations through a weibit-based combined destination and parking

choice equilibrium model

9.1 Introduction

This chapter develops an equilibrium model for the emerging shared parking services
based on the spatially correlated weibit (SCW) destination choice model and parking-
size weibit (PSW) parking choice model developed in Section 3.4. Unlike most
conventional curbside parking services, shared parking services allow travelers to
circumvent the inconvenience of cruising-for-parking, which is a notable factor in
modeling parking choice equilibrium (e.g., Leurent and Boujnah, 2014; Boyles et al.,
2015; Pel and Chaniotakis, 2017). Zhang et al. (2020) considered this feature of shared
parking and proposed a user equilibrium (UE) model to examine the choice equilibrium
between conventional curbside parking and emerging shared parking services. Despite
of focusing on the parking choice equilibrium problem (Liu et al., 2022), few efforts
have been devoted to modeling the equilibrium of joint destination and parking choice
with shared parking services that accounted for the impact of parking service quality

on the location attractiveness and destination demand pattern (Liu et al., 2021).

Many combined travel demand models (Oppenheim, 1995; Yang and Meng, 1998;
Yao et al., 2014) have been proposed using logit-based models to reproduce the
destination and travel choices together, which is similar to the joint destination and
parking choice considered in this chapter. However, existing combined travel demand
models typically adopt the multinomial logit (MNL) model for reproducing choice
behaviors at the individual level. As illustrated in Section 3.4, the MNL model is
inadequate to capture the heterogeneity in perceived destination and parking disutility,
or the similarity among spatially correlated alternatives, which are important concerns

in modeling destination and parking choice behaviors.

To address the abovementioned research gaps, this chapter proposes an advanced
equilibrium model for investigating the effect of shared parking services on joint
destination and parking choices. Benefiting from the SCW-PSW choice model
developed in Section 3.4, travelers’ random perceptions of travel disutility are
consistently considered based on the random utility theory at both the destination and

parking choice dimensions. Furthermore, the heterogeneity and spatial correlation
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issues can be simultaneously addressed in each choice dimension. The proposed
equilibrium model is formulated as an equivalent mathematical programming (MP)
problem consistent with the SCW-PSW choice model. The developed MP formulation
ensures high interpretability and enables the application of readily available convergent

and efficient solution algorithms.

9.2 Problem statement

To facilitate the presentation of the essential ideas without loss of generality, Sections
9.2.1 and 9.2.2 introduce the notations and main model assumptions, respectively. The

travel disutility at each choice dimension is described in Section 9.2.3.

9.2.1 Notations

Sets
R Set of origins.
S Set of destinations.
ST Set of destination pairs.

Inputs and parameters

v, Attractiveness of destination s.

t; In-vehicle travel time between OD pair rs.

vot Value of time.

C, In-vehicle travel cost between OD pair rs.

Cs5p1Cscp Cost of shared parking/curbside parking at destination s.

pCs,sp J pCs,cp

r

aS,St

r

Parking fee of shared parking/curbside parking at destination s.

Allocation parameter indicating the proportion of destination s in
destination pair st.

Shape parameter with respect to the marginal destination choice
level.

B, Shape parameter with respect to the conditional destination choice
level.

H Dissimilarity parameter.

Wit Spatial correlation between locations s and t.

PS s PS¢,  Parking-size factor of shared/curbside parking at destination s.

B Shape parameter with respect to the parking choice.

Caps,sp ' . . . . . . .

Cap Capacity of shared parking/curbside parking service at destination s.
s,cp
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Intermediate variables

r

s Total disutility of traveling from origin r to destination s.

oo Total disutility of traveling from origin r to destination s using shared

S TS.Cp parking/curbside parking.
Tsspr Tsop Disutility of using shared parking/curbside parking at destination s.

T

T

ol Deterministic part of individual disutility of destination s in
’ destination pair st.
Ty Common disutility of destination pair st.
| S A Parking searching time of shared/curbside parking at destination s.
A Accessibility between OD pair rs.

Decision variables

foo o Flow of shared parking/curbside parking between OD pair rs.
Travel demand at destination s belonging to destination pair st from

r
Gos originr.
Os Travel demand of destination pair st from origin r.
ds Travel demand between OD pair rs.

9.2.2 Assumptions

A9.1: Travelers make destination and parking choices together to minimize their total
perceived disutility. The random disutility perception errors follow the Weibull
distribution (Castillo et al., 2008; Kitthamkesorn and Chen, 2017).

A9.2: The total disutility of travelers resulting from the combined destination and
parking choice consists of the destination utility, travel disutility, and parking disutility
(including parking searching time and parking fee). The disutility function has a
multiplicative form, which is consistent with the psychophysical laws on how different
magnitudes of travel disutility is perceived and has better behavioral interpretations
than the commonly used additive utility function adopted in logit models (Fosgerau and
Bierlaire, 2009; Chakroborty et al., 2021).

A9.3: At the parking choice level, travelers choose from two types of parking services,
i.e., shared parking and curbside parking. Shared parking users do not spend any time
searching for parking but may fail to reserve a shared parking slot when the shared
parking demand reaches the capacity. The searching time for curbside parking is an
increasing function with respect to the parking occupancy rate (i.e., the ratio of the
parking demand to the parking capacity). The curbside parking capacity is sufficient to
accommodate all parking demands (Zhang et al., 2020; Liu et al., 2021, 2022).
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9.2.3 Destination utility and parking disutility

The proposed model considers both the destination utility and travel disutility resulting
from joint destination and parking choices. Let z; denote the total disutility of traveling
from origin r to destination s. In the weibit-based choice model, z; is expressed in the

following multiplicative form:

V_:=A{-(y/s)_l,‘v’reR,SeS. 1)

v, denotes the utility of destination s, which is represented by the attractiveness of s

that can be calibrated exogenously. A’ denotes the accessibility between OD pair rs,
which is a composite disutility (i.e., the expected minimum travel disutility) derived
based on the parking choice model as illustrated in Section 2.1.3.

The travel disutility consists of the in-vehicle travel cost c; and parking disutility
V, - The in-vehicle travel cost between OD pair rs is associated with the in-vehicle OD

travel time:

c, =vot-t,VreR,seS, (2)

where vot denotes the value of time. t is assumed to be exogenously given because on-

trip congestion is not the focus of this model (Zhang et al., 2020; Liu et al., 2021). The
parking disutility is considered to include the parking cost and difficulty to reserve a
vacant shared parking slot (for shared parking services). The parking cost at destination

s consists of the parking searching time and parking fee:

T, =Vot-t, +pc, ,VreR,seS m=sp,cp. (3)

s,m?

pc, ., and pc, ., denote the monetary fee of shared parking and curbside parking at

s,cp

destination s. t,  is the curbside parking searching time, which is an increasing

p

function of curbside parking demand f,  (i.e, t; ( foe )). The shared parking service

has a constant searching time t,, but limited number of parking slots, i.e., there exists

a tight capacity constraint on the shared parking space. When the capacity constraint is

activated, there exists a positive dual variable that increases the shared parking disutility,

240



which can be interpreted as the penalty induced by the difficulty to reserve a vacant

shared parking slot.

9.3 Combined destination and parking choice equilibrium model
9.3.1 Mathematical programming model formulation

As described in Section 9.2.3, the parking disutility is demand-dependent, it is thus
necessary to consider the congestion effect when modeling the equilibrium destination
and parking choices. This section presents the equilibrium SCW-PSW model to obtain
the aggregate travel demand pattern based on the endogenous parking disutility while
consistent with the individual choice probability from the SCW-PSW model developed
in Section 3.4. Thus, the equilibrium destination and parking choice behaviors are
consistently modeled based on the random utility theory, which addresses the
behavioral inconsistency in the joint destination and parking equilibrium model
proposed by Liu et al. (2021).

Nested choice structure Objective function

m Multiplicative Beckmann term
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Figure 9.1. Construction of the MP objective function for the equilibrium combined
destination and parking choice model

Based on the method introduced in Chapter 5, an equivalent MP formulation of
the equilibrium SCW-PSW model is developed, which leads to analytical expressions

of primal variables and can be solved by readily available convergent and efficient
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algorithms. Figure 9.1 illustrates the construction of the objective function according to
the hierarchical structure of the joint destination and parking choice (Figure 3.13) and
the nested structure of the SCW model (Figure 3.15). Due to the multiplicative disutility
function used by the weibit-based models, the multiplicative Beckmann terms are
adopted for representing the destination utility and parking disutility (Kitthamkesorn
and Chen, 2013). Entropy terms are constructed individually for the SCW probabilities
at the marginal and conditional destination choice levels, PSW probabilities at the

parking choice level, and interactions among different choice levels.
By normalizing " =1, B, =1/u and substituting g5 =q;, +q;, into term Z,
the MP model formulation can be written as follows:

mnz=2+2,+Z,+72,+7Z,+Z,

= [fr To J.Of;m In rsr’cp(a))da)}

rseRS

+iz[f;5p(|n £, ~1-InPS., )+ 7, (In /) ~1-InPS!,.)]

s,sp s,cp s,cp
m rseRS

- Y g (Ing; -1) 64

m rseRS

_qug 'Inl//s

reR seS

OMPEALE S PR

reR seS t#seS reR seS t#seS

o qsst Ore
1 /l ZZZ(qsst+qtst) In—=-1

reR s=1 t=s+1

s.t.

flp+ fop =0, VreR,se$ (9.5)
dal=q",vreR (9.6)

seS
> 0l =0, VreR,seS (9.7)

stesT
>, <Cap,,VseS (9.8)

reR

O 20 VreR,steST,se$S (9.9)
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f' f' >0VreR,seS (9.10)

s,sp? Us,cp =

Obijective function (9.4) aims to find the equilibrium destination and parking demand
based on the SCW-PSW model. Conservation constraints (9.5) and (9.6) indicate the
relationship between the parking flow and OD demand and between the OD demand
and zonal production, respectively. Constraint (9.7) is the definitional constraint.
Capacity constraint (9.8) specifies the limited shared parking space. Constraints (9.9)
and (9.10) are nonnegative constraints. The following two propositions are defined to

show the qualitative properties of the proposed MP formulation.

Proposition 9.1. The proposed MP formulation (9.4)—(9.10) yields the equilibrium
destination and parking choice solution of the SCW-PSW model.

Proof. Construct the Lagrangian of the proposed MP problem and let its partial

derivatives with respect to solution variables equal to zero, we can obtain the analytical

r

expression of decision variables f , q;, q;,and qg:

fr_ o Fnlrtrann) PS, , .(Tsr‘m)*ﬁm , (9.11)
S 9 =InA +7x!, (9.12)
B
) ) ) T-u 1
+ H - vy
qs,st _(qs,st qt,stj _ |:a5r,st (Tsr) 1 'e—ﬂ :|/1 1 (913)
H H

1 14
=L+ = pee ~{[a;ﬁ (1) |+ il )1}”} SENCED)

In Eq. (9.11), e " can be considered as a penalty on the risk of failed subscription to

shared parking services and can be integrated with the parking disutility z, . Hence,

substituting Eq. (9.11) into Eq. (9.5) leads to the PSW parking choice probability:

fs':SD — eiﬂm'”sr ) PSS’SP .<T5r*5p )7ﬂm . (915)
e o () P (h) |

s,sp
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Substitute Egs. (9.12)—(9.14) into Eqg. (9.6), we can obtain the marginal and conditional
destination choice probabilities of the SCW model as follows:

r r
qs,st + qt,st

St 8| . ) - s|-1 5| T Ty " -
B Bty Pl T
s=1 t=s+1

ar

1
T r r\! ;
o foite)

= a . (9.17)

qsr st + qtrst A -1, -1
' ' u r r u r r
e |:as,st '(Ts ) } +|:at,st '(Tt ) :|

For detailed proof, see Appendix A4.

Proposition 9.2. The destination flow and parking demand solutions to the MP

formulation (9.4)—(9.10) are unique.
Proof. See Appendix B4.

9.3.2 Solution algorithm

Benefiting from the developed MP formulation, the relationship between primal and
dual variables of the equilibrium model can be analytically derived (Egs. (9.11)—(9.14)),
which can be used to find the search direction in the solution algorithm. Taking
advantage of this property, the partial linearization algorithm introduced in Section 5.3
is adapted for solving the proposed equilibrium model. The solution algorithm is
described in Sections 9.3.2.1 and 9.3.2.2.

9.3.2.1 Partial linearization algorithm
Given the decision variables and corresponding travel disutility at iteration k-1, i.e.,
f*!.g** and r(f"'l), the search direction (i.e., auxiliary parking flow g and auxiliary

destination demand y) at iteration k is determined by solving a partial linearized

subproblem as follows:
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= Z gsr,sp -In Tsr,sp + gsr,cp I Ts cp |:( fsrcp) :|

rseRS

+iz[g;sp(lng;sp 1-1nPSL,, )+ 0, (I 9L, ~1-INPS, )|

m rseRS

Y v (iny; )

m rseRS

_Zzysr 'InWs

reR seS

WEE T v ) T3S v,

reR seS t#seS reR seS t#seS

& ysst Yia
1 ,u ZZZ(ysst+ytst) In—=—"——=-1

reR s=1 t=s+l

s.t.

gsr,sp _{_gsrvcp = yg,Vl’ € R,SES

Dyi=y',vreR

seS

Z Yest = Y5, VF€R,5€8S

steST

Z 9s, <Cap,,,,Vs€S

reR

Yo 20 VreR,steST,seS$

Ui Uscp 20,VreR,se$

(9.18)

(9.19)

(9.20)

(9.21)

(9.22)

(9.23)

(9.24)

In the subproblem, the flow-dependent parking disutility in objective term Zi is

linearized via a first-order approximation, which fixes the curbside parking searching

time based on the current parking flow f<1. The subproblem is a convex program with

linear inequality constraints (i.e., capacity constraints (9.22)). In this chapter, the

iterative balancing scheme is adapted to solve the subproblem (Bell, 1995; Ryu et al.,

2014). In the line search, the moving step size is determined based on the advanced

self-requlated averaging (SRA) scheme. The procedure of partial linearization

algorithm involves the following steps:
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Step 0.

Step 2.

Step 3.

Step 4.

9.3.2.2

Initialization.

Initialize primal variables f°=0, g°=0, and the free-flow parking disutility;

Set outer iteration counter k = 1;

Derive auxiliary flow pattern g* and y' by solving the partial linearized
subproblem (9.18)—(9.24) based on the iterative balancing scheme;

Initialize step size: ¢' =1, y' =1. Update primal variables: f'=g*, gq’=y.
Direction finding.

Update travel disutility based on the current flow pattern f< and g;
Setk=k+1,

Derive auxiliary flow pattern gk and y* by solving the partial linearized
subproblem (9.18)—(9.24) based on the iterative balancing scheme.

Line search.
Derive the step size ¢ based on the SRA scheme:
o =1/7" (9.25)
k-1 : k k-1 k-1 k-2
I s B 06
7 '+o, otherwise

where o, >1 and o, <1.

Update primal variables.

K — Kt _I_q)k '(gk _fk-l);

qk :qk-l +¢)k ‘(yk _qk-l)_

Convergence test.

If max{|fk —f"'1|,|qk —q"'1|} <g , terminate the algorithm, where ¢ is a

convergence tolerance at which the procedure stops. Otherwise, go to step 1.

Iterative balancing scheme

This section describes the iterative balancing scheme used for finding the search

direction in step 1 of the partial linearization algorithm. At each iteration of the iterative

balancing scheme, one of the dual variables (A" and e,

«) Is adjusted to make primal

variables satisfy the corresponding constraint. The procedure of the iterative balancing

scheme is specified as follows:
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Step 0. Initialization.

° Set inner iteration counter n = 0;
- - . n n
. Initialize the dual variables: (a)sysp) ,(/1') =0,VreR,seS.

Step 1. Update the primary variables.

. Based on dual variables, derive primal variables via Egs. (9.11)—(9.14):

n 1 1)#
(v) = el '{[asr,st (2! )l}” +[oz[’5t (zf )l}”} ,VreR,steST,

s,st : S

r\" | o« R
(ysr,st)n=ﬂ' (ySt) {ar (rr)_l-e_(lr) }ﬂ,VI’ER,SES,

(v))' = 3 (viy)' VreRses,

steST

(gsr,sp )” _ efﬂm'[(”g)u(“’sﬁp)n} . pssysp ‘(Tsr,sp )%m VreR,seS,
(gsrycp )” _ e—ﬂm'(”sr)n . Pss,cp '(Tsr,cp )_ﬁm ,VI’ [= R, seS )

where (7! )’ :—,Biln(ysr)n ~In(A')".

m

Step 2. Update the dual variables.

()" = () = ﬁ

steST

n 1 cap, s

_ﬁm Z(gsr,sp)n

reR

Step 3. Convergence test.

. Calculate the maximum adjustment among all dual variables. If
max {‘(w&sp )n+l ~(@, )HH(JJ )n+l -(4" )n‘} < ¢,, terminate the algorithm, where

&, isaconvergence tolerance for the iterative balancing scheme. Otherwise, set

n=n+1and go to step 1.
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In Step 2, the adjustment factor for each dual variable is obtained based on the
analytical relationships between primal and dual variables. The adjustment factor A'
associated with dual variable A" is derived by substituting the analytical expression of

y;, (following Eq. (9.14)) in the conservation constraint (9.24):

z ﬂ'e(ﬂmr)'{[asrst (Tsr )l};lt +|:0‘tr5t(ftr)l}‘l‘}# _q

steST

e > yl=q (9.27)
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The adjustment factor A, associated with dual variable e, is derived by

s,sp
substituting the the analytical expression of g;  and g. . (Eq. (following 9.11)) into

the capacity constraint (9.22):
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9.4 Numerical experiments

9.4.1 Toy network

This section designs a numerical example to illustrate the properties of the proposed
model. The model parameters are and x=0.5 (Kitthamkesorn and Chen, 2017). An

exponential parking searching time function is used for congested urban areas (Belloche,
2015):
z fSlerp

t,,, =0.2-exp| 7-*f—— | VseS§. (9.29)
Y Caps,cp
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A toy network with one origin and six destinations (Figure 9.2) is considered. The
travel demand from origin r is "= 1,000 (veh). The six destinations S1-S6 are located
in two areas. There are five pairs of adjacent destinations: (S1, S3), (S2, S3), (S4, Sb5),
(S4, S6), and (S5, S6). The travel time to each destination is assumed to be 10 min, and
all destinations have the same utility y, =30 (HK$). The shared parking cost is HK$ 5

for each destination. The capacities of shared and curbside parking are Capssp = 100
(veh) and Capssp = 300 (veh), respectively. The value of time is vot = 60 (HK$/h).

Figure 9.2. Toy network with one origin and six destinations

Table 9.1 summarizes the distribution of parking space. The digits associated with
each destination indicate the independent shared parking space (e.g., 82 for S1) and
curbside parking space (e.g., 246 for S1) at that destination. The digits associated with
each pair of destinations (e.g., 26 and 78 for (S2, S3), respectively) denote the

overlapped shared and curbside parking space jointly used by that destination pair.

Table 9.1. Distribution of parking spaces at each destination in toy network

Destination S1  S2  S3  (S1,S2) (S1,S3) (S2,S3) (Si,S2,S3)

Parking 82 62 62 6 6 26 6

space (veh) 246 126 126 16 18 78 18
Destination S4 S5  S6  (S4,S5) (S4,S6) (S5,S6) (S4, S5, S6)
Parking 80 60 60 10 10 30 0

space (veh) 240 180 180 30 30 90 0
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9.4.1.1 Model outcomes

This section describes the outcomes of the proposed equilibrium choice model. The

equilibrium flow at each choice level (i.e., qg, q;, 9;, and f, f' from the top

s,sp? "s,cp

down) is shown in Figure 9.3, where SP and CP denote shared parking and curbside
parking, respectively. Although the two destination clusters (S1-S3 and S4-S6) have
the same number of destinations with the same destination utility, the choice structure
of the SCW model leads to different distributions of travel demands. Destinations S1-
S3 are considered less spatially correlated than destinations S4-S6 (the former has only
two pairs of adjacent destinations whereas the latter has three pairs) and can thus attract
slightly higher travel demands. According to the proposed model, S1-S3 attract 51%
of the total demand. In contrast, the models that do not consider the spatial correlation
(e.g., MNL and MNW) assign half of the demand to S1-S3.

Origin r

594 129.0 554 128.2 19.5 117.2
(@) Equilibrium flows to destinations S1-S3

Origin r

41.6 125.2 38.1 124.3 38.1 124.3
(b) Equilibrium flows to destinations S4—-S6

Figure 9.3. Equilibrium flow pattern of toy network at each choice dimension
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The model outcomes are summarized in Figure 9.4. Figure 9.4(a) illustrates the
effect of considering the correlation issues on destination choice. Within the S1-S3
cluster, S1 and S2 are less spatially correlated (adjacent to fewer locations) and have
significantly higher destination demands than S3. Destinations S4-S6, which have
symmetric spatial distributions, share the same spatial correlation and have similar
travel demands. The slight difference in the destination demand is attributable to the
different degrees of overlap among the parking spaces. The parking spaces at S5 and
S6 have a higher degree of overlap, leading to higher parking disutility than that of S4.

The same reasoning holds for the difference in the demands at S1 and S2.

Demand difference due to

188. 3 parking similarity
190 - L 183.6
180 A Demand
166.7
170 - difference 1623 1623
z due to
= 160 1 spatial
g 150 A similarity
g 136.7
£ 140 1
$ 130 -
a
120 A
110 A
100 T
S1
(a) Destination choice
1 7 m Shared parking = Curbside parking
0.9 1 85.7%
E 08 1 . 75.1% 76.5% 76.5%
Z 0.7 68.5% 69.8%
=0
g 0.3
E0.
. 143
0
sl s2 | | S3 | | s4
Congested Less congested Moderately congested
curbside parking curbside parking curbside parking

(b) Parking choice
Figure 9.4. Summary of equilibrium choice patterns

Figure 9.4(b) shows the distinct parking choice patterns at different destinations.
The choice probability of shared parking is considerably higher at S1-S2 than that at

251



S3, owing to the effect of congestion on searching for curbside parking. Compared with
the uncongested S3, the parking searching time is longer at S1 and S2 due to the higher
parking demand, which encourages travelers to shift to the shared parking service.

9.4.1.2 Effects of introducing shared parking service

This section discusses the ability of the proposed model to clarify the effect of
introducing shared parking services. Figure 9.5 depicts the relationship between the
change in destination/parking choice and variation in the shared parking space at S2.
As expected, the changes in the shared parking supply at S2 influence the destination
and parking choices not only at S2 but also at the other destinations. Increasing the
shared parking space can help increase the choice for shared parking services and
decrease parking disutility, thereby increasing travel demand at S2. Moreover, the
travel demand at the other locations will be diverted, which will help decrease the
curbside parking demand and alleviate parking congestion, thereby lowering the shared
parking choice probability at other destinations. This effect is more notable at S1 and

S3, which are in the vicinity of S2, especially at S3, which is directly adjacent to S2.

=S| S3 S4 mmSS5 mmS6 S2
Increased
- + demand
Decreased demand diverted ttracted to S2[
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o (=}
L 1
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L

e
=]
|
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Shared parking supply at S2

(a) Effect on destination choice
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0.0% - r 0.0%
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Shared parking supply at S2
(b) Effect on parking choice
Figure 9.5. Effects of shared parking supply

Next, we illustrate the capability of the proposed model to evaluate different
transportation planning scenarios involving shared parking services. Consider the

following three planning scenarios with different parking supplies.

e Basic scenario: Only curbside parking (capacity = 300 veh) for each destination.

e Scenario 1: Curbside parking capacity expansion at destinations S1, S2, and S3
(from 300 to 400 veh).

e Scenario 2: Introduction of shared parking at destinations S1, S2, and S3 (curbside
parking capacity = 300 veh at each destination and shared parking capacity = 100
veh at S1, S2, and S3)

Figure 9.6 shows the enhancement in the destination accessibility (derived by Eqg.
(3.69)) in Scenarios 1 and 2 compared with that in the basic scenario. The addition of
curbside parking lots has a moderate effect on each destination because the congestion
effects are evenly relieved at S1-S3, and the demands at destinations S4-S6 can be
diverted to S1-S3. The introduction of shared parking can increase the degree of
accessibility enhancement at almost all the destinations. New parking alternatives can
provide the travelers with higher utility, and the congestion effect can be relieved
because of the avoidance of searching for parking spaces. Notably, these effects may

not be as significant at destinations that are originally uncongested (e.g., S3).
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Figure 9.6. Comparison of destination accessibility enhancement in different

Figure 9.7 compares the effects of introducing shared parking services and
increasing curbside parking supply in terms of enhanced parking efficiency (decrease
in parking searching time) and destination attractiveness (increase in destination
demand). The comparison results are similar to that of destination accessibility. The
effect of simply increasing curbside parking supply is average for each destination,
while the introduction of shared parking services significantly improves the parking

service and attracts higher demands at S1-S3, especially S1 and S2 which are originally

congested.
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Figure 9.7. Comparison of parking searching time and destination attraction in
different scenarios

9.4.1.3 Effect of considering spatial correlation

This section discusses the effect of considering the correlation issue. Figure 9.8 shows
the effect of spatial correlation on destination choice probability based on the
dissimilarity parameter x . A larger x indicates a lower correlation or a higher

competition between a pair of adjacent destinations. The SCW model degenerates to

the MNW model when # =1. Figure 9.8(a) shows the marginal and conditional choice
probabilities of the SCW model with variations in x . As u decreases, the effect of the

spatial correlation between adjacent destinations becomes more notable. The
destination pairs including larger fractions of independent destinations (e.g., the pair of

S2 and S3) exhibit increasing marginal choice probabilities. A lower x corresponds to

a higher sensitivity of a destination within the same destination pair, which can increase
the conditional choice probability of destinations with lower disutility values (e.g., S2
in the pair of S2 and S3). These effects lead to the variations in destination demands
shown in Figure 9.8(b). Unlike the evenly distributed demand observed when the
correlation is not considered (at the points at which x=1), destinations with lower
spatial correlations (e.g., S2, which is adjacent only to S3) are modeled to attract higher
demands than destinations with higher spatial correlations (e.g., S3, which is adjacent
to both S1 and S2). Furthermore, the clusters of destinations with lower spatial

correlation (e.g., S1-S3) are expected to attract higher demands.
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Figure 9.8. Effect of spatial correlation on the destination choice equilibrium

9.4.2 Hong Kong network

This section applies the proposed model to evaluate the potential effect of introducing
shared parking services in a multi-origin multi-destination network extracted from
Hong Kong (Figure 9.9(a)). Eight residential zones are considered as origins, with trip
production values set as 2000, 2000, 3000, 2500, 3000, 2500, 2000, and 2000 veh.
Thirty-three adjacently distributed shopping malls in the Kowloon area (blue circle in
Figure 9.9(a)) are selected as destinations. The spatial distribution of the destinations
and parking lots is shown in Figure 9.9(b). The destinations are divided into eight
clusters. Parking lots within 500m of each location are considered the parking space
used by that destination. The parking fee and capacity are estimated based on data from
the Hong Kong Transport Department (2023). The model parameters are consistent

with the analysis described in Section 5.1.
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(b) Spatial distribution of the destinations and parking lots
Figure 9.9. Study area in Hong Kong
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9.4.2.1 Convergence characteristics

This section examines the algorithmic performance for solving the proposed SCW-
PSW equilibrium model in the Hong Kong network. With the step size adjustments set

as o, =15 and o, =0.1 in the SRA scheme, the convergence characteristics of the

algorithm is shown in Figure 9.10. The center subfigure shows the evolution of step
size in partial linearization procedure (outer iteration), which reaches convergence after
46 iterations. The peripheral subfigures demonstrate the convergence of the iterative
balancing scheme (inner iteration), which is exemplified by the evolutions of selected
dual variables at the first and last outer iterations.
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Figure 9.10. Convergence characteristics

9.4.2.2 Equilibrium results

This section presents the aggregate demand pattern from the proposed model, which
illustrates its applicability to evaluating and planning the shared parking services in

congested urban areas with spatially correlated locations. Figure 9.11 shows the
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resulting destination demand pattern in the study area. Even within the same cluster of
destinations, the demands of individual destinations may be distinct because of the
varying spatial distributions of the destination and parking supplies. For instance, the
demands at locations 7, 23, and 33 are relatively higher within the cluster, which is
attributable to their lower spatial correlations. Furthermore, the parking supply
significantly affects the destination choice. Destinations with more curbside parking
spaces (e.g., locations 7, 18, and 22) and sufficient and low-cost shared parking services
(e.g., locations in the Mong Kok cluster) attract larger flows even though they do not

necessarily provide higher destination utility than the other locations.
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Figure 9.11. Individual destination demand and parking flow pattern in Hong Kong

case study
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Figure 9.12. Zonal shared parking demands and destination demands with varying
shared parking prices
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Next, we show the applicability of the proposed model to evaluate different
planning scenarios by examining the effect of varying shared parking prices on the
destination and parking choices. Figure 9.12 shows the shared parking and destination
demand patterns at four major clusters in the study area under three shared parking
pricing schemes, i.e., low price (LP: original shared parking price), medium price (MeP:
additional profit HK$ 3), and high price (HP: additional profit HK$ 6). An increase in
the shared parking price significantly decreases the destination and shared parking
demands in areas with sufficient shared parking supplies (e.g., Mong Kok). In contrast,
in the Tsim Sha Tsui East region, which has a limited supply of shared parking, the
shared parking flows remain almost unchanged as they are mainly restricted by the
capacity constraint rather than high cost. The destination demands increase as many
travelers are diverted from the destinations dependent on shared parking services (e.g.,
Mong Kok), where the decrease in the shared parking price can largely lower the
destination attractiveness. As for the locations with moderate shared parking supplies,
the reduction in shared parking flow is covered by the diversion of destination demand

from other locations, making the destination demand nearly unchanged.

9.5 Conclusions

This chapter proposes an equilibrium choice model for assessing the effect of the
emerging shared parking services on joint destination and parking choice behaviors
while simultaneously considering the heterogeneity and spatial correlation issues. The
advanced SCW-PSW choice model developed in Section 3.4 is integrated into the
equilibrium model. An equivalent MP formulation is developed that guarantees the
existence and uniqueness of solution. Based on the analytical expression of decision
variables derived from the MP formulation, a convergent and efficient algorithm is
adapted to solve the proposed equilibrium model. Numerical examples demonstrate the
capability of the proposed model to capture both heterogeneity and correlation, which
cannot be done in the commonly used logit-based combined travel demand models.
Moreover, the results of the numerical experiments demonstrate the applicability of the
proposed model for evaluating the land use and parking supply in a Hong Kong network

with shared parking services.
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Chapter 10 Conclusions

10.1 Summary of research contributions

This research develops advanced individual travel choice models and equilibrium
models with MP formulation for multi-level travel demand analysis in multi-modal

transportation networks with emerging policies and mobility services.

In the first part, five advanced closed-form individual travel choice models are
proposed based on the random utility theory. The 11D assumptions in the extensively
used logit model are relaxed in different ways to consider specific behavioral issues in
different choice contexts. Chapter 3 develops four generalized “Luce-form” choice
models based on “Luce class” distributional assumptions, which relax the
independently distributed assumption to account for varying correlations among travel
alternatives at different choice dimensions. Specifically, an OPSGEV model is first
developed based on the commonly adopted additive utility function to model route
choice in tolled networks with considerations of both physical and perceptual path
correlations. Three weibit-based models are then developed based on the multiplicative
utility function that can better reflect the way travelers perceive travel disutility
consistent with psychophysical laws (Fosgerau and Bierlaire, 2009; Chakroborty et al.,
2021). This allows the three weibit-based models to inherently address the
heterogeneous perceptions of different travel alternatives. A DNW model is developed
for mode choice with CB services considering both the similarity among conventional
travel modes and CB passenger loyalty stemmed from the loyalty subscription scheme.
A DCNW model is developed to advance the DNW model for joint bundle and mode
choice considering the mode correlation due to bundling strategies and traveler loyalty
from loyalty bundle schemes. An SCW-PSW model is developed for the joint
destination and parking choice with shared parking services. The effects of spatial
correlation at the destination and parking choice dimensions are explicitly considered,
while the interaction between the two choice dimensions is modeled based on the

random utility theory.

Chapter 4 proposes the MNW-O model based on an alternate distributional
assumption, which relaxes the identically distributed assumption while retaining the
closed-form probability expression. The proposed model can effectively address the
“oddball” effect that are likely to take place in future transportation systems, where an

oddball alternative with unique service features (e.g., an emerging mobility service)
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exists in the travel choice set. The proposed model also inherits the advantage of weibit
model to inherently consider heterogenous perception variances with respect to
different alternatives and attributes. The proposed model is applied to an empirical
mode choice data set to examine its estimation and prediction performances. The results
show the superiority of the proposed model against various existing choice models in

simultaneously considering the “oddball” effect and the heterogeneity issue.

The second part bridges the “Luce-form” individual choice models developed in
Chapter 3 to aggregate-level equilibrium models with MP formulation, which further
considers interactions among travelers and operational features of mobility services.
The general method to develop the Beckmann-type MP formulation for equilibrium
models is first introduced in Chapter 5. On this basis, Chapters 6—9 propose equilibrium
analyses consistent with the OPSGEV, DNW, DCNW, and SCW-PSW choice models,
respectively. A convergent and efficient partial linearization algorithm is adapted to
solve the equilibrium models making use of the appealing properties of developed MP
formulations. A sensitivity analysis-based method is also developed in Chapter 8 to
evaluate the transportation system performances in different decision-making scenarios.
Various numerical experiments are conducted to illustrate the model properties and to
verify the applicability to real-world transportation systems. The results indicate that
the proposed equilibrium models can facilitate the demand analysis and decision-

making in the transition to future transportation systems.

10.2 Directions for future studies

Based on the proposed research, several directions can be found for future research.

First, advances can be made in the choice modeling at the individual level:

(1) Existing closed-form random utility-based travel choice models are mainly
developed based on the Gumbel and Weibull distributions, which are unlikely to be
appropriate for all choice contexts with complex choice behaviors in the era of
emerging technologies. More closed-form choice models should be developed
based on alternate distributional assumptions, such as the Fréchet distribution, Log-
logistic distribution, Pareto distribution, and Kumaraswamy distribution.

(2) This research focuses on the RUMs based on two utility functional forms, i.e., the
additive utility function that leads to logit-based models, and the multiplicative

disutility function that leads to weibit-based models. However, it could be
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restrictive to merely consider two types of functional relationships between the
deterministic utility/disutility and random perception errors. Future studies could be
conducted to investigate other forms of utility function and explore more error

distributions for choice contexts with different behavioral issues.
Second, the equilibrium models could be explored in several directions as follows:

(1) For the planning purpose, the proposed equilibrium models with fixed OD demand
could be extended to examining long-term elastic OD demand, as latent travel
demands may be induced by the increased service level created by the adoption of
innovative transportation policies and emerging mobility services. In addition, other
interacting choice dimensions could be integrated in the equilibrium analysis, such
as the choice of work from home (WFH), residential location choice, car ownership
choice, trip chain choice in intermodal trips, and role choice (driver versus
passenger) in ride sharing services.

(2) The proposed equilibrium models and sensitivity analysis could be integrated into
bi-level models for the optimization of emerging mobility services, such as the
design of parking sharing platforms, allocation of shared bikes, design and
adjustment of CB routes, determination of ride-hailing fleet size, and pricing of
subscription schemes for emerging mobilities and bundles.

(3) The MP formulations developed in this research use entropy terms to interpret the
stochastic choice of travelers (i.e., logit for additive RUM and weibit for
multiplicative RUM). It would be interesting to develop alternate forms of MP
formulation (e.g., non-entropy-based formulation) for the equilibrium analysis with

different behavioral interpretations and different applications.
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Appendix A. Proofs of solution equivalence for equilibrium models
Al. Proof of solution equivalence for OPSGEYV equilibrium model (6.6)-(6.10)

The Lagrangian of model (6.6)-(6.10) is:
k+M
L:Z—ﬂrs.(zz fuf—q“j. (A1.1)
k u=k

Take the first derivative with respectto f,;

L _rrg(e ) o f;;-—l S fr-Lnpsy
4 - G (AL.2)
L > fi ——Inwji A"
eu keK, u

With ¢’ =t;° +7,° denoting the generalized path cost function in Eq. (6.5), we have:

11

(fuka)ek.Lz fuf]% ’ = (PS ) -(w ) exp[ (ck”—/l“‘)], (AL3)

keK®

%

0, -+ 6,

(f;;)-(z fu{f] =PS?-(w; )% exp[ -6, (cF -4")].  (AL4)
keK[®

Summing up both sides of Eq. (A1.4) by path k leads to the following expression:

b

(Z £5 J > Pse-(w 'S)Hk exp[ -6, (e - 27)]. (AL5)

keK® keK®

Dividing Eq. (A1.4) by Eq. (A1.5), the conditional OPSGEYV route choice probability
given in Eq. (3.5) can then be derived:

@S el aq) o
2 s e(-acr)
leK[®
From Eq. (Al.5), we can also have:
%
O 6,
> fi=exp(6,4%)| D PSP (wi )% exp(-6,67) | (AL.7)
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b,

[K[rm 4 4
q° =exp(6,4°)- Y {Z PS;* - (wj; )2 exp(—ekc,“)} . (A1.8)

u=1 leK}®

Dividing Eqg. (A1.7) by Eqg. (A1.8) gives the marginal choice probability provided in
Eq. (3.4):

6y
4 O
>t {Z PS’® -(WJE)% exp(—@kck's)}
kerrS __ LkeKE —. (AL.9)
q K™[+M 8 ?:
| 2o ) ool
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This completes the proof.
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A2. Proof of solution equivalence for DNW equilibrium model (7.8)-(7.12)
The Lagrangian of model (7.8)-(7.12) is:

L=Z+ Zﬂ""{Z > qun—q“J

rseRS uel,s meM[®

+ z cap (qcr:sB _Cap(ESB) . (A21)

rseRS
rs rs rs
+ Z Wy '[Idcs _qCB:I

rseRS

First, take the partial derivative with respect to g, :

rs__rs

oL q°n
—=Inz(q,, )+ —-In| gy, ——<="——
0 Ji 1+ e
meM
+( 1r5 J n z qum qrsnr;s rs |’ (A22)
Be Bim)  weme 1+
meM
+7" +(wf, — o) )
where —&— z denotes the proportion of the loyal passengers choosing mode m, thus
+
meM
rs__rs . . aL
q um qu q nm rs ' rs :O’
+> g° um
meM
then Eq. (A2.2) gives:
ﬂ_rs+wrs —a o 1 1
In[rrff g )-el %)}:_ rs-lnqcu“fn—( = ]ln qCum - (A2.3)
( ) ﬂum ﬁu IB mg/llrs

e(wca‘f@“) is considered as a correction to CB travel disutility arisen from the side

constraints, i.e., the risk of subscription failure led by the CB capacity and the

subscription incentives given by the lower limit of CB demand. We denote

Ve =z" (Qan)' ( “657) 45 the final mode disutility at optimality. Then the following

conditions can be derived from Eq. (A2.3):
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(A2.4)
meM®
meM®
Bum
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meM (A2.5)
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meM®
1 1
{ > (vree” )ﬂ} " :[ D ch;J : (A2.6)
meM® meM®

Taking Eg. (A2.6) into Eq. (A2.4) gives the conditional probability of choice
passengers choosing mode m given nest u (i.e., EQ. (3.8) in the NW model):

1

Al
(acs)

Vm 'eﬂ_I'S
rs =
Z qCuI

R (A2.7)
e {Z (v,rs o )—ﬂ:;} i

rs
leM;

rs rs ~Bim
Aoy = (qc“m),s = (vn) —. (A2.8)
2 %Y (ve) "

m

meM®

1

From Eg. (3.10), vj° =| > (%) . The marginal probability of choice
leM®

passengers choosing nest u (i.e., Eq. (3.9) in the NW model) can also be derived based
on Eq. (A2.6):

s 7ﬂurs
rs rs V1
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(A2.9)
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Therefore, the mode choice of choice passengers is given by the NW model:

A= A

mju

] (ve )“’“'ﬁ”[ > (v) T |

rs
meM;

PO

ueU™ | mem™

The choice probability considering all passengers can then be derived:

rs__rs

qes, + i
rs 1+ Z 77m
PI’S :qﬂ_ meM

- qrs

s

Given that:

rs__rs

a7

rs _ c’ 4 m ’

| ug;s mg/lll[s Ao 1+ z 77::15
meM

qu

Crs -1

D TS s
meM

(A2.11)

(A2.12)

(A2.13)

(A2.14)

Substituting Egs. (A2.11) and (A2.14) into Eqg. (A2.12), then we can obtain exactly the

DNW choice probability in Egs. (3.15) and (3.16). This completes the proof.
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A3. Proof of solution equivalence for DCNW equilibrium model (8.11)-(8.14)
The Lagrangian of model (8.11)-(8.14) is:

L=Z—ﬂ“'(22 > a }
rseRS ueU"™ meM® ) (A31)
+ 2 o (A —cap )+, Y o) -(a) —capy)
rseRS seS m=BS,EH

Take the first derivative with respect to g, :

N Ly,

oL Inr;f(q;f)+ 1rs (Inq -In > q ]

um um meM® u

(A3.2)

rs rs

q rs rs
-In - -A+
ﬂ > m;'s q Z UW a)m

wel "™

For simplicity we use o, to denote the dual variable associated with the capacity

I’S rs

constraint of each mode between OD pair rs, and qc;’ = Z O — S to denote

meM® 1 Z

wel ™

the choice travelers that choose mobility bundle/type u. Letting a—t =0 gives

um

meM®

1
B S 1
(qu)ﬂJ%-[Z a ]ﬂ (e Y = (e ) () e (A33)

qr Lin B Bo

s (a3
um

meM®

Taking e”" as a correction to the mode disutility, i.e., the additional difficulty of using

mobility service m between OD pair rs caused by the capacity constraints, we denote
v, =7, - as the final mode disutility at optimality. Summing up both sides of Eq.
(A3.4) with respect to m leads to the following expression:

Bim
rs rs
(qcr)”

- ) ) e e

Dividing Eqg. (A3.4) by Eq. (A3.5) leads to:
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rs
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which gives the DCNW conditional choice probability presented in Eg. (3.39). From
Eq. (A4.5), we can also obtain the following:

rs _ afra” rs \~Bim ' s % Bim
qcy =e (v ) () . (A37)

rs
meM,

Define g = > qp, as the total demand of bundle u, we have the following:

meM®

rs rs UJS ! qrs
qu _qcu +1+ Z 77\;’5 . (A38)
wel ™
S =e Y () () A (A39)
q° = Y oy e V) () | g .
ueu™ uel™ [ meM® 1+ z UW
wel ™
Eq. (A3.9) can be rewritten as follows:
p A
1 rs B-A" rs | Aim rs \ g Far
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1+ Z M | ug{mglll( um) (ﬂum) }
el . (A3.10)
A
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Considering Egs. (A3.7), (A3.8) and (A3.10) leads to the following equation:
s, 9"
R
q_u= welU "
qrs qI’S
B (A3.11)

rs \ A rs \ s A
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which gives the marginal choice probability in Eq. (3.53). This completes the proof.
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A4. Proof of solution equivalence for SCW-PSW equilibrium model (9.4)-(9.10)
The Lagrangian of model (9.4)-(9.10) is:

L=7+ Z ”g'(fsrsp-i_ fsfcp_qsr)

rseRS

. (A4.1)
+z o, [Z foo —CapS’Sijtzﬂr ,[qur _qr)
seS reR reR seS
Take the first derivative with respect to f.' , m=sp,cp:
oL =|nr;m+i(|n f—INPS, )+7 +m,,, (A4.2)
afsfm Y le Y ' '

where w._ =0 as there is no tight capacity constraint for curbside parking. Let

s,cp

8_I: =0, then we have:

eV fom sl
(o) g (na3)
fr, = ) ps (o Y (A44)

r
s,m

Eq. (A4.4) gives the analytical expression of f inEq.(9.11). Taking v, =e™" -7
as the corrected parking disutility given by the parking cost and the disutility to reserve
a shared parking slot due to parking capacity constraint, based on the relationship

foy + fop =0, We can express g as below:

s,sp

o =+ 1 et .[PSS’Sp (Vi) PS, (Vi) } (A4.5)

s,cp

The PSW shared parking choice probability given in Eq. (3.68) can then be derived:

f, e_ﬂm'ﬂsr ) Pss,sp .(Vr )7ﬂm

S,;sp s,sp

q; e/ .|:PSs,sp '(Vr )_'B'“ + PSSvCP .(Vg'c” )_ﬂmji

s,sp

(A4.6)
PSS,Sp . (Vr )_ﬂm

s,sp

Pss,sp '(V;,sp )7/3’“ + PSs,cp '(Vsr,cp )7/3’“

Similarly, the curbside parking choice probability can be derived by substituting f.'

in Eq. (A4.6).
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From Eq. (A4.5), the following relationship can be obtained:

—ﬂi Ing! -z = —ﬂiln [PSS’Sp (Vi )’ﬂm +PS, ., (Vi )’ﬂ“ } —InA". (A4.7)

Take the first derivative of the Lagrangian with respect to g, :

r r + r
L (i, =2+ 2) g+ i 22 gt -y inda TR (agg)
8qS,St ﬁm
Let 8': =0 and take Eq. (A4.7) into Eq. (A4.8), then we have:
s,st
1-u
r r + r u
u |nE+|n£MJ —ina/, - A +Iny, ~2".  (A4.9)
H H

As V! = A -(y,) " denotes the disutility of traveling from origin r to destination s, Eq.

(A4.9) can then be arranged as:

I-p

r r r u !
+ H - vy
qs,st .(qs,st qt,stJ — |:asr,st (Vsr) ! .e’/1 :|” , (A410)
H H
lu 1 !
r r "oLar i _ i - "
qs,st + qt,st . qs,st qt,st — |:C(Sr'st (Vsr) 1 .e_i :|/l +|:atr,st ,(Vtr) 1 _e—l :|/l . (A411)
o H

Eq. (A4.10) gives the analytical expression of g, in Eq. (9.13). Dividing Eq.(A4.10)

by Eq. (A4.11) gives the SCW conditional probability of choosing destination s
between the destination pair st (i.e., Eq. (3.61)).

Eq. (A4.11) can be arranged as follows:

1

r ro\u L 1
[qs,st +0; st J‘ _ |:asr’st (Vsr )71 ‘e,,v :|,u n |:atr,st (Vtr )*1 ) eff :|# ’ (A4.12)
U

1 u
qsr,st + qtr,st =H- eilr '{':asr,st (Vg )1:|# + |:atr,st (Vtr )l}#} ! (A4.13)
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Eq. (A4.13) gives the analytical expression of q in Eq. (9.14). Dividing Eq. (A4.13)
by Eqg. (A4.14) gives the SCW marginal probability of choosing destination pair st

among all destination pairs (i.e., Eq. (3.59)). This completes the proof.

290



Appendix B. Proofs of solution uniqueness for equilibrium models
B1. Proof of solution uniqueness for OPSGEV equilibrium model (6.6)-(6.10)
Given the convex feasible region restricted by the sets of linear constraints, the proof
of the solution uniqueness is equivalent to proving the strict convexity of the objective

function (6.6). for simplicity, let q° = Z fi denote the total flow belonging to the

keK®

path order subset u between OD pair rs. We first derive the Hessian matrix with respect

to q;’:
aZZ i.i_i. l —y
P CEC Y (B1.15)
%ty 0 Otherwise

By definition, the dispersion parameter at the marginal choice level is smaller than that

at the conditional choice level, i.e., 6, <6, . Therefore, i~%—6’i-%>0, the
u qu k u
Hessian matrix with respect to g, is positive definite.
The Hessian matrix with respect to f,’ is
dtI'S f rs
07 MJri 1 >0  k=I
prrprraah I | 6, t° (B1.16)
of of, )
0 otherwise

With an increasing link travel time function with respect to link flow, Eq. (B2) implies

the positive definite matrix. In summary, the proposed equilibrium model ()-() has a

unique solution f;°, which leads to unique path flow f* and link flow xa. This

completes the proof.
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B2. Proof of solution uniqueness for DNW equilibrium model (7.8)-(7.12)

Given the convex feasible region restricted by the sets of linear constraints, the proof

of the unique modal demand outcome is equivalent to proving the strict convexity of

the objective function (7.8). We first derive the Hessian matrix with respect to g, . For

the diagonal elements:

s Oull
oln| g — s fm
rs rs o 1+ r;s
oz° _fﬂln[rum(qum)]+ 1 HEZM:”
00,00y oy B o

(B2.1)

{ 11 J mems o
+ s pors | od
/Bu ﬂum aqwl

According to Assumptions 7.2 and 7.3, the mode disutility is increasing with the
increase of modal demand, thus the matrices with respect to the first term on the right-
hand side of Eq. (B2.1) is positive semi-definite. The second and third terms are positive

only when u=w and m=l; otherwise, they equal to zero. The summation of positive

semi-definite and positive definite matrices is positive definite.

In summary, the Hessian of objective function (7.8) is positive definite with

respect to g, which proves the uniqueness of the modal demand q,;, . This completes

the proof.
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B3. Proof of solution uniqueness for DCNW equilibrium model (8.11)-(8.14)

Given the convex feasible region restricted by the linear constraints, the proof of

solution uniqueness is equivalent to proving the strict convexity of the objective

77[:’5 . q rs

function (8.11). Denoting q.° = Z ., and qc’ = Z Ui — == the Hessian
meM® meM® 1+ Z UM
weU ™
matrix with respect to ¢’ is
1 1 1 1
0°Z R T s w U=W
Pl PN St : (B3.1)
% 0 Otherwise

By definition, qc!° <q,;’, and the shape parameter at the marginal choice level is smaller
than that at the conditional choice level, ie., pB°<p: . Therefore,

0°Z
0q, od,,

>0, Vu = w, the Hessian matrix with respect to g, is positive definite.

The Hessian matrix with respect to g, is

dTI’S rs

1 m(qum)+ (I BN

=17n dai B A : (B3.2)
0 otherwise

0°Z
O OV

With an increasing mode travel disutility function with respect to modal demand, Eqg.
(B3.2) implies the positive definite matrix. In summary, the Hessian of objective

function (8.11) is positive definite with respect to g, i.e., the objective function is

um?

strictly convex. This completes the proof.
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B4. Proof of solution uniqueness for SCW-PSW equilibrium model (9.4)-(9.10)

Given the convex feasible region restricted by the sets of linear constraints, the proof

of the solution uniqueness is equivalent to proving the strict convexity of the objective

r

function (9.4). We first derive the Hessian matrix with respectto f; , m=sp,cp:
dr. (f.
A s (;“f( S'm)+i. flr >0 m=l 841
afsrmafsrl - z-s,m ( fs,m) s,m ﬁm s,m ' ( : )
o 0 Otherwise

With the assumption that the parking disutility is increasing with respect to parking
demand, Eq. (B4.1) implies the positive definite matrix.

Denote q; =0q; +0; ., Vr € R,st e ST . The Hessian matrix with respect to qg is

1 ..

0’z 1-p)-—>0 r=h,st=ij

P 4=s) dg , (B4.2)
G O 0 Otherwise

which implies the positive definite matrix. The Hessian matrix with respect to g, is

o : ) )
O B G : (B4.3)
0 Otherwise

By definition, in the nested choice structure, the shape parameter for choices at the
upper level should be smaller than the shape parameter for choices at the lower level,
which requires the shape parameter for conditional destination choice smaller than that
for parking choice i.e., g, < g, . Since g, is normalized as — in Section 9.3.2.1, we
y7i
1

have x> ﬂi which ensures u-ri—ﬁ—-ir > 0. Therefore, the Hessian matrix with
m qS,St m qS

respect to q., is positive definite. In summary, the proposed equilibrium SCW-PSW

r
s,sp !

model has a unique solution for both the destination flow g and parking flow f

f. - This completes the proof.
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