
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



 LARGE-SCALE OPTIMIZATION FOR 
SHIPPING OPERATIONS MANAGEMENT  

YIWEI WU 

 

PhD 

The Hong Kong Polytechnic University 

 

2024 

 



 

The Hong Kong Polytechnic University 

 

Department of Logistics and Maritime Studies 

 

 

 

 

Large-scale optimization for shipping operations management 

 

Yiwei WU 

 

A thesis submitted in partial fulfillment of the 

requirements for the degree of 

Doctor of Philosophy 

 

January 2024



i 

CERTIFICATE OF ORIGINALITY 

I hereby declare that this thesis is my own work and that, to the best of my knowledge and 

belief, it reproduces no material previously published or written, nor material that has been 

accepted for the award of any other degree or diploma, except where due acknowledgment has 

been made in the text.  

(Signed) 

Yiwei WU             (Name of student) 



 

ii 

Abstract 

Shipping plays an important role in the global economy and international trade. It is not only 

the core logistics link connecting markets around the world, but also the cornerstone of driving 

global economic growth, ensuring the efficient allocation of resources, and promoting the 

comprehensive development of society. In this context, large-scale optimization in the field of 

shipping operations management is particularly important. Such optimization is not only crucial 

for improving transportation efficiency and reducing costs, but also directly affects important 

indicators such as customer satisfaction and service quality maintenance. Through large-scale 

optimization, such as precise scheduling, fleet deployment, and cargo management, shipping 

can maintain competitive advantages in a fiercely competitive market environment, while also 

promoting the sustainable development and environmental protection. In general, shipping is 

not only a key component of the global economy, but its internal large-scale optimization is 

also an important driving force for the advancement of the industry. This thesis investigates 

three important issues in large-scale optimization for shipping operations management, where 

the first one relates to the decarbonization of shipping, the second one relates to fleet 

repositioning for uncertain demand, and the third one relates to government ship scheduling 

with the consideration of health impacts.  

The first study introduces a joint optimization problem of speed optimization, voyage planning, 

and fleet deployment considering the impacts of displacement and sailing speed on fuel 

consumption. The problem is highly motivated by the global warming. To limit carbon dioxide 

emissions released by the shipping industry, the Energy Efficiency Operational Index (EEOI), 

a carbon intensity indicator, is widely adopted to assess each ship’s energy efficiency and guide 

the shipping operations management. Specifically, this study formulates a nonlinear mixed-

integer programming (MIP) model which minimizes both the weekly cost and the average EEOI 

value of all deployed ships. To solve this nonlinear MIP model, a tailored exact algorithm is 

designed. The numerical results show that the instances with at most seven ship routes can be 

solved by the proposed algorithm within four minutes. The second study investigates a fleet 

deployment problem involving demand fulfillment, cargo allocation, fleet repositioning, and 

ship chartering with the consideration of multi-period periods, heterogeneous ships, and 

uncertain shipping demand, which is motivated by the huge uncertainty in the shipping market 

brought by the COVID-19 pandemic. To address this problem, this study uses multistage 

stochastic programming to formulate a linear MIP model and develops a Benders-based branch-
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and-cut algorithm. Numerical results indicate that compared to two-stage stochastic 

programming, multistage stochastic programming can help to obtain better solutions. 

Particularly, 90% of the benefit of the multistage model is due to better demand fulfillment as 

well as cargo allocation decisions, while 10% of the benefit is due to improved fleet deployment 

decisions. The first two studies focus on commercial ships, whereas the last study shifts its 

attention to government ships. This shift is attributed to the current stringent regulations on air 

emissions from ships, highlighting the need for the government to lead by example through 

meticulous scheduling of its government ships. Specifically, the third study focuses on a 

routing, scheduling, and speed optimization problem of government ships that account for the 

health effects of air pollutant emissions under different weather conditions. To this end, this 

study proposes a trip-based formulation and a set-covering formulation for the problem, and 

designs a branch-and-price-and-cut algorithm to effectively solve the problem. Efficiency of 

the proposed algorithm for computational instances is verified. 
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Chapter 1: Introduction 

Maritime shipping plays an important role in the transportation of goods and 

global trade. This is particularly evident in the over 80% of international trade volumes 

handled by the global shipping network (UNCTAD, 2022). These networks, through 

interconnected shipping routes and ports spread across the world, form a vast and 

complex system. The ports are not merely physical ports of call; they are also the key 

carriers for the efficient operation of the global supply chain network. Thus, maritime 

transport serves not only as a bridge connecting nations but also as the cornerstone of 

the global economy. 

Shipping operations management is a multifaceted and extremely complex field, 

requiring in-depth analysis and comprehensive consideration of a wide range of 

influencing factors. These factors include fleet deployment, speed optimization, 

demand fulfillment, cargo allocation, etc. In real-life scenarios, the complexity of 

shipping operations management is further increased because different decision-

making factors are intertwined with each other and influence each other. Therefore, 

large-scale optimization for shipping operations management becomes crucial, which 

is necessary to ensure that the maritime industry can operate efficiently. 

In addition to traditional shipping operations management factors, recent years 

have necessitated the integration of several emerging elements. This includes the 

implementation of green shipping practices, the uncertainty of the ever-changing 

shipping market, and the health impact of shipping activities. The incorporation of 

these new factors poses higher requirements and challenges to shipping operations 

management. Hence, this thesis explores large-scale optimization for shipping 

operations management from three types of problems related to (i) decarbonizing 

shipping, (ii) fleet repositioning for uncertain demand and (iii) government ship 

scheduling with the consideration of health impacts. 

1.1 DECARBONIZING SHIPPING 

To slow the increase in the global temperature, the United Nations (UN)’s 

Intergovernmental Panel on Climate Change (IPCC) emphasizes the need to halve 

worldwide emissions by 2030. This action is crucial to limit the Earth’s warming to no 
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more than 1.5°C within this century (IPCC, 2018). As revealed during the United 

Nations Climate Change Conference of the Parties, it is projected that in 2022, carbon 

dioxide (CO2) emissions from fossil fuels rise by 1%, reaching an unprecedented level 

of 37.5 billion tonnes (NatureNews, 2022). If this trend continues, it is conceivable 

that within a mere nine years, sufficient CO2 could be emitted to elevate the global 

temperature by 1.5°C above pre-industrial levels, which may lead to serious 

consequences for Earth (Tollefson, 2022). For example, coral reefs would decline by 

70% to 90% with a global temperature rise of 1.5°C (IPCC, 2018). Hence, more efforts 

for decarbonization are needed. 

1.2 FLEET REPOSITIONING FOR UNCERTAIN DEMAND 

The uncertainty in the shipping market is primarily driven by seasonal demand 

fluctuations and unforeseen events that cause global economic trends to fluctuate. 
Moreover, according to United Nations Conference on Trade and Development (UNCTAD) 

projections, an asymmetric recovery, logistical bottlenecks, and soaring costs have increased 

uncertainty (UNCTAD, 2022). As a result, the demand pattern may undergo significant 

changes over the long period. For instance, the abrupt emergence of COVID-19 led to 

an 8.4% decrease in container throughput at the Port of Shanghai during the initial four 

months of 2020, necessitating adjustments in the shipping network (CWTN, 2021). To 

adapt to these changes, ship fleets often need to be repositioned through the addition, 

removal, or modification of shipping routes. Hence, fleet repositioning is a critical step 

in adjusting shipping networks to changes in market demands and operating 

conditions. 

1.3 GOVERNMENT SHIP SCHEDULING WITH THE CONSIDERATION 
OF HEALTH IMPACTS 

Faced with the current stringent regulations on air emissions from ships, the 

government should lead by example by strictly scheduling government ships. 

Government ships carry out a large number of trips for routine tasks, such as patrol of 

territorial water areas, maintenance works, and training. These trips are planned solely 

based on the requirement of the tasks (e.g., two trips each week) without considering 

the health impacts of the air emissions from ships. However, with the large volume of 

ship traffic and the current stringent regulations on air emissions from ships, it is 

challenging to further reduce the absolute amounts of air pollutants from government 

ships. Fortunately, environmental science demonstrates that the damage to the health 
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of the population caused by unit amount of air pollutant varies significantly with the 

weather conditions. This creates an opportunity for multi-disciplinary research on the 

management of the location and time of air pollutant emissions from ships to minimize 

the sum of the fuel cost of the trips and the health damage of the air pollutants from 

the trips. 

1.4 THESIS OUTLINE 

The structure of the remainder of this thesis is outlined as follows. Chapter 2 

explores a sustainable liner shipping framework, focusing on fleet deployment, voyage 

planning, and speed optimization through a nonlinear MIP mode. Chapter 3 explores 

a multi-period, heterogeneous fleet deployment challenge within an uncertain shipping 

network, which contains aspects like fleet repositioning, ship chartering, demand 

fulfillment, and cargo allocation. Chapter 4 explores a routing, scheduling, and speed 

optimization problem for government ships that account for the health effects of air 

pollutant emissions at different weather conditions. Chapter 5 concludes the thesis and 

discusses future research directions. 
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Chapter 2: Nonlinear programming for fleet 
deployment, voyage planning 
and speed optimization in 
sustainable liner shipping1 

2.1 INTRODUCTION 

Climate change is arguably one of the greatest challenges of our time. Although 

shipping is regarded as an environmentally efficient mode of transportation, it 

generates tremendous air emissions that have harmful effects on the global 

environment. CO2 accounts for the vast majority of greenhouse gas emissions from the 

transportation sector (USEPA, 2022). Moreover, United Kingdom broker Simpson 

Spence Young estimated that CO2 emissions from global shipping in 2021 increased 

4.9% from 2020 and surpassed 2019 levels (Young, 2022). Unless serious actions are 

taken soon, CO2 emissions from global shipping may increase by between 50% and 

250% by 2050 (IMO, 2014), which undoubtedly contributes to global warming.  

Maritime decarbonization is particularly necessary to achieve the long-term goal 

of the Paris Agreement adopted at the Paris climate conference in 2015 (UN, 2015), 

that is, to limit the increase in the average global temperature to well below 2 °C, 

preferably to 1.5 °C, above pre-industrial levels. For this reason, many emission limits 

and regulations are promulgated to reduce CO2 emissions and stop global warming. 

For example, the International Maritime Organization (IMO), which is the United 

Nations specialized agency for international shipping, has set strategies to reduce 

carbon emissions per unit of transport work by at least 40% by 2030 and reduce the 

total annual greenhouse gas emissions from international shipping by at least 50% by 

2050, with 2008 as a baseline (IMO, 2018). Despite the intensifying regulatory 

environment, international shipping released 833 million tons of CO2 in 2021, an 

increase of 4.9% from 2020 (Lloyd’s, 2022). Hence, it is urgent for liner companies to 

 
1 Wu, Y., Huang, Y., Wang, H., Zhen, L., 2023. Nonlinear programming for fleet deployment, 

voyage planning and speed optimization in sustainable liner shipping. Electronic Research Archive 
31(1): 147–168. 
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consider how to reduce carbon emissions when scheduling shipping activities to meet 

international requirements. 

The carbon emissions per unit of transport work can be referred to as the carbon 

intensity, and one of the carbon intensity indicators is the Energy Efficiency 

Operational Index (EEOI), which was introduced by the IMO in 2009 and enforced in 

2011 to measure the energy efficiency level of each operating ship (IMO, 2009). The 

EEOI value of a ship over a year reflects the energy efficiency of the ship and may 

help liner companies to schedule ship fleets when considering the maritime 

decarbonization target. The EEOI value of a ship can be calculated by dividing annual 

carbon emissions of the ship (g) by actual ton-miles carried by the ship (the amount of 

transported cargo times total travel distance) in the year (IMO, 2011). Therefore, the 

EEOI value of a ship is directly influenced by the type of used fuel, cargo load and 

total distance travelled. The lower the EEOI value is, the better the energy efficiency 

performance. From an operational perspective, several operation decisions, such as 

voyage planning and speed optimization, which further influences fleet deployment, 

can be jointly optimized to reduce the EEOI because these decisions directly affect 

fuel consumption. Moreover, displacement (tons), i.e., the total weight of the ship 

itself, cargo, ballast water and bunker, also influences fuel consumption (Meng et al., 

2016). Hence, seeking the optimal fleet deployment, voyage planning and speed to 

achieve shipping operations management optimization is an efficient way to reduce 

EEOI, achieve energy savings and reduce emissions. 

This chapter is motivated by the abovementioned real-world challenge in green 

shipping, and it may contribute to shipping operations management by proposing a 

nonlinear mixed-integer programming (MIP) model and a tailored exact algorithm. 

Two assumptions are considered in this study: 1) Ships are homogenous on each route 

in terms of the cost structure, which is consistent with the assumptions considered in 

Zhen et al. (2019b); 2) ships’ dwell time at all ports of call on a ship route is given, 

which is in line with the assumptions considered in Zhen et al. (2019a). This chapter 

provides liner companies with scientific methods to optimize fleet deployment, voyage 

planning and speed to reduce both the total weekly cost and the average EEOI value 

of all deployed ships on all routes with the consideration of the influences of sailing 

speed, displacement and voyage option on fuel consumption. 11 sets of numerical 

experiments with different route compositions are first conducted to evaluate the 
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performance of the proposed algorithm. Moreover, sensitivity analyses with crucial 

parameters, including the weighting factor, unit price of fuel, Suez Canal toll fee per 

ship, weekly fixed operating cost and cargo load in each leg, are carried out to show 

the influence of these aspects on the results to look for managerial insights. 

2.1.1 Literature review 

The core part of this chapter is related to the widely-studied fleet deployment 

problem. Readers interested in overviews of the above problem can refer to Meng et 

al. (2014), Wang and Meng (2017) and Christiansen et al. (2020). This chapter focuses 

on an integrated optimization problem of fleet deployment, voyage planning and speed 

optimization to minimize both the total weekly cost and the average EEOI value of all 

deployed ships on all routes. Thus, this section reviews the streams of related literature 

from the following two perspectives: the fleet deployment problem and studies related 

to EEOI. 

The first research stream is concerned with the fleet deployment problem. As an 

important concern for liner companies, the fleet deployment problem determines the 

number of ships to be deployed on various ship routes to maximize the total profit or 

to minimize the total cost. Lai et al. (2022) formulated a two-stage model for a fleet 

deployment problem with shipping revenue management under demand uncertainty 

whose randomness is represented by probability-free uncertain sets. They also 

developed a column-and-constraint generation based exact algorithm to solve the 

model. In recent years, sustainable development is the main development direction of 

the shipping industry (Zisi et al., 2021). One of the most important green shipping 

factors in the fleet deployment problem is reducing emissions from ships, such as CO2, 

sulfur oxides (SOX) and nitrogen oxides (NOX). Zhu et al. (2018) investigated the 

influence of a maritime emissions trading system on fleet deployment and mitigation 

of CO2 emissions. They proposed a stochastic integer programming model to 

determine fleet deployment and CO2 emissions with different CO2 prices. Considering 

sulfur emission control areas, Wang et al. (2021) studied an integrated problem of 

schedule design, fleet deployment, sailing optimization and path selection, and they 

proposed a nesting algorithmic framework to solve the problem. Pasha et al. (2021) 

designed a decomposition-based heuristic algorithm to solve an integrated problem of 

service frequency determination, fleet deployment, speed optimization and ship 

schedule design considering emissions released by ships with the aim of maximizing 
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the total turnaround profit. Zhao et al. (2021b) formulated a two-stage stochastic linear 

model for a fleet renewal problem considering three sulfur reduction technologies and 

uncertain markets. With the consideration of sulfur emission limits, Chen et al. (2022) 

built an ellipsoidal uncertainty set to describe demand uncertainties and developed a 

robust optimization model for an alliance fleet deployment problem with slot 

exchange. Moreover, Zhao et al. (2021a) investigated how to reduce SOX and NOX 

emissions in shipping economically by determining the optimal technology choice. 

The second topic considered in the related works is EEOI. Operational data, such 

as speed and deadweight, are usually used to analyze EEOI. Existing papers on EEOI 

mainly focus on two aspects, namely, estimation of EEOI values and scheduling based 

on EEOI values. In terms of the estimation of EEOI values, Acomi and Acomi (2014) 

used commercial software to estimate the value of EEOI before a voyage, and they 

compared estimated values and true values according to speeds, days on anchor and 

waiting days. In terms of scheduling based on EEOI values, Hou et al. (2019) 

formulated a sailing speed optimization model with consideration of uncertain ice 

loads to minimize the EEOI value of each ship in ice areas. Sun et al. (2019) developed 

a dynamic optimization model for sailing speeds of ships to improve fuel efficiency as 

well as reduce EEOI. They used a neural network to predict fuel consumption rate and 

ship speed, and they applied a genetic algorithm to optimize engine revolution and 

seek the minimum EEOI value. Considering the uncertainty in ice loads as well as 

water velocity, Ichsan et al. (2019) studied a decided route on the sea tollway of 

Indonesia and optimized the rate of EEOI of ships deployed on the route. With the aim 

of minimizing EEOI values of seven types of specialized ships, Prill et al. (2020) 

assumed that the EEOI of each ship is related to the deadweight of the ship, the type 

and amount of consumed fuel and the voyage distance travelled by the ship, and they 

proposed a new method of determining the EEOI of each ship by optimizing sailing 

speeds of ships and the realization time of each exploitation task. Hou et al. (2021) 

developed a ship speed optimization model which brought a 15% reduction in EEOI 

in the computational experiment. 

In summary, the prevailing trend in the fleet deployment problem is studying 

how to reduce emissions from the shipping industry because of the increasing public 

concern about environmental protection. However, few works focus on an integrated 

optimization problem of fleet deployment, voyage planning and speed optimization to 
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minimize both the total weekly cost and the average EEOI value of all deployed ships 

on all routes. Therefore, this chapter studies an integrated optimization problem of 

fleet deployment, voyage planning and speed optimization with consideration of the 

influences of sailing speed, displacement and voyage option on fuel consumption. 

Moreover, some other frequently ignored operating limits, such as Suez Canal toll fee, 

are considered in this chapter. This chapter proposes a nonlinear MIP model to 

minimize two objectives, i.e., the total weekly cost and the average EEOI value of all 

deployed ships on all routes, by determining the optimal fleet deployment, voyage 

planning and speed. 

2.1.2 Contributions 

Contributions of this chapter are summarized from the following three aspects. 

First, a nonlinear MIP model is proposed for this problem with the aim of minimizing 

both the total weekly cost and the average EEOI value of all deployed ships on all 

routes by determining the optimal sailing speed during each leg, the voyage option 

between the Suez Canal route and Cape of Good Hope route and the number of ships 

deployed on each ship route. Second, to deal with the challenge of solving a nonlinear 

MIP model, a tailored exact algorithm is proposed by considering specific 

characteristics of our problem. Efficiency of the proposed algorithm for computational 

instances of different sizes is verified. Third, sensitivity analyses with crucial 

parameters, including the weighting factor, unit price of fuel, Suez Canal toll fee per 

ship, weekly fixed operating cost and cargo load in each leg, are carried out to show 

the influences of these factors on the results to obtain managerial insights. For 

example, with the larger weight on the minimization of the total weekly cost, fewer 

ships are needed, which means that each deployed ship needs to sail at a higher speed 

and releases more CO2 (i.e., higher EEOI value). 

The remainder of this chapter is organized as follows. Section 2.2 elaborates on 

the problem background and proposes a nonlinear MIP model for the integrated 

problem. A tailored exact algorithm is designed in Section 2.3. Section 2.4 reports the 

computational experiments, including basic experiments to evaluate the efficiency of 

the proposed algorithm and sensitivity analyses to seek managerial insights. Chapter 

summaries are outlined in Section 2.5. 
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2.2 PROBLEM DESCRIPTION AND MODEL FORMULATION 

This chapter is oriented toward an integrated optimization problem of fleet 

deployment, voyage planning and speed optimization with consideration of the 

influences of sailing speed, displacement and voyage option on fuel consumption. This 

section first elaborates on the detailed background of the problem in Section 2.2.1, 

explains the objective function of the problem in Section 2.2.2 and presents the 

mathematical model in Section 2.2.3. 

2.2.1 Problem background 

We consider a liner company operating on a network containing a set 𝑅𝑅  of 

container ship routes (services). The liner company has already determined the optimal 

service plan including fleet deployment, sailing speed and voyage selection. However, 

in the context of the Carbon Intensity Indicator (CII) introduced by the IMO, especially 

considering EEOI, the liner company may need to reoptimize their service plan 

including fleet deployment, sailing speed and voyage options such as the Cape of Good 

Hope route or the Suez Canal route (Zhou et al., 2021) shown in Figure 2-1. 

 

Figure 2-1 Comparison of two voyage options: Suez Canal route and Cape of Good 
Hope route. 

Some ship routes, e.g., 𝑟𝑟 (𝑟𝑟 ∈ 𝑅𝑅), operated by the liner company may contain the 

voyage between Asian ports and European ports. This chapter assumes that the liner 

company originally selects the Suez Canal route for these voyages because sailing 

through the Suez Canal saves a lot of time. In this case, let 𝐼𝐼𝑟𝑟 and 𝐼𝐼𝑟𝑟′  represent the set 

of legs that do not cross Asian and European ports on ship route 𝑟𝑟 and the set of legs 

across Asian and European ports on ship route 𝑟𝑟, respectively. For example, Table 2-

1 summarizes the sets of 𝐼𝐼𝑟𝑟 and 𝐼𝐼𝑟𝑟′  of route 𝑟𝑟 whose port rotation is Qingdao-Shanghai-

Ningbo-Yantian-Rotterdam-Hamburg-Antwerp-Singapore-Qingdao. This chapter 

Rotterdam

Singapore

Suez Canal route

Cape of Good Hope route
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then lets 𝛾𝛾𝑟𝑟𝑟𝑟 denote a binary variable which equals 1 if and only if the voyage option 

of leg 𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟′ , on ship route 𝑟𝑟 selects the Suez Canal voyage and equals 0 if selecting 

the Cape of Good Hope voyage. In addition, sailing speeds of deployed ships during 

each leg should be between 𝑣𝑣  and 𝑣𝑣 , where 𝑣𝑣  and 𝑣𝑣  represent the minimum and 

maximum speeds of ships on ship routes, respectively. Let 𝑉𝑉 represent a set of all 

possible sailing speeds indexed by 𝑣𝑣, and 𝑉𝑉 = {𝑣𝑣, 𝑣𝑣 + 0.1, … , 𝑣𝑣 − 0.1, 𝑣𝑣}.  

Table 2-1 Summary of sets 𝐼𝐼𝑟𝑟 and 𝐼𝐼𝑟𝑟′ . 

Sets Legs 

𝐼𝐼𝑟𝑟 
Qingdao → Shanghai Shanghai → Ningbo Ningbo → Yantian 

Rotterdam → Hamburg Hamburg → Antwerp Singapore → Qingdao 

𝐼𝐼𝑟𝑟′  Yantian → Rotterdam Antwerp → Singapore  

In terms of fleet deployment and speed optimization, EEOI values of all 

deployed ships on all ship routes should be regarded as an important consideration 

because when stricter CO2 emission reduction regulations issued by international 

organizations take effect, liner companies must find ways to reduce their deployed 

ships’ EEOI values. The incorporation of EEOI may result in higher costs for liner 

companies in practice. However, companies certainly aim to minimize their total cost 

while complying with EEOI regulations. Therefore, this study considers the influences 

of sailing speed, displacement and voyage option on fuel consumption. Bi-objective 

programming has been widely applied before when minimizing carbon emissions and 

maximizing profit of liner companies, such as in Zhao et al. (2019). From the 

perspective of the liner company, this chapter develops a bi-objective model to balance 

the total weekly cost, including the weekly fixed operating cost, weekly Suez Canal 

toll fee and weekly fuel cost, and the average EEOI value of all deployed ships on all 

ship routes by determining fleet deployment, voyage planning and sailing speed of all 

deployed ships. The above strategic-level problem involves many intertwined 

decisions, so a scientific decision-making methodology is needed for this problem. 

2.2.2 Objective function 

This problem is formulated as a bi-objective programming model. These two 

objective functions are the total weekly cost and the average EEOI value of all 

deployed ships on all routes. In the following paragraphs, we first explain separately 
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how to formulate these two objective functions and then introduce how to deal with 

the bi-objective programming. 

The first objective function focuses on the total weekly cost, which contains 

three parts: the weekly fixed operating cost, weekly Suez Canal toll fee and weekly 

fuel cost. Specifically, the first part is the weekly fixed operating cost of deployed 

ships. Because a fleet of homogeneous ships is deployed on each route to maintain a 

weekly service frequency, the total fixed operating cost for all deployed ships on all 

routes during one week can be calculated as ∑ 𝑜𝑜𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅 , where 𝑜𝑜 and 𝛽𝛽𝑟𝑟  denote the 

weekly operating cost for deploying one ship on ship routes and the number of ships 

deployed on route 𝑟𝑟, respectively. Next is the weekly Suez Canal toll fee faced by the 

liner company. Let 𝑞𝑞𝑟𝑟 denote the Suez Canal toll fee of each ship deployed on route 𝑟𝑟 

(USD/ship). Hence, we can calculate the weekly Suez Canal toll fee by 

∑ ∑ 𝑞𝑞𝑟𝑟𝛾𝛾𝑟𝑟𝑟𝑟𝑖𝑖∈𝐼𝐼𝑟𝑟′𝑟𝑟∈𝑅𝑅 . 

The last part of the total weekly cost is the fuel cost, which depends on fuel 

consumption. Each ship contains a main engine, which provides propulsion power for 

the ship, and an auxiliary engine, which provides power for uses other than propulsion. 

Specifically, in terms of fuel consumption of the main engine, most of the existing fuel 

consumption models in the literature (Wang and Meng, 2012b; Zhao et al., 2020; Zhen 

et al., 2019a) agree that a ship’s unit fuel consumption significantly depends on its 

sailing speed and calculated the unit fuel consumption function by 𝑐̇𝑐𝑣𝑣𝑐𝑐̈ to conduct liner 

shipping network analyses, where 𝑣𝑣 is sailing speed (knots), and 𝑐̇𝑐 and 𝑐̈𝑐 are positive 

coefficients. However, in addition to sailing speed, several other factors also influence 

fuel consumption. The first one is displacement (tons), i.e., the total weight of the ship 

itself, cargo, ballast water and bunker. Meng et al. (2016) investigated the relationship 

between the fuel consumption rate of a container ship and several factors, including 

sailing speed, displacement and weather/sea conditions. However, it is extremely 

difficult to record the precise weather/sea conditions because the effects of waves, 

wind and currents are interwoven in practice. Hence, the influence of weather/sea 

conditions on fuel consumption is not considered in this study. Also, this chapter 

formulates the unit fuel consumption function as 𝑐𝑐1𝑣𝑣𝑐𝑐2𝑑𝑑𝑐𝑐3 (tons/hour), which is given 

by Meng et al. (2016), where 𝑐𝑐1 , 𝑐𝑐2  and 𝑐𝑐3  are positive coefficients, and 𝑣𝑣  and 𝑑𝑑 

represent the actual sailing speed (knots) and displacement (tons) of the ship during 

one leg, respectively. Finally, in terms of fuel consumption of the auxiliary engine, we 
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assume the auxiliary engine of a ship deployed on ship route 𝑟𝑟 consumes an amount 

𝑒𝑒𝑟𝑟 of fuel per day. In summary, the total amount of fuel consumed by a ship’s main 

engine on ship route 𝑟𝑟 , denoted by 𝜀𝜀𝑟𝑟 , can be calculated by 𝜀𝜀𝑟𝑟 =

∑ ∑ 𝑐𝑐1𝑣𝑣𝑐𝑐2𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟
𝑐𝑐3 𝑙𝑙𝑟𝑟𝑟𝑟

𝑣𝑣𝑣𝑣∈𝑉𝑉𝑖𝑖∈𝐼𝐼𝑟𝑟 + ∑ ∑ 𝑐𝑐1𝑣𝑣𝑐𝑐2𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟
𝑐𝑐3 𝑙𝑙𝑟𝑟𝑟𝑟𝛾𝛾𝑟𝑟𝑟𝑟+𝑙𝑙𝑟𝑟𝑟𝑟

′ (1−𝛾𝛾𝑟𝑟𝑟𝑟)
𝑣𝑣𝑣𝑣∈𝑉𝑉  𝑖𝑖∈𝐼𝐼𝑟𝑟′ , where 𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟, 

𝑑𝑑𝑟𝑟𝑟𝑟, 𝑙𝑙𝑟𝑟𝑟𝑟 and 𝑙𝑙𝑟𝑟𝑟𝑟′  represent, respectively, a binary variable which equals 1 if and only if 

the speed of the ship sailing during leg 𝑖𝑖  on route 𝑟𝑟  is 𝑣𝑣  and 0 otherwise, actual 

displacement (tons) of the ship during leg 𝑖𝑖 on ship route 𝑟𝑟, length (n mile) of the 𝑖𝑖th 

leg if 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟 or length of the 𝑖𝑖th leg taking the Suez Canal route if 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟′  on ship route 

𝑟𝑟 and length (n mile) of the 𝑖𝑖th (𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟′) leg taking the Cape of Good Hope route on 

ship route 𝑟𝑟. Weekly fuel consumption of auxiliary engines of all deployed ships on 

route 𝑟𝑟  is 7𝑒𝑒𝑟𝑟𝛽𝛽𝑟𝑟  because the total time for a ship completing travel along route 𝑟𝑟 

including dwell time and sailing time is 7𝛽𝛽𝑟𝑟  days to maintain a weekly container 

shipping service frequency. In summary, the total weekly fuel cost of all deployed 

ships on all routes is ∑ (𝑎𝑎1𝜀𝜀𝑟𝑟 + 7𝑎𝑎2𝑒𝑒𝑟𝑟𝛽𝛽𝑟𝑟)𝑟𝑟∈𝑅𝑅 , where 𝑎𝑎1 and 𝑎𝑎2 are the unit prices of 

fuels consumed by the main and auxiliary engines, respectively (USD/ton). Therefore, 

the total weekly cost can be calculated by ∑ [𝑜𝑜𝛽𝛽𝑟𝑟 + ∑ 𝑞𝑞𝑟𝑟𝛾𝛾𝑟𝑟𝑟𝑟𝑖𝑖∈𝐼𝐼𝑟𝑟′ + 𝑎𝑎1𝜀𝜀𝑟𝑟 + 7𝑎𝑎2𝑒𝑒𝑟𝑟𝛽𝛽𝑟𝑟]𝑟𝑟∈𝑅𝑅 . 

The second objective is the average EEOI value of all deployed ships on all 

routes. According to the IMO (2011), the EEOI of a ship is described by the ratio of 

the total amount of CO2 emissions released by the ship over a year to the product of 

the ship’s cargo transported and total distance over a year, and it is related to fuel 

consumption, sailing speed, load tonnage and mileage of voyage. The calculation 

formula of EEOI is Eq (2-1), which is given by the IMO (2011). 

EEOI = total carbon emissions of the ship during ballast and laden voyages (g)
amount of cargo transported × total distance laden

.        (2-1) 

Here, notice that the EEOI of a ship is also equal to the ratio of the total amount 

of CO2 emissions released by the ship over a week to the product of the ship’s cargo 

transported and total distance over a week because of the weekly service frequency. In 

addition, we assume that the ships owned by the liner company generate 𝑔𝑔 tons of CO2 

when burning one ton of fuel, and let 𝑚𝑚𝑟𝑟𝑟𝑟 denote the volume of cargo load in the ship 

during leg 𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟 ∪ 𝐼𝐼𝑟𝑟′ . Also, since we calculate the amount of CO2 emissions in tons, 

but the amount of CO2 emissions in the EEOI calculation formula is in grams, we need 

to multiply the amount of CO2 emissions by 106 when calculating the EEOI value of 
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each operating ship. Therefore, the average EEOI value of all ships deployed on all 

routes is  ∑ 106(𝜀𝜀𝑟𝑟+7𝑒𝑒𝑟𝑟𝛽𝛽𝑟𝑟)𝑔𝑔
∑ 𝑚𝑚𝑟𝑟𝑟𝑟𝑙𝑙𝑟𝑟𝑟𝑟𝑖𝑖∈𝐼𝐼𝑟𝑟 +∑ 𝑚𝑚𝑟𝑟𝑟𝑟[𝑙𝑙𝑟𝑟𝑟𝑟𝛾𝛾𝑟𝑟𝑟𝑟+𝑙𝑙𝑟𝑟𝑟𝑟

′ (1−𝛾𝛾𝑟𝑟𝑟𝑟)]𝑖𝑖∈𝐼𝐼𝑟𝑟′
𝑟𝑟∈𝑅𝑅 ∑ 𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅� . 

Since this chapter aims to minimize both of the above objectives, i.e., the total 

weekly cost and the average EEOI value of all deployed ships on all routes, this study 

applies a typical way to solve the problem, which is the weighted sum method. We use 

𝜆𝜆 as a weighting factor for the bi-objective programming which reveals the relative 

importance between the above two objective functions. Hence, the objective function 

of this problem is formulated as 𝜆𝜆�∑ (𝑜𝑜𝛽𝛽𝑟𝑟 + ∑ 𝑞𝑞𝑟𝑟𝛾𝛾𝑟𝑟𝑟𝑟𝑖𝑖∈𝐼𝐼𝑟𝑟′ + 𝑎𝑎1𝜀𝜀𝑟𝑟 + 7𝑎𝑎2𝑒𝑒𝑟𝑟𝛽𝛽𝑟𝑟)𝑟𝑟∈𝑅𝑅 � +

(1 − 𝜆𝜆)(∑ 106(𝜀𝜀𝑟𝑟+7𝑒𝑒𝑟𝑟𝛽𝛽𝑟𝑟)𝑔𝑔
∑ 𝑚𝑚𝑟𝑟𝑟𝑟𝑙𝑙𝑟𝑟𝑟𝑟𝑖𝑖∈𝐼𝐼𝑟𝑟 +∑ 𝑚𝑚𝑟𝑟𝑟𝑟�𝑙𝑙𝑟𝑟𝑟𝑟𝛾𝛾𝑟𝑟𝑟𝑟+𝑙𝑙𝑟𝑟𝑟𝑟

′ (1−𝛾𝛾𝑟𝑟𝑟𝑟)�𝑖𝑖∈𝐼𝐼𝑟𝑟′
𝑟𝑟∈𝑅𝑅 ∑ 𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅� ). 

2.2.3 Model formulation 

Based on the above analysis of the objective function, this chapter formulates a 

nonlinear MIP model in this section. Before formulating the mathematical model for 

this problem, we list the notations used in this paper as follows. 

Indices and sets: 

𝑅𝑅: set of all ship routes, 𝑟𝑟 ∈ 𝑅𝑅. 

𝐼𝐼𝑟𝑟: set of all legs that do not cross Asian and European ports on ship route 𝑟𝑟, 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟. 

𝐼𝐼𝑟𝑟′ : set of all legs across Asian and European ports on ship route 𝑟𝑟, 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟′ . 

𝑉𝑉: set of all possible sailing speeds, 𝑣𝑣 ∈ 𝑉𝑉, 𝑉𝑉 = {𝑣𝑣, 𝑣𝑣 + 0.1, … , 𝑣𝑣 − 0.1, 𝑣𝑣}, where 𝑣𝑣 

and 𝑣𝑣  represent the minimum and maximum speeds of ships on ship routes, 

respectively. 

𝑍𝑍+: set of all non-negative integers. 

Parameters: 

𝑎𝑎1, 𝑎𝑎2: unit prices of fuels consumed by the main and auxiliary engines, respectively 

(USD/ton). 

𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3: coefficients to calculate the unit fuel consumption for travelling per hour, 

which mainly depends on sailing speed and displacement (tons/hour). 

𝑑𝑑𝑟𝑟𝑟𝑟: actual displacement of the ship during leg 𝑖𝑖 on ship route 𝑟𝑟 (tons).  
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𝑒𝑒𝑟𝑟: amount of fuel consumed by the auxiliary engine of a ship deployed on ship route 

𝑟𝑟 per day (tons/day). 

𝑔𝑔: amount of CO2 released by a ship when burning one ton of fuel (tons). 

𝑙𝑙𝑟𝑟𝑟𝑟: length of the 𝑖𝑖th leg if 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟 or length of the 𝑖𝑖th leg taking the Suez Canal route if 

𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟′  on ship route 𝑟𝑟 (n mile). 

𝑙𝑙𝑟𝑟𝑟𝑟′ : length of the 𝑖𝑖th (𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟′) leg taking the Cape of Good Hope route on ship route 𝑟𝑟 

(n mile). 

𝑚𝑚𝑟𝑟𝑟𝑟: cargo load in leg 𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟 ∪ 𝐼𝐼𝑟𝑟′ , on ship route 𝑟𝑟 (tons). 

𝑜𝑜: weekly operating cost of one ship deployed on ship routes (USD). 

𝑞𝑞𝑟𝑟: Suez Canal toll fee for a ship deployed on route 𝑟𝑟 (USD/ship). 

𝑠𝑠𝑟𝑟: maximum number of ships that can be deployed on ship route 𝑟𝑟. 

𝑡𝑡𝑟𝑟: total duration a ship dwells at all ports of call on ship route 𝑟𝑟 (hours). 

𝜆𝜆: weighting factor for the bi-objective programming. 

Variables: 

𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟: binary, equals 1 if and only if the speed of the ship sailing during leg 𝑖𝑖 on ship 

route 𝑟𝑟 is 𝑣𝑣; 0 otherwise. 

𝛾𝛾𝑟𝑟𝑟𝑟: binary, equals 1 if and only if the voyage option of leg 𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟′ , on ship route 𝑟𝑟 

selects Suez Canal route; 0 if Cape of Good Hope route. 

𝛽𝛽𝑟𝑟: integer, number of ships deployed on ship route 𝑟𝑟. 

𝜀𝜀𝑟𝑟: continuous, weekly fuel consumption of the main engine of all deployed ships on 

ship route 𝑟𝑟 (tons). 

Mathematical model 

Based on the above definitions of parameters and variables, a nonlinear MIP 

model is formulated as follows. 

[M2-1]  Min 𝜆𝜆�∑ (𝑜𝑜𝛽𝛽𝑟𝑟 + ∑ 𝑞𝑞𝑟𝑟𝛾𝛾𝑟𝑟𝑟𝑟𝑖𝑖∈𝐼𝐼𝑟𝑟′ + 𝑎𝑎1𝜀𝜀𝑟𝑟 + 7𝑎𝑎2𝑒𝑒𝑟𝑟𝛽𝛽𝑟𝑟)𝑟𝑟∈𝑅𝑅 � 

+(1 − 𝜆𝜆)(∑ 106(𝜀𝜀𝑟𝑟+7𝑒𝑒𝑟𝑟𝛽𝛽𝑟𝑟)𝑔𝑔
∑ 𝑚𝑚𝑟𝑟𝑟𝑟𝑙𝑙𝑟𝑟𝑟𝑟𝑖𝑖∈𝐼𝐼𝑟𝑟 +∑ 𝑚𝑚𝑟𝑟𝑟𝑟�𝑙𝑙𝑟𝑟𝑟𝑟𝛾𝛾𝑟𝑟𝑟𝑟+𝑙𝑙𝑟𝑟𝑟𝑟

′ (1−𝛾𝛾𝑟𝑟𝑟𝑟)�𝑖𝑖∈𝐼𝐼𝑟𝑟′
𝑟𝑟∈𝑅𝑅 ∑ 𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅� )            (2-2) 

subject to 
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1 ≤ 𝛽𝛽𝑟𝑟 ≤ 𝑠𝑠𝑟𝑟   ∀ 𝑟𝑟 ∈ 𝑅𝑅                           (2-3) 

∑ �∑ 𝑙𝑙𝑟𝑟𝑟𝑟
𝑣𝑣
𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖∈𝐼𝐼𝑟𝑟 + ∑ 𝑙𝑙𝑟𝑟𝑟𝑟𝛾𝛾𝑟𝑟𝑟𝑟+𝑙𝑙𝑟𝑟𝑟𝑟

′ (1−𝛾𝛾𝑟𝑟𝑟𝑟)
𝑣𝑣

𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖∈𝐼𝐼𝑟𝑟′ �𝑣𝑣∈𝑉𝑉 + 𝑡𝑡𝑟𝑟 = 168𝛽𝛽𝑟𝑟  ∀ 𝑟𝑟 ∈ 𝑅𝑅    (2-4) 

𝜀𝜀𝑟𝑟 = ∑ ∑ 𝑐𝑐1𝑣𝑣𝑐𝑐2𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟
𝑐𝑐3 𝑙𝑙𝑟𝑟𝑟𝑟

𝑣𝑣𝑣𝑣∈𝑉𝑉𝑖𝑖∈𝐼𝐼𝑟𝑟 + ∑ ∑ 𝑐𝑐1𝑣𝑣𝑐𝑐2𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟
𝑐𝑐3 𝑙𝑙𝑟𝑟𝑟𝑟𝛾𝛾𝑟𝑟𝑟𝑟+𝑙𝑙𝑟𝑟𝑟𝑟

′ (1−𝛾𝛾𝑟𝑟𝑟𝑟)
𝑣𝑣𝑣𝑣∈𝑉𝑉  𝑖𝑖∈𝐼𝐼𝑟𝑟′     

 ∀ 𝑟𝑟 ∈ 𝑅𝑅    (2-5) 

∑ 𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑣𝑣∈𝑉𝑉 = 1     ∀𝑟𝑟 ∈ 𝑅𝑅, 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟 ∪ 𝐼𝐼𝑟𝑟′   (2-6) 

𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟 ∈ {0,1}  ∀𝑟𝑟 ∈ 𝑅𝑅, 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟 ∪ 𝐼𝐼𝑟𝑟′ , 𝑣𝑣 ∈ 𝑉𝑉  (2-7) 

𝛽𝛽𝑟𝑟 ∈ 𝑍𝑍+  ∀𝑟𝑟 ∈ 𝑅𝑅                                        (2-8) 

𝛾𝛾𝑟𝑟𝑟𝑟 ∈ {0,1}  ∀𝑟𝑟 ∈ 𝑅𝑅, 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟 ∪ 𝐼𝐼𝑟𝑟′   (2-9) 

𝜀𝜀𝑟𝑟 ≥ 0  ∀𝑟𝑟 ∈ 𝑅𝑅.  (2-10) 

Objective (2-2) minimizes the weighted sum of two objectives considered in 

this chapter. Constraints (2-3) guarantee that at least one ship and at most 𝑠𝑠𝑟𝑟 ships 

should be deployed on each route. Constraints (2-4) ensure that the total number of 

hours for a ship completing its travel on a route is the number of ships deployed on the 

route times 168, because all services follow the weekly arrival pattern, and one week 

has 168 hours. Constraints (2-5) calculate the weekly fuel consumption of the main 

engine of all deployed ships on ship route 𝑟𝑟. Constraints (2-6) ensure that sailing 

speeds of deployed ships during each leg on all ship routes satisfy the feasible speed 

range of ships. Constraints (2-7)–(2-10) state the ranges of the defined decision 

variables.  

2.3 ALGORITHM DESIGN 

It is challenging to solve the nonlinear model [M2-1], which contains multiple 

nonlinear parts, including objective function (2-2) and constraints (2-4) and (2-5). By 

reviewing several algorithms and their features in some existing fleet deployment 

studies, we find that specially tailored solution methods are usually designed for their 

models because these fleet deployment studies contain specific characteristics. For 

example, Zhen et al. (2019b) proposed a tailored dynamic linearization algorithm to 

solve a mixed-integer second-order cone programming model. In addition, considering 
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specific characteristics of our problem, we find that nonlinear parts in model [M2-1] 

can be replaced by enumerating the possible values, and the model after the above 

transformation can be solved directly and effectively by Gurobi. Since the number of 

possible values of the nonlinear parts in model [M2-1] is small, this chapter designs 

an efficient exact algorithm based on the enumeration method to solve the model [M2-

1]. Due to the efficiency and accuracy of the proposed algorithm, the proposed 

algorithm can quickly find the optimal solution of the model in a very short time. 

Before introducing our algorithm, one transformation of constraint (2-4) is first 

introduced. Since sailing speed is discretized, the feasibility of constraint (2-4), which 

contains the equality symbol, might be affected. Hence, constraint (2-4) is replaced 

with constraint (2-11). Here, notice that the equality symbol in constraint (2-4) is 

replaced with the less than or equal to symbol in constraint (2-11). 

∑ (∑ 𝑙𝑙𝑟𝑟𝑟𝑟
𝑣𝑣
𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖∈𝐼𝐼𝑟𝑟 + ∑ 𝑙𝑙𝑟𝑟𝑟𝑟𝛾𝛾𝑟𝑟𝑟𝑟+𝑙𝑙𝑟𝑟𝑟𝑟

′ (1−𝛾𝛾𝑟𝑟𝑟𝑟)
𝑣𝑣

𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖∈𝐼𝐼𝑟𝑟′ )𝑣𝑣∈𝑉𝑉 + 𝑡𝑡𝑟𝑟 ≤ 168𝛽𝛽𝑟𝑟  ∀𝑟𝑟 ∈ 𝑅𝑅.  (2-11) 

As a result, the final version of model [M2-1] becomes the following: 

[M2-2] objective (2-2)  

subject to constraints (2-3), (2-5)–(2-11). 

Finally, we design the following exact algorithm, whose framework is 

introduced in Algorithm 2-1 to solve the model [M2-2]. The main difficulty in solving 

the model [M2-2] is the nonlinear part in objective (2-2). Two key techniques are 

applied to this nonlinear part. Specifically, the first one focuses on ∑ 𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅  in the 

denominator. According to constraint (2-11), the number of ships deployed on route 

𝑟𝑟, denoted by 𝛽𝛽𝑟𝑟min, is at least 𝛽𝛽𝑟𝑟min = �(∑ 𝑙𝑙𝑟𝑟𝑟𝑟
𝑣𝑣𝑖𝑖∈𝐼𝐼𝑟𝑟 + ∑ min (𝑙𝑙𝑟𝑟𝑟𝑟,𝑙𝑙𝑟𝑟𝑟𝑟

′ )
𝑣𝑣𝑖𝑖∈𝐼𝐼𝑟𝑟′ + 𝑡𝑡𝑟𝑟) 168� � (recall 

that 𝑣𝑣 represents the maximum speed of ships on ship routes). Because constraints (2-

3) guarantee that at most 𝑠𝑠𝑟𝑟 ships could be deployed on route 𝑟𝑟, the value of ∑ 𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅  

ranges from ∑ 𝛽𝛽𝑟𝑟min𝑟𝑟∈𝑅𝑅  to ∑ 𝑠𝑠𝑟𝑟𝑟𝑟∈𝑅𝑅 , which means we can directly enumerate the 

number of ships deployed on all ship routes. The other one is ∑ 𝑚𝑚𝑟𝑟𝑟𝑟[𝑙𝑙𝑟𝑟𝑟𝑟𝛾𝛾𝑟𝑟𝑟𝑟 +𝑖𝑖∈𝐼𝐼𝑟𝑟′

𝑙𝑙𝑟𝑟𝑟𝑟′ (1 − 𝛾𝛾𝑟𝑟𝑟𝑟)]. In most cases, not all routes need to be reoptimized in terms of voyage 

option because these routes do not contain voyages across Asia and Europe. Even if 

all routes need to be reoptimized in terms of voyage option, the total number of voyage 

options on a single route is |𝐼𝐼𝑟𝑟′ |, which means there are 2�𝐼𝐼𝑟𝑟′� permutations of the values 
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of 𝛾𝛾𝑟𝑟𝑟𝑟 (∀𝑟𝑟 ∈ 𝑅𝑅, 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟′) for route 𝑟𝑟. Moreover, the value of |𝐼𝐼𝑟𝑟′ | is either 0 or 2 because 

in real life, a liner route is either for a certain continent, or it only crosses Asian and 

European ports twice. Hence, the number of permutations is significantly small, and 

we can directly enumerate all permutations.  

Algorithm 2-1. Framework of the proposed exact algorithm for solving model [M2-
2] 
𝑥𝑥 ← ∑ 𝛽𝛽𝑟𝑟min𝑟𝑟∈𝑅𝑅   // 𝑥𝑥 records the number of ships deployed on all ship routes  
OBJ∗ ← ∞  //OBJ∗ records the incumbent objective function value of model [M2-2] 
(𝑥𝑥, 𝛾𝛾𝑟𝑟𝑟𝑟 ,∀𝑟𝑟 ∈ 𝑅𝑅, 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟′)∗ ←null //(𝑥𝑥, 𝛾𝛾𝑟𝑟𝑟𝑟 ,∀𝑟𝑟 ∈ 𝑅𝑅, 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟′)∗ records the incumbent values 
of corresponding variables in [M2-2] 
While 𝑥𝑥 ≤ ∑ 𝑠𝑠𝑟𝑟𝑟𝑟∈𝑅𝑅  do 
 Add constraint ∑ 𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅 = 𝑥𝑥 to model [M2-2] 
 Obtain 2�𝐼𝐼1′� × 2�𝐼𝐼2′� × ⋯× 2|𝐼𝐼|𝑅𝑅|

′ | permutations of (𝛾𝛾1,1, 𝛾𝛾1,�𝐼𝐼1′��������
route 1

, 𝛾𝛾2,1, 𝛾𝛾2,�𝐼𝐼2′��������
route 2

, … , 𝛾𝛾|𝑅𝑅|,1, 𝛾𝛾|𝑅𝑅|,�𝐼𝐼|𝑅𝑅|
′ ����������

route |𝑅𝑅|

) 

 𝑛𝑛 ← 1  //𝑛𝑛 is a counting number 
 While 𝑛𝑛 ≤ 2�𝐼𝐼1′� × 2�𝐼𝐼2′� × ⋯× 2|𝐼𝐼|𝑅𝑅|

′ | do 
  Solve the updated model by Gurobi with given values (𝛾𝛾𝑟𝑟𝑟𝑟, ∀𝑟𝑟 ∈ 𝑅𝑅, 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟′) of the 

𝑛𝑛th permutation 
  If model is feasible then 
   If OBJ < OBJ∗  then  // OBJ  records the current objective function value 

obtained by Gurobi 
    (𝑥𝑥, 𝛾𝛾𝑟𝑟𝑟𝑟 ,∀𝑟𝑟 ∈ 𝑅𝑅, 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟′)∗ ← (𝑥𝑥, 𝛾𝛾𝑟𝑟𝑟𝑟 ,∀𝑟𝑟 ∈ 𝑅𝑅, 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟′)  
    OBJ∗ ← OBJ  
   End if 
  End if 
  𝑛𝑛 ← 𝑛𝑛 + 1  
 End while 
 Delete constraint ∑ 𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅 = 𝑥𝑥 from model [M2-2] 
 𝑥𝑥 ← 𝑥𝑥 + 1  
End while 
Solve model [M2-2] by Gurobi with given (𝑥𝑥, 𝛾𝛾𝑟𝑟𝑟𝑟 ,∀𝑟𝑟 ∈ 𝑅𝑅, 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟′)∗ 
Return the objective value and values of the variables 

2.4 COMPUTATIONAL EXPERIMENTS 

In order to evaluate the efficiency of the proposed algorithm, this chapter 

performs a large number of computational experiments on a laptop (4 CPU cores, 1.6 

GHz, Memory 8 GB). The mathematical models and algorithms proposed in this 

chapter are implemented in Gurobi 9.0.1 (Anaconda, Python). This section first 

summarizes the setting of our parameters in Section 2.4.1, validates the proposed 

algorithm in Section 2.4.2 and describes sensitivity analyses to seek managerial 

insights in Section 2.4.3. 
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2.4.1 Experimental setting 

Sailing distance data, including 𝑙𝑙𝑟𝑟𝑟𝑟 and 𝑙𝑙𝑟𝑟𝑟𝑟′ , used in this study were obtained from 

the standard instances of LINER-LIB (Brouer et al., 2014). The value of the weekly 

fixed operating cost, i.e., 𝑜𝑜, is set to 180,000 USD, which is in line with the setting 

used in previous studies (Alharbi et al., 2015; Zhen et al., 2019a). In real life, main and 

auxiliary engines of a ship may use the same type of fuel, such as liquefied natural gas 

(LNG). Therefore, this chapter assumes that main and auxiliary engines use the same 

type of fuel when calculating fuel costs of the main and auxiliary engines for the sake 

of simplicity in the computational experiments. Therefore, unit prices of fuels (i.e., 𝑎𝑎1 

and 𝑎𝑎2) are set to 544.5 USD/ton because the average price of very low sulfur fuel oil 

(VLSFO) in global 20 ports in 2021 is 544.5 USD/ton (S&B, 2022). For the sake of 

simplicity, a ship can only adjust its speeds by at least one knot in this chapter. The 

minimum and maximum values of sailing speed (i.e., 𝑣𝑣 and 𝑣𝑣) are set to 8 and 22 

knots, respectively, which are also consistent with the settings used in related works 

(Wang et al., 2015; Zhen et al., 2020). The values of 𝑐𝑐1, 𝑐𝑐2 and 𝑐𝑐3 are set to 0.00022, 

2.5506 and 0.2072, respectively, which are consistent with the settings in related 

studies (Wang et al., 2015; Meng et al., 2016). The value of the total duration, i.e., 𝑡𝑡𝑟𝑟, 

that a ship dwells at all ports of call on ship route 𝑟𝑟  is randomly selected from 

[24 × (|𝐼𝐼𝑟𝑟| + |𝐼𝐼𝑟𝑟′ |), 48 × (|𝐼𝐼𝑟𝑟| + |𝐼𝐼𝑟𝑟′ |)]. The value of 𝑠𝑠𝑟𝑟 (i.e., the maximum number of 

ships that can be deployed on ship route 𝑟𝑟) depends on the length of one cycle time, 

and it is set to 4 for regional ship routes or 10 for intercontinental shipping routes. The 

amount of CO2 released by a ship when burning one ton of VLSFO, i.e., 𝑔𝑔, is set to 

3.15 tons, which is in line with the realistic data from Lloyd’s (2021). Some other 

parameters are generated by sampling from some normal distributions. Specifically, 

values of Suez Canal toll fee (i.e., 𝑞𝑞𝑟𝑟) of a ship on all routes are uniformly distributed 

over (400,000, 700,000) (USD/ship), which is in line with actual Suez Canal toll fees 

(HKTDC, 2020). The average value of daily fuel consumption for the auxiliary engines 

(𝑒𝑒𝑟𝑟) on all routes is set to 3 tons per day (normal distribution with standard deviation 

0.5). The average value of cargo load (𝑚𝑚𝑟𝑟𝑟𝑟) on all legs is set to 180,000 tons (normal 

distribution with standard deviation 3000), and the value of actual displacement (𝑑𝑑𝑟𝑟𝑟𝑟) 

on all legs is set to 𝑚𝑚𝑟𝑟𝑟𝑟 + 20,000 tons. 
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2.4.2 Performance of the algorithm 

This chapter used the proposed exact algorithm to solve the model [M2-2] and 

conducted 11 sets of numerical experiments with different route compositions, which 

are summarized in Table 2-2. We first fix 𝜆𝜆 = 0.5 and record computational results, 

including objective function value (OBJT), CPU running time (Time) and selected 

voyage option (Voyage option) in Table 2-3. Since the difference between the two 

objective function values in our model is very large, we normalize these two objective 

functions by dividing them by their respective maximum values. To obtain the 

maximum values, we set 𝜆𝜆  (i.e., the weighting factor for the bi-objective 

programming) to 0 and solve all computational experiments of the model [M2-2] to 

get the maximum objective function value OBJ1 =  15148529.7881. Similarly, we 

set 𝜆𝜆 to 1 and solve all computational experiments of the model [M2-2] to get the 

maximum objective function value OBJ2 =  0.3384.  

Table 2-2 Summary of seven routes. 

Route ID Port rotation (city) 

1 Kaohsiung→Tokyo→Nagoya→Kaohsiung 
2 General Santos City→Manila→Singapore→General Santos City 
3 Hong Kong→Xiamen→Kaohsiung→Manila→Hong Kong 
4 Kaohsiung→Keelung→Shanghai→Tanjung Pelepas→Jakarta→Kaohsiung 
5 Laem Chabang→Colombo→Rotterdam→Hamburg→Singapore→Laem Chabang 

6 Qingdao→Shanghai→Hong Kong→Singapore→Rotterdam→Singapore→ 
Qingdao 

7 Kaohsiung→Hong Kong→Singapore→Rotterdam→Singapore→Xiamen→ 
Kaohsiung 

From Table 2-3, we can see that the computing time increases with more routes, 

which is intuitive because more routes will bring more decision variables and 

constraints. Since the computing time of six routes is quick enough, case 10 is used for 

the following numerical experiments. The Suez Canal route is chosen in all 

experiments. This is due to the fact that the Suez Canal route is more popular on trips 

because it saves more sailing time. Our algorithm has good performance because it can 

solve the numerical experiment with seven ship routes and 32 legs within four minutes, 

which means our algorithm can be applied well to real problems and quickly provides 

optimal solutions for liner companies. 
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Table 2-3 Computational results of the basic analysis. 

Case ID Route ID OBJT Time (s) Voyage option 

1 1, 5 0.53 1.20 Suez Canal 
2 2, 6 0.61 1.51 Suez Canal 
3 3, 5, 6 0.52 13.34 Suez Canal 
4 4, 5, 6 0.56 14.38 Suez Canal 
5 2, 4, 5, 6 0.69 16.76 Suez Canal 
6 3, 4, 5, 6 0.70 18.54 Suez Canal 
7 1, 3, 4, 5, 6 0.79 20.79 Suez Canal 
8 2, 3, 4, 5, 6 0.84 24.40 Suez Canal 
9 1, 2, 3, 5, 6 0.85 25.40 Suez Canal 
10 1, 2, 3, 4, 5, 6 0.91 30.03 Suez Canal 
11 1, 2, 3, 4, 5, 6, 7 0.94 222.25 Suez Canal 

2.4.3 Sensitivity analyses 

The impact of 𝜆𝜆  on the bi-objective programming is first described in this 

section. The value of 𝜆𝜆 ranges from 0 to 1. Table 2-4 shows the normalized objective 

function value of model [M2-2] (OBJT), the total weekly cost value (OBJ1), the average 

EEOI value of all deployed ships on all routes (OBJ2), the total number of deployed 

ships (∑ 𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅 ), the selected voyage option (Voyage option), and the computing time 

(Time). It is obvious that OBJ1  decreases with increasing 𝜆𝜆 , which is reasonable 

because a larger 𝜆𝜆 indicates a larger weight on OBJ1. However, OBJ2 stays the same at 

the beginning, then goes down and finally goes up. In addition, the total number of 

deployed ships decreases as the value of 𝜆𝜆 increases. Finally, the change of the value 

of 𝜆𝜆 does not affect the voyage option, and the change of the value of 𝜆𝜆 has no obvious 

effect on the solution time. Therefore, with increasing 𝜆𝜆 (i.e., larger weight on the 

minimization of the total weekly cost), fewer ships are needed, which means that each 

deployed ship sails at a higher speed and releases more CO2 (i.e., higher EEOI value). 

However, since the average EEOI value of all deployed ships on all routes is relatively 

small, the increase in the 𝜆𝜆 value in the early stage has no proportional effect on the 

second objective function value, i.e., OBJ2. 

We next studied the impact of unit price of fuel on the operation decisions. 

According to S&B (2022), the lowest and highest prices of VLSFO in global 20 ports 

from January 01, 2020, to July 14, 2022, are 211.25 USD/ton, and 1120.50 USD/ton, 

respectively. Hence, we set the value of 𝑎𝑎 from 200 to 1,200 USD/ton to investigate 

its influence. Relevant results, including OBJT , OBJ1 , OBJ2 , ∑ 𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅  and Voyage 

option, are presented in Table 2-5. In order to make the result more intuitive, we also gi- 
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Table 2-4 Impact of the weighting factor 𝜆𝜆 on the bi-objective programming. 

𝜆𝜆 OBJT OBJ1 (USD) OBJ2   
(g/ton/n mile) 

∑ 𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅   Voyage option Time (s) 

0.0 0.9460 11349298.0951 0.3592 36 Suez Canal route 32.85 
0.1 0.9514 11349298.0951 0.3592 36 Suez Canal route 31.37 
0.2 0.9568 11349298.0951 0.3592 36 Suez Canal route 31.39 
0.3 0.9622 11349298.0951 0.3592 36 Suez Canal route 33.15 
0.4 0.9676 11349298.0951 0.3592 36 Suez Canal route 32.88 
0.5 0.9572 11156852.8702 0.3536 35 Suez Canal route 32.13 
0.6 0.9491 10967201.7128 0.3505 34 Suez Canal route 32.25 
0.7 0.9434 10789871.1308 0.3517 33 Suez Canal route 31.02 
0.8 0.9352 10619882.8389 0.3542 32 Suez Canal route 30.75 
0.9 0.9311 10500058.7455 0.3737 31 Suez Canal route 31.25 
1.0 0.9201 10442771.8214 0.3796 30 Suez Canal route 28.62 
Notes: (1) “OBJT,” “OBJ1,” “OBJ2” and “∑ 𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅 ” represent the normalized OBJ value 
of model [M2-2], total weekly cost value, average EEOI value of all deployed ships 
on all routes and the total number of deployed ships, respectively. (2) “Voyage option” 
represents the voyage selection of deployed ships across Asian and European ports, 
i.e., Suez Canal route or Cape of Good Hope route. (3) “Time” represents CPU running 
time (s).  
ve Figure 2-2, whose abscissa is the fuel price, and the primary and secondary ordinate 

axes are OBJ1 and OBJ2, respectively. When the unit price of fuel increases, both OBJT 

and OBJ1 increase because the weekly fuel cost increases, but OBJ2 is not influenced 

by fuel price. In addition, changes in the fuel price do not affect fleet deployment and 

voyage option decisions. The above observations are reasonable because changes in 

the unit price of fuel do not cause changes in fleet deployment strategies and sailing 

speeds, resulting in no changes in CO2 emissions and no changes in the value of the 

second objective function. However, the continuous increase in the unit price of fuel 

leads to an increase in the weekly fuel consumption cost, which eventually leads to an 

increase in the value of the first objective function. 

 
Figure 2-2 Comparison of objective values under different values of 𝑎𝑎. 
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Table 2-5 Impact of unit price of fuel on the operation decisions. 

𝑎𝑎 (USD/ton) OBJT OBJ1 (USD) OBJ2  
(g/ton/n mile) 

∑ 𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅   Voyage option 

200.00 0.8602 9,285,432.4798 0.3505 34 Suez Canal route 
300.00 0.8860 9,773,609.3254 0.3505 34 Suez Canal route 
400.00 0.9118 10,261,786.1709 0.3505 34 Suez Canal route 
500.00 0.9376 10,749,963.0165 0.3505 34 Suez Canal route 
600.00 0.9634 11,238,139.8621 0.3505 34 Suez Canal route 
700.00 0.9892 11,726,316.7077 0.3505 34 Suez Canal route 
800.00 1.0150 12,214,493.5533 0.3505 34 Suez Canal route 
900.00 1.0408 12,702,670.3988 0.3505 34 Suez Canal route 
1000.00 1.0666 13,190,847.2444 0.3505 34 Suez Canal route 
1100.00 1.0924 13,679,024.0900 0.3505 34 Suez Canal route 
1200.00 1.1183 14,167,200.9356 0.3505 34 Suez Canal route 
Notes: (1) “OBJT,” “OBJ1,” “OBJ2,” and “∑ 𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅 ” represent the normalized OBJ value 
of model [M2-2], total weekly cost value, average EEOI value of all deployed ships 
on all routes and the total number of deployed ships, respectively. (2) “Voyage option” 
represents the voyage selection of deployed ships across Asian and European ports, 
i.e., Suez Canal route or Cape of Good Hope route.  

Next, we discuss the impact of Suez Canal toll fee per ship on the operation 

decisions. According to HKTDC (2020), Suez Canal toll fees for a ship range from 

400,000 to 700,000 USD. Hence, we set the Suez Canal toll fee for a ship from 350,000 

to 750,000 USD/ship to investigate its influence. Relevant results, including OBJT, 

OBJ1, OBJ2, ∑ 𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅  and Voyage option, are given in Table 2-6. In order to make the 

result more intuitive, we also give Figure 2-3, whose abscissa is the Suez Canal toll 

fee per ship, and the primary and secondary ordinate axes are OBJ1  and OBJ2 , 

respectively. When the Suez Canal toll fee per ship increases, both OBJT and OBJ1 

increase, but OBJ2 does not change with increasing 𝑞𝑞𝑟𝑟. In addition, changes in the Suez 

Canal toll fee per ship do not affect fleet deployment and voyage option decisions, 

which further makes the EEOI of each ship unchanged, as the ship’s CO2 emissions 

and mileage do not change. The above observations are reasonable because the weekly 

Suez Canal toll fee is small compared to the weekly fuel consumption and operating 

costs of deployed ships. Therefore, the increase in the Suez Canal toll fee per ship does 

not lead to changes in fleet deployment, sailing speeds and voyage planning. 
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Table 2-6 Impact of Suez Canal toll fee per ship on the operation decisions. 

𝑞𝑞𝑟𝑟 
(USD/ship) OBJT OBJ1 (USD) OBJ2 

(g/ton/n mile) 
∑ 𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅   Voyage option 

350,000.00 0.8775 10,042,966.9490 0.3289 34 Suez Canal route 
400,000.00 0.8881 10,242,966.9490 0.3289 34 Suez Canal route 
450,000.00 0.8986 10,442,966.9490 0.3289 34 Suez Canal route 
500,000.00 0.9092 10,642,966.9490 0.3289 34 Suez Canal route 
550,000.00 0.9198 10,842,966.9490 0.3289 34 Suez Canal route 
600,000.00 0.9304 11,042,966.9490 0.3289 34 Suez Canal route 
650,000.00 0.9409 11,242,966.9490 0.3289 34 Suez Canal route 
700,000.00 0.9515 11,442,966.9490 0.3289 34 Suez Canal route 
750,000.00 0.9621 11,642,966.9490 0.3289 34 Suez Canal route 
Notes: (1) “OBJT,” “OBJ1,” “OBJ2,” and “∑ 𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅 ” represent the normalized OBJ value 
of model [M2-2], total weekly cost value, average EEOI value of all deployed ships 
on all routes and the total number of deployed ships, respectively. (2) “Voyage option” 
represents the voyage selection of deployed ships across Asian and European ports, 
i.e., Suez Canal route or Cape of Good Hope route.  

 

Figure 2-3 Comparison of objective values under different values of 𝑞𝑞𝑟𝑟. 

In the basic experiment, the value of the weekly fixed operating cost (𝑜𝑜) is set to 

180,000 USD. However, weekly operating costs may double several times due to 

outbreaks and other reasons. To analyze the impact of weekly fixed operating cost on 

the operation decisions, we set the value of 𝑜𝑜 from 150,000 USD to 390,000 USD. 

Relevant results, including OBJT, OBJ1, OBJ2 ∑ 𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅  and Voyage option are given in 

Table 2-7. In order to make the result more intuitive, we also give Figure 2-4, whose 

abscissa is the weekly operating cost, and the primary and secondary ordinate axes are 

OBJ1 and OBJ2, respectively. When the weekly operating cost increases, all of OBJT, 

OBJ1 and OBJ2 increase, but OBJ2 remains unchanged in the three intervals [150,000, 

240,000], [270,000, 300,000] and [330,000, 390,000]. In addition, changes in the 
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weekly fixed operating cost directly influence fleet deployment but do not affect 

voyage option decision. The above observations are reasonable because the weekly 

fixed operating cost accounts for a large proportion of the total weekly cost. The 

continuous increase in the weekly fixed operating cost causes liner companies to 

reduce the number of deployed ships, which causes ships to sail at higher speeds to 

maintain the weekly arrival pattern. Moreover, high speeds of deployed ships cause 

more CO2 emissions. 

Table 2-7 Impact of weekly fixed operating cost on the operation decisions of ship 
fleets. 

𝑜𝑜 (USD) OBJT OBJ1 (USD) OBJ2 
(g/ton/n mile) 

∑ 𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅   Voyage option 

150,000.00 0.8952 9,947,201.7128 0.3505 34 Suez Canal route 
180,000.00 0.9491 10,967,201.7128 0.3505 34 Suez Canal route 
210,000.00 1.0030 11,987,201.7128 0.3505 34 Suez Canal route 
240,000.00 1.0569 13,007,201.7128 0.3505 34 Suez Canal route 
270,000.00 1.0980 13,759,871.1308 0.3517 33 Suez Canal route 
300,000.00 1.1503 14,749,871.1308 0.3517 33 Suez Canal route 
330,000.00 1.1884 15,419,882.8389 0.3542 32 Suez Canal route 
360,000.00 1.2392 16,379,882.8389 0.3542 32 Suez Canal route 
390,000.00 1.2899 17,339,882.8389 0.3542 32 Suez Canal route 
Notes: (1) “OBJT,” “OBJ1,” “OBJ2” and “∑ 𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅 ” represent the normalized OBJ value 
of model [M2-2], total weekly cost value, average EEOI value of all deployed ships 
on all routes and the total number of deployed ships, respectively. (2) “Voyage option” 
represents the voyage selection of deployed ships across Asian and European ports, 
i.e., Suez Canal route or Cape of Good Hope route.  

 

Figure 2-4 Comparison of objective values under different values of 𝑜𝑜. 

Finally, we investigate the impact of cargo load on the operation decisions. In 

the basic experiment, the average value of cargo load (𝑚𝑚𝑟𝑟𝑟𝑟) is set to 180,000 tons 

(normal distribution with standard deviation 3,000). Hence, we set the average value 

of cargo load in each leg from 80,000 to 240,000 (normal distribution with standard 
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deviation 3,000) to investigate its influence. Relevant results, including OBJT, OBJ1, 

OBJ2, ∑ 𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅  and Voyage option, are given in Table 2-8. In order to make the result 

more intuitive, we also give Figure 2-5, whose abscissa is the cargo load in each leg, 

and the primary and secondary ordinate axes are OBJ1 and OBJ2, respectively. When 

the cargo load in each leg increases, OBJT and OBJ1 increase, but OBJ2 and the number 

of deployed ships decrease. However, voyage option decision is not influenced by 

changes in the cargo load. The above observations are reasonable because, with the 

increase in the cargo load, the product of the ship’s cargo transported and the total 

distance over a week becomes larger. Although the ship sails at a higher speed due to 

the fewer deployed ships, the increase in the product of the ship’s cargo transported 

and total distance over a week has a more significant impact on the expected EEOI 

value of all deployed ships than the increase in sailing speeds. Therefore, the average 

EEOI value of all deployed ships increases significantly with the increase in cargo 

load. 

Table 2-8 Impact of cargo load in each voyage on the operation decisions. 

𝑚𝑚𝑟𝑟𝑟𝑟 (ton) OBJT OBJ1 (USD) OBJ2 
(g/ton/n mile) 

∑ 𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅   Voyage option 

80,000.00 1.3500 10,919,422.4394 0.7334 35 Suez Canal route  
100,000.00 1.2115 10,978,604.3255 0.5990 35 Suez Canal route 
120,000.00 1.1185 11,030,417.9005 0.5082 35 Suez Canal route 
140,000.00 1.0375 10,887,008.8904 0.4385 34 Suez Canal route 
160,000.00 0.9879 10,928,874.5838 0.3892 34 Suez Canal route 
180,000.00 0.9491 10,967,201.7128 0.3505 34 Suez Canal route 
200,000.00 0.9180 11,002,602.1327 0.3192 34 Suez Canal route 
220,000.00 0.8925 11,035,537.2494 0.2934 34 Suez Canal route 
240,000.00 0.8713 11,066,364.2305 0.2717 34 Suez Canal route 
Notes: (1) “OBJT,” “OBJ1,” “OBJ2” and “∑ 𝛽𝛽𝑟𝑟𝑟𝑟∈𝑅𝑅 ” represent the normalized OBJ value 
of model [M2-2], total weekly cost value, average EEOI value of all deployed ships 
on all routes and the total number of deployed ships, respectively. (2) “Voyage option” 
represents the voyage selection of deployed ships across Asian and European ports, 
i.e., Suez Canal route or Cape of Good Hope route.  
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Figure 2-5 Comparison of objective values under different values of 𝑚𝑚𝑟𝑟𝑟𝑟. 

In summary, this chapter investigates the impact of 𝜆𝜆  on the bi-objective 

programming and the impacts of unit price of fuel, Suez Canal toll fee per ship, weekly 

fixed operating cost and cargo load on the operation decisions. Specifically, with 

increasing 𝜆𝜆 (larger weight on the minimization of the total weekly cost), fewer ships 

are needed, which means that each deployed ship sails at a higher speed and releases 

more CO2 (i.e., higher EEOI value). In addition, the increase in the 𝜆𝜆 value in the early 

stage has no significant effect on the second objective function value. For the impact 

of unit price of fuel on the operation decisions, if changes in the unit price of fuel do 

not cause changes in fleet deployment strategies and sailing speeds, the amount of CO2 

emissions and the expected EEOI value of all deployed ships will stay the same. 

However, the continuous increase in the unit price of fuel leads to an increase in the 

weekly fuel consumption cost, which eventually leads to an increase in the total weekly 

cost. For the impact of Suez Canal toll fee per ship on the operation decisions, since 

the weekly Suez Canal toll fee is less than the weekly fuel consumption and operating 

costs of deployed ships, the increase in the Suez Canal toll fee per ship does not lead 

to changes in fleet deployment, sailing speeds and voyage options. However, for the 

impact of the weekly fixed operating cost on the operation decisions, since the weekly 

fixed operating cost accounts for a large proportion of the total weekly cost, the 

continuous increase in the weekly fixed operating cost causes liner companies to 

reduce the number of deployed ships and causes ships to sail at higher speeds. Finally, 

for the impact of cargo load on the operation decisions, with the increase in the cargo 

load, the increase in the product of the ship’s cargo transported and total distance over 

a week has a more significant impact on the expected EEOI value of all deployed ships 
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than the increase in sailing speeds. Therefore, the average EEOI value of all deployed 

ships increases significantly with the increase in cargo load. 

2.5 SUMMARY 

The existing literature lacks research on the integrated optimization problem of 

fleet deployment, voyage planning and speed optimization with consideration of the 

influences of sailing speed, displacement and voyage option on fuel consumption. To 

fill this research gap, this chapter formulates a nonlinear MIP model capturing all these 

elements and designs a tailored exact algorithm for the model.  
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Chapter 3: How to operate ship fleets under 
uncertainty2 

This chapter focuses on one of the most important practical issues that liner 

companies face: how to address a liner’s multi-period heterogeneous fleet deployment 

problem in an uncertain shipping network considering fleet repositioning, ship 

chartering, demand fulfillment, and cargo allocation. A multistage stochastic 

programming model is developed for this critical problem.  

3.1 INTRODUCTION 

The shipping industry plays a vital role in international trade and the global 

economy (Fransoo and Lee, 2013; Roy et al., 2020). Supported by the recent global 

economic recovery, approximately 11 billion tons of goods are transported by ship in 

2021 (UNCTAD, 2022). In particular, global containerized trade, which declines by 

1.3% in 2020 and rebounds in 2021, reaches 165 million 20-foot equivalent units 

(TEUs) in 2021 (UNCTAD, 2022), which implies that the shipping industry is 

currently thriving. However, fluctuations in world trade and unexpected incidents 

including pandemics bring great uncertainty to the shipping market. Hence, for liner 

companies, how to operate ship fleets under uncertainty is particularly important. 

For a liner company, operating ship fleets involves many intertwined decisions, 

such as the number of heterogeneous ships (categorized by their load capacities) 

deployed on each route, which is related to the specific sailing sequence of these ships 

on each route and to the shipping demands. Managers in the liner company also need 

to determine whether to charter in or out ships when there is a deficit or a surplus in 

some ship types, how to reposition ship fleets between different ship routes, and 

whether to fulfill the transportation demand in the current shipment period or postpone 

it to next period. Operating ship fleets under uncertainty is already an intractable 

problem (Christiansen et al., 2013); the above-intertwined decisions further complicate 

the problem. 

 
2 Wu, Y., Wang, S., Zhen, L., Laporte, G., Tan, Z., Wang, K., 2023. How to operate ship fleets 

under uncertainty. Production and Operations Management 32(10): 3043–3061. 
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Uncertainty in the shipping market mainly stems from the changing trends in the 

world economy caused by seasonal demand changes and unexpected incidents. 

Moreover, UNCTAD projections point out that an asymmetric recovery, logistical 

bottlenecks, and soaring costs have further heightened uncertainty (UNCTAD, 2022). 

Hence, the demand structure may change greatly over a long period of time. For 

example, affected by the abrupt outbreak of COVID-19, container throughput at the 

Port of Shanghai from January to April 2020 fell by 8.4% year on year (CWTN, 2021), 

which inevitably caused changes in the shipping network. 

Liner companies, therefore, have to adjust their ship fleets every few months to 

remain competitive, in response to uncertainty in shipping demands. The uncertain 

future may contain plenty of possible scenarios; intertwined decisions of demand 

fulfillment and allocation need to be made for every possible scenario in each time 

period of the planning horizon. A core long-term decision is how to deploy a 

heterogeneous ship fleet in a shipping network with uncertain demand. When 

optimizing the operation plan of ship fleets, liner companies need careful evaluation 

and decision supports from scientific methodologies, e.g., multistage decision models, 

to comprehensively plan the deployment of ship fleets and their repositioning 

operations to the deployed routes under uncertainty to compete in the growing market. 

However, throughout the shipping liner industry, the planning of networks, including 

the construction of routes and fleet movements, is still primarily performed manually, 

and the fleet repositioning cost is rarely factored into liner shipping models (Wang, 

2013). Hence, this chapter proposes a multistage fleet operation optimization model, 

which involves the first-stage decisions of determining the number of ships of different 

types deployed on each route, the number of ships of different types chartered in and 

out, and the ship type selected for each round trip on each route; and the decisions in 

the following stages of determining the numbers of accepted, delayed, and shipped 

containers for all origin-destination (O-D) pairs in each time period (one time period 

corresponds to one stage). The objective of this decision model is to maximize the 

expected total net profit earned by the liner company during the planning horizon, 

which consists of five terms: the expected operational revenue, the ship repositioning 

cost, the operating costs of all deployed ships, the rental cost of charter-in ships, and 

the total revenue of charter-out ships. 
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This chapter is motivated by the above-mentioned real-world challenge and 

contributes to the shipping operations management-related literature by proposing an 

optimization model and a Benders-based branch-and-cut (BBC) algorithm with several 

acceleration strategies. This chapter provides liner companies with scientific methods 

to integrate fleet repositioning, ship chartering, demand fulfillment, and cargo 

allocation into fleet deployment optimization to balance the cost-profit trade-off. More 

specifically, a mixed-integer linear programming (MILP) model is proposed for a 

liner’s multi-period heterogeneous fleet deployment problem (FDP) in an uncertain 

shipping network considering fleet repositioning, ship chartering, demand fulfillment, 

and cargo allocation. This problem is NP-hard, and in this chapter, we aim to propose 

an exact and efficient algorithm to solve it on a practical scale.  

While leveraging real-world shipping routes, computational experiments in 

different problem scales are conducted to evaluate the model and the performance of 

the proposed BBC algorithm. The impacts of the acceleration strategies are then 

investigated. Moreover, the impacts of uncertainty on the shipping operations 

management are investigated, showing that multistage stochastic programming can 

lead to higher profit than using two-stage stochastic programming or deterministic 

programming. An intensive analysis of why multistage stochastic programming can 

lead to better solutions is also conducted. Lastly, three practical questions regarding 

the driver analysis of liner company profitability, the benefit analysis of adaptive fleet 

sizes, and the influence of pandemic diseases on liner shipping are discussed. 

Managerial insights are obtained to guide the operations of ship fleets under 

uncertainty for liner companies according to the computational experiments. We 

believe that the emergence of the novel models and algorithms, especially the 

quantitative decision methodology, offers liner companies an opportunity to improve 

their decision efficiency in an uncertain maritime transportation market. 

The remainder of this chapter is organized as follows. Related works are 

reviewed and discussed in Section 3.2. Section 3.3 elaborates on the problem 

background. Section 3.4 proposes a multistage stochastic programming model for 

operating heterogeneous ship fleets under uncertainty. A BBC algorithm with two 

acceleration strategies is developed in Section 3.5. Section 3.6 reports the 

computational experiments. Summaries are then outlined in Section 3.7. 
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3.2 LITERATURE REVIEW 

This chapter focuses on the FDP and subsequently designs an exact algorithm to 

solve it. Thus, this section reviews the streams of related literature from the following 

two perspectives: the FDP, and the design of exact algorithms for maritime-related 

problems. Readers interested in overviews of the above two streams of problems can 

refer to Christiansen et al. (2013), Meng et al. (2014), Lee and Song (2017), and 

Christiansen et al. (2020). 

The first research stream is related to the FDP. As an essential planning problem 

in liner companies, the FDP assigns available fleets to predetermined voyages to 

maximize the total profit or to minimize the total expense. When assigning fleets to 

predetermined services, several aspects need to be considered. One of the most 

important aspects is ship chartering. Wang and Meng (2012a) proposed an MILP 

model for an FDP that allows a liner company to deploy its own and charter-in ships. 

Another important aspect is different types of fleets in a shipping network, which is a 

heterogeneous FDP. Wang et al. (2013) studied a heterogeneous FDP with the aim of 

minimizing the total cost while maintaining a service level under container demand 

uncertainty. Ng (2014) proposed a distribution-free integer programming model to 

optimally determine the number and type of fleets deployed on ship routes to minimize 

the total cost while ensuring that the capacity of fleets meets the shipment demand. 

Tierney et al. (2015) noted that the fleet repositioning problem (FRP) has received 

little attention in the literature related to the FDP and studied the FRP with the 

consideration of cargo flows. Xia et al. (2015) jointly planned the fleet deployment, 

speed optimization and cargo allocation to maximize the total profit of a liner 

company. Ng (2017) developed an MILP model for an FDP with the aim of 

minimizing the total cost containing the operating cost and the cost of charter-in ships 

minus the revenue of charter-out ships. Wetzel and Tierney (2020) integrated the FRP 

into the FDP to optimally determine fleet deployment and how to move ships to their 

routes. It should be noted that most of the literature on the FDP (e.g., Tierney et al., 

2015; Kepaptsoglou et al., 2015; Zhen et al., 2019a) is based on homogeneous ships 

as this approximation simplifies the model and the analysis.  

However, this chapter considers heterogeneous ships and allows different types 

of ships to be deployed on the same route, which makes our problem more realistic 

because liner companies often operate different types of ships and deploy ships 
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according to transport needs. Thus, Table 3-1 mainly reviews papers that consider 

heterogeneous ships.  In addition, the majority of the reviewed works only consider 

deterministic issues. Even though a few papers consider uncertainty, they mainly use 

two-stage stochastic programming to deal with it. However, two-stage stochastic 

programming assumes that all information about uncertainty is realized after decisions 

on the first-stage problem are made, which may be outside some complex and realistic 

environments. In our problem, managers in liner companies usually only know the 

exact transport demand for one time period and probability distributions of demand 

for time periods immediately beyond decision time instead of knowing exact transport 

demands for all future time periods. Hence, to address the sequential realization of 

uncertainties, we use multistage stochastic programming in which uncertainty for a 

given stage is realized only after decisions of the previous stage are made. With regard 

to decision variables, the majority of reviewed works optimize cargo allocation, and a 

few consider other realistic issues, e.g., fleet repositioning and ship chartering. Hence, 

this chapter studies an integrated problem of fleet deployment, fleet repositioning, ship 

chartering, and demand fulfilment and allocation that allow container delay. Finally, 

few works offer exact algorithms for the proposed problem, but this study does. 

Besides, although some papers did not emphasize algorithmic design, they offered 

mathematical formulations such as novel MILP models by Wang and Meng (2012a), 

Ng (2014), and Ng (2017), as well as approximate solution approaches such as sample 

average approximation (SAA) by Wang et al. (2013). 

The second topic considered in the related works is the design of exact 

algorithms for maritime problems. Many existing papers on maritime shipping, e.g., 

Brouer et al. (2014), Tierney et al. (2015), Xia et al. (2015), and Wetzel and Tierney 

(2020), use heuristics to solve the problems. However, this chapter develops an exact 

algorithm, so this section compares some algorithmic features of several representative 

works that design exact algorithms for maritime-related problems. Table 3-2 

summarizes the comparison of exact algorithms proposed in the literature for 

maritime-related problems. Vis and Roodbergen (2009) studied a container terminal 

scheduling problem of container storage and retrieval and proposed a combination of 

the assignments in a bipartite network for parts and dynamic programming for the 

connections between these parts. Specifically, they used dynamic programming to 

determine the shortest tour and then designed a tailored algorithm to determine the 
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sequence of storage and retrieval requests. Engineer et al. (2012) developed a branch-

price-and-cut algorithm for a maritime inventory-routing problem.  

Table 3-1 Comparison with representative works on FDPs. 

Paper Fleet Model Num. of 
stages 

Decisions (besides deployment) Methodology 
Fleet 

repositioning 
Ship 

chartering 
Cargo 

allocation Others  

Wang and Meng 
(2012a) Hetero Deter N/A √ √ √ 

Slot-purchasing, 
empty container 

repositioning 
MILP 

Wang et al. 
(2013) Hetero Stoch Two  √ √ N/A SAA 

Ng (2014) Hetero Stoch Two  √  N/A MILP 

Tierney et al. 
(2015) Homo Deter N/A √  √ 

Speed, empty 
equipment 

repositioning 
Heuristic 

Xia et al. (2015) Hetero Deter N/A   √ Speed Heuristic 

Akyüz and Lee 
(2016) Hetero Deter N/A   √ 

Speed, empty 
container 

repositioning 
Exact 

Ng (2017) Hetero Deter N/A  √  N/A MILP 
Zhen et al. 

(2019a) 
Homo Stoch Two   √ Speed, berth, yard 

allocation 
Exact 

Wetzel and 
Tierney (2020) Hetero Deter N/A √ √ √ Speed Heuristic 

This paper Hetero Stoch Multi √ √ √ Container delay Exact 
Notes: (1) “Homo” and “Hetero” denote homogeneous and heterogeneous fleet 
deployment, respectively. (2) “Deter” and “Stoch” denote deterministic model and 
stochastic model considering uncertainty, respectively. (3) “MILP” and “SAA” denote 
mixed-integer linear programming model and sample average approximation, 
respectively. 

Dynamic programming is widely used to solve the mixed-integer pricing 

problem, and some acceleration strategies, including preprocessing, boundary 

constraints, and cuts (port capacity cuts, vessel capacity cuts, and timing cuts) are 

embedded in the algorithm. Akyüz and Lee (2016) embedded a column generation 

algorithm within the branch-and-bound algorithm to solve a simultaneous fleet 

deployment and container routing problem. They also applied a label-correcting 

algorithm to deal with the shortest path problem in the column generation 

subproblems. Xu and Lee (2018) developed an exact branch-and-bound algorithm for 

a continuous berth allocation problem. They obtained a new lower bound which they 

incorporated within a new heuristic adopting a best-fit strategy and new dominance 
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rules for pruning nodes to enhance the performance of the algorithm. Karsten et al. 

(2018) developed an exact algorithm based on Benders decomposition and column 

generation for a simultaneous optimization problem of ship sailing speed and container 

routing. They also incorporated warm start, valid inequalities, and callbacks within the 

algorithm. Wang et al. (2019) designed a branch-and-cut algorithm based on Benders 

decomposition for a single intercontinental service design problem. They added 

subtour elimination constraints, linear approximation, and valid cuts (symmetry cut, 

mixed integer knapsack cut, and Pareto-optimal Benders cuts) to the algorithm. Zhen 

et al. (2019a) designed a dynamic linearization algorithm for an integrated problem of 

fleet deployment and demand fulfillment. Wang and Meng (2020) used two 

decomposition methods (stage decomposition and scenario decomposition) to solve a 

mixed-integer programming model of a semi-liner shipping service design problem. 

Primal-dual acceleration and multiple-cut acceleration techniques were applied to 

enhance the performance of the algorithm. Lee et al. (2021) used a constraint 

generation approach with several pruning techniques for a two-stage robust 

optimization model in a liner service procurement problem with service schedules. In 

summary, the exact algorithm design in these papers is often based on two different 

methodologies to take advantage of their relative merits and supplemented by some 

acceleration techniques to improve the convergence of the algorithm.  

In summary, the prevailing trend in the FDP is to consider heterogeneous ships, 

and the majority of existing studies on the heterogeneous FDP have not considered 

uncertain issues. To the best of our knowledge, this chapter is the only one that 

formulated the problem as a multistage stochastic programming model. Besides, this 

chapter integrates some operational decisions which are usually ignored in the existing 

literature, e.g., fleet repositioning, ship chartering, demand fulfillment, cargo 

allocation, and cargo delay, into the FDP because fleet repositioning and ship 

chartering problems belong to medium- to long-term decisions, which have a direct 

impact on liner companies’ operations. Moreover, an exact algorithm based on 

Benders decomposition and branch-and-cut algorithms is developed to solve the 

proposed FDP. Two types of acceleration strategies, including approximate upper 

bound tightening inequalities and Pareto-optimal cuts, are applied to improve the 

performance of the proposed algorithm. 
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Table 3-2 Comparison on exact algorithms for solving maritime related problems. 

Paper 
Basic methodologies 

Other tactics Primal Secondary 
Vis and Roodbergen 

(2009) DP Tailored algorithm N/A 

Engineer et al. (2012) BPC DP Preprocessing, boundary 
constraints, cuts 

Akyüz and Lee (2016) Branch-and-bound CG Label-correcting algorithm 

Xu and Lee (2018) Branch-and-bound Best-fit heuristic New lower bound, new dominance 
rules 

Karsten et al. (2018) BD CG Warm start, valid inequalities, 
callbacks 

Wang et al. (2019) BD Branch-and-cut Subtour elimination cut, linear 
approximation cut, and valid cuts 

Zhen et al. (2019a) Dynamic 
linearization N/A N/A 

Wang and Meng 
(2020) 

Stage 
decomposition 

Scenario 
decomposition 

Primal-dual, multiple-cut 
acceleration 

Lee et al. (2021) Constraint 
generation N/A Pruning techniques 

This paper BD Branch-and-cut Inequalities, Pareto-optimal cuts 
Note: DP: dynamic programming, BPC: Branch-price-and-cut, BD: Benders 
decomposition, CG: Column generation. 

3.3 PROBLEM BACKGROUND 

This chapter is oriented toward liner operations management under uncertainty. 

From an academic perspective, a rigorous and complete title of the core problem in 

this chapter could be stated as a liner’s multi-period heterogeneous FDP in an uncertain 

shipping network considering fleet repositioning, ship chartering, demand fulfillment, 

and cargo allocation. Before presenting a mathematical formulation for the problem, 

the following sections elaborate on the detailed features from five standpoints: (1) the 

shipping network with uncertainty, (2) the model’s multistage feature for considering 

multi-period planning and multistage decision, (3) the heterogeneous fleet with 

different ship types, (4) the liner’s fleet repositioning decision, and (5) the ship 

chartering when there is a deficit or a surplus in some ship types. 

3.3.1 Shipping network with uncertainty 

As one of the most common modes in container transport services, weekly 

service for a ship route means that the headway between two adjacent ships serving 

the same ship route is seven days. Suppose a liner company operates a set 𝑅𝑅 of ship 

routes (services) that visit ports on a weekly shipping schedule to transport containers. 
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Figure 3-1 depicts an illustrative shipping network with three routes denoted by 𝑅𝑅 =

{1, 2, 3}. Each ship route has fixed port rotations, and the itinerary of each route forms 

a loop. To maintain a weekly service frequency, a fleet of ships instead of a single ship 

is generally deployed on each route in the service network. For example, it takes a ship 

three weeks to finish a round trip of ship route 2 in Figure 3-1 (a round trip is an 

itinerary of a ship route that forms a loop in practice), implying that a fleet of three 

ships is required to be deployed on route 2 to maintain a weekly service frequency. 

Then, denoting the number of ships deployed on route 𝑟𝑟 by 𝑛𝑛𝑟𝑟, it is easy to understand 

that the total time for a ship completing the travel along a round trip of the route is 7𝑛𝑛𝑟𝑟 

days. One fact that needs to be emphasized is that container ships visit ports of call 

weekly. In this case, the minimum decision-making time unit for liner companies is 

one week. Here, notice that the “weekly schedule for ships” is not an assumption but 

a practice. However, travel times are not affected by the weekly service frequency, so 

travel times required for each voyage leg do not need to be more than a week, and we 

only need to know in which week the ships visit the port. Secondly, the “time period” 

considered in this chapter is actually used to indicate the decision-making time points. 

That is, liner companies make decisions at the beginning of time period 0, 1, amongst 

others, but do not make decisions at other time points. Therefore, this chapter does 

allow the model to incorporate a voyage leg if its travel time is shorter than a week. 

Tokyo
(TY8)Kobe

(KOB)

Shanghai
(SHA)
Ningbo
(NTB)

Shekou
(SKU)

Hong Kong
(HKG)

Laem Chabang
(LCB)

Singapore
(SIN)

Ho Chi Minh City
(SGN)

Nhava Sheva
(NS9)

Colombo
(CMB)

Dammam
(DAM)

Karachi
(KHI)

Jebel Ali
(JEB)

Ship route 1: SIN->KHI->NS9->CMB->SIN

Ship route 3: SHA->NTB->HKG->SKU->SIN->JEB->DAM->PKH->SIN->SKU->SHA

Ship route 2: TY8->KOB->HKG->LCB->SGN->HKG->TYB

Port Klang
(PKG)

 

Figure 3-1 Example of a shipping network with three routes. 

The liner company that operates the above shipping network earns revenue by 

transporting containers between each O-D pair indexed by (𝑜𝑜,𝑑𝑑), and the set of all O-

D pairs is denoted by 𝐷𝐷. For each O-D pair, the liner company decides the number of 

containers to accept, which determines the corresponding revenue. In a period, liner 

company may accept more containers than it can transport as, e.g., it anticipates low 
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demand in subsequent periods. As a result, some container shipments are delayed and 

the company incurs a penalty cost. 

Over a long planning horizon, container shipment demand constantly fluctuates 

instead of staying the same across different periods. For example, affected by the 

abrupt outbreak of COVID-19, the demand for face masks surged. Hence, considering 

a shipping network under container shipment demand uncertainty brings our problem 

closer to reality. In order to deal with this uncertainty, stochastic programming is 

utilized for the formulation of the problem. As is usual in stochastic programming 

formulations (Dong et al., 2015), uncertainty is represented by a finite set of scenarios, 

and each of which is composed of collective random outcomes for the demand of 

containers. 

3.3.2 Multi-period planning and multistage decision 

As a strategic decision, multi-period heterogeneous fleet deployment is often 

determined for a long planning horizon. Therefore, the external and internal 

environment inevitably changes under uncertainty, and managers in liner companies 

tend to divide the planning horizon into shorter time periods to depict the uncertainty 

at different periods. Whereas the decisions between adjacent time periods are also 

correlated, some postponed transport demands in one time period need to be fulfilled 

in the future time period. An example with two ship routes is shown in Figure 3-2. In 

order to maintain the weekly arrival pattern, three ships and two ships are deployed on 

ship routes 1 and 2, respectively. After the transport demand for one time period is 

realized, the liner company needs to determine the number of accepted containers to 

maximize the profit earned. However, some accepted containers may be postponed 

because of the capacity constraints, resulting in the corresponding penalty cost. This 

chapter allows containers to be delayed for multiple periods until the end of the 

planning horizon, which means that these delayed containers need to be shipped in or 

before the last time period of the planning period. Hence, how to determine the 

numbers of accepted, shipped, and delayed containers in each period to maximize the 

total profit is considered in this chapter.  
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Legend

Ship 2 Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8 Period 9

Ship 1 Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8 Period 9

Ship 3 Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8 Period 9

Route 1

Ship 2 Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8 Period 9

Ship 1 Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8 Period 9

Route 2

Accepted containers for O-D pair demand in 
period 8

Shipped containers for O-D pair demand in 
period 7 (i.e., delayed containers in period 7)
Shipped containers for O-D pair demand in 
period 8

Delayed containers for O-D pair demand in 
period 8 (will be shipped in period 9)

Period 8

Shipped containers accepted in previous periods

Shipped container accepted in this period 

Delayed containers to subsequent periods

Accepted containers in this period

 

Figure 3-2 Multi-period container cargo fulfillment and allocation planning for one 
O-D pair. 

Two-stage stochastic programming based on discrete probability distributions is 

widely adopted to tackle uncertain shipment demands. However, multistage stochastic 

programming may be more suitable to reflect the uncertain environment in this 

problem. The main difference between two-stage and multistage programming is 

demonstrated in Figure 3-3. Two-stage stochastic programming assumes that all 

information about uncertainty is realized after decisions of the first-stage problem have 

been made, which is not in line with our problem. In our problem, managers in liner 

companies usually only know the exact transport demand for one time period and 

probability distributions of demand in the time periods immediately following the 

moment of their decision instead of knowing the exact transport demand for all future 

time periods. Hence, we use multistage stochastic programming in which uncertainty 

for a given stage is realized only after the decision of the previous stage has been made.  

Two-stage case

Period 0
Actual demands for the entire planning horizon

Fleet deployment
Period 1 Period 2 Period 3

Demand fulfillment and cargo allocationPlan:

Multistage case

Period 0

Actual demands 
for period 1

Stage 2Stage 1

Fleet deployment
Period 1 Period 2 Period 3

Demand fulfillment and cargo allocationPlan:

Actual demands 
for period 2

Stage 3
Actual demands 

for period 3

Stage 4Stage 2Stage 1

 

Figure 3-3 Difference between two-stage and multistage cases. 

The specific difference between two-stage and multistage problems and the 

method of constructing scenarios for them are elaborated in Section 3.4.1. More 

explanations about Figure 3-3 are described below. Here, notice that stage 1 

corresponds to period 0, and each of periods 1, 2,⋯ corresponds to one week. But stage 
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1 (i.e., period 0) is regarded as a few weeks before stage 2 (i.e., period 1) because liner 

companies usually design shipping services and advertise them for booking several 

months in advance (Maersk, 2022). Hence, fleet deployment decisions (including 

available ships of different types on all ship routes in the network, the sailing sequence 

of these deployed ships, and the numbers of charter-in and charter-out ships when there 

is a deficit or a surplus in some ship types) are determined only in the first stage (which 

is also period 0). At the end of period 0, all deployed ships including repositioned ships 

should be in place. In the following stages (i.e., from period 1), when the container 

shipment demands become realized, the model determines the numbers of accepted, 

delayed and shipped containers for each O-D pair in each time period under each 

scenario. 

3.3.3 Heterogeneous ship fleets 

A liner company usually owns heterogeneous ship fleets and therefore deploys 

different types of ships on each ship route (service). Hence, not restricting the 

deployment of the same type of ships on a ship route makes our problem more realistic. 

Moreover, many previous papers (e.g., Tierney et al., 2015; Kepaptsoglou et al., 2015; 

Zhen et al., 2019a) related to fleet deployment assume that deployed ships are 

homogenous on each route in terms of the capacity and cost structure, whereas this 

assumption does not always hold in practice because ships do not have the same 

capacity or cost (Wang, 2015). Besides, deploying heterogeneous ship fleets and 

homogenous ship fleets on a certain route can affect the transport capacity of the route. 

This effect and the container shipment demand uncertainty on a temporal dimension 

aggravate the gap between transport capacity and shipment demand. Hence, 

heterogeneous ship fleets are considered in this chapter, which is also in line with the 

setting in some existing papers (Wang, 2015).  

This chapter classifies ship fleets into different ship types. We consider a set 𝐾𝐾 

of available ship types indexed by 𝑘𝑘 and categorized by their load capacities and costs. 

We use the example from Figure 3-1 to discuss the ship types. Suppose the liner 

company owns several ships and deploys two 4000-TEU ships, three 8000-TEU ships, 

and four 4000-TEU ships on ship routes 1, 2, and 3, respectively, and one 4000-TEU 

ship owned by other shipping liners is idle at the Port of Singapore; hence, the set of 

all available types is 𝐾𝐾 = {type 1 = 4000- TEU ship, type 2 = 8000- TEU ship} . 

Moreover, since the liner company normally operates a fleet of heterogeneous ships 
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on a given route, the specific sailing sequence of these ships is also important. The 

sailing sequence of heterogeneous ships on the route directly affects the transport 

capacity of each round trip of the route, which further restricts the transport demand 

fulfillment and the allocation of containers and influences the revenue of the company. 

3.3.4 Fleet repositioning 

The shipping industry operates in a competitive and dynamic environment where 

liner companies may adjust their shipping networks several times a year. By adjusting 

services in their networks, these liner companies may adapt to container shipment 

demand changes caused by seasonal variations, the COVID-19 pandemic, or other 

economic trends. To this end, liner companies generally add, remove or modify 

services from their networks, which inevitably requires reassignments of ships 

between different services of the company, namely, the FRP.  

If a ship that used to serve a specific route is rescheduled to serve another route, 

then a repositioning cost caused by fuel consumption and lost revenue is needed. 

Repositioning a single ship can cost hundreds of thousands of US dollars (Tierney et 

al., 2015). Figure 3-4 shows an example of fleet repositioning. In Figure 3-4, the ship 

repositions from a phase-out service (dotted black line) to a phase-in service (dashed 

orange line). The repositioning path is represented by a solid green line. The figure 

shows that the phase-out happens in the Port of Singapore (SIN). After the phase-out, 

the ship sails to the Port of Ho Chi Minh City (SGN) and phases into the goal service, 

which results in a high repositioning cost. Although repositioning ships is an expensive 

activity due to potential losses in revenue and high fuel costs, rational fleet 

repositioning enables the networks to adapt to the global economy and remain 

competitive. Hence, optimizing how to reposition ships is of particular interest to the 

liner shipping industry. 

Laem Chabang
(LCB)

Singapore
(SIN)

Ho Chi Minh City
(SGN)

Colombo
(CMB)

Original  route

Repositioning path
Goal  route

 

Figure 3-4 Fleet repositioning from an original route to a goal route. 
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3.3.5 Ship chartering 

With regard to maritime cargo transport, ship chartering is one of the most 

commonly used methods. In order to take part in the seaborne trade, liner companies 

have to make significant investments in ships. However, not all liner companies have 

enough ships to meet the adjustment need of their shipping networks because the 

investment capital of container ships is extremely large. For this reason, liner 

companies may prefer to charter ships from other shipping liners rather than purchase 

new ships to cope with the increased container volume. Besides, when there is a 

surplus in some ship types, liner companies wish to charter out idle ships to other 

companies. It is, therefore, necessary to consider the FRP that allows ship chartering. 

To explain the heterogeneous FRP with chartering more clearly, we use the 

example in Section 3.3.3 to characterize the repositioning of ships. Let 𝐻𝐻 represent the 

set of all ship groups owned by the liner company and other shipping liners. Here, 

notice that ships in the same group are of the same ship type. And let 𝐻𝐻1  and 𝐻𝐻2 

represent the subsets of ship groups owned by the liner company and other shipping 

liners, respectively. Hence, 𝐻𝐻1 has three groups, i.e., 𝐻𝐻1 = {ℎ1, ℎ2,ℎ3}, which are the 

4000-TEU ships on route 1, 8000-TEU ships on route 2, and 4000-TEU ships on  route 

3; 𝐻𝐻2 has only one group, i.e., 𝐻𝐻2 = {ℎ4}, which is the 4000-TEU ship idle at the Port 

of Singapore. Let 𝑓𝑓ℎ𝑟𝑟 denote the repositioning cost for a ship in group ℎ to route 𝑟𝑟. 

Obviously, a reasonable fleet repositioning plan can greatly reduce the rescheduling 

cost. 

3.3.6 Summary of the problem 

Before formulating the mathematical model for this problem, we make the 

following assumption. Both the number of containers to be transported and the number 

of ships to sail on a service to achieve a weekly frequency are defined in weekly terms, 

which follows industry practice (most liner services have a weekly frequency) and 

related studies (Xia et al., 2015). 

In sum, the shipping network operated by a global liner company should be 

designed in response to the global economic trends and changes in cargo volumes. 

Liner companies, therefore, have to regularly adjust their service networks to remain 

competitive, thereby requiring liner companies reoperate ship fleets during the 

planning horizon. To deal with these complex and intertwined decisions, this chapter 
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investigates a liner’s multi-period heterogeneous FDP in an uncertain shipping 

network considering fleet repositioning, ship chartering, demand fulfillment, and 

cargo allocation, which involves the first-stage decisions of determining the number 

of ships from each group deployed on all ship routes, the number of ships of different 

types deployed on each route, the number of ships of different types chartered in and 

out, and the ship type selected for each round trip on all routes, and the decisions in 

the following stages of determining the numbers of accepted, delayed, and shipped 

containers for all O-D pairs in each time period. The objective of the problem is to 

maximize the expected total net profit earned by the liner company during the planning 

horizon, which consists of five terms: the expected operational revenue, the operating 

cost of all deployed ships, the ship repositioning cost, the rental cost of charter-in ships, 

and the total revenue of charter-out ships. Sections 3.4 and 3.5 elaborate on the 

mathematical model for the problem and an exact algorithm for solving it, respectively. 

3.4 MODEL FORMULATION 

This section presents a multistage stochastic MILP model for the problem. 

Nonanticipativity constraints, which are a very important part of a multistage 

stochastic programming model, are first elaborated before formulating the model. 

3.4.1 Multistage stochastic programming with nonanticipativity constraints  

As explained in Section 3.3.2, two-stage stochastic programming assumes that 

all information about uncertainty in the whole planning horizon (multiple time periods) 

is realized after the decisions of the first-stage problem have been made, whereas 

multistage stochastic programming considers that uncertainty for a given time period 

(stage) is only realized after decisions of the previous time period (stage) have been 

made. It should be noted that stage 1 corresponds to period 0, in which fleet 

deployment is determined; the decisions in the planning horizon from period 1 to the 

last period are about operational-level plans for transport demand fulfillment and 

allocation. 

As an intuitive representation of the branching process induced by the gradual 

observation of the stochastic progress, a scenario tree is usually used to construct 

scenarios in multistage problems. The left part of Figure 3-5 depicts an example with 

four periods and 10 scenarios to illustrate the scenario tree. One artificial root node, 

i.e., node 0, is in period 0, in which fleet deployment is determined. Three nodes (i.e., 
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nodes 1–3) are in period 1. In period 2, four different realizations of uncertain 

demands, represented by nodes 4–7, become known. The above branching process 

goes on till the last period, i.e., period 3, where the outcome related to each leaf node 

in the last period in a unique path from the root to a leaf corresponds to a scenario, 

which results in a total of 10 scenarios. Hence, it is obvious that a scenario in a 

multistage stochastic programming model is a path from the root node to a leaf node. 

For multistage problems, nonanticipativity constraints must be added to ensure that the 

decisions in a certain period depend only on the data revealed up to that period but not 

on the information which will be realized in the future (Adulyasak et al., 2015). In 

other words, the decisions in a period of two different scenarios should be identical if 

the two scenarios share the same parent node in the scenario tree during the period. 

Here, let 𝒚𝒚𝑡𝑡,𝑠𝑠  represent decision variables that need be decided in period 𝑡𝑡  under 

scenario 𝑠𝑠 . For the example of the left part of Figure 3-5, the nonanticipativity 

constraints for periods 1–3 are summarized in the right part of Figure 3-5. 
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Period 2

876321Scenarios
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14 151398
54

2

5
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3

7
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10 11 12 16 17

0Period 0

Period 1

Nonanticipativity constraints

y1,1=y1,2=y1,3;  y1,4=y1,5=y1,6=y1,7=y1,8;  y1,9=y1,10

y2,1=y2,2=y2,3;  y2,4=y2,5;  y2,6=y2,7=y2,8;  y2,9=y2,10

 
Figure 3-5 Illustration of a scenario tree and nonanticipativity constraints for 

multistage programming. 

3.4.2 Mathematical model 

A multistage stochastic programming model is formulated for this problem. 

Sets and Indices: 

𝑅𝑅: set of ship routes in the shipping network, 𝑟𝑟 ∈ 𝑅𝑅. 

𝐾𝐾: set of available ship types, 𝑘𝑘 ∈ 𝐾𝐾.  

𝑅𝑅𝑘𝑘: subset of routes on which ships of type 𝑘𝑘 can be deployed, 𝑅𝑅𝑘𝑘 ⊂ 𝑅𝑅. 

𝐾𝐾𝑟𝑟: subset of ship types that can be deployed on route 𝑟𝑟, 𝐾𝐾𝑟𝑟 ⊂ 𝐾𝐾.  

𝐻𝐻: set of all ship groups owned by the liner company and other shipping liners, ℎ ∈ 𝐻𝐻; 

ships in the same group are of the same ship type.  

𝐻𝐻1: subset of ship groups owned by the liner company, 𝐻𝐻1 ⊂ 𝐻𝐻. 

𝐻𝐻2: subset of ship groups owned by other shipping liners, 𝐻𝐻2 ⊂ 𝐻𝐻. 
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𝐷𝐷: set of all O-D pairs of ports that are traversed by all routes in the shipping network, 

(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷. 

𝑇𝑇: set of time periods of the planning horizon starting from period 1, 𝑡𝑡 ∈ 𝑇𝑇. 

𝐸𝐸𝑟𝑟: set of round trips that are operated on route 𝑟𝑟 during the planning horizon, 𝑒𝑒 ∈ 𝐸𝐸𝑟𝑟. 

𝐼𝐼𝑟𝑟: set of voyage legs of route 𝑟𝑟, 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟. 

𝑆𝑆: set of scenarios, 𝑠𝑠 ∈ 𝑆𝑆.  

𝑍𝑍+: set of non-negative integers. 

Parameters: 

𝑛𝑛𝑟𝑟: number of ships deployed on ship route 𝑟𝑟 ∈ 𝑅𝑅, which equals the number of periods 

to traverse the ship route by a deployed ship. 

𝑣𝑣𝑘𝑘: number of containers that can be carried by a ship of type 𝑘𝑘, which is the capacity 

of ships of type 𝑘𝑘. 

𝑓𝑓ℎ,𝑟𝑟: repositioning cost for a ship in group ℎ ∈ 𝐻𝐻 to route 𝑟𝑟 ∈ 𝑅𝑅. 

𝑢𝑢ℎ: number of ships in group ℎ ∈ 𝐻𝐻. 

𝑦𝑦ℎ: ship type of ships in group ℎ ∈ 𝐻𝐻.  

𝑐𝑐𝑘𝑘,𝑟𝑟: operating cost of completing the voyages during the planning horizon by a ship 

of type 𝑘𝑘 deployed on route 𝑟𝑟. 

𝑔𝑔𝑘𝑘: rental cost of chartering in a ship of type 𝑘𝑘 from other shipping liners. 

𝑚𝑚𝑘𝑘: revenue of chartering out a ship of type 𝑘𝑘 to other shipping liners, 𝑚𝑚𝑘𝑘 < 𝑔𝑔𝑘𝑘. 

𝑞𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 : newly generated container shipment demand (number of containers) in period 𝑡𝑡 

at port 𝑜𝑜 to be transported to port 𝑑𝑑 under scenario 𝑠𝑠. 

𝑙𝑙𝑜𝑜,𝑑𝑑: revenue generated by each accepted container for a specific O-D pair (𝑜𝑜,𝑑𝑑). 

𝑝𝑝𝑜𝑜,𝑑𝑑: penalty cost per period incurred by each delayed container for a specific O-D pair 

(𝑜𝑜,𝑑𝑑). 

𝑗𝑗𝑟𝑟,𝑒𝑒: index (i.e., sequence position in {1, … ,𝑛𝑛𝑟𝑟}) of the ship that operates the 𝑒𝑒th round 

trip of route 𝑟𝑟. 
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𝑎𝑎𝑟𝑟,𝑒𝑒,𝑖𝑖,𝑜𝑜,𝑑𝑑,𝑡𝑡 : binary, if O-D pair (𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷 demands to be shipped in period 𝑡𝑡 ∈ 𝑇𝑇 at 

origin port 𝑜𝑜 will be carried by a ship on voyage leg 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟 by 𝑒𝑒th round trip on route 

𝑟𝑟, it equals 1; otherwise it equals 0.  

𝑤𝑤𝑠𝑠: probability of scenario 𝑠𝑠. 

𝑏𝑏𝑡𝑡𝑠𝑠: index of node in the scenario tree at period 𝑡𝑡 related to scenario 𝑠𝑠.  

Decision variables: 

𝛼𝛼ℎ,𝑟𝑟: integer, number of ships from group ℎ ∈ 𝐻𝐻 deployed on route 𝑟𝑟 ∈ 𝑅𝑅. 

𝛽𝛽𝑘𝑘,𝑟𝑟: integer, number of ships of type 𝑘𝑘 ∈ 𝐾𝐾𝑟𝑟 deployed on route 𝑟𝑟 ∈ 𝑅𝑅. 

𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗: binary, if a ship of type 𝑘𝑘 ∈ 𝐾𝐾𝑟𝑟 is deployed on the 𝑗𝑗th (𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑟𝑟}) sequence 

position of route 𝑟𝑟 ∈ 𝑅𝑅 (i.e., the 𝑗𝑗th ship on route 𝑟𝑟 belongs to type 𝑘𝑘), it equals 1; 

otherwise it equals 0. 

𝜃𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 : continuous, number of accepted containers for the demand of O-D pair (𝑜𝑜,𝑑𝑑) ∈

𝐷𝐷 accumulated in period 𝑡𝑡 ∈ 𝑇𝑇 under scenario 𝑠𝑠. 

𝜑𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 : continuous, number of delayed containers for the demand of O-D pair (𝑜𝑜,𝑑𝑑) ∈

𝐷𝐷 up to period 𝑡𝑡 ∈ 𝑇𝑇 ∪ {0} under scenario 𝑠𝑠, where by convention, 𝜑𝜑𝑜𝑜,𝑑𝑑,0
𝑠𝑠 ∶= 0. 

𝜀𝜀𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 : continuous, number of shipped containers by deployed regular ships in the first 

stage for the demand of O-D pair (𝑜𝑜,𝑑𝑑) in period 𝑡𝑡 (including both those accepted in 

period 𝑡𝑡 and the delayed containers in previous periods) under scenario 𝑠𝑠. 

𝜃𝜃�𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑏𝑏𝑡𝑡
𝑠𝑠

: continuous, variable 𝜃𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠  related to node 𝑏𝑏𝑡𝑡𝑠𝑠. 

𝜑𝜑�𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑏𝑏𝑡𝑡
𝑠𝑠

: continuous, variable 𝜑𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠  related to node 𝑏𝑏𝑡𝑡𝑠𝑠. 

𝜀𝜀𝑜̃𝑜,𝑑𝑑,𝑡𝑡
𝑏𝑏𝑡𝑡
𝑠𝑠

: continuous, variable 𝜀𝜀𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠  related to node 𝑏𝑏𝑡𝑡𝑠𝑠. 

Since this problem is a multistage problem, we need to make the decisions of 

stage 𝑡𝑡 without knowing demands of future periods. Readers who are interested in more 

detailed description about multistage stochastic programming with recourse can refer 

to Birge and Louveaux (2011). According to the notation introduced, a multistage 

stochastic programming model is formulated as follows: 
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[M3-1] 

𝑍𝑍1 = Max ∑ 𝑤𝑤𝑠𝑠
𝑠𝑠∈𝑆𝑆 ∑ ∑ (𝑡𝑡∈𝑇𝑇 (𝑜𝑜,𝑑𝑑)∈𝐷𝐷 𝑙𝑙𝑜𝑜,𝑑𝑑𝜃𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡

𝑠𝑠 − 𝑝𝑝𝑜𝑜,𝑑𝑑𝜑𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ) − ∑ ∑ 𝑓𝑓ℎ,𝑟𝑟𝛼𝛼ℎ,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑦𝑦ℎℎ∈𝐻𝐻 −  

∑ ∑ 𝑐𝑐𝑘𝑘,𝑟𝑟𝛽𝛽𝑘𝑘,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑘𝑘 𝑘𝑘∈𝐾𝐾 − ∑ ∑ 𝑔𝑔𝑦𝑦ℎ𝛼𝛼ℎ,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑦𝑦ℎℎ∈𝐻𝐻2 + ∑ 𝑚𝑚𝑦𝑦ℎ(𝑢𝑢ℎ − ∑ 𝛼𝛼ℎ,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑦𝑦ℎ
)ℎ∈𝐻𝐻1   (3-1) 

subject to  

𝛽𝛽𝑘𝑘,𝑟𝑟 = ∑ 𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗𝑗𝑗∈{1,…,𝑛𝑛𝑟𝑟}    ∀𝑘𝑘 ∈ 𝐾𝐾, 𝑟𝑟 ∈ 𝑅𝑅𝑘𝑘   (3-2) 

∑ 𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗𝑘𝑘∈𝐾𝐾𝑟𝑟 = 1  ∀ 𝑟𝑟 ∈ 𝑅𝑅, 𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑟𝑟}  (3-3) 

∑ 𝛼𝛼ℎ,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑦𝑦ℎ
≤ 𝑢𝑢ℎ  ∀ ℎ ∈ 𝐻𝐻  (3-4) 

∑ 𝛼𝛼ℎ,𝑟𝑟ℎ∈𝐻𝐻,𝑦𝑦ℎ=𝑘𝑘 = 𝛽𝛽𝑘𝑘,𝑟𝑟  ∀𝑘𝑘 ∈ 𝐾𝐾, 𝑟𝑟 ∈ 𝑅𝑅𝑘𝑘  (3-5) 

𝜃𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 + 𝜑𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡−1

𝑠𝑠 = 𝜀𝜀𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 + 𝜑𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡

𝑠𝑠   ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇  (3-6) 

∑ ∑ 𝑎𝑎𝑟𝑟,𝑒𝑒,𝑖𝑖,𝑜𝑜,𝑑𝑑,𝑡𝑡𝑡𝑡∈𝑇𝑇(𝑜𝑜,𝑑𝑑)∈𝐷𝐷 𝜀𝜀𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ≤ ∑ 𝑣𝑣𝑘𝑘𝑘𝑘∈𝐾𝐾𝑟𝑟 𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗𝑟𝑟𝑟𝑟  ∀ 𝑟𝑟 ∈ 𝑅𝑅, 𝑒𝑒 ∈ 𝐸𝐸𝑟𝑟 , 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟 , 𝑠𝑠 ∈ 𝑆𝑆  (3-7) 

𝜃𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ≤ 𝑞𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡

𝑠𝑠   ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇  (3-8) 

𝜑𝜑𝑜𝑜,𝑑𝑑,0
𝑠𝑠 = 0  ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑠𝑠 ∈ 𝑆𝑆  (3-9) 

𝜑𝜑𝑜𝑜,𝑑𝑑,|𝑇𝑇|
𝑠𝑠 = 0  ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑠𝑠 ∈ 𝑆𝑆  (3-10) 

𝜃𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 = 𝜃𝜃�𝑜𝑜,𝑑𝑑,𝑡𝑡

𝑏𝑏𝑡𝑡
𝑠𝑠

  ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇  (3-11) 

𝜀𝜀𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 = 𝜀𝜀𝑜̃𝑜,𝑑𝑑,𝑡𝑡

𝑏𝑏𝑡𝑡
𝑠𝑠

  ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇  (3-12) 

𝜑𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 = 𝜑𝜑�𝑜𝑜,𝑑𝑑,𝑡𝑡

𝑏𝑏𝑡𝑡
𝑠𝑠

  ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇 ∪ {0}  (3-13) 

𝛼𝛼ℎ,𝑟𝑟 ∈ 𝑍𝑍+  ∀ ℎ ∈ 𝐻𝐻, 𝑟𝑟 ∈ 𝑅𝑅𝑦𝑦ℎ  (3-14) 

𝛽𝛽𝑘𝑘,𝑟𝑟 ∈ 𝑍𝑍+  ∀𝑘𝑘 ∈ 𝐾𝐾, 𝑟𝑟 ∈ 𝑅𝑅𝑘𝑘  (3-15) 

𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗 ∈ {0,1}  ∀𝑘𝑘 ∈ 𝐾𝐾, 𝑟𝑟 ∈ 𝑅𝑅𝑘𝑘, 𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑟𝑟}  (3-16) 
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𝜃𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ≥ 0, 𝜀𝜀𝑜𝑜,𝑑𝑑,𝑡𝑡

𝑠𝑠 ≥ 0, 𝜃𝜃�𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑏𝑏𝑡𝑡
𝑠𝑠

≥ 0, 𝜀𝜀𝑜̃𝑜,𝑑𝑑,𝑡𝑡
𝑏𝑏𝑡𝑡
𝑠𝑠

≥ 0  ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇  (3-17) 

𝜑𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ≥ 0, 𝜑𝜑�𝑜𝑜,𝑑𝑑,𝑡𝑡

𝑏𝑏𝑡𝑡
𝑠𝑠

≥ 0  ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇 ∪ {0}.  (3-18) 

Objective function (3-1) maximizes the expected net profit earned by the liner 

company during the planning horizon, which contains five terms. The first term is the 

expected operational revenue, which is measured by the total revenue obtained by 

accepting containers between O-D pairs minus the penalty cost of delay container 

delivery. The second term is the ship repositioning cost. The third term denotes the 

operating cost of all deployed ships during the planning horizon. The fourth and fifth 

terms are the rental cost of charter-in ships and the revenue of charter-out ships, 

respectively. Here, notice that ∑ ∑ 𝛼𝛼ℎ,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑦𝑦ℎℎ∈𝐻𝐻2  calculates the number of ships 

chartered (in) from other shipping liners, and ∑ (𝑢𝑢ℎ − ∑ 𝛼𝛼ℎ,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑦𝑦ℎ
)ℎ∈𝐻𝐻1  is the number 

of ships chartered (out) to other shipping liners.  

Several points need to be noted before explaining the constraints of this model. 

First, we allow one ship to complete multiple round trips during the planning horizon. 

Assume that the planning horizon contains three time periods, a ship is performing a 

route of Shanghai-Singapore-Shanghai from period 1, and the sailing time of each 

voyage leg is one time period, then the ship takes two time periods to finish a round trip 

of the route. Hence, the total net profit earned by this ship during three time periods 

contains the net profit of the ship during three voyage legs, i.e., Shanghai-Singapore, 

Singapore-Shanghai, and Shanghai-Singapore. Besides, constraints (3-7) guarantee the 

transport capacity of each deployed ship of each round trip because we only add the 

shipped demand of one round trip every time. Since we have a binary parameter 

𝑎𝑎𝑟𝑟,𝑒𝑒,𝑖𝑖,𝑜𝑜,𝑑𝑑,𝑡𝑡 which equals 1 if containers between O-D pair (𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷 to be shipped in 

period 𝑡𝑡 ∈ 𝑇𝑇 at origin port 𝑜𝑜 will be carried by a ship on voyage leg 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟 by 𝑒𝑒th round 

trip on route 𝑟𝑟 and equals 0 otherwise, constraints (3-7) guarantee that for each route 

𝑟𝑟 ∈ 𝑅𝑅 in the shipping network, the number of shipped containers on voyage leg 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟 

of round trip 𝑒𝑒 ∈ 𝐸𝐸𝑟𝑟  under scenario 𝑠𝑠  cannot exceed the capacity of the 𝑗𝑗𝑟𝑟𝑟𝑟th  ship 

deployed on the route 𝑟𝑟. Second, it should be noted that the total cost of chartering in a 

ship contains two parts: the first part is the rental cost of the charter-in ship, which often 

depends only on the capacity of the ship chartered in, and is calculated in the fourth 

term of the objective; the other part is the repositioning cost of the charter-in ship, which 
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is related to the group to which the charter-in ship belongs and to the service it will be 

deployed on, and is calculated in the second term of the objective. Finally, since the 

objective function of this model is to maximize the total net profit earned by the liner 

company, only the revenue of chartering out ships is considered, i.e., the repositioning 

cost of charter-out ships is ignored as it is paid by the shipping liners to which the ships 

are chartered out, when dealing with the revenue of chartering out a ship. 

Constraints (3-2) compute the number of ships of type 𝑘𝑘 deployed on each route 

𝑟𝑟. Constraints (3-3) guarantee that at each sequence position 𝑗𝑗 of route 𝑟𝑟, the deployed 

ships must belong to only one type. Constraints (3-4) require that the total number of 

used ships on all routes from each ship group cannot exceed the total number of ships 

available in the group. Constraints (3-5) mean that the total number of used ships 

deployed on route 𝑟𝑟 from all ship groups of type 𝑘𝑘 equals the number of ships of type 

𝑘𝑘 deployed on route 𝑟𝑟. Constraints (3-6) are the balance equations for the numbers of 

accepted, delayed, and shipped containers, between each O-D pair (𝑜𝑜,𝑑𝑑) in each time 

period 𝑡𝑡 ∈ 𝑇𝑇 under each scenario 𝑠𝑠. Constraints (3-7) guarantee that for each route 𝑟𝑟 ∈

𝑅𝑅 in the shipping network, the number of shipped containers on voyage leg 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟 of 

round trip 𝑒𝑒 ∈ 𝐸𝐸𝑟𝑟 cannot exceed the capacity of the 𝑗𝑗𝑟𝑟𝑟𝑟th ship deployed on the route 𝑟𝑟 

under scenario 𝑠𝑠. More explanation about constraints (3-7) is described below. We need 

to emphasize the definition of round trip 𝑒𝑒. Since a round trip is a ship’s itinerary of a 

ship route that forms a loop in practice, we use round trip 𝑒𝑒 to represent the round trip 

operated from time period 𝑡𝑡, which means round trip 3 is the one completed by the ship 

starting from time period 3. In this case, the left-hand side of constraints (3-7) only adds 

the shipped demand in the period 𝑡𝑡 concerning all O-D pairs carried by a ship on leg 𝑖𝑖 

by 𝑒𝑒th  round trip on route 𝑟𝑟 under scenario 𝑠𝑠 because of the existence of parameter 

𝑎𝑎𝑟𝑟,𝑒𝑒,𝑖𝑖,𝑜𝑜,𝑑𝑑,𝑡𝑡 (i.e., the total number of shipped containers carried by a ship on leg 𝑖𝑖 by 𝑒𝑒th 

round trip on route 𝑟𝑟 under scenario 𝑠𝑠). Moreover, the right-hand side of constraints (3-

7) is the capacity of the deployed ship corresponding to the particular round trip. 

Constraints (3-8) state that the number of accepted containers cannot exceed the demand 

under scenario 𝑠𝑠. Constraints (3-9) and (3-10) are the boundary conditions of 𝜑𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠  

when  𝑡𝑡  equals 0  and |𝑇𝑇| , respectively. Specifically, constraints (3-9) mean that no 

containers are delayed before the start of the business for the O-D pair, and constraints 

(10) guarantee that all accepted containers should be shipped before the end of the 

planning horizon. Constraints (3-11)–(3-13) define nonanticipativity constraints of 
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multistage stochastic programming. Constraints (3-14)–(3-18) define the domains of 

decision variables.  

Proposition 1. The decision version of this problem is NP-complete. 

Proof. This chapter first initializes the decision version of a 0–1 Knapsack problem as 

follows. Given set 𝑁𝑁 = {1, 2, … ,𝑛𝑛}, integers 𝑊𝑊, 𝐾𝐾, 𝑐𝑐𝑟𝑟 , and 𝑤𝑤𝑟𝑟 , for every 𝑟𝑟 ∈ 𝑁𝑁, is 

there a subset 𝑆𝑆 , 𝑆𝑆 ⊆ 𝑁𝑁 , such that ∑ 𝑤𝑤𝑟𝑟𝑟𝑟∈𝑆𝑆 ≤ 𝑊𝑊  and ∑ 𝑐𝑐𝑟𝑟𝑟𝑟∈𝑆𝑆 ≥ 𝐾𝐾 . The above 0–1 

Knapsack problem is one of the known NP-complete problems. This chapter then 

reduces the knapsack problem to our problem to show that the decision version of our 

problem is NP-complete. The decision version of our problem is in NP, which means 

given a set of operated ship routes and container flows, it can be decided in polynomial 

time whether the total profit generated is greater than a given constant 𝐾𝐾. This chapter 

now proves that the decision version of our problem is NP-hard. Our problem is 

initialized as a problem with a liner service network with |𝑅𝑅| ship routes, all of which 

connect ports 𝑎𝑎 and 𝑏𝑏. Suppose the weekly demand from ports 𝑎𝑎 to 𝑏𝑏 is constant and 

denoted by 𝐷𝐷 . The set 𝑇𝑇  of planning periods has only one period and hence all 

container shipment demand must be fulfilled. Each route 𝑟𝑟 , 𝑟𝑟 ∈ 𝑅𝑅 , has only two 

available ship types, a type of larger ship with capacity 𝑉𝑉𝑟𝑟𝐿𝐿 and a type of smaller ship 

with capacity 𝑉𝑉𝑟𝑟𝑆𝑆 (but the two ship types on different routes are different), 𝑉𝑉𝑟𝑟𝐿𝐿 > 𝑉𝑉𝑟𝑟𝑆𝑆, 

and charter-out revenue and charter-in cost are both set to 0. Suppose further that the 

operating cost of the smaller ship and the larger ship on route 𝑟𝑟  are 0 and 𝛥𝛥𝑟𝑟 , 

respectively. Therefore, this problem is to identify on which route should larger-type 

ships be deployed sailing from 𝑎𝑎 to 𝑏𝑏 such that the total operating cost is minimized. 

Let 𝑥𝑥𝑟𝑟′  be a binary variable that is equal to 1 if and only if the type of larger ship is 

deployed on ship route 𝑟𝑟 . This optimization problem can be modelled as: 

min∑ 𝛥𝛥𝑟𝑟𝑥𝑥𝑟𝑟′𝑟𝑟∈𝑅𝑅  subject to ∑ [𝑉𝑉𝑟𝑟𝐿𝐿𝑥𝑥𝑟𝑟′ + (1 − 𝑥𝑥𝑟𝑟′)𝑉𝑉𝑟𝑟𝑆𝑆]𝑟𝑟∈𝑅𝑅 ≥ 𝐷𝐷 , 𝑥𝑥𝑟𝑟′ ∈ {0, 1},∀𝑟𝑟 ∈ 𝑅𝑅 . The 

decision version of the problem is, given a constant 𝑊𝑊, whether there exist binary 

values of 𝑥𝑥𝑟𝑟′ , 𝑟𝑟 ∈ 𝑅𝑅  such that ∑ 𝛥𝛥𝑟𝑟𝑥𝑥𝑟𝑟′𝑟𝑟∈𝑅𝑅 ≤ 𝑊𝑊  and ∑ [𝑉𝑉𝑟𝑟𝐿𝐿𝑥𝑥𝑟𝑟′ + (1 − 𝑥𝑥𝑟𝑟′)𝑉𝑉𝑟𝑟𝑆𝑆]𝑟𝑟∈𝑅𝑅 ≥ 𝐷𝐷 . 

Given an instance of the knapsack problem, this chapter lets 𝑅𝑅 = 𝑆𝑆, 𝛥𝛥𝑟𝑟 = 𝑤𝑤𝑟𝑟, 𝑉𝑉𝑟𝑟𝐿𝐿 −

𝑉𝑉𝑟𝑟𝑆𝑆 = 𝑐𝑐𝑟𝑟, 𝑟𝑟 ∈ 𝑅𝑅, and 𝐷𝐷 = 𝐾𝐾 + ∑ 𝑉𝑉𝑟𝑟𝑆𝑆𝑟𝑟∈𝑅𝑅 . It follows easily now that the decision version 

of our problem has a solution if and only if there is a feasible solution to the decision 

version of the 0–1 Knapsack problem. Therefore, the 0–1 Knapsack can be solved by 

solving our problem, implying the decision version of our problem is NP-complete.                                                                                              

□ 
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3.5 BENDERS-BASED BRANCH-AND-CUT (BBC) ALGORITHM  

The NP-hardness of our problem means that it is highly unlikely that a 

polynomial-time algorithm can be designed for this problem. We need an efficient and 

exact algorithm to solve the problem of practical scale with realistic data. Due to a 

large number of decision variables and constraints in the problem, solving MILP 

model [M3-1] is difficult. Benders decomposition is a partitioning algorithm for large-

scale MILP models and has been shown to be quite efficient in solving many stochastic 

programming problems (Rei et al., 2009; Adulyasak et al., 2015). However, the 

presence of integrality constraints in master problems (MPs) in the basic Benders 

decomposition algorithm makes solution time much longer. Hence, we now introduce 

a BBC algorithm to solve model [M3-1] which solves the linear programming (LP) 

relaxation of the MP at each iteration. Moreover, a tailored acceleration strategy and a 

standard acceleration technique from stochastic programming—Pareto-optimal cuts 

are applied to improve the convergence of the BBC algorithm. 

We first introduce an overview of the BBC algorithm in Section 3.5.1, then 

explain implementation details of the Benders decomposition algorithm in Section 

3.5.2, and finally describe acceleration strategies in Section 3.5.3. 

3.5.1 Overview of solution approach 

In brief, a BBC algorithm is a branch-and-bound algorithm in which Benders 

decomposition is used to compute upper bounds by solving linear relaxations of MPs 

(for maximization problems), and Benders cuts may be added to strengthen the linear 

relaxations of MPs. Specifically, in basic Benders decomposition algorithms, the 

presence of integrality constraints in the MP makes its solution time much longer than 

that of the dual subproblems. The computational complexity of the MP results in slow 

convergence of the Benders decomposition algorithms. To deal with this issue, 

Geoffrion et al. (1974) indicated that obtaining the optimal solution to the MP at each 

iteration is not necessary, which means that obtaining a near optimal solution 

efficiently may be beneficial. Nowadays, embedding Benders cuts within a branch-

and-cut framework for solving the MP is one efficient way to deal with the above issue 

(Pearce and Forbes, 2018). An outline of our Benders-based branch-and-cut algorithm 

is summarized in Algorithm 3-1. 
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The central component of our solution approach is Benders decomposition 

elaborated in Section 3.5.2. It partitions the original problem into a master problem 

containing integer variables and a primal subproblem (PS) containing continuous 

variables, which are typically easier to solve than the original problem. 

3.5.2 Benders decomposition 

Benders decomposition partitions the original problem into a master problem 

containing integer variables and a subproblem containing continuous variables. By 

using LP duality, all variables belonging to the subproblem are projected out, and the 

MP contains the remaining variables and an artificial variable related to the objective 

function value of the subproblem. The values of the variables in the MP are first 

determined, and the subproblem is then solved given these fixed variables. After 

solving the linear subproblem, several new constraints, i.e., cuts, are added to the MP. 

To be specific, if the subproblem is feasible and bounded, an optimality cut is added 

Algorithm 3-1. Benders-based branch-and-cut algorithm 
1 Initialize the tree 𝐿𝐿: 𝐿𝐿 = {𝑜𝑜�} where 𝑜𝑜� is the original restricted master problem [M3-4] formulated in 

Section 3.5.2 without branching constraints.  
OBJ∗ ← −∞   // 𝑂𝑂𝑂𝑂𝑂𝑂∗ records the incumbent objective function value of [M3-4]. 
(𝜶𝜶,𝜷𝜷,𝝅𝝅,𝛺𝛺)∗ ←null   // 𝜶𝜶, 𝜷𝜷, and 𝝅𝝅 represent vectors of 𝛼𝛼ℎ𝑟𝑟 (ℎ ∈ 𝐻𝐻, 𝑟𝑟 ∈ 𝑅𝑅𝑦𝑦ℎ), 𝛽𝛽𝑘𝑘𝑘𝑘 (𝑘𝑘 ∈ 𝐾𝐾, 𝑟𝑟 ∈ 𝑅𝑅𝑘𝑘), and 
𝜋𝜋𝑘𝑘𝑘𝑘𝑘𝑘  (𝑘𝑘 ∈ 𝐾𝐾, 𝑟𝑟 ∈ 𝑅𝑅𝑘𝑘, 𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑟𝑟} ), respectively; 𝛺𝛺  is an extra variable defined in Section 3.5.2; 
(𝜶𝜶,𝜷𝜷,𝝅𝝅,𝛺𝛺)∗ records the incumbent solution of corresponding decision variables in [M3-4]. 

2 While 𝐿𝐿 is nonempty do 
3  Select a node 𝑜𝑜 ∈ 𝐿𝐿 according to the node selection rule elaborated in Section 3.5.3. 
4 𝐿𝐿: = 𝐿𝐿\{𝑜𝑜}. 

5 Solve the linear relaxation of 𝑜𝑜. 
6 If LP is infeasible then 
7   Prune the node. 
8  Else 
9   Obtain an optimal solution (𝜶𝜶,𝜷𝜷,𝝅𝝅,𝛺𝛺) and the optimal objective function value OBJ. 

10   If  OBJ ≤ OBJ∗ then 
11    Prune the node. 
12   Else if 𝜶𝜶, 𝜷𝜷, and  𝝅𝝅 are all integer then 
13    Solve model [M3-3] formulated in Section 3.5.2 based on (𝜶𝜶,𝜷𝜷,𝝅𝝅,𝛺𝛺) and generate Benders 

cuts. 
14    If no cuts are generated then 
15     Update 𝑂𝑂𝑂𝑂𝑂𝑂∗ = 𝑂𝑂𝑂𝑂𝑂𝑂 and (𝜶𝜶,𝜷𝜷,𝝅𝝅,𝛺𝛺)∗ ← (𝜶𝜶,𝜷𝜷,𝝅𝝅,𝛺𝛺). 
16     Prune the node. 
17    Else 
18     Add the cuts to [M3-4] and go to line 5. 
19    End if 
20   Else if any element in 𝜶𝜶, 𝜷𝜷, and  𝝅𝝅 is fractional then 
21    Branch according to the branching rule elaborated in Section 3.5.3, resulting in nodes 𝑜𝑜1 and 

𝑜𝑜2, 𝐿𝐿: = 𝐿𝐿 ∪ {𝑜𝑜1, 𝑜𝑜2}. 
22   End if 
23  End if 
24 End while 
25 The algorithm terminate as the optimal solution is found 
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to the MP; otherwise, a feasibility cut is added. An upper bound can be obtained when 

the original problem finds a feasible solution, and a lower bound is obtained when the 

MP is solved to optimality for minimization problems. The process is repeated until 

an optimal solution is obtained. 

The Benders decomposition algorithm has often been used to solve problems in 

the liner shipping industry (Chen et al., 2018). In our problem, it is obvious that first-

stage decision variables are integer variables, while decision variables in the following 

stages belong to continuous variables. If the first-stage decisions are fixed, the 

resulting subproblem is a demand fulfillment and allocation problem. Let 𝛼𝛼�, 𝛽̅𝛽, and 𝜋𝜋� 

denote the vectors of fixed 𝛼𝛼ℎ,𝑟𝑟, 𝛽𝛽𝑘𝑘,𝑟𝑟, and 𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗, respectively. The decision variables 

in the following stages are only dependent on 𝜋𝜋�, but independent of 𝛼𝛼� and 𝛽̅𝛽. Hence, 

the expected operational net revenue function can be computed by solving the 

following PS: 

[M3-2] 𝑍𝑍2 = Max�∑ 𝑤𝑤𝑠𝑠
𝑠𝑠∈𝑆𝑆 ∑ ∑ (𝑡𝑡∈𝑇𝑇 (𝑜𝑜,𝑑𝑑)∈𝐷𝐷 𝑙𝑙𝑜𝑜,𝑑𝑑𝜃𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡

𝑠𝑠 − 𝑝𝑝𝑜𝑜,𝑑𝑑𝜑𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 )� (3-19) 

subject to constraints (3-6), (3-8)–(3-13), (3-17)–(3-18), 

∑ ∑ 𝑎𝑎𝑟𝑟,𝑒𝑒,𝑖𝑖,𝑜𝑜,𝑑𝑑,𝑡𝑡𝑡𝑡∈𝑇𝑇(𝑜𝑜,𝑑𝑑)∈𝐷𝐷 𝜀𝜀𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ≤ ∑ 𝑣𝑣𝑘𝑘𝜋𝜋�𝑘𝑘,𝑟𝑟,𝑗𝑗𝑟𝑟,𝑒𝑒𝑘𝑘∈𝐾𝐾𝑟𝑟   ∀ 𝑟𝑟 ∈ 𝑅𝑅, 𝑒𝑒 ∈ 𝐸𝐸𝑟𝑟 , 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟 , 𝑠𝑠 ∈ 𝑆𝑆. (3-20) 

Due to the presence of the decision variables 𝜃𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 , the above PS is always 

feasible because the number of accepted containers can be zero, which implies the 

numbers of delayed and shipped containers are also zero. Besides, since the parameters 

𝑙𝑙𝑜𝑜,𝑑𝑑  and 𝑝𝑝𝑜𝑜,𝑑𝑑  are finite and because of constraints in model [M3-2], any feasible 

solution to the PS must be bounded. As a result, the dual of the PS is always feasible 

and bounded, which means only optimality cuts need to be added. Let 𝜔𝜔 =

{𝜔𝜔𝑜𝑜,𝑑𝑑,𝑡𝑡,𝑠𝑠|(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆} , 𝜇𝜇 = {𝜇𝜇𝑜𝑜,𝑑𝑑,𝑡𝑡,𝑠𝑠|(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆}, 𝜂𝜂 =

{𝜂𝜂𝑜𝑜,𝑑𝑑,𝑠𝑠|(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑠𝑠 ∈ 𝑆𝑆} , 𝜁𝜁 = {𝜁𝜁𝑜𝑜,𝑑𝑑,𝑠𝑠|(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑠𝑠 ∈ 𝑆𝑆} , 𝜌𝜌𝜃𝜃 = {𝜌𝜌𝑜𝑜,𝑑𝑑,𝑡𝑡,𝑠𝑠
𝜃𝜃 |(𝑜𝑜,𝑑𝑑) ∈

𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆} , 𝜌𝜌𝜑𝜑 = {𝜌𝜌𝑜𝑜,𝑑𝑑,𝑡𝑡,𝑠𝑠
𝜑𝜑 |(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆} , 𝜌𝜌𝜀𝜀 = {𝜌𝜌𝑜𝑜,𝑑𝑑,𝑡𝑡,𝑠𝑠

𝜀𝜀 |(𝑜𝑜,𝑑𝑑) ∈

𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇 ∪ {0}, 𝑠𝑠 ∈ 𝑆𝑆} , and 𝜎𝜎 = {𝜎𝜎𝑟𝑟,𝑒𝑒,𝑖𝑖,𝑠𝑠|𝑟𝑟 ∈ 𝑅𝑅, 𝑒𝑒 ∈ 𝐸𝐸𝑟𝑟 , 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟 , 𝑠𝑠 ∈ 𝑆𝑆}  be the dual 

variables related to constraints (3-6), (3-8)–(3-13), and (3-20), respectively. The dual 

of the PS is called the dual primal subproblem (DPS), and the polyhedron defined by 

the constraints of the DPS is denoted as 𝑃𝑃∆. Hence, the DPS can be formulated as 

follows: 
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[M3-3] 𝑍𝑍3 = Min�∑ 𝑤𝑤𝑠𝑠[∑ ∑ ∑ ∑ 𝑣𝑣𝑘𝑘𝜋𝜋�𝑘𝑘,𝑟𝑟,𝑗𝑗𝑟𝑟,𝑒𝑒𝜎𝜎𝑟𝑟,𝑒𝑒,𝑖𝑖,𝑠𝑠 +𝑘𝑘∈𝐾𝐾𝑟𝑟𝑖𝑖∈𝐼𝐼𝑟𝑟𝑒𝑒∈𝐸𝐸𝑟𝑟𝑟𝑟∈𝑅𝑅𝑠𝑠∈𝑆𝑆

                                                                                         ∑ ∑ 𝑞𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 𝜇𝜇𝑜𝑜,𝑑𝑑,𝑡𝑡,𝑠𝑠𝑡𝑡∈𝑇𝑇 (𝑜𝑜,𝑑𝑑)∈𝐷𝐷 ]�     (3-21) 

subject to  (𝜔𝜔, 𝜇𝜇, 𝜂𝜂, 𝜁𝜁, 𝜌𝜌𝜃𝜃,𝜌𝜌𝜑𝜑,𝜌𝜌𝜀𝜀 ,𝜎𝜎) ∈ 𝑃𝑃∆.   (3-22) 

We further introduce the set of extreme points of 𝑃𝑃∆ as 𝛷𝛷∆. Besides, we define 

an extra variable 𝛺𝛺 representing the expected total revenue. The previous multistage 

model can be reformulated as an MP. 

[M3-4] 𝑍𝑍4 = Max �𝛺𝛺 − ∑ ∑ 𝑓𝑓ℎ,𝑟𝑟𝛼𝛼ℎ,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑦𝑦ℎℎ∈𝐻𝐻 − ∑ ∑ 𝑐𝑐𝑘𝑘,𝑟𝑟𝛽𝛽𝑘𝑘,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑘𝑘 𝑘𝑘∈𝐾𝐾 −

                                        ∑ ∑ 𝑔𝑔𝑦𝑦ℎ𝛼𝛼ℎ,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑦𝑦ℎℎ∈𝐻𝐻2 + ∑ 𝑚𝑚𝑦𝑦ℎ(𝑢𝑢ℎ − ∑ 𝛼𝛼ℎ,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑦𝑦ℎ
)ℎ∈𝐻𝐻1 �    (3-23) 

subject to constraints (3-2)–(3-5), (3-14)–(3-16),   

∑ 𝑤𝑤𝑠𝑠[∑ ∑ ∑ ∑ 𝑣𝑣𝑘𝑘𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗𝑟𝑟,𝑒𝑒𝜎𝜎𝑟𝑟,𝑒𝑒,𝑖𝑖,𝑠𝑠𝑘𝑘∈𝐾𝐾𝑟𝑟𝑖𝑖∈𝐼𝐼𝑟𝑟𝑒𝑒∈𝐸𝐸𝑟𝑟𝑟𝑟∈𝑅𝑅𝑠𝑠∈𝑆𝑆 + ∑ ∑ 𝑞𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 𝜇𝜇𝑜𝑜,𝑑𝑑,𝑡𝑡,𝑠𝑠𝑡𝑡∈𝑇𝑇 ] (𝑜𝑜,𝑑𝑑)∈𝐷𝐷 ≥ 𝛺𝛺   

 ∀(𝜔𝜔, 𝜇𝜇, 𝜂𝜂, 𝜁𝜁,𝜌𝜌𝜃𝜃 ,𝜌𝜌𝜑𝜑, 𝜌𝜌𝜀𝜀 ,𝜎𝜎) ∈ 𝛷𝛷∆. (3-24) 

The Benders decomposition algorithm solves the master problem and the 

subproblem repeatedly. To be specific, the Benders decomposition algorithm first 

solves the MP to optimality, which leads to an upper bound for the original problem 

since this problem is a maximization problem. The DPS is then solved given the values 

of 𝜋𝜋�𝑘𝑘,𝑟𝑟,𝑗𝑗 from the optimal solution to the master problem. One or several new Benders 

cuts, i.e., constraints (3-24) (if any), are added to the master problem at each iteration. 

When decision variables 𝜶𝜶, 𝜷𝜷, and  𝝅𝝅 in model [M3-4] are all integers and no Benders 

cuts are generated, the objective function value of the model [M3-4] provides a lower 

bound for the original problem. When the upper and lower bounds of the original 

problem converge, the algorithm terminates. 

3.5.3 Branching rule and node selection rule 

The branching rule used in this chapter is a simple branching rule known as the 

maximum fractional branching. This rule selects the variable with the largest integer 

violation for branching. For simplicity, let 𝐼𝐼  and 𝑥𝑥𝑖𝑖  represent the index set of all 

fractional integer variables at a specific node in the branch-and-bound tree and the 

value of the decision variable of index 𝑖𝑖 (𝑖𝑖 ∈ 𝐼𝐼), respectively. Hence, the index of the 
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variable with the largest integer violation can be obtained by argmax
𝑖𝑖∈𝐼𝐼

{min (𝑥𝑥𝑖𝑖 −

⌊𝑥𝑥𝑖𝑖⌋, ⌈𝑥𝑥𝑖𝑖⌉ − 𝑥𝑥𝑖𝑖)}. The node selection rule in this chapter is the best-bound-first node 

selection, which means that the node with the largest upper bound is always processed 

first. 

3.5.4 Acceleration strategies 

Ever since the Benders decomposition was introduced, numerous studies have 

been conducted to improve it. For example, Magnanti and Wong (1981) introduced a 

new method, i.e., strong or Pareto-optimal cuts, to accelerate the convergence of the 

Benders decomposition algorithm for MILP models. Cordeau et al. (2006) proposed 

valid inequalities to strengthen the LP relaxation of MILP models, thereby improving 

the performance of the Benders decomposition algorithm. Hence, this chapter 

discusses several acceleration strategies for the proposed BBC algorithm. 

Since the quality of the upper bound in the initial stages is inferior, the optimality 

gap may be large in the initial stages of the algorithm, which results in the need of a 

large number of cuts. Hence, we can tighten the upper bound for the MP by using some 

initial cuts called upper bound tightening (UBT) inequalities. To obtain approximate 

UBT inequalities, we first develop a nominal second-stage problem. The following 

describes newly defined parameters and decision variables. 

Newly defined parameters: 

𝑞𝑞�𝑜𝑜,𝑑𝑑,𝑡𝑡: expected number of newly generated container shipment demand in period 𝑡𝑡 at 

port 𝑜𝑜 to be transported to port 𝑑𝑑, 𝑞𝑞�𝑜𝑜,𝑑𝑑,𝑡𝑡 = 𝔼𝔼𝑠𝑠�𝑞𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 �. 

Newly defined decision variables: 

𝜃̅𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡 : continuous, the number of accepted containers for the demand of O-D pair 

(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷 accumulated in period 𝑡𝑡 ∈ 𝑇𝑇 with expected parameters. 

𝜑𝜑�𝑜𝑜,𝑑𝑑,𝑡𝑡 : continuous, the number of delayed containers for the demand of O-D pair 

(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷 up to period 𝑡𝑡 ∈ 𝑇𝑇 ∪ {0} with expected parameters; by convention, 𝜑𝜑�𝑜𝑜,𝑑𝑑,0

∶= 0. 

𝜀𝜀𝑜̅𝑜,𝑑𝑑,𝑡𝑡 : continuous, the number of shipped containers for the demand of O-D pair 

(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷 in period 𝑡𝑡 ∈ 𝑇𝑇 with expected parameters. 
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The problem replacing the previous subproblem [M3-2] with the new second-

stage problem, therefore, belongs to a two-stage deterministic problem. According to 

the notation introduced, the second-stage deterministic programming model is 

formulated as follows: 

[M3-5] 𝑍𝑍5 = Max�∑ ∑ (𝑡𝑡∈𝑇𝑇 (𝑜𝑜,𝑑𝑑)∈𝐷𝐷 𝑙𝑙𝑜𝑜,𝑑𝑑𝜃̅𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡 − 𝑝𝑝𝑜𝑜,𝑑𝑑𝜑𝜑�𝑜𝑜,𝑑𝑑,𝑡𝑡)�   (3-25) 

subject to   

𝜃̅𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡 + 𝜑𝜑�𝑜𝑜,𝑑𝑑,𝑡𝑡−1 = 𝜀𝜀𝑜̅𝑜,𝑑𝑑,𝑡𝑡 + 𝜑𝜑�𝑜𝑜,𝑑𝑑,𝑡𝑡   ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇  (3-26) 

∑ ∑ 𝑎𝑎𝑟𝑟,𝑒𝑒,𝑖𝑖,𝑜𝑜,𝑑𝑑,𝑡𝑡𝑡𝑡∈𝑇𝑇(𝑜𝑜,𝑑𝑑)∈𝐷𝐷 𝜀𝜀𝑜̅𝑜,𝑑𝑑,𝑡𝑡 ≤ ∑ 𝑣𝑣𝑘𝑘𝑘𝑘∈𝐾𝐾𝑟𝑟 𝜋𝜋�𝑘𝑘,𝑟𝑟,𝑗𝑗𝑟𝑟,𝑒𝑒  ∀ 𝑟𝑟 ∈ 𝑅𝑅, 𝑒𝑒 ∈ 𝐸𝐸𝑟𝑟 , 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟  (3-27) 

𝜃̅𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡 ≤ 𝑞𝑞�𝑜𝑜,𝑑𝑑,𝑡𝑡   ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇  (3-28) 

𝜑𝜑�𝑜𝑜,𝑑𝑑,0 = 0  ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷  (3-29) 

𝜑𝜑�𝑜𝑜,𝑑𝑑,|𝑇𝑇| = 0  ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷  (3-30) 

𝜃̅𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡 , 𝜀𝜀𝑜̅𝑜,𝑑𝑑,𝑡𝑡 ≥ 0  ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇  (3-31) 

𝜑𝜑�𝑜𝑜,𝑑𝑑,𝑡𝑡 ≥ 0   ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇 ∪ {0}. (3-32) 

Objective function (3-25) maximizes the operational revenue earned by the liner 

company during the planning horizon in the second-stage deterministic problem. 

Constraints (3-26)–(3-32) update related constraints for the deterministic problem. 

Similarly, the dual of the second-stage problem [M3-5] is always feasible and 

bounded, which means only optimality cuts need to be added. Let 𝜔𝜔′ =

{𝜔𝜔𝑜𝑜,𝑑𝑑,𝑡𝑡
′ |(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇} , 𝜎𝜎′ = {𝜎𝜎𝑟𝑟,𝑒𝑒,𝑖𝑖

′ |𝑟𝑟 ∈ 𝑅𝑅, 𝑒𝑒 ∈ 𝐸𝐸𝑟𝑟 , 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟} , 𝜇𝜇′ = {𝜇𝜇𝑜𝑜,𝑑𝑑,𝑡𝑡
′ |(𝑜𝑜,𝑑𝑑) ∈

𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇} , 𝜂𝜂′ = {𝜂𝜂𝑜𝑜,𝑑𝑑
′ |(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷} , and 𝜁𝜁′ = {𝜁𝜁𝑜𝑜,𝑑𝑑

′ |(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷}  be the dual variables 

associated with constraints (3-26)–(3-30), respectively. We further denote the 

polyhedron defined by the constraints of the dual of the second-stage problem as 𝑃𝑃∆′ . 

The dual subproblem for the second-stage problem [M3-5] can be formulated as 

follows: 

[M3-6] 𝑍𝑍6 = Min�∑ ∑ ∑ ∑ 𝑣𝑣𝑘𝑘𝜋𝜋�𝑘𝑘,𝑟𝑟,𝑗𝑗𝑟𝑟𝑟𝑟𝜎𝜎𝑟𝑟,𝑒𝑒,𝑖𝑖
′ +𝑘𝑘∈𝐾𝐾𝑟𝑟𝑖𝑖∈𝐼𝐼𝑟𝑟𝑒𝑒∈𝐸𝐸𝑟𝑟𝑟𝑟∈𝑅𝑅

                                                                                                ∑ ∑ 𝑞𝑞�𝑜𝑜,𝑑𝑑,𝑡𝑡𝜇𝜇𝑜𝑜,𝑑𝑑,𝑡𝑡
′

𝑡𝑡∈𝑇𝑇 (𝑜𝑜,𝑑𝑑)∈𝐷𝐷 �  (3-33) 
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subject to (𝜔𝜔′,𝜎𝜎′, 𝜇𝜇′, 𝜂𝜂′, 𝜁𝜁′) ∈ 𝑃𝑃∆′ .    (3-34) 

We further introduce the set of extreme points of 𝑃𝑃∆′  as 𝛷𝛷∆
′ . Hence, we can obtain 

the approximate UBT inequalities from the nominal second-stage problem of the 

original master problem: 

𝛩𝛩[∑ ∑ ∑ ∑ 𝑣𝑣𝑘𝑘𝜋𝜋�𝑘𝑘,𝑟𝑟,𝑗𝑗𝑟𝑟,𝑒𝑒𝜎𝜎𝑟𝑟,𝑒𝑒,𝑖𝑖
′ + ∑ ∑ 𝑞𝑞�𝑜𝑜,𝑑𝑑,𝑡𝑡𝜇𝜇𝑜𝑜,𝑑𝑑,𝑡𝑡

′
𝑡𝑡∈𝑇𝑇 (𝑜𝑜,𝑑𝑑)∈𝐷𝐷𝑘𝑘∈𝐾𝐾𝑟𝑟𝑖𝑖∈𝐼𝐼𝑟𝑟𝑒𝑒∈𝐸𝐸𝑟𝑟𝑟𝑟∈𝑅𝑅 ] ≥ 𝛺𝛺   

 ∀(𝜔𝜔′,𝜎𝜎′, 𝜇𝜇′, 𝜂𝜂′, 𝜁𝜁′) ∈ 𝛷𝛷∆′ ,  (3-35) 

where 𝛩𝛩 is a parameter for dynamic adjustment in the algorithm. At first, 𝛩𝛩 is set to 1 

to make the algorithm converge quickly. When inequalities (3-35) become tight, 𝛩𝛩 is 

set to 1.01. Finally, inequalities (3-35) are removed to ensure the validity for the 

original master problem because inequalities (3-35) are derived from the nominal 

second-stage problem [M3-5] and may not hold for the original master problem. Here, 

notice that inequalities (3-35) are obtained as the approximate UBT inequalities from 

the nominal second-stage problem instead of Benders cuts for the original master 

problem. 

Apart from the above introduced UBT inequalities, Pareto-optimal cuts are also 

applied to accelerate the BBC algorithm. Magnanti and Wong (1981) show that when 

the primal subproblem is a network flow optimization problem, such as transshipment 

on networks, degenerate solutions are usually obtained, which results in multiple 

optimal solutions for the dual problem. This phenomenon always leads to the 

generation of cuts of different strengths. Any of these cuts are obviously valid 

optimality cuts, but solving the model with all generated cuts may lead to much longer 

computational time. Magnanti and Wong (1981) further show that the selection of 

good cuts at each iteration is one of several important acceleration strategies for 

Benders decomposition. Hence, we use the method designed by Magnanti and Wong 

(1981) to identify strong (Pareto-optimal) cuts.  

A Pareto-optimal cut is defined as a cut if it is not dominated by any other cut. 

We say that the cut generated from the dual solution 𝜔𝜔𝑎𝑎, 𝜇𝜇𝑎𝑎, 𝜂𝜂𝑎𝑎, 𝜁𝜁𝑎𝑎,𝜌𝜌𝑎𝑎𝜃𝜃, 𝜌𝜌𝑎𝑎
𝜑𝜑,𝜌𝜌𝑎𝑎𝜀𝜀 ,𝜎𝜎𝑎𝑎 

dominates that from 𝜔𝜔𝑏𝑏, 𝜇𝜇𝑏𝑏, 𝜂𝜂𝑏𝑏, 𝜁𝜁𝑏𝑏,𝜌𝜌𝑏𝑏𝜃𝜃 ,𝜌𝜌𝑏𝑏
𝜑𝜑, 𝜌𝜌𝑏𝑏𝜀𝜀 ,𝜎𝜎𝑏𝑏  if and only if 

∑ 𝑤𝑤𝑠𝑠[∑ ∑ ∑ ∑ 𝑣𝑣𝑘𝑘𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗𝑟𝑟𝑟𝑟𝜎𝜎𝑟𝑟,𝑒𝑒,𝑖𝑖,𝑠𝑠
𝑎𝑎

𝑘𝑘∈𝐾𝐾𝑟𝑟𝑖𝑖∈𝐼𝐼𝑟𝑟𝑒𝑒∈𝐸𝐸𝑟𝑟𝑟𝑟∈𝑅𝑅 + ∑ ∑ 𝑞𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 𝜇𝜇𝑜𝑜,𝑑𝑑,𝑡𝑡,𝑠𝑠

𝑎𝑎
𝑡𝑡∈𝑇𝑇𝑜𝑜𝑜𝑜 (𝑜𝑜,𝑑𝑑)∈𝐷𝐷 ]𝑠𝑠∈𝑆𝑆 ≤

∑ 𝑤𝑤𝑠𝑠[∑ ∑ ∑ ∑ 𝑣𝑣𝑘𝑘𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗𝑟𝑟,𝑒𝑒𝜎𝜎𝑟𝑟,𝑒𝑒,𝑖𝑖,𝑠𝑠
𝑏𝑏

𝑘𝑘∈𝐾𝐾𝑟𝑟𝑖𝑖∈𝐼𝐼𝑟𝑟𝑒𝑒∈𝐸𝐸𝑟𝑟𝑟𝑟∈𝑅𝑅 + ∑ ∑ 𝑞𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 𝜇𝜇𝑜𝑜,𝑑𝑑,𝑡𝑡,𝑠𝑠

𝑏𝑏
𝑡𝑡∈𝑇𝑇𝑜𝑜,𝑑𝑑 (𝑜𝑜,𝑑𝑑)∈𝐷𝐷 ]𝑠𝑠∈𝑆𝑆  for 
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all 𝜋𝜋 ∈ 𝛷𝛷, where 𝛷𝛷 = {𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗| ∑ 𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗𝑘𝑘∈𝐾𝐾𝑟𝑟 =1,∀ 𝑟𝑟∈𝑅𝑅,𝑗𝑗∈{1,…,𝑛𝑛𝑟𝑟}
𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗∈{0,1},∀𝑘𝑘∈𝐾𝐾𝑟𝑟,𝑟𝑟∈𝑅𝑅,𝑗𝑗∈{1,…,𝑛𝑛𝑟𝑟}}, with a strict inequality for 

at least one point 𝜋𝜋 ∈ 𝛷𝛷 . Hence, a cut generated from the dual solution 

𝜔𝜔𝑏𝑏, 𝜇𝜇𝑏𝑏, 𝜂𝜂𝑏𝑏, 𝜁𝜁𝑏𝑏,𝜌𝜌𝑏𝑏𝜃𝜃 ,𝜌𝜌𝑏𝑏
𝜑𝜑,𝜌𝜌𝑏𝑏𝜀𝜀 ,𝜎𝜎𝑏𝑏is a Pareto-optimal cut if there is no other dual solution 

𝜔𝜔𝑎𝑎, 𝜇𝜇𝑎𝑎, 𝜂𝜂𝑎𝑎, 𝜁𝜁𝑎𝑎,𝜌𝜌𝑎𝑎𝜃𝜃, 𝜌𝜌𝑎𝑎
𝜑𝜑,𝜌𝜌𝑎𝑎𝜀𝜀 ,𝜎𝜎𝑎𝑎 whose generated cut dominates it. Let 𝑟𝑟𝑟𝑟(𝛷𝛷) denote the 

relative interior of 𝛷𝛷, and a point in 𝑟𝑟𝑟𝑟(𝛷𝛷) is called a core point. To generate a Pareto-

optimal cut, any core point 𝜋𝜋0 ∈ 𝑟𝑟𝑟𝑟(𝛷𝛷) can be used (Magnanti and Wong, 1981).  

Although Magnanti and Wong (1981) prove that a Pareto-optimal cut can be 

generated from any core point 𝜋𝜋0, 𝜋𝜋0 ∈ 𝑟𝑟𝑟𝑟(𝛷𝛷) ⊆ 𝛷𝛷, Papadakos (2008) proves that 𝜋𝜋0 

does not have to be a core point or even a point of 𝛷𝛷. Since finding a Benders MP core 

point is difficult in most cases, we use a method similar to that of Papadakos (2008) 

and Bayram and Yaman (2018) to find approximate core points. We first let 𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗
0 ←

1 and update this point by the following formula: 

𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗
0 ← 1

2
𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗
0 + 1

2
𝜋𝜋�𝑘𝑘,𝑟𝑟,𝑗𝑗  ∀ 𝑘𝑘 ∈ 𝐾𝐾, 𝑟𝑟 ∈ 𝑅𝑅𝑘𝑘, 𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑟𝑟}.   (3-36) 

To generate Pareto-optimal cuts more efficiently, we employ a method similar 

to that of Sherali and Lunday (2013) and Wang and Jacquillat (2020), which involves 

solving DPS only once by perturbing the right-hand-side of constraints (3-20) in PS as 

follows: 

∑ ∑ 𝑎𝑎𝑟𝑟,𝑒𝑒,𝑖𝑖,𝑜𝑜,𝑑𝑑,𝑡𝑡𝑡𝑡∈𝑇𝑇(𝑜𝑜,𝑑𝑑)∈𝐷𝐷 𝜀𝜀𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ≤ ∑ 𝑣𝑣𝑘𝑘𝑘𝑘∈𝐾𝐾𝑟𝑟 𝜋𝜋�𝑘𝑘,𝑟𝑟,𝑗𝑗𝑟𝑟𝑟𝑟 + 𝜖𝜖 ∑ 𝑣𝑣𝑘𝑘𝑘𝑘∈𝐾𝐾𝑟𝑟 𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗𝑟𝑟𝑟𝑟

0   

 ∀𝑟𝑟 ∈ 𝑅𝑅, 𝑒𝑒 ∈ 𝐸𝐸𝑟𝑟 , 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟 , 𝑠𝑠 ∈ 𝑆𝑆,  (3-37) 

where 𝜖𝜖 is a small perturbation coefficient and set to 10−6 which is consistent with the 

parameter setting used in previous works (e.g., Wang and Jacquillat, 2020). 

3.6 COMPUTATIONAL EXPERIMENTS  

To evaluate the proposed model and assess the efficiency of our algorithm, we 

perform extensive computational experiments on a laptop (Intel Core i7, 2.6 GHz; 

Memory, 16 G). In this chapter, the proposed mathematical models and algorithms are 

implemented using Visual Studio 2022 environment in C# programming language, and 

CPLEX 12.5.1 is used as the commercial solver. 
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3.6.1 Experimental setting 

We first summarize the setting of our parameter values. Three ship routes 

depicted in Figure 3-6 are used to conduct computational experiments. Five types of 

ships are available in this chapter, and three parameters (𝑣𝑣𝑘𝑘, 𝑔𝑔𝑘𝑘 and 𝑚𝑚𝑘𝑘) and the daily 

operating cost of a ship related to ship types are summarized in Table 3-3, which are 

all the same as the setting in Ng and Lin (2018). The number of newly generated 

container shipment demand in period 𝑡𝑡  at port 𝑜𝑜  to be transported to port 𝑑𝑑  under 

scenario 𝑠𝑠 (𝑞𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ) is assumed to be uniformly distributed in [0, 5000] TEUs if the 

cargos of this O-D pair can be transported through the routes in Figure 3-6, which is 

consistent with the setting in Xia et al. (2015). The penalty cost for delayed containers 

per period (𝑝𝑝𝑜𝑜,𝑑𝑑) is set to 210 USD/TEU/week for all O-D pairs, which is in line with 

the setting used in Zhen et al. (2019b). The revenue for accepting a container (𝑙𝑙𝑜𝑜,𝑑𝑑) 

relates to the sailing distance and can be calculated by 500 + 0.2 × distance (n mile) 

from the origin port to the destination port, which is in line with the setting in Wang 

et al. (2016). The operating cost of completing the voyages during the planning horizon 

by a ship of type 𝑘𝑘 deployed on route 𝑟𝑟 (𝑐𝑐𝑘𝑘𝑘𝑘) are set to the total sailing time periods 

(weeks) of a ship deployed on route 𝑟𝑟 times 7 days/week times the daily operating cost 

of a ship. For the sake of simplicity, let 𝑋𝑋1, 𝑋𝑋2,…, and 𝑋𝑋|𝑇𝑇| denote the sets of possible 

realizations of demands in periods 1, 2,…, and |𝑇𝑇|, respectively. And let 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡 ∈ 𝑋𝑋𝑡𝑡, 

denote the demand realization in period  𝑡𝑡 ∈ 𝑇𝑇. The scenarios for each period are 

generated separately. Hence, the probability of the demand generalization 

�𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥|𝑇𝑇|� ∈ 𝑋𝑋1 × … × 𝑋𝑋|𝑇𝑇| is ∏ 1
|𝑋𝑋𝑡𝑡|𝑡𝑡∈𝑇𝑇 . Finally, we need to emphasize that this 

study assumes that each time period corresponds to each stage; therefore, our decisions 

need to be updated every time period. In the future, the determination of the optimal 

duration of a stage can be further explored. 

Table 3-3 The setting of four parameters related to ship types. 

Parameters 
Ship type 𝑘𝑘 

1 2 3 4 5 

𝑣𝑣𝑘𝑘 (TEU) 2,808 3,218 4,500 5,714 8,063 
𝑔𝑔𝑘𝑘 (million USD) 2 2.6 3.5 4.7 6 
𝑚𝑚𝑘𝑘 (million USD) 1.82 2.34 3.21 4.32 5.12 

operating cost (thousand USD/day) 19.8 22.5 30.9 38.8 54.2 
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Singapore
(SIN)

Laem Chabang
(LCB)

Colombo
(CMB)

Karachi
(KHI)

Nhava Sheva
(NS9)

Port Klang
(PKG)

Chennai
(MAA)

Ship route 3: SIN->KHI->NS9->CMB->SIN
Ship route 2: SIN->PKG->MAA->PKG->SIN
Ship route 1: SIN->LCB->SIN

 

Figure 3-6 Three ship routes. 

Nine ship groups are used in the computational experiments. The number of 

ships in each ship group and the ship type of each ship group are summarized in Table 

3-4. Specifically, the first |𝑅𝑅| ship groups, owned by the liner company, are composed 

of ships on each ship route. Besides, 10 ships and 1 ship, owned by other shipping 

liners, are idle at the Port of Singapore (i.e., ℎ|𝑅𝑅|+1, … , ℎ|𝑅𝑅|+5) and the Port of Hong 

Kong (i.e., ℎ|𝑅𝑅|+6), respectively. The repositioning cost (𝑓𝑓ℎ,𝑟𝑟) for a ship belonging to 

group ℎ ∈ 𝐻𝐻 to route 𝑟𝑟 equals the repositioning time multiplied by the operating cost 

of a ship. The repositioning time of a ship in ℎ1, … ,ℎ|𝑅𝑅| to a ship route 𝑟𝑟, 𝑟𝑟 ∈ 𝑅𝑅, is the 

sailing time between the phase-out and phase-in ports on these two ship routes plus a 

random number in [0, 3] days for cargo handling and plus three days for preparation, 

and the repositioning time from a ship in ℎ|𝑅𝑅|+1, … ,ℎ|𝑅𝑅|+6 to a ship route 𝑟𝑟 ∈ 𝑅𝑅 is the 

sailing time between the phase-out and phase-in ports plus three days for preparation, 

which is consistent with the relevant setting used in Wang (2013). 

Table 3-4 Summary of ship groups for the computational experiments. 

Ship groups 
On routes 1, 2, 3  At Port of Singapore  At Port of Hong Kong 

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6 ℎ7 ℎ8 ℎ9 

Number 1 2 3 2 2 2 2 2 1 

Type 1 1 1 1 2 3 4 5 3 

We conduct 10 sets of small instances (each with two or three routes, two, three, 

four, or six periods, and 36 to 343 scenarios), 10 sets of medium instances (each with 

two or three routes, three to nine periods, and 256 to 2,187 scenarios), and 10 sets of 
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large instances (each with five or 10 routes, four to seven periods, and 256 to 2,187 

scenarios). The impact of the acceleration strategies proposed in Section 3.5.4 on the 

performance of the developed algorithms is also investigated. The impact of 

uncertainty on the operations management of liner companies is then investigated. 

Moreover, an intensive analysis of why multistage stochastic programming can lead 

to better solutions is also discussed. Three practical questions regarding the driver 

analysis of shipping company profitability, the benefit analyses of adaptive fleet sizes, 

and the influence of pandemic diseases on liner shipping are investigated to seek 

managerial insights into liner shipping. 

3.6.2 Computational experiments 

We apply three methods to solve the problem. The first method is solving model 

[M3-1] by CPLEX directly to provide optimal solutions. The second method is solving 

model [M3-4] by CPLEX’s Benders decomposition framework (details are provided 

in Appendix A). The last method is solving model [M3-4] by applying the proposed 

BBC solution method. The numerical experiments are instances with various numbers 

of routes in a shipping network to be optimized, ports of call, time periods in the 

planning horizon, nodes generated from a parent node in the scenario tree for each 

period and the total number of scenarios, and different route compositions of the 

shipping network. The algorithms’ performance is measured by the computing time 

and objective values between the results obtained by the three approaches. The 

solution time limit for each computational instance is six hours. 

This section first reports small-scale computational experiments for the problem 

with the number of periods |𝑇𝑇| = 2, 3, 4, and 6. The number of nodes generated from 

a parent node in the scenario tree for each period is the same and recorded as |𝑆𝑆𝑡𝑡|, 

which leads to the total number of scenarios |𝑆𝑆| = |𝑆𝑆𝑡𝑡||𝑇𝑇| . The total number of 

scenarios scales based on problem solving time. Table 3-5 records results of the 

comparison of the three methods for small-scale instances. As shown in Table 3-5, 

columns 2 to 5 on the left, i.e., Route ID, |𝑇𝑇| , |𝑆𝑆𝑡𝑡| , and |𝑆𝑆|  represent the route 

composition of the service network, the number of time periods in the planning 

horizon, the number of new nodes generating from a parent node in the scenario tree, 

and the total number of scenarios, respectively. Values in columns P1, P2, and P3 are 

the objective values obtained by CPLEX, CPLEX’s Benders decomposition 

framework, and the proposed BBC method, respectively. It is obvious that all three 
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methods find the optimal solution in each of the 10 computational instances. CPU time 

of these three methods is also recorded and represented by T1, T2, and T3, respectively. 

It can be clearly seen that although the proposed BBC algorithm is not the fastest 

method for small-scale instances, it is much faster than the CPLEX’s Benders 

decomposition framework. Hence, the accuracy of the proposed BBC algorithm for 

small computational instances is verified. 

Table 3-5 Comparison of the three methods for small-scale instances. 

Case 
ID 

Route 
ID |𝑻𝑻| |𝑺𝑺𝒕𝒕| |𝑺𝑺| 

CPLEX CPLEX’s BD framework BBC 

P1 (M$) T1 (s) P2 (M$) T2 (s) P3 (M$) T3 (s) T3 T1⁄  
(%) 

T3 T2⁄  
(%) 

S1 1,2 2 6 36 32.26 0.30 32.26 2.09 32.26 0.50 166.67 23.92 
S2 1,2 2 7 49 31.24 0.52 31.24 2.95 31.24 0.69 132.69 23.39 
S3 1,2 2 8 64 31.14 0.72 31.14 3.93 31.14 0.62 86.11 15.78 
S4 1,2 4 3 81 71.02 2.32 71.02 80.13 71.02 4.13 178.02 5.15 
S5 1,2 4 4 256 68.81 14.22 68.81 499.09 68.81 11.84 83.26 2.37 
S6 1,3 3 6 216 97.28 14.00 97.28 376.11 97.28 7.92 56.57 2.11 
S7 1,3 3 7 343 96.83 31.05 96.83 706.29 96.83 8.26 26.60 1.17 
S8 2,3 6 2 64 271.20 10.99 271.20 431.88 271.20 15.15 137.85 3.51 
S9 1,2,3 6 2 64 428.88 18.76 428.88 1,399.35 428.88 34.68 184.86 2.48 
S1
0 

1,2,3 4 3 81 323.90 11.83 323.90 680.20 323.90 14.67 
124.01 2.16 

          Avg. 117.66 8.20 
Notes: (1) The values in columns T3 T1⁄  (%) and T3 T2⁄  (%) are calculated by 
T3 T1⁄ × 100 and T3 T2⁄ × 100, respectively; (2) M$ denotes million dollars.  

This section then conducts medium-scale computational experiments for the 

problem with |𝑇𝑇| =3, 4, 5, 6, 7, and 9 periods. The total number of scenarios |𝑆𝑆| 

ranges from 256 to 2,187. Table 3-6 records results of the comparison of the three 

methods for large-scale instances. As shown in Table 3-6, columns 2 to 5 on the left, 

i.e., Route ID, |𝑇𝑇| , |𝑆𝑆𝑡𝑡|, and |𝑆𝑆|, represent the route composition of the shipping 

network, the number of time periods in the planning horizon, the number of new nodes 

from a parent node in the scenario tree, and the total number of scenarios, respectively. 

Values in columns P1 , P2 , and P3  are the objective values obtained by CPLEX, 

CPLEX’s Benders decomposition framework, and the proposed BBC method, 

respectively. From Table 3-6, the difference in the solution performances of the three 

methods becomes larger. Specifically, CPLEX method and CPLEX’s Benders 

decomposition framework cannot find any solution within six hours in 1 10⁄ ×

100% = 10% and 6 10⁄ × 100% = 60% of the cases, respectively. However, the 

proposed BBC algorithm can obtain optimal solutions in all instances and can obtain 

optimal solutions in 1,215 seconds for case “M10” where the CPLEX method cannot 

find any solution within six hours. Among the instances that can be solved to 

optimality by CPLEX’s Benders decomposition framework, the CPU time of the BBC 
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algorithm is, on average, 0.73% of that of CPLEX’s Benders decomposition 

framework. Besides, the CPU time of the BBC method is, on average, 27.98% of that 

of CPLEX. Hence, the accuracy and efficiency of the proposed BBC algorithm for 

medium-scale computational instances are verified. 

Table 3-6 Comparison of the three methods for medium-scale instances. 

Case 
ID 

Route 
ID |𝑻𝑻| |𝑺𝑺𝒕𝒕|   |𝑺𝑺| 

CPLEX CPLEX’s BD framework BBC 

P1 (M$) T1 (s) P2 (M$) T2 (s) P3 (M$) T3 (s) T3 T1⁄  
(%) 

T3 T2⁄  
(%) 

M1 1,3 3 8 512 95.77 81.2 95.77 1,698.52 95.77 13.94 17.17 0.82 
M2 1,3 3 9 729 92.81 180.79 92.81 3,955.70 92.81 26.64 14.74 0.67 
M3 1,2 4 5 625 69.36 82.27 69.36 6,587.40 69.36 48.87 59.40 0.74 
M4 2,3 6 3 729 269.82 1,611.69 – – 269.82 436.03 27.05 – 
M5 1,2,3 4 4 256 323.72 150.23 323.72 12,336.77 323.72 83.46 55.55 0.68 
M6 1,2,3 4 5 625 318.58 867.92 – – 318.58 92.73 10.68 – 
M7 1,2,3 6 3 729 427.42 3,136.55 – – 427.42 511.87 16.32 – 
M8 1,2,3 9 2 512 637.06 3,300.97 – – 637.06 555.52 16.83 – 
M9 1,2,3 5 4 1,024 350.90 4,122.53 – – 350.90 1,404.70 34.07 – 

M10 1,2,3 7 3 2,187 – – – – 491.29 1,214.21 – – 
         Avg.  27.98 0.73 

Notes: (1) The values in columns T3 T1⁄  (%) and T3 T2⁄  (%) are calculated by 
T3 T1⁄ × 100 and T3 T2⁄ × 100, respectively; (2) the en-dash means that no solution is 
found within six hours; (3) M$ denotes million dollars.  

Finally, ten sets of large-scale computational experiments involving five and ten 

ship routes are conducted. As shown in Table 3-7, CPLEX method and CPLEX’s 

Benders decomposition framework cannot find any solution within six hours in 60% 

and 100% of the cases, respectively. However, the proposed BBC algorithm can obtain 

optimal solutions in 90% of the cases, and the CPU time of the BBC method is, on 

average, 29.64% of that of CPLEX among the instances that can be solved to optimali- 

Table 3-7 Comparison of the three methods for large-scale instances. 
Case 
ID 

Num of 
Routes 

|𝑻𝑻| |𝑺𝑺𝒕𝒕|   |𝑺𝑺| 
CPLEX CPLEX’s BD framework BBC 

P1 (M$) T1 (s) P2 (M$) T2 (s) P3 (M$) T3 (s) T3 T1⁄  (%) T3 T2⁄  (%) 
L1 5 4 4 256 912.26 1,011.53 – – 912.26     627.32 62.02 – 
L2 5 4 5 625 934.68 6,138.96 – – 934.68   1,106.22 18.02 – 
L3 5 5 4 1,024 – – – – 1,182.27   1,481.75 – – 
L4 5 6 3 729 1,430.19 18,738.31 – – 1,430.19   3,079.21 16.43 – 
L5 5 7 3 2,187 – – – – 1,730.46 12,898.50 – – 
L6 10 4 4 256 2,619.27 6366.55 – – 2,619.27   1,407.62 22.11 – 
L7 10 4 5 625 – – – – 2,654.03   4,949.47 – – 
L8 10 5 4 1,024 – – – – 3,268.52 10,380.10 – – 
L9 10 6 3 729 – – – – 4,000.84 10,648.36 – – 

L10 10 7 3 2,187 – – – – – – – – 
         Avg.  29.64 – 

Notes: (1) The values in columns T3 T1⁄  (%) and T3 T2⁄  (%) are calculated by 
T3 T1⁄ × 100 and T3 T2⁄ × 100, respectively; (2) the en-dash means that no solution is 
found within six hours; (3) M$ denotes million dollars.  
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ty by CPLEX method. Hence, the accuracy and efficiency of the proposed BBC 

algorithm for large-scale computational instances are verified. 

This chapter also investigates the impact of acceleration strategies introduced in 

Section 3.5.4. Table 3-8 reports the performance of the BBC algorithm when the 

acceleration strategies, i.e., the UBT inequalities and Pareto-optimal cuts, are 

separately applied to the problem. The tests are performed in the above 30 small-, 

medium-, and large-scale instances. The results in Table 3-8 indicate that the UBT 

inequalities significantly reduce the solution time of the proposed algorithm by 

approximately 6.52%. The generation of Pareto-optimal cuts also results in an about 

4.30% reduction in the solution time for the 30 instances. 

Table 3-8 Impact of acceleration strategies. 

Case ID BBC BBC+UBT 
inequalities BBC+Pareto-optimal cuts 

OBJ (M$) T1 (s) T2 (s) T2 T1⁄  (%) T3 (s) T3 T1⁄  (%) 
S1 32.26 0.50 0.46   92.00 0.41   82.00 
S2 31.24 0.69 0.63    91.30 0.57   82.61 
S3 31.14 0.62 0.50   80.65 0.59   95.16 
S4 71.02 4.13 3.97   96.13 4.06   98.31 
S5 68.81 11.84 10.68   90.20 11.86 100.17 
S6 97.28 7.92 7.61   96.09 8.24 104.04 
S7 96.83 8.26 8.14   98.55 8.02   97.09 
S8 271.20 15.15 14.14   93.33 14.75   97.36 
S9 428.88 34.68 31.38   90.48 36.39 104.93 

S10 323.90 14.67 13.05   88.96 12.23   83.37 
M1 95.77 13.94 13.06   93.69 15.30 109.76 
M2 92.81 26.64 24.50   91.97 24.00   90.09 
M3 69.36 48.87 42.07   86.09 52.18 106.77 
M4 269.82 436.03 372.49   85.43 462.11 105.98 
M5 323.72 83.46 69.94   83.80 77.91   93.35 
M6 318.58 92.73 79.05   85.25 77.52   83.60 
M7 427.42 511.87 595.99 116.43 502.53   98.18 
M8 637.06 555.52 600.20 108.04 604.54 108.82 
M9 350.90 1,404.70 1,036.91   73.82 1242.71   88.47 

M10 491.29 1,214.21 1,088.47   89.64 1081.29   89.05 
L1 912.26     627.32 622.54   99.24  681.15 108.58  
L2 934.68   1,106.22 1060.44   95.86  1109.02 100.25  
L3 1,182.27   1,481.75 1517.08 102.38  1384.53   93.44  
L4 1,430.19   3,079.21 3420.10 111.07  2520.04   81.84  
L5 1,730.46 12,898.50 10920.79   84.67  13229.45 102.57  
L6 2,619.27   1,407.62 1168.79   83.03  1271.58   90.34  
L7 2,654.03   4,949.47 3748.60   75.74  4615.36   93.25  
L8 3,268.52 10,380.10 10920.88 105.21  9469.13   91.22  
L9 4,000.84 10,648.36 12990.66 122.00  10086.25   94.72  
L10 – – ~ ~ ~ ~ 

   Avg. 93.48  95.70 
Notes: (1) The values in columns T2 T1⁄  (%), T3 T1⁄  (%), and T4 T1⁄  (%) are calculated 
by T2 T1⁄ × 100, T3 T1⁄ × 100, and T4 T1⁄ × 100, respectively; (2) the en-dash means 
that no solution is found within six hours; (3) the tilde means that a feasible solution 
is found within six hours; (4) M$ denotes million dollars.  

The impact of uncertainty on the operations management of liner companies is 

then investigated. A deterministic programming model [ Mdeter ], a two-stage 

stochastic programming model [Mtwo], and a perfect information model [Mperfect] are 

formulated in Appendix B and compared with the multistage stochastic programming 
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model [M3-1]. In [Mdeter], the number of newly generated container shipment demand 

in each period for an O-D pair is set to the average value of demands in the multistage 

programming model over 𝑠𝑠 ∈ 𝑆𝑆; in [Mtwo], under a specific scenario 𝑠𝑠 ∈ 𝑆𝑆, values of 

demands of an O-D pair in each period are the same as the demand values of the O-D 

pair in each period in multistage stochastic programming model. The ship chartering 

and fleet deployment decisions obtained by [Mdeter] and [Mtwo] will then be evaluated 

by making container acceptance, shipment, and delay decisions in each period in a 

myopic manner elaborated in Appendix A.2 to calculate the resulting expected profits, 

represented by 𝑍𝑍deter and 𝑍𝑍two, respectively. The optimal objective value of [M3-1] 

is denoted by 𝑍𝑍multi . As another benchmark, Appendix B presents a perfect 

information model whose average profit over all scenarios is represented by 𝑍𝑍perfect.  

To compare the four models, Case ID “M8” in Table 3-6 is selected as the 

computational instance and ten random cases are conducted to investigate the impact 

of uncertainty on the operations management of liner companies. Relative results are 

recorded in Table 3-9. The six rightmost columns record the comparison of multistage 

stochastic model and deterministic programming model, the comparison of multistage 

stochastic model and two-stage stochastic model, and the comparison of multistage 

stochastic model and perfect information model, respectively. Obviously, when 

decision-makers have perfect information, they can obtain the maximum expected 

profit. Besides, the gap between the objective values of the multistage stochastic model 

and the perfect information model is quite small (the average value of GAP3
𝑍𝑍multi

 is 0.55%). 

Note, however, that in reality, it is almost impossible to obtain perfect information. 

Comparing with the other two models, using multistage stochastic programming can 

lead to higher profit than using two-stage stochastic programming (the average value 

of GAP2
𝑍𝑍multi

 is 6.78%) or deterministic programming (the average value of GAP1
𝑍𝑍multi

 is 

16.00%). 

We then conduct an intensive analysis of why multistage stochastic programming can 

lead to better solutions. Detailed results of the 10 sets of experiments are recorded in 

Table 3-10. Columns 2–4 on the left (𝐶𝐶deter, 𝐶𝐶two, and 𝐶𝐶multi) record the total routing 

capacities on all ship routes by using deterministic programming, two-stage stochastic 

programming, and multistage stochastic programming, respectively. It can easily be 

seen that the routing capacity by using deterministic programming is too small 
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compared with the capacities of two-stage stochastic programming and multistage 

stochastic programming and thus unable to effectively deal with demand uncertainty. 

The routing capacity using deterministic programming is only 17,135 34,829⁄ ×

100 ≈ 49.20% and 17,135 35,528⁄ × 100 ≈ 48.23% of the capacities of two-stage 

stochastic programming and multistage stochastic programming, respectively, and 

deterministic programming is thus unable to deal effectively with demand uncertainty. 

The total routing capacity using multistage stochastic programming is larger than that 

using two-stage stochastic programming in two cases and the same in the other eight 

cases (but the total routing capacities of each ship route by using multistage and two-

stage stochastic programming may still differ), leading to more containers accepted 

(an average of 841,693 TEUs accepted in the multistage model vs. 823,769 TEUs in 

the two-stage model). The multistage model has an average of 35,114 TEUs of delayed 

containers, which is much smaller than the average of 180,529 TEUs using the two-

stage model. 

Table 3-9 Comparison of the multistage, deterministic, and two-stage programming 
models and the perfect information model. 

Case 
ID 

𝑍𝑍multi 
(M$) 

𝑍𝑍deter 
(M$) 

𝑍𝑍two 
(M$) 

𝑍𝑍perfect 
(M$) 

Value of stochastic 
solution 

Multistage vs two-
stage programming 

Value of perfect 
information 

Gap1 (M$) 
Gap1
𝑍𝑍multi

 (%) Gap2 (M$) 
Gap2
𝑍𝑍multi

 (%) Gap3 (M$) 
Gap3
𝑍𝑍multi

 (%) 

1 641.52 536.52 603.08 645.29 105.00 16.37 38.44 5.99 3.77 0.59 
2 637.06 537.57 542.56 640.55 99.49 15.62 94.50 14.83 3.49 0.55 
3 642.96 527.96 608.85 646.81 115.00 17.89 34.11 5.30 3.85 0.60 
4 626.23 526.11 588.27 629.68 100.12 15.99 37.96 6.06 3.45 0.55 
5 631.78 529.31 594.33 635.01 102.48 16.22 37.45 5.93 3.22 0.51 
6 643.36 540.37 605.42 647.09 102.99 16.01 37.94 5.90 3.73 0.58 
7 639.79 541.18 605.12 643.09 98.61 15.41 34.67 5.42 3.30 0.52 
8 627.79 532.60 589.69 631.44 95.19 15.16 38.10 6.07 3.65 0.58 
9 644.65 547.04 603.34 648.01 97.60 15.14 41.31 6.41 3.36 0.52 

10 638.50 535.08 601.06 642.02 103.42 16.20 37.44 5.86 3.52 0.55 
Avg. 637.36 535.37 594.17 640.90 101.99 16.00 43.19 6.78 3.54 0.55 
Notes: (1) Gap1 = Zmulti − 𝑍𝑍deter , Gap2 = Zmulti − 𝑍𝑍two , and Gap3 = 𝑍𝑍perfect −
Zmulti ; (2) the values in columns Gap1 Zmulti⁄  (%), Gap2 Zmulti⁄  (%), and 
Gap3 Zmulti⁄  (%) are calculated by Gap1 Zmulti⁄ × 100 , Gap2 Zmulti⁄ × 100 , and 
Gap3 Zmulti⁄ × 100, respectively; (3) M$ denotes million dollars.  

We then examine to what extent due to different fleet deployment decisions and 

to what extent due to different demand fulfillment and allocation decisions that the 

multistage model outperforms the two-stage model. To this end, we design a 

multistage stochastic programming model using two-stage deployment decisions (i.e., 

fleet deployment decisions are first obtained by using the two-stage model [Mtwo], and 

demand fulfillment and allocation decisions are then obtained by using the multistage 

model). The expected profits of the two-stage method, multistage method, and 
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multistage stochastic programming model using two-stage deployment decisions are 

denoted by 𝑍𝑍two, 𝑍𝑍multi, and 𝑍𝑍multi
two deploy, respectively, and compared in the last two 

columns of Table 3-10. We can see that 10% (= (𝑍𝑍multi − 𝑍𝑍multi
two deploy)/(𝑍𝑍multi −

𝑍𝑍two)) of the benefit brought by the multistage model over the two-stage model is due 

to better fleet deployment decisions and 90% ( = (𝑍𝑍multi
two deploy − 𝑍𝑍two)/(𝑍𝑍multi −

𝑍𝑍two)) of the benefit is due to better demand fulfillment and allocation decisions. 

Table 3-10 Impact of uncertainty on the operations management of liner companies. 

Case 
ID 

Routing capacity Two-stage stochastic 
programming (SP) Multistage SP 

Multistage SP using 
two-stage deployment 

decisions 

Benefits 
(M$) 

𝐶𝐶deter 
(TEU) 

𝐶𝐶two 
(TEU) 

𝐶𝐶multi 
(TEU) 

𝑍𝑍two 
(M$) 

Total 
accept 
(TEU) 

Total 
delay 
(TEU) 

𝑍𝑍multi 
(M$) 

Total 
accept 
(TEU) 

Total 
delay 
(TEU) 

𝑍𝑍multi
2 dep 

(M$) 

Total 
accept 
(TEU) 

Total 
delay 
(TEU) 

𝑍𝑍1 𝑍𝑍2 

1 16,848 35,272 35,272 603.08 835,143 183,910 641.52 845,523 36,892 641.52 845,523 36,892   0.00 38.44 
2 16,848 29,558 35,272 542.56 769,236 235,139 637.06 842,148 35,861 595.05 790,602 49,581 42.01 52.49 
3 16,848 36,554 36,554 608.85 847,286 166,515 642.96 856,691 35,599 642.96 856,691 35,599   0.00 34.11 
4 17,258 35,272 35,272 588.27 815,106 170,823 626.23 827,593 33,928 626.23 827,555 33,765   0.00 37.96 
5 16,848 35,272 35,272 594.33 823,101 172,035 631.78 835,037 37,229 631.78 835,037 37,230   0.00 37.45 
6 16,848 35,272 35,272 605.42 832,316 178,617 643.36 844,117 36,458 643.32 843,317 36,062   0.04 37.90 
7 17,668 35,272 35,272 605.12 831,868 163,257 639.79 843,321 35,966 639.79 843,328 35,971   0.00 34.67 
8 17,258 35,272 35,272 589.69 817,472 174,055 627.79 829,224 34,284 627.79 829,225 34,284   0.00 38.10 
9 17,668 35,272 35,272 603.34 835,420 184,431 644.65 847,835 31,762 644.65 847,835 31,763   0.00 41.31 
10 17,258 35,272 36,554 601.06 830,737 176,504 638.50 845,432 33,152 638.48 842,885 39,715   0.02 37.42 
Avg. 17,135 34,829 35,528 594.17 823,769 180,529 637.36 841,693 35,114 633.16 836,200 37,087   4.21 38.99 

Notes: (1) 𝐶𝐶deter, 𝐶𝐶two, and 𝐶𝐶multi denote the total routing capacities on all ship routes 
using deterministic programming, two-stage stochastic programming, and multistage 
stochastic programming, respectively; (2) 𝑍𝑍two , 𝑍𝑍multi , and 𝑍𝑍multi

2 depl  denote the 
expected profits using two-stage stochastic programming, multistage stochastic 
programming, and multistage stochastic programming with two-stage deployment 
decisions, respectively; (3) the values in the “Total accept” and “Total delay” columns 
are the expected total number of accepted container and the expected total number of 
delayed containers, respectively; (4) values in “𝑍𝑍1” and “𝑍𝑍2” columns are calculated 
by Zmulti − Zmulti

2 dep and Zmulti
2 dep − Ztwo, respectively; (5) M$ denotes million dollars.  

3.6.3 Managerial insights for liner shipping 

This chapter then discusses three practical questions regarding the driver 

analysis of liner company profitability, the benefit analysis of adaptive fleet sizes, and 

the influence of pandemic diseases on liner shipping. Case ID “M8” in Table 3-6 is 

selected as the computational instance in this experiment. 

We first report liner company profitability in Table 3-11 with various operational 

characteristics (𝑓𝑓ℎ,𝑟𝑟 , 𝑐𝑐𝑘𝑘,𝑟𝑟 , 𝑔𝑔𝑘𝑘 , 𝑝𝑝𝑜𝑜,𝑑𝑑 , and 𝑚𝑚𝑘𝑘 ) and the demand parameters (𝑙𝑙𝑜𝑜,𝑑𝑑 , and 

𝑞𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ). Three random cases are conducted, and values of parameters listed in Table 3-



 

67 
 

11 are changed based on the value setting introduced in Section 3.6.1. Values in the 

“Profit” columns are objective values of model [M3-1], and values in the “Gap” 

columns are calculated by the difference between the objective values of the original 

case and that of the changed value setting divided by the objective value of the original 

case and times 100. 

Table 3-11 Driver analyses of liner company profitability. 
Parameters Value setting Case 1 Case 2 Case 3 

Profit (M$) Gap (%) Profit (M$) Gap (%) Profit (M$) Gap (%) 

Operational 
parameters 

Increase 𝑓𝑓ℎ,𝑟𝑟 by 25% 625.74 −1.78 631.25 −1.82 614.92 −1.81 
Increase 𝑓𝑓ℎ,𝑟𝑟 by 50% 614.43 −3.55 619.66 −3.62 603.61 −3.61 
Increase 𝑐𝑐𝑘𝑘,𝑟𝑟 by 25% 621.97 −2.37 627.35 −2.43 611.15 −2.41 
Increase 𝑐𝑐𝑘𝑘,𝑟𝑟 by 50% 606.89 −4.74 612.12 −4.80 596.07 −4.82 
Increase 𝑔𝑔𝑘𝑘 by 25% 630.18 −1.08 635.86 −1.10 619.36 −1.10 
Increase 𝑔𝑔𝑘𝑘 by 50% 623.83 −2.08 628.76 −2.21 612.48 −2.20 
Increase 𝑝𝑝𝑜𝑜,𝑑𝑑 by 25% 635.62 −0.23 641.26 −0.26 624.77 −0.23 
Increase 𝑝𝑝𝑜𝑜,𝑑𝑑 by 50% 634.63 −0.38 640.04 −0.45 623.81 −0.39 
Decrease 𝑚𝑚𝑘𝑘 by 25% 634.33 −0.43 640.23 −0.42 623.50 −0.44 
Decrease 𝑚𝑚𝑘𝑘 by 50% 631.73 −0.84 637.50 −0.85 620.77 −0.87 

Demand 
parameter 

Decrease 𝑙𝑙𝑜𝑜,𝑑𝑑 by 25% 456.92 −28.28 460.60 −28.36 448.90 −28.32 
Decrease 𝑙𝑙𝑜𝑜,𝑑𝑑 by 50% 280.82 −55.92 282.39 −56.08 275.42 −56.02 
Decrease 𝑞𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡

𝑠𝑠  by 25% 486.51 −23.63 491.73 −23.52 478.18 −23.64 
Decrease 𝑞𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡

𝑠𝑠  by 50% 326.27 −48.79 329.20 −48.80 319.97 −48.91 
Notes: (1) The values in the “Profit” columns are objective values of model [M1], and 
the values in the “Gap” columns are calculated by the difference between the objective 
values of the original case and that of the changed value setting divided by the 
objective value of the original case times 100; (2) M$ denotes million dollars.  

As expected, liner company profitability depends on both operational 

characteristics and shipment demands. Among all operational characteristics, the 

operating cost of ships (𝑐𝑐𝑘𝑘,𝑟𝑟) has the greatest impact on liner company profitability. 

Other operational variations remain moderate. For example, even massive increases in 

the penalty cost for delayed containers (𝑝𝑝𝑜𝑜,𝑑𝑑) (by up to 50%) or massive decreases in 

the revenue of chartering out a ship (𝑚𝑚𝑘𝑘) (by up to 50%) induce very moderate profit 

decreases (within 1%). Moreover, massive increases in the repositioning cost (𝑓𝑓ℎ,𝑟𝑟), 

and rental cost of chartering in a ship (𝑔𝑔𝑘𝑘) (by up to 50%) result in moderate profit 

decreases (within 4%). However, the impact of demand parameters (𝑙𝑙𝑜𝑜,𝑑𝑑 and 𝑞𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ) is 

much larger than that of operational characteristics. For example, a 25% decrease in 

the shipment demand (𝑞𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ) reduces profits by more than 20% in the three cases. 

Therefore, in addition to improving operational capabilities, liner companies must pay 

more attention to the demand market to manage customer expectations and attract 

more shipment demands by pricing strategies, public relations campaigns, and 

marketing campaigns. Similar conclusions are also drawn from Wang et al. (2022).  
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Since shipment demand is the main driver of liner company profitability and 

varies greatly in practice, this chapter then discusses the impact of the uncertain 

container shipment demand on the operation of ship fleets. As introduced in Section 

3.6.1, the number of container shipment demand during each period is assumed to be 

uniformly distributed in [0, 5000] TEUs. However, container shipment demand always 

fluctuates instead of staying the same across different periods. For example, from 

January to April 2020, the container throughput at the Port of Shanghai fell by 8.4% 

from the previous year (CWTN, 2021). Hence, we vary the distribution of the container 

shipment demand during each period to investigate its influence. We assume that the 

demand follows a log-normal distribution with mean represented by 𝜇𝜇 and variance 

represented by 𝜎𝜎2 because it is easy for a log-normal distribution to adjust its mean 

and variance and the log-normal distribution is widely used in the literature (Wang et 

al., 2013). The variance of the demand can be considered as a measure of risk in an 

uncertain shipping market. We further assume that the coefficient of variation 𝜎𝜎 𝜇𝜇⁄ , 

denoted by λ, is the same for all O-D pairs, time periods, and scenarios. Values of 𝜇𝜇, 

and λ are set to 2,500, and between 0 and 0.4 in intervals of 0.05, respectively. Ten 

sets of computational instances for each value of λ are conducted, and the average of 

the 10 objective values (OBJ) is shown in Figure 3-7. Obviously, the expected total 

profit decreases as λ increases. This makes sense because the variance of demands 

normally means that the originally deployed ship is more likely not to be suitable for 

the current demand; that is, there is sometimes a large amount of spare capacity 

onboard the ship, and the ship is sometimes too small to carry the required cargo, 

resulting in a decrease in the total profit of the liner company. However, equipped with 

the multi-stage stochastic programming model, the loss in profit is marginal: when λ 

increases from 0 to 0.4, the average total profit only decreases by 

(661,465,745 − 649,172,756 ) 661,465,745⁄ × 100% ≈ 1.86%. 

 
Figure 3-7 Impact of the uncertain container demand. 
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Finally, we investigate how the chartering in and out of the ships affect ship 

repositioning plans and profitability by changing the rental cost of chartering in ships 

and the revenue of chartering out ships. As shown in Table 3-12, five sets of scenarios 

are considered and three random computational experiments are conducted. The value 

setting in the base scenario is the value setting introduced in Section 3.6.1. N1, N2, and 

N3 in Table 3-12 represent the total number of deployed own ships, the total number 

of deployed ships chartered (in) from other shipping liners, and the total number of 

ships chartered (out) to other shipping liners, respectively. And the five numbers in 

parentheses represent the numbers of deployed ships of type 1, type 2, type 3, type 4, 

and type 5, respectively. Recall that all ships owned by the liner company are of type 

1. The rental cost of chartering in ships and the revenue of chartering out ships have 

little influence on the fleet decisions because the decisions of Case 2 and Case 3 in 

Table 3-12 are the same regardless of how 𝑔𝑔𝑘𝑘 and 𝑚𝑚𝑘𝑘 change, which is also reflected 

in Table 3-11. However, in Case 1 in Table 3-12, when the rental cost of chartering in 

ships increases or the revenue of chartering out ships decreases, the liner company 

tends to deploy its own ships and charter in less ships, which is reasonable because 

deploying own ships can help compensate for the decline in the company’s profit. 

Table 3-12 Influence of charter prices on fleet decisions. 

Value setting Case 1 Case 2 Case 3 
𝑁𝑁1 𝑁𝑁2 𝑁𝑁3 𝑁𝑁1 𝑁𝑁2 𝑁𝑁3 𝑁𝑁1 𝑁𝑁2 𝑁𝑁3 

Base 0 6 (0:1:1:2:2) 6 0 6 (0:0:2:2:2) 6 0 6 (0:1:1:2:2) 6 
Increase 𝑔𝑔𝑘𝑘 by 25% 0 6 (0:1:1:2:2) 6 0 6 (0:0:2:2:2) 6 0 6 (0:1:1:2:2) 6 
Increase 𝑔𝑔𝑘𝑘 by 50% 1 (1:0:0:0:0) 5 (0:0:1:2:2) 5 0 6 (0:0:2:2:2) 6 0 6 (0:1:1:2:2) 6 
Decrease 𝑚𝑚𝑘𝑘 by 25% 0 6 (0:1:1:2:2) 6 0 6 (0:0:2:2:2) 6 0 6 (0:1:1:2:2) 6 
Decrease 𝑚𝑚𝑘𝑘 by 50% 1 (1:0:0:0:0) 5 (0:0:1:2:2) 5 0 6 (0:0:2:2:2) 6 0 6 (0:1:1:2:2) 6 

Notes: (1)N1, N2, and N3 represent the total number of deployed own ships, the total 
number of deployed ships chartered in from other shipping liners, and the total number 
of ships chartered out to other shipping liners, respectively; (2) the values of N1, N2, 
and N3 can be calculated by ∑ ∑ 𝛼𝛼ℎ,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑦𝑦ℎℎ∈𝐻𝐻1 , ∑ ∑ 𝛼𝛼ℎ,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑦𝑦ℎℎ∈𝐻𝐻2 , and ∑ (𝑢𝑢ℎ −ℎ∈𝐻𝐻1
∑ 𝛼𝛼ℎ,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑦𝑦ℎ

), respectively; (3) the five numbers in parentheses represent the numbers 
of deployed ships of type 1, type 2, type 3, type 4, and type 5, respectively. 

When the planning horizon consists of multiple periods, the liner company can 

be more reactive to uncertain demand by adjusting fleet capacities in view of realized 

demand. We consider a set 𝑈𝑈 consisting of OD pairs Singapore-Laem Chabang, Laem 

Chabang-Singapore, Singapore-Port Klang, Port Klang-Singapore, Singapore-

Karachi, and Colombo-Singapore between which ships with capacities of 2,808 TEU 

(i.e., ships of type 1) can be deployed on an ad-hoc manner. An MILP model is 

developed in Appendix C to formulate the multistage stochastic program with adaptive 



 

70 
 

fleet size. Demand (𝑞𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ) is drawn from a log-normal distribution with mean 2,500 

TEU and a large standard deviation of 5,000. Two scenarios, i.e., charter prices are 

independent of demands and charter prices are related to demands, are considered in 

this analysis. For the first scenario, the rental cost (𝑔𝑔�𝑜𝑜,𝑑𝑑,𝑠𝑠) of chartering in such a ship 

to provide point-to-point shipping service from port 𝑜𝑜 to port 𝑑𝑑, (𝑜𝑜,𝑑𝑑) ∈ 𝑈𝑈, under 

scenario 𝑠𝑠 , 𝑠𝑠 ∈ 𝑆𝑆 , is assumed to be uniformly distributed in [(100,000 + the total 

sailing time periods (days) of a deployed ship × 19,800) times 0.5, (100,000 + the total 

sailing time periods (days) of a deployed ship ×19,800) ×3]. For the second scenario, 

the value of 𝑥𝑥𝑜𝑜,𝑑𝑑,𝑠𝑠
cost  is set to (100,000 + the total sailing time periods (days) of a deployed 

ship × 19,800)× 𝑞𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠

2500
× 1.75.  

Ten random sets of computational instances are conducted, and results of fixed 

fleet sizes, adaptive fleet sizes with charter prices independent of demands, and 

adaptive fleet sizes with charter prices related to demands are recorded in Table 3-13. 

Although adaptive fleet sizes can increase the profit of the liner company, the average 

relative gaps in the company profit of the above-mentioned two scenarios are only 

1.09% and 1.76%, respectively. When adaptive fleet sizes are available (either the 

scenario of charter prices independent of demands or the scenario of charter prices 

related to demands), in the face of huge fluctuations in demand, the liner company 

prefer to deploy ships with smaller capacity in the first stage, and then charter in more 

point-to-point ships to respond to increased demand more flexibly. Besides, we reduce 

the standard deviation from 5,000 to 2,500, 1,250, and 625 and find that the relative 

gaps in the company profit are at most 0.63%, 0.20%, and 0.05%, respectively 

(detailed results are in Tables 3-14–3-16). Therefore, in practice, when demand 

fluctuation is moderate, liner companies, especially those without operational research 

decision-making support, can ignore adaptive fleet sizes because the benefits brought 

by this factor are too small but companies have to make a lot of decisions manually. 

Moreover, based on Tables 3-13–3-16, we find that there is no clear conclusion 

whether the liner company should charter in more point-to-point ships and whether it 

will earn more profits in the scenario of demand-related charter prices than in the 

scenario of demand-independent charter prices. 
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Table 3-13 Benefit analysis of adaptive fleet sizes for instances with standard 
deviation 5,000. 

ID 

Fixed fleet 
sizes 

Adaptive fleet sizes 
Charter prices independent of demand Charter prices related to demand 

P1 (M$)    N1 
(TEU) P2 (M$)  G1 

(%) 
N1 

(TEU) 
d1 

(TEU) 
d2 

(TEU) N2 P3 (M$) G2 
(%) 

N1 
(TEU) 

d1 
(TEU) 

d2 
(TEU) N2 

1 580.36 36,554 587.70 1.26 33,648 10,193 2,791 1.19 591.41 1.90 33,648   9,689 2,686 1.35 
2 580.19 34,862 587.36 1.24 34,862 12,192 2,795 1.07 591.59 1.96 29,148 11,408 2,722 1.29 
3 590.59 36,554 598.04 1.26 33,648 11,836 2,767 1.28 605.62 2.54 33,648 10,821 2,689 1.68 
4 590.40 34,862 598.70 1.41 33,648 10,638 2,773 1.24 601.88 1.94 29,148   9,840 2,766 1.29 
5 624.34 36,554 630.29 0.95 33,648   9,501 2,772 0.94 633.69 1.50 33,648   8,706 2,632 1.15 
6 594.00 36,554 599.65 0.95 34,862 10,696 2,757 0.92 603.48 1.60 34,862   9,469 2,663 1.15 
7 573.42 34,862 579.11 0.99 34,862   9,671 2,887 0.79 582.09 1.51 29,148   8,852 2,723 0.99 
8 569.54 34,862 575.90 1.12 34,862   9,960 2,743 0.98 579.63 1.77 34,862   9,025 2,648 1.21 
9 571.06 34,862 576.28 0.91 33,648   9,695 2,749 0.79 579.43 1.47 33,648   8,412 2,650 1.02 

10 578.32 34,862 583.26 0.85 34,862 10,489 2,788 0.81 586.32 1.38 34,862   9,429 2,678 0.95 
Avg. 585.22 35,539 591.63 1.09 34,255 10,488 2,783 1.00 595.51 1.76 32,662 9,566 2,686 1.21 
Notes: (1) P1, P2, and P3 represent the profit values of models considering fixed fleet 
sizes, adaptive fleet sizes with charter prices independent of demands, and adaptive 
fleet sizes with charter prices related to demands, respectively; (2) G1 , and G2 
represent the relative gaps (%) for the models considering fixed fleet sizes and adaptive 
fleet sizes with charter prices independent of demands, and the models considering 
fixed fleet sizes and adaptive fleet sizes with charter prices related to demands, 
respectively; the values of G1, and G2 can be calculated by (P2 − P1) ÷ P1 × 100 and 
(P3 − P1) ÷ P1 × 100 , respectively; (3) N1 , and N2  represent the total capacity of 
deployed ships in the first stage, and the average number of chartered point-to-point 
ships, respectively; (4) d1, and d2 represent the average demand per time period for 
each O-D pair in the scenario with the use of additional point-to-point ships, and the 
average shipping volume per point-to-point ship per O-D pair per time period in the 
scenario with the use of additional point-to-point ships, respectively; (5) M$ denotes 
million dollars. 
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Table 3-14 Benefit analysis of adaptive fleet sizes for instances with standard 
deviation 2,500. 

ID 

Fixed fleet 
sizes 

Adaptive fleet sizes 
Charter prices independent of demand Charter prices related to demand 

P1 (M$)    N1 
(TEU) P2 (M$)  G1 

(%) 
N1 

(TEU) 
d1 

(TEU) 
d2 

(TEU) N2 P3 (M$) G2 
(%) 

N1 
(TEU) 

d1 
(TEU) 

d2 
(TEU) N2 

1 623.08 36,554 626.96 0.62  34,862 7,610 2,753 0.66 627.33 0.68  34,862 7,375 2,696 0.65 
2 616.20 34,862 620.72 0.73  34,862 8,506 2,692 0.71 621.04 0.79  34,862 8,021 2,662 0.71 
3 627.75 34,862 630.35 0.41  34,862 6,753 2,595 0.45 630.64 0.46  34,862 6,401 2,554 0.47 
4 614.41 34,862 618.32 0.64  34,862 7,173 2,716 0.68 618.99 0.75  34,862 6,974 2,681 0.66 
5 647.63 34,862 651.44 0.59  34,862 6,985 2,706 0.60 651.75 0.64  34,862 6,634 2,604 0.63 
6 615.37 34,862 618.55 0.52  34,862 6,896 2,662 0.52 618.85 0.57  34,862 6,600 2,586 0.54 
7 631.62 34,862 635.11 0.55  34,862 7,386 2,651 0.58 635.38 0.60  34,862 7,009 2,576 0.58 
8 612.73 34,862 615.46 0.45  22,299 7,050 2,744 0.46 615.72 0.49  34,862 7,008 2,675 0.44 
9 642.73 34,862 647.02 0.67  34,862 7,801 2,734 0.67 647.21 0.70  24,648 7,898 2,724 0.60 

10 631.43 36,554 634.34 0.46  34,862 7,137 2,717 0.59 635.31 0.61  34,862 6,972 2,704 0.61 
Avg
. 626.30 35,200 629.83 0.56 33,606 7,330 2,697 0.59 630.22 0.63 33,841 7,090 2,647 0.59 

Notes: (1) P1, P2, and P3 represent the profit values of models considering fixed fleet 
sizes, adaptive fleet sizes with charter prices independent of demands, and adaptive 
fleet sizes with charter prices related to demands, respectively; (2) G1 , and G2 
represent the relative gaps (%) for the models considering fixed fleet sizes and adaptive 
fleet sizes with charter prices independent of demands, and the models considering 
fixed fleet sizes and adaptive fleet sizes with charter prices related to demands, 
respectively; the values of G1, and G2 can be calculated by (P2 − P1) ÷ P1 × 100 and 
(P3 − P1) ÷ P1 × 100 , respectively; (3) N1 , and N2  represent the total capacity of 
deployed ships in the first stage, and the average number of chartered point-to-point 
ships, respectively; (4) d1, and d2 represent the average demand per time period for 
each O-D pair in the scenario with the use of additional point-to-point ships, and the 
average shipping volume per point-to-point ship per O-D pair per time period in the 
scenario with the use of additional point-to-point ships, respectively; (5) M$ denotes 
million dollars. 
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Table 3-15 Benefit analysis of adaptive fleet sizes for instances with standard 
deviation 1,250. 

ID 

Fixed fleet 
sizes 

Adaptive fleet sizes 
Charter prices independent of demand Charter prices related to demand 

P1 (M$)    N1 
(TEU) P2 (M$)  G1 

(%) 
N1 

(TEU) 
d1 

(TEU) 
d2 

(TEU) N2 P3 (M$) G2 
(%) 

N1 
(TEU) 

d1 
(TEU) 

d2 
(TEU) N2 

1 637.03 34,862 638.74 0.27  34,862 5,965 2,674 0.31 638.63 0.25  34,862 6,198 2,582 0.28 
2 646.88 34,862 647.74 0.13  29,148 4,530 2,497 0.18 647.58 0.11  34,862 4,646 2,439 0.17 
3 636.61 34,862 637.56 0.15  34,862 4,625 2,321 0.21 637.42 0.13  34,862 4,714 2,388 0.19 
4 638.45 34,862 640.24 0.28  34,862 4,951 2,568 0.34 640.04 0.25  34,862 4,973 2,534 0.32 
5 648.03 34,862 649.34 0.20  34,862 4,787 2,550 0.26 649.06 0.16  34,862 4,902 2,505 0.23 
6 635.54 34,862 637.09 0.24  34,862 4,957 2,519 0.33 636.76 0.19  29,148 5,003 2,604 0.20 
7 648.57 35,272 649.67 0.17  34,862 4,848 2,382 0.27 649.47 0.14  34,862 4,897 2,434 0.24 
8 659.63 34,862 661.00 0.21  34,862 5,128 2,492 0.29 660.68 0.16  34,862 5,250 2,549 0.26 
9 644.15 34,862 645.26 0.17  34,862 4,817 2,472 0.26 645.01 0.13  34,862 4,860 2,486 0.24 

10 643.59 34,862 644.61 0.16  34,862 4,847 2,405 0.21 644.43 0.13  24,648 4,913 2,487 0.18 
Avg. 643.85 34,903 645.13 0.20  34,291 4,946 2,488  0.27 644.91 0.16  33,269  5,036 2,501 0.23 
Notes: (1) P1, P2, and P3 represent the profit values of models considering fixed fleet 
sizes, adaptive fleet sizes with charter prices independent of demands, and adaptive 
fleet sizes with charter prices related to demands, respectively; (2) G1 , and G2 
represent the relative gaps (%) for the models considering fixed fleet sizes and adaptive 
fleet sizes with charter prices independent of demands, and the models considering 
fixed fleet sizes and adaptive fleet sizes with charter prices related to demands, 
respectively; the values of G1, and G2 can be calculated by (P2 − P1) ÷ P1 × 100 and 
(P3 − P1) ÷ P1 × 100 , respectively; (3) N1 , and N2  represent the total capacity of 
deployed ships in the first stage, and the average number of chartered point-to-point 
ships, respectively; (4) d1, and d2 represent the average demand per time period for 
each O-D pair in the scenario with the use of additional point-to-point ships, and the 
average shipping volume per point-to-point ship per O-D pair per time period in the 
scenario with the use of additional point-to-point ships, respectively; (5) M$ denotes 
million dollars. 
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Table 3-16 Benefit analysis of adaptive fleet sizes for instances with standard 
deviation 625. 

ID 

Fixed fleet 
sizes 

Adaptive fleet sizes 
Charter prices independent of demand Charter prices related to demand 

P1 (M$)    N1 
(TEU) P2 (M$)  G1 

(%) 
N1 

(TEU) 
d1 

(TEU) 
d2 

(TEU) N2 P3 (M$) G2 
(%) 

N1 
(TEU) 

d1 
(TEU) 

d2 
(TEU) N2 

1 653.18 34,862 653.45 0.04  34,862 3,801 1,751 0.10 653.36 0.03  34,862 3,978 2,147 0.06 
2 660.50 34,862 660.85 0.05  34,862 4,031 2,112 0.10 660.72 0.03  34,862 4,207 2,271 0.07 
3 654.26 34,862 654.53 0.04  34,862 3,846 1,922 0.08 654.45 0.03  24,648 4,173 2,317 0.04 
4 661.31 34,862 661.51 0.03  34,862 3,610 1,720 0.10 661.44 0.02  34,862 3,589 1,907 0.07 
5 653.10 34,862 653.31 0.03  34,862 3,582 1,793 0.08 653.22 0.02  34,862 3,571 1,857 0.06 
6 654.02 34,862 654.19 0.03  29,148 3,560 2,177 0.05 654.12 0.02  34,862 3,559 2,613 0.04 
7 656.78 34,862 657.44 0.10  34,862 4,279 2,199 0.13 657.35 0.09  34,862 4,401 2,282 0.12 
8 645.73 34,862 646.05 0.05  24,648 3,850 2,012 0.08 645.96 0.04  34,862 4,178 1,956 0.09 
9 650.60 34,862 650.85 0.04  34,862 3,758 2,015 0.09 650.77 0.03  24,648 3,916 1,973 0.06 

10 655.41 34,862 655.90 0.07  30,362 3,903 2,006  0.13 655.80 0.06  24,648 3,804 2,083 0.11 
Avg. 654.49 34,862 654.81 0.05 32,819 3,822 1,971 0.09 654.72 0.04 31,798 3,938 2,141 0.07 
Notes: (1) P1, P2, and P3 represent the profit values of models considering fixed fleet 
sizes, adaptive fleet sizes with charter prices independent of demands, and adaptive 
fleet sizes with charter prices related to demands, respectively; (2) G1 , and G2 
represent the relative gaps (%) for the models considering fixed fleet sizes and adaptive 
fleet sizes with charter prices independent of demands, and the models considering 
fixed fleet sizes and adaptive fleet sizes with charter prices related to demands, 
respectively; the values of G1, and G2 can be calculated by (P2 − P1) ÷ P1 × 100 and 
(P3 − P1) ÷ P1 × 100 , respectively; (3) N1 , and N2  represent the total capacity of 
deployed ships in the first stage, and the average number of chartered point-to-point 
ships, respectively; (4) d1, and d2 represent the average demand per time period for 
each O-D pair in the scenario with the use of additional point-to-point ships, and the 
average shipping volume per point-to-point ship per O-D pair per time period in the 
scenario with the use of additional point-to-point ships, respectively; (5) M$ denotes 
million dollars. 
 

Finally, we investigate the influence of pandemic diseases on liner shipping. 

Many ports require foreign ships to undergo a compulsory quarantine for 14 days or 

even 28 days during the COVID-19 pandemic, which greatly increases the 

repositioning time. Hence, we set the preparation time, denoted by 𝑁𝑁, to 0, 2, 4, 6, 8, 

10, 12, 14, 16, 18, 20, 22, 24, 26, and 28 days. Profit values, i.e., OBJ(𝑁𝑁), related to 

the number of preparation days (𝑁𝑁) are recorded in Table 3-17. From this table, we 

can see that the total profit decreases as the number of days for preparation increases. 

This is reasonable because a longer preparation time inevitably leads to an increase in 

the repositioning time, thereby increasing the repositioning cost and reducing the 

profit. To show the change of the objective function value more directly, the 

differences in objective values for adjacent computational instances in Table 3-17, i.e., 

OBJ(𝑁𝑁) −  OBJ(𝑁𝑁 + 2), are also recorded in Figure 3-8. It is obvious that when the 

number of preparation days is less than ten days, the objective value is very sensitive 
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to changes in the number of preparation days. Hence, governments need to think 

carefully about how to set the proper number of quarantine days for foreign ships to 

balance the trade-off between containing diseases and the profit for liner companies. 

Table 3-17 Influence of the COVID-19 pandemic on liner shipping. 
Preparation days (N) OBJ (N) (M$) Preparation days (N) OBJ (N) (M$) Preparation days (N) OBJ (N) (M$) 

0 689.79 10 545.54 20 460.21 
2 658.57 12 526.29 22 444.92 
4 627.35 14 508.11 24 429.95 
6 597.03 16 491.35 26 414.98 
8 569.03 18 475.70 28 400.01 

Note: M$ denotes million dollars. 

 
Figure 3-8 Influence of the COVID-19 pandemic on liner shipping. 

3.6.4 Summary of the managerial insights 

This section summarizes managerial insights from our computational 

experiments to help decision-makers of liner companies. First, using the proposed 

BBC algorithm to solve our problem is fast. Hence, with the help of our solution 

method, decision-makers of liner companies can obtain a quick plan with fleet 

deployment, fleet repositioning, ship chartering, demand fulfillment, and cargo 

allocation to deal with uncertainties in the shipping market. Besides, since the average 

gap value between the objective values of the multistage stochastic programming and 

the perfect information is less than 0.55%, and the multistage stochastic programming 

can provide much better solutions than the two-stage stochastic (6.78% higher profits) 

and the deterministic (16.00% higher profits) programming formulations (similar 

conclusions were drawn by Huang and Ahmed (2009)), multistage stochastic 

programming can help decision-makers to better operate and manage liner companies. 

Moreover, an intensive analysis of why multistage stochastic programming can lead 

to better solutions is also conducted. Benefits brought by multistage over two-stage 

stochastic programming are divided into two categories: one is the improved fleet 

deployment decisions, and the other is demand fulfillment and allocation decisions 
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with full utilization of demand information. The latter accounts for 90% of the total 

benefit. 

Next, we studied three practical questions regarding the driver analysis of liner 

company profitability, the benefit analysis of adaptive fleet sizes, and the influence of 

pandemic diseases on liner shipping. First, we find that liner company profitability 

depends mainly on the revenue generated by each accepted container (i.e., freight rate) 

and shipment demand, and operational characteristics such as penalty cost for delayed 

containers and revenue of chartering out a ship have a much smaller impact on the 

profitability. Since the freight rate is mainly determined by the market, liner companies 

must pay more attention to the demand market to manage customer expectations and 

attract more shipment demands by pricing strategies, public relations campaigns, and 

marketing campaigns. Similar conclusions are also drawn from Wang et al. (2022). 

Since container shipment demand has such a huge impact on the operations of liner 

companies, the influence of uncertain demand is also investigated. The liner 

company’s profit generally decreases as the coefficient of variation of uncertain 

demand increases. Wang et al. (2013) also observed that the average total cost 

generally increases with the value of the coefficient of variation when all shipment 

demand must be fulfilled. Hence, we believe that the variability of the uncertain 

demand has a significant effect on the planning solutions because fluctuations in the 

container shipment demand in the shipping market greatly affect the revenue of liner 

companies. Hence, the way liner companies respond to market fluctuations at the 

beginning is crucial. As shown in the numerical experiments, using the multi-stage 

programming model, the average total profit only decreases by 1.86% when the 

coefficient of variation increases from 0 to 0.4.  

For the second question about the benefit of adaptive fleet sizes, although 

adaptive fleet sizes can increase the profit of the liner company, the relative gap in the 

company profit is at most 1.76% on average for the case with the coefficient of 

variation equal to 2, and the relative gaps are less than 0.63% for the with coefficient 

values of variation equal to 1, 0.5, and 0.25. Hence, in practice, when demand 

fluctuation is moderate, liner companies, especially those without operational research 

decision-making support, can ignore adaptive fleet sizes because the benefits brought 

by this factor are too small.  
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Finally, in terms of the influence of pandemic diseases on liner shipping, when 

the number of preparation days is less than ten days, the expected profit is very 

sensitive to changes in the number of preparation days. Therefore, governments need 

to think carefully about how to set the proper number of quarantine days for foreign 

ships so that liner companies can make money and remain in operation. 

3.7 SUMMARY  

This chapter shows how to operate ship fleets under uncertainty to deal with a 

liner’s multi-period heterogeneous FDP in an uncertain shipping network considering 

fleet repositioning, ship chartering, demand fulfillment, and cargo allocation. While 

this issue is crucial for liner company operations, it has hardly been studied in the 

scientific literature. To fill this research gap, we first introduce this multistage 

optimization problem and developed a mixed-integer linear programming model for 

the problem. Since this problem is NP-hard, we design a Benders-based branch-and-

cut approach to solve the model. Two types of acceleration strategies are applied to 

improve the performance of the proposed algorithm. Contributions of this paper are 

summarized from the following three aspects. 

From the perspective of modeling, we formulate the problem as a multistage 

stochastic programming model. In the first stage, the model determines the number of 

deployed ships of different types on ship routes in the network of the liner company, 

the sailing sequence of these deployed ships, and the numbers of charter-in and charter-

out ships when there is a deficit or a surplus in some ship types; in the following stages, 

when the container shipment demands become realized, the model determines the 

numbers of accepted, delayed and shipped containers for each O-D pair during each 

time period under each scenario. Moreover, we also formulate a multistage MILP 

model to allow for adaptive fleet sizes, i.e., liner companies may rent additional point-

to-point ships for transportation in addition to deployed ships from the decisions in the 

first stage. 

From the perspective of algorithm design, the NP-hardness of the problem does 

not stop us from looking for an exact and efficient algorithm to solve the problem of 

practical scale with realistic data. We design a BBC algorithm to solve the formulated 

model. To tackle the challenge of solving the multistage optimization problem, we 

derive two types of acceleration strategies, including approximate upper bound 
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tightening inequalities and Pareto-optimal cuts, to improve the performance of the 

proposed algorithm. The accuracy and efficiency of the proposed BBC algorithm for 

computational instances are verified.  

From the perspective of managerial insights, we first investigate the impact of 

uncertainty on the operations management of liner companies and find using 

multistage stochastic programming can lead to higher profit than using two-stage 

stochastic programming or deterministic programming. We next conduct an intensive 

analysis of why multistage stochastic programming can lead to better solutions and 

find benefits brought by multistage are divided into two categories: one is the 

improved deployment decisions, and the other is demand fulfillment and allocation 

decisions with full utilization of demand information. The latter accounts for 90% of 

the total benefit. Finally, we discuss three practical questions regarding the driver 

analysis of liner company profitability, the benefit analysis of adaptive fleet sizes, and 

the influence of pandemic diseases on liner shipping. With the help of our solution 

method, decision-makers of liner companies can obtain a quick plan with fleet 

deployment, fleet repositioning, ship chartering, demand fulfillment, and cargo 

allocation scheduling to deal with uncertainties in the shipping market. 
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Chapter 4: Joint routing, scheduling, and 
speed optimization for 
government ships considering 
health impacts 

4.1 INTRODUCTION  

Hong Kong is a world maritime center, connecting almost 600 destinations 

worldwide, with about 270 international container ships departing weekly (GovHK, 

2022). At the same time, the Port of Hong Kong, renowned as one of the busiest 

container ports in the world, handled almost 18 million 20-foot equivalent units in 

2021, of which more than 60% were transshipment cargo (GovHK, 2022). As a result, 

the large volume of vessel traffic is one of the most significant sources of air emissions. 

To reduce air emissions from ships, the Hong Kong government has implemented a 

number of marine control measures, such as the Clean Air Plan for Hong Kong 

released in 2013 (Environment Bureau, 2013) and the Air Pollution Control (Fuel for 

Vessels) Regulation came into effect in 2019 (Environmental Protection Department, 

2018). Hence, faced with the current stringent regulations on air emissions from ships, 

the government should lead by example by strictly scheduling government ships. 

Government ships carry out a number of routine trips for routine tasks, such as 

patrol of territorial water areas, maintenance works, and training. For example, Hong 

Kong has more than 900 government ships to serve 14 government departments in 

2021 (Hong Kong Police Force, 2022). These trips are planned based on solely on the 

requirement of the tasks (e.g., two trips each week) without considering the health 

effects of the air emissions from ships. However, with the large volume of vessel traffic 

and the current stringent regulations on air emissions from ships, it can be challenging 

to further reduce the absolute amounts of air pollutants from government ships. 

Fortunately, environmental science demonstrates that the damage to the health of the 

population caused by unit amount of air pollutant varies significantly with the weather 

conditions. This creates an opportunity for multi-disciplinary research on the 

management of the location and time of air pollutant emissions from ships to minimize 

the total health effect on the population. 
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To control emissions from government ships, all government ships of Hong 

Kong are powered with Euro V diesel (sulphur content not exceeding 0.001%) 

(Environmental Protection Department, 2022). In addition to cleaner marine fuel, 

several operation decisions, such as task completion sequence and sailing speeds 

which further influence the environmental effect of air pollutant emissions from ships, 

can be jointly optimized to reduce the environmental effect. Hence, investigating how 

to schedule government ships considering environmental effects and weather 

conditions is critical to reducing the health effects of the air emissions from ships. 

This chapter draws inspiration from the aforementioned real-world issue in 

environmentally sustainable shipping. It aims to enhance the operations management 

of government ships by proposing mathematical optimization models for a joint 

routing, scheduling, and speed optimization of government ships that account for the 

environmental impact of air pollutant emissions in different weather conditions. Based 

on the weather forecast for the planning cycle, this chapter first uses environmental 

science models to predict the environmental damage of one kilogram of each pollutant 

(e.g., SOX, NOX, and particulate matter) emitted at each space and time grid. This 

chapter then formulates several mathematical optimization models for the integrated 

routing, scheduling, and speed optimization of government ships. The objective is to 

minimize a sum of the ship’s fuel cost and the health damage of the air pollutants from 

the trips, considering the varied effects in space and time. The decision variables are 

the timing of the ship activities, the routing of the ships, and the sailing speed of the 

speeds. A branch-and-price-and-cut (BPC) algorithm is designed to seek the optimal 

decision, which leads to the lowest cost to the society. This chapter aims to develop 

mathematical optimization models for the integrated routing, scheduling, and speed 

optimization of government ships that account for the environment impact of air 

pollutant emissions in different weather conditions, and conducts case studies using 

shipping data. A total of 32 sets of numerical experiments are conducted to validate 

the performance of the proposed model and method. 

The remainder of this chapter is organized as follows. Section 4.2 offers a review 

of relevant literature. In Section 4.3, the background of the problem is introduced, and 

both a trip-based model and a set-covering model are proposed for the joint 

optimization problem. Section 4.4 designs a BPC algorithm to solve the problem. The 

efficiency of the proposed algorithm is assessed through computational experiments 
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and reported in Section 4.5. Finally, Section 4.6 presents a summary of the chapter’s 

key points. 

4.2 LITERATURE REVIEW 

This chapter aims to address the environmental issue of air pollutant emissions 

released by government ships, which receives little attention in the existing literature. 

Of the very few papers that focus on air pollutant emissions from government ships, 

most only examine ship design (Keuning and Walree, 2006; Nabawi, 2021) or the 

feasibility of alternative energy sources (Searcy, 2017; Nguyen et al., 2021). 

Therefore, this chapter aims to address the environmental issue of government ships 

from the tactical and operational levels. The core part of this chapter is the joint routing 

and scheduling problem for government ships. This class of problem can be regarded 

as a two-stage problem with finding the optimal task execution schedule and the 

optimal path design among task points for daily execution plans. Moreover, the 

execution plan for the government ship affects its visiting path design, and different 

visiting paths affect the task execution plan in reverse. The majority of the literature 

on ship routing and scheduling, such as Ronen (1983, 1993), Christiansen et al. (2004, 

2013), Kontovas (2014), and Ksciuk et al. (2023), primarily focuses on designing ports 

of call and subsequently determining departure and arrival times at each port of call 

within a predetermined shipping route. This approach, however, significantly differs 

from the scope of our problem. Therefore, this section reviews the relevant literature 

from two key aspects: (i) the vehicle routing problem (VRP), which closely aligns with 

the core aspect of our problem, and (ii) the algorithms employed in solving the 

problem. 

This problem is a variation of the VRP, namely a multi-trip VRP with time 

windows (MTVRPTW) where a time window is associated with each task. Since 

vehicles normally have limited capacity, vehicles have to perform several trips per day, 

which introduces the multi-trip aspect. Research on MTVRPTW can be found in 

Hernandez et al. (2016), Paradiso et al. (2020), and Yang (2023). Unlike typical VRP 

studies, this chapter introduces a temporal dimension, allowing ships to complete all 

tasks within the planning period. In other words, trips assigned to the same vehicle 

may not necessarily be completed within a single day. This consideration arises from 

the fact that in real-life scenarios, emissions from ships released at different times and 

locations have varying environmental impacts. Therefore, when designing routing and 
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scheduling for government ships, we not only take into account the impact of the 

route’s length but also consider the emission impact at different times and in different 

route segments. As far as we are aware, there is a lack of existing literature specifically 

addressing an MTVRPTW with the consideration of the emission impact at different 

times and in different route segments. Moreover, speed optimization is integrated into 

our problem because the amount of air emissions is directly determined by fuel 

consumption, which is, in turn, directly influenced by the ship’s speed. Wang and 

Meng (2012b) introduced the relationship between fuel consumption and sailing speed 

for ships and provided an efficient outer-approximation method. However, classical 

VRP studies assume a fixed speed for vehicles and treat fuel cost as input data, 

overlooking the fact that fuel consumption is heavily influenced by travel speed. Only 

few papers, such as Fukasawa et al. (2018), and Ma et al. (2021), consider speed 

optimization. Fukasawa et al. (2018) formulated an integrated speed and routing 

optimization problem as a set-partitioning model for vehicles to minimize operating 

costs. Ma et al. (2021) proposed an MIP model for a VRP with speed optimization to 

minimize a weighted objective containing the travel distance, the travel time, and 

energy consumption. To our understanding, there is no literature devoted to a 

combined routing, scheduling, and speed optimization problem for government ships, 

particularly one that incorporates the impact of emissions at different times and in 

different route segments. 

There is a rich literature developing exact algorithms to solve the VRP because 

these algorithms can ensure optimal solutions for this combinatorial optimization 

problem. To this end, many papers treat the problem as a tree exploration problem, 

employing branch-and-bound (B&B) algorithms for solving. However, the problem’s 

NP-hardness limits the use of exact algorithms primarily to small-scale instances. In 

particular, in the case of MTVRPTW, Hernandez et al. (2016) developed two branch-

and-price frameworks. These frameworks are based on two set-covering formulations, 

one featuring columns representing routes (a sequence of consecutive trips), and the 

other with columns representing individual trips. Computational results on instances 

with 25 customers show that some instances that cannot solved by the first framework 

can be solved by the second one. Paradiso et al. (2020) proposed an exact solution 

method based on column enumeration, column generation, and cutting plane to solve 

four variants of the capacitated MTVRPTW; their results shown that almost all cases 



 

83 
 

involving 40 customers and some cases involving 50 customers can be solved to 

optimality by the proposed solution framework within three hours. Drawing 

inspiration from Paradiso et al. (2020), Yang (2023) proposed an exact price-cut-and-

enumerate algorithm to solve the capacitated MTVRPTW and indicated that the 

proposed algorithm can solve all instances with 70 customers to optimality.  

In summary, few works related to the MTVRPTW consider speed optimization. 

However, this factor is particularly crucial for the joint routing and scheduling of 

government ships that take environmental effects into consideration, as the speed of a 

ship significantly influences its fuel consumption, thereby affecting air emissions from 

the ship. Specifically, we allow for the consideration of the environmental emissions 

of ships at different times and locations. This characteristic further distinguishes this 

study from existing literature. To the best of our knowledge, this chapter is the first to 

jointly optimize routing, scheduling, and speed optimization for government ships 

with the consideration of the environmental impact at different times and locations. 

More importantly, government ships should undertake more green shipping 

responsibilities than commercial ships, as the government should not solely prioritize 

cost considerations. However, existing papers on government ships scarcely explored 

how to schedule government ships considering environmental effects. To fill this 

research gap, this chapter develops a linear MIP model to minimize the sum of the fuel 

cost and the health damage of the air pollutants from the trips for routing and 

scheduling of government ships that account for the health effects of air pollutant 

emissions. Additionally, some ignored operating limits, e.g., the dispersion of air 

pollutant emissions, different weather conditions, new trip setup time, and ship 

endurance, are considered in this paper. 

4.3 PROBLEM DESCRIPTION AND MODEL FORMULATION 

This chapter focuses on government ships considering the environmental effects 

of air pollutant emissions in different weather conditions. This study aims to address a 

routing, scheduling, and speed optimization problem of government ships that account 

for the environmental effects of air pollutant emissions at different times and locations. 

This section begins by outlining the problem’s detailed background in Section 4.3.1, 

introduces the dispersion of air pollutant emissions in Section 4.3.2, elaborates on the 

problem’s objective function in Section 4.3.3, presents the mathematical model as a 

trip-based formulation in Section 4.3.4, linearizes the nonlinear part of the trip-based 
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model in Section 4.3.5, and finally proposes a set-covering formulation for the problem 

in Section 4.3.6. 

4.3.1 Problem background 

A significant proportion of the global population lives near coastlines, with New 

York State serving as a prominent example. The total population of the state is 

approximately 19.7 million, and 81% of this population lives in coastal areas (NOAA, 

2023). Consequently, emissions (e.g., SOX, NOX, and PM10) generated by government 

ships during their routine operations pose a significant threat to the air quality of the 

coastal regions and the health of nearby residents (Yau et al., 2012). Although the IMO 

has promulgated several regulations, such as a sulphur cap of 0.50% as stipulated in 

MARPOL Annex VI (IMO, 2019), to reduce air pollutant emissions, government ships 

often do not consider the environmental effects when carrying out their tasks because 

these government ships basically operate in inland waters, and they are not bound by 

international regulations. However, the environmental effects of air emissions tend to 

be more severe because the ships are closer to the coast where the population lives. 

Hence, the environmental effects of air emissions should be integrated into the joint 

routing, scheduling, and speed optimization of government ships.  

Routine voyages of government ships are dedicated to tasks such as patrols of 

territorial water areas, maintenance works, and training. For example, Hong Kong 

contains more than 900 government ships to serve 14 government departments in 2021 

(MD, 2021). However, in contrast to weekly scheduled liner shipping services, the 

routine trips of government ships are flexibly planned according to task requirements, 

such as two trips per week. As shown in Figure 4-1, which consists of 16 task nodes 

and one depot, a government ship plans to perform routine tasks along the coastline. 

To complete the routine task of all nodes, the government ship needs to visit all task 

nodes exactly once. In general, the government seeks the optimal sequence of the task 

nodes to visit such that the total distance traveled by the government ship is minimized. 

However, in reality, a severe problem for these government ships is that they usually 

do not consider the environmental effects of air emissions from ships when performing 

their routing trips. 
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Figure 4-1 Example of a government ship performing routine tasks. 

This chapter aims to determine a set of government ship task execution 

schedules, including the timing of ship activities (i.e., performing routine tasks) and 

the routing of the ship, to ensure the completion of all routine tasks in a maritime area. 

Specifically, we have a single government ship performing several routine tasks over 

a set 𝑇𝑇 of days indexed by 𝑡𝑡. Due to the government’s typical practice of pre-recording 

all routine tasks to be completed within a planning cycle and allowing for parallel 

execution of all tasks, we utilize a predefined set 𝐼𝐼 to record all routine task nodes, 

indexed by 𝑖𝑖. Since the government ship consumes fuels during task execution and 

cannot sustain continuous sailing operations indefinitely, it necessitates regular returns 

to the depot for refueling. Furthermore, let 𝑠𝑠 represent the setup time for preparing a 

new trip. For the example illustrated in Figure 4-1, it is nearly impossible for a ship to 

visit all task nodes in a single trip. To better reflect reality, multiple trips are permitted. 

We call a closed circle a trip and record all trips as the set 𝑅𝑅. As depicted in Figure 4-

2, all task nodes are visited by the government ship in three trips. In each trip, the ship 

departs from a depot (indexed by 0 or 𝑛𝑛 + 1 depending on whether it is the initial or 

terminal node of a trip), then visits all nodes in this trip one by one, and finally returns 

to the depot. To simplify, let 𝐼𝐼−, and 𝐼𝐼+ denote the set of 𝐼𝐼 ∪ {0}, and set of 𝐼𝐼 ∪ { 𝑛𝑛 +

1}, respectively.  

 
Figure 4-2 Example of a government ship performing routine tasks in three trips. 
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The joint routing, scheduling, and speed optimization problem in this chapter is 

subject to several operational and geographical constraints. Specifically, due to the 

necessity of crew members for the operation and execution of routine tasks on the 

government ship, the operational hours of the ship must align with the working hours 

of the crew. This implies that the government ship’s operating time must fall within 

the time window [𝑎𝑎, 𝑏𝑏], where 𝑎𝑎 and 𝑏𝑏 represent the time constraints for performing 

routine tasks. Each routine task node, e.g., 𝑖𝑖, is characterized by its corresponding task 

execution time 𝑞𝑞𝑖𝑖  (𝑞𝑞0 = 𝑞𝑞𝑛𝑛+1 = 0). The total time spent on task execution and in 

transit along different trips should not exceed the endurance, denoted by 𝑒𝑒, of the 

government ship (that is, the maximum time that can be spent on task execution and 

in transit before being refueled at the depot). The distance between two nodes (e.g., 𝑖𝑖 

and 𝑗𝑗) is denoted by 𝑑𝑑𝑖𝑖𝑖𝑖. Besides, the government ship travels at a constant speed from 

node 𝑖𝑖 to 𝑗𝑗, which is denoted by 𝜔𝜔𝑖𝑖𝑖𝑖. In summary, (i) the routing problem to be solved 

is finding the optimal routes for the government ship starting from the depot, visiting 

each of a specified group of routine task nodes exactly once, and then returning to the 

depot. (ii) the scheduling problem must be feasible to the geographical network 

(consisting of the routine task nodes and the depot), the endurance of the government 

ship, the duration of the mandatory replenishment break (layover time) which occurs 

when the government ship returns to the depot, the time constraints for performing 

routine tasks, and the weather conditions. Regarding the timing problem of the ship 

activities, because the damage to the health of the population caused by a unit amount 

of air pollutant varies significantly with the weather conditions, we consider different 

weather conditions over the planning horizon to determine the optimal performing day 

of task node 𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼. (iii) the speed optimization problem determines the sailing speed 

of the government ship in each sailing segment. Sailing speed is a crucial factor in 

maritime transportation, directly influencing the ship’s arrival time, energy 

consumption, and exhaust emissions in each segment. By optimizing the sailing speed 

of the ship, significant benefits can be realized, including reducing fuel costs, 

decreasing air emissions, and better meeting the time requirements of tasks. The speed 

optimization problem is closely intertwined with the first two problems, meaning that 

addressing these three problems requires consideration of the interdependencies 

among them. For instance, speed optimization is not only influenced by the ship’s task 

execution schedule but also be constrained by the refueling and time window 
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limitations. This tight intertwinement necessitates a comprehensive consideration of 

multiple factors to find an overall optimal solution, posing greater challenges in 

modeling and solving. 

4.3.2 Dispersion of air emissions 

When considering the environmental effects of air emissions, weather conditions 

are essential because various weather conditions such as sunny, rainy, cloudy, and 

windy (the wind blowing inland or blowing ocean), directly affect the diffusion of air 

emissions and ultimately affect the environmental effects. Hence, this chapter studies 

a joint routing, scheduling, and speed optimization problem of government ships that 

account for the environmental effects of air pollutant emissions in different weather 

conditions. 

This section begins by introducing the Gaussian plume model, an important part 

of the model being formulated. The Gaussian plume model is based on the general 

transport-diffusion equation, assuming steady-state conditions with no temporal 

changes, a homogeneous and flat spatial area, wind moving solely along the 𝑥𝑥-axis, 

and negligible dispersion without chemical reactions. Commonly used in atmospheric 

dispersion modelling, especially for regulatory purposes (Holmes and Morawska, 

2006), the Gaussian plume model calculates pollution levels at specific receptor nodes, 

i.e., coastal areas, in this chapter. It incorporates factors such as wind velocity, 

horizontal and vertical dispersion, weather conditions, and effective emission height. 

Figure 4-3 illustrates this with a three-dimensional coordinate axis (𝑥𝑥, 𝑦𝑦, 𝑧𝑧). The base 

of the chimney of the government ship is exactly at point (0,0,0), and a coastal area 

locates at the back of the ship and is affected by the ship’s exhaust. The actual stack 

height is denoted by 𝐻𝐻𝑠𝑠. When the pollutants are emitted, they have initial momentum, 

and the pollutants are affected by air buoyancy. Because of the above two reasons, 

pollutants will be elevated, resulting in a plume rise, represented by Δℎ. Hence, the 

pollutant release height, also known as the effective stack height and denoted by 𝐻𝐻, is 

the sum of 𝐻𝐻𝑠𝑠 and Δℎ. The wind is blowing continuously in a direction of the 𝑥𝑥-axis 

with a speed 𝑢𝑢0 (m/s). 
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Figure 4-3 An example of the Gaussian plume model. 

For the example of the chimney in Figure 4-3, most plumes are emitted close to 

the ground instead of spreading in free air. Hence, as the plume spreads downwards 

and upwards, it eventually hits the ground as it moves downwind from the source. 

Clearly, the plume cannot continue to spread into the ground, which means 𝑧𝑧 < 0 is 

not considered. Instead, it is reflected into the air above the ground. The effect of the 

ground boundary is included in the downwind concentration equation mathematically 

by using a fictitious “mirror-image” source, and the downwind concentration (kg/m3) 

at point (𝑥𝑥,𝑦𝑦, 𝑧𝑧) is represented by 𝐶𝐶(𝑥𝑥,𝑦𝑦, 𝑧𝑧). Because this chapter focuses on the 

health effects of the population in a coastal area, i.e., assessing the exposure of humans 

to the pollutant, only downwind concentrations at ground level are required, which 

means 𝑧𝑧 = 0. Hence, we can calculate the downwind concentrations at ground level 

by Equation (4-1) which is given by Pasquill (1961).   

𝐶𝐶(𝑥𝑥,𝑦𝑦, 0) = 𝑄𝑄
𝜋𝜋𝜎𝜎𝑦𝑦(𝑥𝑥)𝜎𝜎𝑧𝑧(𝑥𝑥)𝑢𝑢0

exp(−1
2

( 𝑦𝑦
𝜎𝜎𝑦𝑦(𝑥𝑥)

)2) exp(−1
2

( 𝐻𝐻
𝜎𝜎𝑧𝑧(𝑥𝑥)

)2), (4-1) 

where 𝑄𝑄  is the emission rate (kg/s), 𝜎𝜎𝑦𝑦(𝑥𝑥)  and 𝜎𝜎𝑧𝑧(𝑥𝑥)  (m) are the dispersion 

coefficients along the crosswind and vertical axes, respectively, 𝑢𝑢0 is the wind speed 

(m/s), and 𝐻𝐻  is the effective stack height, illustrating that the concentration of 

pollutants downwind is proportional to the emission rate 𝑄𝑄 and inversely proportional 

to the wind speed 𝑢𝑢0.  

The government ship sails stably at a certain speed 𝑣𝑣 during the voyage, but the 

previous Gaussian plume model does not take into account the influence of the sailing 

speed of the ship on the diffusion direction of pollution emissions. Because both the 

sailing speed 𝑣𝑣 of the ship and the wind speed 𝑢𝑢0 are vectors, we use the resultant of 

the two vectors as the improved wind speed to overcome the above issue. As shown in 
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Figure 4-4(a), the ship sails along the negative direction of the 𝑥𝑥-axis at speed 𝑣𝑣, which 

means that the positive direction of the 𝑥𝑥-axis is the diffusion direction of the ship's 

exhaust when there is no wind. The apparent wind, illustrated in Figure 4-4(b), is the 

wind 𝑢𝑢0  which blows in the positive direction of the 𝑦𝑦 -axis. The resultant wind 

direction is 𝑢𝑢. Let 𝑎𝑎1, and 𝑎𝑎2 be the angle between the apparent wind direction and 

resultant wind direction, and the angle between the resultant wind direction and the 

positive direction of the 𝑥𝑥-axis, respectively. After the above transformation, we can 

take the base of the chimney of the ship as the origin of the two-dimensional coordinate 

axis (𝑥𝑥,𝑦𝑦) , and treat the ship as immobile. The exhaust emissions diffuse in the 

direction of the newly resultant wind speed, which can be calculated by Equation (4-

2). The direction of plume diffusion is 𝑎𝑎2, which can be calculated by Equation (4-3), 

radians counterclockwise from the reverse direction of the ship's heading direction. In 

this case, the base of the chimney of the ship, and the newly resultant wind direction 

are regarded as the origin of the two-dimensional coordinate axis (𝑥𝑥, 𝑦𝑦), and the 

positive direction of the 𝑥𝑥-axis, respectively. The horizontal and vertical coordinates 

of the coastal area in the above coordinate system can be obtained, and thus the 

downwind concentration of the coastal area can also be calculated by Equation (4-1). 
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Figure 4-4 Air emission diffusion of the government ship. 

||𝑢𝑢|| = �(𝑣𝑣 + ||𝑢𝑢0 cos𝑎𝑎||)2 + (𝑢𝑢0 sin𝑎𝑎)2   (4-2) 

𝑎𝑎2 = arccos(𝑢𝑢2 + 𝑣𝑣2 − 𝑢𝑢02 2𝑢𝑢 × 𝑣𝑣⁄ ).  (4-3) 

4.3.3 Objective function 

The problem aims to minimize the sum of the fuel cost and the health damage of 

the air pollutants from the trips. The first part, i.e., the fuel cost, depends on the sailing 

speed and the node visiting sequence for all trips. Let 𝐴𝐴 represent the set of all arcs in 

a complete directed graph of all nodes ((𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑖𝑖 ∈ 𝐼𝐼−, 𝑗𝑗 ∈ 𝐼𝐼+). Noted that the arc 
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(0,𝑛𝑛 + 1) is dummy and the distance from node 0 to 𝑛𝑛 + 1 is zero. Let 𝑑𝑑𝑖𝑖𝑖𝑖 denote the 

distance traveling from node 𝑖𝑖  to 𝑗𝑗  (n mile). As a common practice in maritime 

transportation (Wang and Meng, 2012b; Brouer et al., 2014; Aydin et al., 2017), the 

fuel cost for the sailing segment from node 𝑖𝑖  to 𝑗𝑗 is 𝑑𝑑𝑖𝑖𝑖𝑖𝑐̇𝑐(𝜔𝜔𝑖𝑖𝑖𝑖)𝑐𝑐̈ , where 𝑐̇𝑐 and 𝑐̈𝑐 are 

coefficients to calculate the unit fuel cost for travelling per nautical mile. The variable 

𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟, binary variable, represents whether a ship travels directly from node 𝑖𝑖 to 𝑗𝑗 (𝑖𝑖 ∈

𝐼𝐼−, 𝑗𝑗 ∈ 𝐼𝐼+), during trip 𝑟𝑟. Hence, the total fuel cost is ∑ ∑ 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑖𝑖𝑖𝑖𝑐̇𝑐(𝜔𝜔𝑖𝑖𝑖𝑖)𝑐𝑐̈(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑟𝑟∈𝑅𝑅 .  

The second part of the objective function involves the health damage caused by 

the air pollutants from the trips, whose vivid calculation description is illustrated in 

Figure 4-5. Suppose several patrol nodes (white dot) are scattered in a maritime area, 

a depot is represented by a red dot, and a government ship is performing a trip 0 →

1 → 2 → 3 → 4 → 5. We first discretize each leg, e.g., 1 → 2, with unit distance (e.g., 

1 n mile) and label these as solid red nodes in Figure 4-5. As introduced in Section 

4.3.2, the government ship sails stably at a certain speed 𝑣𝑣 during the voyage. Both the 

sailing speed 𝑣𝑣  and the apparent wind 𝑢𝑢0  influence the resultant wind direction 𝑢𝑢 . 

After the transformation introduced in Section 4.3.2, we can take the base of the 

chimney of the government ship as the origin of the coordinates, and treat the ship as 

immobile. The exhaust emissions diffuse in the direction of the newly resultant wind 

speed, which can be calculated by Equation (4-2). The direction of plume diffusion 

can be calculated by Equation (4-3). Let 𝑤𝑤𝑡𝑡 and 𝑢𝑢0,𝑡𝑡 denote the weather condition and 

apparent wind condition on day 𝑡𝑡, respectively. Hence, we can calculate the downwind 

concentration at the coastal area under weather condition 𝑤𝑤𝑡𝑡 and apparent wind 𝑢𝑢0,𝑡𝑡 

on day 𝑡𝑡 caused by the ship during the voyage from 𝑖𝑖 to 𝑗𝑗, and let 𝑚𝑚𝑖𝑖,𝑗𝑗,𝑤𝑤𝑡𝑡,𝑢𝑢0,𝑡𝑡 represent 

that value. Besides, let ℎ, and 𝜋𝜋𝑟𝑟𝑟𝑟 denote the health cost of the air pollutants from the 

trips per unit of concentration (USD per kg/m3), and a binary variable which is set to 

1 exclusively when the government ship undertakes trip 𝑟𝑟 on day 𝑡𝑡, and 0 otherwise, 

respectively. Recall that 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 denote a binary variable which is set to 1 only when the 

ship immediately travels from nodes 𝑖𝑖  to 𝑗𝑗 , (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 , in trip 𝑟𝑟 , and 0 otherwise. 

Consequently, the total health cost is calculated by 

∑ ∑ ∑ ℎ𝜋𝜋𝑟𝑟𝑟𝑟𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑖𝑖,𝑗𝑗,𝑤𝑤𝑡𝑡,𝑢𝑢0,𝑡𝑡(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑡𝑡∈𝑇𝑇𝑟𝑟∈𝑅𝑅 . 
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Figure 4-5 Illustration of calculating the downwind concentration. 

In summary, this problem aims to minimize the sum of the fuel cost and the 

health damage of the air pollutants from the trips, i.e., 

Min∑ ∑ 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑖𝑖𝑖𝑖𝑐̇𝑐(𝜔𝜔𝑖𝑖𝑖𝑖)𝑐𝑐̈(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑟𝑟∈𝑅𝑅 + ∑ ∑ ∑ ℎ𝜋𝜋𝑟𝑟𝑟𝑟𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑖𝑖,𝑗𝑗,𝑤𝑤𝑡𝑡,𝑢𝑢0,𝑡𝑡(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑡𝑡∈𝑇𝑇𝑟𝑟∈𝑅𝑅 . 

4.3.4 Trip-based formulation 

In light of the previously discussed objective function, this chapter formulates 

an MIP model. An underlying assumption in this chapter is that the government ship 

can begin to perform its routine tasks whenever it arrives at the task node. Prior to 

delving into the mathematical model for this chapter, the notation utilized in this model 

is summarized below. 

Indices and sets: 

𝐼𝐼: set of all routine task nodes, 𝑖𝑖 (or 𝑗𝑗) ∈ 𝐼𝐼. 

𝐼𝐼−, 𝐼𝐼+: set of 𝐼𝐼 ∪ {0}, and set of 𝐼𝐼 ∪ { 𝑛𝑛 + 1}, respectively, where nodes 0 and 𝑛𝑛 + 1 

denote the depot depending on whether it is the initial or terminal node of a trip. 

𝐴𝐴: set of all arcs in a complete directed graph, (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑖𝑖 ∈ 𝐼𝐼−, 𝑗𝑗 ∈ 𝐼𝐼+ , where arc 

(0,𝑛𝑛 + 1) is dummy and the distance from node 0 to 𝑛𝑛 + 1 is zero. 

𝑇𝑇: set of days in a planning cycle, 𝑡𝑡 ∈ 𝑇𝑇. 

𝑅𝑅: set of all trips, where each trip starts and ends at the depot, 𝑟𝑟 ∈ 𝑅𝑅. 

𝑍𝑍+: set of non-negative integers. 

Parameters 

𝑎𝑎, 𝑏𝑏: time window for executing routine tasks, aligning with the working hours of the 

crews. 

𝑐̇𝑐, 𝑐̈𝑐: coefficients for determining the unit fuel cost per nautical mile. 
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𝑑𝑑𝑖𝑖𝑖𝑖: distance traveling from node 𝑖𝑖 to 𝑗𝑗 (n mile). 

𝑒𝑒: endurance of the government ship (that is, the maximum time that can be spent on 

task execution and in transit before being replenished at the depot) (sec). 

𝑞𝑞𝑖𝑖: task execution time at node 𝑖𝑖 (sec). 

𝑠𝑠: setup time for preparing a new trip (sec). 

𝑣𝑣 , 𝑣𝑣 : minimum and maximum speed of the government ship (n mile/hour), 

respectively. 

ℎ: health cost of the air pollutants from the trips per unit of concentration (USD per 

kg/m3). 

𝑢𝑢0,𝑡𝑡: apparent wind condition on day 𝑡𝑡, including the wind direction and speed. 

𝑤𝑤𝑡𝑡 : atmospheric condition on day 𝑡𝑡 , 𝑤𝑤𝑡𝑡 ∈ {0, 1,2,3,4}; 0, 1, 2, 3, and 4 represent 

conditions of extremely unstable, moderately unstable, near neutral, moderately stable, 

and extremely stable, respectively. 

𝑚𝑚𝑖𝑖,𝑗𝑗,𝑤𝑤𝑡𝑡,𝑢𝑢0,𝑡𝑡,𝑣𝑣 : downwind concentration at the coastal area under the atmospheric 

condition 𝑤𝑤 and apparent wind condition 𝑢𝑢0 on day 𝑡𝑡 caused by the ship sailing at 

speed 𝑣𝑣 during the voyage from 𝑖𝑖 to 𝑗𝑗. 

𝑀𝑀1, 𝑀𝑀2: two sufficiently large positive numbers. 

Variables 

𝛼𝛼𝑟𝑟𝑟𝑟: binary, equals 1 if and only if node 𝑖𝑖 is in trip 𝑟𝑟; 0 otherwise. 

𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 : binary, equals 1 if and only if the ship travels immediately from node 𝑖𝑖 to 𝑗𝑗, 

(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, in trip 𝑟𝑟; 0 otherwise. 

𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟: binary, equals 1 if and only if trip 𝑠𝑠 is performed immediately after trip 𝑟𝑟, 𝑟𝑟 < 𝑠𝑠, 

on day 𝑡𝑡, by the government ship; 0 otherwise. 

𝜀𝜀𝑟𝑟𝑟𝑟: integer, task execution start time at node 𝑖𝑖 in trip 𝑟𝑟 (𝜀𝜀𝑟𝑟0 and 𝜀𝜀𝑟𝑟(𝑛𝑛+1) denote the start 

time and end time of trip 𝑟𝑟, respectively). 

𝜋𝜋𝑟𝑟𝑟𝑟: binary, equals 1 if and only if trip 𝑟𝑟 is fulfilled by the government ship on day 𝑡𝑡; 

0 otherwise. 



 

93 
 

𝜔𝜔𝑖𝑖𝑖𝑖 : integer, sailing speed of the government ship from node 𝑖𝑖  to 𝑗𝑗 , (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, (n 

mile/hour). 

𝛿𝛿𝑖𝑖,𝑗𝑗,𝑤𝑤𝑡𝑡,𝑢𝑢0,𝑡𝑡(𝜔𝜔𝑖𝑖𝑖𝑖): downwind concentration at the coastal area under the atmospheric 

condition 𝑤𝑤 and apparent wind condition 𝑢𝑢0 on day 𝑡𝑡 caused by the ship sailing at 

speed 𝜔𝜔𝑖𝑖𝑖𝑖 during the voyage from 𝑖𝑖 to 𝑗𝑗. 

Mathematical model 

Building upon these parameter and variable definitions, a nonlinear MIP model 

is formulated. 

[M4-1]      Min∑ ∑ 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑖𝑖𝑖𝑖𝑐̇𝑐(𝜔𝜔𝑖𝑖𝑖𝑖)𝑐𝑐̈(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑟𝑟∈𝑅𝑅 +

                                                              ∑ ∑ ∑ ℎ𝜋𝜋𝑟𝑟𝑟𝑟𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝛿𝛿𝑖𝑖,𝑗𝑗,𝑤𝑤𝑡𝑡,𝑢𝑢0,𝑡𝑡(𝜔𝜔𝑖𝑖𝑖𝑖) (𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑡𝑡∈𝑇𝑇𝑟𝑟∈𝑅𝑅  (4-4) 

subject to  

∑ 𝜋𝜋𝑟𝑟𝑟𝑟𝑡𝑡∈𝑇𝑇 = 1 − 𝜃𝜃𝑟𝑟0(𝑛𝑛+1)   ∀𝑟𝑟 ∈ 𝑅𝑅   (4-5) 

∑ 𝛼𝛼𝑟𝑟𝑟𝑟 𝑟𝑟∈𝑅𝑅 = 1  ∀𝑖𝑖 ∈ 𝐼𝐼  (4-6) 

∑ 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑗𝑗∈𝐼𝐼+ = 𝛼𝛼𝑟𝑟𝑟𝑟  ∀𝑟𝑟 ∈ 𝑅𝑅, 𝑖𝑖 ∈ 𝐼𝐼  (4-7) 

∑ 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑗𝑗∈𝐼𝐼− − ∑ 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑗𝑗∈𝐼𝐼+ = 0  ∀𝑟𝑟 ∈ 𝑅𝑅, 𝑖𝑖 ∈ 𝐼𝐼  (4-8) 

∑ 𝜃𝜃𝑟𝑟0𝑗𝑗𝑗𝑗∈𝐼𝐼+ = 1  ∀𝑟𝑟 ∈ 𝑅𝑅  (4-9) 

∑ 𝜃𝜃𝑟𝑟𝑟𝑟(𝑛𝑛+1)𝑖𝑖∈𝐼𝐼− = 1  ∀𝑟𝑟 ∈ 𝑅𝑅  (4-10) 

𝜀𝜀𝑟𝑟0 ≥ (𝑎𝑎 + 𝑠𝑠)(1 − 𝜃𝜃𝑟𝑟0(𝑛𝑛+1))  ∀𝑟𝑟 ∈ 𝑅𝑅  (4-11) 

𝜀𝜀𝑟𝑟,(𝑛𝑛+1) − 𝜀𝜀𝑟𝑟0 ≤ 𝑒𝑒(1 − 𝜃𝜃𝑟𝑟0(𝑛𝑛+1))  ∀𝑟𝑟 ∈ 𝑅𝑅  (4-12) 

𝑎𝑎𝛼𝛼𝑟𝑟𝑟𝑟 ≤ 𝜀𝜀𝑟𝑟𝑟𝑟 ≤ 𝑏𝑏𝛼𝛼𝑟𝑟𝑟𝑟  ∀𝑟𝑟 ∈ 𝑅𝑅, 𝑖𝑖 ∈ 𝐼𝐼  (4-13) 

𝜀𝜀𝑟𝑟𝑟𝑟 + 𝑞𝑞𝑖𝑖 + �3600(𝑑𝑑𝑖𝑖𝑖𝑖 𝜔𝜔𝑖𝑖𝑖𝑖⁄ )� − (1 − 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟)𝑀𝑀1 ≤ 𝜀𝜀𝑟𝑟𝑟𝑟  ∀𝑟𝑟 ∈ 𝑅𝑅, (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴  (4-14) 

𝜀𝜀𝑠𝑠,0 + (1 − 𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟)𝑀𝑀2 ≥ 𝜀𝜀𝑟𝑟(𝑛𝑛+1) + 𝑠𝑠  ∀𝑟𝑟, 𝑠𝑠 ∈ 𝑅𝑅(𝑟𝑟 < 𝑠𝑠), 𝑡𝑡 ∈ 𝑇𝑇  (4-15) 

0 ≤ ∑ 𝜋𝜋𝑟𝑟𝑟𝑟𝑟𝑟∈𝑅𝑅 − ∑ ∑ 𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠∈𝑅𝑅 (𝑠𝑠>𝑟𝑟) 𝑟𝑟∈𝑅𝑅 ≤ 1  ∀𝑡𝑡 ∈ 𝑇𝑇  (4-16) 
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∑ 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑣𝑣𝑟𝑟∈𝑅𝑅 ≤ 𝜔𝜔𝑖𝑖𝑖𝑖 ≤ ∑ 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑣𝑣𝑟𝑟∈𝑅𝑅    ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴  (4-17) 

𝛿𝛿𝑖𝑖,𝑗𝑗,𝑤𝑤𝑡𝑡,𝑢𝑢0,𝑡𝑡�𝜔𝜔𝑖𝑖𝑖𝑖� = 𝑚𝑚𝑖𝑖,𝑗𝑗,𝑤𝑤𝑡𝑡,𝑢𝑢0,𝑡𝑡,𝜔𝜔𝑖𝑖𝑖𝑖  ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑡𝑡 ∈ 𝑇𝑇  (4-18) 

𝛼𝛼𝑟𝑟𝑟𝑟 ∈ {0,1}  ∀𝑟𝑟 ∈ 𝑅𝑅, 𝑖𝑖 ∈ 𝐼𝐼  (4-19) 

𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 ∈ {0,1}  ∀𝑟𝑟 ∈ 𝑅𝑅, (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴  (4-20) 

𝜋𝜋𝑟𝑟𝑟𝑟 ∈ {0,1}  ∀𝑟𝑟 ∈ 𝑅𝑅, 𝑡𝑡 ∈ 𝑇𝑇  (4-21) 

𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟 ∈ {0,1}  ∀𝑟𝑟, 𝑠𝑠 ∈ 𝑅𝑅, 𝑡𝑡 ∈ 𝑇𝑇  (4-22) 

𝜀𝜀𝑟𝑟𝑟𝑟 ≥ 0  ∀𝑟𝑟 ∈ 𝑅𝑅, 𝑖𝑖 ∈ 𝐼𝐼 ∪ { 0,𝑛𝑛 + 1}  (4-23) 

𝜔𝜔𝑖𝑖𝑖𝑖 ∈ 𝑍𝑍+    ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴  (4-24) 

𝛿𝛿𝑖𝑖,𝑗𝑗,𝑤𝑤𝑡𝑡,𝑢𝑢0,𝑡𝑡(∙) ≥ 0  ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑡𝑡 ∈ 𝑇𝑇.  (4-25) 

Objective (4-4) minimizes the sum of the fuel cost of the government ship as 

well as the health damage of the air pollutants from the ship. Constraints (4-5) 

guarantee that the government ship must fulfill each non-dummy trip at a specific day 

within the planning cycle. Constraints (4-6) guarantee that each routine task node 

should be visited exactly once. Constraints (4-7) define the relationship between 

variables 𝛼𝛼𝑟𝑟𝑟𝑟 and 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟. Constraints (4-8)–(4-10) are flow conservation constraints that 

describe the government ship trip. Constraints (4-11)–(4-15) ensure the time feasibility 

of the schedule, i.e., time window of executing tasks, endurance of the ship, and setup 

time for preparation. Constraints (4-16) guarantee the proper trip sequence of the 

government ship on a certain day. Constraints (4-17) ensure that the traveling speed of 

the ship satisfies its minimum and maximum speed requirements. Constraints (4-18) 

calculate the downwind concentration of pollutants from the ship at the coastal area. 

Constraints (4-19)–(4-25) state the ranges of the decision variables. Obviously, the 

trip-based formulation belongs to a variant of the MTVRPTW. 

4.3.5 Linearization of the model 

The formulation outlined above contains several nonlinear parts, specifically the 

objective function (4-4) as well as constraints (4-14) and (4-18). This section linearizes 

these nonlinear parts in turn. 
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The first step in linearization addresses the objective function (4-4) by 

introducing a new decision variable, 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖, which equals one if and only if the speed 

value of the ship traveling from node 𝑖𝑖 to 𝑗𝑗 is 𝑣𝑣, and zero otherwise. Nonlinear parts in 

the objective are ∑ ∑ 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑖𝑖𝑖𝑖𝑐̇𝑐(𝜔𝜔𝑖𝑖𝑖𝑖)𝑐𝑐̈(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑟𝑟∈𝑅𝑅  and 

∑ ∑ ∑ ℎ𝜋𝜋𝑟𝑟𝑟𝑟𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝛿𝛿𝑖𝑖,𝑗𝑗,𝑤𝑤𝑡𝑡,𝑢𝑢0,𝑡𝑡(𝜔𝜔𝑖𝑖𝑖𝑖)(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑡𝑡∈𝑇𝑇𝑟𝑟∈𝑅𝑅 , which is rewritten as 

∑ ∑ ∑ 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑐̇𝑐𝑣𝑣𝑐𝑐̈𝑣𝑣∈𝑉𝑉(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑟𝑟∈𝑅𝑅  and 

∑ ∑ ∑ ∑ ℎ𝜋𝜋𝑟𝑟𝑟𝑟𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖,𝑗𝑗,𝑤𝑤𝑡𝑡,𝑢𝑢0,𝑡𝑡,𝑣𝑣𝑣𝑣∈𝑉𝑉(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑡𝑡∈𝑇𝑇𝑟𝑟∈𝑅𝑅 , respectively. To facilitate this 

linearization, several new notations and constraints are introduced below: 

Newly defined index and set 

𝑉𝑉: set of feasible sailing speeds, 𝑣𝑣 ∈ 𝑉𝑉 = {𝑣𝑣, 𝑣𝑣 + 1,⋯ , 𝑣𝑣 − 1, 𝑣𝑣}. 

Newly defined variables 

𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖: binary, equals 1 if and only if the speed value of the ship sailing from node 𝑖𝑖 to 𝑗𝑗, 

(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, is 𝑣𝑣; 0 otherwise. 

Newly defined constraints 

∑ 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣∈𝑉𝑉∪{0} = 𝜔𝜔𝑖𝑖𝑖𝑖  ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴   (4-26) 

∑ 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑣𝑣∈𝑉𝑉∪{0} = 1  ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴  (4-27) 

𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1}  ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑣𝑣 ∈ 𝑉𝑉 ∪ {0}. (4-28) 

Additional variables, namely 𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  and 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , are introduced to enable the 

linearization of objective (4-4). The following are the needed decision variables and 

constraints: 

Newly defined variables 

𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: binary, equals 1 if and only if both variables 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 and 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 are equal to one; 0 

otherwise. 

𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: binary, equals 1 if and only if both variables 𝜋𝜋𝑟𝑟𝑟𝑟 and 𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 are equal to one; 0 

otherwise. 

Newly defined constraints 
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𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 − 1   ∀𝑟𝑟 ∈ 𝑅𝑅, (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑣𝑣 ∈ 𝑉𝑉 ∪ {0}         (4-29) 

𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟  ∀𝑟𝑟 ∈ 𝑅𝑅, (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑣𝑣 ∈ 𝑉𝑉 ∪ {0}  (4-30) 

𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖  ∀𝑟𝑟 ∈ 𝑅𝑅, (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑣𝑣 ∈ 𝑉𝑉 ∪ {0}  (4-31) 

𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 𝜋𝜋𝑟𝑟𝑟𝑟 + 𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 1  ∀𝑟𝑟 ∈ 𝑅𝑅, (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑣𝑣 ∈ 𝑉𝑉 ∪ {0}, 𝑡𝑡 ∈ 𝑇𝑇   (4-32) 

𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝜋𝜋𝑟𝑟𝑟𝑟  ∀𝑟𝑟 ∈ 𝑅𝑅, (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑣𝑣 ∈ 𝑉𝑉 ∪ {0}, 𝑡𝑡 ∈ 𝑇𝑇  (4-33) 

𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  ∀𝑟𝑟 ∈ 𝑅𝑅, (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑣𝑣 ∈ 𝑉𝑉 ∪ {0}, 𝑡𝑡 ∈ 𝑇𝑇  (4-34) 

𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∈ {0,1}  ∀𝑟𝑟 ∈ 𝑅𝑅, (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑣𝑣 ∈ 𝑉𝑉 ∪ {0}  (4-35) 

𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∈ {0,1}  ∀𝑟𝑟 ∈ 𝑅𝑅, (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑣𝑣 ∈ 𝑉𝑉 ∪ {0}, 𝑡𝑡 ∈ 𝑇𝑇.  (4-36) 

  Then, the objective function of model [M4-1] is transformed as follow. 

Min∑ ∑ ∑ 𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑖𝑖𝑖𝑖𝑐̇𝑐𝑣𝑣𝑐𝑐̈𝑣𝑣∈𝑉𝑉(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑟𝑟∈𝑅𝑅 +

                                                              ∑ ∑ ∑ ∑ 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑖𝑖,𝑗𝑗,𝑤𝑤𝑡𝑡,𝑢𝑢0,𝑡𝑡,𝑣𝑣ℎ𝑣𝑣∈𝑉𝑉(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑡𝑡∈𝑇𝑇𝑟𝑟∈𝑅𝑅 .  (4-37) 

 Next is the linearization process of constraints (4-14). Constrains (4-14) can 

be revised to the following constrains (4-38). Specifically, when the value of 𝑣𝑣 is zero, 

the value of 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟  is also zero, leading to the left-hand side of constraints (4-38) 

becoming a sufficiently small negative number. 

𝜀𝜀𝑟𝑟𝑟𝑟 + 𝑞𝑞𝑖𝑖 + �∑ 3600𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖(𝑑𝑑𝑖𝑖𝑖𝑖 𝑣𝑣⁄ )𝑣𝑣∈𝑉𝑉 � − (1 − 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟)𝑀𝑀1 ≤ 𝜀𝜀𝑟𝑟𝑟𝑟  ∀𝑟𝑟 ∈ 𝑅𝑅, (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴. (4-38) 

The final version of the linear trip-based formulation becomes to [M4-2]. 

[M4-2]   objective (4-37) 

subject to constraints (4-5)–(4-13), (4-15)–(4-17), (4-19)–(4-24), (4-26)–(4-36), (4-

38). 

4.3.6 Set-covering formulation 

Typically, the instance size of model [M4-2] that Gurobi can optimally solve is 

quite limited, which suggests that the trip-based formulation developed in Section 

4.3.5 may not be practical for reasonably sized real-world instances. In practice, for 

solving classical VRPs, the most efficacious exact algorithms typically leverage the 
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branch-and-price algorithm (Pecin et al., 2017; Mhamedi et al., 2022). This approach 

involves solving a set-covering (or -partitioning) model using a B&B algorithm. 

Within this framework, the linear programming relaxation at every node in the B&B 

tree is solved by column generation, and the problem of obtaining a column with a 

negative reduced cost in the linear programming is known as the pricing problem. 

Therefore, this chapter proposes a set-covering formulation. Each column in the MP 

of our set-covering formulation represents a feasible ship route (i.e., a sequence of 

consecutive trips) for a certain day. To develop this set-covering model, new index, 

set, parameters, and variables are summarized below. 

Newly defined index and set: 

𝑃𝑃𝑡𝑡: set of all feasible routes on day 𝑡𝑡, 𝑡𝑡 ∈ 𝑇𝑇; a route contains a sequence of trips where 

every trip starts and ends at the depot, 𝑝𝑝 ∈ 𝑃𝑃𝑡𝑡, 𝑃𝑃 = ⋃ 𝑃𝑃𝑡𝑡𝑡𝑡∈𝑇𝑇 .  

Newly defined parameters 

𝑓𝑓𝑝𝑝: total cost of route 𝑝𝑝, which combines the fuel cost of the ship and the health damage 

cost, and can be calculated by constraint (4-60). 

𝑔𝑔𝑖𝑖𝑖𝑖 : binary coefficient, equals 1 if and only if node 𝑖𝑖  is included in route 𝑝𝑝 ; 0 

otherwise. 

Newly defined variable 

𝛾𝛾𝑝𝑝: binary, equals 1 if and only if route 𝑝𝑝, 𝑝𝑝 ∈ 𝑃𝑃𝑡𝑡, is chosen in a solution; 0 otherwise. 

Utilizing the previously defined notation, the MP is developed as follows. 

[MP]      Min∑ ∑ 𝑓𝑓𝑝𝑝𝛾𝛾𝑝𝑝𝑝𝑝∈𝑃𝑃𝑡𝑡𝑡𝑡∈𝑇𝑇    (4-39) 

subject to ∑ ∑ 𝑔𝑔𝑖𝑖𝑖𝑖𝛾𝛾𝑝𝑝𝑝𝑝∈𝑃𝑃𝑡𝑡𝑡𝑡∈𝑇𝑇 = 1  ∀𝑖𝑖 ∈ 𝐼𝐼  (4-40) 

∑ 𝛾𝛾𝑝𝑝𝑝𝑝∈𝑃𝑃𝑡𝑡 ≤ 1  ∀𝑡𝑡 ∈ 𝑇𝑇  (4-41) 

𝛾𝛾𝑝𝑝 ∈ {0,1}  ∀𝑡𝑡 ∈ 𝑇𝑇,𝑝𝑝 ∈ 𝑃𝑃𝑡𝑡. (4-42) 

Objective function (4-39) minimizes the total cost of the selected routes in the 

solution. Constraints (4-40) guarantee that every routine task node is visited exactly 

once. Constraints (4-41) ensure that no more than one route can be executed per day. 
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Constraints (4-42) are binary integrality constraints. Consequently, a solution is a 

subset of routes 𝑃𝑃′ ⊆ 𝑃𝑃 that visits each routine task node exactly once. 

4.4 BRANCH-AND-PRICE-AND-CUT ALGORITHM 

This section aims to address the challenge of solving reasonably sized instances 

of this problem by designing a BPC algorithm. Specifically, this section first outlines 

the framework of BPC algorithm, followed by detailed descriptions of its key 

components. These include the column generation, branching and node selection 

strategies, generation of initial solutions, and the implementation of cutting planes, all 

of which are further elaborated in the subsequent sections. 

4.4.1 Framework of BPC 

The BPC algorithm, a branch-and-bound algorithm, utilizes column generation 

for computing lower bounds by solving linear relaxations (for minimization problems), 

hereafter called MPs, and may include additional cuts for strengthening these MPs. 

The framework used in this study is introduced in Algorithm 4-1. Specifically, column 

generation iterates between solving a restricted master problem (RMP) and one or 

more pricing subproblems. For our specific problem, the RMP is the linear relaxation 

of model [MP] proposed in Section 4.3.6. Solving the RMP yields both primal and 

dual solutions. Utilizing the dual solution, pricing subproblems are framed similar to 

the elementary shortest path problems with resource constraints (ESPPRC), focusing 

on identifying feasible route variables (i.e., columns) with the most negative reduced 

cost. These columns are incorporated into the RMP in each iteration. Column 

generation stops when no further columns can be found, indicating an optimal solution 

to the linear relaxation of the MP and also a valid lower bound for the original problem. 

Additionally, to enhance efficiency and reduce iterations, valid inequalities are 

introduced to strengthen the lower bound prior to implementing branching process. 

4.4.2 Column generation 

Column generation (CG) is used in solving the linear relaxation of the master 

problem (LMP), which provides a lower bound for the corresponding B&B node. 

Given the typically vast number of feasible options, the linear relaxation of the set-

covering formulation often has a huge number of variables, making it impossible to 

explicitly enumerate all possible columns. Consequently, CG is an iterative method 
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Algorithm 4-1. BPC Framework introduction 

1 Initialize the search tree 𝑇𝑇: 𝑇𝑇 ← {𝑜𝑜�}  // 𝑜𝑜� is the root node representing the initial 
RLMP model without branching constraints 

2 𝐿𝐿𝐿𝐿 ← −∞  // 𝐿𝐿𝐿𝐿 records the global lower bound of RLMP 
3 𝑈𝑈𝑈𝑈 ← ∞  // 𝑈𝑈𝑈𝑈 records the global upper bound of RLMP 
4 When 𝑇𝑇 is nonempty do 
5  Select a node 𝑜𝑜 ∈ 𝑇𝑇 according to the node selection rule 
6  Remove 𝑜𝑜 from 𝑇𝑇 
7  If 𝑜𝑜 = 𝑜𝑜� (i.e., 𝑜𝑜 is the root node) then 
8   Generate initial solutions (columns) and the corresponding cost by the 

initial solution generation approach 
9   𝐿𝐿𝐿𝐿 ← the cost obtained by line 8 
10   Add the initial columns to the RLMP and record this node as 𝑜̅𝑜 
11   𝑇𝑇 := 𝑇𝑇 ∪ {𝑜̅𝑜} 
12  Else (i.e., 𝑜𝑜 is not the root node) 
13   Solve the RLMP model and obtain its corresponding cost 𝑂𝑂𝑂𝑂𝑂𝑂 
14   If 𝑂𝑂𝑂𝑂𝑂𝑂 > 𝑈𝑈𝑈𝑈 then 
15    Prune the node 
16   Else 
17    Search columns (routes) with negative reduced costs by solving the 

pricing problem 
18    If columns with negative reduced cost exist then 
19     Add the column with the most negative cost to the RLMP 
20     Go to line 13 
21    Else 
22      Generate valid cuts 
23      If new valid cuts exist and non-duplicating then 
24       Add the valid cuts to the RLMP model 
25       Go to line 13 
26      Else 
27       If 𝜸𝜸 contains fractional parts then 
28        Branch according to the branching rule, leading to nodes 

𝑜𝑜1 and 𝑜𝑜2, 𝐿𝐿 := 𝐿𝐿 ∪ {𝑜𝑜1, 𝑜𝑜2}. 
29       Else if all elements in 𝜸𝜸 are integral 
30        𝑈𝑈𝑈𝑈 ← 𝑂𝑂𝑂𝑂𝑂𝑂  
31        Prune the node 
32       End if 
33      End if 
34     End if 
35    End if 
36   End if 
37  End if 
38 End while 

that cannot solve the LMP directly due to limitations in enumerating columns. Instead, 

it alternates between solving a linear relaxation of the restricted MP (RLMP) and 

solving a pricing subproblem. The RLMP is a version of the LMP constrained to a 

subset 𝑃𝑃′ ⊆ 𝑃𝑃 of columns, which can be efficiently solved using the simplex method. 

The primary objective in the pricing subproblem is to identify columns in 𝑃𝑃\𝑃𝑃′ that 

have negative reduced costs relative to the dual optimal solution to the current RLMP. 
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If no such columns are found, the CG process will terminate, yielding the optimal 

solution to the LMP is equivalent to the optimal solution to the current RLMP. 

However, if columns with negative reduced cost is found, columns with the most 

negative reduced cost are incorporated into the current RLMP, and the CG cycle 

restarts. 

CG is extensively studied by academic scholars. Therefore, this chapter briefly 

introduces the definitions of the MP and the pricing subproblem; more details on the 

branch-and-price algorithm and CG are available in Barnhart et al. (1998) and 

Desaulniers et al. (2006).  

Section 4.3.6 presents the set-covering formulation of the MP, where each 

column represents a feasible ship route composed of one or several consecutive trips 

on a given day. This section sequentially develops then LMP, RLMP, and the dual of 

the RLMP as defined within the CG framework. The linear relaxation of the MP is 

first formulated below. 

[LMP]    objective (4-39)   

subject to constraints (4-40)–(4-41),   

𝛾𝛾𝑝𝑝 ≥ 0  ∀𝑡𝑡 ∈ 𝑇𝑇,𝑝𝑝 ∈ 𝑃𝑃𝑡𝑡.  (4-43) 

However, model [LMP] includes numerous variables, as it records all potential 

routes for each day within the planning horizon in its formulation. Moreover, 

enumerating all possible routes is highly time-consuming, especially for large-scale 

instances. Thus, establishing an RLMP with selected routes is an efficient way for 

solving model [LMP] in the CG procedure. In constructing the RLMP within the CG 

framework, a subset of feasible routes, denoted by 𝑃𝑃𝑡𝑡′ ⊆ 𝑃𝑃𝑡𝑡 , is chosen. Given the 

potentially large number of columns, these columns are incrementally introduced into 

the LMP, leading to a sequence of RLMPs, which are formulated as follows. 

[RLMP]     Min∑ ∑ 𝑓𝑓𝑝𝑝𝛾𝛾𝑝𝑝𝑝𝑝∈𝑃𝑃𝑡𝑡
′𝑡𝑡∈𝑇𝑇   (4-44) 

subject to ∑ ∑ 𝑔𝑔𝑖𝑖𝑖𝑖𝛾𝛾𝑝𝑝𝑝𝑝∈𝑃𝑃𝑡𝑡
′𝑡𝑡∈𝑇𝑇 ≥ 1  ∀𝑖𝑖 ∈ 𝐼𝐼  (4-45) 

∑ 𝛾𝛾𝑝𝑝𝑝𝑝∈𝑃𝑃𝑡𝑡
′ ≤ 1  ∀𝑡𝑡 ∈ 𝑇𝑇  (4-46) 
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𝛾𝛾𝑝𝑝 ≥ 0 ∀𝑡𝑡 ∈ 𝑇𝑇,𝑝𝑝 ∈ 𝑃𝑃𝑡𝑡′. (4-47) 

Following the Dantzing rule, the CG procedure iteratively adds new columns, 

representing new feasible routes, to the RLMP. This addition continues until it is no 

longer possible to include new columns. In each CG iteration, the RLMP is solved, 

and the dual variables are got by solving the following dual linear model.  

[RLMP-D]    Max∑ 𝜇𝜇𝑖𝑖𝑖𝑖∈𝐼𝐼 + ∑ 𝜑𝜑𝑡𝑡𝑡𝑡∈𝑇𝑇  (4-48) 

subject to ∑ 𝑔𝑔𝑖𝑖𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖∈𝐼𝐼 + 𝜑𝜑𝑡𝑡 ≤ 𝑓𝑓𝑝𝑝  ∀𝑡𝑡 ∈ 𝑇𝑇,𝑝𝑝 ∈ 𝑃𝑃𝑡𝑡′ (4-49) 

𝜇𝜇𝑖𝑖 ≥ 0 ∀𝑖𝑖 ∈ 𝐼𝐼  (4-50) 

𝜑𝜑𝑡𝑡 ≤ 0  ∀𝑡𝑡 ∈ 𝑇𝑇, (4-51) 

where 𝜇𝜇𝑖𝑖 and 𝜑𝜑𝑡𝑡 are the dual variables of constraints (4-45) and (4-46), respectively. 

These dual variables related to the RLMP’s optimal solution are used to define a 

pricing subproblem. This subproblem aims to identify ship routes with negative 

reduced costs. Once identified, these routes (columns) are added to the current RLMP, 

forming the basis for the next RLMP. This process repeats until no more routes with 

negative reduced costs are found, leading to the optimal solution to the LMP.  

The purpose of solving the pricing subproblem is to identify columns with the 

most negative reduced costs and incorporate them into the RLMP. Each CG iteration 

requires solving |𝑇𝑇| pricing subproblems, each corresponding to a specific day (e.g., 

day 𝑡𝑡). For each day, an optimal route 𝑝𝑝∗ is generated. Among all the |𝑇𝑇| optimal route 

plans derived from the pricing problems, only those with negative reduced costs can 

be passed into the RLMP. This means that in each CG iteration, up to |𝑇𝑇| columns can 

be incorporated into the RLMP. Next, we define the pricing subproblem for day 𝑡𝑡 as 

PP𝑡𝑡. For sake of the exposition, the parameters and variables used in the following 

model PP𝑡𝑡 omit the subscript 𝑡𝑡. The mathematical model PP𝑡𝑡 corresponding to day 𝑡𝑡 

is formulated as follows.  

[𝐏𝐏𝐏𝐏𝐭𝐭]     Min𝑃𝑃𝑃𝑃𝑡𝑡 = 𝑓𝑓𝑝𝑝 − ∑ 𝑔𝑔𝑖𝑖𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖∈𝐼𝐼 − 𝜑𝜑𝑡𝑡  (4-52) 

subject to constraints (4-7)–(4-13), (4-17), (4-19), (4-20), (4-23), (4-24), (4-26)–(4-31), 

(4-35), (4-38), 
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𝜋𝜋𝑟𝑟 = 1 − 𝜃𝜃𝑟𝑟0(𝑛𝑛+1)  ∀𝑟𝑟 ∈ 𝑅𝑅 (4-53) 

∑ 𝛼𝛼𝑟𝑟𝑟𝑟 𝑟𝑟∈𝑅𝑅 ≤ 1  ∀𝑖𝑖 ∈ 𝐼𝐼  (4-54) 

𝜀𝜀𝑠𝑠,0 + (1 − 𝜌𝜌𝑟𝑟𝑟𝑟)𝑀𝑀2 ≥ 𝜀𝜀𝑟𝑟(𝑛𝑛+1) + 𝑠𝑠  ∀𝑟𝑟, 𝑠𝑠 ∈ 𝑅𝑅(𝑟𝑟 < 𝑠𝑠) (4-55) 

0 ≤ ∑ 𝜋𝜋𝑟𝑟𝑟𝑟∈𝑅𝑅 − ∑ ∑ 𝜌𝜌𝑟𝑟𝑟𝑟 𝑠𝑠∈𝑅𝑅 (𝑠𝑠>𝑟𝑟) 𝑟𝑟∈𝑅𝑅 ≤ 1 (4-56) 

𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 𝜋𝜋𝑟𝑟 + 𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 1  ∀𝑟𝑟 ∈ 𝑅𝑅, (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑣𝑣 ∈ 𝑉𝑉 ∪ {0}    (4-57) 

𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝜋𝜋𝑟𝑟  ∀𝑟𝑟 ∈ 𝑅𝑅, (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑣𝑣 ∈ 𝑉𝑉 ∪ {0}  (4-58) 

𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  ∀𝑟𝑟 ∈ 𝑅𝑅, (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑣𝑣 ∈ 𝑉𝑉 ∪ {0}  (4-59) 

𝑓𝑓𝑝𝑝 ≥ ∑ ∑ ∑ 𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑖𝑖𝑖𝑖𝑐̇𝑐𝑣𝑣𝑐𝑐̈𝑣𝑣∈𝑉𝑉(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑟𝑟∈𝑅𝑅 + ∑ ∑ ∑ 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑖𝑖,𝑗𝑗,𝑤𝑤,𝑢𝑢0,𝑣𝑣ℎ𝑣𝑣∈𝑉𝑉(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑟𝑟∈𝑅𝑅 (4-60) 

𝜋𝜋𝑟𝑟 ∈ {0,1}  ∀𝑟𝑟 ∈ 𝑅𝑅 (4-61) 

𝜌𝜌𝑟𝑟𝑟𝑟 ∈ {0,1}  ∀𝑟𝑟, 𝑠𝑠 ∈ 𝑅𝑅 (4-62) 

𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∈ {0,1} ∀𝑟𝑟 ∈ 𝑅𝑅, (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑣𝑣 ∈ 𝑉𝑉 ∪ {0}  (4-63) 

𝑓𝑓𝑝𝑝 ≥ 0. (4-64) 

The objective (4-52) minimized the reduced cost. Constraints (4-53)–(4-54), (4-

55)–(4-56), (4-57)–(4-59), (4-61)–(4-62), and (4-63) corresponds to constraints (4-5)–

(4-6), (4-15)–(4-16), (4-32)–(4-34), (4-21)–(4-22), and (4-36), respectively. Constraint 

(4-60) calculates the cost of the government ship’s route, i.e., the element used in the 

objective function. Constraint (4-64) states the range of the variables 𝑓𝑓𝑝𝑝. Here, notice 

that 𝑓𝑓𝑝𝑝 is a decision variable for the pricing problem. Once a particular route plan, 𝑝𝑝, 

is selected as a newly added column in the RLMP, the corresponding cost (𝑓𝑓𝑝𝑝) becomes 

a cost constant for the newly added route plan 𝑝𝑝. The cost is then incorporated into the 

objective function of the RLMP, i.e., objective (4-44). 

Given that these pricing subproblems are variants of the two-dimensional 

knapsack problem, the Gurobi solver can be employed for solving them. However, 

each pricing subproblem is actually an ESPPRC, classified as NP-hard in the strong 

sense, and requires substantial computing time (Dror, 1994).  
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4.4.3 Branching and node selection strategies 

CG is implemented at each node of the search tree in the B&B algorithm. 

Completion of the CG procedure yields optimal LP solutions, which often turn out to 

be fractional and hence infeasible for the MP. To obtain optimal integral solutions, 

specific branching rules are applied to eliminate fractional solutions in the nodes of 

the B&B tree.  

The branching strategy outlined in this chapter adopts a straightforward yet 

effective method, known as maximum fractional branching. This method involves 

selecting the variable with the greatest degree of integer violation for branching 

purposes. Regarding the node selection strategy, the strategy employed is a best-first 

policy. In this approach, the exploration of the search tree is conducted by sorting 

subproblems in ascending order based on the values of their lower bounds.  

4.4.4 Initial solution generation 

To initialize the CG procedure, it is essential to generate a set of initial feasible 

route plans for the RLMP. To obtain these initial solutions, we design a straightforward 

yet effective method, which comprises the following steps. The fundamental principle 

of the initial solution generation algorithm is to minimize the number of execution 

days while maximizing the utilization of all selected execution days. We start by 

generating |𝐼𝐼| number of trips for individual routine task node visits. Subsequently, 

these trips are sorted in decreasing order of their travel times. 

Algorithm 4-2. Initial solution generation 
Step 1 Trip Generation and Sorting: Generate a total of |𝐼𝐼| trips for all routine task 

nodes, each including the journey from the depot to the task node and then 
returning to the depot. Sort these trips in descending order based on their 
travel time, under the assumption that the ship travels at its maximum 
speed. 

Step 2 Route Initialization: Establish an initial empty ship route. 
Step 3 Trip Allocation and Route Formation: Sequentially consider trips based on 

their sorted travel time. Allocate a trip to the initial route if it satisfies time 
feasibility constraints. In cases where an additional task node cannot be 
incorporated into the current route, initiate a new empty route and revert to 
this step, continuing until all task nodes are allocated to one route. 

Step 4 Route Allocation: Routes are sequentially allocated within the planning 
cycle, adhering to the predefined sequence for each route. 

4.4.5 Cutting planes 

In the area of set-covering formulations for VRPs, a variety of valid inequalities 

can be applied. A key concern with these inequalities is that they may necessitate 
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modifications which could potentially impair the efficiency of the algorithms solving 

the pricing subproblems. However, this potential decrease in performance is often 

justified when the improvement in the quality of the lower bound is significant enough 

to outweigh the extra computation time. 

A particularly effective type of valid inequality for set-covering (-partitioning) 

formulations is the subset row cuts, as introduced by Jepsen et al. (2008) for the VRP 

with time windows and subsequently widely adopted in the field (e.g., Zhen et al., 

2022). In this study, the subset row cuts are adapted for the set-covering formulation 

to include variables related to different modes. Commonly, these cuts are based on 

subsets of three task nodes. For a set 𝑆𝑆 = {𝑖𝑖1, 𝑖𝑖2, 𝑖𝑖3} ⊂ 𝐼𝐼, the corresponding inequality 

ensures that the number of routes/columns covering at least two nodes in 𝑆𝑆 does not 

exceed one. We incorporate ship trips performed from day 1 to |𝑇𝑇|. As a result, the 

subset row cut for our problem is stated as follows. 

∑ ∑ �1
𝜅𝜅
∑ 𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖∈𝑆𝑆 � 𝛾𝛾𝑝𝑝𝑝𝑝∈𝑃𝑃𝑡𝑡

′𝑡𝑡∈𝑇𝑇 ≤ �|𝑆𝑆|
𝜅𝜅
�   ∀𝑆𝑆 ⊂ 𝐼𝐼,  (4-65) 

where 1 ≤ 𝜅𝜅 ≤ |𝑆𝑆|, and ⌊𝑥𝑥⌋ represents the largest integer not great than 𝑥𝑥 . In our 

algorithm, |𝑆𝑆| and 𝜅𝜅 are fixed at 3 and 2, respectively, aligning with the corresponding 

setting in Yang et al. (2021). The subset row cuts can be separated by enumerating all 

possible set 𝑆𝑆, and these valid cuts can be added to the RLMP in a cutting plane 

method. After adding these cuts to the RLMP, the objective function of the pricing 

problem is revised as the following equality. 

Min𝑃𝑃𝑃𝑃𝑡𝑡 = 𝑓𝑓𝑝𝑝 − ∑ 𝑔𝑔𝑖𝑖𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖∈𝐼𝐼 − 𝜑𝜑𝑡𝑡 − ∑ �1
𝜅𝜅
∑ 𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖∈𝑆𝑆 � η𝑆𝑆𝑆𝑆⊂𝐼𝐼 .  (4-66) 

4.5 NUMERICAL EXPERIMENTS 

To evaluate the effectiveness of the proposed model and the efficiency of the 

BPC algorithm, a total of 32 numerical experiments are conducted using a laptop (Intel 

Core i7; 2.6 GHz; Memory 16 GB). The mathematical models and algorithms 

proposed in this chapter are implemented using Gurobi 11.0 (PyCharm, Python). 

4.5.1 Experimental setup 

The experimental setup begins with a summary of the parameter values. A 

simulation environment measuring 50 by 10 (n mile), depicted in Figure 4-6, is created 
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to represent a maritime region. Routine task nodes are uniformly distributed over the 

maritime area, and the coastal area which is also the depot is located in the lower left 

corner of the maritime area because this coastal city is a very high-density cape city. 

Sailing distance (𝑑𝑑𝑖𝑖𝑖𝑖) between any two nodes is the Euclidean distance. This chapter 

assumes that the minimum and maximum sailing speeds is 10 and 40 knots, 

respectively. The earliest working time (𝑎𝑎) and the latest working time (𝑏𝑏) are set to 6 

am and 9 pm, respectively. Value of 𝑐̇𝑐 and 𝑐̈𝑐 are fixed at 0.25 and 2.6, respectively, 

aligning with the parameters used in previous studies (Wang and Meng, 2012b). The 

value of ℎ is set to 2.0858 × 1012 USD per kg/m3, which is in line with Garbatov and 

Georgiev (2022). Atmospheric condition for each day of the week is randomly 

assigned from a set {0, 1, 2, 3, 4}. And apparent wind condition on each day is related 

to the corresponding atmospheric condition. Specifically, apparent wind direction for 

each day of the week is uniformly distributed over [north, south, east, and west], and 

apparent wind speed (knot) for each day is uniformly distributed over [39, 49] for 

extremely unstable atmospheric condition, [29, 38] for moderately unstable 

atmospheric condition, [12, 28] for near neutral atmospheric condition, [6, 11] for 

moderately stable atmospheric condition, and [0, 5] for extremely stable atmospheric 

condition. Setup time (𝑠𝑠) for preparing a new trip is set to 30 min. Task execution time 

(𝑞𝑞𝑖𝑖) at each routine task node is uniformly distributed over [5, 30] min. Endurance (𝑒𝑒) 

of the government ship is assumed to be 6 hours.  

Maritime area
Legend

Coastal area (depot)
Routine task node

x

y

 

Figure 4-6 Illustration of a 50 by 10 (n mile) simulation environment. 

4.5.2 Experiment results 

A total of 32 sets of computational instances containing small-, medium-, and 

large-scale instances are conducted in this section. The number of routine task nodes 

(|𝐼𝐼|) varies from three to ten in our experiment. Two solving methods are used to solve 

all numerical instances. Specifically, the first method involves employing the Gurobi 

to directly solve model [M4-2] and record the corresponding results in columns three 

to five; the second method utilizes the proposed BPC algorithm to solve the RLMP 
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model and record the corresponding results in columns six to eight in Table 4-1. Here, 

notice that the maximum solution time is set at six hours. When the method reaches 

the six-hour time limit without identifying the optimal solution, the incumbent best 

objective (i.e., upper bound of the problem) and its associated gap value are 

respectively recorded in the third and fifth columns for the first method (sixth and 

eighth columns for the second method). 

Table 4-1 Comparison of the two methods for different scale instances. 

ID |𝐼𝐼| CPLEX BPC 
OBJ1 T1 (s) Gap1 (%) OBJ2 T2 (s) 

1 3 11770.12 2  11770.12 17 
2 3 520961625.44 3  520961625.44 15 
3 3 28040.52 2  28040.52 33 
4 3 41983.04 3  41983.04 17 
5 4 53412.55 12  53412.56 84 
6 4 23724.43 10  23724.43 116 
7 4 27166.89 12  27166.89 84 
8 4 6126.98 5  6126.98 74 
9 5 13667.25 57  14662.90 295 
10 5 58721.28 25  58721.28 103 
11 5 32310.83 224  32310.83 599 
12 5 54507.94 96  54507.94 243 
13 6 53656.85 502  53656.85 971 
14 6 40001.25 21600 65.8% 40001.25 21600 
15 6 35238.77 21600 40.4% 33832.01 21600 
16 6 16802.83 21600 4.0% 16399.77 21600 
17 7 64699.12 21600 92.6% 63672.86 21600 
18 7 35079.22 21600 88.9% 24050.59 21600 
19 7 55262.09 21600 91.3% 54597.85 21600 
20 7 57192.18 21600 93.0% 57192.18 21600 
21 8 138456.67 21600 98.9% 138456.67 21600 
22 8 68934.86 21600 99.1% 108258.342 21600 
23 8 56013.78 21600 98.6% 119939.73 21600 
24 8 19329.90 21600 95.3% 19329.90 21600 
25 9 70161.64 21600 100.0% 69803.41 21600 
26 9 512380.14 21600 95.0% 512380.14 21600 
27 9 59755.79 21600 100.0% 55534.01 21600 
28 9 58051.87 21600 100.0% 58051.87 21600 
29 10 78794.66 21600 100.0% 69802.41 21600 
30 10 66364.99 21600 100.0% 60267.15 21600 
31 10 57658.35 21600 100.0% 58809.82 21600 
32 10 39795.09 21600 100.0% 39795.10 21600 

As evident from Table 4-1, for scenarios where the total number of routine task 

nodes does not exceed six, the first method not only obtains the optimal solution within 

six hours but also surpasses the second method in terms of solution speed. Conversely, 
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when the total number of routine task nodes exceeds seven, the first method is unable 

to identify the optimal solution within six hours, yielding the best solution with a gap 

exceeding 90%. In most of these cases, although the second method also fails to obtain 

the optimal solution within six hours, the quality of its best solution significantly 

outperforms that of the first method. 

4.6 SUMMARY 

The existing literature lacks research on the joint routing, scheduling, and speed 

optimization problem of government ships that account for the health impact of air 

pollutant emissions at different times and locations. To address this research gap, this 

chapter introduces a nonlinear MIP model that encompasses various operational 

aspects. This chapter then designs a tailored exact algorithm for the model. The 

contributions of this chapter are twofold: (1) A nonlinear MIP model is formulated for 

the integrated routing, scheduling, and speed optimization problem of government 

ships that account for the environmental impact of air pollutant emissions under 

different weather conditions, which is then linearized to a linear model. The model 

also considers some overlooked operational constraints, such as the dispersion of air 

pollutant emissions, different weather conditions, new trip setup time, and ship 

endurance, are considered in this chapter. (2) In response to the complexities of solving 

the developed trip-based formulations, a BPC algorithm is proposed by considering 

specific characteristics of the problem. Efficiency of this algorithm is verified.  
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Chapter 5: Summary and Future Research 

5.1 SUMMARY 

This thesis investigates large-scale optimization for shipping operations 

management by considering three important issues, and correspondingly it comprises 

three main problems. The first problem focuses on a maritime decarbonization 

problem by investigating the EEOI value; the second problem aims to address the fleet 

repositioning issue to help liner company to respond to uncertain container shipment 

demand; the third problem studies the health impact of air pollutant emissions under 

different weather conditions. My thesis introduces three novel conceptual 

frameworks for understanding the shipping operations management, which makes this 

thesis significantly different from the existing literature. 

In the first problem, the EEOI value, an important carbon intensity indicator, is 

investigated within the domain of green shipping. The current literature often 

overlooks an integrated approach to optimizing speed, voyage planning, and fleet 

deployment, particularly considering how voyage options, displacement, and sailing 

speed influence fuel consumption. To bridge this research gap, this chapter introduces 

a nonlinear MIP model that encapsulates all these aspects and designs a specific exact 

algorithm for it. This research is instrumental in guiding shipping operations 

management with a keen focus on maritime decarbonization. 

In the second problem, fleet repositioning is integrated into the integrated fleet 

deployment, ship chartering, demand fulfillment, and cargo allocation problem. This 

integration is crucial for liner companies to effectively respond to uncertain container 

shipment demands. To address this, this chapter develops an MILP model to capture 

all these elements. Additionally, for this NP-hard problem, a BBC algorithm is 

designed. The efficacy of this algorithm is further enhanced by employing two 

acceleration strategies (approximate UBT inequalities and Pareto optimal cuts). 

In the third problem, the focus of optimization is on government ships, as 

governments should set an example in strict compliance with current stringent 

maritime emission regulations by meticulously scheduling their official vessels. When 

scheduling government ships, the aim should be minimizing the sum of the direct trip 
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cost and the health damage of the air pollutants released by these government ships 

instead of only minimizing the direct trip cost. To this end, an integrated routing, 

scheduling, and speed optimization problem of government ships that account for the 

health effects of air pollutant emissions under different weather conditions is 

investigated. Two mathematical models are formulated for this problem and a BPC 

algorithm is designed to solve the model. 

5.2 FUTURE RESEARCH 

Large-scale optimization for shipping operations management is an intertwined 

and complicated problem. To study this problem, more realistic issues should be 

considered. My future research direction is to bring our research much closer to the 

reality. 

First, incorporating uncertain port weather conditions into the existing 

framework that currently accounts for uncertain shipping demand is a future direction 

of expansion. Weather plays an important role in determining the availability of ships 

at ports, with adverse conditions potentially causing significant disruptions. To 

adequately capture this additional layer of complexity, the mathematical model 

requires an expansion to include new variables and constraints. This expansion, in turn, 

underscores the need for the development of more effective algorithms capable of 

handling the increased intricacy brought about by considering weather disturbances 

alongside shipping demand uncertainties. Second, beyond the implementation of green 

shipping practices, the uncertainty of the ever-changing shipping market, and the 

health impact of shipping activities, several maritime elements, such as the 

repositioning of empty containers and ship refuelling, can also be incorporated into the 

shipping operations management. 
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Appendix: Supplement for Chapter 3  

Appendix A 

Callback functions 

Magnanti and Wong (1981) indicated that one major computational bottleneck 

when using the BD algorithm is repeatedly solving master problems (IP models). In 

the classical implementation of BD, the master problem is solved to optimality, which 

means a search tree is constructed from the beginning at every iteration (Bayram and 

Yaman, 2018). Alternatively, the BD algorithm can be implemented with a “single 

search tree” master problem via user cut callbacks and lazy constraint callbacks (IBM, 

2017). Both of them belong to the advanced programming techniques of the CPLEX 

solver. When solving an MILP model, the researcher may can find a set of constraints 

which are unlikely to be violated (i.e., lazy constraints) or already know a group of 

helpful cutting planes (i.e., user cuts). In order to avoid adding all of these constraints 

to the model at the beginning, which may result in a very slow solving process, these 

constraints can be added via lazy constraint callbacks or user cut callbacks. Lazy 

constraints are only verified when an integer feasible solution is obtained while user 

cuts for violation may be checked at any stage of the optimization (IBM, 2017). 

Appendix B 

The deterministic programming model, two-stage stochastic programming 

model, and perfect information model 

A deterministic programming model, a two-stage stochastic programming 

model, and a perfect information model are formulated in this appendix.  

The deterministic programming model assumes that the newly generated 

container shipment demand in each period 𝑡𝑡 ∈ 𝑇𝑇 for an O-D pair (𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷 is equal 

to the average value of demand in the multistage programming model over 𝑠𝑠 ∈ 𝑆𝑆 for a 

fair comparison. Before we formulate the deterministic programming model, we define 

the following parameters and decision variables: 

Newly defined parameters: 
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𝑞̇𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡: newly generated container shipment demand (number of containers) in period 𝑡𝑡 

at port 𝑜𝑜 to be transported to port 𝑑𝑑 in the deterministic problem, 𝑞̇𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡 = 𝔼𝔼𝑠𝑠�𝑞𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 �. 

Newly defined decision variables: 

𝜃̇𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡: continuous, number of accepted containers for the demand of O-D pair (𝑜𝑜,𝑑𝑑) ∈

𝐷𝐷 accumulated in period 𝑡𝑡 ∈ 𝑇𝑇 in the deterministic problem, 𝜃̇𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡 ≤ 𝑞̇𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡. 

𝜑̇𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡: continuous, number of delayed containers for the demand of O-D pair (𝑜𝑜,𝑑𝑑) ∈

𝐷𝐷 up to period 𝑡𝑡 ∈ 𝑇𝑇 ∪ {0} in the deterministic problem, where by convention, 𝜑̇𝜑𝑜𝑜,𝑑𝑑,0

∶= 0. 

𝜀𝜀𝑜̇𝑜,𝑑𝑑,𝑡𝑡: continuous, number of shipped containers for the demand of O-D pair (𝑜𝑜,𝑑𝑑) ∈

𝐷𝐷 in period 𝑡𝑡 (including both those accepted in period 𝑡𝑡 and the delayed containers in 

previous periods) in the deterministic problem. 

According to the notation introduced, the deterministic programming model is 

formulated as follows: 

[Mdeter]       Max∑ ∑ (𝑡𝑡∈𝑇𝑇 (𝑜𝑜,𝑑𝑑)∈𝐷𝐷 𝑙𝑙𝑜𝑜,𝑑𝑑𝜃̇𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡 − 𝑝𝑝𝑜𝑜,𝑑𝑑𝜑̇𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡) −∑ ∑ 𝑓𝑓ℎ,𝑟𝑟𝛼𝛼ℎ,𝑟𝑟 −𝑟𝑟∈𝑅𝑅𝑦𝑦ℎℎ∈𝐻𝐻

∑ ∑ 𝑐𝑐𝑘𝑘,𝑟𝑟𝛽𝛽𝑘𝑘,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑘𝑘 𝑘𝑘∈𝐾𝐾 − ∑ ∑ 𝑔𝑔𝑦𝑦ℎ𝛼𝛼ℎ,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑦𝑦ℎℎ∈𝐻𝐻2 + ∑ 𝑚𝑚𝑦𝑦ℎ(𝑢𝑢ℎ − ∑ 𝛼𝛼ℎ,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑦𝑦ℎ
)ℎ∈𝐻𝐻1   (A1) 

subject to constraints (3-2)–(3-5), (3-14)–(3-16), 

𝜃̇𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡 + 𝜑̇𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡−1 = 𝜀𝜀𝑜̇𝑜,𝑑𝑑,𝑡𝑡 + 𝜑̇𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡 ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇 (A2) 

∑ ∑ 𝑎𝑎𝑟𝑟,𝑒𝑒,𝑖𝑖,𝑜𝑜,𝑑𝑑,𝑡𝑡𝑡𝑡∈𝑇𝑇(𝑜𝑜,𝑑𝑑)∈𝐷𝐷 𝜀𝜀𝑜̇𝑜,𝑑𝑑,𝑡𝑡 ≤ ∑ 𝑣𝑣𝑘𝑘𝑘𝑘∈𝐾𝐾𝑟𝑟 𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗𝑟𝑟𝑟𝑟  ∀ 𝑟𝑟 ∈ 𝑅𝑅, 𝑒𝑒 ∈ 𝐸𝐸𝑟𝑟 , 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟 (A3) 

𝜃̇𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡 ≤ 𝑞̇𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡  ∀ (𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇  (A4) 

𝜑̇𝜑𝑜𝑜,𝑑𝑑,0 = 0  ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷  (A5) 

𝜑̇𝜑𝑜𝑜,𝑑𝑑,|𝑇𝑇| = 0  ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷  (A6) 

𝜃̇𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡 ≥ 0, 𝜀𝜀𝑜̇𝑜,𝑑𝑑,𝑡𝑡 ≥ 0 ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇  (A7) 

𝜑̇𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡 ≥ 0  ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇 ∪ {0}. (A8) 
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Objective function (A1) maximizes the operational revenue earned by the liner 

company during the planning horizon in the deterministic problem. Constraints (A2)–

(A8) update the related constraints for the deterministic problem.  

The optimal fleet deployment decision (including ship repositioning decision) is 

implemented according to the deterministic programming model [Mdeter], denoted by 

𝛼𝛼ℎ,𝑟𝑟
deter, 𝛽𝛽𝑘𝑘,𝑟𝑟

deter, and 𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗
deter. The demand fulfillment and allocation decisions cannot be 

implemented because in reality, the actual demand is likely to be different from 𝑞̇𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡 

used in [Mdeter]. This chapter assumes that once the optimal fleet deployment decision 

(including ship repositioning decision) is implemented, the scheduling of the actual 

numbers of accepted, delayed, and shipped containers (i.e., demand fulfillment and 

allocation decisions) after observing the actual demand of all O-D pairs in each period 

is carried out in a greedy manner. Specifically, for each scenario 𝑠𝑠 ∈ 𝑆𝑆 , at the 

beginning of each period 𝑡𝑡 ∈ 𝑇𝑇, we have already made decisions on the actual numbers 

of accepted, delayed, and shipped containers in the previous time periods 1,…, 𝑡𝑡 − 1, 

denoted by 𝜃𝜃𝑜𝑜,𝑑𝑑,1
𝑠𝑠,deter ,…, 𝜃𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡−1

𝑠𝑠,deter , 𝜑𝜑𝑜𝑜,𝑑𝑑,1
𝑠𝑠,deter ,…, 𝜑𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡−1

𝑠𝑠,deter , and 𝜀𝜀𝑜𝑜,𝑑𝑑,1
𝑠𝑠,deter ,…, 𝜀𝜀𝑜𝑜,𝑑𝑑,𝑡𝑡−1

𝑠𝑠,deter , 

respectively. Then, we observe the actual demand 𝑞𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠  for the current period, assume 

that future demands are zero, and solve the following model [Mdeter(𝑠𝑠, 𝑡𝑡)] to obtain 

the value of 𝑍𝑍deter(𝑠𝑠, 𝑡𝑡) in period 𝑡𝑡 under scenario 𝑠𝑠. 

[Mdeter(𝑠𝑠, 𝑡𝑡)] 

𝑍𝑍deter(𝑠𝑠, 𝑡𝑡) = Max∑ ∑ (𝑡𝑡∈𝑇𝑇 (𝑜𝑜,𝑑𝑑)∈𝐷𝐷 𝑙𝑙𝑜𝑜,𝑑𝑑𝜃̇𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡 − 𝑝𝑝𝑜𝑜,𝑑𝑑𝜑̇𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡) −∑ ∑ 𝑓𝑓ℎ,𝑟𝑟𝛼𝛼ℎ,𝑟𝑟 −𝑟𝑟∈𝑅𝑅𝑦𝑦ℎℎ∈𝐻𝐻   

∑ ∑ 𝑐𝑐𝑘𝑘,𝑟𝑟𝛽𝛽𝑘𝑘,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑘𝑘 𝑘𝑘∈𝐾𝐾 − ∑ ∑ 𝑔𝑔𝑦𝑦ℎ𝛼𝛼ℎ,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑦𝑦ℎℎ∈𝐻𝐻2 + ∑ 𝑚𝑚𝑦𝑦ℎ(𝑢𝑢ℎ − ∑ 𝛼𝛼ℎ,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑦𝑦ℎ
)ℎ∈𝐻𝐻1    (A9) 

subject to constraints (A2)–(A3), (A5)–(A8), and   

𝜑̇𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡′ = 𝜑𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡′
𝑠𝑠,deter, 𝜃̇𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡′ = 𝜃𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡′

𝑠𝑠,deter, 𝜀𝜀𝑜̇𝑜,𝑑𝑑,𝑡𝑡′ = 𝜀𝜀𝑜𝑜,𝑑𝑑,𝑡𝑡′
𝑠𝑠,deter     ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑡𝑡′ = 1, … , 𝑡𝑡 − 1  (A10) 

𝜃̇𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡 ≤ 𝑞𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠   ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷    (A11) 

𝜃̇𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡′ ≤ 0    ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑡𝑡′ = 𝑡𝑡 + 1, … , |𝑇𝑇|  (A12) 

𝛼𝛼ℎ,𝑟𝑟 = 𝛼𝛼ℎ,𝑟𝑟
deter    ∀ℎ ∈ 𝐻𝐻, 𝑟𝑟 ∈ 𝑅𝑅𝑦𝑦ℎ  (A13) 
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𝛽𝛽𝑘𝑘,𝑟𝑟 = 𝛽𝛽𝑘𝑘,𝑟𝑟
deter  ∀𝑘𝑘 ∈ 𝐾𝐾, 𝑟𝑟 ∈ 𝑅𝑅𝑘𝑘  (A14) 

𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗 = 𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗
deter ∀𝑘𝑘 ∈ 𝐾𝐾, 𝑟𝑟 ∈ 𝑅𝑅𝑘𝑘, 𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑟𝑟}. (A15) 

Then, the value of 𝑍𝑍deter can be calculated by 

𝑍𝑍deter = 1
|𝑆𝑆|
∑ 𝑍𝑍deter(𝑠𝑠, |𝑇𝑇|)𝑠𝑠∈𝑆𝑆 . (A16) 

The difference between 𝑍𝑍multi  and 𝑍𝑍deter  is the actual advantage of using 

multistage stochastic programming over deterministic programming. 

The two-stage stochastic programming model assumes, under a specific 

scenario, that the values of demand of an O-D pair in each period are the same as the 

demand of the O-D pair in multistage stochastic programming. However, in period 1, 

the decision maker already knows what scenario occurs and thus knows demand in all 

future periods. The two-stage stochastic programming model is formulated as follows: 

[Mtwo] objective (3-1)   

subject to constraints (3-2)–(3-10), (3-14)–(3-16), and 

𝜃𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ≥ 0, 𝜀𝜀𝑜𝑜,𝑑𝑑,𝑡𝑡

𝑠𝑠 ≥ 0 ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆  (A17) 

𝜑𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ≥ 0  ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇 ∪ {0}, 𝑠𝑠 ∈ 𝑆𝑆.  (A18) 

This chapter also designs a new method for calculating the actual objective value 

of the two-stage stochastic programming model. The optimal fleet deployment 

decision (including ship repositioning decision) to the two-stage stochastic 

programming model [Mtwo], denoted by 𝛼𝛼ℎ,𝑟𝑟
two, 𝛽𝛽𝑘𝑘,𝑟𝑟

two, and 𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗
two , will be implemented. 

The demand fulfillment and allocation decisions cannot be implemented because in 

reality, the decision maker cannot know which scenario actually occurs in periods 1, 

2,…, |𝑇𝑇| − 1. Similar to [Mdeter], this chapter assumes that once the optimal fleet 

deployment decision is implemented, the demand fulfillment and allocation decisions 

after observing the actual demand in each period are carried out in a greedy manner. 

Specifically, for each scenario 𝑠𝑠 ∈ 𝑆𝑆, at the beginning of each period 𝑡𝑡 ∈ 𝑇𝑇, we have 

already made decisions on the actual numbers of accepted, delayed, and shipped 

containers in the first previous time periods 1,…, 𝑡𝑡 − 1, denoted by 𝜃𝜃𝑜𝑜,𝑑𝑑,1
𝑠𝑠,two,…, 𝜃𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡−1

𝑠𝑠,two , 

𝜑𝜑𝑜𝑜,𝑑𝑑,1
𝑠𝑠,two,…, 𝜑𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡−1

𝑠𝑠,two , and 𝜀𝜀𝑜𝑜,𝑑𝑑,1
𝑠𝑠,two,…, 𝜀𝜀𝑜𝑜,𝑑𝑑,𝑡𝑡−1

𝑠𝑠,two , respectively. Then, we observe the actual 
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demand 𝑞𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠  for the current period, assume that future demand is zero, and solve the 

following model [Mtwo(𝑠𝑠, 𝑡𝑡) ] to obtain the value of 𝑍𝑍two(𝑠𝑠, 𝑡𝑡)  in period 𝑡𝑡  under 

scenario 𝑠𝑠. 

[Mtwo(𝑠𝑠, 𝑡𝑡)] 

𝑍𝑍two(𝑠𝑠, 𝑡𝑡) = Max∑ ∑ (𝑡𝑡∈𝑇𝑇 (𝑜𝑜,𝑑𝑑)∈𝐷𝐷 𝑙𝑙𝑜𝑜,𝑑𝑑𝜃̇𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡 − 𝑝𝑝𝑜𝑜,𝑑𝑑𝜑̇𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡) −∑ ∑ 𝑓𝑓ℎ,𝑟𝑟𝛼𝛼ℎ,𝑟𝑟 −𝑟𝑟∈𝑅𝑅𝑦𝑦ℎℎ∈𝐻𝐻

∑ ∑ 𝑐𝑐𝑘𝑘,𝑟𝑟𝛽𝛽𝑘𝑘,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑘𝑘 𝑘𝑘∈𝐾𝐾 − ∑ ∑ 𝑔𝑔𝑦𝑦ℎ𝛼𝛼ℎ,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑦𝑦ℎℎ∈𝐻𝐻2 + ∑ 𝑚𝑚𝑦𝑦ℎ(𝑢𝑢ℎ − ∑ 𝛼𝛼ℎ,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑦𝑦ℎ
)ℎ∈𝐻𝐻1   (A19)

subject to constraints (3-2)–(3-5), (3-14)–(3-16), (A2)–(A3), (A5)–(A8), and 

𝜑̇𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡′ = 𝜑𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡′
𝑠𝑠,two, 𝜃̇𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡′ = 𝜃𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡′

𝑠𝑠,two, 𝜀𝜀𝑜̇𝑜,𝑑𝑑,𝑡𝑡′ = 𝜀𝜀𝑜𝑜,𝑑𝑑,𝑡𝑡′
𝑠𝑠,two  ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑡𝑡′ = 1, … , 𝑡𝑡 − 1 (A20)

𝜃̇𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡 ≤ 𝑞𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠  ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷   (A21) 

𝜃̇𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡′ ≤ 0  ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑡𝑡′ = 𝑡𝑡 + 1, … , |𝑇𝑇|  (A22) 

𝛼𝛼ℎ,𝑟𝑟 = 𝛼𝛼ℎ,𝑟𝑟
two  ∀ℎ ∈ 𝐻𝐻, 𝑟𝑟 ∈ 𝑅𝑅𝑦𝑦ℎ (A23) 

𝛽𝛽𝑘𝑘,𝑟𝑟 = 𝛽𝛽𝑘𝑘,𝑟𝑟
two  ∀𝑘𝑘 ∈ 𝐾𝐾, 𝑟𝑟 ∈ 𝑅𝑅𝑘𝑘 (A24) 

𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗 = 𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗
two  ∀𝑘𝑘 ∈ 𝐾𝐾, 𝑟𝑟 ∈ 𝑅𝑅𝑘𝑘, 𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑟𝑟}. (A25) 

Then, the value of 𝑍𝑍two can be calculated by 

𝑍𝑍two = 1
|𝑆𝑆|
∑ 𝑍𝑍two(𝑠𝑠, |𝑇𝑇|)𝑠𝑠∈𝑆𝑆 . (A26) 

The difference between 𝑍𝑍multi and 𝑍𝑍two is a measure of the actual advantage of 

using multistage stochastic programming over two-stage stochastic programming. 

The last model is the perfect information model. This method solves a set of 

deterministic models, each of which is related to a particular scenario. Before 

formulating the perfect information model, some parameters and decision variables 

are defined as follows: 

Newly defined parameters: 

𝑞̈𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 : actual newly generated container shipment demand (number of containers) in 

period 𝑡𝑡  at port 𝑜𝑜  to be transported to port 𝑑𝑑  under scenario 𝑠𝑠  in the perfect 

information problem, 𝑞̈𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 = 𝑞𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡

𝑠𝑠 . 



 

115 
 

Newly defined decision variables: 

𝛼̈𝛼ℎ,𝑟𝑟
𝑠𝑠 : integer, number of ships from group ℎ ∈ 𝐻𝐻  deployed on route 𝑟𝑟 ∈ 𝑅𝑅  under 

scenario 𝑠𝑠 in the perfect information problem. 

𝛽̈𝛽𝑘𝑘,𝑟𝑟
𝑠𝑠 : integer, number of ships of type 𝑘𝑘 ∈ 𝐾𝐾𝑟𝑟 deployed on route 𝑟𝑟 ∈ 𝑅𝑅 under scenario 

𝑠𝑠 in the perfect information problem. 

𝜋̈𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗
𝑠𝑠 : binary, if a ship of type 𝑘𝑘 ∈ 𝐾𝐾𝑟𝑟 is deployed on the 𝑗𝑗th (𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑟𝑟}) sequence 

position of route 𝑟𝑟 ∈ 𝑅𝑅 (i.e., the 𝑗𝑗th ship on route 𝑟𝑟 belongs to type 𝑘𝑘) under scenario 

𝑠𝑠 in the perfect information problem, it equals 1; otherwise it equals 0. 

𝜃̈𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 : continuous, number of actual accepted containers for the demand of O-D pair 

(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷 accumulated in period 𝑡𝑡 ∈ 𝑇𝑇 under scenario 𝑠𝑠 in the perfect information 

problem, 𝜃̈𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ≤ 𝑞̈𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡

𝑠𝑠 . 

𝜑̈𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 : continuous, number of actual delayed containers for the demand of O-D pair 

(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷  up to period 𝑡𝑡 ∈ 𝑇𝑇 ∪ {0}  under scenario 𝑠𝑠  in the perfect information 

problem, where by convention, 𝜑̈𝜑𝑜𝑜,𝑑𝑑,0
𝑠𝑠 ∶= 0. 

𝜀𝜀𝑜̈𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 : continuous, number of actual shipped containers for the demand of O-D pair 

(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷  in period 𝑡𝑡  (including both those accepted in period 𝑡𝑡  and the delayed 

containers in previous periods) under scenario 𝑠𝑠 in the perfect information problem. 

According to the notation introduced, the perfect information model is 

formulated as follows: 

[Mperfect] 

Max∑ 𝑤𝑤𝑠𝑠
𝑠𝑠∈𝑆𝑆 [∑ ∑ (𝑡𝑡∈𝑇𝑇 (𝑜𝑜,𝑑𝑑)∈𝐷𝐷 𝑙𝑙𝑜𝑜,𝑑𝑑𝜃̈𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡

𝑠𝑠 − 𝑝𝑝𝑜𝑜,𝑑𝑑𝜑̈𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ) −∑ ∑ 𝑓𝑓ℎ,𝑟𝑟𝛼̈𝛼ℎ,𝑟𝑟

𝑠𝑠
𝑟𝑟∈𝑅𝑅𝑦𝑦ℎℎ∈𝐻𝐻 −  

∑ ∑ 𝑐𝑐𝑘𝑘,𝑟𝑟𝛽̈𝛽𝑘𝑘,𝑟𝑟
𝑠𝑠

𝑟𝑟∈𝑅𝑅𝑘𝑘 𝑘𝑘∈𝐾𝐾 − ∑ ∑ 𝑔𝑔𝑦𝑦ℎ𝛼̈𝛼ℎ,𝑟𝑟
𝑠𝑠

𝑟𝑟∈𝑅𝑅𝑦𝑦ℎℎ∈𝐻𝐻2 + ∑ 𝑚𝑚𝑦𝑦ℎ(𝑢𝑢ℎ − ∑ 𝛼̈𝛼ℎ,𝑟𝑟
𝑠𝑠

𝑟𝑟∈𝑅𝑅𝑦𝑦ℎ
)ℎ∈𝐻𝐻1 ]  (A27) 

subject to  

𝛽̈𝛽𝑘𝑘,𝑟𝑟
𝑠𝑠 = ∑ 𝜋̈𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗

𝑠𝑠
𝑗𝑗∈{1,…,𝑛𝑛𝑟𝑟}   ∀𝑘𝑘 ∈ 𝐾𝐾, 𝑟𝑟 ∈ 𝑅𝑅𝑘𝑘, 𝑠𝑠 ∈ 𝑆𝑆    (A28) 

∑ 𝜋̈𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗
𝑠𝑠

𝑘𝑘∈𝐾𝐾𝑟𝑟 = 1  ∀ 𝑟𝑟 ∈ 𝑅𝑅, 𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑟𝑟}, 𝑠𝑠 ∈ 𝑆𝑆  (A29) 

∑ 𝛼̈𝛼ℎ,𝑟𝑟
𝑠𝑠

𝑟𝑟∈𝑅𝑅𝑦𝑦ℎ
≤ 𝑢𝑢ℎ  ∀ ℎ ∈ 𝐻𝐻, 𝑠𝑠 ∈ 𝑆𝑆  (A30) 
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∑ 𝛼̈𝛼ℎ,𝑟𝑟
𝑠𝑠

ℎ∈𝐻𝐻,𝑦𝑦ℎ=𝑘𝑘 = 𝛽̈𝛽𝑘𝑘,𝑟𝑟
𝑠𝑠   ∀𝑘𝑘 ∈ 𝐾𝐾, 𝑟𝑟 ∈ 𝑅𝑅𝑘𝑘, 𝑠𝑠 ∈ 𝑆𝑆  (A31) 

𝜃̈𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 + 𝜑̈𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡−1

𝑠𝑠 = 𝜀𝜀𝑜̈𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 + 𝜑̈𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡

𝑠𝑠  ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆  (A32) 

∑ ∑ 𝑎𝑎𝑟𝑟,𝑒𝑒,𝑖𝑖,𝑜𝑜,𝑑𝑑,𝑡𝑡𝑡𝑡∈𝑇𝑇(𝑜𝑜,𝑑𝑑)∈𝐷𝐷 𝜀𝜀𝑜̈𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ≤ ∑ 𝑣𝑣𝑘𝑘𝑘𝑘∈𝐾𝐾𝑟𝑟 𝜋𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗𝑟𝑟𝑟𝑟  ∀ 𝑟𝑟 ∈ 𝑅𝑅, 𝑒𝑒 ∈ 𝐸𝐸𝑟𝑟 , 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟 , 𝑠𝑠 ∈ 𝑆𝑆 (A33) 

𝜃̈𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ≤ 𝑞̈𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡

𝑠𝑠  ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆 (A34) 

𝜑̈𝜑𝑜𝑜,𝑑𝑑,0
𝑠𝑠 = 0 ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑠𝑠 ∈ 𝑆𝑆 (A35) 

𝜑̈𝜑𝑜𝑜,𝑑𝑑,|𝑇𝑇|
𝑠𝑠 = 0 ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑠𝑠 ∈ 𝑆𝑆 (A36) 

𝛼̈𝛼ℎ,𝑟𝑟
𝑠𝑠 ∈ 𝑍𝑍+  ∀ ℎ ∈ 𝐻𝐻, 𝑟𝑟 ∈ 𝑅𝑅𝑦𝑦ℎ , 𝑠𝑠 ∈ 𝑆𝑆 (A37) 

𝛽̈𝛽𝑘𝑘,𝑟𝑟
𝑠𝑠 ∈ 𝑍𝑍+  ∀𝑘𝑘 ∈ 𝐾𝐾, 𝑟𝑟 ∈ 𝑅𝑅𝑘𝑘, 𝑠𝑠 ∈ 𝑆𝑆 (A38) 

𝜋̈𝜋𝑘𝑘,𝑟𝑟,𝑗𝑗
𝑠𝑠 ∈ {0,1}  ∀𝑘𝑘 ∈ 𝐾𝐾, 𝑟𝑟 ∈ 𝑅𝑅𝑘𝑘, 𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑟𝑟}, 𝑠𝑠 ∈ 𝑆𝑆  (A39) 

𝜃̈𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ≥ 0, 𝜀𝜀𝑜̈𝑜,𝑑𝑑,𝑡𝑡

𝑠𝑠 ≥ 0 ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆  (A40) 

𝜑̈𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ≥ 0  ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇 ∪ {0}, 𝑠𝑠 ∈ 𝑆𝑆. (A41) 

Objective function (A27) maximizes the average operational revenue earned by 

the liner company during the planning horizon in the perfect information problem. 

Constraints (A28)–(A41) update the related constraints for the deterministic problem. 

The optimal objective value of model Mperfect  is recorded as 𝑍𝑍perfect , which is 

theoretically meaningful and represents how much money the liner company would 

earn on average if the future demand were known. The difference between 𝑍𝑍perfect and 

𝑍𝑍multi is the value of perfect information. 

Appendix C 

Model considering adaptive fleet sizes 

This chapter also formulates an MILP model to allow for adaptive fleet sizes. 

This model assumes that if an O-D pair is in particularly high demand, liner companies 

may charter in additional ships for point-to-point transportation in addition to ships 

deployed in the first stage. Specifically, let 𝑈𝑈 represent a subset of O-D pairs of ports 
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that can provide additional point-to-point ships in the shipping network, (𝑜𝑜,𝑑𝑑) ∈ 𝑈𝑈, 

and assume that each origin in 𝑈𝑈 has an infinite number of point-to-point ships ready 

to be chartered in by the liner company. These additional point-to-point ships are of a 

fixed size, such as 4,500 TEUs. Suppose that the transportation demand for an O-D 

pair suddenly increases in a certain period. For example, if additional 3,000 TEUs of 

cargo needs to be transported for a specific O-D pair, the ships initially deployed by 

the liner company cannot satisfy the surge in transportation volume. In this case, the 

liner company may charter in an additional 4,500-TEU ship to complete the point-to-

point transportation of the 3,000 TEUs of cargo; if additional 6,000 TEUs of cargo 

needs to be transported for a specific O-D pair, two additional point-to-point ships may 

be deployed for the O-D pair. Therefore, by frequently adjusting point-to-point ships, 

liner companies can better respond to uncertain demands. 

Newly defined set: 

𝑈𝑈: subset of O-D pairs of ports that can provide additional point-to-point ships in the 

shipping network, (𝑜𝑜,𝑑𝑑) ∈ 𝑈𝑈, 𝑈𝑈 ⊂ 𝐷𝐷. 

Newly defined parameters: 

𝑔𝑔�𝑜𝑜,𝑑𝑑,𝑠𝑠: rental cost of chartering in a point-to-point ship completing a specific leg from 

port 𝑜𝑜 to port 𝑑𝑑, (𝑜𝑜,𝑑𝑑) ∈ 𝑈𝑈, under scenario 𝑠𝑠, 𝑠𝑠 ∈ 𝑆𝑆. 

𝑣𝑣� : number of containers that can be carried by point-to-point ships, which is the 

capacity of the ships. 

Newly defined decision variables: 

𝛾𝛾𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 : integer, number of point-to-point ships completing a specific voyage leg from 

port 𝑜𝑜 to port 𝑑𝑑, (𝑜𝑜,𝑑𝑑) ∈ 𝑈𝑈, departing from period 𝑡𝑡, 𝑡𝑡 ∈ 𝑇𝑇, under scenario 𝑠𝑠, 𝑠𝑠 ∈ 𝑆𝑆. 

𝛿𝛿𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 : continuous, total number of shipped containers transported by point-to-point 

ships for the demand of O-D pair (𝑜𝑜,𝑑𝑑), (𝑜𝑜,𝑑𝑑) ∈ 𝑈𝑈, in period 𝑡𝑡 (including both those 

accepted in period 𝑡𝑡 and the delayed containers in previous periods), 𝑡𝑡 ∈ 𝑇𝑇, under 

scenario 𝑠𝑠, 𝑠𝑠 ∈ 𝑆𝑆. 

According to the notation introduced, a multistage stochastic programming 

model considering adaptive fleet sizes is formulated as follows: 

[MMulti−Adaptive] 



 

118 
 

𝑍𝑍Adaptive = Max ∑ 𝑤𝑤𝑠𝑠 ∑ [∑ �𝑙𝑙𝑜𝑜,𝑑𝑑𝜃𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 − 𝑝𝑝𝑜𝑜,𝑑𝑑𝜑𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡

𝑠𝑠 � +(𝑜𝑜,𝑑𝑑)∈𝐷𝐷𝑡𝑡∈𝑇𝑇 𝑠𝑠∈𝑆𝑆

∑ (𝑙𝑙𝑜𝑜,𝑑𝑑𝛿𝛿𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 − 𝑔𝑔�𝑜𝑜,𝑑𝑑,𝑠𝑠𝛾𝛾𝑜𝑜,𝑑𝑑,𝑡𝑡

𝑠𝑠 )(𝑜𝑜,𝑑𝑑)∈𝑈𝑈 ] −∑ ∑ 𝑓𝑓ℎ,𝑟𝑟𝛼𝛼ℎ,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑦𝑦ℎℎ∈𝐻𝐻 − ∑ ∑ 𝑐𝑐𝑘𝑘,𝑟𝑟𝛽𝛽𝑘𝑘,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑘𝑘 𝑘𝑘∈𝐾𝐾 −  

∑ ∑ 𝑔𝑔𝑦𝑦ℎ𝛼𝛼ℎ,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑦𝑦ℎℎ∈𝐻𝐻2 + ∑ 𝑚𝑚𝑦𝑦ℎ(𝑢𝑢ℎ − ∑ 𝛼𝛼ℎ,𝑟𝑟𝑟𝑟∈𝑅𝑅𝑦𝑦ℎ
)ℎ∈𝐻𝐻1   (A42) 

subject to constraints (3-2)–(3-5), (3-7), (3-8)–(3-18), 

𝛿𝛿𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ≤ 𝑣𝑣�𝛾𝛾𝑜𝑜,𝑑𝑑,𝑡𝑡

𝑠𝑠   ∀ (𝑜𝑜,𝑑𝑑) ∈ 𝑈𝑈, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆  (A43) 

𝜃𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 + 𝜑𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡−1

𝑠𝑠 = 𝜀𝜀𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 + 𝜑𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡

𝑠𝑠   ∀(𝑜𝑜,𝑑𝑑) ∈ 𝐷𝐷\𝑈𝑈, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆  (A44) 

𝜃𝜃𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 + 𝜑𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡−1

𝑠𝑠 = 𝜀𝜀𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 + 𝛿𝛿𝑜𝑜,𝑑𝑑,𝑡𝑡

𝑠𝑠 + 𝜑𝜑𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠   ∀(𝑜𝑜,𝑑𝑑) ∈ 𝑈𝑈, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆  (A45) 

𝛾𝛾𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ∈ 𝑍𝑍+    ∀ (𝑜𝑜,𝑑𝑑) ∈ 𝑈𝑈, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆  (A46) 

𝛿𝛿𝑜𝑜,𝑑𝑑,𝑡𝑡
𝑠𝑠 ≥ 0  ∀(𝑜𝑜,𝑑𝑑) ∈ 𝑈𝑈, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆. (A47) 

Objective function (A42) maximizes the expected profit earned by the liner 

company during the planning horizon, which involves costs and revenues of regular 

ships and point-to-point ships. Constraints (A43) guarantee that the total number of 

shipped containers transported by point-to-point ships for O-D pair (𝑜𝑜,𝑑𝑑), (𝑜𝑜,𝑑𝑑) ∈ 𝑈𝑈 

in period 𝑡𝑡 under scenario 𝑠𝑠 cannot exceed the total capacity of all deployed point-to-

point ships completing the voyage leg from port 𝑜𝑜 to port 𝑑𝑑 departing from period 𝑡𝑡. 

Constraints (A44)–(A45) are the balance equations for the numbers of accepted, 

delayed, and shipped containers under the case of adaptive fleet sizes, between each 

O-D pair (𝑜𝑜,𝑑𝑑) in each time period 𝑡𝑡 ∈ 𝑇𝑇 under each scenario 𝑠𝑠. Constraints (A46)–

(A47) define the domains of the decision variables. 
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