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Abstract

The maximum-weight independent set problem is a fundamental NP-hard prob-

lem. To gain a deeper understanding of its complexity, identifying graph classes where

the problem can be solved in polynomial time has become a popular research area.

Perfect graphs have emerged as one such class, characterized by their independent

set polytope being fully described by trivial and clique inequalities. Inspired by the

polyhedral characterization of perfect graphs, Chvátal introduced t-perfect graphs,

where the independent set polytope is fully described by trivial, edge, and odd-cycle

inequalities. This pivotal characteristic enables the development of polynomial-time

algorithms to solve the maximum-weight independent set problem specifically for t-

perfect graphs. Given that t-perfect graphs are defined from a polyhedral perspective,

a profound understanding of their structure is essential.

While a full structural characterization of the class of t-perfect graphs is still

at large, substantial advancements have been made for claw-free graphs [Bruhn and

Stein, Math. Program. 2012] and P5-free graphs [Bruhn and Fuchs, SIAM J. Discrete

Math. 2017]. We take one more step to characterize t-perfect graphs that are fork-

free, and show that they are strongly t-perfect and three-colorable. We also present

polynomial-time algorithms for recognizing and coloring these graphs.

Unlike perfect graphs, t-perfect graphs are not closed under substitution or com-

plementation. A full characterization of t-perfection with respect to substitution

has been obtained by Benchetrit in his Ph.D. thesis. We attempt to understand t-
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perfection with respect to complementation. In particular, we show that there are

only five pairs of graphs such that both the graphs and their complements are mini-

mally t-imperfect. We also identify all t-perfect graphs that are self-complementary.

We conduct a more in-depth study of self-complementary graphs. We study split

graphs and pseudo-split graphs whose complements are isomorphic to themselves.

These special subclasses of self-complementary graphs are actually the core of self-

complementary graphs. Indeed, all realizations of forcibly self-complementary degree

sequences are pseudo-split graphs. We also give formulas to calculate the number of

self-complementary (pseudo-)split graphs of a given order, and show that Trotignon’s

conjecture holds for all self-complementary split graphs.
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Chapter 1

Introduction

1.1 Background and motivation

Graphs provide a modeling approach for addressing a wide range of real-world

problems. Within a graph, an independent set (also called stable set) is a set of vertices

that are pairwise nonadjacent. Surprisingly, the solutions of many real-world problems

can be expressed as independent sets in graphs. In practice, the vertices of graphs are

often assigned weights to represent their significance, and the objective is to identify

an independent set that maximizes the total weight. This fundamental problem,

known as the maximum-weight independent set problem, holds great importance in

graph theory and combinatorial optimization. It is one of the NP-hard problems [71],

making it unlikely to find an optimal solution for all instances in an efficient manner.

Consequently, it becomes a popular research area to find graph classes where the

maximum-weight independent set problem can be solved in polynomial time.

Edmonds’ breakthrough paper [45] showed the polynomial-time solvability of the

maximum-weight matching problem, which directly implies the tractability of the

maximum-weight independent set problem on line graphs. Line graphs have the

property of being closed under taking induced subgraphs, classifying the class of line
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Chapter 1. Introduction

graphs as a hereditary graph class. Hereditary graph classes can be characterized

by a set of minimal forbidden induced subgraphs. Beineke [10] provided a complete

list of minimal forbidden induced subgraphs for line graphs1. It is worth considering

whether forbidding certain substructures in graphs could potentially contribute to the

design of efficient algorithms for solving the maximum-weight independent set prob-

lem. Alekseev [3] observed that when only a finite number of graphs are forbidden,

the maximum-weight independent set problem remains NP-hard unless, for at least

one graph in the forbidden list, every connected component is a tree with at most

three leaves. This motivates people to study the problem on H-free graphs where H

is a forest whose every component has at most three leaves.

(a) (b)

Figure 1.1: (a) The claw graph and (b) the fork graph.

With the observation made by Alekseev, it becomes evident that the polynomial-

time solvability of the maximum-weight independent set problem on line graphs relies

solely on forbidding theK1,3 graph, commonly known as the claw graph (see Figure 1.1

(a)). Independently, Minty and Sbihi [90, 112] gave polynomial-time algorithms for

solving the maximum-weight independent set problem on graphs that are free of claws.

By introducing a subdivision on one of the edges of the claw graph, we obtain the

fork graph showed in Figure 1.1 (b). Subsequently, Lozin and Milanič [82] developed

a polynomial-time algorithm specifically tailored for solving the maximum-weight

independent set problem on graphs that are fork-free. It is worth noting that the class

of fork-free graphs is a superclass of the class of claw-free graphs. The class of P4-free

graphs exhibits a simple structure [40], enabling the development of polynomial-

time algorithms for solving the maximum-weight independent set problem. By using

the concept of potential maximal cliques [13], Lokshtanov et al. [77] introduced a

1Refer to here for all minimal forbidden induced subgraphs for line graphs.

2
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1.1. Background and motivation

polynomial-time algorithm for solving the maximum-weight independent set problem

in graphs that are free of P5’s, which has subsequently been extended to graphs that

are free of P6’s [64]. For more related results in this line of research, please refer

to [2, 4, 8, 15,16,26,52,53,57,67,80,81,83,84,92–96,99,103].

Another line of research aimed at finding graph classes where the maximum-weight

independent set problem can be solved in polynomial time focuses on polyhedral

perspectives. To find a maximum-weight independent set in an arbitrary graph G,

we can formulate this problem as an integer linear programming problem:

max wTx

subject to xu + xv ≤ 1 for every edge uv in E(G) (1.1)

xv ∈ {0, 1} for every vertex v in V (G),

where w : V (G)→ R≥0 is a weighting of the vertices in the given graph G. The feasi-

ble solutions of this integer linear programming problem correspond to the incidence

vectors of independent sets of G. The inequalities

xu + xv ≤ 1 for every edge uv in E(G) (edge inequalities)

are called edge inequalities, since every independent set of G contains at most one

end of an edge.

The convex hull of all incidence vectors of independent sets of G forms a bounded

polyhedron known as the independent set polytope of G, denoted as PI(G). With this

independent set polytope, the problem (1.1) can be equivalently expressed as a linear

programming problem:

max{wTx | x ∈ PI(G)}. (1.2)

Solving this linear programming problem is equivalent to finding the maximum-weight

independent set in G. However, there are numerous graphs for which the number of
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Chapter 1. Introduction

inequalities required to describe PI(G) is exponentially large, making the task of

describing the inequalities challenging.

Fortunately, Grötschel et al. [61] demonstrated that despite the exponential num-

ber of necessary inequalities, it is still possible to solve (1.2) efficiently as long as

the separation problem, which involves determining whether a given vector belongs

to a polyhedron and, if not, finding an inequality that is valid for the polyhedron

but violated by the vector, can be efficiently performed. Building upon this, multi-

ple linear realizations of the independent set polytope are defined, ensuring that the

separation problem for the descriptions of these linear realizations can be effectively

solved. For each of these realizations, a graph class can be defined where the indepen-

dent set polytope is equivalent to the realization. As a result, the maximum-weight

independent set problem can be effectively solved within these graph classes.

A natural linear relaxation arises by relaxing the integrality inequalities of (1.1),

replacing xv ∈ {0, 1} with the inequalities

0 ≤ xv ≤ 1 for every vertex v in V (G). (trivial inequalities)

These inequalities are called trivial inequalities. The linear realization, known as the

edge polytope and denoted as PE(G), is described by trivial and edge inequalities.

This straightforward realization has a polynomial number of inequalities. The sep-

aration problem for these inequalities can be efficiently solved, allowing for effective

optimization. Grötschel et al. [63] showed that PE(G) = PI(G) if and only if G is a

bipartite graph. Consequently, the maximum-weight independent set problem can be

efficiently solved in bipartite graphs. Furthermore, a graph is bipartite if and only if

it contains no odd cycles. This structural characterization provides a useful insight,

facilitating the design of efficient algorithms to determine whether a given graph is

bipartite.
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1.1. Background and motivation

Perfect graphs

The graph K3 serves as the smallest example of a non-bipartite graph. Since the

vector (1
2
, 1

2
, 1

2
) is in PE(K3) but not in PI(K3), the polytope PI(K3) is not equivalent

to the polytope PE(K3). It is noteworthy that K3 is a clique and a clique can intersect

at most one vertex with an independent set. Based on this, the clique inequalities

are introduced:

∑
v∈K

xv ≤ 1 for every clique K in G. (clique inequalities)

Clearly, each edge in G can be considered as a clique of size two. This indicates

that the edge inequalities are encompassed within the clique inequalities. As a result,

we can expand the edge polytope by adding additional inequalities for cliques of size

three or more. The resulting polytope is referred to as the clique polytope, denoted as

PK(G). For which graph G the clique polytope PK(G) is equivalent to the independent

set polytope PI(G)? This question is answered by Chvátal [29] and Padberg [101]

independently. They showed that PK(G) = PI(G) if and only if G is a perfect graph.

The concept of perfect graphs was initially proposed by Berge, taking a distinct

perspective. It is widely known that determining the chromatic number χ(G) of a

graph G is a challenging task, and obtaining a good lower bound is also difficult. One

straightforward lower bound is the clique number ω(G) because, to color the vertices

in the largest clique of G, ω(G) colors are required. Mycielski [97] demonstrated a

method to construct graphs with clique number two and arbitrarily large chromatic

number. Consequently, the gap between ω(G) and χ(G) can be arbitrarily large. It is

natural to investigate which graphs satisfy the equality between these two parameters.

There are interesting graphs, such as bipartite graphs. It can also be shown that the

equality holds for the complements of bipartite graphs. However, not every graph that

satisfies χ(G) = ω(G) is noteworthy. By taking the union of two graphs, one being

a complete graph with n vertices and the other an arbitrary graph with fewer than
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Chapter 1. Introduction

n vertices, we can effortlessly construct numerous graphs that satisfy the equality.

Nevertheless, these constructed graphs are generally considered uninteresting. This

is because the chromatic number and clique number depend solely on the component

corresponding to the large clique, while the other component has no influence on these

two parameters. One would like to seek a class of graphs that satisfy χ(G) = ω(G),

including the aforementioned interesting graphs but excluding the uninteresting ones.

Berge proposed a nice class of graphs by making the property hereditary and this class

of graphs are just the perfect graphs. In Berge’s definition, a graph G is perfect if

χ(H) = ω(H) for every induced subgraph H of G.

It is worth noting that a graph can contain exponentially many cliques, which

implies that the number of inequalities in the description of PK(G) can also be ex-

ponentially large. For example, consider a complete graph G with n vertices. Since

every nonempty subset of V (G) is a clique, there are 2n−1 cliques in G. Although this

example yields exponentially many inequalities, it is important to observe that every

clique inequality induced by a clique that is a proper subset of V (G) is dominated by

the inequality
∑

v∈V (G) xv ≤ 1. Thus, we can hope that we do not need an inequality

for each individual clique in G. Padberg [100] demonstrated that it suffices to describe

PK(G) using the clique inequalities corresponding to the maximal cliques in G. This

naturally raises the question of how many maximal cliques can exist in a graph and

whether the number of maximal cliques is polynomially bounded from above. Moon

and Moser [91] showed that every graph has at most 3n/3 maximal cliques, and they

provided examples where this bound is achieved. One of the effective algorithms for

listing all maximal cliques was introduced by Bron and Kerbosch [17].

In general graphs, the separation problem over PK(G) is known to beNP-hard [98,

Section 1.6.3]. However, there exists a larger class of inequalities called orthogonality

inequalities, which includes clique inequalities and can be separated in polynomial

time [62,79]. The set of vectors satisfying both the orthogonality inequalities and the

trivial inequalities is referred to as the theta body, denoted as TH(G). Grötschel et
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1.1. Background and motivation

al. [62] demonstrated that

PI(G) ⊆ TH(G) ⊆ PK(G).

Notably, in the case of perfect graphs, this theta body becomes a polytope that is

equivalent to the independent set polytope [62]. This significant result implies that

the maximum-weight independent set problem can be solved in polynomial time for

perfect graphs. Additionally, Grötschel et al. [61] developed an efficient algorithm for

extracting a maximum-weight independent set from a given graph.

Given a graph, the objective now becomes to determine whether it is perfect.

To achieve this, it is desirable to establish a structural characterization similar to

that of bipartite graphs. Berge made several observations in this regard. Firstly, he

noted that any induced odd cycle with length greater than four is not perfect. This

is supported by the fact that such cycles have clique number of two and chromatic

number of three. Furthermore, Berge observed that the complement of such a cycle is

also not perfect. Consequently, any graph containing an induced odd cycle of length

at least five or the complement of such a cycle is not perfect. Despite Berge’s extensive

search for additional examples of imperfect graphs, he was unable to find any, leading

to the formulation of the following conjecture.

Strong perfect graph conjecture. A graph G is perfect if neither G nor its com-

plement contains an induced odd cycle of length greater than four.

This conjecture introduced by Berge came to be known as the strong perfect graph

conjecture. Realizing the potential difficulty of resolving this conjecture, Berge also

formulated a weaker conjecture with the aim of providing a more accessible objective

to pursue.

Weak perfect graph conjecture. If a graph is perfect then so is its complement.

The weak perfect graph conjecture was resolved by Lovász [78]. However, the
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Chapter 1. Introduction

strong perfect graph conjecture remained open for over four decades until it was

finally resolved by Chudnovsky, Robertson, Seymour, and Thomas in a groundbreak-

ing 150-page paper [27]. Both conjectures now become to theorems. Chudnovsky et

al. [24] demonstrated that perfect graphs can be effectively recognized. For additional

efficient algorithms that recognize perfect graphs, please refer to [23,28].

Computing the parameters α(G) (independence number), χ(G), ω(G), and χ(G)

(clique cover number) for a general graph G is known to be a challenging task. How-

ever, if G is a perfect graph, there exist efficient algorithms for computing the inde-

pendence number α(G). Since α(G) can be computed efficiently and perfect graphs

are closed under taking complementation, it follows that the other three parameters

can also be computed efficiently for perfect graphs. Consequently, perfect graphs hold

a very important place in graph theory and combinatorial optimization.

T-perfect graphs

The polyhedral characterization of perfect graphs has inspired interest in studying

various variations. Instead of considering the smallest non-bipartite graph K3 as a

complete graph, it can alternatively be seen as an odd cycle. This observation leads

to the introduction of odd-cycle inequalities:

∑
v∈C

xv ≤
|V (C)| − 1

2
for every odd-cycle C in G. (odd-cycle inequalities)

These inequalities stem from the fact that every odd cycle C intersects at most

(|V (C)| − 1)/2 vertices with an independent set. Motivated by the polyhedral char-

acterization of perfect graphs, Chvátal in the same paper [29] proposed a realization

of the independent set polytope, denoted as POC(G) and called odd cycle polytope,

8



1.1. Background and motivation

which is described by trivial, edge, and odd-cycle inequalities. It is evident that

PI(G) ⊆ POC(G) ⊆ PE(G).

Chvátal became intrigued by the question of which graphs satisfy POC(G) = PI(G).

The class of graphs that satisfy this equality later became known as t-perfect2 graphs.

Grötschel et al. [62] showed that the separation problem in odd-cycle inequalities can

be reduced to finding a shortest path in a specific auxiliary graph. The fact that

the shortest path problem can be efficiently solved [43,115] implies that a maximum-

weight independent set in a t-perfect graph can be effectively found. This serves

as the core motivation for studying t-perfect graphs. Furthermore, the study of ex-

tended formulations for the odd cycle inequalities of the stable set polytope [41,122]

also showed the polynomial-time solvability of the maximum-weight independent set

problem on t-perfect graphs. Moreover, Eisenbrand et al. [47] presented a combi-

natorial polynomial-time algorithm for determining the independence number of a

t-perfect graph. Given that t-perfect graphs are defined from a polyhedral perspec-

tive, a natural question arises: how can we recognize them? To effectively recognize

t-perfect graphs, a profound understanding of their structure is essential.

Like perfect graphs, the class of t-perfect graphs is closed under vertex deletions.

In addition, Gerards and Shepherd [56] demonstrated that t-perfection is also pre-

served under t-contractions, where a vertex with the neighborhood forming an inde-

pendent set is contracted along with all incident edges. A graph obtained through

a sequence of vertex deletions and t-contractions is called a t-minor. It is straight-

forward to see that t-perfection is maintained under taking t-minors. A graph G is

considered minimally t-imperfect if it is t-imperfect but every t-minor distinct from

G is t-perfect. Having a complete list of minimally t-imperfect graphs would allow

for the characterization of t-perfection based on these graphs. However, even a con-

jecture on minimally t-imperfect graphs has yet to be established. To date, known

2The t here represents the French word trou which means hole.
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Chapter 1. Introduction

minimally t-imperfect graphs include odd wheels [115], even Möbius ladders [116],

(3, 3)-partitionable graphs [21,31], and the complements of certain cycle powers, such

as C7, C3
13, C4

13, and C7
19 [18, 21]. Figures 1.2 and 1.3 illustrate these graphs.

W3 W5 M4 M6

C7 C3
13 C4

13 C7
19

Figure 1.2: The first row shows odd wheels (W2k+1) and even Möbius ladders (M2k)
and the second row shows complements of cycle powers.

Figure 1.3: The (3, 3)-partitionable graphs. The first graph is C2
10.

Studying t-perfection is generally a challenging task. To obtain meaningful and

achievable results, it is often necessary to investigate t-perfection within specific re-

stricted graph classes. The concept of t-perfect graphs was initially introduced for

studying the maximum-weight independent set problem. Motivated by the study of

this problem in hereditary graph classes, we focus on exploring t-perfection in H-free

graphs, where H is a tree with at most three leaves. Another motivation for study-

ing t-perfection in H-free graphs is that this class of graphs is closed under taking

10



1.1. Background and motivation

t-minors. Consequently, we can characterize H-free t-perfect graphs using minimally

t-imperfect graphs.

If the order of H is at most four, then H is either a path graph or the claw graph.

Additionally, if H is a path graph, then H-free graphs are known to be perfect by

the strong perfect graph theorem. Moreover, K4 is the only minimally t-imperfect

graph for H-free graphs, as will be explained in the next chapter. For claw-free

graphs, Bruhn and Stein provided a complete list of minimally t-imperfect graphs

in their work [21]. For graphs H of order five, there are only two graphs under our

consideration that are P5 and fork. While the P5 is a natural generalization of the

P4, the fork graph is a generalization of both the claw and the P4. Specifically, a fork

can be obtained by attaching a private neighbor to a degree-one vertex of a claw or

a degree-two vertex of a P4. Bruhn and Fuchs showed a complete list of minimally

t-imperfect graphs for t-perfect graphs that are free of P5’s [18]. In this thesis, we

present all minimally t-imperfect graphs for t-perfect graphs that are fork-free.

A graph G is strongly t-perfect if the linear description of POC(G) is totally dual

integral. It follows from the observation of Edmonds and Giles [46] on totally dual

integrality that every strongly t-perfect graph is t-perfect. The other direction remains

an open problem. In particular, we do not know whether all P5-free t-perfect graphs

are strongly t-perfect, though it is true for all claw-free t-perfect graphs [20]. In this

thesis, we prove that fork-free t-perfect graphs are strongly t-perfect and obtain the

following result.

Theorem 1.1. Let G be a fork-free graph. The following statements are equiva-

lent:

i) G is t-perfect.

ii) G is strongly t-perfect.

11



Chapter 1. Introduction

iii) G does not contain the C2
7 , the C2

10, or any odd wheel as a t-minor.

Our structural study toward Theorem 1.1 enables us to develop polynomial-time

algorithms for recognizing t-perfect graphs that are fork-free.

Theorem 1.2. Given a fork-free graph, we can decide in polynomial time whether

it is t-perfect.

It is conjectured that every t-perfect graph is four-colorable [69, 115]. We show

that three colors already suffice for a fork-free t-perfect graph.

Theorem 1.3. Let G be a fork-free graph. If G is t-perfect, then the chromatic

number of G is at most three, and an optimal coloring can be found in polynomial

time.

As shown by the weak perfect graph theorem, perfect graphs are closed under

complementation. The key step of proving the weak perfect graph theorem is the

Replication Lemma: The class of perfect graphs is closed under (clique) substitution.

Since K4 can be obtained by substituting a vertex of a triangle by a K2 or obtained

by taking the complement of K4, t-perfection is closed under neither substitution

nor complementation. This observation may partially explain the difficulty in char-

acterizing t-perfect graphs. Benchetrit [11] has fully characterized t-perfection with

respect to substitution. Our focus is to investigate t-perfection in complementation.

Specifically, we want to know whether there exist minimally t-imperfect graphs whose

complements are also minimally t-imperfect. Upon careful examination of Figure 1.2,

we notice that with few exceptions, (W3, W5, W7, C7), the complements of all the

others contain a K4 and therefore not minimally t-imperfect graphs. On the other

hand, it is quite obvious that the graphs in the second row of Figure 1.3 are precisely

the complements of those in the first. Our result is that the ten (3, 3)-partitionable

graphs are the all minimally t-imperfect graphs whose complements are also mini-

mally t-imperfect.

12



1.1. Background and motivation

Theorem 1.4. Let G be a minimally t-imperfect graph. The complement of G

is minimally t-imperfect if and only if G is a (3, 3)-partitionable graph.

A graph is called self-complementary if it is isomorphic to its complement. The

existence of self-complementary graphs was independently solved by Sachs [111] and

Ringel [108]. Their work showed that a self-complementary graph exists with n

vertices if and only if n = 4k or n = 4k + 1, where k is a positive integer. When

considering graphs with a single vertex, the graph is trivially self-complementary.

Among graphs with four vertices, there exists only one self-complementary graph

that is P4. As for graphs with five vertices, there are only two self-complementary

graphs: C5 and the bull graph (Figure 1.4). Self-complementary graphs with order

at most thirteen were catalogued in [6, 48,76,89,120,121].

Figure 1.4: The bull graph.

We characterize all self-complementary graphs that are t-perfect: there are 20 of

them. In particular, if a self-complement graph is t-perfect but not perfect, then it

contains a C5, and is C5 itself, or one of graphs in Figure 1.5. All the other self-

complementary t-perfect graphs are perfect. Let us remark parenthetically that there

is an infinite number of self-complementary graphs that are perfect, e.g., obtained by

the 4-path addition [72].

Figure 1.5: Self-complementary graphs that are t-perfect but not perfect (n > 5).
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Chapter 1. Introduction

Theorem 1.5. Let G be a self-complementary graph. Then G is t-perfect if and

only if G is a K1, a P4, a C5, a bull, or one of the graphs in Figures 1.5 and 1.6.

Since K4 is not t-perfect, it suffices to focus on K4-free graphs. By the Ramsey

theorem, a graph on 18 or more vertices contains a K4 or its complement. Thus, it

suffices to consider graphs of no more than 17 vertices3. Although this fact narrows

the search space down greatly, simple enumeration is not really practical.

Figure 1.6: Self-complementary graphs that are both perfect and t-perfect (n > 5).

From the definition of t-perfect graphs one can easily see that every K4-free perfect

graph is t-perfect. On the other hand, a K4-free self-complementary perfect graph

contains at most nine vertices: it is K4-free and 3-colorable. One can thus easily get

those self-complementary graphs that are both perfect and t-perfect, the three small

ones, (K1, P4, and the bull graph), and the eleven graphs in Figure 1.6.

Self-complementary graphs

Self-complementary graphs hold a significant role in graph theory. The relation-

ship between self-complementary graphs and Ramsey numbers is particularly note-

worthy. If a self-complementary graph of order n does not contain a clique of size k,

3However, there are already 12005168 non-isomorphic graphs of ten vertices (http://oeis.org/
A000088).
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1.1. Background and motivation

it implies that the Ramsey number R(k, k) is strictly greater than n. This relation-

ship allows for the establishment of bounds on Ramsey numbers through the study of

self-complementary graphs [1, 22, 30, 34, 65, 88, 109]. In addition, self-complementary

graphs are crucial in the study of the strong perfect graph conjecture. Corneil’s

work [39] has demonstrated that self-complementary graphs serve as a key point in

determining whether the conjecture holds true or not. Furthermore, the study of self-

complementary graphs has also shed light on the isomorphism problem. Colbourn and

Colbourn [37] showed that the isomorphism problem for (regular) self-complementary

graphs is polynomially equivalent to the general isomorphism problem. In fact, sim-

ply recognizing whether a graph is self-complementary is also polynomially equivalent

to the graph isomorphism problem. In addition to their theoretical significance, self-

complementary graphs possess strong structural properties.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Figure 1.7: All self-complementary graphs on eight vertices.

A graph is a split graph if its vertex set can be partitioned into a clique and an

independent set. The class of self-complementary graphs and the class of split graphs

are connected by the following observation. Consider a self-complementary graph G

of order 4k, where L (resp., H) represents the set of 2k vertices with smaller (resp.,
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higher) degrees. Note that d(x) ≤ 2k− 1 < 2k ≤ d(y) for every pair of vertices x ∈ L

and y ∈ H. Xu and Wong [121] observed that the subgraphs of G induced by L and H

are complementary to each other. More importantly, the bipartite graph spanned by

the edges between L and H is closed under bipartite complementation (reverse edges

in between but keep both L and H independent). See the thick edges in Figure 1.7.

When studying the connection between L and H, it is more convenient to add all the

missing edges among H and remove all the edges among L, thereby turning G into

a self-complementary split graph. In this sense, every self-complementary graph of

order 4k can be constructed from a self-complementary split graph of the same order

and a graph of order 2k. For a self-complementary graph of an odd order, the self-

complementary split graph is replaced by a self-complementary pseudo-split graph.

A pseudo-split graph is either a split graph or a split graph plus a five-cycle such that

every vertex on the cycle is adjacent to every vertex in the clique of the split graph

and is nonadjacent to any vertex in the independent set of the split graph.

(a) (b) (c)

Figure 1.8: Self-complementary split graphs with eight vertices. Vertices in I are
represented by empty nodes on the top, while vertices in K are represented by filled
nodes on the bottom. For clarity, edges among vertices in K are omitted. Their
degree sequences are (a) (54, 24), (b) (54, 24), and (c) (62, 42, 32, 12).

The decomposition theorem of Xu and Wong [121] was for the construction of

self-complementary graphs, of which another ingredient is their degree sequences

(the non-increasing sequence of its vertex degrees). Clapham and Kleitman [33, 36]

present a necessary condition for a degree sequence to be that of a self-complementary

graph. However, a realization of such a degree sequence may or may not be self-

complementary. A natural question is on degree sequences of which all realizations

are necessarily self-complementary, called forcibly self-complementary. All the degree
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1.1. Background and motivation

sequences for self-complementary graphs up to order five, (01), (22, 12), (25), and

(32, 21, 12), are forcibly self-complementary. Of the four degree sequences for the self-

complementary graphs of order eight, only (54, 24) and (62, 42, 32, 12) are focibly self-

complementary; see Fig. 1.8. All the realizations of these forcibly self-complementary

degree sequences turn out to be pseudo-split graphs. As we will see, this is not

incidental.

We take p graphs S1, S2, . . ., Sp, each being either a four-path or one of the first

two graphs in Fig. 1.8. Note that the each of them admits a unique decomposition

into a clique Ki and an independent set Ii. For any pair of i, j with 1 ≤ i < j ≤ p,

we add all possible edges between Ki and Kj ∪ Ij. It is easy to verify that the

resulting graph is self-complementary, and can be partitioned into clique
⋃p
i=1Ki and

independent set
⋃p
i=1 Ii. We use an elementary self-complementary pseudo-split graph

to such a graph, or one obtained from it by adding a single vertex or a five-cycle and

make them complete to
⋃p
i=1 Ki. For example, we end with the graph in Fig. 1.8(c)

with p = 2 and both S1 and S2 being four-paths. It is a routine exercise to verify

that the degree sequence of an elementary self-complementary pseudo-split graph is

forcibly self-complementary. We show that the other direction holds as well, thereby

fully characterizing forcibly self-complementary degree sequences.

Theorem 1.6. A degree sequence is forcibly self-complementary if and only if

every realization of it is an elementary self-complementary pseudo-split graph.

Our result also bridges a longstanding gap in the literature on self-complementary

graphs. Rao [105] has proposed another characterization for forcibly self-complementary

degree sequences (we leave the statement, which is too technical, to Section 5.2). As

far as we can check, he never published a proof of his characterization. It follows

immediately from Theorem 1.6.

All self-complementary graphs up to order five are pseudo-split graphs, while only

three out of the ten self-complementary graphs of order eight are. By examining
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Chapter 1. Introduction

the list of small self-complementary graphs, Ali [5] counted self-complementary split

graphs up to 17 vertices. Whether a graph is a split graph can be determined solely by

its degree sequence. However, this approach needs the list of all self-complementary

graphs, and hence cannot be generalized to large graphs. Answering a question of

Harary [66], Read [106] presented a formula for the number of self-complementary

graphs with a specific number of vertices. Clapham [35] simplified Read’s formula by

studying the isomorphisms between a self-complementary graph and its complement.

We take an approach similar to Clapham’s for self-complementary split graphs with

an even order, which leads to a formula for the number of such graphs. For other

self-complementary pseudo-split graphs, we establish a one-to-one correspondence

between self-complementary split graphs on 4k vertices and those on 4k + 1 vertices,

and a one-to-one correspondence between self-complementary pseudo-split graphs of

order 4k + 1 that are not split graphs and self-complementary split graphs on 4k− 4

vertices.

V4

V3V2

V1

(a)

V1

V2

V3 V4

(b)

Figure 1.9: The (a) rectangle and (b) diamond partitions. Each node represents one
part of the partition. A solid line indicates that all the edges between the two parts
are present, a missing line indicates that there are no edges between the two parts,
while a dashed line imposes no restrictions on the two parts.

We also study the conjecture of Trotignon [118], which asserts that if a self-

complementary graph G does not contain a five-cycle, then its vertex set can be

partitioned into four nonempty sets with the adjacency patterns of a rectangle or a di-

amond, as described in Figure 1.9. He managed to prove certain special graphs satisfy

this conjecture. We prove Trotignon’s conjecture on self-complementary split graphs,
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with a stronger statement. We say that a partition of V (G) is self-complementary if

it forms the same partition in the complement of G, illustrated in Figure 1.10.

v6 v7

v1 v4

v5 v8 v2 v3

(a)

v6 v7 v8

v1 v4

v5 v2 v3

(b)

Figure 1.10: Two diamond partitions, of which only the first is self-complementary.

There is another natural motivation of studying self-complementary split graphs.

Sridharan and Balaji [117] tried to understand self-complementary graphs that are

chordal. They are precisely split graphs [49]. The class of split graphs is closed under

complementation.4 We may study self-complementary graphs in other graph classes.

Again, for this purpose, it suffices to focus on those closed under complementation.

In the simplest case, we can define such a class by forbidding a graph F as well as

its complement. It is not interesting when F consists two or three vertices, or is the

four-path. When F is the four-cycle, we end with the class of pseudo-split graphs,

which is the simplest in this sense.

1.2 Outline and main contributions

This thesis is structured into six chapters, comprising the introductory chapter

(Chapter 1), the preliminary chapter (Chapter 2), three main chapters (Chapters 3, 4,

and 5), and a concluding chapter (Chapter 6).

• Chapter 2 In this chapter, we begin by introducing the basics and notations

4Some authors call such graph classes “self-complementary,” e.g., the influential “Information
System on Graph Classes and their Inclusions” (https://www.graphclasses.org).
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necessary for our study. We then delve into polyhedral theory, linear program-

ming, and focus on the independent set polytope. Additionally, we present

further results in t-perfection that are of great significance for the subsequent

chapters. These results will serve as essential tools and insights in our explo-

ration of t-perfection.

• Chapter 3 In this chapter, our focus lies on the study of t-perfection in fork-

free graphs. We prove Theorems 1.1, 1.2, and 1.3 in this chapter. We provide

a complete list of minimal forbidden t-minors for fork-free t-perfect graphs.

Additionally, we show that every fork-free t-perfect graph is, in fact, strongly

t-perfect. We also present polynomial-time algorithms for recognizing and col-

oring these graphs.

• Chapter 4 In this chapter, our focus is on the study of complementation in

t-perfect graphs. We are particularly interested in graphs G for which both

G and its complement are t-perfect or minimally t-imperfect. This motivation

leads us to introduce the concept of core graphs. A graph G is a core graph

if neither G nor its complement contains a t-imperfect graph as a proper t-

minor. In Section 4.1, we delve into the investigation of core graphs, exploring

their structural properties. Specifically, we show that an imperfect core graph

consists of at most ten vertices. Furthermore, we delve into the study of t-

perfect core graphs in Section 4.2. By proving Theorem 1.5, we are able to

identify all self-complementary t-perfect graphs. Moreover, we shift our focus

to study minimally t-imperfect core graphs in Section 4.3. Through the proof

of Theorem 1.4, we conclude that they can only be (3, 3)-partitionable graphs.

• Chapter 5 In this chapter, we study split graphs and pseudo-split graphs

whose complements are isomorphic to themselves. In Section 5.1, we begin by

introducing more about antimorphisms. Then we show a connection between

self-complementary split graphs and self-complementary pseudo-split graphs.
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This connection allows us to narrow our focus to split graphs. Furthermore, we

establish a one-to-one correspondence between self-complementary split graphs

on 4k vertices and those on 4k + 1 vertices. We also study partitions in self-

complementary graphs in this section. Additionally, we give a characteriza-

tion for forcibly self-complementary degree sequences in Section 5.2. Finally,

we tackle the enumeration problem of self-complementary split graphs in Sec-

tion 5.3.

• Chapter 6 We conclude this thesis by presenting an overview of open ques-

tions and conjectures that have captured our interest in the study of t-perfect

graphs and self-complementary graphs. We analyze and discuss these unresolved

problems, exploring their significance and potential implications. By present-

ing these open questions and conjectures, we aim to stimulate further study

and foster a deeper understanding of t-perfect graphs and self-complementary

graphs.

21



Chapter 2

Preliminaries

This chapter lays the foundation for understanding the rest of the thesis by intro-

ducing essential concepts.

2.1 Basics and notations

In graph theory, a graph is a mathematical structure that consists of a set of

vertices and a set of edges that connect these vertices. Each edge in a graph represents

a relationship or connection between two vertices. All the graphs discussed in this

thesis are finite; that is, they have a finite number of vertices and edges. Additionally,

we only consider simple graphs, which have at most one edge connecting any two

distinct vertices and no edge that connects a vertex to itself. Furthermore, we focus

our attention solely on undirected graphs, meaning that the edges do not have any

direction associated with them. Conventionally, the vertex set and edge set of a graph

G are denoted by, respectively, V (G) and E(G). Graphs are named so because they

can be visually represented. Each vertex is depicted as a point, and each edge is

represented by a line connecting the points corresponding to its ends. Figure 2.1

illustrates a graph G with V (G) = {a, b, c, d} and E(G) = {ab, ac, ad, bc, bd, cd}.
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a

b
cd

Figure 2.1: A diagram of K4.

Let G be a graph. The order of G refers to the number of vertices in its vertex set,

while the size of G corresponds to the number of edges in its edge set. Two vertices u

and v are adjacent in G if there exists an edge connecting them. Conversely, if there

is an edge uv in G, we refer to u and v as the end vertices or ends of uv, and we say

that uv is incident with both u and v. Since we focus on undirected graphs, the order

of vertices in an edge does not matter, so uv is equivalent to vu. The complement G

of G has the same vertex set as G, and two distinct vertices in G are adjacent if and

only if they are not adjacent in G. The graph G is considered isomorphic to another

graph H, denoted as G ∼= H, if there exists a bijection φ : V (G) → V (H) such that

two vertices u and v are adjacent in G if and only if φ(u) and φ(v) are adjacent in H.

We say that two sets of vertices are complete or nonadjacent if there are all possible

edges or no edges between them respectively.

Adjacent vertices are commonly referred to as neighbors of each other. In the

graph G, the set of neighbors of a specific vertex u is known as the neighborhood of u,

denoted as NG(u). Additionally, the closed neighborhood of u in G is represented as

NG[u], which is defined as the union of NG(u) and the vertex u itself. The degree of

vertex u in G, denoted as dG(u), corresponds to the cardinality of NG(u). A vertex is

considered isolated in G if it has no neighbor in G. If every vertex in a graph has the

same degree, say k, then we call the graph k-regular. In the notations defined in this

paragraph, if the graph G is clear from the context, we can remove the subscript G.

If a graph H can be obtained from G by deleting some vertices, we say that G

contains H, or that H is an induced subgraph of G. On the other hand, if H cannot
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be obtained from G by deleting vertices, we say that G is H-free. For a subset

U ⊆ V (G), let G[U ] denote the subgraph of G induced by U , whose vertex set is

U and whose edge set comprises all the edges whose both ends are in U , and let

G− U = G[V (G) \ U ], which is simplified as G− u if U comprises a single vertex u.

When a graph H can be obtained from G by deleting some vertices and edges, we

say that H is a subgraph of G. It is noteworthy that while an induced subgraph of G

is a subgraph of G, the reverse is not necessarily true.

A path in G is a sequence of distinct vertices v1, v2, . . . , v` of G, where ` ≥ 1,

such that for every i = 1, . . . , ` − 1, there is an edge between vertices vi and vi+1

in G. The vertices v1 and v` are called the ends of the path, while the remaining

vertices v2, v3, . . . , v`−1 are referred to as the inner vertices. We say that there exists

a path between two vertices u and v if there is a path with ends u and v. A graph

is considered connected if there is a path between any two vertices in the graph. A

connected component of a graph G is a subgraph of G that is both connected and

inclusion-wise maximal, meaning that it cannot be further enlarged while preserving

the property of connectivity. A connected component must have at least one vertex.

It is noteworthy that every vertex in G belongs to exactly one connected component.

This implies that the vertex set of G can be partitioned into disjoint subsets, each

representing a connected component. Furthermore, it is important to emphasize

that a graph is not connected if and only if it consists of more than one connected

component.

A subset X of the vertex set V (G) is called a vertex-cut of graph G if the number of

connected components in G−X is greater than the number of connected components

in G. Moreover, if the cardinality of X is k, then X is called a k-vertex-cut. A graph

is called k-connected for any positive integer k if it contains more than k vertices and

has no k-vertex-cut.

If all vertices in G are pairwise adjacent, then G is referred to as a complete graph.

Alternatively, if the vertices of G can be arranged in a linear sequence such that two
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vertices are adjacent if and only if they are consecutive in the sequence, then G is

known as a path graph. Similarly, if G contains at least three vertices and the vertices

of G can be arranged in a cyclic sequence such that two vertices are adjacent if and

only if they are consecutive in the sequence, then G is classified as a cycle graph. Up

to isomorphism, there is a unique complete graph, a unique path graph, and a unique

cycle graph on a given number of vertices.

For ` ≥ 3, we denote the complete graph, path graph, and cycle graph on ` vertices

as K`, P`, and C`, respectively. It is worth noting that K3 is equivalent to C3 and is

commonly referred to as a triangle graph. A hole is defined as a C` with ` ≥ 4. On

the other hand, a wheel W` is obtained by introducing a new vertex to the C` and

connecting it to all the existing vertices of C`. In the context of cycles, holes, and

wheels, an `-cycle, `-hole, or `-wheel is considered odd if ` is an odd number.

If the vertex set of G can be partitioned into two subsets X and Y , such that

every edge of G has one end in X and the other end in Y , then G is called a bipartite

graph. We can represent G with its bipartition as G[X, Y ]. In a bipartite graph,

there are no edges connecting vertices within the same subset. If every vertex in X is

adjacent to every vertex in Y , then G is referred to as a complete bipartite graph. For

any two positive integers m and n, there exists a unique complete bipartite graph,

denoted as Km,n, with parts of sizes m and n, respectively (up to isomorphism).

Notably, graphs of the form K1,n are called stars, and the vertex in the singleton part

of K1,n is referred to as the star’s center. Furthermore, if there exists a vertex in G

whose removal leaves a bipartite graph, then G is categorized as an almost bipartite

graph. On the other hand, if the removal of the closed neighborhood of any vertex

in G results in a bipartite graph, then G is known as a near-bipartite graph. It is

evident that a bipartite graph cannot contain an odd cycle. In fact, the converse is

also true [42].

The line graph H of G is a graph whose vertex set corresponds to the edge set

of G, where two vertices in H are adjacent if their corresponding edges in G share a
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common vertex. A graph H is considered a line graph if there exists a graph such

that H is the line graph of that graph.

A graph is a tree if it is connected and does not contain any cycle. For integers

i, j, k ≥ 1, we denote by Si,j,k the tree with exactly three leaves, each at distance i, j,

and k from the unique vertex of degree three. The claw graph is isomorphic to S1,1,1,

the fork graph is isomorphic to S1,1,2, and the path graph P4 is isomorphic to S0,1,2.

A subset X of the vertex set V (G) is called a clique if the induced subgraph G[X]

is a complete graph, meaning that all vertices in X are pairwise adjacent in G. On

the other hand, X is called an independent set if the complement of the induced

subgraph G[X] is a complete graph, meaning that no two vertices in X are adjacent

in G. In other words, a clique is a set of vertices in G such that every pair of vertices

in the set is adjacent, while an independent set is a set of vertices such that no two

vertices in the set are adjacent in G.

A clique (resp., independent set) X of G is said to be maximal if X ∪ {v} is not

a clique (resp., independent set) of G for every v ∈ V (G) \ X. A maximum clique

(resp., maximum independent set) of G is a clique (resp., independent set) that has

the maximum number of vertices compared to all other cliques (resp., independent

set) in G. The number of vertices in a maximum clique is called the clique number of

G and is denoted as ω(G), while the number of vertices in a maximum independent

set is called the independence number of G and is denoted as α(G). A clique or

independent set X of G is said to be maximum-weight under the weight function

w : V (G) → R≥0 if the sum of weights of vertices in X, denoted by
∑

x∈X w(x), is

maximized among all cliques or independent sets, respectively, in G with respect to

the weight function.

For a positive integer k, a graph G is said to be k-colorable if we can partition

the vertex set V (G) into k independent sets. In other words, we can assign one of

k different colors to each vertex in such a way that no two adjacent vertices have
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the same color. The smallest value of k for which G is k-colorable is known as the

chromatic number of G, denoted by χ(G). On the other hand, the clique cover number

of G, denoted as χ(G), is the smallest number of cliques needed to cover the vertex

set V (G).

A matching of G is a set of edges without common vertices. There is a one-to-one

correspondence between matchings in G and independent sets in its line graph. Given

a matching in G, the corresponding independent set in its line graph consists of the

vertices representing the matched edges in G. Conversely, given an independent set in

the line graph of G, the corresponding matching in G consists of the edges represented

by the vertices in the independent set.

2.2 Polyhedra and linear inequalities

Let x0, x1, . . . , x` be vectors in Rn. If there exist scalars λ1, . . . , λ` such that

x0 =
∑`

j=1 λjxj, then x0 is considered a linear combination of the other vectors.

Furthermore, if λ1, . . . , λ` satisfy the condition
∑`

j=1 λj = 1, then x0 is an affine

combination of the other vectors. Moreover, if λ1, . . . , λ` are all nonnegative, then x0

is a convex combination of the other vectors. A set S ⊆ Rn is said to be linear, affine,

or convex if S contains all the linear, affine, or convex combinations of its elements,

respectively.

Vectors x0, x1, . . . , x` are affinely independent if and only if no vector in x0, x1, . . . ,

x` can be written as an affine combination of the other vectors. For a set S ⊆ Rn,

the dimension of S, denoted as dim(S), is defined as one less than the maximum

number of affinely independent vectors in S. If the dimension of S is n, then S is

called full-dimensional. This implies that S has n + 1 affinely independent vectors.

The convex hull of S, denoted by conv(S), is the set of all vectors that are convex

combinations of elements in S.
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Let P be a subset of Rn. If there exists a real matrix A and a real vector b such

that

P = {x ∈ Rn : Ax ≤ b},

then P is a polyhedron in Rn. If A and b can be chosen such that all their entries are

rational, then P is a rational polyhedron. A bounded polyhedron is called a polytope.

It is noteworthy that the entire space Rn itself is a polyhedron, as 0Tx ≤ 0 for all

x ∈ Rn. In addition, if α ∈ Rn \ {0} and β ∈ R, the polyhedron {x ∈ Rn : αTx ≤ β}

is called a halfspace, while the polyhedron {x ∈ Rn : αTx = β}1 is referred to as a

hyperplane. From a geometrical point of view, a polyhedron can be understood as

the intersection of a finite number of halfspaces.

Let P ⊆ Rn be a polyhedron. An inequality αTx ≤ β is called valid for P if it is

satisfied by every point in P . A face F of P is a subset of P that can be expressed as

the intersection of P with a hyperplane defined by a valid inequality. In other words,

F is a set of the form

F = P ∩ {x ∈ Rn : αTx = β}

where αTx ≤ β is a valid inequality of P . The face F is also a polyhedron and said

to be defined by the valid inequality αTx ≤ β. A face of P is considered proper if it

is nonempty and not equivalent to P . The facets of P are the inclusion-wise maximal

proper faces, and the valid inequality that defines each facet is called a facet-defining

inequality for P . The vertices, also known as extreme points, of a polyhedron P are

points within P that cannot be expressed as convex combinations of two or more

other points in P . The dimension of a facet of P is dim(P )− 1, while the dimension

of a vertex is 0.

Inequalities in a linear system Ax ≤ b that define the polyhedron P can be

categorized as either redundant or irredundant. A redundant inequality does not

1Note that the equality constraint αTx = β can be substituted by two inequality constraints
αTx ≤ β and −αTx ≤ −β.
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affect the solution set when removed, while an irredundant inequality is necessary to

define the polyhedron. Starting from the original system, one can iteratively eliminate

redundant inequalities until no further redundancies exist. This process results in a

reduced system, known as a minimal representation, which precisely describes the

polyhedron P without any redundancies. The minimal representation is a concise

and efficient description of P in terms of inequalities. It is worth noting that every

polyhedron has a unique minimal representation up to multiplying the inequalities

by a positive scalar.

Theorem 2.1 ([38]). For a full-dimensional polyhedron P with a minimal represen-

tation Ax ≤ b, the inequality system Ax ≤ b is uniquely defined up to multiplying the

inequalities by a positive scalar.

2.3 Linear programming

Linear programming is the problem of maximizing a linear objective function over

a polyhedron. Given a matrix A ∈ Rm×n and vectors c ∈ Rn, b ∈ Rm, a linear

programming problem can be formulated as:

maximize cTx

subject to Ax ≤ b (LP)

x ≥ 0.

We use P to represent the polyhedron {x ∈ Rn : Ax ≤ b, x ≥ 0}, which is also

referred to as the feasible region of (LP). If P is empty, it indicates that the linear

programming problem is infeasible. On the other hand, if P is nonempty, every point

within the feasible region represents a feasible solution to the problem. An optimal

solution, denoted as x∗, is a feasible solution that satisfies cTx∗ ≥ cTx for all x in P .

In other words, it maximizes the objective function over the feasible region. The set of
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all optimal solutions defines an optimal solution face of P , representing the boundary

of the highest values attainable for the objective function within the feasible region.

The value of cTx∗ is called optimal value of the problem.

The dual problem of (LP), is defined as follows:

minimize yT b

subject to yTA ≥ c (DP)

y ≥ 0.

The dual problem (DP) aims to minimize the value yT b subject to the constraints

yTA ≥ c and y ≥ 0, where y represents the vector of dual variables. The original

problem (LP) from which the dual problem (DP) is derived is commonly known as the

primal problem. In the realm of linear programming duality, a well-known theorem

establishes a strong connection between the primal problem and its dual. For more

comprehensive information on this topic, please refer to [38,113].

Theorem 2.2 ([113, Duality theorem of linear programming]). Given a matrix A ∈

Rm×n and vectors c ∈ Rn, b ∈ Rm. Let P = {x ∈ Rn : Ax ≤ b, x ≥ 0} and

D = {y ∈ Rm : yTA ≥ c, y ≥ 0}. Then

max{cTx : Ax ≤ b, x ≥ 0} = min{yT b : yTA ≥ c, y ≥ 0},

if both P and D are nonempty.

The connection between the primal and dual problems in linear programming

was initially conjectured by John von Neumann after George Dantzig introduced the

linear programming problem. However, it was not until the publication by Gale,

Kuhn, and Tucker in [51] that the first rigorous proof of this theorem was provided.

Their work established the duality theory in linear programming and provided a solid

mathematical foundation for understanding the relationship between the primal and
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dual problems. This development played a crucial role in advancing the theory and

applications of linear programming.

The simplex method, developed by George Dantzig in the 1940s, is a widely used

and well-established algorithm for solving linear programming problems. The sim-

plex method begins at one of the extreme points (vertices) of the feasible region. It

then iteratively improves the objective function value by moving from one vertex to

another along the edges (face of dimension one) of the feasible region. In many prac-

tical scenarios, the simplex method exhibits good performance and effectively solves

linear programming problems. However, it is important to note that the number of

vertices within the feasible region of a given linear programming problem can become

quite large. In the worst-case scenario, the running time of the simplex method may

experience exponential growth due to the need to explore an extensive number of

vertices [60, 74]. To address these limitations, the ellipsoid method was introduced

as the first polynomial-time algorithm for solving linear programming problems [73].

The ellipsoid method offers theoretical significance and guarantees polynomial-time

complexity. However, its practical implementation has certain drawbacks, leading to

the development of alternative methods. One such alternative is the interior point

method, pioneered by Narendra Karmarkar in 1984 [70]. Interior point methods have

gained popularity for their ability to provide better performance in solving linear

programming problems. They use a different approach, focusing on exploring the

interior of the feasible region rather than moving along its edges. Interior point

methods often exhibit improved efficiency and convergence properties, making them

a preferred choice in practical applications. More details of these methods can be

found in [63,119].

In this thesis, we focus on linear programming problems that possess feasible

regions, denoted as P , with the properties: (i) P is nonempty; (ii) P is a rational

polytope; (iii) P has full-dimensional. Under these conditions, an optimal solution

lies at one of the extreme points of the feasible region P .
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Consider a linear programming problem represented by (LP). If we impose the

condition that x must be integral (every coordinate of x is an integer), the problem

transforms into an integer linear programming problem given by:

maximize cTx

subject to Ax ≤ b (ILP)

x ≥ 0

x is integral.

The introduction of the integer constraint transforms the feasible region into a

discrete set of points. Specifically, if x is constrained in {0, 1}n, the problem is known

as a binary integer linear programming problem. It is worth emphasizing that linear

programming problems can be efficiently solved using polynomial-time algorithms.

However, when integer constraints are introduced, the computational complexity of

the problem escalates considerably. In fact, solving integer linear programming prob-

lems is classified as NP-hard, denoting the inherent difficulty in finding optimal so-

lutions. This indicates that, in general, there is no known polynomial-time algorithm

capable of solving all instances of integer linear programming problems.

Consider the set S which represents the solutions of the integer linear programming

problem defined in equation (ILP). The convex hull of S forms a polytope in which

every extreme point has integral coordinates. Now, if a matrix A′ and a vector b′ can

be obtained such that the convex hull of S can be expressed as:

conv(S) = {x : A′x ≤ b′},

then the integer linear programming problem can be transformed into an equivalent

linear programming problem.
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A linear system Ax ≤ b, where A and b are rational, is called totally dual integral

(TDI) if for every integral vector c, the optimal value of the dual program is attained

by an integeral vector y∗ whenever the optimum exists and is finite. Edmonds and

Giles [46] showed that if a polyhedron P is the feasible region of a TDI system Ax ≤ b,

where b is a integral vector, then every extreme point of P is integeral.

Theorem 2.3. If Ax ≤ b is TDI and b is integral, then Ax ≤ b determines an integral

polyhedron.

2.4 The independent set polytope

For every independent set S of G, we can define an incidence vector χS with

dimension |V (G)|. Each component χSv of the vector is defined as:

χSv =

1, if v ∈ S,

0, otherwise.

The incidence vector χS provides a binary representation of the independent set S,

where each component χSv indicates whether the corresponding vertex v is present

(χSv = 1) or absent (χSv = 0) in the independent set S. If we consider the convex hull

of the incidence vectors of all the independent sets of G, we obtain a bounded polyhe-

dron. This polyhedron is commonly referred to as an independent set polytope [113].

We denote the independent set polytope of G as PI(G). Figure 2.2 illustrates the

graph P3 and its independent set polytope.

From Figure 2.2, we can observe that the independent set polytope of P3 is the

intersection of five half-spaces, each of which can be represented as a linear inequality.

Consequently, for a graph G, if we can find the defining linear system of PI(G), we

can solve the maximum-weight independent set problem on G by solving the following
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u

v

w

P3

(0, 0, 0)T

(1, 0, 0)T

(0, 1, 0)T

(1, 1, 0)T

(0, 0, 1)T

xu

xv

xw

PI(P3)

Figure 2.2: The graph P3 and its independent set polytope PI(P3).

linear programming problem:

αw(G) = max{wTx : x ∈ PI(G)}.

The optimal value αw(G) is referred to as the weighted independence number of G.

Consider the incidence vectors of independent sets in G with cardinality at most

one. There are precisely |V (G)| + 1 such vectors, and they are affinely independent.

It implies that the independent set polytope associated with G is full-dimensional.

Furthermore, according to Theorem 2.1, the independent set polytope of G has a

unique system of linear inequalities (up to multiplying the inequalities by a positive

scalar) that describes its facets. For general graphs, a complete description of the

facets of PI(G) is hard to obtain.

2.5 T-perfection

We continue to use the notations introduced in Chapter 1. The graph K4 is the

smallest graph (in terms of the number of vertices and edges) that is not t-perfect,

hence not strongly t-perfect. It can be easily verified that the vector x =
(

1
3
, 1

3
, 1

3
, 1

3

)T
belongs to POC(K4). However, since 1Tx = 4

3
> 1, the vector x does not belong

to PI(K4). A subdivision of a graph is obtained by subdividing edges of the graph
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into paths of length at least one. Figure 2.3 shows a subdivision of K4. The class

of graphs without any subdivision of K4 as a subgraph is known as series-parallel

graphs [44]. Chvátal [29] conjectured that PI(G) = POC(G) if G is a series-parallel

graph, and this conjecture was later proved by Mahjoub [86]. Thus, series-parallel

graphs are t-perfect. Boulala and Uhry [14] showed that series-parallel graphs are

also strongly t-perfect. Gerards and Schrijver [55] extended t-perfection to graphs

that do not contain an odd-K4 subdivision as a subgraph. An odd-K4 subdivision

is obtained by turning each triangle of K4 into an odd cycle. Gerards [54] further

demonstrated that graphs that do not contain an odd-K4 subdivision are strongly

t-perfect, implying t-perfection and strong t-perfection for almost bipartite graphs.

Barahona and Mahjoub [9] studied the independent set polytope of subdivisions of

K4 and provided a characterization for subdivisions of K4 that are not t-perfect.

A subdivision of K4 is called bad if it is not t-perfect. Gerards and Shepherd [56]

characterized that every subgraph of a graph G is t-perfect if and only if G contains no

bad-K4 subdivision as a subgraph. Schrijver extended this characterization to strongly

t-perfect graphs in [114]. It is worth noting that there exist odd-K4 subdivisions that

are not bad. An example is shown in Figure 2.3.

Figure 2.3: An odd-K4 subdivision that is t-perfect.

A connection between perfect graphs and t-perfect graphs

The classes of t-perfect graphs and perfect graphs are incomparable: C5 is t-

perfect but not perfect, whereas K4 is perfect but not t-perfect. Despite this, there
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is an insightful observation that establishes a connection between these two classes of

graphs.

Let G be a graph that does not contain K4. In such a graph, every clique has a

size of at most three, implying that any clique constraint in the description of PK(G)

is one of the three kinds of constraints in the description of POC(G). Additionally, the

odd-cycle constraints in description of POC(G) can be limited to induced odd cycles,

as the constraints on non-induced ones are redundant. If G is perfet, then it does

not contain odd holes according to the strong perfect graph theorem. Consequently,

the odd-cycle constraints in the description of POC(G) reduce to triangle constraints.

Thus, we can deduce that:

PI(G) = PK(G) = POC(G).

If the linear system that defines PK(G) is totally dual integral, then G is perfect [29,

46]. Lovász [78] showed that the converse is also true. Therefore, the linear system

that defines PK(G) is totally dual integral if and only if G is perfect; see also [115]

for more details. Based on this, we can derive the following result.

Proposition 2.4 (Folklore). Every K4-free perfect graph is strongly t-perfect.

Strong t-perfection

For each weight function w : V (G) → Z≥0, we can make a linear programming

problem out of POC(G) by adding an objective function

max wTx.

The dual of this linear programming problem is a covering problem. A w-cover is a

family of vertices, edges, and odd cycles in G such that every vertex v in V (G) lies

in at least w(v) elements, with repetition allowed. The cost of a w-cover is the sum
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of the costs of its elements, where the cost of a vertex or an edge is one, and the

cost of an odd cycle C is (|V (C)| − 1)/2. For a vertex set S, we use w(S) to denote∑
v∈S w(v). The following is a consequence of linear programming duality.

Proposition 2.5 ([115]). A graph G is strongly t-perfect if and only if there exists

a w-cover of cost αw(G) for every weight function w : V (G)→ Z≥0.

The following observation, implicit from Bruhn and Stein [20], is very helpful

in checking the condition of Proposition 2.5. We provide a proof for the sake of

completeness. Note that a vertex setK intersects every maximum-weight independent

set of G if and only if αw(G−K) < αw(G).

Proposition 2.6 ([20]). Let G be a graph and w : V (G) → Z≥0 a weight function.

There exists a w-cover of G with cost αw(G) if

• there exists a clique K of at most three vertices such that αw(G−K) < αw(G);

and

• for any weight function w′ : V (G)→ Z≥0 such that w′(V (G)) < w(V (G)), there

exists a w′-cover of cost αw′(G).

Proof. We may assume without loss of generality that K is inclusion-wise minimal

satisfying αw(G − K) < αw(G). As a result, w(v) > 0 for each v ∈ K: a vertex

of zero weight has no impact on αw(G). We can define another weight function

w′ : V (G)→ Z≥0 by setting

w′(v) =

w(v)− 1 v ∈ K,

w(v) otherwise.

Since w′(V (G)) < w(V (G)), there exists a w′-cover K of cost αw′(G) by assumption.

Since |K| ≤ 3, the setK∪{K} is a w-cover ofG and its cost is αw′(G)+1 = αw(G).
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Operations

Let G be a t-perfect graph. For any vertex v ∈ V (G), the independent set polytope

PI(G− v) is the projection of the intersection of PI(G) and the hyperplane xv = 0 on

RV (G−v). This implies that t-perfection is preserved under vertex deletions. Gerards

and Shepherd [56] showed that t-perfection is also preserved under the following

operation:

. choose a vertex whose neighborhood is an independent set, and contract all edges

incident with the vertex.

This operation is called t-contraction. To illustrate this operation, let’s consider

the graph shown in Figure 2.4 (a). Note that the neighborhood of u is an independent

set. If we perform a t-contraction at vertex u, the resulting graph, shown in Figure 2.4

(b), is isomorphic to K4.

u

(a)

ũ

(b)

Figure 2.4: A t-contraction at vertex u.

T-contraction preserves t-perfection but not the other way around. After doing

t-contraction at a vertex in a t-imperfect graph, the resulting graph can be t-perfect;

see Figure 2.5.

Recall that A graph H is called a t-minor of a graph G if H can be obtained from

G by a series of vertex deletions and t-contractions. Furthermore, if H is different

from G, then H is a proper t-minor of G. It is straightforward to check that t-

perfection is preserved under taking t-minors. Bruhn and Stein [20] demonstrated
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(a)

(b)

Figure 2.5: (a) A t-imperfect graph and (b) a t-perfect t-minor (by doing t-contraction
at the degree-4 vertex).

that this property holds for strong t-perfection as well. Therefore, every t-minor of a

strongly t-perfect graph is also strongly t-perfect.

Consider a graph G. Subdividing any of its edges twice produces a new graph

G′ where both of the newly added vertices are t-contractable. If G is not t-perfect,

then G′ is t-imperfect either; otherwise, by doing t-contraction on any one of the

newly added vertex in G′, we obtain a t-minor of G′ that is t-perfect and isomorphic

to G, a contradiction. Without using the result that t-perfection is closed under

t-contractions, we give a simple proof for this.

Proposition 2.7. If a graph G is not t-perfect, then the graph G′ obtained by subdi-

viding an edge of G twice is not t-perfect.

Proof. Let uv be the edge of G that is subdivided twice. Then the edge uv of G

becomes to a path ua1a2v in G′. Since G is t-imperfect, POC(G) has a fractional

vertex, say x, that is not in the independent set polytope of G. Let w : V (G)→ Z≥0

be a weight function such that wTx is optimal when we do linear programming over

POC(G). Therefore,

αw(G) < wTx.
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Let M = max{w(u), w(v)}. We define a weight function w′ : V (G′)→ Z≥0 as

w′(p) =

M if p ∈ {a1, a2},

w(p) otherwise.

It can be seen that

αw′(G′) = αw(G) +M.

Let x′ be a |V (G′)| dimensional vector such that

x′p =


1− xu if p = a1,

xu if p = a2,

xp otherwise.

It can be checked that x′ ∈ POC(G′) (i.e., x′ satisfies all the constraints of POC(G′)).

Since

w′Tx′ = wTx+ w(a1)xa1 + w(a2)xa2

= wTx+M(1− xu + xu)

> αw(G) +M

= αw′(G′),

the vector x′ is not in the independent set polytope ofG′. Thus, G′ is not t-perfect.

If G is t-perfect, then G′ can be t-imperfect; see Figure 2.6.

By duplicating a vertex v of G we introduce copies of v and make them adjacent

to every neighbor of v in G. Note that the copies and v itself form an independent

set. Benchetrit [11] proved that the class of t-perfect graphs is closed under vertex

duplication. Furthermore, he demonstrated that this property holds true even when
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v1

v2

v3

v4

v5

v6

Figure 2.6: The graph is t-perfect (Proposition 2.4). But if we subdivide v1v4 twice
by introduce two vertices v7 and v8, the resulting graph G′ is t-imperfect since K4 is
a t-minor of G′ obtained by doing t-contraction at v1 in G′ − {v7, v8}.

considering strongly t-perfect graphs.

Lemma 2.8 ([11]). The graph obtained by duplicating any vertex of a (strongly) t-

perfect graph is (strongly) t-perfect.
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T-perfection in Fork-free Graphs

In this chapter, our focus lies on the study of t-perfection in fork-free graphs.

We prove Theorems 1.1, 1.2, and 1.3 in this chapter. We provide a complete list of

minimal forbidden t-minors for fork-free t-perfect graphs. Additionally, we establish

that every fork-free t-perfect graph is, in fact, strongly t-perfect. We also present

polynomial-time algorithms for recognizing and coloring these graphs.

3.1 Observations

The main task of this chapter is to prove Theorem 1.1. We recall the theorem

here.

Theorem 1.1. Let G be a fork-free graph. The following statements are equivalent:

i) G is t-perfect.

ii) G is strongly t-perfect.

iii) G does not contain the C2
7 , the C2

10, or any odd wheel as a t-minor.
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Since strong t-perfection implies t-perfection and all the graphs C2
7 , C2

10, and odd

wheels are known to be t-imperfect [21, 115], we focus on showing that (iii) implies

(ii). To demonstrate the strong t-perfection, we consider the dual of Chvátal’s system,

which is a covering problem. In particular, it looks for a cover of the vertex set by

vertices, edges, and odd cycles. The graph is strongly t-perfect if, for any weight

function, there is a cover whose cost equals the maximum weight of independent sets

[115]. LetG be a fork-free graph that does not contain a C2
7 , a C2

10, or any odd wheel as

a t-minor. We may assume without loss of generality that G is connected. The graph

must be strongly t-perfect if it is also claw-free [21], or if it is perfect (note that W3

is K4) [29, 78]. Moreover, if G is not perfect, then the nonexistence of K4’s and C2
7 ’s

forces it to contain an odd hole. We may hence assume that G contains a claw and an

odd hole. We show that every odd hole H must be a C5, and every other vertex has

either exactly two consecutive neighbors or exactly three nonconsecutive neighbors

on H. Based on the adjacency to vertices on H, we can partition V (G) \ V (H) into

a few sets. A careful inspection of the edges among them shows that there always

exists a cover. Therefore, the graph is strongly t-perfect. Our structural study toward

Theorem 1.6 enables us to develop polynomial-time algorithms for recognizing and

coloring fork-free t-perfect graphs.

3.2 Fork-free imperfect graphs containing a claw

This section is devoted to a structural study of such connected fork-free graphs

that (1) do not contain a C2
7 , a C2

10, or any odd wheel as a t-minor, and (2) contain

an odd hole and a claw. We use weaker conditions, e.g., dropping the requirement

of containing a claw, when a statement may be of independent interest. The first

observation is about the neighborhood of an outside vertex on an odd hole.

Proposition 3.1. Let G be a graph containing an odd hole H and u a vertex in

V (G) \ V (H).
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i) If u has exactly one neighbor on H, then G contains a fork.

ii) If u has exactly two neighbors on H and they are not consecutive on H, then G

contains a fork.

iii) If u has exactly three neighbors on H and they are consecutive on H, then K4

is a t-minor of G.

iv) If u has exactly four neighbors on H and they form one or two paths on H, then

K4 is a t-minor of G.

Proof. For assertions (i) and (ii), we number the vertices on H as v1, v2, . . .. Suppose

without loss of generality that uv3 ∈ E(G). Then u is adjacent to neither v2 nor v4.

There is no other neighbor of u on H in (i). In (ii), u cannot be adjacent to both v1

and v5; we may assume that uv1 6∈ E(G). Then {v3, v4, u, v2, v1} forms a fork.1

For assertions (iii) and (iv), we focus on the subgraph G′ induced by V (H)∪{u};

see Figure 2.4. Note that any vertex in V (H) \ N(u) has only two neighbors in G′,

and they are not adjacent. We do induction on the length of H. In the base case,

|H| = 5. (Note that in this case, if u has four neighbors on H, then they must be

consecutive.) A t-contraction on a vertex in V (H) \ N(u) leads to a K4. We now

consider that |H| > 5. We apply a t-contraction on a vertex v in V (H)\N(u), which

shortens H into a shorter odd hole, denoted by H ′. The length of H ′ is two shorter

than H. If the neighbors of u on H are consecutive, then the two neighbors of v

cannot be both adjacent to u (note that |H| ≥ 7). Thus, u has the same number

of neighbors on H ′ as on H, and they remain consecutive. In the rest, u must have

four neighbors on H, and they form two paths. If the two neighbors of v are both

adjacent to u, then u has three consecutive neighbors on H ′. Otherwise, u still has

exactly four neighbors on H ′ and they form one or two paths on H ′. By induction,

K4 is a t-minor of G′, hence of G.

1When we list the vertices of a (potential) fork, we always put the degree-three vertex first,
followed by its three neighbors, the last of which has degree two.
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3.2. Fork-free imperfect graphs containing a claw

The following statement further extends Proposition 3.1(ii). The two ends of any

edge of an odd hole can only have one private neighbor, which is not adjacent to any

other vertex on the hole.

Proposition 3.2. Let G be a {K4, fork}-free graph containing an odd hole H. For

any two vertices on H, at most one of their common neighbors is adjacent to only

two vertices on H.

Proof. Suppose for contradiction that there are two distinct vertices x and y such that

they have the same pair of neighbors on H. By Proposition 3.1(ii), the neighbors of x

on H have to be consecutive. We number the vertices on H as v1, v2, . . . such that x

is adjacent to v1 and v2. Since G is K4-free, xy 6∈ E(G). Then {v2, x, y, v3, v4} forms

a fork, a contradiction.

The existence of claws has another implication on the neighbors of other vertices

on a hole H: there must be a vertex adjacent to three or more vertices on H.

Proposition 3.3. Let G be a connected fork-free graph containing an odd hole H.

The graph G is claw-free if

i) G contains neither K4 nor W5; and

ii) every vertex v ∈ V (G) \ V (H) has either zero or two neighbors on H.

Proof. Suppose that G satisfies both conditions (i) and (ii). We number the vertices

on H as v1, v2, . . .. Since G is a fork-free graph, if a vertex v ∈ V (G) \ V (H) has

two neighbors on H, then they are consecutive by Proposition 3.1(ii). Thus, for each

i, a neighbor of vi not on H is adjacent to either vi−1 or vi+1. By Proposition 3.2,

the degree of vi is at most four, and it cannot be the center of a claw. Suppose for

contradiction that G contains a claw. We take a claw T of G whose center has the

shortest distance to H, denoted as d, among all claws of G. Note that d ≥ 1. Let the

vertex set of T be {c, x, y, z}, where c is the center of T .
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Case 1, d = 1. The vertex c is adjacent to H, and by assumption, it has exactly

two neighbors on H. We first note that we can choose T to intersect H. Suppose that

none of x, y, and z is on H, and let v be a neighbor of c on H. Since the degree of

v is at most four, v has at most one neighbor, say z, in {x, y, z}. Then {c, x, y, v} is

another claw. In the rest, without loss of generality, let the two neighbors of c on H

be v1 and v2, where z = v2. Since {c, x, y, v2, v3} cannot induce a fork, at least one of

x and y is adjacent to v3. Since neither x nor y is adjacent to v2, they cannot be both

adjacent to v3. We may assume that y is adjacent to v3, hence to v4 as well but no

other vertex on H. Since {c, x, v2, y, v4} does not induce a fork, x has to be adjacent

to v4 as well, and its other neighbor on H is v5. But then {c, y, z, x, v5} induces a

fork, a contradiction.

Case 2, d = 2. We may assume that there is a common neighbor p of c and v1,

and the other neighbor of p on H is v2. (Note that cv1 6∈ E(G).)

• Subcase 2.1, p has two or more neighbors in {x, y, z}, say x and y. By the

selection of T , there cannot be any claw in G that has p as the center. Thus,

x is adjacent to either v1 or v2, and so is y. Either cxv1v2y or cxv2v1y is a

five-hole, and p is adjacent to all vertices on it. Therefore, G contains a W5, a

contradiction.

• Subcase 2.2, p has at most one neighbor in {x, y, z}. (We are in this sub-case

when p is one of {x, y, z}.) Assume without loss of generality that p is adjacent

to neither x nor y. Since {c, x, y, p, v1} does not induce a fork, v1 is adjacent to

at least one of x and y. On the other hand, v2 cannot be adjacent to both x

and y. We may assume that yv2 ∈ E(G); note that the other neighbor of y on

H has to be v3. Since {c, p, x, y, v3} does not induce a fork, xv3 ∈ E(G); note

that the other neighbor of x on H has to be v4. But then {c, p, y, x, v4} induces

a fork, a contradiction.

Case 3, d ≥ 3. Let cu1u2 · · · be a shortest path from c to H. Note that no vertex
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3.2. Fork-free imperfect graphs containing a claw

in {x, y, z} is adjacent to ui with i > 2.

• Subcase 3.1, u1 has at most one neighbor in {x, y, z}. (We are in this sub-

case when u1 is one of {x, y, z}.) Assume without loss of generality that u1 is

adjacent to neither x nor y. Since {c, x, y, u1, u2} does not induce a fork, u2 is

adjacent to at least one of x and y, say y. But then {u2, u1, u3, y} induces a

claw, and its center u2 has a shorter distance to H than c, a contradiction to

the selection of T .

• Subcase 3.2, u1 has two or more neighbors in {x, y, z}, say x and y. Note

that u1z 6∈ E(G); otherwise {u1, x, y, z} induces a claw, which contradicts the

selection of T . If u2 is adjacent to only x in {x, y, z}, then {c, y, z, x, u2} induces

a fork. If u2 is adjacent to two vertices in {x, y, z}, then these two vertices,

together with u2 and u3, form a claw that is closer to H than T . If u2 is

adjacent to neither x nor y, then {u1, u2, x, y} induces a claw that is closer to

H than T .

Therefore, there cannot be a claw in G.

The somewhat conflicting requirements in Propositions 3.1 and 3.3 exclude odd

holes longer than five, and force every five-hole to be dominating (i.e., every vertex

has neighbors on this hole).

Proposition 3.4. Let G be a connected fork-free graph containing an odd hole H. If

G contains a claw and does not contain any odd wheel as a t-minor, then |H| = 5,

and every vertex in G is adjacent to H.

Proof. We number the vertices of H as v1, . . . , v`, where ` = 2k+ 1. Since G contains

a claw, by Proposition 3.1 and Proposition 3.3, we can find a vertex u that has three

or more neighbors on H.
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We first show |H| = 5 by contradiction. On the other hand, u has a non-neighbor

on H because G is free of odd wheels. We may assume without loss of generality

that u is adjacent to v4 but not v5. We argue that uv3 ∈ E(G) by contradiction. If

uv3 6∈ E(G), then uv2 ∈ E(G) because {v4, v5, u, v3, v2} does not induce a fork. By

symmetry, uv6 ∈ E(G). But then dependent on the adjacency between u and v1,

either {v4, v3, v5, u, v1} or {u, v4, v6, v2, v1} induces a fork. Thus, uv3 ∈ E(G).

If u has precisely three neighbors and the only other neighbor of u on H is v2, then

G contains K4 as a t-minor by Proposition 3.1(iii). Therefore, there is a neighbor vi

of u with i 6∈ {2, 3, 4}. We traverse H from v4, v5 till we meet the next neighbor of u;

let it be vi. Since ` ≥ 7 and i 6= 2, one of v3 and v4 is nonadjacent to all the vertices

in {vi−1, vi, vi+1}. Since neither {vi, vi−1, vi+1, u, v4} nor {vi, vi−1, vi+1, u, v3} induces

a fork, uvi+1 ∈ E(G). If u has precisely four neighbors on H, namely, v3, v4, vi, and

vi+1, then G contains K4 as a t-minor by Proposition 3.1(iv). Therefore, u has at least

five neighbors on H. As a result, 6 ≤ i ≤ `. If i > 6, then {u, v4, vj, vi, vi−1}, where

vj is another neighbor of u on H, induces a fork (note that vj cannot be adjacent

to v4, vi−1, or vi). In the rest, i = 6. If v5 is the only non-neighbor of u on H,

then G contains an odd wheel as a t-minor. Hence, u has at least one neighbor and

one non-neighbor in {v8, v9, . . . , v`, v1, v2}. We can find a j such that u is adjacent

to precisely one of {vj, vj+1}. But then {u, v4, v6, vj, vj+1} induces a fork (note that

there cannot be any edge between v4, v6 and vj, vj+1). Therefore, the length of H has

to be five.

By Proposition 3.1(iii, iv), the vertex u has exactly three nonconsecutive neighbors

on H. Assume without loss of generality that they are v1, v3, and v4. Let X =

V (H)∪{u}. Suppose that there exists a vertex x that has no neighbor on H. We can

find a shortest path x1x2 . . . xp between xp = x and H; hence, x1 is the only common

vertex of this path and H. Note that p ≥ 3, and the vertex x3 has no neighbor on H.

If x3u ∈ E(G), then {v1, v2, v5, u, x3} forms a fork. Therefore, N(x3) ∩X = ∅. Since

x2 is adjacent to both x3 and H, it is adjacent to all the vertices on H according
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3.2. Fork-free imperfect graphs containing a claw

to Lozin and Milanič [82, Lemma 1]. But then we have an odd wheel, which is

impossible.

Now consider a connected fork-free graph G that contains an odd hole and a

claw, and does not contain any odd wheel as a t-minor. It contains a five-hole H

by Proposition 3.4. Let us number the vertices on H as v1, . . . , v5. For i = 1, . . . , 5,

let Ui be the set of common neighbors of vi+2 and vi+3. We show that the five sets

U1, U2, . . . , U5, together with V (H), partition V (G).

Proposition 3.5. Let G be a connected fork-free graph containing a five-hole H. If G

contains a claw and does not contain any odd wheel as a t-minor, then {V (H), U1, U2, U3,

U4, U5} is a partition of V (G).

Proof. Let x be an arbitrary vertex in V (G) \ V (H). By Proposition 3.4, the vertex

x has a neighbor on H. Since G is fork-free and does not contain any odd wheel as a

t-minor, x has either exactly two consecutive neighbors on H, or exactly three non-

consecutive neighbors on H (Proposition 3.1). Thus, there is a unique i ∈ {1, . . . , 5}

such that x ∈ Ui. On the other hand, no vertex on H is in Ui for all i.

Since G is K4-free, for all i = 1, 2, . . . , 5, the set Ui is an independent set. An

independent set is maximal if it is not a subset of any other independent set. We show

that the set {vi−1, vi+1}∪Ui is a maximal independent set of G for every i = 1, . . . , 5.

Proposition 3.6. Let G be a K4-free graph containing a five-hole H. If any vertex

in V (G) \ V (H) has either exactly two consecutive neighbors on H, or exactly three

nonconsecutive neighbors on H, then the set {vi−1, vi+1}∪Ui is a maximal independent

set of G for every i = 1, . . . , 5. Moreover, they are all the maximal independent sets

of G that contain two vertices from H.

Proof. Let S be a maximal independent set of G. Since H is a C5, it follows |S ∩

V (H)| ≤ 2. If S contains precisely two vertices from H, they have to be vi−1 and
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vi+1 for some i. By the definitions of Ui, we have S \ V (H) ⊆ Ui. Thus, S ⊆

{vi−1, vi+1}∪Ui. Since there is no edge among vertices in Ui, it must hold by equality

by the maximality of S.

If a vertex in Ui has another neighbor on H, then it has to be vi by Proposi-

tions 3.1(iii). We can thus partition Ui into U+
i = Ui ∩ N(vi) and U−i = Ui \ N(vi).

For any vertex x in U+
i , the set {vi, vi−1, vi+1, x} induces a claw. According to Propo-

sition 3.2, |U−i | ≤ 1 for i = 1, . . . , 5. By Proposition 3.3,
⋃5
i=1 U

+
i is not empty. We

summarize the adjacency relations among the parts in the following proposition when

U+
i is not empty.

Proposition 3.7. Let G be a {K4,W5, fork}-free graph containing a five-hole H.

If any vertex in V (G) \ V (H) has either exactly two consecutive neighbors on H,

or exactly three nonconsecutive neighbors on H, and U+
i is nonempty for some i =

1, . . . , 5, then

i) Ui is complete to Ui−2 ∪ Ui+2;

ii) Ui is complete to U−i−1 ∪ U−i+1;

iii) U−i+1 is complete to U−i+2;

iv) at least one of Ui+2 and Ui−2 is empty; and

v) a vertex in U+
i has at most one non-neighbor in U+

i−1 and at most one non-

neighbor in U+
i+1.

Proof. We show the statements for i = 3; they hold for other indices by symmetry.

(i) Let x be an arbitrary vertex in U3 and y an arbitrary vertex in U5. Suppose

first that x ∈ U+
3 . By definition, x is adjacent to both v1 and v3 but not v4, and

y is adjacent to v3 but neither v1 nor v4. They have to be adjacent as otherwise

{v3, y, v4, x, v1} forms a fork. Thus, U+
3 is complete to U5, and a similar argument
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3.2. Fork-free imperfect graphs containing a claw

implies that U3 is complete to U+
5 . The only remaining case is when x ∈ U−3 and

y ∈ U−5 (we have nothing to show if one or both of them are empty). We take an

arbitrary vertex x′ ∈ U+
3 , which is nonempty by assumption. Note that xx′ 6∈ E(G),

and we have seen above that x′y ∈ E(G). By definition, both x and x′ are adjacent

to v5 and neither is adjacent to v4. Thus, xy ∈ E(G) as otherwise {v5, v4, x, x
′, y}

forms a fork. A symmetric argument applies to U3 and U1.

(ii) Let x be an arbitrary vertex in U3. The statement holds vacuously for U−4

when it is empty. Assume that U−4 6= ∅ and y be the vertex in U−4 . By definition,

y is adjacent to v2 but none of v3, v4, and v5. If x is in U+
3 , then xy ∈ E(G) as

otherwise {v3, v4, x, v2, y} forms a fork. In the remaining case, x ∈ U−3 . We take an

arbitrary vertex x′ ∈ U+
3 , which is nonempty by assumption. By the argument above,

x′y ∈ E(G). The vertices xy ∈ E(G) as otherwise {v5, v4, x, x
′, y} forms a fork. A

symmetric argument implies that U3 is complete to U−2 .

(iii) This assertion holds vacuously when one or both of U−4 and U−5 are empty.

Hence we may assume otherwise. For j = 4, 5, let u−j be the vertex in U−j . We take an

arbitrary vertex x ∈ U+
3 , which is nonempty by assumption. By definition, the vertex

x is adjacent to v5 but not v4, the vertex u−4 is adjacent to neither v5 nor v4, and the

vertex u−5 is adjacent to neither v4 nor v5. By assertions (i, ii), x is adjacent to both

u−4 and u−5 . Therefore, u−4 must be adjacent to u−5 as otherwise {x, u−4 , u−4 , v5, v4}

forms a fork.

(iv) Suppose for contradiction that neither U1 nor U5 is empty. We pick three

arbitrary vertices u1, u+
3 , and u5 from U1, U+

3 , and U5, respectively. By assertion (i)),

u+
3 is adjacent to both u1 and u5. If u1u5 ∈ E(G), then {u+

3 , u5, u1, v3} is a clique,

a contradiction to that G is K4-free. In the rest, u1u5 6∈ E(G). The vertex v1

must be adjacent to u1 as otherwise {u+
3 , u5, v1, u1, v4} forms a fork. By symmetry,

v5u5 ∈ E(G). But then u+
3 has five neighbors on the hole u5v5v2u1v3, contradicting

that G is W5-free.
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(v) Let x be an arbitrary vertex in U+
3 . If there are two distinct vertices y and y′

in U+
4 \ N(x), then {v2, y, y

′, v3, x} forms a fork. A symmetric argument applies to

U+
2 .

3.3 Strong t-perfection

Propositions 3.1–3.5 can be summarized as follows. If a connected fork-free graph

G contains a claw and an odd hole and does not contain a C2
7 , a C2

10, or any odd wheel

as a t-minor, then every odd hole H in G has length five, and satisfies the following

property.

(?) A vertex in V (G) \V (H) has either exactly two consecutive neighbors on H, or

exactly three nonconsecutive neighbors on H.

Interestingly, the other direction also holds true. The main work of this section is to

establish the following lemma.

Lemma 3.8. Let G be a connected fork-free graph that contains a claw and an odd

hole. The following statements are equivalent:

i) G does not contain a C2
7 , a C2

10, or any odd wheel as a t-minor.

ii) G is {K4,W5, C
2
7 , C

2
10}-free, and every odd hole in G has length five and satisfies

(?).

iii) G is strongly t-perfect.

Before presenting the proof of Lemma 3.8, we use it to prove Theorem 1.1.

Proof of Theorem 1.1. Since strong t-perfection implies t-perfection and C2
7 , C2

10, and

all odd wheels are t-imperfect [21,115], it suffices to show that if a fork-free graph does
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not contain a C2
7 , a C2

10, or any odd wheel as a t-minor, then it is strongly t-perfect.

Suppose that G is such a graph. We show that every component of G is strongly

t-perfect, and hence G is strongly t-perfect. Let G′ be an arbitrary component of

G. Note that G′ is fork-free and does not contain a C2
7 , a C2

10, or any odd wheel

as a t-minor. If G′ is claw-free, then it is strongly t-perfect according to Bruhn and

Stein [20, Theorem 2] and [21, Theorem 3]. Note that the complement of C7 is C2
7 , and

the complement of an odd hole longer than seven contains a K4. If G′ does not contain

an odd hole, then G′ is perfect, and hence strongly t-perfect by Proposition 2.4. Now

that G′ contains a claw and an odd hole, it is strongly t-perfect by Lemma 3.8.

The rest of the section is devoted to proving Lemma 3.8.

Throughout the rest of this section, G is a {fork, K4,W5, C
2
7 , C

2
10}-free graph that

contains a claw and an odd hole, and every odd hole has length five and satisfies (?).

We fix a five-hole H, and partition the vertices V (G) \ V (H) into U1, . . . , U5. For

i = 1, . . . , 5, the set Ui is further partitioned into U+
i and U−i . Recall that |U−i | ≤ 1

by Proposition 3.2. By Proposition 3.7, the main uncertain adjacencies are between

U+
i and U+

i+1. Thus, the graph has a very simple structure if only one of U+
i ’s or two

nonconsecutive of them are nonempty. Indeed, it can be obtained from one of the

small graphs (of order at most ten) in Figure 3.1 by vertex duplications.

Lemma 3.9. If for any i = 1, . . . , 5, one of U+
i and U+

i+1 is empty, then G is strongly

t-perfect.

Proof. We may assume without loss of generality that U+
2 is nonempty, while all of

U+
1 , U+

3 , and U+
5 are empty. Every vertex in U+

2 is adjacent to v2, v4, and v5 but not

v1 or v3 by definition.

Suppose first that U+
4 is also nonempty. Then both U1 and U5 are empty by

Proposition 3.7 iv). Thus,

V (G) \ (V (H) ∪ U+
2 ∪ U+

4 ) = U−2 ∪ U−3 ∪ U−4 .
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By Proposition 3.7(i, ii), all the edges between U+
2 and U−3 ∪ U4 are present. Thus,

all vertices in U+
2 have the same neighborhood in V (G) \U+

2 . A symmetric argument

applies to U+
4 . Let G1 be a graph of the pattern in Figure 3.1(a), where for i = 2, 3, 4,

the optional vertices u−i exists if and only if U−i 6= ∅. It is easy to verify that G1 is

strongly t-perfect if it satisfies the condition of Lemma 3.8(ii). We duplicate u+
2 of G1

with |U+
2 | vertices, and then duplicate u+

4 in the resulted graph with |U+
4 | vertices.

The final result is G. Therefore, G is strongly t-perfect by Lemma 2.8.

In the rest, U+
4 is empty. We may assume without loss of generality that U5 = ∅.

Then

V (G) \ (V (H) ∪ U+
2 ) = U−1 ∪ U−2 ∪ U−3 ∪ U−4 .

Every vertex in U+
2 is adjacent to U−1 ∪U−3 ∪U−4 by Proposition 3.7(i, ii), and nonad-

jacent to U−2 by definition. Thus, all vertices in U+
2 have the same neighborhood in

V (G) \U+
2 . Let G2 be a graph of the pattern in Figure 3.1(b), where for i = 1, 2, 3, 4,

the optional vertices u−i exists if and only if U−i 6= ∅. It is easy to verify that G2

is strongly t-perfect if it satisfies the condition of Lemma 3.8(ii). We duplicate u+
2

of G2 with |U+
2 | vertices. The result is G. Therefore, G is strongly t-perfect by

Lemma 2.8.

u−3

u+
2 u−2

u+
4u−4

v1

v2

v3

v4

v5

(a)

u−1

u−2 u−3

u−4

v1

v2v3

v4

v5

u+
2

(b)

u−5

u+
2

u+
3

v1

v2

v3

v4

v5

(c)

Figure 3.1: Three configurations for Lemma 3.9 and 3.10. The dotted vertices are
optional, and their edges, except for H, are not drawn.
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Henceforth, we may assume without loss of generality that

U+
2 6= ∅ and U+

3 6= ∅.

By Proposition 3.7 iv) with i = 2, at least one of U4 and U5 is empty. For the same

reason, at least one of U1 and U5 is empty. We note that if neither U1∪U5 nor U4∪U5

is empty, then U+
2 is complete to U+

3 , and the situation is similar to Lemma 3.9.

Lemma 3.10. If neither U1 ∪ U5 nor U4 ∪ U5 is empty, then G is strongly t-perfect.

Proof. We first argue that U5 6= ∅. Suppose otherwise, then neither U1 nor U4 is

empty. Since both U3 and U4 are nonempty, U+
1 is empty by Proposition 3.7 iv) with

i = 1. By symmetric, U+
4 is empty. Therefore U1 = U−1 and U4 = U−4 . Let u−1 and

u−4 be the only vertex in U−1 and U−4 , respectively. By Proposition 3.7 ii) with i = 3,

the vertex u+
3 is adjacent to u−4 . By Proposition 3.7 i) with i = 3, the vertex u+

3 is

adjacent to u−1 . Since {u+
3 , u

−
1 , v5, u

−
4 , v2} cannot form a fork, u−4 u

−
1 ∈ E(G). But

then u−1 u
−
4 v1v5v4 is a five-hole in G and u+

3 has three consecutive neighbors u−4 , v1,

and v5 on it, contradicting (?).

Since neither U2 nor U3 is empty, U+
5 is empty by Proposition 3.7(iv)) with i = 5.

Thus, U−5 is nonempty; let u−5 be its only vertex. Applying Proposition 3.7(i)) twice,

with i = 2, 3, respectively, we can conclude that u−5 is adjacent to all the vertices in

U2 ∪ U3. We then argue that U+
2 is complete to U+

3 . We take an arbitrary vertex u+
2

from U+
2 and an arbitrary vertex u+

3 from U+
3 . If u+

2 u
+
3 6∈ E(G), then u+

2 v2v3u
+
3 v5

is a hole in G on which u−5 has four neighbors. Thus, U+
2 is complete to U+

3 . We

next argue that U−2 is empty. Suppose otherwise and let u−2 be the only vertex in

U−2 . Note that u−5 u
−
2 ∈ E(G). Therefore, u−5 u

−
2 v5v1v2 is a hole in G. But then, u+

3

has three consecutive neighbors u−2 , v5, and v1 on the hole, contradicting (?). Thus,

U−2 = ∅. A symmetric argument implies U−3 is empty as well. Since both U+
2 and U−5

are nonempty, U4 is empty by Proposition 3.7(iv)) with i = 2. A symmetric argument

implies U1 is empty as well. Therefore, V (G) \ V (H) = U+
2 ∪U+

3 ∪U−5 , and the three
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parts U+
2 , U+

3 , and U−5 are pairwise complete with each other. Let G1 be the graph

in Figure 3.1(c). It is easy to verify that G1 is strongly t-perfect. We duplicate u+
2 of

G1 with |U+
2 | vertices, and then duplicate u+

3 in the resulted graph with |U+
3 | vertices.

The final result is G. Therefore, G is strongly t-perfect by Lemma 2.8.

In the rest, at least one of U1 ∪ U5 and U4 ∪ U5 is empty. We may assume that

U1 ∪ U5 = ∅; otherwise, we can renumber the vertices on H. We have seen all the

maximal independent sets that contains two vertices from H in Proposition 3.6. The

following lists other maximal independent sets under this condition.

Proposition 3.11. If U1 ∪U5 is empty, then a maximal independent set S of G that

contains at most one vertex from H is either

i) U−j ∪ {vj} for some j = 2, 3, 4; or

ii) a pair of nonadjacent vertices x ∈ U+
3 and y ∈ U+

2 ∪ U+
4 .

Proof. (i) Suppose first that there is one vertex in S ∩ V (H). We first excludes v1

and v5. Suppose that v1 ∈ S. By definition, U3 ∪ U4 is disjoint from S. Thus,

S ⊆ U2 ∪ {v1} and cannot be maximal. Likewise, v5 ∈ S implies S ⊆ U4 ∪ {v5}.

• Case 1, v2 ∈ S. Then S \ {v2} ⊆ U−2 ∪U3. Since U3 ∪{v2, v4} is an independent

set, U−2 cannot be empty, and its only vertex must be in S. It remains to

argue that the vertex in U−2 is adjacent to all the vertices in U3. We call

Proposition 3.7 ii) with i = 3.

• Case 2, v3 ∈ S. Then S \ {v3} ⊆ U2 ∪ U−3 ∪ U4. Since U2 is complete to U4

by Proposition 3.7 i) with i = 2, one of S ∩ U2 and S ∩ U4 is empty. Since

U2 ∪ {v1, v3} and U4 ∪ {v3, v5} are independent sets, by the maximality of S,

there is a vertex in U−3 ∩ S. By Proposition 3.7 ii) with i = 2, the vertex in

U−3 is adjacent to all the vertices in U2. Moreover, the vertex in U−3 is adjacent
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to all the vertices in U4 by Proposition 3.7 iii) with i = 2 when U+
4 = ∅, or by

Proposition 3.7 ii) with i = 4 otherwise.

• Case 3, v4 ∈ S. Then S \ {v4} ⊆ U−4 ∪ U3, and the argument is similar to that

of case 1.

(ii) Now suppose that S is disjoint from V (H). By assumption, V (G) \ V (H) =

U2 ∪ U3 ∪ U4. We first argue that

S ⊆ U+
2 ∪ U+

3 ∪ U+
4 .

For j = 2, 3, 4, let xj be the vertex in U−j if Uj 6= U+
j . Applying Proposition 3.7 i)–iii)

with i = 2, we can conclude that x2, x3, and x4 are pairwise adjacent, when they

exist. Therefore, at most one of them is in S. On the other hand, if xj ∈ S for

j = 2, 3, 4, then S ⊆ Uj by Proposition 3.7 i) and ii). Since this contradicts the

maximality of S, we must have S ⊆ U+
2 ∪ U+

3 ∪ U+
4 . Since U+

2 is complete to U+
4 by

Proposition 3.7 i) with i = 2, the set S is a subset of either U+
2 ∪ U+

3 or U+
3 ∪ U+

4 .

By Proposition 3.7 v) (with i = 3), each vertex in U+
3 has at most one non-neighbor

in U+
2 and at most one non-neighbor in U+

4 . For the same reason, each vertex in U+
2

or U+
4 has at most one non-neighbor in U+

3 . Thus, S is a pair of nonadjacent vertices

x ∈ U+
3 and y ∈ U+

2 ∪ U+
4 .

The final step of the proof relies on the duality of linear programming; see Propo-

sition 2.5.

Lemma 3.12. If U1 ∪ U5 is empty, then G is strongly t-perfect.

Proof. Suppose for contradiction that G is not strongly t-perfect, and assume without

loss of generality that G is a counterexample of the minimum number of vertices. Our

first claim is that every proper induced subgraph G′ of G is strongly t-perfect. If G′

does not contain an odd hole, then it is strongly t-perfect (Proposition 2.4). If G′ is
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claw-free, then G is strongly t-perfect [20, 21]. Thus, G′ is strongly t-perfect either

because it satisfies one of Lemmas 3.9 and 3.10, or by the selection of G.

By Proposition 2.5, there exists a weight function w : V (G) → Z≥0 such that G

does not have a w-cover of cost αw(G). We may take w to be such a function that

minimizes w(V (G)). The second claim is that the weight is positive. Suppose that

w(v) = 0 for some vertex v ∈ V (G). Since every induced subgraph of G is strongly

t-perfect, there exists a w-cover K of G− v with cost αw(G− v). Since w(v) = 0, the

cover K is also a w-cover of G, while αw(G − v) = αw(G). But then K is a w-cover

of G with cost αw(G), a contradiction. As a consequence of the second claim, every

maximum-weight independent set is maximal. Recall that all maximal independent

sets are listed in Propositions 3.6 and 3.11.

For j = 2, 3, 4, let

S−j = {vj−1, vj+1} ∪ U−j

and denote by u−j the only vertex contained in U−j when it is not empty. For j = 2, 3,

let u+
j be a vertex of the maximum weight from U+

j , and

S+
j = {vj−1, vj+1, u

+
j }.

We define a set S+
4 = {v3, v5, u

+
4 } when u+

4 6= ∅, with u+
4 being a vertex of the

maximum weight from U+
4 . According to Proposition 3.6, all the nine sets S−j , S+

j ,

and Uj are independent sets.

From Proposition 2.6 and the selection of the weight function w it can be inferred

that αw(G−K) = αw(G) for any clique K of at most three vertices. In other words,

there exists a maximum-weight independent set S of G disjoint from K. We try to

locate a clique of two or three vertices that intersects all maximum-weight indepen-

dent sets of the graph, thereby producing a contradiction to Proposition 2.6. In the

following we consider potential maximum-weight independent sets. By excluding an
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independent set we mean that we have evidence that it does not have the maximum

weight.

Note that U4 is not empty; otherwise, every odd cycle of G visits v5, and G is

strongly t-perfect according to Gerards [54]. We take an arbitrary vertex u4 from U4.

Note that u4u
+
2 ∈ E(G) by Proposition 3.7 i) with i = 2. Let K denote the clique

{v2, u
+
2 , u4}, and let S be a maximum-weight independent set of G disjoint from K.

Note that S has to be {v1, v4}, {v3} ∪ U−3 , {v4} ∪ U−4 , or one that is disjoint from

V (H), i.e., specified in Proposition 3.11(ii).

• Case 1, S = {v1, v4}. (Note that U5 = ∅.) Since {v2, v4, u
+
3 } and {v1, v3, u

+
2 }

are both independent sets,

w(u+
2 ) + w(u+

3 )

<w(v2) + w(v4) + w(u+
3 ) + w(v1) + w(v3) + w(u+

2 )− w(v4)− w(v1)

=w({v2, v4, u
+
3 }) + w({v1, v3, u

+
2 })− w(S)

≤αw(G) + αw(G)− αw(G)

=αw(G).

By the selection of u+
2 and u+

3 , a pair of vertices x ∈ U+
2 and y ∈ U+

3 cannot

have weight αw(G). In other words, if a maximum-weight independent set is

disjoint from V (H), then it comprises a vertex in U+
3 and a vertex in U+

4 . On

the other hand, from

w(v2) + w(v3) + w(U−2 ∪ U−3 ) = w(S−2 ) + w(S−3 )− w(S) ≤ αw(G)

we can exclude {v2}∪U−2 and {v3}∪U−3 . Thus, if a maximum-weight indepen-

dent set contains one vertex from H, then it has to be {v4} ∪ U−4 .
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– Case 1.1, {v2, v5} is also a maximum-weight independent set. (Note that

U1 = ∅.) If U+
4 6= ∅, we use

w(u+
3 ) + w(u+

4 ) < w(S+
3 ) + w(S+

4 )− w({v2, v5}) ≤ αw(G)

to exclude all maximal independent sets disjoint from H. If U−4 6= ∅, we

use

w(v4) + w(u−4 ) < w(S−3 ) + w(S−4 )− w({v2, v5}) < αw(G)

to exclude {v4, u
−
4 }. Since any maximum-weight independent set has to

contain two vertices from H, they all intersect the clique {v1, v5, u
+
3 }.

– Case 1.2, there exists a maximum-weight independent set S ′ = {x3, x4}

with x3 ∈ U+
3 and x4 ∈ U+

4 . Note that both U3 ∪ {v2} and U4 ∪ {v3} are

not maximal. Therefore, we can use w(U3∪{v2})+w(U4∪{v3})−w(S ′) <

αw(G) to exclude all other pairs {x′3, x′4} with x′3 ∈ U+
3 and x′4 ∈ U+

4

(except for S ′ itself). If U−4 is empty, then {v1, v2, x4} intersects all the

possible maximum-weight independent sets. Now that U−4 is nonempty,

we use w(U4) +w(S+
3 )−w(S ′) < αw(G) to exclude {v4, u

−
4 }. Furthermore,

we use w(S+
3 ) + w(S+

4 ) − w(S ′) < αw(G) to exclude {v2, v5}. The clique

{v1, v5, u
+
3 } intersects all the remaining maximal independent sets, S, S ′,

{v2, v4} ∪ U3, {v3, v5} ∪ U4, and {v1, v3} ∪ U2.

– Otherwise (neither of cases 1.1 and 1.2 is true), the clique {v3, v4} intersects

all the possible maximum-weight independent sets.

• Case 2, S = {v3, u
−
3 }. We use

w(u+
2 ) + w(u+

3 ) < w(U3) + w(S+
2 )− w(S) < αw(G)

to exclude all pairs {x2, x3} with x2 ∈ U+
2 and x3 ∈ U+

3 . If U+
4 is nonempty, we
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use

w(u+
3 ) + w(u+

4 ) < w(U3) + w(S+
4 )− w(S) < αw(G)

to exclude all pairs {x3, x4} with x3 ∈ U+
3 and x4 ∈ U+

4 . From w(S−3 )+w(S−4 )−

w(S) < αw(G) we can exclude {v2, v5} and {v4, u
−
4 } (when U−4 6= ∅). If U−2 6= ∅,

we use w(S−2 ) + w(S−3 ) − w(S) < αw(G) to exclude {v2, u
−
2 }. We are left with

S, {v2, v4}∪U3, {v3, v5}∪U4, and {v3, v1}∪U2. All of them intersect the clique

{v3, v4}.

• Case 3, S = {v4, u
−
4 }. We can use

w(v2) + w(v5) < w(S−3 ) + w(S−4 )− w(S) ≤ αw(G)

to exclude {v2, v5}. If U+
4 6= ∅, we use

w(u+
3 ) + w(u+

4 ) < w(U4) + w(S+
3 )− w(S) < αw(G)

to exclude all pairs {x3, x4} with x3 ∈ U+
3 and x4 ∈ U+

4 .

– Case 3.1, there does not exist a maximum-weight independent set {x2, x3}

with x2 ∈ U+
2 and x3 ∈ U+

3 . If U−2 is empty, the clique {v3, v4} intersects

all maximum weight independent sets. Now that U−2 6= ∅, we note that

{u−2 , u+
3 , u

−
4 } intersects all maximum-weight independent sets. To see that

it is clique, note that u−2 u
−
4 ∈ E(G) by Proposition 3.7 i) with i = 2, and

u+
3 is adjacent to both u−2 and u−4 by Proposition 3.7 ii) with i = 3,

– Case 3.2, there exists a maximum-weight independent set S ′ = {x2, x3}

with x2 ∈ U+
2 and x3 ∈ U+

3 . We can use w(U2 ∪ {v1}) + w(U3 ∪ {v2}) −

w(S ′) < αw(G) to exclude all other pairs {x′2, x′3} with x′2 ∈ U+
2 and

x′3 ∈ U+
3 (except for S ′ itself). If U−2 is not empty, then we can use

w(U2) + w(S+
3 )− w(S ′) < αw(G) to exclude {u−2 , v2}. Thus, a maximum-

weight independent set of G has to be S, S ′, {v2, v4} ∪ U3, {v3, v5} ∪ U4,
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or {v3, v1} ∪ U2. The clique {v4, v5, x2} intersects all maximum-weight

independent sets.

• Case 4, S = {x2, x3}, where x2 ∈ U+
2 and x3 ∈ U+

3 . Note that x2 6= u+
2 because

S is disjoint from K. We can use w(U2 ∪{v1}) +w(U3 ∪{v2})−w(S) < αw(G)

to exclude all other pairs {x′2, x′3} with x′2 ∈ U+
2 and x′3 ∈ U+

3 (except for S

itself). If U−2 is nonempty, then we can use w(U2) +w(S+
3 )−w(S) < αw(G) to

exclude {u−2 , v2}. If no maximum-weight independent set intersects U+
4 , then

the clique {x2, v4, v5} intersects all maximum weight independent sets.

Suppose that S ′ = {x′3, x4} is a maximum-weight independent set with x′3 ∈ x3

and x4 ∈ U+
4 . We can further use w(U3∪{v4}) +w(U4∪{v3})−w(S ′) < αw(G)

to exclude all other pairs {x′′3, x′4} with x′′3 ∈ U+
3 and x′4 ∈ U+

4 (except for S ′

itself). We use w(S+
3 ) + w(S+

4 ) − w(S ′) ≤ αw(G) to exclude {v2, v5}. Thus, a

maximum-weight independent set ofG has to be S, S ′, {v2, v4}∪U3, {v3, v5}∪U4,

or {v3, v1}∪U2. The set {v4, x2, x4} intersects all maximum-weight independent

sets. Note that x2x4 ∈ E(G) by Proposition 3.7 i) with i = 2.

• Case 5, S = {x3, x4}, where x3 ∈ U+
3 and x4 ∈ U+

4 . It is similar to Case 4.

This concludes the proof.

We now prove Lemma 3.8.

Proof of Lemma 3.8. Since C2
7 , C2

10, and odd wheels are all t-imperfect, (iii) implies

(i). By Propositions 3.1–3.5, (i) implies (ii). By Lemmas 3.9, 3.10, and 3.12, (ii)

implies (iii).
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3.4 Recognition and coloring

We now describe an algorithm to decide whether a fork-free graph is (strongly) t-

perfect. We may assume without loss of generality that the input graph is connected;

otherwise, we work on its components one by one and return “yes” if and only if all

components return “yes”. The algorithm is based on Lemma 3.8. The only condition

of Lemma 3.8(ii) that cannot be easily checked in polynomial time is that every odd

hole has length five. The following proposition bounds the length of the longest odd

holes.

Proposition 3.13. Let G be a {K4, fork}-free graph containing a five-hole H. If H

satisfies (?), then G cannot contain an odd hole with length longer than 19.

Proof. Let H ′ be a longest odd hole in G. Suppose for contradiction |H ′| ≥ 21. At

least |H ′| − 4 vertices of H ′ are in V (G) \ V (H). Assume without loss of generality

that |Ui ∩ V (H ′)| is maximized with i = 1. Then |U1 ∩ V (H ′)| ≥ d |H
′|−4
5
e ≥ 4.

Since U1 is an independent set, |U1 ∩ V (H ′)| ≤ |H′|−1
2

. There exists a vertex x in

V (H ′) \ (V (H) ∪ U1). By Propositions 3.7 i), ii), and v) with i = 1, the vertex x has

at most one non-neighbor in U1 ∩ V (H ′). But then x has at least three neighbors in

|H ′|, contradicting that H ′ is a hole.

We are now ready to present the recognition algorithm and prove Theorem 1.2.

Proof of Theorem 1.2. The input is a fork-free graphG. We start by checking whether

it contains a K4, W5, C2
7 , or C2

10. Since K4, W5, C2
7 , and C2

10 are not t-perfect, we

return “no” if any of them is found. If G does not contain a claw, then we call Bruhn–

Schaudt algorithm [19] to decide whether G is t-perfect. We then call the algorithm

of Chudnovsky et al. [28] to test whether G contains an odd hole. Since G does not

contain a K4, it cannot contain the complement of any odd hole longer than seven.

It does not contain a C2
7 , which is the complement of C7. Therefore, if G does not
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contain any odd hole, then G is perfect, and t-perfect (Proposition 2.4), and we return

“yes.” In the rest, G contains a claw and an odd hole, and we check the conditions

of Lemma 3.8(ii). We enumerate five-holes, and for each of them, test whether it

satisfies (?). If any one does not, then return “no.” Finally, we check whether G

contains an odd hole of length between 7 and 19. If any is found, then we can return

“no.” If none is found, every odd hole has length five by Proposition 3.13. Thus,

we can return “yes.” All the induced subgraphs we need to check have a constant

number of vertices, and both algorithms we call take polynomial time [19,28]. Thus,

the whole algorithm runs in polynomial time.

We finally consider coloring of fork-free t-perfect graphs.

Lemma 3.14. Let G be a fork-free graph. If G does not contain the C2
7 , the C2

10, or

any odd wheel as a t-minor, then the chromatic number of G is at most three, and an

optimal coloring of G can be found in polynomial time.

Proof. We may assume without loss of generality that G is connected; otherwise, we

work on its components one by one. Since G does not contain a K4, it cannot contain

the complement of any odd hole longer than seven. It does not contain a C2
7 , which

is the complement of C7. Therefore, if G does not contain any odd hole, then G is

perfect, and we can use the algorithm of Chudnovsky et al. [25] to find an optimal

coloring. The chromatic number of G is at most three because it is equal to the order

of the maximum cliques [27], which is at most three because G is K4-free. Otherwise,

G contains an odd hole, and thus its chromatic number is at least three. Thus, it

suffices to find a three coloring, i.e., a partition of V (G) into three (not necessarily

maximal) independent sets. If G is claw-free, then we can use the algorithm of

Bruhn and Stein [21] to find an optimal coloring. In the rest, G contains a claw.

The algorithm now finds a five-hole H, and partition the vertex set V (G) \ V (H)

according to their adjacencies with H. We may number the vertices on H such that

U+
1 is nonempty and U4 is empty. This is possible because of Proposition 3.7 iv) with
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i = 1.

If U3 is empty, then we partition V (G) into three independent sets U5 ∪ {v4},

U1 ∪ {v2, v5}, and U2 ∪ {v1, v3}. If U5 is empty, then we partition V (G) into three

independent sets that are U1 ∪ {v5}, U2 ∪ {v1, v3}, and U3 ∪ {v2, v4}. In the rest,

neither U3 nor U5 is empty. If U+
5 6= ∅, then U2 is empty because of Proposition 3.7 iv)

with i = 5. We can partition V (G) into three independent sets U1 ∪ {v2, v5}, U3 ∪

{v3}, and U5 ∪ {v1, v4}. The remaining case is when U5 = U−5 , and we show that

this cannot happen. Since neither U1 nor U5 is empty, U+
3 is empty because of

Proposition 3.7 iv) with i = 3. For j = 3, 5, let u−j be the only vertex in U−j . Let

u+
1 be an arbitrary vertex in U+

1 ; it is adjacent to both u−3 , by Proposition 3.7 i), and

u−5 , by Proposition 3.7 ii), both with i = 1. If u−3 u
−
5 6∈ E(G), then {u+

1 , u
−
3 , v4, u

−
5 , v2}

forms a fork; otherwise, u+
1 has three consecutive neighbors on the hole u−3 v5v4v3u

−
5 ,

contradicting Propositions 3.1(iii). The algorithm is thus complete.

All the induced subgraphs we need to check have a constant number of vertices.

Both algorithms we call take polynomial time [21, 25]. The rest is clearly doable in

polynomial time. Thus, the whole algorithm runs in polynomial time.

Theorem 1.3 directly follows from Lemma 3.14 and Theorem 1.1.

65



Chapter 4

Complementation in T-perfect

Graphs

In this chapter, our focus is on the study of complementation in t-perfect graphs.

We are particularly interested in graphs G for which both G and its complement are t-

perfect or minimally t-imperfect. This motivation leads us to introduce the concept of

core graphs. In Section 4.1, we delve into the investigation of core graphs, exploring

their structural properties. Specifically, we establish that an imperfect core graph

consists of at most ten vertices. Furthermore, we delve into the study of t-perfect

core graphs in Section 4.2. By proving Theorem 1.5, we are able to identify all self-

complementary t-perfect graphs. Moreover, we shift our focus to study minimally t-

imperfect core graphs in Section 4.3. Through the proof of Theorem 1.4, we conclude

that they can only be (3, 3)-partitionable graphs.

4.1 Core graphs

Definition 4.1 (core graphs). A graph G is a core graph if neither G nor its com-

plement contains a t-imperfect graph as a proper t-minor.
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By definition, any t-minor of a core graph is also a core graph. Moreover, if G

is a core graph, then G is either t-perfect or minimally t-imperfect, and so is G;

it is possible that G is t-perfect while G is minimally t-imperfect, e.g., C7 and C7.

However, there are t-perfect graphs that are not core graphs, e.g., C9 and K5.

Proposition 4.2. A core graph cannot contain a K4 or its complement as a proper

induced subgraph.

By Proposition 2.4, any {K4, K4}-free perfect graph is a core graph. Therefore,

we focus on core graphs that are not perfect. Such a graph cannot contain an odd

hole longer than seven or its complement as a proper induced subgraph.

Proposition 4.3. Let G be a core graph different from C7 and C7. Every odd hole

in G is a C5. Moreover, if G is t-imperfect, then G contains a C5.

Proof. For the first assertion, note that C7 is t-imperfect, so the only core graph

contains C7 is C7 itself; and for k ≥ 4, the hole C2k+1 contains a K4. For the second

assertion, note that if G does not contain a C5, then G is perfect, hence t-perfect by

Propositions 2.4 and 4.2.

As we will see, five-holes are pivotal in core graphs. First, every C5 in a core

graph different from W5 is dominating: every other vertex is adjacent to at least two

vertices on it.

Lemma 4.4. Let G be a core graph different from W5 and its complement. If G

contains a five-hole C, then for every u ∈ V (G) \ C, either

i) u has exactly two neighbors on C, and they are consecutive on C; or

ii) u has exactly three neighbors on C, and they are not consecutive on C.

Proof. We consider the subgraph G′ of G induced by u and the five vertices on C. If

u is adjacent to all vertices on C, then G′ is a W5. Since W5 is t-imperfect, G = G′,
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a contradiction. If u is adjacent to four vertices or three consecutive vertices on C,

then K4 is a proper t-minor of G′, with t-contraction at a non-neighbor of u on C.

Noting that the complement of C is a C5, we end with the same contradictions on G

if u has zero or one neighbor on C, or its two neighbors on C are not consecutive.

The next proposition further stipulates the relationship between a five-hole and

other vertices in a core graph.

Proposition 4.5. In a core graph, every pair of consecutive vertices on a five-hole

has at most one common neighbor.

Proof. Let G be a core graph, and let v1v2v3v4v5 be a five-hole in G. Suppose for

contradiction that there are two vertices x, y ∈ N(v2)∩N(v3). By Lemma 4.4, neither

x nor y is adjacent to v1 or v4. But then dependent on whether they are adjacent,

x and y either form a K4 with {v2, v3}, or a K4 with {v1, v4}, both contradicting

Proposition 4.2. The same argument applies to other edges on the 5-cycle.

As a consequence of Proposition 4.2 and the Ramsey theorem, a core graph has

at most 17 vertices. Propositions 4.4 and 4.5 together imply a tighter upper bound

on those that are not perfect.

Corollary 4.6. If a core graph contains a C5, then it has at most ten vertices.

Let G be a core graph that contains a five-hole, and we use the following notations

for its vertices and edges, where the indices are always understood as modulo 5. We

fix a five-hole C and number its vertices as v1, . . . , v5 in order, and let U = V (G) \C.

According to Lemma 4.4, each vertex in U is adjacent to two consecutive vertices

on C. If a vertex in U is adjacent to vi and vi+1, i = 1, . . . , 5, then we denote it

as ui+3; by Lemma 4.4, this is well defined. The five edges on C are all the edges

among v1, . . . , v5. For each ui, the two edges uivi+2 and uivi+3 must exist in G. Apart

from these 2|U | + 5 edges, by Lemma 4.4, the other possible edges are among U or
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uivi, i = 1, . . . , 5; they are called potential edges. Shown in Figures 4.1(a, b) are two

pattern graphs, from which we can obtain different particular graphs, with different

materializations of potential edges. We use (1324) to denote the graph of pattern

Figure 4.1(b) in which U induces a path, with edges u1u3, u2u3, and u2u4. In case

that G[U ] is not connected, we use ‖ to separate its components, e.g., (14‖23) in

Figure 4.1(d). Moreover, we cap an index i with ◦ to denote the present of the edge

uivi, e.g., (1̊3̊24) in Figure 4.1(c).

u1

u2u3

v1

v2 v3

v4

v5

(a) A pattern on 8 vertices

u1

u2u3

u4

v1

v2 v3

v4

v5

(b) A pattern on 9 vertices

u1

u2u3

u4

v1

v2 v3

v4

v5

(c) (1̊3̊24)

u1

u2u3

u4

v1

v2 v3

v4

v5

(d) (14‖23)

Figure 4.1: Two patterns (a, b) and two particular graphs (c, d) of the second pattern.
In the patterns, potential edges are depicted as thin green lines, while normal ones
as thick black lines; no other edges can exist.

The (3, 3)-partitionable graphs, as illustrated in Figure 1.3, are graphs of the

pattern on ten vertices. Similarly, the graphs illustrated in Figure 1.5 are graphs

of the pattern on nine vertices. To refer to these graphs, we assign labels to their

vertices and use our notation; see Figures 4.2 and 4.3.

Benchetrit proposed the following sufficient condition for t-perfection.

Proposition 4.7 ([11]). Let K be a clique that intersects every inclusion-wise max-

imal independent set of a graph G. If G − v is t-perfect for every v ∈ K, then G is
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Figure 4.2: The (3, 3)-partitionable graphs.
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(e) (̊132̊4)

Figure 4.3: Self-complementary graphs that are t-perfect but not perfect (n > 5).
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also t-perfect.

We present a collection of t-perfect graphs that will be used in the subsequent

sections. These graphs are illustrated in Figure 4.4.

Proposition 4.8. The following graphs are t-perfect: (12), (1‖̊2), (1̊2), (̊1‖̊2), (̊1̊2),

(1‖23), (̊31̊2), (̊1̊3‖̊2), (1‖̊24), (14̊2), (1‖̊2̊4), (1̊4̊2), (̊1‖̊2‖̊4), (̊1̊24), (̊1̊2̊4), (1̊3̊4̊2),

(1̊3̊42), (̊1̊3̊42), (̊1̊2̊43), (2̊314), (2̊3̊14), (23̊14), (1̊432), (̊1̊2̊4̊3̊1), (1̊2̊43), (1̊3̊241),

(1̊3̊24), (14‖23), (1̊4̊32), (1̊3‖̊24), and (̊241̊3).

Proof. Graphs (12), (1‖̊2), (1̊2), (̊1‖̊2), and (̊1̊2) are almost bipartite graph, hence

t-perfect. For each of the other graphs, we find a 3-clique K and then use Proposi-

tion 4.7. To show G− v is t-perfect for every v ∈ K, we either directly show that it

is isomorphic to a t-perfect graph, or show that it is a K4-free perfect graph (Propo-

sition 2.4). The details are listed in Table 4.1, where ? means that the graph is a

K4-free perfect graph.

As easy consequences of Lemma 4.4, we have the following observations on core

graphs that contain a C5. Here i = 1, . . . , 5.

Ob.1) If both uivi and ui+1ui+2 are in E(G), then at least one of uiui+1 and uiui+2

is in E(G); otherwise, vi+4 has four neighbors on the 5-cycle uiviui+2ui+1vi+3.

By symmetry, if both uivi and ui−1ui−2 are in E(G), then at least one of uiui−2

and uiui−1 is in E(G).

Ob.2) If both uiui+1 and uiui+3 are in E(G), then at least one of uivi and ui+1ui+3

is in E(G); otherwise, vi+3 has three consecutive neighbors on the 5-cycle

uiui+1vi+4viui+3. By symmetry, if both uiui−1 and uiui−3 are in E(G), then

at least one of uivi and ui−1ui−3 is in E(G).
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Figure 4.4: Some t-perfect graphs.
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Table 4.1: For the proof of Proposition 4.8

K = {a, b, c} G− a G− b G− c

(1‖23) {v3, v4, u1} ? ? (12)

(1‖̊24) {v1, v2, u4} ? ? (1‖̊2)

(14̊2) {v1, v2, u4} ? (1‖̊2) (1‖̊2)

(1‖̊2̊4) {v1, v2, u4} ? ? (1‖̊2)

(1̊4̊2) {v1, v2, u4} ? ? (1‖̊2)

(̊1‖̊2‖̊4) {v1, v2, u4} ? ? (̊1‖̊2)

(̊1̊24) {v1, v2, u4} ? ? (̊1̊2)

(̊1̊2̊4) {v4, v5, u2} ? ? (̊1‖̊2‖̊4− u2)

(̊31̊2) {v1, v5, u3} (̊1̊2̊4− u1) (1̊2) (1̊2)

(̊1̊3‖̊2) {v4, v5, u2} (1̊2) (1̊2) (̊1̊2̊4− u1)

(1̊3̊4̊2) {v4, v5, u2} (1‖̊2̊4) ? (̊1̊24)

(1̊3̊42) {v4, v5, u2} ? ? (̊1̊24)

(̊1̊3̊42) {v4, v5, u2} ? ? (̊1̊2̊4)

(̊1̊2̊43) {v1, v5, u3} ? ? (̊1̊2̊4)

(2̊314) {v4, v5, u2} ? ? (14̊2)

(2̊3̊14) {v4, v5, u2} ? ? (1̊4̊2)

(23̊14) {v3, v4, u1} ? ? (1‖23)

(1̊432) {v3, v4, u1} ? ? (1̊23451)− {u3, u4}
(̊1̊2̊4̊3̊1) {v4, v5, u2} (̊1̊2̊4) ? (̊1̊2̊4)

(1̊2̊43) {v3, v4, u1} ? ? (̊1̊2̊43)− u1

(1̊3̊241) {v4, v5, u2} ? ? (14̊2)

(1̊3̊24) {v4, v5, u2} ? ? (1‖̊24)

(14‖23) {v3, v4, u1} (1‖23) ? (1‖23)

(1̊4̊32) {v3, v4, u1} ? ? (123̊4̊51)− {u1, u2}
(1̊3‖̊24) {v4, v5, u2} (1‖̊24) ? (1‖̊24)

(̊241̊3) {v4, v5, u2} (14̊2) ? (14̊2)
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Chapter 4. Complementation in T-perfect Graphs

Ob.3) Suppose, all of ui−2ui−1, ui−1ui+1, and ui+1ui+2 are in E(G). If ui−1vi−1 or

ui+1vi+1 is in E(G), then at least one of ui−1ui+2, ui−2ui+1, and ui−2ui+2 is in

E(G); otherwise, vi−1 or vi+1 has four neighbors on the 5-cycle ui−2ui−1ui+1ui+2vi.

Ob.4) If ui−1ui+1 ∈ E(G) and ui−1vi−1, ui+1vi+1 6∈ E(G), then ui+1ui+2, ui−1ui−2 6∈

E(G), and uiui−1, uiui+1 ∈ E(G); otherwise, the neighborhood of ui−2, ui+2, or,

respectively, ui on the 5-cycle ui−1ui+1vi−1vivi+1 does not satisfy Lemma 4.4.

Ob.5) If uiui+1 6∈ E(G) and at least one of ui and ui+1 is adjacent to ui+3, then at most

one of uivi and ui+1vi+1 can be in E(G); otherwise, ui+3 has three consecutive

neighbors on the 5-cycle uivivi+1ui+1vi+3.

Ob.6) If ui+1vi+1 is in E(G) and none of ui+1ui+2, ui+2ui−2, and ui−1ui−2 is in E(G),

then ui+1ui−2, ui+2ui−1, and ui+1ui−1 cannot be all present in G; otherwise, vi+1

has four neighbors on the 5-cycle ui−1ui+2viui−2ui+1. By symmetry, if ui−1vi−1 is

in E(G) and none of ui+1ui+2, ui+2ui−2, and ui−1ui−2 is in E(G), then ui+1ui−2,

ui+2ui−1, and ui+1ui−1 cannot be all present in G.

All graphs of pattern Figure 4.1(a) are summarized in Table 4.2 and characterized

in Lemma 4.9.

Lemma 4.9. Let G be an imperfect core graph of order eight. At least one of G and

G

i) is t-perfect; or

ii) has a degree-2 vertex in U .

Proof. Since G is imperfect, it contains a C5 by Proposition 4.3. In particular, G or G

is of the pattern in Figure 4.1(a). Note that if the degree of a vertex is five in G, then

its degree in G is two. According to Table 4.2, it suffices to show that graphs (̊1̊3‖̊2),

(̊13‖̊2), (̊12̊3), (̊31̊2), (̊123), (̊312), (̊1‖̊2‖̊4), and (123) are t-perfect. We have seen
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Table 4.2: Graphs of pattern Figure 4.1(a). The columns are for combinations of
edges among U ; the cases with only u2u3 and only {u1u3, u2u3} are omitted because
they are symmetric to respectively, u1u2 and {u1u2, u1u3}. The rows are possible
combinations of edges between U and C. The invocation of an observation means
that this configuration violates this observation.

all {u1u2, u1u3} {u1u2, u2u3} {u1u2} {u1u3}

all d(u1) = 5 d(u1) = 5 d(u2) = 5 Ob.1) (i = 3) (̊1̊3‖̊2)

{u1v1, u2v2} d(u1) = 5 d(u1) = 5 d(u2) = 5 d(u3) = 2 (̊13‖̊2)

{u1v1, u3v3} d(u1) = 5 d(u1) = 5 (̊12̊3) Ob.1) (i = 3) d(u2) = 2

{u2v2, u3v3} d(u2) = 5 (̊31̊2) d(u2) = 5 Ob.1) (i = 3) ∼= (̊13‖̊2)

{u1v1} d(u1) = 5 d(u1) = 5 (̊123) d(u3) = 2 d(u2) = 2

{u2v2} d(u2) = 5 Ob.4) (i = 2) d(u2) = 5 d(u3) = 2 Ob.4) (i = 2)

{u3v3} d(u3) = 5 (̊312) ∼= (̊123) Ob.1) (i = 3) d(u2) = 2

none G ∼= (̊1‖̊2‖̊4) Ob.4) (i = 2) (123) d(u3) = 2 d(u2) = 2

in Proposition 4.8 that (̊1‖̊2‖̊4), (̊31̊2), and (̊1̊3‖̊2) are t-perfect. The graph (̊13‖̊2)

is t-perfect because (̊13‖̊2) is isomorphic to (̊241̊3) − u1, and (̊241̊3) is t-perfect.

On the other hand, (̊312), (̊12̊3), (̊123), and (123) are isomorphic to, respectively,

(1̊243̊51)−{u1, u2}, (1̊243̊51)−{u3, u4}, (1̊23451)−{u1, u5}, and (123451)−{u1, u5},

all t-perfect.

4.2 T-perfect core graphs

4.2.1 Degree-bounded graphs

According to Propositions 4.4 and 4.5, every core graph of order nine is of the

pattern in Figure 4.1(b). Throughout this section, let G denote a core graph of order

nine where the degree of every vertex is between three and five. (The reason of

imposing degree constraints will become clear shortly.) We consider whether edges

uiui+1, i = 1, 2, 3 are present in G.
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Proposition 4.10. Let G be a degree-bounded core graph on nine vertices. If for

all i = 1, 2, 3, the edge uiui+1 is in E(G), then G is an induced subgraph of a (3, 3)-

partitionable graph.

Proof. We argue first that none of u1u4, u1u3, and u2u4 can be present in G; i.e.,

u1u2u3u4 is an induced path in G. Suppose that u1u4 ∈ E(G), then by Ob.4) (with

i = 5), at least one of u4v4 and u1v1 is in E(G). We may assume that u4v4 ∈ E(G),

and the other case is symmetric. Since {u1, u4, u2, v4} is not a clique, u2u4 /∈ E(G).

By Ob.2) (with i = 1), u1v1 ∈ E(G), and then since {u1, u3, u4, v1} is not a clique,

u1u3 cannot be present. But then G − {v2, v3} is isomorphic to C7, a contradiction.

Thus, u1u4 /∈ E(G). By Ob.2) (with i = 2), (noting u1u2 ∈ E(G),) the presence of

u2u4 would imply the presence of u2v2, but then d(u2) = 6. Thus, u2u4 /∈ E(G), and

by a symmetric argument, u1u3 /∈ E(G).

Now that none of u1u4, u1u3, and u2u4 is present, we consider all possible com-

binations of edges {uivi | i = 1, . . . , 4} ∩ E(G). If none of them is in E(G), then G

is isomorphic to (123451) − u1. If all of them are in E(G), then G is isomorphic to

(̊1̊2̊3̊4̊5̊1)− u1. If only one uivi is in E(G), then G is isomorphic to (̊12̊345̊1)− u3 or

(123̊4̊51) − u4. If only one uivi is absent, then G is isomorphic to (̊1̊2̊345̊1) − u4 or

(1̊23̊4̊51)− u1. Otherwise, exact two of edges uivi are in E(G), then G is isomorphic

to one of (̊12̊345̊1)− u4, (̊1̊2̊345̊1)− u1, (̊12̊345̊1)− u2, and (123̊4̊51)− u2.

In the rest, for at least one of i = 1, 2, 3, the edge uiui+1 is absent from G. In the

second case, we assume that both u1u2 and u2u3 are absent from G; see Figure 4.5(b).

Proposition 4.11. Let G be a degree-bounded core graph on nine vertices. If both

u1u2 and u2u3 are absent from G, then G is isomorphic to one of (1̊3̊4̊2), (1̊3̊42),

(̊1̊3̊42), (1̊3‖̊24), and (̊241̊3).

Proof. We first argue that the edge u1u3 must be present. Suppose for contradiction

that u1u3 is absent. Note that u2v2 ∈ E(G), as otherwise {u1, u2, u3, v2} forms an
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Figure 4.5: Refined patterns on nine vertices. Potential edges in Figure 4.1(b) but
absent here are emphasized by red dashed lines. (a) all the three edges u1u2, u2u3,
and u3u4 are present; (b) both u1u2 and u2u3 are absent; (c) u2u3 is absent but both
u1u2 and u3u4 are present; (d) u1u2 is absent but u2u3 is present.

independent set. The edge u3v3 cannot be in E(G), as otherwise u1 has only one

neighbor on the 5-cycle u3v3v2u2v5, contradicting Lemma 4.4. Then d(u3) > 2 forces

u3u4 ∈ E(G). By Ob.1) (with i = 2), u2u4 ∈ E(G), and by Ob.5) (with i = 1),

u1v1 /∈ E(G). Since d(u1) > 2, the edge u1u4 must be present. Now that u3u4 ∈ E(G)

and u1v1 6∈ E(G), Ob.4) (with i = 5) implies u4v4 ∈ E(G). But then d(u4) = 6,

contradicting that G is degree-bounded.

Now that u1u3 ∈ E(G), by Ob.4) (with i = 2), at least one of u1v1 and u3v3 is

present. Assume first that u1v1 ∈ E(G). By Proposition 4.2, at least one of u3u4, u2u4,

and u3v3 is in E(G), as otherwise {u2, u3, u4, v3} forms an independent set. We argue

that u3u4 ∈ E(G). Suppose for contradiction that u3u4 /∈ E(G). If u2u4 ∈ E(G),

then by Ob.5) (with i = 1), u2v2 /∈ E(G); and by Ob.6) (with i = 5), Ob.4) (with

i = 3), and Ob.5) (with i = 3), u1u4 /∈ E(G), u4v4 ∈ E(G), and u3v3 /∈ E(G). Then

u1v3v2u4u2v5u3 is a 7-cycle in G, contradicting Proposition 4.3. Thus, u2u4 /∈ E(G),

and u3v3 ∈ E(G). By Ob.5) (with i = 3), u4v4 /∈ E(G). Since d(u4) > 2, u1u4 ∈ E(G)

and by Ob.5) (with i = 1), u2v2 /∈ E(G). But then d(u2) = 2, a contradiction. Now
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that u3u4 ∈ E(G), the edge u1u4 cannot exist, as otherwise {u1, u3, u4, v1} forms a

clique. By Ob.2) (i = 3), u3v3 ∈ E(G). If u2v2 ∈ E(G), then by Ob.1) (with i = 2),

u2u4 ∈ E(G), which violates Ob.5) (with i = 1). Since d(u2) > 2, the edge u2u4 must

be present. Ob.4) (with i = 3), together with the fact that u2v2 /∈ E(G), implies

u4v4 ∈ E(G). Thus, G is (̊1̊3̊42).

In the rest of the proof, u1v1 6∈ E(G) and u3v3 ∈ E(G). Since d(u2) > 2, at least

one of u2v2 and u2u4 needs to be present. Note that the presence of u2v2 implies the

presence of u2u4, by Lemma 4.4 applied on vertex u4 and the 5-cycle u3v3v2u2v5. If

u2u4 ∈ E(G), but u2v2 is not, then by Ob.4) (with i = 3), u4v4 ∈ E(G). The edge u3u4

is in E(G), as otherwise u1 has three consecutive neighbors on the 5-cycle u3v3v4u4v1,

contradicting Lemma 4.4. Since d(u4) < 6, the edge u1u4 cannot be present. Then G

is (1̊3̊42). Now that both u2u4 and u2v2 are present, the only potential edges that have

not been excluded are u4v4, u3u4, and u1u4. Note that the presence of u3u4 implies

the presence of u4v4; otherwise, by Ob.4) (with i = 5), u1u4 6∈ E(G), but then v3 has

three consecutive neighbors on the 5-cycle u1v4u2u4u3, contradicting Lemma 4.4.

• If none of u4v4, u3u4, and u1u4 is present, then G is (1̊3‖̊24).

• If u1u4 is in E(G) but u4v4 and u3u4 are not, then G is (̊241̊3).

• Otherwise, we must have u4v4 ∈ E(G). Then u3u4 must be present as well, as

otherwise u3v3v4u4v1 is a 5-cycle on which u1 has three consecutive neighbors,

contradicting Lemma 4.4. Since d(u4) < 6, the edge u1u4 cannot be present,

and G is (1̊3̊4̊2).

Note that it is symmetric to Proposition 4.11 if both u2u3 and u3u4 are absent.

Next we consider the situation that u2u3 is absent but both u1u2 and u3u4 are present;

see Figure 4.5(c).

Proposition 4.12. Let G be a degree-bounded imperfect core graph on nine vertices.
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If both u1u2 and u3u4 are in E(G) but u2u3 is not, then G is isomorphic to one of

(1̊2̊43), (̊1̊2̊4̊3̊1), (̊1̊2̊43), (1̊243̊51)− u2, and (̊1̊243̊5̊1)− u5.

Proof. We start by arguing that u1u4 is absent, and at least one of u2v2 and u3v3

is present. Suppose for contradiction that u1u4 ∈ E(G). By Ob.4) (with i = 5), at

least one of u4v4 and u1v1 is in E(G). If u4v4 is in E(G) but u1v1 is not, then by

Ob.2) (with i = 1), u2u4 ∈ E(G); then d(u4) = 6, a contradiction. A symmetric

argument applies if u1v1 is in E(G) but u4v4 is not. Now that both u1v1 and u4v4

are in E(G), neither u1u3 nor u2u4 can be in E(G), as otherwise {u3, u1, u4, v1} or,

respectively, {u1, u4, u2, v4} forms a clique. But then v4 has four neighbors on the 5-

cycle u1u4u3v5u2, contradicting Lemma 4.4. In the rest, u1u4 6∈ E(G). For u2v2 and

u3v3, if both of them are absent, then by Ob.2) (with i = 3), u1u3 has to be absent

as well (note that u3u4 is in E(G) while u3v3 and u1u4 are absent). By a symmetric

argument, the edge u2u4 is also absent. But then u1v3v2u4u3v5u2 is a 7-cycle in G,

contradicting Proposition 4.3.

Since u2v2 and u3v3 are symmetric, it suffices to consider u2v2 ∈ E(G). By Ob.1)

(with i = 2), u2u4 ∈ E(G). If none of the remaining undecided potential edges,

u1v1, u3v3, u4v4, and u1u3, is in E(G), then G is isomorphic to (1̊243̊51) − u2. If

u1u3 ∈ E(G), then by Ob.2) (with i = 3), u3v3 ∈ E(G). The edge u1v1 is in E(G), as

otherwise u4 has four neighbors on the 5-cycle u1u3v1v2u2, contradicting Lemma 4.4.

A symmetric argument enables us conclude that u4v4 ∈ E(G). Then G is (̊1̊2̊4̊3̊1).

Now that u1u3 6∈ E(G), which implies u3v3 is not in E(G) either, as otherwise, u1u2

is in E(G) but neither u2u3 nor u1u3 is, contradicting Ob.1) (with i = 3). If u1v1 is

in E(G) but u4v4 is not, then G is isomorphic to (̊1̊243̊5̊1) − u5; if u4v4 is in E(G)

but u1v1 is not, then G is (1̊2̊43); otherwise, both u1v1 and u4v4 are in E(G), and G

is (̊1̊2̊43).

In the last case, u2u3 is in E(G), but at least one of u1u2 and u3u4 is not. We

may assume without loss of generality that u1u2 is absent; see Figure 4.5(d).
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Proposition 4.13. Let G be a degree-bounded imperfect core graph on nine vertices.

If u2u3 is in E(G) but u1u2 is not, then G is isomorphic to one of (2̊314), (2̊3̊14),

(23̊14), (1̊432), (1̊3̊241), (1̊3̊24), (14‖23), (1̊4̊32), (̊1̊243̊5̊1) − u3, (1̊243̊51) − u3, and

(1̊243̊51)− u1.

Proof. Consider first that u3u4 is in E(G). We argue that neither u1v1 nor u1u3 can

be present. If u1v1 is in E(G), then by Ob.1) (with i = 1), u1u3 ∈ E(G). As a

result, u1u4 /∈ E(G), as otherwise {u1, u3, u4, v1} is a clique. But then u3v3 ∈ E(G)

by Ob.2) (with i = 3), and d(u3) = 6, a contradiction. Likewise, the existence of u1u3

would force u3v3 ∈ E(G) by Ob.4) (with i = 2), then d(u3) = 6. Now u1 is adjacent

to neither u3 nor v1, the edge u1u4 must be present to avoid d(u1) > 2. Moreover,

u4v4 ∈ E(G) by Ob.4) (with i = 5), and then from d(u4) < 6 it can be inferred

u2u4 /∈ E(G). If neither of the undecided potential edges, u2v2 and u3v3, is present,

then G is (1̊432); if only u2v2 is present, then G is isomorphic to (1̊243̊51)−u3; if only

u3v3 is present, then G is (1̊4̊32); otherwise, both are present, and G is isomorphic to

(̊1̊243̊5̊1)− u3.

In the rest, u3u4 is not in E(G). We consider the potential edges incident to u1

and u4; note that their degrees are at least three. By Ob.1) (with i = 1), the presence

of u1v1 implies the existence of u1u3; likewise, u4v4 implies u2u4 ∈ E(G).

• Case 1, u1v1 is in E(G). Note that if u2u4 is in E(G), then u4v4 must be in

E(G) as well; otherwise u2v2 ∈ E(G) by Ob.4) (with i = 3), contradicting Ob.5)

(with i = 1). First, if u2v4 ∈ E(G), then by Ob.5) (with i = 1), u2v2 /∈ E(G). A

symmetric argument implies u3v3 /∈ E(G). Note that u1u4 /∈ E(G), as otherwise

G−{v2, v3} is isomorphic to C7. Then G is isomorphic to (1̊243̊51)−u1. Second,

if u1u4 is in E(G) but u4v4 and u2u4 are not, then by Ob.5) (with i = 1),

u2v2 /∈ E(G). Dependent on whether u3v3 is present or not, G is either (2̊3̊14)

or (23̊14).

• Case 2, u4v4 is in E(G). It is symmetric to case 1.
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• Case 3, u1u3 is in E(G) but u1v1 and u4v4 are not. By Ob.4) (with i = 2), u3v3 ∈

E(G). If u2u4 is in E(G), then by Ob.4) (with i = 3), u2v2 ∈ E(G). Dependent

on whether u1u4 is in E(G) or not, G is either (1̊3̊24) or (1̊3̊241). If u1u4 is in

E(G) but u2u4 is not, then u2v2 /∈ E(G), as otherwise u2u3u1u4v2 is a 5-cycle,

on which v4 has two non-consecutive neighbors, contradicting Lemma 4.4. Then

G is (2̊314).

• Case 4, u2u4 is in E(G) but u1v1 and u4v4 are not. It is symmetric to case 3.

Now that all of u1v1, u4v4, u1u3, and u2u4 are absent, the edge u1u4 must be present

to ensure d(u1) > 2. Then u3v3 /∈ E(G), as otherwise u2 has only one neighbor

on the 5-cycle u1u4v1u3v3, contradicting Lemma 4.4. A symmetric argument implies

u2v2 /∈ E(G). Thus, G is (14‖23).

By Propositions 4.10–4.13, a degree-bounded imperfect core graph of order nine is

one of (1̊3̊4̊2), (1̊3̊42), (̊1̊3̊42), (̊1̊2̊43), (̊1̊2̊4̊3̊1), (1̊2̊43), (1̊3̊24), (1̊3̊241), (2̊314), (2̊3̊14),

(23̊14), (̊241̊3), (1̊432), (14‖23), (1̊4̊32), (1̊3‖̊24), or a proper induced subgraph of a

(3, 3)-partitionable graph.

Lemma 4.14. All degree-bounded imperfect core graphs of order nine are t-perfect.

Only (̊12̊345̊1) − u2, (123̊4̊51) − u2, (1̊243̊51) − u1, (1̊3̊24), and (̊241̊3) of them are

self-complementary graphs.

4.2.2 Self-complementary graphs

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. We first consider the sufficiency. One may easily verify that

all the graphs in Figures 4.3 and 1.6 are self-complementary. We have seen that

C5, (̊241̊3), and (1̊3̊24) are t-perfect; (1̊2̊34), (̊123̊4), and (̊132̊4) are isomorphic to

(123̊4̊51)− u2, (̊12̊345̊1)− u2, and (1̊243̊51)− u1 respectively, hence t-perfect as well.

81



Chapter 4. Complementation in T-perfect Graphs

On the other hand, every graph in Figure 1.6 is perfect and K4-free, and hence t-

perfect by Proposition 2.4; so are K1, K4, and the bull graph.

For the necessity, suppose that a graphG is both self-complementary and t-perfect.

We argue that n ≤ 9 where n is the order of G.

• Case 1, G is perfect. Since G is t-perfect, it is K4-free. Since G is self-

complementary, it is also K4-free. In other words, a maximum independent

set of G consists of at most three vertices. Since G is perfect, its chromatic

number is at most three. Thus, n ≤ 3× 3 = 9.

• Case 2, G is not perfect. Since both G and G are t-perfect, G is a core graph.

Note that G is not C7, and thus it contains a C5 by Proposition 4.3. Thus,

n ≤ 10 by Corollary 4.6.

In particular, n ∈ {1, 4, 5, 8, 9} sicne the order of a self-complementary graph is

either 4k or 4k + 1 for some nonnegative integer k. There are 49 self-complementary

graphs of order at most nine, and they have been explicitly constructed by Xu and

Wong [121]. Of these 49 graphs, 36 are K4-free, of which 14 are perfect: K1, P4,

the bull graph, and the eleven graphs in Figure 1.6. In the rest we focus on K4-free

self-complementary graphs G that are not perfect.

Since G is not perfect, it contains an odd hole, and by Proposition 4.3, every odd

hole in G is a 5-cycle. If n = 5, then G is C5. If n = 9, then G is of the pattern in

Fig. 4.1(b). We argue that G is degree bounded. Every vertex in C has degree at

least three and at most five. Suppose that one vertex u ∈ U has degree two, then it

is not adjacent to any other vertex in U . But then the degree of u in G is six; thus

there is a degree-6 vertex, which has to be in U . But then we have a vertex in U that

is nonadjacent to others in U , and another vertex in U that is adjacent to all of the

others in U , a contradiction. By Lemma 4.14, G is one of the graphs in Figure 4.3;

i.e., (̊123̊4), (̊241̊3), (̊132̊4), (1̊2̊34), and (1̊3̊24).
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It remains to show that there is no graph of order 8 satisfying the conditions. Let

G be an imperfect core graph of order 8. We may assume that the indices for the

three vertices in U are not consecutive: If G is of the pattern in Figure 4.1(a), then

we can consider its complement. (With different choices of 5-cycles, a core graph

may be of more than one patterns.) If there is a vertex x of degree 2, then x ∈ U ,

and the two neighbors of x are adjacent. Then in G, every vertex in U has degree at

least three, which means x is mapped to a vertex y in C. However, if y has degree

two, then its two neighbors are not adjacent in G, a contradiction. Therefore, the

minimum degree is at least three, and since G is self-complementary, the maximum

degree is at most four. By Lemma 4.9, G can only be one of (̊1̊3‖̊2), (̊13‖̊2), (̊12̊3),

(̊31̊2), (̊123), (̊312), (̊1‖̊2‖̊4), and (123), but none of them is self-complementary.

4.3 Minimally t-imperfect core graphs

4.3.1 The proof of Theorem 1.4

Bruhn and Stein [20] showed that the (3, 3)-partitionable graphs are minimally

t-imperfect. Therefore, we only need to show the sufficiency in Theorem 1.4. We say

that a clique K of a connected graph G is a clique separator of G if G − K is not

connected.

Lemma 4.15 (Chvátal [29], Gerards [56]). No minimally t-imperfect graph contains

a clique separator.

Throughout this section, we assume that both G and its complement G are min-

imally t-imperfect graphs. By Lemma 4.15, neither G nor G can have a clique sepa-

rator. Thus, for each vertex u ∈ U , we have

2 < d(u) < n− 3. (4.1)
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Note that if d(u) = n− 3, then u has two neighbors in G, which is a clique separator.

Note that G is a core graph. By Proposition 4.3 and Corollary 4.6, the order of G

is between five and ten. Fonlupt and Hadjar showed that every almost bipartite graph

is t-perfect [50]. The only imperfect core graph of order five is C5. Both imperfect

core graphs of order six, (1) and (̊1), are almost bipartite, e.g., removing v3. There

are 16 core graphs of order seven that are different from C7 and C7, namely, (12),

(̊12), (1̊2), (̊1̊2), (1‖2), (̊1‖2), (1‖̊2), (̊1‖̊2), and their complements. All the listed eight

graphs become bipartite after removing v4, hence almost bipartite. By Lemma 4.9

and the degree requirements (4.1), G cannot have order eight either. Likewise, by

Lemma 4.14, all core graphs of order nine satisfying (4.1) are t-perfect. Therefore,

we are only left with n = 10.

In the rest of this section, the order of G is ten. Our analysis is based on whether

(123451) is a (not necessarily induced) subgraph of G. The arguments here are

somewhat similar to that in Section 4.2.1. Let us start with an easy case, where all

the five edges uiui+1 for i = 1, . . . , 5 are in E(G); see Figure 4.6(a). Recall that all

the indices are understood as modulo 5.

Proposition 4.16. If for all i = 1, . . . , 5, the edge uiui+1 is in E(G), then G is one

of the (3, 3)-partitionable graphs.

Proof. We first argue that U induces a cycle. Suppose for contradiction that u1u3

is present. By Ob.4) (with i = 2), at least one of u1v1 and u3v3 is in E(G). Since

they are symmetric, we consider u1v1 ∈ E(G). Since {u1, u3, u4, v1} is not a clique,

u1u4 /∈ E(G). Then by Ob.2) (with i = 3), u3v3 ∈ E(G), and since {u1, u3, u5, v3} is

not a clique, u3u5 /∈ E(G). But then G − {v4, v5, u2} is isomorphic to C7, and G is

not minimally t-imperfect.

Now that G[U ] is a C5, dependent on the combination of edges uivi, i = 1, . . . , 5,

we are in one of the (3, 3)-partitionable graphs that contain (123451).
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Figure 4.6: (a) All the five edges uiui+1 for i = 1, . . . , 5 are present; (b) both u2u3 and
u3u4 are absent while u2u4 is present; (c) all the edges among u2, u3, u4 are absent;
(d) u1u2 is absent, while only u2u3 and u1u5 are present.

The following two propositions deal with the case where for some i = 1, . . . , 5,

both edges uiui−1 and uiui+1 are absent, Proposition 4.17 for ui−1ui+1 being present,

and Proposition 4.18 for otherwise; see Figure 4.6(b, c).

Proposition 4.17. Let i = 1, . . . , 5. If neither uiui−1 nor uiui+1 is in E(G), then

ui−1ui+1 cannot be in E(G) either.

Proof. Assume without loss of generality i = 3; i.e., both u2u3 and u3u4 are absent,

and we show by contradiction that u2u4 cannot be in E(G). By Ob.4) (with i = 3),

at least one of u2v2 and u4v4 is in E(G). Since they are symmetric, we may consider

u2v2 ∈ E(G).

Suppose that u4u5 ∈ E(G). Then u2u5 /∈ E(G), as otherwise, {u2, u4, u5, v2}

is a K4. By Ob.2) (with i = 4), u4v4 ∈ E(G). If u1u2 ∈ E(G), then u1u4 /∈ E(G)

because {u2, u1, u4, v4} cannot be a K4; by Ob.3) (with i = 3), u1u5 ∈ E(G), but then

G − {u3, v1, v5} is a C7, a contradiction to Proposition 4.3. Now that u1u2 /∈ E(G).
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The edge u1u5 is not in E(G), as otherwise u2v2 is in E(G) and both u1u2 and u2u5

are not, a contradiction to Ob.1) (with i = 2). By Ob.5) (with i = 1), u1v1 cannot be

in E(G) either. The set {u2, u1, u5, v1} is an independent set in G, a contradiction.

In the rest, u4u5 /∈ E(G).

Suppose u3u5 ∈ E(G). By Ob.5) (with i = 2), u3v3 /∈ E(G). Further, By

Ob.6), Ob.4), and Ob.5) (with i = 1, i = 4, and i = 4 respectively), u2u5 /∈ E(G),

u5v5 ∈ E(G), and u4v4 /∈ E(G). Hence, u2v4v3u5u3v1u4 is a 7-cycle inG, contradicting

Proposition 4.3. Thus, u3u5 /∈ E(G).

Suppose u4v4 ∈ E(G). By Ob.5) (with i = 4), u5v5 /∈ E(G). Since {u1, u5, u4, v5}

cannot be an independent set, at least one of u1u4 and u1u5 needs to be present. By

Ob.1) (with i = 4), if u1u5 ∈ E(G), then u1u4 ∈ E(G) as well. Therefore, we always

have u1u4 ∈ E(G). Since {u1, u2, u4, v4} cannot induce a K4 in G, u1u2 /∈ E(G). By

Ob.5) (with i = 1), u1v1 /∈ E(G). Since {u2, u1, u5, v1} is not an independent set, at

least one of u1u5 and u2u5 is in E(G). If u1u5 is in E(G), then by Ob.1) (with i = 2),

u2u5 ∈ E(G) and G − {u3, v1, v5} is isomorphic to C7. Otherwise, by Ob.6) (with

i = 3), u2u5 has to be absent as well, and then {u2, u1, u5, v1} is an independent set.

Therefore, none of u3u5, u4u5, and u4v4 can be in E(G), and then {u3, u4, u5, v4}

forms an independent set, contradicting Proposition 4.2.

Proposition 4.18. For all i = 1, . . . , 5, at least one of uiui−1 and uiui+1 is in E(G).

Proof. Assume without loss of generality, let i = 3. Suppose for contradiction that

neither u2u3 nor u3u4 is in E(G). By Proposition 4.17, u2u4 /∈ E(G). Thus, u3v3 ∈

E(G), as otherwise {u2, u3, u4, v3} forms an independent set. As a result, u2v2 6∈

E(G), as otherwise u4 has only one neighbor on the 5-cycle u3v3v2u2v5. Moreover,

u1u2 must be in G: Otherwise, by Proposition 4.17, (noting that u2u3 6∈ E(G),) u1u3

cannot be in E(G) either, then {u1, u2, u3, v2} forms an independent set. By Ob.1)

(with i = 3), u1u3 ∈ E(G), and then by Ob.5) (with i = 3), u4v4 /∈ E(G). Since

{u1, u5, u4, v5} does not induce an independent set, at least one of u1u5, u4u5, u5v5,
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and u1u4 is in E(G).

First, suppose that u1u5 is in E(G). Then u3u5 is not in E(G), as otherwise

{u3, u5, u1, v3} induces a K4. By Ob.2) (with i = 1), u1v1 ∈ E(G). The edge u4u5 /∈

E(G), as otherwise contradicting Ob.1) (with i = 3). But then {u3, u4, u5, v4} forms

an independent set.

Second, suppose that u4u5 is in E(G). By Ob.1) (with i = 3), u3u5 ∈ E(G).

If u1v1 is in E(G), then by Ob.1) (with i = 1), u1u4 ∈ E(G), which means that

G − {u2, v4, v5} is isomorphic to C7. Thus, u1v1 /∈ E(G); a symmetric argument

enables us to conclude that u5v5 /∈ E(G). Since neither u2u4 nor u5v5 is in E(G),

from Ob.2) (with i = 5) we can conclude that, u2u5 /∈ E(G). By a symmetric

argument we have u1u4 is not in E(G) either. Now that none of u1v1, u5v5, u2u5, and

u1u4 is in E(G), there is a 7-cycle u5u4v1v5u2u1v3. Therefore, u4u5 /∈ E(G).

Third, suppose u5v5 is in E(G). By Ob.1) (with i = 5), u2u5 ∈ E(G). The

edge u3u5 ∈ E(G), as otherwise {u3, u4, u5, v4} forms an independent set. But then

G− {v1, v2, u4} is isomorphic to C7. Therefore, u5v5 /∈ E(G).

Last, suppose u1u4 is in E(G). By Ob.6) (with i = 2), u3u5 /∈ E(G). But then

{u3, u4, u5, v4} forms an independent set.

In summary, none of u1u5, u4u5, u5v5, and u1u4 can be in E(G), and thus

{u1, u5, u4, v5} forms an independent set.

In the remaining case, uiui+1 for some i = 1, . . . , 5 is absent, but both ui+1ui+2

and uiui−1 are present. Moreover, by Proposition 4.18, at least one of ui+2ui+3 and

ui−1ui−2 is in E(G). See Figure 4.6(d).

Proposition 4.19. If there is an i = 1, . . . , 5 such that uiui+1 is not in E(G), then

G is one of the (3, 3)-graphs.

Proof. Without loss of generality, let i = 1. Then u1u2 /∈ E(G), u2u3 and u1u5 are in
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E(G), and at least one of u3u4 and u4u5 is in E(G). We show by contradiction that

u3u4 and u4u5 cannot be both in E(G). In particular, we show that none of u1v1,

u2v2, u1u3, u2u5, and u3u5 is in E(G), and then u1v4u2u3v1v2u5 is a 7-cycle.

• If u3u5 is in E(G), then by Ob.4) (with i = 4), at least one of u3v3 and u5v5

is in E(G). If u3v3 is in E(G) but u5v5 is not, then by Ob.2) (with i = 5),

u1u3 ∈ E(G), which means d(u3) = 7, a contradiction. A symmetric argument

applies if u5v5 is in E(G) but u3v3 is not. Hence, both u3v3 and u5v5 are in E(G).

As a result, neither u1u3 nor u2u5 can be in E(G), as otherwise {u3, u1, u5, v3}

or, respectively, {u5, u2, u3, v5} forms a clique. However, the vertex v3 has four

neighbors on the 5-cycle u3u5u1v4u2. Therefore, u3u5 /∈ E(G).

• If u1v1 is in E(G), then by Ob.1) (with i = 1), u1u3 ∈ E(G). Note that

u1u4 /∈ E(G), as otherwise {u1, u3, u4, v1} forms a cliqued. By Ob.2) (with

i = 3), u3v3 ∈ E(G). But then G− {v4, v5, u2} is isomorphic to C7. Therefore,

u1v1 /∈ E(G). By a symmetric argument, u2v2 /∈ E(G).

• Now that none of u1v1, u2v2, and u3u5 is in E(G), from Ob.2) (with i = 1) it

can be inferred u1u3 /∈ E(G), and then by Ob.2) (with i = 2), u2u5 /∈ E(G).

Thus, at most one of u3u4 and u4u5 is in E(G). We may assume without loss of

generality that u3u4 is in E(G) and u4u5 is not; the other case is symmetric.

We argue that none of u1u3, u3u5, u1v1, and u5v5 can be in E(G). Suppose that

u1u3 is in E(G). By Ob.2) (with i = 1), at least one of u1v1 and u3u5 is in E(G). If

u3u5 ∈ E(G), then u3v3 /∈ E(G), as otherwise {u3, u1, u5, v3} forms a clique. On the

other hand, by Ob.4) (with i = 2), at least one of u1v1 and u3v3 is in E(G). Therefore,

we always have u1v1 ∈ E(G). Then u1u4 /∈ E(G), as otherwise {u1, u3, u4, v1} forms

a clique. By Ob.2) (with i = 3), u3v3 ∈ E(G), which further implies u3u5 6∈ E(G)

because d(u3) < 6. But then all of u1u5, u1u3, u3u4, and u3v3 are in E(G) and none

of u1u4, u3u5, and u4u5 is in E(G), contradicting Ob.3) (with i = 2). Therefore,
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4.3. Minimally t-imperfect core graphs

u1u3 /∈ E(G). By a symmetric argument, we can conclude that u3u5 cannot be in

E(G) either. Now that none of u1u3, u3u5, u1u2, and u4u5 is in E(G), together with

the fact that both u2u3 and u3u4 are in E(G), from Ob.1) (with i = 1 and i = 5), it

can be inferred that both u1v1 and u5v5 cannot be in E(G).

At least one of u4v4 and u1u4 is in E(G), as otherwise u1v4v5u3u4v2u5 is a 7-cycle.

If u4v4 is in E(G), then Ob.1) (with i = 4) will force u1u4 in E(G) as well. On

the other hand, u1u4 is in E(G) and Ob.4) (with i = 5) will force u4v4 in E(G) as

well. Therefore, both u4v4 and u1u4 are in E(G). Moreover, at least one of u2v2 and

u2u5 is in E(G), as otherwise u5v2v1u3u2v4u1 is a 7-cycle. By a symmetric argument,

both u2v2 and u2u5 are in E(G). Note that u2u4 cannot be in E(G), as otherwise

G−{v1, v5, u3} is isomorphic to C7. Dependent on whether u3v3 is in E(G), the graph

is isomorphic to either (1̊243̊51) or its complement.

The discussion on the order of G, and Propositions 4.16–4.19 imply Theorem 1.4.

Bruhn and Stein showed that those (3, 3)-partitionable graphs containing C2
10 as a

subgraph are minimally t-imperfect, while the minimally t-imperfection of (1̊243̊51)

and (̊1̊243̊5̊1) are referred to an unpublished manuscript of Bruhn. For the sake of

completeness, we provide a proof here.

Lemma 4.20. (1̊243̊51) and (̊1̊243̊5̊1) are minimally t-imperfect.

Proof. Let graph G be one of (1̊243̊51) and (̊1̊243̊5̊1), and we show that G is t-

imperfect at first. For vector x ∈ RV (G) with xv = 1
3

for all v ∈ V (G), it is not

difficult to check that x is in POC(G). However, x is not in the independent set

polytope of the graph G (note that 1Tx > α(G)).

For G to be minimally t-imperfect, we argue that every proper t-minor of G is

t-perfect. Note that for every v ∈ V (G), the neighbors of v could not form an

independent set. We only need to check that G− v is t-perfect, for every v ∈ V (G).

Moreover, for every i = 1, . . . , 5, G − ui is isomorphic to G − vi and by symmetry,
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G−u1 is isomorphic to G−u5 and G−u2 is isomorphic to G−u4. Therefore, it suffices

to show that G− u1, G− u2, and G− u3 are t-perfect. Since G− u1 is isomorphic to

(̊132̊4), G− u2 is isomorphic to (21̊34) or (21̊3̊4), and G− u3 is isomorphic to (1̊43̊2)

or (1̊4̊3̊2), we should show that all of (̊132̊4), (21̊34), (21̊3̊4), (1̊43̊2), and (1̊4̊3̊2) are

t-perfect. We use the same argument for proving Proposition 4.8 to show these five

graphs are t-perfect. The details are listed in Table 4.3.

Table 4.3: For the proof of Lemma 4.20

K = {a, b, c} G− a G− b G− c

(̊132̊4) {v3, v4, u1} ? ? (23̊14)− u4

(21̊34) {v1, v2, u4} ? ? (23̊14)− u4

(21̊3̊4) {v1, v2, u4} ? ? (23̊14)− u4

(1̊43̊2) {v3, v4, u1} ? ? (̊12̊345̊1)− {u4, u5}
(1̊4̊3̊2) {v3, v4, u1} ? ? (̊1̊2̊345̊1)− {u4, u5}
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Chapter 5

Self-complementary (Pseudo-)Split

Graphs

In this chapter, we study split graphs and pseudo-split graphs whose complements

are isomorphic to themselves. In Section 5.1, we begin by introducing more about

antimorphisms. Then we show a connection between self-complementary split graphs

and self-complementary pseudo-split graphs. This connection allows us to narrow our

focus to split graphs. Furthermore, we establish a one-to-one correspondence between

self-complementary split graphs on 4k vertices and those on 4k + 1 vertices. We also

study partitions in self-complementary graphs in this section. Additionally, we give

a characterization for forcibly self-complementary degree sequences in Section 5.2.

Finally, we tackle the enumeration problem of self-complementary split graphs in

Section 5.3.

5.1 Preliminaries

An isomorphism between two graphs G1 and G2 is a bijection between their vertex

sets, i.e., σ : V (G1) → V (G2), such that two vertices u and v are adjacent in G1 if
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and only if σ(u) and σ(v) are adjacent in G2. Two graphs with an isomorphism are

isomorphic. A graph is self-complementary if it is isomorphic to its complement G.

An isomorphism between G and G is a permutation of V (G), called an antimorphism.

We represent an antimorphism as the product of disjoint cycles σ = σ1σ2 · · ·σp,

where σi = (vi1vi2 · · · ) for all i. Sachs and Ringel [108, 111] independently showed

that there can be at most one vertex v fixed by an antimorphism σ, i.e., σ(v) = v. For

any other vertex u, the smallest number k satisfying σk(u) = u has to be a multiplier

of four. Gibbs [58] observed that if a vertex v has d neighbors in G, then the degree

of σ(v) in G is n− 1− d where n is the order of G. It implies that if v is fixed by σ,

then its degree in G is (n − 1)/2. The vertices in every cycle of σ with a length of

more than one alternate in degrees d and n− 1− d.

Lemma 5.1 ([108, 111]). In an antimorphism of a self-complementary graph, the

length of each cycle is either 1 or 4p for some positive integer p. Moreover, there is

a unique cycle of length one if and only if the order of the graph is odd.

For any subset of cycles in σ, the vertices within those cycles induce a subgraph

that is self-complementary. Indeed, the selected cycles themselves act as an antimor-

phism for the subgraph.

Proposition 5.2 ([58]). Let G be a self-complementary graph and σ an antimorphism

of G. For any subset of cycles in σ, the vertices within those cycles induce a self-

complementary graph.

A graph is a split graph if its vertex set can be partitioned into a clique and an

independent set. We use K ] I, where K being a clique and I an independent set, to

denote a split partition. A split graph may have more than one split partition.

Lemma 5.3. A self-complementary split graph on 4k vertices has a unique split

partition {v | d(v) ≥ 2k} ] {v | d(v) < 2k}.
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Proof. Let G be a self-complementary split graph with 4k vertices, and σ an antimor-

phism of G. By definition, for any vertex v ∈ V (G), we have d(v) +d(σ(v)) = 4k− 1.

Thus,

min(d(v), d(σ(v))) ≤ 2k − 1 < 2k ≤ max(d(v), d(σ(v))).

As a result, G does not contain any clique or independent set of order 2k+1. Suppose

for contradiction that there exists a split partition K ] I of G different from the

given. There must be a vertex x ∈ I with d(x) ≥ 2k. We must have d(x) = 2k and

N(x) ⊆ K. But then there are at least |N [x]| = 2k+ 1 vertices having degree at least

2k, a contradiction.

We correlate self-complementary split graphs having even and odd orders.

Proposition 5.4. Let G be a split graph on 4k+1 vertices. If G is self-complementary,

then G has exactly one vertex v of degree 2k, and G− v is also self-complementary.

Proof. Let σ be an antimorphism of G. By Lemma 5.1, there exists a cycle of length

one in σ; let it be (v). We can write σ = σ1 . . . σp(v). By Proposition 5.2, G − v

is self-complementary with σ = σ1 . . . σp as an antimorphism. Since it is an induced

subgraph of a split graph, it is a self-complementary split graph, and has a unique

split partition K ] I by Lemma 5.3. The degree of v is |K| = 2k. On the other hand,

every vertex in K has at least one neighbor in I: otherwise, we can move it from K

to I to get another split partition of G− v. Thus, d(x) > 2k for each vertex x ∈ K.

In a similar way, we can conclude that d(x) < 2k for each vertex x ∈ I.

A pseudo-split graph is either a split graph, or a graph whose vertex set can be

partitioned into a clique K, an independent set I, and a set C that (1) induces a C5;

(2) is complete to K; and (3) is nonadjacent to I. We say that K ] I ]C is a pseudo-

split partition of the graph, where C may or may not be empty. If C is empty, then

K]I is a split partition of the graph. Otherwise, the graph has a unique pseudo-split
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partition. Similar to split graphs, the complement of a pseudo-split graph remains a

pseudo-split graph.

Proposition 5.5. Let G be a self-complementary pseudo-split graph with a pseudo-

split partition K ] I ] C. If C 6= ∅, then G − C is a self-complementary split graph

with an even order.

Proof. Let σ be an antimorphism of G. In both G and its complement, the only C5

is induced by C. Thus, σ(C) = C. Since C is complete to K and nonadjacent to I,

it follows that σ(K) = I and σ(I) = K. Thus, G−C is a self-complementary graph.

It is clearly a split graph and has an even order.

In the rest of this section, we are exclusively concerned with partitions of the

vertex set of a graph G into four nonempty subsets. A partition P = {V1, V2, V3, V4}

of V (G) is a rectangle partition if V1 is complete to V2 and nonadjacent to V3, while

V4 is complete to V3 and nonadjacent to V2, or a diamond partition if V1 is complete

to V2 while V3 is nonadjacent to V4. See Fig. 1.9. Trotignon [118] conjectured that

every C5-free self-complementary graph G admits one of the two partitions.

Lemma 5.6. Every self-compelemtary split graph G admits a diamond partition. If

G has an even order, then it admits a diamond partition that is self-complementary.

Proof. Let K ] I be a split partition of G. For any proper and nonempty subset

K ′ ⊆ K and proper and nonempty subset I ′ ⊆ I, the partition

K ′, K \K ′, I ′, I \ I ′

is a diamond partition.

Now suppose that the order of G is 4k. We fix an arbitrary antimorphism σ =

σ1σ2 · · ·σp of G. We may assume without loss of generality that for all i = 1, . . . , p,

the first vertex in σi is in K. For j = 1, . . . , |σi|, we assign the jth vertex of σi to
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Vj (mod 4). For j = 1, . . . , 4, we have σ(Vj) = Vj+1 (mod 4). Moreover, V1 ∪ V3 = K

and V2 ∪ V4 = I. Thus, {V1, V3, V2, V4} is a self-complementary diamond partition of

G.

For a positive integer k, let Zk denote the graph obtained from a P4 as follows.

We substitute each degree-one vertex with an independent set of k vertices, and each

degree-two vertex with a clique of k vertices. For example, P4 itself is Z1 and depicted

in Figure 1.7(b) is Z2.

Lemma 5.7. A self-complementary split graph admits a rectangle partition if and

only if it is an Zk.

Proof. The sufficiency is trivial, and we consider the necessity. Suppose that G is a

self-complementary split graph and it has a rectangle partition {V1, V2, V3, V4}. Let

K ] I be a split partition of G. There are at least one edge and at least one missing

edge between any three parts. Thus, vertices in K are assigned to precisely two

parts in the partition. By the definition of rectangle partition, K is either V2 ∪ V3 or

V1 ∪ V4. Assume without loss of generality that K = V2 ∪ V3. Since V2 is complete

to V1 and nonadjacent to V4, any antimorphism of G maps V2 to either V1 or V4. If

|V2| 6= |V3|, then the numbers of edges between K and I in G and G are different.

This is impossible. It further implies |V1| = |V4|, and hence G is precisely Z|V1|.

5.2 Forcibly self-complementary degree sequences

The degree sequence of a graph G is the sequence of degrees of all vertices, listed in

non-increasing order, and G is a realization of this degree sequence. For our purpose,

it is more convenient to use a compact form of degree sequences where the same
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degrees are grouped:

(dni
i )`i=1 = (dn1

1 , . . . , d
n`
` ) =

d1, . . . , d1︸ ︷︷ ︸
n1

, d2, . . . , d2︸ ︷︷ ︸
n2

, . . . , d`, . . . , d`︸ ︷︷ ︸
n`

 .

Note that we always have d1 > d2 > · · · > d`. For example, the degree sequences of

the first two graphs in Fig. 1.8 are both

(
54, 24

)
= (5, 5, 5, 5, 2, 2, 2, 2).

These two graphs are not isomorphic; thus, a degree sequence may have non-isomorphic

realizations.

For four vertices v1, v2, v3, and v4 such that v1 is adjacent to v2 not v3 while v4

is adjacent to v3 not v2, the operation of replacing v1v2 and v3v4 with v1v3 and v2v4

is a 2-switch, denoted as (v1v2, v3v4) → (v1v3, v2v4). See Fig. 5.1. It is easy to check

that this operation does not change the degree of any vertex.

v1

v2 v3

v4 v1

v2 v3

v4 v1

v2 v3

v4

Figure 5.1: Illustrations for 2-switches.

Lemma 5.8 ([110]). Two graphs have the same degree sequence if and only if they

can be transformed to each other by a series of 2-switches.

The subgraph induced by the four vertices involved in a 2-switch operation must

be a 2K2, P4, or C4. Moreover, after the operation, the four vertices induce an

isomorphic subgraph. Since a split graph G cannot contain any 2K2 or C4 [49], a

2-switch must be done on a P4. In any split partition K ] I of G, the two degree-

one vertices of P4 are from I, while the others from K. The graph remains a split

96
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graph after this operation. Thus, if a degree sequence has a realization that is a split

graph, then all its realizations are split graphs [49]. A similar statement holds for

pseudo-split graphs [85].

We do not have a similar claim on degree sequences of self-complementary graphs.

Clapham and Kleitman [36] have fully characterized all such degree sequences, called

potentially self-complementary degree sequences. For simplicity, we only need a sim-

pler statement on even-order graphs.

Theorem 5.9 ([33, 36]). A degree sequence (dni
i )`i=1 of even order n is potentially

self-complementary if and only if ` is even, and for all i = 1, . . . , `/2,

• di + d`+1−i = n− 1, and

• ni = n`+1−i is even.

Moreover, for all p = 1, . . . , `/2

p∑
i=1

nidi ≤

(
p∑
i=1

ni

)(
n− 1−

p∑
i=1

ni
2

)
.

A degree sequence is forcibly self-complementary if all of its realizations are self-

complementary. We refer to the graph in Figure 1.7(a) as a trampoline graph.

Proposition 5.10. The following degree sequences are all forcibly self-complementary:

(22, 12), (25), and (54, 24).

Proof. Applying a 2-switch operation to a realization of (22, 12) or (25) leads to an

isomorphic graph. A 2-switch operation transforms a Z2 into a trampoline, and vice

versa. Thus, the statement follows from Lemma 5.8.

We take p vertex-disjoint graphs S1, S2, . . ., Sp, each of which is isomorphic to

P4, Z2, or trampoline. For i = 1, . . . , p, let Hi ] Li denote the unique split partition
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of Si (Lemma 5.3). Let C be another set of 0, 1, or 5 vertices. We add all possible

edges among
⋃p
i=1Hi to make it a clique, and for each i = 1, . . . , p, add all possible

edges between Hi and
⋃p
j=i+1 Lj.

1 Finally, we add all possible edges between C and⋃p
i=1Hi, and add edges to make C a cycle if |C| = 5. Let E denote the set of graphs

that can be constructed above.

Lemma 5.11. All graphs in E are self-complementary pseudo-split graphs, and their

degree sequences are forcibly self-complementary.

Proof. Let G be any graph in E . It has a split partition (
⋃p
i=1Hi ∪ C) ]

⋃p
i=1 Li

when |C| ≤ 1, and a pseudo-split partition (
⋃p
i=1 Hi) ] (

⋃p
i=1 Li) ] C otherwise. To

show that it is self-complementary, we construct an antimorphism σ for it. For each

i = 1, . . . , p, we take an antimorphism σi of Si, and set σ(x) = σi(x) for all x ∈ V (Si).

If C consists of a single vertex v, we set σ(v) = v. If |C| = 5, we take an antimorphism

σp+1 of C5 and set σ(x) = σp+1(x) for all x ∈ C. It is easy to verify that a pair of

vertices u, v are adjacent in G if and only if σ(u) and σ(v) are adjacent in G.

For the second assertion, we show that applying a 2-switch to G in E leads to

another graph in E . Since G is a split graph, a 2-switch can only be applied to a P4.

For two vertices v1 ∈ Hi and v2 ∈ Hj with i < j, we have N [v2] ⊆ N [v1]. Thus, there

cannot be any P4 involving both v1 and v2. A similar argument applies to two vertices

in Li and Lj with i 6= j. Therefore, a 2-switch can be applied either inside C or inside

Si for some i ∈ {1, . . . , p}. By Proposition 5.10, the resulting graph is in E , hence

self-complementary. Thus, the degree sequence of G is forcibly self-complementary

by Lemma 5.8.

We refer to graphs in E as elementary self-complementary pseudo-split graphs.

The rest of this section is devoted to showing that all realizations of forcibly self-

1The reader familiar with threshold graphs may note its use here. If we contract Hi and Li

into two vertices, the graph we constructed is a threshold graph. Threshold graphs have a stronger
characterization by degree sequences. Since a threshold graph free of 2K2, P4, and C4, no 2-switch
is possible on it. Thus, the degree sequence of a threshold graph has a unique realization.
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complementary degree sequences are elementary self-complementary pseudo-split graphs.

We start with a simple observation on potentially self-complementary degree se-

quences with two different degrees. It can be derived from Clapham and Kleit-

man [36]. We provide a direct and simple proof here.

Proposition 5.12. There is a self-complementary graph of the degree sequence (d2k, (4k−

1− d)2k) if and only if 2k ≤ d ≤ 3k− 1. Moreover, there exists a self-complementary

graph with a one-cycle antimorphism.

Proof. Necessity. By the definition of degree sequences, d > 4k − 1 − d. Therefore,

d ≥ 2k. Let H be the set of vertices of degree d and L the set of vertices of degree

4k − 1 − d. Each vertex in H has at most |H| − 1 = 2k − 1 neighbors in H. Thus,

the number of edges between H and L is at least 2k(d − 2k + 1). On the other

hand, the number of edges between H and L is at most 2k(4k − 1 − d). Thus,

4k − 1− d ≥ d− 2k + 1, and the claim follows.

Sufficiency. We construct a self-complementary graph that has an antimorphism

with exactly one cycle (v1v2 · · · , v4k) by using the method of Gibbs [58]. Note that

the adjacencies between the first vertex and the other vertices decide the graph. We

set the neighborhood of v1 to be {v2, v6, . . . , v4k−2} ∪X, where

X =

{v3, v5, . . . , vd−k} ∪ {v2k+1} ∪ {v4k−1, v4k−3, . . . , v5k−d+2}, d 6≡ k (mod 2)

{v3, v5, . . . , vd−k+1} ∪ {v4k−1, v4k−3, . . . , v5k−d+1}, d ≡ k (mod 2)

In the constructed graph, all odd-number vertices have degree d, and the others

4k − d− 1.

The next proposition considers the parity of the number of vertices with a specific

degree. It directly follows from Clapham and Kleitman [36], and Xu and Wong [121,

Theorem 4.4].
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Proposition 5.13 ([36,121]). Let G be a graph of order 4k and v an arbitrary vertex

of G. Let H and L be the 2k vertices of the largest and smallest degrees, respectively

in G. If G is self-complementary, then all the following are even: the number of

vertices with degree dG(v) in G, the number of vertices with degree dG[H](v) in G[H],

and the number of vertices with degree dG[L](v) in G[L].

In general, it is quite challenging to verify that a degree sequence is indeed

forcibly self-complementary. On the other hand, to show that a degree sequence

is not forcibly self-complementary, it suffices to construct a realization that is not

self-complementary. We have seen that degree sequences (25), (22, 12), and (54, 24)

are forcibly self-complementary. They are the only ones of these forms.

Proposition 5.14. The following degree sequences are not forcibly self-complementary.

i) ((2k)4k+1), where k ≥ 2.

ii) (d2k, (n− 1− d)2k), where k ≥ 2 and d 6= 5.

iii) (d2k1 , (d− 1)2k2 , (n− d)2k2 , (n− 1− d)2k1), where k1, k2 > 0.

Proof. The statement holds vacuously if the degree sequence is not potentially self-

complementary. Henceforth, we assume that they are.

Figure 5.2: The graph C2
9 , with degree sequence (49), is not self-complementary.

(i) We start from a cycle graph on 4k+ 1 vertices, and add an edge between every

pair of vertices with distance at most k on this cycle. The resulting graph is denoted

as Ck
4k+1. As an example, the graph for k = 2 is in Fig. 5.2. To see that the graph
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Ck
4k+1 is not self-complementary, note that for any vertex v, there are 3k(k − 1)/2

edges among N(v) and k(k − 1)/2 missing edges among V (G) \N [v].

(ii) By Proposition 5.12, we have that 2k ≤ d ≤ 3k− 1. The graph in Fig. 5.3 has

degree sequence (44, 34) and is not self-complementary. In the rest, k ≥ 3.

Figure 5.3: A graph, with degree sequences (44, 34), is not self-complementary.

Case 1: d = 3k − 1. Starting with a P4, we substitute each degree-one vertex

with an independent set of k vertices, and each degree-two vertex with a clique of k

vertices. The degree sequence is ((3k − 1)2k, (k)2k). We label the vertices of degree

3k − 1 as u1, . . . , u2k and vertices of degree k as v1, . . . , v2k. For i = 1, . . . , k, we

conduct (ukvi, uk+ivk+i) → (ukvk+i, uk+ivi). See Fig. 5.4 for the example of k = 3.

We show that the resulting graph is not self-complementary. Note that the k − 1

vertices u1, . . . , uk−1 are twins (having the same neighborhood). It suffices to argue

that there are no twins in v1, . . . , v2k. Since N(uk) = {vk+1, . . . , v2k}, we separate

them into v1, . . . , vk and vk+1, . . . , v2k. For 1 ≤ i < j ≤ k, vertices vi and vj are not

twins because uk+i is adjacent to vi but not vj. For k + 1 ≤ i < j ≤ 2k, vertices vi

and vj are not twins because ui is adjacent to vj but not vi.

(a) (b)

Figure 5.4: Two graphs with degree sequence (86, 36), where (a) is self-complementary
but (b) not.

Case 2: d < 3k−1. Using the method shown in Proposition 5.12, we can construct

a realization G of (d2k, (n − 1 − d)2k). Note that G is self-complementary with an
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antimorphism σ = (v1v2 · · · , v4k). Let H = {v1, v3, v5, v7, . . . , v4k−1}. Note that the

vertices in H share the same degree d.

If v1 is adjacent to v2k+1, then it is not adjacent to v2k−1; otherwise, from our

construction, v2k−1 must be vd−k and it implies that d = 3k − 1, a contradiction.

The fact that v1 is adjacent to v2 implies that v2k−1 is adjacent to v2k and v2k is not

adjacent to v2k+1. We conduct the 2-switch (v1v2k+1, v2k−1v2k)→ (v1v2k−1, v2kv2k+1),

and denote by G′ the resulting graph. It can be observed that

|NG′(v) ∩H| =


|NG(v) ∩H|+ 1 if v = v2k−1,

|NG(v) ∩H| − 1 if v = v2k+1, and

|NG(v) ∩H| if v ∈ H \ {2k − 1, 2k + 1}.

The graph G′ is not self-complementary by Proposition 5.13.

We now consider the case that v1 is not adjacent to v2k+1. From our construc-

tion, we know that d − k is even and v1 is adjacent to vd−k+1 and not adjacent to

vd−k+3. The fact that v1 is adjacent to v2 and not adjacent to v4 implies vd−k+3 is

adjacent to vd−k+4 and vd−k+1 is not adjacent to vd−k+4. By conducting the 2-switch

(v1vd−k+1, vd−k+3vd−k+4)→ (v1vd−k+3, vd−k+1vd−k+4), the resulting graph G′ have the

same degree sequence as G. By using arguments similar to the previous paragraph,

it can be shown that G′ is not self-complementary.

(iii) We use τ to denote the degree sequence (d2k1 , (d− 1)2k2 , (n− d)2k2 , (n− 1−

d)2k1). Since τ is potentially self-complementary, the inequality

k1d+ k2(d− 1) ≤ (k1 + k2)(n− 1− (k1 + k2))

should be satisfied by Theorem 5.9. Therefore,

d ≤ n− 1− (k1 + k2) +
k2

k1 + k2

< n− 1− (k1 + k2).

102



5.2. Forcibly self-complementary degree sequences

By using the same theorem, it can be seen that the integer sequence (d2k1+2k2 , (n −

1− d)2k1+2k2) is potentially self-complementary.

Let k = k1 + k2. We can construct a realization G of (d2k, (n− 1− d)2k) by using

the method shown in Proposition 5.12. Note that G is self-complementary with an

antimorphism σ = (v1v2 · · · , v4k) and all odd-numbered vertices have degree d, and

the others have degree 4k − d− 1. The fact that v1 is adjacent to v3 implies σ4i(v1)

is adjacent to σ4i(v3) for all i = 1, 2, . . . , k − 1. Furthermore, since v1 is adjacent to

v2, the vertex v3 is adjacent to v4 and v4 is not adjacent to v5. Moreover, we can

further deduce that {v5} is complete to {v2, v6, . . . , v4k−2} since {v1} is complete to

{v2, v6, . . . , v4k−2}.

We claim that v1 is adjacent to v5 in G. Suppose v1 is not adjacent to v5. Then

v1 is only adjacent to v3 and v4k−1 in {v3, v5, v7, . . . , v4k−1}. Since d > n− 1− d, we

have that n can only be eight and the degree sequence of G is (44, 34). Note that

d > d − 1 > n − 2 > n − 1 − d. The difference between d and n − 1 − d is at least

three. We encounter a contradiction.

We now remove the edge σ4i(v1)σ4i(v3) and add edge σ4i+1(v1)σ4i+1(v3) for all

i = 0, 1, 2, . . . , k2−1. The resulting graph G′ is a realization of the degree sequence τ .

In G′, the vertex v1 is adjacent to v5 and not adjacent to v3. The vertex v4 is adjacent

to v3 and not adjacent to v5. By conducting the 2-switch (v1v5, v3v4)→ (v1v3, v4v5),

the resulting graph G′′ have the same degree sequence as G′.

We show that G′′ is not self-complementary. Let H = {v1, v3, v5, v7, . . . , v4k−1}

and L = {v2, v4, v6, . . . , v4k}. Suppose G′′ is a self-complementary graph. Then any

antimorphism σ′ of G′′ maps H to L and vice versa. Since v5 is adjacent to v4 and {v5}

is complete to {v2, v6, . . . , v4k−2}, the vertex v5 has k + 1 neighbors in L. Therefore,

σ′(v5) is in L and it has k+ 1 non-neighbors in H. Every vertex in L has k neighbors

in H and |H| = 2k. No vertex in L can have k+1 non-neighbors in H. We encounter

a contradiction.
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We fix a forcibly self-complementary degree sequence τ = (dn1
1 , . . . , d

n`
` ) and a

realization G of τ . For each i = 1, . . . , `, let

Vi = {v ∈ V (G) | d(v) = di}, V +
i = Vi ∪ V`+1−i,

and we define the ith slice of G as the induced subgraph G[V +
i ]. Note that Vi = V`+1−i

and V +
i = Vi when ` is odd and i = (`+ 1)/2.

Each slice must be self-complementary, and more importantly, its degree sequence

is forcibly self-complementary.

Lemma 5.15. For all i = 1, . . . , `, the degree sequence of the subgraph G[V +
i ] is

forcibly self-complementary.

Proof. Let σ be an antimorphism of G. Since d1 > d2 > · · · > d`, we have σ(Vi) =

V`+1−i and σ(V`+1−i) = Vi (note that Vi and V`+1−i are either identical or disjoint).

Therefore, ni = n`+1−i. By Proposition 5.4b, the cycles of σ consisting of vertices

from V +
i is an antimorphism of G[V +

i ], and G[V +
i ] is self-complementary. To show

that the degree sequence of G[V +
i ] is forcibly self-complementary, let S be any other

realization of the same degree sequence. By Lemma 5.8, we can transform G[V +
i ]

to S by a sequence of 2-switches applied on vertices in V +
i . We can apply the same

sequence of 2-switches to G, and denote by G′ the resulting graph. By Lemma 5.8,

the degree sequence of G′ is also τ , and S is the ith slice of G′. By the first assertion,

S is self-complementary.

Lemma 5.15 imposes limitations on possible 2-switches applicable to G.

Corollary 5.16. For all i = 1, . . . , `, the number of edges in G[V +
i ] or between Vi

and V`+1−i cannot be changed by any sequence of 2-switches.

Proof. Let G′ be the graph obtained from G by a sequence of 2-swithces. By the

definition of 2-swithces, every vertex has the same degree in G and G′. Since G′ is
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a realization of τ , the subgraph G′[V +
i ] is self-complementary. Thus, the number of

edges in G′[V +
i ] is the same as in G[V +

i ]. Since there are an antimorphism σ of G

and an antimorphism σ′ of G′ such that σ(Vi) = σ′(Vi) = V`+1−i, the number of edges

between Vi and V`+1−i are the same.

All the vertices in Vi share the same degree in the ith slice. In other words, the

ith slice has at most two distinct degrees.

Lemma 5.17. For each i ∈ {1, . . . , `}, the vertices in Vi have the same degree in

G[V +
i ].

Proof. Suppose for contradiction that vertices in Vi have different degrees in G[V +
i ].

Case 1, there are two vertices v1 and v2 in Vi such that

d = dG[V +
i ](v1) > dG[V +

i ](v2) + 1.

There exists a vertex x1 ∈ V +
i adjacent to v1 but not to V2. On the other hand, since

dG(v1) = dG(v2), there must be a vertex

x2 ∈ N(v2) \ (N(v1) ∪ v+
i ).

We apply the 2-switch (x1v1, x2v2)→ (x1v2, x2v1) to G and denote by G′ the resulting

graph. By Lemma 5.15, G[V +
i ] is self-complementary, and hence there are an even

number of vertices with degree d in G[V +
i ] by Theorem 5.9. The degree of a vertex x

in G′[V +
i ] is 

dG[V +
i ](x)− 1 x = v1,

dG[V +
i ](x) + 1 x = v2,

dG[V +
i ](x) otherwise.

Thus, the number of vertices with degree d in G′[V +
i ] is odd. Hence, G′[V +

i ] is not

self-complementary by Theorem 5.9. By Lemma 5.8, G′ is also a realization of τ , and
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hence G′[V +
i ] is self-compelemtary by Lemma 5.15. We end with a contradiction.

Case 2, the degree of vertices in Vi is either d or d − 1 for some d in G[V +
i ]. By

Lemma 5.15, the degree sequence of G[V +
i ] is forcibly self-complementary. It cannot

be of the form (d2k1 , (d − 1)2k2 , (n − d)2k2 , (n − 1 − d)2k1) by Proposition 5.14(iii).

Thus, the degree sequence of G[V +
i ] must be (d2k, (d− 1)2k) for some k. By Proposi-

tion 5.14(ii), k = 1 and d = 2. Let v1v2v3v4 denote the path induced by V +
i . By the

applicability of the 2-switch (v1v2, v3v4) → (v1v3.v2v4) and Corollary 5.16, we must

have i = `+1− i. Also note that ` > 1 because vertices in Vi have different degrees in

G[Vi]. Let σ be an antimorphism of G. In every cycle disjoint from Vi, the neighbors

of v1 and v2 differ by an even number. Thus, dG(v1) 6= dG(v2), a contradiction.

We can now settle the interval structure of each slice.

Lemma 5.18. For all i = 1, . . . , b`/2c,

i) the slice G[V +
i ] is isomorphic to either a P4, a Z2, or a trampoline, and

ii) Vi ] V`+1−i is a split partition of G[V +
i ].

Moreover, if ` is odd, the slice G[V(`+1)/2] is either a C5 or consists of a single vertex.

Proof. For all i = 1, . . . , `, the induced subgraph G[V +
i ] of G is self-complementary

by Lemma 5.15. Furthermore,G[V +
i ] is either a regular graph or has two different

degrees (Lemma 5.17). For all i = 1, . . . , b`/2c, the sets Vi and V`+1−i are disjoint.

Hence, |V +
i | is 4k for some positive k, and the degree sequence of G[V +

i ] is of the

form (d2k, (4k− 1− d)2k). By Lemma 5.15 and Proposition 5.14(ii), k = 1 and d = 5.

Thus, the degree sequence of G[Vi] is either (22, 12) or (54, 24), whose realizations are

either a a P4, a Z2, or a trampoline. Let Hi ] Li be the unique split partition of

G[V +
i ]. Suppose to the contradiction of (ii) that there is a vertex v1 ∈ Vi ∩ Li. We

can find a vertex v2 ∈ Hi \N(v1) and a vertex x2 ∈ N(v2) ∩ Li. Note that x2 is not

adjacent to v1. Since dG(v1) > dG(v2) while dG[V +
i ](v1) < dG[V +

i ](v2), we can find a
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vertex x1 in V (G) \ V +
i that is adjacent to v1 but not to v2. The applicability of the

2-switch (x1v1, x2v2)→ (x1v2, x2v1) violates Corollary 5.16.

If ` is odd, then G[V(`+1)/2] is a regular graph. Hence, the degree sequence of

G[V(`+1)/2] is ((2k)4k+1), where k = (|V(`+1)/2| − 1)/4. By Lemma 5.15 and Proposi-

tion 5.14(i), k ≤ 1. The statement follows.

The next is on edges between different slices.

Lemma 5.19. For every i ∈ {1, 2, . . . , b`/2c}, if a vertex in V (G)\Vi has a neighbor

in V`+1−i, then it is adjacent to all the vertices in V +
i .

Proof. Let x1 ∈ V (G) \ Vi be adjacent to v1 ∈ V`+1−i. Since V`+1−i is an independent

set, it dose not contain x1. Suppose for contradiction that V +
i * N(x1), and let v2 be

a vertex in V +
i \N(x1). If v2 ∈ Vi, we can find a vertex x3 ∈ Vi\N(v1) by Lemma 5.18.

The applicability of the 2-switch (x1v1, v2x3) → (x1v2, v1x3) violates Corollary 5.16.

In the rest, x2 ∈ V`+1−i.

If there exists a vertex x2 ∈ Vi ∩ N(v2) \ N(v1), then we can conduct the 2-

switch (x1v1, x2v2) → (x1v2, x2v1), but the ith slice of the resulting graph cannot

be isomorphic to P4, Z2, or trampoline, contradicting Lemma 5.18(i). Therefore,

Vi ∩ N(v2) ⊆ N(v1), and G[V +
i ] must be isomorphic to Z2. We can find a vertex

x3 in Vi \ N(v1) and a vertex v3 in V`+1−i ∩ N(x3). Note that neither x2v3 nor

x3v1 is an edge. We may either conduct the 2-switch (x1v3, x2v2) → (x1v2, x2v3)

or (x1v1, x3v3) → (x1v3, x3v1) to G, depending on whether x1 is adjacent to v3. In

either case, the ith slice of the resulting graph contradicts Lemma 5.18(i). These

contradictions conclude the proof.

We are now ready to prove the main lemma.

Lemma 5.20. The graph G is an elementary self-complementary pseudo-split graph.

107



Chapter 5. Self-complementary (Pseudo-)Split Graphs

Proof. Let σ be an antimorphism of G. For each i ∈ {1, 2, . . . , b`/2c}, we denote

Hi = Vi and Li = V`+1−i. By Lemma 5.18, Hi ] Li is a split partition of G[V +
i ]. Let

i, j be two distinct indices in {1, 2, . . . , b`/2c}. We argue that there cannot be any

edge between Hi and Lj if i > j. Suppose for contradiction that there exists x ∈ Hi

that is adjacent to y ∈ Lj for some i > j. By Lemma 5.19, x is adjacent to all the

vertices in G[V +
j ]. Consequently, σ(x) is in Li and has no neighbor in G[V +

j ]. Let

v1 be a vertex in Hj. Since v1 is not adjacent to σ(x), it has no neighbor in Li by

Lemma 5.19. Note that G[V +
i ] is either a P4, a Z2, or a trampoline, and so dose

G[V +
j ]. If we focus on the graph induced by V +

i ∪ V +
j , we can observe that

dG[V +
i ∪V

+
j ](v1) < dG[V +

i ∪V
+
j ](x).

Since dG(v1) > dG(x), we can find a vertex x1 in V (G) \ (V +
i ∪ V +

j ) that is adjacent

to v1 but not x. Let v2 be a neighbor of x in Li. Note that v2 is not adjacent to

v1. We can conduct the 2-switch (x1v1, xv2) → (x1x, v1v2), violating Corollary 5.16.

Therefore, Li is nonadjacent to
⋃b`/2c
p=i+1Hp for all i = 1, . . . , b`/2c. Since σ(Li) = Hi

and σ(
⋃b`/2c
p=i+1Hp) =

⋃b`/2c
p=i+1 Lp, we can obtain that Ki is complete to

⋃b`/2c
p=i+1 Ip.

Moreover, Hi is complete to
⋃b`/2c
p=i+1Hp by Lemma 5.19, and hence Li is nonadjacent

to
⋃b`/2c
p=i+1 Lp.

We are done if ` is even. In the rest, we assume that ` is odd. By Lemma 5.18,

the subgraph induceded by V(`+1)/2 is either a C5 or contains exactly one vertex.

It suffices to show that V(`+1)/2 is complete to Hi and nonadjacent to Li for every

i ∈ {1, 2, . . . , b`/2c}. Suppose σ(v) = v. When V(`+1)/2 = {v}, the claim follows from

Lemma 5.19 and that σ(v) = v and σ(Vi) = V`+1−i. Now |V(`+1)/2| = 5. Suppose for

contradiction that there is a pair of adjacent vertices v1 ∈ V(`+1)/2 and x ∈ Li. Let v2 =

σ(v1). By Lemma 5.19(ii), v1 is adjacent to all the vertices in G[V +
i ]. Accordingly,

v2 has no neighbor in G[V +
i ]. Since G[V(`+1)/2] is a C5 , we can find v3 ∈ V(`+1)/2 that

is adjacent to v2 but not v1. We can conduct the 2-switch (xv1, v2v3) → (xv2, v1v3)

and denote by G′ as the resulting graph. It can be seen that G′[V(`+1)/2] is not a C5,
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contradicting Lemma 5.18.

Lemmas 5.11 and 5.20 imply Theorem 1.6 and Rao’s characterization of forcibly

self-complementary degree sequences [105].

Theorem 5.21 ([105]). A degree sequence (dni
i )`i=1 is forcibly self-complementary if

and only if for all i = 1, . . . , b`/2c,

n`+1−i = ni ∈{2, 4}, (5.1)

d`+1−i = n− 1− di=
i∑

j=1

nj −
1

2
ni, (5.2)

and n(`+1)/2 ∈ {1, 5} and d(`+1)/2 = 1
2

(n− 1) when ` is odd.

Proof. The sufficiency follows from Lemma 5.11: note that an elementary self-complementary

pseudo-split graph in which G[V +
i ] has 2ni vertices satisfies the conditions. The ne-

cessity follows from Lemma 5.20.

5.3 Enumeration

In this section, we consider the enumeration of self-complementary pseudo-split

graphs and self-complementary split graphs. The following corollary of Proposi-

tions 5.4 and 5.5 focuses us on self-complementary split graphs of even orders. Let

λn and λ′n denote the number of split graphs and pseudo-split graphs, respectively,

of order n that are self-complementary. For convenience, we set λ0 = 1.

Corollary 5.22. For each k ≥ 1, it holds λ4k+1 = λ4k. For each n > 0,

λ′n =

λn n ≡ 0 (mod 4),

λn−1 + λn−5 n ≡ 1 (mod 4).
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Let σ = σ1 . . . σp be an antimorphism of a self-complementary graph with 4k

vertices. We find the number of ways in which edges can be introduced so that the

result is a self-complementary split graph with σ as an antimorphism. We need to

consider adjacencies among vertices in the same cycle and the adjacencies between

vertices from different cycles of σ. For the second part, we further separate into two

cases depending on whether the cycles have the same length. We use G to denote a

resulting graph and denote by Gi the graph induced by the vertices in the ith cycle,

for i = 1, . . . , p. By Lemma 5.3, G has a unique split partition and we refer to it as

K ] I.

(i) The subgraph Gi is determined if it has been decided whether vi1 is to be

adjacent or not adjacent to each of the following |σi|
2

vertices in σi. Among those |σi|
2

vertices, half of them are odd-numbered in σi. Therefore, vi1 is either adjacent to all

of them or adjacent to none of them by Lemma 5.3. The number of adjacencies to

be decided is |σi|
4

+ 1.

(ii) The adjacencies between two subgraphs Gi and Gj of the same order are

determined if it has been decided whether vi1 is to be adjacent or not adjacent to

each of the vertices in Gj. By Lemma 5.3, the vertex vi1 and half of vertices of Gj

are decided in K or in I after (i). The number of adjacencies to be decided is
|σj |
2

.

(iii) We now consider the adjacencies between two subgraphs Gi and Gj of different

orders. We use gcd(x, y) to denote the greatest common factor of two integers x and

y. The adjacencies between Gi and Gj are determined if it has been decided whether

vi1 is to be adjacent or not adjacent to each of the first gcd(|σi|, |σj|) vertices of Gj.

Among those gcd(|σi|, |σj|) vertices of Gj, half of them are decided in the same part

of K ] I as vi1 after (i). The number of adjacencies to be decided is 1
2
gcd(|σi|, |σj|).

By Lemma 5.1, |σi| ≡ 0 (mod 4) for every i = 1, . . . , p. Let c be the cycle

structure of σ. We use cq to denote the number of cycles in c with length 4q for every
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q = 1, 2, . . . , k. The total number of adjacencies to be determined is

P =
k∑
q=1

(cq(q + 1) +
1

2
cq(cq − 1) · 2q) +

∑
1≤r<s≤k

crcs ·
1

2
gcd(4r, 4s)

=
k∑
q=1

(qc2
q + cq) + 2

∑
1≤r<s≤k

crcsgcd(r, s) .

For each adjacency, there are two choices. Therefore, the number of labeled self-

complementary split graphs with this σ as an antimorphism is 2P .

The number of distinct permutations of the cycle structure c consisting of cq cycles

of length 4q for every q = 1, 2, . . . , k is

(4k)!∏k
q=1(4q)cq · cq!

,

and it is the number of possible choices for σ [35]. Let C4k be the set that contains all

cycle structures c that satisfy
∑k

q=1 cq · 4q = 4k. Then the number of antimorphisms

with all possible labeled self-complementary split graphs with 4k vertices correspond-

ing to each is ∑
c∈C4k

(4k!)∏k
q=1(4q)cq · cq!

2P . (5.3)

For a graph G with 4k vertices, let AG be the set of automorphisms of G. Then,

the number of different labelings of G is (4k)!/|AG|. If G is self-complementary, then

the number of antimorphisms of G is equal to the number of automorphisms of G. Let

S be the set of all non-isomorphic self-complementary split graphs with 4k vertices

and let λ4k = |S|. The number of labeled self-complementary split graphs with all

possible antimorphisms corresponding to each is equal to

∑
G∈S

|AG|
(4k)!

|AG|
= λ4k (4k)!. (5.4)
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Let Equation (5.3) equals to Equation (5.4) and we solve for λ4k:

λ4k =
∑
c∈C4k

2P∏k
q=1(4q)cq · cq!

.

We list below the numbers of self-complementary (pseudo-)split graphs on up to

20 vertices.

n 4 5 8 9 12 13 16 17 20

split graphs 1 1 3 3 16 16 218 218 9,608

pseudo-split graphs 1 2 3 4 16 19 218 234 9,608

all 1 2 10 36 720 5,600 703,760 11,220,000 9,168,331,776
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Conclusions

We conclude this thesis by presenting an overview of open questions and con-

jectures that have captured our interest in the study of t-perfect graphs and self-

complementary graphs. We discuss these problems, exploring their significance and

potential implications. By presenting these open questions and conjectures, we aim

to stimulate further study and foster a deeper understanding of t-perfect graphs and

self-complementary graphs.

T-perfect graphs

Similar to the structural characterization of perfect graphs (the strong perfect

graph theorem), one may want to characterize t-perfect graphs by minimal forbidden

t-minors that are graphs minimally t-imperfect. T-perfect graphs are arised from the

odd cycle polytope, suggesting that odd cycles may hold key insights for understand-

ing t-perfection. Exploring the properties of odd cycles within minimally t-imperfect

graphs may provide valuable clues to unravel the underlying structure of these graphs.

We say an odd cycle in a graph is dominating if every vertex in the graph has a

neighbor on the cycle. In a graph G where every odd cycle is dominating, remov-
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ing the closed neighborhood of any vertex will result in a graph without any odd

cycles, and hence G is a near-bipartite graph. Upon checking the known minimally

t-imperfect graphs, all the graphs illustrated in Figure 1.2 are near-bipartite. Among

the (3, 3)-partitionable graphs shown in Figures 1.2, the graph C2
10 (the first graph

in the second row) is near-bipartite as well. However, upon checking the nine (3, 3)-

partitionable graphs that are not near-bipartite, it is evident that the only odd cycle

that is not dominating in those graphs is C3. Consequently, in every known mini-

mally t-imperfect graph, odd holes are dominating. This observation holds significant

importance in proving the main results presented in Chapters 3 and 4. We propose

the following conjecture regarding odd cycles in minimally t-imperfect graphs.

Conjecture 6.1. Every odd hole is dominating in a minimally t-imperfect graph.

We have seen that the (3, 3)-partitionable graph C2
10 is near-bipartite. Actually,

the near-bipartite graphs C7 and C3
13 are (2, 3)-partitionable and (4, 3)-partitionable

graphs, respectively. From this point of view, it may possible to find new minimally

t-imperfect graphs in the class of partitionable graphs.

For any (p, q)-partitionable graph, it can be verified that p ≥ 2 and q ≥ 2. In

the case where a (p, q)-partitionable graph is a minimally t-imperfect graph, we have

observed that q must be greater than three. This is due to the fact that every

(p, 2)-partitionable graph is an odd hole, which is known to be t-perfect. Moreover,

if q were larger than four, then the (p, q)-partitionable graph would contain a K4,

which would contradict its status as a minimally t-imperfect graph. As a result, p

can only be three. We now focus on (p, 3)-partitionable graphs. The graph C7 is

the only (2, 3)-partitionable graph and all (3, 3)-partitionable graphs are shown in

Figure 4.2. Some (4, 3)-partitionable graphs are found by Chvatal [32]. We have

inspected those graphs shown in Figures 3–6 of the paper [32], and confirmed that

they are not minimally t-imperfect. The graph C3
13 is the only known minimally t-

imperfect (4, 3)-partitionable graph. A method to construct all (p, 3)-partitionable
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graphs with p ≤ 9 has been introduced by Boros[12]. We pose an open question

regarding (p, 3)-partitionable graphs.

Question 6.2. Is there a (p, 3)-partitionable graph with p ≥ 5 that is minimally

t-imperfect?

The current list of minimally t-imperfect graphs has not been updated for around

six years. Every existing minimally t-imperfect graphs can be classified as a near-

bipartite graphs or a partitionable graph. We may want to know whether there exists

a minimally t-imperfect graph that is not in these two graph classes. According to

this, we propose the following conjecture.

Conjecture 6.3. A minimally t-imperfect graph is a near-bipartite graph or a (p, 3)-

partitionable graph with some p ≥ 2.

It is worth noting that all minimally t-imperfect graphs that are near-bipartite

have already been obtained. They are C7, C2
10, C3

13, C4
13, C7

19, odd wheels, and even

Möbius ladders. More results on this topic can be found in [18, 68, 116]. If Conjec-

ture 6.3 holds, then for any minimally t-imperfect graph, every vertex must satisfy

one of two conditions: either its neighbors form an independent set (i.e., for graphs

C4
13, C7

19, and even Möbius ladders), or the vertex is contained in a triangle (i.e., for

odd wheels and (p, 3)-partitionable graphs). In other words, every vertex is either

contractable or not contractable. To disprove Conjecture 6.3, it may be sufficient to

find a minimally t-imperfect graph that contains both a contractable vertex and a

vertex that is not contractable. Therefore, we tend to pose the following question.

Question 6.4. Can a minimally t-imperfect graph have a contractable vertex and a

vertex that is not contractable?

Chvátal [29] showed that a minimally t-imperfect graph cannot contain a clique

separator. Therefore, cut vertices are absent in such graphs, implying that every
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vertex in a minimally t-imperfect graph has a degree of at least two. Upon further

examination of the known minimally t-imperfect graphs, it can be observed that

every vertex in these graphs has a degree of at least three. An open question arises

as follows.

Question 6.5 ([21]). Is there a minimally t-imperfect graph that contains a vertex of

degree two?

A separation of a graph G is denoted by (G1, G2) and is defined as follows: G1

and G2 are induced subgraphs of G; G = G1 ∪ G2; and G− G1 6= ∅ 6= G − G2. The

order of the separation, denoted by |V (G1)∩V (G2)|, is the number of vertices shared

by both G1 and G2. Bruhn found a structural property for minimally t-imperfect

graphs that possess a separation of order two.

Lemma 6.6 ([21]). Let G be a minimally t-imperfect graph, and (G1, G2) a separation

of G with order at most two. Then exactly one of G1 and G2 is a path between two

vertices u and v in V (G1) ∩ V (G2). Moreover, (G1, G2) has order two, and u is not

adjacent to v in G.

Assuming a negative answer to Question 6.5, it follows that no minimally t-

imperfect graph can have a separation of order two. Consequently, every minimally

t-imperfect graph must be 3-connected. This motivates the following openquestion:

Question 6.7 ([21]). Are all minimally t-imperfect graphs 3-connected?

We next consider the number of vertices in minimally t-imperfect graphs. Our

observation of known minimally t-imperfect graphs indicates that only odd wheels,

even Möbius ladders, and (3, 3)-partitionable graphs have an even number of vertices.

This observation motivates the following question.

Question 6.8. Let G be a minimally t-imperfect graph. If G is not an odd wheel, an

even Möbius ladder, or a (3, 3)-partitionable graph, is the order of G necessarily odd?
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While discovering all minimally t-imperfect graphs may seem challenging, signif-

icant progress has been made by imposing restrictions on the graph structures. For

instance, the complete characterization of minimally t-imperfect graphs has been at-

tained for classes such as S1,1,1-free graphs [21], S1,1,2-free Theorem 1.1, and P5-free

graphs [18]. The class of S1,1,3-free graphs is a generalization of both S1,1,2-free graphs

and P5-free graphs, as is the class of S1,2,2-free graphs. It is worth exploring if the

existing techniques can be used to find all minimally t-imperfect graphs that are

S1,1,3-free or S1,2,2-free.

Question 6.9. Could we characterize t-perfection on S1,1,3-free or S1,2,2-free graphs?

Padberg [102] proved that for any minimally imperfect graph G, the clique poly-

tope PK(G) has exactly one non-integral extreme point, with all coordinates equal to

1
ω(G)

. Additionally, the independent set polytope of a minimally imperfect graph G

can be obtained by adding the full-rank inequality x(V (G)) ≤ α(G) to the description

of PK(G).

Motivated by perfect graphs, we aim to investigate whether the independent set

polytope of a minimally t-imperfect graph G can be obtained by adding the full-rank

inequality into the description of the odd cycle polytope POC(G). Benchetrit [11]

studied the independent set polytope of several minimally t-imperfect graphs, includ-

ing odd wheels, even Möbius ladders, and (p, 3)-partitionable graphs with p equals to

two and three. His results revealed that the independent set polytope of these graphs

can be derived by adding the full-rank inequality to the description of POC(G), with

the exception of odd wheels having more than four vertices. This motivates us to

pose the following conjecture.

Conjecture 6.10 ([11]). Let G be a minimally t-imperfect graph such that G is not

an odd wheel with more than four vertices. Then, the independent set polytope of G

can be described by the description of POC(G) together with the full-rank inequality.

We are also interested in the following question:
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Question 6.11 ([21]). Does the odd cycle polytope POC(G) on a minimally t-imperfect

graph G have precisely one extreme point that is not integral?

It follows from the observation of Edmonds and Giles [46] on total dual integrality

that every strongly t-perfect graph is t-perfect. The other direction remains an open

problem. In particular, we do not know whether all P5-free t-perfect graphs are

strongly t-perfect, though it is true for all claw-free t-perfect graphs [20] and fork-free

t-perfect graphs 1.1.

Conjecture 6.12 ([115]). Every t-perfect graph is strongly t-perfect.

To refute a graphG being strongly t-perfect, it suffices to identify a weight function

w such that the costs of all w-covers of G are greater than αw(G). For all the known

minimally t-imperfect graphs, the unit-weight function is a certificate. Note that

αw(G) = α(G) for unit weighting w.

Conjecture 6.13. Let w be the unit weight function to a graph G.

i) If G is t-perfect, then there is a w-cover of cost α(G).

ii) If G is a minimally t-imperfect graph, then there cannot be a w-cover of cost

α(G).

Note that the second statement of Conjecture 6.13 cannot be generalized to t-

imperfect graphs that are not minimal; e.g., the graph in Figure 6.1. For the unit-

weight function w, we have αw(G) = 3. On the other hand,

{{v1v2v3v4v5}, {v6v7}}

is a w-cover of cost 3. It is t-imperfect since K4 is a t-minor of G (doing t-contraction

at v3). To produce a certificate, we increase w(v3) to two (the weights of other vertices
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Figure 6.1: A counterexample.

remain one). The value of αw(G) remains 3, while no w-cover of G has a cost smaller

than 4.

An open question independent to Conjecture 6.13 is for which class of t-imperfect

graphs a unit-weight function is a negative certificate.

Question 6.14. Let w be the unit weight function. For what t-imperfect graph G,

the cost of a minimum w-cover of G is strictly greater than αw(G)?

Shepherd [69] conjectured that every t-perfect graph is three-colorable, which was

refuted by Laurent and Seymour [115]. The example of Laurent and Seymour [115]

needs four colors. It is known that a t-perfect graph can be three-colored if it is

claw-free, P5-free, or fork-free.

Conjecture 6.15 ([69,115]). Every t-perfect graph is 4-colorable.

If Conjecture 6.15 is refuted, is there a constant bound for the chromatic number?

Question 6.16. Is there a constant k such that every t-perfect graph has chromatic

number at most k?

Bounding the chromatic number χ(G) of a graph G in terms of other graph in-

variants, such as the clique number ω(G) and the maximum degree ∆(G), has a long

tradition. One well-established proposition in this field is that for any graph G, it

holds that ω(G) ≤ χ(G) ≤ ∆(G) + 1. In 1998, Reed [107] put forward a conjecture
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suggesting that the chromatic number χ(G) is upper-bounded by the average of the

lower bound ω(G) and the upper bound ∆(G) + 1:

Conjecture 6.17 (Reed’s Conjecture [107]). Every graph G satisfies χ(G) ≤ dω(G)+∆(G)+1
2

e.

Reed’s Conjecture is true in various graph classes, such as perfect graphs, graphs

with disconnected complements [104], certain types of triangle-free graphs [75], odd

hole-free graphs [7], and specific classes of P5-free graphs [7]. However, for the family

of triangle-free graphs, it is not yet known if the conjecture holds. In cases where

ω(G) = 2, the conjecture simplifies to the following:

Conjecture 6.18. If G is a triangle-free graph, then χ(G) ≤ ∆(G)
2

+ 2.

Previous findings have demonstrated that Conjecture 6.18 is true when ∆(G)

meets a particular requirement [75], or when the number of vertices in the graph is

at most 24 [59]. However, our concern lies with t-perfect graphs. Thus, it remains to

be determined if Reed’s conjecture holds true for this particular class of graphs.

Question 6.19. Does Reed’s conjecture hold for (triangle-free) t-perfect graphs?

Several results on the chromatic number of triangle-free t-perfect graphs are in

Marcus’ thesis [87] but no constant bound is known.

Question 6.20. Is there a constant k such that every triangle-free t-perfect graph has

chromatic number at most k?

Self-complementary graphs

The problem of determining whether two given graphs are isomorphic or not is

known as the graph isomorphism problem. Colbourn and Colbourn [37] showed that

the graph isomorphism problem for (regular) self-complementary graphs is polyno-

mially equivalent to the general graph isomorphism problem, making it GI-complete.
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Interestingly, even the task of determining whether a graph is self-complementary or

not falls under the GI-complete complexity class. Split graphs, on the other hand,

possess a remarkable property: they can be recognized solely based on their degree

sequences. However, despite this advantage, the isomorphism problem for split graphs

remains GI-complete. If we consider the graph isomorphism problem and recognition

problem on graphs that are not only self-complementary but also admit a split par-

tition, could the two problem be solved by an efficient algorithm? We are interested

in the following to questions.

Question 6.21. Is the graph isomorphism problem on self-complementary split graphs

GI-complete?

Question 6.22. Is the recognition problem on self-complementary split graphs GI-

complete?

Finaly, we recall the conjectures about partitions in self-complementary graphs.

Conjecture 6.23 (Trotignon [118]). Let G be a self-complementary graph of even

order. If G is C5-free, then G admits a rectangle or diamond partition.

We generalize Trotignon’s conjecture based on our study of self-complementary

partitions.

Conjecture 6.24. Let G be a self-complementary graph of even order. If G is C5-free,

then G admits a rectangle or diamond partition that is self-complementary.
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[108] Gerhard Ringel. Selbstkomplementäre Graphen. Arch. Math. (Basel), 14:354–

358, 1963. doi:10.1007/BF01234967.
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