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Abstract
The rapid development of advanced technologies and the advent of the big data era

have ushered in unprecedented opportunities for understanding and improving ur-

ban spaces. As urbanization continues to reshape our world, there is an increasing

need to study human-land interactions and their impacts on urban environments.

Artificial urban intelligence, a domain-specific application of artificial intelligence

techniques for urban-related tasks, plays a crucial role in addressing this need. Em-

phasizing human-land interaction in urban applications is essential to developing

smarter cities that are more sustainable, efficient, and adaptable. This thesis aims

to contribute to the body of knowledge in urban environment comprehension, hu-

man mobility understanding, and location recommendation by investigating a series

of challenges and limitations of existing methodologies, and proposing novel frame-

works and techniques to overcome these obstacles.

In the first chapter, we provide an introduction to the background and scope

of the research, highlighting the significance of human-land interaction in artificial

urban intelligence applications. The second chapter reviews the current state of

the art, examining the methods employed in urban environment comprehension and

human mobility understanding.

In the third chapter, we propose a novel multi-graph framework called Region2Vec

for urban region representation learning. The framework captures inter-region rela-

tions through human mobility, geographical contextual information via neighborhood

data, and intra-region information using Point of Interest (POI) side information in

knowledge graphs. Experiments on real-world datasets demonstrate the effectiveness

of Region2Vec, consistently outperforming state-of-the-art baselines in various tasks

and metrics.

The fourth chapter is divided into two parts: human mobility analysis and lo-
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cation recommendation. We use tourist travel patterns as a case study and employ

trip chains to model and discover fixed patterns. In the location recommendation

section, we propose a novel Temporal Prompt-based and Geography-aware (TPG)

framework, which excels in interval prediction on various real-world datasets.

In the final chapter, we provide a conclusion for the thesis, summarizing the key

findings and contributions made to the field of artificial urban intelligence. The

proposed techniques hold great potential for further development and application in

the pursuit of smarter cities and more intelligent urban environments.
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Chapter 1

Introduction

1.1 Background

The theory of human-land relationship, originating from the field of human geog-

raphy, explores the connections between humans, their diverse social activities, and

the geographic environment [118]. It suggests that humans constantly expand, trans-

form, and utilize the geographical environment to meet their survival needs, while

the environment significantly influences the regional characteristics and spatial dif-

ferences of human activities. This relationship has been an intrinsic part of our

existence, as the geographical environment consistently affects human survival and

activities.

Since the 1960s, with the advent of the quantitative revolution, human geography

research has delved deeper into micro-regional studies with practical implications,

such as environmental protection, soil agriculture rotation, and desertification [10].

Nowadays, rapid urban development has led to cities becoming more modern and

intelligent. As a result, the influence of humans on the urban environment and

the impact of the urban environment on humans have become more prominent and

faster-paced. For instance, in ancient times, due to limited transportation options,

it was challenging for people to travel long distances, resulting in restricted human

activity and a slower transition of land use (e.g., commercial areas, residential areas)
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determined by different types of human activities. Nowadays, with the convenience of

airplanes and high-speed rail, the pace of urban change has accelerated significantly.

For example, a family living in a rural area can easily purchase a shop in a provincial

capital and start a business. If their business thrives, it may attract competitors,

leading to the formation of a new commercial district. At the same time, extensive

travel has led to a series of problems, such as climate change and pollution, which

in turn affects human activity patterns, health, and so on.

The development of various advanced technologies has facilitated the generation

of big data from heterogeneous sources in urban spaces, which in turn leads to a

better understanding of city operations and offers an excellent opportunity to explore

these interactions. In this thesis, the concept of artificial urban intelligence is

explored, which refers to the methods that apply artificial intelligence technologies to

urban domains. Simultaneously, it is necessary to redefine human-land relationships

in urban spaces for the new era. Thus, the concept of human-land interaction

is further explored, which refers to the mutual influence between humans and the

urban environment in the age of big data. Compared to the original theory of human-

land relationships, human-land interaction places a greater emphasis on quantifying

various social phenomena, such as crime, mobility patterns, or energy usage, using

big data-driven artificial urban intelligence technologies.

By delving deeper into human-land interactions, we can better utilize these in-

sights to address various urban issues, including resource management, transporta-

tion systems, economic growth, quality of life, environmental sustainability, data-

driven decision-making, and resilience. This understanding allows us to tackle urban

challenges more efficiently, sustainably, and innovatively, ultimately enhancing the

quality of life for city inhabitants and fostering long-term, sustainable growth. I

argue that comprehending these interactions serves as the foundation for advancing

toward smarter cities, which play a vital role in addressing the challenges of rapid
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urbanization and promoting a sustainable, prosperous future.

Based on the above observations, I propose the topic exploring data-driven

approaches to human-land interaction by artificial urban intelligence. Our

study focuses on the joint analysis of human-land interaction from urban environ-

ment comprehension and human mobility understanding in order to uncover hidden

insights and facilitate intelligent decision-making. I explore three significant appli-

cations of artificial urban intelligence, as discussed in Section 1.2, that demonstrate

the potential of our approach in addressing various urban challenges.

1.2 Research Framework and Scope

The framework of artificial urban intelligence includes several parts such as urban

sensing, urban data management and analytics, and urban applications. It first

acquires and stores data from various domains in urban spaces for urban sensing,

such as human mobility, POI, and street view. Features are then extracted from

multi-modal datasets. For different applications, data with correlations are jointly

analyzed to acquire hidden insights and enable intelligent decision-making. The scope

of this topic is focused on urban data analytics and urban applications. Specifically, I

will study the requirements and issues related to human-land interaction for artificial

urban intelligence applications.

This research topic focuses on two main areas: urban environment comprehension

and human mobility understanding, which are interconnected through the concept of

human-land interaction. Within urban environment comprehension, we investigate

urban region representation learning, while within human mobility understanding,

we examine human mobility analysis and next location recommendation. The rela-

tionship between mobility analysis and location recommendation is that basic and

essential analysis is first required to understand patterns, which can then be used

3
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Figure 1.1: The logical structure of this thesis.

to make better predictions. This process is referred to as social sensing [70], which

involves utilizing various geospatial big data sources, such as mobile phone loca-

tions, social media, taxi trajectories, and public transport card data, to extract

human spatiotemporal behavior patterns and infer geographical features of human

and socio-economic factors. By combining urban region representation learning, hu-

man mobility analysis, and next location recommendation, we aim to demonstrate

how the integration of urban environment comprehension and human mobility un-

derstanding can generate hidden insights and enable intelligent decision-making in

Artificial Urban Intelligence. The structure of this thesis can be seen in Figure 1.1.

Three unique challenges are identified in this research topic:

1. Understanding the characteristics of urban regions is essential for various down-

stream tasks, such as urban planning, business model development, and so-

cial welfare improvement. Conventional survey approaches, like the American

4



Community Survey (ACS) carried out by the U.S. Census Bureau at an annual

expense of $250 million [26], can be both expensive and time-intensive when it

comes to revealing the traits of neighborhoods. In the era of big data, we can

try to learn urban region representations using a massive amount of unlabeled

data in an unsupervised manner. However, various data sources, such as Points

of Interest (POIs), street view images, and human trajectories, are collected

to apply artificial urban intelligence. These datasets are naturally multi-modal

and heterogeneous, making it difficult to effectively utilize them. Although

existing studies have made great efforts to learn urban region representation

from multi-modal urban data, there are still two limitations: (a) Most related

methods focused merely on global-level inter-region relations while overlook-

ing local-level geographical contextual signals and intra-region information; (b)

Most previous work failed to develop an effective yet integrated fusion module

which can deeply fuse multi-graph correlations. The challenge of effectively

utilizing multi-modal urban big data for understanding urban regions and de-

veloping data-driven solutions for urban challenges requires further research

and exploration.

2. Exploring human mobility patterns is crucial for numerous reasons, including

enhancing urban planning and infrastructure development, optimizing traffic

management to reduce congestion, improving emergency response and public

safety, fostering economic growth and business development. There are limited

quantitative works targeting the analysis of human activity patterns via big

data, and the patterns of human mobility are still unclear. Establishing an

effective model and extracting insights for mobility patterns is a worthwhile

problem to investigate. Taking tourist travel patterns as an example, tourists

tend to visit multiple destinations out of their variety-seeking motivations in
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their trips. Thus, it is critical to discover travel patterns involving multi-

destinations in tourism research. Existing relevant research most relied on

survey data or focused on citizens due to the lack of large-scale, fine-grained

tourism datasets. Several scholars have mentioned the notion of trip chains,

but few works have been done towards quantitatively identifying the structures

of trip chains.

3. Accurate human mobility prediction holds significant commercial value and can

be applied to location-based services such as map services and local lifestyle

services. However, predicting mobility involves complex spatiotemporal rela-

tionships. The famous geographic theory, Tobler’s first law of geography[113],

suggests that things are more related to nearby things than to distant things.

Due to urban development, spatial heterogeneity[93] has emerged, complicating

the matter. For example, if we take a point where a store is located as the cen-

ter and draw a circle with a certain radius, the points on the circumference of

the circle do not have the same properties. Points that intersect with the road

network have higher accessibility than those that do not intersect with the road

network. Capturing potential features from multi-relational spatial-temporal

data and applying them to location recommendation to improve accuracy and

user experience is a grand challenge.

In this thesis, we address these three major challenges in the realm of urban

applications and big data, and make the following contributions:

1. We emphasize the importance of exploring human-land interaction in urban

applications during the big data era. Understanding the complex interplay

between humans and the urban environment is crucial for various urban plan-

ning, infrastructure development, and policy-making tasks. Investigating this
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interaction is a necessary step towards building smarter and more sustainable

cities.

2. We highlight the need to exploit geographical contextual information, intra-

region information, and an effective fusion module when investigating urban-

related problems. To address this need, we propose Region2Vec, a multi-graph

representative learning framework for urban region profiling. This framework

captures inter-region relations through human mobility data, geographical con-

textual information via neighborhood data, and intra-region information using

Points of Interest (POI) side information in knowledge graphs. Additionally,

the framework incorporates accessibility, vicinity, and functionality correlations

among regions. The proposed Region2Vec outperforms state-of-the-art base-

lines in various tasks and metrics, demonstrating its potential as a tool for

building general-purpose intelligent agents capable of handling diverse urban

challenges.

3. We focus on tourist mobility patterns as a case study for understanding human-

land interaction. We propose a model for quantitatively characterizing daily

trip chains using mobile phone big data, enabling the discovery of underlying

tourist travel patterns. This study not only uncovers complex daily travel

trip chains from tourism big data, but also fills the gap in tourism literature on

multi-destination trips by discovering significant and underlying patterns based

on mobile datasets. This information can be invaluable for tourism industry

stakeholders and urban planners in optimizing destination management and

enhancing tourists’ experiences.

4. We argue that explicitly modeling the timestamp of the location to be predicted

is essential in real-world applications, particularly in the context of location
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recommendation systems. To address this, we propose the Temporal Prompt-

based and Geography-aware (TPG) framework. This innovative framework

incorporates temporal information as a prompt for the recommendation sys-

tem while using a shifted window mechanism to augment geographic data, thus

avoiding the hard boundary problem when handling longitude and latitude of

POIs with grids. Experiments on five real-world datasets (Gowalla, Brightkite,

Foursquare-NYC, Foursquare-TKY, and Foursquare-SIN) show that TPG out-

performs state-of-the-art counterparts under different settings and excels in

interval prediction. Specifically, the model demonstrates its ability to predict

a user’s desired location at a given time, even when the most recent check-in

data is masked, or predict a specific future check-in at a given timestamp, not

just the next one. This advancement can significantly enhance location-based

services and improve user experience.

1.3 Structure of Thesis

This thesis consists of six chapters:

• Chapter 1 introduces the background and highlights the research framework

and scope of studying human-land interaction for artificial urban intelligence

applications;

• Chapter 2 reviews the related work for methods in urban environment com-

prehension and human mobility understanding;

• Chapter 3 presents the problem of urban region representation learning, which

is a highly important topic in urban environment comprehension. It proposes

a novel multi-graph framework to generate hidden insights for unsupervised

learning in urban regions;

8



• Chapter 4 is composed of two parts: human mobility analysis and location

recommendation. In the human mobility analysis section, I use tourist travel

patterns as an example and employ trip chains to model and discover three fixed

patterns. In the location recommendation section, a Temporal Prompt-based

and Geography-aware framework is proposed and demonstrates its effectiveness

in real-world datasets;

• Chapter 5 concludes the thesis.
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Chapter 2

Literature Review

This chapter offers a comprehensive review of the two primary themes that consti-

tute the foundation of this thesis: Urban Environment Comprehension and Human

Mobility Understanding. Within each of these themes, we delve into the specific ar-

eas that are central to the focus of this thesis, such as Urban Region Representation

Learning, Human Mobility Analysis, and Location Recommendation. By examining

these areas in detail, we aim to shed light on the key concepts, methodologies, and

challenges that underpin the research conducted throughout this thesis. This review

serves as a basis for understanding the significance and potential applications of the

work presented in subsequent chapters.

2.1 Urban Environment Comprehension

Urban Environment Comprehension is an essential aspect of understanding the com-

plex dynamics within cities and urban spaces. The rapid growth of cities and increas-

ing availability of geospatial data have provided researchers with new opportunities to

explore the multifaceted nature of urban environments [6]. In recent years, numerous

studies have emerged focusing on various aspects of urban environment comprehen-

sion, ranging from urban planning and design [69], land use classification [142], to

transportation networks [149] and socioeconomic dynamics [22]. With the advent
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of big data, machine learning, and artificial intelligence, novel techniques such as

deep learning [136] and graph-based models [9] have been employed to analyze and

interpret urban data from multiple sources, such as satellite imagery, social media,

mobile phone records, and points of interest (POIs) [31]. These advanced techniques

have facilitated the extraction of valuable insights and patterns from vast amounts

of data, enabling researchers to model urban environments with higher accuracy and

granularity [119]. Consequently, urban environment comprehension has become a

critical area of research with significant implications for sustainable urban develop-

ment, policy-making, and urban management [36]. As this field continues to evolve,

interdisciplinary approaches that integrate knowledge from geography, computer sci-

ence, and urban studies will be essential for addressing the complex challenges facing

urban environments in the 21st century [96].

Urban Analytics aims to explore the status of different urban regions and inter-

regional connections by analyzing and computing heterogeneous information such as

human mobility history and urban region attributes from physical environment. It

serves for land use classification [134], POI recommendation [13], human mobility

prediction [151] and other problems by providing solutions based on geographic in-

formation and regional functionality. Based on the nature of the utilized data, the

existing Urban Analytics approaches can be classified as human activity data-based,

physical environment data-based, and hybrid data-based.

The method based on human activity mainly uses the trajectories of human be-

ings to mine the properties of different urban places and the relationships between

them. Cesario et al. [12] explores the mobility patterns by discovering the regions

that the trajectories frequently pass through. Comito [15] further adds the overall

movement trends of different users to improve the accuracy of user’s next location

prediction. Due to the success of representation learning in natural language pro-

cessing, DeepMove [151] applies Skip-Gram model [85] to movement data to learn
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representations of different locations. Similar to DeepMove, Yao et al. [134] uses the

co-occurrence of origin-destination zones from taxi trajectories to learn region em-

beddings, while adding spatio-temporal characteristics of human mobility patterns.

Moreover, Kim and Yoon [124] demonstrates the universality of such methods in

characterizing the semantics of regions. Shimizu et al. [99] goes beyond the use of

single-grained representation of locations in trajectories, and considers different levels

of region size to learn region embeddings that contain multi-level information at the

same time. Hu et al. [38] constructs taxi trajectories as road networks and captures

the semantics in the road network topology of different regions by graph convolu-

tional neural network so as to classify the regional functions. Recently, Lin et al.

[68] proposed a transformer-based model to obtain location representation based on

context-aware spatio-temporal information in trajectories and obtained state-of-the-

art results in user’s next location prediction task. Our proposed framework differs

from these methods by considering not only mobility data but multimodal data.

Other common physical environment data include POI, street view images, satel-

lite images, etc. As POI is one of the most intuitive data to describe the nature of

physical locations, existing work [131, 139, 108, 141] has shown the importance and

effectiveness of POI in characterizing regions. Zhang et al. [140] uses information

reconstruction and graph learning to learn a low-dimensional representation of re-

gions that preserves correlations between temporal, spatial, and tagged text units.

Huang et al. [40] aggregates POIs embeddings into embeddings of corresponding

regions based on the spatial co-occurrence patterns of POIs and the semantic infor-

mation of the hierarchical categories of POIs. Crivellari and Resch [17] evaluates

the consistency of region embedding methods based on mobility patterns as well as

on the distribution of local POIs in characterizing region function. As for location-

related image information, which is difficult to be described, Gebru et al. [27] for

the first time identifies national socioeconomic trends through large-scale street view
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image data, illustrating that geographically relevant image information can be used

to characterize the nature of regions through Convolutional Neural Network (CNN).

Law and Neira [62] uses Convolutional AutoEncoder to reconstruct street views as

well as street map images through unsupervised reconstruction to predict urban

characteristics such as street-level enclosures and street network density. Instead of

unsupervised reconstructing images, Tile2Vec [46] uses triplet loss to explicitly learn

a CNN encoding model that maintains the geographic proximity of satellite images.

Unlike the above works that focus on a single city, some studies [34, 130, 50] propose

methods for learning location representations that are transferable across cities based

on mentioned region features.

However, as geotagged data becomes increasingly rich in modalities and volume,

relying on a single modality of geographical data is no longer sufficient to adequately

represent the properties of regions. Consequently, several methods [145, 24, 143]

have been developed to consider both intra-regional attributes and inter-regional

movement relationships. For instance, Jenkins et al. [48] incorporate satellite im-

age information to end-to-end integrate multimodal information for obtaining region

representations. Urban2Vec [123] learns region embedding by simultaneously main-

taining the proximity of vectors for geographically close street images and POI com-

ments. Building upon Urban2Vec, M3G [39] further incorporates edge sampling to

include inter-region relations. Nonetheless, most existing approaches primarily focus

on inter-region correlations while neglecting region-wise inherent features. Moreover,

ensuring the robustness and comprehensiveness of urban region representation is es-

sential for the performance of the region embedding framework. Mere concatenation

of graphs proves insufficient for extracting features from multi-modalities, resulting

in suboptimal performance in downstream tasks [23]. This underlines the press-

ing need for a multimodal framework with a comprehensive fusion module that can

effectively combine all modalities to learn urban representation.
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2.2 Human Mobility Understanding

Human mobility understanding has become an increasingly important research area

due to the rapid development of location-based services and the widespread use

of smartphones and GPS-enabled devices. This field investigates the patterns and

dynamics of human movement, aiming to uncover the underlying mechanisms and

characteristics of mobility. Researchers have utilized various data sources, such as

mobile phone records, social media check-ins, and taxi GPS trajectories, to study

human mobility patterns and behavior [30, 150, 149]. A popular method for an-

alyzing human mobility is trajectory data mining, which includes techniques like

clustering, classification, and sequential pattern mining to explore and model the

spatial-temporal properties of mobility data [149].

Recent studies have focused on understanding the relationships between human

mobility and the built environment, as well as social and economic factors [22, 69].

For instance, Fras-Martnez et al. [22] investigated the correlation between mobility

patterns and the socio-economic environment. Moreover, research has been con-

ducted to develop methods for predicting human movement, such as destination pre-

diction and travel demand forecasting, leveraging machine learning and deep learning

techniques [133, 119]. Additionally, studies have explored the potential applications

of human mobility understanding in various domains, including urban planning, pub-

lic health, and transportation management. Despite the significant advancements in

this field, challenges remain in modeling the complex and dynamic nature of human

mobility, as well as addressing the issues of data sparsity, noise, and privacy concerns.

2.2.1 Human Mobility Analysis

Human mobility analysis has been an area of great interest for researchers, as under-

standing human movement patterns can provide valuable insights into urban plan-
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ning, traffic management, and public health. Several studies have focused on the

mobility of citizens, such as examining the relationship between commuting patterns

and urban structure [101], investigating the impact of social networks on human

movement [52], and exploring the influence of urban environments on individuals’

daily activity spaces [138]. However, there is a lack of research focusing specifically

on tourist mobility. In this thesis, we narrow our focus to the study of tourist mobility

patterns, aiming to fill this gap in the literature and provide a deeper understanding

of the factors that drive tourist movement within urban environments.

A trip involves multiple activities across hierarchical stages of travel experiences

[47]. That is, a trip is not a simple origin-destination mechanism; rather, it entails

multiple destinations [72]. To explicate patterns associated with these multi-trips,

tourism scholars have proposed various approaches, from spatial configuration [72,

64] to activity-based perspectives [125, 126]. These relevant studies argue that it

is fallacious to assume travelers go to a single place (or destination) after leaving

home. Individuals show multi-destination patterns in which they make numerous

activity decisions that influence behavior in an interactive fashion. The pattern of

multi-destination trips is associated with the notion of a rational behavior wherein

individuals are likely to minimize time and cost associated with travel, an effect

that potentially increases accrual of benefits and fulfills the desire for variety in

destinations.

In this sense, the current study suggests the concept of trip chain to elucidate

multi-destination trip patterns, as have been widely discussed in the literature on

human mobility and transportation (see [94]). The notion of trip chain varies de-

pending on the various contexts in which it has been applied [60, 83]. From the

viewpoint of transportation, [94] summarized two commonly used definitions: (1)

“A sequence of trip segments begins at the home activity and ends when the indi-

vidual returns home”; (2) “A sequence of trip segments between a pair of activities:
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home, work, or school” (page 58). The trip chain approach enables researchers to

identify similarity/regularity of public transit patterns [75], design activity schedule

linking primary (e.g., home) and secondary (e.g., work) activities [94], and compare

different usages of transportation facilities according to socio-demographic features

[80, 147]. According to human mobility, trip chain can be regarded as a mobility

network in essence whereby the activity (or a place visited) can be denoted as a

node and the spatial pattern/links (or flow) can be indicated as edges. In this sense,

another similar concept mobility motif, which refers to highly-repeated multidimen-

sional subsequences in a complex mobility network structure, is also proposed to

clarify the mobility patterns [28, 37, 78, 87, 146]. For instance, [97] described a kind

of individual daily movement network as a mobility motif if it occurred more than

0.5% in the datasets. Indeed, while different names were used (e.g., “trip chain”

and “mobility motif”), these consistently represent methods to interpret individu-

als’ travel patterns by distinguishing between locations. Principally, “trip chain”

refers to complex relationships between a set of activities and the interdependence

of temporal (e.g., timing, duration, length, and sequence of trips) and spatial (e.g.,

location) characteristics associated with human mobility. Thus, the trip chain model

in tourism can be defined as a sequential pattern of trip activities (or places visited

for travel activities) made by travelers on a day-to-day basis [29, 82].

Tourism scholars have applied the notion of trip chain as a means of compre-

hending travel movement behaviors. [72], in a pioneering study, conceptually and

primarily suggested a trip-chaining pattern as a type of spatial model of pleasure va-

cation trips, illustrating visitations involving numerous focal activities. Along with

their own work, several tourism scholars (e.g., [105]) tried to demonstrate the trip

chain patterns in their own terms but on consistent ideas. For example, [61] pre-

sented a chaining loop as part of tourist movement patterns describing a certain

pattern of visiting multiple destinations. Likewise, [64] proposed conceptual linear
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path models of tourist behavior in intra-destinations consisting of point-to-point pat-

terns (Type I), circular patterns (Type II), and complex patterns (Type III). The

previous tourism literature, in theory, has discussed the notion of trip chains and its

application to deconstruct travel movement patterns.

Importantly, however, most studies contain the limitation with lack of quanti-

tative verifications of the models. This may be attributable to challenges faced in

accessing tourism big data that provides comprehensive insights into the phenomenon

and can be used to calibrate the models. The tourism studies typically have collected

data on travel behaviors using surveys. Such approaches typically require a substan-

tial financial outlay and expenditure of effort. They also contain the potential for

response errors such as cognitive bias of respondents [100]. With the evolution of

information technology, a number of tourism researchers have adopted social media

data such as Flicker, Twitter, and Weibo [106, 89, 57]. Nevertheless, analysis of so-

cial media content suffers from sparseness of data, making it difficult to discern the

comprehensive travel patterns. Thus, our study applies a trip-chaining method to

tourist mobile phone data, enabling tourism researchers to overwhelm the shortcom-

ings from traditional data and to uncover hidden patterns, which ultimately discover

underlying spatial behaviors of tourists.

Travel mobility is closely related to travel distance that reflects individual efforts

being consumed to reach his/her goals (e.g., arrival to a place; [30]). A broad the-

ory of the principle of least effort (PLE) proposed by George Kingsley Zipf (1949)

supports this argument. The model claims that people tend to choose the method

requiring the least effort to finish tasks. As an example, Zipf discovered a certain

speech pattern in which people tend to use short words for their daily communication.

That is, the distribution between word frequency used by speakers and hearers and

word rank is largely skewed and demonstrated by a mathematical formula, now called

Zipf’s law [76]. Applying PLE to travel mobility, the task encompasses movement;
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travelers would likely to seek out the “optimal way” to minimize the total movement

required. It can be thus argued that travel distance is related to different types of

trip chain models. Other than understanding of human mobility, the PLE has been

widely applied to explain a variety of human behaviors including information-seeking

behavior [5, 90], human mobility [11], pedestrian mobility [56], and street networks

[79].

2.2.2 Location Recommendation

Location recommendation, i.e., POI recommendation, which draws considerable at-

tention recent years due to great business value, can be viewed as a special sub-task

of sequential recommendation with spatial information [74]. Regarding the use of

spatio-temporal information in next location recommendation, many previous works

only use spatio-temporal intervals between two successive visits in a recurrent layer.

For example, DeepMove [21] combines an attention layer for learning long-term se-

quential regularity. LSTPM [107] proposes a geo-dilated RNN that aggregates lo-

cations visited recently, but only for shot-term preference. Inspired by sequential

item recommendation [55], GeoSAN [66] uses self-attention model in next location

recommendation within the trajectory. STAN [74] adopts a spatial-temporal atten-

tion network that aggregates all relevant check-ins in trajectories. GETNext [132]

proposes a novel graph enhanced Transformer model by exploiting the extensive

collaborative signals.

However, these models suffer from limitations in geographic and temporal infor-

mation modeling. In this thesis, we take the challenge of the hard boundary problem

in grid mapping, and propose the shifted window mechanism. We also discard the

implicit way to fuse the temporal information in our proposed model. Temporal

prompt is proposed for explicitly modeling timestamp of locations to be predicted.
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Chapter 3

Urban Environment
Comprehension

3.1 Background and Motivation

To sustainably develop urban areas, effective frameworks for urban analytics and

modeling are compelling needed [18, 35, 128]. The significance of studying the repre-

sentations of urban regions should be highlighted due to two reasons: (1) Sometimes

the downstream tasks are ambiguous; (2) A general-purpose urban intelligence frame-

work can be achieved if we incorporate several data sources while the framework is

designed as task-agnostic. Such an architecture is capable of handling various appli-

cations. It can provide us with a better understanding about the patterns of urban

spaces, which will produce insights for urban planning, and make cities more livable

and sustainable.

Recently, the advent of information and communication technologies and sens-

ing technologies leads to the proliferation of urban datasets. This allows researchers

to explore and investigate the characteristics of urban spaces via data-driven ap-

proaches. Taking human mobility (e.g., vehicle trajectories, human movement data)

as an example, correlations among regions can be well-mined from such activities.

Remote regions may form a community since the concept ‘daily life circle’ exists.
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State-of-the-art results are achieved in [120, 135] based on this intuition. However,

these models only consider human mobility. Although they successfully explored

region correlations, the inherent flaw of a single modality is that it has less informa-

tion than multi-modalities. The most important benefit of using multi-modal data

is that the information can be adopted cooperatively to achieve better performance.

In many cases, the similarities between objects may be manifested differently by

different modalities.

Considering that not all types of urban data can be easily accessed in all urban

areas, except from mobility flow, we only further take POI data into account, which

is the most common type of urban data. Several existing studies [14, 23] also tried

to use both POI data and human mobility to characterize region features. However,

most of them focus on inter-region correlations. Despite promising results achieved,

region-wise inherent features are largely overlooked in modeling urban regions. We

notice that POI data has many attributes (e.g., category, subclass). At the same

time, recent research in graph embedding tends to take a graph as the input and

leverage the auxiliary information to facilitate the embedding [53, 54]. Thus, we

treat POI attributes as side information and construct a knowledge graph for POIs

to discover intra-region properties. Besides, we also incorporate geographical neigh-

borhood into the framework as the geographical contextual signals since adjacent

regions naturally show direct correlations according to the First Law of Geography

[112]. By incorporating multi-modalities including global-level mobility flow, local-

level geographical neighborhood, and region-wise POI side information, the urban

spaces are comprehensively depicted from “man-land-dynamic-static”, which is the

four classical dimensions in Geography. Figure 3.1 shows an example of our idea. For

our chosen region 1, besides its neighborhood region 3, it is also correlated to region 2

which has similar accessibility patterns. Region 4 will also affect region 1 since their

POI functionality is similar. Thus, regions 2, 3, 4 are considered more significant
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when we analyze region 1, while irrelevant regions 5 are less important. In addition,

to ensure the performance of the region embedding framework, the robustness and

comprehensiveness of urban region representation is extremely significant. The key

point here is how to effectively fuse all graphs. Simply taking the concatenation of

them [23] is insufficient to extract features from multi-graphs and multi-modalities,

which leads to suboptimal performance in downstream tasks. A comprehensive fusion

module is urgently needed for learning urban representation.
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Figure 3.1: An example of different types of correlations among regions.

To address these challenges mentioned above, the goal of this work is to pro-

pose a multi-graph and multi-modal representation learning framework, namely Re-

gion2Vec, to investigate urban region profiling problem. In Region2Vec, inter-region

relations, geographical contextual signals, as well as intra-region information are all

captured via leveraging most common urban datasets including human mobility, ge-
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ographical neighborhood, and POIs. Through mobility pattern similarity analysis,

topology analysis, and constructing knowledge graph, we can then encode accessi-

bility, vicinity, functionality correlations among regions by constructing graphs. To

better propagate information for every single modality, the graph attention network

is employed. At last, to promote the cooperation of different graph representations,

a multi-graph fusion module with some designed learning objects is proposed to

model the underlying correlations among graphs in a joint manner. Overall, the

contributions of our work are mainly four-fold:

• We emphasize the importance of exploiting geographical contextual informa-

tion and intra-region information, as well as an effective fusion module, when

investigating urban related problems.

• A novel region embedding framework for urban region profiling is proposed.

The final urban region representations preserve global-level inter-region cor-

relations, local-level geographical contextual signals, and inherent region-wise

attributes, via exploiting common urban data such as human mobility, geo-

graphical neighborhood, and POI side information. Graph attention networks

are employed to propagate information within each modality.

• A multi-graph fusion module is also proposed to integrate multiple graphs. It is

capable of fusing multi-modal urban data into comprehensive latent represen-

tations, with the collaboration of the global encoder and accessibility/ vicinity/

functionality correlation decoder.

• We conduct experiments on real-world datasets to demonstrate the effective-

ness of Region2Vec. The results show that proposed Region2Vec has the great

ability to learn the comprehensive representation from multi-graphs and multi-

modalities for urban regions. Especially, Region2Vec consistently outperforms
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state-of-the-art baselines by at least 7.80% in different tasks and various met-

rics. Through such a task-agnostic representation learning architecture, our

model makes a step towards building general-purpose intelligence agents capa-

ble of handling various applications.

3.2 Preliminaries and Problem Statement

Definition 1 (Human Mobility). Human mobility can be defined as a set of trips

conducted by citizens in urban spaces. A trip in human mobility datasets starts from

an origin point (O) and ends by a destination point (D). Thus, a trip can also be

named an OD. If we link the O/D of a trip with the urban regions which they belong

to, then we can denote human mobility dataset M as:

M “
␣

ÝÑm0,ÝÑm1, . . . ,ÝÝÝÑm|M |

(

, m⃗ “ pro, rdq (3.1)

where ÝÑm is a trip that can be represented as a two dimensional vector. ro is the

origin region and rd is the destination region.

Definition 2 (Geographic Neighborhood). Geographic neighborhood of a re-

gion is described based on the spatial adjacency. In this study, we use 8 neighbor-

hoods to define the geographic neighborhood. That is to say, if two regions have

pixels connected, then they are adjacent, including 4 neighborhoods and diagonal

neighborhoods. It is worth noting that the number of geographic neighborhoods of

different regions maybe different due to irregular shapes of urban regions. Exam-

ples are given in Figure 3.2. Yellow areas are the chosen areas. Their geographic

neighborhoods are numbered, while diagonal neighborhoods are all numbered as 1.
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Figure 3.2: Three examples of geographic neighborhood.

Through traversing all the urban regions, for each region, we can get a vector

of variable length of dimension. Supposed there are N urban regions in total. The

geographic neighborhood dataset can be denoted as:

N “ ÝÑn0,ÝÑn1, . . . ,ÝÑnN , n⃗ “
`

r1, r2, . . . , r|n⃗|

˘

(3.2)

where ÝÑn is a geographic neighborhood vector for an urban region; r is a neighborhood

for the urban region.

Definition 3 (POI Side Information). POI side information refers to differ-

ent attributes of POI. Since POIs are the direct representations of urban functions,

features from POI side information can be regarded as meta-knowledge, which re-

flect region functional attributes. Side information can help to establish correlations

among those POIs, then to model relations among urban regions. Firstly, we map

POIs to the located region. Then, POI side information dataset can be denoted as

follows:

S “ ÝÑs0 ,ÝÑs1 , . . . ,ÝÑsN , s⃗ “
`

s1, s2, . . . , s|s⃗|

˘

(3.3)

where ÝÑs is a POI side information vector for a urban region. s is a kind of POI

attribute.

In this study, we utilize side information described in 3.1.
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Table 3.1: Field description of POI dataset

Attribute field Description
PLACEID The unique identifier for each POI.
SOURCE Agency that defined the POI.
FACILITY T Categories of POIs.
FACI DOM Subclasses of POIs.
SEGMENTID POI is assigned the closest roadbed SEGMENTID.
PRI ADD POI has PRI ADD field if the POI is related to any address point.
BIN Point is assigned a Building Identification Number (BIN) if it falls within a building.
SOS Indicates which side of the street the POI is on.
SAFTYPE Point is assigned a SAFTYPE if it is a part of a Complex.
COMPLEXID Point is assigned a COMPLEXID if it is a part of a Complex.

Problem Statement (Urban Region Embedding). Given three sets of vectors

M,N,S, this research aims to learn a distributed and low dimensional embedding vi

for each urban region ri. The embedding set can be denoted as:

V “ ÝÑv0 ,ÝÑv1 , . . . ,ÝÑvN , vi P Rd (3.4)

where d is the uniform dimension for every urban region ri. The embedding set V

should preserve information of human mobility, geographic neighborhood, and POI

side information.

3.3 AMulti-Graph Representation Learning Frame-

work for Urban Region Profiling

In this section, we mainly introduce the proposed multi-graph and multi-modal rep-

resentation learning framework, namely Region2Vec, for urban region embedding.

Firstly, we roughly present an overview of the framework. Then we elaborate on

three main modules for in our framework.

3.3.1 Framework Overview

Figure 3.3 shows the pipeline of our proposed multi-graph and multi-modal repre-

sentation learning framework. Different modalities of urban data, including human
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mobility, geographic neighborhood, and POI side information can be encoded using

multiple graphs. First, a correlation modeling module is introduced to construct

multi-graphs based on multi-modal data. Then, a graph attention network [117] is

used to aggregate and update information in each graph. After that, we propose a

multi-graph fusion module, to deeply integrate multi-graph information. In this way,

the final embedding incorporates non-Euclidean correlations among regions based on

human mobility, geographic neighborhood, and POI side information.

Figure 3.3: Overall architecture of the proposed multi-graph representation learning
framework Region2Vec.

3.3.2 Correlation Modeling Module

Correlations among urban regions can be described in different aspects. From the

aspect of human mobility, a trip has an origin region and a destination region, which

can form a correlation. For many trips, origin regions/destination regions can also be

related to other origin regions/destination regions based on mobility patterns in terms

of accessibility. As for geographic neighborhood, vicinity in space can be revealed.
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As the representation of urban functions, POI side information reflects functionality

correlations. Similar regions in terms of accessibility, vicinity, and functionality will

show high correlations due to proximity in non-Euclidean space. In our study, we

construct three types of region correlations based on human mobility, geographic

neighborhood, and POI side information.

Accessibility Correlation Modeling Based on Human Mobility.

Human mobility directly reveals the inter-region interaction movement between peo-

ple and urban spaces. It is found that if trips have the same O/D regions, then

the different D/O regions of trips are similar [135]. That is to say, through the O/D

pattern similarity, important underlying accessibility correlation can be modeled and

captured based on human mobility. Suppose we have a human mobility dataset M ,

the similarity value between region ri and region rj is computed as:

srirj “ |pri, rjq P M | (3.5)

where (ri,rj) form a trip in M , and |.| calculates the length of set. Then, the

O/D pattern similarity and accessibility correlations among regions can be defined

as:

po pr | riq “
srri

ř

r s
r
ri

, pd pr | riq “
srir

ř

r s
ri
r

(3.6)

ACij
o “ simi ppo pr | riq , po pr | rjqq ,

ACij
d “ simi ppd pr | riq , pd pr | rjqq

(3.7)

where simi(.) is the function for calculating the cosine similarity; ACij
o is the acces-

sibility correlation between two O regions; ACij
d denotes the accessibility correlation

between two D regions.
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Vicinity Correlation Modeling Based on Geographic Neighborhood.

Spatial vicinity is a kind of important correlations due to the Frist Law of Geography

[112]. Adjacent regions in space naturally are more similar. According to formula

4.5, through topology analysis, the geographic neighborhood dataset N contains

geographic neighborhood vector ÝÑn for each urban region r. These vectors actually

represent vicinity correlations among regions. The vicinity correlations are described

as:

V Cij
“ simi pÝÑnl ,ÝÑnJq (3.8)

where V Cij is the vicinity correlation between region ri and rj.

Functionality Correlation Modeling Based on POI Side Information.

The POI side information of a region reveals the functionality, and also reflect intra-

region features. To include more accurate, diverse, and explainable information, it is

necessary to go beyond POI itself and take POI attributes (i.e., POI side information)

into account. We here choose to use the knowledge graph of POI side information to

construct the functionality correlation model. Generally speaking, knowledge graph

is a relational network obtained by connecting different kinds of information. For

a typical KG G, it expresses data as a directed graph G “ tE,R, T u, where E,

R and T denote the sets of entities, relations and facts respectively. Each triple

ph, r, tq P T indicates a relation r P R between head entity h P E and tail entity

t P E exists. We can then conduct knowledge graph embedding, which is an effective

way to parameterize entities and relations as vectors, while preserving the graph

structure.

When we construct KG for POI side information, as illustrated in Figure 3.4, there

are two methods for defining nodes of knowledge graph: (a) only including POIs and

side information (i.e., entities); (b) including regions, POIs, and side information.
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Different types of relations among nodes are regarded as different types of edges.

Here, we list only 3 types of relations in (a) and 4 relations in (b) for toy instance.

Some simple connectivity can be easily found such as p1´R2´e3 in (a) and r1´R1´

p1 ´R3 ´ e3 in (b). Two triples (r1,R1,p1) (p1,R3,e3) can be extracted from the case

in (b). However, if further we treat the edges as reversible, we can capture the long-

range connectivity in knowledge graph, such as: p1´R2´e3´p´R2q´p3´R3´e5 in

(a) and r1 ´R1 ´p1 ´R3 ´e3 ´ p´R3q ´p3 ´R4 ´e5 in (b). The case in (b) indicates

that in addition to e3 and p3, entity e5 will also have some impacts on region r1.

Considering that functionality region embeddings base on POI side information can

be obtained neither from direct knowledge graph embedding for regions or averaging

knowledge graph embedding for POIs which are located in regions, we will have 6

types of approaches for getting functionality region embeddings as shown in Table 1.

In this work, TransD [49] is employed on knowledge graph embedding for getting

functionality region embeddings ÝÑs . The functionality correlations are described as:

FCij
“ simi pÝÑsl ,ÝÑsJq (3.9)

where FCij is the functionality correlation between region ri and rj.
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KG type Method Edges Embeddings
KG01 (a) not reversible averaging
KG02 (a) reversible averaging
KG03 (b) not reversible direct
KG04 (b) not reversible averaging
KG05 (b) reversible direct
KG06 (b) reversible averaging

Table 3.2: 6 types of approaches for getting functionality region embeddings.

Figure 3.4: Two methods of constructing knowledge graph. Here, we list only 3
relations in (a) and 4 relations in (b) for toy instance.

3.3.3 Graph Attention Network Module

We construct graphs for accessibility correlation AC, vicinity correlation V C, and

functionality correlation FC, respectively. Each graph can be denoted as GpR,Eq,
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where R “ triu
n
i“1 represents n regions and E “ tEiu

n
i“1 indicates the edges con-

nected with the set of n nearest neighbors of each node. Therefore, we have GAC,

GVC, and GFC based on different kinds of correlations. Then, the graph attention net-

work [17] is applied to integrate and update node representations of each graph. The

attention mechanism on the graph-structured data can automatically learn weights

of information from neighbors of a node during the propagation. The output node

representation of graph attention network (GAT) module of each graph can be de-

noted as EAC , EV C , and EFC , respectively. The output node representation contains

information of its neighbors.

3.3.4 Multi-Graph Fusion Module

After the GAT module integrates and updates different types of region informa-

tion for each graph, the multi-graph fusion module is needed for fusing all types

of information into the final region embeddings. Region correlations from different

graphs are highly related. Taking human mobility and POI side information as an

example, similar OD pairs in the morning peak and evening peak generally represent

commuting between residence districts and business districts. As for geographical

neighborhood and human mobility/POI side information, we can use the First Law

of Geography to explain it — ”Everything is related to everything else, but near

things are more related to each other”. Such relationships among these three graphs

give us an intuition that incorporating information from multi-graphs will not only

improve the performance but also enhance the learning process for each graph. A

multi-graph fusion module can endow the Region2Vec with the capability to incor-

porate spatial semantics from region-wise side information, local-level geographical

adjacent relations, and global-level mobility pattern. As shown in Figure 3.5, we

employ an encode-decode architecture for enabling the effective integration among

multiple graphs. Then we design a loss function as our overall learning object.
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Figure 3.5: The architecture of multi-graph fusion module.

Global Encoder.

Multi-graph representations EAC , EV C , and EFC are first concatenated and fed into

the global fusion layer, which generates comprehensive region embeddings by a single

layer MLP. For each graph feature Em, the fusion process can be described as:

E “
ÿ

σ pEmW ` bqEm. (3.10)

Following the transformer architecture [115], in the global encoder layer, we use

two sub-layers a multi-head self-attention mechanism for enabling further integra-

tion of information, and a fully connected feed-forward network for deeply feature

extraction. Residual connection and layer normalization are employed around each

of the two sub-layers.
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AC/VC/FC Decoder.

In addition to the two sub-layers mentioned in the encoder layer, the AC/FC/VC

decoder applies a multi-head cross-modal attention, which treating the output of

the encoder layer as the key and value, and using the attention result of themselves

as the query. For the result Em1 via the self-attention mechanism for each graph

representation Em, the query matrix Q P Rnˆd, key matrix K P Rnˆd and value

matrix V P Rnˆd can be defined as:

Q “ EWQ, K “ Em1WK , V “ Em1WV . (3.11)

Residual connection and layer normalization are also employed around each of

the three sub-layers.

Loss Function Designation.

Through the multi-graph fusion module, features of each graph are updated. Various

learning tasks are then designed based on these updated graph representations.

• Accessibility Correlation Reconstruction

We aim to reconstruct accessibility correlation by maximizing the probability of

O/D occurrence. We expect that the possibility of predicting the O/D region given

the D/O region based on the region representations will be the highest. Then the

accessibility correlation reconstruction loss between region ri and region rj can be

computed as:

p̂o prj | riq “

exp
´

EiT

o Ej
d

¯

ř

j exp
`

EiT
o Ej

d

˘ ,

p̂d prj | riq “

exp
´

EiT

d Ej
o

¯

ř

j exp
`

EiT
d Ej

o

˘

(3.12)
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LossAC “
ÿ

pri,rjqPM

´logp̂o prj|riq ´ logp̂d prj|riq (3.13)

where Ei
o means the accessibility region representation (i.e., EAC) when i-th region

acts as O region.

• Vicinity Correlation Reconstruction

We design the vicinity correlation reconstruction loss to make the final region rep-

resentation preserve the information from geographical neighborhood. The vicinity

correlation reconstruction loss can be computed as:

LossV C “
ÿ

i,j

`

Aij
´ Ei

V CE
j
V C

˘2
(3.14)

where Aij is the vicinity correlation between region ri and region rj.

• Functionality Correlation Reconstruction

We design the functionality correlation reconstruction loss to make the final region

representation preserve the information from POI side information. The functionality

correlation reconstruction loss can be computed as:

LossFC “
ÿ

i,j

`

Bij
´ Ei

FCE
j
FC

˘2
(3.15)

where Bij is the functionality correlation between region ri and region rj.

• Overall Learning Object

Then, the final loss function can be represented as:

L “ LossAC ` LossV C ` LossFC . (3.16)
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Table 3.3: Details of NYC datasets for urban environment comprehension.

Dataset Details
Census blocks 180 block boundaries split by streets in Manhattan.
Taxi trips „ 10 million taxi trip records accumulated in one month in Manhattan.
POI data „ 6 thousand POIs (including 9 types of attributes) in Manhattan.
Crime data „ 30 thousand crime records during one year in Manhattan.
Check-in data „ 80 thousand check-in records during one year in Manhattan.
District division Manhattan is divided into 12 districts based on the land usage.

3.4 Experiments

In this section, we conduct several experiments on real-world datasets to evaluate

the performance of Region2Vec. The objective of our experiments is to answer the

following questions:

RQ1: How well does Region2Vec perform in various downstream urban analytics

tasks?

RQ2: How do different modules of Region2Vec contribute to the model performance?

RQ3: For POI side information, which kind of knowledge graph should we choose?

3.4.1 Study Area and Datasets

We choose Manhattan borough in New York City as our study area. In this study,

the area is divided into 180 regions. From NYC Open Data∗, we collect real-world

datasets such as census block shapefile, taxi trips, POI data, crime data, and check-

in data. We also find the district division by the community boards from [8]. The

details of these datasets can be found in Table 3.3.

3.4.2 Downstream Tasks for Evaluation

Region Clustering Visualization.

Regions may fall into the same category if their land-use type is similar. To verify

whether our obtained region embeddings effectively fuse multi-graphs to contain the

∗http://opendata.cityofnewyork.us/
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information of land use, we cluster region embeddings using K-means and visualize

the results to intuitively interpret them. As shown in Figure 3.6 (a), the district

division data from community boards [8] which divide Manhattan into 12 components

are used as ground truth. Thus, we partition the study area into 12 clusters. For the

clustering result, regions with the same land use type should be in the same group.

Region Clustering Evaluation.

We use the following two metrics to further quantitively evaluate region clustering

results of the proposed embedding method and baselines:

Normalized Mutual Information (NMI): It describes the purity of region clus-

tering results. NMI is defined as:

NMI “
IpX, Y q

rHpXq ` HpY qs{2
(3.17)

where X is the set of prediction (i.e., clusters) and Y is the set of labels (i.e.,

ground truth). IpX, Y q denotes the mutual information between elements in X and

Y . HpXq and HpY q denote the entropy of clusters and ground truth respectively.

Adjusted Rand Index (ARI): It is the corrected-for-chance version of the Rand

Index (RI). ARI is defined as follows:

ARI “
RI ´ EpRIq

maxpRIq ´ EpRIq
,

RI “
TP ` TN

TP ` FP ` TN ` FN

(3.18)

where EpRIq denotes the expectation of RI. TP {TN{FP {FN denotes true

positive/ true negative/ false positive/ false positive/ false negative, respectively.

The value of ARI is between -1 and 1. A value closes to 0 means random labeling,

while a value close to 1 means perfect match.
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Crime Prediction.

Lasso regression model [110] is employed in this task to predict the number of crime

events. The independent variables are region embeddings, while the dependent vari-

able is the number of crime events. In this part, we use three metrics: Mean Absolute

Error (MAE), Root Mean Square Error (RMSE), and the coefficient of determination

(R2), to measure the performance of different approaches. The first two metrics are

to quantitate errors of prediction, while the last one is to estimate the goodness of

fit of models. We calculate these three metrics by K-Fold cross-validation, where K

is set as 5. The value of the L1 normalization weight of Lasso regression is chosen

by grid searching.

Popularity Prediction.

Check-in volume is regarded as the popularity. The process in popularity prediction

is the same as crime prediction.

3.4.3 Performance Comparison (RQ1)

To demonstrate the performance of our proposed Region2Ve, we have selected four

classical models from the traditional graph embedding methods, as well as three of

the latest models based on deep learning methods published in top-tier conferences,

to serve as baselines.

I. Graph Embedding Baselines.

GAE: We apply Graph Auto-Encoder (GAE) proposed in [58] on multi-graphs and

make the GAE model of each graph share the middle layer to learn region embed-

dings.

DeepWalk: We apply the DeepWalk model proposed in [91] on multi-graphs and
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concatenate the embeddings of each graph to get region embeddings.

LINE: We apply the LINE model proposed in [109] on multi-graphs and concatenate

the embeddings of each graph to get region embeddings.

Node2Vec: We apply node2vec proposed in [32] on multi-graphs and concatenate

the embeddings of each graph to get region embeddings.

II. State-of-the-Art Methods.

ZE-Mob: ZE-Mob proposed in [135] learns region embeddings by considering the

co-currency relation of regions in human mobility trips.

MV-PN: MV-PN proposed in [23] learns region embeddings with a multi-view POI

network within the region.

MV-Embedding: MV-Embedding proposed in [144] learns region embeddings based

on both human mobility and inherent region properties.

In the experiments, the embedding size of ZE-Mob is set 96 as recommended by

the authors. Thus, the embedding sizes of baselines, our model and variants are

all set as 96. To enhance the GAT performance, 8-head attention mechanism is

employed in each GAT layer. For the multi-graph fusion module, we set the head

number h of multi-head self-attention as 4.

Region Clustering Visualization.

In Figure 3.6, the same color marks regions in the same cluster. We can see from the

comparison between (c)-(e) and (b) in Figure 3.6 that multi-graph and multi-modal

methods are much better than uni-graph and uni-modal method. In addition, our

proposed Region2Vec has more ideal clustering than another state-of-the-art method

MV-Embedding, in terms of consistence with real boundaries of ground truth.
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Figure 3.6: Region clustering results for some methods in Manhattan borough. (a)
Ground Truth; (b) SI; (c) LINE; (d) MV-Embedding; (e) Region2Vec.

Region Clustering Evaluation

Figure 3.7 shows the NMI and ARI of region clustering results on all approaches.

We can find that: (1) Our proposed Region2Vec outperforms all baseline approaches.

Compared with state-of-the-art methods, it has 16.64% increase in performance in

NMI and 12.66% increase in performance in ARI. (2) Methods for a simple combi-

nation of multi-graphs, such as GAE, LINE, and Node2Vec, obviously cannot make

full use of multi-graph information.

Crime Prediction

Results are presented in Figure 3.8. We can observe that our proposed Region2Vec

achieves the best performance compared with all approaches. Region2Vec has 9.95%,

8.82%, and 13.89% improvement in MAE, RMSE and R2, respectively.

Popularity Prediction

Results are presented in Figure 3.9. Compared with state-of-the-art methods, Re-

gion2Vec has 10.34%, 7.80% and 12.88% improvement in MAE, RMSE and R2,

respectively.
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Figure 3.7: Results of region clustering using baselines and state-of-the-art methods.

3.4.4 Ablation Study (RQ2)

To better understand the effect of each module on multi-graph multi-task training

with Region2Vec, we perform following ablation experiments:

I. Ablation Study for Correlation Modeling Module

HM: Region2Vec applied merely on human mobility (HM).

Figure 3.8: Results of crime prediction using baselines and state-of-the-art methods.
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Figure 3.9: Results of popularity prediction using baselines and state-of-the-art meth-
ods.

GN: Region2Vec applied merely on geographic neighborhood (GN).

SI: Region2Vec applied merely on side information (SI).

HM+GN: Region2Vec applied merely on HM and GN.

HM+SI: Region2Vec applied merely on HM and SI.

II. Ablation Study for GAT Module

R2V-g: Region2Vec without GAT module to propagate and update information for

each graph.

III. Ablation Study for Multi-Graph Fusion Module

R2V-f: Region2Vec without multi-graph fusion module to deeply integrate all graphs.

Every graph is assigned equal weights when obtaining the final region embedding re-

sult.

R2V-m: We use the fusion module in MV-embedding while disabling multi-graph

fusion module for Region2Vec.
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Region Clustering Visualization.

We can see from the comparison between (c)-(e) and (b) in Figure 3.6 that multi-

graph methods are much better than the uni-graph methods.

Region Clustering Evaluation.

We can see from Figure 3.10 that: (1) Every module in Region2Vec is necessary.

(2) The methods for bi-graphs (i.e., HM+GN/HM+SI) generally have better perfor-

mance than the methods for uni-graph (i.e., HM/GN/SI). Among uni-graph methods,

HM marginally outperforms the other two methods, which indicates the importance

of accessibility correlation in region clustering tasks. (3) If we just simply combine

the information from multi-graphs (i.e., R2V-g, R2V-f, and R2V-m), it will cause at

least 8.73% and 9.78% reduction of performance in NMI and ARI, respectively.

Figure 3.10: Results of region clustering evaluation using variants of Region2Vec.

Crime Prediction.

Results are presented in Figure 3.11. Region2Vec has at least 7.78%, 6.49%, and

12.8% improvement in MAE, RMSE and R2, respectively.
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Figure 3.11: Results of crime prediction using variants of Region2Vec.

Popularity Prediction.

Results are presented in Figure 3.12. Region2Vec has at least 5.64%, 6.11% and

8.45% improvement in MAE, RMSE and R2, respectively. The necessity of each

module is soundly verified.

Figure 3.12: Results of popularity prediction using variants of Region2Vec.

3.4.5 Knowledge Graph Selection (RQ3)

We here use two downstream tasks –– region clustering evaluation and crime predic-

tion –– to select the most appropriate knowledge graph structure for Region2Vec. As
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shown in Figure 3.13 and Figure 3.14, KG02 generally achieves the best performance

in 6 KGs. KG02 corresponds to constructing knowledge graph by only considering

POIs and POI side information. The edges in KG02 are reversible. The region

knowledge representation is obtained from taking the average of POI knowledge rep-

resentation.

Figure 3.13: Metric values of region clustering evaluation for 6 KGs.

Figure 3.14: Metric values of crime prediction for 6 KGs.
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3.5 Conclusions

In this study, we investigate urban region profiling problem. Region2Vec, a multi-

graph and multi-modal representation learning framework, is proposed to learn an

embedding space for urban regions. Through urban region profiling, the task-agnostic

framework is capable of handling various applications. In particular, multiple modal-

ities of urban data, including human mobility, geographic neighborhood, and POI

side information are encoded using multi-graphs for representing inter-region re-

lations, geographical contextual information, and intra-region information, respec-

tively. Accessibility, vicinity, and functionality correlations among regions are then

constructed based on multi-graphs. After the GAT module is employed to aggre-

gate and update information in each graph, we use a multi-graph fusion module

to jointly learn comprehensive representations. Experiments on real-world datasets

demonstrate the effectiveness of Region2Vec in capturing the latent representation

from multi-graphs and multi-modalities for urban regions. We apply both quanti-

tative and qualitative methods to evaluate the proposed model. Results show that

Region2Vec outperforms all state-of-the-art baselines in four downstream tasks. Our

future work includes making our framework more task-oriented and focusing on the

interpretability of our model.
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Chapter 4

Human Mobility Understanding

4.1 Human Mobility Analysis

4.1.1 Introduction and Motivation

With the rapid advancement of information and location-aware technologies, large-

scale movement datasets are now accessible, greatly enhancing empirical research

on human travel behavior. Numerous studies have seized this opportunity to in-

vestigate human travel patterns, particularly from the perspective of trip chains

[19, 30, 51, 147]. A trip chain is typically defined as a series of trip segments connect-

ing two significant activity locations [81]. Analyzing trip chains allows researchers

to uncover how people organize their activities across space and time, as well as the

topological relationships among different activity locations. A deeper understanding

of trip chains provides valuable insights for transportation planners and policymak-

ers, benefiting land-use planning, improving urban accessibility, and even forecasting

and controlling the global spread of epidemics [4, 42, 71, 80, 82].

The majority of existing research on trip chaining behavior has focused on the

activities of city dwellers. These studies have discovered that people’s travel patterns

exhibit a limited number of predictable and characteristic trip chains that adhere to

simple rules [102]. In other words, a few trip chains are sufficient to capture the

primary characteristics of populations [97]. Moreover, citizens’ travel decisions are
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influenced by the principle of least effort, with individuals of diverse backgrounds and

socioeconomic characteristics aiming to minimize their effort across various aspects

of human life [33, 41, 153]. However, limited effort has been devoted to examining

the trip chaining behavior of tourists, primarily due to a lack of large-scale, fine-

grained datasets capturing tourist movement patterns. Although some models of

tourist travel patterns have been proposed [61], their validation often relies on small-

scale datasets such as travel diaries [84]. Research quantifying tourist trip chains

using fine spatiotemporal resolution movement datasets remains scarce. In today’s

context, analyzing tourist travel patterns is essential for helping tourists plan their

trips more efficiently. If tourism-related businesses can develop marketing strategies

catering to tourists based on travel patterns, they will experience accelerated growth.

A deep understanding of tourists’ movement patterns derived from big data can ulti-

mately benefit both tourists and the tourism industry [16, 43, 84, 114] and have direct

applications in tourism management activities, such as tour product development,

attraction planning, and accommodation development. In light of these considera-

tions, this research focuses on mobile phone big data of South Korean tourists and

aims to uncover their frequent travel patterns.

We acknowledge that limited quantitative measurements have been proposed for

modeling tourists’ trip chains. Accordingly, this study aims to address the following

research questions: (1) What are the major topological characteristics of tourists’

daily trip chains? (2) Do visitors organize their travels similarly across different days

during their stay in a city? (3) Is the principle of least effort reflected in their travel

behavior?

To answer these questions, we analyze a large-scale mobile phone dataset col-

lected in two South Korean cities (Jeonju and Gangneung), which captures the lo-

cation footprints of international travelers who visited these cities during a one-year

period. This study seeks to provide answers to the aforementioned questions using
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a novel model capable of capturing and reproducing the spatiotemporal structures

and regularities in tourist trip chains. Specifically, we extract trip chains from raw

mobile phone trajectories and further examine the most popular ones to identify

typical tourist trip chains. To address the first research question, we analyze daily

trip chains by categorizing them into ”intra-city” chains and ”hybrid” chains. Our

goal is to comprehend how tourists organize their travels during their time within

a city or on the first and last days of their visits to a city. For the second research

question, we strive to identify inherent patterns concerning individual tourist mobil-

ity and assess the predictability of tourist movement. Regarding the third question,

we employ two metrics — average degree and average travel distance of trip chains

— to evaluate tourist travel behavior in relation to the principle of least effort.

4.1.2 Study Area

South Korea is a country with a well-developed travel and tourism industry. Jeonju

and Gangneung, as shown in Figure 4.1, which are two popular cities to international

travelers in South Korea, are selected as areas of study. Jeonju, the capital city of

Jeollabuk-do Province, is an important tourist center famous for traditional Korean

food, historic buildings, sports activities, and festivals. It has an area of 206 km2

and a population of 0.65 million (as of 2017). Gangneung sits on the east coast of

South Korea. The city has many tourist attractions, such as Jeongdongjin, a very

popular area for watching the sun rise, and Gyeongpo Beach. It’s also the city that

hosted all the ice events for the 2018 Winter Olympics. As a city in Gangwon-do

Province, it has an area of 1040 km2 and a population of 0.21 million (as of 2019).
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Figure 4.1: Study areas: (a) the whole South Korean, (b) Gangnueng, and (c) Jeonju.

This research uses a mobile roaming dataset collected by a major telecom com-

pany in South Korea. This anonymized dataset tracks the location footprints of

18,625 and 33,219 tourists who visited Jeonju and Gangneung respectively between

August 1st, 2017 to July 31st, 2018. Since the timespan of dataset covers the 2018

Winter Olympics and mobility patterns of tourists could be different during this

special event, we filter out this part of the data (from Jan 20th, 2018 to Feb 26th,

2018). Thus, the number of tourists in Gangneung changes to 15,095. Note that in

this dataset, as long as an individual has visited Jeonju or Gangneung, the sequence

of locations that he or she stayed when travelling in any other city of South Korea

were also documented. This reveals additional information on when an individual

entered/left Jeonju or Gangneung, which enables precise quantification of his/her

trip chain on the first or last day of visit to a city. Table 4.1 shows an example of an

individual’s phone records. Each row in the table represents one stay activity and

the time periods in between indicate trips among locations. For example, the first

two rows in Table 1 indicate that the user stayed at two different locations during
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[07:16:00 - 12:33:00] and [12:46:00 – 12:52:00] respectively, and a trip was possibly

conducted by the user in between (i.e., [12:33:00 - 12:46:00]).

Table 4.1: Example of an individual’s mobile phone records

User ID Date Starting Time Ending Time Longitude Latitude

28*** 2017-08-25 07:16:00 12:33:00 127.*** 35.***
28*** 2017-08-25 12:46:00 12:52:00 127.*** 36.***
28*** 2017-08-25 13:08:00 13:24:00 127.*** 36.***
. . . . . . . . . . . . . . . . . .

28*** 2017-09-06 15:01:00 15:14:00 126.*** 35.***
28*** 2017-09-06 15:43:00 16:07:00 126.*** 35.***
28*** 2017-09-06 16:41:00 17:00:00 126.*** 35.***

The locations of users were positioned at the level of cellphone tower and their

densities in space define the spatial resolution of the dataset. The numbers of cell-

phone towers in Jeonju and Gangneung are 782 and 704, respectively. To better

understand their spatial arrangement in the two cities, we calculate the statistics of

the distance from each cellphone tower to its nearest peer. The average distance is

250 meters in Jeonju and 420 meters in Gangneung. Overall, the dataset provides

a fine-grained view of tourist mobility in time and space, which allows for reliable

extraction of tourist trip chains.

Figure 4.2: The number of observation days of users in two cities.
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As shown in Figure 4.2, the number of observation days of users (i.e., the number

of days with records for a user) show similar distribution patterns in two cities. Most

of the users stayed for only a few days. The median values of observation days are

2.0 for Jeonju and 1.0 for Gangneung, and the mean values are 2.5 for Jeonju and

2.0 for Gangneung. The maximum values of observation days are 34 days for Jeonju

and 30 days for Gangneung, respectively. Note that for some travellers, they would

stay in a particular city for a few days and left, and then came back for another visit.

In this study, we do not perform trip chain analysis for individuals with gap days.

Such individuals account for 7.22% and 12.66% of visitors in Jeonju and Gangneung,

respectively.

4.1.3 Characterizing Tourist Daily Trip Chains Using Mo-
bile Phone Big Data

To understand and quantitatively model tourists’ mobility patterns, we designed a

pipeline to analyze the trip chains of tourists. This pipeline contains four steps: (1)

extracting meaningful activity locations (”anchor points”) from tourists’ cellphone

trajectories; (2) constructing daily trip chains of tourists and examining their key

characteristics; (3) quantifying the day-to-day transitions of individual trip chains;

(4) exploring decisive factors that shape tourists’ trip chains.

Deriving Individual Activity Anchor Points from Cellphone Trajectories

Identifying meaningful locations of travelers is an essential step for trip chain analy-

sis. However, the cellphone tower locations documented in the dataset do not always

reflect the actual locations of users for several main reasons: (1) the signal of mo-

bile phones could switch between adjacent cellphone towers, producing the so-called

”ping-pong” effect [44, 95]; (2) the signal transmitted and received by cellphone tow-

ers will be compromised during propagation, leading to the inaccuracy of cellphone
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tower positioning [45]. Therefore, we argue that the combination of neighboring

cellphone towers could better represent a location or place that is meaningful to a

traveler.

Activity anchor points have been used in previous studies to describe a person’s

major activity locations [2, 20, 98]. In this study, we define an anchor point (AP)

as a set of cellphone towers that are close to each other and where an individual has

stayed over a certain period of time.

Given a cellphone trajectory T “ pv1, t
s
1, t

e
1q, pv2, t

s
2, t

e
2q, . . . , pvn, t

s
n, t

e
nq that doc-

uments a user’s location footprints. Here vi “ plngi, latiq symbolizes the cellphone

tower location of the ith record; tsi and tei represent the starting and ending time of

ith record. The anchor point extraction works as follows. First, we calculate the

total amount of time the individual stayed at each cellphone tower, and sort all the

cellphone tower in descending order based on total stay duration. We start from

the cellphone tower with the largest stay duration and group other cellphone towers

within a roaming distance (∆d) of the selected cellphone tower into a cluster. Then

from left cellphone towers that have not been assigned to any cluster, we conduct

the same process on the one with longest stay duration. Iterating above steps until

all the cellphone towers in trace T are tackled with, the trajectory is processed into a

sequence at anchor point level. Since the average nearest distance between cellphone

towers in both Jeonju and Gangneung are below 500m, we set ∆d as 500m for both

cities when performing the anchor point extraction.

In this way, an individual’s trajectory can be represented as a sequence of APs.

Figure 4.3 displays an example of how APs are extracted from the cellphone trajec-

tory. The five vertical line segments mean five rows of records. A to E represent five

cellphone towers in the trajectory T . R1 to R3 denote the extracted activity anchor

points. Given the individual’s cellphone trace T “ pA, tsA, t
e
Aq, pB, tsB, t

e
Bq, . . . , pE, tsE, t

e
Eq,

the travel patterns can be denoted as a sequence of cellphone tower locations tra-
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Figure 4.3: An example of extracting anchor points from a trajectory.

versed: A Ñ B Ñ C Ñ D Ñ E. In order to implement the above workflow, the

cellphone tower with the longest total duration (A) is selected to create the buffer.

The distance between cellphone tower C and A is less than 500m, so they are grouped

as AP R1. Then, the next cellphone tower with the highest amount of time (B) is

selected and grouped with E to form R2. The left cellphone tower D forms AP

R3 itself. At this point, the individual’s travel patterns can be redefined as a se-

quence of APs: R1 Ñ R2 Ñ R1 Ñ R3 Ñ R2. And the trace is processed to

T 1 “ pR1, t
s
R1
, teR1

q, pR2, t
s
R2
, teR2

q, . . . , pR2, t
s
R2
, teR2

q, where Rj “ plngj, latjq denotes

the location and ID of the jth AP. So far, we have converted the original observa-

tions at the cellphone tower level to a sequence at the AP level.
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Constructing Tourist Daily Trip Chains

To further depict tourist daily travel patterns, we construct trip chains with different

topological structures, which reveal how tourists organize their daily travels. Unlike

previous human mobility research focusing on residents [3, 19, 51, 97], our research

objects in this study are tourists. Residents’ movements are usually within a given

city; while for those tourists who visited several cities in one travel, they have records

outside the given city. Thus, when we construct daily trip chains for a cross-city

traveler, we have two kinds of trip chains: (1) hybrid” trip chains, which are composed

of all records of an individual including within-city and out-of-city observations, and

(2) ”intra-city” trip chains, which refer to trip chains constructed with only intra-city

records. For the ”hybrid” trip chains, since the purpose of keeping the out-of-city

records is to explore the travel pattern features of the day when cross-city travelers

come or leave a given city, we only need to count the relevant records before arriving

or after leaving the city as one aggregated AP, respectively.

Figure 4.4: Examples of daily trip chain networks.

In Figure 4.4, (a) denotes an individual with a daily trip chain from anchor A to

anchor B (A-B). (b) denotes an individual with a daily trip chain from anchor A to

anchor B then to anchor A (A-B-A). (c) denotes an individual with a daily trip chain

A-B-A-B. (d) denotes an individual with a daily trip chain A-B-A-B-A. (e) denotes

an individual with a daily trip chain -A-B-, who is out of the city at the beginning and
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end and visited two ”within city” anchors in the process. (f) denotes an individual

with a daily trip chain A-*, who stays in a ”within city” anchor A at the beginning,

then leaves the city to an ”out of city” anchor. When we plot the structure of trip

chains, we use an edge with a one-way arrow to represent an individual moving from

one anchor to another. We use an edge with a two-way arrow to represent a round

trip between two APs. The red symbol represents the start anchor. A point in a

round shape denotes anchor points within the city. A point in a star shape denotes

anchor points outside the city. We use ”*” to symbolize ”out of city” anchors, and

capital letters to symbolize ”within city” anchors. Figure 4.4 (a) - (d) show typical

”intra-city” trip chains, while (e) and (f) show typical ”hybrid” trip chains.

Day-to-Day Transition of Tourist Trip Chains

To understand how an individual changes their travel patterns on the base of consec-

utive days, we need to analyze the transition between continuous daily trip chains.

As we have mentioned in Figure 4.2, the median values of observation days are 2.0

for both cities. Thus, it is meaningful to explore the transition patterns of tourists’

daily mobility between two consecutive days. In this part, we focus specifically on

whether an individual will change their type of travel chain on the base of a consec-

utive sequence. By doing so, inherent patterns in tourist individual mobility will be

explored, which may provide new insights into tourist mobility.

Note that days coming or leaving the given city are not comparable to days

staying in the city, so we only focus on ”intra-city” trip chains in this section. In

this part, only individuals with at least two consecutive days of ”intra-city” trips

are analyzed. Suppose a tourist has records for Q days of ”intra-city” trips, we can

then extract Q ´ 1 pairs of consecutive days. For each pair of consecutive days, we

define the trip chain of the former day as the original chain, and the trip chain of the

latter day as the transferred chain. A transition matrix will then be constructed to
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count the frequency of different combinations of trip chain transitions. Row indexes

of the transition matrix are different types of original chains, and column indexes are

different types of transferred chains. We first investigate the frequency value of each

element in the transition matrix, then we turn frequency into probability by summing

each row. By doing so, each element value in the matrix presents the likelihood that

people convert one type of original chain to different types of transferred chains. For

instance, suppose a person has records in a given city for W continuous days (W is

not less than 2). They stayed in one place (chain type: A) for the whole day on the

first day and conducted a round trip with two nodes A, B (chain type: A-B-A) on the

second day. Then the frequency of the matrix element corresponding to the original

chain A to the transferred chain A-B-A should add one. Then we count the frequency

for the transition of the other W ´ 2 pairs of consecutive days for this individual.

After all tourists in the given city are performed using the above procedures, the

probability value of one original chain type changing to other transferred chain types

can be calculated.

The Principle of Least Effort in Trip Chaining Behavior

We argue that the principle of least effort also acts as a driving force in trip chaining

behavior. To demonstrate that it is a decisive factor in tourist travel behavior, we

need to adopt some statistical metrics. Distance is a key metric in human mobility

[88], and average degree is an important metric in network-like topological structure.

Thus, in this work, we use two indicators to represent two aspects of trip chaining

behavior: (1) average degree K, and (2) average distance D. These two indicators
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are defined and calculated as follows:

K “
E

N ´ 1
, (4.1)

D “
1

E

N´1
ÿ

i“1

di,i`1, (4.2)

where E is the edge number of each trip chain, and N represents the number of anchor

points (which we denote as N afterwards). i and i`1 are a pair of consecutive anchor

points in a chain, and di,i`1 represents the Euclidean distance between anchor points

i and i ` 1.

The purpose of investigating average degree K is to explore whether there is a

connection between travel efficiency and people’s preference of choosing daily trip

chains. K can be regarded as a proxy of travel efficiency. Through the network

structure of trip chains, we can clearly know whether people prefer to visit different

locations in a single round tour before returning to the starting location, or if they

prefer to return to their starting location before visiting another location. Obviously,

the most effective way to conduct an itinerary with M anchor points is a round trip

with M segments, in which case, K is equal to 1. If a person moves multiple times

between anchor points, then K is larger than 1. The higher the value of K, the less

efficient the individual travel is.

As for average distance D, it makes sense that people usually think ahead about

the next day’s itinerary, including how many places they want to go and the distances

between these places in space. We calculate average distance for each sample to

combine the information of anchor point number N and Euclidean distance between

two consecutive anchor points in the trip chain. To some extent, the average travel

distance of a trip chain can be considered as an integration of multiple factors related

to the principle of least effort when people choose trip chains, such as travel cost,

spatial range, and mobility regularity. Average distance can reflect the cost people
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Figure 4.5: Distributions of AP number for (a) Jeonju dataset, (b) Gangneung
dataset.

pay for travel in terms of time and space. From this point of view, the travel distance

metric can offer another standpoint towards understanding tourist travel behaviors.

4.1.4 Results and Discussions

Distribution Patterns of Anchor Points

In this section, we report the distribution of the number of activity anchor points

extracted from tourists’ cellphone trajectories in Jeonju and Gangneung. We then

explore the spatial patterns of these anchor points to gain insights into the tourists’

spatial preferences in the two cities.

Numerical Distribution of Anchor Points. We first investigate the number of

daily visited AP on individual basis. Through the numerical distribution of AP, we

can have an insight into one aspect of tourisms’ daily travel preference.

The distribution of AP as well as the fitting of the probability of travelers who

visited a given AP number is presented in Figure 4.5. Tourists in Jeonju and Gangne-

ung visited up to 10 and 11 APs in a daily basis respectively. The values of blue bars

are the observed probabilities of different number of nodes. The yellow lines denote
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the best-fitted distributions — log-normal. The fitting was conducted via the least

squares fit. The corresponding function and parameters are shown in each figure. The

probabilities P of different AP number are: PJeonjupX “ 1q “ 0.52, PJeonjupX “ 2q “

0.27, PJeonjupX “ 3q “ 0.12; PGangneungpX “ 1q “ 0.55, PGangneungpX “ 2q “ 0.24,

PGangneungpX “ 3q “ 0.11. In addition, it’s seems that daily human mobility patterns

follow a universal law. The number of daily visited APs can be approximated with

a log-normal fit:

fpXq “
e´plnX´µq2{2σ2

Xσ
?

2π
(4.3)

with the parameters µJeonju “ 0.3946, σJeonju “ 0.6466, µGangneung “ 0.2981, σGangneung “

0.6681.

The parameters are calculated with 95% confidence bounds, and R-squares of

fittings are both above 0.99. The two datasets demonstrate great internal hetero-

geneity through log-normal fitting, which indicates travelers are diverse in terms of

the number of places visited in a day. However, the similar values of µ and σ in

two datasets reveal that distributions extracted from Jeonju and Gangneung dataset

show similar patterns. In other words, the variance in travelers’ spatial behavior are

comparable between the two cities. The average AP number X̂ « 2 (1.83 for Jeonju

and 1.84 for Gangneung) is small; hence, most people visit only a few places. In

fact, 99.60% / 99.24% of the population visit less than seven APs on a daily basis in

Jeonju / Gangneung.

The tail of the distributions shows that although most people visit less than four

APs, a small fraction of tourists visit quite a lot APs within a day in some cities.

Spatial Patterns of Tourist Activities. In order to explore the hot spots of our

study areas through meaningful activity anchor points, we use kernel density method

to plot heatmap of anchors. A smaller radius of kernel density can make the local
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patterns obvious, while a larger radius can generate a smoother global surface. Note

that the radiuses for kernel density need to be larger than the average distance of

cellphone towers (250 m in Jeonju and 420 m in Gangneung). We also need to take

the area of cities into account (206.22 km2 for Jeonju and 1040 km2 for Gangneung).

Since our goal is to identify hotspots by kernel density, the search radiuses for Jeonju

and Gangneung are set as 1000 m and 3000 m respectively.

The preliminary spatial distribution results are shown in Figure 4.6. In (a) (c),

popular areas are derived through visited times of AP. The deeper the blue, the lower

the value of kernel density; the deeper the red, the higher the value of kernel density.

In (b) (d), the blue marks correspond to locations of spots in Jeonju and Gangneung

respectively. The red star area in (d) represents Winter Olympic venues. Area 1,

2, 3 in (a) has the same locations with Area 1, 2, 3 in (b); Area 1, 2, 3, 4 in (c)

has the same locations with Area 1, 2, 3, 4 in (d). As shown in Figure 4.6, even

though some areas of spots are not detected, the distributions of popular areas of

two cities derived by kernel density generally match with the ground truth provided

by TripAdvisor. Note that the kernel density maps are based on one year’s mobile

phone data, while maps of TripAdvisor are based on Points of Interests. Thus, this

section can be seen as a validation of our deriving activity anchor point method.

Moreover, results of kernel density also imply which areas are popular in 2017-2018.

Significant Trip Chain Types

In order to discover the most popular ways for tourists in South Korea to organize

their daily travels, we construct significant trip chains and visualize them. To keep

it consistent, for “hybrid” trip chains and “intra-city” trip chains, we regard the top

13 trip chains among each of them as significant chain types in this research, since

they all account for more than 1% of the total trip chains in the respective analysis.
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Figure 4.6: Popular areas derived from datasets (a) Jeonju (c) Gangneung, and hot
spots marked by TripAdvisor (b) spots in Jeonju (d) Gangneung.
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Significant “Hybrid” Trip Chains. We argue that if we extend trip chains to

“hybrid” perspective, more patterns about days leaving or coming to the given city

can be observed.

Figure 7 shows the top 13 “hybrid” chains, which include both individual trip

chains which are all in the city and individual trip chains which are sometimes out

of the city. This would reveal the behavioral diversity of travelers on an average day.

To summarize, up to 76.41% and 75.99% of the measured “hybrid” trip chain types

can be described with only 13 different daily trip chains in Jeonju and Gangneung

respectively. In general, the trip chains can be grouped into four main categories

based on the start nodes and end nodes:

• (C1) staying in the city: the start point and end point of the trip chain are

both in round shape, which means the user were in the city at the beginning

and the end. Or the motif just has one single point, which means the user

spent all day in one anchor point;

• (C2) passing by the city: the start point and end point of the trip chain are

both in star shape, which means the user were out of the city at the beginning

and the end;

• (C3) coming to the city: the start point of the trip chain is in star shape while

the end point of the trip chain is in round shape, which means the user were

in the city at the beginning and out of the city at the end;

• (C4) leaving the city: the start point of the trip chain is in round shape while

the end point of the trip chain is in star shape, which means the user were out

of the city at the beginning and in the city at the end.

Figure 4.7 shows the significant “hybrid” trip chain types. There are 1866 differ-

ent chain types in Jeonju and 1655 in Gangneung. The different colors of bar indicate
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Figure 4.7: Significant “hybrid” trip chain types in (a) Jeonju, (b) Gangneung.
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the number of “within city” AP in a chain. The topological structures and their ID

(1-13) are shown at the top. In addition, we divide tourists into four categories: (C1)

staying in the city, (C2) passing by the city, (C3) coming to the city, (C4) leaving

the city. The small bar graphs with grey bars show the proportion of them. We

can see from Figure 4.7 that, about half of individual daily trip chains belong to the

category of staying in the two cities; the amount of individual daily trip chains of

coming to the city and leaving the city is almost the same in these two study areas;

the amount of individual daily trip chains of passing by Gangneung is larger than

that of Jeonju, accounting for 21.69% and 12.53% respectivelyrespectively. Chain

type 3 in Jeonju and chain type 4 in Gangneung indicate that for most tourists who

come to the given cities, they prefer to go directly to a place (e.g., hotel) and stay

there after the first day. Chain type 5 in Jeonju and chain type 2 in Gangneung

indicate that most tourists who pass by the given cities only visit one spot.

Significant “Intra-City” Trip Chains. Figure 4.7 suggests that the category

(C1): staying in the city accounts for about half of the samples. In this section, we

focus on this category and analyze significant “intra-city” trip chains, to discover the

most popular patterns for tourists at the intra-city level.

The distribution of intra-city trip chain type samples is displayed in Figure 4.8.

There are 743 different chain types in Jeonju and 467 in Gangneung. The different

colors of bar indicate the number of “within city” AP in a chain. The topological

structures and their ID (1-13) are shown at the top. 89.55% and 90.89% of the

measured intra-city chain types can be identified with 13 different daily networks in

Jeonju and Gangneung respectively. The first three kinds of chain types (ID 1, 2,

3) account for a quite large part (75.47% for Jeonju and 68.13% for Gangneung) of

all chain types. Due to the phone positioning mechanism of the roaming dataset,

if a person keeps moving in a period, then no record will be documented during
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Figure 4.8: Significant “intra-city” trip chain types in (a) Jeonju, (b) Gangneung.
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this period. Thus, the first three kinds of chain types correspond to several travel

behaviors such as staying at a hotel all day, hanging out near the hotel, and visiting

very limited places within a day. It implies that tourists tend to conduct quite

simple daily tours in intra-city tourism. In addition, the similarity of results in

the two cities also demonstrates the intrinsic properties of tourist mobility. These

findings may provide some insights for tourism planning. For example, most tourists

in these two cities may prefer integrated attractions rather than decentralized and

monotonous ones.

Day-to-Day Transition of Tourist Trip Chains

Figure 4.9 and 4.10 show the transition matrix for the two cities. Every row rep-

resents a kind of trip chain that individuals conduct on the first day, every column

represents a kind of trip chain that individuals conduct on the second day. For trip

chains that are not significant, we group them into “others”. We can see that the

transition daily mobility patterns of consecutive sequence-based chains in the two

cities are quite similar. The values, which equal the probabilities of corresponding

two kinds of trip chains in two consecutive days, show how more or less likely an

original travel chain transfers to another under the condition that the individual has

mobility on two continuous days. The darker the colors, the higher the values. By

locating grids with dark color, it can be found that almost all kinds of original chains

have a rather high probability to transfer to either the first two transferred chains,

or “others”, in both Jeonju and Gangneung.

The emerging patterns of transitions could be interpreted in two aspects. First,

Jeonju and Gangneung are cities with not many tourist attractions since the median

values of observation days of tourists are 2 for both cities. For some tourists who

just pass by these cities, they prefer to stay in a hotel to get fully rested, or go to

one spot for short sightseeing or tasting local food. For other tourists who want to
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Figure 4.9: Transition matrix for Jeonju dataset.

explore these cities, they may also like to take one day to get fully rested the next day

after they have a whole-day sightseeing. Second, the high probability of transferring

to “other” may be related to the long tail principle. The type “others” consists of

730 chain types in Jeonju and 454 chain types in Gangneung; when all the situations

are accumulated, the probability of significant original chain types transferring to

“others” will become relatively high.

When we aggregate the chains by AP number N, we can clearly see from Table
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Figure 4.10: Transition matrix for Gangneung dataset.

Table 4.2: The probability of transition for chains with different AP numbers in
Jeonju.

Transferred
Origin

N = 1 N = 2 N = 3 N = 4

N = 1 0.72 0.19 0.06 0.01
N = 2 0.33 0.44 0.12 0.02
N = 3 0.25 0.32 0.22 0.04
N = 4 0.19 0.33 0.20 0.10
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Table 4.3: The probability of transition for chains with different AP numbers in
Gangneung.

Transferred
Origin

N = 1 N = 2 N = 3 N = 4

N = 1 0.75 0.18 0.04 0.01
N = 2 0.37 0.41 0.14 0.02
N = 3 0.27 0.34 0.23 0.02
N = 4 0.18 0.27 0.31 0.05

4.2 and Table 4.3 that for the top 13 significant chains in each city, there is a high

probability for them transferring to chains with one or two APs. The results further

demonstrate our above conclusions.

The Principle of Least Effort in Trip Chaining Behavior

As mentioned in section 4.1.3, we hypothesize that travel efficiency is the substantial

factor in tourist travel behavior. We checked the proxy of travel efficiency, chain

degree K, in order to validate our assumption.

We group trip chains by different node number. Since the sample size is very small

when node ě 7 in both Jeonju (117 individual daily trip chains) and Gangneung (73

individual daily trip chains), we treat samples with node ě 7 as one group in each of

the two cities. Figure 4.11 (a) and (b) generally show a negative correlation between

the maximum value of degree and AP number N, whereas a slight positive correlation

between the minimum value of degree and N is demonstrated. The distribution of

degree tends to be more concentrated to the median when the N increases. Moreover,

for chain groups with N = 2 and N = 3, the medians of degree are 1 in two cities;

for chain groups with more N, the medians of degree are similar and just over 1.

Specially, we can see that for groups with N = 2 and N = 3 in two cities, the frequency

distributions of degree are similar but rather uneven, which can be attributed to the

limitations of N. When N is small, there are not many possible topological structures

of corresponding trip chains.
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Figure 4.11: Violin plots for degree of trip chains by node number in (a) Jeonju, (b)
Gangneung. The horizontal dash lines correspond to degree value 1.

The results above can be interpreted from two perspectives. First, for groups with

fewer APs, the heterogeneity is more significant due to the more discrete distribution

of chain degree. Thus, groups with fewer APs may consist of a larger variety of

tourists. On the contrary, groups with more APs appear to be more homogeneous

due to the lower extreme high degree value and higher extreme low degree value. This

indicates even samples with extreme high degree value are more likely to conduct

daily travel with lower degree trip chains. Second, the median values of degree do

not significantly increase as the N increases, which implies for groups with more
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APs, most of them have almost the same travel efficiency as groups with fewer APs.

Combining these two perspectives, we discover the principle of least effort and its

impacts on tourist travel behavior. The effect is more obvious when AP number N

becomes larger. This illustrates even though visitors plan their itinerary with special

proclivities, such as unpopular or distant spots, they still tend to choose the most

convenient trip chains to achieve the highest travel efficiency.

Figure 4.12: Violin plots for average travel distance of trip chains in (a) Jeonju, (b)
Gangneung.

It is worth mentioning that the area of Jeonju and Gangneung is 206.22 km2 and

1040 km2 respectively. Thus, it makes sense that the mean value of average travel
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distances of Gangneung (4.01KM) are longer than that of Jeonju (2.07KM). However,

such a slight difference implies even though tourist’s average distances are relevant

to city’s area, the activity space of tourists is rather limited. As can be seen from

Figure 4.12, for each city, the maximum value of average travel distance drops as the

N increases while the minimum value of average travel distance increases as the N

increases. When N gets higher, the distribution of average distance for each group

becomes more concentrated. This result also demonstrates the heterogeneity for

groups with fewer APs and homogeneity for groups with more APs. Another finding

from Figure 4.12 is that the median values of average travel distance have very slight

growth when the N becomes higher for two cities. This indicates although some

tourists prefer to have trajectories with multiple stops, they will also make their

trips as short as possible, which demonstrates the least effort principle in tourist

travel behavior from the perspective of travel distance.

4.1.5 Conclusions and Implications

Tourism studies suggest that the assumption that travel decisions involving a single

destination is misleading. Travelers tend to visit multiple destinations/attractions to

meeting their variety-seeking motivations and maximizing benefits from their trips.

Hence, the identification of travel patterns involving a range of sites visited has been

a critical issue in tourism research [111]. Along with the transportation literature,

this work proposes tourist daily trip chains to discover underlying travel movement

patterns. This model has important theoretical implications for the tourism knowl-

edge base. In fact, there have been several tourism scholars who have mentioned

the notion of trip chains, but the attempt to quantitatively identify the structures

of trip chains is paucity (e.g., [61]; [104]). This challenge is somehow attributable

to restrictions on accessing proper data enabling researchers to detect individuals’

movement in a comprehensive and detailed manner. Most previous studies relied
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primarily on survey data. This approach, however, contains several limitations (e.g.,

substantial cost and effort, the potential for response errors; cf. [100]).

Taking advantage of mobile sensor data providing fine-grained spatiotemporal

resolution of travel behaviors, this study discovered 13 key trip chains that account

for approximately 76% of “hybrid” and 90% of “intra-city” chain types. The benefits

of mobile technology facilitating the collection of digital footprints—within as well

as outside a focal destination—makes it possible to explore two types of trip chains

including “hybrid” (containing inter-city and intra-city components) and “intra-city”

(including only intra-city patterns). The results revealed different formations of trip

chains including semantic places and directional movements between two types of

trip chains, which demonstrate the complex daily travel network from tourism big

data. Specifically, travelers who show “hybrid” trip chains are likely to prefer to go

directly to the hotel after arriving at the focal city and take a rest the first day, and

most tourists who pass by the given cities only visit one spot. Based on the result of

over 90% measured “intra-city” trip chains, it can be concluded that tourists tend to

prefer integrated attractions rather than decentralized and monotonous ones. These

findings fill the theoretical gap in tourism literature on multi-destination trips by

discovering significant and underlying patterns based upon a full travel trajectory.

Furthermore, this research applies the principle of least efforts (PLE) proposed in

evolutionary biology and information systems into travel mobility [11]. Indeed, the

broad theory of PLE serves to explain empirical tourist mobility patterns and regu-

larities exhibited by international travelers. More specifically, this research suggests

two indicators—trip chain degree and average travel distance—that quantify individ-

ual travel efficiency and reveal the presence of PLE. This framework helps to reveal

that travelers make their trips as short as possible and that this affects their struc-

tures of trip chains. Tourism researchers have discussed gravity theory (e.g., [86])

and distance decay ([63]) as means of understanding travel movement behaviors.
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Importantly, this work suggests an additional theory to interpret human behaviors

(achieving tasks in PLE): travel distance (efforts spent in PLE). It also contributes

to methodological approaches to examining these phenomena. Introducing such an

analytical framework offers a path toward greater understanding of tourist mobility

patterns. It also provides valuable input for many applications (e.g., personalized

location-based services for tourism; smart city and smart tourism; and sustainable

city planning). In addition, as demonstrated by our analysis results, a constantly

growing number of mobile phone data sources contribute a great deal to geographic

data mining and knowledge discovery in the age of instant access.

This work also suggests important managerial implications. The findings discov-

ering underlying trip chains should be beneficial for travel organizers in developing

new products. Based on flow-based destination planning, the structure of trip chains

considering directions and sequences of travel movement can become fundamental

knowledge in transportation and crowd management as well as the development of

travel packages and routes. Recently, DMOs are likely to cooperate with big data

firms (e.g., telecommunication companies). This collaboration and cooperation can

generate innovative opportunity to access real-time information of travel behaviors,

and to collect “big data.” Approach to analyzing the trip chain this study suggests

should guide for DMOs to not only how to analyze mobile big data, but to better

understand travel spatial behaviors, which should be essential to accomplish smart

tourism destination.

However, there still exist a few limitations we wish to point out. First, while these

documented locations of stop points have higher accuracy than that of years ago,

they still contain errors that might mislead the understanding of underlying mobility

patterns. Second, our work just examined two cities as study areas. In the future,

more cities—especially different types of cities —can be added into our research to

achieve generalized results. Another promising direction for future work is that we
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can infer spatiotemporal information regarding tourist itineraries by mapping the

trip chains to the spatial context. In addition, for metropolises with tourists of high

average observation days, it is suggested to dig deep into the transition patterns in

continuous days.

One important point to note is that while the focus of this research is on tourists,

the analytical methods can also be generalized to urban residents. Due to the lack

of suitable datasets, I have not yet conducted research on urban residents. However,

principles such as the minimum effort observed in tourists’ behaviors and their pref-

erences are expected to provide valuable insights for mobility research among urban

residents in the future.

4.2 Location Recommendation

4.2.1 Introduction and Motivation

Location recommendation is a product of necessity in the era of big data. On the

one hand, the prevalence of location-based social networks (LBSNs), like Foursquare

and Gowalla, has led to a tremendous amount of user check-in data. On the other

hand, while a typical city has thousands of POIs, most users visit very limited POIs

in and out of his/her hometown [103, 73]. By exploiting user check-in data, location

recommendation can provide people with their most interesting locations out of nu-

merous POIs. Location recommendation can not only satisfy a user’s travel needs

but also has great commercial value for applications such as precision advertising.

A large number of efforts have been devoted to improving the quality of loca-

tion recommendation. Some studies adopt the most popular solution used by rec-

ommender systems, matrix factorization [148, 67]. However, they do not consider

inherent spatial-temporal sequential behaviors and hence achieve suboptimal perfor-

mance. Traditional statistics-based Markov chain models [7, 25] have been widely
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Figure 4.13: An illustration of how TPG performs the next location recommendation
and interval predictions.

adopted to solve this sequential recommendation problem, but they have limita-

tions, such as only considering the influence from the last check-in activity. With

the increase of data volume and the development of deep learning technology, re-

current neural network (RNN) based methods [152, 21] are employed to consider

long historical information with much stronger representation ability than Markov

chain-based models. To tackle the sparsity issue in matrix factorization-based mod-

els, some graph-based methods [127, 122] are proposed and can achieve great per-

formances. Recently, the attention mechanism has been proposed and can achieve

impressive performance to model long-range temporal and spatial dependencies in

human trajectories for location recommendation [66, 129]. As for inputs of loca-

tion recommender systems, except simple check-in sequences, scholars also try many

information sources, such as social relationships and geography information [129].

Nevertheless, there are two main challenges not yet addressed among these meth-

ods. The first one is that most context-aware state-of-the-art methods implicitly

incorporate the temporal information associated with check-ins. They fused time

interval information or timestamps of check-ins together with check-in history. This

results in inflexible and inaccurate POI prediction outputs when the model needs to
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Figure 4.14: One possible use case of TPG is in map services.

predict not only the next location but also further locations. For example, STAN

[74] builds spatial-temporal matrices for all check-ins within the trajectory slice.

CARA [77] leverages both sequences of check-ins and contextual information associ-

ated with the sequences. If we want to predict the 101-st check-in and the 102-nd

check-in based on the first 100 historical check-ins, the inputs (i.e.the first 100 his-

torical check-ins and their associated contextual information) for both the 101-st and

the 102-nd check-in prediction are the same. In other words, these models do not

consider different timestamps of the locations to be predicted. However, the fact is

that people will tend to visit different locations at different times. For example, a

user usually goes to his/her work in the morning and returns home in the evening.

Thus, it is important for location recommender systems to have the ability to gen-

erate specific prediction(s) based on certain timestamp(s). It is worth noting that
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methods such as STAN and CARA of course can predict the 102-nd check-in by in-

volving the 101-st predicted check-in into the first 100 historical check-ins. However,

in this way this type of models all need to re-train themselves, which will require a

large computational overhead.

The second main challenge is that the geographic information is very important

in location recommendation, since it is a spatial-temporal problem. State-of-the-

art methods do not make effective use of geographic information. MobTCast [129]

directly feeds the latitude and longitude of POIs into an encoder. However, since

check-in data is extremely sparse [1], processing geographic information in this way

makes it difficult to capture the physical proximity and dependency between loca-

tions. GeoSAN [66] further proposes to use hierarchical grids to model the spatial

clustering phenomenon in human mobility. However, it suffers from the hard bound-

ary problem, meaning that the POIs near the grid boundary are manually separated.

To tackle these issues, we propose a Temporal Prompt-based and Geography-

aware (TPG) framework for location recommendation. We make TPG a Transformer-

based framework, because Transformer [116] is originally designed for sequential data

with uncertain length, and can differentiate the informativeness of different check-ins

and aggregate all check-ins in the trajectory simultaneously for prediction. Firstly, a

geography-aware encoder is designed to capture the geographic correlations among

POIs. To avoid the aforementioned hard boundary problem, we propose a shifted

window mechanism in the geography-aware encoder. It can bridge the proximity

gaps between two adjacent grids and connect adjacent grids by aggregation. Subse-

quently, the information of user, POI, time, and geography from historical check-in

sequences are incorporated by a history encoder, which is designed to learn a compre-

hensive representation of user travel preference. Afterwards, by using a timestamp as

a prompt and regarding it as the query, a temporal prompt-based decoder is utilized

to predict the future location(s). In this way, TPG explicitly incorporates the times-
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tamp of the location to be predicted, separating historical check-in sequences and

timestamp information. Thus, TPG is very flexible with respect to multiple scenar-

ios. It can not only perform next location recommendations, but also handle interval

predictions by using temporal prompts based on those future locations. It should be

noted that there are two equivalent scenarios for interval prediction: (a) predicting

some further check-ins (e.g.the 102-nd, the 103-rd) based on a fixed length of history

trajectory slice (e.g.the first 100 check-ins), (b) predicting a future location (e.g.the

100-th) while the most recent check-in behavioral data being masked (e.g.using the

first 95 or 96 check-ins). Figure 4.13 is a simple example demonstrating how TPG

performs the next location recommendation and interval prediction. The next loca-

tion recommendation is denoted by the purple line, and interval predictions by using

temporal prompts is denoted by red lines. Different colored markers denote different

categories of POIs. As shown in Figure 4.13, given the user historical check-in se-

quence is POI 1-6 from Wednesday to Thursday, the model can know the next four

locations the user will visit are POI 1 at 5:43 Friday, POI 4 at 12:00 Friday, POI 7 at

9:08 Saturday, and POI 8 at 14:45 Saturday. Predicting POI 1 at 5:43 Friday is the

task of next location recommendation. By making use of temporal prompts, TPG

can also predict the location that a user wants to go at a certain time (i.e.interval

prediction). For example, the model can predict POI 4 at 12:00 Friday (interval 1),

POI 7 at 9:08 Saturday (interval 2), and POI 8 at 14:45 Saturday (interval 3), only

based on historical check-in sequence POI 1-6. Figure 4.14 is one possible use case

for a real-world application. The left column is a recommendation list generated

by TPG for multiple timestamps. The upper right orange circle displays the user

information. The bar to the left of the orange circle is the current timestamp.

To summarize, the contributions of this work can be listed as follows:

• We argue that the explicitly modeling timestamp of the location to be predicted
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is essential in real-world applications. A novel and effective Transformer-based

framework named TPG is proposed. Temporal information is regarded as a

prompt for our recommendation system.

• To effectively utilize geographic information, we propose a geography-aware

encoder with a shifted window mechanism devised to avoid the hard boundary

problem when treating longitude and latitude of POIs with grids.

• Experimental results on five real-world datasets, namely, Gowalla, Brightkite,

Foursquare-NYC, Foursquare-TKY, and Foursquare-SIN, show that our model

outperforms the state-of-the-art counterparts under different settings. We also

demonstrate that TPG’s interval prediction perform much better than base-

lines.

4.2.2 Timestamps as Prompts for Geography-Aware Loca-
tion Recommendation

In this section, more details about the proposed TPG framework are elaborated. We

first give the problem statement and provide an overview of the framework. Then, we

elaborate on the three main modules of TPG, i.e.geography-aware encoder, history

encoder, and temporal prompt-based decoder.

Overview

Each check-in cui “ pu, ti, piq is a user, POI, time tuple, which denotes a behavior

that a user u visits POI pi at time ti. Each POI pi has its own geographic coordinates

pxi, yiq. Each user u has a sequence of historical check-ins Cu
1Ñn “ tcui uni“1. Given

the historical check-in sequences of users, the goal of next location recommendation

is to predict the next POI ρtn`1 that a certain user u will visit at a certain time tn`1.

The overall architecture of our TPG framework is described in Figure 4.15. De-

tailed explanations of notations in Figure 4.15 are described in Section 5.3. Based on
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Figure 4.15: The overall architecture of the proposed TPG.

the Transformer’s encoder-decoder structure, TPG can be divided into three parts,

i.e.geography-aware encoder, history encoder, and temporal prompt-based decoder.

For each check-in, the geographic coordinate of POI can be fed into the geography-

aware encoder to get geographical representation egeoi . The historical check-in se-

quences including POI, user, and time information are then fed into the multi-modal

embedding module to generate hidden representations tePOI
i uni“1, teuseri uni“1, and

tetime
i uni“1. Together with tegeoi uni“1 from the geography-aware encoder, these rep-

resentations are processed by a history encoder to generate user travel preference

representation. Using temporal information of tn`1 as prompt, the temporal prompt

query and user travel preference memory are then forwarded to the decoder, which

is capable of generating more accurate predictions for the next locations.

Geography-aware Encoder

Sparsity issue is a key challenge in recommendation problem. In particular, as the

check-in data gives implicit feedback of visiting behavior [67], the data sparsity prob-

lem is even worse for POIs compared other item recommendation such as movies or
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goods, of which users usually only express their opinion with ratings. Thus, when it

comes to encoding geographic information of POIs, directly feeding the coordinates

of POIs into the learning model makes it difficult for the model to capture geographic

correlations. GeoSAN [66] embeds the exact position of locations by mapping lat-

itude and longitude into hierarchical grids using tile map system∗as exemplified in

Figure 4.16. The given example is about mapping a location into grids at level 16-18,

whose quadkeys are annotated. The tile map system is a hierarchical multi-resolution

pyramid model. The world map is obtained by projecting the entire world into a flat

plane by Mercator†. The scale of the plane starts with 512 ˆ 512 pixels. It grows by

a factor of 2 with the increase of levels. For better retrieval and display, the plane is

further divided into grids of 256 ˆ 256 pixels each. From the low level bottom to the

high level top of the tile pyramid, the resolution becomes lower and lower, but the

geographic range is unchanged via sub-gridding one grid into four grids of the same

size. Since the partition of grids is like quadtree, each grid can be identified with a

unique quadtree key (quadkey for short). Quadkeys consist of the characters from

the set {“0”, “1”, “2”, “3”}. The length of it equals the level of grid.

It indeed can alleviate the sparsity problem to some extent. However, for grids

at the same level, the boundary of grids may damage the physical spatial proximity

of two POIs around the boundary, which is a violation of Tobler’s First Law of

Geography [113]. In other words, lacking connections across adjacent grids limits

modeling power of geography-aware encoder. To introduce cross-grid connections, we

propose a shifted window mechanism in our geography-aware encoder. As illustrated

in Figure 4.17, for each grid, we move the shifted window along the X and Y direction

(and both) by a certain step, which is part of the length of the grid size. In this way,

we will get nine grids for each grid, i.e.itself and eight augmented neighbor grids.

∗https://www.maptiler.com/google-maps-coordinates-tile-bounds-projection

†https://www.britannica.com/science/Mercator-projection

85

https://www.maptiler.com/google-maps-coordinates-tile-bounds-projection
https://www.britannica.com/science/Mercator-projection


Now the remaining task of geography-aware encoder is transforming quadkeys of

these nine grids into a continuous latent embedding with rich information. For each

quadkey, it is actually a character sequence. Each character in the sequence denotes

the index of the grid partition at a certain level. If we want to make effective use of

hierarchical spatial information of grids, an intuitive and straightforward approach

is to conduct self-attention between these characters. However, since the cardinality

of the character set is very small (i.e.only 4), treating a quadkey at character-level

cannot achieve the goal of fully encoding the geographic correlations between POIs.

Therefore, we consider dividing the character sequence by n-gram, and converting

it into a sequence at n-gram-level. In this way, the vocabulary size of the sequence

increases from 4 to 4n. For example, if a quadkey is “013201233”, the result of using

four-gram is 0132-1320-3201-2012-0123-1233. We then use a stacked self-attention

network and a point-wise feed forward network for capturing dependencies among

these n-grams. After that, for each grid among these nine grids, average pooling can

be utilized to aggregate the sequence of n-gram representations. We then obtain geo-

graphic embedding egeoi for the given location POIi by average pooling on aggregated

representations of these nine grids. The shifted window mechanism is helpful to re-

duce possible bias caused by the arbitrary partition of grids via including information

from augmented neighbor grids.

History Encoder

Each check-in is a tuple consisting of user, time and POI information. To tackle with

such discrete and heterogeneous data, we need a multi-modal embedding module

to transfer check-in data into interpretable information for TPG. Specifically, for

encoding time information, timestamps are firstly discretized into 24 ˆ 7 “ 168

types learnable vectors. For encoding user and POI information, the type number

of learnable vectors equals to the unique number of users and POIs in datasets. All
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Figure 4.16: An illustration of hierarchical gridding based on the tile map system.

these vectors are then linearly projected into d-dimensional embeddings etime
i P Rd,

euseri P Rd, and ePOI
i P Rd. In this way, for the user u, the historical check-in sequence

tcui uni“1 can be further denoted as ptePOI
i uni“1, teuseri uni“1, tetime

i uni“1, tegeoi uni“1q. Note

that since check-in data requires a certain order of precedence, learnable positional

embedding is also added into inputs for history encoder.

Compared with previous RNN-based methods, Transformer architecture [116]

can not only avoid recurrence, allowing parallel computing to reduce training time,

but also migrate performance degradation problem with regard to long-term depen-

dencies in RNNs. To better capture long range spatial-temporal dependencies in
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users’ historical check-in sequences, we stack Transformer encoder layers [116] for

constructing the history encoder. Each Transformer encoder layer involves a multi-

head self-attention module and a point-wise feed-forward network. We also keep the

residual connection and layer normalization employed in Transformer encoder layers.

Dividing the attention mechanism into multiple heads to form multiple sub-spaces

allows the model to focus on different aspects of information. For each attention

head, self-attention result for a check-in ci can be computed as

ATTENTIONpeciq “ wz

Nv
ÿ

j“1

exppwqe
c
i ˆ wke

c
jq

řNv

m“1 exppwqeci ˆ wkecmq
wve

c
j ` eci (4.4)

where eci is the input check-in embedding for ci, e
c
j is the embedding for contextual

check-in in the sequence, and wtq,k,v,zu denotes linear transform weights for the query,

key, value, and output matrices. The self-attention mechanism aggregates the global

context information into each check-in features. After multi-head self-attention re-

sults are obtained by concatenating every self-attention result, the encoder is able

to jointly attend to information from different representation sub-spaces at different

positions. Then, the feed-forward network contains two linear transformations with

a ReLU activation in between, which can be denoted as

FFNpeci1q “ maxp0, eci1W1 ` b1qW2 ` b2 (4.5)

where eci1 is the input embedding after multi-head self-attention, W1 and W2 denote

linear transform weights, and b1 and b2 are linear transform offsets.

Temporal Prompt-based Decoder

The normal way for existing methods to generate the predictions of next location is

based on historical check-ins and the associated contextual information. The model

will not explicitly indicate the output with respect to a special temporal information.

However, in real world applications, it is important to consider the exact time for next
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Figure 4.17: An illustration of shifted windows for the grid marked by orange (rolling
step as 0.5).

location prediction. Location recommendation is usually employed in map services

such as Google Map and location based services such as Foursquare. We can regard

the time of user opening the app or clicking the query box in the app as the timestamp

of next location. Human mobility has the periodicity [137]. People will revisit POIs

of the same category around the same hour of different days. While at different hour

of a day, people tend to visit different types of POIs. For example, it is the simple

fact that if a user clicking the query box in the map app at noon, he/she is probably

looking for a restaurant. While in the morning, there is a big chance that he/she

wants to search for the route to his/her company. Therefore, if the model does not

know the timestamp of next location, it cannot produce results of next locations

with high confidence. Thus, an intuitive idea is that we can directly tell the model

about the timestamp of next location. A simple method for it is to incorporate this

timestamp into inputs. However, since a check-in is a tuple of user, time, and POI,

directly adding this single timestamp into inputs is not appropriate. To this end, we

propose a temporal prompt-based decoder, using timestamps as prompts and queries

for the decoder. There are several advantages of utilizing temporal prompts: (1) It

separates historical check-in sequences and temporal information of locations to be
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predicted, making the model more flexible for generating any future check-in. (2) By

explicitly modeling temporal information, the prediction is greatly correlated to the

given timestamp. As mentioned above, people’s travel choices are strongly related

to timestamps, so this design will most likely improve model performances.

In greater detail, the preference decoder takes queries (i.e.time representation

etime
n`1 ) and encoder memory (i.e.user travel preference representation eC) as inputs.

We construct the temporal prompt-based decoder by stacking Transformer decoder

layers[116], each of which consists of a multi-head self-attention sub-layer, an encoder-

decoder attention sub-layer, and a feed-forward network sub-layer. User travel prefer-

ences and timestamp information are deeply fused in each encoder-decoder attention

sub-layer. Each attention head of the encoder-decoder attention sub-layer can be

represented by

ATT peC , etime
n`1 q “ wz

Nv
ÿ

j“1

exppwqe
C ˆ wke

time
n`1 q

řNv

m“1 exppwqeC ˆ wketime
n`1,mq

wve
time
n`1 ` eC (4.6)

where notations are consistent with Eq. 4.4.

After adding up and feeding the results into the feed-forward networks for further

projection, the output embedding decodes the fused check-in features and has the

same length as the query embedding. The output here is actually the embedding of

predicted next location.

As for the training scheme, we adopt the negative log likelihood with sampled

Softmax as the recommendation loss for each user u. The recommendation loss can

be depicted as:

Lrecpỹq “ ´ log
exppỹy`q

exppỹy`q `
ÿ

y´PY´

exppỹy´
q

(4.7)

where ỹ, y`, and y´ indicate the inferred location embedding, the ground truth of

location which user u visits at time tn`1, and the randomly sampled negative data
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Table 4.4: Location recommendation dataset statistics.

Gowalla Brightkite NYC TKY SIN

#users 31,708 5,247 1,010 6,771 367
#locations 131,329 48,181 5,135 14,590 3,104
#check-ins 2,963,373 1,699,579 140,229 871,200 136,847

which user does not visit at tn`1, respectively.

4.2.3 Experiments and Evaluations

In this section, we report the extensive experiments conducted to evaluate the perfor-

mance and show the superior performance of our method. The results also demon-

strate the effectiveness and utility of TPG. Further experiments also validate the

rationality of each component of TPG.

Experimental Settings

Datasets. We use five publicly available real-world Location-Based Social Network

datasets to evaluate our method: Gowalla‡, Brightkite§, NYC, TKY¶, and SIN‖. Gowalla

and Brightkite contain worldwide data while the NYC, TKY, and SIN are extracted

from Foursquare global dataset, which only focuses on a single city/region. We

adopted LibCity’s [121] pre-processing pipeline. Table 4.4 gives a rough sketch of

the statistics of the five datasets.

Evaluation Metrics. We adopt two widely-used metrics of ranking evaluation:

Recall and normalized discounted cumulative gain (NDCG), to evaluate recommen-

dation performance. Recall@k counts the rate of true positive samples in all positive

‡https://snap.stanford.edu/data/loc-gowalla.html

§http://snap.stanford.edu/data/loc-brightkite.html

¶https://drive.google.com/file/d/0BwrgZ-IdrTotZ0U0ZER2ejI3VVk/view?usp=sharing&

resourcekey=0-rlHp_JcRyFAxN7v5OAGldw

‖https://www.ntu.edu.sg/home/gaocong/data/poidata.zip
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Table 4.5: Overall comparison with eight baselines for location recommendation.

Gowalla Brightkite NYC TKY SIN

R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10

HSTLSTM 44.6 30.9 54.4 35.1 46.8 37.3 50.4 41.3 25.7 19.7 31.1 21.4 29.1 22.1 35.7 24.3 14.9 11.2 21.0 13.4
DeepMove 49.9 35.9 59.1 39.0 50.3 39.1 58.7 43.2 29.8 21.6 36.5 23.8 33.3 25.1 39.8 27.2 16.8 11.8 24.7 13.4
LSTPM 42.2 30.4 53.2 33.0 43.8 34.9 52.4 38.5 22.8 16.1 30.7 18.6 37.2 28.2 45.4 30.9 13.1 9.2 20.9 12.0
TMCA 44.3 32.5 55.4 35.5 45.5 36.4 55.9 41.6 24.6 18.3 33.1 20.2 39.9 27.9 41.7 29.5 15.5 11.3 22.3 14.0
CARA 50.2 36.6 60.0 40.8 51.6 40.2 54.7 41.2 28.0 20.2 37.5 24.0 31.8 24.3 37.2 28.0 15.04 11.8 20.8 14.0
MobTCast 54.3 37.9 65.5 46.6 52.5 43.6 59.5 46.4 31.3 21.3 41.3 28.1 59.7 48.4 65.4 52.6 17.0 12.4 24.6 15.1
STAN 58.7 41.6 70.3 46.6 57.2 45.4 69.8 47.3 32.1 22.3 45.9 27.3 61.2 50.1 71.3 54.4 18.0 11.3 29.5 15.7
GeoSAN 56.2 41.4 69.9 45.9 55.8 42.3 67.2 46.0 30.2 20.8 44.5 25.3 58.8 48.4 69.1 51.8 17.4 11.8 30.0 15.9

TPG 63.2 45.5 74.6 50.1 62.4 47.9 74.4 51.8 37.3 26.8 52.8 31.8 65.4 53.1 76.5 56.7 19.4 14.3 34.3 19.1
Improv. 7.7 9.4 6.1 7.5 9.1 5.5 6.6 9.5 16.2 20.2 15.0 13.2 6.9 6.0 7.3 4.2 7.8 15.3 14.3 20.1

samples, which in our case means the rate of the label in the top-k probability sam-

ples, NDCG rewards method that ranks positive items in the first few positions of

the top-k ranking list. We report k=5 and k=10 in our experiments.

Baselines. To show the effectiveness of our proposed methods, we compare our

proposed TPG with several baselines. Here, I have selected five models based on

the LSTM method and three based on the Transformer method, which are widely

recognized for this task.

• HSTLSTM [59]: a LSTM based method which introduces spatio-temporal

transfer factors and uses an encoder-decoder structure for prediction.

• DeepMove [21]: an attentional recurrent network which capture the compli-

cated sequential transitions and the multi-level periodicity.

• LSTPM [107]: a long- and short-term preference modeling framework which

consists of a nonlocal network for long-term preference modeling and a geo-

dilated RNN for short-term preference learning.

• CARA [77]: a novel contextual attention recurrent architecture that leverages

both sequences of feedback and contextual information associated with the

sequences to capture the users’ dynamic preferences.
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• TMCA [65]: a novel temporal and multi-level context attention LSTM-based

encoder-decoder framework which is able to adaptively select relevant check-in

activities and contextual factors for next POI preference prediction

• GeoSAN [66]: a geography-aware sequential recommender based on the self-

attention network that uses hierarchical gridding of GPS locations for spatial

discretization and uses self-attention layers.

• STAN [74]: a spatial-temporal attention network that explicitly aggregates all

relevant check-ins in trajectories, not only just successive ones.

• MobTCast [129]: a Transformer-based context-aware network combined with a

location prediction branch as an auxiliary task. It captures temporal, semantic,

social and geographical contexts.

Implementation Details. For the check-in sequence of each user, we take the last

check-in record on a previously unvisited location as ground truth in evaluation, and

check-in sequence before that for training. The maximum sequence length is set to

100.

Different from GeoSAN which directly uses ground truth for negative sampling

in both train and evaluation setting and may cause label leakage, we consider a prac-

tical scenario where each user’s next physical position is unknown, and the negative

samples have to be drawn from the vicinity of the immediately preceding check-in

location. To be more specific, 100 of the 2000 nearest locations from user’s current

GPS coordinates are chosen randomly as negative samples. Recall and NDCG can

then be computed based on the ranking of these 101 locations.

We run all the experiment on NVIDIA V100 GPUs. For our TPG model, we

set the dimension of location and region embeddings to 50 respectively, and time

embedding to 100. The step size of the shifted windows is set to a quarter of the side
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Table 4.6: Interval Prediction Performances.

Gowalla Brightkite NYC TKY SIN

R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10

STAN 58.7 41.6 70.3 46.6 57.2 45.4 69.8 47.3 32.1 22.3 45.9 27.3 61.2 50.1 71.3 54.4 18.0 11.3 29.5 15.7

int. 1 54.2 36.5 66.5 42.2 52.1 40.6 66.2 43.3 30.0 20.3 42.5 24.5 57.4 46.9 67.7 52.1 16.8 10.3 27.5 14.4.
int. 2 48.2 31.3 62.2 37.0 50.4 40.9 65.2 42.0 24.6 14.5 36.5 18.3 52.5 43.8 64.4 49.4 13.5 8.3 25.5 13.4
int. 3 42.4 28.1 58.4 33.3 47.0 37.5 63.3 40.3 20.3 10.9 32.1 15.6 47.9 40.2 62.5 45.9 12.1 8.5 23.6 12.1

GeoSAN 56.2 41.4 69.9 45.9 55.8 42.3 67.2 46.0 30.2 20.8 44.5 25.3 58.8 48.4 69.1 51.8 17.4 11.8 30.0 15.9

int. 1 54.3 39.5 67.8 43.9 52.1 40.6 66.2 43.3 29.0 18.6 43.4 23.2 56.3 46.3 67.7 49.3 16.4 12.0 29.5 14.4
int. 2 53.2 39.6 65.3 41.2 50.4 40.9 65.2 42.0 28.7 18.3 42.6 22.9 54.3 44.8 65.4 47.6 15.2 10.4 28.6 13.4
int. 3 50.1 35.4 62.1 38.5 47.0 37.5 63.3 40.3 25.7 16.9 39.6 21.0 55.3 43.2 65.2 46.2 14.2 9.4 26.4 13.8

TPG 63.2 45.5 74.6 50.1 62.4 47.9 74.4 51.8 37.3 26.8 52.8 31.8 65.4 53.1 76.5 56.7 19.4 14.3 34.3 19.1

int. 1 63.7 44.3 73.7 49.1 60.4 46.2 73.0 50.3 38.0 26.7 53.6 32.1 64.5 52.9 75.6 56.4 19.9 13.3 33.1 18.1
int. 2 60.5 45.9 72.8 48.6 59.9 45.6 72.5 49.9 37.5 26.5 53.2 30.1 64.1 52.2 75.1 55.8 19.1 12.6 32.2 18.7
int. 3 59.7 46.5 72.0 47.1 59.8 45.3 72.3 49.8 37.0 25.3 52.0 29.7 64.9 53.1 75.1 56.7 19.6 14.3 31.3 17.6

length of the grid. We train our model using the Adam optimizer with a learning

rate of 0.001 and set the dropout ratio to 0.5. The number of training epochs is set to

50 for all four datasets. For baselines except STAN, we follow their implementation

and best settings which they claim in their papers. STAN builds matrices for all

historical check-ins of each user, which results in extremely time consuming and

memory consuming. Running the original version of STAN caused an out-of-memory

(OOM) error on our server with 768GB memory. To test the performance of STAN,

we choose to select a part of users to train model at a time and test performance

on these users. For NYC and SIN datasets, we use all users. For other datasets,

we select the first 2000 users to test model performance due to the large number of

users on these datasets.

Overall Performance Comparison

We compare the performance of our proposed TPG with baselines mentioned above.

Table 4.5 reports the performance of TPG and eight baselines in terms of Recall@k

and NDCG@k on five real world datasets. The “Improv.” column refers to the

improvement rate of TPG compared to the second best model. Based on the results,

we observe that:

(1) Our proposed TPG significantly outperforms all the baseline methods on all
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datasets w.r.t. both NDCG@k and Recall@k and all values of k. Our proposed

method achieves up to 20.2% and 16.2% improvements over the best-performing

baseline in terms of NDCG@5 and Recall@5. It demonstrates the effectiveness and

superiority of our proposed TPG, which makes effective usage of geographic infor-

mation and temporal signal of the next location.

(2) Compared with RNN-based approaches, pure attention-based methods such

as MobTCast, STAN, GeoSAN, and our proposed TPG clearly achieve better per-

formances. It is reasonable since attention mechanism can capture global contextual

information in spatial-temporal check-in sequences, while RNN-based methods suffer

from the risk of forgetting past long-range information. Among RNN-based mod-

els, DeepMove and CARA generally have relatively better performances than others,

which attributes to their consideration of spatial-temporal modelling, and short-term

and long-term periodicity modeling. These designations make up for the inherent

defects of RNN to a certain extent. Compared with attention-based state-of-the-art

model MobTCast, STAN, and GeoSAN, the substantial improvement achieved by

TPG demonstrates the importance of explicitly using temporal signal of the next

location and shifted window mechanism for geo-gridding. Although STAN gener-

ally performs better than MobTCast and GeoSAN, it costs extremely large memory

overhead and calculation time overhead due to matrix operations for all historical

check-ins. Our method TPG is far superior to other methods in terms of computing

time, memory, and accuracy.

(3) The density of check-in records for different datasets can be represented by

#check-ins { (#users ˆ #locations). The sparsities are 0.001, 0.007, 0.027, 0.009,

and 0.120 for Gowalla, Brightkite, NYC, TKY, and SIN, respectively. This can

explain why the improvement brought by TPG is larger in NYC and SIN than in

TKY. Besides, it is obvious that TPG has a strong ability to handle sparse data like

Gowalla.
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Table 4.7: Performances of ablation studies for TPG.

Gowalla Brightkite NYC TKY SIN

R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10 R@5 N@5 R@10 N@10

TPG 63.2 45.5 74.6 50.1 62.4 47.9 74.4 51.8 37.3 26.8 52.8 31.8 65.4 53.1 76.5 56.7 19.4 14.3 34.3 19.1

I. ´ TP 60.4 44.0 73.0 48.4 61.1 47.2 73.6 50.4 34.3 23.7 47.1 28.2 62.2 50.5 72.9 54.0 18.3 12.2 29.7 15.9
II. ´ TE 61.7 44.0 73.7 49.0 57.3 43.7 69.0 47.5 36.9 25.0 50.8 29.4 65.4 53.3 76.4 56.9 21.3 15.9 32.2 18.4
III. ´ SW 58.77 43.6 72.6 48.0 61.5 47.4 73.7 51.3 36.8 25.6 52.3 31.7 64.0 51.3 75.1 55.0 19.9 13.3 30.5 16.7
IV. ´ GE 60.3 42.6 72.1 47.6 54.7 42.2 65.1 45.6 34.5 25.2 50.3 28.50 56.2 43.3 68.1 47.4 19.7 14.3 33.7 17.1
V. ` UE 62.1 45.1 74.0 48.5 57.9 44.1 70.1 48.0 36.3 25.4 51.1 32.0 53.2 40.1 65.9 44.3 18.5 13.1 26.7 15.7

Interval Prediction Performances

By introducing temporal prompts, TPG is able to make interval predictions with

accurate timestamps of locations to be predicted. Relevant results are given in

Table 4.6. We here mask one (“int. 1” in Table 4.6), two (“int. 2” in Table 4.6), and

three (“int. 3” in Table 4.6) most recent check-in(s) of users to test TPG and two

baselines STAN and GeoSAN ’s performances on all datasets. The detailed setting is

using first 96, 97, 98 check-ins to predict the 100-th check-in in each user’s trajectory.

For STAN and GeoSAN, we observe that compared with using all check-in data,

the more the latest check-in(s) is/are masked, the more the performances drop

marginally. It is reasonable since some previous studies [92] have demonstrated that

a user’s recent behavior has a great impact on the user’s next behavior. However,

the situation is totally different for TPG’s interval prediction. The performances are

sometimes even better than the next location recommendation. These impressive

results are very strong arguments for the benefit of explicit temporal information

modeling by using timestamps as prompts.

Ablation Study

We conduct an extensive ablation study on TPG, to dive into the effectiveness of

each module in our proposed model. It should be emphasized that our base model

(denoted as TPG in the first row of Table 4.7) does not have user embedding. We

consider the following variants of our model for ablation:
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• Remove TP (Temporal-based Prompt): We use locations as query of the de-

coder, instead of using temporal-based prompts.

• Remove TE (Time Embedding): We remove time embedding of check-in se-

quences, only using POI embedding and geography embedding as inputs of

history encoder.

• Remove SW (Shifted Window Mechanism): We remove the shifted window

mechanism in the geography-aware encoder.

• Remove GE (Geography Encoder): We remove the geography encoder and only

use POI embedding and time embedding as inputs of history encoder.

• Add UE (User Embedding): We add user embedding into the history encoder

by concatenating it with POI embedding, geography embedding, and time

embedding.

The performance comparisons are shown in Table 4.7. From the comparisons, we

have several findings:

(1) The overall performance of the model drops without temporal-based prompts,

especially on Foursquare datasets with local regions. This phenomenon indicates the

significance of explicitly incorporating temporal signal of the next location. Fur-

thermore, results of “Remove TE” is generally slightly better than “Remove TP” in

Gowalla Foursquare datasets, while still worse than TPG. It indicates that if time

information is not used appropriately, it brings additional noise to the model and

degrades the performances. It also proves that the temporal-based prompt strategy

proposed in this work makes effective use of time information.

(2) The results of “Remove SW” is worse than original TPG in most cases. It

demonstrates that our proposed shifted window mechanism is an efficient augmenta-

tion method for spatial information. It can bridge the semantic gap of adjacent grids
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Figure 4.18: The impact of geography embedding dimension for model performances.

in terms of spatial distribution, and improves the accuracy and stability of the model.

Performances of “Remove GE” is even worse than “Remove SW”. It is reasonable

since geographic information is of great significance in location-based applications.

(3) “Add UE” generally leads to great performance reduction compared with

TPG. This is because adding user embedding to inputs of history encoder may con-

tribute to the misaligned between the vector space of check-in sequences and the

vector space of locations. This suggests future work to appropriately use user infor-

mation to enhance the performance.

Parameter Sensitivity Analysis

Due to the emphasis on the innovation of the geography-aware Encoding encoder in

this study, we chose to conduct sensitivity experiments on two parameters, namely,

geography embedding dimension and step size of the shifted windows, within this

module. We first investigate model sensitivity with regard to geography embedding

dimension. We vary the dimension used in the geography-aware encoder from 10 to

60 with a step of 10. The experimental results on two datasets NYC and TKY are
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reported in Figure 4.18. We can come to a conclusion that a small dimension for

geography embedding will make the performance very poor. This is because small

dimensions are difficult to describe the complex geographic relationships between

POIs, which will cause great information loss. The model performance reaches the

peak when the geography dimension is 50. When the dimension increases to 60, the

performance decreases a bit. This may be explained that the size of the semantic

space formed by the geography-aware encoder is certain. When the embedding di-

mension is too high, the information is unsaturated, and noise may be introduced

instead.

We further investigate model sensitivity with regard to the step size of the shifted

windows. We vary the step size used in the shifted window mechanism from 0.25 to

1 with a step of 0.25. Note that the step size here means the proportion of moving

length and grid size. We still take two datasets NYC and TKY as examples. The

experimental results are showed in Figure 4.19. We can find that the performance

peaks at a small step size 0.25 for shifted window mechanism, and dropped until

the step size is 0.75. Such phenomenon conforms to the First Law of Geography,

which indicates “everything is related to everything else, but near things are more

related than distant things.” We can also observe that when the step size is 1,

there is a performance improvement. When the step size is 1, the model actually

degenerates to directly aggregate the neighbor grids of the grid itself at each level.

This phenomenon proves the defect of previous methods, that is, they do not fully

consider the correlations of adjacent grids.

4.2.4 Conclusions

In this work, we revisit the location recommendation problem. We find that most

methods either ignore the prerequisite of knowing the exact time at which the POI

needs to be predicted in real world applications, or implicitly fuse temporal infor-
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Figure 4.19: The impact of the step size of shifted windows for model performances.

mation with historical check-ins. We propose TPG, a temporal prompt-based and

geography-aware framework, for next location recommendations. We show how to

use timestamps as prompts to explicitly model time information of locations to be

predicted. By proposing a shifted window mechanism, we also show how to avoid the

hard boundary problem with regard to geographic coordinates of check-ins. The ex-

perimental results on five benchmark datasets demonstrated the superiority of TPG

compared with other state-of-the-art methods. The results indicated that temporal

signals of locations are of great significance. We also demonstrate through ablation

studies that our proposed shifted window mechanism is capable of overcoming defects

with regard to geographic information modeling of previous approaches.

As for future work, we plan to design more intelligent prompts. Large-scale pre-

trained models from NLP communities have demonstrated unlimited potential of

prompt learning. We can consider combining location recommendation with language

pre-trained models through prompts.
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Chapter 5

Conclusions

In this thesis, we have explored the challenges and limitations of existing methodolo-

gies in the field of artificial urban intelligence, focusing on human-land interaction

in urban applications as the key to building smarter cities. We have contributed to

the understanding of urban environments, human mobility, and location recommen-

dation by proposing novel frameworks and techniques to overcome these challenges.

In this concluding chapter, we summarize the main findings and contributions of the

research, and discuss the potential implications and future directions of our work.

Our research began with the identification of the importance of urban environ-

ment comprehension and human mobility understanding in artificial urban intelli-

gence applications. We highlighted the need to explore human-land interaction in

the era of big data, as it paves the way towards more sustainable, efficient, and

adaptable urban spaces. The research scope was focused on urban data analytics

and applications, which allowed us to delve into the requirements and issues related

to human-land interaction in artificial urban intelligence applications.

In Chapter 3, we proposed a novel multi-graph framework called Region2Vec for

urban region representation learning. This framework is designed to capture inter-

region relations through human mobility, geographical contextual information via

neighborhood data, and intra-region information using Point of Interest (POI) side
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information in knowledge graphs. Region2Vec also considers accessibility, vicinity,

and functionality correlations among regions. The encode-decode multi-graph fusion

module is introduced to jointly learn comprehensive representations, considering the

discriminative properties of multiple graphs. Experiments on real-world datasets

demonstrate the effectiveness of Region2Vec, as it consistently outperforms state-of-

the-art baselines by at least 7.80% in various tasks and metrics. The comprehensive

region representation obtained from Region2Vec can be employed in multiple appli-

cations, making it a step towards building general-purpose intelligent agents capable

of handling diverse urban challenges.

Chapter 4 was divided into two parts: human mobility analysis and location

recommendation. For the human mobility analysis part, we used tourist travel pat-

terns as a case study and employed trip chains to model and discover fixed patterns.

Through the framework, we found that most patterns can be captured by only 13 key

trip chains, and that the principle of least efforts (PLE) affects tourists’ structures

of trip chains. The results of this analysis not only demonstrated the complex daily

travel trip chains from tourism big data, but also filled the gap in tourism literature

on multi-destination trips by discovering significant and underlying patterns based

on mobile datasets.

In the location recommendation section, we proposed a novel Temporal Prompt-

based and Geography-aware (TPG) framework. Temporal information serves as a

prompt for our recommendation system, while a shifted window mechanism is devised

to augment geographic data and avoid the hard boundary problem when handling

longitude and latitude of POIs with grids. Experiments on five real-world datasets

(Gowalla, Brightkite, Foursquare-NYC, Foursquare-TKY, and Foursquare-SIN) show

that TPG outperforms state-of-the-art counterparts under different settings, and

excels in interval prediction. Specifically, the model can predict a user’s desired

location at a given time, even when the most recent check-in data is masked, or
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predict a specific future check-in at a given timestamp, not just the next one.

This research has made significant contributions to the field of artificial urban

intelligence, providing valuable insights into the complexities of human-land interac-

tions in urban spaces. The proposed frameworks and techniques have the potential

to transform the way we understand and manage urban environments, leading to

more intelligent, efficient, and sustainable cities.

As urbanization continues to progress, the importance of artificial urban intelli-

gence and the need for smarter cities will only grow. There are several promising

avenues for future research in this area, including the development of more advanced

models for urban region representation learning, the incorporation of additional data

sources to improve the accuracy and comprehensiveness of human mobility analy-

sis, and the refinement of location recommendation algorithms to better account

for the diverse needs of urban populations. Furthermore, as artificial urban intelli-

gence continues to evolve, interdisciplinary collaborations between urban planners,

data scientists, and policymakers will become increasingly important to ensure that

the insights generated by these advanced models are translated into effective urban

planning and management strategies.

One potential direction for future research is the incorporation of real-time data

sources, such as social media and IoT devices, to improve the accuracy and timeliness

of urban environment comprehension and human mobility understanding. This could

enable more effective real-time decision-making, allowing for better resource alloca-

tion and urban service provision. Additionally, the integration of advanced machine

learning techniques, such as deep learning and reinforcement learning, could lead to

even more sophisticated models that are better able to capture the complexities of

human-land interactions.

Another possible direction is the exploration of the social, economic, and envi-

ronmental implications of artificial urban intelligence. As these advanced models are
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increasingly adopted in urban planning and management, it will be important to un-

derstand how they impact various stakeholders, including residents, businesses, and

the natural environment. This could help guide the ethical and sustainable develop-

ment of artificial urban intelligence, ensuring that its benefits are shared equitably

across society.

In addition to the previously mentioned future research directions, another promis-

ing avenue is the integration of artificial intelligence in generative design and urban

planning, inspired by the rapid development and popularity of AI in generative con-

tent creation (AIGC). This could lead to a paradigm shift in smart city applications,

moving away from the conventional ”smart brain” model, which primarily focuses on

generating indicators based on the current urban situation, towards a more proac-

tive approach that leverages generative algorithms to design neighborhoods with a

so-called ”perfect” balance. This innovative combination of AIGC and urban plan-

ning has the potential to revolutionize the way we envision and create urban spaces,

enabling the development of neighborhoods that are optimized for various factors,

such as walkability, accessibility, sustainability, and aesthetics. By incorporating

generative design algorithms in the planning process, urban planners and policy-

makers could explore a vast range of possibilities and identify optimal solutions that

meet the unique needs and preferences of diverse urban populations. To achieve this

ambitious goal, future research should focus on developing advanced generative al-

gorithms that can efficiently model and optimize complex human-land interactions,

taking into account the multidimensional nature of urban environments. Moreover,

these algorithms should be flexible and adaptable, allowing for customization based

on specific local contexts and stakeholder requirements.

In conclusion, this thesis has made important contributions to the understand-

ing of human-land interaction in artificial urban intelligence applications, providing

valuable insights and innovative techniques for urban environment comprehension,
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human mobility analysis, and location recommendation. By furthering our knowl-

edge in these areas, we can better harness the power of big data and advanced

analytics to build more intelligent, sustainable, and vibrant urban spaces for the

future.
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