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Abstract 

Acoustic black hole (ABH) techniques have demonstrated remarkable ability for passive 

vibration and noise control. As a result of a power-lawed thickness decrease, bending waves 

are slowed down to produce wave compression and energy concentration, conducive to 

vibration/sound radiation control and energy harvesting. However, the reduced thickness 

profile of a long and thin ABH beam poses a challenge for both numerical and experimental 

investigations. Particularly, a large vibration amplitude is produced around the ABH tip to 

result in significant geometric nonlinearities. In addition, manufacturing limitations may lead 

to imperfect geometry, such as initial curvature or a residual platform at the tip end of the beam, 

which can further affect the vibration responses of the nonlinear system. Besides, existing 

research shows that the ABH effect suffers from a deficiency at low frequencies, typically 

below the so-called cut-on frequency. Therefore, how to accurately model the geometric 

nonlinearity of ABH beams with imperfect geometry and to enhance the low-frequency ABH 

effect remains a bottleneck problem. 

 

In the first part of this thesis, an inextensible condensation model, with the consideration 

of the initial curvature, is proposed based on a geometrically exact model for an Euler-Bernoulli 

cantilever beam. The free boundary of the cantilever gives rise to more significant longitudinal 

motion, which increases the inertia effects in the beam vibration which is in turn enhanced by 

the initial curvature. Specific techniques are proposed to numerically implement the developed 

model with increased accuracy and robustness. Numerical simulations are then conducted to 

validate the proposed model through comparisons with the finite element method (FEM), to 
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examine the assumptions underpinning the model and to explore the salient physical features, 

in particular the inertia-induced effects in both linear and nonlinear cases. Results show a 

decrease in the natural frequencies due to the initial curvature effect, a transition of the first 

mode from hardening to softening caused by enhanced curvature-induced inertia effect, and a 

pronounced asymmetry of the higher-order modes with respect to frequencies. 

 

Then, the nonlinear features arising from these geometric factors in imperfect ABH beams 

are investigated, both numerically and experimentally. Geometric parameters of the ABH 

beams are updated according to the linear experimental results, which give a better geometry 

representation of the beams. Numerical results show that the hardening effect dominates in the 

first two modes of the perfect ABH beam due to the reduced nonlinear inertia effect by the 

tapered thickness. Then, geometric imperfections are intentionally introduced to the numerical 

model. With the consideration of the initial curvature, the hardening effect is enhanced by the 

locally curved ABH tip, which is different from its uniform counterpart, showing a hardening-

to-softening transition for the first mode. With an embedded platform of uniform thickness at 

the free end of the beam, the linear and nonlinear responses are dependent on the platform 

length alongside enhanced geometric nonlinearities. As a result, the second mode becomes 

softening-dominant in the platform-embedded ABH beam. The nonlinear experiments confirm 

that the embedded platform is the major geometric imperfection in the sample. Both 

simulations and experiments demonstrate the geometrically nonlinear features of ABH beams. 

 

 Due to the inefficiency of geometric nonlinearity, mechanical nonlinearity is introduced 
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into a cantilever ABH beam to enhance the low-frequency ABH effect through low-to-high 

frequency energy transfer. Using a grounded cable with cubic stiffness, the sweeping results 

(with excitation frequency below the cut-on frequency) show that the displacement of the low-

order modes of the nonlinear ABH beam decreases while the amplitude of its high-order 

harmonics increases compared to that of its linear counterpart, indicating a significant energy 

transfer phenomenon enabled by the cable in the nonlinear system. Due to the inherent ABH 

effect at high frequencies, the damped nonlinear ABH beam absorbs the transferred energy to 

result in a reduction of the vibration amplitude. To quantify the ABH effect under nonlinear 

conditions, the damping loss factor of the system is evaluated from energy viewpoint alongside 

the harmonic balance method. Below the cut-on frequency, the damping loss factor of some 

dominant modes in the ABH beam is drastically increased, indicating an enhanced ABH effect. 

This is also confirmed by the time response in the free decay test. Experiments demonstrate the 

energy transfer phenomenon and the efficient damping effect achieved in the nonlinear system. 

 

 As a final remark, the study sheds light on the physics behind the geometric and 

mechanical nonlinear features of ABH beams, alongside useful analysis and numerical tools in 

tackling such problems. Meanwhile, some promising solutions based on nonlinear principles 

to alleviate the low-frequency barrier of conventional ABH structures are examined. This 

constitutes a useful step forward in the ever-increasing endeavors that researchers are making 

on ABH technology. 
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Chapter 1. Introduction 

1.1 Background 

Modern society suffers from increasing noise and vibration problems. Apart from the 

obvious environmental noise issues and their impact on our everyday life, in most engineering 

practice, structural vibration is regarded as a negative issue, which adversely affects mechanical 

properties, aggravates fatigue and wear, even causes the destruction of structures [1, 2]. In this 

regard, developing innovative ideas and technological know-how for conceiving engineering 

structures with capabilities such as light weight, high vibration damping, and good noise 

insulation has always been the hot spot in the acoustic and vibration community. 

 

Among numerous passive control methods, acoustic black hole (ABH) is a feasible 

technique which has aroused intense and ever-increasing interests over the past decades [3-5]. 

A typical beam or plate-like ABH structure has a tapered thickness profile, so that the local 

phase (and the group) velocity of the incident bending wave slows down as it propagates along 

the ABH beam towards the thinner part and, ideally, tends to zero as the structural thickness 

approaches zero. This wave retarding phenomenon results in well-known ABH effects, 

including neutralized wave reflection and energy concentration/focalization [6-11], which are 

conducive to conceiving novel engineering solutions. For example, exploiting these features, 

lightweight and highly damped structures can be designed with a small amount of damping 

layer [12, 13], while an efficient energy harvesting (EH) device can be realized using 
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piezoelectric (PZT) patches [14-17]. In addition, the phase velocity reduction of the bending 

waves in ABH structures effectively reduces the acoustic radiation efficiency in the free field 

[18-22] or the structure-acoustic coupling in an enclosed space [23, 24]. Studies in one-

dimensional (1D) or two-dimensional (2D) periodic lattices have shown that a combination of 

ABH-induced local resonance and Bragg scattering can induce wide band gaps [25-29]. 

 

Existing research shows that the aforementioned ABH effect excels in vibration 

suppression and noise attenuation mainly at high frequencies but shows a deficiency below the 

so-called cut-on (or characteristic) frequency [26]. Past attempts to reduce the frequency limit 

have been achieved by extending the effective ABH length, at the expenses of generating two 

potential issues, i.e., geometric nonlinearities and imperfect geometry (initial curvature or a 

residual platform), which may affect the ABH effect and hamper the fundamental 

understanding of nonlinear dynamic behaviors of ABH beams. Meanwhile, such large 

structures challenge current manufacturing capabilities and affect the acceptance of the 

structures. To enhance ABH effects with a reasonable physical size, intentional mechanical 

coupling with strong nonlinearities can be a useful approach. Due to the generation of super 

harmonics, nonlinearity can transfer energy into the high frequency range where the ABH effect 

comes into play, which is expected to improve the performance of ABH in the lower frequency 

band, and it is at the root of this thesis. In the following, relevant existing work pertaining to 

ABHs and nonlinearities are reviewed. 
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1.2 Literature review on acoustic black holes 

1.2.1 Fundamentals of acoustic black hole 

Following the concept of the black hole in astrophysics, acoustic black hole (ABH) has 

been proposed in the field of wave motion and vibration and has garnered growing interest 

from the engineering community in the last decade [3]. The typical ABH phenomenon was 

firstly reported in 1988 by Mironov [6]. In that work, the thickness of a tapered 1D structure 

decreases smoothly following a power-law profile, i.e., , which leads to 

a reduced propagation velocity of bending waves within the ABH portion. In an ideal scenario, 

wherein the thickness at the ABH end is diminished to zero, the phase and group velocity tend 

towards zero concurrently. As a result, the incident flexural wave is incapable of advancing 

towards the ABH end, leading to the emergence of quasi-zero wave reflection and energy 

concentration. Meanwhile, the wavelength  is compressed and the magnitude of vibration at 

the ABH end increases, ideally, to infinity. The wave propagation in a 1D ABH structure is 

shown in Fig 1.1.  

 

Fig 1.1 Schematic diagram of incident flexural wave propagation in a 1D ABH structure. 
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To uncover the mechanism of the ABH phenomenon, the geometric acoustic 

approximation (GAA) method [6-8] was utilized to illustrate flexural wave propagation in 

elastic beams and plates. The local wave number in a 1D beam with rectangular cross section 

follows , in which ,  and  are the density, Young’s modulus 

and half thickness of the structure (Fig 1.1);  is the angular frequency. Therefore, the phase 

velocity  and the group velocity  in a tapered structure following a power-law profile 

 are given by 
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where both  and  tend to zero as , indicating the presence of wave retarding in 
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Eq.(1.2) shows that, for the profile with , the transit time  is finite and wave 

reflection occurs even though the configuration impairs the wave speed as  (Eq.(1.1)). 

However, for the profile with , the flexural wave from the uniform part cannot reach the 

beam end in any finite time as  , resulting in zero wave reflection and high energy 
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concentration. With proper damping treatment, total energy absorption can be achieved. The 

combination of energy concentration and dissipation accounts for the ABH phenomenon. 

 

Unfortunately, zero thickness in an ideal ABH structure is not possible due to 

manufacturing limitations, thus creating a truncated thickness at the end of a 1D structure, 

which is detrimental to the ABH phenomenon. The reflection coefficient  can be used to 

evaluate the ABH effect. With introduction of damping effects, the local wave number  

has an imaginary part. By integrating  from  to ,  is expressed by [6, 8] 

 ( )0

1
0 exp 2 Im ( )

x

x
R k x dx= −  ,  (1.3) 

which varies between 0 and 1. With any infinitely small damping, such as structural damping, 

 approaches zero as  in an ideal ABH beam, indicating total energy absorption and 

no wave reflection. Nevertheless, even a small truncation thickness will result in a significant 

increase in the reflection coefficient  which can reach as large as 0.5-0.7 [6, 8]. To counter 

this, a feasible solution was offered by deploying damping layers over the ABH end. Analytical 

results showed that a small amount of damping layers can significantly reduce the reflection 

coefficient . This effect is more pronounced for the structural profile with a higher value of 

 [8]. 

 

Restricted to the assumptions of the geometric acoustics, the damping layer thickness 

should be sufficiently less than the structural thickness, whereas this cannot be assured in the 

ABH end region, which, therefore, challenges the optimization design of the damping layer. To 
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overcome this, Georgiev et al. [12] proposed the impedance matrix (IM) method, a more 

reliable approach with less hypotheses, to investigate damping performance of ABH structures. 

Furthermore, considering finite structures, semi-analytical (SA) methods [13, 30-33] based on 

the Lagrange variational principle have been developed. By including energy terms into the 

Lagrangian function, it becomes possible to achieve complete description of the coupling 

between damping layers or piezoelectric layers and the host system. In addition, the utilization 

of wavelet basis allows for more precise wave modeling near the ABH end, especially for high-

order modes, which is challenging to achieve with alternative numerical techniques. The 

numerical results were verified experimentally [13, 31, 33]. Apart from above methods, the 

finite element method (FEM), a more general and efficient simulation approach, was utilized 

for multiple investigations on embedded or integrated ABH structures [17, 18, 23-25, 34-37]. 

 

Although 1D ABH structures have shown superior performance in terms of structural 

vibration reduction, their fragile outer tips are prone to tearing and damage. One possible 

solution is to place the ABH tip inside a structure, which is referred to as double-layered 

compound ABH structures [35, 38], as shown in Fig 1.2. Damping materials can be deployed 

outside or inside the structure, while the latter (Fig 1.2(b)) would provide extra stiffness to 

improve the overall structural load-bearing capacity. Moreover, a strengthening stud proposed 

in [25] can go even further in this regard. 
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Fig 1.2 Double-layered compound ABH with (a) outer [35] and (b) inner damping materials [38]. 

 

From another perspective, the fragile wedges of an ABH can be hidden inside the structures 

like plates. Specifically, a 2D ABH structure can be obtained by rotating a cross section of a 

1D ABH structure around the tip [39], as shown in Fig 1.3. Similarly, the thickness of 2D ABH 

decreases as a power-law function of radius. When bending waves propagate into the ABH 

area, the wave direction will be deflected, and the velocity will gradually decrease. Ideally, the 

bending waves will be concentrated in the center of the ABH, and the propagation velocity will 

decrease to zero. An important practical advantage of using 2D black holes is that they are 

relatively easy to make. The simplest way to make a 2D black hole is to use a circular steel 

blade to drill a dimple until the blade almost protrudes. The resulting spherical shape 

approximates the required quadratic profile near the center of the pit, making it behave like a 

black hole. 
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Fig 1.3 Convert 1D ABH to 2D circular ABH [39]. 

 

Unlike wave propagation in 1D structures, flexural waves in 2D structures can propagate 

in any direction within the plane. Thus, 2D ABH structures can manipulate the direction of 

wave propagation. Huang et al. [10] investigated wave propagation process in 2D circular ABH 

with a central plateau. Fig 1.4 shows a good agreement of the numerical and experimental 

results at different times. Both results demonstrate that the propagation path of the incident 

wave changes as it passes through the ABH structure and becomes focused in the vicinity of 

the ABH tip, not exactly at the ABH center. Meanwhile, the wavelength decreases as the 

thickness decreases. Besides, the truncation thickness results in a weakening of the focusing 

features. Aklouche et al. [40] studied the scattering properties of flexural waves from a 2D 

circular ABH, seen as a penetrable scatterer. The results show that the ABH functions as a 

resonant scatterer. 
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Fig 1.4 (a)-(c) The simulated wave fields with the ray paths, and (d)-(f) the measured ones at different times. 

The curves with arrows represent the ray trajectories [10]. 

 

1.2.2 Applications of acoustic black hole 

1). Vibration suppression 

Due to high damping effects and unique wave propagation patterns, ABH structures have 

a wide range of applications in the field of noise and vibration reduction. By tailoring the 

thickness of part of the structure following a power-law function, a 1D ABH rod is embedded 

in the tapered cylindrical rod [41], whose sharp end is covered by an absorbing layer for 

efficient vibration suppression. By deploying a thick absorbing layer as shown in Fig 1.5, 

impact-induced resonant vibrations in the primary structure of tennis racquets can be 

effectively attenuated [39]. Such an implementation can be applied not only to the structure 
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with a uniform thickness, but also to the one with a tailoring profile. A well-known example is 

the turbofan blade made from a streamlined body, which has a tapered profile at the trailing 

edge as shown in Fig 1.6(a.2). As the blades of jet engines rotate at high speeds, fluctuations in 

the lift force acting on the blades give rise to significant structural vibrations, which is the 

primary cause of engine failure. A feasible solution is to embed an ABH at the trailing edge of 

the blade airfoil, as shown in Fig 1.6(a.1). Compared to the reference blade, the ABH blade 

covered by damping layers achieves significant vibration reduction [42]. However, the ABH 

blade with and without damping layers breaks the laminar flow and induces flow separation 

(shown in the flow visualization diagram Fig 1.6(b.2)-(b.3)), resulting in increased turbulence 

and lower efficiency. To counter this, the damping layer is shaped to recreate the original profile. 

Fig 1.6(b.4) shows that the refined configuration remains laminar flow. 

 

Fig 1.5 1D ABH rod embedded in a tennis racquet grip covered by a thick absorbing layer [39, 41]. 
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Fig 1.6 (a) Fan blade profile with (a.1) and without (a.2) an ABH at the trailing edge. (b) Flow visualization 

diagram in cases of (b.1) the reference blade, the ABH blades (b.2) without damping layer, (b.3) with uniform 

damping layer, (b.4) with shaped damping layer [42]. 

 

Although ABH embedded structures are lightweight and highly damped, their tailoring 

thickness reduces the load-bearing capacity and limits their application. Recently, ABHs have 

become increasingly popular as add-on devices. A dynamic vibration absorber (DVA) is a 

common vibration suppression method that attenuates the resonance peak through interactions 

between the add-on device and the host structure, which is normally tuned to the target 

resonance peak but can hardly be extended to a wide frequency bandwidth. However, Zhou 

and Cheng [43] achieved broadband vibration suppression of a host beam by attaching an ABH-
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featured resonant beam damper (ABH-RBD) (Fig 1.7), which maximized both the structure 

interaction and the highly damping effect. Additionally, 1D straight ABHs exhibit a strong 

orientation dependence, which hinders their application in the 2D vibration field where waves 

propagate along various directions [44]. This issue was also mentioned in [45]. Therefore, the 

planar swirl-shaped ABH absorber (Fig 1.8(a)) [44] was proposed to entail broadband and 

multi-directional vibration suppressions for a vibrating structure. Meanwhile, such 

configuration, as well as spiral ABH (Fig 1.8(b)) [45], would reduce space occupation. The 

periodic add-on ABH-DVA (Fig 1.8(c)) [46] was investigated through exact dynamic stiffness 

method. The results show that the periodic arrangement of multiple ABH beams causes 

multiple local resonant bandgaps for broadband vibration suppression. Despite these efforts 

made on 1D ABH DVAs, excellent vibration reduction in multiple directions requires 

substantial add-on devices, which is considered a limitation. Obviously, a 2D ABH structure 

with richer modes and multidirectional features is appropriate for this problem. In [36], a single 

2D circular ABH was proposed as an auxiliary add-on device for the vibration suppression in 

a 2D structure. 

 

Fig 1.7 (a) Schematic diagram of the host beam with an ABH-RBD. (b) Experimental set-up. [43] 
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Fig 1.8 Different ABH DVA structures: (a) planar swirl-shaped ABH [44], (b) spiral ABH [45], (c) periodic add-

on ABH [46], (d) 2D ABH [36]. 

 

 2). Noise attenuation and sound absorption 

Except for vibration suppression, the wave retarding phenomenon in ABH structures 

provides a useful approach to addressing vibro-acoustic issues. Initially, experiments [47, 48] 

show that, compared to the uniform plate, the ABH embedded plate with damping layers 

exhibits a significant decrease in the radiated sound power. Subsequently, numerical analyses 

revealed and analyzed the mechanism of this phenomenon [18, 19, 22, 49]. In fact, the sound 

radiation of a structure reaches its peak when the wave speed of the bending wave matches the 

speed of sound in air. Due to the ABH effect, the supersonic waves (compared to the sound 

speed) in the uniform part of the plate are greatly reduced to subsonic waves in the ABH region, 

resulting in a significant reduction of the sound radiation efficiency in the free field. Besides, 
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the embedded ABH reduces the coupling strength between the plate and the cavity, which 

allows for significant noise attenuation inside the cavity [23, 24, 50, 51]. Preliminary efforts 

have been made to use ABH structures for noise control in practical applications. Bowyer and 

Krylov [52] investigated an engine cover with multiple ABH indentations (Fig 1.9), and 

measured the sound pressure around the engine by multiple condenser microphones. The 

results show that the ABH engine cover leads to an average reduction of 6.5dB from the 

reference sample. 

 

Fig 1.9 ABH engine cover (top view) and location of accelerometers on reference engine cover [52]. 

 

Recently, the sonic black hole (SBH) structure has been proposed as the sound counterpart 

of the structural ABH. This structure involves various rings inside a duct, which impairs the 

propagation velocity of sound and traps wave energy [53]. Combined with Micro-perforated 

panel (MPP), the SBH with perforated boundary (shown in Fig 1.10) achieves broadband quasi-

zero wave reflection and sound absorption, both numerically and experimentally [54, 55]. 
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Fig 1.10 A sonic black hole with perforated boundary [55]. 

 

 3). Energy harvesting 

The intense energy focalization in ABH structures contributes to the development of highly 

efficient vibration-based energy harvesting (EH) devices. Zhao et al. [15] first developed a 

fully coupled electromechanical model consisting of five ABH cells, each covered with a 

uniform piezoelectric patch (shown in Fig 1.11). Simulation results show that the ABH 

embedded structure exceeds the conventional structure in terms of energy harvesting. Such 

observation was experimentally verified in [56]. Ji et al. [17] proposed an enhanced EH device 

using compound ABHs. For this structure, the coated PZT patches are sliced into multiple 

microarrays to avoid neutralization of positive and negative electrical charges on the PZT 

surfaces, thus effectively extracting mechanical energy. Different from the above case-by-case 

analysis, Zhang et al. [14] established a semi-analytical model considering the full coupling 

among various electromechanical components in the system. The results show that ABH effects 

result in effective and broadband EH when the system is properly designed, by taking into 

account the PZT layout in terms of wavelength and frequency range. Further, Li et al. [57] 
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performed a systematic parameter optimization of the harvested power using a modal-based 

analysis. 

 

Fig 1.11 Schematic diagram of the coupled system with five identical ABH cells (top) and the detailed FE model 

for a single ABH unit covered with PZT patch (bottom). [15] 

 

4). Metamaterial structures 

Acoustic metamaterials with repeating elements have shown excellent performance in 

wave manipulation, such as band gaps [58], wave front manipulation [59], and robust wave 

transport [60], etc. Among them, the band gaps caused by Bragg scattering [61] or local 

resonance [62] have promising applications in vibration isolation and noise reduction. 

Nevertheless, the conventional method of multiple local resonators is deficient in terms of 

efficiency and implementation. To solve this problem, Tang and Cheng [26] investigated an 

infinite structure with periodic ABH elements via semi-analytical method. The results show 

that a few ABH elements can generate broadband attenuation bands, as a result of the local 

resonances of the ABH elements. Further, strengthening studs were installed in double-leaf 

ABH structures, as shown in Fig 1.12. Due to the impedance mismatch between the stud and 

the ABH, Bragg scattering was generated to extend band gaps [25, 27]. Additionally, periodic 
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ABH components have been attached to the host structure as add-on devices to mitigate 

vibration, as studied in [29, 46]. 

 

Fig 1.12 Uniform beam (top), beam with periodic ABH elements without studs (middle), beam with periodic 

ABH elements with studs (bottom). [25] 

 

1.2.3 Cut-on frequency of the ABH effect 

Although ABH structures exhibit exceptional properties at high frequencies, their low-

frequency effects are deficient, especially below the cut-on frequency [18]. As the half incident 

bending wavelength is typically longer than the ABH length, i.e.  , it is 

challenging for the bending wave to enter the ABH part, which leads to insufficient energy 

concentration and a reduced damping effect. In addition, the wave-based analysis gives an 

analytical definition of the cut-on frequency for the ABH profile with , which is the 

threshold for wave propagation in the ABH part [40, 63]. The unavoidable truncated thickness 

will also shorten the effective length of the ABH, which further jeopardizes the application of 

the ABH at low frequencies. Therefore, considerable research efforts have been made to 

broaden the effective frequency band of ABH. The extension of the ABH length is a prevalent 
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and straight forward approach to reduce the frequency threshold. By adding an extended 

platform of constant thickness at the ABH tip, the low-frequency ABH effects can be enhanced 

by increasing the effective ABH length without over-tailoring, as demonstrated in [64]. Long 

spiral ABH beams were also utilized to reach a broadband vibration reduction and reduce space 

occupation [65]. Meanwhile, periodic ABH structures can be used to increase the effective 

ABH length [18]. Another strategy is to design embedded ABH structure by using the concept 

of a metamaterial [21, 66], or DVA [67]. Recently, Quaegebeur et al. [68] replaced a mechanical 

ABH by a digital controller to create the so-called virtual acoustic black hole (VABH). Ideally, 

the infinite ABH length can be realized by proper digital design so that the cut-on frequency 

can theoretically approach zero. However, the abovementioned implementations challenge 

current manufacturing capabilities and affect the acceptance of the structures. Therefore, how 

to improve the ABH effect below the cut-on frequency is still a bottleneck problem.  

 

The nonlinearity-induced energy transfer phenomenon offers a feasible solution to 

inefficiency of ABH effect. In the following, intrinsic nonlinearities of beams with initial 

curvature and ABH with nonlinearities are reviewed. 

 

1.3 Literature review on nonlinearities 

1.3.1 Fundamentals of nonlinearity 

Nonlinearity is a rich phenomenon existing in nature and our daily life. The most famous 
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nonlinear phenomenon is the turbulence in hydrodynamics, which displays the perturbation 

from the uniform flow and chaos, known as “butterfly effect” [69]. Nonlinear phenomenon 

provides great additional design flexibility and opens up new horizons in diverse disciplines. 

Strong nonlinearity is now exploited in a variety of mechanical and physical applications 

including metamaterials [70], nonlinear vibration absorbers and energy harvesters [71-73] , and 

nano- and micro-electromechanical systems [74] etc. Well-known features of nonlinear system 

display the generation of multiple harmonics [75], even when the system is excited at one 

specific frequency. This particular dynamic mechanism has been exploited for several decades 

to transfer energy from across different frequency ranges. However, the geometric and 

mechanical nonlinearities are generated from different sources, thus leading to sophisticated 

nonlinear behaviors, whose handling is both technically challenging and practically important. 

 

1.3.2 Geometric nonlinearity of an initially curved cantilever beam 

Towards the tapered end tip of an ABH beam, the reduced local phase and group velocities 

and the resulting energy accumulation lead to much amplified vibration amplitude and non-

negligible geometric nonlinearities. Meanwhile, due to manufacturing imperfection, the tip 

region of an ABH is unavoidably curved, which may further enable additional nonlinear 

dynamic behaviors. The ultimate nonlinear modal behavior (hardening or softening) in such 

structures is determined by the domination level of nonlinear stiffness and nonlinear inertia. 

Moreover, the consideration of the initial curvature creates additional challenges in both system 
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modelling, numerical implementation, and the understanding of nonlinear phenomena with 

increasing complexities. 

 

The issue has been predominantly addressed on clamped-clamped beams with initial 

curvature [76-79]. The nonlinear stretching is an intrinsic nonlinearity feature specific to a 

clamped-clamped beam due to constrained ends. Among several contributions, the classical 

von Karman model [80-83], with axial stain truncated to quadratic terms, was developed and 

applied to geometric nonlinearity analyses in a straight configuration [75, 84]. This analytical 

model combines the membrane and bending forces, in which the internal longitudinal force is 

generated by the end-constraint-induced tensile rigidity. In the proposed treatment, the axial 

inertia term is deemed negligible and therefore omitted [85, 86]. Such models lead to a resultant 

nonlinear force described by cubic terms which dominate the hardening effects on all vibration 

modes [87]. Considering an initial curvature, a modified von Karman model [88] was proposed 

through two separate equations: one on the transverse motion and another on longitudinal force 

inside a beam. Analyses show quadratic terms which cause the softening phenomenon of 

vibration modes [88, 89]. From a different perspective, by integrating all nonlinear terms into 

one equation, Nayfeh and Mook [75] and Lacarbonara et al. [90] developed an integral-

differential condensation model with the consideration of nonlinear stretching. The work 

clearly illustrates that the initial curvature generates quadratic terms instead of cubic terms in 

the system equation. The ultimate hardening/softening is determined by the domination level 

of these competing terms. Meanwhile, Yi et al. [91] investigated the nonlinear dynamic 
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behaviors and modal interactions in the presence of elastic supports, in which 

hardening/softening can coexist. Qiao et al. [78] utilized a refined multi-scale method to 

simulate the hardening-softening transition with the consideration of the initial curvature. 

Analyses show that a near-transition region appears where the competing nonlinearities from 

hardening/softening balance each other. Meanwhile, Ghayesh et al. [92] exploited coupled 

stress tensor in a micro-beam structure, with results showing that the softening induced by the 

initial curvature can turn into hardening with increasing forcing level. 

 

Different from end-constrained structures, i.e. clamped or pinned boundaries, a free 

boundary in a cantilever beam would cause the shortening effect [93], which creates intriguing 

problems. More specifically, the strain along the neural axis of the beam becomes zero and the 

coupling between the transverse and longitudinal motions of the beam is enhanced. Together 

with the initial curvature, significant nonlinear inertia effect is expected to surge to significantly 

impact on the nonlinear dynamic behaviors of the system. Note this inertia effect has 

traditionally been ignored in an end-constrained beam. Meanwhile, as to be illustrated later, the 

consideration of the inertia effect also creates additional difficulties in solving the system 

dynamic equations. Past attempts to address similar problems were only based on straight 

cantilever beams using geometrically exact beam models [93-98]. In particular, an inextensible 

condensation model on a straight cantilever beam [85, 93, 97, 99-102] shows cubic nonlinear 

terms arising from the nonlinear stiffness and nonlinear inertia, whose relative dominance 

levels ultimately determine the modal hardening or softening. In general, nonlinear inertia 
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effect is commonly considered to dominate high frequencies in a uniform beam, which is 

accountable for the modal softening [75], whilst nonlinear stiffness has noticeable effects on 

the first vibration mode through producing hardening effect, as verified both theoretically [93, 

99-101] and experimentally [103-105]. More recently, Thomas et al. [100] extended the 

inextensible model to a rotating cantilever beam and discussed distinctions between von 

Karman’s theory and the inextensible model. Considering the rotation-induced centrifugal 

force, a reduced order model was applied to investigate the hardening/softening phenomena. 

With increasing rotating speed, the rotary effect, coupled with the nonlinear stiffness and 

nonlinear inertia, results in a hardening-softening transition for the first mode, and an enhanced 

softening effect for higher-order modes. Meanwhile, Farokhi et al. [105] utilized a 

geometrically exact model to investigate the scenario of extremely large motion in cantilevers 

with experimental validations, and the reported results emphasized the deficiency of the well-

known truncated inextensible model [93, 97] in this extreme case. Amabili et al. [106] 

considered shear effects and rotary inertia, which may become more important than nonlinear 

inertia in a thick cantilever beam. 

 

1.3.3 Numerical methods 

The aforementioned challenges are also accompanied by some specific needs and 

difficulties associated with the numerical implementation of the model, particularly in terms of 

discretization and numerical solver development. In fact, proper numerical treatments are 
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needed to cope with the large deformation and inertia-induced nonlinearity terms, which are 

distributed over the entire structure. On account of this, geometric nonlinearities, from a modal 

viewpoint, can be regarded as the result of nonlinear coupling of linear modes [85], which carry 

clear physical meaning in real life and commonly used as discrete basis in modal approach. 

The popular technique known as reduced-order model (ROM) [85, 100, 107] can then be 

applied to construct semi-discrete system equations to mimic/simulate nonlinear complexity in 

a full order model. Nonlinear frequency response (NFR) curves, backbones and nonlinear 

normal modes (NNMs) can be numerically solved by asymptotic numerical method (ANM) 

combined with harmonic balance (HB) method [85, 100, 105, 107, 108]. This approach, though 

widely used in geometric nonlinearity analysis with great success, suffers from two drawbacks. 

The first one is related to ROM, which usually requires a prohibitive number of linear modes 

to reach convergence, most of them having natural frequencies out of the frequency band of 

interest. The second issue relating to ANM is the need for recasting the nonlinear terms into 

quadratic order by introducing auxiliary variables and additional equations, in which the second 

order PDEs are transformed to the first order, for which a sufficiently large number of 

harmonics are required in harmonic balance procedure [109]. As to be demonstrated later in 

this thesis, both limitations are detrimental for the problem to be investigated in this thesis, 

since both the free end of the cantilever beam and its initial curvature would jeopardize the 

applicability of these techniques. 

 

Although conventional HB continuation method (based on alternating frequency/time 
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procedure) [87, 110] can be directly applied to semi-discretized equations, no attempt has been 

made so far to cope with nonlinear inertia terms using this method, which is also one of the 

problems to be addressed in this work through the proposal of a dedicated numerical technique. 

The generalized-   method [111] (one of the time-integration methods), which is 

conventionally used to confirm the frequency domain results, is very time-consuming and such 

method is sensitive to geometric nonlinearities [100]. This problem also needs to be tackled, 

which is accomplished in the later part of this thesis by introducing an operator splitting (OS) 

method in the Newton iteration procedure. 

 

1.3.4 ABH with nonlinearities 

Due to the amplified vibration amplitude at the free end of an ABH cantilever, it is also 

natural to think about inducing geometric nonlinearities in the ABH structure to enable energy 

transfer, as studied in [112]. Fig 1.13 shows output acceleration for the ABH beam excited at 

102 Hz, and the excitation force level increases with time. Less than 11 seconds, the frequency 

components above the excitation frequency are barely visible. Suddenly, all frequency 

components are excited from 11 seconds, indicating energy transfer from low to high 

frequencies. 

 

Apart from intrinsic nonlinearity, intentional nonlinearity is considered as an alternative. 

Vibro-impact ABH (VI-ABH) was then investigated [113, 114]. This system was shown to 
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generate significant energy transfer from low to high frequencies, conducive to passive 

vibration control at low frequencies. A nonlinear energy sink (NES) was also integrated into 

the ABH structure to achieve targeted energy transfer (TET) [115-117]. In these systems, the  

 

Fig 1.13 Spectrogram of output acceleration for the ABH beam excited at 102 Hz. The excitation force increases 

from 0 to 15 N in 40 s. [112] 

 

energy of a base structure can be irreversibly transferred to the NES through nonlinear energy 

interactions [71] and then dissipated through NES damping. In addition, energy transfer was 

also achieved by electromechanical coupling with nonlinear capacitances in a resonant shunt 

which is connected to an ABH structure through piezoelectric materials [118], where a 

reduction in vibration amplitude was observed at low resonant frequencies. 
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1.4 Existing problems and research objectives 

1.4.1 Existing problems 

Previous efforts to explore various aspects related to ABH structures and nonlinearities 

have been presented in the literature review. Despite some progress in their respective fields, 

research on ABH structures with intrinsic and intentional nonlinearities is still in its early stage, 

and there are still unresolved issues at both the fundamental and engineering levels. 

 

Although ABH has promising applications in vibration and noise reduction, the ABH effect 

remains in the high-frequency range. When the bending wavelength is comparable to or greater 

than the characteristic ABH length, ABH shows insufficient energy focusing and reduced 

damping. This shortcoming hinders its application in the low-frequency range. To counter this, 

an extraordinarily large structure is required to reduce the frequency limit. Nevertheless, due 

to the very thin thickness at the ABH tip, the amplified vibration amplitude results in noticeable 

geometric nonlinearities. Besides, manufacturing limitations produce imperfect geometry, such 

as initial curvature and a residual platform, which leads to more complex nonlinear dynamic 

behaviors. From a scientific viewpoint, the geometrically nonlinear features of ABH beams 

with geometric imperfections remain largely unknown. From a general purpose, this problem 

also poses challenges for initially curved cantilevers in system modeling, numerical techniques, 

and physical understanding, which should be addressed first. 
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Conventional methods aiming at improving low-frequency ABH effect present a challenge 

to existing manufacturing capabilities and affect the acceptance of the structures. Meanwhile, 

the energy transfer induced by nonlinearity can provide a feasible solution. The first attempt 

was to utilize geometric nonlinearities [112], whereas this implementation requires excessively 

long structures, which is considered as a limitation. Within a reasonable structural size, 

intentional nonlinearities can facilitate substantial energy transfer to enhance the ABH effect. 

However, the methods reviewed in Section 1.3.4, such as vibro-impact or electromechanical 

nonlinearities, either threaten structural safety or lack efficiency. Thus, this thesis presents an 

alternative solution by introducing grounded cables with cubic stiffness in an ABH beam, 

which, to the authors' knowledge, has not been attempted before in the context of ABH. 

 

1.4.2 Research objectives 

This thesis attempts to target the following objectives to solve these problems: 

 

(1) To propose a geometrically exact inextensible condensation model on a curved 

cantilever beam with uniform thickness and to modify the HB continuation method and the 

generalized-  method in iteration procedure on account of inertia terms. To explore salient 

nonlinear dynamic features of the structure with particular emphasis on the effects of the 

nonlinear inertia enhanced by the curvature and the free boundary of the beam. 
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(2) To investigate the geometrically nonlinear features of the ABH beam with imperfect 

geometry. To conduct physical nonlinear experiments, and to confirm the simulation results 

with specific geometric parameters in both linear and nonlinear regimes. 

 

(3) To propose the idea of using mechanical nonlinearity to enhance the low-frequency 

performance of ABH effects, exemplified by a ABH cantilever with coated damping layers and 

a grounded cubic stiffness cable, and to develop a simulation model accordingly. To carry out 

numerical simulations in the time and frequency domains to demonstrate the dynamic 

behaviors and the mechanism of energy transfer of the nonlinear ABH beam, which can be 

quantified via the damping loss factor of the system; and to conduct physical experiments to 

demonstrate the energy transfer phenomena and the enhanced ABH effect of the nonlinear 

damped ABH beam. 

 

1.5 Overview of the thesis 

The rest of the thesis is organized as follows. 

 

Chapter 2 presents the theoretical formulation. A set of modified numerical methods is then 

proposed to cope with the numerical problems arising from the inertia effects. The established 

model is compared with a linear finite element (FE) model to validate the linear features of the 

model on the one hand and to assess the simplification assumptions being made in the 
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development of the nonlinear model so that its applicable range can be established on the other 

hand. Discussions on the stiffness and inertia terms induced by the initial curvature are then 

carried out. Numerical analyses are then conducted to elucidate the hardening/softening 

phenomena as well as the influence of the initial curvature. 

 

In Chapter 3, an inextensional condensation model on an ABH beam with initial curvature 

is first described and applied to the present geometric nonlinear problems, which are then 

solved numerically by the harmonic balance (HB) method combined with a continuation 

approach. The numerical modeling and the experimental setup are summarized. Then, 

nonlinear results of a straight ABH beam with perfect geometry are presented, and the effects 

of imperfect geometry are investigated. Experiments are conducted to confirm the simulation 

results. 

 

Chapter 4 presents a numerical model in which a grounded cubic stiffness cable and 

damping layers are integrated to a base ABH cantilever beam. The basic ABH-induced features 

under linear conditions are firstly illustrated using linear frequency response functions (FRFs), 

mode shapes, and damping loss factors. Then, linear and nonlinear cases are compared to 

demonstrate the effect of the nonlinearity in the low frequency range and energy transfer and 

dissipation process. Mechanical nonlinearity effects inside the damped ABH beam are 

quantified by an energy-based damping loss factor, and free decay tests verify these results in 

the time domain. Finally, the enhanced ABH effect resulting from the intentional nonlinearity 
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is experimentally demonstrated. 

 

The major conclusions of this work are drawn and summarized in Chapter 5, with 

discussions and suggestions provided for possible future works 
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Chapter 2. Geometric Nonlinearities in a Curved Cantilever 

Beam 

2.1 Introduction 

Before embarking into an ABH structure, the general geometric nonlinear features of a 

curved cantilever will be investigated. Focus will be put on developing a general condensation 

model and exploring inertia-induced nonlinear features of the beam. The outcome of this 

investigation will be used in the subsequent ABH structural analyses. 

 

The wide use of lightweight and flexible structures in engineering applications has aroused 

persistent interest in studying their intrinsic nonlinear behaviors. Among various types of basic 

structural elements, beam-like structures with initial curvature are of particular interest to the 

scientific community, exemplified by rotor blades [94], buckled beams [119], thin-walled 

composite beams [76], imperfect micro-beams [92] and shallow arches [77, 78] etc. Their 

highly flexible and thin-walled nature, especially for ABH structures, usually results in large 

amplitude vibration which gives rise to significant geometric nonlinearity and leads to rich and 

complex nonlinear dynamic behaviors which are absent in linear systems. Different from other 

types of nonlinearities such as mechanical or contact nonlinearity, geometric nonlinearity is 

distributed over the entire structure, which makes the problem more complicated. Whilst 

literature provides rather comprehensive knowledge on the source of intrinsic nonlinearities as 

well as the resultant dynamic behaviors such as hardening/softening phenomena [85], existing 
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condensation models are mostly associated with specific boundary condition [93, 120]. The so-

called condensation model couples multi-dimensional internal forces or displacements to form 

one governing equation with explicit nonlinear terms. In addition, the introduction of initial 

curvature places higher demands on both physical modeling and simulation methods. 

 

The condensed model for initially curved end-constrained structures is relatively well 

developed in terms of system modeling and numerical approaches [76-79]. As reviewed in 

Section 1.3.2, the nonlinear stretching force along the arc length enhances the hardening effect 

of the structure, while the initial curvature results in the softening effect. Typically, such 

imperfect structure with initial curvature exhibits softening even for the first mode [121]. 

However, the free boundary condition of cantilevers leads to the combined motions between 

the longitudinal and the transverse directions, thus introducing nonlinear stiffness and 

nonlinear inertia in cantilevers. Although considerable research has been done for straight free-

clamped beams [85, 93, 97, 99, 101, 102], there is a significant gap in research on condensation 

modeling of initially curved cantilevers, which is extremely unfavorable for subsequent 

investigations on ABH beams with geometric imperfections. Furthermore, the inertia-induced 

nonlinear features bring challenges to numerical methods. 

 

Therefore, in this chapter, an inextensible condensation model with initial curvature is 

proposed and used to examine initially curved uniform cantilever beams. The modified HB 

method is developed to solve inertia-induced problems and the operator splitting technique is 
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applied to time marching method with enhanced efficiency and robustness. 

 

2.2 Inextensible condensation model with initial curvature 

We consider a highly flexible and initially curved cantilever beam, which undergoes 

transverse flexural vibration coupled to the longitudinal motion along its length direction. Due 

to the free end, large deformation is induced which leads to non-negligible geometric 

nonlinearity and compelling nonlinear stiffness and inertia effects. The initial curvature of the 

beam would further enrich the nonlinear behaviors of the structure as well as the complexity in 

their analyses. After a brief recap on the geometrically exact model, a novel inextensible 

condensation model for a cantilever with initial curvature is developed in this section. 

 

2.2.1 Recap on geometrically exact model 

For the completeness of the paper, the geometrically exact model is briefly recalled 

hereafter. As shown in Fig 2.1, three coordinate systems are adapted to describe the geometric 

deformations of a curved beam segment. As the reference frame, Cartesian coordinate  is 

used to define the local rotating coordinates  and . Before the beam segment is deformed, 

the undeformed coordinate  is fixed to the structure and rotates in the plane alongside the 

initial curve of the beam segment, whereas the deformed coordinate  specifies the segment 

motion with respect to . Their unit vectors are denoted, respectively, by ,  
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and  in the 2D plane. The location of an arbitrary point  on the beam is defined as 

  in the   coordinate, and the point   is   through 

infinitesimal distance , which gives 

 ,x p a b y a bA B B A    = = + = − +i D i i i i i ,  (2.1) 

 

Fig 2.1 Definition of coordinate systems and relationship between the undeformed and deformed beam 

segments. 

 

where  is the derivative with respect to the arclength , and the module of  

follows   whose first derivative follows  . The rotation 

angle between the reference and the undeformed coordinates is  calculated by 

 and , of which the derivative with respect to  is the initial 

curvature , 

 3 3k A B B A    = = − .  (2.2) 

Combining Eq.(2.1), Eq.(2.2), and the above-mentioned relations of  , the derivatives of 
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 write 

 3 3,x y y xk k = = −i i i i .  (2.3) 

Unlike the conventionally global description of displacements in the reference coordinate 

system, the co-rotational frame fastens deformed beam segment to the deformed coordinate 

without relative motion. The local displacement is therefore described by , which is the 

distance between  coordinate with  coordinate. The end points ,  of the deformed 

segment are represented by , , based on which the 

unit vector  of the deformed coordinate is expressed by 

 
( )

ˆ 3 3
1

1
1 1 1

p
x y

u vk v uk
e ds e e
  + − +

= = +
+ + +
D

i i i ,  (2.4) 

where  is the axial strain along the undeformed neutral axis, and  is orthogonal to , i.e., 

. Projecting  to  axes and calculating its module, one obtains 

 3 3
3 3

1cos , sin
1 1
u vk v uk

e e
 

 + − +
= =

+ +
,  (2.5) 

 ( ) ( )2 2
3 31 1e u vk v uk = + − + + − ,  (2.6) 

where  is the deformed angle between  and . Eq.(2.5) shows that the initial curvature 

affects the deformation of the beam through orthogonal components like , and then causes 

changes in the bending as well as the stretching properties different from a straight beam. 

 

A flexible and thin structure would experience large deformation but small strain. In this 

case, it has been demonstrated that [100] engineering strains, consistent linearization of Green–

Lagrange strains and Biot-Jaumann strains [94, 122] are identical in an Euler-Bernoulli beam. 

Consider a cantilever beam with a length , a cross sectional area , moment of inertia , 
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made of homogeneous and isotropic elastic material of density , Young’s modulus . For 

the bending-dominant oscillations, the normal strains ,  and shear strain  on the 

cross section write 

 11 3

12 22 0
e y 

 

= −
= =

,  (2.7) 

which gives the normal stress . By integrating the normal stress over the cross 

section , the longitudinal internal force  and the bending moment  can be obtained as 

 
1 11

11 3

A

A

F dA EAe

M ydA EI



 

= =

= − =




,  (2.8) 

which can lead to the transverse internal force  through moment balance 

equation by neglecting the rotating inertia [93]. Since the accelerations  is defined 

in  coordinate, internal forces are projected to  giving 

 ( ) ( )1 3 2 3 1 3 2 3cos sin sin cosx x y y x yF F F F F F   = + = − + +F i i i i .  (2.9) 

Applying Newton’s second law  to an infinitesimal segment  of an initially 

curved beam, one has 

 ( ) ( )1 3 2 3 3 1 3 2 3cos sin sin cosF F k F F mu   − − + = ,  (2.10) 

 ( ) ( )1 3 2 3 3 1 3 2 3sin cos cos sin extF F k F F f mv   + + − + = ,  (2.11) 

where  and  is the external force applied to the transverse direction of the beam. 

Note that the above governing equations obtained by Newton’s second law could also be 

derived from extended Hamilton principle [123] for Euler-Bernoulli beam vibrating in the  

plane. At the end of the curved cantilever beam fixed at , boundary conditions write 
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 3 0, ,
0, 0.x y

u v at s L
F F M at s

= = = =
= = = =

  (2.12) 

 

2.2.2 Shortening effects and assumptions made for an inextensible condensation model   

Compared with an end-constrained beam, a cantilever beam with a free boundary bears no 

axial strain along its central line, called neutral line, i.e., . The longitudinal displacement 

is coupled with the transverse displacement through Eq.(2.6) and expressed as 

 ( )2
3 31 1u v uk vk = − + − + ,  (2.13) 

 ( )( )2
3 31 1

L

s
u v uk vk ds= − − + − + ,  (2.14) 

by using  at the constrained end . Analytical solution of  is not available even 

though  is known. We herein assume that in the bending dominant oscillation, the transverse 

displacement   and its derivative   have greater impact than   on calculation of the 

longitudinal displacement  in Eq.(2.14). Omitting  in the presence of  with moderate 

initial curvature or local curvature (an assumption whose validity and the applicable range are 

to be assessed later), one has 

 ( )2 2
3 3

11 1
2

L L

s s
u v vk ds v vk ds

  − − − +  − 
 

  ,  (2.15) 

by keeping those terms up to quadratic order through Taylor expansion. Compared to a straight 

configuration, the longitudinal displacement  reaches the first order magnitude because of 

the initial curvature effect, which means that the coupled motion could be enhanced, either by 

the magnitude of  or the curved length. Considering the force-free condition  at 
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 and neglecting  as a higher order term, the internal longitudinal force, from 

Eq.(2.10), can be obtained as 

 ( )1 2 3 3 2 30
3

1 cos sin
cos

s
F mu F k ds F 


 = + +
   .  (2.16) 

Eq.(2.16) shows the involvement of the nonlinear inertia in the beam vibration. Meanwhile, 

the initial curvature as well as the curved length affect both the nonlinear inertia and nonlinear 

stiffness. Substituting Eqs.(2.15) and (2.16) into Eq.(2.11), assuming a constant initial 

curvature   and expanding all the terms up to the cubic order, one has the full set of 

condensed dynamic equation which governs the vibration of the cantilever expressed as 

 

( ) ( ) ( )

( ) ( )

( )

2 2
3 3 3 3 3 300

2 2 2 2 2
3 3 3 3 3 3

0

2 2 2
3 3 3 3 0

2

30

121
2 2

1
2

s s L

s

s

s

mv cv EIv k EIv k k EI v vk k m vk dsds

EIv v vk k v EI v vk k EI v vk v k

k EI v vk v v k ds k k EI

v

v

   + + + + + +
  

     
     + − + + + + −   

  +    

  

    


−

  

+ +

 

 ( )
( )( ) ( )2 2

3 30 0

s

s L s L

s s

ext

m v v v vk dsds k m v v v dsv ds

f

 
 
 
 





 
 


     − + − − +

=

   

.  (2.17) 

 

 Note the above equation contains all linear and nonlinear effects in the system, which 

describes the full dynamics of the system in the most comprehensive and coupled manner. It is 

therefore the key equation to be further exploited in this paper. More specifically, the equation 

explicitly shows that stiffness, inertia, and initial curvature interact with each other both 

linearly and nonlinearly, giving rise to complex and rich dynamics (to be demonstrated later). 

More specifically, the first row (comprising the first four terms) presents the linear stiffness 

2 2
3 3 3 3 0
( ) [ ( ) ]

s
k EIv k k EI v vk + +  and inertia 3 30

s L

s
k m vk dsds   induced by the initial curvature. 
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The second and the third rows account for the nonlinear stiffness and nonlinear inertia, 

respectively, cast into quadratic and cubic order terms. The most significant stiffness terms are 

connected to the local region of the structure, whereas the double integral of inertia terms takes 

into account the entire structure. It implies that inertia effect increases with the curved length 

due its increased portion participating in the vibration. Quadratic order terms appear in the 

curved cantilever beam, whose nonlinear features rise from the competing effects between the 

quadratic and cubic order nonlinear terms, which is similar to an end-constrained beam. 

However, nonlinear stiffness and inertia effects competing inside quadratic order terms are also 

responsible for the nonlinear dynamic responses. 

 

2.3 Modified harmonic balance method and generalized-α method 

This section proposes an efficient numerical approach, in frequency domain or time 

domain, respectively, to implement and solve the afore-established model with the 

consideration of the enhanced inertia effects. With Fourier series truncated to limited terms, 

HB method, combined with the continuation method, would allow for the calculation of the 

nonlinear frequency response by balancing the coefficients of the dominant harmonic orders. 

However, as discussed in Introduction, nonlinear inertia terms are usually handled in ANM by 

transforming the second order PDEs to the first order through introducing additional equations, 

which requires sophisticated mathematic treatment especially for systems with initial curvature. 

Besides, analytical mode shape functions are seldom available for complex structures, for 
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which we have to resort to FEM. Therefore, we hereafter combine the HB continuation method 

with FEM. This turns out to be possible since, thanks to the inextensible condensation model, 

the nonlinear inertia terms are explicitly expressed, which allows proper modifications on the 

Jacobian matrix, as to be detailed in section 2.3.1. 

 

In a slightly different perspective, the generalized-  method is often used in nonlinear 

analyses. However, nonlinear systems usually require sufficiently small time steps, which 

becomes exorbitantly demanding in the present inertia-dominant system with initial curvature. 

Thomas et al. [100] opined that time evaluations should be carried out by using very small time 

steps and stepped-sine excitation to reach convergent results. This proved to be extremely time-

consuming (typically 9 million time increment in a single curve) and sensitive to geometric 

nonlinearities. To achieve efficient simulation under the proposed modelling umbrella, we 

propose a splitting technique in the iteration stage of the Newton-Raphson method at each time 

step, to be detailed in section 2.3.2.2. 

 

To discretize Eq.(2.17), the finite element method is followed by Galerkin procedure to 

build semi-discrete governing equation, with its element vector expressed as 

 
  ( )

    ( )

0

30 0
, , , , , ,

e

e e

l T
e

l lT T
ext e int e

N mv cv EIv ds

N f ds N f v v v v v v k ds

 + +
  

   = −



 

,  (2.18) 

where   is the cubic shape function of Hermitian element containing four degrees of 

freedom (DOFs),  is the element length, superscript  is the vector transpose operator. The 



41 
 

continuous variable   in an element is approximated by  , in which 

 is the element vector of the DOF. The global mass, damping as well as stiffness 

matrices are then constructed for left side terms of Eq.(2.18), with the clamped boundary 

conditions imposed [124]. All other portions including curvature-induced linear and nonlinear 

terms are gathered into a resultant force  vector, which allows for the treatment of piece-

wise constant initial curvature for locally curved configuration. 

 

2.3.1 Modified harmonic balance method 

Based on Eq.(2.18), the corresponding general non-autonomous nonlinear dynamic system 

with  DOFs is cast into the following general form 

 ( ) ( ), , ,int ext t+ + + =Mx Cx Kx f x x x f ,  (2.19) 

in which all internal force terms are regrouped in to ,  and 

 in Eq.(2.19) are approximated by Fourier series truncated to the -th harmonic 

as 

 ( ) ( ) ( )( )0

1
sin cos

2

Hx N
x x
k k

k
t k t k t 

=

= + +
cx s c ,  (2.20) 

 ( ) ( ) ( )( )0

1
sin cos

2

Hf N
f f
k k

k
t k t k t 

=

= + +
cf s c .  (2.21) 

The coefficients are gathered into the  vectors as 

 ( ) ( ) ( ) ( ) ( )0 1 1 H H

TT TT T Tx x x x x
N N

 =
  

z c s c s c ,  (2.22) 

 ( ) ( ) ( ) ( ) ( )0 1 1 H H

TT TT T Tf f f f f
N N

 =
  

b c s c s c .  (2.23) 
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Substituting Eqs.(2.20)-(2.23) into Eq.(2.19) and following the standard Fourier-Galerkin 

balance procedure, a new target function  [110] depending on Fourier coefficients gives 

 ( ) ( ) ( ), = − =h z A z b z 0 ,  (2.24) 

with 

 2
2 1HN +=  + + A M C I K ,  (2.25) 

where   is   matrix for linear system;   stands for the 

Kronecker tensor product;  and  are gradient and Laplace operator matrices defined in 

[110]. The above equation is settled once the force coefficient vector  is provided. Through 

displacement-force relationship in time domain, alternating frequency/time method [125] and 

trigonometric collocation method are applied through Fast Fourier Transform (FFT) procedure, 

which gives 

 ( ) ( ) ( )1FFT FFT 
− +⎯⎯⎯→ = → ⎯⎯⎯→ =z x Γ z f b z Γ f ,  (2.26) 

where   and   contain   time samples 

 in each DOF, and the superscript + stands for the Moore–Penrose pseudoinverse. 

The linear operator matrix for inverse Fourier transform of displacement writes 

 
( ) ( ) ( )

( ) ( )

0 sin cos

sin cos

T TT
N N N

T T

N H N HN N

  

 

     =         

        

Γ I t I t I t

I t I t
,  (2.27) 

and similar matrices for velocity and acceleration are 

 
( ) ( ) ( )

( ) ( )

0 cos sin

cos sin

T TT
N N N

T T

N H H N H HN N N N

    

   

     =     −     

     −    

Γ I t I t I t

I t I t
,  (2.28) 
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( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2

0 sin cos

sin cos

T TT
N N N

T T

N H H N H HN N N N

    

   

     = −         

        

Γ I t I t I t

I t I t
.  (2.29) 

The Newton-Raphson method is utilized to reach the final solution iteratively through the 

calculation of the Jacobian matrix, which has impact on stability and accuracy of solution 

specific to inertia-induced feature. Using the chain rule, the Jacobian matrix of Eq.(2.24) with 

respect to  is written as 

 

+ + +

 
= −

 

 
= −

 

      
= − + + 

       

  
= − − −

  

h bA
z z

b fA
f z
b f x f x f xA
f x z x z x z

f f fA Γ Γ Γ Γ Γ Γ
x x x

,  (2.30) 

which includes independent variables related to resultant forces , and inertia effects 

associated with entire DOFs. Since the stiffness terms are only connected to adjacent DOFs, 

the matrix  is sparse and diagonally dominant, which usually has analytical formulation 

[87]. On the contrary,  and  are dense matrices because of the integral term in 

Eq.(2.17), and numerically approached by finite difference method. However, this 

approximation approach would slow down the convergence of iteration. To work out partial 

equations both efficiently and precisely, the eighth-order central difference scheme is adopted 

to calculate ,  and . The predicted solution is then corrected by Moore-

Penrose continuation method. This is formulated as 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
, 1 , , , ,

1
, 1 , , , ,

i j i j y i j i j

i j i j y i j i j

−
+

−
+

= −

= −

y y G G

v v G R
,  (2.31) 
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with 

  , , ,
0 0z y T

     
= = = =     
     

h J Jv
G J h h G R

v
,  (2.32) 

by introducing optimization tangent vectors initialized as  , and 

. 

 

2.3.2 Modified generalized-  method 

2.3.2.1 The generalized-  method 

Time-integration methods are often used in dynamic simulation of cantilevers [100, 101, 

126], and additionally become a basic part of more sophisticated algorithms like nonlinear 

normal modes (NNMs) [127]. In the present case with the presence of initial curvature, the 

generalized-  method is utilized to calculate the time history to confirm the frequency domain 

results. Detailed derivations of this method are given as follows. 

 

The generalized-  method is applied to offer intuitive time history of the system responses. 

In Section 2.3.1, Eq.(2.19) requires the treatment of different system response terms, especially 

displacement , as well as its derivatives representing velocity  and acceleration . The 

interrelation among them can be cast into the following general form [111]: 

 
( )1 1

2 2
1 1

1

1
2

i i i i

i i i i i

t t

t t t

 

 

+ +

+ +

= + −  + 

= +  +  − +  
 

x x x x

x x x x x
.  (2.33) 
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The governing equation of motion, Eq.(2.19), is built on semi-point scheme in the time 

discretization. The semi-point values of these quantities write 

 

( )
( )
( )
( )

1 1

1 1

1 1

1 1

1

1

1

1

f

f

m

f

i f i f i

i f i f i

i m i m i

i f i f it t t









 

 

 

 

+ − +

+ − +

+ − +

+ − +

= − +

= − +

= − +

= − +

x x x

x x x

x x x
.  (2.34) 

A residual vector is formulated from Eq.(2.19) as 

 ( ) ( ), ,nl ext= + + + − =r x Mx Cx Kx f x x x f 0 .  (2.35) 

Discretized version of the above equation in terms of  writes  

 ( )1 1 1, ,
f f mi i i  + − + − + − =r x x x 0 .  (2.36) 

Let us denote  as the approximate value of 

 resulting from the iteration . In the vicinity of the prediction value, the residual 

equation can be replaced with sufficient accuracy through the following linear expression: 

 1
1 1f

k k k k k k k
i T i

+
+ − + +  = +  =r r S x r S x 0 ,  (2.37) 

in which the Jacobian (also called iteration) matrix writes: 

 ( )
1

1
k
i f

k
T f




+ −


= −

 x

rS
x

,  (2.38) 

whose expression is detailed as 

 ( ) ( )1 nl nl nl
T f

       = − + + + + + 
       

x x f f x f xS x M C K
x x x x x x x

.  (2.39) 

The integration relationship, Eq.(2.33), can be written as 
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x
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x

.  (2.40) 

Combining Eqs.(2.39) and (2.40) yields the expression of the iteration matrix as: 

 
( ) ( ) ( )

( ) ( )
2

2

11 1

1 11

fm
T f

fnl nl m nl
f

t t

t t

 


 
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 
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 

−  − 
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The nonlinear equation (2.37) is then solved using an iteration scheme using Newton-Raphson 

method. Substituting Eq.(2.33) and Eq.(2.34) into Eq.(2.37) gives 

 1
k k k
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The velocity and acceleration are found from 
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When  , the initial prediction to initialize the process is   as the first order 

approximation, which would need more correction steps. 
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To simplify the process and reduce the computation burden, an alternative prediction 

formulation with third-order precision, i.e., , is proposed 

by using the four latest points. Stepwise correction continues until , where  

is a predefined tolerance value. 

 

The above calculation scheme is combined with the generalized-   method [111]. The 

parameters are chosen as follows  
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The dissipation parameter  is set to 0.8 for nonlinear problems with intentional nonlinearity. 

 

2.3.2.2 Operator splitting (OS) technique for the generalized-  method 

At each time step, the residual function is calculated as shown in Eq.(2.42), and approaches 

to zero in an iterative manner until converged results are reached. However, it is found that the 

numerical calculation is not stable due to the singularity of Jacobian matrix, which is triggered 

and amplified by the substantial inertia effects in the beam configuration under investigation 

here. To tackle the problem of avoiding singular iteration matrix, an OS technique is proposed 

here. The rationale behind is taking apart a complex function into several simple ones which 

are stable and easy to solve. The sequential splitting idea is herein proposed and presented as 

follows. 
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For -th iteration at the time step , the residual vector is expressed as 
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Taking apart the nonlinear Jacobian matrix and dividing the iteration into 3 steps, by 

considering the first step , the residual vector writes 
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to obtain the updated value  before calculating the second step , 
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By following the same procedure, the final stage  is 
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If , converged results are reached, and one can proceed to the next 

time step. Overall, this method divides the original expression into three different nonlinear 

sub-problems, each involving their respective nonlinear Jacobian matrices, and the sub-

problem is accordingly solved in sequence. As such, while the Jacobian matrix involving 

nonlinear stiffness terms being generally diagonally dominant, the ill-condition problem of 

Jacobian matrix due to nonlinear inertia terms with increasing geometric nonlinearities is 

avoided and emerged in the numerical solver. As a result, the splitting procedure improves the 

accuracy, efficiency and the robustness of the generalized-α method, as demonstrated in the 
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following. 

 

2.3.2.3 Efficiency and robustness enhanced by OS technique 

The OS technique discussed in Section 2.3.2.2 is expected to improve the efficiency and 

the robustness of the generalized-  method by separating a full complex problem into several 

sub-problems. To demonstrate this, the generalized-   methods with and without the OS 

technique are compared using a beam vibration problem. 

 

Examine the straight cantilever beam (used in Section 2.4) excited by a harmonic force at 

its free end. The excitation force has an amplitude 0.5 N at 3.85 Hz, which is arbitrarily chosen 

around the first natural frequency of the beam. The computation duration is 70 s, which is long 

enough to get stable response in the system. The sampling frequency is . Fig 2.2 

(a) illustrates the overall time response signals obtained by using the two methods. The two 

curves coincide completely during the entire time duration, as better shown in the close-up 

view (Fig 2.2(b)). The residual values (as defined by Eq.(2.43) in Section 2.3.2.1) are calculated 

for both methods and shown in Fig 2.3(a). It follows that OS technique yields very small 

residuals, which are smaller than the ones without OS for nearly every single time point, 

demonstrating the accuracy of the proposed OS technique. Fig 2.3(b) shows the minimum 

iteration number required to achieve converged result with a residual value capped at . It 

can be seen that, by embedding the OS technique into the generalized-  method, it takes only 
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one iteration to reach converged result, whilst more iterations are required without OS 

technique. This happens even within the stable region. Moreover, it was also noticed that 

generalized-   method without OS technique may not always yield converged solution for 

some frequencies, whilst the one with OS technique always does. The above comparison shows 

the high efficiency and the robustness of the generalized-   method after embedding the 

proposed OS technique. 

(a) (b)  

Fig 2.2 (a) Time responses obtained by the generalized-  method with and without OS technique, (b) close-up 

view taken in the stable region for a period. Note the two curves coincide perfectly so it is difficult to visually 

differentiate them. 

 

(a) (b)  

Fig 2.3 (a) Residual and (b) minimum iteration in each time point obtained by the generalized-  method with 
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and without OS technique. Note in Fig 2.3 (b), the method using OS needs only one iteration to reach the 

convergence. 

 

2.4 Numerical results and analyses 

2.4.1 Curvature-induced inertia/stiffness effects in linear models 

This section focuses on the verification of the proposed model through examining the 

frequency responses and mode shapes of cantilevers in linear cases, to be used as a benchmark 

for the subsequent nonlinear analyses. Consistent with the reference solutions [100] provided 

for in a straight beam configuration, the same geometric and material parameters are used: 

length  mm, rectangular cross section with a thickness  mm and width 

 mm, Young’s modulus  GPa and density . When the beam is 

initially bended to form an initial curvature, two additional parameters are used for geometry 

description of the curved part: level of the initial curvature  as defined in Eq.(2.2) and the 

curved arc length  starting from the free end tip of the beam.  

 

From slightly to largely curved configurations, four cases are first examined as shown in 

Fig 2.4:  ;  ;  ; 

. These configurations are also used to clarify the application range of 

the approximation used during the development of the condensation model in Eq.(2.15). A free 

boundary is imposed at  and the other extreme end of the beam is clamped at . A 
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concentrated harmonic excitation force with an amplitude  is transversely applied at the 

free end tip of the beam. Totally 20 uniform elements along the beam are utilized in the 

proposed model for analyses, and 24 Euler-Bernoulli beam elements are used in the beam 

interface of COMSOL software to provide linear reference solutions with the consideration of 

the initial curvature effect. The numerical tolerance of FEM simulation is set to . For 

linear cases, a damping matrix  , proportional to the stiffness matrix with a 

structural damping coefficient  of 0.005, is introduced. Denoting the natural frequency of 

each mode by , both methods give very consistent values for the first four natural frequencies 

of the straight cantilever beam, i.e., , ,  and 

. 

 

Fig 2.4 Definition of the curved configurations for cantilever beam. 
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2.4.1.1 Linear frequency response 

Linear frequency responses are first calculated using different numerical strategies. The 

proposed model utilizes the HB method with  and Newton iteration , 

where  is the accurate Fourier coefficient vector when results are converged. Calculated 

frequencies are equally spaced with   to cover the range up to 500 Hz. The 

calculated point mobility of the beams is quantified in terms of , where  

is the transverse velocity defined in local   coordinate. Fig 2.5 depicts the calculated 

mobilities of both the straight and curved beams with increasing initial deformation. For all 

four configurations, results show nice agreement between the results obtained from the 

proposed model and COMSOL (Fig 2.5(a)-(d)). Upon a very close examination, some barely 

noticeable differences, especially when the initial deformation becomes severe (e.g., Fig 2.5(d) 

for a demi-circle), exist but are all within an acceptable error range. This thus validates the 

linear part of the proposed model. 

 

Cross figure comparisons between Fig 2.5(a)-(d), alongside the comparison with the 

straight beam, allow for the examination of the effects of the initial curvature and the curved 

arclength on the dynamics of the beams. It can be observed that the differences between the 

curved beams and the straight beam increase when the beam is more severely curved. By 

increasing the curved portion of the beam (through increasing either   or  ), natural 

frequencies gradually decrease for all modes. Taking the fourth natural frequency as an 

example, it drops by 2.03Hz, 6.53Hz and 19.03Hz from Fig 2.5 (b) to (d). Meanwhile, 
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resonance peaks also change with the frequency shift. It can be seen that, compared with the 

straight beam, the first resonance peak of the curved beam increases in Fig 2.5(b) but decreases 

again in Fig 2.5 (c)-(d), and the second to the fourth resonance peaks increase with increased 

curvature/arclength. All these can be attributed to the curvature, albeit still linear in the present 

stage, as a result of the coupled motion between the longitudinal and transverse displacements. 

(a) (b)  

(c) (d)  

Fig 2.5 Linear FRFs at the free end tip. From (a) to (d): configuration (i)-(iv), respectively. 

 

2.4.1.2 Linear mode shapes 

To further substantiate the above and explain the underlying effects of the initial curvature, 

Fig 2.6 shows the normalized mode shapes of the first three modes in the four curved 
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configurations (i)-(iv) (as illustrated in Fig 2.4). First of all, comparisons of mode shapes show 

good agreement between the proposed model and COMSOL simulation in terms of modal 

deformation. Mode shapes, in terms of longitudinal displacement  , are shown in the left 

column of Fig 2.6. It can be observed that the initial curvature effect causes a larger portion of 

the beam to deform longitudinally, especially within the curved portion. The longitudinally 

deformed area expands for higher order modes as shown from Fig 2.6 (a) to (c). It can then be 

surmised that this phenomenon, coupled with transverse deformation of the beams, would in 

principle create enhanced inertia effects. Moreover, initial curvature also affects the transverse 

deformation, as illustrated by the right column in Fig 2.6, although variation patterns would be 

mode-specific. For example, the first mode (Fig 2.6(a)) shows that the largest displacement of 

configuration (iv) no longer occurs at the free end tip of the beam but moves closer to the 

middle when the initial deformation is large. The second and the third modes, however, show 

reduced deformation as compared to the tip when initial curvature increases. 

 

(a) Mode 1 
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(b) Mode 2 

 

(c) Mode 3 

Fig 2.6 Normalized mode shapes for curved cantilever beams. Left to right: u, v. 

 

2.4.1.3 Examination of assumptions and effects of curvature-induced linear 

stiffness/inertia 

In addition to the verification of the frequency responses and changes in the mode shapes, 

observations on the longitudinal deformation also testify the efficacy of the piece-wise 

treatment with constant initial curvature used in proposed model, thus expanding the 

application range to locally curved configuration. As mentioned above, an approximation is 
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used in Eq.(2.15) to facilitate the treatment of the longitudinal components so that the 

condensed model can finally be established. Therefore, it is important to revisit and assess this 

critical assumption which was used for approximation and at the same time check its validation 

range. To this end, we re-examine Eq.(2.13) by applying Taylor expansion and neglecting terms 

starting from . This process leads to the truncated expression of  written as 

 2
3 3

1 2
2

u v k u v vk   = −  + +  ,  (2.50) 

which is then cast into the standard first order non-homogeneous linear differential equation as 

 2
3 3

1
2

u v k u v vk  +  = − + .  (2.51) 

The method of variation of constants [128] is then applied to solve Eq.(2.51) in which the 

following adjacent homogeneous equation needs to be solved first 

 3 0u v k u +  = .  (2.52) 

Integrating the above equation from  to , the homogeneous solution  writes 
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u Cu L e
= ,  (2.53) 

where  is a constant. Then replacing the constant  with  and substituting  into 

Eq.(2.51), the unknown function  can be determined. Substituting  back into , 

the final general solution, denoted by , of the non-homogeneous equation writes 
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 .  (2.54) 

Note the above procedure allows for a more accurate estimation of the longitudinal 

displacement than the solution  obtained previously based on the approximation made in 

Eq.(2.15). To quantify the difference, a relative error factor over the entire beam span is defined 

as 
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To introduce noticeable nonlinear effects, the transverse displacement at the free end tip of 

the beam is set to  for all modes, where  is the radius of gyration and defined by 

  with a rectangle cross section. In the present case,   m. For even 

larger deformation used in the subsequent analyses, this issue will be commented again in due 

course. Using the linear mode shapes calculated above as an approximation, the calculated 

relative error   for the first three modes in all four previous curved configurations is 

illustrated in Fig 2.7. It follows that, the slightly curved configuration (i) generates a very small 

error for all three modes, typically below 1%. As the beam is bent more severely, error increases. 

Nevertheless, even for the largest curved configuration (iv), the relative error is still capped 

below 8%, which is still acceptable. Therefore, the assumption used is deemed valid for all four 

configurations, even for the last one which is a severely curved semi-circle beam.  
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Fig 2.7  for different curved configurations. 

 

As presented in the governing equation (Eq.(2.17)), the initial curvature affects the linear 

terms through a combined stiffness term and an inertia term, denoted by 

 ( ) ( )2 2
3 3 3 3 3 300

,
s s L

IC IC s
k k EIv k k EI v vk m k m vk dsds  = + + =

     .  (2.56) 

Their respective impacts on the linear system response are demonstrated. To this end,  and 

  are separately considered for the extreme case of the curved configuration (iv). The 

calculated FRFs are depicted in Fig 2.8, which shows that both curvature-induced stiffness and 

inertia terms cause a reduction in the resonant frequencies, resulting in the ultimate differences 

between the straight and curved beams. A closer examination suggests that the peak shift caused 

by the curvature-induced stiffness and inertia is roughly the same starting from the third to 

higher-order modes, although differences are noticeable on the first two modes. More 

specifically, for the second mode, the inertia-induced effect affects more the second resonant 

frequency, while the stiffness-induced effect has a greater impact on the resonance peak level 

of the first mode. 



60 
 

 

Fig 2.8 The initial curvature effect of linear stiffness and inertia. 

 

2.4.2 Nonlinear dynamic features and curvature-induced inertia effect 

This section focuses on the numerical simulations and analyses of nonlinear dynamic 

behaviors of initially curved cantilever beams. The HB continuation method established in 

Section 2.3.1 is utilized to provide frequency domain results, to be confirmed by the time 

history of the response signals. Truncated harmonics and time samples for all numerical 

simulations are set to   and  , respectively. The generalized-   method 

should adopt a sufficiently high sampling frequency to slowly sweep in time domain, and the 

corresponding parameters are determined by the concerned frequency range. A damping matrix 

 , proportional to the mass matrix, is introduced, i.e.,   herein. The 

amplitude of displacement in nonlinear frequency response (NFR) curves writes 

 ( ) ( )( )0Displacement 0.5 max min
2

xc x x= + −t t ,  (2.57) 
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which considers the rigid body motion , so that observations of asymmetry behaviors 

in frequency domain could coincide with the time history. 

 

Numerical simulations on the curved beam in frequency domain are conducted and verified 

through comparisons with the time history of the system responses. With the initial curvature 

increasing from  (straight beam) to  and a curved arclength of , 

corresponding NFR curves for the first mode are calculated and illustrated in Fig 2.9. In this 

case, the generalized-  method adopts a sampling frequency  to sweep from 3.7 

Hz to 4 Hz with a rate of 0.01 Hz/min. The horizontal axis denotes a dimensionless frequency, 

which is normalized by the first natural frequency of the corresponding straight beam 

. Note that the straight beam simulations are firstly carried out using the proposed 

model, whose results have been compared to reference solutions [100]. At 1.5 N excitation 

level for the straight configuration, Fig 2.9(a) shows that NFR curves obtained by the proposed 

model agree well with the reference solution. Meanwhile, the observed NFR variation is also 

in good agreement with the time history responses obtained from frequency sweeping. More 

importantly, the hardening effect is obvious for the first mode, as a result of dominant level of 

the nonlinear stiffness effects. As the initial curvature increases in Fig 2.9(b)-(d), the resonance 

frequency gradually decreases while the hardening evolves to softening. Meanwhile, it can be 

observed that the resonance frequency peaks of the curved beams are all slightly lower than 

that of the straight beam (with the normalized frequency smaller than 1). From   to 

 , the time domain responses corresponding to the sweeping up process are 
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completely enveloped by the NFR curves, and the process is reversible. The situation is, 

however, different when the initial curvature increases to . In fact, Fig 2.9(d) shows 

that there exist two turning points on the NFR curve for the curved beam. The sweeping up 

curve jumps around the first turning point to the upper stable branch, while the sweeping down 

curve would jump around the second turning point so that hysteresis occurs.  

(a) (b)  

(c) (d)  

Fig 2.9 Comparisons of the HB method and the generalized-  method under 1.5 N force in the first mode for 

the curved beams with different initial curvature. (a) , (b) , (c) , (d) . 

Circle: reference solution for the straight beam. 

 

Additional numerical studies are conducted for different curved configurations and 

different forcing levels. Multiple harmonics, as a salient feature in nonlinear dynamic analysis, 
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would better inform on the complex nonlinear behaviors of the system through revealing the 

energy level of dominant harmonic orders. Therefore, the normalized harmonic coefficient for 

each order is calculated by 
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with 

 ( ) ( ) ( )2 20
0 , , 1,2, ,

2

x
x x

i i i H

c
s c i N = = + = . 

which depends on the excitation frequency and is comprised between 0 and 1. 

 

The same curved configurations as simulated in the above case are examined with the 

forcing level changing from 0.5 N to 2 N with a step size of  N. Fig 2.10(a) displays 

the NFR curves for the first mode. Comparing the straight configuration results from the HB 

method with ROM [100] shows nice agreement, even for the largest free-end displacement 

considered, which amounts to   (almost 2/3 of the beam length), with the first five 

harmonics considered in the current numerical method. For this large displacement, the error 

indicator (as defined in Eq.(2.55)) for this curved configuration is only 0.869%, which is 

rather small to further confirm the validity of the assumption used in Eq.(2.15). It can be 

observed that resonance frequencies decrease with the increasing initial curvature (Fig 2.10(a)). 

Meanwhile a similar hardening-softening transition can be observed when the curvature 

reaches a certain level, as a result of the effective curvature-induced inertia effect. Obviously, 

a larger excitation level leads to a more significant frequency shift. There exists a specific initial 
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curvature value (between  and ), at which the nonlinear system shows 

no frequency shift like its linear counterpart. Similar phenomenon, called near-transition, has 

also been observed in the literature although cases are different [78]. At this specific curvature, 

various competing nonlinear factors in the system balance each other. 

 

The normalized harmonic coefficients are logarithmically shown in Fig 2.10(b)-(e). 

Consistent with the NFR curves in Fig 2.10(a), the appearance of multiple harmonics also 

confirms the occurrence of the hardening-softening transition. For the straight configuration, 

Fig 2.10(b) illustrates that the third harmonic coefficient is the largest followed by the fifth one. 

Note even-order harmonics, which should not exist theoretically, appear because of the 

computer calculation error, but they have a smaller magnitude than odd-order harmonics. When 

a small initial curvature is added, it changes system response and induces zero- and even-order 

harmonics as shown in Fig 2.10(c). The same pattern basically remains when further increasing 

the initial curvature, except a slight downshifting of the peak region to lower frequencies as 

shown in Fig 2.10(d). It can be observed that the dominant even-order harmonics account for 

the hardening-softening transition. As to the most severely curved beam (Fig 2.10(e)), a turning 

point phenomenon similar to that observed in Fig 2.10(d) is reflected back to each harmonic. 

The energy level of the harmonics generally reduces when harmonic order increases. Note that 

the zero-order harmonic is the largest among all harmonic coefficients in Fig 2.10(d)-(e), since 

all even-order terms contribute to the zero-order coefficient through the quadratic order terms 

in the governing equation. 



65 
 

(a)  

(b) (c)  

(d) (e)  

Fig 2.10 NFR curves of the first mode with the various initial curvature and excitation level, as well as 

normalized harmonic coefficients. (a) NFR curves when  N. Circle: reference solution. The 

first six harmonic coefficients at the forcing level of 2 N: (b) , (c) , (d) , (e) 

. 

 

Considering the dominant nonlinear inertia, the straight cantilever beam essentially 
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exhibits softening phenomenon in higher modes, which is different from the first mode [93]. 

Therefore, the curvature-induced effects on higher modes are demonstrated when the initial 

curvature is involved. To this end, the NFR curves of the second and third modes are depicted 

in Fig 2.11 for different initial curvatures and forcing levels. With 6 N and 12 N excitation 

applied to the second mode, straight configuration shows good agreement between the results 

obtained from the HB continuation method and ROM (Fig 2.11(a)-(b)). When the initial 

curvature is added, the resonance peaks of the curved beam shown in Fig 2.11(a) reduces with 

the increasing initial curvature. To quantify the changes, the relative displacement ratio 

between the curved configurations  and  is calculated, yielding 16.2%. The 

ratio increases up to 27.6% at the higher forcing level of 12 N, as shown in Fig 2.11(b). 

Meanwhile, the curved beams in higher modes show slight frequency shift when the initial 

curvature increases. Nevertheless, because of the curvature-induced quadratic terms in the 

governing equations, higher modes show asymmetric responses, which can be observed 

through time responses for the case of , shown in the subplot of Fig 2.11(a). This 

phenomenon becomes more obvious when the forcing level increases, as shown through 

comparisons between the two figures (Fig 2.11(a) and (b)). Besides, with the largest initial 

curvature , Fig 2.11(a) shows a loop in the second mode, which is further enlarged and 

heads down when the excitation force increases to 12 N, as depicted in Fig 2.11(b). The 

occurrence of negative displacement represents asymmetric vibration, which can be explained 

by Eq.(2.57). Similar patterns remain for the third mode (Fig 2.11(c) and (d)). However, the 

third mode is more difficult to excite to trigger its inherent nonlinear behavior than the second 
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mode, unless a larger excitation force is applied. 

(a) (b)  

(c) (d)  

Fig 2.11 NFR curves of higher modes with various initial curvatures and forcing levels. (a)-(b): Mode 2 at the 

forcing level of 6 N and 12 N, respectively. (c)-(d): Mode 3 at the forcing level of 6 N and 12 N, respectively. 

Circle in (a)-(b): reference solution of the second mode for the straight beam. 

 

The initial curved deformation of the beam also depends on curved arclength . Therefore, 

a longer arclength  is investigated. At a moderate forcing level of 1.5 N and 2 N, 

NFR curves in Fig 2.12(a) shows a reduction of the resonance frequency of the first mode. In 

this regard, increasing   leads to the same effects as   in terms of hardening-softening 

transition in the first mode. However, at an even higher forcing level, 3 N, the NFR curve 

becomes more complex. In fact, four turning points can be observed, alongside a reversed trend, 
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turning from softening to hardening. A plausible explanation can be offered. In a straight beam, 

the nonlinear stiffness dominates the first mode to produce the commonly-observed hardening 

phenomenon due to its large deformation. When the beam is initially curved, inertia effects are 

amplified and compete with the stiffness effects. However, for a sufficiently high forcing level, 

the larger deformation would enhance nonlinear stiffness effects to produce the ultimate 

softening-hardening behavior observed in Fig 2.12(a). Similar phenomenon is reflected in the 

normalized harmonic coefficients at the same forcing level of 3 N (Fig 2.12(b)). In addition, 

the zero-order and the second harmonics show more complex variation, as evidenced by the 

appearance of loop, shown in the inset plots. It is relevant to note that nonlinear dynamic 

behaviors of the curved beam are not only determined by the curved condition (curvature and 

arclength), but also the excitation level. 

(a) (b)  

Fig 2.12 (a) NFR curves for the first mode when  N. (b) Normalized harmonic coefficients at the 

forcing level of 3 N. 

 

To further substantiate the above, effects of different arclengths in terms of harmonics are 

compared. Fig 2.13 shows that the overall level of the normalized zero- and even-order 
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harmonic coefficients increases with the curved arclength. However, variations of the odd-

order coefficients are marginal and inconsistent in magnitude. For example, the third-order 

coefficient even decreases slightly. In general, an increase in the initial deformation of the beam 

would favor the generation of more energetic higher order harmonics, which at the same time 

generates increased energy transfer, mainly to the even-order components. 

 

Fig 2.13 Normalized harmonic coefficients of the first mode for different curved length at the forcing level of 2 

N. Solid line: . Dashed line: . 

 

2.5 Summary 

In this chapter, a cantilever beam with constant initial curvature is investigated. Combining 

a geometrically exact model and the shortening effect, specific to a cantilever, an inextensible 

condensation model is established with the consideration of initial curvature. Specific 

techniques are proposed to numerically implement the developed model with increased 
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accuracy and robustness. The proposed model explicitly shows different nonlinear stiffness and 

inertia terms arising from the initial curvature, as well as their interplay in the system equation. 

This explicit expression allows for the proposal of a modified Jacobian matrix calculation 

method (a necessity arising from the curvature-induced nonlinear inertia effects) involved in 

the HB method. Meanwhile, an OS technique is adopted and integrated into the generalized-  

method for the calculation of time domain system responses. 

 

The validity and the assumptions made for the development of the model are first validated 

through comparisons with COMSOL results based on linear FRFs and mode shape analyses. 

Results show that initial curvature and curved arclength both lead to a decrease in the resonance 

frequencies, more obvious when the beam is severely bent. Initial curvature causes increased 

longitudinal motion in the beam, which through its coupling with the transverse vibration, 

generates enhanced inertia effects. Numerical analyses demonstrate that both curvature-

induced linear stiffness and inertia terms in the system equation are responsible for the 

reduction of the natural frequencies, which can be combined and regarded as effective inertia. 

 

Confirmed by the time-domain results from the generalized-   method, nonlinear 

frequency responses of the first mode are shown to experience a hardening-softening transition 

with the increasing initial curvature. This is accompanied by a similar softening process in the 

harmonics. NFR curves become complex at a high forcing level which might create reversed 

trend from softening to hardening. The physical process behind can be explained. In fact, the 
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initial curvature of the beam generates significant inertia effects which compete with the 

stiffness effects. With a sufficiently high forcing level, the stiffness effects eventually 

overwhelm and prevail to produce the observed softening-to-hardening reversion. Higher 

modes, at an increased forcing level, show slight frequency downshifting while experiencing 

asymmetric responses. Both phenomena become more obvious when the forcing level 

increases. 

 

As a final remark, this chapter puts emphasis on some fundamental issues related to the 

intrinsic nonlinearities and inertia-induced features in an initially deformed cantilever from the 

perspective of system modeling and analyses. Thus, the proposed model can be utilized in the 

next Chapter, to analyze and examine geometrically nonlinear features of ABH beams with 

imperfect geometry. 
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Chapter 3. Geometrically Nonlinear Features of ABH Beams 

with Imperfect Geometry 

3.1 Introduction 

A prefect Acoustic Black Hole (ABH) structure features a thickness reduction according 

to a power-law profile. This slows the propagating velocity of the bending waves and entails 

energy concentration towards the ABH tip, so that a small amount of damping covering the 

thinnest part would efficiently absorb vibrational energy. Meanwhile, the reduced wave speed 

inside the structure is also conducive to reducing the sound radiation of the structure. Owing 

to the salient ABH features, it is possible to efficiently manage the structure-bone vibration in 

engineering applications, as reviewed in Section 1.2.2. 

 

Although ABH structures exhibit exceptional properties at high frequencies, their low-

frequency effects are deficient, especially below the cut-on frequency [18]. The extension of 

the ABH length is a prevalent and straight forward approach to reduce the frequency threshold. 

Nevertheless, an excessively long ABH structure gives rise to a large vibration amplitude 

towards the ABH tip, resulting in noticeable geometric nonlinearities that challenge both 

numerical simulations and experimental studies. Extensive research has been conducted on the 

geometrically nonlinear features and mechanisms of uniform beams, whereas, except for 

limited efforts, there is a lack of numerical and experimental research focused on ABH beams, 

both quantitatively and qualitatively. 
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Fig 3.1 An ABH beam with a curved and thin end tip. 

 

In addition, the geometric properties of ABH beams in practical applications may deviate 

from ideal conditions due to the limitations of manufacturing. As shown in Fig 3.1, an 

experimental sample is usually imperfect and has a curved and thin part towards the ABH tip. 

This is typically caused during the manufacturing process, in which thermal stresses were 

generated and unevenly distributed inside the beam. Besides, the thickness of a long ABH beam 

cannot be consistently reduced in certain areas near the ABH tip, which could form a platform 

due to the machining accuracy. Both geometric imperfections can affect geometric 

nonlinearities and lead to complex nonlinear responses, which up to now, have not been 

systematically investigated and exploited. Indeed, challenges persist in the direct measurement 

of an ABH beam with imperfect geometry, mainly arising from the presence of a very thin 

truncation thickness. Meticulous cares should be taken to determine the primary geometric 

parameters to establish a meaningful model. 
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Therefore, this Chapter mainly focuses on geometrically nonlinear features of perfect and 

imperfect ABH beams and confirms the simulation results with experiments. 

 

3.2 Numerical model and experimental setup 

The hardening/softening effect in a nonlinear system relies on the dominant level of 

nonlinear stiffness and nonlinear inertia, and the final system responses are associated with the 

boundary conditions [100] and the curved condition. A typical beam structure, like the one 

shown in Fig 3.1, would require an accurate model for the subsequent analyses. In this paper, 

the inextensible condensation model, applicable to a clamped-free beam, is used to investigate 

nonlinear features of a cantilever ABH beam with initial curvature and to carry out parametric 

studies of geometric imperfections. 

 

3.2.1 Recap on inextensible condensation model with initial curvature 

When a cantilever vibrates transversely, the longitudinal strain along the neutral axis is 

zero, i.e., , which is referred to as inextensibility [93] . As a result, the deformation in 

two-dimension (2D) plane for an initially curved Euler-Bernoulli beam follows 

 ( ) ( )2 2
3 31 1u vk v uk + − + + = ,  (3.1) 
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Fig 3.2 Deformation relationship of a beam segment. 

 

where  stands for the derivative with respect to the arc length ;  and  are 

motions of a beam segment along longitudinal and transverse directions, respectively, and  

is initial curvature. Relationships among these parameters are shown in Fig 3.2. Eq.(3.1) shows 

that  can be represented by  with the assumption of . Therefore, the governing 

equations of motion along two directions can be condensed to 
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by keeping nonlinear terms to the third order through the Taylor expansion. The above equation 

includes both linear and nonlinear effects inside the system, and comprehensively describes the 

interaction between nonlinear stiffness , nonlinear inertia , and initial curvature . 
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The first row of the above equation concerns linear terms, while the second and third rows 

present nonlinear stiffness and nonlinear inertia terms, respectively. In consequence, the 

nonlinear modal behavior, hardening or softening, depends on the overall effects of nonlinear 

stiffness and nonlinear inertia, and the initial curvature.  

 

The inextensible model in Eq.(3.2) is then discretized through the Galerkin approach to 

form element matrices and vectors. For the specific ABH beam under investigation (whose 

geometry and parameters are to be defined later), there are 39 beam elements with Hermitian 

interpolation employed in the following simulation. The linear global matrices  ,   are 

then assembled. The damping matrix is defined as , with a structural damping loss 

factor  at an excitation angular frequency . All nonlinear terms, including initial curvature, 

are regrouped into the internal force vector . The resultant discrete governing equation in 

matrix form writes 

 int ext+ + + =Mx Cx Kx f f ,  (3.3) 

where x is the vector of the generalized degree of freedom (DOF). The above nonlinear 

equations, in which the external excitations are harmonic, can be numerically solved using the 

HB method coupled with a continuation approach, as detailed in Section 2.3.1 and the literature 

[110].  
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3.2.2 Experimental setup 

The purpose of the experiments is to demonstrate the geometrically nonlinear features of 

the ABH beam and to confirm the geometric imperfections of the experimental sample. The 

experimental setup is shown in Fig 3.3. The uniform end of an ABH beam was fixed by a vice 

and the ABH tip was set free. An impedance head (DYTRAN 5860B) was glued to the beam 

surface and connected to the electrodynamic shaker (TIRA TV51075), which was driven by a 

power amplifier. The vibration velocity of the beam was measured by a laser vibrometer 

(Polytec NLV-2500-5). The force and velocity signals were transmitted to the data acquisition 

hardware (Simcenter LMS SCADAS) and subsequently processed by the Simcenter Testlab 

software. 

 

Fig 3.3 Experimental setup. 

 

The swept and stepped sine testing interface were used to conduct linear and nonlinear 

tests, respectively. The former was achieved using a low forcing amplitude, while the latter was 
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accomplished by increasing the excitation levels. Linear results were obtained using a sweep 

excitation signal at a rate of , and results were averaged over 40 measurements, thus 

minimizing experimental error and increasing data confidence level. The stepped sine testing 

interface was run for nonlinear tests, in which the force amplitudes were controlled via negative 

feedback to provide stable responses at each frequency point. The range of force variations 

were constrained within a tolerance of  dB relative to the base force level. 

 

3.3 Numerical results 

3.3.1 Updating of geometric parameters 

As shown in Fig 3.1, a realistic ABH beam, in contrast to the ideal one, is truncated with 

finite thickness at the free end, and geometric imperfections arise from the machining 

inaccuracy as mentioned in Introduction. That makes it imperative to update geometric 

parameters of the numerical model through experimental comparisons. Fig 3.4 shows the 

diagram of a cantilever ABH beam, whose general thickness profile is expressed as 

 ( )0 0 ,
,

m
s m

u m e

x x h x x x
h

h x x x
 − +  = 

 

  (3.4) 

where   is a constant;   is the origin of the thickness profile;   is a power exponent 

usually greater than or equal to 2;  and  are the half thickness of the platform and the 

uniform part, respectively. It is worth noting that the thickness profile in Eq.(3.4) does not 

include the initial curvature  for further parameter updating. This omission is justified by 
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the limited effects of  on the linear results, even for the extremely curved configuration [65], 

which will also be demonstrated later. The cantilever ABH beam has a free end at  and a 

clamped end at . The entire beam is composed of the ABH part from  to  and the 

uniform part from  to  with a rectangular cross-section (width , height ), which 

has an area  and a moment of inertia . In addition to the parameters 

pertaining to the power-law thickness (to be updated later), the rest of the geometric parameters 

(directly measured) and material parameters of the ABH beam are given in Table 3.1. An 

external excitation force is applied at the uniform part at , and system response is measured 

close to the ABH tip at . 

 

Fig 3.4 Schematic diagram of a straight cantilever ABH beam. 

 

Table 3.1 Parameters of the ABH beam. 

Geometry Material 

 mm,  mm,  mm  kg/m3 

 mm,  mm,  mm  GPa 

 mm,  mm,  mm  

 

Unlike the length of the beam, the geometric parameters of the tapered ABH profile are 
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difficult to be accurately obtained by normal measurements, especially for a long ABH beam 

with very thin tip. The uncertainty in the ABH profile was identified as the main modeling error. 

Thus, three parameters ,  and  in Eq.(3.4) are chosen to be updated according to the 

experimental results. The constant  is obtained by . To evaluate 

differences between the numerical model and the experiment, an objective function  is built 

as 

 ( ) ( )10 Model 10 Experimentlog logG = −H H ,  (3.5) 

where the vector   contains the cross-point mobility. The objective is to 

minimize  to mitigate the model error. This approach has been widely employed in many 

structural analyses based on model updating, as reviewed in [129]. This paper hence makes use 

of the particle swarm optimization (PSO) method, a nature-inspired intelligent algorithm, to 

update the parameters ( , , , ), under imposed constraints as listed in Table 3.3. The 

result is obtained when the variation between the ten consecutive values of  is lower than 

. 

 

The Bode plot of linear results is shown in Fig 3.5. The frequency band along the horizontal 

axis is capped at 400 Hz with a frequency resolution of   Hz. The magnitude of 

frequency response function (FRF) curves is expressed in  dB, and the phase 

angle changes within  degrees. Together with the phase variation, six main experimental 

modes are marked by M1-M6 (with M standing for “measured”) in Fig 3.5(a), albeit mode M1 

is barely visible. Based on the experimental data sets, the numerical model is updated and its 
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FRF curve is also shown in Fig 3.5(a). It can be seen that the updated model generally agrees 

well with the experimental results, whereas only five main modes (denoted by N1-N5, with N 

standing for “numerically predicted”) are found. M1 mode is missing in the updated model. 

The reason is that the thickness profile of the ABH part is determined by the global parameters 

( , , , ), minor variations of which can affect the results. As a result, it is difficult to fit 

every single mode, especially in the presence of local geometric imperfections. Despite that, 

all major modes involved in the system response are well represented by the updated model. 

Table 3.2 lists the resonant frequencies of the experiments and the updated model. Apart from 

mode M5(N4), the discrepancies between them are less than 3 Hz. 

(a)  

(b)  

Fig 3.5 Comparisons of the experiment and the updated model. (a) FRF, (b) Phase angle. 
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Table 3.2 Resonant frequencies (Hz) of the experiment and the updated model. 

Modes M1 M2(N1) M3(N2) M4(N3) M5(N4) M6(N5) 

Experiment 29 33.5 90 152.5 216 323.5 

Updated model / 35.5 89.5 151 224.5 324 

 

Table 3.3 Geometric parameters of the ABH profile. 

Parameters  (mm)  (mm)   

Limits   /  

Updated     

 

The updated geometric parameters are listed in Table 3.3. It shows that the updated power 

exponent   is greater than 2, indicating that the experimental sample does obey the 

theoretical requirement on an ABH profile (  equal to or greater than 2). Meanwhile, the ratio 

  is so small that the impact of   on the linear responses is significantly 

limited. Therefore,  can be neglected and the linear experimental results produce a perfect 

ABH beam. 

 

3.3.2 Geometrically nonlinear features of ABH beams 

Due to large vibration amplitudes, especially at the tip portion, geometric nonlinearities 

are prevalent in flexible ABH beams, while relevant research is inadequate and the 
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geometrically nonlinear characteristics and mechanisms of an ABH beam (perfect or imperfect) 

are still unknown. Moreover, the effects of the geometric imperfections, which are not 

identified in the above linear studies, could be amplified by nonlinear effects, e.g., the first 

mode exhibits a hardening-to-softening transition in the uniform beam, due to the fact that a 

short portion of the beam is curved. This section focuses on the nonlinear studies of the perfect 

ABH beam and the effects of imperfect geometry. The HB method is used to perform nonlinear 

simulations with the parameters of  and . 

 

3.3.2.1 ABH beams with perfect geometry 

Subjected to high excitation levels, the nonlinear frequency response (NFR) curves of the 

perfect ABH beam (without initial curvature) around the first three modes (N1-N3) are first 

shown in Fig 3.6(a)-(c). The horizontal axis is the normalized frequency, and the vertical axis 

is the displacement of the beam at . As observed in Fig 3.6(a), the first mode (N1) for 

the perfect ABH beam hardens as the excitation force increases. Contrary to a uniform beam, 

Fig 3.6(b) shows that the present ABH beam exhibits a significant hardening behavior for the 

second mode. This particular nonlinear phenomenon can be explained by the intrinsic 

nonlinearities of the cantilever beams. As reported in Chapter 2, a free boundary gives rise to 

the nonlinear inertia , which dominates in the high order modes and lead to a softening 

effect. However, the structural thickness of the ABH beam continuously decreases towards the 

free end, which results in a corresponding reduction in the inertia-induced effects. Besides, the 
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nonlinear stiffness effects are enhanced due to larger vibration amplitudes. This consequently 

changes the dominant level of the two competing effects. To illustrate these effects,  and 

 are individually calculated in the case of the second mode with , and the results 

are shown in Fig 3.6(d). As observed, the nonlinear stiffness  has a greater impact on the 

frequency shift than the nonlinear inertia , hence leading to a hardening tendency in the 

second mode. Nevertheless, the third mode in Fig 3.6(c) shows a softening behavior, indicating 

the dominance level of   for higher-order modes. In addition to the variation of the 

nonlinear modal tendency, there is also an increase in geometric nonlinearities as the modal 

order becomes higher. More specifically, with an excitation force of , the first mode 

exhibits a linear behavior, while the second mode shows a notable frequency shift of 0.014, 

which further increases to 0.0146 for the third mode. This is due to the efficient energy 

concentration in the high order modes. 

(a) (b)  
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(c) (d)  

Fig 3.6 NFR curves of the perfect ABH beam around the first three modes. (a)-(c): Modes N1-N3, (d) Mode N2, 

. 

 

3.3.2.2 Effect of initial curvature 

This part of the study examines the curvature-induced effect on the linear and nonlinear 

behavior of the ABH beams, affected by two factors, i.e., the magnitude of the initial curvature 

 and the initially curved length in the ABH beam. The latter is represented by the factor , 

which is defined as 

 ,s
c s m

ABH

x xr x x x
l
−

=   ,  (3.6) 

which considers the curved part within the ABH portion and varies between 0 and 1. 

 

Linear simulations are first carried out to investigate the initially curved ABH beam with 

a length of , i.e., . The inextensible model with initial curvature is numerically 

solved by the HB method with . The reference solutions are provided by the Comsol 

software with the interface of solid mechanics. Fig 3.7 shows the linear FRF curves with a 
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frequency resolution of  Hz. As seen, the present model agrees well with the results 

of Comsol, except for a slight deviation at the first mode in Fig 3.7(b). However, regardless of 

initial curvature   with the value of   or  , the linear results of the curved 

configuration are virtually identical to those of the straight one. Accordingly, the effect of the 

locally curved length ( ) is even less, which could justify the omission of  in the model 

updating procedure for the current experimental sample as shown in Fig 3.5. 

(a) (b)  

Fig 3.7 FRFs of the curved ABH beam with : (a) , (b) . 

 

Despite the limited effect of initial curvature on the linear results, nonlinearity could result 

in significant changes in the system response. From a straight configuration   to a 

curved configuration , Fig 3.8 shows the nonlinear frequency response (NFR) curves 

of the locally curved ABH beam with  for modes N1 and N2 and  for 

mode N3. As observed in Fig 3.8(a), the hardening effect of the first mode (N1) is enhanced 

with increasing  and the frequency shift increases by  from  to  for 

. Fig 3.8(b)-(c) illustrate similar phenomena for modes N2 and N3. The observed 

phenomenon is explained as follows. From Eq.(3.2), it can be seen that initial curvature  
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generates not only quadratic terms, but also cubic terms involving nonlinear stiffness and 

nonlinear inertia. For the ABH beam, the curved area partially covers the tapered ABH tip, 

where the inertia effect is diminished but the stiffness effect is relatively enhanced. As a result, 

the initial curvature coupled with the typical nonlinear features of ABH beams leads to a 

hardening tendency in the first three modes (N1-N3), which differs from that of uniform beams. 

(a) (b)  

(c)  

Fig 3.8 NFR curves of the locally curved ABH beam: (a) Mode N1, ,  N, (b) Mode N2, 

,  N, (c) Mode N3, ,  N. 

 

3.3.2.3 Effect of embedded platform 

In addition to the initial curvature, the platform, as an embedded ABH part of uniform 
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thickness over the tip, is another substantial component to be considered. Not only this can 

result from the manufacturing process as one type of geometric imperfections, but it can also 

be intentionally added to achieve enhanced ABH effects as illustrated in a previous study [64]. 

The platform length is then parametrically investigated from both linear and nonlinear 

perspectives. Unlike adding an extended platform to an ABH beam, the platform in this study 

is embedded within the ABH beam as shown in Fig 3.9. The current ABH beam consists of 

three components, and the thickness profile is given by 

 ( )
,

,

,

s s pf

m
pf pf s pf m

u m e
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h x x x


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,  (3.7) 

where  is the half thickness of the platform, which is identical to the truncation thickness 

of the abovementioned updated model;  is the end point of the platform;  is the same 

power exponent tabulated in Table 3.3, and  can be determined once  is given. As in 

the initial curvature study, the length of the embedded platform is described by a dimensionless 

factor , defined by 

 pf s
pf

ABH

x x
r

l
−

= .  (3.8) 

 

Fig 3.9 Schematic diagram of a platform-embedded ABH beam. 
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The first two modes (N1 and N2) are investigated in the following. Fig 3.10 shows the 

linear FRF curves of the ABH beam with the different value of  . The frequency is 

normalized by the first natural frequency of the experimental results ( ) and the simulation 

results ( ), respectively. As seen in the closeup of Fig 3.10(a), compared to the perfect ABH 

beam (dashed line), a dramatic frequency reduction occurs in the second mode (N2) of the 

configuration , which shows a reduced frequency gap between modes N1 and N2. As 

observed in Fig 3.10, with increasing , the frequency gap narrows and reaches a minimum 

near , while it broadens when . As , the peak of mode 

N1 decreases while the peak of mode N2 increases, and both peaks fluctuate by more than 30 

dB. This is due to the change in mode shapes, as shown in Fig 3.12, in which the shadowed 

zone denotes the ABH portion. In Fig 3.12(a) for mode N1, the ideal ABH beam does not 

exhibit any local deformation, but rather an overall bending vibration. However, with the 

introduction of a platform, the local waves start to propagate into the ABH part, showing an 

amplified ABH effect of the first mode in comparison to the perfect ABH beam. This 

phenomenon is also reported in the literature [64], where the extended platform in the ABH 

beam enhances damping effect of the first mode when damping material is deployed over the 

region. Moreover, the second mode in Fig 3.12(b) shows stronger wave compression for larger 

 . Both results illustrate that the platform (even a short one) can significantly affect the 

resonant frequencies and the mode shapes of the ABH beam and enhance the ABH effects. For 

the first two modes (N1-N2), the results show that the configuration with  

exhibits the most similar FRF curve and phase angle curve to the experiment, both in terms of 
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curve shape and amplitude (Fig 3.10(b) and Fig 3.11). Therefore, this configuration is used in 

the next section to compare with the nonlinear experimental results. 

(a) (b)  

Fig 3.10 FRFs of the ABH beam with an embedded platform: (a) , (b) . 

 

 

Fig 3.11 Phase angle of the ABH beam with a platform . 
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(a) (b)  

Fig 3.12 Normalized mode shapes of the ABH beam. (a) Mode N1, (b) Mode N2. 

 

Fig 3.13 illustrate the NFR curves of the ABH beam with different platform lengths, for 

mode N1 (left) and mode N2 (right). For   in Fig 3.13(a), the first two modes still 

exhibit hardening behaviors like the perfect ABH beam as shown in Fig 3.6(a)-(b), but the 

system exhibits enhanced geometric nonlinearities with a larger frequency shift. More 

specifically, in the case of mode N2 (Fig 3.13(a)), the configuration ( ) at  has 

a frequency shift of 0.019, larger than 0.014 in the perfect one at  (Fig 3.6(b)). As 

 increases from  to , Fig 3.13(a)-(d) show an increasing hardening tendency in the 

first mode, but there exists a hardening-to-softening transition phenomenon in the second mode. 

To be more specific, when , the second mode remains a hardening behavior. For 

, the second mode transits from hardening to softening with increasing excitation 

level. Further to , the second mode (N2) exhibits complete softening (Fig 3.13(d)). 

This is due to the change in the results of the nonlinear inertia/stiffness competition. As 

mentioned earlier, the nonlinear inertia effect in the perfect ABH beam is attenuated by the 

reduced thickness profile. However, the thickness of the ABH beam with a platform is constant 
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and stops decreasing towards the free end, which, in turn, prevents the declining nonlinear 

inertia effect observed in the case without a platform. As a result, a transition from hardening 

to softening occurs in the second mode (N2) with increasing platform length. 

(a)  

(b)  

(c)  
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(d)  

Fig 3.13 NFR curves of the ABH beam with an embedded platform: (a) , (b) , (c) 

, (d) . Left to right column: Mode N1, Mode N2. 

 

3.4 Nonlinear experiments 

3.4.1 Nonlinear modal behavior 

The platform-embedded ABH beam  is in perfect agreement with the linear 

experiments for the first two modes, and demonstrates the softening behavior of the second 

mode, which are both different from a perfect ABH beam. Therefore, this configuration is 

experimentally examined to demonstrate the nonlinear behavior of the second mode (M2 and 

N2) and confirm the geometric imperfection. 

 

To calculate the system response around the resonant frequency, the damping conditions 

are investigated according to the nonlinear experimental results. Excited by  , Fig 

3.14(a) shows the velocity around mode M2 of the experimental results and mode N2 of the 

platform-embedded ABH beam ( ) with different linear damping loss factors. As 
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mentioned earlier, the nonlinear experimental approach was implemented through a stepped 

sine test, and the obtained results are labeled by symbols. The circle symbols stand for 

experimental results using excitations from low to high frequencies, and the plus symbols 

represent the results with excitations sweeping in the opposite direction. It can be seen that the 

simulation result of   barely shows nonlinear modal behavior. As   decreases to 

0.001, the system shows a significant frequency shift, which is very close to the experimental 

results. However, insufficient damping leads to a significant difference in the magnitude of the 

simulation and experimental results. Therefore, the nonlinear damping condition must be 

considered in this case to constraint the peak amplitude. Following the work [103], the 

quadratic nonlinear damping   is employed next, where   is the dimensionless 

velocity,   is the nonlinear damping matrix defined by  , and   is the 

nonlinear damping loss factor. Fig 3.14(b) illustrates the NFR curves with different nonlinear 

damping loss factors when  is set to . The optimal result is obtained when the value of 

 is equal to . 

(a) (b)  

Fig 3.14 Parametric studies of damping loss factors of the platform-embedded ABH beam ( ) around 

modes M2 and N2, . (a) Linear loss factor  with , (b) nonlinear loss factor  with 
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. 

 

The damping parameters obtained from the results of  are applied to the cases 

for , , and , as show in Fig 3.15. It illustrates that the simulation results 

agree well with the nonlinear experimental results, and as the excitation level increases, the 

second mode (N2) exhibits softening. These results confirm that the major geometric 

imperfection of the sample is from the platform, which significantly affects the linear and 

nonlinear system response. Apart from these, this nonlinear system shows enhanced geometric 

nonlinearities. With , mode N2 has a large frequency shift of  (Fig 3.15(d)). 

However, the perfect ABH beam, of which mode N1 matches experimental mode M2 in Fig 

3.5, requires an extremely large force  in order to achieve the same frequency shift 

(Fig 3.6(a)). 

(a) (b)  
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(c) (d)  

Fig 3.15 Comparisons between the experimental results and NFR curves of the numerical model ( , 

, ) around modes M2 and N2. (a) , (b) , (c) , 

(d) . 

 

The above observation can be further substantiated as follows. Although mode N1 (perfect 

ABH beam) and mode N2 (  ) agree well with experimental mode M2 in the 

frequency domain, two configurations show distinct mode shapes. As seen in Fig 3.16(a), the 

configuration   promotes larger structural deformation at the ABH tip than the 

perfect ABH beam, thus enabling more energy concentration on the ABH portion. To illustrate 

this, the potential energy ratio of the ABH portion to the uniform portion  (as defined in 

Section 4.3.3) is utilized to quantify the energy distribution in the beam. Fig 3.16(b) shows that 

the configuration   achieves significant energy concentration even for a low 

excitation force of  , which becomes more pronounced with increasing force. 

Therefore, the current ABH beam with a platform shows extraordinary geometric nonlinearities. 
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(a) (b)  

Fig 3.16 (a) Normalized mode shape of the perfect ABH beam for mode N1 and the imperfect ABH beam for 

mode N2, (b) potential energy ratio of the platform-embedded ABH beam  with different forces. 

 

3.4.2 Energy transfer 

By sweeping below , the geometric and mechanical nonlinearity-induced energy 

transfer for ABH beams is demonstrated in Fig 3.17. The measured beam with geometric 

properties in Table 3.1 has a cut-on frequency of  Hz, which is plotted by black 

dashed line in Fig 3.17. Thus, the excitation frequency varied from 25 Hz to 228 Hz at a rate 

of 1 Hz/s, with a sampling frequency of 12.8 kHz. The free-clamped and the cable constrained 

ABH beams (detailed in Section 4.4) without damping layers were excited by the voltage level 

of  . Fig 3.17 shows frequency results via FFT method. As seen, above  

(dashed line), both configurations generate higher order harmonics, typically around 300 Hz, 

indicating energy transfer from low to high frequencies. However, compared to the free-

clamped ABH beam, the cable-constrained nonlinear ABH beam exhibits stronger energy 

transfer. To be more specific, the amplitude increases by 20.6 dB near 300 Hz and by 17.8 Hz 
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near 450 Hz. Additionally, the nonlinear cable results in noticeable vibration reduction of 14 

dB for the first mode and 14.9 dB for the second mode.  

 

Fig 3.17 Comparison of output velocity for ABH beams with free end and nonlinear cable, . 

 

3.5 Summary 

This Chapter investigates the geometrically nonlinear features of an ABH beam with 

imperfect geometry, both numerically and experimentally. Based on practical considerations, 

two geometric imperfection factors, initial curvature and platform, are considered to examine 

their effects on both linear and nonlinear responses of the system. Geometric nonlinearities of 

the ABH beams are modeled by an inextensible model with initial curvature, after the model 

updating based on linear experimental result. 

 

Analyses lead to the following conclusions.  

 

(a) Due to the decreasing ABH thickness profile, the nonlinear inertia effects in an ABH 
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beam generally reduce as compared with a uniform beam, thus resulting an amplified hardening 

effects in the structural modes. 

 

(b) The initial curvature of the ABH beams, combined with the nonlinear stiffness effects, 

generally enhances the hardening tendency in the system, albeit limited as evidenced by both 

linear and nonlinear results. 

 

(c) Numerically predicted nonlinear features are validated through experiments, showing 

good agreement. More specifically, the first two dominant modes with  agree well 

with experimentally measured ones, thus confirming the existence of the platform in the tested 

ABH sample. As the platform length increases from   to  , the second mode of the 

imperfect ABH beam exhibits a transition from hardening to softening, resulting from the 

increased nonlinear inertia effect induced by the platform. Finally, the platform-induced 

softening behavior in the second mode is also confirmed by nonlinear experiments. 

 

(d) Sweeping results show that geometric nonlinearity can transfer energy from low 

frequencies to high frequencies, which facilitates the enhancement of low-frequency ABH 

effect. However, compared with mechanical nonlinearity, the effect of geometric nonlinearity 

is limited for the ABH beams. Meanwhile, stronger geometric nonlinearity may require a much 

larger structure size, which is unacceptable for current manufacturing levels and design 

requirements. Therefore, in order to achieve the final goal of this study, intentional nonlinearity 
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through mechanical coupling is proposed in the next Chapter. 
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Chapter 4. Enhanced Acoustic Black Hole Effect through 

Energy Transfer Enabled by Intentional Mechanical 

Nonlinearity 

4.1 Introduction 

As discussed in previous Chapters, the frequency limit hinders the application of ABH at 

low frequencies. Previous efforts focused on linear systems, such as spiral ABH beam and 

metamaterials with limited success, since some of the existing techniques compromised the 

acceptability of the structures and challenged current manufacturing capabilities. Therefore, 

how to improve the ABH effect below the cut-on frequency is still a bottleneck problem. 

 

Intrinsic or intentional nonlinearities can be a useful approach to solve the problem. As 

shown in Fig 3.17 in Chapter 3, geometric nonlinearity can enable energy transfer into the 

frequency range where the ABH effect functions. Nevertheless, the energy transferred due to 

geometric nonlinearity is minimal, so not really meaningful in practice. To increase energy 

transfer with reasonable structural dimensions, intentional nonlinearity can be considered as an 

alternative. For example, vibro-impact ABH (VI-ABH) was investigated [113, 114]. The 

system used to investigate the issue was shown to generate significant energy transfer from low 

to high frequencies, conducive to passive vibration control at low frequencies. But the proposed 

process is difficult to control and might damage the fragile ABH structure if the contact points 

are located around the ABH portion. A nonlinear energy sink (NES) was also integrated into 
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the ABH structure to achieve targeted energy transfer (TET) [115-117]. In these systems, the 

energy of a base structure can be irreversibly transferred to the NES through nonlinear energy 

interactions [71] and then dissipated through NES damping. The major drawback is that there 

is an energy barrier in the NES, so that a low or excessively high input energy cannot trigger 

energy interactions to realize the TET. In addition, energy transfer was also achieved by 

electromechanical coupling with nonlinear capacitances in a resonant shunt which is connected 

to an ABH structure through piezoelectric materials [118], where a reduction in vibration 

amplitude was observed at low resonant frequencies. However, the circuit-induced 

nonlinearities in the mechanical system are relatively weak and therefore of limited benefits. 

Despite these efforts, research on ABH structures with strong nonlinearities, flexible tuning, 

and wide energy bandwidths remains understudied. Thus, this Chapter presents a feasible 

solution by incorporating nonlinear cables with cubic stiffness into an ABH beam. 

 

4.2 Nonlinear ABH beam 

Fig 4.1 shows a schematic diagram of a symmetrical cantilever ABH beam partially 

covered by two damping layers near its free end, with its end point connected to a grounded 

cable along its width-wise direction. The whole ABH beam consists of an ABH part and a 

uniform part, and their half thickness profiles are given by 

 ( )
2

0,
,

m

u m e

x x x x
h x

h x x x
  

= 
 

,  (4.1) 
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Fig 4.1 Schematic picture of a cantilever ABH beam with damping layers and grounded nonlinear cables. 

 

where  is a constant, and  is the half thickness of the uniform portion. The entire ABH 

beam has length   from   to  , and the ABH portion with length   has the same 

starting point but ends at . Since , the ABH beam has a truncated thickness  at 

the end. Each damping layer has a thickness  and covers the ABH portion from  to . 

 denotes the stiffness of the grounded nonlinear cable attached to the ABH beam at the end 

tip  , where nonlinear effects are expected to arise due to the large local amplitude. 

Meanwhile the right end of the beam is clamped. An external force   is applied at the 

location of . The base beam has a width  and a rectangular cross-section with area 

, a moment of inertia , and is made of a homogenous material with density 

, Young’s modulus , and structural damping loss factor . The damping layers have the 

same width , but different material parameters , , , denoted by the subscript . 

 

 The cross-section of the beam shown in Fig 4.2 has a transverse amplitude of vibration  

that results in a strain   to produce a longitudinal force 
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 along the cable direction, where  is the cable length without tension,  is 

the elastic modulus, and  is the area of the cross-section. Considering the vertical direction, 

the cubic nonlinear force generated by the cable, which is vertically applied to the beam, is 

written as  

 3

2 2
2nl nl

c

vF F k v
l v

= 
+

,  (4.2) 

by keeping the nonlinear strain to the second order through Maclaurin expansion, and the 

corresponding cubic nonlinear stiffness is given by , which can be easily tuned 

by the length of the cable. Obviously, the shorter the cable length, the stronger the nonlinear 

effect. 

 

Fig 4.2 Schematic plot of the beam cross section with two grounded cables. 

 

Based on Euler-Bernoulli beam assumptions, the displacement field of the beam can be 

written as 

 ( ), ,vu v y v
x
 = − 
 

,  (4.3) 

where   is the displacement of an arbitrary point on the beam and damping layer. 

Considering small deformations and rotations, the moment is represented by , so 

that the kinetic energy , the potential energy  (including bending moment and nonlinear 
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force) of the entire configuration and the work done by the external force  are expressed as 
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,  (4.4) 

where , ,  is the Dirac delta function (for any function , 

we have ). Based on the assumption of perfect bounding between 

the damping layer and the base beam, the mass and moment items in Eq.(4.4) should be 

modified to fully couple the effects of the damping layer [13] and written as 
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+

 +  = 


,  (4.5) 

where  ,  ,  , and the damping effect is involved by the 

complex modulus, i.e., . Therefore, the Lagrangian of this system writes  

 k pE E W= − + ,  (4.6) 

where   depends on the displacement  , the deformed curvature  , and the 

velocity . The corresponding Euler-Lagrange equation with higher order derivatives [130] 

should be written as 

 
2

2 0
t v v x v
      − − =   

      
,  (4.7) 

so, the governing equation of motion with the consideration of the damping effect and the cubic 

nonlinear stiffness is given by 
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 ( ) ( ) ( ) ( ) ( )3
0,nl ext fAv EIv k v x t x x f t x x  − + − = − ,  (4.8) 

with boundary conditions 

 
3

0

0,
, 0,

e

nl

v v x x
F k v M x x

= = =

= = =
,  (4.9) 

where F is the shear force, and M is the moment. 

 

After modeling the coupled nonlinear vibration equations, numerical simulations are 

performed in the time and frequency domains through discrete forms of the governing equation. 

Adopting 1D beam elements, the displacement   in the element is approximated by the 

combination of the node degree-of-freedoms (DOF)   and the shape function  

obtained by Hermite interpolation, i.e.,  , where  , and 

, with the superscript  being transpose of a vector or matrix. The mass 

and stiffness element matrices and the force vector were calculated via a Galerkin process as 
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,  (4.10) 

and then assembled in global matrices. Hence, the matrix form of the governing equation is 

expressed by 

 ( ) ( ),nl ext t+ + =Mx Kx f x f ,  (4.11) 

where x is the vector of generalized DOFs, M is the mass matrix,  is the complex stiffness 

matrix, and nlf  , extf   are the nonlinear force and external force vectors, respectively. 

Neglecting the nonlinear and external forces, and assuming a periodic solution x with angular 
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frequency , i.e., i te =x a  , the characteristic equation of the linear system is  

 1 2− =KM a a .  (4.12) 

The complex natural frequency  is the square root of the eigenvalues given in Eq.(4.12). 

The modal loss factor of the linear system, utilized in the following to demonstrate the efficient 

ABH damping effect, is the ratio of the imaginary and real parts of  [13] , which writes 

 
( )
( )

2

2

Im
Re

n

n





= .  (4.13) 

 

Unlike the linear system, the resonant frequency of the nonlinear system depends on the 

response amplitude, and the nonlinear normal modes are no longer orthogonal, which requires 

specific numerical treatments. Owing to its excellent capability to tackle weakly and strongly 

nonlinear problems, the harmonic balance (HB) method combined with a continuation 

approach [110] is used in the following to obtain the nonlinear frequency response (NFR) 

curves, as shown in Fig 4.3. Any point  satisfying the target function  in the 

HB method, will be the solution of the nonlinear problem and will form a “solution branch”. 

Due to the continuation method (path-following), these solution points are continuous along 

the branch, where  is the k-th point, and  in Fig 4.3 represents the peak point along the 

curve. Alternatively, the Generalized-   (G-  ) method [111], a time-integration method for 

both linear and nonlinear cases, is adopted to predict the nonlinear dynamic behaviors in the 

time domain, and results are often used to confirm the NFR curves in the frequency domain, 

as detailed in Section 2.3.2. 
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Fig 4.3 Diagram of a NFR curve in the frequency domain. 

 

4.3 Numerical results and analyses 

This section focuses on numerical simulations of an ABH beam to demonstrate ABH-

induced features in the linear system and the enhanced ABH effect below the cut-on frequency 

through intentional nonlinearity. Both the cantilever ABH beam and the damping layer are 

made of isotropic and homogeneous materials with the geometric and material parameters 

listed in Table 4.1. The damping matrix was given through an equivalence principle, defined 

as . In order to capture local wave patterns, the element distribution in the ABH 

portion was arranged in a geometric sequence, with the smallest element at the free end tip, 

whereas equally spaced elements covered the rest uniform portion of the ABH beam. Mesh 

independence studies were carried out for the linear and nonlinear cases, using three sets of 

meshes ranging from coarse to fine, as discussed in Section 4.3.1. Accordingly, a regular mesh 
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of 30 elements was used to simulate linear and nonlinear cases. The first three natural 

frequencies in the current configuration are   Hz,  Hz,  

Hz. 

 

Table 4.1 Geometric and material parameters of the beam and damping layer. 

Geometric parameters Material parameters 

ABH beam 

 mm,  mm,  mm  

 mm,  mm,  mm  GPa 

,  mm,  mm  

Damping layer  

 mm  

 mm  GPa 

  

 

4.3.1 Convergency study 

This section discusses the mesh independence study in linear and nonlinear cases. There 

are three sets of meshes with a different number of elements, ranging from coarse (18 elements), 

regular (30 elements) to refined meshes (49 elements), as shown in Fig 4.4. The elements in 

the ABH portion are arranged according to a geometric sequence, with the smallest element 
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located at the free end to capture the shortened wavelength, whereas the elements in the uniform 

portion are equally spaced. The natural frequencies are calculated on three sets of meshes and 

the results are listed in Table 4.2. It shows that the differences of each mode are less than 1 Hz 

for modes up to the 5th order. In fact, the regular mesh exhibits converged results in the linear 

case. The convergency study on the nonlinear case was also carried out. Considering the 

excitation level of  , NFR curves around the first mode with harmonic number 

 and nonlinear stiffness  are illustrated in Fig 4.5. The results show 

that all meshes have converged outcomes. Therefore, a regular mesh of 30 elements is used in 

the following investigations. Meanwhile, the choice of the number of harmonics   is 

according to a convergence study as follows. Fig 4.6 shows the NFR curves of the damped 

ABH beam with  , respectively. It can be seen that   and   lead to 

basically the same result, demonstrating the convergence of the results. Consequently, 

 is used for nonlinear analyses. 

 

Fig 4.4 Element nodes distribution of 1D beam element in the ABH beam. 
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Table 4.2 Natural frequencies results calculated from coarse, regular, and fine meshes, respectively. 

Mode 
Present (Hz) 

Coarse Regular Fine 

1 30.94 30.94 30.94 

2 91.66 91.66 91.66 

3 174.46 174.44 174.44 

4 288.39 288.31 288.29 

5 456.85 456.59 456.54 

 

 

Fig 4.5 NFR curves of the damped ABH beam with different meshes around the first mode with , 

 and . 
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Fig 4.6 NFR curves of the damped ABH beam with different  around the first natural frequency with 

regular mesh,  and . 

 

4.3.2 Linear characteristics of an ABH beam 

Linear simulations were first performed in the absence of nonlinear cable. The frequency 

response functions (FRFs) and mode shapes of the ABH beam with damping layers were 

calculated by the present coupled model (see Eq.(4.11)) and validated by COMSOL, in which 

the solid mechanics interface with plane stress assumptions was used. 2911 triangular elements, 

as shown in Fig 4.7, were employed in the FEM model. It is worth noting that the results of 

bending-dominated problems can be affected by the interpolation technique of solid elements 

in the FEM model. Specifically, the linear element subjected to pure bending would produce 

false shear strain, leading to the well-known “shear locking” phenomenon, which normally 

causes inaccurate deformation and stress results [131]. High-order interpolation is 
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recommended to address this issue. To substantiate this point, the natural frequencies of the 

beam using linear, quadratic, and cubic elements, respectively, are compared in Table 4.3. One 

can see that, for the first five modes, linear elements result in higher natural frequencies than 

the quadratic or cubic ones, due to increased stiffness effects. Meanwhile, the quadratic and 

cubic elements lead to very close and converged results. Therefore, 10-node cubic elements 

with 20 DOFs are employed in the FEM model to provide reference results. 

 

Fig 4.7 Mesh distribution in the FEM model with two damping layers. 

 

Table 4.3 Natural frequencies (Hz) obtained from FEM with elements of different orders. 

Modes 
Order of element 

Linear Quadratic Cubic 

1 41.713 30.939 30.936 

2 123.31 91.635 91.632 



114 
 

3 228.31 174.32 174.3 

4 381.67 288.01 287.98 

5 595.55 456.06 455.97 

 

Fig 4.8 shows the linear FRFs of the ABH beam with the damping layers, at the free end 

tip . The results are compared with those of the corresponding uniform beam, which is 

identical to the damped ABH beam without the reduced thickness. The frequency range on the 

horizontal axis is from 0 Hz to 2000 Hz with an equal frequency interval of  . The 

vertical axis is the cross-point mobility of the free end tip with the external excitation applied 

at  , which is represented by   dB. It can be seen that the present 

coupled model shows nice agreements with the FEM model despite the slight deviation of the 

high frequency resonant frequencies. Compared to the uniform beam, the results show that the 

ABH beam has a larger response at each mode, especially for lower order modes, due to the 

reduced stiffness caused by the power-law profile, which can be exploited to generate stronger 

nonlinear effects. Meanwhile, the ABH beam has a higher modal density, which provides more 

opportunities for triggering internal resonances for modal energy transfer. 
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Fig 4.8 Linear FRFs of the uniform beam and the ABH beam at . 

 

Another ABH-specific feature can be illustrated by examining mode shapes, in which the 

displacement is normalized by the maximum value at the free end tip and displayed along the 

arc length of the ABH beam, as depicted in Fig 4.9. Fig 4.9(a)-(d) show that the present model 

with relatively few elements can capture the local wavelength variations in the ABH portion, 

which is very close to the FEM model with a refined mesh, even for mode 7. However, there 

exists a slight deviation near the first trough of this high-order mode, indicating that more 

elements are required to faithfully represent the local wavelengths of the higher-order modes. 

Characteristics of mode shapes of the ABH beam are illustrated with the aid of two shadowed 

zones, where the darker shaded zone I stands for the part covered by the damping layers, and 

the lighter shaded zone II for the ABH portion. In Fig 4.9(a), mode 1 shows no local 

deformation in the ABH portion, which rules out the presence of the ABH effect. From Fig 

4.9(b)-(d), it can be observed that the incident wave propagates into the ABH portion, and the 
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wavelength is compressed by the ABH structure. Meanwhile, the deformation in the ABH part 

is larger than that in the uniform portion, which indicates the existence of energy focusing 

phenomenon. Therefore, high damping can be achieved by a small amount of damping layers 

when the locally deformed wave is trapped in the zone I, as shown in Fig 4.9(c)-(d). 

(a) (b)  

(c) (d)  

Fig 4.9 Normalized mode shapes with damping layers. (a) Mode 1, (b) Mode 3, (c) Mode 5, (d) Mode 7. 

 

The previously mentioned high damping effect of the ABH in the frequency domain can 

be quantified by the damping loss factor of the system, denoted by , as illustrated in Fig 4.10, 

which can be obtained from Eq.(4.13). The results show that the present model considering the 

damping layers agrees with the FEM model. Compared to the uniform beam, the ABH beam 

has a substantially higher damping loss factor, as a result of the ABH effect. Since the 
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conventional damping assessment method relies on eigenvalues, the resulting indicator can also 

be referred to as the modal loss factor. However, it is obvious that this method is hardly 

applicable to nonlinear systems, which require specific treatment. Following Amabili et al. 

[132], the loss factor can also be defined by the energy approach as 
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where ,  are the power of the damping force and that of the internal force, respectively, 

and   is the work done by the damping force in the period of  , which also 

represents the dissipated energy, and  is the maximum storage energy in the system. 

Apparently, this energy approach can provide a continuous description in the frequency domain, 

applicable to both linear and nonlinear cases, as long as the power items in Eq.(4.15) can be 

calculated. Based on the alternating frequency-time (AFT) approach in the HB method, time 

responses in a period (later validated in Fig 4.14) are provided for the calculation of the power. 

For the linear system, one harmonic  is picked and  time points are set in 

a period to calculate  and  using trapezoidal integration. Depicted by the orange 

dash-dotted line in Fig 4.10, the result shows that the energy-based approach agrees well with 

the conventional method for each structural mode. As observed, the loss factor between two 

adjacent modes does not vary monotonically, but fluctuates (increases, decreases, and increases 

again). This can be explained from a modal perspective, where multiple modes are excited to 
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contribute to the loss factor, but not equally, as the excitation frequency moves away from a 

resonant frequency. 

 

Fig 4.10 Damping loss factors of the uniform beam and the ABH beam. 

 

As expected, the ABH effect mentioned above, reflected by large loss factors, shows a 

deficiency for the low-order modes, especially below the cut-on frequency (red dashed line in 

Fig 4.10). This characteristic frequency can be defined by a comparable wavelength  and 

ABH length . By means of the wave velocity  of the uniform portion 

and the wavelength   [64], the cut-on frequency   defined by the half 

wavelength (i.e., ) is 

 ( )
2

2
2 12

u
cut on

ABH

h Ef
l




− =   (4.16) 

where 2  is the thickness of the uniform portion and  Hz for the current 

configuration. As discussed in [14], the cut-on frequency   should be treated as an 

indicator instead of a strict frequency limit. 
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4.3.3 Nonlinear dynamic features and enhanced ABH effects 

As illustrated above, the linear ABH beam is deficient below the cut-on frequency. 

However, the energy-based approach suggests that high-order modes could somehow be 

involved to contribute to the high damping effect, which could be achieved by nonlinearity-

induced high-order harmonics. Therefore, the ABH beam with an embedded nonlinear cable is 

investigated in both time (G-  method) and frequency (Fast Fourier Transform method, FFT 

for short, or HB method) domains to demonstrate the nonlinear dynamic behavior and the 

enhanced ABH effects. The nonlinear stiffness of the cable is set to   in 

Eq.(4.2), to ensure sufficient nonlinearity level in the system. As to be shown in the later 

experimental section, such stiffness can be readily achieved through a proper cable design. The 

parameters used in the HB method are   and  . The G-   method selects 

slight artificial damping to ensure the robustness of the algorithm with  (  

for no artificial damping) and performs the simulations at a sweeping rate of 15 Hz/min with 

 kHz. 

 

4.3.3.1 Systematic enhancement of the ABH effect below  

Sweeping from 1 Hz to 202 Hz (below  ), the time responses of the linear and 

nonlinear ABH beams with damping layers were computed for different external excitation 
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levels of , 3 N, 5 N and 20 N. The fft function in MATLAB was then used to 

calculate the frequency responses, as shown in Fig 4.11. The vertical axis shows the 

displacement of the free end tip of the beam,  , expressed in dB  . Fig 4.11 

illustrates that all nonlinear resonant frequencies  of the ABH beam are shifted to higher 

frequencies due to the cubic nonlinear stiffness, typical of the well-known hardening 

phenomenon. More specifically, in the strongly nonlinear case of 20 N, the third nonlinear 

resonant frequency  in Fig 4.11(d) reaches the cut-on frequency (vertical dashed line), 

which is much greater than the linear third resonant frequency. Multiple harmonics of the 

nonlinear frequency  can be observed in Fig 4.11(a)-(b), in particular the third  

and fifth  harmonic components. As seen in Fig 4.11(a), the nonlinearity causes a 2.9 

dB reduction in the peak of the first mode compared to the linear system. From Fig 4.11(a) to 

(d), the system exhibits a stronger nonlinear response, and the nonlinear system leads to 

enhanced vibration suppression compared to the linear system. The peak drop reaches a 

maximum of 11.06 dB in Fig 4.11(d). The vibration suppression is also present for the second 

mode, with an amplitude reduction of 13 dB at 20 N. However, an adverse nonlinear 

phenomenon occurs for the third mode, where the peak increases with the excitation force, 

rather than decreasing for the first two modes (Fig 4.11(b)-(c)). This is to be discussed in the 

later section. Nonetheless, the observed feature changes with the excitation level, as 

exemplified by the 2.9 dB amplitude reduction found for the third mode in Fig 4.11(d). 
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(a) (b)  

(c) (d)  

Fig 4.11 FFT results of a sweep below the cut-on frequency for the linear (LN) and nonlinear (NL) damped 

ABH beams, . 

 

Fig 4.12 shows the results of the nonlinear damped ABH beam at higher frequencies. 

Numerical simulations were performed for nonlinear undamped ( ) and damped (

) ABH beams with the same procedure as in the previous case. As seen in Fig 4.12(a)-(d), 

beyond , peaks appear at high frequencies and rise with the force level, which is not 

achievable for the linear system. However, the increase in amplitude at high frequencies 

decreases due to damping, with some amplitudes dropping by more than 20 dB compared to 

the undamped state. This demonstrates that nonlinearity transfers the system energy from low 

to high frequencies, which is, in turn, dissipated by the highly damped ABH feature, resulting 
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in an enhanced ABH effect at low frequencies. In addition, when the nonlinear effect is 

sufficiently intense, as in Fig 4.12(d), continuous spectral lines indicate that chaos occurs and 

almost all modes are excited. The chaotic phenomenon exhibits superior vibration suppression 

in the low-order modes and more energy is transferred to a higher-frequency range resulting in 

an improved ABH effect. However, this process is due to an extremely high excitation level, 

which may pose a threat to the fragile ABH tip and is difficult to control. 

(a) (b)  

(c) (d)  

Fig 4.12 FFT results of a sweep for the undamped ( ) and damped ( ) nonlinear ABH beams, 

. 
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4.3.3.2 Quantification of the enhanced ABH effect 

Although nonlinearity systematically enhances the ABH effect below the cut-on frequency, 

the ABH features with nonlinear effects should be quantified. Inspired by the definition of loss 

factor for the linear system in Eq.(4.14), the same approach is used in the nonlinear case. As a 

representative harmonic analysis, the normalized third-order harmonic   indicates the 

strength of the nonlinearity in the system, as defined by Eq.(2.58) in Section 2.4.2. With the 

HB method, the damping loss factor  of the nonlinear damped ABH beam for the first mode 

is shown in Fig 4.13(a). For  , the ABH effect is barely visible in the weakly 

nonlinear system, because of the unchanged value of 0.005 for   (equal to the structural 

damping loss factor ). As the force level increases from  to 5 N, the  curve 

bulges near the first resonant frequency and shows larger amplitude, e.g.,  is 

4.74 times greater than , where  is the peak point on the curve defined as 

in Fig 4.3. At the same time, large external forces ( ) transform the  curves into an L-

shaped form, similar to the third harmonic  in Fig 4.13(b). This similarity in curve shapes 

clearly evidences the relationship between  and . Note that the peak points in  and  

curves also correspond in the frequency domain. Indeed, as can be observed in Fig 4.13(a)-(b), 

the maximum of the  curve plotted in Fig 4.13(a) also represents the maximum of the  

curve. Also note the calculation is based on the same method used for linear system defined in 

Eq.(4.14). The observed L-shape variation is a result of the drastic drop of the loss factor after 

reaching the maximum damping values, corresponding to the third harmonics. The increased 

 thus mainly originates from the third harmonic , and the ABH effect on the first mode is 
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then indirectly imposed by high-order harmonics. 

(a) (b)  

Fig 4.13 (a) Damping loss factor, and (b) the third normalized harmonic close to the first mode. Dot ● in (a) 

represents the maximum on the curve, and the point with same sequence in (b). 

 

To further substantiate the effect of the increased  and that of the enhanced ABH, free 

decay analyses are performed. To this end, the initial conditions to trigger the system response 

corresponding to a targeted point   should be determined. For example, for the point 

 with , , Fig 4.14 shows the steady-state time responses of 

the normalized displacement, velocity, and acceleration in a period. One observes a good 

agreement between the G-   and HB methods. The initial values used for the free decay 

calculation corresponding to   are the values marked by dots. Note for some 

frequencies, multiple solutions might exist (Fig 4.13). Therefore, time domain (G- ) method 

can hardly determine the initial conditions corresponding to a particular point, e.g.  in 

Fig 4.13(a). This, however, can be readily done by the HB method with the above procedure.  
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Fig 4.14 Normalized time-domain system responses with ,  (frequency at highest 

point in Fig 4.13(a)). Dot ● on the displacement curve represents the maximum value during a period, and the 

other two points on velocity and acceleration curves are the corresponding values at the same time. 

 

Free decay tests are carried out using the G-  method with  kHz for a duration 

of 5 seconds. Fig 4.15 illustrates the results for , which are normalized by the 

initial values. Fig 4.15(a) shows that the greater value of  leads to a faster decay rate of the 

displacement. Meanwhile, the acceleration results in Fig 4.15(c) show that the higher order 

harmonics attenuate more quickly, and this behavior is particularly evident up to 0.5 seconds, 

as further confirmed by the corresponding spectrograms Fig 4.15(b) and (d). On the other hand, 

according to the time responses, the energy decay curves are calculated. For the linear case, the 

solution of a single DOF system   is  , whose 

amplitude is enveloped by  [133]. Therefore, the total energy can be expressed 

in terms of the maximum potential energy, which gives 
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 ( ) 2 21 1
2 2

ntE t kA ka e −= = ,  (4.17) 

with  . The total energy of a multi-DOF system with cubic nonlinearity can be 

numerically calculated at each point in time according to 

 ( ) 1 1 1
2 2 4

T T T
nlE t = + +x Mx x Kx x f .  (4.18) 

For the linear analytical solution of the first mode, a value of 0.005 for  is used in Eq.(4.17). 

Both the results of the linear and nonlinear normalized energies, hereafter denoted  , are 

presented in logarithmic form in Fig 4.16. The energy decay curves of the weakly nonlinear 

and linear systems are straight, due to the fact that the slope in the line function 

  is constant and depends only on   and   of the linear system, and that the 

comparison of the two different systems confirms the numerical approach in Eq.(4.18). As 

nonlinearity increases, Fig 4.16 shows that the energy dissipates rapidly, as evidenced by the 

fact that the energy loss (i.e., ) in the linear system is 0.6260 at , while it is 

increased by 34.1% to 0.8395 in the nonlinear system ( ). Meanwhile, the energy decay curve 

presents a particular phenomenon over time. Specifically, the  and  results exhibit fast 

decay curves with a steep slope until 0.5 seconds, which slow down with increasing time and 

eventually become parallel to the curve of the linear system after 1.5 seconds. These results 

indicate that the energy of the high-order harmonics dissipates rapidly in the beginning, but as 

the response decreases, the nonlinearity diminishes, and the system begins to behave linearly. 
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(a) (b)  

(c) (d)  

Fig 4.15 Free decay curves and spectrograms for the first mode. (a)-(b): normalized displacement, (c)-(d): 

normalized acceleration. 

 

 

Fig 4.16 Free decay curves of normalized energy for the first mode. 



128 
 

 

To investigate what happens to other modes, the foregoing procedures are applied to the 

second mode and the corresponding results are depicted in Fig 4.17. In Fig 4.17(a) and (b), 

despite some fluctuations, the damping loss factor of the second mode becomes greater as the 

excitation level rises and is greatly influenced by the third harmonic, which is the main reason 

for the improved ABH effect. In Fig 4.17(c)-(d), the second mode shows a rapid decay of the 

acceleration curves with stronger nonlinearity. At time  , the energy loss of the  

curve is enhanced from 0.8395 (the first mode) to 0.9944 (the second mode), an increase of 

18.45%, which indicates the presence of higher-order harmonics for the second mode. 

(a) (b)  

(c) (d)  

Fig 4.17 (a) Damping loss factor around the second mode, and (b) the third normalized harmonic. Free decay 

curves: (c) Normalized acceleration, (d) normalized energy. 
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In Fig 4.18, the overall enhanced ABH effect is illustrated by the damping loss factor for 

the linear and nonlinear systems for . At low frequencies, e.g., around the first and 

second modes, the ABH effect is amplified by the nonlinearity, which has little effect on the 

system beyond the cut-on frequency. Therefore, the nonlinear damped ABH beam provides an 

effective solution to enhance the ABH effect. It is noteworthy that  decreases near the third 

mode, which supports the observation made in Fig 4.11(b)-(c). 

 

Fig 4.18 Damping loss factors of the linear and nonlinear systems for . 

 

The observed variations in modal damping for the first three modes, as well as that of the 

vibration amplitudes, are further scrutinized from the perspective of energy distribution in ABH 

beam. To this end, the ratio of the potential energy (PE) of the ABH beam part covered by the 

damping layers (from  to  but ) to the PE of the rest of the beam, i.e., 

, is calculated to quantify the energy distribution in the beam. The 
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reason for choosing potential energy for analyses is due to its close link with the deformation 

of the structure, especially that of the damping layer, which is the main source of energy 

dissipation. As shown in Fig 4.19, as the excitation frequency increases, the curve 

corresponding to the linear case shows generally increasing energy concentration in the ABH 

part of the beam where damping layers are installed. Increasing nonlinearities in the system, 

however, alter the energy distribution in the beam, more significantly around resonance 

frequencies. For the first two modes, strong nonlinearities with a high excitation level favor the 

energy concentration in the damped ABH portion, thus conducive to energy dissipation by the 

damping layers. This is consistent with the analyses made above in terms of damping loss (Fig 

4.18) and vibration amplitude (Fig 4.11). However, Fig 4.19 also shows that less energy is 

trapped to the damping layer part with increasing forcing level for the 3rd mode. This 

phenomenon, though not quite common, is similar to the one reported in our previous work on 

a linear ABH beam without damping layers [134]. In fact, unlike the idealized infinite ABH 

tapers that were widely used in the literature to discuss wave propagation, finite ABH beams 

with realistic boundaries might localize the flexural wave energy within a specific beam portion. 

This obviously depends on the system setting and parameters. More specifically, the case 

investigated in [134] is due to the discontinuity created by the excitation force. As a result, 

energy localization occurs between the excitation point and the boundary at specific 

frequencies so that very little energy would reach the ABH section. The phenomenon was 

referred to as ABH loss effect [134]. The situation can be changed by changing system 

parameters. In the present case, similar phenomenon appears for the third mode, which can be 
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alleviated, for example, by adjusting the position of the grounded cable.  In the present case, 

with the ground cable installed at the ABH tip (   mm), energy is mainly distributed 

outside the damped area around the 3rd mode, thus affecting energy dissipation by the damping 

layers. By relocating the grounded cable a bit away from the tip at (  mm), Fig 4.20 

displays the damping loss factor (  ) of the system. It can be seen that all three 

dominant modes below the cut-on frequency (including the previously deficient 3rd mode in 

Fig 4.18) now show increased damping loss factors, thus ensuring effective energy transfer to 

higher frequencies like analyzed previously.  

 

Fig 4.19  of the nonlinear system with the grounded cable at the ABH tip and . 
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Fig 4.20 Damping loss factors of the nonlinear system with the grounded cable at  mm. 

 

4.4 Experimental confirmation 

Experiments were designed and carried out. The purpose is to confirm the energy transfer 

phenomenon and the enhanced ABH effect in the cable constrained nonlinear ABH beam, 

instead of validating the simulation model. The experimental configuration and setup are 

shown in Fig 4.21. The uniform portion of the ABH beam was clamped in a bench vice and 

excited by an electrodynamic shaker (TIRA TV51075). The impedance head (DYTRAN 5860B) 

was connected to the shaker by a nylon stinger and was glued to the ABH beam to transmit the 

force signal. The single metallic cable was secured by a 3D-printed rigid plastic structure that 

was bolted to a vibration isolation table. The laser vibrometer (Polytec NLV-2500-5) measured 

the velocity of the beam surface. The Simcenter Testlab software with multiple input/output 

(MIMO) generated excitation signals and collected force and velocity signals. The properties 
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of the ABH beam tested in the experiment are the same as the parameters listed in Table 4.1, 

except that   mm and   mm. Therefore, the current configuration has an 

ABH length of  mm and a cut-on frequency of  Hz (defined by Eq.(4.16)). 

The steel cable has a circular cross section with a diameter of  mm. By adjusting the two 

supports, the cable lengths at the top and bottom are both  mm, so the estimated value of 

the nonlinear stiffness is  according to Eq.(4.2). As depicted in Fig 

4.21(left), the tapes (3M DT17, black) with a thickness of  mm and a length of  mm 

were symmetrically adhered to both surfaces of the ABH beam and placed near the end to 

absorb the vibrational energy.  

 

Fig 4.21 Experimental configuration and setup. 

 

 The linear FRFs and the coherence of a bare ABH beam at  mm are plotted in 

Fig 4.22, and the resonant frequencies of the first five modes are listed in Table 4.4. The 

frequency band is capped at 450 Hz with a resolution frequency  Hz. A periodic 

chirp wave was exploited for the FRF test, and the average results over 40 times were realized 
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to mitigate the transient behavior. The amplitude is plotted in Fig 4.22(a). Except for the region 

close to the resonant frequencies, the coherence in Fig 4.22(b) presents 1. The five dominant 

resonant frequencies are marked in the diagram. The remaining small peaks are disregarded. 

The cut-on frequency of the tested ABH beam is a bit lower than the fourth resonant frequency 

but greater than the first three modes. 

 

Table 4.4 Resonant frequencies of the experimental setup without the damping layers and the cable. 

Mode 1 2 3 4 5 

  Hz 33.2 91 157 226.6 346.5 

 

(a)  (b)  

Fig 4.22 Experimentally measured displacement at  mm of a bare ABH beam without the cable. (a) 

FRF, (b) coherence. 

 

Sweeping tests were performed to demonstrate the enhanced ABH effect below  

with intentional nonlinearity. The excitation frequency varied from 25 Hz to 228 Hz at a rate 

of 1 Hz/s, with a sampling frequency of 12.8 kHz. The cable constrained ABH beam without 
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damping layers was excited by three different voltage levels, i.e.,  . 

Frequency results are given via FFT in Fig 4.23(a). The high excitation levels produce 

important responses over a wide range of frequencies. For the third mode, the amplitude 

increases by 8.7 dB and 9.3 dB for   and  , 

respectively. However, the amplitude drops dramatically beyond  (red dashed line), 

which is consistent with the frequency content of the input signal. Therefore, the response 

higher than   is induced by nonlinearity which transfers energy from low to high 

frequencies. This effect is amplified by the excitation level. More specifically, near 300 Hz, the 

amplitude increases by 16.3 dB from   to   and by 18.3 dB from 

 to . Similar phenomena can be observed at higher frequencies around 370 Hz, 

450 Hz, and 520 Hz, but this phenomenon diminishes as the frequency increases. This suggests 

that efficient energy transfer occurs near excitation frequencies, and that energy can be 

transferred to higher-frequency ranges. 

 

For , the results of the damping effect are shown in Fig 4.23(b). 0d, 1d, and 2d 

in the legend stand for no damping layer, one, and two damping layers on both sides of the 

beam, respectively. The second resonant frequency is noticeably lower due to the additional 

damping. In contrast, the other two modes exhibit little variation. It is worth noting that the 

damping layers have a limited influence on vibration suppression of any mode below , 

which exhibits the deficiency of the ABH beam at low frequencies. Above , however, 

it shows a significant peak reduction near 300 Hz. Compared to the result without damping 
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layer (0d), one damping layer (1d) reduces the peak by 9.7 dB, while two damping layers (2d) 

reduce the peak further by 9.9 dB. In addition, a reduction in amplitude can be observed at 

higher frequencies, e.g., 10.56 dB at 450 Hz and 13.36 dB at 520 Hz. Nevertheless, the damping 

effect decreases with increasing frequency due to limited energy transfer at high frequencies. 

(a)  

(b)  

Fig 4.23 Measured velocity (sweep below the cut-on frequency) of the nonlinear ABH beam with the cable. (a). 

Different excitation voltages without damping layers, (b) multiple damping layers with . 
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4.5 Summary 

In this Chapter, a cantilever ABH beam connected to a grounded cubic stiffness cable was 

studied. Based on the Euler-Bernoulli assumptions, a coupled model with partial viscoelastic 

coating was established by considering the grounded nonlinear cable through the Lagrangian 

equation. The numerical method used in this paper was first validated by COMSOL using the 

linear FRFs and mode shapes. The typical ABH effect in the linear system was illustrated by 

the damping loss factor  . Since the eigenvalue approach is inapplicable to the nonlinear 

system, an energy-based method was adopted and validated for damping evaluation.  

 

 The systematic enhancement of the ABH effect at the low frequency range was shown by 

sweeping analysis below the cut-on frequency. It is shown that intentional nonlinearity 

attenuates the vibration amplitude below the frequency limit, and transfers energy from low to 

high frequencies, where the transferred energy is subsequently efficiently dissipated by the 

ABH damping effect. Moreover, this enhancement of the ABH effect could be quantified by 

the damping loss factor, which was computed by the HB method in the frequency domain. As 

the external force increases, large third harmonic is triggered, leading to an increase in the 

damping loss factor of most dominant lower-order modes. Free decay tests show that the energy 

loss of higher order harmonics is rapid.  

 

Finally, the energy transfer phenomenon and the enhanced ABH effect are confirmed by 

experiments. By sweeping below the cut-on frequency, the experimental results illustrate the 
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significant energy transfer phenomenon at a high excitation level and the exceptional vibration 

suppression beyond the frequency limit due to the ABH damping effect. Overall, the numerical 

and experimental results demonstrate a simple and effective method to enhance the ABH effect 

at low frequencies by introducing the intentional mechanical nonlinearity, thereby paving the 

way for extending the application of the ABH structure to the low frequency range. 
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Chapter 5. Conclusions and Future Work 

5.1 Conclusions 

With the ever-increasing demand for efficient vibration/noise control, the development and 

conceptualization of novel structures have been a major concern of the vibration and noise 

control community. In this regard, emerging techniques based on ABH principles with light 

weight and high damping features provide a feasible solution and have attracted grooming 

interests in recent years. Despite the promise that the ABH-featured structures hold, the ABH 

effect shows a deficiency at low frequencies below the so-called cut on frequency, which 

hinders the practical application of ABH structures in the low-frequency range. Considerable 

efforts are needed to achieve broadband ABH effects to push the ABH-based technology up to 

a practical level. 

 

In addition to other techniques discussed in the literature, a straightforward way of 

achieving the above objective is to enlarge the effective ABH dimensions, but at the expense 

of generating two troublesome issues, i.e., geometric nonlinearities and imperfections (an 

initially curved configuration with fragile part where manufacturing accuracy is difficult to 

guarantee). This may affect the expected ABH effects. Meanwhile the issue is scientifically 

relevant in terms of developing necessary analysis tools and understanding the underlying 

physical mechanisms, since these problems also challenge numerical modeling, simulation 

techniques and physical insights. Therefore, from a scientific perspective, the first part of this 
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thesis (Chapter 2) focuses on developing an inextensible model with initial curvature. Specific 

techniques are proposed to numerically implement the developed model with increased 

accuracy and robustness. Then, the proposed model is used to examine the geometric 

nonlinearities of ABH beams with imperfect geometry in Chapter 3. To efficiently enhance the 

ABH effect within reasonable structure size, intentional mechanical nonlinearity is 

implemented through a grounded cable with cubic stiffness, investigated in Chapter 4. The 

major conclusions of this work are summarized as follows. 

 

(1)  In this part of the thesis, an inextensible condensation model with the consideration 

of initial curvature is established by combining a geometrically exact model and the shortening 

effect. The proposed model explicitly shows different nonlinear stiffness and inertia terms 

arising from the initial curvature, as well as their interplay in the system equation. The HB 

method is modified to address nonlinear inertia. Meanwhile, an OS technique is adopted and 

integrated into the generalized-  method for the calculation of time domain system responses. 

 

(2)  For a uniform cantilever beam, initial curvature and curved arclength both lead to a 

decrease in the resonance frequencies, more obvious when the beam is severely bent. 

Confirmed by the time-domain results from the generalized-  method, nonlinear frequency 

responses of the first mode are shown to experience a hardening-softening transition with the 

increasing initial curvature, which indicates the significance of initial curvature and inertia-

induced features. 
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(3)  By exploiting the developed model in Chapter 2, perfect or imperfect ABH beams 

with geometric nonlinearities are examined in Chapter 3. For a perfect ABH beam, the 

nonlinear inertia effects generally reduce as compared with a uniform beam due to the 

decreasing ABH thickness profile, thus resulting an amplified hardening effects in the structural 

modes. Specifically, the first two modes exhibit hardening for the current ABH beam. 

Meanwhile, the initial curvature of the ABH beams, combined with the nonlinear stiffness 

effects, generally enhances the hardening tendency in the system, which is significantly 

different from the uniform beam. However, the effect of initial curvature is limited to both 

linear and nonlinear results. By intentionally introducing a platform of uniform thickness at the 

tip of the beam, both linear and nonlinear simulation results change dramatically as the length 

of platform increases. As the platform length increases from 0 to 0.036, the second mode of the 

imperfect ABH beam exhibits a transition from hardening to softening, resulting from the 

increased nonlinear inertia effect induced by the platform. The platform-induced softening 

behavior in the second mode is confirmed by nonlinear experiments. 

 

(4)  Experiments show that geometric nonlinearity can transfer energy from low to high 

frequencies. However, the effect of geometric nonlinearity is limited.  

 

(5)  To enhance the energy transfer and achieve more appreciable ABH effects, Chapter 

4 introduces mechanical nonlinearity and establishes a coupled model with partial viscoelastic 
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coating. The proposed model based on the Euler-Bernoulli assumptions considers the grounded 

nonlinear cable through the Lagrangian equation. The damping loss factor   is used to 

demonstrate the typical ABH effect in the linear system, and an energy-based method is 

adopted to illustrate ABH effects in the nonlinear linear system.  

 

(6)  A systematic enhancement of the ABH effect at the low frequency range is shown by 

sweeping analysis below the cut-on frequency. It is shown that intentional nonlinearity 

attenuates the vibration amplitude below the frequency limit, and transfers energy from low to 

high frequencies, where the transferred energy is subsequently efficiently dissipated by the 

ABH damping effect. Moreover, this enhancement of the ABH effect could be quantified by 

the damping loss factor, which was computed by the HB method in the frequency domain. As 

the external force increases, large third harmonic is triggered, leading to an increase in the 

damping loss factor of most dominant lower-order modes. Free decay tests show that the energy 

loss of higher order harmonics is rapid. 

 

(7)  The intentional nonlinearity-induced energy transfer phenomenon and the enhanced 

ABH effect are confirmed by experiments. By sweeping below the cut-on frequency, 

experimental results illustrate the significant energy transfer phenomenon at a high excitation 

level and the exceptional vibration suppression beyond the frequency limit due to the ABH 

damping effect.  
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5.2 Suggestions for future research 

This thesis mainly focuses on the investigation of ABH beams with geometric and 

mechanical nonlinearity through theoretical, numerical, and experimental studies. Hopefully, 

the research findings provide inspiration for further exploration in future research. 

 

(1)  As a general approach, the inextensible condensation model with initial curvature 

can, in principle, be applied to a wider range of engineering applications. Conventionally, long 

and large ABH structures take up a lot of space and are therefore difficult to use in real life. In 

this regard, a spiral ABH beam saves space occupation, and can be further used for vibration 

absorber and energy harvesting. For such a structure, geometric nonlinearity and initial 

curvature should be addressed first. Meanwhile, the presently established model involves 

certain assumptions which may not be directly applied to largely deformed or extremely curved 

structures. Therefore, future research could focus on extending/improving the proposed model 

by removing some restrictive assumptions. 

 

(2)  Based on the analysis of nonlinear forces and nonlinear inertia, the HB method is 

modified and applied to inertia-dominant problems. Due to the generic treatments, the modified 

HB method can accommodate more situations, such as nonlinear damping and material 

nonlinearity. Moreover, nonlinear normal modes (NNMs) related to nonlinear inertia problems 

can be efficiently calculated through the HB-based method. 
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(3)  An imperfect ABH beam with a residual platform exhibits strong nonlinearity 

compared with a perfect ABH beam. Therefore, the extension of the platform could be used to 

further enhance geometric nonlinearity, thus improving the ABH effect. At the same time, the 

platform can be clamped and used as a strong nonlinear source to further improve the energy 

transfer efficiency. 

 

(4)  So far, most of the studies on nonlinear ABHs have focused on vibration suppression. 

There is a lack of appropriate research on energy harvesting using nonlinear ABHs, which 

could be given more attention. 

 

As a final remark, exploration of the ABH-based technology for concrete engineering 

application is always a top priority, considering the rapid development of the basic research on 

ABH at fundamental level. This is no exception with the currently investigated nonlinear based 

techniques, for which more practical and more efficient ways to trigger the desired system 

nonlinearities should be exploited. 
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