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Abstract 

In the era of emerging technologies, a variety of innovative transport policies and mobility 

services have been implemented and promoted in the transition to future transportation systems, 

such as road pricing, customized bus, e-hailing, bike sharing, and shared parking. The fusion 

of emerging technologies has created opportunities to not only improve the transportation 

service level but also provide unprecedented service features, which can exert a transformative 

impact on the multi-dimensional travel behavior and hence the multi-level travel demand 

pattern in multi-modal transportation systems.  

Transportation planning, which is crucial to address the fundamental needs of emerging 

technologies, requires advanced network equilibrium models for accurate analysis of travel 

demands. Equilibrium models analyze aggregate travel demand considering the effect of 

interactions among travelers in the individual choice. The classical random utility models 

(RUMs), such as the multinomial logit model and its variants, have been primarily embedded 

in equilibrium models for reproducing individual travel choices with conventional mobility 

services. Despite allowing the computationally manageable mathematical programming (MP) 

formulation for equilibrium models, the embedded RUMs are restrictive in modeling the 

complex travel behavior with the features of emerging mobility services, including distinct 

magnitudes of travel disutility, provisions of loyalty subscription schemes, and mobility 

bundling strategies. In addition, the classical closed-form RUMs are mainly based on an 

additive utility function and restrictive assumptions that the random errors are identically and 

independently Gumbel distributed, which are inadequate to reflect the way individuals perceive 

travel disutility in emerging choice contexts. Although open-form choice models can address 

some of the issues, the lack of an analytical probability expression poses additional difficulties 

for model estimation, interpretation, and evaluation. Also, owing to the computationally 

burdensome evaluation of open-form probabilities, the equilibrium problem becomes 

intractable when the choice set contains more than a handful of alternatives in real-world 

applications using large-scale transportation networks.  

This research aims to advance the travel demand modeling considering both the multi-

dimensional travel choice behavior with emerging service features at the disaggregate level 

and the mobility operational features and interactions among travelers at the aggregate level. 

To achieve this goal, the objectives of this research lie in the developments of (1) advanced 

RUMs with relaxed model assumptions, alternate utility functional form, and alternate 
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distributional assumptions, to reproduce the heterogeneous multi-dimensional behavioral 

changes facing with different emerging mobility services, and (2) advanced equilibrium models 

with computationally manageable MP formulations while retaining consistent with the 

individual choices reproduced by the developed RUMs based on endogenous travel disutility. 

The contributions of this research are summarized as follows: 

(1) The properties and derivation of the state-of-the-art multiplicative random utility models 

(MRUMs) are investigated to facilitate the development of advanced travel choice models. 

On this basis, the applications of MRUM in accessibility and vulnerability assessment are 

proposed, facilitating the analyses of transportation system performances under both 

normal and abnormal conditions. 

(2) Advanced RUMs are developed to reproduce individual travel choices in multi-modal 

transportation systems with emerging mobility services. Different from conventional travel 

choice models, the proposed models can simultaneously address various behavioral issues 

arisen with the introduction of emerging policy and mobility services. Specifically, the 

heterogeneous perceptions of travel distance, scale heterogeneity with respect to mobility 

service quality, perceptual correlation in path cost perceptions, mode correlation among 

similar travel modes, spatial correlation among adjacent locations and overlapped routes, 

effect of mobility bundling strategies, and repeated choice behavior arisen from loyalty 

subscription schemes, are considered to reflect the behavioral reactions to various emerging 

mobilities at different choice dimensions. Further, an innovative closed-form MRUM with 

alternate distributional assumptions is proposed, which can capture the choice context with 

an emerging travel alternative that has unprecedented service features. The innovative 

closed-form MRUM can provide new behavioral insights into various decision-making 

scenarios in the transition to future transportation system. 

(3) Advanced network equilibrium models are developed to analyze aggregate travel demand 

patterns consistent with the individual travel choice behavior while considering interactions 

among travelers. Specifically, the proposed models respectively consider the equilibrium 

bi-criteria route choice in tolled networks, equilibrium mode choice in multi-modal systems 

with customized bus services, equilibrium of joint bundle and mode choice in multi-modal 

systems with various emerging mobility services, and equilibrium of joint destination and 

parking choice among spatially distributed locations with shared parking services. 

Benefiting from the properties of the developed RUMs, the proposed equilibrium models 

are formulated as equivalent MP problems. The MP formulation facilitates the 
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understanding and interpretation of the equilibrium models, enables the application to real-

world case studies using convergent and efficient solution algorithms, and facilitates the 

sensitivity analysis-based evaluation of transportation system performances. 
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Chapter 1 Introduction 

1.1 Background 

Modeling individual travel choices and analyzing the corresponding aggregate 

equilibrium travel demands play an important role in the analysis and planning of 

transportation system. The choice modeling and equilibrium analysis of transportation 

systems are facing with new challenges in the era of emerging technologies, where 

various innovative transport policies and mobility services have been implemented and 

promoted, such as road pricing, customized bus (CB), shared parking, bike sharing, and 

e-hailing. They may not only enhance transportation system performances, but also 

reshape individual travel behaviors owing to their innovative service features, such as 

the distinct magnitudes of travel disutility, provision of loyalty subscription schemes, 

and new promotion strategies like mobility bundling. To facilitate the decision-making 

in the transition from current to future transportation systems, it is imperative to 

advance the individual travel choice and network equilibrium models to account for the 

disaggregate-level behavioral changes and its impact on aggregate travel demand 

stemmed from the emerging service features. 

In the well-established four-step transportation planning method, individual travel 

behaviors are often modeled at four choice dimensions, including the travel choice 

(whether to travel), destination choice, mode choice, and route choice. The individual 

travel behavior can be simply reproduced as deterministic choices of the minimum-

disutility travel alternative. However, this approach unrealistically assumes travelers to 

have perfect knowledge of the actual travel time, which is inadequate to capture the 

limited cognitive ability of travelers and may generate inaccurate results. The random 

utility models (RUMs) are developed and widely used to consider the stochasticity in 

travel choices (e.g., perception error of travel disutility). Based on the principle that 

travelers choose the alternatives which maximize their stochastic perceived travel 

utility (or equivalently, minimize the perceived travel disutility), RUMs can accurately 

obtain travel choice probabilities with sound behavioral foundations (Domencich and 

McFadden, 1975; Ben-Akiva and Lerman, 1985; Ortúzar and Willumsen, 2011).  
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The additive random utility models (ARUMs) are dominant in existing 

transportation research, where the perceived travel disutility is expressed as the sum of 

a deterministic disutility and a random perception error. Assuming random errors to 

follow the Gumbel and normal distributions respectively lead to the well-established 

logit and probit choice models (Domencich and McFadden, 1975; Daganzo, 1979). 

Compared with the probit model, the logit model is less flexible owing to its restrictive 

model assumptions, namely the random errors are assumed to be independently and 

identically Gumbel distributed (IID), making it difficult to capture the heterogeneity in 

travel perceptions and correlations among similar alternatives. Despite these limitations, 

the logit model has the merit of closed-form probability expression, making it more 

computationally manageable than the probit model and more commonly adopted in 

travel choice and equilibrium analyses (Prashker and Bekhor, 2004).  

Based on the individual choices at the four dimensions, travel demands can be 

analyzed at the corresponding spatial levels, i.e., trip generation, trip distribution, modal 

split, and traffic assignment. Simply aggregating the individual choice probabilities 

may lead to an aggregation bias, as the choice probabilities resulting from exogeneous 

travel disutility will be inconsistent with the actual travel disutility under the realized 

travel demand pattern. Thus, it is necessary to consider the interactions among 

individuals in congested transportation networks. For instance, by integrating the flow-

dependent travel time in different route choice models, the stochastic user equilibrium 

(SUE) models have been developed and applied in the traffic assignment problem 

(Daganzo and Sheffi, 1977; Sheffi, 1985; Prashker and Bekhor, 2004). The road travel 

time is endogenously generated as a function of road traffic volume, which guarantees 

the consistency between travel choice and travel disutility.  

In particular, the SUE model can be formulated as an equivalent mathematical 

programming (MP) problem when the conventional multinomial logit (MNL) choice 

model and its extensions are incorporated (Fisk, 1980; Prashker and Bekhor, 2004). The 

MP formulation is valuable as it is easily understandable and highly interpretable based 

on the explicit objective function, constraints, decision variables, and Kuhn–Tucker 
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optimality conditions. Further, many convergent and efficient solution algorithms are 

enabled by the MP formulation, where the objective function helps find the searching 

direction and updating step size, as well as the stopping criteria for convergence 

examination (Patriksson, 1994). Beyond the traffic assignment level, the SUE models 

with MP formulation have been extended to combined travel demand models that 

simultaneously consider any combinations of the four demand analysis levels 

(Oppenheim, 1995). Thus, the equilibrium models serve as an important component in 

transportation system analysis and decision-making processes (Bell and Iida, 1997; 

Yang and Huang, 2005; Ortúzar and Willumsen, 2011). 

However, existing logit-based equilibrium models with MP formulation inherit the 

limitations from closed-form logit models, namely the inadequacy to simultaneously 

address the heterogeneity and similarity issues, which are important concerns in 

capturing the complex multi-dimensional behavioral responses to the emerging service 

features. Although the two issues can be addressed via open-form choice models like 

probit and mixed logit models, the lack of analytical choice probability poses additional 

difficulty to their application in equilibrium analyses. As travel disutility is a function 

of travel demand in congested networks, the equilibrium model can be viewed as a 

fixed-point problem where choice probabilities exist on both sides of the equation. 

Solving such models often requires an iterative procedure to update the demand pattern 

with choice probabilities evaluated at each iteration. Owing to the computationally 

burdensome evaluation of open-form choice probabilities, the equilibrium travel 

demand models become intractable when the choice set contains more than a handful 

of alternatives, particularly impractical for large-scale transportation networks with 

thousands or even millions of routes. The computational burden will become even 

heavier in the network design problem embedded with a network equilibrium model, 

which can be formulated as a bi-level program with an equilibrium traffic assignment 

model at the lower level, or a single-level mathematical programming with equilibrium 

constraints (Yang and Bell, 1998). In summary, existing equilibrium analyses are 

inadequate for analyzing travel demands in the era of emerging technologies. This calls 
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for advancing both the individual choice model and equilibrium model for system 

analysis and decision-making in the transition to future transportation networks. 

Besides extending the logit-based models with an additive utility function, the 

multiplicative random utility models (MRUMs) have been proposed based on the 

multiplicative disutility function. Compared with the ARUM, MRUM is consistent with 

the psychophysical laws that can better reflect the way travelers perceive different 

magnitudes of disutility (Fosgerau and Bierlaire, 2009; Chakroborty et al., 2021). By 

assuming Weibull distributed perception errors, the closed-form weibit choice model 

was recently developed to inherently address the heterogeneity issue and can be 

extended to consider more complex similarity issues at different choice dimensions 

(Castillo et al., 2008; Kitthamkesorn and Chen, 2013, 2017). Therefore, it is beneficial 

to advance the weibit-based MRUM and develop corresponding equilibrium models to 

simultaneously address different behavioral issues with various emerging mobility 

services while retaining the valuable MP formulation. 

 

1.2 Research objectives 

This research aims to advance the travel demand modeling in transition to the future 

transportation system with emerging mobility services. The advancements are to be 

made from two modeling perspectives, namely (1) the individual choice modeling to 

better consider complex multi-dimensional travel choice behaviors at the disaggregate 

level, and (2) the equilibrium modeling with MP formulations for travel demand 

analysis considering interactions among travelers and operational features of emerging 

mobilities at the aggregate level. The specific objectives to achieve this aim are as 

follows: 

1. To investigate the properties of distributional assumptions made for the closed-

form additive and multiplicative RUMs, to facilitate the development of advanced 

travel choice models with considerations of complex behavioral issues. 

2. To develop an alternate closed-form MRUM for modeling choice contexts with 

the oddball effect, where an “oddball” alternative with emerging service features exists 
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in the choice set and competes with conventional alternatives with only common 

service features. 

3. To develop an advanced route choice model and the corresponding traffic 

assignment models for tolled networks, where the path correlations are considered with 

respect to both travel time and monetary costs, the two choice criteria that are likely to 

be considered in the road network with road pricing schemes. 

4. To develop an advanced mode choice model and the corresponding equilibrium 

model for multi-modal transportation systems with CB services while considering the 

effect of loyalty CB subscription schemes and operational features of CB services.  

5. To develop an advanced joint bundle and mode choice model and the 

corresponding equilibrium model for the analysis of multi-modal transportation 

systems with various emerging mobilities, considering the effects of flexible mobility 

bundling strategies and loyalty bundle schemes. 

6. To develop an advanced joint destination and parking choice model and the 

corresponding combined travel demand model for the transportation system with shared 

parking services, where the spatial correlations are considered at both choice 

dimensions, including the substitution effect among adjacent locations and the overlap 

among parking spaces of neighboring destinations. 
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1.3 Thesis organization 

 

Figure 1.1. Thesis organization 
 

The thesis organization is shown in Figure 1.1. The remainder of this thesis is as follows: 

• Chapter 2 overviews related studies on the research topics considered in this thesis, 

including: (1) closed-form individual travel choice models with illustrations of their 

development and applications based on the random utility theory, and (2) 

equilibrium models with MP formulation for different levels of aggregate travel 

demand analyses. 

 The first part of the proposed methodology includes Chapters 3-4, which focuses 

on the development of advanced closed-form individual choice models for 

emerging choice contexts based on the random utility theory. 

• Chapter 3 develops advanced “Luce-form” choice models with closed-form 

probability expressions for reproducing individual travel behaviors at multiple 

dimensions of emerging choice contexts. The developed models include an ordered 

path-size generalized extreme value (OPSGEV) route choice model, a dogit-nested 

weibit (DNW) mode choice model, a dogit-cross-nested weibit (DCNW) model for 

the joint mobility bundle and mode choice, and a spatially correlated weibit-

parking-size weibit (SCW-PSW) model for the joint destination and parking choice. 
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• Chapter 4 develops a closed-form choice model based on an alternate distributional 

assumption to specifically account for the “oddball” alternative in choice set (e.g., 

an emerging mobility service), which has unique service features compared with 

the other regular alternatives (e.g., conventional travel modes).  

 The second part of the proposed methodology includes Chapters 5-9, which focuses 

on the development of advanced equilibrium models with MP formulation. The 

developed equilibrium models are consistent with the advanced individual choice 

models developed in Chapter 3, while interactions among travelers and operational 

service features of emerging mobilities are endogenously considered for aggregate-

level travel demand analyses.  

• Chapter 5 illustrates the development of the Beckmann-type MP formulation for 

general equilibrium models, including the deterministic UE model, the basic logit 

SUE model, and various extensions of the logit SUE model corresponding to the 

advancements in individual choice models. 

• Chapter 6 develops the OPSGEV SUE model for traffic assignment in tolled road 

networks, which is consistent with the OPSGEV route choice model considering 

both perceptual and physical path correlations. 

• Chapter 7 develops the DNW equilibrium modal split model for multi-modal 

transportation systems with CB services, which considers the effect of passenger 

loyalty and constraints on CB service demand. 

• Chapter 8 develops an equilibrium analysis framework for various emerging 

mobility services consistent with the DCNW choice model, which considers the 

effect of mobility bundling and loyalty subscription schemes in both aggregate 

travel demand analyses and system performance evaluations. 

• Chapter 9 develops an SCW-PSW combined travel demand model for investigating 

the effects of shared parking services on the joint destination and parking choice at 

adjacent locations with spatial correlations. 

• Chapter 10 presents concluding remarks and directions for future research. 
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Chapter 2 Literature review and preliminaries 

This chapter reviews related studies and provides preliminaries for the thesis in two 

parts, i.e., the random utility models (RUMs) for travel choice modeling at the 

individual level, and the equilibrium models for travel demand analysis at the aggregate 

level. This chapter is structured as follows. Section 2.1 overviews the development and 

application of RUMs with “Luce-form” probabilities and their generalizations. Section 

2.2 overviews the development of network equilibrium models with MP formulation 

that are consistent with the class of Luce-form RUMs discussed in Section 2.1. 

 

2.1 Random utility models with Luce-form probability 

In transportation research, an understanding of individual travel choices is critical for 

estimating and forecasting travel demand at different spatial levels. RUMs are the 

mainstream of travel choice models, where travelers are considered to make decisions 

that maximize/minimize their perceived travel utility/disutility (Haghani et al., 2021). 

To model the stochasticity in travel choice behavior, the perceived travel 

utility/disutility is often considered as a random variable that can be separable into a 

deterministic term denoting the actual travel utility/disutility, and a random term 

denoting the travel perception error. Based on the functional relationship between the 

deterministic and random terms, RUMs used in transportation studies can be classified 

as (1) the additive RUM (ARUM) where the perceived utility is the sum of deterministic 

and random terms, and (2) the multiplicative RUM (MRUM) where the perceived 

disutility is the product of deterministic and random terms.  

With different distributional assumptions for the random error term, different 

choice models can be developed. In the literature, the normal and Gumbel distributions 

are dominant in ARUMs (Domencich and McFadden, 1975; Daganzo, 1979), while the 

distributions defined at the positive domain (e.g., the Log-normal, Fréchet, and Weibull 

distributions) are used in MRUMs (Fosgerau and Bierlaire, 2009; Mattsson et al., 2014). 

Specifically, by assuming random errors to identically and independently follow the 
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“Luce class” distribution, the well-established Luce-form models can be developed 

(Luce and Suppes, 1965; Lindberg, 2012): 

 i
i

j
j I

wP
w

∈

=
∑

, (2.1) 

where wi denotes the positive “strict utility” term associated with alternative i.  

Luce-form models are beneficial owing to their simple and closed-form choice 

probability expressions. Compared with the choice models with open-form probability, 

the analytical solution to Luce-form models enables exact and efficient estimation 

methods such as the maximum likelihood method. While the open-form models must 

be estimated using the simulation method (Train, 2003) or numerical approximation 

method (e.g., Bhat, 1995), which requires large computational burden and may lead to 

estimation errors due to simulation errors or approximation errors. Also, the estimation 

of open-form models suffers from the reproducibility issue, i.e., the estimation result 

may not be replicated through different numerical methods or in different trials of the 

simulation method, which leads to unreliable model interpretation and behavioral 

insights (Diethelm, 2012). Also, the closed-form choice probability plays a critical role 

in defining the solution properties and the generalization of model outcomes (Mondal 

and Bhat, 2021). Furthermore, the analytical model solution largely reduces the 

computational burden of choice probability evaluation and significantly facilitates 

applications in higher-level optimization problems, such as the equilibrium analysis of 

transportation systems. Therefore, this section focuses on the mostly used Luce-form 

ARUMs and MRUMs, i.e., logit and weibit models, as well as their generalizations that 

address more complex behavioral issues. 

 

2.1.1 Logit-based additive RUM 

The additive utility function is adopted in logit-based models: 

 i i iV v ε= + , (2.2) 
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where Vi denotes the perceived travel utility, vi and iε  are respectively the deterministic 

utility and random error of alternative i. Assuming iε  as IID Gumbel variables leads to 

the multinomial logit (MNL) model. Section 2.1.1.1 illustrates properties of the Gumbel 

distribution and the development of binary and multinomial logit models on this basis. 

 

2.1.1.1 Properties of the Gumbel distribution and development of MNL model 

Table 2.1 presents the probability density function (PDF), cumulative distribution 

function (CDF), and six properties of the Gumbel distribution ( ,η θ ) with location 

parameter η  and scale parameter θ  (Ben-Akiva and Lerman, 1985).  

 

Table 2.1. Properties of the Gumbel distribution 

Property  Gumbel ( ,η θ ) (η : location parameter; θ : scale parameter) 

PDF ( ) ( ) ( ){ }exp expf x x xθ θ η θ η= − − − − −    

CDF ( ) ( ){ }exp expF x xθ η= − − −    

1. Mode η  

2. Mean η γ θ+  

3. Variance 2 26π θ   

4. Linear 
transformation 
of variable 

If X  is Gumbel distributed with parameters ( ),η θ , then X ν+  
is also Gumbel distributed with parameters ( ),η ν θ+  

5. Comparison 
of variables 

Absolute difference between two independent Gumbel 
distributed variables X1 and X2 with the same scale parameter θ  
follows the Logistic distribution with CDF as follows: 

( ) ( ){ }2 1 2 1

1
1 exp

F
x xθ η η

=
+ ⋅ − − −  

  

6. Stableness 
under 
maximization 

The maximum of N independent Gumbel-distributed variables 
1,..., NX X  with parameters ( )1,η θ , …, ( ),Nη θ  is Gumbel 

distributed with parameters ( )
1

1 ln exp ,
N

i
i

θ η θ
θ =

 ⋅ 
 

∑   



 
 

11 
 

 

The first three properties indicate the statistical features of the Gumbel distribution, 

i.e., mode, mean, and variance. Given the value of scale parameter θ , the mean of a 

Gumbel variable is determined by the location parameter (where γ  is the Euler 

constant), while the variance is fixed disregarding the value of mean. Property 4 shows 

that the linear transformation of a Gumbel variable merely changes its location 

parameter without influencing the value of scale parameter, implying the applicability 

of the Gumbel distribution to ARUMs. By adding different deterministic utility to the 

Gumbel error term of each travel alternative, the total perceived travel utility is still 

Gumbel distributed with the same scale parameter among all alternatives. 

Properties 5 and 6 facilitates the development of logit choice model. The binary 

logit choice probability can be derived making use of Property 5. The probability of 

choosing alternative i over alternative j can be expressed as the probability that 

alternative i has a larger perceived travel utility than alternative j: 

 

( )
( )
( )

Prob

Prob

Prob

i i j

i i j j

j i i j

P V V

v v

v v

ε ε

ε ε

= >

= + > +

= − ≤ −

. (2.3) 

From Property 5, j iε ε−  is Logistically distributed. The binary choice probability can 

then be derived based on the CDF of the Logistic distribution: 

 

( )

( )
( )

( ) ( )

( )
absolute diff

1
1 exp

exp
exp exp

1

exp

i L i j

j i

i

i j

j i

P F v v

v v

v
v v

v v

θ

θ
θ θ

θ

= −

=
 + − 

=
+

=
 
 −
 
 


. (2.4) 
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From Eq. (2.4), the logit choice probability is dependent on the absolute difference in 

travel utility and the scale parameter θ . The scale parameter can be interpreted as the 

dispersion parameter indicating the degree of uncertainty in perceiving travel utility. 

The binary logit choice probability shown in Eq. (2.4) can be extended to the 

multinomial case using Property 6 of the Gumbel distribution. The MNL probability of 

choosing alternative i in a multinomial choice set I is the probability that the perceived 

travel utility of alternative i is larger than the maximum perceived utility of all other 

alternatives in set I, which can be expressed as 

 
( )

( )

max

max

i i jj i I

i i j jj i I

P P V V

P v vε ε

≠ ∈

≠ ∈

 = >  
 = + > +  

. (2.5) 

Based on Property 6, ( )max j jj i I
v ε

≠ ∈
+  is Gumbel distributed with location parameter 

( )1 ln exp j
j i I

vθ
θ ≠ ∈

⋅∑  and scale parameter θ . Hence the multinomial choice probability 

can be obtained following the binary case: 

 

( )

( ) ( )

( )

( ) ( )
( )
( )

exp
1exp exp ln exp

exp

exp exp

exp
exp

i
i

i j
j i I

i

i j
j i I

i

j
j I

v
P

v v

v

v v

v
v

θ

θ θ θ
θ

θ

θ θ

θ
θ

≠ ∈

≠ ∈

∈

=
 

+ ⋅ 
 

=
+

=

∑

∑

∑

. (2.6) 

From Eq. (2.6), MNL model has the Luce-form choice probability as presented in Eq. 

(2.1), where the strict utility term wi is an exponential function of the deterministic 

utility vi, i.e., ( )exp ivθ . 
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2.1.1.2 Extended closed-form logit models 

Despite the computationally manageable closed-form probability expression, the MNL 

model has limitations arisen from its restrictive IID assumption. The independently 

distributed assumption makes the MNL model inadequate to capture correlations 

among similar alternatives. On the other hand, the MNL model cannot capture travelers’ 

heterogeneous perceptions owing to the fixed perception variance arisen from the 

identically distributed assumption and properties of the Gumbel distribution.  

Due to the analytical tractability of the MNL model, various closed-form 

extensions of the logit model have been developed to handle the first limitation: the 

inability to model correlation among travel alternatives. These models either (1) add 

correction terms reflecting alternative correlations in the deterministic part of utility 

function, or (2) use a more flexible nested choice structure incorporating additional 

random errors to reflect alternative correlations in the stochastic part of utility function. 

 

(1) Extended logit models with correction terms 

One mainstream of the closed-form extended logit models is to introduce correction 

terms that penalize the similarity among alternatives. This method is mainly applied to 

the route choice problem where alternative correlation is often represented by the 

overlaps among paths. Cascetta et al (1996) proposed the C-logit model that subtracts 

a positive commonality factor (CF) from the deterministic utility to penalize the degree 

of path overlapping, which can be expressed as 

 i i i iV v CF ε= − + . (2.7) 

The value of CF can be derived based on the proportion of overlapped length of each 

path. The path with a higher degree of overlapping will have a larger value of 

commonality, leading to a lower deterministic utility and a lower choice probability, 

which reflects the effect of path overlapping: 
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Similarly, the path-size logit (PSL) model considers the effect of path overlapping 

by introducing a path-size (PS) factor to the path utility function (Ben-Akiva and 

Bierlaire, 1999):  

 1 lni i i iV v PS ε
θ

= + + . (2.8) 

The PS factor is derived from the concept of elemental and aggregate alternatives based 

on the random utility theory (Ben-Akiva and Lerman, 1985). Each path i is considered 

as an aggregate alternative composed by elemental alternatives with a size of PSi. The 

paths having no overlaps are considered as “full” alternatives with a size of 1, which 

does not influence the path utility. While the overlapped paths cannot be considered as 

a distinctive alternative and have sizes 0<PSi<1, which leads to a negative correction 

term that penalizes the path overlapping. Various approaches have been proposed to 

derive the value of PS factor based on the length of overlapped fraction (Ben-Akiva 

and Bierlaire, 1999; Ramming, 2002; Hoogendoorn-Lanser, 2005). Alternatively, Bovy 

et al. (2008) proposed the path size correction factor, which is derived as an 

approximation of the nested choice models described below. Duncan et al. (2020) 

proposed the adaptive PSL model with a PS factor that further weighs the contributions 

of excessively long paths while consistent with the relative path attractiveness. 

 

(2) Extended logit models with a nested choice structure 

The other mainstream of closed-form extended logit models is the generalized extreme 

value (GEV) family of models based on a nested choice structure with multiple choice 

levels (McFadden, 1978). The nested logit (NL) model is the mostly used GEV model, 

where similar travel alternatives at the lower (conditional) choice level are collected in 

the same upper-level nest (marginal level) and share a common part of travel utility 

perception (Ben-Akiva and Lerman, 1985). Figure 2.1 shows an example choice 

structure of the two-level NL model. 
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Figure 2.1. Example choice structure of NL model 
 

The utility function of alternative i in nest u is expressed as follows: 

 i ui ui u uV v vε ε= + + + , (2.9) 

where vui and vu respectively denote the individual deterministic utility of alternative i 

and the common deterministic utility of nest u. uiε  and uε  are random errors at the 

conditional and marginal choice levels, respectively.  

The NL choice probability can then be expressed as the product of marginal choice 

probability Pu and conditional choice probability Pi|u derived following the derivation 

of MNL model: 

 ( )
( )

( )
( )

|

exp exp
exp exp

u

i u i u

u u u k i

u t t k j
t U j I

P P P

v v
v v

θ θ
θ θ

∈ ∈

= ⋅

+ Γ  = ⋅
+ Γ  ∑ ∑

, (2.10) 

where uθ  and kθ  are scale parameters at the marginal and conditional choice levels, 

respectively. uΓ  denotes the composite utility obtained at the conditional choice level, 

which is derived based on Property 6 of the Gumbel distribution: 

 ( )1 ln exp
u

u k i
i Ik

vθ
θ ∈

Γ = ∑ . (2.11) 

Although the NL model can account for correlations among alternatives in the 

same nest, the nests are independent of each other, i.e., the correlation among 

alternatives in different nests cannot be handled. The cross-nested logit (CNL) model 

has been proposed to consider more flexible correlation structures by allowing overlaps 
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among nests, i.e., a single alternative can be collected in different nests to model its 

correlations to different groups of alternatives (Vovsha, 1997). The cross-nested choice 

structure can be specified for modeling different alternative correlations, such as the 

ordered GEV (OGEV) model for modeling order correlations among similarly ranked 

alternatives (Small, 1987), the paired-combinatorial logit (PCL) model for modeling 

correlations between each pair of alternatives (Chu, 1989), and the spatially correlated 

logit (SCL) for modeling spatial correlations between adjacent locations (Bhat and Guo, 

2004). The CNL model can be further generalized to estimate more flexible competition 

effect among alternatives via more flexible model parameters (generalized nested logit 

(GNL) model, Wen and Koppelman 2001), or by incorporating more choice levels 

(network GEV model, Daly and Bierlaire, 2006). 

 

2.1.2 Weibit-based multiplicative RUM 

The extended logit models mainly focus on the similarity issue stemming from the 

independently distributed assumption; while the second limitation, i.e., the inability to 

handle heterogeneous travel perceptions due to the identically distributed assumption, 

is seldom discussed in closed-form logit models. Galvez (2001) developed the “Powit” 

model with a power function-based Luce-form choice probability. Castillo et al. (2008) 

independently proposed and derived the weibit model based on the Weibull distribution, 

which has the same form of the Powit model, to address the heterogeneity issue when 

modeling route choices. Unlike the MNL model, which uses the additive utility function, 

the basic multinomial weibit (MNW) model is based on a multiplicative form of the 

disutility function (Fosgerau and Bierlaire, 2009): 

 i i iV v ε= ⋅ , (2.12) 

where vi denotes the deterministic disutility of alternative i. Assuming the error term iε  

to be IID Weibull variables leads to the multinomial weibit (MNW) model. The 

multiplicative error structure presented in Eq. (2.12) evaluates the relative differences 

in disutility, which has been found to outperform the additive utility function used in 
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logit models in various choice contexts, such as travel mode choice, expressway road 

choice, and railway itinerary choice (Fosgerau and Bierlaire, 2009; Kurauchi and Ido, 

2017; Li et al., 2020; Wen et al., 2021). 

 

2.1.2.1 Properties of the Weibull distribution and development of MNW model 

This section illustrates properties of the Weibull distribution and development of binary 

and multinomial weibit models on this basis. Analogous to the properties of the Gumbel 

distribution presented in Table 2.1 (Ben-Akiva and Lerman, 1985), Table 2.2 presents 

the PDF, CDF, and six properties of the Weibull distribution ( ,α β ) with scale 

parameter α  and shape parameter β . 

 
Table 2.2. Properties of the Weibull distribution 

Property  Weibull ( ,α β ) (α : scale parameter; β : shape parameter) 

1. Mode 

1

1 1

0 1

ββα β
β

β


 − ⋅ >   


≤

 

2. Mean 
11α
β

 
⋅Γ + 
 

  

3. Variance 2 22 11 1α
β β

    
Γ + −Γ +    
    

  

4. Multiplicative 
transformation of 
variable 

If X is Weibull distributed with parameters ( ),α β , then kX is 
also Weibull distributed with parameters ( ,kα β ) 

5. Comparison of 
variables 

Relative difference of two independent Weibull distributed 
variables X1 and X2 with the same shape parameter β  follows 
the Log-logistic distribution with CDF:  

1 1

2 2

1

1

F
x
x

β
α
α

−=
    

+     
    

  

6. Stableness 
under 
minimization 

The minimum of N independent Weibull distributed variables 
1,..., NX X  with parameters ( )1,α β , …, ( ),Nα β  is Weibull 

distributed with parameters ( )
1

,i
i

ββα β
−

−
 
  
    
 
∑  
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The first three properties are statistical features of the Weibull distribution. 

Compared to the Gumbel distribution with a fixed variance independent of the mean, 

the Weibull distribution has a variance determined by the scale parameter α  and shape 

parameter β  (Property 3), which is a function dependent on the mean derived from 

Property 2. This implies that unlike the Gumbel distribution, the Weibull distribution 

has non-identical variances that depend on the alternative disutility, which facilitate to 

reflect the heterogeneous travel disutility perceptions of distinct travel alternatives. 

Property 4 shows that the multiplicative transformation of a Weibull variable 

merely changes its scale parameter without influencing the value of shape parameter, 

implying the applicability of the Weibull distribution to MRUMs. By multiplying the 

Weibull distributed error term with a deterministic disutility of each travel alternative, 

the total perceived travel utility is still Weibull distributed while retaining the same 

shape parameter among all alternatives. 

Analogous to the logit model, the weibit model can be developed using Properties 

5 and 6 of the Weibull distribution. The binary weibit choice probability can be derived 

making use of Property 5. Unlike the absolute difference-based Property 5 of the 

Gumbel distribution, Property 5 of the Weibull distribution relates to the relative 

difference between two random variables, which is suitable for the MRUM with a 

multiplicative error structure. The probability of choosing alternative i over alternative 

j can be expressed as the probability that alternative i has a lower perceived travel 

disutility than alternative j: 

 
( )
( ) ( )

i i i j j

i j j i

P P v v

P v v

ε ε

ε ε

= ⋅ ≤ ⋅

 = ≤ 
. (2.13) 

From Property 5, i jε ε  is Log-logistically distributed. The binary choice probability 

can be obtained based on the CDF of the Log-logistic distribution as follows: 
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( )
( )

( ) ( )

( )

1

1

1

1

i

j i

i

j i

j i

relative diff

P
v v

v

v v

v v

β

β

β β

β

−

−

− −

−

=
+

=
+

=
+


. (2.14) 

The weibit choice probability is dependent on the relative difference in travel disutility 

and the shape parameter β . The shape parameter can be interpreted as the dispersion 

parameter of weibit model, which indicates the degree of uncertainty in perceiving 

travel disutility. 

The MNW model can be derived by combining the binary weibit choice 

probability with Property 6 of the Weibull distribution. The MNW probability of 

choosing alternative i in a multinomial choice set I is the probability that the perceived 

travel disutility of alternative i is lower than the minimum perceived disutility among 

all other alternatives in set I, which can be expressed as  

 
( )

( )

min

min

i i jj i I

i i j jj i I

P P V V

P v vε ε

≠ ∈

≠ ∈

 = ≤  
 = ⋅ ≤ ⋅  

, (2.15) 

where ( )min j jj i I
v ε

≠ ∈
⋅  is Weibull distributed with the same shape parameter β  and scale 

parameter ( )
1

j
j i I

v
ββ

−
−

≠ ∈

 
 
 
∑ . The multinomial choice probability can be obtained 

following the binary case: 

 

( )

( ) ( )

( )
( )

1

i
i

j i
j i I

i

j
j I

v
P

v v

v

v

β

β

ββ β

β

β

−

−
−

− −

≠ ∈

−

−

∈

=
 
   +  
   

=

∑

∑

. (2.16) 
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Like the widely used MNL model, MNW model also retains the Luce-form choice 

probability as presented in Eq. (2.1). Instead of the exponential function used in the 

MNL model, a power function of disutility vi, ( )iv β− , is used to express the strict utility 

term wi in the MNW model. 

 

2.1.2.2 Extended closed-form weibit model – Nested weibit model 

This section presents extended weibit models that further relax the independently 

distributed assumption. In the literature, the weibit model can be advanced using the 

techniques of extending logit models (as presented in Section 2.1.1.2) to account for 

correlations among travel alternatives, such as the PSW model (Kitthamkesorn and 

Chen, 2013) and NW model (Kitthamkesorn and Chen, 2017). Together with the 

inherent ability to consider heterogeneous travel perceptions, the advanced weibit 

models can simultaneously address both the similarity and heterogeneity issues arising 

from the IID assumptions while retaining a closed-form probability expression. As the 

development of PSW model is similar to the PSL model, this section focuses on the 

development and properties of the NW model. 

 

(1) Development of NW model 

The NW model adopts the nested choice structure of the NL model, where similar 

alternatives are collected in the same nest. From the choice structure, the NW disutility 

of alternative i in nest u includes disutility at both the upper and lower levels in a 

multiplicative form, which can be written as  

 i ui ui u uV v vε ε= ⋅ ⋅ ⋅ .  (2.17) 

The perceived disutility of choosing alternative i in nest u is decomposed into two 

parts, the individual part related to alternative i and the common part related to nest u. 

In Eq. (2.17), vui and vu represent the deterministic individual disutility of alternative i 

and common disutility of alternatives in nest u; uiε  and uε  are the related random error 
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terms. Analogous to the development of the NL model (Ben-Akiva and Lerman, 1985), 

the following distributional assumptions are made for the NW model: (1) uiε  and uε

are independent; (2) uiε  are independently Weibull distributed with shape parameter 

kβ ; (3) uε  are independently distributed such that *
|u m uε ε⋅  follows the Weibull 

distribution with shape parameter uβ , where *
|m uε  is the random error associated with 

( )min
u

ui uii I
v ε

∈
⋅ .  

The NW choice probability can then be expressed as the product of marginal 

probability and conditional probability: 

 |i u i uP P P= ⋅ .  (2.18) 

The marginal probability of choosing nest u can be expressed as 

 
( ) ( )

( ) ( ) ( ) ( )* * * *

min min ,

,
u w

u u u ui ui w w wj wji I j I

u ui w wj w wj u ui

P P v v v v w u U

P v v v v w u U

ε ε ε ε

ε ε ε ε

∈ ∈

 = ⋅ ⋅ ⋅ ≤ ⋅ ⋅ ⋅ ∀ ≠ ∈  
 = ⋅ ⋅ ≤ ⋅ ⋅ ∀ ≠ ∈ 

.  (2.19) 

From Property 6 of the Weibull distribution, the term *
uiv  denoting the expectation of 

( )min
u

ui uii I
v ε

∈
⋅  can be expressed as  

 ( )
1

*
k

k

u

ui ui
i I

v v
β

β
−

−

∈

 
=  
 
∑ .  (2.20) 

From distributional assumption (3) of the NW model, the marginal choice probability 

can be obtained following the derivation of the MNW model with shape parameter uβ : 

 

( )
( )

( )

( )

*

*

( )

( )

u

u

u

k
u k

u

u

k
u k

w

u ui
u

w wj
w U

u ui
i I

w wj
w U j I

v v
P

v v

v v

v v

β

β

β
β

β β

β
β

β β

−

−

∈

− −

∈

− −

∈ ∈

⋅
=

⋅

 
⋅  
  =
 
⋅  
  

∑

∑

∑ ∑

.  (2.21) 
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The conditional probability of choosing alternative i given that nest u is chosen 

can be expressed as 

 
| ,

,

i u ui ui uj uj u

ui uj uj ui u

P P v v j i I

P v v j i I

ε ε

ε ε

 = ⋅ ≤ ⋅ ∀ ≠ ∈ 
 = ≤ ∀ ≠ ∈ 

.  (2.22) 

From distributional assumption (2) of the NW model, the conditional choice probability 

can be obtained following the derivation of the MNW model with shape parameter kβ : 

 |

,

( )
( )

k

k

u

ui
i u

uj
j I

vP
v

β

β

−

−

∈

=
∑

.  (2.23) 

The ratio of the shape parameters at different levels, u kβ β , can be estimated as 

a whole number for practical purposes (Ben-Akiva and Lerman, 1985). Hence, the 

dissimilarity parameter u u kϕ β β=  can be introduced to indicate the degree of 

competition effect among alternatives in nest u. For normalization, we can set 1kβ =  

and u uϕ β= . By definition, u kβ β<  and , 0u kβ β > , uϕ  is bounded by 0 and 1. 

Assuming no nest-specific disutility, i.e., 1,uv u U= ∀ ∈ , the NW model can be 

alternatively expressed as 

 

11 1

1

( )

( )

u

u u

u

u

u

w

ui ui
i I

i

wj
w U j I

v v

P

v

ϕ

ϕ ϕ

ϕ

ϕ

−
− −

∈

−

∈ ∈

 
⋅  
  =
 
 
  

∑

∑ ∑

.  (2.24) 

 

(2) Variance and covariance of NW model 

Although the nested choice structures of the NW and NL models are identical, the 

former model has different performances owing to the mode disutility-dependent 

variances and covariances. Figure 2.2 illustrates the difference between the variance-

covariance matrices of the two models based on a travel choice example with two nests 
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and five alternatives. The nested choice structure can lead to a block-diagonal variance-

covariance matrix, i.e., there is zero covariance between alternatives belonging to 

different nests. According to the identically distributed assumption and statistical 

properties of the Gumbel distribution, the variances of the NL model are fixed, which 

equal 
2

6
π  assuming 1uθ =  for the total error term ui uε ε+  of alternative i. In addition, 

the covariances between alternatives i and j in the same nest u are also identical, as the 

correlation coefficient is a function of the dissimilarity parameter only, i.e., 21ij uρ ϕ= −  

and ( )
2

2cov 1
6ij i j ij u
πσ σ ρ ϕ= ⋅ = ⋅ − (Ben-Akiva and Lerman, 1985). 

 

 

Figure 2.2. Variance-covariance structures of the NL and NW models 
 

On the other hand, based on the statistical properties of the Weibull distribution, 

the NW model has disutility-dependent variances. Specifically, by normalizing the 

shape parameter 1uβ =  for the total random error ui uε ε⋅  of alternative i in nest u, the 

variance of alternative i is  
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 ( )22
i ivσ = ,  (2.25) 

where i ui uv v v= ⋅  is the total deterministic disutility. The NW covariance of alternatives 

i and j in the same nest u is 

 

[ ]
[ ]

[ ]{ }2

covij i j i j

i ui u j uj u i ui u j uj u

i j ui uj u ui u uj u

E V V E V E V

E v v E v E v

v v E E E

ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε

   = ⋅ − ⋅   
   = ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅   

   = ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅  

.  (2.26) 

By assumption, uiε  are independent variables, uiε  and uε  are independent of each 

other, hence the correlation coefficient can be written as 

 [ ]
[ ] [ ]{ }

2

2 2

covij
ij

i j

ui uj u ui u uj u

ui uj u u

E E E

E E E E

ρ
σ σ

ε ε ε ε ε ε ε

ε ε ε ε

=

   = ⋅ ⋅ − ⋅ ⋅ ⋅  

  = ⋅ ⋅ −   

,  (2.27) 

where [ ]uiE ε  and [ ]uE ε  can be obtained based on the assumptions that uiε  follow the 

Weibull distribution ( )1, kβ  and uε  follow the Weibull distribution (1,1): 

 [ ] ( )11 1ui u
k

E ε ϕ
β

 
= Γ + = Γ + 

 
, (2.28) 

 [ ] 11 1
1ui uE ε ε  ⋅ = Γ + = 

 
, (2.29) 

 [ ] [ ]
[ ] ( )

1
1

ui u
u

ui u

E
E

E
ε ε

ε
ε ϕ
⋅

= =
Γ +

. (2.30) 

2
uE ε    can be obtained based on the variance of the total error term ui uε ε⋅ : 

 

( ) ( ) ( ) [ ]

( ) ( )

2 2 2

2 2 1

1

ui u ui u ui u

ui u

D E E

E E

ε ε ε ε ε ε

ε ε

 ⋅ = ⋅ − ⋅ 
   = ⋅ −   

=

, (2.31) 
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where ( )2
uiE ε 

   can be expressed as follows: 

 

( ) ( ) [ ]
( ) ( ) ( )
( )

2 2 2

2 21 2 1 1

1 2

ui ui ui

u u u

u

E D Eε ε ε

ϕ ϕ ϕ

ϕ

   = +   
= Γ + −Γ + +Γ +

= Γ +

. (2.32) 

Substituting Eq. (2.32) into Eq. (2.31) leads to the expression of 2
uE ε   : 

 
( ) ( )

( ) ( ) ( ) ( )

2

2

1 2 1 1

2 2 1
1 2 2 2 2

u u

u
u u u u u

E

E

ϕ ε

ε
ϕ ϕ ϕ ϕ ϕ

 Γ + ⋅ − = 

 ⇒ = = =  Γ + ⋅Γ ⋅Γ

. (2.33) 

Substituting Eqs. (2.28), (2.30), (2.33) into Eq. (2.27) gives the correlation coefficient: 

 

( ) ( ) ( )

( ) ( )
( )

( ) ( )
( )

2

2 1 11
2 1

1
1

2

1
1

2

ij u
u u u

u u u

u u

u u

u

ρ ϕ
ϕ ϕ ϕ

ϕ ϕ ϕ
ϕ ϕ

ϕ ϕ
ϕ

   = Γ + ⋅ −  ⋅Γ Γ +   
Γ + ⋅ Γ

= −
⋅Γ

Γ + ⋅Γ
= −

Γ

. (2.34) 

Therefore, the correlation coefficient is positive and depends on the dissimilarity 

parameter uϕ . The covariance of alternatives i and j in the same nest u is a function of 

their disutility and the correlation coefficient. This implies that the NW model allows 

alternatives to have disutility-dependent degrees of correlation in the same nest, which 

can simultaneously consider the heterogeneity issue while addressing the similarity 

issue based on the nested choice structure.  

 

2.1.2.3 Relationship between the weibit and logit models 

This section illustrates the characteristics of the weibit model based on the comparison 

with the widely used logit model in terms of model development, probability 

expressions, and properties. 
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(1) Comparison of model development 

Figure 2.3 graphically compares the derivations of the MNL and MNW models using 

a trinomial choice problem. Consider a case with three alternatives, A1, A2, and A3, 

which independently follow the Gumbel/Weibull distributions with the same 

scale/shape parameter. The disutility of the three alternatives is set to 2, 4, and 6, 

respectively. The scale parameter of the Gumbel distributions is set to 1. The shape 

parameter of the Weibull distribution is set to 3.3. The choice probability of A1 in the 

multinomial case can be obtained by comparing A1 with the alternative A*, which 

denotes the maximum utility or the minimum disutility of alternatives A2 and A3. 

Property 6 shows that the Gumbel/Weibull distribution is stable under the 

maximum/minimum operation, i.e., the alternative A* remains Gumbel/Weibull 

distributed with the same scale/shape parameter. Hence, Property 5 can be used to 

derive the choice probability of A1 as the binary choice between A1 and A*. 

 
     (a) logit model            (b) weibit model 
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Figure 2.3. Derivation of multinomial choice models 

 

(2) Comparison of probability functions 

Figure 2.4 illustrates this relationship between the weibit and logit models based on the 

general “logit-type” probability function as discussed by Brathwaite and Walker (2018): 

 
( )
( )

exp

exp
i

i
j

j I

S v
P

S v
∈

  =
  ∑

. (2.35) 

The MNL model can be expressed by directly using ivθ ⋅  to represent S(vi), where 

the scale parameter is often set as 1θ = . S(vi) of the MNW model is in a logarithmic 

form: ( ) ln( )i iS v vβ= − ⋅ . The weibit model can thus be deemed as a logarithmic 

transformation of the logit model (Castillo et al., 2008; Fosgerau and Bierlaire, 2009).  

 

 

Figure 2.4. Relationship between logit and weibit choice models 
 

As can be seen from Figure 2.4, the logarithmic form of utility function leads to 

the asymmetric probability curve of the weibit model, which is governed by the shape 

parameter β . Unlike the symmetric logit model providing an equal rate of 

increasing/decreasing choice probability with equal gains/losses, the weibit model 

gives a higher decrease than increase in probability when alternative utility is 
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decreasing/increasing to the same degree. The asymmetric property might be preferred 

in the evaluation of travel behavior, which is beneficial for analyses of transportation 

system accessibility and vulnerability as described in Section 2.1.3. 

 

(3) Comparison of model properties 

Owing to the differences in model development and probability function discussed 

above, the weibit model has distinct properties and performances than the logit model. 

Figure 2.5 compares the performances of the weibit and logit models. An illustrative 

binary mode choice example is presented in the typical short and long networks shown 

in Figure 2.5(a). The two modes are assumed to have the same absolute travel disutility 

difference but different magnitudes of mode disutility in the two networks (10 and 15 

versus 100 and 105). As shown in Figure 2.5(b), because the logit model has a fixed 

variance, the PDFs of the perceived travel utility have the same shape for different 

networks. Using the absolute difference-based binary logit model, the same choice 

probability is derived for the two networks (Figure 2.5(c)). On the other hand, the 

disutility-dependent Weibull perception variances lead to different PDF shapes and 

hence distinct mode choice probabilities for the two networks (Figures 2.5(d) and 

2.5(e)). Therefore, the weibit model can inherently address the heterogeneity issue 

embedded in the logit model. 

 

 
(a) Short (left) and long (right) networks 
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(b) PDF of Gumbel distributed travel utility perception 

 
(c) Logit choice probability of Mode 1/Mode 1′ 

 
(d) PDF of Weibull distributed travel disutility perception 

 
(e) Weibit choice probability of Mode 1/Mode 1′ 

Figure 2.5. Comparison between weibit and logit models in short and long networks 
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Figure 2.6. Illustration of the difference between perception variance and choice 

probability of weibit and logit models  
 

Figure 2.6 further illustrates the different performances of the weibit and logit 

models based on a more general case where the travel disutility of mode 2 is X, and that 

of mode 1 is (X – 5). The logit model has a fixed perception variance for the two modes, 

which results in the unchanged model choice probability disregarding the varying 

magnitudes of mode disutility. The weibit model, on the other hand, generates different 

perception variances for the two modes that are changing with the variation in mode 

disutility, which leads to the mode choice probability dependent on the disutility of both 

modes. This weibit outcomes seem to conform with real-world conditions, as the same 

difference in the travel disutility is likely to have a more significant effect in a short 

network but can be ignored in a long network. It shows the potential of the weibit model 

to outperform the logit model for considering heterogeneous perceptions of travel 

disutility when modeling the choice between distinct travel alternatives in future multi-

modal transportation systems. 
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(4) Comparison of model elasticities 

This section investigates the direct and cross elasticities of logit-based and weibit-based 

models to further explore the differences between these models. We assume that the 

alternative disutility is a linear function of a series of attributes: 

 ,
i

i
i k k

k K
v i Iω τ

∈

= ∀ ∈∑ ,  (2.36) 

where i
kτ  denotes the kth attribute of alternative i, and kω  is the coefficient associated 

with i
kτ . The direct elasticity measures the effect of a change in an attribute of 

alternative i on the choice probability of alternative i, which can be written as 

 , ,m
m
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P m k

mm
k m

PE k K m M
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τ
τ
∂
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∂

. (2.37) 

On the other hand, the cross elasticity measures the effect of a change in an attribute of 

alternative i on the choice probability of another alternative j, which can be written as 

 , , ,j
i
k
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ii
k j

P
E k K i j I

Pτ

τ
τ
∂

= ⋅ ∀ ∈ ∈
∂

. (2.38) 

The direct and cross elasticities of the MNL, MNW, NL, NW, CNL models, as 

well as the cross-nested weibit (CNW) model that will be developed in Section 3.3.2.1, 

are compared in Table 2.3. The NW and CNW models based on nested choice structures 

have larger elasticities than the MNW model when more than one nest exists. 

Furthermore, the cross elasticities among alternatives in the same nest are larger than 

those among alternatives in different nests, which suggests that alternatives are more 

sensitive to changes in alternatives in the same nest than in alternatives outside the nest. 

The effects of nested and cross-nested structures on the weibit choice probability are in 

line with those for logit models summarized by Wen and Koppelman (2001). 

The major difference between logit models and weibit models is that the 

elasticities of weibit models also depend on the alternative disutility vi, which implies 

that as the alternative disutility increases, a unit change in the attribute may affect the 

choice probability less. This feature allows the weibit models to also consider the effect 
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of distinct magnitudes of alternative disutility on choice behavior, i.e., the 

heterogeneous perceptions of different alternatives. This is consistent with the intuition 

that the same degree of change might seem less significant for an alternative with a 

higher original disutility than for an alternative with a lower disutility. Since the term 

vi is used to denote the utility in logit models and the disutility in weibit models, the 

elasticities of the two groups of models have opposite signs. 
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Table 2.3. Direct and cross elasticities of logit-based models and weibit-based models 
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2.1.3 Utility-based accessibility and vulnerability analysis 

This section introduces the applications of logit and weibit models in transportation 

system accessibility and vulnerability analyses based on the random utility theory. 

Accessibility is a critical concept widely used for assessing transportation systems 

under normal conditions, which describes the potential for users to reach spatially 

distributed opportunities, assessed from the perspective of either individuals or 

locations using a variety of measures. This section focuses on the utility-based measure 

stemmed from the random utility theory, which assesses accessibility as the utility 

travelers gain from the travel alternatives provided in the transportation system. 

Compared with other accessibility indices, the utility-based measure is advantageous 

as it has sold behavioral interpretations from the perspective of travelers and is 

consistent with the choice behavior modelled in travel demand models. In addition, the 

utility-based accessibility measure uses monetary terms to reflect changes in 

accessibility, thus can be directly used for cost-benefit analysis in decision-making 

(Van Wee, 2016; Winkler, 2016).  

Vulnerability is an important measure of the operability of a transportation system 

under abnormal conditions, quantifying the network’s susceptibility to disruptions 

(Berdica, 2002). Transportation system vulnerability is often measured based on the 

consequences of serious disruptions, e.g., removal of infrastructure and transportation 

services, in terms of degradation in certain performance measures (Jenelius et al., 2006). 

This section focuses on the accessibility-based vulnerability analysis, which assesses 

system vulnerability based on the reduction in utility-based accessibility measure after 

the removal of network components (e.g., nodes and links) (Jenelius et al., 2006; Chen 

et al., 2007; Jansuwan and Chen, 2015; Xu et al., 2021). Benefiting from the utility-

based accessibility measure, the system vulnerability can be comprehensively analyzed 

considering changes on both the supply side (e.g., network topology) and the demand 

side (e.g., the complex choice behavior and travel demand patterns) (Mattsson and 

Jenelius, 2015; Taylor, 2017; Gu et al., 2020). 
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In this section, the logit-based accessibility and vulnerability measures based on 

choice models are first reviewed with discussions on their properties and limitations. 

Advanced accessibility and vulnerability analyses are then proposed based on the state-

of-the-art weibit models. Benefiting from the appealing properties of weibit choice 

model (Section 2.1.2), the proposed weibit-based measures are inherently suitable for 

assessing the relative variation in system performance and are appropriate to assess the 

vulnerability of networks with distinct scales. The weibit-based measures are further 

advanced in consistent with extended weibit choice models, which can simultaneously 

address the similarity and heterogeneity issues embedded in the traditional logit-based 

transportation system analyses. 

 

2.1.3.1 Logit-based vulnerability measure 

We first briefly demonstrate the traditional logit-based accessibility and vulnerability 

measures stemming from the MNL choice model. Based on Property 6 of the Gumbel 

distribution (Table 2.1), the maximum perceived utility of a set of Gumbel distributed 

travel alternatives is still Gumbel distributed. The expected maximum utility gained 

from the travel choice set I can then be expressed in an additive form in line with the 

additive error structure in the logit model (Williams, 1977): 

 { }( )max , L L
i iE V i I A C∀ ∈ = + ,  (2.39) 

where CL is a constant and AL is the logsum measure expressed as follows: 

 1 ln exp( )L
i

i I
A vθ

θ ∈

= ∑ .  (2.40) 

Logsum is used as the accessibility measure, which can be interpreted as the consumer 

surplus. The variation in logsum can be applied to assess the social benefit in specific 

planning scenarios with development of certain transportation infrastructure or policy 

(Williams, 1977; Ben-Akiva and Lerman, 1985; De Jong et al., 2007).  
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The transportation system vulnerability can be measured based on the absolute 

difference between post- and pre-disruption logsum measures: 

 0
0

1 ln exp( ) ln exp( )L L L
i i

i I i I
A A A θτ θτ

θ ∈ ∈

 ′ ′∆ = − = − − −  
∑ ∑ ,   (2.41) 

where 0
iτ , iτ ′ , 0

LA , LA ′  respectively denote the travel disutility (opposite of utility) of 

alternative i and the logsum before and after disruption. LA∆  can be directly used as 

the vulnerability measure and can be interpreted as a kind of “average” degradation in 

the expected maximum travel utility. In line with the absolute utility difference–

dependent logit choice probability, the logsum can accurately reflect the vulnerability 

when there is an absolute utility degradation of each travel alternative, i.e., 

 0 L
i i Aτ τ′ = + ∆ , (2.42) 

 ( ) ( )01 1ln exp ln expL L
i i

i I i I
A Aθτ θ τ

θ θ∈ ∈

′ ′  = − − = − − + ∆ ∑ ∑ . (2.43) 

To account for the proportional degradation in network performance, the 

vulnerability measure VL has also been widely used to derive the relative reduction in 

logsum after disruption: 

 
0

L
L

L

AV
A
∆

=  .  (2.44) 

However, owing to the IID assumptions embedded in the logit choice model, the 

logit-based vulnerability measure is still insufficient for reflecting the relative 

degradation in post-disruption network performance in networks with distinct scales 

and/or similar travel alternatives. 

 

2.1.3.2 Issues associated with logit-based vulnerability measure 

The logit-based vulnerability measure is affected by several issues stemming from the 

IID assumption of the logit choice model. In particular, the identically distributed 
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assumption causes difficulty in application to transportation networks with distinct 

scales and hinders the reflection of relative changes in network performance. The 

independently distributed assumption leads to the underestimation of the importance of 

independent travel alternatives. These issues will be discussed in this section. 

 

(1) Distinct network scale 

The Gumbel distributed random perception error with scale parameter θ  gives a 

fixed perception variance 2 2 26σ π θ=  (Table 2.1). In this regard, a single value of θ  

may not be sufficient to reproduce the travel utility perception and travel choice 

probabilities for networks with distinct scales (Chen et al., 2012). This limitation may 

lead to biased logsum measures and vulnerability analysis outcomes.  

Figure 2.7 illustrates the effect of network scale on the outcome of logit-based 

vulnerability analysis based on short and long networks shown in Figure 2.7(a). The 

scale parameter is set as 0.3θ = . The vulnerabilities under the removals of Alternative 

1 and Alternative 2 are separately assessed to examine the importance of each 

alternative. Figure 2.7(b) depicts the distribution of perceived travel utility and the 

logsum under each scenario (colored digits in bold). Figure 2.7(c) summarizes the 

vulnerability assessment outcomes including the absolute logsum differences based on 

Eq. (2.41), the relative logsum reduction derived from Eq. (2.44), and the relative 

importance of the two alternatives calculated as the ratio between the absolute logsum 

differences after removal of each alternative. The higher relative importance of 

Alternative 1 (or 1′) indicates that the removal of Alternative 1 (or 1′) will cause greater 

damage to the network than the removal of Alternative 2 (or 2′). The absolute difference 

in logsum is not sufficient to compare the vulnerability of different networks with 

heterogeneous scales. Although the relative reduction in logsum can partly handle the 

effect of distinct network scales, the outcome network vulnerability and the component 

importance are still inconsistent with the actual change in network scale. 
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(a) Short and long networks 

 
(b) Logit-based vulnerability analysis for short (left) and long (right) networks 

 
(c) Logit-based vulnerability outcomes of short (left) and long (right) networks 

Figure 2.7. Effect of network scales on logit-based vulnerability analysis 
 

The inadequacy of logit-based model to account for the difference in network 

scales may prohibit the applicability of logsum measures to vulnerability analysis, in 
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that the network scale, i.e., the magnitude of the network travel disutility, can change 

significantly under serious disruptions. Furthermore, the inability to correctly handle 

distinct network scales will hinder the comparison of vulnerability between different 

networks and influence the transferability of the vulnerability analysis outcomes. 

 

(2) Relative network performance degradation 

This section illustrates the inadequacy of the logit-based measure to reflect the relative 

degradation in network performance. As the logit model is unable to reflect the relative 

disutility difference in choice probability (Kitthamkesorn and Chen, 2013), the 

resulting logsum may lead to biased vulnerability outcome under relative performance 

degradation.  

Consider a case with two alternatives with travel disutility 1τ  and 2τ . The logsum 

of the two alternatives can be expressed as below: 

 
( ) ( )

( ){ }

1 2

1 2 1

1 ln exp exp

1 ln 1 exp

A θτ θτ
θ

τ θ τ τ
θ

= − + −  

= − + + − −  

.  (2.45) 

Assume that under disruption, the ratios between the post- and pre-disruption cost 

of all alternatives are 1ν > , i.e., the post-disruption travel costs become 1ντ  and 2ντ . 

It is reasonable to expect that the post-disruption accessibility A′ becomes Aν ⋅ : 

 
( ) ( )

( ){ }

1 2

1 2 1

1 ln exp exp

1 ln 1 exp

A ν θτ θτ
θ

ντ ν θ τ τ
θ

′ = ⋅ − + −  

= − + ⋅ + − −  

.  (2.46) 

However, if we incorporate the post-disruption travel disutility to derive the 

logsum measure, a value different from A′ will be obtained: 
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( ) ( )

( ){ }

1 2

1 2 1

1 ln exp exp

1 ln 1 exp

LA θ ντ θ ντ
θ

ντ θ ν τ τ
θ

′ = − ⋅ + − ⋅  

= − + + − ⋅ −  

.  (2.47) 

The difference between the logit-based post-disruption accessibility, AL′, and the 

reference value, A′, can be expressed as follows: 

 ( ){ } ( ){ }2 1 2 1
1 1ln 1 exp ln 1 expLA A θ ν τ τ ν θ τ τ
θ θ

′ ′− = + − ⋅ − − ⋅ + − −       . (2.48) 

The term LA A′ ′−  is monotonically increasing with 2 1 0τ τ− >  and monotonically 

decreasing with 2 1 0τ τ− < . When 2 1τ τ− → +∞  or 2 1τ τ− → −∞ , 0LA A′ ′− = . 

Therefore, the term LA A′ ′−  is always non-positive, i.e., the post-disruption 

accessibility is always underestimated by logsum. An illustrative example with scale 

parameter 0.3θ =  is shown in Figure 2.8. The blue line shows the values of term 

LA A′ ′−  under different disutility differences ( 2 1τ τ− ). The gap between the blue line 

and the x axis denotes the overestimated absolute reduction in accessibility (i.e., 

overestimated vulnerability), which reaches the maximum when 2 1 0τ τ− = . Note that 

the overestimated vulnerability is also influenced by the value of θ  . As θ  approaches 

infinity, the overestimated vulnerability approaches zero. 

 

 

Figure 2.8. Overestimated vulnerability owing to logit-based measure 
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(3) Similar travel alternatives 

Because of the independence assumption in the MNL model, the widely used 

MNL-based logsum measure ignores the correlation among similar travel alternatives; 

thus, it may generate biased choice probability and vulnerability analysis outcomes. 

Figure 2.9 presents an illustrative example of the effect of alternative similarity on 

vulnerability analysis in the context of mode choice. 

 

 
(a) Mode choice scenario 

 
(b) Comparison between logsum reductions from the NL and MNL models 

Figure 2.9. Effect of similarity on the logit-based vulnerability measure 
 

Three modes are considered in the illustrative example: metro, bus, and private 

car. The accessibility reduction owing to the removal of the car mode is assessed. The 

MNL model, which neglects mode correlation, is compared with the NL model, in 

which similar alternatives are nested together (e.g., metro and bus are nested as transit 
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modes). The mode correlation is modeled by a dissimilarity parameter ϕ  satisfying 

0 1ϕ< < . A lower value of ϕ  indicates a higher correlation between alternatives in the 

same nest. The NL model collapses to the MNL model when 1ϕ = . From Figure 2.9(b), 

the NL model leads to a greater reduction in accessibility with the decrease in the 

dissimilarity parameter, which implies that the neglect of correlation may lead to 

underestimation of the importance of an independent mode (the car mode in this case).  

 

2.1.3.3 Weibit-based accessibility and vulnerability measure 

To address the aforementioned issues associated with the logit-based measure, this 

section proposes accessibility-based vulnerability measures stemming from the weibit-

based choice model, which is also derived based on the random utility theory. Based 

on Property 6 of Weibull distribution (Table 2.2), the minimum disutility of a set of 

Weibull distributed travel alternatives is still Weibull distributed, with the same shape 

parameter but different scale parameters. The expected minimum disutility gained from 

the travel choice set I can be expressed as: 

 { }( )min , W W
i iE V i I A C∀ ∈ = ⋅ , (2.49) 

where CW is a constant dependent on the shape parameter β , and AW is the weibit-based 

accessibility measure, which can be expressed as follows: 

 ( )
1/

W
i

i I
A

β
βτ

−
−

∈

 =   
∑ .  (2.50) 

Different from the logsum which takes the log of the denominator of the logit 

choice probability, the weibit-based accessibility measure takes the root of the 

denominator of the weibit choice probability. The proposed weibit-based vulnerability 

measure is derived based on the ratio between the post- and pre-disruption weibit-based 

accessibility, WA∆ : 
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A higher value of the vulnerability measure VW indicates a larger increase in disutility 

under disruption, namely, a larger system performance degradation. WA∆  can then be 

interpreted as the average increase rate in alternative travel disutility: 

 ( ) ( )
1/ 1/

0W W
i i

i I i I
A v v A

β ββ β
− −− −

∈ ∈

   ′′ = = ⋅∆      
∑ ∑ .  (2.52) 

Different from the logit model, the weibit model allows alternative-specific 

perception variances and has a relative disutility difference-dependent choice 

probability (Section 2.1.2). Thus, the weibit-based vulnerability measure is inherently 

suitable to reflect the performance degradation when there is a relative degradation in 

the service level of each travel alternative. Figure 2.10 illustrates the effect of the 

proposed weibit-based measure. The short and long networks depicted in Figure 2.7(a) 

are used to present an illustrative example. The vulnerabilities under the removals of 

Alternatives 1 and 2 are separately assessed to examine the importance of each 

alternative. Figure 2.10(a) depicts the distribution of perceived travel disutility, 

perception variance, and the weibit-expected disutility under each scenario (colored 

digits in bold). Figure 2.10(b) summarizes the vulnerability assessment outcomes, 

including the relative differences in the weibit-expected disutility shown in Figure 

2.10(a) and the relative importance of the two alternatives denoted by the ratio between 

the performance degradations after removal of each alternative. With alternative-

specific perception variances, the weibit-based measure can derive different 

vulnerabilities (relative differences) for different alternatives in different networks. 

Furthermore, the relative importance of Alternative 1 and 1′ is consistent with the 

disutility ratio between Alternative 1/1′ and Alternative 2/2′.  
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(a) Vulnerability analysis based on weibit-expected disutility 

 
(b) Weibit-based vulnerability analysis outcomes of short and long networks 

Figure 2.10. Effect of weibit-based vulnerability analysis  
 

In summary, the weibit-based vulnerability measure allows a comparison between 

outcomes from networks with distinct scales and overcomes the issues of the logit-

based measure associated with heterogeneous network scales and relative change in 

network performance. However, the measure based on the MNW model is still affected 

by the similarity issue (3) in Section 2.1.3.2. To deal with this limitation, the advanced 
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weibit models introduced in Section 2.1.2.2 can be incorporated in the accessibility-

based vulnerability measure. 

 

2.1.3.4 Accessibility and vulnerability measures based on extended weibit models 

This section presents the accessibility and vulnerability measures derived from 

extended weibit models, which can simultaneously address the similarity and 

heterogeneity issues in logit-based measures. The PSW model commonly used in route 

choice problems and the NW model commonly used in mode choice problems are 

adopted to exemplify the derivation of accessibility measures. 

 

(1) PSW-based accessibility measure 

In the PSW model, a PS factor rs
kPS is introduced to the disutility function of path k 

between OD pair rs: 

 ( )
1

, ,k
rs rs rs rs rs

k k k kV PS k K rs RSβ τ ε
−

= ⋅ ⋅ ∀ ∈ ∈ , (2.53) 

which leads to the PSW choice probability as follows: 
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. (2.54) 

The PS factor is a correction term that only influences the deterministic disutility. Thus, 

the accessibility measure based on the PSW model can be obtained based on Property 

6 of the Weibull distribution (Table 2.2) following Eq. (2.50): 
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(2) NW-based accessibility measure 

As illustrated in Section 2.1.2.2, the NW model adopts a nested structure and a 

multiplicative error structure (Eq. (2.17)). As an example, a two-level NW mode choice 
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model is considered in this section, where individual modes belonging to the same type 

of mobility service are collected in the same nest. Travelers are considered to make 

marginal choice of service type and conditional choice of individual mode belonging 

to the selected type of service. The NW-based accessibility measures are then separately 

derived from different choice levels. First, the accessibility measure of service type u 

between OD pair rs can be obtained as the expected minimum disutility from the 

conditional choice level: 

 ( )
1

, ,
u

u

rs
u

W rs rs
rsu um

m M
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ββ
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−

∈

 
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  
∑ . (2.56) 

Due to the nested structure of the NW model, the accessibility at the marginal 

choice level is dependent on the accessibility at the conditional level. If there exists no 

nest-specific disutility, the accessibility measure between OD pair rs can be obtained 

as the expected minimum disutility from the marginal choice level: 

 ( )
1

,
rsrs
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W W
rs rsu

u U
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−
−

∈

 
= ∀ ∈ 
 
∑ . (2.57) 

Based on the advanced weibit-based accessibility measures shown in Eqs. (2.55)–

(2.57), the corresponding accessibility-based vulnerability measures can be obtained as 

the relative difference between the post- and pre-disruption accessibility following Eq. 

(2.51). 
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2.2 Network equilibrium models with MP formulation 

Network equilibrium models have been exhaustedly studied for aggregate-level travel 

demand analysis, where individual travel choice models can be integrated to reproduce 

the disaggregate-level travel behavior. Instead of the travel choice models that derive 

choice probabilities based on exogeneous travel disutility v, equilibrium models 

consider the interactions among travelers via endogenous travel disutility dependent on 

travel demand, i.e. v=v(q). At the equilibrium, the travel demand pattern is consistent 

with the travel choices derived based on the demand-dependent travel disutility. Hence, 

the equilibrium condition can be represented as a fixed-point problem with the travel 

demand existing on both sides of the equation: 

 ( )( )D= ⋅q P v q , (2.58) 

where D denotes the total travel demand in transportation system. q, v, and P denote 

the vectors of investigated travel demand, travel disutility, and travel choice probability, 

respectively. Different equilibrium models have been developed based on different 

choice models reproducing choice probability P. In the literature, equilibrium models 

are mainly applied in traffic assignment problems, which assign OD travel demands 

onto links following certain selfish route choice behavior in congested networks. Figure 

2.11 summarizes the network equilibrium models with Beckmann-type MP formulation. 

 

 
Figure 2.11. Summary of network equilibrium models with MP formulation 
 



 
 

48 
 

In the deterministic network equilibrium analysis, travelers are assumed to have 

perfect knowledge of transportation systems and no perception error. All travelers 

choose the paths with the minimum travel disutility between each OD pair, which leads 

to the user equilibrium (UE) assignment following Wardrop’s first principle (Wardrop, 

1952). Beckmann et al. (1956) formulated the UE model as a mathematical 

programming (MP) problem with a convex objective function and linear constraints. 

Beckmann’s MP formulation guarantees the equivalence and uniqueness of solutions 

while facilitating model interpretation and development of convergent and efficient 

solution algorithms. 

The other line of equilibrium model is the stochastic user equilibrium (SUE) 

principle suggested by Daganzo and Sheffi (1977). Instead of unrealistically assuming 

travelers to have perfect knowledge of transportation system, the SUE problem 

considers imperfect knowledge and hence perception errors on travel disutility. At SUE, 

travelers are assumed to choose the paths with the minimum perceived travel disutility, 

where the perceived travel disutility is assumed to follow certain distribution, e.g., the 

normal distribution, Gumbel distribution, and Weibull distribution. The normal 

distributed perception error results in the multinomial probit (MNP) SUE model 

(Daganzo and Sheffi, 1977). Maher (2001) extended the unconstrained SUE 

formulation to the elastic demand version, which can be applied to both types of 

perception error distributions, i.e., both probit-based and logit-based SUE problems 

Rosa and Maher (2002) investigated the MNP SUE-ED problem with multiple user 

classes. Meng and Liu (2011, 2012) and Meng et al. (2014) extended The MNP SUE 

model has been further extended to consider specific issues including elastic demand 

(Maher, 2001), multiple user classes (Rosa and Maher, 2002), link interactions (Meng 

and Liu, 2011), continuously distributed value of time (Meng et al., 2012), and link 

capacity constraints (Meng et al., 2014). However, studies on the MNP SUE model are 

relatively limited owing to the absence of an MP model formulation and a closed-form 

expression of MNP choice probability, which largely increases the computational 

burden for simulating the route choice probability in large-scale networks. 

Comparing with other types of SUE model formulations, such as the variational 

inequality, nonlinear complementary problem, and fixed-point formulations, the MP 

formulation is desirable owing to its various appealing properties: readily interpretable 

and easily understandable optimality conditions; solvable by existing convergent and 
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efficient algorithms; and the convex objective function that can be used to obtain 

appropriate step size and stop criterion for the solution procedure (Kitthamkesorn and 

Chen, 2017). Therefore, the MP formulation has been widely adopted by SUE studies 

for various applications, and thus is the focus of the proposed research. This section 

reviews the SUE models with Beckmann-type MP formulation based on different route 

choice models, followed by the extensions to combined demand that incorporate higher 

choice dimensions in equilibrium analysis. The method of developing Beckmann-type 

SUE formulations based on different choice models will be introduced in Section 5.  

 

2.2.1 SUE models with MP formulation 

2.2.1.1 Logit-based SUE models 

Assuming Gumbel distributed path disutility perception errors leads to the MNL route 

choice model, which is most adopted in SUE problems (Dial, 1971). Owing to the Luce-

form logit choice probability, the MNL SUE model can be represented by a Beckmann-

type MP formulation, where an entropy term is additionally incorporated to account for 

the stochasticity in route choice behavior at the aggregate level (Fisk, 1980). Despite 

the appealing properties of having an MP formulation, the MNL SUE model inherits 

limitations from the MNL choice model, namely the inadequacy to consider the 

heterogeneous travel disutility perception and correlations among paths (e.g., path 

overlaps) (Chen et al., 2012). 

To deal with the limitations of the MNL SUE model, many extended logit choice 

models introduced in Section 2.1.1.2 have been integrated to deal with path correlations. 

The extended logit models with correction term can be integrated by adding an 

objective term with respect to the path disutility correction, such as the C-logit SUE 

model (Zhou et al., 2012) and PSL SUE model (Chen et al., 2012). On the other hand, 

the extended logit models with nested choice structure can be integrated by specifying 

decision variables corresponding to the adopted structure and adding entropy terms 

with respect to different choice levels in the objective function. For instance, Bekhor 

and Prashker (1999) developed the MP formulation of the PCL SUE and CNL SUE 

models; Bekhor and Prashker (2001) develops the GNL SUE model formulation. 

However, the heterogeneity issue cannot be inherently addressed by the extended logit 

SUE models. Chen et al. (2012) proposed to scale the logit dispersion parameter θ  for 
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each OD pair (i.e., a common scaled dispersion parameter for the route set between 

each OD pair), which showed the scaled logit models can outperform the unscaled ones 

by distinguishing the magnitudes of trip lengths between different OD pairs. However, 

scaling the dispersion parameters for different OD pairs may be cumbersome as there 

are many OD pairs in a typical large-scale transportation network (e.g., a medium-sized 

network known as the Winnipeg network has 154 zones, 2535 links, and 4345 OD 

pairs). 

 

2.2.1.2 Weibit-based SUE models 

The weibit-based SUE model has been recently proposed that inherently addresses the 

heterogeneity issue embedded in logit-based SUE models. In a pioneering work, 

Castillo et al. (2008) proposed the SUE problem based on the MNW route choice model, 

which accounts for the heterogeneity issue via route-specific perception variances and 

relative difference-dependent probability. Many equilibrium analyses have been 

developed to advance the MNW SUE model based on extended weibit choice models 

that further relax the independently distributed assumptions. For instance, 

Kitthamkesorn and Chen (2013, 2014) used the path-size factor of the PSL model to 

develop the PSW model, applying it to the SUE problem using the constrained convex 

program in 2013 and the unconstrained nonlinear program in 2014. Kitthamkesorn et 

al. (2015) extended the PSW SUE model to the elastic OD demand case to explain the 

interaction between supply and demand. Xu et al. (2015) developed the hybrid weibit-

logit model to take advantage of both the relative difference-based weibit model and 

the absolute difference-based logit model in the traffic assignment.  

Another stream of studies focused on the theoretical analysis and practical 

applications of weibit-based SUE models. For example, Yao and Chen (2014) analyzed 

the stochastic assignment paradox based on the logit and weibit choice models. Cheng 

et al. (2022) explored the stochastic assignment paradox using the multiplicative hybrid 

weibit-logit model. Wang et al. (2021a) analytically and empirically investigated the 

effect of traveler’s prior knowledge or information on the performance of weibit-based 

SUE models. Weibit models have also been applied to various traffic assignment and 
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related network design problems. For example, link-based stochastic network loading 

algorithms have been customized for applying the weibit-based SUE models to road 

traffic assignment (Kitthamkesorn and Chen, 2014; Sharifi et al., 2015; Liu et al., 2017). 

Kitthamkesorn et al. (2021) further considered the MNW travel choice behavior in the 

design of park and ride facilities. Weibit route choice can also be incorporated in day-

to-day traffic assignment (Ye, 2022), which can be applied to network vulnerability 

analysis (Xu et al., 2021) and road congestion pricing (Qu et al., 2021). Xie et al. (2020) 

applied the weibit model to schedule-based stochastic passenger assignment for train 

schedule optimization in a high-speed railway network. 

 

2.2.2 Combined travel demand model 

The SUE models discussed in Section 2.2.1 focus on the level of traffic assignment 

with respect to the route choice dimension. Efforts have also been made to develop 

combined travel demand models that flexibly incorporate more levels in the sequent 

four-step model dimensions with respect to other choice dimensions, i.e., trip 

generation, trip distribution, and modal split (Safwat and Magnanti, 1988; Oppenheim, 

1995; Boyce and Bar-Gera, 2004; Zhou et al., 2009). Different from the sequent four-

step model considering different choice dimensions in a separate manner, the combined 

model can reproduce the joint travel, destination, mode, and route choice in a consistent 

way based on the random utility theory. Besides considering all four choice dimensions, 

many combined models focus on some of the interacting dimensions for specific 

applications, such as the combined distribution and assignment (CDA) model and the 

combined modal split and traffic assignment (CMSTA) model. 

 

(1) Combined distribution and assignment model 

The CDA model considers the joint destination and route choice, where the destination 

choice is reproduced based on the OD travel cost consistent with the route choice 

behavior. Tomlin (1971) proposed an MP formulation of CDA model using an entropy 

term standing for the equilibrium trip distribution based on the gravity model, while the 

route choice follows the system optimal principle. Florian et al. (1975) further 

developed an CDA model considering selfish route choice behaviors, in which the route 
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choice is modeled following the UE principle. However, the gravity-based trip 

distribution model used in such CDA models can also be interpreted from the 

perspective of the random utility theory as an MNL destination choice, which is 

inconsistent with the deterministic UE route choice. Efforts have been made to 

guarantee the consistency between destination and route choices by integrating the 

logit-based SUE traffic assignment model (e.g., Oppenheim 1995). Yao et al (2014) 

further developed a general unconstrained formulation for the CDA model. Further 

extensions have been made to incorporate specific considerations, such as multiple user 

and vehicle classes (Friesz, 1981; Lam and Huang, 1992), variable destination cost 

(Oppenheim, 1993), different types of location choices (Yang and Meng, 1998), 

capacity constraints (Tam and Lam, 2000), and network uncertainty (Yim et al., 2011). 

Several efforts have been made to advance the CDA model by incorporating 

advanced destination and route choice models. For example, Chu (2011) adopted the 

dogit model for reproducing destination choice with both compulsory and discretionary 

trip purposes. Yao et al. (2014) adopted the spatially correlated logit model to account 

for the similarity among spatially adjacent locations. The PSL model was also adopted 

for route choice with consideration of path overlaps. 

 

(2) Combined modal split and traffic assignment model 

The CMSTA model considers both mode choice and route choice together. The mode 

choice is influenced by the aggregate cost stemmed from the equilibrium route choice. 

Similar to the development of CDA models, many CMSTA models first combine the 

stochastic mode choice following the binary logit choice model and the deterministic 

route choice following the UE principle (Florian, 1977; Florian and Nguyen, 1978; 

Abdulaal and LeBlanc, 1979). The CMSTA model was then extended to consider 

multiple modes (Oppenheim, 1995) and stochastic route choice (Oppenheim, 1995; Wu 

and Lam, 2003).  

Many advanced choice models have been integrated in the CMSTA model for 

considering various behavioral issues. For instance, Kitthamkesorn et al. (2016) 

developed the NL-CNL CMSTA model to simultaneously consider the similarity issues 

at both dimensions, where the mode correlation is considered via the NL model and the 

path overlap is considered by the CNL model. Liu et al. (2018) developed a CNL-UE 

CMSTA model to specifically account for the similarity between the park & ride service 
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and other travel modes. Wang et al. (2020a) developed a dogit-PSL CMSTA model, 

where the dogit model is adopted to consider mode choice captivity and the PSL model 

is adopted to account for path overlap. Du et al. (2022) developed a CNL-PSL CMSTA 

model for network capacity analysis, where the CNL model is adopted for the mode 

choice with various emerging mobility services. Besides the extended logit-based 

CMSTA models that are inadequate to reflect heterogeneous travel perceptions, 

Kitthamkesorn and Chen (2017) proposed an advanced weibit-based CMSTA model to 

simultaneously consider similarity and heterogeneity issues at both mode and route 

choice dimensions. The NW model was developed for the mode choice behavior, 

whereas the route choice was reproduced using the PSW model. 
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Methodology Part I. Modeling individual travel choices: Development 

of advanced random utility models with emerging choice behavior 
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Chapter 3 Closed-form choice models based on “Luce class” of error 

distributions 

This chapter focuses on the development of advanced individual choice models with 

random errors identically following the “Luce class” distributions, which leads to the 

generalized “Luce-form” choice probabilities that are efficient for probability 

evaluation. For applications in emerging choice contexts with different innovative 

transport policies or mobility services, the independently distributed assumption is 

relaxed in different manners to consider various correlations among travel alternatives 

in the emerging transportation system.  

In particular, Section 3.1 develops an ordered path-size generalized extreme value 

model for the route choice in road networks with road tolls. Besides incorporating 

correction terms to penalize the physical correlation (overlap) among paths, a specific 

ordered nested choice structure is incorporated to account for the perceptual correlation 

among paths with closely ranked tolls. By taking advantage of the two ways of 

developing extended logit models as illustrated in Section 2.1.1.2, i.e., adding 

correction terms and introducing a nested choice structure, the developed model is able 

to address different path correlations in an integrated manner. 

Section 3.2 develops a dogit-nested weibit mode choice model for multi-modal 

systems with customized bus services. Instead of the commonly used Gumbel error 

distribution, this section shows the MRUM development based on the Weibull error 

distribution, a “Luce class” distribution that fits the MRUM framework. Furthermore, 

a nested choice structure is introduced to model the mode similarity. The dogit mode, 

an alternative probabilistic choice system, is embedded in the MRUM framework to 

develop a closed-form choice model that considers the issue of passenger loyalty. 

Section 3.3 develops a dogit-cross-nested weibit model for joint mobility bundle 

and mode choice with various emerging mobility services. On the basis of the advanced 

dogit-nested weibit model developed in Section 3.2, this model considers the effect of 

mobility bundling, an emerging marketing strategy for promoting emerging mobilities, 

on both the mode similarity issue and the passenger loyalty issue. 

Section 3.4 develops a spatially correlated weibit–parking-size weibit model for 

joint destination and parking choice with shared parking services. In addition to the 
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single-dimensional choice behaviors considered in Sections 3.1-3.3, this section 

develops a combined destination and parking choice model based on a hierarchical 

choice structure. The two ways of modeling correlations illustrated in Section 2.1.1.2 

are adapted based on the features of different choice dimensions considered. The 

developed model is still within the weibit-based MRUM framework. Thus, it retains 

the computationally efficient generalized “Luce-form” choice probability that 

facilitates further applications in the equilibrium analysis in real-world networks. 

 

3.1 Route choice in tolled networks  

3.1.1 Background and related studies 

Route choice models play a critical role in travel demand analysis. Besides the 

extensively used multinomial logit (MNL) model which has a closed-form probability 

expression but fails to capture the correlation among paths, various extended logit 

models have been developed and adapted for the route choice in the stochastic user 

equilibrium (SUE) analysis (Prashker and Bekhor, 2004). The commonly used 

extended logit route choice models include: 

• C-Logit (Cascetta et al, 1996): Add a correction term representing the utility 

reduction due to commonality with overlapped paths. 

• Path-size logit (PSL, Ben-Akiva and Bierlaire, 1999): Add a factor representing 

the “size” of an overlapped path compared with a “full” path without overlapping. 

• Paired combinatorial logit (Chu, 1989): Use a nested choice structure with each 

pair of overlapped paths collected in the same nest. 

• Cross-nested logit (Vovsha, 1997): Use a nested choice structure with all paths 

passing the same link collected in the same nest. 

 

In summary, the existing logit-based route choice models are dominated by the 

consideration of physical correlation among paths, namely the path overlap associated 

with the length or travel time attribute of each path. However, few studies have 

considered the perceptual path correlation triggered by other attributes that can also 

exert significant effects on route choice behaviors (Frejinger and Bierlaire, 2007). For 
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example, the path order based on the ranking of monetary travel cost, which is an 

important attribute in conjunction with travel time, has been considered in the route 

choice in tolled networks (Leurent, 1993; Glavic et al., 2017; Xie et al., 2021). There 

are likely correlations among the random utility components of adjacently ordered 

alternatives (Small, 1987). Specifically, in the tolled network with a ranking of toll, 

there may exist path order correlation, i.e., the perceptual correlation among paths 

with adjacent orders of toll. Figure 3.1 illustrates this issue based on a route choice 

example between an OD pair in Hong Kong, where the navigation software suggests 

three paths using three cross-harbor tunnels with a ranking of tolls (WHC for Western 

Harbour Crossing, CHT for Cross-Harbour Tunnel, and EHC for Eastern Harbour 

Crossing, respectively). In addition to the physical overlaps among the three 

alternatives, travelers choose routes considering the tradeoff between cost and time 

based on the perceptual correlation between paths with close rankings of toll, which has 

been overlooked in the route choice literature. For instance, Paths 2 and 3 are 

perceptually correlated as they both rank low in road tolls (first and second, 

respectively), thus are likely to be considered as competing alternatives by price-

sensitive travelers. Therefore, in addition to the physical path overlap, the perceptual 

path order correlation is also imperative to be incorporated in the route choice model 

for tolled networks. 

This section aims to model the route choice in tolled networks while specifically 

accounting for the effect of road toll ordering and path order correlations. The 

integration of path order information is based on the discovery that the ordered 

generalized extreme value (OGEV) model (Small, 1987) can naturally account for the 

correlation among ordered choice alternatives, which matches the route choice with a 

known ranking of toll. On this basis, an advanced route choice model is developed to 

consider perceptual and physical path correlations simultaneously. 
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Figure 3.1. An illustration of path perceptual and physical correlations in the Hong 
Kong road network 

 

3.1.2 Route choice considering perceptual correlation and physical overlap 

In this section, the OGEV model, which is suitable for incorporating the ordering 

information of choice alternatives, is extended to the ordered path-size generalized 

extreme value (OPSGEV) model for modeling both the perceptual order correlation and 

the physical overlap in the route choice problem. The perceived path travel utility 

function is defined for accounting for different correlations via different deterministic 

disutility and random error terms: 

 


1 1 , , ,rs rs rs rs rs rs rs rs
uk k k uk uk u u

k uSystematic Error
utility componentsPath Path order

overlap correlation

V v PS w k K u U rs RSε ε
θ θ

= + + + + ∀ ∈ ∈ ∈


 

,  (3.1) 

where RS, rsU , and rs
uK  denotes the set of OD pairs, the path subsets between OD pair 

rs, and the paths in subset u between OD pair rs, respectively; rs
kv  is the systematic path 

utility measuring the tradeoff between travel time and road toll; rs
ukε  and rs

uε  are error 

components associated with the individual path and the subset of adjacently ordered 
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paths, respectively. Following the development of the nested logit model (Ben-Akiva 

and Lerman, 1985), three distributional assumptions are made: (1) rs
ukε  and rs

uε  are 

independent; (2) rs
ukε  are independently and identically distributed (IID) Gumbel 

variables with scale parameter kθ ; (3) rs
uε  are distributed so that rs rs

uk uε ε+  are IID 

Gumbel variables with scale parameter uθ .  

rs
kPS  denotes the path-size (PS) factor, which penalizes the physical correlation 

(overlap) among individual paths together with scale parameter kθ  (Ben-Akiva and 

Bierlaire, 1999). The PS factor is measured based on the total path length and the 

lengths of links shred by different paths as follows: 

 
,

1 , ,
rs
k

rs

rs rsa
k rs

a A k a k
k K

lPS k K rs RS
l δ∈

∈

= ⋅ ∀ ∈ ∈∑ ∑
, (3.2) 

where la and lk are the length of link a and path k, respectively; rs
kA  denotes the set of 

links on path k; ,
rs
a kδ  is the binary variable indicating the link-path incidence 

relationship, , 1rs
a kδ =  if link a is on path k, otherwise , 0rs

a kδ = . Paths with a heavy 

overlap have a smaller PS factor, indicating a higher penalty on path utility. Other 

functional forms of PS factor can also be included (see Bovy et al., 2008; Prato, 2009). 

The allocation parameter rs
ukw  denotes the membership of path k in path subset u 

between OD pair rs, which influences the competition effect between path k and its 

adjacently ordered paths. The allocation parameter rs
ukw  and scale parameter uθ  

together reflect the path order correlation. To guarantee unbiased model specification, 
rs
ukw  can be normalized as 1

rs

rs
uk

u U

w
∈

=∑  (Abbe et al., 2007). In the standard OGEV model, 

rs
ukw  can be specified as 1

1M +
, where M denotes the number of adjacently ordered 

paths that are considered correlated to each path and M+1 is the maximum number of 

paths in a subset (Small, 1987).  

Based on the utility function (3.1) and the three distributional assumptions, the 

OPSGEV model can be analytically derived. Figure 3.2 illustrates the simultaneous 
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consideration of path correlations arising from toll ranking and physical overlap in the 

proposed OPSGEV model. The path order correlations are considered via the nesting 

structure at the marginal choice level, while the path overlaps are modeled via the utility 

correction terms at the conditional choice level. The OPSGEV probability rs
kP  is a 

product of the marginal choice probability of subset u and the conditional probability 

of choosing path k from subset u. 

 ( ) ( ), ,
k M

rs rs
k

u k
P P u P k u k K rs RS

+

=

= ⋅ ∀ ∈ ∈∑ ,  (3.3) 

where Krs denotes the path set between OD pair rs. The marginal and conditional 

choice probabilities, ( )P u  and ( )P k u , can be expressed as follows. 
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Define the dissimilarity parameter u kρ θ θ=  that indicates the order correlation 

among paths in the same subset, which is positive and ranges from zero to one as 

0 u kθ θ< <  (Ben-Akiva and Lerman, 1985). A lower value of ρ  indicates a higher 

degree of correlation, i.e., an increased competition among adjacently ordered paths. 

With a normalization of 1kθ = , the OPSGEV probability can be analytically expressed 

by substituting Eqs. (3.4) and (3.5) to Eq. (3.3) and replacing ,u kθ θ  with ρ : 
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Figure 3.2. Illustration of the OPSGEV model with both perceptual and physical 

correlations 
 

The effect of the OPSGEV model in considering both perceptual and physical path 

correlations is illustrated in Figure 3.3 via a three-path example.  
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(a) Effect of considering perceptual correlation only 

 

 

(b) Effect of considering both perceptual and physical correlations 

Figure 3.3.Effect of considering path correlations based on OPSGEV model 
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Figure 3.3(a) explores the effect of ρ  based on a comparison between the 

OPSGEV model and the commonly used MNL model, in scenarios with the same order 

of path toll and equal rs
kv  but different perceptual correlation among paths. Given a 

membership parameter rs
ukw , the path order correlation is influenced by the dissimilarity 

parameter ρ  as shown in Eq. (3.6). Unlike the MNL model which ignores path 

correlations and provides the same route choice probability (i.e., 1/3 for all three paths), 

the OPSGEV model can capture the difference in path order correlation by varying the 

values of dissimilarity parameter ρ . With the increase of ρ , the OPSGEV choice 

probability of less correlated paths increases (e.g., Path 1 correlated only with Path 2), 

while the highly correlated path (e.g., Path 2 correlated with both Paths 1 and 3) tends 

to have a lower choice probability due to its increasing competition among adjacently 

ranked paths. Figure 3.3(b) further compares the OPSGEV and OGEV models to 

illustrate the effect of considering the path overlap (Link 3). Path travel utility rs
kv  is 

specialized as a linear combination of time and toll. With an increasing length of Link 

3, the choice probability of overlapped Paths 2 and 3 decreases, while the probability 

of non-overlapped Path 1 increases. The combined effect of considering the two types 

of path correlations is then presented based on the comparison between the OPSGEV 

and MNL models. In summary, the developed OPSGEV model can capture both types 

of path correlations, which can exert significant effects on route choice and are 

important for modeling the route choice in tolled networks. 
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3.2 Mode choice of customized bus services with loyalty subscription schemes 

3.2.1 Background and related studies 

Customized bus (CB) is an emerging on-demand transit mode that provides advanced, 

cost-effective, and environmentally friendly transportation services with innovative 

service features (Liu and Ceder 2015; Liu et al. 2016). This section aims to model 

travelers’ mode choice behavior in multi-modal transportation systems considering the 

emerging behavioral issues arising from the operation of CB services. 

CB services meet the requirements of passengers via allowing them to subscribe 

to CB lines with their preferred origin–destination (OD) stops and departure/arrival 

times. Compared with conventional transit modes, CB may decrease passengers’ 

walking distance for access, and reduce their waiting time and in-vehicle travel time. 

In addition, CB services increase passenger loyalty by offering a loyalty scheme for 

long-term (e.g., monthly) subscription and eliminating in-vehicle crowding discomfort 

by guaranteeing a seat for every passenger. When comparing to the private car, CB 

services are more economical and environmentally friendly and are often allowed to 

travel in dedicated bus lanes to alleviate the effect of road congestion on in-vehicle 

travel time (Liu et al., 2016).  

Another unique characteristic of CB services is that they require passengers to 

subscribe to book a seat. To attract passengers, CB operators offer two types of 

subscription schemes: (1) one-time subscription schemes, which enable subscribers to 

purchase a one-way ticket at the original price, and (2) loyalty subscription schemes, 

which enable subscribers to purchase a ticket for a long period (e.g., a monthly ticket) 

at a discounted price. For instance, the CB operators in Beijing offer 20%-discounted 

monthly subscriptions (Liu and Cedar, 2015). Subscribers to CB loyalty schemes must 

pay fares for the entire subscription period in advance and are therefore likely to 

subsequently travel only on CB lines, without considering other modes. This travel 

choice behavior is different from that of those who purchase one-time CB subscriptions, 

as the latter remain open to considering other modes in their choice set.  



 
 

65 
 

Previous travel choice analyses have typically modeled mode choice based on the 

disutility minimization rule, which compares the travel disutility of day-to-day or 

within-day subscriptions to one-time CB services with the utility of other travel modes 

(e.g., Djavadian and Chow, 2017; Gu et al., 2018; Li et al., 2018b; Huang et al., 2020b). 

However, this modeling method ignores passenger loyalty to CB services that is 

captured by loyalty subscription schemes with price incentives, which drives 

passengers to repeatedly purchase the same product/service without considering other 

alternatives. 

Passenger loyalty has long been considered an important determinant of travel 

choice behavior and has been widely studied in transportation systems, such as logistics 

(e.g., Ellinger et al., 1999; Chang and Thai, 2016) and air transport (e.g., Chang and 

Hung, 2013; Vlachos and Lin, 2014). In the context of urban transportation networks, 

passenger loyalty is primarily investigated in the PT system (e.g., Li et al., 2018a; van 

Lierop et al., 2018). However, emerging shared-transportation modes are distinct from 

conventional PT modes, as shared modes can develop high passenger loyalty by 

offering loyalty schemes that have cheaper fares and higher usefulness for long-term 

users (Nguyen-Phuoc et al., 2020; Lee and Wong, 2021; Su et al., 2021). For example, 

CB services are an emerging sharing mode, and their long-term loyalty subscription 

schemes were shown to attract a stable and high number of loyal passengers (Wang et 

al., 2019). Wang et al. (2020b) also used empirical data collected in Dalian, China, to 

investigate the relationship between a monthly subscription scheme and passenger 

loyalty to CB services. However, most studies have empirically investigated the 

determinants of passenger loyalty, and little effort has been made to incorporate the 

choice behavior of loyal passengers into mode choice models. This under investigated 

aspect must be explored when modeling CB services with loyalty subscription schemes. 

As a loyalty subscription scheme can significantly increase passenger loyalty to CB 

services, distinct choice behaviors are exhibited by passengers with and without loyalty. 

Loyal passengers may repeatedly use CB services without considering other 

alternatives, whereas non-loyal passengers tend to use the mode that minimizes their 
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travel disutility. Therefore, passenger loyalty must be explicitly considered in the mode 

choice model. 

Mode correlation and heterogeneity are also important for mode choice modeling, 

as they were found to significantly affect the decision-making of passengers who seek 

to minimize their disutility (Yan et al., 2019b). Efforts have recently been devoted to 

modeling mode choice in a network that offers both conventional and emerging modes 

of transport (e.g., Cantarella et al., 2015; Lu et al., 2015; Kitthamkesorn et al., 2016; Li 

et al., 2018b). However, many of these studies fail to simultaneously account for mode 

correlation and heterogeneity owing to the IID assumption embedded in the traditional 

multinomial logit (MNL) model. If mode correlation is not considered, the choice 

probability of similar modes may be overestimated (e.g., the red bus/blue bus problem). 

If heterogeneity is ignored, the mode choice probability will be derived from only the 

absolute differences between the mode disutility, which may be inaccurate if the 

magnitudes of service quality vary between modes. Many empirical studies adopt 

mixed logit models to simultaneously address the correlation and heterogeneity issues 

when investigating travel choice behaviors involving emerging on-demand modes (e.g., 

Choudhury et al., 2018; Xie et al., 2019; Yan et al., 2019a; Sweet, 2021). However, the 

mixed logit models lack the closed-form probability expression that enables the 

efficient and exact estimation of the choice model and provides a clear understanding 

of model outcomes. In addition, the lack of closed-form probability hinders the 

integration of mixed logit models in the network equilibrium model, which requires to 

iteratively approximate many open-form choice probabilities and significantly increase 

the computational burden. Existing studies on mode choice equilibrium mainly focus 

on addressing the mode correlation by using closed-form logit models with a 

hierarchical choice structure, e.g., the nested logit (NL) model, while few studies 

(Kitthamkesorn and Chen, 2017) have devised an equilibrium mode choice model to 

simultaneously address mode correlation and heterogeneity. 

To address the above research gaps, this section aims to develop and advanced 

closed-form choice model for simultaneously considering the following behavioral 
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issues with the advent of CB services: (1) the passenger loyalty to CB services due to 

loyalty subscription schemes; (2) correlations among modes in multi-modal 

transportation systems; and (3) heterogeneous perceptions of different travel modes 

with distinct magnitudes of travel disutility. 

To facilitate the presentation of the essential ideas, the notations used in this 

section are listed below. 

Set  
RS Set of OD pairs. 

Urs Set of types of modes between OD pair rs. 
rs
uM  Set of type U modes between OD pair rs. 

M Set of all modes. 

 

Inputs and parameters 
rs
mv  Travel disutility of mode m between OD pair rs. 

rs
uv  Travel disutility of nest u between OD pair rs. 

rs
umβ  Shape parameter of mode m under nest u between OD pair rs. 

rs
uβ   Shape parameter of nest u between OD pair rs. 

rs
mµ  Loyalty proportion of mode m between OD pair rs. 

rs
mη  Loyalty parameter for mode m between OD pair rs in the dogit-based 

model. 

rs
mP ′  Choice probability of mode m between OD pair rs in the previous 

period. 

PSk A positive correction factor that penalizes the overlapped section on 
alternative k in the path-size weibit model. 

 

Variables 

rs
umλ  

Probability of choice passengers choosing mode m belonging to nest 
u between OD pair rs. 

rs
m uλ   Probability of choice passengers choosing mode m between OD pair 

rs, given that nest u is chosen. 
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rs
uλ  Probability of choice passengers choosing nest u between OD pair rs. 

rs
mλ  Probability of choice passengers choosing mode m between OD pair 

rs. 

,
rs

l mP  Choice probability of mode m between OD pair rs given that mode l 
is chosen previously. 

rs
mP  

Probability of loyal passengers choosing mode m between OD pair 
rs. 

v Aggregate disutility gained from a set of choice alternatives. 

 

3.2.2 Mode choice behavior with consideration of passenger loyalty, mode 

correlation, and mode heterogeneity 

This section develops an advanced mode choice model that accounts for the 

characteristics of each mode, especially the emerging CB service with loyalty 

subscription schemes. As mentioned in Section 3.2.1, CB passengers subscribing to 

different schemes may behave distinctly. Thus, CB passengers are divided into two 

groups according to the scheme they subscribe to: (1) loyal passengers, who subscribe 

to a CB loyalty scheme (e.g., a monthly subscription), and (2) choice passengers, who 

subscribe to a one-time CB service. The characteristics of these two groups are depicted 

in Figure 3.4. Each column in Figure 3.4 denotes the choice sets of loyal and choice 

passengers for each trip in the whole period of a loyalty CB scheme. Loyal passengers 

pay in advance for CB services throughout the whole period of the loyalty scheme and 

are thus likely to only use CB services without considering any other modes, i.e., their 

choice set consists of only the CB mode for each trip. In contrast, choice passengers 

only pay for a one-time CB service each time they need it and thus make mode choices 

based on the generalized travel time of each mode, i.e., they consider the full choice set 

comprised of CB, private car, and conventional PT for each trip. 
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Figure 3.4. Characteristics of passengers subscribing to two different CB schemes 

 

As discussed in Section 3.2.1, it is imperative to consider mode correlation and 

mode heterogeneity when modeling the behavior of choice passengers. In this section, 

we adopt the weibit-based model to account for mode heterogeneity, which allows 

mode-specific variations dependent on the perceived modal disutility. A nested choice 

structure is adopted to account for mode correlation, which collects similar modes into 

the same upper nest. The overall mode choice structure modeled in this section is shown 

in Figure 3.5. The proportion of loyal passengers, 
1

rs
m

rs
m

m M

η

η
∈

 + 
 

∑
, and that of choice 

passengers, 1

1

rs

rs
m

m M

λ
η

∈

=
 + 
 

∑
, are derived based on a customer loyalty model as will 

be shown in Sections 3.2.2.3-3.2.2.4. The marginal mode type (upper nest) choice 

probability and conditional mode choice probability of choice passengers, rs
uλ  and |

rs
m uλ , 

are derived based on the nested weibit (NW) model in Section 3.2.2.1. 
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Figure 3.5. Overall structure for modeling mode choice with CB services  
 

3.2.2.1 Mode choice of choice passengers 

As discussed above, a NW model is adopted in this chapter to address mode correlation 

and mode heterogeneity and thereby reproduce the mode choice of choice passengers 

(Kitthamkesorn and Chen, 2017). As shown in Figure 3.5, the correlation between the 

conventional travel modes that are familiar to travelers, i.e., conventional PT and 

private car, is modeled in the same upper nest. In contrast, CB services are considered 

as a distinct emerging type of mode due to their innovative service characteristics. The 

NW choice probability of choice passengers, rs
umλ , can be expressed as a product of the 

marginal probability of choosing mode type (upper nest) u, rs
uλ , and the conditional 

probability of choosing mode m within nest u, rs
m uλ : 

 , , ,rs rs rs rs rs
um u um u m M u U rs RSλ λ λ= ⋅ ∀ ∈ ∈ ∈ . (3.7) 

The conditional probability can be expressed based on the multinomial weibit 

(MNW) model (Castillo et al., 2008; Kitthamkesorn and Chen 2013): 

 
( )
( )

, , ,

rs
um

rs
um

rs
u

rs
mrs rs rs

um u
rs
m

m M

v
m M u U rs RS

v

β

β
λ

−

−

∈

= ∀ ∈ ∈ ∈
∑

, (3.8) 

where rs
mv  denotes the travel disutility of mode m between OD pair rs, rs

umβ  is the shape 

parameter of the NW model at the conditional choice level (individual mode).  
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The marginal probability of nest choice is expressed as follows: 

 
( )
( )

, ,

rs
u

rs
u

rs

rs
urs rs

u
rs
u

u U

v
u U rs RS

v

β

β
λ

−

−

∈

= ∀ ∈ ∈
∑

, (3.9) 

where rs
uβ  is the shape parameter of the NW model at the marginal choice level (upper 

nest). The disutility of choosing nest u between OD pair rs, rs
uv , can be obtained as the 

expected minimum disutility of choosing a mode within the nest, which is expressed as 

follows: 

 ( )
1

, , ,
rsrs umum

rs
u

rs rs rs rs
u m u

m M

v v m M u U rs RS
ββ

−
−

∈

 
= ∀ ∈ ∈ ∈ 
  
∑ . (3.10) 

Substituting Eqs. (3.8–3.10) into Eq. (3.7) gives the NW mode choice probability, as 

follows: 

 
( ) ( )

( )

1

, , ,

rs
u
rsrs rs umum um

rs
u

rs
u
rsrs umum

rs
rs u

rs rs
m m

m Mrs rs rs
um u

rs
m

u U m M

v v
m M u U rs RS

v

β
ββ β

β
ββ

λ

−
− −

∈

−

∈ ∈

 
 
  = ∀ ∈ ∈ ∈

 
 
  

∑

∑ ∑

. (3.11) 

By definition, rs
uβ  is smaller than rs

umβ , i.e., 1rs rs
u umβ β < , which indicates that modes 

belonging to the same type (upper nest) are more sensitive to each other than to the 

modes of different types. 

 

3.2.2.2 Effect of considering mode correlation and heterogeneity 

This section describes the effects of considering mode correlation and heterogeneity in 

the NW model. First, we illustrate the effect of using a weibit-based model to address 

the heterogeneity issue via the three-mode case depicted in Figure 3.6. Consider a 

choice set comprising two existing modes with similar levels of travel disutility (30 vs. 
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27). The logit and the weibit models provide similar modal splits for this set. Next, a 

new mode with a distinct service quality is introduced into the network. The NL and 

the NW models are then applied to estimate the choice probability of new mode at 

different magnitudes of disutility. The following can be concluded from Figure 3.6: 

• The weibit model obtains similar outcomes to the commonly used logit model if the 

new mode offers a similar level of service to existing modes, which verifies the 

applicability of the weibit model for estimating mode choice. 

• The weibit model better reflects the effect of heterogenous perceptions of mode 

service than the logit model. Specifically, even if the new mode offers a 

significantly higher level of service than existing modes, the logit model continues 

to estimate a non-negligible share for the existing modes. This is because the logit 

mode assumes there is an identical perception variance for all modes, even if they 

offer distinct levels of service. In contrast, the weibit model allows mode-specific 

perception variance dependent on mode disutility, in keeping with the heterogenous 

perceptions of varying mode service levels (Kitthamkesorn and Chen, 2017).  

 

 

Figure 3.6. Effect of considering heterogeneity in mode choice 
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We illustrate the use of the NW model to consider mode correlation in Figure 3.7. 

In this case, it is assumed that the new mode has correlations with the existing mode 2, 

which is analogous to the well-known red bus/blue bus problem (Ben-Akiva and 

Lerman, 1985). The neglect of correlation between mode 2 and the new mode leads to 

underestimation of the choice probability of mode 1. By introducing a nested choice 

structure, the NW model can reflect different degrees of mode correlation in terms of 

the ratio between the shape parameters rs
uβ  and rs

umβ . A higher value of rs rs
u umβ β  

indicates a lower degree of correlation between modes in the same nest. 

 

 

Figure 3.7. Effect of considering mode correlation 
 

3.2.2.3 Mode choice with loyal CB passengers 

We use the Colombo/Morrison (C/M) model (Colombo and Morrison, 1989), which is 

widely used to model customer loyalty in the context of marketing, to describe the 

choice behaviors of loyal passengers and choice passengers. Let rs
mµ  be the loyalty 

proportion, which can be interpreted as the proportion of previous passengers of mode 
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m that continue to use mode m between OD pair rs, despite the unattractiveness of this 

mode (Bordley, 1990). Let rs
mλ  denote the probability that choice passengers select 

mode m. Then, the choice probability of mode m, given that mode l is chosen previously, 

can be expressed as the probability that the choice passengers previously use mode l 

but currently choose mode m, as follows: 

 ( ), 1 , ,rs rs rs
l m l mP l m M rs RSµ λ= − ⋅ ∀ ≠ ∈ ∈ . (3.12) 

This section focuses on the loyal passengers of CB services, i.e., only the CB services 

have a positive loyalty proportion rs
mµ : 

 
[0,1),
0, ,

rs
m
rs
m

m CB
m bus car

µ

µ

 ∈ =


= =
. (3.13) 

Given that mode m is chosen in the previous period, the choice probability of mode 

m can be expressed as the sum of the probability that choice passengers will select mode 

m and the proportion of passengers loyal to mode m, as follows: 

 ( ), 1 , ,rs rs rs rs
m m m m mP m M rs RSµ λ µ= − ⋅ + ∀ ∈ ∈ . (3.14) 

 

3.2.2.4 Interpreting loyalty of CB passengers using dogit-based model 

This section incorporates passenger loyalty into the mode choice model. As proved by 

Bordley (1990), the C/M model with rs
mλ  expressed by the MNL choice probability can 

be interpreted as the dogit model, which is a well-established model that is widely used 

to consider captive mode choices (Gaudry and Dagenais, 1979; Wang et al., 2020a). In 

a similar way, we interpret the NW choice probability of choice passengers and the 

choice behavior of loyal passengers using a dogit–NW (DNW) model. This DNW 

model is expressed as follows: 
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, (3.15) 

where rs
mη  represents the loyalty (or termed as captivity) parameter in the dogit model. 

The first term on the right-hand side of Eq. (3.15) denotes the mode share from the loyal 

passengers with a deterministic mode choice, and the second term denotes the mode 

share from the choice passengers with a random mode choice. This expression is based 

on the dogit model (Gaudry and Dagenais, 1979; Wang et al., 2020a) but with the MNL 

choice probability replaced by the NW choice probability in the second term on the 

RHS. The DNW model presented in Eq. (3.15) can also be expressed as follows: 
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. (3.16) 

We have the following proposition. 

Proposition 3.1. Given the choice probability of mode m in the previous period, the 

mode choice behavior of choice passengers and loyal passengers shown in Eqs. (3.11)–

(3.14) can be interpreted using the DNW model. 

Proof. Let rs
mP ′  denote the choice probability of mode m in the previous period. The 

mode choice probability considering loyal passengers and the nested choice structure 

of choice passengers can be written as follows: 

 ( )1 , , ,rs rs rs rs rs rs rs rs
um m m um l l u

l M
P P P m M u U rs RSµ λ µ

∈

′ ′= + ⋅ − ∀ ∈ ∈ ∈∑ , (3.17) 
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where the term rs
mλ  used in Eqs. (3.12)–(3.14) is replaced by the NW choice probability 

rs
umλ  given in Eq. (3.11). As proposed by Bordley (1990), the new parameter mη  is 

defined as follows, based on the proportion of loyal passengers and previous choice 

probabilities: 
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The following two relationships can be derived from Eq. (3.18): 
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 ( )1 , ,rs rs rs rs rs
m m m l l

l M
P P m M rs RSµ η µ

∈

′ ′= ⋅ − ∀ ∈ ∈∑ . (3.20) 

Mode choice probability Pum can then be expressed as: 
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Substituting the NW probability rs
umλ  given in Eq. (3.11) into Eq. (3.21), the DNW 

choice probability can be obtained as expressed in Eq. (3.15). This completes the proof. 

Figure 3.8 graphically illustrates the general interpretation of passenger loyalty using 

the dogit-based choice model. 
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Figure 3.8. Interpretation of passenger loyalty using the dogit-based choice model 
 

3.2.2.5 Alternative interpretations of passenger loyalty 

In addition to the interpretation using the DNW model as shown in Section 3.2.2.4, we 

present an alternative interpretation of passenger loyalty when there lacks exogenous 

information on previous choice probability rs
mP ′ . By replacing rs

mP ′  with current choice 

probability rs
mP  in Eq. (3.17), the mode choice probability can be expressed as follows: 

 ( )1 , , ,rs rs rs rs rs rs rs rs
um m m um l l u

l M
P P P m M u U rs RSµ λ µ

∈

= + ⋅ − ∀ ∈ ∈ ∈∑ . (3.22) 

We have the following proposition. 

Proposition 3.2. Without considering the choice probability of mode m in the previous 

period, the mode choice behavior of choice passengers and loyal passengers shown in 

Eq. (3.22) can be either in a similar form to the DNW model, or interpreted via Eq. 

(3.23) as follows: 
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Proof. We first derive the expression in Eq. (3.23). Without loss of generality, rs
umλ  is 

replaced with rs
mλ  in Eq. (3.22), from which the following relationships can be derived: 
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Summing up both sides of Eq. (3.25) for all modes leads to following expressions: 
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Taking Eq. (3.27) into Eq. (3.25) gives the expression of mode choice probability: 

 1
1

1

rs
rs m

m rsrs
mm

rs
m M m

P λ
λµ
µ∈

= ⋅
−

−∑
. (3.28) 

Substituting rs
mλ  by the NW choice probability (Eq. (3.11)), rs

umλ , and considering the 

nested choice structure in Eq. (3.28), the choice probability expression given in Eq. 

(3.23) can be obtained.  

Next, we show that the choice probability given in Eq. (3.23) can also be expressed 

in the form of Dogit-based model. Define parameter rs
mη  as follows (Bordley, 1990): 
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which leads to the following relationship: 
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rs
mP  can be expressed as:  
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Specifying rs
mλ  as the NW choice probability (Eq. (3.11)) gives the DNW choice 

probability in Eqs. (3.15) and (3.16). Note that the specification of parameter rs
mη  in Eq. 

(3.29) is based on the value of rs
mλ , which is dependent on modes other than m. Thus, 

the rs
mη  used in Eqs. (3.29)–(3.31) is different from the loyalty parameter in standard 

Dogit-based models. This completes the proof. 

The difference between Eq. (3.23) and the original NW choice probability in Eq. 

(3.11) is the inclusion of the correction term (1 )rs
mµ−  in the conditional probability of 

choosing mode m given nest u. This correction term can be regarded as the decrease in 

the disutility of mode m due to passenger loyalty, which can be interpreted based on the 

concept of aggregate alternatives in the random utility theory. Choosing mode m can be 

considered as an aggregate alternative comprising two types of elemental alternatives, 

namely choosing mode m because of loyalty, and choosing mode m because of its 

disutility. It is assumed that the elemental alternatives have the same mean disutility mv , 

and that the probability of choosing the aggregate alternative is equal to the probability 

of choosing any of the elemental alternatives. Let v denote the aggregate disutility 

gained from the two types of elemental alternatives. v can be expressed as the minimum 

expected disutility of elemental alternatives based on the Weibull distribution:  
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where 
1

N β
−

 is a correction term ranging from 0 to 1, which represents the effect of the 

size of aggregate alternative (denoted as N, N > 1) on the decrease in disutility. Figure 

3.9 illustrates the value of N in this study. 

 

 

Figure 3.9. Illustration of correction term with respect to passenger loyalty 
 

In a transportation system containing both loyal and choice passengers, loyal 

passengers only consider one mode in their choice set, which may lead to different 

values of N for different modes, given the variation in their loyalty to different modes. 

Considering modes 1, …, m with different proportions of loyal passengers 1,..., mµ µ , 

the ratio between loyal passengers and choice passengers in each mode is 

1

1

,...,
1 1

m

m

µµ
µ µ− −

. The size of each elemental alternative for choice passengers is the 

same and is normalized as 1, the total size of aggregate alternative m (comprising choice 

and loyal passengers) can be expressed as 11 1
1 1

m

m m

µ
µ µ

+ ⋅ =
− −

. By using 1
1 m

N
µ

=
−

 

in the utility function, the weibit-based mode choice probability can be expressed as: 
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( )

( )

( ) ( )
( ) ( )

1

1

1

1

1

1

1

1

m m

m

m m
l M

m m

l l
l M

v
P

v

v

v

β

β

β

β

β

β

µ

µ

µ

µ

−

−

∈

− −

− −

∈

 − ⋅  =
 − ⋅  

⋅ −
=

 ⋅ − 

∑

∑

, (3.33) 

which gives the conditional mode choice probability stated in Eq. (3.23). 

The form of probability function (3.33) is similar to the path-size weibit (PSW) 

model (Kitthamkesorn and Chen, 2013), which can be expressed as follows: 

 ( )
( )

k k
k

l l
l K

PS v
P

PS v

β

β

−

−

∈

⋅
=

⋅∑
. (3.34) 

PSk is a positive correction factor lower than 1, which is a penalty term that decreases 

the choice probability of path k with increases in the number and length of overlapped 

paths (Ben-Akiva and Bierlaire, 1999; Ramming, 2002). In contrast, the term 1 mµ−  in 

Eq. (3.33) ranges from 0 to 1; thus, ( ) 11 1mµ
−− >  can be regarded as a bonus term that 

increases the choice probability of mode m with increases in the loyal proportion, mµ . 
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3.3 Joint bundle and mode choice with various emerging mobility services 

3.3.1 Background and related studies 

In addition to focusing on the single customized bus (CB) service, this section extends 

the DNW model in Section 3.2 to further consider various shared and on-demand 

emerging mobility services operated in the multi-modal transportation system, such as 

ride-hailing (Wang and Yang, 2019), and bike sharing (Shui and Szeto, 2020). The 

emerging mobility services offer innovative and attractive service features, including 

different levels of service, limited capacity of service (Du et al., 2022), integration of 

mobilities in digital platforms (van den Berg et al., 2022; Zhou et al., 2022), and 

provision of long-term loyalty subscription schemes (Wang et al., 2020b; Chen et al., 

2023). These features distinguish emerging mobility services from conventional travel 

modes, which are expected to influence individual travel choices. This calls for 

development of advanced travel choice models to capture the complex choice behaviors 

led by the innovative service features.  

Emerging mobility services are often operated on digital platforms, where multiple 

mobility services operated by different providers can be simultaneously accessed by 

travelers. This enables the development of mobility bundles, in which different mobility 

services are packaged by the platform and offered to travelers with promotion strategies. 

Different from the conventional one-time ticket or pay-as-you-go (PAYG) scheme of a 

single mode, mobility bundles offer a long-term (e.g., monthly) loyalty bundle scheme 

that provides incentives and allows subscribers to use the bundled modes at lower costs 

(Nguyen-Phuoc et al., 2020; Tang et al., 2023). Thus, the bundling of mobilities can 

affect travelers’ perception of bundled travel modes and lead to changes in individual 

choice behaviors owing to the bundle choice, which has attracted increasing research 

attention (Kriswardhana and Esztergar-Kiss, 2023). Caiati et al. (2020) and Jang et al. 

(2021) used the portfolio choice model to investigate the customized configuration of 

mobility bundles and the choice of mode within customized bundles. Many studies 

focus on the bundle and mode choices with fixed mobility bundles offered by service 

providers. The choices between the PAYG scheme and different mobility bundles are 
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mainly reproduced via logit-based models, including the closed-form multinomial logit 

(MNL) model (Ho et al., 2018; Tsouros et al., 2021; Hensher et al., 2021) and the open-

form mixed logit models for considering more complex behavioral issues like 

heterogeneities and mode correlations (Matyas and Kamargianni, 2019; Ho et al., 2021; 

Feneri et al., 2022). However, the effect of traveler loyalty arising from bundle schemes 

is often ignored in choice modeling. Furthermore, there still lacks an individual choice 

model that can simultaneously address the heterogeneity and similarity issues with the 

operation of various emerging mobilities while retaining the valuable closed-form 

probability expression.  

To address the above research gaps, a dogit-cross-nested weibit (DCNW) model 

is proposed for reproducing the individual joint bundle and mode choices. various 

complex behavioral issues stemmed from mobility bundling are specifically considered, 

including (1) travelers’ loyalty to the subscription-based mobility bundles; and (2) 

heterogeneous perceptions and correlations among mobility services in different 

bundles provided by different operators. 

To facilitate the presentation of the essential ideas, the notations used in this 

section are listed below. 

Sets  
R Set of origin zones. 

S Set of destination zones. 
rsU  Set of mobility bundles/mode nests between OD pair rs. 

rsM  Set of modes operated between OD pair rs. 

rs
uM  Set of modes in nest u between OD pair rs. 

rs
uB  Set of loyalty schemes of bundle u between OD pair rs. 

 

Inputs 
rs
umv  Travel disutility of mode m in nest u between OD pair rs. 

rs
uτ  Nest-specific cost of nest u between OD pair rs. 
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,
rs

w uP  Probability of choosing bundle u between OD pair rs in the current 
period given that bundle w is chosen in the previous period. 

rs
uP ′  Choice probability of bundle u between OD pair rs in the previous 

period. 

pb Proportion of travelers using loyalty scheme b. 

 

Parameters 
rs
umβ  Shape parameter at the conditional choice level between OD pair rs. 

rs
uβ  Shape parameter at the marginal choice level between OD pair rs. 

rs
umµ  Membership of mode m in bundle u between OD pair rs. 

rs
uψ  Loyalty proportion of bundle u between OD pair rs. 

rs
buψ  Loyalty proportion of scheme b of bundle u between OD pair rs. 

rs
uη  Loyalty parameter for bundle u between OD pair rs in the dogit model. 

rs
buη  Loyalty parameter for scheme b of bundle u between OD pair rs in the 

dogit model. 

 

Variables 
rs

mP  Choice probability of mode m between OD pair rs. 
rs
mθ  Probability of choice travelers to choose mode m between OD pair rs. 

rs
uθ  Marginal probability of choice travelers to choose nest u between OD 

pair rs. 

|
rs
m uθ   Conditional probability of choice travelers to choose mode m in nest u 

between OD pair rs. 
rs
uv  Disutility of nest u between OD pair rs. 
rs
buv  Disutility of loyalty scheme b of bundle u between OD pair rs. 

( )*rs
umv  Composite disutility obtained of nest u between OD pair rs. 

rs
uAcc  Accessibility of nest u between OD pair rs. 
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3.3.2 Joint bundle and mode choice modeling for emerging mobility services with 

loyalty bundle schemes 

This section proposes a DCNW choice model for emerging services with loyalty bundle 

schemes. Figure 3.10 exemplifies the overall choice structure of the proposed DCNW 

model. The proposed modeling structure considers both conventional (private car, 

private bike, bus, taxi) and emerging mobility services (e-hailing, CB, bike sharing), 

where each type of emerging mobility can be operated by multiple service providers, 

and each mobility service can be bundled by different platforms. As an example, Figure 

3.10 includes e-hailing services by two different providers (i.e., e-hailing 1 and e-

hailing 2) and mobility bundles on two platforms (i.e., Bundle 1 provided by a ride-

hailing platform and Bundle 2 provided by a shared mobility platform). 

 

 

Figure 3.10. Overall structure for modeling emerging mobility services with loyalty 
bundle schemes  

 

The bundle loyalty stemmed from loyalty bundle schemes is modeled considering 

the different choice behaviors of two types of travelers: (1) choice travelers, i.e., users 

of the PAYG bundle schemes that are considered with no loyalty and tend to choose 

from all the mobility bundles to minimize travel disutility, and (2) loyal travelers, i.e., 

users of the loyalty bundle schemes that tend to repeatedly choose their subscribed 

bundle without considering other alternative bundles. Thus, the two types of travelers 
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are considered to have the same conditional mode choice probability but different 

marginal bundle choice behaviors due to bundle loyalty. The DCNW model will be 

described from a bottom-up structure in this section. Section 3.3.2.1 first develops the 

cross-nested weibit (CNW) model for the joint bundle and mode choice of choice 

travelers based on the random utility theory. The dogit model for integrating the 

repeated bundle choice behavior of loyal travelers is then presented in Section 3.3.2.2. 

 

3.3.2.1 Cross-nested weibit model for choice travelers 

Analogous to Section 3.2, this section adopts the weibit-based model to account for the 

effect of the heterogeneous perceptions of emerging and conventional mobility services. 

The effect of bundling strategies on mode correlation is considered via the cross-nested 

choice structure of the CNW model as presented in Figure 3.11. The mobility services 

that can be accessed via the same bundle/platform are considered as correlated with 

each other and are collected in the same nest. The conventional modes are not packaged 

as a bundle but are considered within the same nest, as they are existing transportation 

services and are likely to share common features when perceived by travelers. The 

cross-nested choice structure is also flexible to model the correlation among 

bundles/nests, where travel modes can be integrated in multiple nests/bundles (e.g., taxi 

and e-hailing 2 in Figure 3.11). Furthermore, the proposed choice structure can jointly 

model the bundle and mode choices as well as the interaction therebetween. The choice 

of bundle/nest is considered at the upper (marginal choice) level, which determines the 

demand for conditional choices at the lower level. The conditional choice determines 

the composite mode disutility, which reciprocally influences the disutility of mobility 

bundle and hence the choice behaviors at the upper level. On this basis, the marginal 

and conditional choice probabilities can be determined based on the weibit models with 

shape parameters rs
uβ  and rs

umβ  at corresponding choice levels. Finally, the mode choice 

probability can be obtained by summarizing the choice probability of each service 

provider of that mode.  
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Figure 3.11. Choice structure of CNW model 
 

The detailed formulation of the CNW model for modeling joint bundle and mode 

choices is illustrated below. The perceived mobility service disutility rs
umV  is expressed 

in a multiplicative form as follows: 

 ( )
1

, , ,rs
u

rs rs rs rs rs rs rs rs
um um um um u u uV v m M u U rs RSβµ ε τ ε

−
= ⋅ ⋅ ⋅ ⋅ ∀ ∈ ∈ ∈ , (3.35) 

where rs
umv  and rs

uτ  respectively denote the deterministic disutility of individual mode 

m and cost of nest/bundle u between OD pair rs; rs
umε  and rs

uε  are the corresponding 

error terms. rs
umε  are assumed to independently and identically follow the Weibull 

distribution with shape parameter rs
umβ ; rs

uε  are assumed as independent random 

variables such that rs rs
um uε ε⋅  follows the Weibull distribution with shape parameter rs

uβ . 

Parameter rs
umµ  indicates the membership of mode m in nest/bundle u, which is 

normalized as 1
rs

rs
um

u U

µ
∈

=∑  (Abbe et al., 2007).  

The CNW mode choice probability of choice travelers rs
mθ  can be expressed based 

on the product of the marginal probability of choosing bundle/nest u, rs
uθ , and the 

conditional probability of choosing individual mode m, |
rs
m uθ : 

 | , ,
rs

rs rs rs rs
m u m u

u U

m M rs RSθ θ θ
∈

= ⋅ ∀ ∈ ∈∑ .  (3.36) 
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The marginal choice probability can be obtained as the probability that bundle/nest 

u has the minimum perceived disutility among all bundles/nests: 

 ( ) ( )

( )
( )

* *

*

*

,

,

,

rs rs rs rs rs rs
u u u w w

rs rs rs rs rs rs rs
u um u w wm w

rs rsrs
w wm rsu

rs rs rs
w u um

P v v w u U

P v v w u U

v
P w u U

v

θ ε ε

τ ε τ ε

τε
ε τ

 = ⋅ ≤ ⋅ ∀ ≠ ∈ 
 = ⋅ ⋅ ≤ ⋅ ⋅ ∀ ≠ ∈  
 ⋅
 = ≤ ∀ ≠ ∈
 ⋅ 

. (3.37) 

( )*rs
umv  denotes the composite disutility obtained at the conditional choice level, which 

is derived from the conditional choice model as will be shown in Eq. (3.41). When there 

is no nest/bundle-specific cost, 1rs
uτ =  and the marginal choice probability is 

 
( )
( )

*

*
, ,

rs
u

rs
u

rs

rs
umrs rs

u
rs
wm

w U

v
u U rs RS

v

β

β
θ

−

−

∈

= ∀ ∈ ∈
∑

.  (3.38) 

The conditional probability of choosing mode m in bundle/nest u can be obtained 

as the probability that individual mode m has the minimum perceived disutility among 

all modes in nest u, which can be expressed as  

 

( ) ( )
1 1

|

1

1

,

,

rs rs
u u

rs
u

rs
u

rs rs rs rs rs rs rs rs
m u um um um un un un u

rs rs rs
rsum un un
urs

un rs rs
um um

P v v n m M

vP n m M
v

β β

β

β

θ µ ε µ ε

ε µ
ε

µ

− −

−

−

 
= ⋅ ⋅ ≤ ⋅ ⋅ ∀ ≠ ∈ 

 
 

⋅ = ≤ ∀ ≠ ∈ 
 ⋅ 

. (3.39) 

Based on the distributional assumption of rs
umε  and properties of the Weibull distribution, 

the conditional choice probability is derived as  

 

1

|
1

, , ,

rs
um

rs
u

rs
um

rs
u

rs
u

rs rs
um um

rs rs rs
m u u

rs rs
un un

n M

v

m M u U rs RS

v

β

β

β

β

µ

θ

µ

−
−

−
−

∈

 
 ⋅
 
 = ∀ ∈ ∈ ∈
 
 ⋅
 
 

∑

.  (3.40) 
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Based on the conditional choice model presented above, the composite disutility 

( )*rs
umv  can be obtained as the expected minimum disutility from the individual modes 

within bundle/nest u, which can also be used as the utility-based accessibility measure 

for bundle/nest u between OD pair rs: 

( )

1

1
*

, , ,

rs rs
um um

rs
u

rs
u

rs rs rs rs rs rs
u um um um u

m M

Acc v v m M u U rs RS
β β

βµ

−
−

−

∈

    = = ⋅ ∀ ∈ ∈ ∈  
   

∑ .  (3.41) 

Substituting Eqs. (3.38), (3.40), and (3.41) into Eq. (3.36) gives the CNW choice 

probability of choice travelers: 

 

1
1

1
1

rs
u

rs rs
um rsum

um
rs
u rs

u
rs
u

rs rs
u um

rs rs rsum um u
rs
u rs

u
rs rs

u
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um umm M
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rs rs
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n Mum um
w U m M
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v v

v
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β
β β β

β
β

β β
β β β

β
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θ
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−
−−

−

∈

−
−−

−

∈
∈ ∈

      ⋅  ⋅         = ⋅
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∑
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1
1 1

1
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u

rs rs rs
um um um

rs rs
u u

rs
u

rs
u

rs rs
um um

rs
u

rs rs
u

rs rs rs rs
um um um

m M

rs rs
um um

w U m M

v v

v

β
β β β

β β

β
β β

β

µ

µ

−
− −

− −

∈

−
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∈ ∈

        ⋅ ⋅ ⋅    
     

    ⋅  
   

∑

∑ ∑

.  (3.42) 

Eqs. (3.37) and (3.39) implies the marginal (bundle) and conditional (mode) 

choice probabilities are derived based on the relative differences in bundle and mode 

disutility. Compared to the logit models with absolute difference-based choice 

probability, the relative difference-based weibit choice probability can better reflect the 

heterogeneous perceptions of different magnitude of travel disutility (Kitthamkesorn 

and Chen, 2013, 2017). Furthermore, the disutility function (3.35) can account for a 

single mobility service in different bundles/nests, which enables the consideration of 

mode correlation among bundles under different bundling strategies. In summary, the 

developed CNW model can effectively consider the heterogeneity and similarity issues 
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with mobility bundling in modeling the joint bundle and mode choice behavior of 

choice travelers. 

 

3.3.2.2 Dogit model for considering bundle loyalty 

This section further incorporates the repeated choice behavior of loyal travelers via the 

dogit model, which can be integrated with the developed CNW choice model while 

retaining consistency with the widely used Colombo/Morrison (C/M) model (Colombo 

and Morrison, 1989; Bordley, 1990). Different from Section 3.2 that considers loyalty 

to single modes, this section models bundle loyalty considering both the incentives of 

multiple loyalty schemes and the composite mode disutility of each bundle. Figure 3.12 

illustrates using the dogit model for integrating the bundle choice behavior of loyal 

travelers from a bottom-up structure. 

 

 

Figure 3.12. Illustration of dogit model for considering bundle loyalty 
 

In the C/M model, loyal travelers are considered to repeatedly choose the same 

product from period to period. In the context of bundle choice, the choice proportion of 
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bundle u in the current period can then be expressed as the sum of the proportion 

sticking to bundle u, ,
rs

u uP , and the proportion shifting from another bundle w, ,
rs

w uP : 

 , , , ,
rs

rs rs rs rs rs rs
u u u u w w u

w u U

P P P P P u U rs RS
≠ ∈

′ ′= ⋅ + ⋅ ∀ ∈ ∈∑ ,  (3.43) 

where rs
uP ′  is the choice proportion of bundle u between OD pair rs in the previous 

period. Analogous to Section 3.2.2.3, ,
rs

u uP , and ,
rs

w uP can be expressed as follows: 

 ( ), 1 , ,rs rs rs rs
w u w uP w u U rs RSψ θ= − ⋅ ∀ ≠ ∈ ∈ ,  (3.44) 

 ( ), 1 , ,rs rs rs rs rs
u u u u uP u U rs RSψ θ ψ= − ⋅ + ∀ ∈ ∈ .  (3.45) 

where rs
uθ  is the bundle choice probability derived in Eq. (3.38) based on the random 

disutility minimization principle. rs
uψ  denotes the proportion of loyal travelers who 

repeatedly choose bundle u without comparing the disutility of each bundle. 

Substituting Eqs. (3.44)–(3.45) into Eq. (3.43) gives the choice probability of bundle u: 

 ( )1 , ,
rs

rs rs rs rs rs rs rs
u u u u w w

w U

P P P u U rs RSψ θ ψ
∈

′ ′= ⋅ + ⋅ − ⋅ ∀ ∈ ∈∑ . (3.46) 

Following Proposition 3.1, the dogit model is used to integrate the repeated bundle 

choice behavior represented in Eq. (3.46) as follows: 

 1 , ,
1 1

rs rs

rs
rs rs rsu

u urs rs
w w

w U w U

P u U rs RSη θ
η η

∈ ∈

= + ⋅ ∀ ∈ ∈
+ +∑ ∑

,  (3.47) 

where rs
uη  is the loyalty parameter of the dogit model as follows: 

 
( )

, ,
1

rs

rs rs
rs rsu u
u rs rs

w w
w U

P u U rs RS
P

ψη
ψ

∈

′⋅
= ∀ ∈ ∈

′− ⋅∑
. (3.48) 

Alternatively, rs
uη  can be defined to account for a more general case where the 

bundle loyalty is imperfect, i.e., loyal travelers have different preferences to multiple 

loyalty bundle subscription schemes with different levels of incentives (Bordley, 1990): 



 
 

92 
 

 
( )

, ,
1
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w

rs rs
w

rs rs
b bu bu

b Brs rs
u rs rs
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w U a B

p P
u U rs RS

p P

ψ
η

ψ
∈

∈ ∈

′⋅
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′−

∑

∑ ∑
, (3.49) 

where bp  is the proportion of subscribers to loyalty scheme b; rs
buψ  is the parameter 

denoting the proportion of loyal travelers to loyalty scheme b, which is defined in 

consistent with the weibit-based bundle choice model described in Eq. (3.38): 

 
( ) ( )

( ) ( ) ( )
, ,

rs rs
u u

rs rs rs
u u u

rs

rs rs
bu urs rs

bu
rs rs rs
w bu u

w U

v v
u U rs RS

v v v

β β

β β β
ψ

− −

− − −

∈

−
= ∀ ∈ ∈

+ −∑
. (3.50) 

rs
buv  denotes the disutility perceived by the subscribers to the loyalty scheme b of bundle 

u, which can be obtained based on the service quality and discounts of bundled modes 

and is assumed to be lower than bundle disutility without preference ( rs
uv ). In case that 

the previous choice probability rs
buP ′  is unavailable, the overall loyalty parameter rs

uη  

can be alternatively expressed as the weighted sum of the loyalty parameters to different 

loyalty schemes rs
buη  (Bordley, 1990): 

 
1
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1
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w

rs
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rs
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b rs
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rs rsu U
u

b
rs

b B bu
u U
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∈
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⋅
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∑ ∑
, (3.51) 

where rs
buη  is derived from the weibit-based bundle choice model as follows: 

 
( ) ( ) ( )

( )
2 , , ,

rs rs rs
u u u

rs
u

rs

rs rs rs
u bu u

rs rs rs
bu u
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w U

v v v
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. (3.52) 
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By summarizing Eqs. (3.36), (3.38), and (3.47), we can obtain the overall 

nest/bundle choice probability rs
uP  and hence the individual mode choice probability 

rs
umP  of the DCNW model as follows: 

1
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1 1
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rs
u

rs rs
u

rs
um

rs
u

u

rs rs
um um

m Mrs rs
rs u u

u rs rs
w w

w U w U
rs rs
um um

w U m M

rs rs rs
u um um

m M

v

P

v

v

β
β β

β

β
β β

β

β

β

µ
η η

η η

µ

η µ

−
−

∈

−
∈ ∈ −

∈ ∈

−
−

∈

    ⋅  
   = + ⋅

+ +
    ⋅  

   

 
 ⋅ ⋅
 
 

=

∑

∑ ∑
∑ ∑

1

1

1

rs rs
u u

rsrs rs
umum um

rs
u

rs rs rs
u

rs
u

rs rs
um um

rs
u

rs rs rs
u

rs rs
um um

w U m M

rs rs rs
w um um

w U w U m M

v

v

β β
ββ β

β

β
β β

β

µ

η µ

−
−

∈ ∈

−
−

∈ ∈ ∈

        + ⋅    
       

      + ⋅ ⋅         

∑ ∑ ∑

∑ ∑ ∑

, (3.53) 

1 1

1

1

rs rs
u u

rs rsrs rs
um umum um

rs rs
u u

rs rs rs
u u

rs
um

rs
u

rs rs
u

rs rs rs rs rs
u um um um um

w U m M m M
rs

um

rs rs rs
w um um

w U m M

v v

P

v

β β
β ββ β

β β

β
β

β

η µ µ

η µ

− −
− −

∈ ∈ ∈

−
−

∈ ∈

            ⋅ ⋅ + ⋅      
         =

      + ⋅ ⋅         

∑ ∑ ∑

∑ ∑

1

1

rs
um

rs
u

rs rs
u um
rs rsum u

rs
u

rs

rs rs
um um

rs rs
un un

n M
w U

v

v

β

β

β
β β

µ

µ

−
−

−
−

∈
∈

 
 ⋅
 
 ⋅
 
 ⋅
 
 

∑∑

 (3.54) 

 

  



 
 

94 
 

3.4 Joint destination and parking choice with shared parking services  

3.4.1 Background and related studies 

Shared parking is an emerging parking service that has recently received increasing 

interest in the sharing economy era. The shortage of parking spaces is often a serious 

transportation problem in congested metropolitan areas. Shared parking services 

encourage private parking lot owners to share unused residential parking lots, thereby 

increasing the utilization rate of private parking spaces, alleviating the parking supply 

shortage, and decreasing the cruising time required to search for parking spaces. Owing 

to these benefits, shared parking services are being widely implemented in many 

countries, such as Australia, China, the Netherlands, and France (Ardeshiri et al., 2021; 

Liu et al., 2022). The development of shared parking requires significant planning, 

policymaking in the areas of pricing and bidding (Xiao et al., 2018; Liu et al., 2021, 

2022), platform design (Gao et al., 2022), and parking space allocation (Wang et al., 

2022). To promote the development of shared parking, it is necessary to understand and 

model the effect of shared parking services on multi-dimensional individual travel 

choices, which is the focus of this section. 

In addition to the parking choice, quality of parking services may influence travel 

disutility and behaviors at other choice dimensions (Lam et al., 2006; Jiang et al., 2014; 

Leurent and Boujnah, 2014; Liu, 2018; Liu et al., 2018). Specifically, the parking 

choice may affect the utility gained at the destination and hence interact with destination 

choice. In a pioneering work, Liu et al. (2021) modeled the effect of shared parking 

services on the combined destination and parking choice. The destination choice was 

reproduced based on the random utility theory through the multinomial logit (MNL) 

choice model, whereas the parking choice was modeled deterministically based on the 

user equilibrium (UE) principle. The destination choice directly determines the parking 

demand at each destination, whereas the parking disutility resulting from the parking 

choices reciprocally affects the destination attractiveness, and thus, the destination 

choice. 
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Nevertheless, research on modeling the joint destination and parking choice with 

shared parking services remains limited. To the best of the authors’ knowledge, Liu et 

al. (2021) is the only work on this topic, and the following research gaps remain. (1) 

An inconsistency exists between the destination and parking choice dimensions in the 

model proposed by Liu et al. (2021). The MNL destination choice model considers the 

perception error of the destination attractiveness; in contrast, the UE-based parking 

choice model assumes that travelers have perfect traffic information and no perception 

error. (2) The MNL model cannot fully capture the heterogeneities in perceived 

destination and parking disutility, which are important to be considered in modeling 

both destination and parking choice behaviors (Barros et al., 2008; Ibeas et al., 2014). 

Furthermore, the MNL model is inadequate to capture the correlation in spatial 

dimensions (e.g., location adjacency), which has been found to have significant effects 

on the choice of spatially correlated alternatives (Bhat and Guo, 2004; Bekhor and 

Prashker, 2008; Sener et al., 2011; Perez-Lopez et al., 2020, 2022).  

This section aims to develop an advanced closed-form random utility model to 

consistently consider the destination and parking choice behaviors and their interactions 

based on the random utility theory. The effects of heterogeneous travel perceptions and 

spatial correlations are specifically considered among closely spaced destination 

locations and parking lots at both destination and parking choice dimensions. 

To facilitate the presentation of the essential ideas, the notations used in this 

section are listed below. 

 

Sets  
R Set of origins. 

S Set of destinations. 

, ,,s sp s cpL L  Set of shared parking/curbside parking lots at destination s. 

ST Set of destination pairs. 
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Inputs and parameters 
r
sv  Total disutility of traveling from origin r to destination s. 

, ,,r r
s sp s cpv v   Total disutility of traveling from origin r to destination s using shared 

parking/curbside parking. 
, ,,s sp s cpv v   Disutility of using shared parking/curbside parking at destination s. 

,
r
s stv   Individual disutility of destination s in destination pair st. 

r
stτ   Common cost of destination pair st. 

sψ  Attractiveness of destination s. 

,
r
s stα   Allocation parameter indicating the proportion of destination s in 

destination pair st. 
rβ  Shape parameter with respect to the marginal destination choice level. 

sβ  Shape parameter with respect to the conditional destination choice 
level. 

µ   Dissimilarity parameter. 

wst Spatial correlation between destinations s and t. 

, ,,s sp s cpPS PS   Parking-size factor of shared/curbside parking at destination s. 

, ,,sp i cp iN N  Parking space provided by parking lot i of shared/curbside parking. 

, ,,s sp s cpN N   Total shared/curbside parking space at destination s. 

,s iδ  Indicator of whether parking lot i is used by destination s. 

mβ   Shape parameter with respect to the parking choice. 

 

Variables 
r
sA   Accessibility between OD pair rs. 

r
sP   Choice probability of destination s from origin r. 

r
stP   Marginal choice probability of destination pair st from origin r. 

,
r

s stP  Conditional choice probability of destination s in destination pair st 
from origin r. 

, ,,r r
s sp s cpP P   Choice probability of shared/curbside parking between OD pair rs. 
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3.4.2 Joint destination and parking choice with spatial correlation 

3.4.2.1 Hierarchical destination and parking choice structure 

The joint destination and parking choice is modeled on the hierarchical choice structure 

shown in Figure 3.13. The destination choice is modeled at the upper level, which 

determines the demand for the lower-level parking choice. The accessibility (composite 

disutility) obtained at the lower level is incorporated in the total disutility of traveling 

to a certain destination, which reciprocally influences the destination choice. The 

spatially correlated weibit (SCW) model is developed at the destination choice level to 

consider the spatial correlation among destinations, i.e., greater substitution occurs 

among adjacent destinations than among those located at large spatial distances. At the 

parking choice level, the parking-size weibit (PSW) model is developed to consider the 

overlaps among the parking space of adjacent destinations. The destination and parking 

choice models are described in Sections 3.4.2.2 and 3.4.2.3, respectively. 

 

 

Figure 3.13. Joint destination and parking choice structure 
 

3.4.2.2 Destination choice behavior 
(1) Effect of weibit-based destination choice model 

The logit-based model, which is widely used to model destination choices at the 

individual level, is associated with the aggregate gravity-type trip distribution model 

with a negative exponential deterrence function (Wilson, 1967). Notably, both the logit-
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based model and the gravity model based on the exponential impedance function suffer 

from the following issues (Fotheringham and O’Kelly, 1989). (1) The model outcomes 

depend on the unit used for measuring the travel cost, which can influence the 

comparability of the outcomes. (2) The exponential impedance function cannot reflect 

the effect of the additive travel cost increase on destination demands. These problems 

are attributable to the fact that logit-based destination choice models implicitly assume 

homogenous perception variance in travel impedance, which might not be realistic 

when there exist multiple OD pairs with distinct scales of travel disutility. 

The weibit-based destination choice model is adopted in this section to address the 

heterogeneity issue embedded in the logit-based model. The weibit-based model is 

equivalent to the gravity model with a negative power deterrence function, which is 

scale-independent and can effectively model destination choices that consider distinct 

trip distances (Choukroun, 1975, Xu et al., 2015). Figure 3.14 shows the effect of using 

a weibit model on considering heterogeneity by comparing the outcomes from the MNL 

and multinomial weibit (MNW) models in an illustrative example. Consider two OD 

pairs R-S1 and R-S2 with the same destination attractiveness but different OD travel 

impedances. Assuming a constant difference in the travel impedance, the choice 

probabilities from the two models are shown in the right panel of Figure 3.14. The 

destination choice probability yielded by the MNL model is constant and thus cannot 

capture the heterogeneous perceptions of OD travel disutility. In contrast, the MNW 

model can reflect the changes in OD travel disutility scale, with the effect of the 

disutility difference decreases with the increase in the disutility scale. This outcome is 

more realistic than that of the MNL model because travelers may become less sensitive 

to the same disutility difference at larger scales (Masin et al., 2009).  
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Figure 3.14. Effect of considering heterogeneity in destination choice 
 

(2) SCW model formulation 

To consider the spatial correlation among adjacent destinations together with the 

heterogeneity issue, the SCW model is developed based on the nested choice structure 

of the spatially correlated logit model (Bhat and Guo, 2004). Figure 3.15 illustrates the 

SCW choice structure for an example involving one origin and four adjacent 

destinations. 

 

 

Figure 3.15. Choice structure of SCW model 
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Following the two-level choice structure shown in Figure 3.15, the perceived 

disutility of traveling from origin r to destination s belonging to destination pair st can 

be expressed as 

 ( ) 1

, , , , , ,r r r r r r
s st s st s st s st st stV v r R st STα ε τ ε

−
= ⋅ ⋅ ⋅ ⋅ ∀ ∈ ∈ , (3.55) 

where ,
r
s stα  is the allocation parameter indicating the membership of destination s in 

pair st, which is positive and satisfies , 1r
s st

st ST
α

∈

=∑ . ,
r

s stV  is decomposed into two parts: 

(1) the individual disutility related to destination s with deterministic and random error 

terms ,
r
s stv  and ,

r
s stε , respectively; and (2) the common cost related to destination pair st 

with deterministic and random error terms r
stτ  and r

stε , respectively.  

Following three distributional assumptions are made for developing the SCW 

model: (1) ,
r
s stε  and r

stε  are independent of each other; (2) ,
r
s stε  independently follows 

the Weibull distribution with shape parameter sβ ; and (3) r
stε  is distributed such that 

( )*,
r r
s st stε ε⋅  follows the Weibull distribution with shape parameter rβ . ( )*,

r
s stε  denotes 

the random error term associated with the minimum disutility of choosing a destination 

within the destination pair st, i.e., ( ),min r
s sts st

U
∈

, where ( ) 1

, , , ,
r r r r
s st s st s st s stU vα ε

−
= ⋅ ⋅ . Based 

on the hierarchical choice structure shown in Figure 3.15, the SCW probability of 

choosing destination s from origin r can be expressed based on the product of marginal 

and conditional choice probabilities: 

 , , ,r r r
s st s st

t s S
P P P r R s S

≠ ∈

= ⋅ ∀ ∈ ∈∑ . (3.56) 

The marginal probability of choosing destination pair st from origin r can be 

derived based on the disutility minimization principle, as follows: 

 

( ) ( )

( )
( )

( )
( )

, ,

* *

, ,
* *

, ,

min min ,

,

r r r r r r r
st st st s st ij ij i ijs st i ij

r r r r
st s st ij i ij

r r r r
ij i ij st s st

P P U U ij st ST

v
P ij st ST

v

τ ε τ ε

ε ε τ

ε ε τ

∈ ∈

 = ⋅ ⋅ ≤ ⋅ ⋅ ∀ ≠ ∈  
 ⋅ ⋅
 = ≤ ∀ ≠ ∈
 ⋅ ⋅ 

. (3.57) 
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According to properties of the Weibull distributions, ( ),min r
s sts st

U
∈

 is Weibull distributed 

with the same shape parameter sβ  and the following scale parameter: 

 ( ) ( )
1

1 1

, , , ,

s s sr r r r
s st s st t st t stv v

β β β
α α

−
− −    ⋅ + ⋅        

. (3.58) 

Based on distributional assumption (3), the marginal choice probability is 

( ) ( )

( ) ( )
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1 1
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1 1

, , , ,
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s s
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S S
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 
     ⋅ ⋅ + ⋅            = ∀ ∈ ∈

 
     ⋅ ⋅ + ⋅            

∑ ∑

. (3.59) 

If no common disutility exists within each destination pair, 1,r
st st STτ = ∀ ∈  and can be 

omitted from Eq. (3.59).  

Similarly, the conditional probability of choosing destination s given that 

destination pair st is chosen can be expressed as  

 
, , , , ,

, , , ,

,

,

r r r r r
s st s st s st t st t st

r r r r
s st t st t st s st

P P v v t s S

P v v t s S

ε ε

ε ε

 = ⋅ ≤ ⋅ ∀ ≠ ∈ 
 = ≤ ∀ ≠ ∈ 

. (3.60) 

Based on distributional assumption (2), ,
r

s stP  can be derived as follows: 

 
( )

( ) ( )

1

, ,

, 1 1

, , , ,

, ,

s

s s

r r
s st s st

r
s st

r r r r
s st s st t st t st

v
P r R st ST

v v

β

β β

α

α α

−

− −

 ⋅  = ∀ ∈ ∈
   ⋅ + ⋅      

. (3.61) 

Let the dissimilarity parameter µ  denote the ratio between the shape parameters 

at the marginal and conditional choice levels, i.e., r
sµ β β= . By definition, 

0r
sβ β> > , and µ  is a positive parameter bounded by zero and one (Ben-Akiva and 

Lerman, 1985). For normalization, we set 1rβ =  and 1sβ µ= . The SCW probability 

given by Eqs. (3.56), (3.59), and (3.61) can be expressed as 
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( ) ( ) ( )

( ) ( )
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∑
∑ ∑

, (3.62) 

where ,
r
s stv  is substituted by r

sv .  

The allocation parameter ,
r
s stα  can be derived as  

 , , ,r st
s st

st
st ST

w r R st ST
w

α

∈

= ∀ ∈ ∈
∑

, (3.63) 

where wst indicates the spatial correlation between destinations s and t. The spatial 

correlation can be derived based on the number of adjacent destinations, i.e., wst = 1 if 

s and t are adjacent and 0 otherwise (Bhat and Guo, 2004).  

 

(3) Effect of considering spatial correlation among destinations 

A small network (Figure 3.16) is considered to illustrate the effect of spatial correlation 

among adjacent destinations and the way this problem is addressed by the SCW model. 

Three spatial distribution patterns of the four adjacent destinations are used to show the 

calculation of the allocation parameter ,
r
s stα , which influences the SCW destination 

choice probability. 
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Figure 3.16. Illustrative example of allocation parameter in SCW model 
 

Figure 3.17 shows the effect of considering spatial correlation based on the SCW 

model. The demand for a destination is likely to be diverted by its neighbors. Assuming 

that the four adjacent destinations have the same utility and same travel impedance to 

the origin, the numbers of adjacent destinations and choice probabilities of these four 

destinations are presented in Figure 3.17. The MNW model is insensitive to the spatial 

allocation of the destinations. In contrast, the SCW model can reflect the differences 

among the allocation patterns. A destination with a larger number of adjacent 

destinations (i.e., higher spatial correlation) corresponds to a lower choice probability. 

 

 

(a) Spatial correlations in the different patterns (b) Comparison of choice probabilities 

Figure 3.17. Effect of considering spatial correlation via SCW model 
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3.4.2.3 Parking choice behavior 

This section focuses on the choice between the two parking modes: curbside and shared 

parking services. To ensure behavioral consistency with the destination choice model, 

the weibit-based model is adopted at the parking choice level to inherently consider the 

effect of heterogeneity (i.e., heterogeneous perceptions of different parking disutility 

magnitudes) on parking choice behavior.  

 

(1) Spatial correlation among parking spaces 

In addition to spatial correlation at the destination choice level, it is important to 

also account for spatial correlation at the parking choice level, which stems from the 

overlap among parking spaces. Figure 3.18 demonstrates spatial correlation among 

parking spaces with the shared parking service as an example (which is similar for 

curbside parking). Consider the shared parking lots in the catchment areas of 

destinations s1, s2, and s3. Several parking lots (i.e., l1, l2, l3, and l4) located between 

adjacent destinations can be reached by travelers at either destination. In particular, 

parking lot l4 exhibits a significant overlap as it can be used by travelers at all three 

destinations. Thus, the overlapped parking lot must not be considered a “full parking 

alternative” for each destination, as it cannot contribute as much to the parking service 

as a distinct parking lot that only serves a single destination. 

 

 
Figure 3.18. Spatial overlap among parking spaces 
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(2) PSW model formulation 

The PSW model is developed to consider the effect of spatial correlation on parking 

disutility. A parking-size (PS) factor is introduced to penalize the overlapped parking 

space, which provides a smaller size of parking alternative than the distinct parking 

space that has the “full” size of parking alternative. The derivation and interpretation of 

the PS factor are analogous to those of the well-established path-size factors (Ben-

Akiva and Bierlaire, 1999; Frejinger and Bierlaire, 2007). Following the theory for a 

choice model with aggregate alternatives (Ben-Akiva and Lerman, 1985), we consider 

each type of parking service (i.e., curbside parking and shared parking) at each 

destination as an aggregate alternative and each parking lot as an elemental alternative. 

Assuming that each aggregate alternative consists of sufficient elemental alternatives, 

each elemental alternative has the same mean disutility, and the random error of each 

elemental alternative independently follows the identical Weibull distribution, the 

disutility of an aggregate alternative can be expressed as  

 ( )

1

1

1

i
i I

i

i

v v

M v

M v

β
β

β β

β

−
−

∈

−−

−

 =  
 

= ⋅

= ⋅

∑

, (3.64) 

where vi is the mean disutility of the elemental alternative i, β  is the shape parameter, 

and M is the number of elemental alternatives. 
1

M β
−

 represents the effect of alternative 

size on disutility of aggregate alternative. To account for the negative effect of overlap 

in the parking choice problem, we define the full size as 1 for each distinct parking lot 

and penalized size as 
,

1 1
s i

s S
δ

∈

<
∑

 for each overlapped parking lot, where ,s iδ  is a binary 

indicator of whether parking lot i can be used by destination s. Subsequently, we can 

derive the PS factor as the aggregate size of each type of parking service at destination 

s, which depends on the total weighted size of parking lots belonging to that parking 
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service. Taking the shared parking service as an example, the PS factor for shared 

parking at destination s can be expressed as 

 
,

,
,

, ,

1 ,
s sp

sp i
s sp

i L s sp s i
s S

N
PS s S

N δ∈
∈

= ⋅ ∀ ∈∑ ∑
, (3.65) 

where Ns,sp and Nsp,i denote the total shared parking space at destination s and the shared 

parking space provided by parking lot i, respectively. The perceived shared parking 

disutility can be expressed as 

 ( )
1

, , , , ,ms sp s sp s sp s spV PS v s Sβ ε
−

= ⋅ ⋅ ∀ ∈ . (3.66) 

where ,s spv  and ,s spε  are the deterministic disutility and random error term of shared 

parking service at destination s, respectively. mβ  is the shape parameter at the parking 

choice level. The perceived curbside parking disutility ,s cpV  can be derived by 

substituting the corresponding PS factor, deterministic disutility and random error term 

(i.e., ,s cpPS , ,s cpv , and ,s cpε ) into Eq. (3.66), where the PS factor of the curbside parking 

service at destination s, PSs,cp, can be derived by substituting Ns,cp and Ncp,i in Eq. (3.65). 

Based on the principle of random disutility minimization, the choice probability of 

shared parking/curbside parking service can be expressed as the probability that shared 

parking/curbside parking service has the minimum perceived parking disutility at 

destination s. Taking shared parking probability as an example, 

 ( ) ( )

( )
( )

,

1 1

, , , , , ,

1

, ,,
1

,
, ,

m m

m

m

r s s
s sp sp cp
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s cp s cps sp
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P P V V
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P
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β β

β

β

ε ε

ε
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− −

−

−

 = ≤ 
 

= ⋅ ⋅ ≤ ⋅ ⋅ 
 
 

⋅ = ≤ 
 ⋅ 

. (3.67) 
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Following the same logic as that of deriving the binary weibit model (Section 

2.1.2.1) and incorporating the in-vehicle travel cost to calculate the OD travel disutility 

,
r
s spv , the PSW choice probability of shared parking service can be derived as follows: 

 
( )

( ) ( )
, ,

,

, , , ,

,
m

m m

r
s sp s spr

s sp r r
s sp s sp s cp s cp

v PS
P rs RS

v PS v PS

β

β β

−

− −

⋅
= ∀ ∈

⋅ + ⋅
. (3.68) 

The same derivation is applicable to evaluating the PSW choice probability of curbside 

parking service.  

Based on the property of the Weibull distribution, the composite travel disutility 

at the parking choice level derived based on the PSW model can be expressed as follows: 

 ( ) ( )
1

, , , , ,m m mr r r
s s sp s sp s cp s cpA v PS v PS rs RS

β β β
−− − = ⋅ + ⋅ ∀ ∈  

. (3.69) 

Note that r
sA  can also be considered as the accessibility measure (as illustrated in 

Section 2.1.3) and is incorporated into the total disutility considered at the destination 

choice level (Eq. (3.55)). Thus, r
sA  connects the destination choice and parking choice 

and reflects the interaction between the two choice dimensions while consistent with 

the random utility theory. 
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Chapter 4 Closed-form weibit-based choice model for assessing 

oddball effect with alternate distributional assumptions 

This chapter proposes a weibit-based model that relaxes the identically distributed 

assumption to model the choice set with a single “oddball” alternative that has unique 

attributes to other conventional alternatives. While retaining the closed-form 

probability expression, the proposed model handles the oddball alternative using a 

multiplicative random disutility function assuming Weibull distributed random 

components. The proposed model thus allows alternative-specific perception variances 

for both the conventional and oddball alternatives and a flexible variance ratio between 

them. This gives the proposed model high flexibility to consider various heterogeneity 

issues, including the heterogeneity among conventional alternatives, heterogeneity 

between conventional and oddball alternatives, and heterogeneity between the unique 

and common attributes of the oddball alternative. The empirical application of the 

proposed model is explored to figure out its practical performance. The proposed model 

could further provide new behavioral insights into various decision-making scenarios 

of transportation networks, such as transportation mode choices in the current era of 

emerging technologies and destination choices in urban agglomerations. 

 

4.1 Introduction 

With significant progress in transportation technologies and rapid lifestyle changes, 

travelers are likely to consider innovative transportation alternatives that have different 

attributes to the conventional alternatives, which are thus labeled “oddball” in the 

choice set. For example, emerging technologies such as autonomous vehicles are set to 

be added to the multi-modal transportation network, which will lead to new travel 

modes with uncommon service features, such as automated navigation, that cannot be 

obtained from conventional travel modes. In another case, with the development of 

urban agglomeration, more travelers now tend to choose destinations located in 

neighboring cities (Huang et al., 2020c). Differing from the traditional destination 
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choices within a city, choosing a destination in a neighboring city involves inter-city 

trips that may lead to unique opportunities for work, education, and entertainment.  

The oddball alternative with unique attributes can be handled via alternative-

specific random components in open-form choice models, such as the heteroscedastic 

extreme-value (HEV) model (Bhat, 1995). However, these models often require 

additional model parameters and lack a closed-form probability expression, which pose 

additional difficulties to model estimation, interpretation, and evaluation. Furthermore, 

the closed-form choice probability is valuable for the applications to higher-level 

optimization problems where the stochastic choice behavior of travelers is embedded. 

In contrast, conventional closed-form travel choice models, such as the multinomial 

logit (MNL) model and generalized extreme value (GEV) (e.g., the nested logit, NL) 

models, can significantly reduce the computational requirement for choice probability 

evaluation and are frequently adopted in travel demand forecasting and network design 

studies. However, MNL and GEV models mainly assume identically Gumbel 

distributed total random errors and an identical variance across alternatives with distinct 

magnitudes of disutility, which are inadequate to capture the oddball effect (Ben-Akvia 

and Lerman, 1985; Prashker and Bekhor, 2004; Koppelman and Sethi, 2008). Therefore, 

it is imperative to develop a closed-form choice model that can explicitly assess travel 

choice behavior with the new oddball alternatives of modern transportation networks. 

In a pioneering study, Recker (1995) proposed a multinomial logit model with an 

oddball alternative (hereafter referred to as the MNL-O model), which explicitly 

accounts for the random utility associated with the unique features of a single oddball 

alternative while retaining a closed-form probability expression, with the oddball 

alternative’s unique attributes considered separately in random components. The 

closed-from probability expression allows a straightforward interpretation of the 

relationship between the observed variables and choice probabilities, enabling the 

efficient and precise maximum likelihood estimation approach to be applied, 

eliminating the computational burden of needing additional numerical or simulation 

approaches for the probability evaluation (Koppelman, 2008; Mondal and Bhat, 2021). 
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With these advantages, the closed-form MNL-O model could be applied to distinguish 

the oddball alternative in econometric studies or be incorporated into transportation 

models that require efficient computation of many choice probabilities, such as the 

well-established network equilibrium models (Prashker and Bekhor, 2004). 

However, the MNL-O model inherits some limitations from the MNL model with 

an additive utility function. First, it assumes an identical perception variance for all 

conventional alternatives, which is inadequate for addressing the heterogeneity issue. 

Second, although a different perception variance is assumed for the oddball alternative, 

it is still fixed and independent of alternative utility, keeping the variance ratio between 

oddball and conventional alternatives fixed. This could lead to an unrealistic 

expectation that the common and unique features of the oddball alternative have equal 

and fixed contributions to the random utility of the oddball alternative with the service 

level disregarded. Finally, the choice probabilities of the MNL-O model are dependent 

on the absolute differences in utility, which are inadequate to model distinct magnitudes 

of alternative utility in large-scale networks. These limitations make it difficult for the 

MNL-O model to reflect the heterogeneous perceptions of various travel modes or the 

distinct trip lengths associated with different destinations, which could hinder its 

application to the complex decision-making scenarios in modern transportation systems. 

This chapter proposes an alternate weibit-based model for assessing travel choice 

with an oddball alternative, addressing the inherent heterogeneity issues in the MNL-O 

model while retaining the closed-form probability expression. Based on the 

multiplicative disutility function with Weibull distributed random components, the 

proposed model allows disutility-dependent variances for all alternatives. Thus, the 

model can naturally consider various heterogeneity issues, including the heterogeneous 

perceptions of conventional alternatives, heterogeneous perceptions of unique and 

common attributes of the oddball alternative, and distinct service features of 

conventional and oddball alternatives. Also, the multiplicative error structure adopted 

in the proposed model coincides with the psychophysical laws on how individuals 

perceive different magnitudes of travel disutility, and thus can have better behavioral 
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interpretations than the additive error structure in commonly used logit models 

(Chakroborty et al., 2021; Nirmale and Pinjari, 2023). Herein, derivations of closed-

form choice probabilities of both conventional and oddball alternatives are proposed. 

The perception variances and elasticities with respect to both conventional and oddball 

alternatives are also analytically derived, illustrating the appealing theoretical 

properties of the proposed model. 

The remainder of this chapter is organized as follows. Section 4.2 briefly reviews 

the formulation, properties, and limitations of Recker’s MNL-O model. In Section 4.3, 

a weibit-based model with an oddball alternative is then developed, with detailed 

derivations of closed-form choice probabilities of both conventional and oddball 

alternatives provided. The theoretical properties and advantages of the proposed model 

are then thoroughly discussed via comparisons with some existing closed-form travel 

choice models that also focus on addressing the heterogeneity issues. Section 4.4 

investigates the empirical performance of the proposed model. Finally, Section 4.5 

concludes the chapter, discusses potential applications of the proposed model, and 

provides some directions for future research. 

 

4.2 Problem statement 

To facilitate the presentation of the essential ideas, the notations used are listed in 

Section 4.2.1. Recker’s (1995) logit choice model with an oddball alternative is then 

introduced in Section 4.2.2, together with a discussion on its properties and limitations. 

4.2.1 Notations 

Sets  
A Set of all travel alternatives 

A-r Set of conventional travel alternatives without the oddball alternative 

I Set of common attributes shared by all alternatives 

J Set of unique attributes of the oddball alternative 

kτ   Set of attribute levels of alternative k 
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Parameters and variables 
γ   Euler’s constant 

P(k|A) Choice probability of alternative k in choice set A 

RMNL-O Variance ratio of the MNL-O model 

RMNW-O Variance ratio of the MNW-O model 

( )|
i
k

P k AE
τ

  Direct elasticity of alternative k with respect to attribute i 

( )|
i
l

P k AE
τ

  Cross elasticity of alternative k with respect to attribute i of alternative l 

Vk Total perceived utility/disutility of alternative k 

rV   Perceived utility/disutility of the common attributes of oddball alternative 
r 

rV   Perceived utility/disutility of the unique attributes of oddball alternative r 

vk Total system utility/disutility of alternative k 

rv   System utility/disutility of the common attributes of oddball alternative r 

rv   System utility/disutility of the unique attributes of oddball alternative r 

kε   Random error associated with the common attributes of alternative k 

rξ   
Random error associated with the unique attributes of oddball alternative 
r 

i
kτ   Level of attribute i of alternative k 

i
kτ   Level of common attribute i of alternative k 

j
rτ   Level of unique attribute j of oddball alternative r 

iω   Coefficient of attribute i 

λ   Location parameter of the Weibull distribution 

kα   Scale parameter of the Weibull distribution of alternative k 

β   Shape parameter of the Weibull distribution 

kη   Location parameter of the Gumbel distribution of alternative k 

θ   Scale parameter of the Gumbel distribution 
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4.2.2 Basis for Recker’s logit choice model with an oddball alternative 

4.2.2.1 Additive perceived utility of oddball alternative 

A homogeneous choice set A is assumed in the MNL model, in which each conventional 

alternative shares a common set of attributes { }1 2, , , mτ τ τ=τ  . Let 

{ }1 2, , , m
k k kτ τ τ= =k kτ τ   denote the level of attributes of the kth alternative. Then, a 

linear-in-parameters specification is assumed for the deterministic utility of k: 
i i

k k k
i I

v v ω τ
∈

= =∑ . The additive utility function of conventional alternative k is 

 ,k k kV v k Aε= + ∀ ∈ ,  (4.1) 

where kε  is the random error term that is assumed to be independently and identically 

distributed (IID) Gumbel variable with the same scale parameter θ , i.e., ( ),k kGε η θ .  

However, not all alternatives necessarily share the same set of attributes. Recker 

(1995) further considered a single oddball alternative, which additionally possessed a 

unique set of attributes { }1 2, , ,m m nτ τ τ+ +=τ   
  in addition to the common attributes τ . 

Suppose that the rth alternative is the oddball in the choice set. Then, let i i
r r

i I
v ω τ

∈

=∑  

and rε  respectively denote the deterministic utility and random error that are associated 

with the common attributes of the oddball alternative. Let j j
r r

j J
v ω τ

∈

=∑   and rξ  

respectively denote the deterministic utility and random error that are associated with 

its unique attributes. Hence, the additive utility function of the oddball alternative is 

 ( ) ( )r r r r r r rV V V v vε ξ= + = + + +

 .  (4.2) 

By assuming rε  and rξ  are IID Gumbel variables, i.e., ( )1,r rGε η θ  and 

( )2 ,r rGξ η θ  (Recker, 1995), the oddball alternative differs from conventional 

alternatives in that its random error term is a summation of two IID Gumbel variables.  
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4.2.2.2 Formulation of logit choice model with an oddball alternative 

Based on the additive utility function and distributional assumptions given in Section 

4.2.2.1, the MNL-O model can be developed. Letting r r rv v v= +   denote the total 

deterministic utility and setting 1θ = , the choice probabilities of the oddball and 

conventional alternatives can be derived as follows (Recker, 1995): 

 
( ) ( )

( ) ( )

1

1

1

1 ,

k k L
r

l l

L
r

v
L L

MNL O r rv

l r A

L L
MNL r r

eP k A e E
e

P k A r e E k r A

η
φ

η

φ

φ φ

φ φ

+

− +

≠ ∈

 = ⋅ − ⋅ ⋅ 

 = − ⋅ − ⋅ ⋅ ∀ ≠ ∈ 

∑ ,  (4.3) 

 ( ) ( )1

L
rL L

MNL O r rP r A e Eφφ φ− = ⋅ ⋅ ,  (4.4) 

where 
1 2r r r

l l

v
L
r v

l r A

e
e

η η

ηφ
+ +

+

≠ ∈

=
∑

. ( )1

x

x

eE x dx
x

−+∞
= ∫  is the exponential integral, the value of 

which has already been tabulated (Harris, 1957).  

 

4.2.2.3 Properties and limitations of the logit-based approach 

The MNL-O model is demonstrated in Figure 4.1 via a comparison with the basic MNL 

model. The MNL-O model tends to estimate a higher choice probability of the oddball 

alternative, while the MNL model always results in a higher choice probability for a 

conventional alternative (Recker, 1995). In addition, Eqs. (4.3) and (4.4) clearly show 

that the independence from irrelevant alternatives (IIA) property no longer holds for 

the oddball alternative in the MNL-O model. Instead, the IIA property only remains 

within the subset of conventional alternatives in the MNL-O model. 
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 (a) MNL model         (b) MNL-O model 

Figure 4.1. Oddball choice probability derived from different models. 
 

Figure 4.2 illustrates the different ways to consider an oddball alternative in the 

MNL and MNL-O models. As shown in Figure 4.2(a), the MNL model treats the 

oddball alternative in the same way as conventional alternatives. Because of the IID 

assumption and the properties of the Gumbel distribution, the MNL model has a fixed 

perception variance of 2 26π θ  for all alternatives given the scale parameter θ . By 

comparison, the MNL-O model associates the oddball alternative with an additional 

random error term, which implies a higher uncertainty owing to the unique attributes 

that distinguishes the oddball alternative from conventional alternatives (Figure 4.2(b)). 

Because the random errors of common and unique attributes are assumed to be IID 

Gumbel variables (Recker, 1995), the variance of the oddball alternative is 

( ) ( ) ( ) ( ) 2 2 2 2 2 26 6 3MNL O r r r r rD V D V V D V D V π θ π θ π θ− = + = + = + =  .  (4.5) 

 

     (a) MNL model          (b) MNL-O model 

Figure 4.2. Choice sets considered in different logit-based models. 
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Remark. In the MNL-O model, the assumption of identical variance remains within 

the subset of conventional alternatives. Although a different variance is assumed for the 

oddball alternative, it is still fixed and independent of the common and unique features. 

This leads to a fixed variance ratio between oddball and conventional alternatives: 

 
2 2

2 2

3 2
6MNL OR π θ

π θ− = = .  (4.6) 

In summary, despite its ability to specifically handle the oddball alternative, the 

MNL-O model still inherits some limitations from the MNL model. First, the identical 

and fixed perception variance among conventional alternatives is inadequate for 

modeling the heterogeneity issue among alternatives with distinct scales of utility. 

Second, the fixed variance ratio may not fully capture the different contributions of 

common and unique features to the choice of an oddball alternative. Third, the issues 

discussed above result in a choice probability function dependent on absolute utility 

differences, which might generate unrealistic travel choice probabilities when applied 

to transportation networks with distinct trips lengths or service levels (Kitthamkesorn 

and Chen, 2013). 

 

4.3 Weibit-based model for assessing travel choice with an oddball alternative 

This chapter proposes a closed-form weibit-based model to explicitly address the 

inherent heterogeneity issues in the MNL-O model. In contrast to the additive utility 

assumed in the logit-based models, the weibit-based model adopts a multiplicative form 

of disutility function (Fosgerau and Bierlaire, 2009). Taking the basic multinomial 

weibit (MNW) model as an example, the random perceived disutility can be expressed 

by the multiplication of the deterministic disutility kv  and the random error kε : 

 ,k k kV v k Aε= ⋅ ∀ ∈ .  (4.7) 

The random errors are assumed IID Weibull variables with the same parameter, i.e., 

( ),k kWε α β . kα , and β  are scale and shape parameters of the Weibull distribution.  
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Thus, the properties of the Weibull distribution enable the MNW model to 

inherently address the heterogeneity issue by allowing disutility-dependent perception 

variances (Castillo et al., 2008). As shown in Figure 4.3(a), the perception variance of 

each alternative is proportional to its squared mean disutility. However, the identical 

proportionality between variance and squared mean disutility is unsuitable for 

distinguishing the oddball alternative from conventional alternatives. To address this 

issue, a multinomial weibit model with an oddball alternative (MNW-O) is developed 

in Section 4.3.1 to account for the oddball alternative’s unique features with a distinct 

proportionality between variance and mean disutility (as shown in Figure 4.3(b)). 

 

 

 (a) MNW model      (b) MNW-O model 

Figure 4.3. Choice set considered in different weibit-based models. 
 

4.3.1 Model formulation 

Consistent with the MNW model, the proposed MNW-O model is also based on a 

multiplicative specification of disutility perception. The conventional alternatives share 

the same disutility function with the MNW model, as given in Eq. (4.7), while the 

disutility function of the oddball alternative additionally includes the perceived 

disutility of its unique features, which is expressed as 

 ( ) ( )r r r r r r rV V V v vε ξ= ⋅ = ⋅ ⋅ ⋅

 ,  (4.8) 

where rv  and rε  respectively denote the deterministic disutility and random error that 

are associated with the common attributes of the oddball alternative, and rv  and rξ  
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respectively denote the deterministic disutility and random error that are associated with 

its unique attributes. Following the principle of disutility minimization, the MNW-O 

choice probability of a conventional or oddball alternative is equivalent to the 

probability that the chosen alternative has lower disutility than all other alternatives, 

which can be expressed as 

 
( ) ( ), , ;

, , ;

MNW O k k l l k k r r r

k k k k
l r

l r r

P k A P v v l k r A v v

v vP l k r A
v v

ε ε ε ε ξ

ε εε ε
ξ

− = ⋅ ≤ ⋅ ∀ ≠ ∈ ⋅ ≤ ⋅ ⋅

 ⋅ ⋅
= ≥ ∀ ≠ ∈ ≥ ⋅ 

, (4.9) 

 
( ) ( ),

,

MNW O r r r k k

r r r
k

k

P r A P v v k r A

vP k r A
v

ε ξ ε

ε ξε

− = ⋅ ⋅ ≤ ⋅ ∀ ≠ ∈

 ⋅ ⋅
= ≥ ∀ ≠ ∈ 

 

, (4.10) 

where r r rv v v= ⋅   denotes the total system disutility of the oddball alternative r. The 

random errors, including kε , rε , and rξ , are assumed to be IID Weibull variables with 

the same shape parameter, β : ( )0, ,k kWε α β , ( )10, ,r rWε α β , and 

( )20, ,r rWξ α β . Thus, by defining ( )
( )

1 2r r rW
r

l l
l r A

v
v

β

β

α α
φ

α

−

−

≠ ∈

⋅ ⋅
=

⋅∑
, the following two 

propositions are reached.  

 

Proposition 4.1. The choice probability of conventional alternative k from the MNW-

O model is: 

 
( ) ( )

( )
( )

( ) ( )

1

1

1

1 ,

W
r

W
r

k k W W
MNW O r r

l l
l r A

W W
MNW r r

v
P k A e E

v

P k A r e E k r A

β
φ

β

φ

α
φ φ

α

φ φ

−

− −

≠ ∈

⋅  = ⋅ − ⋅ ⋅ ⋅

 = − ⋅ − ⋅ ⋅ ∀ ≠ ∈ 

∑ .  (4.11) 

Proof. The MNW-O choice probability of conventional alternative k expressed in Eq. 

(4.9) can be derived as follows based on the independence assumption: 
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( ) ( )

( )

,

,

( )

( ) 1 1

k k k k
r r k k l r k r

l k r A l r r

k k k k
r r k k l r k r

l k r A l r r

v vP k A f f P P d d
v v

v vf f F F d d
v v

ε εξ ε ε ε ε ξ
ξ

ε εξ ε ε ξ
ξ

+∞ +∞

−∞ −∞
≠ ∈

+∞ +∞

−∞ −∞
≠ ∈

   ⋅ ⋅
= ⋅ ⋅ ≥ ⋅ ≥   ⋅  

      ⋅ ⋅
= ⋅ ⋅ − ⋅ −      ⋅     

∏∫ ∫

∏∫ ∫





 (4.12) 

where kf  and rf , are the PDFs of kε  and rξ , lF  and rF  are the CDFs of lε  and rε . 

Based on the Weibull distributional assumption, ( )P k A  can be derived as 

( ) ,2 2 1

11

0 0
2 2

k kk k kr

l ll k r Ar r r r r

v v
v vkr

r k
r r k k

P k A e d e e e d

ββ β βεββ ε εξ
αα α ξ αεξβ βξ ε

α α α α
≠ ∈

 ⋅−−      ⋅−  − − −     +∞ +∞ ⋅ ⋅ ⋅      
∑  

= ⋅ ⋅  
   

∫ ∫

(4.13) 

The double integral in Eq. (4.13) can be evaluated sequentially based on the integration 

by substitution. Let 2

k

ru e

β
ε
α
 

− 
 = , we have 

 ( ) ,2 1

1
1

0 0
2 2

k k k kr

l ll k r Ar r r r

v v
v vr

r
r r

P k A e d u u du

ββ βεβ αξ
αα ξ αξβ ξ

α α
≠ ∈

 ⋅−    ⋅ −   +∞ ⋅ ⋅ ⋅    
∑ 

= ⋅ 
 

∫ ∫  (4.14) 

Let ,
1 k k k k

l l l ll k r A l r A

v v
v vw u u

β βε ε
α α≠ ∈ ≠ ∈

 ⋅  ⋅+    ⋅ ⋅   
∑ ∑

= = , we have 

( )

( ) ( )

( )
( ) ( ) ( )

( )

1

2

2

1
1

0 0
2 2

1

2 2 1

1

1

k k r r r

k kr

l lr l r A

r

r

v v

v
vr

r
r r k k

l r A l l

k k r

r rl l k k r r r
l r A

k k l

P k A e d w dw
v
v

v
e

v v v

v v

β

ββ

β

α ξ α

εβ ξ
αα

β

β ξβ
α

β β

ξβ ξ
α α ε

α

α ξβ
α αα α ξ α

α α
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 ⋅ ⋅ ⋅ 

 ⋅−  
−   +∞ ⋅  

≠ ∈

−  −
− 
 

−
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 ⋅ 
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 (4.15) 
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Let ( )
( )

1 2r r rW
r

l l
l r A

v
v

β

β

α α
φ

α

−

−

≠ ∈

⋅ ⋅
=

⋅∑
, with 2

1

0
2 2

1
r

rr
r

r r

e d

ββ ξ
αξβ ξ

α α

−  
− +∞
  

= 
 

∫ , Eq. (4.15) can be 

rewritten as 
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( )
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r
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∫∑ ∑
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 (4.16) 

Let ( )2
W
r r rx βφ ξ α= + , then 

 ( ) ( )
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( )1
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r
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r

W
xk k r

l l
l r A

v
P k A e dx

xv

β
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β φ

α φ
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⋅  
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. (4.17) 

Substituting ( )1

x

x

eE x dx
x

−+∞
= ∫  into Eq. (4.17) gives the MNW-O choice probability of 

the conventional alternative shown in Eq. (4.11). This completes the proof. 

 

Proposition 4.2. The choice probability of oddball alternative r from the MNW-O 

model is 

 ( ) ( )1

W
rW W

MNW O r rP r A e Eφφ φ− = ⋅ ⋅ . (4.18) 

Proof. Based on the independence assumption, the MNW-O choice probability of 

oddball alternative r expressed in Eq. (4.10) can be derived as follows: 

 
( ) ( )

( )

( )

( ) 1

r r r
r r r r r r

k r A k

r r r
r r r r k r r

k r A k

vP r A f f P d d
v

vf f F d d
v

ε ξε ξ ε ξ

ε ξε ξ ε ξ

+∞ +∞

−∞ −∞
≠ ∈

+∞ +∞

−∞ −∞
≠ ∈

 ⋅ ⋅
= ⋅ ⋅  

 
  ⋅ ⋅

= ⋅ ⋅ −  
  

∏∫ ∫

∏∫ ∫





 (4.19) 
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Based on the identically Weibull distributed assumption, ( )P r A  can be derived as 

( ) 2 1

1 1

0 0
2 2 1 1

r r rr r

k kr r k r A

v
vr r

r r
r r r r

P r A e d e e d

ββ ββ β ε ξξ ε
αα αξ εβ βξ ε

α α α α
≠ ∈

 − − ⋅ ⋅    −− −     +∞ +∞ ⋅    
∑   

= ⋅   
   

∫ ∫ . (4.20) 

Let 1r ru e ε α−= , Eq. (4.20) can be written as 

 

( )
1

2

2

1
1

0 0
2 2

1

0
2 2 1

1

1

r r rr

k kr k r A

r

r

v
vr

r
r r

r
r

r r r r r

k r A k k

P r A e d u du

e d
v

v

ββ

β

β ξ αξ
αα

β ξ
α

β

ξβ ξ
α α

ξβ ξ
α α ξ α

α

≠ ∈

 − ⋅ ⋅ 
−   +∞ ⋅  

−  
− +∞
 

≠ ∈

∑ 
=  

 

 
=  

   ⋅ ⋅
+  ⋅ 

∫ ∫

∫
∑

. (4.21) 

Let 
( )

( )
1

21 2

1 1
k k

k r Ar r r r

k r A k k rr r r

v
vw

v v

β
β β

β

α
ξ α ξ
α αα α

−

≠ ∈
−

≠ ∈

⋅
   ⋅ ⋅

= + = + ⋅   ⋅ ⋅ ⋅   

∑
∑ , Eq. (4.21) can be written 

as  

 ( ) ( )
( )

( ) ( )
( )

1 21

1 2

1

r r r

k k
k r A

v
w

v

r r r

k k
k r A

v eP r A dw
wv

β

β
α α

αβ

β

α α

α

−

−

≠ ∈

⋅ ⋅
− − ⋅

⋅−
+∞

−

≠ ∈

∑
⋅ ⋅

= ⋅
⋅ ∫∑

. (4.22) 

With ( )1 1

xeE dx
x

µ

µ
− ⋅+∞

= ∫  (Gradshteyn and Ryzhik, 2007), substituting 

( )
( )

1 2r r rW
r

l l
l r A

v
v

β

β

α α
φ

α

−

−

≠ ∈

⋅ ⋅
=

⋅∑
 into Eq. (4.22) gives the MNW-O choice probability of the 

oddball alternative in Eq. (4.18). This completes the proof. 

 

Thus, Eqs. (4.11) and (4.18) demonstrate that the MNW-O choice probabilities 

have a similar form to probabilities of the MNL-O model given in Eqs. (4.3) and (4.4), 

which enables the proposed MNW-O model to address the oddball effect. The 

difference lies in the expression of term rφ . The L
rφ  in the MNL-O model is dependent 
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on an exponential function, which implies an absolute difference–based choice 

probability expression. By comparison, the MNW-O model adopts a power function–

based W
rφ , implying that the MNW-O choice probability is dependent on the relative 

differences of travel disutility. This difference suggests that the MNW-O model inherits 

its ability to consider the heterogeneity issue from the MNW model (Kitthamkesorn 

and Chen, 2013). This property is discussed in detail in Section 4.3.2. 

 

4.3.2 Model properties 

This section discusses the properties of the proposed MNW-O model. First, the 

properties inherited from the MNL-O model are discussed, i.e., the logical consistency 

conditions and asymptotic values, in Section 4.3.2.1. Then, the perception variance of 

the conventional and oddball alternatives in the proposed MNW-O model are provided 

in Section 4.3.2.2. Finally, the theoretical advantages the proposed model gains from 

the properties of weibit-based models are discussed in Sections 4.3.2.3 to 4.3.2.5, 

including its more flexible perception variances, its ability to consider the heterogeneity 

issue, and its disutility-dependent model elasticities.  

 

4.3.2.1 Logical consistency conditions and asymptotic values 

This section shows the proposed MNW-O model has similar logical consistency and 

asymptotic properties to the MNL-O model. The exponential integral incorporated in 

the choice probability expression is known to have the following limits: 

 ( )1lim
x

x

eE x
x

−

→+∞
= ,  (4.23) 

 ( )10
lim ln
x

E x xγ
→

= − − ,  (4.24) 

where γ  is Euler’s constant. Clearly, the MNW-O model can satisfy the logical 

consistency conditions for discrete choice models, i.e., for every alternative k, 
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( )0 1MNW OP k A−≤ ≤  and ( ) 1MNW O
k A

P k A−
∈

=∑ . The MNW-O choice probabilities of the 

oddball alternative are further derived at asymptotic values in two important cases.  

 

Case 1. Disutility of oddball alternative approaches zero: 0rv +→   

In this case, the oddball alternative is extremely superior with negligible travel disutility. 

Because 
0

lim
r

w
rv
φ

+→
→ +∞ , the choice probability of the oddball alternative is 

 ( )
0

lim lim 1
w
rw

r
w

r r

w
MNW O r wv

r

eP r A e
φ

φ

φ
φ

φ+

−

−
→ →+∞

= ⋅ ⋅ = ,  (4.25) 

and the choice probabilities of the conventional alternatives are 

 ( ) ( )
( )0

lim lim 1 0
w
rw

r
w

r r

k k w
r wv

rl l
l r A

v eP k A e
v

β φ
φ

βφ

α
φ

φα+

− −

−→ →+∞

≠ ∈

 ⋅
= ⋅ − ⋅ ⋅ =  ⋅  ∑

.  (4.26) 

In this case, the choice probability of the oddball alternative approaches one, which is 

consistent with the conventional discrete choice models when there is an alternative 

dominating the choice set with extremely high utility/low disutility. 

 

Case 2. Disutility of oddball alternative approaches infinity: rv →+∞   

When the oddball alternative is extremely inferior with high disutility, i.e., rv →+∞ , 

then lim 0
r

w
rv
φ +

+∞
→  and the choice probability of the oddball alternative becomes  

 ( ) ( )
0

lim lim ln 0
w
r

w
r r

w w
MNW O r rv

P r A eφ
φ

φ γ φ
+−→+∞ →

= ⋅ ⋅ − − = ,  (4.27) 

and the choice probability of conventional alternative is  
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( ) ( )
( )

( )

( )
( )

0
lim lim 1 ln

w
r

w
r r

k k w w
MNW O r rv

l l
l r A

k k

l l
l r A

v
P k A e

v

v
v

β
φ

βφ

β

β

α
φ γ φ

α

α

α

+

−

− −→+∞ →

≠ ∈

−

−

≠ ∈

⋅  = ⋅ − ⋅ ⋅ − − ⋅

⋅
=

⋅

∑

∑

. (4.28) 

In this case, because the IIA property is held within the set of conventional alternatives, 

the MNW-O model degenerates to the MNW model when the oddball alternative has 

extremely high disutility and negligible choice probability. 

 

4.3.2.2 Perception variances 

This section provides the perception variance of conventional and oddball alternatives 

in the proposed MNW-O model. The conventional alternatives in the MNW-O model 

share the same form of variance as in the MNW model, which can be expressed as 

 ( ) ( ) ( )2 1k kD V E V κ β= ⋅ −   ,  (4.29) 

where ( )kE V  denotes the mean disutility and ( ) ( )
( )2

1 2
1 1

β
κ β

β
Γ +

=
Γ +

.  

Remark. The variance of the conventional alternative is proportional to the squared 

mean disutility. The proportionality is ( ) 1κ β − , which is dependent on the shape 

parameter β  and remains the same for all the conventional alternatives. 

 

Proposition 4.3. The perception variance of the oddball alternative in the MNW-O 

model is proportional to the squared mean disutility of both its common and unique 

features. The proportionality is dependent on the shape parameter β  and differs from 

the proportionality of conventional alternatives. 

Proof. The perception variance of the oddball alternative can be expressed as 
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( ) ( )

( ) ( ){ }2

MNW O r r r

r r r r

D V D V V

E V V E V V

− = ⋅

 = ⋅ − ⋅ 



 

.  (4.30) 

With the independence assumption, Eq. (4.30) becomes 

 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 2 2

2 2 2 2

2 2 2 2

MNW O r r r r r

r r r r

r r r r r r

D V E V V E V V

E V E V E V E V

D V E V D V E V E V E V

− = ⋅ − ⋅

= ⋅ − ⋅

  = + ⋅ + − ⋅   

 

 

  

. (4.31) 

Substituting Eq. (4.29) into Eq. (4.31), 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

2 2 2 2

2 2 2

2 2

1

1

MNW O r r r r r

r r

r

D V E V E V E V E V

E V E V

E V

κ β κ β

κ β

κ β

−
  = ⋅ ⋅ ⋅ − ⋅   
 = ⋅ ⋅ − 

 = ⋅ − 

 

 .  (4.32) 

Thus, the variance of the oddball alternative is a function of both the shape parameter 

and the mean disutility, and the proportionalities of the oddball and conventional 

alternatives are different, i.e., ( ) ( )2 1 1κ β κ β− ≠ − .  

 

Proposition 4.4. The variance ratio between the oddball and conventional alternatives 

in the MNW-O model is flexible. The variance ratio is no lower than two when the 

oddball and conventional alternatives have the same mean disutility. 

Proof. The variance ratio between the oddball and conventional alternatives in the 

MNW-O model is 

 
( ) ( )
( ) ( )

2 2

2

1
1

r
MNW O

k

E V
R

E V
κ β

κ β−

 ⋅ − =
⋅ −  

.  (4.33) 

RMNW-O is therefore flexible, which is dependent on both the squared mean disutility of 

oddball and conventional alternatives and the shape parameter, β . Then, the variance 
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ratio is derived with the same mean disutility. By definition, β  is positive, hence 

( )1 2 0βΓ + >  and ( )1 1 0βΓ + > . Therefore, 

 ( ) ( )
( ) ( ) ( )2 2

1 22 1 1 1 2 0
1 1

d
d
κ β β

ψ β ψ β
β β β

Γ +
= ⋅ ⋅ + − + <  Γ +

,  (4.34) 

where ( ) ( )
( )

x
x

x
ψ

′Γ
=
Γ

 is the digamma function. Thus, when 0β > , ( )κ β  is a 

decreasing function with respect to β . The asymptotic value of ( )κ β  is 

 ( ) ( )
( )2

1 2
lim lim 1

1 1β β

β
κ β

β→+∞ →+∞

Γ +
= =

Γ +
.  (4.35) 

Therefore, ( ) 1κ β ≥  within the domain of β . The variance ratio between the oddball 

and conventional alternatives with the same mean disutility is 

 ( )
( ) ( )

2 1
1

1MNW OR
κ β

κ β
κ β−

−
= = +

−
,  (4.36) 

which is no lower than two, completing the proof. 

 

The higher variance ratio between the oddball and conventional alternatives 

indicates that the oddball alternative is considered to have a higher uncertainty than 

conventional alternatives. Proposition 4.4 reveals that the proposed MNW-O model 

provides a disutility-dependent variance ratio, which highlights the heterogeneous 

perceptions of the common and unique features and is more realistic than the fixed 

variance ratio provided by the MNL-O model. When the oddball and conventional 

alternatives have the same disutility, the variance ratio in the MNW-O model decreases 

with the increase of β . This property is also intuitive, as a larger value of β  can be 

interpreted as better knowledge of the transportation system, which reduces uncertainty.  
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4.3.2.3 Demonstration of the heterogeneous perception variances 

This section demonstrates the disutility-dependent perception variances and non-

identical variance ratio provided in Propositions 4.3 and 4.4. The effects these 

properties have on handling the heterogeneity issue in choice modeling is then 

illustrated for networks with different scales of travel disutility. 

 

(1) Demonstration of perception variances with respect to alternative disutility 

Figure 4.4 shows an example of the perception variance of an oddball alternative with 

respect to travel disutility in the MNL, MNL-O, MNW and MNW-O models. The 

following properties can be observed from Figure 4.4: 

(a) Given the scale parameter θ , constant and utility-independent perception variances 

are used in the logit-based models, which indicates its inability to reflect the 

heterogeneous perceptions of utility for different alternatives or attributes. 

(b) By contrast, the weibit-based models have disutility-dependent perception 

variances. Specifically, in the MNW-O model, the oddball alternative has a 

different variance to the conventional ones, implying that the MNW-O model can 

consider the heterogeneities with respect to these alternatives in different ways. 

 

 

(a) Logit-based models with 1θ =  
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(b) Weibit-based models with 3.7β =  

Figure 4.4. Perception variance of the oddball alternative with respect to its mean 
disutility in different models. 

 

(2) Demonstration of perception variances with respect to the shape parameter 

Figure 4.5 further explores the perception variance with respect to the shape parameter 

in weibit-based models and the variance ratio between oddball and conventional 

alternatives in the MNW-O model. Two conclusions can be drawn from Figure 4.5: 

(a) With the same disutility, the perception variance of an oddball alternative is always 

larger in the MNW-O model than in the MNW model. This indicates the MNW-O 

model considers the oddball alternative to have higher uncertainty than 

conventional alternatives, which is consistent with the feature of the MNL-O model. 

(b) An increasing shape parameter, β , causes the perception variances of the oddball 

alternatives in both models and the variance ratio in the MNW-O model to decrease. 

When β → +∞ , the variance ratio between the oddball and conventional 

alternatives approaches two, which is the variance ratio in the MNL-O model. The 

variances of both the MNW and MNW-O models approach zero with β → +∞ , 

implying that when travelers have perfect knowledge of all travel alternatives then 

they deterministically choose the alternative with the lowest disutility.  
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Figure 4.5. Perception variance of the oddball alternative with respect to the shape 
parameter in different models. 

 

(3) Effect of considering the heterogeneity issue 

Based on the non-identical perception variances and flexible variance ratio given in 

Propositions 4.3 and 4.4, the MNW-O model inherits the ability to consider the 

heterogeneity issue from the MNW model and could outperform the MNL-O model in 

networks with distinct scales of travel disutility. Consider a trinomial choice problem 

with two conventional alternatives that have the same disutility vk, and one oddball 

alternative with disutility vr. Then, assume a constant disutility difference between the 

conventional and oddball alternatives: vr = vk − 5. Figure 4.6 shows the evolution of the 

oddball choice probabilities derived from different models with vr varying from 0 to 

100, leading to the following observations: 

(a) The MNL-O model provides a constant choice probability for varying scales of 

disutility, which can be attributed to its absolute difference-dependent choice 

probability function. This result seems unrealistic in this case because the constant 

difference between the oddball and conventional alternatives should become 

increasingly negligible when the scale of disutility becomes larger.  

(b) The weibit models can indicate the effect of variation in the disutility scale via their 

variation in choice probability. This property makes the MNW-O model provide 

more realistic outcomes than the MNL-O model, which is consistent with the 

difference identified between MNW and MNL models in short and long networks 
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(Kitthamkesorn and Chen, 2013). 

(c) Given the same system disutility, the MNW-O model tends to calculate a higher 

oddball choice probability than the MNW model, which is consistent with the 

difference between MNL-O and MNL models (Recker, 1995). 

 

 
Figure 4.6. Effect of heterogeneity on oddball choice probability. 

 

4.3.2.4 Model elasticities 

This section compares the elasticities of the proposed model with related models, 

including the MNL, MNL-O, and MNW models. The direct elasticity of ( )P k A  with 

respect to attribute i of alternative k can be expressed as 

 ( ) ( )
( )

| , ,i
k

i
P k A ik

ki
k

P k A
E k A

P k Aτ

τ τ
τ

∂
= ⋅ ∀ ∈ ∈

∂ kτ .  (4.37) 

The cross elasticity of alternative k with respect to attribute i of alternative l is 

 ( ) ( )
( )

| , , ,i
l

i
P k A il

ki
l

P l A
E k l A

P l Aτ

τ τ
τ

∂
⋅ ∀ ∈ ∈

∂ kτ .  (4.38) 

With ( )1
xdE x e

dx x

−

= − , the direct and cross elasticities are derived for the MNL-O and 

MNW-O models that involve the exponential integral in their choice probability 



 
 

131 
 

functions. Because of the different probability expressions, the direct and cross 

elasticities with respect to conventional and oddball alternatives are derived separately. 

Table 4.1 compares the direct and cross elasticities of the MNL, MNL-O, MNW, 

and MNW-O models, highlighting the following properties: 

(a) Analogous to the elasticities of the MNW model (Table 2.3), the elasticities of the 

MNW-O model are also dependent on the alternative disutility. This property makes 

an alternative with higher disutility less sensitive to an equivalent perturbation than 

alternatives with lower disutility, which indicates the ability of the MNW-O model 

to account for the heterogeneity issues, as discussed in Section 3.2.3. Moreover, the 

elasticities of both the MNW and MNW-O models share the opposite signs to their 

logit-based counterparts. This is because the term v denotes utility in logit-based 

models, whereas it denotes disutility in weibit-based models. 

(b) Both the direct and cross elasticities of the MNW-O model involve terms related to 

the oddball alternative r. This indicates that the effects of an oddball alternative on 

the choice probabilities are specifically considered in the MNW-O model. By 

contrast, the MNL and MNW models do not make this distinction and only account 

for conventional alternatives. 

(c) In the MNL and MNW models, the cross elasticities for all alternatives k with 

respect to a change in alternative l remain constant, implying that the IIA property 

holds for all alternatives in the choice set. By comparison, the MNL-O and MNW-

O models possess different cross elasticities when the oddball alternative r is 

involved, i.e., ( )|
i
l

P r AE
τ

 differs from ( )|
i
l

P k AE
τ

 and is dependent on a term related to 

oddball alternative r. This indicates that the IIA property is circumvented between 

the oddball and conventional alternatives.  
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Table 4.1. Comparison of direct and cross elasticities of MNL, MNW, MNL-O, and MNW-O models 
Model  Direct elasticity Cross elasticity 

MNL ( )1i i
k MNLP k Aθ ω τ  ⋅ ⋅ −    ( )i i

l MNLP l Aθ ω τ− ⋅ ⋅  

MNW ( ) ( )1 1i i
k MNWk P k Av βω τ−  ⋅ ⋅ − −   ( ) ( )1 i i

l MNWl Av P lβ ω τ− ⋅ ⋅ ⋅   

MNL-O 
 

Direct elasticity of conventional alternative k, ( )|
i
k

P k AE
τ

: 

( ) ( ) ( )
( )1 1

1
MNL Oi i L

k MNL r
MNL O

P r A
P k A r

P r A
θ ω τ φ −

−

   ⋅ ⋅ − − ⋅ + −  
−    

  

Cross elasticity of conventional alternative k with respect to 
attribute i of conventional alternative l, ( )|

i
l

P k AE
τ

: 

( ) ( ) ( )
( )1

1
MNL Oi i L

l MNL r
MNL O

P r A
P l A r

P r A
θ ω τ φ −

−

 
− ⋅ ⋅ − ⋅ + − 

−  
  

Direct elasticity of oddball alternative r, ( )|
i
r

P r AE
τ

: 

( ) ( )1
L

i i L r
r r

MNL OP r A
φθ ω τ φ
−

 
⋅ ⋅ + − 

  
  

Cross elasticity of conventional alternative k with respect to 
attribute i of oddball alternative r, ( )|

i
r

P k AE
τ

: 

( )
( )1

MNL Oi i L
r r

MNL O

P r A
P r A

θ ω τ φ −

−

 
⋅ ⋅ − 

−  
  

 

Cross elasticity of oddball alternative r with respect to 
attribute i of conventional alternative l, ( )|

i
l

P r AE
τ

: 

( ) ( ) ( )1
L

L r
r

O

i i
l MN

L
L

MN

P l A r
P r A

θ ω τ φ φ

−

 
+ − 

 
⋅ − ⋅


− ⋅   
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MNW-O 
 

Direct elasticity of conventional alternative k, ( )|
i
k

P k AE
τ

: 

( ) ( ) ( ) ( )
( )

1 1 1
1

MNW Oi i W
k MNW r

M O
k

NW

P r
v

A
P k A r

P r A
β ω τ φ −−

−

   ⋅ ⋅ ⋅ − − ⋅ + −  
−    

−   

Cross elasticity of conventional alternative k with respect to 
attribute i of conventional alternative l, ( )|

i
l

P k AE
τ

: 

( ) ( ) ( ) ( )
( )

1 1
1

MNW Oi i W
l MNW r

MNW O
lv

P
P r A

P l A r
r A

β ω τ φ −

−

−  
⋅ ⋅ ⋅ − ⋅ + − 

−  
  

Direct elasticity of oddball alternative r, ( )|
i
r

P r AE
τ

: 

( ) ( ) ( )
1 1

W
i i W r

r r
MNW O

r P r
v

A
φβ ω τ φ−

−

 
⋅ ⋅ ⋅ + − 

  
−   

Cross elasticity of conventional alternative k with respect to 
attribute i of oddball alternative r, ( )|

i
r

P k AE
τ

: 

( ) ( )
( )

1

1
MNW Oi i W

r r
MNW

r
O

P r A
P

v
r A

β ω τ φ −

−

−  
⋅ ⋅ ⋅ − 

−  
−   
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4.4 Empirical application 

The proposed MNW-O model is applied to the Swissmetro data set (Bierlaire et al., 

2001) that has been widely used in transportation studies (e.g., Fosgerau and Bierlaire, 

2009; Li, 2011; Mabit, 2017; Sifringer et al., 2020; Han et al., 2022). The data set 

described mode choice scenarios among three alternative modes: train, car, and 

Swissmetro. We have selected the respondents who have access to all three mode 

alternatives in the choice set. The Swissmetro is an emerging travel mode that can be 

considered as an oddball alternative with unique attributes (i.e., headway and seat 

availability). The number of observations is 3987. A brief description of the used data 

set can be found in Table 4.2. 

 

Table 4.2. Description of the Swissmetro data set 

Alternatives Attributes 

Train Travel cost, Travel time 

Car Travel cost, Travel time 

Swissmetro  
(oddball) Travel cost, Travel time, Headway, Seats availability 

 

The alternative utility can be formulated as: 

 c t
k rv v travel cost travel timeω ω= = ⋅ + ⋅ ,  (4.39) 

 h s
rv headway seats availabilityω ω= ⋅ + ⋅ ,  (4.40) 

where ω  are the parameters to be estimated.  

 

4.4.1 Estimation results 

We compare the estimation results of the MNW-O model against MNL and other 

advanced choice models, including the NL model that relaxes the independently 

distributed assumption, the MNL-O model for capturing one oddball alternative in the 

choice set, the HEV model (Bhat, 1995) that is flexible to relax the identically 
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distributed assumption for all alternatives, and the MNW model that inherently allows 

disutility-dependent perception variances for all individuals. All the models are 

estimated using Apollo (Hess and Palma, 2019)1. Following Fosgerau and Bierlaire 

(2009), the coefficient of travel cost is normalized to minus unity and the scale/shape 

parameters of the logit/weibit-based models are estimated. Two socio-demographic 

attributes, namely gender (male or female) and age (over 54 or not), were considered 

in the model estimation. The alternative specific constants were not significantly 

estimated, therefore excluded. The estimation results are reported in Table 4.3. 

Among the four logit-based models (MNL, NL, HEV, and MNL-O), the HEV 

model shows a better model fit than others. This result makes sense as the HEV model 

considers more generalized heteroscedasticity in the error variance between alternatives. 

The NL model allows covariances among similar alternatives and performs better than 

the basic MNL model. However, it still assumes an identical variance for all alternatives 

and is inadequate to account for the oddball effect. Although the MNL-O model also 

considers heteroscedasticity, it focuses on the non-identical variance of the oddball 

alternative and is less flexible than the HEV model. On the other hand, the weibit-based 

models (MNW and MNW-O) show better model fits than the logit-based models. This 

may be because the weibit-based models adopt the multiplicative error structure, which 

allows disutility-dependent perception variances (See Figure 4.4) and can better reflect 

the way travelers perceive travel disutility (Chakroborty et al., 2021; Nirmale and 

Pinjari, 2023). Finally, the proposed MNW-O model shows a better model fit than all 

other competing models. It suggests that the MNW-O model can successfully capture 

both the oddball effect and the heterogeneous perceptions of different alternatives and 

service features in the Swissmetro data set. 

 

 
1 To estimate the HEV and MNW-O models, we extend the input code in Apollo to represent their choice 
probabilities by integrating external functions in the R library, i.e., the Gaussian quadrature function for 
the HEV model (following the estimation procedure suggested by Bhat, 1995) and the exponential 
integral function for the MNW-O model. 
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Table 4.3. Estimation results 

 MNL NL HEV MNL-O MNW MNW-O 

Attributes Estimates 
(t-value) 

Estimates 
(t-value) 

Estimates 
(t-value) 

Estimates 
(t-value) 

Estimates 
(t-value) 

Estimates 
(t-value) 

Travel time -1.582 
(-16.91) 

-1.026 
(-13.29) 

-1.681 
(-10.88) 

-1.298 
(-14.02) 

-1.655 
(-14.00) 

-1.793 
(-9.59) 

Headway -0.028 
(-8.02) 

-0.019 
(-4.93) 

-0.035 
(-5.95) 

-0.054 
(-10.56) 

-0.024 
(-7.32) 

-0.036 
(-15.73) 

Seats availability 0.392 
(2.24) 

0.186 
(-2.12) 

0.350 
(3.20) 

0.599 
(2.53) 

0.329 
(2.72) 

0.755 
(18.75) 

Male  0.147 
(1.62) 

0.123 
(2.93) 

0.334 
(3.09) 

0.460 
(4.94) 

0.430 
(7.86) 

0.581 
(10.85) 

Age_Old -0.197 
(-3.09) 

-0.069 
(-1.70) 

-0.104 
(-1.61) 

-0.441 
(-5.03) 

-0.229 
(-4.09) 

-0.302 
(-3.60) 

Scale 0.114 
(18.57) 

0.083 
(14.86) - 0.126 

(16.67) - - 

Scale_Car - - 0.097 
(11.16) - - - 

Scale_Train - - 0.089 
(12.70) - - - 

Scale_SM - - 0.052 
(12.99) - - - 

Logsum - 0.852 
(13.47) - - - - 

Shape - - - - 3.628 
(33.10) 

2.766 
(28.71) 

       

Model fit       

Final LL -3625.77 -3620.26 -3589.91 -3609.07 -3562.96 -3552.31 

Adj. rho-squared 0.171 0.172 0.179 0.175 0.185 0.188 

BIC 7301.28 7298.56 7246.15 7267.88 7175.66 7154.36 

 

In addition, we applied statistical tests proposed by Vuong (1989) and Clarke 

(2003) to compare the models. Both tests are common in that their null hypothesis 
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indicates the competing models are equally close to the actual model. On the other hand, 

they are distinguished in that the Vuong test assumes the asymptotic normality of the 

log-likelihood ratio between the two competing models, while the Clarke test is 

distribution-free considering the sum of the signs of the log-likelihood difference for 

each observation.  

The statistic of the Voung test is 

( ) ( )

( ) ( ) ( ) ( )
2

21 1

mi m m i m
i

Voung

mi m m i m mi m m i m
i i

L L
z

L L L L
n n

′ ′

′ ′ ′ ′

−  
=

 − − −       
 

∑

∑ ∑

ω ω

ω ω ω ω

,  (4.41) 

where ( )mi mL ω  is a loglikelihood value by a model m for an observation i.  

On the other side, the Clarke test is 

 
( ) ( )2 mi m m i m

i
Clarke

sgn L L n
z

n

′ ′⋅ − −  
=

∑ ω ω
,  (4.42) 

where n is the number of observations and sgn denotes the sign function. Common to 

both tests, a large negative value of z means that model m′  statistically outperforms 

model m. 

 

Table 4.4. Results of Voung and Clarke tests 

 

Table 4.4 shows the values of test statistics zVoung and zClarke for the comparison 

between the MNW-O model and other competing models. Consistent with the model 

Model 1 Model 2 
Tests 

Voung Clarke 

MNL MNW-O -85.229 -42.673 

NL MNW-O -52.105 -30.988 

HEV MNW-O -27.308 -20.330 

MNL-O MNW-O -38.296 -36.934 

MNW MNW-O -14.165 -12.283 
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fit results, both tests clearly confirm that the proposed MNW-O model is superior to all 

other models. These results demonstrate that the proposed MNW-O model has a clear 

advantage of simultaneously capturing the oddball effect and the disutility-dependent 

perception variance, while the competing models can either consider only one of the 

two issues (HEV, MNL-O, and MNW models) or none of them (NL and MNL models). 

 

4.4.2 Validation results 

To validate the estimation results, a cross-validation test was conducted. First, we 

randomly created five subsets of data which includes about 20% of all observations. Of 

the five subsets, four were used as a training set to estimate models. Then the parameter 

estimates were applied to the remaining single subset (as a test set). This process is 

repeated 5 times to guarantee all subsets were used as the testing set. 

 

Table 4.5. Results of cross-validation test 
(a) Training sets 

 Avg. Adj. rho-squared Avg. BIC 

MNL 0.169 5847.90 
NL 0.171 5843.28 

HEV 0.175 5800.24 
MNL-O 0.174 5819.47 
MNW 0.182 5745.64 

MNW-O 0.186 5725.08 
(b) Testing sets 

 Avg. Adj. rho-squared Avg. BIC 

MNL 0.134 1465.15 
NL 0.139 1463.47 

HEV 0.148 1454.27 
MNL-O 0.148 1455.19 
MNW 0.157 1433.64 

MNW-O 0.163 1425.77 
 

Table 4.5 shows the results of the cross-validation test. The estimation results in 

training sets are consistent with the general interpretation of the results from the full 
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data set. The MNW-O model is superior to all other models in terms of the model fit 

measures in all cases. The results in testing sets based on prediction performance also 

reveal the consistent outperformance of the MNW-O model against the competing 

models. In summary, we can conclude that the MNW-O model outperforms the 

competing models in the Swissmetro data set with respect to both model fit and 

prediction performance. It is therefore important to consider the heterogenous 

perceptions of not only the conventional alternatives but also the unique features of 

oddball alternative to better understand the choice behavior with an oddball alternative. 

 

Table 4.6. Elasticities of MNW-O model2 
Class 1 Alternatives Elasticities 

Train Car Swissmetro 
Travel cost Train -0.775 0.239 0.147 

Car 0.094 -0.581 0.051 
Swissmetro 0.074 0.074 -0.624 

Travel time 
 

Train -0.174 0.022 0.045 
Car 0.049 -0.391 0.033 

Swissmetro 0.055 0.055 -0.410 
Headway Swissmetro 0.204 0.204 -1.308 

Seat availability Swissmetro 0.181 0.181 -1.026 
 

Table 4.6 reveals the results of elasticities in the MNW-O model based on Table 

4.1. The direct elasticities are italicized in the table to distinguish from the cross 

elasticities. As discussed in Section 4.3.2.4., the IIA property is not valid between 

conventional and oddball alternatives. Therefore, the cross elasticities with respect to 

change in an attribute of oddball alternative are equal between conventional alternatives, 

while the cross elasticities with respect to change in an attribute of a conventional 

alternative is not the same between conventional and oddball alternatives. The results 

indicate that the choice probability of the oddball alternative (Swissmetro) is more 

sensitive to the changes in the unique attributes (headway and seats availability) than 

in the common attributes (travel cost and travel time). 

 

 
2 Direct elasticities are italicized. 
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4.5 Conclusions 

This chapter proposed a weibit-based model to assess choice behavior when there is an 

oddball alternative with unique features in the choice set. This proposed approach 

retains the closed-form choice probability expression, which ensures the computational 

efficiency of the probability evaluation and model estimation while facilitating model 

interpretation. Inspired by Recker’s (1995) MNL-O model, the proposed MNW-O 

model can specifically handle the oddball alternative as well as the asymptotic values 

and logical consistency conditions. Furthermore, the proposed MNW-O model also 

provides improved performance by enabling disutility-dependent perception variances 

for both the conventional and oddball alternatives and allowing a flexible variance ratio 

between them. These advantageous properties lead to relative difference-based choice 

probabilities, which allow the proposed model to further consider various heterogeneity 

issues that are ignored in the MNL-O model but are important for applications in 

modern transportation systems. The applicability of the proposed model is empirically 

demonstrated in a mode choice case study based on the Swissmetro data set (Bierlaire 

et al., 2001). The statistical results revealed that considering the advantageous 

properties of the MNW-O model is important for the understanding and prediction of 

choice behavior when an oddball alternative is included in choice set. 

The proposed model has numerous potential applications. In the context of mode 

choice, the MNW-O model is suitable for modeling the decision-making scenario 

where an emerging travel mode is introduced to a multi-modal transportation system. 

The emerging mode is likely to be associated with new attributes that are not familiar 

to travelers, which brings additional uncertainty and should be treated as an oddball 

alternative (Song, 2019). For instance, connected and autonomous vehicles (CAVs) are 

planned to be introduced to transportation systems in the future. CAVs are expected to 

provide unprecedented service features, such as avoidance of potential crashes due to 

the smooth driving and effective utilization of in-vehicle travel time due to the fully 

autonomous driving technologies. Such unique attributes may provide incremental 

travel utility but also a higher perceived uncertainty. Thus, it would be suitable to model 
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the CAVs as an oddball alternative and predict the market penetration via the proposed 

MNW-O model. Alternatively, the rapid development of urban agglomeration can 

make traveling to locations in neighboring cities more frequent, providing travelers 

with extra opportunities via inter-city trips, which may also form an important oddball 

alternative in the destination choice problem (Huang et al., 2020c). Additionally, the 

effect of heterogeneity has been extensively recognized as an important issue in 

destination choice behavior (e.g., Schmid et al., 2019). The proposed model is thus 

applicable to assessing travelers’ decision-making among destination locations within 

an urban agglomeration that have distinct travel distances, different service levels, and 

unique opportunities.  

The proposed model opens up the following potential research directions for future 

studies: (1) further handling the independence assumption and the IIA property 

remaining in the subset of conventional alternatives; (2) considering the oddball 

alternative with decremental utility perception of their unique features that lower the 

choice probability, e.g., the range anxiety of electric vehicle drivers; and (3) analogous 

to the development of mixed logit models (McFadden and Train, 2000), generalizing 

the proposed model by mixing the Weibull distributed error term with additional error 

terms with various distributional assumptions, e.g., the Fréchet distribution, the Log-

logistic distribution, and the family of Log-normal distributions (Varela et al., 2018; 

Xie et al., 2020; Nirmale and Pinjari, 2023). On this basis, the outcome models may 

reproduce more general oddball effects based on the more flexible total error 

distributions while benefiting from the multiplicative error structure, which is 

consistent with the psychophysical laws of how individuals perceive attribute levels 

with varying magnitudes (Chakroborty et al., 2021). 
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Methodology Part II. Modeling aggregate travel demand: 

Development of equilibrium models in future transportation systems 
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Chapter 5 From disaggregate travel choice to aggregate network 

equilibrium: Development of Beckmann-type equilibrium model 

formulation based on generalized Luce-form RUMs 

5.1 Beckmann’s MP formulation for UE: A retrospective 

This section revisits Beckmann’s mathematical programming (MP) formulation for the 

user equilibrium (UE) model that endogenously accounts for the flow-dependent route 

disutility in traffic assignment (Beckmann et al., 1956). To obtain the Beckmann-type 

MP formulation, the following assumptions are made: 

UA1. Link travel disutility is separable, continuously differentiable, nonnegative, and 

increasing with respect to link flow. 

UA2. Path travel disutility is an additive function of link disutility, i.e., 
k

rs
k a

a A

τ τ
∈

= ∑ . 

Given the UE condition that assumes every traveler to be rational and have perfect 

knowledge of travel disutility, the UE problem is to minimize the path disutility for 

every unit of incremental OD demand. Figure 5.1 illustrates the UE condition between 

a single OD pair. 

 

 

Figure 5.1. Illustration of equilibrium condition 
 

In Figure 5.1, q denotes the trip rate between the OD pair, v denotes the travel 

disutility. The orange line indicates the demand curve, which is the inverse OD demand 
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function ( )1D q− . In the UE problem with elastic demand (UE-ED) in multi-OD 

networks, the demand function is assumed to be separable, i.e., ( )1rs rsD q
−

 between OD 

pair rs depends only on qrs and is independent of demands between other OD pairs. The 

blue line indicates the supply curve as the demand-dependent OD travel disutility 

function ( )qτ , which is defined as the average path travel disutility between the OD 

pair (Beckmann et al., 1956) and equals to the disutility of each used path under the 

equilibrium condition. In the multi-OD network, owing to the congestion effect on 

disutility (e.g., flow-dependent road travel time), the OD travel disutility is a function 

of demands between all OD pairs, i.e., ( )rsτ q , where q denotes the vector of OD 

demands. The UE condition is reached when the size of the shaded area in Figure 5.1 

is maximized, which is depicted by the shaded area as the difference between the area 

under demand curve and the blank area under supply curve. This condition is analogous 

to the solution to competitive equilibrium that maximizes the total aggregate consumer 

surplus in the transportation network. Hence, the objective of UE problem can be 

expressed as maximizing the size of the shaded area as follows: 

 ( ) ( )1

10
max

rsq rs rs rs

C
rs RS rs RS

Z D d dqω ω τ
−

∈ ∈

= −∑ ∑∫ ∫ q , (5.1) 

where C1 denotes some integration path with respect to OD demands from (0, …, 0, …, 

0) to (q11, q12, …, qrs).  

At the UE condition, the following conservation constraints should be satisfied: 

 ,
rs

rs rs
k

k K

f q rs RS
∈

= ∀ ∈∑ , (5.2) 

where rs
kf  denotes the flow on path k between OD pair rs, rsK  denotes the path set 

between OD pair rs. Path flows should satisfy the following nonnegativity constraints: 

 0, ,rs rs
kf k K rs RS≥ ∀ ∈ ∈ . (5.3) 
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Then we focus on the second term on the right-hand side of Eq. (5.1), which is a 

line integral that indicates the total area under demand curves. By definition, the supply 

curve indicates the average path disutility, i.e., ( ) ( )
rs

rs rs rs
k k

k K

Pτ τ
∈

= ⋅∑q f . ( )rs
kτ f  is the 

path disutility function, and f denotes the vector of all path flows in the network. rs
kP  is 

the choice proportion of path k between OD pair rs, such that rs rs rs
k kf P q= ⋅  and 

rs rs rs
k kdf P dq= ⋅ . The line integral ( )

1

rs rs

C
rs RS

dqτ
∈
∑∫ q  can then be expressed as follows: 

 ( )
2 rs

rs rs
k kC

rs RS k K

dfτ
∈ ∈
∑ ∑∫ f , (5.4) 

where C2 is some path of integration with respect to path flows between (0, 0, …, 0) 

and ( 11
1f , 11

2f , …, rs
kf ). Hence, the UE objective function can be expressed as: 

 ( ) ( )1

20
max

rs

rs

q rs rs rs
k kC

rs RS rs RS k K

Z D d dfω ω τ
−

∈ ∈ ∈

= −∑ ∑ ∑∫ ∫ f . (5.5) 

In the problem with fixed OD demands, the term ( )1

0

rsq rs

rs RS
D dω ω

−

∈
∑ ∫  is fixed (i.e., 

a constant) and can be removed from the maximization problem. Objective function 

(5.6) can then be equivalently expressed as 

 ( )
2

min
rs

rs rs
k kC

rs RS k K

Z dfτ
∈ ∈

= ∑ ∑∫ f . (5.6) 

For the dimensions other than route choice, such as the destination choice and mode 

choice, the separable destination disutility function ( )s sqτ  and mode disutility 

function ( )rs rs
m mqτ  are often adopted instead of the non-separable disutility term ( )rs

kτ f  

to formulate the equilibrium trip distribution and modal split model, respectively. 

Taking the equilibrium modal split problem as an example, the objective function (5.6) 

can be expressed based on regular integrals as follows: 

 ( )
0

min
rs
m

rs

q rs
m

rs RS m M

Z dτ ω ω
∈ ∈

= ∑ ∑ ∫ . (5.7) 



 
 

146 
 

In the route choice problem, the line integral term cannot be derived in a 

straightforward way as the OD disutility depends on path disutility. By the assumption 

of additive path disutility (UA2), path disutility is determined by the link disutility that 

is dependent on link flow xa. 

 ( ) ( )( ), , ,
rs

rs rs rs
k a k a a

rs RS k K

x k K rs RSτ δ τ
∈ ∈

= ⋅ ∀ ∈ ∈∑ ∑f f , (5.8) 

where ,
rs
a kδ  is a binary variable denoting the link-path incidence relationship. , 1rs

a kδ =  if 

link a is on path k between OD pair rs; , 0rs
a kδ = , otherwise. The link flow is determined 

by the path flows based on the following definitional constraint:  

 ( ) , ,
rs

rs rs
a a k k

rs RS k K

x f a Aδ
∈ ∈

= ⋅ ∀ ∈∑ ∑f . (5.9) 

To obtain the objective function (5.6), we first show that the line integral therein is 

independent of integration path, where the notation rs is omitted in this paragraph for 

simplicity. As 
1 2

...a a a a

k af f f x
τ τ τ τ∂ ∂ ∂ ∂

= = = =
∂ ∂ ∂ ∂

 (for all paths with , 1a kδ = ), we have 

,i j

ji a

a Aj i af f x
ττ τ

∈

∂∂ ∂
= =

∂ ∂ ∂∑  for each pair of paths i and j, where Ai,j denotes the set of common 

links used by paths i and j. Hence, the Jacobian matrix f∇ τ  is symmetric, and the line 

integral in Eq. (5.6) is independent of integration path. 

Therefore, by selecting an arbitrary path of integral, e.g., ( 11
1f , 0, …, 0), ( 11

1f , 11
2f , 

0, …, 0), …, ( 11
1f , 11

2f , …, rs
kf ), objective function (5.6) can be written as 

 ( ) ( )
11

1 11 11
1 1 10 0

min ,0,...,0 ... ,..., ,
rs

kf f rs rs
k kZ d f f dτ ω ω τ ω ω−= + +∫ ∫ , (5.10) 

Taking Eq. (5.8) into Eq. (5.10), the objective function can be expressed as 

 

( )

( )

11
1 11 11

,1 ,10

11 11
, ,1 ,1 , 1 , 1 ,0

0 ... 0

min ...

...
rs

k

f

a a a

a A f rs rs rs rs
a k a a a a k a k a k

d

Z

f f d

δ τ δ ω ω

δ τ δ δ δ ω ω
∈

− −

 ⋅ ⋅ + + + 
 = + 
 + ⋅ ⋅ + + ⋅ + ⋅  

∫
∑

∫

. (5.11) 
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By substituting 11 11
,1 ,1a aω δ ω= ⋅ , …, 11 11

, ,1 ,1 , 1 , 1 ,...rs rs rs rs
a k a a a k a k a kf fω δ δ δ ω− −= ⋅ + + ⋅ + ⋅ , Eq. (5.11) 

can be rewritten as 

 
( ) ( )

( )

11 11 11 11 11
,1 1 ,1 1 ,

11 11 11
,1 1 , 1 1

,

...11 11 11 11
,1 ,1 , ,0 ...

0

min ...
rs

a a a k k

rs
a a k k

rs rs
a k k

rsrs RS k K

f f f

a a a a a k a kf f
a A

f

a
a A

Z d d

d

δ δ δ

δ δ

δ

τ ω ω τ ω ω

τ ω ω

− −

∈ ∈

⋅ ⋅ + + ⋅

⋅ + + ⋅
∈

⋅

∈

= +

∑ ∑
=

∑∫ ∫

∑∫
. (5.12) 

Integrating constraints (5.9), Eq. (5.12) can be further expressed as 

 ( )
0

min ax

a
a A

Z dτ ω ω
∈

=∑∫ , (5.13) 

which is the Beckmann transformation for the UE model with fixed OD demand. 

 

5.2 Development of Beckmann-type SUE formulation: Disutility function, 

composite disutility, and entropy 

In the SUE problem, the assumption that travelers have perfect knowledge of travel 

disutility is relaxed, and travelers’ perception error of travel disutility is additionally 

considered. Under the SUE condition, travelers choose the paths that can minimize their 

perceived travel disutility. Different from the UE model where the average path travel 

disutility is used as OD travel disutility, the satisfaction function rsS , i.e., the composite 

utility/disutility indicating the expectation of the maximum travel utility (or minimum 

travel disutility) between each OD pair, is used to represent the OD travel utility at SUE. 

The satisfaction function can be expressed as follows: 

 ( ) ( ) ( ),
rs

rs rs rs
k k

k K

S P S rs RS
∈

= ⋅ ∀ ∈∑q f , (5.14) 

where ( ) ( )rs
kS f  is the achieved path utility, i.e., the expected utility conditional on the 

event that path k between OD pair rs is chosen. The SUE objective function can be 

obtained by replacing the deterministic path disutility in Eq. (5.6) with the achieved 

path disutility. Embedding different RUMs in the SUE problem will lead to different 

satisfaction and different SUE model formulations.  
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This section focuses on the entropy-based Beckmann-type MP formulations of the 

SUE models that integrate RUMs with “Luce-form” choice probabilities (Luce, 1959) 

and their generalizations. Owing to the invariance property of the “Luce class” error 

distributions underlying these RUMs, the satisfaction functions have closed-form 

expressions and satisfy ( ) ( ) ( ) , ,rs rs rs
kS S k K rs RS= ∀ ∈ ∈f q  (Mattsson et al., 2014), 

which enables the incorporation of stochasticity via entropy terms. This section 

showcases the formulations of SUE models embedded with commonly used RUMs in 

literature, including the MNL model, MNW model, and extended logit models that 

address the correlation among alternatives. 

 

5.2.1 MNL-SUE formulation 

We start with the MNL model, which is the mostly used Luce-form model with an 

additive utility function. Taking the route choice problem as an example, the perceived 

travel utility of path k between OD pair rs can be expressed as follows: 

 ( ) ( ) , ,rs rs rs rs
k k kV k K rs RSτ ε= − + ∀ ∈ ∈f f . (5.15) 

rs
kV  denotes the perceived travel utility in the MNL model, which is an additive function 

of the deterministic utility ( )rs rs
k kv τ= − f  and the IID Gumbel random error rs

kε .  

 

 
Figure 5.2. Illustration of Beckmann-type MNL-SUE formulation development 
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The development of the objective function of MNL-SUE model is illustrated in 

Figure 5.2. Instead of the deterministic path utility, the MNL-SUE model considers the 

perceived path utility achieved from the MNL model, which is expressed as follows 

(Anas and Feng, 1988): 

 
( ) ( ) ( )

( )

1 ln

1 ln , ,
rs

rs rs rs
k kk

rs
rs rsk
k rs

k
k K

S P

f k K rs RS
f

τ
θ

τ
θ

∈

= − −

= − − ∀ ∈ ∈
∑

f f

f
. (5.16) 

The objective function of the SUE model is then expressed as follows: 

 

( )

( )

2

2

max

1 ln

rs

rs

rs

rs rs
k kC

rs RS k K

rs
rs rsk
k krsC

rs RS k K k
k K

Z S df

f df
f

τ
θ

∈ ∈

∈ ∈
∈

=

 
 = − − 
  

∑ ∑∫

∑ ∑∫ ∑

f

f
. (5.17) 

Based on the Beckmann transformation introduced in Section 5.1 and the conservation 

constraint ,
rs

rs rs
k

k K

q f rs RS
∈

= ∀ ∈∑ , Eq. (5.17) can be rewritten as the following 

minimization problem: 

( )

( ) ( ) ( )

0 0 0

0

1 1min ln ln

1 1ln 1 ln 1

rs rs
a k

rs

a

rs

x f q

a
a A rs RS rs RSk K

x rs rs rs rs
a k k

a A rs RS rs RSk K

Z d d d

d f f q q

τ ω ω ω ω ρ ρ
θ θ

τ ω ω
θ θ

∈ ∈ ∈∈

∈ ∈ ∈∈

= + −

= + − − −

∑ ∑ ∑ ∑∫ ∫ ∫

∑ ∑ ∑ ∑∫
. (5.18) 

In the case of fixed OD demand, rsq  is constant and can be removed from the objective 

function, Eq. (5.18) can be rewritten as 

 ( ) ( )
0

1min ln 1a

rs

x rs rs
a k k

a A rs RS k K

Z d f fτ ω ω
θ∈ ∈ ∈

= + −∑ ∑ ∑∫ , (5.19) 

which gives the objective function of Fisk’s (1980) MNL-SUE formulation. The 

conservation, nonnegativity, and definitional constraints of the MNL-SUE model are 

Eqs. (5.2), (5.3), and (5.9) inherited from the UE model. 
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Alternatively, the MNL-SUE objective function can be developed based on the 

additively separable utility function (5.15). Given that the deterministic term is related 

to the Beckmann term as shown in Section 5.1, we focus on the error term rs
kε . For 

travelers choosing path k between OD pair rs, the value of perceived utility rs
kV  is the 

maximum among all paths, i.e., ( ) { }*

1 1 2 2max , ,...,
rs

rs rs rs rs rs rs rs rs
k k k k

k K
ε τ τ ε τ τ ε ε

∈
= − + + − + + . 

Based on Property 6 of the Gumbel distribution (Table 2.1), ( )*rs
kε  is still identically 

Gumbel distributed with scale parameter θ . The expectation of ( )*rs
kε  is 

 

( ) ( ) ( ){ }
( )

( )

1 ln exp

exp
1 ln

exp

1 ln

rs

rs

rs

rs rs rs
k l k

l K

rs
l

l K
rs
k

rs
l

l K
rs

k

E

f

f

ε θ τ τ
θ

θτ

θ θτ

θ

∈

∈

∈

 = ⋅ − + 

 − 
= −

 − 

= −

∑

∑

∑

f f

f

f
, (5.20) 

where the third equality is obtained based on the MNL route choice probability 

( )
( )

exp

exp
rs rs

rsrs
krs k

k rs rs
l l

l K l K

fP
f

θτ

θτ
∈ ∈

 − = =
 − ∑ ∑

f

f
. Taking Eq. (5.20) into the integral in Eq. (5.6), the 

objective function of Fisk’s MNL-SUE objective function can be obtained following 

Eqs. (5.18)–(5.19).  

 

5.2.2 Extended SUE formulations 

This section discusses the MP formulation of some extensions to the basic MNL-SUE 

model. The SUE model development based on the MNW choice model was first 

introduced as a variant of MNL-SUE model that addresses the heterogeneity issue via 

the multiplicative disutility function. Development of SUE models is then presented 

based on two types of extended logit models, which address the correlations among 
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travel alternatives by introducing either additional correction terms or a nested choice 

structure. 

 

5.2.2.1 MNW-SUE formulation 

In the MNW model, instead of the additive utility function (5.15), the multiplicatively 

separable disutility function is adopted (Fosgerau and Bierlaire, 2009): 

 ( ) , ,rs rs rs rs
k k kV v k K rs RSε= ⋅ ∀ ∈ ∈f . (5.21) 

In weibit-based models, rs
kV  denotes the perceived travel disutility, ( )rs rs

k kv τ= f  is the 

deterministic disutility, rs
kε  is the random error assumed to be IID Weibull variables.  

The development of the MNW-SUE formulation is analogous to that of the MNL-

SUE model. For travelers choosing path k between OD pair rs, the value of rs
kV  is the 

minimum among all paths, i.e., ( )* 1 2
1 2min , ,...,

rs

rs rs
rs rs rs rs
k krs rsk K

k k

τ τε ε ε ε
τ τ∈

 
= ⋅ ⋅ 

 
. Based on 

Property 6 of the Weibull distribution (Table 2.2), the expectation of ( )*rs
kε  is 
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 
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 

 
= ⋅ 
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∑

∑

∑

f f

f

f
, (5.22) 

where β  is the shape parameter. The third equality is obtained by substituting the 

MNW route choice probability 
( )
( )

rs

rs
krs

k rs
l

l K

P
β

β

τ

τ

−

−

∈

  =
  ∑

f

f
. Taking Eq. (5.22) into the 
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integral in Eq. (5.6) and removing rsq  in the case of fixed OD demand, the objective 

function of MNW-SUE model can be expressed as 

 

( ) ( )

( ) ( ) ( )

2

2

1
1

min
rs

rs rs

rs rs
kkC

rs RS k K

rs rs rs rs
k l k kC

rs RS k K l K

Z S df

f f df
β

βτ

∈ ∈

−

∈ ∈ ∈

=

 
  = ⋅ ⋅     

∑ ∑∫

∑ ∑ ∑∫

f

f
. (5.23) 

Alternatively, the MNW-SUE model formulation can be obtained based on the 

logarithmic transformation relationship between weibit and logit models (Figure 5.3).  

 

 

Figure 5.3. Illustration of Beckmann-type MNW-SUE formulation development 
 

The weibit multiplicative disutility function (5.21) can be transformed to an 

additive one by taking the log on both sides of the equation as follows: 

 ( ) ( )ln ln ln , ,rs rs rs rs
k k kV k K rs RSτ ε   = + ∀ ∈ ∈   f f . (5.24) 

As rs
kε  follows the Weibull distribution with shape parameter β , ln rs

kε−  is Gumbel 

distributed with scale parameter equal to β . Following the development of the MNL-

SUE model formulation shown in Section 5.2.1, the objective function of the MNW-

SUE model can be obtained as follows: 

 ( )
2 0

1min ln ln
rs

k

rs rs

frs rs
k kC

rs RS rs RSk K k K

Z df dτ ω ω
θ∈ ∈∈ ∈

= +∑ ∑ ∑ ∑∫ ∫f , (5.25) 
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where the term regarding qrs is removed in the fixed-demand problem. ( )ln rs
kτ ω  is the 

multiplicative Beckmann term (Kitthamkesorn and Chen, 2013).  

In a higher-level travel demand analysis, such as trip distribution and modal split 

problems, the destination and mode disutility are functions only dependent on the 

corresponding destination and mode demands and Eq. (5.25) can be derived based on 

regular integrals with respect to the demand. Taking the modal split problem as an 

example, let rs
mq  and ( )rs rs

m mqτ  denote the mode demand and demand-dependent 

disutility function, the objective function can be written as 

 ( ) ( )
0

1min ln ln 1
rs
m

rs rs

q rs rs rs
m m m

rs RS rs RSm M m M

Z d q qτ ω ω
θ∈ ∈∈ ∈

= + −∑ ∑ ∑ ∑∫ , (5.26) 

While in the traffic assignment problem, the path disutility cannot be directly 

expressed based on the path flows. However, it is difficult to separate the path disutility 

into link disutility owing to the inconsistency between the multiplicative disutility 

function and the assumption (UA2) of additive path disutility. To obtain an MP 

formulation, Kitthamkesorn and Chen (2013) assumes multiplicative path disutility, i.e., 

k

rs
k a

a A

τ τ
∈

= ∏ . Hence, the log of path disutility is an additive function of the log of link 

disutility: ln ln
k

rs
k a

a A
τ τ

∈

= ∑ . Eq. (5.25) can then be expressed as 

 ( ) ( )
0

1min ln ln 1a

rs

x rs rs
a k k

a A rs RS k K

Z d f fτ ω ω
θ∈ ∈ ∈

= + −∑ ∑ ∑∫ . (5.27) 

Eq. (5.27) is in accordance with the MNW-SUE formulation with the multiplicative 

Beckmann transformation (Kitthamkesorn and Chen, 2013). 

 

5.2.2.2 Extended logit SUE formulation with correction terms 

Figure 5.4 illustrates the SUE formulation based on the path-size logit (PSL) model, 

where a path-size (PS) factor is incorporated as a correction term that penalizes the 

correlation (overlap) among paths.  
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Figure 5.4. Illustration of Beckmann-type PSL-SUE formulation development 
 

The utility function of PSL model is expressed as 

 ( ) ( ) 1 ln , ,rs rs rs rs rs
k k k kV PS k K rs RSτ ε

θ
= − + + ∀ ∈ ∈f f . (5.28) 

The correction term is added to the deterministic utility without influencing the 

random error; hence, it can be directly integrated into the objective function (5.17):  

 

( ) ( )

( )

2

2

max

1 1ln ln
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rs

rs

rs rs
kkC

rs RS k K

rs
rs rs rsk
k k krsC

rs RS k K k
k K

Z S df

fPS df
f

τ
θ θ

∈ ∈

∈ ∈
∈

=

 
 = − − − 
  

∑ ∑∫

∑ ∑∫ ∑

f

f
, (5.29) 

which can be rewritten as follows in the case of fixed OD demand: 

( ) ( )
0

1 1min ln 1 lna

rs rs

x rs rs rs rs
a k k k k

a A rs RS rs RSk K k K

Z d f f f PSτ ω ω
θ θ∈ ∈ ∈∈ ∈

= + ⋅ − − ⋅∑ ∑ ∑ ∑ ∑∫ . (5.30) 

 

5.2.2.3 Extended logit SUE formulation with a nested choice structure 

This section illustrates the SUE formulation based on the nested logit (NL) model, 

where the travel choice is considered in a nested structure with multiple choice levels. 

The two-level NL model with marginal and conditional choice levels is adopted to 

exemplify the SUE formulation. The utility function of NL model is  
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 ( ) ( ) ( ), , , ,rs rs rs rs rs rs rs
k uk u uk u uV k K u U rs RSτ τ ε ε= − − + + ∀ ∈ ∈ ∈f q f q , (5.31) 

where rs
ukτ  and rs

uτ  are the utility of individual alternative k and common disutility of 

nest u; rs
ukε  and rs

uε  are random errors at the conditional and marginal choice levels. 

Based on the distributional assumptions of NL model (Ben-Akiva and Lerman, 1985), 

rs
ukε  and rs

uε  are independent, rs
ukε  are IID Gumbel variables with scale parameter kθ , 

rs rs
uk uε ε+  are IID Gumbel variables with scale parameter uθ  satisfying 0 u kθ θ< < . 

The NL choice probability can be expressed as the product of marginal choice 

probability and conditional choice probability: 

 | , , ,rs rs rs rs rs
k u k u uP P P k K u U rs RS= ⋅ ∀ ∈ ∈ ∈ , (5.32) 

where the conditional choice probability of choosing alternative k given nest u is chosen 

can be obtained via the MNL model with scale parameter kθ : 

 
( )
( )|

exp
, , ,

exp
rs rs
u u

rsrs
k ukrs rs rsuk

k u urs rs
ul k ul

l K l K

fP k K u U rs RS
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∈ ∈

 − = = ∀ ∈ ∈ ∈
 − ∑ ∑

f

f
. (5.33) 

The marginal choice probability of nest u is obtained via the MNL model with scale 

parameter uθ : 

 
( ) ( ){ }
( ) ( ){ }
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rs rsrs
u u urs rsu

u rs rs rs
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w U

SqP u U rs RS
q S

θ τ

θ τ
∈

 − − = = ∀ ∈ ∈
 − − ∑

q f

q f
, (5.34) 

where rs
uS  denotes the composite utility of nest u between OD pair rs obtained at the 

conditional choice level: 

 ( ) ( )1 ln exp , ,
rs
u

rs rs rs
u k uk

k Kk

S u U rs RSθ τ
θ ∈

 = − ∀ ∈ ∈ ∑f f . (5.35) 
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The NL-SUE model can thus be obtained following the development of MNL-

SUE formulation at different choice levels as illustrated in Figure 5.5.  

 

 

Figure 5.5. Illustration of Beckmann-type NL-SUE formulation development 
 

Based on the distributional assumptions and Property 6 of the Gumbel distribution 

(Table 2.1), the expectations of error terms can be written as follows: 
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, (5.36) 
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. (5.37) 

Substituting Eqs. (5.36) and (5.37) into the integral in Eq. (5.17) gives the objective 

function of the NL-SUE model: 
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f

q

, (5.38) 

where the first integral corresponds to the conditional choice level and the second 

integral corresponds to the marginal choice level. In Eq. (5.38), C1 and C2 denote some 

integration path between (0, 0, …, 0) and ( 11
1q , 11

2q , …, rs
uq ), and between (0, 0, …, 0) 

and ( 11
11f , 11

12f , …, rs
ukf ), respectively. Considering separable nest-specific utility 

( )rs rs
u uqτ  and fixed OD demand rsq , and using link disutility to express path disutility 

via the Beckmann transformation, Eq. (5.38) can be rewritten as 
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∑ ∑ ∑ ∑∫
, (5.39) 

which gives the objective function of the NL-SUE model. Compared with the MNL-

SUE model, the NL-SUE model has additional definitional constraints for the 

relationship between path flow and nest-level demand as follows: 

 , ,
rs
u

rs rs rs
u uk

k K

q f u U rs RS
∈

= ∀ ∈ ∈∑ . (5.40) 

Alternatively, the NL-SUE formulation can be directly obtained via the 

satisfaction function. The NL satisfaction function between OD pair rs is as follows: 
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. (5.41) 

From the marginal choice probability function in Eq. (5.34), we have the following: 
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From the conditional choice probability function in Eq. (5.32), we have the following: 

 ( ) ( )exp
exp

rs
u

rs rs
u k ukrs

k ul rs
l K uk

q
f

θ τ
θ τ

∈

⋅ −
− =∑ . (5.43) 

Substitute Eq. (5.43) into Eq. (5.32), we have 

( ) ( )
( ) ( )exp

exp

exp exp

u

k

u

k

rs rs
u

rs rs
u k ukrs rs

u u rs
ukrs rs

u u k uk rs
u U k K u

q
q

f

q

θ
θ

θ
θ

θ τ
θ τ

θ τ θ τ
∈ ∈

 ⋅ −
 ⋅ − ⋅
    − ⋅ − =  

 
∑ ∑ .(5.44) 

The NL composite utility can be re-expressed by substituting Eq. (5.41) into Eq. (5.38)  
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. (5.45) 

Following the invariance property, the achieved perceived disutility of path k in nest u 

between OD pair rs satisfies ( ) , , ,rs rs rs rs
uukS S k K u U rs RS= ∀ ∈ ∈ ∈ . Replacing rs

kτ  with 

rs
ukS  in Eq. (5.6) and removing rsq  in the case of fixed OD demand lead to the NL-SUE 

objective function: 
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, (5.46) 

which is consistent with the objective function developed in Eq. (5.39). 

 

5.3 A partial linearization algorithm for solving the Beckmann-type SUE 

formulation 

Different from the variational inequality or fixed-point formulation, the Beckmann-type 

MP formulation of equilibrium model is a convex program that enables many readily 

available convergent and efficient solution algorithms. The objective function can be 

utilized to obtain appropriate search directions and facilitate the determination of step 

size and stopping criterion in the solution algorithm. Taking advantage of this property, 

this section describes a partial linearization algorithm embedded with a self-regulated 

averaging (SRA) scheme for solving the equilibrium models considered in this research. 

Compared with the complete linearization algorithm and sequential solution procedure 

widely used for solving the equilibrium models, the partial linearization algorithm is 

more efficient while guaranteeing convergence (Evans, 1976; LeBlanc and Farhangian, 

1981; Patriksson, 1994). 

The partial linearization algorithm involves the search direction finding for 

deriving auxiliary flow pattern and the line search for determining step size and 

updating decision variables. The search direction is determined by solving a partial 

linearized subproblem as a first-order approximation of the original problem. Given the 

decision variables (travel demands) and corresponding travel disutility at iteration n-1, 
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n-1q  and ( )n-1τ f , the search direction (i.e., auxiliary travel demand y) at iteration n is 

determined the subproblem with following objective function: 

 
( ) ( )

( ) ( )

1, 2

1

min  
1 ln 1

sub

n
i i i i i

i i i

Z Z Z

y q y yτ
θ

−

= +

= ⋅ + ⋅ −∑ ∑

y y
  (5.47) 

The constraints remain the same for the auxiliary demands y. In the subproblem, the 

Beckmann term Z1 is linearized via a first-order approximation, which fixes the travel 

disutility ( )1n
i iqτ −  based on the current demand pattern qn-1. In the multiplicative 

Beckmann term, the travel disutility is fixed as ( )1ln n
i iqτ − . Z2 represents the entropy 

terms, where decision variables are directly substituted by auxiliary travel demand y. 

Thus, the subproblem is a convex program with linear inequality constraints. In the line 

search, the moving step size is determined based on the SRA scheme, which improves 

the efficiency of the widely used method of successive average scheme (Liu et al., 

2009). The procedure of partial linearization algorithm involves the following steps: 

 
Step 0. Initialization.  

• Initialize primal variables q0=0, and the free-flow travel disutility; 

• Set outer iteration counter n = 1; 

• Derive auxiliary flow pattern y1 by solving the partial linearized subproblem; 

• Initialize step size: 1 1ϕ = , 1 1γ = . Update primal variables: q1=y1. 

Step 1. Direction finding. 

• Update travel disutility based on the current demand pattern qn; 

• Set n = n + 1; 

• Derive auxiliary flow pattern yn by solving the partial linearized subproblem. 

Step 2. Line search. 

• Derive the step size nϕ  based on the SRA scheme: 

 1n nϕ γ=  (5.48) 
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1

1

1
2

if

otherwise

n
n

n

γ σ
γ

γ σ

−

−

 + ≥= 
+

n n-1 n-1 n-2y - q y - q
 (5.49) 

where 1 1σ >  and 2 1σ < . 

Step 3. Update primal variables. 

( )nϕ= + ⋅ −n n-1 n n-1q q y q . 

Step 4. Convergence test. 

• If { }max δ− ≤n n-1q q , terminate the algorithm, where δ  is a convergence 

tolerance at which the procedure stops. Otherwise, go to step 1. 

 

Specifically, the optimality conditions of the MP formulation give rise to 

analytical expressions of the decision variables based on dual variables, which enables 

the iterative balancing scheme for direction finding. The iterative balancing scheme is 

an efficient algorithm to obtain both primal and dual variables, which has been widely 

used for solving SUE models with side constraints (Bell, 1995; Bell and Iida, 1997; 

Chen et al., 2009; Ryu et al., 2014). The dual variables associated model constraints are 

iteratively adjusted based on the primal variables derived from the MP model 

formulation. The convergence of the iterative balancing scheme has been well proved 

(Bell and Iida, 1997). As will be described in Chapters 7-9, the partial linearization 

algorithm is further embedded with an iterative balancing scheme to solve advanced 

equilibrium models with side constraints (e.g., capacity constraints). The adjustment 

factor for the dual variable associated with the conservation constraint is derived 

following Ryu et al. (2014); while the adjustment factor for the dual variable associated 

with the side constraint is derived following Chen et al. (2009). 
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Chapter 6 Considering path order and perceptual correlations in a 

tolled network with ordered GEV model 

6.1 Introduction  

Based on the ordered path-size generalized extreme value (OPSGEV) model developed 

in Section 3.1, this chapter proposes an advanced bi-criteria stochastic user equilibrium 

(BSUE) model for congested road networks with tolls. In equilibrium traffic assignment 

considering the tradeoff between cost and time, most of existing models are formulated 

using path flows as the decision variables (Dial, 1996; Yang and Huang, 2004; Huang 

and Li, 2007; Sun et al., 2019). While few efforts have been made to incorporate the 

information of ranking of path toll. Leurent (1993) proposed an MP formulation that 

implicitly considers the order of path toll in the objective function. On this basis, Xie 

et al. (2021) modified Leurent’s MP formulation to consider the path order information 

by using the cut-off points to distinguish the travel demand assigned to each pair of 

paths with adjacent orders of tolls. With the integration of path ordering, the model 

formulation can better capture the time-cost tradeoff among the heterogenous travelers. 

However, the path order information is mainly introduced at the aggregate level of the 

MP formulation, which lacks behavioral interpretation at the individual route choice 

level that can explicitly consider both perceptual and physical correlations.  

Furthermore, the equilibrium route choice in tolled networks is often modeled by 

combining travel time and monetary cost in a generalized travel cost/time term, which 

cannot fully capture travelers’ decision-making behavior. Wang and Ehrgott (2013) 

proposed a more general concept, i.e., time surplus, which has solid foundation from 

the decision-making theory and can be adopted in the Beckmann-type MP formulation 

to flexibly replicate the bi-objective user equilibrium (BUE) condition. However, it 

assumes travelers have perfect knowledge of the transportation network condition and 

ignores subjective uncertainties of travelers. Ehrgott et al. (2015) proposed a multi-

objective stochastic user equilibrium model to further consider the random perceptions 

of all path attributes. However, the MNL-based MSUE model cannot capture the 
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various types of path correlations, and it also lacks an MP formulation that allows for 

easy interpretation of optimality conditions and development of efficient solution 

algorithm.  

Motivated by the abovementioned issues, this chapter aims to develop an advanced 

BSUE traffic assignment model while specifically accounting for the effect of path 

ordering information, which is an important path attribute in tolled networks. A new 

Beckmann-type MP formulation is developed to bridge the OPSGEV route choice 

model developed in Section 3.1 to the aggregate time-surplus-based BSUE model. 

Benefiting from the integrated OPSGEV model, the perceptual correlation associated 

with ranking of path toll and the physical correlation arising from path overlap can be 

simultaneously considered. Furthermore, to model subjective uncertainties in the 

tradeoff between cost and time, the time surplus concept is extended to consider random 

perception of the path travel time together with physical and perceptual path 

correlations. In the developed MP formulation, the path order information is explicitly 

integrated in the decision variables and both types of path correlations are considered 

in the objective function, which provides a behavioral interpretation of individual route 

choice behavior in tolled networks following the random utility maximization principle.  

 

6.2 Integrating the OPSGEV model in the time-surplus-based bi-objective 

equilibrium analysis 

6.2.1 Perceived time surplus maximization bi-objective stochastic user 

equilibrium 

This section introduces the perceived time surplus to further account for the tradeoff 

between cost and time. To start with, we briefly review the concept of time surplus 

originally proposed by Wang and Ehrgott (2013), which is more general than the 

commonly used generalized travel cost and has sound economic interpretation for 

decision making. The time surplus on path k between OD pair rs, rs
kTS , is defined as 
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the difference between the maximum travel time travelers willing to spend, ( )max rs
kt c , 

and the actual travel time rs
kt : 

 ( )maxrs rs rs
k k kTS t c t= − ,  (6.1) 

where ( )max rs
kt c  can be obtained based on a decreasing indifference curve with respect 

to the path toll rs
kc  (Wang and Ehrgott, 2013). Figure 6.1 provides a simple illustration 

of time surplus used in the BUE analysis. 

 

 

Figure 6.1. Illustration of time surplus in BUE analysis 
 

The above time surplus illustration is constructed based on deterministic monetary 

cost and travel time, which does not consider the subjective uncertainties of travelers. 

Although the tolling scheme is predetermined and well disseminated, travelers may 

have imperfect knowledge of the travel time in the tolled network. In this chapter, we 

consider travelers have random perception errors on the flow-dependent travel time but 

know the toll on each path. Hence, the perceived time surplus can be defined as the 

difference between the maximum travel time willing to spend and the perceived travel 

time. Consistent with the widely used logit-based travel choice models, the travel time 

perception is assumed to follow the reversed Gumbel distribution. The perceived time 

surplus can then be expressed as follows: 
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( ) ( ) ( )
( ) ( ) ( )

max

max

,

, ,

rs rs rs rs
k k k k

rs rs rs rs rs rs
k k k k k

PTS c t c T

t c t TS k K rs RSε ε

= −

 = − − = + ∀ ∈ ∈ 

f f

f f
. (6.2) 

where ( )rs
kT f  denotes the perceived travel time, and rs

kε  is the Gumbel distributed error 

term. Compared with the time surplus described in Figure 6.1, the perceived time 

surplus illustrated in Figure 6.2 is no longer deterministic, but Gumbel distributed due 

to the consideration of random travel time perception. 

 

 

Figure 6.2. Illustration of perceived time surplus 
 

On this basis, we define the perceived time surplus maximization bi-objective 

stochastic user equilibrium (PTSmaxBSUE) as follows: 

 

Definition 1. Under the PTSmaxBSUE conditions, all individuals are travelling on the 

path with the maximum perceived time surplus among all the paths between each OD 

pair, i.e.,  

( ) ( ), , , , ,rs rs rs rs rs rs rs rs rs
k k k k l lf q P PTS c PTS c l k K k K rs RS = ⋅ ≥ ∀ ≠ ∈ ∀ ∈ ∈ f f . (6.3) 

The OPSGEV route choice model can then be encapsulated in the PTSmaxBSUE 

condition to account for both path order correlation and path overlap in the perceived 

time surplus framework. The utility function (3.1) is substituted with the perceived time 
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surplus, where the systematic utility rs
kv  is represented by time surplus rs

kTS . Owing to 

Property 4 of the Gumbel distribution (Table 2.1), subtracting a constant from each 

alternative will not change the logit-based choice probability. An equivalent OPSGEV 

utility function can be obtained by subtracting ( )max 0t  from rs
kTS  in Eq. (3.1):  

 1 1ln ln , , ,rs rs rs rs rs rs rs
uk k k uk uk u u

k u

V PS w k K u U rs RSτ ε ε
θ θ

= − + + + + ∀ ∈ ∈ ∈ ,  (6.4) 

where the systematic utility rs
kv  is represented by rs

kTS  and hence replaced with rs
kτ− . 

rs
kτ  is a disutility term introduced to facilitate constructing the equivalent Beckmann-

type MP formulation for the PTSmaxBSUE condition: 

 
( )

( ) ( )

max

max max

0

0

rs rs
k k

rs rs
k k

TS t

t t t c

τ = − +

 = + − 
,  (6.5) 

Based on the utility function (6.4), the OPSGEV model can be incorporated into Eq. 

(3.6) to derive the corresponding route choice probability rs
kP . 

 

6.2.2 Formulation of OPSGEV-based PTSmaxBSUE model 

Figure 6.3 demonstrates bridging the OPSGEV individual route choice model to the 

MP formulation of the aggregate path-correlation-based PTSmaxBSUE model. Based 

on the utility function (6.4) and choice structure of the OPSGEV model (Figure 3.2), 

the decision variable rs
ukf  inherently incorporates path order information based on the 

path subset u determined using the ranking of path tolls. The conservation, definitional, 

and nonnegativity constraints can be written according to the decision variable. Terms 

in the objective function can be derived associated with the marginal and conditional 

choice levels and composite disutility in consistent with the hierarchical choice 

structure.  
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Figure 6.3. Illustration of formulating aggregate traffic assignment model based on 
OPSGEV route choice model 

 

Following Figure 6.3, the OPSGEV-based PTSmaxBSUE model is formulated as 

 

( ) ( )

( )

0

1

1

min Z

1 ln 1

1 ln

1 1 ln 1
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a rs RS k K

K M
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rs RS u k Kk
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k k
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uk uk
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∈ = ∈
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 (6.6) 

s.t. 

 , ,
k M

rs rs rs
uk k

u k
f f k K rs RS

+

=

= ∀ ∈ ∈∑   (6.7) 
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 , ,
rs

rs rs
a k k a

rs RS k K

f x a Aδ
∈ ∈

= ∀ ∈∑ ∑   (6.8) 

 ,
rs

rs rs
k

k K

f q rs RS
∈

= ∀ ∈∑   (6.9) 

 0, , ,rs rs rs
uk uf k K u U rs RS≥ ∀ ∈ ∈ ∈   (6.10) 

Objective function (6.6) corresponds to the equilibrium route choice pattern based on 

the OPSGEV model given in Eq. (3.6). Constraints (6.7) and (6.8) are the definitional 

constraints. Constraint (6.9) is the conservation constraint. Constraint (6.10) is the 

nonnegative constraint. To show some qualitative properties of the proposed MP 

formulation, two propositions are stated as follows: 

 

Proposition 6.1. The proposed MP formulation (6.6)–(6.10) gives the equilibrium path 

flow pattern of the OPSGEV model. 

Proof. See Appendix A1 for detailed proof. 

 

Proposition 6.2. The path and link flow solutions to the MP formulation (6.6)–(6.10) 

are unique. 

Proof. See Appendix B1 for detailed proof. 

 

6.3 Numerical examples 

6.3.1 Toy network 

This section illustrates the properties of the proposed equilibrium model based on the 

small network as shown in Figure 6.4. The model parameters are 0.1kθ = , 0.05uθ = , 

M = 2, 0.5rs
ukw = . The travel demand from node 1 to node 6 is 100 veh/hour. The link 

attributes and path attributes are presented in Tables 6.1 and 6.2. The link travel times 

are calculated via the Bureau of Public Roads (BPR) function:  
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 ( )
4

0 1 0.15 a
a a a

a

xt x t
Cap

  
= ⋅ +  

  
 (6.11) 

There are three paths connecting nodes 1 and 6, i.e., path 1 with no toll, path 2 with a 

medium toll $20, and path 3 with a high toll $40. The indifference travel times ( )max rs
kt c  

are specified at the last column of Table 6.2. 

 

 

Figure 6.4. Toy network with tolled roads  
(adapted from Li et al., 2023) 

 

Table 6.1. Link attributes of toy network 
Link Free-flow travel time (min) Capacity (veh/hour) Toll ($) 
1-2 20 50 0 
1-4 20 50 0 
2-3 20 50 0 
2-5 20 50 0 
3-6 20 50 0 
4-5 10 50 20 
5-6 10 50 20 

 

Table 6.2. Path attributes of toy network 
ID Path Free-flow travel time (min) Toll ($) Rank  ( )max rs

kt c  

1 1-2-3-6 60 0 3 70 
2 1-2-3-5-6 50 20 2 60 
3 1-4-5-6 40 40 1 50 

 

6.3.1.1 Model outcomes 

This section presents the outcomes of the proposed OPSGEV-PTSmaxBSUE model 

and compares it with competing models, including the TSmaxBUE model without 

considering perception error, the MNL-PTSmaxBSUE model without considering path 



 
 

170 
 

correlations, the PSL-PTSmaxBSUE model focusing on the physical correlation only, 

and the OGEV- PTSmaxBSUE focusing on the perceptual correlation only.  

The values of objective terms are summarized in Table 6.3. The objective function 

is separated into three parts, i.e., ( ) ( )1 0

a

rs

x rs rs
a k k

a rs RS k K

Z t d f gω ω τ
∈ ∈

= + ⋅∑ ∑ ∑∫  as the 

Beckmann term representing deterministic path disutility (opposite of time surplus), 

( )2
1

1 1ln 1 ln
rs

rs rs
u

K M
rs rs rs rs

uk uk k k
rs RS u rs RSk K k Kk k

Z f f f PS
θ θ

+

∈ = ∈∈ ∈

= ⋅ − − ⋅∑ ∑ ∑ ∑ ∑  as the entropy term that 

corresponds to the conditional choice level considering physical correlations, and 

3
1 1

1 1 1ln 1 ln
rs rs

rs rs rs
u u u

K M K M
rs rs rs rs

uk uk uk uk
rs RS u rs RS uk K k K k Ku k u

Z f f f w
θ θ θ

+ +

∈ = ∈ =∈ ∈ ∈

    
= − ⋅ − − ⋅             

∑ ∑ ∑ ∑ ∑ ∑ ∑  as 

the entropy term that corresponds to the marginal choice level considering perceptual 

correlations. As can be expected, the consideration of perception error increases the 

usage of inferior paths and hence increases the values of Z1 in the four PTSmaxBSUE 

models. By incorporating different path correlations, the PSL-, OGEV-, and OPSGEV-

PTSmaxBSUE models have lower values of Z1 than the MNL-PTSmaxBSUE model. 

In particular, the proposed OPSGEV-PTSmaxBSUE model accounts for both physical 

and perceptual path correlations and has the lowest value of Beckmann term (Z1) but 

the highest value of entropy terms (Z2 + Z3). 

 

Table 6.3. Comparison of objective terms 

 TSmaxBUE 
MNL-

PTSmaxBSUE 

PSL-

PTSmaxBSUE 

OGEV-

PTSmaxBSUE 

OPSGEV-

PTSmaxBSUE 

Z1 6129.644 6157.045 6148.413 6151.492 6144.563 

Z2 \ 2523.659 2736.924 1844.468 2054.621 

Z3 \ \ \ 3614.754 3613.163 

 

Figure 6.5 further compares the time surplus and flow of each path resulted from 

the different models. The TSmaxBUE model leads to an equal time surplus for each 

path, a relatively low traffic flow on Path 2, and relatively high flows on Paths 1 and 3. 
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The PTSmaxBSUE models tend to have more diverse path flow patterns and different 

path time surplus. Owing to the incorporation of perception error, Path 2 carries a larger 

travel demand with lower time surplus. The PSL-, OGEV-, and OPSGEV-

PTSmaxBSUE models have more similar time surplus and path flow patterns to the 

TSmaxBUE model than the MNL-PTSmaxBSUE model. These results are consistent 

with the observations from Table 6.3, which can be attributed to the consideration of 

path correlations. The introduction of objective terms with respect to path correlations, 

including the term related to physical correlation (i.e., 1 ln
rs

rs rs
k k

rs RS k Kk

f PS
θ ∈ ∈

− ⋅∑ ∑ ) in Z2, 

and term Z3 related to perceptual correlation, lowers the ratio of the diversification term 

indicating travelers’ completely random choice behavior without considering path 

disutility (i.e., ( )
1

1 ln 1
rs

rs
u

K M
rs rs

uk uk
rs RS u k Kk

f f
θ

+

∈ = ∈

⋅ −∑ ∑ ∑ ). 

 

 
(a) TSmaxBUE 

 
    (b) MNL-PTSmaxBSUE       (c) PSL-PTSmaxBSUE 
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   (d) OGEV-PTSmaxBSUE   (e) OPSGEV-PTSmaxBSUE 

Figure 6.5. Results of different bi-criteria traffic assignment models 
 

6.3.1.2 Effect of path correlations 

This section investigates the effect of physical and perceptual path correlations on the 

equilibrium assignment pattern. Figure 6.6 compares the performances of the four 

PTSmaxBSUE models in the toy network under varying degrees of physical path 

correlations (Figure 6.6(a)). With the decrease in path overlap, i.e., increasing value of 

the PS factor as shown in Figure 6.6(b), the OPSGEV- and PSL-PTSmaxBSUE models 

degenerate to the OGEV- and MNL-PTSmaxBSUE models, respectively. In the case 

when path overlap is extremely high (i.e., x=0), the physical correlation dominantly 

influences the route choice behavior, making the OPSGEV- and PSL-PTSmaxBSUE 

models result in similar path flows. 

 

 
(a) Toy network with varying path overlaps 
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(b) Comparison of flow on Path 3 

 
(c) Comparison of time surplus on Path 2 

Figure 6.6. Comparison of model outcomes under varying path overlaps 
 

Figure 6.6(c) investigates the difference in link flow patterns between the four 

PTSmaxBSUE models and the TSmaxBUE model. The root mean square error (RMSE) 

is adopted to compare the model results: 

 
2UE

a a

a A

p pRMSE
A∈

 −
=   

 
∑ , (6.12) 

where ap  and UE
ap  denote the choice proportions of link a (ratio between link flow and 

total demand) that are obtained from the PTSmaxBSUE model and the TSmaxBUE 

model, respectively. |A| is the number of links in the network. The comparison results 

are presented in Figure 6.6(c). The OPSGEV- and PSL-PTSmaxBSUE models have 

varying RMSE values dependent on the degree of path overlap, while the RMSE of 

OGEV- and MNL-PTSmaxBSUE models owing to the neglect of physical correlation. 
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The difference between the RMSE values of the four PTSmaxBSUE models implies 

different effects when considering physical and perceptual path correlations. 

 

 

Figure 6.7. Effect of perceptual correlation 
 

Figure 6.7 illustrates the effect of perceptual correlation based on the values of 

different objective terms. The x axis is the ratio between dispersion parameters u kθ θ , 

which is the dissimilarity parameter in the OPSGEV-PTSmaxBSUE model. A higher 

value of the dissimilarity parameter implies lower perceptual path correlation and a 

lower degree of competition among adjacently ranked paths. With an increase in the 

dissimilarity parameter, the impact of perceptual correlation decreases, as the value of 

entropy terms decreases while the value of Beckmann term increases. When 1u kθ θ = , 

the OPSGEV-PTSmaxBSUE model degenerates to the PSL-PTSmaxBSUE model.  

 

6.3.2 Nguyen-Dupuis network 

This section illustrates the applicability of the proposed model in the Nguyen-Dupuis 

network (Nguyen and Dupuis, 1984) as shown in Figure 6.8. Four OD pairs are 

considered, i.e., 1-2, 1-3, 4-2, and 4-3, with OD travel demands equal to 400, 800, 600, 

and 200 vehicles per hour, respectively. The link travel times are calculated as follows: 
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 a a a at xα β= + ⋅ . (6.13) 

 

 
Figure 6.8. Nguyen-Dupuis network 

 

In this experiment, the roads in the city center (i.e., links 5, 6, 7, 8, 10, 12, 14) are 

tolled. The values of aα  and aβ  of each link and link tolls are presented in Table 6.4. 

Based on the road tolls, the toll on each path can be obtained. Between each pair, the 

paths are ranked according to path tolls. Attributes of the 25 paths connecting the four 

OD pairs are shown in Table 6.5. 

 

Table 6.4. Link attributes of Nguyen-Dupuis network 
Link aα  aβ  Toll ($) Link aα  aβ  Toll ($) 

1 7 0.0125 0 11 9 0.0125 0 
2 9 0.01 0 12 10 0.005 10 
3 9 0.01 0 13 9 0.005 0 
4 12 0.005 0 14 6 0.0025 6 
5 3 0.0075 3 15 9 0.005 0 
6 9 0.0075 9 16 8 0.01 0 
7 5 0.0125 5 17 7 0.0125 0 
8 13 0.005 13 18 14 0.01 0 
9 5 0.0125 0 19 11 0.01 0 
10 9 0.0125 9     
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Table 6.5. Path attributes of Nguyen-Dupuis network 
OD ID Path Free-flow travel time (min) Toll ($) Rank ( )max rs

kt c  

1-2 

1 2-18-11 32 0 8 50 
2 1-5-7-9-11 29 8 6 46 
3 1-5-7-10-15 33 17 4 41.5 
4 1-5-8-14-15 38 22 2 39 
5 1-6-12-14-15 41 25 1 37.5 
6 2-17-7-9-11 35 5 7 47.5 
7 2-17-7-10-15 39 14 5 43 
8 2-17-8-14-15 44 19 3 40.5 

1-3 

9 1-6-13-19 36 9 6 45.5 
10 1-5-7-10-16 32 17 4 41.5 
11 1-5-8-14-16 37 22 2 39 
12 1-6-12-14-16 40 25 1 37.5 
13 2-17-7-10-16 38 14 5 43 
14 2-17-8-14-16 43 19 3 40.5 

4-2 

15 4-12-14-15 37 16 4 42 
16 3-5-7-9-11 31 8 5 46 
17 3-5-7-10-15 35 17 3 41.5 
18 3-5-8-14-15 40 22 2 39 
19 3-6-12-14-15 43 25 1 37.5 

4-3 

20 4-13-19 32 0 6 50 
21 4-12-14-16 36 16 4 42 
22 3-6-13-19 38 9 5 45.5 
23 3-5-7-10-16 34 17 3 41.5 
24 3-5-8-14-16 39 22 2 39 
25 3-6-12-14-16 42 25 1 37.5 

 

We first investigate the effect of considering perception error on the bi-criteria 

traffic assignment in tolled networks. The link V/C ratios derived from the TSmaxBUE 

and MNL-PTSmaxBSUE models are compared in Figure 6.9. As shown in Figure 

6.9(a), the TSmaxBUE model considers the deterministic choice of paths with the 

highest time surplus, which tends to assign traffic volumes on several key roads and 

lead to high V/C ratios on these links. On the other hand, the PTSmaxBSUE model 

tends to generate a more diverse path flow pattern, which diverts the flows on extremely 

congested road to relatively uncongested ones.  
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(a) TSmaxBUE model 

 

(b) MNL-PTSmaxBSUE model 

Figure 6.9. Link V/C ratio patterns from different models 

 

We then investigate the effects of path correlations based on the link flow 

difference patterns as shown in Figure 6.10. Figure 6.10(a) shows the link flow 

difference between the OPSGEV- and PSL-PTSmaxBSUE models, which implies the 

effect of considering the perceptual path correlation. Figure 6.10(b) shows the link flow 

difference between the OPSGEV- and OGEV-PTSmaxBSUE models, implying the 

effect of considering the physical path correction. In this experiment, both types of path 

correlations can significantly influence the model outcomes. The perceptual correlation 

has a more significant impact than the commonly modeled physical correlation, which 

implies the importance of considering both correlations in the bi-criteria traffic 

assignment for tolled networks. 
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(a) OPSGEV-PTSmaxBSUE – PSL-PTSmaxBSUE 

 
(b) OPSGEV-PTSmaxBSUE – OGEV-PTSmaxBSUE 

Figure 6.10. Link flow difference between different models 

 

6.4 Conclusions  

This chapter makes an initial effort to introduce the perceptual path correlation in 

traffic assignment problem and to simultaneously consider the perceptual and physical 

path correlations in the bi-criteria equilibrium assignment for tolled networks. The two 

types of path correlations arise from the two important route choice criteria in tolled 

networks, namely the monetary cost and travel time. The time surplus concept recently 

proposed for bi-criteria traffic assignment (Wang et al., 2013) is extended to the 

perceived time surplus that considers the perception error of travel time, which has long 

been recognized an important concern in the traffic assignment (Sheffi, 1985). In this 

chapter, we focus on the single-class traffic assignment problem where all travelers are 

assumed to share the same time surplus function. On this basis, an advanced BSUE 
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model is proposed that integrates the OPSGEV route choice model (Section 3.1) to 

consider the travel time perception error as well as perceptual and physical path 

correlations. An equivalent Beckmann-type MP formulation is developed that 

facilitates the understanding and evaluation of the proposed BSUE model. Numerical 

experiments are conducted based on two networks to illustrate the advantages of the 

proposed model over existing models.  

The proposed model could be explored in several other directions in future studies, 

as follows. (1) Besides the specific perceptual correlation arising from the ranking of 

path tolls, more types of perceptual correlation in different route choice contexts can be 

integrated in the proposed modeling framework. For instance, the paths traversing the 

same important link (e.g., bridge or tunnel) are likely to be perceived as correlated 

alternatives, which can be an important issue to consider in the traffic assignment 

(Habib et al., 2013). (2) In addition to focusing on a single user class, it is important to 

extend the proposed model to consider multiple classes of travelers with heterogeneous 

values of time (Wang et al., 2013; Li et al., 2023). 
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Chapter 7 Modeling mode choice of customized bus services with 

loyalty subscription schemes in multi-modal transportation systems 

7.1 Introduction  

7.1.1 Background 

Based on the dogit-nested weibit (DNW) individual mode choice model developed in 

Section 3.2, this chapter models the long-term equilibrium mode choice in multi-modal 

transportation systems with the emerging customized bus (CB) services. In recent years, 

CB services have been extensively promoted in China to increase transit ridership and 

alleviate road congestion. CB services were first implemented in 2013 in Qingdao, and 

have since spread to over 30 Chinese cities, including Beijing, Shenzhen, and Nanjing, 

where they play important roles in public transportation (Huang et al., 2017). For 

example, more than 400 CB lines are operated in Beijing to meet commuting, education, 

and tourism demands, transporting 37,000 passengers per day (China National Radio, 

2018). This rapid development of CB services might attract travelers who would 

otherwise use conventional modes, such as private cars and conventional public transit 

(PT), thereby influencing the modal demand pattern in urban multi-modal 

transportation systems. It is therefore imperative to understand the long-term effect of 

CB services on the modal split patterns of multi-modal transportation systems.  

Table 7.1 summarizes innovative characteristics of CB services, which are thus 

considered a distinct travel mode that should be modeled differently to conventional 

travel modes (Gu et al., 2018; Huang et al., 2020a). As has been introduced in Section 

3.2, CB services are an intermediate mode between conventional PT modes and the 

private car mode in terms of travel time, travel cost, and in-vehicle congestion. When 

compared to the conventional PT, CB has shorter travel time, higher fee, and more 

restricted operating times and lines only serving travelers with similar OD and 

departure/arrival time choices. When comparing to the private car, CB services are 

more economical and environmentally friendly and are often allowed to travel in 

dedicated bus lanes to alleviate road congestion (Liu et al., 2016).  
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Table 7.1. Characteristics of CB services and other transport modes.  
Conventional PT Private car CBs 

Access distance Long NA Short 

Waiting time Long NA Short 

In-vehicle travel time Long Short  Medium  

In-vehicle congestion High None None 

Service coverage Medium High Low 

Monetary cost Low High Medium 

Subscription Not required Not required Required 

Loyalty scheme No No Yes 

Note: PT = public transit. 
 

Another unique characteristic of CB services is that they require passengers to 

subscribe to book a seat. As the number of seats on a CB line are limited, a subscription 

may not be available if all seats on a CB line are booked. A CB line will be considered 

as inoperable if the number of subscriptions fails to ensure a profitable occupancy rate. 

As illustrated in Section 3.2, the passenger loyalty stemming from the loyalty 

subscription scheme of CB services is also an important determinant of travel behavior. 

In summary, it is necessary to account for the characteristics of CB services when 

modeling mode choice in multi-modal systems that encompass conventional travel 

modes and emerging CB services.  

 

7.1.2 Related studies 

An increasing number of studies have been conducted on CB services and similar on-

demand modes provided by transportation network companies (TNCs). Table 7.2 

summarizes the studies on CB services. Many studies have focused on the tactical or 

operational level of CB services, and extensive efforts have been devoted to the design 

and optimization of CB operations, such as the service coverage, routes, stops, 

timetables, fleet sizes, passenger–vehicle assignment, and pricing of CB services. 
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Another important stream of studies has considered CB services in the contexts of travel 

demand analysis and the evaluation of transportation network performance. However, 

these studies have examined the day-to-day and within-day dynamics of the CB 

subscription process (i.e., operational aspects), which may not be adequate for modeling 

the long-term effects of CB services at the strategic level.  

 

Table 7.2. Summary of CB service studies 
Aim References Consideration Main feature 
Network 
design and 
optimization 

Tong et al., 2017; Guo 
et al., 2018; Lyu et al., 
2019; Qiu et al., 2019; 
Huang et al., 2020a; 
Dou et al., 2021; Ma et 
al., 2021; Wang et al., 
2021b 

Service coverage, 
route, stop, timetable, 
fleet size, passenger 
assignment, and fare 
pricing 

Flexible and 
dynamic service 
design 

Travel 
demand 
modeling  

Djavadian and Chow, 
2017; Gu et al., 2018; 
Li et al., 2018b; Huang 
et al., 2020b 

Effect of introducing 
CB services on traffic 
flow and system 
performance 

Day-to-day and 
within-day 
dynamic CB 
service 
subscriptions 

Empirical 
choice 
behavior 
analysis 

Li et al., 2019; 
Gadepalli et al., 2020; 
Wang et al., 2019, 
2020b 

Effect of CB services 
on travel choice 
behavior and 
passenger loyalty 

Increased level 
of service; 
long-term 
subscription 
scheme 

Reviews Liu and Ceder 2015; 
Liu et al., 2016; Huang 
et al., 2017 

Characteristics and 
development of CB 
services  

All of the above 

 

To investigate the long-term effects of CB services and other emerging on-demand 

modes (e.g., ride-hailing and ridesharing) on travelers’ travel choice behavior, many 

studies have adopted statistical methods based on stated- and revealed-preference travel 

surveys and other supporting data (e.g., Choudhury et al., 2018; Xie et al., 2019; Yan 

et al., 2019a; Sweet, 2021; Erhardt et al., 2022). Equilibrium modeling framework has 
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also been developed for on-demand modes which share similar characteristics with the 

CB services. For instance, Pi et al. (2019) proposed a general dynamic equilibrium 

assignment model for short-term mode and route choices in the network with both 

conventional travel modes and emerging on-demand services. Di and Ban (2019) 

developed a unified equilibrium model focusing on the behavior of drivers and 

passengers of ridesharing and ride-hailing, where the travel choices are derived based 

on game theory. The market equilibrium approach has also been used to analyze the 

customer behavior of conventional and emerging on-demand services, such as taxis and 

ride-hailing (e.g., Yang et al., 2002; Yang and Yang, 2011; Wang et al., 2020c; Ke et 

al., 2021). Wang and Yang (2019) provided a systematic review of the ride-sourcing 

system and the equilibrium models for analyzing transportation systems with this 

emerging on-demand mode. However, to the best of the authors’ knowledge, few 

equilibrium models have been developed for modeling the long-term mode choice in 

multi-modal systems with CB services based on the random utility theory. In addition, 

the effect of passenger loyalty is often not captured in existing equilibrium models. 

 

7.1.3 Objectives and contributions 

This chapter aims to make an initial effort to model the long-term modal split in multi-

modal transportation systems while specifically considering innovative characteristics 

of the emerging CB services. As discussed above, the subscription process of CB 

services calls for the consideration of the limited numbers of available seats and the 

occupancy rate requirements, which should be regarded as tight constraints on the lower 

and upper limits of CB demand. Owing to the loyalty CB subscription schemes, 

passenger loyalty to CB services is to be explicitly considered in the developed 

equilibrium mode choice model.  

A comprehensive mathematical model is developed for the long-term mode choice 

equilibrium problem in multi-modal transportation systems with emerging shared 

mobility modes like CB. An equivalent mathematical programming (MP) problem with 

tight constraints on the lower and upper limits of CB demand is formulated while 
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retaining consistent with the DNW choice model developed in Section 3.2. Benefiting 

from the embedded DNW model, various behavioral issues arising from CB services 

can be simultaneously addressed in the equilibrium analysis, including passenger 

loyalty, mode correlation, and heterogeneous mode perceptions. This enables the 

developed equilibrium model to better reproduce the distinct choice behaviors of 

members of CB loyalty subscription schemes and those who purchase one-time CB 

subscriptions. 

 

7.2 Problem statement 

To facilitate the presentation of the essential ideas without the loss of generality, the 

main model assumptions and multi-modal transportation system considered in this 

chapter are presented in Sections 7.2.1 and 7.2.2. 

 

7.2.1 Assumptions 

A7.1: This chapter considers three independent travel modes in the urban transportation 

system: a private car mode, conventional transit mode, and a CB mode. 

A7.2: The conventional modes, i.e., private car mode and conventional transit mode, 

have sufficient capacity to accommodate all potential demand. The generalized travel 

times of conventional modes are separable, continuous, and monotonically increasing 

functions of modal demand. Drivers of private cars have demand-dependent in-vehicle 

travel time and OD-specific monetary costs for parking and fuel consumption. 

Passengers on conventional transit modes have fixed in-vehicle travel times, waiting 

times and access (walking) times, but have an in-vehicle crowding disutility dependent 

on the in-vehicle travel time and number of passengers (Lo et al., 2003; Li and Hensher, 

2011; Liu and Lam, 2014; Wang et al., 2018).  

A7.3: The in-vehicle travel time of CB is fixed. Because a seat is reserved for each 

passenger, CB passengers do not experience disutility from in-vehicle crowding. 

However, this characteristic leads to a tight capacity constraint for CB services, due to 
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the limited CB fleet size between each OD pair and the limited number of seats per CB. 

The CB capacity is designed to accommodate all long-term subscriptions but may not 

be enough for one-time subscriptions. If all CB seats are fully booked, the excess CB 

passengers will be unable to subscribe to their preferred services and will thus be forced 

to use less preferable travel modes (Gu et al., 2018; Huang et al., 2020a). 

A7.4: Subscribers who purchase long-term CB tickets must pay the entire fare in 

advance; thus, they will be loyal to CB services, and tend not to consider using other 

modes (Wang et al., 2020b). 

 

7.2.2 Notations 

Set  

RS Set of OD pairs. 

Urs Set of types of modes between OD pair rs. 
rs
uM  Set of modes of type U between OD pair rs. 

M Set of all modes. 

 
Inputs and parameters 

rs
mt  Generalized travel time of mode m between OD pair rs (minute). 

vot Value of time (CNY/hour). 
rs
carfc  Fuel consumption of car between OD pair rs (CNY/km). 

drs Travel distance between OD pair rs (km). 

pc Car-parking cost (CNY). 
rs

mf   Fare of mode m between OD pair rs (CNY). 

,
rs
iv mt   In-vehicle travel time of mode m between OD pair rs (minute). 

( )rs
PTg q  In-vehicle crowding discomfort cost per unit time (CNY/minute). 

,
rs
wt mt   Waiting time of mode m between OD pair rs (minute). 

,
rs
wk mt   Access (walking) time of mode m between OD pair rs (minute). 

rs
mτ  Travel disutility of mode m between OD pair rs. 
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rs
uτ   Travel disutility of nest u between OD pair rs. 

rsψ   Required seat-occupation rate of a CB line between OD pair rs 

nseat Number of seats on one CB vehicle (persons/vehicle). 
rs

CBn  Maximum number of CB vehicles between OD pair rs (vehicle). 

rs
CBn ′  Normal number of vehicles in a CB fleet between OD pair rs (vehicle). 

rs
mcap  Capacity of mode m between OD pair rs (person). 

rs
CBld  Lower limit of demand for operating CB between OD pair rs (person). 

qrs Travel demand between OD rs (person). 
rs
umβ  Shape parameter of mode m under nest u between OD pair rs. 
rs
uβ   Shape parameter of nest u between OD pair rs. 
rs
mη  Loyalty parameter for mode m between OD pair rs in the dogit-based 

model. 

Accrs Utility-based accessibility between OD pair rs. 

Accrs,b, 

Accrs,a 

Utility-based accessibility between OD pair rs before and after 

implementation of certain policies. 

Ers CO emissions between OD pair rs (gram/hour). 

 
Decision variable 

rs
umq  Travel demand of type u mode m between OD rs (person). 

rs
umqc  Number of choice passengers choosing mode m under nest u between 

OD pair rs. 
rs
uqc  Number of choice passengers choosing nest u between OD pair rs. 

,rs rs
cap ldω ω  Lagrangian variables associated side constraints on CB capacity and 

lower limit of CB demand between OD pair rs. 
rsπ  Lagrangian variables associated with conservation constraints between 

OD pair rs. 
rs
mq  Travel demand of mode m between OD rs (person). 

Note: PT = public transit; CB = customized bus. 
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7.2.3 Multi-modal transportation system with customized bus services 

7.2.3.1 Private car  

In accordance with A7.2, the generalized travel time of private car drivers between OD 

rs is as follows: 

 ( ) ( ), ,rs rs rs rs
car iv car car rs cart t q d fc pc vot rs RS= + ⋅ + ∀ ∈ ,  (7.1) 

where rs
cart  ( ),

rs
iv cart ⋅ , rs

carq , and rs
carfc  respectively denote the generalized travel time, in-

vehicle travel time, travel demand, and fuel consumption of the car mode between OD 

pair rs; drs denotes the travel distance between OD pair rs; pc denotes the car-parking 

cost; vot denotes the value of time, which is measured by cost/time (e.g., CNY/hour). 

The first term on the right-hand side (RHS) represents the increase in in-vehicle travel 

time with respect to car demand, and the latter terms give the distance-based cost for 

fuel consumption and the fixed parking cost (Liu et al., 2016). The car demand rs
carq  is 

derived from the equilibrium mode choice model developed in Section 7.3. 

 

7.2.3.2 Conventional PT  

In accordance with Assumption A7.2, the generalized travel time of conventional PT 

between OD pair rs is expressed as follows: 

 ( ) ( ), , , ,rs rs rs rs rs rs
PT wk PT wt PT PT iv PT PTt t t g q t f vot rs RS = + + ⋅ + ∀ ∈  ,  (7.2) 

where rs
PTt , rs

PTq , ,
rs
iv PTt , and rs

PTf  respectively denote the generalized travel time, travel 

demand, in-vehicle travel time, and fare of conventional PT between OD pair rs; ,
rs
wk PTt  

and ,
rs
wt PTt  are the access (walking) and waiting time of conventional PT modes between 

OD pair rs; g(.) denotes the in-vehicle crowding discomfort cost per unit time. The 

terms on the RHS separately represent the access and waiting time, and the generalized 

travel time of in-vehicle traveling, which is affected by in-vehicle crowding discomfort 

and fare. The in-vehicle crowding discomfort cost is an increasing function with respect 
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to the in-vehicle travel time and the PT demand (Li and Hensher, 2011; Liu and Lam, 

2014; Wang et al., 2018). The derivation of PT demand rs
PTq  is based on the equilibrium 

mode choice model developed in Section 7.3. 

 

7.2.3.3 Customized bus 
(1) CB operators  

As this chapter focuses on the demand analysis rather than the design of CB services, 

it is assumed that the service characteristics of CB lines (e.g., route, timetable, fleet size, 

and fare price) are exogenously pre-determined by CB operators. Thus, two operational 

characteristics of CB services are considered:  

 

(a) CB operators accept subscriptions if there are seats available in their fleet of 

CBs. A subscription will be rejected if all seats have been booked, i.e., the number of 

passengers that can subscribe to the CB line between OD pair rs, rs
CBq , cannot exceed 

the capacity of the CB line between OD pair rs: 

 ,rs rs
CB CBq cap rs RS≤ ∀ ∈ , (7.3) 

where rs
CBcap  denotes the CB line capacity, which is given by the maximum fleet size 

between OD pair rs, rs
CBn , and the number of seats on each CB vehicle, nseat, as follows: 

 ,rs rs
CB CB seatcap n n rs RS= ⋅ ∀ ∈ . (7.4) 

 

(b) A CB line between OD pair rs is put into operation only if the demand for this 

line is profitable, i.e., the number of passengers reaches a lower limit, CB
rsld .  

 ,rs rs
CB CBq ld rs RS≥ ∀ ∈ , (7.5) 

In practice, the lower limit is defined by a CB service operator’s required threshold of 

seat-occupation rate: 
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 ,rs rs rs
CB CB seatld n n rs RSψ ′= ⋅ ⋅ ∀ ∈ ,  (7.6) 

where rsψ  is the required seat-occupation rate and rs
CBn ′  is the normal size of a CB fleet 

operated between OD pair rs. 

 

(2) CB passengers  

The CB travel disutility includes on the generalized travel time, as well as the penalty 

and incentives incurred by the operational limits stated above, such as the risk of failed 

subscription owing to the limited capacity and the improved service quality to attract 

enough passengers. The generalized travel time of CB, rs
CBt , can be derived based on the 

CB in-vehicle travel time, waiting time, access time, and the CB fare: 

 , , , ,rs rs rs rs rs
CB iv CB wt CB wk CB CBt t t t f vot rs RS= + + + ∀ ∈ .  (7.7) 

Although the CB generalized travel time is not explicitly dependent on the CB demand 

for a given in-vehicle travel time and fare price, the travel disutility of CB services is 

implicitly influenced by the disutility incurred when CB demand violates the upper 

limit (Eq. (7.3)) or lower limit (Eq. (7.5)). This will be discussed in Section 7.3.2.  

 

7.3 Equilibrium mode choice model with passenger loyalty 

7.3.1 Model formulation 

This section presents the equivalent MP of the equilibrium mode choice model for the 

multi-modal transportation system with CB services described in Section 7.2.3. The 

DNW probability presented in Section 3.2 is adopted in the equilibrium mode choice 

model because it suitably reflects the period-to-period subscription of loyal passengers 

to loyalty schemes and provides a direct interpretation of the effect of loyalty. Different 

from the individual DNW choice model with exogeneous travel disutility, the demand-

dependent mode disutility is endogenously reproduced in the equilibrium model to 



 
 

190 
 

consider interaction among travelers. Based on the method introduced in Chapter 5, the 

MP formulation of the equilibrium model is developed as follows: 

0

1
+ ln 1

1

+
1

min ln ( )

1

1 1

rs
um

rs rs
u

rs rs
u

rs
rs

rs

rs
rs m
umrs rs

rs RS u U m M um m
m M

rs
rs m
um rs

m
m M

q rs
m

rs RS u U m M

rs rs rs
rs m
um rs

m
m M

rs

rs rs
u um

q
q

q
q

Z d

qq η
β η

η
η

τ ω ω

η
η

β β

∈ ∈ ∈

∈

∈

∈ ∈ ∈

∈

− −
+

−
+

= −

    
    ⋅ −    +        


 

− ⋅ 
 

∑ ∑ ∑ ∑

∑

∑ ∑ ∑ ∫

∑

ln 1
1rs rs

u u
rs

rs

rs
rs m
um rs

rs RS u U m M m M m
m M

rsq
q

η
η∈ ∈ ∈ ∈

∈

− −
+

     
      
                  

∑ ∑ ∑ ∑ ∑

 

 (7.8) 

s.t. 

 ,
rs rs

u

rs rs
um

u U m M

q q rs RS
∈ ∈

= ∀ ∈∑ ∑   (7.9) 

 ,rs rs
CB CBq cap rs RS≤ ∀ ∈   (7.10) 

 ,rs rs
CB CBq ld rs RS≥ ∀ ∈   (7.11) 

 0, , ,rs rs rs
um uq m M u U rs RS≥ ∀ ∈ ∈ ∈   (7.12) 

Objective function (7.8) aims to find the equilibrium modal demand based on the DNW 

model. The first term in Eq. (7.8) is the multiplicative Beckmann term, which indicates 

the mode travel disutility. The link-level travel time function is implicitly considered in 

the mode travel disutility as the route choice dimension is not focused by this chapter. 

The second and third terms are entropy terms that collectively account for the dogit-

based choice behavior of loyal passengers and the nested choice structure of choice 

passengers. Conservation constraint (7.9) indicates the relationship between modal 

demand and OD demand. Capacity constraint (7.10) provides the upper limit of the 

number of CB passengers that can be served by the CB line between each OD pair. The 

lower limit of demand for maintaining the operation of an existing CB line is given by 

constraint (7.11). Constraint (7.12) is the nonnegative constraint. To show some 
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qualitative properties of the proposed MP formulation, the following two propositions 

are stated.  

 

Proposition 7.1. The proposed MP formulation (7.8) – (7.12) gives the equilibrium 

mode choice solution of the DNW model presented in Eqs. (3.15)– (3.16). 

Proof. See Appendix A2 for the detailed proof. 

 

Proposition 7.2. If Assumptions A7.2 and A7.3 hold, the modal demand solutions to 

the MP formulation (7.8) – (7.12) are unique. 

Proof. See Appendix B2 for detailed proof. 

 

7.3.2 Effect of operational limits of CB lines 

Unlike the explicitly demand-dependent generalized travel time of conventional modes, 

the CB disutility is not only determined by a demand-independent generalized travel 

time rs
CBτ  (owing to the fixed fare and in-vehicle travel time), but also implicitly 

influenced by the limits of CB demand. As shown in the proof of Proposition 7.1, the 

CB disutility ( ), ,rs rs rs rs
CB CB cap ldv τ ω ω  also includes two Lagrangian variables rs

capω  and rs
ldω , 

which are related to the tight constraints (7.10) and (7.11) on CB demand, respectively. 

The effect of the upper and lower limits of CB demand is depicted in Figure 7.1. 

 

 
Figure 7.1. Illustration of tight constraints on CB demand 
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In the proposed model, rs
capω  and rs

ldω  can be interpreted as the potential increase 

and decrease in travel disutility, respectively, when CB demand violates the upper or 

lower limit. Specifically, rs
capω  represents the potential fare increase or the risk of failed 

subscription when all seats are booked, i.e., the increased disutility of a passenger being 

unable to choose his/her preferred CB services, whereas rs
ldω  represents the potential 

incentives set by operators (e.g., a fare decrease) to attract sufficient passengers to make 

CB line operation viable. 

 

7.3.3 Model degeneration 

This section presents the relationship between the developed DNW equilibrium model 

and other equilibrium choice models shown in Figure 7.2. First, the DNW model can 

be degenerated by ignoring passenger loyalty: if the loyalty parameter rs
mη  is set to zero, 

the DNW model degenerates to the NW model. This further degenerates to the MNW 

model if 1rs rs
u umβ β = . Another approach is to ignore mode correlation and 

heterogeneity. If 1rs rs
u umβ β = , the DNW model degenerates to the dogit-MNW 

(DMNW) model, which assumes there is no correlation between modes. Alternatively, 

by assuming the DNW model contains a Gumbel-distributed random error term, the 

DNW model degenerates to the dogit-NL (DNL) model and the dogit model, which 

assumes no heterogeneity in mode perceptions (Gaudry and Dagenais, 1979; Wang et 

al., 2020a). Then, if rs
mη  is set to zero, the dogit model further degenerates to the well-

known MNL model. Finally, the equilibrium mode choice model collapses to the user 

equilibrium (UE) model if travelers have no perception error (i.e., rs
umβ → +∞ ).  
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Figure 7.2. Relationship between DNW and other equilibrium choice models 
 

7.3.4 Solution algorithm 

The proposed model (7.9)–(7.12) is solved by the partial linearization algorithm as 

introduced in Section 5.3. An iterative balancing procedure is developed to find the 

search direction for the equilibrium DNW choice model with side constraints (Ryu et 

al., 2014). For simplicity, we use 
1

rs rs
rs rs m
um um rs

m
m M

qqc q η
η

∈

= −
+ ∑

 to represent the choice 

passengers choosing mode m under nest u, 
rs
u

rs rs
u um

m M

qc qc
∈

= ∑  to represent the choice 

passengers choosing nest u, and 
rs

rs rs
u

u U

qc qc
∈

= ∑  to represent the choice passengers 

between OD pair rs. The iterative balancing procedure are specified as follows: 

 

Step 0. Initialization.  

• Set iteration counter n = 0; 

• Initialize dual variables associated with constraints (7.9)-(7.11):  

Set ( ) ( ) ( )0 0 0
, , 0,rs rs rs

cap ld rs RSπ ω ω = ∀ ∈ ; 

• Initialize primal variables based on free-flow mode disutility and dual variables: 
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Step 1. Update dual variables. 

The dual variables can be viewed as corrections to the travel disutility, which can be 

used to adjust the primal variables (Eqs. (A2.3) and (A2.6)). Specifically, dual variables 

rs
capω  and rs

ldω  are zero if the capacity constraint (7.10) and lower limit of CB demand 

(7.11) are satisfied by the resulted primal variables. If constraints (7.10)–(7.11) are 

binding, rs
capω  and rs

ldω  will become non-zero. Following equations are used in this step 

to adjust each dual variable that can steer primal variables to meet constraints (7.9)–

(7.11) (Ryu et al., 2014): 

• ( ) ( )
( )

1 1 ln

rs

rsn nrs rs
nrs rs

u u
u U

qc

qc
π π

β
+

∈

 
 

= +  
  
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um CB
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q
ω ω
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1 1Max 0, ln
rsn nrs rs CB
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um CB
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q
ω ω

β
+
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Step 2. Update primary variables. 

Based on the Lagrangian of the proposed model, the primal variables can be analytically 

expressed based on the dual variables (Eqs. (A2.3) and (A2.6)). Following equations 

are used to update the primal variables using the dual variables: 

• ( ) ( )( ) ( ) ( ) ( )1 1 1
1

rs
u

rs rs
umn n numrs rs rs rs

cap ld u

rs
u

n nrs rs rs
u um um

m M

qc c q e e

β
β β

ω ω β π
+ + +−

+ − ⋅

∈

   = ⋅ ⋅     
∑  
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• ( ) ( )( ) ( ) ( ) ( ) ( )
1 1 1 11 1

rsrs
umumn n nrs rs rs rscap ld u

n n nrs rs rs rs
um um um uqc q e qc

ββ
π ω ω βτ

+ + +
 − − + +  + −     = ⋅ ⋅     

  

Step 3. Convergence test. 

• First derive the maximum adjustment among all dual variables. If 

( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1
Max , ,

n n n n n nrs rs rs rs rs rs
cap cap ld ldπ π ω ω ω ω ε

+ + +
− − − ≤ , terminate 

the algorithm, where ε  is a convergence tolerance (e.g., 10-6) at which the 

iterative balancing procedure stops. Otherwise, set n = n + 1 and go to step 1. 

 

7.4 Numerical experiments 

This section illustrates the properties of the proposed model and verifies its applicability 

using two numerical examples. The first example is a single-OD case and demonstrates 

the model’s ability to consider mode correlation, heterogeneity, and passenger loyalty. 

The second example is based on the CB services provided in Nanjing, China, and 

demonstrates the potential applicability of the proposed model for evaluating and 

designing CB operation schemes. 

 

7.4.1 Example 1: Single OD pair system 

7.4.1.1 Experiment setting 

In this example, the proposed model is used to investigate the equilibrium mode choice 

among a private car, conventional PT, and an existing CB line for a single OD pair. The 

input data for this example are as follows:  

qrs = 1,000 (persons), vot = 60 (CNY/hour), drs = 20 (km), 0.3rs
carfc = (CNY/km), pc = 

15 (CNY), , 40rs
iv PTt =  (minutes), , 3rs

wt PTt = (minutes), , 3rs
wk PTt = ( minutes), 2rs

PTf =

(CNY), , , , 32rs rs rs
iv CB wt CB wk CBt t t+ + =  (minutes), 24rs

CBf = (CNY), 0.6rsψ = , 10rs
CBn ′ =

(vehicles), 20rs
CBn = (vehicles), nseat = 20 (persons/vehicle). The in-vehicle travel time 
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function for private car is ( )
4

, 20 1 0.15
600

rs
rs rs car
iv car car

qt q
  
 = ⋅ +  
   

, and the in-vehicle 

crowding discomfort cost for the PT mode is ( )
2

, , 1 0.5
1000

rs
rs rs rs PT
PT iv PT iv PT

qg q t t
  

⋅ = ⋅ +  
   

 

(Liu and Lam, 2014; Wang et al., 2020a). The default model parameters are 0.05rs
CBη = , 

3.7rs
umβ = , and 1.85rs

uβ =  (Kitthamkesorn and Chen, 2017; Wang et al., 2020a). 

Without loss of generality, we adopt the following exponential function as the 

mode disutility function (Hensher and Truong, 1985; Mirchandani and Soroush, 1987): 

 ( )exp 0.075 , ,rs rs rs
m mt m M rs RSτ = ∀ ∈ ∈ .  (7.13) 

As the logit model is an additive random utility model (RUM), whereas the weibit 

model is a multiplicative RUM, for comparison we use the following travel disutility 

function in the logit-based model (Kitthamkesorn and Chen, 2017): 

 0.25 , ,rs rs rs
m mh t m M rs RS= ⋅ ∀ ∈ ∈ .  (7.14) 

 

7.4.1.2 Effect of considering mode correlation 

This section investigates the effect of considering the correlation between different 

modes via the nested choice structure. Figure 7.3 shows the choice probability obtained 

at different values of rs rs
u umβ β , where a higher value indicates a lower correlation 

between modes in the same nest. It is obvious that the consideration of mode correlation 

significantly influences the estimated share of the CB service. Without considering 

correlation, the estimated share is lower than the lower limit of demand, which requires 

CB operators to provide incentives to attract more passengers. However, the estimated 

CB demand might reach the capacity constraint if there is high correlation between 

conventional modes, in which case CB operators may increase the fare to decrease the 

excess demand. Thus, the consideration of mode correlation may have a significant 

effect on estimated shares and CB services’ operation.  
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Figure 7.3. Effect of considering mode correlation in equilibrium choice model 
 

7.4.1.3 Effect of considering heterogeneity 

The effect of considering the heterogeneity issue is seen from Figure 7.4 by comparing 

the results from the DNL and the DNW model. In the left panel of Figure 7.4, although 

the loyalty parameter rs
mη  in the dogit-based model can partly account for the 

heterogeneity issue, the conditional mode choice probability of choice passengers from 

DNL model remains nearly unchanged due to the homogenous perception variance that 

is assumed to exist in the same nest. The minor change is attributed to the asymmetric 

alleviation of congestion effect due to demand shift from conventional modes to CB. 

This nearly unchanged conditional probability means that there are only minor changes 

in the CB mode share derived by the DNL model. In contrast, the DNW model accounts 

for the heterogeneity issue by allowing mode-specific perception variance dependent 

on mode disutility. As shown by the mode choice probability curve of CB in the right 

panel of Figure 7.4, this ability of the DNW model and its nested choice structure mean 

that it can simultaneously account for heterogeneity and mode correlation, thus better 

reproduce the mode choice behavior of the choice passengers than the commonly used 

dogit model. 
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Figure 7.4. Effect of considering heterogeneity issue in equilibrium choice model 
 

7.4.1.4 Effect of passenger loyalty 

In this section, we investigate the effect of passenger loyalty on the mode share and the 

system performances. In addition to the share of the collective mode (conventional PT 

and CB modes), three other metrics are used to evaluate various aspects of a multi-

modal system with CB services. First, the total travel time (TTT) is used to reflect the 

change in mobility. Second, as accessibility is also an important performance measure 

that has attracted increasing attention in transportation and urban planning, it is 

evaluated using the following utility-based measure proposed in Section 2.1.3, which 

is consistent with the proposed weibit-based choice model: 

 ( )
1

,
rsrs
uu

rs

rs rs
u

u U

Acc rs RS
ββ

τ
−

−

∈

 
= ∀ ∈ 
 
∑ ,  (7.15) 

where 

 ( )
1

, ,
rsrs umum

rs
u

rs rs rs
u um

m M

u U rs RS
ββ

τ τ
−

−

∈

 
= ∀ ∈ ∈ 
  
∑ .  (7.16) 

The weibit-based accessibility measure is then normalized to satisfy both scale and 

level conditions. Analogous to the normalization of logit-based accessibility measure 

based on the absolute difference (Dong et al., 2006), the weibit-based accessibility 

measure is normalized based on the relative difference in weibit expected disutility 

owing to the property of weibit choice models: 
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 , , ,rs rs b rs aAcc Acc Acc rs RS∆ = ∀ ∈ ,  (7.17) 

where Accrs,b and Accrs,a denote the weibit-based accessibility measure before and after 

consideration of passenger loyalty.  

Third, environmental friendliness is considered a critical issue for the development 

of sustainable transportation systems. As such, we use the following expression for 

carbon monoxide (CO) emissions to evaluate the effect of transportation modes on the 

environment (Wallace et al., 1998): 

 ( )0.2038 exp 0.7962 ,
rs

rs rs rs rs rs
m m m

m M

E q t d t rs RS
∈

= ⋅ ⋅ ⋅ ⋅ ∀ ∈∑ .  (7.18) 

 

 

       (a) Effect on mode share       (b) Effect on system performance 

Figure 7.5. Effects of loyalty parameter  
 

Figure 7.5(a) shows the modal shift from conventional modes to the CB mode with 

an increase in the loyalty to the CB mode (indicated by the value of loyalty parameter 

rs
CBη ). Figure 7.5(b) further compares the system performance with and without loyalty 

to the CB mode. As different performance measures have different magnitudes, we 

show the ratio between the measures with and without CB loyalty. A higher ratio 

indicates a lower TTT, lower CO emissions, a higher accessibility, and a higher 

collective mode share, after consideration of passenger loyalty. A high CB loyalty 

affords a marginal decrease in mobility (i.e., increase in the TTT), which can be 

attributed to the significant increase in the share of collective modes that are operated 

at lower speeds than private cars. However, the CB service can increase accessibility 
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of its passengers, while the collective modes can transport more travelers in one vehicle 

than a private car. The increasing collective mode share thus can lead to higher system 

accessibility and lower total CO emissions. 

 

7.4.1.5 Mode share and CB service profit under different loyalty schemes 

This section further investigates how the pricing of CB loyalty schemes affects the CB 

mode share and the profit of CB services. With the absence of time-series CB ridership 

data for estimation, we approximate the proportion of loyal CB passengers ( ),
rs rs
CB CB lsµ τ  

based on the choice probability of loyalty subscription schemes. The choice probability 

is derived by the NW model adopted in this chapter, which is based on the free-flow 

disutility of the conventional mode and the disutility of the CB loyalty scheme ,
rs
CB lsτ  

given the price of loyalty subscription scheme. On this basis, we can obtain the loyalty 

parameter rs
CBη  and investigate the effect of discounts provided by CB loyalty schemes. 

 

 
(a) Effect on CB demand and loyalty 
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(b) Effect on CB service revenue and profit 

Figure 7.6. Effects of pricing of loyalty scheme  
 

Figure 7.6(a) shows that a discounted loyalty scheme greatly increases the 

proportion of loyal passengers, which leads to an increase in the overall share of CB 

services. However, the increase in demand does not necessarily lead to an increase in 

revenue and profit. We assume that the fixed cost of a CB line is CNY 1,000 and that 

the variable cost of adding a vehicle to the fleet is CNY 60, and then derive the evolution 

of revenue (from the CB fare) and profit (the difference between the revenue and the 

cost) with respect to varying loyalty scheme prices, as shown in Figure 7.6(b). This 

reveals that although a higher discount may increase the share of CB and collective 

modes, the operator might incline to provide a discount of approximately 30% at which 

their profit is maximized. This implies that the government may have to subsidize CB 

operators to provide a higher discount, and thus encourage more drivers of private cars 

to become CB passengers. 

 

7.4.2 Example 2: Multi-OD pair case study 

7.4.2.1 Experiment setting 

In this section, the proposed model is applied to a real-world system with CB lines 

connecting eight OD pairs in Nanjing, China (adapted from Huang et al., 2020a). Figure 

7.7 shows the study area and the CB lines selected in this section. Four of the eight CB 
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lines (indicated by solid lines) are existing lines that have loyal passengers, whereas the 

remaining four lines (indicated by dotted lines) are new CB lines with no passenger 

loyalty. The attributes of the eight OD pairs, and the travel time and monetary cost of 

conventional PT modes between each OD pair, are presented in Table 7.3. The 

monetary cost of car fuel consumption is 0.4rs
carfc = (CNY/km). The in-vehicle travel 

time function for a car is ( )
4

, 20 1 0.15
rs

rs rs car
iv car car

car

qt q
cap

  
 = ⋅ +  
   

. The value of capcar is 

200 for OD pairs 1– 4, 2–8, 3–8, 6–7, and 100 for the other OD pairs. The in-vehicle 

crowding function for PT mode is ( )
2

, , 1 0.5
rs

rs rs rs PT
PT iv PT iv PT

PT

qg q t t
cap

  
 ⋅ = ⋅ +  
   

. The value 

of capPT is 200 for OD pairs 1– 4, 2–8, 3–8, 4–7, 6–7, and 500 for the other OD pairs. 

The other inputs and default model parameters are the same as in Experiment 1. 

 

 

Figure 7.7. Study area with CB services 
(adapted from Huang et al., 2020a) 
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Table 7.3. Inputs of ODs and conventional modes in multi-OD case study 

OD 
pair 

Travel 
demand 

(persons) 

Distance 
(km) 

Private car Conventional PT 
In-vehicle 

time  
(min) 

Parking 
cost 

(CNY) 

In-vehicle 
time  
(min) 

Access 
time 
(min) 

Waiting 
time 
(min) 

Fare 
(CNY) 

1– 4 300 17.6 22 30 65 11 7 3 
2–8 420 17.4 21 20 56 22 4 7 
3–8 310 11 17 15 55 21 3 4 
4–7 300 13.4 17 15 46 22 6 11 
5– 9 350 14.9 26 20 18 9 1 4 
5–11 300 26 40 20 52 10 6 7 
6 –7 450 5.7 12 10 15 54 5 2 

10 –11 300 9.1 20 15 30 8 4 2 
 

Table 7.4 presents the attributes of the eight CB lines. The existing CB lines are 

set to have higher capacity and passenger loyalty: rs
CBn ′  is set as five vehicles for new 

lines and six vehicles for existing lines; and rs
CBn  is set as 10 vehicles for new lines and 

12 vehicles for existing lines. The lower limit and capacity of CB demands are then 

obtained based on 0.6rsψ =  and 20seatn = (persons/veh). The loyalty parameters for 

CB services are 0.1rs
CBη =  for all OD pairs with existing CB lines and 0rs

CBη =  for all 

OD pairs with new CB lines. The fixed cost of operating a CB line is set as CNY 1,200, 

whereas the variable cost of adding a CB vehicle is CNY 100. The model parameters 

and inputs used in the numerical examples are selected consistent with previous studies 

(Kitthamkesorn and Chen 2017; Huang et al., 2020a; Wang et al., 2020a) since the 

empirical model calibration and validation are not the focus of this chapter. The 

quantitative insights discussed in this section are to illustrate the proposed model is able 

to consider the effects of passenger loyalty, mode correlation, and heterogeneity, and is 

potential to be used for the evaluation of CB planning scenarios with different CB lines 

and pricing policies. 
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Table 7.4. Inputs of CB services in multi-OD case study 
Line 
ID 

OD 
pair 

In-vehicle 
time (min) 

Fare 
(CNY) 

Lower 
limit Capacity Existing 

line? 
Loyalty 

rs
CBη   

1 1– 4 44 31 54 180 Existing 0.1 
2 2–8 42 31 54 180 Existing 0.1 
3 3–8 28 22 45 150 New 0 
4 4 –7 34 25 45 150 New 0 
5 5– 9 38 27 45 150 New 0 
6 5 –11 46 32 54 180 Existing 0.1 
7 6 –7 18 20 54 180 Existing 0.1 
8 10 –11 30 20 45 150 New 0 

 

7.4.2.2 Evaluation of CB operation plans 

Table 7.3 shows that most of the CB lines are operated between OD pairs with poor 

conventional PT services, i.e., the OD pairs have either an excessive in-vehicle travel 

time (e.g., OD pair 1– 4) or an excessive access time (e.g., OD pair 6 –7). The exceptions 

are OD pairs 5 – 9 and 10 –11, between which the conventional PT modes provide a 

relatively high level of service. The proposed model is first applied to perform a cost–

effectiveness analysis of whether to open new CB lines for OD pairs 5 – 9 and 10 –11. 

The following four plans are considered:  

 
Plan 1: All CB lines are operated. 

Plan 2: CB line No. 5 for OD pair 5 – 9 is not operated. 

Plan 3: CB line No. 8 for OD pair 10 –11 is not operated. 

Plan 4: CB lines Nos. 5 and 8 are not operated. 
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Figure 7.8. Comparison of different CB operation plans 

 

The plans are evaluated in terms of the CB profit and system performance 

measures, i.e., the share of collective modes (CB and conventional PT services), the 

average OD-level accessibility, and CO emissions. The results, shown in Figure 7.8, 

reveal that Plan 2 has similar performance to Plan 1 in terms of collective mode share 

and accessibility, but has higher environmental friendliness. This is because the PT 

service for OD pair 5 – 9 is superior to that of private car mode and can thus attract the 

majority of the OD demand. The operation of CB services mainly attracts passengers 

from the more environmentally friendly conventional PT modes rather than the drivers 

of private cars. In addition, Plan 2 obtains a significantly higher profit than Plan 1, as 

CB line No. 5 cannot attract sufficient passengers to cover its cost of opening. In 

contrast, the PT service level for OD pair 10 –11 is insufficient, and the CB service 

serves as an effective supplement for this OD pair. In summary, this experiment shows 

the applicability of the proposed model in evaluating different CB operations for the 

service design. The results indicate that Plan 2 is the most cost-effective plan; thus, this 

plan is adopted in this case study. 
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7.4.2.3 Effect of passenger loyalty and pricing of loyalty scheme 

This section investigates the effect of passenger loyalty to existing CB lines and new 

CB lines. Figure 7.9 shows the CB revenue and system performance with respect to the 

evolution of loyalty parameter rs
CBη  for existing CB lines. Figure 7.9(a) shows that an 

increase in passenger loyalty may lead to increased CB demand and hence increased 

revenue for CB operators. The increase in CB demand mainly comprises former drivers 

of private cars, as the mode share of conventional PT remains nearly unchanged when 

the CB share increases rapidly. This modal shift results in increased accessibility, 

increased accessibility-based equity (a lower modified Gini index indicates higher 

equity), and a reduction in CO emissions (as shown in Figure 7.9(b)). 

 

 
(a) Effect on mode share and CB revenue 

 
(b) Effect on system performances 

Figure 7.9. Effect of passenger loyalty on existing CB lines 
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We further investigate the effect of a pricing policy (i.e., the discount applied to a 

loyalty scheme) on passenger loyalty and profit for the new CB lines, which need to 

attract loyal passengers to increase their mode share. As presented in Figure 7.10, a 

higher discount leads to an increase in the proportion of loyal passengers compared to 

choice passengers. This may increase CB demand and enhance system performance, as 

revealed in Figure 7.9. However, a discounted loyalty scheme may not necessarily 

result in increased profits. For example, Figure 7.10 indicates that a 10% –30% discount 

may generate a relatively high profit, which is consistent with the practical pricing of 

loyalty schemes (Liu and Ceder, 2015). On the other hand, discounts greater than 50% 

may lead to a rapid decrease in the profit, as the revenue is reduced by the discounted 

fare and operation costs are increased due to the need to run additional vehicles to meet 

the increased CB demand. 

 

 

Figure 7.10. Effect of loyalty scheme pricing of new CB lines 
 

7.5 Conclusions 

This chapter presents an initial effort to model the effect of emerging CB services on 

long-term mode choice equilibrium in multi-modal transportation systems. The 

characteristics of CB services, such as the lower and upper limits of demand for 

operating a CB line and the passenger loyalty resulting from long-term loyalty 

subscription schemes, are specifically considered in the proposed model. To model 
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passenger loyalty, travelers are categorized as loyal passengers and choice passengers 

to reflect their distinct choice behaviors. Specifically, the mode choice behavior of loyal 

passengers is modeled as the repeated choice of CB services without considering other 

modes, which is interpreted using a dogit-based discrete choice model. In contrast, the 

behavior of choice passengers is modeled based on the disutility minimization rule by 

considering all modes in the transportation system, which is reproduced using a weibit-

based model to account for the effects of mode correlation and heterogeneity.  

This chapter can be extended to address several limitations. First, the input and 

parameters of the proposed model used for the numerical experiments are set only for 

illustrative purposes. Further empirical studies are required to calibrate and validate the 

proposed model based on real-world dataset. Second, besides considering the penalty 

of limited CB to service capacity choice passengers, the proposed model can be 

extended to further account for the effect of possibly denied booking (when CB 

demands exceed CB capacity) on loyal CB passengers. Third, the proposed model aims 

to evaluate long-term equilibrium after introducing CB services, while the short-term 

operations of CB services, including flexible timetable and adjustable vehicle routing, 

are not considered. It will be interesting to develop short-term mode choice model to 

consider and optimize these real-time CB operations (Huang et al., 2020a). 
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Chapter 8 Equilibrium analysis for emerging mobility services with 

loyalty bundle schemes  

8.1 Introduction  

This chapter proposes an advanced equilibrium analysis framework for emerging 

mobility services based on the dogit-cross-nested weibit (DCNW) individual choice 

model developed in Section 3.3. Many network equilibrium models have been 

developed for the analysis and optimization of multi-modal transportation systems with 

emerging mobility services, where travel choices are reproduced based on the 

embedded choice model with endogenous travel disutility dependent on the aggregate 

travel demand. Table 8.1 summarizes the choice modeling in the equilibrium analyses 

for emerging mobility services. Most of the existing equilibrium models focus on the 

mode and route choice dimensions, while few explicitly consider the bundle choice 

dimension (Xi et al., 2022). Many equilibrium analyses model travel choices based on 

the user equilibrium (UE) principle, which assumes deterministic choice behavior and 

fails to capture the subjective uncertainty of travelers. The stochasticity in choice 

behavior is mainly considered via logit models, which have closed-form choice 

probabilities but may be inadequate to account for travelers’ heterogeneous mode 

disutility perceptions and the correlations among modes (e.g., commonality among 

modes in the same platform/bundle). Extended logit models, e.g., the nested logit (NL) 

and cross-nested logit (CNL) models, have been adapted to consider different 

correlations among modes, including the correlation between the driver and passenger 

roles in ridesharing, correlation among modes in the same trip, and correlation among 

modes belonging to same service type. However, the correlation among modes in the 

same mobility bundle has not been explicitly considered. Also, the extended logit 

models adopted in existing equilibrium analyses are still inadequate to address the 

heterogeneous perceptions of conventional and emerging mobility services. 

Furthermore, equilibrium analyses often ignore the effect of traveler loyalty, which can 

be cultivated by the long-term loyalty bundle schemes and increase the usage of 
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bundled mobilities (Nguyen-Phuoc et al., 2020; Tang et al., 2023). Gu and Chen (2023) 

made an initial effort to consider passenger loyalty to customized bus (CB) services in 

the mode choice equilibrium analysis via a dogit-nested weibit (DNW) model (see 

Section 3.2 and Chapter 7). The heterogeneous mode disutility perceptions and 

correlations among conventional modes can be considered together while retaining a 

closed-form choice probability. However, Gu and Chen (2023) focused on a single 

emerging mobility service (i.e., CB) without considering the behavioral impacts of the 

bundling of various travel modes, including the choice of mobility bundles, flexible 

mode correlations stemmed from different bundling strategies, and repeated choice of 

mobility bundles owing to bundle loyalty.  
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Table 8.1. Summary of choice modeling considered in equilibrium analyses for emerging mobility services 

Study Choice 
dimension Mode choice Perception 

error Heterogeneity Mode correlation considered  Loyalty 

Di and Ban, 2019 Mode choice, 
route choice 

Deterministic \ \ \ \ 
Ban et al., 2019 Trip choice 
Xi et al., 2022 Bundle choice 
Wang et al., 2022 Mode choice 
Najmi et al., 2022 Trip choice 
Li et al., 2015  Mode choice 

MNL √ \ \ \ 
Zhu et al., 2022 Mode choice, 

route choice 
Bahat and Bekhor, 
2016 

Mode choice, 
route choice 

NL 
√ \ 

Correlation among roles in ridesharing 

\ 

Pi et al., 2019 Correlation among modes within the 
same type of service 

Li et al., 2022 Correlation between pooling and non-
pooling ride-hailing services 

Mori et al., 2022 Correlation among access modes to rail  

Du et al., 2022 CNL Correlation among modes used in the 
same intermodal trip 

Gu and Chen, 2023 Mode choice Dogit-NW √ √ Correlation among conventional modes Single 
mode 

This chapter Bundle choice, 
mode choice 

Dogit-Cross-
nested weibit  √ √ Flexible correlation structure among 

all modes based on bundling strategies 
Mobility 
bundle 

Note: MNL = multinomial logit, NL = nested logit, NW = nested weibit, CNL = cross-nested logit  
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This chapter aims to propose an equilibrium analysis framework, including an 

equilibrium demand model and a system performance analysis for emerging mobility 

services with consideration of following effects of mobility bundling: (1) travelers’ 

loyalty to the subscription-based mobility bundles; (2) heterogeneous perceptions and 

correlations among mobility services in different bundles provided by different 

operators; and (c) effects of different mobility services on system performances. In 

particular, the DCNW model developed in Section 3.3 is integrated in the equilibrium 

model for reproducing the joint bundle and mode choices while considering the 

complex behavioral issues stemmed from mobility bundling and the interactions among 

individual travelers. A multi-modal transportation system analysis method is then 

developed based on the equilibrium model to assess bundling effect (c). The overall 

structure of the proposed equilibrium analysis framework is demonstrated in Figure 8.1. 

 

 

Figure 8.1. Overall structure of the proposed equilibrium analysis framework for 
emerging mobility services with loyalty bundle schemes 

 

The contributions of the proposed analysis framework are as follows: 

(a) Benefiting from the DCNW choice model, the repeated choice behavior of loyal 

travelers to mobility bundles is explicitly considered together with the disloyal 

travelers. As for disloyal travelers, the heterogeneous mode, flexible correlations 

among bundled modes, and interaction between bundle and mode choices are 

simultaneously modeled based on the random utility theory.  

(b) An equilibrium model is developed consistent with the DCNW choice model. The 

equilibrium model is formulated as a mathematical programming (MP) problem, 

which guarantees solution equivalence and uniqueness, facilitates understandable 

interpretation, and is solved by a convergent and efficient solution algorithm.  
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(c) An effective analysis method is developed for multi-modal transportation systems 

with emerging mobility services based on the sensitivity analysis of the developed 

equilibrium model. The analysis outcomes can facilitate the evaluation of mode 

demand pattern and its impact on system performance in different scenarios, which 

provide insights into the planning and operations of emerging mobility services. 

 

8.2 Multi-modal transportation system with both conventional and emerging 

mobility services 

To facilitate the presentation of the essential ideas, the notations used in this paper are 

presented in Section 8.2.1. The travel disutility and physical characteristics of 

considered conventional and emerging mobility services are described in Section 8.2.2. 

 

8.2.1 Notations  

Sets  
R Set of origin zones. 
S Set of destination zones. 

rsU  Set of mobility bundles/mode nests between OD pair rs. 
rsM  Set of modes operated between OD pair rs. 
rs
uM  Set of modes in nest u between OD pair rs. 

 
Inputs 

rs
mτ  Travel disutility of mode m between OD pair rs. 
rs
mt  Generalized travel time of mode m between OD pair rs. 

,
rs
iv mt  In-vehicle travel time of mode m between OD pair rs. 

,
rs
wt mt  Waiting time of mode m between OD pair rs. 

,
rs
a mt  Access (walking) time of mode m between OD pair rs. 

,
rs
i mc  Monetary cost i for mode m between OD pair rs. 

gPT In-vehicle crowding discomfort of conventional transit mode. 
gBK Discomfort from the physical fatigue of riding bike. 
vot Value of time. 

rs
mcap  Capacity of mode m between OD pair rs. 

drs Travel distance between OD pair rs. 
rsq  Travel demand between OD pair rs. 

 
Parameters 

rs
umβ  Shape parameter at the conditional choice level between OD pair rs. 
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rs
uβ  Shape parameter at the marginal choice level between OD pair rs. 
rs
umµ  Membership of mode m in bundle u between OD pair rs. 
rs
uη  Loyalty parameter for bundle u between OD pair rs in the dogit model. 

 
System performance measures 
TTT System total travel time. 
Ers CO emission between OD pair rs. 

rs
uAcc  Accessibility of nest u between OD pair rs. 

Accrs Accessibility of OD pair rs. 
 
Primal and dual variables 

rs
umq  Travel demand of mode m in nest u between OD rs. 
rs
mq  Travel demand of mode m between OD rs. 
rs
uq  Travel demand of nest u between OD pair rs. 

rs
uqc   Number of choice travelers choosing nest u between OD pair rs. 

λ  Dual variables with respect to definitional constraints. 
rs
mω  Dual variables with respect to capacity constraints on mode m between 

OD pair rs. 
 
8.2.2 Description of conventional modes and emerging mobility services  

This chapter considers a multi-modal transportation system with both conventional 

travel modes (i.e., private car, private bike, conventional transit, and street-hailing taxi) 

and emerging mobilities (i.e., e-hailing services, bike sharing, and customized bus). 

Each type of shared and on-demand mobility can be offered by different service 

providers, and each mobility service can be integrated in different bundles provided by 

different platforms. Travelers can either subscribe to long-term loyalty bundle schemes 

or choose pay-as-you-go (PAYG) schemes for one-time rides. The subscribers of long-

term schemes are assumed to be loyal and tend to repeatedly use the subscribed bundle 

due to the pre-paid subscription fee (Matyas and Kamargianni, 2019) and different 

levels of incentives for bundled modes (Nguyen-Phuoc et al., 2020). The PAYG users 

are open to consider all bundles and modes in the transportation system and make 

choices to minimize the perceived travel disutility. The travel disutility and physical 

characteristics of mobility services considered in this chapter are described in Figure 

8.2 and introduced in detail in Sections 8.2.2.1-8.2.2.5 
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Figure 8.2. Travel disutility and physical characteristics of considered conventional 
and emerging mobility services in Chapter 8 

 

8.2.2.1 Private car 

The disutility of private car trips is composed of monetary costs and in-vehicle travel 

time. The in-vehicle travel time of private car is assumed to be a separable, continuous, 

and monotonically increasing function of car demand. The generalized travel time of 

private car between OD rs is expressed as 

 ( ) ( ), , ,
1 ,rs rs rs rs rs rs

car iv rd rd fl car p cart t q d c c rs RS
vot

= + ⋅ ⋅ + ∀ ∈ , (8.1) 

where rs
cart , ( ),

rs
iv cart ⋅ , ,

rs
fl carc , and ,

rs
p carc  respectively denote the generalized travel time, 

demand-dependent in-vehicle travel time, fuel cost, and parking cost of driving between 

OD pair rs; drs is the travel distance between OD pair rs; vot is the value of time; rs
rdq  

denotes the road traffic volume comprised by the volumes of private car and ride-

hailing vehicles, which is derived from the equilibrium model presented in Section 8.3. 

 

8.2.2.2 Conventional transit 

The generalized travel time of conventional transit modes (e.g., bus) between OD pair 

rs, rs
PTt , is expressed as follows: 

 ( ), , , , ,
1 , ,rs rs rs rs rs rs rs

PT iv PT a PT wt PT PT iv PT f PTt t t t g q t c rs RS
vot

 = + + + ⋅ + ∀ ∈  ,  (8.2) 

where ,
rs
iv PTt , ,

rs
a PTt , ,

rs
wt PTt , rs

PTq , and ,
rs
f PTc  respectively denote the generalized travel time, 

in-vehicle travel time, access (walking) time, waiting time, travel demand, and fare of 

the conventional transit service between OD pair rs. g(.) denotes the in-vehicle 
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crowding discomfort cost, which is an increasing function with respect to the in-vehicle 

travel time and the transit demand (Li and Hensher, 2011).  

 

8.2.2.3 Customized bus 

The disutility of CB services is considered to include the generalized travel time and 

risk of failed subscription. The generalized travel time of CB, rs
CBt , can be derived based 

on the trip travel time and the CB fare rs
CBf  as follows: 

 , , , ,
1 ,rs rs rs rs rs

CB iv CB a CB wt CB f CBt t t t c rs RS
vot

= + + + ⋅ ∀ ∈ ,  (8.3) 

where the trip travel time is the summation of fixed in-vehicle travel time, waiting time, 

and access time of CB, i.e., , , ,
rs rs rs rs
CB iv CB wt CB a CBt t t t= + + .  

As demonstrated in Section 7.3.2, although the CB generalized travel time is not 

explicitly dependent on the number of CB passengers, it is implicitly influenced by the 

risk of failed subscription incurred when the demand of CB reaches its capacity, i.e., 

the number of subscribers to the CB line between OD pair rs ( rs
CBq ) cannot exceed the 

capacity of CB line between OD pair rs ( CB
rscap ): 

 ,rs rs
CB CBq cap rs RS≤ ∀ ∈ . (8.4) 

 

8.2.2.4 Ride-hailing services 

This chapter considers both the conventional street-hailing taxi and the internet-based 

e-hailing service. The disutility of ride-hailing services is considered to include the 

generalized travel time and delay due to matching difficulty. The generalized travel 

time of both ride-hailing services, rs
RHt , is obtained based on the demand-dependent in-

vehicle travel time ,
rs
iv rdt , waiting time for pick-up ,

rs
wt RHt , and a distance-based fee 

( ),
rs rs
f RHc d  (Pi et al., 2019; Wang et al., 2022):  

 ( ) ( ), , ,
1rs rs rs rs rs rs

RH iv rd rd wt RH f RHt t q t c d
vot

= + + ⋅ . (8.5) 

The delay due to matching difficulty is considered depending on the supply and 

demand of the ride-hailing services in the origin zone, which is modeled as the dual 
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variable associated with the capacity constraint of ride-hailing service at origin (Ban et 

al., 2019). The capacity of street-hailing taxi at origin r is expressed as 

 ,rs r
sh sh

s S
q Cap r R

∈

≤ ∀ ∈∑ . (8.6) 

There can be multiple e-hailing services operated by different providers at each 

origin. The capacity of e-hailing service at origin r by provider i is expressed as 

 , , , ,rs r
eh i eh i

s S
q Cap u U r R

∈

≤ ∀ ∈ ∈∑ . (8.7) 

 

8.2.2.5 Bicycles 

The disutility of cycling is considered to include the generalized travel time and 

difficulty to search for an available shared bike (for bike sharing services). As an active 

travel mode, the generalized travel time of cycling is considered to include the in-

vehicle cycling time ,
rs
iv BKt  and riding fatigue disutility ( ),

rs
BK iv BKg t  during cycling (Li et 

al., 2015). Two cycling modes are considered in this chapter, namely the conventional 

private bike and the emerging bike sharing service. The generalized travel times of the 

two modes are respectively written as follows: 

 ( ), ,
1rs rs rs rs

PB iv BK BK iv BK PBt t g t c
vot

 = + ⋅ +  , (8.8) 

 ( ) ( ), , , ,
1rs rs rs rs rs

BS iv BK BK iv BK f BS iv BKt t g t c t
vot

 = + ⋅ +  , (8.9) 

where rs
PBc  denotes the cost of owning of private bike; ( ), ,

rs rs
f BS iv BKc t  is the time-

dependent fare of bike sharing. Similar to the ride-hailing service, there is limited bike 

sharing supply at each zone. Thus, a capacity constraint on the zonal demand of bike 

sharing is considered: 

 , ,rs r
BS BS

s S
q Cap u U r R

∈

≤ ∀ ∈ ∈∑ . (8.10) 

The associated dual variable acts as an additional travel disutility of the bike 

sharing service, which can be interpreted as difficulty to search for an available shared 

bike due to the insufficient supply in the origin zone. 
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8.3 Joint bundle and mode choice equilibrium analysis 

8.3.1 Equilibrium model formulation 

As described in Section 8.2.2, the disutility of mobility services considered in this 

chapter are dependent on the travel demand. Directly deriving the aggregate demand 

pattern from the DCNW model choice model developed in Section 3.3 may lead to a 

bias, as the mode choice probability derived based on exogenous free-flow disutility 

will be inconsistent with the mode disutility dependent on traveler interactions in the 

transportation system. In this section, an equilibrium DCNW choice model is developed 

to obtain the aggregate mode demand pattern dependent on the endogenous travel 

disutility. Following the method described in Chapter 5, the equilibrium model is 

formulated as an equivalent MP problem as follows: 

 

( )

( )

1 2 3 4 5

0

+

+

min

ln

1 ln 1

1 ln

1 ln 1

1

rs
m

rs

rs rs
u

rs rs
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u u
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rs RS u U m M

rs rs
um um

rs RS u U m M
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q rs
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rs RS m M
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q
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Z Z Z Z Z Z

d

q
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τ ω ω
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β

β

β

∈ ∈ ∈

∈ ∈ ∈

∈ ∈

∈ ∈
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= + + + +

=
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− ⋅ ⋅
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− ⋅ ⋅ −      
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⋅

∑ ∑ ∑

∑ ∑ ∑

∑ ∑
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∑ ∑

1
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1rs
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rs u
um rs

rs RS u U m M w
w U

rs rs
rs u
um rs

m M w
w U

q
q

qqη
η

η
η∈ ∈ ∈

∈
∈

∈

⋅
−

+

   
⋅    ⋅ − −    +        

∑ ∑ ∑ ∑ ∑ ∑

 (8.11) 

s.t. 

Eqs. (8.4), (8.6), (8.7), (8.10), 

 ,
rs rs

u

rs rs
um

u U m M

q q rs RS
∈ ∈

= ∀ ∈∑ ∑ ,  (8.12) 

 . , ,
rs

rs rs rs
um m

u U

q q m M rs RS
∈

= ∀ ∈ ∈∑ ,  (8.13) 

 0, , ,rs rs rs
um uq m M u U rs RS> ∀ ∈ ∈ ∈ .  (8.14) 
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Objective function (8.11) aims to obtain the mode demand pattern consistent with the 

proposed DCNW choice probability derived from endogenous mode disutility. The first 

term Z1 is the multiplicative Beckmann term for considering the demand-dependent 

mode disutility (Kitthamkesorn and Chen, 2013). Terms Z2 and Z3 are entropy terms 

which together determine the DCNW conditional choice probability. Term Z4 

corresponds to the interaction between the marginal and conditional choice levels of 

the DCNW model. Term Z5 determines the marginal choice probability of choice 

travelers while considering the effect of bundle loyalty via the dogit model. Eqs. (8.12) 

and (8.13) are conservation and definitional constraints, respectively. Eq. (8.14) 

guarantees the positivity of decision variables. Eqs. (8.4), (8.6), (8.7), (8.10) are 

incorporated as explicit constraints on the capacities of corresponding mobility services. 

Two propositions are stated below for illustrating qualitative properties of the proposed 

equilibrium model: 

 

Proposition 8.1. The solutions to the proposed MP model formulation give the 

equilibrium mode demand pattern consistent with the DCNW model. 

Proof. See Appendix A3 for detailed proof. 

 

Proposition 8.2. The solutions to the proposed MP model formulation are unique. 

Proof. See Appendix B3 for detailed proof. 

 

8.3.2 Solution algorithm 

Benefiting from the developed MP formulation, the relationship between primal and 

dual variables of the equilibrium model can be analytically derived (as shown in 

Appendix A3), and the value of objective function can be easily evaluated to find the 

search direction for updating solution variables. Making use of these desirable 

properties, the proposed equilibrium model is solved based on the partial linearization 

method embedded with an iterative balancing scheme for direction finding and the self-

regulated averaging scheme for step size determination as introduced in Section 5.3.  

The iterative balancing procedure is specified as follows to obtain the auxiliary 

variables y for direction finding: 
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Step 0. Initialization. Set number of iterations l=1. Set initial primal variables y(0)=0, 

and dual variables ( )0 =ω 0 , ( )0 =λ 0 . 

Step 1. Update primal variables.  

 ( ) ( ) ( )( ) ( )1 1

rs
u

rs rsrs um umumn nrs rs rs rsu m u

rs
u

nrs rs rs
u um um

m M

yc e e

β
β ββ

β λ ω βτ µ
− − −

⋅

∈

 
= ⋅ ⋅ ⋅ 

  
∑ , 

 ( ) ( )

1
rs

rs rs
n nrs rs u

u u rs
w

w U

qy yc η
η

∈

⋅
= +

+ ∑
, 

 ( ) ( ) ( )( ) ( )( ) ( ) ( )1 1

rs rsrsum umumn nrs rs rsrs rsm umu u
n n nrs rs rs rs rs

um u u m umy y yc e e
β ββ

ω β λβ βτ µ
− −−−

= ⋅ ⋅ ⋅ ⋅ ⋅ . 

Step 2. Update dual variables.  

 ( ) ( )1 1max 0, ln
rs

n nrs rs m
m m rs rs

um m

cap
y

ω ω
β

−   = −  
   

, 

( ) ( )

( )

( )

1

1
1

1 ln rs

nrs
u

n nrs rs u U
rs nrs
u u

yc

yc
λ λ

β

−

− ∈
−

 
 

= +  
 
 

∑
. 

Step 3. Convergence test.  

If certain convergence criterion (e.g., ( ) ( ) ( ) ( ){ }1 1max ,n n n n ε− −− − ≤ω ω λ λ ) is 

met, stop. Otherwise, go to Step 1. 

 

8.3.3 Sensitivity analysis-based multi-modal transportation system analysis 

The proposed equilibrium model is applied to the decision-making in multi-modal 

transportation systems with various emerging mobilities. The infrastructure planning 

and mobility operation strategies can be evaluated by comparing the system 

performances in different planning scenarios measured based on the equilibrium 

demand pattern. Instead of repeatedly solving the proposed model in different scenarios, 

the sensitivity-analysis-based method is an effective post-analysis tool that can 

approximate the changes in system performance under perturbations in model 

inputs/parameters (Yang and Chen, 2009; Du and Chen, 2022). The analysis outcomes 

can reveal the effects of managing supply and demand of mobility services and the 

criticality of different planning/operation strategies. The sensitivity analysis of the 

proposed model is first introduced in Section 8.3.3.1, followed by the illustration of the 
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sensitivity analysis-based multi-modal transportation system performance evaluation in 

Section 8.3.3.2. 

 

8.3.3.1 Sensitivity analysis of equilibrium DCNW model 

Benefiting from the properties of the developed MP formulation, the sensitivity analysis 

for nonlinear program can be applied to the proposed model (Fiacco, 1983; Yang and 

Chen, 2009; Du and Chen, 2022). The definitional constraint 
rs
u

rs
um

m M

rs
u qq

∈

= ∑  is 

introduced to represent the decision variable at the nest/bundle choice level, the 

Lagrangian of the proposed MP can then be expressed as 

( )
rs
u

rs rs

rs rs
u um

rs RS u U m M

rs rs rs rs rs rs rs
u u m m m

rs RS m M

q qL Z q q q capλ λ ω
∈ ∈ ∈ ∈ ∈

−
  

= + ⋅ − + ⋅ + ⋅ −  
    

∑ ∑ ∑ ∑ ∑ , (8.15) 

where rsλ  and rs
uλ  are dual variable with respect to the definitional constraints; for 

simplicity, we use rs
mω  to denote the OD-level dual variable with respect to the capacity 

constraint of each mode. The partial derivatives of the Lagrangian with respect to 

primal and dual variables are as follows: 

 1 1ln ln
1rs

u

rs

rs rs
rs rs rs rsu
u u urs rs rsq

u w um
w U

qL q qη λ λ
β η β

∈

 
⋅ ∇ = ⋅ − − ⋅ + − + 

 
∑

, (8.16) 

 1 1ln ln lnrs
um

rs rs rs rs rs
m um um u mrs rsq

um u

L qτ µ λ ω
β β

∇ = + ⋅ − ⋅ + + , (8.17) 

 , ,r
m

rs r
m m

s S
L q cap m BS EH

ω
∈

∇ = − =∑ ; rs
CB

rs rs
CB CBL q cap

ω
∇ = − , (8.18) 

 
rs
u

rs
u

rs
um

m M

rs
uqL q

λ
∈

−∇ = ∑ , (8.19) 

 rs
rs

rs
u

rs RS u U

rsqL q
λ

∈ ∈

∇ = −∑ ∑ . (8.20) 

Let J1 denote the Jacobian of Eqs. (8.16)–(8.20) with respect to the primal and dual 

variables, which can be expressed as 
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2

2

1

0 0

0 0

0 0 0 0
0 0 0

0 0 0 0

rs
u

rs
um

T
q

T
q

T

L I

L
J

I

 ∇ − Γ
 

∇ Φ Λ 
 = Φ 
 − Λ 

Γ  

, (8.21) 

where I denotes the identity matrix; Φ  denotes the incidence relationship between the 

decision variable rs
umq  and activated capacity constraints; Γ  and Λ  are the incidence 

matrix between OD pair and nest, and that between nest and mode, respectively. The 

second partial derivatives 2
rs
uq

L∇  and 2
rs
umq

L∇  are obtained as follows: 

 2 1 1 1 1

1

rs
u

rs

rs rsrs rs rsq
rs uu um u
u rs

w
w U

L diag diag
q qq ηβ β
η

∈

 
 
   

∇ = ⋅ − ⋅   ⋅   − + 
 

∑

, (8.22) 

 2 1 1 1
rs rs
um um

rs
mrs rs rsq q

m um um

L diag
q

τ
τ β

 
∇ = ⋅∇ + ⋅  

 
. (8.23) 

Let J2 denote the Jacobian of Eqs. (8.16)–(8.20) with respect to perturbation ξ  in 

the model inputs or parameters, which can be referred to as changes in the supply and 

demand of mobility services, such as infrastructure capacity, fleet size, fare price, travel 

time, bundle loyalty, and travel demand. J2 can be written as 

 2 , , , , ,rs rs rs rs rs
u um m u

T

q q
J L L L L L

ξ ξ ω ξ λ ξ λ ξ
 = ∇ ∇ ∇ ∇ ∇  . (8.24) 

Let 
Trs rs rs rs rs

u um m uq q ω λ λ =  y  indicate the vector of solution variables, the 

derivatives of y with respect to perturbation ξ  can be obtained (Yang and Chen, 2009): 

 1
1 2J Jξ
−∇ = − ⋅y . (8.25) 
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8.3.3.2 Sensitivity analysis-based transportation system performance evaluation 

(1) System performance measures  
In this chapter, the performance of multi-modal transportation system is measured from 

different perspectives based on the bundle and mode demand patterns derived from the 

proposed equilibrium model. The performance measures include mobility, accessibility, 

and environmental friendliness. The mobility is measured by the system total travel 

time (TTT) expressed as follows: 

 ( )
rs

rs rs
m m

rs RS m M

TTT q t
∈ ∈

= ⋅∑ ∑ q . (8.26) 

The accessibility is evaluated using the utility-based measure introduced in 

Section 2.1.3, which is consistent with the developed choice model and obtained as the 

weibit-based composite disutility (i.e., the expected minimum disutility from the CNW 

model) at each choice level. The bundle-level accessibility measure, rs
uAcc , is obtained 

via Eq. (3.41) using the endogenous travel disutility ( )rs
mτ q . The OD-level accessibility 

measure rsAcc  is obtained as 

 ( )
1

,
rsrs uu

rs

rs rs
u

u U

Acc Acc rs RS
ββ

−
−

∈

 
= ∀ ∈ 
 
∑ . (8.27) 

The accessibility at each level can then be evaluated based on the relative difference in 

normalized weibit-based composite disutility: 

 
( )

,AccAcc rs RS
Acc ξ

∆ = ∀ ∈
′

, (8.28)  

where ( )Acc ξ′  denotes the weibit-based composite disutility after a perturbation ξ  in 

the examined model inputs or parameters, which is derived based on the sensitivity 

analysis outcomes as will be illustrated below. 

The environmental friendliness is measured based on CO emission. The OD-level 

CO emission is derived as follows (Wallace et al., 1998): 

 ( )0.2038 exp 0.7962 ,
rs

rs rs rs rs rs
m m m m

m M

E e q t d t rs RS
∈

= ⋅ ⋅ ⋅ ⋅ ⋅ ∀ ∈∑ , (8.29) 

where me  denotes the passenger car unit of mode m, rsd  is the travel distance between 
OD pair rs. 
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(2) Sensitivity analysis-based evaluation of performance measures 
As all the performance measures are demand-dependent, the system performances after 

the implementation of a certain plan or policy can be obtained given the corresponding 

equilibrium demand pattern under the perturbation in corresponding model 

inputs/parameters. The derivatives of mode demand, total travel time, accessibility, and 

CO emission can be obtained based on the sensitivity analysis of decision variable rs
umq

(as derived in Section 8.3.3.1) and the chain rule as follows: 

( )

( ) ( )
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1 1
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(8.30) 

The corresponding performance measure ( )X ε′  (X can indicate mode demand, 

total travel time, accessibility, or CO emission) after a perturbation ξ  can be 

approximated based on the first-order Taylor expansion: 

 ( ) ( ) ( )
0

0 0X X Xξ ξ
ξ ξ ξ ξ′ = +∇ ⋅ − , (8.31) 

where 
0

Xξ ξ
∇  denotes the derivatives of performance measure X evaluated at the 

original perturbation level 0ξ . 

 

8.4 Numerical experiments 

This section applies the proposed equilibrium model and sensitivity analysis-based 

system analysis method to two transportation systems with multiple emerging 
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mobilities. The mobility services and bundles considered in the numerical experiments 

are as shown in Figure 8.3. A single-OD example is first conducted to illustrate the 

properties of the proposed equilibrium analysis framework. A multi-OD case study is 

then carried out to verify the applicability of the proposed framework in real-world 

scenarios with different OD-level mobility service qualities and multiple bundle loyalty 

schemes. 

 

 

Figure 8.3. Mobility services and bundles considered in numerical experiments 
 

8.4.1 Single-OD system example 

In this example, the effectiveness and features of the proposed methods are 

demonstrated in a single-OD transportation system with two mobility bundles and a 

single loyalty scheme for each bundle. The model parameters are 
1

0.1bη = , 
2

0.05bη = , 

3.7rs
umβ = , 1.85rs

uβ =  (Kitthamkesorn and Chen, 2017; Wang et al., 2020a). The input 

data for this example are as follows:  

1000q = (travelers), 60vot = (CNY/h), 10rsd = (km), , 0.6rs
fl carc = (CNY/km), 

, 15rs
p carc = (CNY); , 25rs

iv PTt = (min), , 5rs
wt PTt = (min), , 5rs

a PTt = (min), , 2rs
f PTc = (CNY); 

, 20rs
iv CBt = (min), , 3rs

a CBt = (min), , 3rs
wt CBt = (min), , 12rs

f CBc = (CNY); , 2rs
wt RHt = (min), 

( ) ( ), 0, 3rs rs rs rs
f RH m mc d c dα= + ⋅ − , where 0, 9rs

SHc = (CNY), 0, 1 10rs
RHc = (CNY), 0, 15rs

mc =

(CNY), 2.2SHα = (CNY/km), 1 1.6RHα = (CNY/km), 2 1.1RHα = (CNY/km); , 34rs
iv BKt =

(min), 4rs
PBc = (CNY), ( ) ,

, ,

15
1.5

15

rs
iv BKrs rs

f BS iv BK

t
c t

−
= + (CNY).  

The road in-vehicle travel time is given by the BPR function: 

 ( )
4

, ,0 1 0.15
600

rs
rs rs rs rd
iv rd rd rd

qt q t
  
 = ⋅ +  
   

, (8.32) 
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where ,0 12rs
rdt = (min) is the free-flow travel time.  

The in-vehicle crowding in bus is computed as (Wang et al., 2020a):  

 ( )
2

, ,, 1 0.5
1000

rs
rs rs rs PT
PT iv PT iv PT

qg q t t
  

= ⋅ +  
   

. (8.33) 

The riding fatigue during cycling is expressed as (Li et al., 2015): 

 ( ) ( )2

, 1 , 2 ,
rs rs rs

BK iv BK iv BK iv BKg t t tα α= ⋅ + ⋅ , (8.34) 

where 1 2α = (HK$/hour), 2 4α = (HK$/hour2). 

Without loss of generality, we adopt the following function for evaluating mode 

travel disutility (Hensher and Truong, 1985; Mirchandani and Soroush, 1987): 

 ( )exp 0.075 , ,rs rs
m m rst m M rs RSτ = ⋅ ∀ ∈ ∈ .  (8.35) 

 

8.4.1.1 Numerical results and evaluation 

This section shows model outputs and corresponding system performance measures 

under sufficient supplies of mobilities (i.e., capacity constraints (8.4), (8.6), (8.7), (8.10) 

are not activated). The model outputs in terms of the equilibrium bundle and mode 

demands are presented in Figure 8.4 (where e-hailing 1 and e-hailing 2 are abbreviated 

as EH1 and EH2).  

 

 

Figure 8.4. Travel demand pattern of single-OD example at each choice level 
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The bundle and mode shares are respectively summarized in the left and right 

panels of Figure 8.5. The effect of bundling is reflected in the results. Owing to a larger 

bundle loyalty, bundle 1 attracts more loyal travelers than bundle 2. Due to the 

correlations among modes within nests/bundles, the street-hailing taxi and e-hailing 2 

services attract much fewer passengers than e-hailing 1 in mobility bundle 1. Their 

demands are diverted by travel modes in other bundles/nests because of the higher 

degrees of competition therein. 

 

 

Figure 8.5. Shares of mobility bundles and individual modes in single-OD example 
 

 

Figure 8.6. Effect of bundling in system performances 
 

The system performance measures, including shares of transit services (i.e., bus 

and CB) and go-green modes (i.e., private bike, bus, CB, and bike sharing), system total 

travel time, and system CO emission, are analyzed in Figure 8.6 to further demonstrate 

the effect of bundling. For comparison, the equilibrium travel demand pattern in the 

same system but with no mobility bundle is derived using the basic multinomial weibit 

equilibrium model (Kitthamkesorn and Chen, 2013). From Figure 8.6, the mobility 

bundling with corresponding loyalty schemes can enhance the attractiveness of bundled 
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modes, which significantly increases the shares of transit and go-green modes. This 

leads to a slight reduction in the system travel time by alleviating road congestion and 

a significant enhancement in environmental friendliness. 

 

8.4.1.2 Sensitivity analysis with respect to inputs and parameters 

The section examines the effects of different parameters and inputs on model outcomes 

through the sensitivity analysis method introduced in Section 8.3.3.1. In this section, 

the emerging mobilities are considered to have sufficient capacities, such that the 

differences in attractiveness among bundles and modes are entirely based on the 

demand-dependent travel disutility. 

Figure 8.7 shows the increase in share of bundles and modes under a unit increase 

in the OD travel demand. E-hailing service 1 will attract more incremental demand due 

to its superior service quality compared with other ride-hailing services. Compared with 

the mode share pattern of the existing demand (as shown in Figure 8.5), the sensitivity 

analysis results show that the go-green modes, such as bus, customized bus, and bike 

sharing, will attract relatively larger proportion of the incremental travel demand as 

they are less influenced by the increased road congestion. 

 

 

Figure 8.7. Sensitivities to total travel demand 
 

Figure 8.8 investigates the sensitivities of bundle and mode demands with respect 

to bundle loyalty. Compared with other parameters and inputs, the increase in bundle 

loyalty can exert a much more significant impact on the equilibrium bundle demand 

pattern. This implies that loyalty is an important factor to be considered in the travel 

demand analysis. As for decision-makers, promoting policies/strategies for improving 

the loyalty to bundles of shared mobilities (e.g., Bundle 2) shows great potential to 

reduce road traffic and encourage the usage of active (cycling) and go-green modes. 
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Figure 8.8. Sensitivities to loyalty parameter of each mobility bundle 
 

Figure 8.9 examines the sensitivities to the dissimilarity parameter rs rs rs
u u umϕ β β= , 

which associates with the degree of competition among modes in the same nest/bundle. 

An increase in the dissimilarity parameter implies a lower competition among modes 

within the same bundle. The results indicate that in this example, the ride-hailing modes 

are more sensitive to the competition between each other. Specifically, taxi and e-

hailing 2 are most negatively influenced by the competition as they are bundled/nested 

with more competitive modes that can divert more demands from them. While e-hailing 

1 benefits most from the competition as it has the most significant advantage in service 

quality compared to the other modes in the same bundle. 

 

 

Figure 8.9. Sensitivities to dissimilarity parameter  
 

8.4.1.3 Sensitivity analysis considering mobility supplies 

This section uses the sensitivity analysis-based method to investigate the effects of 

supplies, i.e., capacities of both conventional and emerging travel modes. Figure 8.10 

investigates the effect of considering emerging mobility capacity on the sensitivities 
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with respect to the loyalty parameter η . When the capacities of emerging mobilities are 

insufficient (capacities of all on-demand modes are set as 100 travelers), the effects of 

enhancing bundle loyalty significantly decrease. Compared to the results in Figure 8.8, 

the improvement of loyalty cannot influence the go-green mode share and road traffic 

as the limited supply becomes the bottleneck of shared mobility attractiveness. 

 

 

 (a) Loyalty to bundle 1      (b) Loyalty to bundle 2 

Figure 8.10. Sensitivities of modal demands under different capacitated conditions 
 

Figure 8.11 further investigates the sensitivities to road capacity, which indirectly 

influences road traffic via road congestion instead of directly restricting modal demands. 

As can be expected, the improvement in road capacity can reduce congestion, enhance 

attractiveness of car modes, and divert travel demand from shared mobilities and active 

modes. Specifically, the private car can attract more demands in the case where on-

demand modes are capacitated and ride-hailing services cannot benefit from the 

enhancement of attractiveness. 

 

 

Figure 8.11. Sensitivities of modal demands with respect to road capacity 
 



 
 

231 
 

We further investigate and compare the sensitivities of system performance 

measures with respect to capacities of both conventional and emerging modes. The 

outcomes are shown in Figure 8.12, which reflects the criticality of supply improvement 

for each mobility service. Increasing road capacity still has the most significant positive 

impacts on system travel time and accessibility. It can even slightly reduce CO 

emissions by alleviating road congestion. On the other hand, it is worthy to note that 

comparing to road capacity, the capacity of emerging shared mobilities, i.e., bike 

sharing and customized bus, can have comparable or even greater positive effect on 

accessibility and CO emission. Considering the relatively lower cost of increasing 

capacities of shared mobilities, this result implies that providing enough shared 

mobility supplies may have higher priority in the planning of future transportation 

systems. Furthermore, adding capacity of ride-hailing services can have negative 

effects on the examined performance measures, implying that promoting ride-hailing 

services may not be a good choice in congested transportation systems. 

 

 

  (a) Go-green mode share      (b) total travel time 

 

  (c) CO emission       (d) Accessibility 

Figure 8.12. Sensitivities of system performances with respect to capacities 
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8.4.2 Case study in multi-OD transportation system 

This section verifies the application of the proposed model in a multi-OD case study 

based on a multi-modal network extracted from Nanjing, China (Huang et al., 2020a). 

The study area is shown in Figure 8.13, where eleven zones, eight OD pairs are 

considered in the case study.  

 

 
Figure 8.13. Study area with emerging mobility services 

(adapted from Huang et al., 2020a) 
 

Table 8.2. Inputs of multi-OD case study 

OD 
pair 

Travel 
demand 
(person) 

Distance 
(km) 

Car  
Time  
(min) 

Road  
Capacity 
(veh) 

Bus  
Time 
(min) 

Bus  
Capacity 
(person) 

Bike  
Time 
(min) 

CB  
Time 
(min) 

CB  
Fare 
(CNY) 

1-4 300 17.6 22 200 65 300 70.4 44 10 
2-8 420 17.4 21 200 56 300 69.6 42 10 
3-8 310 11 15 200 41 300 44 33 8 
4-7 300 13.4 17 100 46 300 53.6 40 8 
5-9 350 14.9 26 100 48 500 59.6 43 8 
5-11 300 26 40 100 50 500 104 52 14 
6-7 450 5.7 10 200 15 300 22.8 18 6 
10-11 300 9.1 15 100 30 500 36.4 30 6 

 
The input data used in the numerical experiments are presented in Table 8.2. The 

model parameters and computations of mode travel disutility are consistent with 
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Section 8.4.1. All eight mobility services and three mobility bundles shown in Figure 

8.3 are operated between each OD pair with different service qualities and are 

considered to have the same degree of loyalty and sufficient capacity in Section 8.4.2.1. 

The effects of pricing of multiple loyalty bundle schemes and capacity of emerging 

mobilities are then investigated in Section 8.4.2.2. 

 

8.4.2.1 Model outcomes and system performances 

Figure 8.14 shows the equilibrium mode shares between each OD pair. Consistent with 

the insights from existing studies, CB services tend to have higher attractiveness when 

travel distance is long (e.g., OD pair 5-11), while cycling modes (both private bike and 

bike sharing) have higher attractiveness in trips with short distance (e.g., OD pairs 10-

11 and 6-7). The performances of bus and CB highly depend on the service quality. For 

instance, the bus and CB lines between OD pairs 4-7 and 5-9 have less detour than those 

between 1-4 and 2-8, and thus can attract much more demands in the competition with 

private car and ride-hailing services. 

 

 

Figure 8.14. Mode share between each OD pair in multi-OD case study 
 

Figure 8.15 examines the sensitivity of performance measures with respect to the 

free-flow in-vehicle travel time of each mode. Cycling modes and CB services have a 

more significant impact on the CO emission and system travel time, respectively. 

Consistent with the discussions on Figure 16, cycling modes are more important for 
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accessibility of short-distance OD pairs (6-7), while CB services play a critical role in 

the accessibility of distant OD pairs (5-11). In addition, the reduction in bus travel time 

has similar but slightly larger effects on CO emission and accessibility. These outcomes 

can provide insights for deciding the implementation and priority of infrastructure 

design and policymaking for different mobilities in transportation planning. 

 

 

    (a) System travel time         (b) CO emission 

 

(c) OD-level accessibility 

Figure 8.15. Effect of a unit reduction in mode travel time 
 

8.4.2.2 Effect of emerging mobility supply 

This section evaluates the effect of supplies of emerging mobilities in terms of service 

capacity and pricing of loyalty bundle scheme. Figure 8.16 shows the cycling demands 

and CO emissions between the two short-distance OD pairs (6-7, 10-11) with the 

evolution of bike sharing capacity. Nodes 6 and 10 are schools and transit hubs that are 

considered to have insufficient bike sharing supply (capacity = 50 bikes). Before 

accommodating all potential bike sharing requests, increasing bike sharing capacity can 

stably increase cycling demand and reduce CO emissions. 



 
 

235 
 

 

 

Figure 8.16. Effect of bike sharing capacity 
 

We further consider the case when bike sharing and customized bus services are 

newly introduced to OD pairs 5-9 and 10-11, where travelers have no loyalty to the 

corresponding mobility bundle 2. A discount on CB and bike sharing fares is to be 

implemented to enhance loyalty to bundle 2. In this case, Eqs. (3.51)–(3.52) are used to 

obtain the loyalty parameter based on the preference to loyalty scheme when previous 

mode choice probabilities are absent. The bundle demands and OD-level accessibility 

are evaluated in Figure 8.17 under varying levels of discounts. 

 

 

(a) OD pair 5-9    (b) OD pair 10-11 

Figure 8.17. Effect of loyalty scheme pricing on demand of mobility bundle 2 
 

From Figure 8.17, the effect of discounts is more significant between OD pair 5-9 

where the CB service is preferred. Although bike sharing plays a critical role between 

OD pair 10-11, the decrease in bike sharing fare has a lower impact than CB fare. It is 

because that the attractiveness of bike sharing depends more on the cycling time. Unlike 
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bike sharing, the CB fare is a greater concern for CB passengers Thus, fare discount 

can have a more significant impact on the bundle preference, leading to a larger increase 

in bundle loyalty and bundle demand. Compared to fare discount, reducing in-vehicle 

travel time and riding fatigue might be more effective for the bike sharing service. This 

implies that the incentives for different emerging mobilities need to be customized 

based on the service features. 

 

8.5 Conclusions 

This chapter proposes an equilibrium analysis for the joint bundle and mode choice in 

multi-modal transportation systems with emerging mobilities. The loyalty to mobility 

bundles and correlations among different modes are specifically considered. To derive 

the aggregate demand pattern, an equilibrium model is developed and formulated as an 

equivalent MP problem, which guarantees equivalence and uniqueness of solutions and 

enables the application of convergent and efficient solution algorithms. The sensitivity 

analysis of the proposed equilibrium model is developed based on the MP model 

formulation, which facilitates the post-analysis of transportation systems via various 

performance measures.  

Various numerical experiments are conducted to illustrate the proposed choice 

model and sensitivity analysis-based system evaluation method in a single-OD system 

and a real-world case study extracted from Nanjing, China. The results show the effect 

of bundle loyalty and mode correlations can be effectively considered by the proposed 

model. Mobility bundling and bundle loyalty are found to be important influencing 

factors of the demand distribution and system performance. The sensitivity analysis-

based method can efficiently reveal the effects of different model parameters and inputs 

on model outcomes, which facilitates understanding the criticalities of different 

mobility service planning/operation schemes. The outcomes can provide insights for 

the decision-making on emerging mobility services. For example, the capacity of shared 

mobility services and incentives to loyalty schemes of shared mobility bundles are 

found to play an important role in the alleviation of road congestion and the 

improvement of environmental friendliness and accessibility. The discount on fares is 

an effective but not necessarily the most appropriate way to enhance the effect of bundle 

loyalty. The incentives to loyalty bundle schemes should be customized by decision-

makers dependent on the features of different emerging mobilities.   
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Chapter 9 Modeling shared parking services at spatially correlated 

locations through a weibit-based combined destination and parking 

choice equilibrium model 

9.1 Introduction  

This chapter develops an equilibrium model for the emerging shared parking services 

based on the spatially correlated weibit (SCW) destination choice model and parking-

size weibit (PSW) parking choice model developed in Section 3.4. Unlike most 

conventional curbside parking services, shared parking services allow travelers to 

circumvent the inconvenience of cruising-for-parking, which is a notable factor in 

modeling parking choice equilibrium (e.g., Leurent and Boujnah, 2014; Boyles et al., 

2015; Pel and Chaniotakis, 2017). Zhang et al. (2020) considered this feature of shared 

parking and proposed a user equilibrium (UE) model to examine the choice equilibrium 

between conventional curbside parking and emerging shared parking services. Despite 

of focusing on the parking choice equilibrium problem (Liu et al., 2022), few efforts 

have been devoted to modeling the equilibrium of joint destination and parking choice 

with shared parking services that accounted for the impact of parking service quality 

on the location attractiveness and destination demand pattern (Liu et al., 2021).  

Many combined travel demand models (Oppenheim, 1995; Yang and Meng, 1998; 

Yao et al., 2014) have been proposed using logit-based models to reproduce the 

destination and travel choices together, which is similar to the joint destination and 

parking choice considered in this chapter. However, existing combined travel demand 

models typically adopt the multinomial logit (MNL) model for reproducing choice 

behaviors at the individual level. As illustrated in Section 3.4, the MNL model is 

inadequate to capture the heterogeneity in perceived destination and parking disutility, 

or the similarity among spatially correlated alternatives, which are important concerns 

in modeling destination and parking choice behaviors. 

To address the abovementioned research gaps, this chapter proposes an advanced 

equilibrium model for investigating the effect of shared parking services on joint 

destination and parking choices. Benefiting from the SCW-PSW choice model 

developed in Section 3.4, travelers’ random perceptions of travel disutility are 

consistently considered based on the random utility theory at both the destination and 

parking choice dimensions. Furthermore, the heterogeneity and spatial correlation 
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issues can be simultaneously addressed in each choice dimension. The proposed 

equilibrium model is formulated as an equivalent mathematical programming (MP) 

problem consistent with the SCW-PSW choice model. The developed MP formulation 

ensures high interpretability and enables the application of readily available convergent 

and efficient solution algorithms. 

 

9.2 Problem statement 

To facilitate the presentation of the essential ideas without loss of generality, Sections 

9.2.1 and 9.2.2 introduce the notations and main model assumptions, respectively. The 

travel disutility at each choice dimension is described in Section 9.2.3. 

 

9.2.1 Notations  

Sets  
R Set of origins. 
S Set of destinations. 
ST Set of destination pairs. 

 
Inputs and parameters 

sψ  Attractiveness of destination s. 
r
st   In-vehicle travel time between OD pair rs. 

vot Value of time. 
r
sc  In-vehicle travel cost between OD pair rs. 

, ,,s sp s cpc c  Cost of shared parking/curbside parking at destination s. 

, ,,s sp s cppc pc  Parking fee of shared parking/curbside parking at destination s. 

,
r
s stα   Allocation parameter indicating the proportion of destination s in 

destination pair st. 
rβ  Shape parameter with respect to the marginal destination choice 

level. 
sβ  Shape parameter with respect to the conditional destination choice 

level. 
µ   Dissimilarity parameter. 
wst Spatial correlation between locations s and t. 

, ,,s sp s cpPS PS   Parking-size factor of shared/curbside parking at destination s. 

mβ   Shape parameter with respect to the parking choice. 

,s spCap , 

,s cpCap   
Capacity of shared parking/curbside parking service at destination s. 
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Intermediate variables 
r
sτ  Total disutility of traveling from origin r to destination s. 

, ,,r r
s sp s cpτ τ   Total disutility of traveling from origin r to destination s using shared 

parking/curbside parking. 
, ,,s sp s cpτ τ   Disutility of using shared parking/curbside parking at destination s. 

,
r
s stτ   Deterministic part of individual disutility of destination s in 

destination pair st. 
r
stτ   Common disutility of destination pair st. 

, ,,s sp s cpt t   Parking searching time of shared/curbside parking at destination s. 
r
sA   Accessibility between OD pair rs. 

 
Decision variables 

, ,,r r
s sp s cpf f  Flow of shared parking/curbside parking between OD pair rs. 

,
r
s stq   Travel demand at destination s belonging to destination pair st from 

origin r. 
r
stq   Travel demand of destination pair st from origin r. 
r
sq   Travel demand between OD pair rs. 

 
9.2.2 Assumptions  

A9.1: Travelers make destination and parking choices together to minimize their total 

perceived disutility. The random disutility perception errors follow the Weibull 

distribution (Castillo et al., 2008; Kitthamkesorn and Chen, 2017). 

A9.2: The total disutility of travelers resulting from the combined destination and 

parking choice consists of the destination utility, travel disutility, and parking disutility 

(including parking searching time and parking fee). The disutility function has a 

multiplicative form, which is consistent with the psychophysical laws on how different 

magnitudes of travel disutility is perceived and has better behavioral interpretations 

than the commonly used additive utility function adopted in logit models (Fosgerau and 

Bierlaire, 2009; Chakroborty et al., 2021). 

A9.3: At the parking choice level, travelers choose from two types of parking services, 

i.e., shared parking and curbside parking. Shared parking users do not spend any time 

searching for parking but may fail to reserve a shared parking slot when the shared 

parking demand reaches the capacity. The searching time for curbside parking is an 

increasing function with respect to the parking occupancy rate (i.e., the ratio of the 

parking demand to the parking capacity). The curbside parking capacity is sufficient to 

accommodate all parking demands (Zhang et al., 2020; Liu et al., 2021, 2022). 
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9.2.3 Destination utility and parking disutility 

The proposed model considers both the destination utility and travel disutility resulting 

from joint destination and parking choices. Let r
sτ  denote the total disutility of traveling 

from origin r to destination s. In the weibit-based choice model, r
sτ  is expressed in the 

following multiplicative form: 

 ( ) 1 , ,r r
s s sv A r R s Sψ −= ⋅ ∀ ∈ ∈ . (1) 

sψ  denotes the utility of destination s, which is represented by the attractiveness of s 

that can be calibrated exogenously. r
sA  denotes the accessibility between OD pair rs, 

which is a composite disutility (i.e., the expected minimum travel disutility) derived 

based on the parking choice model as illustrated in Section 2.1.3.  

The travel disutility consists of the in-vehicle travel cost r
sc  and parking disutility 

,s mv . The in-vehicle travel cost between OD pair rs is associated with the in-vehicle OD 

travel time:  

 , ,r r
s sc vot t r R s S= ⋅ ∀ ∈ ∈ , (2) 

where vot denotes the value of time. r
st is assumed to be exogenously given because on-

trip congestion is not the focus of this model (Zhang et al., 2020; Liu et al., 2021). The 

parking disutility is considered to include the parking cost and difficulty to reserve a 

vacant shared parking slot (for shared parking services). The parking cost at destination 

s consists of the parking searching time and parking fee: 

 , , , , , , ,s m s m s mvot t pc r R s S m sp cpτ = ⋅ + ∀ ∈ ∈ = . (3) 

,s sppc  and ,s cppc  denote the monetary fee of shared parking and curbside parking at 

destination s. ,s cpt  is the curbside parking searching time, which is an increasing 

function of curbside parking demand ,s cpf  (i.e., ( ), ,s cp s cpt f ). The shared parking service 

has a constant searching time ,s spt  but limited number of parking slots, i.e., there exists 

a tight capacity constraint on the shared parking space. When the capacity constraint is 

activated, there exists a positive dual variable that increases the shared parking disutility, 
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which can be interpreted as the penalty induced by the difficulty to reserve a vacant 

shared parking slot.  

 

9.3 Combined destination and parking choice equilibrium model 

9.3.1 Mathematical programming model formulation 

As described in Section 9.2.3, the parking disutility is demand-dependent, it is thus 

necessary to consider the congestion effect when modeling the equilibrium destination 

and parking choices. This section presents the equilibrium SCW-PSW model to obtain 

the aggregate travel demand pattern based on the endogenous parking disutility while 

consistent with the individual choice probability from the SCW-PSW model developed 

in Section 3.4. Thus, the equilibrium destination and parking choice behaviors are 

consistently modeled based on the random utility theory, which addresses the 

behavioral inconsistency in the joint destination and parking equilibrium model 

proposed by Liu et al. (2021).  

 

 
Figure 9.1. Construction of the MP objective function for the equilibrium combined 

destination and parking choice model 
 

Based on the method introduced in Chapter 5, an equivalent MP formulation of 

the equilibrium SCW-PSW model is developed, which leads to analytical expressions 

of primal variables and can be solved by readily available convergent and efficient 
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algorithms. Figure 9.1 illustrates the construction of the objective function according to 

the hierarchical structure of the joint destination and parking choice (Figure 3.13) and 

the nested structure of the SCW model (Figure 3.15). Due to the multiplicative disutility 

function used by the weibit-based models, the multiplicative Beckmann terms are 

adopted for representing the destination utility and parking disutility (Kitthamkesorn 

and Chen, 2013). Entropy terms are constructed individually for the SCW probabilities 

at the marginal and conditional destination choice levels, PSW probabilities at the 

parking choice level, and interactions among different choice levels. 

By normalizing 1rβ = , 1sβ µ=  and substituting , ,
r r r
st s st t stq q q= +  into term Z2, 

the MP model formulation can be written as follows: 

( )

( ) ( )
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s.t. 

 , , , ,r r r
s sp s cp sf f q r R s S+ = ∀ ∈ ∈   (9.5) 

 ,r r
s

s S
q q r R

∈

= ∀ ∈∑   (9.6) 

 , , ,r r
s st s

st ST
q q r R s S

∈

= ∀ ∈ ∈∑   (9.7) 

 , , ,r
s sp s sp

r R
f Cap s S

∈

≤ ∀ ∈∑   (9.8) 

 , 0  , ,r
s stq r R st ST s S≥ ∀ ∈ ∈ ∈   (9.9) 
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 , ,, 0, ,r r
s sp s cpf f r R s S≥ ∀ ∈ ∈   (9.10) 

Objective function (9.4) aims to find the equilibrium destination and parking demand 

based on the SCW-PSW model. Conservation constraints (9.5) and (9.6) indicate the 

relationship between the parking flow and OD demand and between the OD demand 

and zonal production, respectively. Constraint (9.7) is the definitional constraint. 

Capacity constraint (9.8) specifies the limited shared parking space. Constraints (9.9) 

and (9.10) are nonnegative constraints. The following two propositions are defined to 

show the qualitative properties of the proposed MP formulation. 

 

Proposition 9.1. The proposed MP formulation (9.4)–(9.10) yields the equilibrium 

destination and parking choice solution of the SCW-PSW model. 

Proof. Construct the Lagrangian of the proposed MP problem and let its partial 

derivatives with respect to solution variables equal to zero, we can obtain the analytical 

expression of decision variables ,
r

s mf , r
sq , r

stq , and ,
r
s stq : 

 ( ) ( ),

, , ,

r
mm s s mr r

s m s m s mf e PS
ββ π ω τ

−− ⋅ +
= ⋅ ⋅ , (9.11) 

 1 ln lnr r r
s s s

m

q A π
β

− = + , (9.12) 
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1
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,

r
r r r
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In Eq. (9.11), ,s me ω−  can be considered as a penalty on the risk of failed subscription to 

shared parking services and can be integrated with the parking disutility ,
r
s mτ . Hence, 

substituting Eq. (9.11) into Eq. (9.5) leads to the PSW parking choice probability: 
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Substitute Eqs. (9.12)–(9.14) into Eq. (9.6), we can obtain the marginal and conditional 

destination choice probabilities of the SCW model as follows: 
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For detailed proof, see Appendix A4. 

 

Proposition 9.2. The destination flow and parking demand solutions to the MP 

formulation (9.4)–(9.10) are unique. 

Proof. See Appendix B4. 

 

9.3.2 Solution algorithm 

Benefiting from the developed MP formulation, the relationship between primal and 

dual variables of the equilibrium model can be analytically derived (Eqs. (9.11)–(9.14)), 

which can be used to find the search direction in the solution algorithm. Taking 

advantage of this property, the partial linearization algorithm introduced in Section 5.3 

is adapted for solving the proposed equilibrium model. The solution algorithm is 

described in Sections 9.3.2.1 and 9.3.2.2. 

 

9.3.2.1 Partial linearization algorithm 

Given the decision variables and corresponding travel disutility at iteration k-1, i.e., 

,k-1 k-1f q  and ( )k-1τ f , the search direction (i.e., auxiliary parking flow g and auxiliary 

destination demand y) at iteration k is determined by solving a partial linearized 

subproblem as follows: 
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s.t. 
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 , 0  , ,r
s sty r R st ST s S≥ ∀ ∈ ∈ ∈   (9.23) 

 , ,, 0, ,r r
s sp s cpg g r R s S≥ ∀ ∈ ∈   (9.24) 

In the subproblem, the flow-dependent parking disutility in objective term Z1 is 

linearized via a first-order approximation, which fixes the curbside parking searching 

time based on the current parking flow fk-1. The subproblem is a convex program with 

linear inequality constraints (i.e., capacity constraints (9.22)). In this chapter, the 

iterative balancing scheme is adapted to solve the subproblem (Bell, 1995; Ryu et al., 

2014). In the line search, the moving step size is determined based on the advanced 

self-regulated averaging (SRA) scheme. The procedure of partial linearization 

algorithm involves the following steps: 
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Step 0. Initialization.  

• Initialize primal variables f0=0, q0=0, and the free-flow parking disutility; 

• Set outer iteration counter k = 1; 

• Derive auxiliary flow pattern g1 and y1 by solving the partial linearized 

subproblem (9.18)–(9.24) based on the iterative balancing scheme; 

• Initialize step size: 1 1ϕ = , 1 1γ = . Update primal variables: f1=g1, q1=y1. 

Step 1. Direction finding. 

• Update travel disutility based on the current flow pattern fk and qk; 

• Set k = k + 1; 

• Derive auxiliary flow pattern gk and yk by solving the partial linearized 

subproblem (9.18)–(9.24) based on the iterative balancing scheme. 

Step 2. Line search. 

• Derive the step size kϕ  based on the SRA scheme: 

 1k kϕ γ=  (9.25) 

 
1

1

1
2

if

otherwise

k
k

k

γ σ
γ

γ σ

−

−

 + − ≥ −= 
+

k k-1 k-1 k-2g f g f
 (9.26) 

where 1 1σ >  and 2 1σ < . 

Step 3. Update primal variables. 

( )kϕ= + ⋅ −k k-1 k k-1f f g f ; 

( )kϕ= + ⋅ −k k-1 k k-1q q y q . 

Step 4. Convergence test. 

• If { } 1max , ε− − ≤k k-1 k k-1f f q q , terminate the algorithm, where 1ε  is a 

convergence tolerance at which the procedure stops. Otherwise, go to step 1. 

 

9.3.2.2 Iterative balancing scheme 

This section describes the iterative balancing scheme used for finding the search 

direction in step 1 of the partial linearization algorithm. At each iteration of the iterative 

balancing scheme, one of the dual variables ( rλ  and ,s spω ) is adjusted to make primal 

variables satisfy the corresponding constraint. The procedure of the iterative balancing 

scheme is specified as follows: 
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Step 0. Initialization.  

• Set inner iteration counter n = 0; 

• Initialize the dual variables: ( ) ( ), , 0, ,
n nr

s sp r R s Sω λ = ∀ ∈ ∈ . 

Step 1. Update the primary variables. 

• Based on dual variables, derive primal variables via Eqs. (9.11)–(9.14): 
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Step 2. Update the dual variables. 
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Step 3. Convergence test. 

• Calculate the maximum adjustment among all dual variables. If 

( ) ( ) ( ) ( ){ }1 1

, , 2max ,
n n n nr r

s sp s spω ω λ λ ε
+ +
− − ≤ , terminate the algorithm, where 

2ε  is a convergence tolerance for the iterative balancing scheme. Otherwise, set 

n = n + 1 and go to step 1. 



 
 

248 
 

In Step 2, the adjustment factor for each dual variable is obtained based on the 

analytical relationships between primal and dual variables. The adjustment factor r∆  

associated with dual variable rλ  is derived by substituting the analytical expression of 
r
sty  (following Eq. (9.14)) in the conservation constraint (9.24): 
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 (9.27) 

The adjustment factor ,s sp∆  associated with dual variable ,s spω  is derived by 

substituting the the analytical expression of ,
r
s spg  and ,

r
s cpg  (Eq. (following 9.11)) into 

the capacity constraint (9.22): 
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9.4 Numerical experiments 

9.4.1 Toy network 

This section designs a numerical example to illustrate the properties of the proposed 

model. The model parameters are  and 0.5µ =  (Kitthamkesorn and Chen, 2017). An 

exponential parking searching time function is used for congested urban areas (Belloche, 

2015): 
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A toy network with one origin and six destinations (Figure 9.2) is considered. The 

travel demand from origin r is qr = 1,000 (veh). The six destinations S1–S6 are located 

in two areas. There are five pairs of adjacent destinations: (S1, S3), (S2, S3), (S4, S5), 

(S4, S6), and (S5, S6). The travel time to each destination is assumed to be 10 min, and 

all destinations have the same utility 30sψ =  (HK$). The shared parking cost is HK$ 5 

for each destination. The capacities of shared and curbside parking are Caps,sp = 100 

(veh) and Caps,sp = 300 (veh), respectively. The value of time is vot = 60 (HK$/h). 

 

 

Figure 9.2. Toy network with one origin and six destinations 
 

Table 9.1 summarizes the distribution of parking space. The digits associated with 

each destination indicate the independent shared parking space (e.g., 82 for S1) and 

curbside parking space (e.g., 246 for S1) at that destination. The digits associated with 

each pair of destinations (e.g., 26 and 78 for (S2, S3), respectively) denote the 

overlapped shared and curbside parking space jointly used by that destination pair.  

 

Table 9.1. Distribution of parking spaces at each destination in toy network 
Destination S1 S2 S3 (S1, S2) (S1, S3) (S2, S3) (S1, S2, S3) 

Parking 
space (veh) 

82 

246 

62 

126 

62 

126 

6 

16 

6 

18 

26 

78 

6 

18 

Destination S4 S5 S6 (S4, S5) (S4, S6) (S5, S6) (S4, S5, S6) 

Parking 
space (veh) 

80 

240 

60 

180 

60 

180 

10 

30 

10 

30 

30 

90 

0 

0 
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9.4.1.1 Model outcomes 

This section describes the outcomes of the proposed equilibrium choice model. The 

equilibrium flow at each choice level (i.e., r
stq , ,

r
s stq , r

sq , and ,
r

s spf , ,
r

s cpf  from the top 

down) is shown in Figure 9.3, where SP and CP denote shared parking and curbside 

parking, respectively. Although the two destination clusters (S1–S3 and S4–S6) have 

the same number of destinations with the same destination utility, the choice structure 

of the SCW model leads to different distributions of travel demands. Destinations S1–

S3 are considered less spatially correlated than destinations S4–S6 (the former has only 

two pairs of adjacent destinations whereas the latter has three pairs) and can thus attract 

slightly higher travel demands. According to the proposed model, S1–S3 attract 51% 

of the total demand. In contrast, the models that do not consider the spatial correlation 

(e.g., MNL and MNW) assign half of the demand to S1–S3. 

 
(a) Equilibrium flows to destinations S1–S3 

 
(b) Equilibrium flows to destinations S4–S6 

Figure 9.3. Equilibrium flow pattern of toy network at each choice dimension 
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The model outcomes are summarized in Figure 9.4. Figure 9.4(a) illustrates the 

effect of considering the correlation issues on destination choice. Within the S1–S3 

cluster, S1 and S2 are less spatially correlated (adjacent to fewer locations) and have 

significantly higher destination demands than S3. Destinations S4–S6, which have 

symmetric spatial distributions, share the same spatial correlation and have similar 

travel demands. The slight difference in the destination demand is attributable to the 

different degrees of overlap among the parking spaces. The parking spaces at S5 and 

S6 have a higher degree of overlap, leading to higher parking disutility than that of S4. 

The same reasoning holds for the difference in the demands at S1 and S2.  

 

 
(a) Destination choice 

 
(b) Parking choice 

Figure 9.4. Summary of equilibrium choice patterns  
 

Figure 9.4(b) shows the distinct parking choice patterns at different destinations. 

The choice probability of shared parking is considerably higher at S1–S2 than that at 
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S3, owing to the effect of congestion on searching for curbside parking. Compared with 

the uncongested S3, the parking searching time is longer at S1 and S2 due to the higher 

parking demand, which encourages travelers to shift to the shared parking service. 

 

9.4.1.2 Effects of introducing shared parking service 

This section discusses the ability of the proposed model to clarify the effect of 

introducing shared parking services. Figure 9.5 depicts the relationship between the 

change in destination/parking choice and variation in the shared parking space at S2. 

As expected, the changes in the shared parking supply at S2 influence the destination 

and parking choices not only at S2 but also at the other destinations. Increasing the 

shared parking space can help increase the choice for shared parking services and 

decrease parking disutility, thereby increasing travel demand at S2. Moreover, the 

travel demand at the other locations will be diverted, which will help decrease the 

curbside parking demand and alleviate parking congestion, thereby lowering the shared 

parking choice probability at other destinations. This effect is more notable at S1 and 

S3, which are in the vicinity of S2, especially at S3, which is directly adjacent to S2. 

 

 
(a) Effect on destination choice 
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(b) Effect on parking choice 

Figure 9.5. Effects of shared parking supply  
 

Next, we illustrate the capability of the proposed model to evaluate different 

transportation planning scenarios involving shared parking services. Consider the 

following three planning scenarios with different parking supplies. 

• Basic scenario: Only curbside parking (capacity = 300 veh) for each destination. 

• Scenario 1: Curbside parking capacity expansion at destinations S1, S2, and S3 

(from 300 to 400 veh). 

• Scenario 2: Introduction of shared parking at destinations S1, S2, and S3 (curbside 

parking capacity = 300 veh at each destination and shared parking capacity = 100 

veh at S1, S2, and S3) 

 

Figure 9.6 shows the enhancement in the destination accessibility (derived by Eq. 

(3.69)) in Scenarios 1 and 2 compared with that in the basic scenario. The addition of 

curbside parking lots has a moderate effect on each destination because the congestion 

effects are evenly relieved at S1–S3, and the demands at destinations S4–S6 can be 

diverted to S1–S3. The introduction of shared parking can increase the degree of 

accessibility enhancement at almost all the destinations. New parking alternatives can 

provide the travelers with higher utility, and the congestion effect can be relieved 

because of the avoidance of searching for parking spaces. Notably, these effects may 

not be as significant at destinations that are originally uncongested (e.g., S3).  
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Figure 9.6. Comparison of destination accessibility enhancement in different 
scenarios 

 

Figure 9.7 compares the effects of introducing shared parking services and 

increasing curbside parking supply in terms of enhanced parking efficiency (decrease 

in parking searching time) and destination attractiveness (increase in destination 

demand). The comparison results are similar to that of destination accessibility. The 

effect of simply increasing curbside parking supply is average for each destination, 

while the introduction of shared parking services significantly improves the parking 

service and attracts higher demands at S1–S3, especially S1 and S2 which are originally 

congested. 

 

 
(a) Total parking searching time and destination choice proportions 
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  (b) Effect on destination parking time       (c) Effect on destination choice proportion 

Figure 9.7. Comparison of parking searching time and destination attraction in 
different scenarios 

 

9.4.1.3 Effect of considering spatial correlation  

This section discusses the effect of considering the correlation issue. Figure 9.8 shows 

the effect of spatial correlation on destination choice probability based on the 

dissimilarity parameter µ . A larger µ  indicates a lower correlation or a higher 

competition between a pair of adjacent destinations. The SCW model degenerates to 

the MNW model when 1µ = . Figure 9.8(a) shows the marginal and conditional choice 

probabilities of the SCW model with variations in µ . As µ  decreases, the effect of the 

spatial correlation between adjacent destinations becomes more notable. The 

destination pairs including larger fractions of independent destinations (e.g., the pair of 

S2 and S3) exhibit increasing marginal choice probabilities. A lower µ  corresponds to 

a higher sensitivity of a destination within the same destination pair, which can increase 

the conditional choice probability of destinations with lower disutility values (e.g., S2 

in the pair of S2 and S3). These effects lead to the variations in destination demands 

shown in Figure 9.8(b). Unlike the evenly distributed demand observed when the 

correlation is not considered (at the points at which 1µ = ), destinations with lower 

spatial correlations (e.g., S2, which is adjacent only to S3) are modeled to attract higher 

demands than destinations with higher spatial correlations (e.g., S3, which is adjacent 

to both S1 and S2). Furthermore, the clusters of destinations with lower spatial 

correlation (e.g., S1–S3) are expected to attract higher demands. 
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(a) Effect of the dissimilarity parameter on the marginal and conditional choice 
probabilities 

 

(b) Effect of the dissimilarity parameter on the destination demand 

Figure 9.8. Effect of spatial correlation on the destination choice equilibrium 
 

9.4.2 Hong Kong network 

This section applies the proposed model to evaluate the potential effect of introducing 

shared parking services in a multi-origin multi-destination network extracted from 

Hong Kong (Figure 9.9(a)). Eight residential zones are considered as origins, with trip 

production values set as 2000, 2000, 3000, 2500, 3000, 2500, 2000, and 2000 veh. 

Thirty-three adjacently distributed shopping malls in the Kowloon area (blue circle in 

Figure 9.9(a)) are selected as destinations. The spatial distribution of the destinations 

and parking lots is shown in Figure 9.9(b). The destinations are divided into eight 

clusters. Parking lots within 500m of each location are considered the parking space 

used by that destination. The parking fee and capacity are estimated based on data from 

the Hong Kong Transport Department (2023). The model parameters are consistent 

with the analysis described in Section 5.1. 
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(a) Origins and destinations  

 

(b) Spatial distribution of the destinations and parking lots 

Figure 9.9. Study area in Hong Kong 
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9.4.2.1 Convergence characteristics 

This section examines the algorithmic performance for solving the proposed SCW-

PSW equilibrium model in the Hong Kong network. With the step size adjustments set 

as 1 1.5σ =  and 2 0.1σ =  in the SRA scheme, the convergence characteristics of the 

algorithm is shown in Figure 9.10. The center subfigure shows the evolution of step 

size in partial linearization procedure (outer iteration), which reaches convergence after 

46 iterations. The peripheral subfigures demonstrate the convergence of the iterative 

balancing scheme (inner iteration), which is exemplified by the evolutions of selected 

dual variables at the first and last outer iterations.  

 

 

Figure 9.10. Convergence characteristics 
 

9.4.2.2 Equilibrium results 

This section presents the aggregate demand pattern from the proposed model, which 

illustrates its applicability to evaluating and planning the shared parking services in 

congested urban areas with spatially correlated locations. Figure 9.11 shows the 
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resulting destination demand pattern in the study area. Even within the same cluster of 

destinations, the demands of individual destinations may be distinct because of the 

varying spatial distributions of the destination and parking supplies. For instance, the 

demands at locations 7, 23, and 33 are relatively higher within the cluster, which is 

attributable to their lower spatial correlations. Furthermore, the parking supply 

significantly affects the destination choice. Destinations with more curbside parking 

spaces (e.g., locations 7, 18, and 22) and sufficient and low-cost shared parking services 

(e.g., locations in the Mong Kok cluster) attract larger flows even though they do not 

necessarily provide higher destination utility than the other locations.  

 

 

Figure 9.11. Individual destination demand and parking flow pattern in Hong Kong 
case study 

 

 

Figure 9.12. Zonal shared parking demands and destination demands with varying 
shared parking prices 
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Next, we show the applicability of the proposed model to evaluate different 

planning scenarios by examining the effect of varying shared parking prices on the 

destination and parking choices. Figure 9.12 shows the shared parking and destination 

demand patterns at four major clusters in the study area under three shared parking 

pricing schemes, i.e., low price (LP: original shared parking price), medium price (MeP: 

additional profit HK$ 3), and high price (HP: additional profit HK$ 6). An increase in 

the shared parking price significantly decreases the destination and shared parking 

demands in areas with sufficient shared parking supplies (e.g., Mong Kok). In contrast, 

in the Tsim Sha Tsui East region, which has a limited supply of shared parking, the 

shared parking flows remain almost unchanged as they are mainly restricted by the 

capacity constraint rather than high cost. The destination demands increase as many 

travelers are diverted from the destinations dependent on shared parking services (e.g., 

Mong Kok), where the decrease in the shared parking price can largely lower the 

destination attractiveness. As for the locations with moderate shared parking supplies, 

the reduction in shared parking flow is covered by the diversion of destination demand 

from other locations, making the destination demand nearly unchanged. 

 

9.5 Conclusions  

This chapter proposes an equilibrium choice model for assessing the effect of the 

emerging shared parking services on joint destination and parking choice behaviors 

while simultaneously considering the heterogeneity and spatial correlation issues. The 

advanced SCW-PSW choice model developed in Section 3.4 is integrated into the 

equilibrium model. An equivalent MP formulation is developed that guarantees the 

existence and uniqueness of solution. Based on the analytical expression of decision 

variables derived from the MP formulation, a convergent and efficient algorithm is 

adapted to solve the proposed equilibrium model. Numerical examples demonstrate the 

capability of the proposed model to capture both heterogeneity and correlation, which 

cannot be done in the commonly used logit-based combined travel demand models. 

Moreover, the results of the numerical experiments demonstrate the applicability of the 

proposed model for evaluating the land use and parking supply in a Hong Kong network 

with shared parking services. 
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Chapter 10 Conclusions 

10.1 Summary of research contributions 

This research develops advanced individual travel choice models and equilibrium 

models with MP formulation for multi-level travel demand analysis in multi-modal 

transportation networks with emerging policies and mobility services.  

In the first part, five advanced closed-form individual travel choice models are 

proposed based on the random utility theory. The IID assumptions in the extensively 

used logit model are relaxed in different ways to consider specific behavioral issues in 

different choice contexts. Chapter 3 develops four generalized “Luce-form” choice 

models based on “Luce class” distributional assumptions, which relax the 

independently distributed assumption to account for varying correlations among travel 

alternatives at different choice dimensions. Specifically, an OPSGEV model is first 

developed based on the commonly adopted additive utility function to model route 

choice in tolled networks with considerations of both physical and perceptual path 

correlations. Three weibit-based models are then developed based on the multiplicative 

utility function that can better reflect the way travelers perceive travel disutility 

consistent with psychophysical laws (Fosgerau and Bierlaire, 2009; Chakroborty et al., 

2021). This allows the three weibit-based models to inherently address the 

heterogeneous perceptions of different travel alternatives. A DNW model is developed 

for mode choice with CB services considering both the similarity among conventional 

travel modes and CB passenger loyalty stemmed from the loyalty subscription scheme. 

A DCNW model is developed to advance the DNW model for joint bundle and mode 

choice considering the mode correlation due to bundling strategies and traveler loyalty 

from loyalty bundle schemes. An SCW-PSW model is developed for the joint 

destination and parking choice with shared parking services. The effects of spatial 

correlation at the destination and parking choice dimensions are explicitly considered, 

while the interaction between the two choice dimensions is modeled based on the 

random utility theory.  

Chapter 4 proposes the MNW-O model based on an alternate distributional 

assumption, which relaxes the identically distributed assumption while retaining the 

closed-form probability expression. The proposed model can effectively address the 

“oddball” effect that are likely to take place in future transportation systems, where an 

oddball alternative with unique service features (e.g., an emerging mobility service) 
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exists in the travel choice set. The proposed model also inherits the advantage of weibit 

model to inherently consider heterogenous perception variances with respect to 

different alternatives and attributes. The proposed model is applied to an empirical 

mode choice data set to examine its estimation and prediction performances. The results 

show the superiority of the proposed model against various existing choice models in 

simultaneously considering the “oddball” effect and the heterogeneity issue.  

The second part bridges the “Luce-form” individual choice models developed in 

Chapter 3 to aggregate-level equilibrium models with MP formulation, which further 

considers interactions among travelers and operational features of mobility services. 

The general method to develop the Beckmann-type MP formulation for equilibrium 

models is first introduced in Chapter 5. On this basis, Chapters 6–9 propose equilibrium 

analyses consistent with the OPSGEV, DNW, DCNW, and SCW-PSW choice models, 

respectively. A convergent and efficient partial linearization algorithm is adapted to 

solve the equilibrium models making use of the appealing properties of developed MP 

formulations. A sensitivity analysis-based method is also developed in Chapter 8 to 

evaluate the transportation system performances in different decision-making scenarios. 

Various numerical experiments are conducted to illustrate the model properties and to 

verify the applicability to real-world transportation systems. The results indicate that 

the proposed equilibrium models can facilitate the demand analysis and decision-

making in the transition to future transportation systems. 

 

10.2 Directions for future studies 

Based on the proposed research, several directions can be found for future research. 

First, advances can be made in the choice modeling at the individual level: 

(1) Existing closed-form random utility-based travel choice models are mainly 

developed based on the Gumbel and Weibull distributions, which are unlikely to be 

appropriate for all choice contexts with complex choice behaviors in the era of 

emerging technologies. More closed-form choice models should be developed 

based on alternate distributional assumptions, such as the Fréchet distribution, Log-

logistic distribution, Pareto distribution, and Kumaraswamy distribution. 

(2) This research focuses on the RUMs based on two utility functional forms, i.e., the 

additive utility function that leads to logit-based models, and the multiplicative 

disutility function that leads to weibit-based models. However, it could be 
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restrictive to merely consider two types of functional relationships between the 

deterministic utility/disutility and random perception errors. Future studies could be 

conducted to investigate other forms of utility function and explore more error 

distributions for choice contexts with different behavioral issues. 

Second, the equilibrium models could be explored in several directions as follows: 

(1) For the planning purpose, the proposed equilibrium models with fixed OD demand 

could be extended to examining long-term elastic OD demand, as latent travel 

demands may be induced by the increased service level created by the adoption of 

innovative transportation policies and emerging mobility services. In addition, other 

interacting choice dimensions could be integrated in the equilibrium analysis, such 

as the choice of work from home (WFH), residential location choice, car ownership 

choice, trip chain choice in intermodal trips, and role choice (driver versus 

passenger) in ride sharing services.  

(2) The proposed equilibrium models and sensitivity analysis could be integrated into 

bi-level models for the optimization of emerging mobility services, such as the 

design of parking sharing platforms, allocation of shared bikes, design and 

adjustment of CB routes, determination of ride-hailing fleet size, and pricing of 

subscription schemes for emerging mobilities and bundles. 

(3) The MP formulations developed in this research use entropy terms to interpret the 

stochastic choice of travelers (i.e., logit for additive RUM and weibit for 

multiplicative RUM). It would be interesting to develop alternate forms of MP 

formulation (e.g., non-entropy-based formulation) for the equilibrium analysis with 

different behavioral interpretations and different applications. 
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Appendix A. Proofs of solution equivalence for equilibrium models 

A1. Proof of solution equivalence for OPSGEV equilibrium model (6.6)-(6.10) 

The Lagrangian of model (6.6)-(6.10) is: 
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With rs rs rs
k k kc t τ= +  denoting the generalized path cost function in Eq. (6.5), we have: 
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Summing up both sides of Eq. (A1.4) by path k leads to the following expression: 
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Dividing Eq. (A1.4) by Eq. (A1.5), the conditional OPSGEV route choice probability 
given in Eq. (3.5) can then be derived: 
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From Eq. (A1.5), we can also have: 
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Dividing Eq. (A1.7) by Eq. (A1.8) gives the marginal choice probability provided in 
Eq. (3.4): 
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u

k k

u

rsrs
uu

urs
k k

u
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u

rs rs rsrs
k uk k kuk
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K M
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l ul k l

u l K
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q
PS w c

θ
θ θ
θ

θ
θ θ
θ

θ

θ

∈∈

+

= ∈

 
⋅ − 

  =
 

⋅ − 
  

∑∑

∑ ∑

. (A1.9) 

This completes the proof. 
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A2. Proof of solution equivalence for DNW equilibrium model (7.8)-(7.12) 

The Lagrangian of model (7.8)-(7.12) is: 

 ( )
rs

rs u

rs rs rs
um

rs RS u U m M

rs rs rs
cap CB CB

rs RS

rs rs rs
ld CB CB

rs RS

L Z q q

q cap

ld q

π

ω

ω

∈ ∈ ∈

∈

∈

 
= + ⋅ −  

 

+ ⋅ −

 + ⋅ − 

∑ ∑ ∑

∑

∑

. (A2.1) 

First, take the partial derivative with respect to rs
umq : 

 

( )

1ln ( ) ln
1

1 1 ln
1rs

u

rs rs
rs rs rs m
m um umrs rs rs

um um m
m M

rs rs
rs m
umrs rs rs

m Mu um m
m M

rs rs rs
cap ld

qL q q
q

qq

ητ
β η

η
β β η

π ω ω

∈

∈
∈

 
∂  = + ⋅ − ∂ + 

 
 

   + − ⋅ −   +   
 

+ + −

∑

∑ ∑
, (A2.2) 

where 
1

rs
m

rs
m

m M

η
η

∈

+ ∑
 denotes the proportion of the loyal passengers choosing mode m, thus 

1

rs rs
rs rs m
um um rs

m
m M

qqc q η
η

∈

= −
+ ∑

 denote the choice passengers choosing mode m. Let 0rs
um

L
q
∂

=
∂

, 

then Eq. (A2.2) gives: 

( ) ( ) 1 1 1ln ln ln
rs rs rs

cap ld

rs
u

rs rs rs rs
m um um umrs rs rs

m Mum u um

q e qc qcπ ω ω
τ

β β β
+ −

∈

  ⋅ = − ⋅ − − ⋅     
∑ . (A2.3) 

( )rs rs
cap lde ω ω−  is considered as a correction to CB travel disutility arisen from the side 

constraints, i.e., the risk of subscription failure led by the CB capacity and the 

subscription incentives given by the lower limit of CB demand. We denote 

( ) ( )rs rs
Cap Lrs rs rs

m m umv q e ω ωτ −
= ⋅  as the final mode disutility at optimality. Then the following 

conditions can be derived from Eq. (A2.3): 
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1
1rs

um
rs
urs

rs
u

rs
u

rs
rs rsum
m umrs

m Mum
m M

qcv e qc
qc

β
β

π

−
−

∈
∈

 
  

⋅ = ⋅    
  

 

∑∑
  (A2.4) 

 

( ) ( )
rs
um
rsrs
uumrs

rs rs rs
u u u

rs
u

rs
um
rs
u

rs
u

rs
umrs rs

m umrs
m M m M m Mum

m M

rs
um

m M

qc
v e qc

qc

qc

β
ββ

π

β
β

−

∈ ∈ ∈
∈

∈

 
⋅ = ⋅  

 

 
=   
 

∑ ∑ ∑∑

∑

  (A2.5) 

 ( )
1 1
rs rsrs
um uumrs

rs rs
u u

rs rs
m um

m M m M

v e qc
β ββ

π

− −
−

∈ ∈

   
⋅ =         

∑ ∑   (A2.6) 

Taking Eq. (A2.6) into Eq. (A2.4) gives the conditional probability of choice 

passengers choosing mode m given nest u (i.e., Eq. (3.8) in the NW model): 

 
( )

( )

1

1

rs
um

rs

rsrs
umumrsrs

u

rs
u

rs rs
um m

rs
ul

rsl M
l

l M

qc v e
qc

v e

β

π

ββ
π

−

−
−

∈

∈

 
  ⋅

= 
     ⋅ 

  

∑
∑

,  (A2.7) 

 
( ) ( )

( )
|

rs
um

rs
um

rs
rsu
u

rs rs
um mrs

m u rs
rsum
mm M

m M

qc v
qc v

β

β
λ

−

−

∈
∈

= =
∑ ∑

.  (A2.8) 

From Eq. (3.10), ( )
1
rsrs umum

rs
u

rs rs
u l

l M

v v
ββ

−
−

∈

 
=  
  
∑ . The marginal probability of choice 

passengers choosing nest u (i.e., Eq. (3.9) in the NW model) can also be derived based 

on Eq. (A2.6): 

 ( )
rs
urs

rs
u

rs rs
um u

m M

qc v e
β

π
−

∈

= ⋅∑ ,  (A2.9) 

 
( )
( )

rs
u

rs
u

rs
u

rs rs
rsw

rs
rsum
um Mrs

u rs
rsum
ww U m M

w U

qc
v

qc v

β

β
λ

−

∈

−

∈ ∈
∈

= =
∑

∑ ∑ ∑
.  (A2.10) 
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Therefore, the mode choice of choice passengers is given by the NW model: 

 ( ) ( )

( )

|

1
rs
u
rsrs rs umum um

rs
u

rs
u
rsrs umum

rs rs
u

rs rs rs
um m u u

rs rs
m m

m M

rs
m

u U m M

v v

v

β
ββ β

β
ββ

λ λ λ

−
− −

∈

−

∈ ∈

= ⋅

 
 
  =

 
 
  

∑

∑ ∑

.  (A2.11) 

The choice probability considering all passengers can then be derived: 

 
1

rs rs
rs m
um rs

rs m
rs um m M

um rs rs

qqc
qP
q q

η
η

∈

+
+

= =
∑

.  (A2.12) 

Given that: 

 
1rs rs

u

rs rs
rs rs m

um rs
u U m M m

m M

qq qc η
η∈ ∈

∈

 
 = + + 
 

∑ ∑ ∑
,  (A2.13) 

 
1rs rs

u

rs
rs
um rs

u U m M m
m M

qqc
η∈ ∈

∈

=
+∑ ∑ ∑

.  (A2.14) 

Substituting Eqs. (A2.11) and (A2.14) into Eq. (A2.12), then we can obtain exactly the 

DNW choice probability in Eqs. (3.15) and (3.16). This completes the proof. 
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A3. Proof of solution equivalence for DCNW equilibrium model (8.11)-(8.14) 

The Lagrangian of model (8.11)-(8.14) is: 

 
( ) ( )

,

rs rs
u

rs
um

rs RS u U m M

rs rs

rs rs rs r r r
CB CB CB m m m

rs RS s S m BS EH

qL Z q
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λ

ω ω

∈ ∈ ∈

∈ ∈ =

 
= − ⋅ −  

 

+ ⋅ − + ⋅ −

∑ ∑ ∑

∑ ∑ ∑
. (A3.1) 

Take the first derivative with respect to rs
umq : 

 

( ) 1 1ln ln ln ln

1 ln
1

rs
u

rs
u
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rs rs rs rs rs
m m um um umrs rs rs

m Mum um u

rs rs
rs rs rsu
um mrs rs

m Mu w
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L q q q
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β η

∈

∈
∈

 ∂
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 
⋅ + ⋅ − − + + 

 

∑

∑ ∑

. (A3.2) 

For simplicity we use rs
mω  to denote the dual variable associated with the capacity 

constraint of each mode between OD pair rs, and 
1rs

u
rs

rs rs
rs rs u
u um rs

m M w
w U

qqc q η
η∈

∈

⋅
= −

+∑ ∑
 to denote 

the choice travelers that choose mobility bundle/type u. Letting 0rs
um

L
q
∂

=
∂

 gives 

 ( ) ( ) ( ) ( )
1

1 1 11rs
um rs rsrs rs rsmum u u

rs
u

rs rs rs rs rs
um um u m um

m M

q q qc e e
β

ω λβ β βτ µ
−

−

∈

 
⋅ ⋅ = ⋅ ⋅ ⋅  
 
∑ , (A3.3) 

 ( ) ( ) ( )
rs rsrsum umumrs rs rsrs rsm umu u

rs
u

rs
rs rs rsum
u m umrs

um
m M

q qc e e
q

β ββ
ω β λβ βτ µ

−
⋅

∈

⋅ = ⋅ ⋅ ⋅
∑

. (A3.4) 

Taking 
rs
meω  as a correction to the mode disutility, i.e., the additional difficulty of using 

mobility service m between OD pair rs caused by the capacity constraints, we denote 
rs
mrs rs

um umv eωτ= ⋅  as the final mode disutility at optimality. Summing up both sides of Eq. 

(A3.4) with respect to m leads to the following expression: 

 ( ) ( ) ( )
rs rs

rsum um rs rsumrs rs umu u

rs
u

rs rs rs
u um um

m M

qc v e
β β

β β λβ βµ
− ⋅

∈

= ⋅ ⋅∑ . (A3.5) 

Dividing Eq. (A3.4) by Eq. (A3.5) leads to: 
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rs um rs rsum rs umu
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rs um rs rsum rs umurs
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µ
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⋅ ⋅
=

⋅ ⋅∑ ∑
, (A3.6) 

which gives the DCNW conditional choice probability presented in Eq. (3.39). From 

Eq. (A4.5), we can also obtain the following: 
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β
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∑ . (A3.7) 

Define 
rs
u

rs rs
u um

m M

q q
∈

= ∑  as the total demand of bundle u, we have the following: 
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w
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. (A3.8) 
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. (A3.9) 

Eq. (A3.9) can be rewritten as follows: 
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. (A3.10) 

Considering Eqs. (A3.7), (A3.8) and (A3.10) leads to the following equation: 
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∑
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∑ ∑
∑ ∑

, (A3.11) 

which gives the marginal choice probability in Eq. (3.53). This completes the proof.  
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A4. Proof of solution equivalence for SCW-PSW equilibrium model (9.4)-(9.10) 

The Lagrangian of model (9.4)-(9.10) is: 

 

( ), ,

, , ,

r r r r
s s sp s cp s

rs RS

r r r r
s sp s sp s sp s

s S r R r R s S

L Z f f q

f Cap q q

π
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∈

∈ ∈ ∈ ∈

= + ⋅ + −

  + ⋅ − + ⋅ −  
   

∑

∑ ∑ ∑ ∑
. (A4.1) 

Take the first derivative with respect to ,
r

s mf , m=sp,cp: 

 ( ), , , ,
,

1ln ln lnr r r
s m s m s m s s mr

s m m

L f PS
f

τ π ω
β

∂
= + − + +

∂
, (A4.2) 

where , 0r
s cpω =  as there is no tight capacity constraint for curbside parking. Let 

,

0r
s m

L
f
∂

=
∂

, then we have: 

 ( ) ( ),,
,

,

r
m m s s m

r
s mr

s m
s m

f
e

PS
β β π ωτ − ⋅ +
⋅ = , (A4.3) 

 ( ) ( ),

, , ,

r
mm s s mr r

s m s m s mf e PS
ββ π ω τ

−− ⋅ +
= ⋅ ⋅ . (A4.4) 

Eq. (A4.4) gives the analytical expression of ,
r

s mf  in Eq. (9.11). Taking ,
, ,

s mr r
s m s mv eω τ= ⋅  

as the corrected parking disutility given by the parking cost and the disutility to reserve 

a shared parking slot due to parking capacity constraint, based on the relationship 

, ,
r r r

s sp s cp sf f q+ = , we can express r
sq  as below: 

 ( ) ( ), , , , , ,

r m mm sr r r r r
s s sp s cp s sp s sp s cp s cpq f f e PS v PS v

β ββ π − −− ⋅  = + = ⋅ ⋅ + ⋅  
. (A4.5) 

The PSW shared parking choice probability given in Eq. (3.68) can then be derived: 
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m
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s sp s sps sp
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r
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e PS vf
q e PS v PS v

PS v

PS v PS v

ββ π
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β

β β
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− −− ⋅
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⋅ ⋅
=

 ⋅ ⋅ + ⋅  

⋅
=

⋅ + ⋅

. (A4.6) 

Similarly, the curbside parking choice probability can be derived by substituting ,
r

s cpf  

in Eq. (A4.6). 
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From Eq. (A4.5), the following relationship can be obtained: 

( ) ( ), , , ,
1 1ln ln lnm mr r r r r

s s s sp s sp s cp s cp s
m m

q PS v PS v A
β β

π
β β

− − − − = − ⋅ + ⋅ =  
. (A4.7) 

Take the first derivative of the Lagrangian with respect to ,
r
s stq : 

( ) , , ,
,

,

1ln ln ln ln (1 ) ln
r r r
s st s st t str r r r

s s s s str
s st m

q q qL q
q

ψ π λ µ α µ
β µ µ

+∂
= − − + − + − + −

∂
. (A4.8) 

Let 
,

0r
s st

L
q
∂

=
∂

 and take Eq. (A4.7) into Eq. (A4.8), then we have: 
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r r r
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q q q
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µ
µ

µ α ψ λ
µ µ
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   

. (A4.9) 

As ( ) 1r r
s s sv A ψ −= ⋅  denotes the disutility of traveling from origin r to destination s, Eq. 

(A4.9) can then be arranged as: 

 ( )
1

1
1, , ,

,

r
r r r
s st s st t st r r

s st s

q q q
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µλα
µ µ

−

− − +  ⋅ = ⋅ ⋅      
, (A4.10) 

( ) ( )
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1 1
1 1, , , ,

, ,

r r
r r r r
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s st s t st t

q q q q
v e v e
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µ µλ λα α
µ µ µ
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− −− −   +    + ⋅ = ⋅ ⋅ + ⋅ ⋅                
. (A4.11) 

Eq. (A4.10) gives the analytical expression of ,
r
s stq  in Eq. (9.13). Dividing Eq.(A4.10) 

by Eq. (A4.11) gives the SCW conditional probability of choosing destination s 

between the destination pair st (i.e., Eq. (3.61)). 

Eq. (A4.11) can be arranged as follows: 
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, (A4.12) 
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rr r r r r r
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µ µλµ α α
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, (A4.13) 
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S S S S
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s st t st s st s t st t

s t s s t s
q q e v v
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µ µλµ α α
− −

− −−

= = + = = +

     + = ⋅ ⋅ +         
∑ ∑ ∑ ∑ . (A4.14) 

Eq. (A4.13) gives the analytical expression of r
stq  in Eq. (9.14). Dividing Eq. (A4.13) 

by Eq. (A4.14) gives the SCW marginal probability of choosing destination pair st 

among all destination pairs (i.e., Eq. (3.59)). This completes the proof. 
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Appendix B. Proofs of solution uniqueness for equilibrium models 

B1. Proof of solution uniqueness for OPSGEV equilibrium model (6.6)-(6.10) 

Given the convex feasible region restricted by the sets of linear constraints, the proof 

of the solution uniqueness is equivalent to proving the strict convexity of the objective 

function (6.6). for simplicity, let 
rs
u

rs rs
u uk

k K

q f
∈

= ∑  denote the total flow belonging to the 

path order subset u between OD pair rs. We first derive the Hessian matrix with respect 

to rs
uq : 

 
2 1 1 1 1

0

rs rs
u u k urs rs

u y

u yZ q q
q q

Otherwise
θ θ
 ⋅ − ⋅ =∂ = ∂ ∂ 

. (B1.15) 

By definition, the dispersion parameter at the marginal choice level is smaller than that 

at the conditional choice level, i.e., u kθ θ≤ . Therefore, 1 1 1 1 0rs rs
u u k uq qθ θ
⋅ − ⋅ > , the 

Hessian matrix with respect to rs
uq  is positive definite.  

The Hessian matrix with respect to rs
ukf  is 

 
( )2 1 1 0

0

rs rs
k k

rs rs
rs rs k k k

uk yl

dt f
Z k l

df ff f
otherwise

θ


∂  + ⋅ > =

= ∂ ∂ 


 (B1.16) 

With an increasing link travel time function with respect to link flow, Eq. (B2) implies 

the positive definite matrix. In summary, the proposed equilibrium model ()-() has a 

unique solution rs
ukf , which leads to unique path flow rs

kf  and link flow xa. This 

completes the proof. 
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B2. Proof of solution uniqueness for DNW equilibrium model (7.8)-(7.12) 

Given the convex feasible region restricted by the sets of linear constraints, the proof 

of the unique modal demand outcome is equivalent to proving the strict convexity of 

the objective function (7.8). We first derive the Hessian matrix with respect to rs
umq . For 

the diagonal elements: 
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  (B2.1) 

According to Assumptions 7.2 and 7.3, the mode disutility is increasing with the 

increase of modal demand, thus the matrices with respect to the first term on the right-

hand side of Eq. (B2.1) is positive semi-definite. The second and third terms are positive 

only when u=w and m=l; otherwise, they equal to zero. The summation of positive 

semi-definite and positive definite matrices is positive definite. 

In summary, the Hessian of objective function (7.8) is positive definite with 

respect to rs
umq , which proves the uniqueness of the modal demand rs

umq . This completes 

the proof. 
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B3. Proof of solution uniqueness for DCNW equilibrium model (8.11)-(8.14) 

Given the convex feasible region restricted by the linear constraints, the proof of 

solution uniqueness is equivalent to proving the strict convexity of the objective 

function (8.11). Denoting 
rs
u

rs rs
u um

m M

q q
∈

= ∑  and 
1rs

u
rs

rs rs
rs rs u
u um rs

m M w
w U

qqc q η
η∈

∈

⋅
= −

+∑ ∑
, the Hessian 

matrix with respect to rs
uq  is 
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u wZ qc q
q q
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β β
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. (B3.1) 

By definition, rs rs
u uqc q< , and the shape parameter at the marginal choice level is smaller 

than that at the conditional choice level, i.e., rs rs
u umβ β≤ . Therefore, 

2

0,rs rs
u w

Z u w
q q
∂

> ∀ =
∂ ∂

, the Hessian matrix with respect to rs
uq  is positive definite.  

The Hessian matrix with respect to rs
umq  is 
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rs rs m um um um
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dq qq q
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
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

. (B3.2) 

With an increasing mode travel disutility function with respect to modal demand, Eq. 

(B3.2) implies the positive definite matrix. In summary, the Hessian of objective 

function (8.11) is positive definite with respect to rs
umq , i.e., the objective function is 

strictly convex. This completes the proof. 
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B4. Proof of solution uniqueness for SCW-PSW equilibrium model (9.4)-(9.10) 

Given the convex feasible region restricted by the sets of linear constraints, the proof 

of the solution uniqueness is equivalent to proving the strict convexity of the objective 

function (9.4). We first derive the Hessian matrix with respect to ,
r

s mf , m=sp,cp: 
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. (B4.1) 

With the assumption that the parking disutility is increasing with respect to parking 

demand, Eq. (B4.1) implies the positive definite matrix.  

Denote , , , ,r r r
st s st t stq q q r R st ST= + ∀ ∈ ∈ . The Hessian matrix with respect to r

stq  is 

 
( )2 11 0 ,
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r
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q q
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, (B4.2) 

which implies the positive definite matrix. The Hessian matrix with respect to ,
r
s stq  is 
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By definition, in the nested choice structure, the shape parameter for choices at the 

upper level should be smaller than the shape parameter for choices at the lower level, 

which requires the shape parameter for conditional destination choice smaller than that 

for parking choice i.e., s mβ β< . Since sβ  is normalized as 1
µ

 in Section 9.3.2.1, we 

have 1

m

µ
β

> , which ensures 
,

1 1 1 0r r
s st m sq q

µ
β

⋅ − ⋅ > . Therefore, the Hessian matrix with 

respect to ,
r
s stq  is positive definite. In summary, the proposed equilibrium SCW-PSW 

model has a unique solution for both the destination flow r
sq  and parking flow ,

r
s spf , 

,
r

s cpf . This completes the proof. 
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