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Abstract 

Maritime transportation, an indispensable driver of global trade and economic 

development, faces the imperative of sustainable development amid its pivotal role in 

international commerce. Despite delivering over 80% of global trade by volume in 2022, the 

maritime industry grapples with environmental and operational efficiency challenges, 

necessitating a paradigm shift towards sustainable practices. This thesis delves into three pivotal 

strategies within the realm of sustainable development: autonomous ships, cleaner energy 

generation subsidies, and foul cleaning.  

Autonomous ships significantly boost maritime sustainability by improving fuel 

efficiency, cutting emissions, enhancing safety, streamlining operations, optimizing fleet 

management, reducing human error, and potentially integrating renewable energy sources. 

Cleaner energy adoption in maritime operations yields benefits such as emissions reduction, 

regulatory compliance, improved air quality, cost savings, innovation stimulation, and 

enhanced competitiveness. Foul cleaning, essential for maintaining hull performance and fuel 

efficiency, reduces drag, lowers fuel consumption, enhances maritime efficiency, and 

minimizes environmental impact. This practice also extends vessel lifespan, decreases 

maintenance needs, prevents invasive species spread, and ensures environmental regulation 

compliance, playing a crucial role in responsible maritime management. 

With a dedicated focus on each strategy, we employ operations research techniques to 

intricately optimize maritime operations. The objective is to navigate towards sustainability 

with a keen emphasis on cost-effectiveness, striving for a harmonious coexistence between 

economic benefits and environmental well-being. Through an in-depth exploration of these 

strategies and the application of advanced operations research methodologies, this study aims 

not only to reduce the environmental footprint of maritime operations but also to underscore 

the maximization of benefits at minimized costs.  

This thesis makes both theoretical and practical contributions to maritime sustainability. 

In terms of theoretical advancement, we initially develop models to accurately quantify the 

problem, enabling the derivation of clear solutions. Subsequently, we refine existing solution 

methods to expedite computation, rendering large-scale instances solvable within reasonable 

timeframes. On the practical front, the quantitative analysis yields valuable managerial insights, 

offering guidance for practical implementation. 
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Chapter 1: Introduction 

1.1 BACKGROUND 

Maritime transportation holds a crucial position in facilitating worldwide trade 

and promoting economic development, serving as the backbone of international 

commerce. As per the United Nations Conference on Trade and Development 

(UNCTAD), maritime shipping is accountable for transporting more than 80% of 

global trade by volume in 2022. The advantages of maritime transportation are evident 

in its cost-effectiveness for transporting bulk goods over long distances. The large 

cargo capacities of vessels enable economies of scale, reducing transportation costs 

per unit of goods compared to alternative modes. However, the maritime industry is 

not without challenges. Environmental concerns, including air and water pollution, oil 

spills, and habitat disturbance, raise questions about the sustainability of current 

practices. Safety and security risks, such as accidents, piracy, and illegal activities, 

present ongoing challenges. The industry's reliance on fossil fuels contributes to 

greenhouse gas emissions, necessitating a transition to more sustainable energy 

sources. 

The maritime industry has been continuously exploring various strategies to 

address these challenges while preserving and enhancing its operational advantages, 

aiming to achieve a state of sustainable development. Sustainable maritime 

development refers to the pursuit of a balanced and harmonious coexistence between 

maritime economic activities, ecological preservation, and social well-being. Within 

the framework of sustainable development, efforts are directed towards seeking and 

adopting methods and technologies that are economically feasible, ecologically sound, 

and socially conscientious.  

This research delves into three methods aimed at achieving sustainable goals: 

employing autonomous ships, providing subsidies for cleaner energy generation, and 

implementing foul cleaning. Autonomous ships, characterized by their ability to 

operate without direct human involvement, utilize advanced technologies, sensors, and 

artificial intelligence systems to perform tasks traditionally handled by human crews. 

These vessels contribute significantly to maritime sustainability through enhanced fuel 
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efficiency, emissions reduction, improved safety measures, and heightened operational 

efficiency. This technological innovation minimizes the environmental footprint of 

shipping activities while improving overall operational effectiveness and seafarer 

wellness. Subsidizing cleaner energy generation incentivizes the adoption of greener 

energy sources, such as marine diesel oil and electricity, and exhaust gas cleaning 

equipment in maritime activities. By transitioning towards cleaner energy sources, the 

maritime industry can significantly reduce its harmful gas emissions, contributing to 

global sustainability goals. Foul cleaning, involving the removal of fouling organisms 

from ship hulls, is crucial for maintaining hydrodynamic performance and fuel 

efficiency. This practice not only reduces drag, leading to lower fuel consumption and 

operational costs, but also enhances overall maritime efficiency and contributes to 

environmental sustainability by minimizing the release of harmful anti-fouling 

chemicals. Foul cleaning additionally extends vessel lifespan, reduces maintenance 

requirements, prevents the spread of invasive species, and supports compliance with 

environmental regulations, making it a pivotal aspect of responsible and efficient 

maritime management. 

While these methods offer numerous benefits, they entail additional costs. 

Therefore, this study aims to maximize efficiency with the least cost through 

Operations Research methods. 

1.2 THESIS OUTLINE 

The remainder of this thesis are organized as follows. Chapter 2 review related 

literature. In Chapter 3, a model is formulated to explore the impact of autonomous 

ships on maritime operation considering uncertainties. Given the NP-hard nature of 

the problem, both approximation and exact solution methods are proposed. Additional 

acceleration strategies are employed to enhance the problem-solving process. Moving 

on to Chapter 4, a bi-level mixed integer programming model is introduced to optimize 

a subsidy plan designed to mitigate harmful emissions. The intricacy of the problem 

arises from the interdependence within the bi-level structure, necessitating the 

transformation of the model into an equivalent single-level formulation and the use of 

linearization techniques for effective resolution. Similarly, Chapter 5 presents a bi-

level model that concurrently optimizes cleaning equipment deployment by service 

providers in the upper level and cleaning decisions by shipping companies in the lower 
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level. To simplify the problem, the bi-level model is converted into a single-level 

formulation utilizing the big-M method. Finally, Chapter 6 serves as the conclusion, 

summarizing the thesis's key findings and raising potential avenues for future research.
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Chapter 2: Literature review 

There are numerous pathways to achieve shipping sustainability, such as the 

adoption of alternative fuels, implementation of energy-efficient technologies, and 

optimization of shipping operation. These methods can operate independently or 

synergistically, complementing one another to enhance overall sustainability efforts. 

This thesis primarily focuses on three key methods: employing autonomous ships, 

providing subsidies for cleaner energy generation, and implementing foul cleaning. As 

a result, the literature review is centered around these three approaches. 

2.1 AUTONOMOUS SHIPS 

The first research investigates the impacts of autonomous ships. Over the last 

decade, there has been a notable surge in interest surrounding autonomous vessels. Liu 

et al. (2016), Schiaretti et al. (2017a, 2017b), Zolich et al. (2018), and Gu et al. (2021) 

provide comprehensive reviews of autonomous vessels. Besides, there are also many 

research projects, such as Maritime Unmanned Navigation through Intelligence in 

Networks (MUNIN1), ReVolt2, and Yara Birkeland3. However, since autonomous 

vessels are in their early stage, these academic research and research projects mainly 

focus on economic feasibility (Kretschmann et al., 2017; Ghaderi, 2019; Ziajka-

Poznańska and Montewka, 2021), safety issues (Wang et al., 2018; Fan et al., 2020; 

Goerlandt, 2020; Chang, 2021; de Vos, 2021), laws and regulations (Authority, 2017; 

Cheng and Ouyang, 2021; Zhu and Xing, 2021), vessel design (Jin, Zhang, and Liu, 

2018; Makhsoos et al., 2018), etc. There is a dearth of literature that specifically 

focuses on the operational optimization of autonomous ships, especially when 

considering the intricate interplay of multiple decisions at both the strategic and the 

 
 
1 MUNIN is a collaborative research project, co-funded by the European Commissions under its Seventh 
Framework Programme. The goal is to verify the concept for autonomous ships and develop technology 
for unmanned and autonomous vessels. 
2 ReVolt is a concept ship built and tested by classification society DNV GL. This ship is autonomous 
and fully battery powered. The ship is assumed to be powered by a 3000 kWh battery and sails at an 
average speed of 6 knots. 
3 Yara Birkeland is the world’s first fully electric and autonomous container vessel built by Yara and 
Kongsberg. It was put into commercial operation in Porsgrunn in the spring of 2022. 
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operational levels, such as ship routing, fleet sizing, fleet deployment, and demand 

fulfillment. 

To address this gap, this research delves into the operational challenges faced by 

shipping companies contemplating the integration of autonomous ships. The problem 

is formulated as variant of vehicle routing problem (VRP), which refers to the 

problems involving routing, fleet sizing, fleet deployment, and demand fulfillment. 

This decades-old classic research question dates back to Dantzig and Ramser (1959), 

which found the shortest route that passes through all end points. The most studied 

variant is the classical capacitated VRP (CVRP) where all vehicles are identical and 

have the same capacity. The first important variant is called heterogeneous fleet VRP 

(HFVRP) where multiple types of vehicles are used to fulfill distribution. Branchini, 

Armentano, and Morabito (2015) solve the integrated problem of ship routing, 

scheduling, and fleet deployment to serve all contractual voyages and at the same time 

serve profitable spot voyages if there is room to spare. They consider different ship 

types that are restricted by the cargoes that can be loaded, the ports that can be visited, 

and also client contracts. Fadda et al. (2023) design an optimal maritime network 

considering draft limits, where ship draft is determined by ship type and cargo weight. 

A second variant is the multi-trip VRP (MTVRP) that extends the classical VRP by 

allowing vehicles to execute more than one trip during a predetermined service time 

(Taillard, Laporte, and Gendreau, 1996). In the MTVRP, the limited carrying capacity 

reduces the number of customers served on a trip and thus some vehicles need to 

perform several trips during a workday. When solving the last-mile delivery problem, 

Şahin and Yaman (2022) exploit service route design for a fleet under time window 

constraints, considering the compatibility of different vehicle types to different routes 

in a heterogeneous fleet and multi-trip service for each vehicle. A third variant relaxes 

constraints that each customer must be visited exactly once. This variant is called split 

delivery VRP (SDVRP). Archetti, Savelsbergh, and Speranza (2008) prove that 

demand split is most beneficial when demand mean is slightly above half the vehicle 

capacity and the variance is relatively small. Yoshizaki (2009) solves a distribution 

problem of a major Brazilian retail group, determining the best route, distribution 

schedule, vehicle allocation, and delivery amount for each customer. A fourth variant 

considers uncertainties in the problem, which leads to a version called stochastic VRP 

(SVRP). Gutierrez et al. (2018) determine schedule and routes for a group of 



 

 

Chapter 2: Literature review 16 

technicians to execute repairing tasks within given time windows. Travel time and 

service time in the research are assumed to be stochastic and identically gamma and 

log-normal distributed, respectively. 

A single variant usually cannot fully capture the essence of real-life 

transportation problems, so that multiple variants are often combined. Coelho et al. 

(2016) and Despaux and Basterrech (2016) investigate good delivery from a central 

depot to geographically scattered customers, simultaneously considering 

heterogeneous fleet and multi-trips. Wang, Kinable, and Van Woensel (2020) solve a 

fuel replenishment problem where tanker trucks carry different types of petrol to refuel 

petrol stations. Stations that have larger demand than the vehicle capacity may need to 

be refueled several times. Yang (2022) directs a fleet of identical capacitated vehicles 

to complete package deliveries. To fully utilize the vehicle mobility during working 

hours, vehicles are allowed to perform multiple trips. 

The VRP problem is strongly NP-hard, and various solution techniques have 

been proposed, including metaheuristics and exact algorithms. Here are the most 

commonly used metaheuristics: iterated local search (Coelho et al., 2016; Accorsi, and 

Vigo, 2021), memetic algorithms (Mendoza et al., 2010; Gutierrez et al., 2018), large 

neighborhood search (François et al., 2016; Wang, Kinable, and Van Woensel, 2020). 

Exact algorithms include column generation (Jin, Liu, and Eksioglu, 2008; Paradiso et 

al., 2020), branch-and-cut (Archetti, Bianchessi, and Speranza, 2014; Bianchessi, and 

Irnich, 2019), branch-and-price (Şahin, and Yaman, 2022; Torres, Gendreau, and Rei, 

2022), and branch-and-price-and-cut (Desaulniers, 2010; Poggi, and Uchoa, 2014; 

Pecin et al., 2017; Gschwind, Bianchessi, and Irnich, 2019; Pessoa et al.,2020). 

2.2 SUBSIDIES FOR CLEANER ENERGY GENERATION 

The second study shifts its focus towards the adoption of alternative fuels and 

sustainable shipping practices. The improvement of environmental awareness has 

made scrubber and shore power hot topics. There are many studies discussing their 

economic feasibility as well as environmental benefits. Panasiuk and Turkina (2015) 

uses cash flow model to compare the profitability of scrubber and low sulphur fuel 

under IMO emission requirements. It mentions that investment in scrubber is an 

effective choice. Lindstad, Rehn, and Eskeland (2017) explores the ways to abide by 

IMO Sulphur regulations. It recommends scrubber for ships with the highest fuel 
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consumption, diesel for smaller vessels when price of crude oil is lower than $50 per 

barrel, and desulphurised HFO for less fuel-guzzling ships. Andersson, Jeong, and 

Jang (2020) compares two different types of wet scrubber via life cycle assessment 

technique. Closed loop scrubber is preferred when environment is the priority while 

open loop scrubber is better if payback time is more important. Zis, Cullinane, and 

Ricci (2022) investigates economic and environmental impacts under a series of sulfur 

reduction regulations. The quantitative analysis confirms that scrubber is more suitable 

when fuel price is high and ships sail longer time. Similar research can be found on 

shore power. Yu, Voß, and Tang (2019) studies whether it is beneficial to install shore-

side electricity equipment and the best time to invest. A case study of Dalian port 

indicates that ships with higher visiting frequency are more suitable to be equipped 

with shore power devices; It is more cost-effective for domestic and near-sea shipping 

to use alternatives to shore power, such as LNG or scrubber; Larger ships are more 

environmentally beneficial. Lathwal, Vaishnav, and Morgan (2021) investigates cost 

and emission reduction when ships switch from high-sulfur fuel to shore-based 

electricity. Results show that using shore power could reduce 88% PM2.5, 39% SO2, 

85% NO (x), $73 million for high-sulfur fuel, and $370 million for low-sulfur fuel, but 

increases CO2 emissions by 17%. Stolz et al. (2021) also quantifies emission reduction 

when ships switch from fossil fuels to shore side electricity. It uses Automatic 

Identification System (AIS) and Monitoring, Reporting and Verification (MRV) 

scheme data to estimate the auxiliary power demand and emissions at berth for ports 

in the European Economic Area (EEA) and the United Kingdom (UK). Sun et al. 

(2022) studies the emission reduction effect of ship berthing using shore power. It 

finds that using shore power requires specific conditions and only a few cities are 

suitable for using shore power. 

  The environment protection of scrubber and shore power has been widely 

recognized, but the investment for these technologies is expensive (Acciaro et al. 2014; 

Yin et al. 2022). To promote the use of scrubber and shore power and to protect 

environment, the government usually adopts subsidies. Wang, Qi, and Laporte (2022) 

designs shore power price and subsidy to use shore power. The research finds that 

pricing and subsidy are effective ways to drive shore power usage, while setting an 

unreasonably high shore power utilization rate has a negative impact on total profit of 

ports. Song et al. (2022) uses game theory to discuss the influences of government 
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subsidy plan on the usage of shore power between two shipping companies. Compared 

to other interventions (e.g., environmental taxes and requirements to improve marine 

oil specifications), subsidies are proved to be better for satisfying multiple participants. 

Wang, Jiao, and Peng (2023) also uses game theory to investigate the impact of 

government subsidy on shipping company’s choice of powering method under 

different power structures. By comparing the profits with and without government 

subsidy, it concludes that whether governmental subsidy will have impact on shipping 

company’s choice of shore power or lower sulfur fuel oil depends on carbon price. Lu 

and Huang (2021) optimizes the deployment of shore power considering government 

subsidy. It finds the optimal conditions for different subsidy strategies. 

  When considering subsidy, usually multiple parties are involved. Bi-level 

optimization is a common method for solving multi-party problem (Liu, Wilson, and 

Luo 2016; Cai et al. 2020). Feng, Pang, and Lodewijks (2015) develops a bi-level 

model to solve hinterland barge transport planning problem involving both terminal 

and barge operators. The lower level minimizes turn-around time for barge agent, 

while the upper level makes sure more requests could be handled at terminal. Chang 

et al. (2019) redesigns maintenance grouping strategies considering interactions 

between original equipment manufacturer (OEM) and service providers. The upper-

level OEM simultaneously minimizes total maintenance service cost, downtime profit 

loss, and customer dissatisfaction, while all service providers at lower level could 

select their service components and corresponding service time. Yang, Luo, and Shi 

(2020) solves problems caused by uncoordinated subsidies for rail transportation of 

containers in different regions. It develops a bi-level model with network planner in 

the upper level to decide the optimal subsidy and shippers in the lower level to optimize 

cost. 

2.3 FOUL CLEANING 

Further analysis was conducted to identify the causes of unsustainability, 

revealing that fouling not only reduces vessel efficiency but also imposes negative 

impacts on the environment and ecosystems. Consequently, the third study explores 

measures for fouling removal. Research on ship fouling has garnered attention for 

more than 40 years. Evans (1981) summarized important findings on the biology of 

fouling algae, which have proven valuable for the advancement of antifouling 
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technologies. Additionally, Callow (1990) provided comprehensive information on 

various solution methods to combat fouling, encompassing both traditional and 

modern approaches. These methods include the use of antifouling paints, copper, 

organotin, tributyltin, and fluoropolymers of silicones. Since ship fouling has 

significant negative impacts on vessel performance and environmental sustainability, 

there are many studies aimed at quantifying these effects. Townsin (2003) elucidated 

ship speed and power performance penalties caused by slime, shell, and weed 

separately. Monty et al. (2016) assessed the ship drag penalty caused by light 

calcareous tubeworm fouling. Demirel et al. (2017) analyzed the effect of barnacle 

fouling on ship resistance and powering. Coraddu et al. (2019) developed a data-driven 

digital twin of the ship using information collected from on board sensors to predict 

the speed losses caused by fouling. Demirel et al. (2019) investigated frictional 

resistance coefficients under a range of representative coating and fouling conditions. 

Farkas et al. (2020) and Song et al. (2020) carried out simulations to investigate the 

impacts of different fouling conditions on different ship types. The results show that 

the influence can vary significantly amongst different ship types. Farkas, Degiuli, and 

Martić (2020) divided biofouling into soft and hard fouling, where the latter has greater 

impact. To quantify the influence of hard fouling, they developed a roughness function 

through simulation to measure the resistance caused by fouling. Erol, Cansoy, and 

Aybar (2020) used data collected from all automation systems instead of noon reports 

to improve the measurement accuracy of the relationship between fouling and ship 

performance. In addition to quantifying the impacts, there are also studies investigating 

the effectiveness of different cleaning methods. Tribou and Swain (2015) assessed the 

effectiveness of grooming with a five-headed rotating brush to clean biofouling. 

Experiments show that the effectiveness of the tool depends on the fouling condition. 

Oliveira and Granhag (2020) investigated the maximum wall shear stress and jet 

stagnation pressure that do not cause damage or wear to antifouling coatings. Zhong 

et al. (2022) conducted experiments to verify the feasibility of ultrasonic-enhanced 

submerged cavitation jets in the cleaning of ship fouling. Given the importance of 

determining the optimal timing for cleaning methods, several researchers have 

contributed to this field. Farkas, Degiuli, and Martić (2021a) address the challenge of 

rapidly predicting propeller performance with fouled surfaces when making 

maintenance schedules. Farkas, Degiuli, and Martić (2021b) also developed a model 
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to rapidly predict the effect of biofouling on a ship’s hydrodynamic performance 

during maintenance schedule optimization. Georgiev and Garbatov (2021) performed 

conceptual multipurpose vessel design and fleet sizing considering hull form, 

resistance and propulsion, and other dimensions crucial to vessel design. Degiuli et al. 

(2023) optimized the maintenance schedule for containerships considering fouling 

penalties under real environmental conditions. While the literature has extensively 

examined the effects of fouling, cleaning methods, and cleaning schedules, there 

remains a gap in comprehensive research that simultaneously addresses the optimal 

locations and timing for ship cleaning, as well as the appropriate number of devices to 

be deployed. 

The problem in this study is formulated as a bi-level model. Bi-level 

optimization involves two levels of optimization interacting with each other (typically 

involving a leader in the upper level and a follower in the lower level), where the 

decisions made in the upper level affect the solution of the lower level and the solution 

of the lower level in turn influences the objective function or constraints of the upper 

level. Bi-level programming problems arise in many different applications, such as 

transportation management (Chang, and Mackett, 2006; Stoilova, and Stoilov, 2022), 

facility location (Gang et al., 2015; Abareshi, and Zaferanieh, 2019; Casas-Ramírez et 

al., 2020), and logistics optimization (Camacho-Vallejo et al., 2015; Lee et al., 2015). 

In the shipping industry, many problems are also formulated as bi-level models. Qi, 

Wang, and Psaraftis (2021) conducted a comprehensive review of bi-level 

optimization models for air emission management in the shipping industry. Wang et 

al. (2020) proposed a novel bi-level model aimed at optimizing the energy 

consumption of a fleet. The upper-level optimization model determined the loading 

and speed of each ship, taking into account relevant factors such as port information, 

the navigational environment, time requirements, and ship parameters. The lower-

level problem was formulated as a dynamic model, optimizing energy consumption by 

considering varied environmental factors and port information. Zhu, Shen, and Shi 

(2023) developed a bi-level multi-objective model for the allocation of carbon 

emission allowances. In this model, the government acted as the leader initiating the 

allocation process, while shipping companies served as followers and made decisions 

regarding carbon emissions within their operations. Yang, Pan, and Wang (2018) 

reconstructed liner shipping networks considering the impacts of two new railway 



 

 

Chapter 2: Literature review 21 

systems built under the one belt one road policy. The upper-level liner shipping 

company decided shipping routes while the lower-level shippers decided delivery 

amounts along the routes. Zhuge et al. (2021) investigated the effects of different 

policies regarding vessel speed reduction in a port area. Four policies were compared 

and two bi-level subsidy design models were formulated. Ziar et al. (2023) designed 

an environmentally friendly intermodal transportation network. The government in the 

upper level decided the location of dry ports, while the freight carriers in the lower-

level optimized shipping routes. Wang, Wang, and Zhen (2023) optimized the subsidy 

plan for scrubbers and shore power through a bi-level mixed-integer programming 

model, where the government at the upper level minimized the total subsidy amount 

while ship operators at the lower level chose the most cost-effective energy supply. 

Cai et al. (2020) used a bi-level mixed-integer programming model to determine the 

type and amount of search and rescue equipment allocated to activated stations. 

Although bi-level models have been widely used in maritime operation optimization 

involving two decision parties, no research has been conducted to explore ship fouling 

cleaning when cleaning service providers and ships interact with each other.
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Chapter 3: The impact of autonomous 
ships in regional waterways4 

This chapter examines the influence of autonomous ships on the operations of 

shipping companies. It addresses a scenario wherein a container liner shipping 

company manages a fleet of diverse vessels, incorporating both traditional manned 

ships and autonomous vessels, operating within national waterways. A model is 

developed to calculate the total profits under optimal ship routing, fleet sizing, fleet 

deployment, and demand fulfillment before and after introducing autonomous ships. 

Given the NP-hard nature of the problem, two solution methods, i.e., sample average 

approximation and a two-phase Benders-based branch-and-cut algorithm, are 

proposed to solve the problem with acceleration strategies, including column 

generation and variable fixing. The performance of several solution techniques is 

tested through numerical experiments using real-world data. Besides, sensitivity 

analyses are conducted to further discuss the influence of key factors and derive 

constructive managerial insights for shipping companies. 

3.1 INTRODUCTION 

Technological innovation continues to improve people's lives and solve 

problems in all walks of life. In marine shipping, researchers and practitioners have 

become increasingly interested in autonomous vessels over the past two decades (Gu 

et al., 2021). Autonomous ships, also known as unmanned or crewless vessels, operate 

without onboard human intervention for their navigation and control. These ships rely 

on advanced technologies such as artificial intelligence, sensors, cameras, radar, and 

satellite communication systems to perceive their surroundings, make decisions, and 

navigate safely. In 2021, over 1,0005 maritime autonomous surface ships were in 

 
 
4 Wang, W., Wang, S., Zhen, L., & Laporte, G. (2023). The impact of autonomous ships in regional 
waterways. Transportation Research Part B: Methodological, 178, 102851. 
5 https://maritime-executive.com/editorials/autonomous-vessels-are-becoming-a-commercial-reality. 
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operation worldwide, managed by more than 53 organizations. By 2023, the market 

size had reached $7.346 billion, with predictions indicating continuous growth in the 

years to come.  

The popularity of autonomous vessels can be explained by multiple reasons. 

First, the removal of the deckhouse and accommodation structure provides additional 

space for cargoes, which means that autonomous ships can carry more cargoes than 

conventional ships of the same size. Second, reduced light displacement (LDT) and air 

resistance save fuel consumption, thus making autonomous ships more 

environmentally friendly. Third, autonomous ships are immune to the rising labor 

costs and the lack of workforce in the industry. Last, autonomous vessels could avoid 

some human errors, making them safer than conventional ones (Yang et al., 2023). 

Although autonomous ships have multiple advantages, regulatory constraints 

and high manufacturing costs are impeding their application. To overcome regulatory 

challenges, one could experiment with autonomous ships on national waterways which 

are more flexible than transnational waterways. For the cost problem, one could 

redesign the shipping network according to the characteristics of autonomous ships, 

which may make the shipping network more profitable than with the exclusive use of 

conventional ships. For example, due to larger capacity, an autonomous ship may visit 

more ports on a route, hence reducing the number of ships deployed, and ultimately 

saving operational costs. Therefore, we develop a model to investigate the impact of 

autonomous ships on shipping company operations. 

We consider a problem setting where a container liner shipping company 

operates a fleet of heterogeneous vessels that consist of both conventional manned 

ships and autonomous ships on national waterways. Containers are transported along 

a feeder network with a hub port and many feeder ports, as shown in Figure 3-1. Due 

to waterway restrictions on feeder ports, such as draft and width constraints, the types 

of ships that can travel on this network are limited (Lin et al., 2020). Autonomous 

ships, as mentioned above, have the advantage of carrying more cargoes while 

consuming less energy compared to conventional ships of the same size. In this 

context, "size" refers to the physical dimensions of the vessels, i.e., draft and beam. As 

 
 
6 https://www.thebusinessresearchcompany.com/report/autonomous-ships-global-market-report. 
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a result, ports inaccessible to conventional ships may allow access by autonomous 

ships of the same size. 

 

Figure 3-1: An example of feeder network 

Within this problem setting, we calculate the total profits before and after 

introducing autonomous ships, which involves freight revenue, handling costs, ship 

operating costs (including labor costs, maintenance costs, insurance, etc.), bunkering 

costs, and capital costs. Cargo handling profits are determined by the volume of 

cargoes carried on the network. Ship operating and bunkering costs are influenced by 

routing and vessel assignment decisions. Capital costs are closely related to the number 

and the types of ships deployed. 

Therefore, we develop in this research a model to simultaneously optimize ship 

routing, fleet sizing, fleet deployment, and demand fulfillment. We consider 

heterogenous fleet that contains both autonomous and conventional ships. Besides, due 

to waterway restrictions, small vessels may be used for cargo delivery, which has two 

main implications. First, cargo transportation demand at a port may be greater than 

ship capacity, causing demand to be split and fulfilled by multiple voyages. Second, 

ships are allowed to sail multiple voyages during the fixed service frequency, which is 

the time interval between two consecutive visits to the same feeder port. For example, 

a ship spends three days traveling on the voyage Shanghai–Nanjing–Shanghai, but the 

service frequency is seven days, which means that there are four days until the next 

visit to Nanjing. To better utilize the shipping capacity, this ship could make another 

voyage of at most four days. In addition, shipping demand is not stable. Therefore, we 

include demand uncertainty in the model. This model extends classic vehicle routing 

problem (VRP) model by combining a heterogeneous fleet (i.e., conventional and 

autonomous ships of different sizes), multi-trips (i.e., a ship can sail multiple voyages), 
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split deliveries (i.e., the transportation demand of a port can be satisfied by multiple 

voyages), and demand uncertainty. Hereafter we refer to it as HFMTSDU-VRP. Since 

this research involves both strategic decisions that are unlikely to be altered in a short 

term and operational decisions that are adjusted frequently in response to varying 

demand, the problem is formulated as a two-stage stochastic programming model. In 

the first stage, optimal routes, fleet composition, and fleet assignment are determined 

without realization of demand uncertainty. In the second stage, when demand 

realization is known, the liner company needs to determine the delivery pattern, i.e., 

the volume of cargo loaded onto each ship at each port of call. The objective is to 

maximize the expected service profit. To solve this challenging problem, we propose 

a sample average approximation (SAA) heuristic and an exact algorithm based on 

Benders decomposition (BD) and branch-and-cut (BC). Hereafter we refer to the exact 

algorithm as two-phase Benders-based branch-and-cut (TPBBC) algorithm. Besides, 

acceleration technologies, such as column generation and variable fixing, are proposed 

to strengthen the formulation and reduce computational times. Numerical experiments 

based on real-world data are conducted to evaluate the performance of different 

solution methods, explore the impact of introducing autonomous ships, discuss the 

influences of key factors, and derive valuable managerial insights for liner shipping 

companies. 

3.2 RESEARCH GAP 

Based on the literature review in Chapter 2, we find that although there is a 

substantial body of literature exploring single and multiple variants of the VRP, it is 

worth noting that existing studies typically consider the combination of only two to 

three variants at most. To the best of our knowledge, there is a research gap in the 

literature regarding articles that simultaneously investigate capacity, heterogeneous 

fleet, multi-trip, split delivery, and stochastic VRP. Moreover, the integration of 

multiple variants in the problem formulation leads to increased computational 

complexity, posing significant challenges for solving the problem. As a result, novel 

approaches and algorithmic adaptations are necessary to effectively address the 

intricacies introduced by these combined variants and achieve efficient solutions. 

Given the existing literature, the main contribution of this study is fourfold. First, 

this study originally explores whether autonomous ships will replace conventional 
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ones in national waterways by simultaneously optimizing ship routing, fleet sizing, 

fleet deployment, and demand fulfillment. Second, different from previous models on 

VRP, the model proposed in this study simultaneously considers heterogeneous fleet, 

multi-trip, split delivery, and uncertainty, which has rarely been explored in the 

existing literature. Third, to solve the problem, we propose two types of solution 

algorithms. One is based on the commonly used SAA technique and the other is an 

innovative TPBBC algorithm. In the first phase of TPBBC, we relax integer constraints 

to add as many Benders cuts as possible, which accelerates convergence and 

computation speed. In the second phase, we restore integer constraints and take 

advantage of BC and generic callback to speed up the computation process. The 

TPBBC can be formulated in two ways, which are compared to find the best fit for the 

problem. Besides, several acceleration strategies are used, including column 

generation and variable fixing. Fourth, numerical experiments based on real-life data 

are conducted to yield managerial insights for shipping companies. 

3.3 PROBLEM DESCRIPTION AND FORMULATION 

We consider a feeder network with a hub port 𝑝𝑝0 and a set 𝑃𝑃 of feeder ports, 

where 𝑃𝑃 = {1, … , |𝑃𝑃|}. The ships visiting these ports are heterogenous with a type set 

𝑉𝑉. Due to the port restrictions, such as draft and berth constraints, a feeder port 𝑝𝑝 ∈ 𝑃𝑃 

can only be visited by vessels of certain types, denoted by 𝑉𝑉𝑝𝑝. While hub port 𝑝𝑝0 is 

accessible to all ship types in 𝑉𝑉, because the hub port usually has deep water and 

abundant berths of different sizes. Ships sailing on a feeder network usually follow a 

fixed service frequency 𝛼𝛼 (days), i.e., the time interval between two consecutive visits 

to the same feeder port. A closed-loop visiting sequence (hereinafter referred to as 

sequence), denoted by 𝑠𝑠, is a voyage from hub port to feeder ports and then back to 

hub port. It is port set made up of a hub port 𝑝𝑝0 and a set 𝑃𝑃𝑠𝑠 ⊆ 𝑃𝑃 of feeder ports and is 

ordered as a vector according to the visiting sequence, such as (𝑝𝑝0,𝑝𝑝1,𝑝𝑝2,𝑝𝑝3,𝑝𝑝0), 

where 𝑝𝑝1,𝑝𝑝2,𝑝𝑝3 ∈ 𝑃𝑃𝑠𝑠. Since only ships from certain types, namely 𝑉𝑉𝑝𝑝, are allowed to 

visit feeder port 𝑝𝑝, ship types that are allowed to travel on sequence 𝑠𝑠 are denoted by 

𝑉𝑉𝑠𝑠 =∩𝑝𝑝∈𝑃𝑃𝑠𝑠 𝑉𝑉𝑝𝑝. The time taken to complete the sequence 𝑠𝑠, denoted by 𝑇𝑇𝑠𝑠, is the sum of 

sailing time and dwell time at ports. The sailing time is determined by the sailing 

distance and the speed. Since the speed of ships is assumed to be a constant, ship 

sailing time only depends on the travel distance. The dwell time, denoted by 𝑡𝑡𝑝𝑝, ∀𝑝𝑝 ∈
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{𝑝𝑝0} ∪ 𝑃𝑃, is the time a ship spends at port securing the vessel, discharging or loading 

cargo, and other activities. The set of feasible sequences, denoted by 𝑆𝑆, consists of 

those sequences that satisfy 𝑉𝑉𝑠𝑠 ≠ ∅ and 𝑇𝑇𝑠𝑠 ≤ 𝛼𝛼. Since some sequences may have a 

short duration, a ship is allowed to travel several sequences as long as the total duration 

does not exceed a predetermined service frequency. Therefore, we define route 𝑟𝑟 as a 

set of sequences, which contains one or more than one sequence. All the sequences 

belonging to route 𝑟𝑟 ∈ 𝑅𝑅 constitute a sequence set 𝑆𝑆𝑟𝑟 ⊆ 𝑆𝑆. The set of ship types that 

are allowed to be deployed on route 𝑟𝑟 is denoted by 𝑉𝑉𝑟𝑟 =∩𝑠𝑠∈𝑆𝑆𝑟𝑟 𝑉𝑉𝑠𝑠 . The duration of 

route 𝑟𝑟  is represented by 𝑇𝑇𝑟𝑟 = ∑ 𝑇𝑇𝑠𝑠𝑠𝑠∈𝑆𝑆𝑟𝑟 . A route 𝑟𝑟  is feasible only if 𝑉𝑉𝑟𝑟 ≠ ∅  and      

𝑇𝑇𝑟𝑟 ≤ 𝛼𝛼. All the feasible routes form a set 𝑅𝑅. An example in Figure 3-2 is used to 

illustrate port, sequence, and route. The solid and hollow circles represent hub port and 

feeder ports respectively. The capital letters are the names of the ports. The letters in 

parentheses indicate the ship types that are allowed to visit the corresponding port. 

Ships from three types, namely {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, are available. The numbers on the arcs are the 

required travelling time (days). The dwell time at each port is assumed to be 0. All 

sequences of this example are shown in Table 3-1. Ship type represents the types of 

ships that are allowed to travel on this sequence. Duration is the amount of time to 

complete this sequence. Feasible indicates whether this sequence is feasible or not 

considering ship type and duration constraints. Table 3-1 indicates that eight out of 15 

sequences are infeasible because no available ship can get access to all ports in each 

of the eight sequences. Table 3-2 shows all the feasible routes. As we mentioned, a 

route consists of one or more than one sequence. Thus, in addition to all the feasible 

single sequences, the combination of feasible sequences can also be regarded as a 

feasible route if the sequences in this combination can be visited by the same ship and 

the duration of this combination does not exceed the preset duration requirement 

(seven days). Ship type in Table 3-2 represents the ship types that can get access to all 

ports on the sequences making up this route. Duration is the amount of time it takes 

for a ship to complete this route. If the route is made up of several sequences, the 

duration is the sum of the sequences’ durations. In total, we have 11 feasible routes. 
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Figure 3-2: An example to illustrate port, sequence, and route 

Table 3-1: All sequences of the example feeder network 

No. Sequence Ship type Duration Feasible when 𝛼𝛼 = 7 
1 (H, E, H) 𝑏𝑏 3 Yes 
2 (H, E, G, H) - 4 No 
3 (H, E, G, F, H) - 6.5 No 
4 (H, E, F, H) 𝑏𝑏 4.5 Yes 
5 (H, E, F, G, H) - 5 No 
6 (H, G, H) 𝑎𝑎 2 Yes 
7 (H, G, E, H) - 4 No 
8 (H, G, E, F, H) - 5.5 No 
9 (H, G, F, H) 𝑎𝑎 4.5 Yes 

10 (H, G, F, E, H) - 5 No 
11 (H, F, H) 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 4 Yes 
12 (H, F, G, H) 𝑎𝑎 4.5 Yes 
13 (H, F, G, E, H) - 6.5 No 
14 (H, F, E, H) 𝑏𝑏 4.5 Yes 
15 (H, F, E, G, H) - 5.5 No 
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Table 3-2: All feasible routes of the example feeder network 

No. Route Ship type Duration 
1 (H, E, H) 𝑏𝑏 3 
2 (H, E, F, H) 𝑏𝑏 4.5 
3 (H, G, H) 𝑎𝑎 2 
4 (H, G, F, H) 𝑎𝑎 4.5 
5 (H, F, H) 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 4 
6 (H, F, G, H) 𝑎𝑎 4.5 
7 (H, F, E, H) 𝑏𝑏 4.5 
8 (H, E, H, F, H) 𝑏𝑏 7 
9 (H, G, H, G, F, H) 𝑎𝑎 6.5 

10 (H, G, H, F, H) 𝑎𝑎 6 
11 (H, G, H, F, G, H) 𝑎𝑎 6.5 

 

The feasible routes are regarded as input when formulating the two-stage 

stochastic programming model. Given the ship routes 𝑅𝑅, the voyage cost 𝐶𝐶𝑟𝑟𝑣𝑣 (USD/𝛼𝛼 

days), which includes bunkering cost, labor cost, maintenance cost, etc., of using ship 

type 𝑣𝑣 ∈ 𝑉𝑉𝑟𝑟  to serve route 𝑟𝑟 ∈ 𝑅𝑅 during service frequency 𝛼𝛼 can be obtained. Each 

ship of type 𝑣𝑣 is associated with an average purchasing cost 𝐶𝐶𝑣𝑣 (USD/𝛼𝛼 days). When 

the demand7 of feeder port 𝑝𝑝 is fulfilled, a handling cost of 𝐶𝐶𝑝𝑝ℎ (USD/TEU) will be 

incurred as well as the freight revenue 𝐹𝐹𝑝𝑝 (USD/TEU). Since demand is uncertain, we 

use scenarios to represent varying demand, which may lead to different results for 

demand fulfillment under different scenarios. Hence, we optimize ship routing, fleet 

sizing, and fleet deployment in the first stage when demand is uncertain. In the second 

stage, with the realization of demand, the shipping company determines the flow of 

cargoes. The objective is to maximize expected total profits, i.e., expected revenue 

minus expected costs. The first stage objective function comprises voyage cost and 

purchase cost during the service frequency. The second stage objective function equals 

expected revenue minus handling costs associated with the cargo flow. This research 

makes three assumptions. First, a sequence can only be contained in one route. Second, 

a route can be assigned at most one ship and can be travelled at most once during 

 
 
7 We only consider export demand of each feeder port, i.e., the demand that needs to be loaded at a 
feeder port and unloaded or transshipped at a hub port. If other types of demand need to be considered, 
the model can be easily extended. 
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service frequency. Third, the number of ships that can be deployed is unlimited. 

Notations used to formulate the two-stage stochastic programming model are listed in 

Table 3-3. 

Table 3-3: Notations used to formulate the model 

Sets 
𝑃𝑃 Set of feeder ports to be visited, indexed by 𝑝𝑝,  𝑝𝑝 = 1, … , |𝑃𝑃| 
𝑆𝑆 Set of sequences, indexed by 𝑠𝑠, 𝑠𝑠 ∈ 𝑆𝑆 
𝑅𝑅 Set of possible shipping routes, indexed by 𝑟𝑟, 𝑟𝑟 ∈ 𝑅𝑅 
𝑉𝑉 Set of ship types, indexed by 𝑣𝑣, 𝑣𝑣 ∈ 𝑉𝑉 
𝑅𝑅𝑠𝑠 Set of shipping routes that contain sequence 𝑠𝑠 
𝑆𝑆𝑝𝑝 Set of sequences that contain port 𝑝𝑝 
𝑃𝑃𝑠𝑠 Set of feeder ports that are visited by sequence 𝑠𝑠 
𝑉𝑉𝑟𝑟 Set of ship types that can be deployed on route 𝑟𝑟 
Ω Set of demand scenarios, indexed by 𝜔𝜔, 𝜔𝜔 ∈ Ω 

Parameters 
𝐶𝐶𝑟𝑟𝑣𝑣 Voyage cost (USD) of using ship type 𝑣𝑣 to serve route 𝑟𝑟 during the 

predetermined time interval, including bunkering cost, labor cost, maintenance 
cost, etc. 

𝐶𝐶𝑣𝑣 Average purchasing cost (USD) of a ship from type 𝑣𝑣 during service 
frequency 

𝐶𝐶𝑝𝑝ℎ Handling cost (USD/TEU) of demand at feeder port 𝑝𝑝, including loading and 
unloading costs 

𝐹𝐹𝑝𝑝 Unit revenue of demand fulfillment of feeder port 𝑝𝑝 (USD/TEU) 
𝑄𝑄𝑣𝑣 Capacity (TEUs) of ship type 𝑣𝑣 
𝑇𝑇𝑠𝑠 Duration (hour) of a sequence 𝑠𝑠 
𝐷𝐷𝑝𝑝 Random demand (TEUs) of feeder port 𝑝𝑝 

𝐷𝐷𝑝𝑝(𝜔𝜔) Demand (TEUs) of feeder port 𝑝𝑝 under scenario 𝜔𝜔 
𝛼𝛼 Service frequency 

Decision variables 
𝑥𝑥𝑟𝑟𝑣𝑣 Binary variable, equal to 1 if a ship of type 𝑣𝑣 is deployed on route 𝑟𝑟, and 0 

otherwise 
𝑦𝑦𝑠𝑠
𝑝𝑝(𝜔𝜔) The amount of demand of feeder port 𝑝𝑝 that is served by sequence 𝑠𝑠 under 

scenario 𝜔𝜔 
 

The model is given as follows: 

[RM] maximize 𝔼𝔼Ω�𝑄𝑄�𝑥𝑥,𝐷𝐷(𝜔𝜔)�� − ∑ ∑ (𝐶𝐶𝑟𝑟𝑣𝑣+𝐶𝐶𝑣𝑣)𝑥𝑥𝑟𝑟𝑣𝑣𝑣𝑣∈𝑉𝑉𝑟𝑟𝑟𝑟∈𝑅𝑅  (3-1) 

subject to 

∑ ∑ 𝑥𝑥𝑟𝑟𝑣𝑣𝑣𝑣∈𝑉𝑉𝑟𝑟𝑟𝑟∈𝑅𝑅𝑠𝑠 ≤ 1, ∀𝑠𝑠 ∈ 𝑆𝑆  (3-2) 



 

 

Chapter 3: The impact of autonomous ships in regional waterways 31 

𝑥𝑥𝑟𝑟𝑣𝑣 ∈ {0,1}, ∀𝑣𝑣 ∈ 𝑉𝑉𝑟𝑟, 𝑟𝑟 ∈ 𝑅𝑅 (3-3) 

where the recourse function 𝑄𝑄�𝑥𝑥,𝐷𝐷(𝜔𝜔)� denotes the optimal value of the second stage 

problem under scenario 𝜔𝜔: 

𝑄𝑄�𝑥𝑥,𝐷𝐷(𝜔𝜔)� = maximize∑ ∑ �𝐹𝐹𝑝𝑝 − 𝐶𝐶𝑝𝑝ℎ�𝑦𝑦𝑠𝑠
𝑝𝑝(𝜔𝜔)𝑝𝑝∈𝑃𝑃𝑠𝑠𝑠𝑠∈𝑆𝑆  (3-4) 

subject to 

∑ 𝑦𝑦𝑠𝑠
𝑝𝑝(𝜔𝜔)𝑠𝑠∈𝑆𝑆𝑝𝑝 ≤ 𝐷𝐷𝑝𝑝(𝜔𝜔), ∀𝑝𝑝 ∈ 𝑃𝑃  (3-5) 

∑ 𝑦𝑦𝑠𝑠
𝑝𝑝(𝜔𝜔)𝑝𝑝∈𝑃𝑃𝑠𝑠 ≤ ∑ ∑ 𝑄𝑄𝑣𝑣𝑥𝑥𝑟𝑟𝑣𝑣𝑣𝑣∈𝑉𝑉𝑟𝑟𝑟𝑟∈𝑅𝑅𝑠𝑠 , ∀𝑠𝑠 ∈ 𝑆𝑆  (3-6) 

𝑦𝑦𝑠𝑠
𝑝𝑝(𝜔𝜔) ≥ 0, ∀𝑝𝑝 ∈ 𝑃𝑃𝑠𝑠, 𝑠𝑠 ∈ 𝑆𝑆. (3-7) 

The objective function (3-1) maximizes the expected total profit, which is the 

expected second-stage profit associated with cargo flow, minus the first-stage voyage 

cost and the average purchasing cost. Constraints (3-2) require that a maximum of one 

ship of the permitted type can be deployed on each route and each sequence can belong 

to at most one route. Constraints (3-3) define the domains of first-stage decision 

variables. Equation (3-4) is the second-stage objective function for one demand 

scenario. Constraints (3-5) state that the fulfilled demand at each feeder port cannot 

exceed its total demand. Constraints (3-6) illustrate that the total demand served by a 

sequence cannot exceed the capacity of the ship deployed to travel along this sequence. 

Constraints (3-7) are the non-negativity conditions of second-stage decision variables. 

3.4 SOLUTION METHOD 

In this section, we first introduce label setting algorithm that is used to generate 

feasible routes. We then apply both SAA and TPBBC to solve the two-stage stochastic 

programming model. To speed up the computation process, we apply some 

acceleration techniques.  

3.4.1 Generating Feasible Routes 

In maritime transportation, the number of ports is limited, especially in a feeder 

network. Additionally, shipping routes often follow specific directions within a feeder 

network. For example, the ports along the Yangtze River are almost distributed along 

a line. Ships usually sail in one direction and then return in the opposite direction. A 

ship is unlikely to change direction back and forth halfway. It is therefore easy to 

enumerate all feasible routes as input. 
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To generate the route set, we use a label setting algorithm to first generate a 

feasible sequence set and then combine sequences of the same vessel type under the 

service frequency constraints. The detailed procedure for the label setting algorithm is 

provided in Appendix A. 

3.4.2 Sample Average Approximation  

To SAA is often used to solve stochastic programming model by using empirical 

distribution obtained from samples to approximate the true distribution of the problem. 

The sample Ω′  comprises |Ω′|  scenarios of demand with the same probability of 

occurrence 1
|Ω′|

. The SAA formation of the model [RM] is given as follows: 

[SAA] maximize 1
|Ω′|

�∑ ∑ ∑ �𝐹𝐹𝑝𝑝 − 𝐶𝐶𝑝𝑝ℎ�𝑦𝑦𝑠𝑠
𝑝𝑝(𝜔𝜔)𝑝𝑝∈𝑃𝑃𝑠𝑠𝑠𝑠∈𝑆𝑆𝜔𝜔∈Ω′ � − ∑ ∑ (𝐶𝐶𝑟𝑟𝑣𝑣+𝐶𝐶𝑣𝑣)𝑥𝑥𝑟𝑟𝑣𝑣𝑣𝑣∈𝑉𝑉𝑟𝑟𝑟𝑟∈𝑅𝑅   (3-8) 

subject to (3-2) and (3-3) 

∑ 𝑦𝑦𝑠𝑠
𝑝𝑝(𝜔𝜔)𝑠𝑠∈𝑆𝑆𝑝𝑝 ≤ 𝐷𝐷𝑝𝑝(𝜔𝜔), ∀𝑝𝑝 ∈ 𝑃𝑃, 𝜔𝜔 ∈ Ω′  (3-9) 

∑ 𝑦𝑦𝑠𝑠
𝑝𝑝(𝜔𝜔)𝑝𝑝∈𝑃𝑃𝑠𝑠 ≤ ∑ ∑ 𝑄𝑄𝑣𝑣𝑥𝑥𝑟𝑟𝑣𝑣𝑣𝑣∈𝑉𝑉𝑟𝑟𝑟𝑟∈𝑅𝑅𝑠𝑠 , ∀𝑠𝑠 ∈ 𝑆𝑆, 𝜔𝜔 ∈ Ω′ (3-10) 

𝑦𝑦𝑠𝑠
𝑝𝑝(𝜔𝜔) ≥ 0, ∀𝑝𝑝 ∈ 𝑃𝑃𝑠𝑠, 𝑠𝑠 ∈ 𝑆𝑆, 𝜔𝜔 ∈ Ω′. (3-11) 

The sample size |Ω′| determines the solution quality of SAA. The larger is the 

sample size, the better is the solution quality, but the longer is the calculation time. To 

determine the appropriate sample size that could balance between solution quality and 

computation tractability, we propose Algorithm 1, which calculates confidence 

intervals (CIs) for lower bound, upper bound, and optimality gap under given sample 

size. CI is a range of estimates for an unknown parameter. The 𝜏𝜏 in Algorithm 1 is the 

level of significance and 1 − 𝜏𝜏 is the confidence level. |𝑀𝑀| is the number of samples 

for CI.  
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Algorithm 1 Estimate (1 − 𝜏𝜏)-CI for lower bound, upper bound, and optimality gap under 
given sample size |Ω′| 
1. Generate a set of scenarios Ω′. 
2. Solve the SAA with Ω′ and obtain the optimal first-stage solution 𝑥𝑥∗. 
3. for 𝑚𝑚 = 1, … ,𝑀𝑀 do 
4.  Generate a set of new independent scenarios Ω′′, |Ω′′| = |Ω′|. 
5.  Solve SAA with Ω′′ and obtain the objective value 𝑧𝑧𝑚𝑚. 
6.  Generate a set of new independent scenarios Ω′′′, |Ω′′′| ≫ |Ω′′|. 
7. Evaluate the quality of the first-stage solution 𝑥𝑥∗ on scenarios in Ω′′′. Input 𝑥𝑥∗ into SAA, 

obtaining cost 𝑧𝑧𝑥𝑥∗
𝑚𝑚. 

8.  Let 𝑔𝑔𝑚𝑚: =  𝑧𝑧𝑚𝑚 − 𝑧𝑧𝑥𝑥∗
𝑚𝑚 . 

9. end for 
10. Estimate (1 − 𝜏𝜏)-CI for the lower bound 
11. Let 𝐿𝐿: = 1

𝑀𝑀
∑ 𝑧𝑧𝑥𝑥∗

𝑚𝑚𝑀𝑀
𝑚𝑚=1  and 𝑆𝑆𝐿𝐿: = 1

𝑀𝑀−1
∑ (𝑧𝑧𝑥𝑥∗

𝑚𝑚 − 𝐿𝐿)2𝑀𝑀
𝑚𝑚=1 . 

12. The (1 − 𝜏𝜏)-CI for the lower bound is �𝐿𝐿 −
𝑡𝑡𝑀𝑀−1,𝜏𝜏2

�𝑆𝑆𝐿𝐿

√𝑀𝑀
, 𝐿𝐿 +

𝑡𝑡𝑀𝑀−1,𝜏𝜏2
�𝑆𝑆𝐿𝐿

√𝑀𝑀
 �, where 𝑡𝑡𝑀𝑀−1,𝜏𝜏2

 is the t-

value obtained from t-distribution with 𝑀𝑀 − 1 degrees of freedom and confidence level 1 −
𝜏𝜏. 

13. Estimate (1 − 𝜏𝜏)-CI for the upper bound 
14. Let U: = 1

𝑀𝑀
∑ 𝑧𝑧𝑚𝑚𝑀𝑀
𝑚𝑚=1  and 𝑆𝑆𝑈𝑈: = 1

𝑀𝑀−1
∑ (𝑧𝑧𝑚𝑚 − 𝑈𝑈)2𝑀𝑀
𝑚𝑚=1 . 

15. The (1 − 𝜏𝜏)-CI for the upper bound is �𝑈𝑈 −
𝑡𝑡𝑀𝑀−1,𝜏𝜏2

�𝑆𝑆𝑈𝑈

√𝑀𝑀
,𝑈𝑈 +

𝑡𝑡𝑀𝑀−1,𝜏𝜏2
�𝑆𝑆𝑈𝑈

√𝑀𝑀
 � 

16. Estimate (1 − 𝜏𝜏)-CI for the optimality gap 
17. Let 𝐺𝐺: = 1

𝑀𝑀
∑ 𝑔𝑔𝑚𝑚𝑀𝑀
𝑚𝑚=1  and 𝑆𝑆𝐺𝐺: = 1

𝑀𝑀−1
∑ (𝑔𝑔𝑚𝑚 − 𝐺𝐺)2𝑀𝑀
𝑚𝑚=1 . 

18. The (1 − 𝜏𝜏)-CI for the optimality gap is �0,𝐺𝐺 + 𝑡𝑡𝑀𝑀−1,𝜏𝜏�𝑆𝑆𝐺𝐺
√𝑀𝑀

 �. 

 

3.4.3 Exact Algorithm  

Although two-stage stochastic programming problems are notorious for being 

computationally intractable, Benders decomposition (BD) has been widely used to 

solve the problems efficiently. The main idea of BD is to use delayed constraint 

generation algorithm to reduce the number of variables and constraints in the problem. 

It decomposes the stochastic programming model into a master problem and a number 

of linear subproblems. These two types of problems are then solved iteratively, adding 

additional constraints, referred to as Benders cuts, to the master problem. However, 

traditional BD has an obvious limitation. If the master problem contains discrete 

variables, it will be very time consuming to solve the master problem with an 

increasing number of Benders cuts. In order to improve efficiency, we propose a two-
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phase Benders-based branch-and-cut (TPBBC) algorithm, which will be elaborated in 

the following sections. 

Benders Decomposition 

There are usually two ways to conduct BD for a two-stage model: the first is to 

regard each scenario as an independent subproblem, as in Peng, Delage, and Li (2020). 

In this case, many Benders cuts, one for each subproblem, are added at each iteration 

to accelerate the convergence. The second is to combine all scenarios into a single 

subproblem, as in Adulyasak, Cordeau, and Jans (2015), to avoid adding too many 

cuts at each iteration and control the time taken to solve the master problem. The 

relative performances of these two methods depend on problem structures and 

numerical instances. In numerical experiments, we will first compare the performances 

of TPBBC with those of the two BD formulations and then select the better one for the 

following numerical analysis. The models for these two methods are shown as follows: 

[MP1] maximize 1
|Ω|
∑ 𝜙𝜙(𝑥𝑥,𝜔𝜔)𝜔𝜔∈Ω − ∑ ∑ (𝐶𝐶𝑟𝑟𝑣𝑣+𝐶𝐶𝑣𝑣)𝑥𝑥𝑟𝑟𝑣𝑣𝑣𝑣∈𝑉𝑉𝑟𝑟𝑟𝑟∈𝑅𝑅  (3-12) 

subject to (3-2) and (3-3) 

[SP1] 𝜙𝜙(𝑥𝑥,𝜔𝜔) =maximize ∑ ∑ �𝐹𝐹𝑝𝑝 − 𝐶𝐶𝑝𝑝ℎ�𝑦𝑦𝑠𝑠
𝑝𝑝(𝜔𝜔)𝑝𝑝∈𝑃𝑃𝑠𝑠𝑠𝑠∈𝑆𝑆  (3-13) 

subject to (3-5)–(3-7) 

[MP2] maximize 𝜙𝜙(𝑥𝑥) − ∑ ∑ (𝐶𝐶𝑟𝑟𝑣𝑣+𝐶𝐶𝑣𝑣)𝑥𝑥𝑟𝑟𝑣𝑣𝑣𝑣∈𝑉𝑉𝑟𝑟𝑟𝑟∈𝑅𝑅  (3-14) 

subject to (3-2) and (3-3) 

[SP2] 𝜙𝜙(𝑥𝑥) =maximize 1
|Ω|
∑ ∑ ∑ �𝐹𝐹𝑝𝑝 − 𝐶𝐶𝑝𝑝ℎ�𝑦𝑦𝑠𝑠

𝑝𝑝(𝜔𝜔)𝑝𝑝∈𝑃𝑃𝑠𝑠𝑠𝑠∈𝑆𝑆𝜔𝜔∈Ω  (3-15) 

subject to (3-9)–(3-11). 

MP1 (resp. MP2) and SP1 (resp. SP2) refer to the master problem and 

subproblem when each scenario is an independent subproblem (resp. when all 

scenarios are in one subproblem). In the following analysis, for convenience, we refer 

to both MP1 and MP2 as master problem (MP), and to SP1 and SP2 as subproblem 

(SP). 

There are two types of cuts in BD, that is feasibility cuts and optimality cuts. It 

is easy to verify that SP is feasible and bounded (see Appendix B), therefore, we only 

need to consider optimality cuts as shown in (3-16) and (3-17) for independent and 

aggregated cases, respectively: 
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𝜙𝜙(𝑥𝑥,𝜔𝜔) ≤ ∑ 𝐷𝐷𝑝𝑝(𝜔𝜔)𝑝𝑝∈𝑃𝑃 �̂�𝜆𝑝𝑝 + ∑ ∑ ∑ 𝑄𝑄𝑣𝑣𝑥𝑥𝑟𝑟𝑣𝑣𝑣𝑣∈𝑉𝑉𝑟𝑟𝑟𝑟∈𝑅𝑅𝑠𝑠𝑠𝑠∈𝑆𝑆 �̂�𝜇𝑠𝑠, ∀𝜔𝜔 ∈ Ω, ��̂�𝜆𝑝𝑝, �̂�𝜇𝑠𝑠� ∈ 𝐼𝐼 (3-16) 

𝜙𝜙(𝑥𝑥) ≤ ∑ ∑ 𝐷𝐷𝑝𝑝(𝜔𝜔)𝑝𝑝∈𝑃𝑃 �̂�𝜆𝑝𝑝𝜔𝜔𝜔𝜔∈Ω + ∑ ∑ ∑ ∑ 𝑄𝑄𝑣𝑣𝑥𝑥𝑟𝑟𝑣𝑣𝑣𝑣∈𝑉𝑉𝑟𝑟𝑟𝑟∈𝑅𝑅𝑠𝑠𝑠𝑠∈𝑆𝑆 �̂�𝜇𝑠𝑠𝜔𝜔𝜔𝜔∈Ω , ∀��̂�𝜆𝑝𝑝𝜔𝜔, �̂�𝜇𝑠𝑠𝜔𝜔� ∈ 𝐼𝐼 (3-17) 

where 𝜆𝜆𝑝𝑝 and 𝜇𝜇𝑠𝑠 (resp. 𝜆𝜆𝑝𝑝𝜔𝜔 and 𝜇𝜇𝑠𝑠𝜔𝜔) correspond to the dual variables associated with 

constraints (3-5) and (3-6) (resp. (3-9) and (3-10)) respectively. The dual problem of 

SP has an extreme point set 𝐼𝐼. For each extreme point ��̂�𝜆𝑝𝑝, �̂�𝜇𝑠𝑠� ∈ 𝐼𝐼 (resp. ��̂�𝜆𝑝𝑝𝜔𝜔, �̂�𝜇𝑠𝑠𝜔𝜔� ∈

𝐼𝐼), Benders cut (3-16) (resp. (3-17)) holds. 

There will be an exponential number of Benders cut, which will make the 

problem intractable. BD effectively handles this problem by employing a delayed 

constraint generation algorithm, which means that BD relaxes the MP with only a 

subset of these cuts, resulting in a relaxed master problem (RMP). 

Two-phase Benders-based Branch-and-cut Algorithm 

Unfortunately, BD converges slowly because RMP is an integer problem whose 

size keeps growing as the iteration count progresses. For this reason, we integrate BD 

inside branch-and-cut (BC) to make full use of the advantages of BC for solving mixed 

integer programming (MIP) problems. The basic idea of BC is to divide the entire 

solution space into multiple subsets that are not constrained by integers, remove 

infeasible nodes through boundary constraints, and optimize the solution space by 

adding cuts.  

The innovative method of integrating BD inside BC is called two-phase Benders-

based branch-and-cut algorithm. At the first phase, we relax integer constraints on 

RMP and run BD multiple times until no Benders cuts can be added, which speeds up 

the convergence and saves computation time for the second phase. We then restore 

integer constraints and keep all generated cuts at first phase. At the second phase, we 

use BC at each node to find integer solutions. Once an integer solution is found, we 

use generic callback to solve SP, add Benders cut, and update boundaries. The detailed 

procedures of TPBBC algorithm are shown in Algorithm 2. First, we define RMP 

without integer constraints (3-3) as LRMP. Additional notations for Algorithm 2 are 

shown in Table 3-4. The set of active nodes in the branch-and-bound (BB) tree is 

denoted by 𝑁𝑁. In the initialization process, it contains only the root node. The value of 

the best-known feasible solution, called incumbent solution, for the original problem 

is stored as 𝑟𝑟 and provides a lower bound. The upper bound of the objective value is 
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denoted as 𝑟𝑟, which is initialized to positive infinity at root node. Each node of the BB 

tree has an upper bound 𝑢𝑢𝑏𝑏𝑛𝑛, 𝑛𝑛 ∈ 𝑁𝑁, initialized to the value of the parent node, and 

will be updated if the value of LRMP is lower than initialization value. The maximum 

upper bound of all active nodes is denoted by 𝑈𝑈𝐵𝐵𝑁𝑁 = max{𝑢𝑢𝑏𝑏𝑛𝑛:𝑛𝑛 ∈ 𝑁𝑁}. 

Table 3-4: Additional notations for Algorithm 2 

𝑁𝑁 Set of active nodes in branch-and-bound (BB) tree, indexed by 𝑛𝑛, 𝑛𝑛 ∈ 𝑁𝑁 
𝑟𝑟 Incumbent solution for the original problem, which provides a lower bound 
𝑟𝑟 Upper bound of the original problem 
𝑢𝑢𝑏𝑏𝑛𝑛 Upper bound of node 𝑛𝑛 
𝑈𝑈𝐵𝐵𝑁𝑁 The maximum upper bound of all active nodes, where 𝑈𝑈𝐵𝐵𝑁𝑁 = max{𝑢𝑢𝑏𝑏𝑛𝑛:𝑛𝑛 ∈

𝑁𝑁} 
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Algorithm 2: Two-phase Benders-based branch-and-cut algorithm  
1. Input: A tolerance 𝜖𝜖 ≥  0 , maximum first-phase run time 𝑇𝑇1, maximum second-phase run time 

𝑇𝑇2, and sample Ω 
2. Output: The optimal solutions 𝒙𝒙 and objective value 𝑟𝑟 
3. Initialize 𝑟𝑟 ← ∞, 𝑟𝑟 ← −∞, active node set 𝑁𝑁 ←{root node}, and 𝑈𝑈𝐵𝐵𝑁𝑁 ← ∞ 
4. First phase: 
5. while 𝑟𝑟 − 𝑟𝑟 > 𝜖𝜖, and first-stage runtime< 𝑇𝑇1 do 
6. Solve LRMP: Solve LRMP to obtain optimal solution 𝒙𝒙� and optimal objective value is 𝑧𝑧𝑛𝑛 
7. Input 𝒙𝒙� to SP to check whether Benders cut is needed 
8. if needed then 
9. Add Benders cut (3-16) or (3-17) to LRMP 
10. else 
11. end while  
12. end if 
13. Second phase: Restore integer constraints and imbed BD into BC 
14. while 𝑁𝑁 ≠ ∅, 𝑟𝑟 − 𝑟𝑟 > 𝜖𝜖, and second-phase run time < 𝑇𝑇2 do 
15. Node selection: Select a node 𝑛𝑛 from 𝑁𝑁 
16. if 𝑢𝑢𝑏𝑏𝑛𝑛 < 𝑟𝑟 then 
17. Prune node 𝑛𝑛 (prune by bound) 
18. Continue with the next iteration (back to line 15) 
19. end if 
20. Solve LRMP: Solve LRMP to obtain optimal solution 𝒙𝒙� and optimal objective value is 𝑧𝑧𝑛𝑛 
21. if 𝑧𝑧𝑛𝑛 < 𝑟𝑟 then 
22. Prune node 𝑛𝑛 (prune by bound) 
23. Continue with next iteration (back to line 15) 
24. else if 𝑧𝑧𝑛𝑛 < 𝑢𝑢𝑏𝑏𝑛𝑛 then 
25. 𝑢𝑢𝑏𝑏𝑛𝑛 ←  𝑧𝑧𝑛𝑛 
26. Update 𝑈𝑈𝐵𝐵𝑁𝑁 
27. Update 𝑟𝑟 ← 𝑈𝑈𝐵𝐵𝑁𝑁 
28. end if 
29. if 𝒙𝒙� satisfies integer constraints then 
30. Input 𝒙𝒙� to SP and obtain optimal solution 𝒚𝒚� 
31. Calculate 𝑙𝑙𝑏𝑏𝑛𝑛 ←

1
|Ω|
∑ ∑ ∑ �𝐹𝐹𝑝𝑝 − 𝐶𝐶𝑝𝑝ℎ�𝑦𝑦�𝑠𝑠

𝑝𝑝(𝜔𝜔)𝑝𝑝∈𝑃𝑃𝑠𝑠𝑠𝑠∈𝑆𝑆𝜔𝜔∈Ω − ∑ ∑ 𝐶𝐶𝑠𝑠𝑣𝑣𝑣𝑣∈𝑉𝑉𝑠𝑠𝑠𝑠∈𝑆𝑆 𝑥𝑥�𝑠𝑠𝑣𝑣 

32. 𝑟𝑟 ← max�𝑟𝑟, 𝑙𝑙𝑏𝑏𝑛𝑛� 
33. if add Bender cut then 
34. Add Benders cut (3-16) or (3-17) to LRMP 
35. Back to solve LRMP (line 20) 
36.      else  
37. Prune node 𝑛𝑛 (prune by integer) 
38. Continue with next iteration (back to line 15) 
39. end if 
40. else 
41. Branch: add two new nodes into 𝑁𝑁 
42. Remove node 𝑛𝑛 from 𝑁𝑁 
43. end if 
44. end while 
45. Return 𝑟𝑟 and corresponding optimal solution 𝒙𝒙 
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Since we have already described the procedure of the first phase above, we only 

introduce the second phase. For the second phase, a node is first selected. It is verified 

whether the upper bound of the node is less than the lower bound of the original 

problem. If yes, the node is pruned. Otherwise, solve LRMP to obtain optimal first-

stage solutions and objective value. Conduct a bound check again. If the objective 

value is lower than the inherited upper bound, update the upper bound of the node and 

at the same time update the upper bound of the problem if the condition is met. Then 

check whether integer constraints are satisfied. If the solution is integer, solve the 

subproblems and update the lower bound. Then check whether the optimality 

constraints are violated. Add Benders cuts once a violation is found. Otherwise, prune 

the node. If the solution is fractional, branch the node into two new nodes. Repeat the 

iteration until active node set is empty, the gap between upper and lower bounds is 

below a predetermined tolerance level, or the time exceeds a preset value. 

Acceleration Techniques 

With the increase of the number of variables and constraints, the problem will 

become computationally difficult, and the computer could run out of memory. 

Therefore, in this section, we propose several acceleration techniques that can greatly 

reduce the number of variables and constraints, thus speeding up the computation 

process. 

We know that only a small proportion of 𝑥𝑥𝑟𝑟𝑣𝑣 will equal 1 in the optimal solution. 

Therefore, we apply variable fixing (VF) to assign zero to part of the variables, which 

can reduce the search space and simplify the computation. To set the value of 𝑥𝑥𝑟𝑟𝑣𝑣, we 

make use of Proposition 1.  

Proposition 1. Let 𝑷𝑷  be an MIP defined as 𝑧𝑧(𝑷𝑷) =

max�𝒄𝒄𝒙𝒙 + 𝒅𝒅𝒚𝒚�𝑨𝑨𝒙𝒙 + 𝑩𝑩𝒚𝒚 ≤ 𝒉𝒉,𝒙𝒙 ∈ {0,1}𝑛𝑛1 ,𝒚𝒚 ∈ ℝ+
𝑛𝑛2� . Let 𝒙𝒙′  and 𝒚𝒚′  be a feasible 

solution, and 𝝎𝝎 be a feasible dual solution of the linear relaxation of 𝑷𝑷. Any optimal 

solution 𝒙𝒙∗ cannot contain a variable 𝑥𝑥𝑖𝑖∗ = 1 if the reduced cost 𝑐𝑐𝑖𝑖 is less than 𝒄𝒄𝒙𝒙′ +

𝒅𝒅𝒚𝒚′ − 𝝎𝝎𝒉𝒉.  

The proof of Proposition 1 is in Appendix C. According to Proposition 1, we 

need to identify a feasible solution 𝒙𝒙′ and 𝒚𝒚′, and a feasible dual solution 𝝎𝝎. Since 

finding a good feasible solution of MIP is not easy in a large-size problem, we can 
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exploit the property that column generation (CG) only uses a subset of variables to 

solve the problem to simply computation process. The CG algorithm will decompose 

the problem into a master problem and a subproblem. The master problem is MP1 

(resp. MP2) with a relaxation of integer constraints (3-3) and only a subset of variables. 

The subproblem is PP1 (resp. PP2) that is used to identify the variables that could 

improve objective function. At each iteration, we solve master problem to optimum 

under the given subset of variables, obtaining optimal solution 𝒙𝒙∗. Then input 𝒙𝒙∗ into 

SP1 (resp. SP2) to check whether to add Benders cuts. If no Benders cut can be added, 

run PP1 (resp. PP2) to check whether to add new variables to MP1 (resp. MP2). If new 

variables could be added, repeat the above process, otherwise, a good subset of 

variables 𝒙𝒙𝑠𝑠𝑠𝑠𝑠𝑠  for feasible solution of original MIP and the optimal dual objective 

𝑧𝑧(𝝎𝝎) of linear relaxation of MIP are obtained, and the CG computes 

[PP1] ∑ 𝜂𝜂𝑠𝑠∗𝑠𝑠∈𝑆𝑆𝑟𝑟 − ∑ ∑ 𝑄𝑄𝑣𝑣�̂�𝜇𝑠𝑠𝑘𝑘𝜉𝜉𝑘𝑘∗𝑠𝑠∈𝑆𝑆𝑟𝑟𝑘𝑘∈𝐾𝐾 , ∀𝑣𝑣 ∈ 𝑉𝑉𝑟𝑟, 𝑟𝑟 ∈ 𝑅𝑅\𝑅𝑅′ (3-18) 

[PP2] ∑ 𝜂𝜂𝑠𝑠∗𝑠𝑠∈𝑆𝑆𝑟𝑟 − ∑ ∑ ∑ 𝑄𝑄𝑣𝑣�̂�𝜇𝑠𝑠𝜔𝜔𝑘𝑘 𝜉𝜉𝑘𝑘∗𝑠𝑠∈𝑆𝑆𝑟𝑟𝜔𝜔∈Ω𝑘𝑘∈𝐾𝐾 , ∀𝑣𝑣 ∈ 𝑉𝑉𝑟𝑟, 𝑟𝑟 ∈ 𝑅𝑅\𝑅𝑅′ (3-19) 

where 𝜂𝜂𝑠𝑠∗ is the dual of Constraints (3-2), 𝜉𝜉𝑘𝑘∗ is the dual of 𝑘𝑘𝑡𝑡ℎ Benders cut added to 

master problem, �̂�𝜇𝑠𝑠𝑘𝑘 (resp. �̂�𝜇𝑠𝑠𝜔𝜔𝑘𝑘 ) is the dual of Constraints (3-6) (resp. Constraints (3-

10)) in the 𝑘𝑘𝑡𝑡ℎ Benders cut. 

Having the subset 𝒙𝒙𝑠𝑠𝑠𝑠𝑠𝑠, we restore integer constraints and use procedures in the 

second phase of TPBBC to generate a feasible objective 𝑧𝑧(𝑀𝑀𝐼𝐼𝑃𝑃) for original MIP. We 

then use variable fixing for all 𝒙𝒙. If the reduced cost 𝑐𝑐𝑟𝑟𝑣𝑣, ∀𝑣𝑣 ∈ 𝑉𝑉𝑟𝑟, 𝑟𝑟 ∈ 𝑅𝑅 satisfies 𝑐𝑐𝑟𝑟𝑣𝑣 <

𝑧𝑧(𝑀𝑀𝐼𝐼𝑃𝑃) − 𝑧𝑧(𝝎𝝎), we have 𝑐𝑐𝑟𝑟𝑣𝑣 = 0.  Setting part of the variables to 0 and lower bound 

of MIP to 𝑧𝑧(𝑀𝑀𝐼𝐼𝑃𝑃), we run the second phase of TPBBC to obtain optimum solution of 

MIP. 

In addition to Proposition 1, we also propose two valid constraints that could 

strengthen the formulation of the problem and reduce the search space. The first valid 

constraint (3-20) is based on comparison of cost and profit of using the vehicle type 𝑣𝑣 

to serve route 𝑟𝑟: 

𝑥𝑥𝑟𝑟𝑣𝑣 = 0, ∀𝑣𝑣 ∈ 𝑉𝑉𝑟𝑟, 𝑟𝑟 ∈ 𝑅𝑅 if 𝐶𝐶𝑟𝑟𝑣𝑣 + 𝐶𝐶𝑣𝑣 ≥ 𝑈𝑈𝑄𝑄𝑣𝑣 (3-20) 

where 𝑈𝑈 = max�𝐹𝐹𝑝𝑝 − 𝐶𝐶𝑝𝑝ℎ�∀𝑝𝑝 ∈ 𝑃𝑃�. This means that if the cost of using ship type 𝑣𝑣 on 

route 𝑟𝑟 is no less than the maximum profits can be earned on this trip, the ship type 𝑣𝑣 

cannot be deployed on route 𝑟𝑟. 
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  The second valid constraint is for split delivery. Dror and Trudeau (1990) 

propose a theorem for split delivery stating that if the costs satisfy triangular inequality, 

there exists an optimal solution in which no two routes have more than one split 

customer in common. Inspired by this theorem, Archetti, Bianchessi, and Speranza 

(2014) propose Corollary 1 that is more suitable for solving our problem. 

Corollary 1. If the costs satisfy triangle inequality, then there exists an optimal 

solution such that the total number of splits is lower than the number of routes. 

According to Corollary 1, we can obtain the following valid constraint: 

𝑥𝑥𝑟𝑟𝑣𝑣 = 0, ∀𝑣𝑣 ∈ 𝑉𝑉𝑟𝑟, 𝑟𝑟 ∈ 𝑅𝑅 if ∑ 𝑛𝑛𝑝𝑝𝑟𝑟𝑝𝑝∈𝑃𝑃𝑟𝑟 ≥ 𝑁𝑁𝑟𝑟 (3-21) 

where 𝑛𝑛𝑝𝑝𝑟𝑟 is the number of splits port 𝑝𝑝 experiences on route 𝑟𝑟. For example, if two 

sequences of route 𝑟𝑟 visit port 𝑝𝑝, then 𝑛𝑛𝑝𝑝𝑟𝑟 = 2 − 1. 𝑁𝑁𝑟𝑟  is the number of sequences 

route 𝑟𝑟 contains. 

3.5 NUMERICAL EXPERIMENTS 

In this section, we use real-world data to test the performances of the solution 

methods. We first use label setting to generate feasible routes. We then compare the 

performances of solution algorithms mentioned above. We also conduct sensitivity 

analysis to test the impact of some key parameters, which provides valuable 

managerial insights for practical implement. All the experiments are carried out on a 

laptop with i9-12900K CPU, 3.20 GHz processing speed and 32 GB of memory. The 

model was implemented in C++ programming and solved by CPLEX 12.10. 

3.5.1 Parameter Setting  

The numerical experiment uses real world data along the Yangtze River, as 

shown in Figure 3-3. A total of 13 ports are considered where Shanghai port is a hub 

port while the remaining ports are feeder ports. The distance between ports is given in 

Table 3-5. The number in each cell represents the distance from the port in the first 

row to the leftmost port in the first column. For example, it is 53 nautical miles from 

SH to NT. Six ship types are considered in the numerical experiment, as shown in 

Table 3-6. Capital letters S, M, and L represent small-, medium-, and large-size ships, 

respectively. We assume that conventional and autonomous ships of the same size 

have different capacities because the removal of deckhouse and hotel system in 
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autonomous vessels leaves more room for cargoes. The same is true for medium- and 

large-size ships. The ship operational cost includes labor cost, maintenance cost, 

insurance, etc. The capital cost includes the purchase cost and the cost related to shore 

control center for autonomous ships (Notteboom and Cariou, 2013; Kretschmann, 

Burmeister, and Jahn, 2017). Demands of feeder ports are based on data provided by 

Ministry of Transport of the People’s Republic of China. Demand dataset contains 216 

scenarios where each scenario contains weekly demand of all feeder ports. The 

revenue and handling costs for serving a container from a feeder port are the real-time 

prices obtained from the logistics website. The port dwelling time, including loading, 

unloading, waiting, etc., is calculated based on Tan et al. (2021). Parameters related to 

feeder ports are shown in Table 3-7. The symbol “-” in the second and third columns 

means that the revenue and handling cost of SH are not considered because we do not 

consider the demand of hub port. Meanwhile, “-” in port dwell time columns means 

the corresponding ship type is not allowed to berth at the feeder port because of the 

waterway restrictions, such as draft and width constraints (Li et al., 2019). The service 

frequency 𝛼𝛼 is set to seven days and the sailing speed is 15 knots. 

 

Figure 3-3: Ports along the Yangtze River 
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Table 3-5: Distance between ports (nautical mile) 

 SH NT JY ZJ NJ MAS WHU AQ JJ HS WH JZ 
NT 53            
JY 85 31           
ZJ 147 94 63          
NJ 187 134 103 40         

MAS 214 160 129 66 26        
WHU 239 186 154 92 52 25       
AQ 345 292 260 198 158 131 106      
JJ 428 375 343 281 241 214 189 83     

HS 492 439 408 345 305 279 253 147 64    
WH 563 510 478 416 376 349 324 218 135 71   
JZ 787 733 702 639 599 573 548 442 359 294 224  
YC 901 848 816 754 714 687 662 556 473 409 338 114 

Note: The distance is obtained from the website http://ports.com/sea-route/. 
Table 3-6: Ship type information 

 Conventional vessels Autonomous vessels 
 C-S C-M C-L A-S A-M A-L 

Capacity (TEUs) 300 400 500 420 560 700 
Unit bunkering cost (USD/nautical mile) 25 29 33 23 27 31 
Ship operational cost (USD/hour) 119 144 160 71 86 96 
Capital cost (million USD/year) 1.36 1.64 1.82 1.49 1.80 2.01 

Note: The data have been adjusted based on the data used in the studies by Notteboom and Cariou 
(2013) and Kretschmann, Burmeister, and Jahn (2017). 

Table 3-7: Parameters related to feeder ports 

Ports 
Revenue 

(USD/TEU) 
Handling cost 
(USD/TEU) 

Port dwell time (hours) 
C-S C-M C-L A-S A-M A-L 

SH - - 8.9  9.4  9.9  8.9  9.4  9.9  
NT 154 39  5.2  5.7  6.2  5.2  5.7  6.2  
JY 168 28  4.0  4.5  5.0  4.0  4.5  5.0  
ZJ 168 37  4.7  5.2  5.7  4.7  5.2  5.7  
NJ 154 33  4.2  4.7  5.2  4.2  4.7  5.2  

MAS 168 56  6.8  7.3  -  6.8  7.3  -  
WHU 168 88  6.7  7.2  -  6.7  7.2  -  
AQ 280 74  4.2  4.7  -  4.2  4.7  -  
JJ 168 54  6.5  7.0  -  6.5  7.0  -  

HS 210 60  6.7  7.2  -  6.7  7.2  -  
WH 168 82  5.6  6.1  - 5.6  6.1  - 
JZ 168 34  4.1  -  -  4.1  -  -  
YC 168 30  3.6  -  - 3.6  -  - 

Note: The data have been adjusted based on the data used in the studies by Li et al. (2019) and Tan et 
al. (2021). 
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3.5.2 Computational Performances  

In this section, we use parameters provided in Chapter 3.5.1 to test the 

performances of the solution techniques mentioned in Chapter 3.4. We generate test 

instances of varying sizes by adjusting two parameters: the number of ports and the 

service frequency. The number of ports ranges from six to 13, while the service 

frequency is set to three, five, or seven days. To avoid computation burden of large 

sample size, in this test, we set the sample size to be 10. The influences of sample size 

will be explored in the following section. 

A total of five solution methods, i.e., SAA, TPBBC with each scenario being an 

independent subproblem (TPBBC-I), TPBBC with all scenarios in one subproblem 

(TPBBC-A), branch-and-Benders-cut (BBC), and TPBBC-I with CG and VF 

(TPBBCCGVF-I), were tested. BBC is a commonly used branch-and-cut method that 

only has the second phase of TPBBC. By comparing the performances of TPBBC and 

BBC, we can know whether it is necessary to conduct first phase of TPBBC before the 

classic branch-and-cut method. For TPBBCCGVF-I, we first apply valid constraints 

before solving the problem to see if some variables can be eliminated. Then in the first 

phase of TPBBC, we iteratively use CG and add Benders cut to obtain a subset of 

routes for a feasible solution and an optimal dual solution to the original MIP without 

integer constraints. Having the subset, we restore the integer constraints, and obtain a 

feasible solution to MIP. With a feasible solution and a dual solution, variable fixing 

is applied to assign a value of zero to part of the variables. With reduced variables and 

constraints, the second phase of TPBBC is conducted. 

We first compare performances of TPBBC-I and TPBBC-A. Results are shown 

in Figure 3-4, where (a), (b) and (c) show the time spent for the first-phase when 

service frequency is three, five, or seven days, respectively; (d), (e), and (f) show the 

total time when the service frequency is three, five, or seven days, respectively. The 

horizontal bar indicates the number of ports considered, while the vertical bar is the 

solution time. The dashed red horizontal line is the time limit (i.e., 7200s). When the 

point reaches the line, the computation time of this algorithm exceeds the limit and we 

thus do not have the exact time for them. The dashed red vertical line represents the 

turning point when computation time of the algorithm exceeds the time limit. For 

example, in Figure 3-4 (e), when the number of ports is 10, the total time of TPBBC-
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A exceeds 7200s. We can see that TPBBC-I always outperforms TPBBC-A for two 

main reasons. First, the former adds more Benders cuts and thus makes the 

computation converge more quickly. Second, we can only obtain at most one Benders 

cut after solving the subproblem under all scenarios of a sample for TPBBC-A, while 

for each scenario, we have about one Benders cut for TPBBC-I, which means the time 

spent for obtaining the Benders cut is much shorter for TPBBC-I. The results mean 

that TPBBC-I is more suitable for our problem and hence we only consider the case 

for which each scenario corresponds to an independent subproblem in the following 

analysis. 

   

(a) Service frequency=3 (b) Service frequency=5 (c) Service frequency=7 

 
  

(d) Service frequency=3 (e) Service frequency=5 (f) Service frequency=7 

Note: (a), (b) and (c) show the first-phase time when service frequency is three, five, or seven days, 
respectively. (d), (e), and (f) show total time when service frequency is three, five, or seven days, 
respectively. 

Figure 3-4: Comparison of computational times (second) between TPBBC-I and 
TPBBC-A under different service frequency and the number of ports. 

We then compare TPBBC-I with BBC to determine whether it is more efficient 

to add some Benders cuts at root node before branch-and-cut process. The results 

shown in Figure 3-5 indicate that modifying BBC to TPBBC-I speeds up convergence 

and saves computation time. 
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(a) Service frequency=3 (b) Service frequency=5 (c) Service frequency=7 

Figure 3-5: Comparison of computational times between TPBBC-I and BBC under 

different service frequency and the number of ports 

Knowing that TPBBC-I outperforms TPBBC-A and BBC in all test instances, 

we then compare SAA, TPBBC-I, and TPBBCCGVF-I. From Figure 3-6, we can see 

that TPBBC-I spends less time in small size instances and the gap between these 

methods is small, while for medium and large instances, there are significant 

differences between the solution times of these methods. When the service frequency 

is five days, SAA takes over an hour and a half in 50% of the instances and fails to 

solve the problem optimally within the time limit for two instances. Meanwhile, 

TPBBC-I finds an optimal solution for all instances within one hour, and 

TPBBCCGVF-I does this within three minutes. When the service frequency is seven 

days, SAA can only obtain an optimal solution for one instance. TPBBC-I can solve 

the problem to optimality only when the number of ports is less than nine. 

TPBBCCGVF-I finds an optimal solution for all instances in about one hour. The 

reason for the high efficiency of TPBBCCGVF-I can be seen from Table 3-8. SF and 

NP are the service frequency and the number of ports, respectively. Variables and 

Constraints indicate the number of variables and constraints in the model. For SAA, 

these are the number of columns and rows after MIP presolve. For TPBBC-I and 

TPBBCCGVF-I, these are the corresponding values for the second phase after 

restoration of the integer constraints. Variable fixing shows the number of variables 

that were set to 0 during variable fixing procedure in TPBBCCGVF-I. Valid 1 and 2 

are the number of variables set to 0 by valid constraints (3-20) and (3-21), respectively. 

Since only TPBBCCGVF-I uses variable fixing and valid constraints, the values for 

SAA and TPBBC-I are not available in the corresponding columns, so we use “-” 

instead. At the beginning of TPBBCCGVF-I, some variables were eliminated by valid 

constraints, which shortens the time for first phase. Then during variable fixing, other 

variables were set to 0, greatly accelerating the computation at the second phase. This 
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is particularly significant in large instances where a large number of variables were 

eliminated in the first phase. 

   

(a) Service frequency=3 (b) Service frequency=5 (c) Service frequency=7 

Figure 3-6: Comparison of computational times between SAA, TPBBC-I, and 

TPBBCCGVF-I under different service frequencies and number of ports 

Table 3-8: Comparison of SAA, TPBBC-I, and TPBBCCGVF-I in terms of variables 
and constraints 

SF NP Algorithm Variables Constraints Variable fixing Valid 1 Valid 2 

3 6 SAA 958 390 - - - 

  TPBBC-I 218 89 - - - 

  TPBBCCGVF-I 217 89 0 0 1 

3 7 SAA 2,108 741 - - - 

  TPBBC-I 341 171 - - - 

  TPBBCCGVF-I 340 171 0 0 1 

3 8 SAA 2,691 1,000 - - - 

  TPBBC-I 401 208 - - - 

  TPBBCCGVF-I 400 284 0 0 1 

3 9 SAA 2,691 1,000 - - - 

  TPBBC-I 401 208 - - - 

  TPBBCCGVF-I 400 284 0 0 1 

3 10 SAA 2,691 1,000 - - - 

  TPBBC-I 401 208 - - - 

  TPBBCCGVF-I 400 284 0 0 1 

3 11 SAA 2,691 1,000 - - - 

  TPBBC-I 401 208 - - - 

  TPBBCCGVF-I 400 284 0 0 1 

3 12 SAA 2,691 1,000 - - - 

  TPBBC-I 401 208 - - - 

  TPBBCCGVF-I 400 284 0 0 1 

3 13 SAA 2,691 1,000 - - - 

  TPBBC-I 401 208 - - - 

  TPBBCCGVF-I 400 284 0 0 1 

5 6 SAA 3,404 391 - - - 

  TPBBC-I 2,719 89 - - - 

  TPBBCCGVF-I 688 89 1,376 16 639 
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5 7 SAA 7,950 753 - - - 

  TPBBC-I 6,197 190 - - - 

  TPBBCCGVF-I 1,203 197 3,562 20 1,411 

5 8 SAA 12,644 1,467 - - - 

  TPBBC-I 8,497 271 - - - 

  TPBBCCGVF-I 2,542 321 4,348 0 1,560 

5 9 SAA 19,524 2,885 - - - 

  TPBBC-I 9,794 410 - - - 

  TPBBCCGVF-I 3,331 399 4,749 0 1,572 

5 10 SAA 33,176 5,692 - - - 

  TPBBC-I 11,049 699 - - - 

  TPBBCCGVF-I 3,749 466 5,351 0 1,573 

5 11 SAA 52,613 9,819 - - - 

  TPBBC-I 12,323 1,009 - - - 

  TPBBCCGVF-I 3,749 495 6,318 0 1,573 

5 12 SAA 52,613 9,819 - - - 

  TPBBC-I 12,327 1,020 - - - 

  TPBBCCGVF-I 3,749 494 6,321 0 1,573 

5 13 SAA 52,613 9,819 - - - 

  TPBBC-I 12,327 1,020 - - - 

  TPBBCCGVF-I 3,749 494 6,321 0 1,573 

7 6 SAA 25,769 391 - - - 

  TPBBC-I 25,160 93 - - - 

  TPBBCCGVF-I 3,031 92 2,506 15,150 4,473 

7 7 SAA 92,222 753 - - - 

  TPBBC-I 90,599 179 - - - 

  TPBBCCGVF-I 5,624 202 9,724 63,465 11,786 

7 8 SAA 167,204 1,467 - - - 

  TPBBC-I 163,683 283 - - - 

  TPBBCCGVF-I 27,301 371 64,707 678 70,997 

7 9 SAA 231,421 2,885 - - - 

  TPBBC-I 222,781 425 - - - 

  TPBBCCGVF-I 37,474 546 95,321 2,394 87,575 

7 10 SAA 294,915 5,711 - - - 

  TPBBC-I 274,567 706 - - - 

  TPBBCCGVF-I 41,017 668 128,231 6,222 98,848 

7 11 SAA 364,565 11,353 - - - 

  TPBBC-I 316,569 1,229 - - - 

  TPBBCCGVF-I 49,482 834 152,217 10,028 104,184 

7 12 SAA 431,234 22,555 - - - 

  TPBBC-I 323,515 2,240 - - - 

  TPBBCCGVF-I 49,482 822 156,579 11,599 104,195 

7 13 SAA 521,678 38,763 - - - 

  TPBBC-I 328,508 3,420 - - - 

  TPBBCCGVF-I 84,115 1,198 124,477 13,265 104,195 



 

 

Chapter 3: The impact of autonomous ships in regional waterways 48 

 
Based on the above analysis, the following conclusions can be drawn within the 

context of this study: 1) When implementing Benders decomposition, treating each 

scenario as an independent subproblem proves to be a more efficient approach; 2) The 

two-phase branch-and-Benders-cut method demonstrates superior performance 

compared with the classic one; 3) The acceleration techniques significantly enhance 

computational speed. In summary, the proposed solution algorithm, choosing right 

Benders decomposition method, modifying existing BBC, and adding acceleration 

techniques, can efficiently solve the problem within a reasonable amount of time, 

especially for large-size instances. Therefore, it is suitable for our problem. 

3.5.3 Determination of the Sample Size  

As we mentioned in Chapter 3.4.2, the larger the sample size, the better the 

solution quality but the longer the computation time. To identify a sample size that can 

achieve a balance between solution quality and computation complexity, Algorithm 1 

was used in this section under the given parameter setting. From the previous 

experiments we know that the instance size that SAA can solve to optimality is limited. 

Considering the computation time, we selected 10 instances shown in Figure 3-7 and 

Figure 3-8. Each instance was tested under five different sample sizes, i.e., 10, 30, 50, 

100, and 150. Figure 3-7 and Figure 3-8 show the ratio between the 95% confidence 

interval for the optimality gap and a point estimate of lower bound and computation 

time for 10 test instances under different sample sizes, respectively. The dashed line 

in Figure 3-7 is the 1% limit. It can be seen that when sample size reaches 100, the 

ratio falls below 1% in all cases. Although the computation time is slightly longer than 

for smaller sample sizes, it is acceptable given the size of the instance. Therefore, 

considering both solution quality and computation time, we set the sample size to 100 

for the following analysis. 
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Figure 3-7: Ratio between the 95% confidence interval for optimality gap and the 

point estimate of lower bound under different sample size and problem setting 

 

Figure 3-8: Computation time under different sample size and problem setting 

3.5.4 Sensitivity Analysis 

In this section, we investigate the influence of key factors and derive constructive 

managerial insights for shipping companies. 

The Impact of Autonomous Ships 

We design two scenarios where in the first scenario only conventional ships are 

used, while in the second scenario we consider all types of ships. The comparison 

between these two scenarios is shown in Table 3-9 and Table 3-10. The ship fleet in 
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Table 3-9 is the fleet composition under the corresponding scenarios. C and A 

represent conventional and autonomous ships, respectively. S, M, and L represent 

small, medium, and large ships, respectively. Route in Table 3-9 provides information 

on the optimal route, including the number of routes selected, and the number of 

sequences that make up of each route. The first row of Table 3-10 contains the names 

of six feeder ports. We find that when autonomous ships are added to the network, 

profits increase while costs decrease. The increase in profit comes from the larger 

capacity of autonomous ships to serve more demand, which could be reflected from 

the demand satisfaction level in Table 3-10. The cost reduction is the result of two 

main causes. First, ships with larger capacity can visit more or even farther ports in 

one voyage, thus reducing the number of sequences and reducing voyage cost. Second, 

more port demands can be fulfilled in one visit, reducing the additional cost of multiple 

visits to the same port. Therefore, although autonomous ships are more expensive, the 

benefits far outweigh the costs. 

Table 3-9: Comparison between the cases with and without autonomous ships 

 Total profit Voyage cost Capital cost Service profit Ship fleet Route  

Scenario 1 123,959 65,996 4,356 194,312 1 C-S, 1 C-L 
two routes: 
one sequence 
three sequences 

Scenario 2 150,573 42,839 5,219 198,631 1 A-M, 1 A-L 
two routes: 
one sequence 
two sequences 

Note: Scenario 1 denotes the condition where only conventional ships are permissible for use, while 
Scenario 2 denotes the condition where both conventional and autonomous ships are allowed. 
 

Table 3-10: Port demand satisfaction level under two scenarios 

 NT JY ZJ NJ MAS WHU 
Scenario 1 99.4% 100.0% 100.0% 100.0% 96.0% 79.6% 
Scenario 2 100.0% 100.0% 100.0% 100.0% 99.0% 94.9% 

Note: Scenario 1 denotes the condition where only conventional ships are permissible for use, while 
Scenario 2 denotes the condition where both conventional and autonomous ships are allowed. 

The Impact of Port Restriction 

As mentioned before, due to waterway restrictions on feeder ports, such as draft 

and width constraints, some ports inaccessible to conventional ships may be visited by 

lighter autonomous ships of the same size. In this section, we want to check whether 

the results would change if ports treated both types of ships equally. The results are 
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shown in Table 3-11 and Table 3-12. We find that port restrictions do not influence 

the outcome in this research. Because autonomous ships in this research are more 

advantageous. Even though we relaxed port restrictions, the same ship type was 

chosen. In a situation where conventional ships would be more beneficial, the port 

restriction may have impacts on system performance. 

Table 3-11: Comparison between the cases with and without port restriction 

Restriction Total profit Voyage cost Capital cost Service profit Ship fleet Route  

Yes 150,573 42,839 5,219 198,631 1 A-M, 1 A-L 
two routes: 
one sequence 
two sequences 

No 150,573 42,839 5,219 198,631 1 A-M, 1 A-L 
two routes: 
one sequence 
two sequences 

 

Table 3-12: Port demand satisfaction level with and without port restriction 

 NT JY ZJ NJ MAS WHU 
With restriction 100.0% 100.0% 100.0% 100.0% 99.0% 94.9% 
Without restriction 100.0% 100.0% 100.0% 100.0% 99.0% 94.9% 

 

The Impact of Cost Structure 

The previous analysis was carried out in the case where autonomous ships are 

more advantageous. In this section, we explore what happens if the cost advantage of 

autonomous ships wanes. We scaled the capital cost and operational cost of 

autonomous ships by different coefficients in Table 3-13 and Table 3-14, respectively. 

The results in Table 3-13 suggest that autonomous ships will only lose their 

competitive advantage if their capital costs are sufficiently large. In this research, 

autonomous ships will partially and completely lose their competitive advantage if the 

capital cost is four and 10 times the current value, respectively. Table 3-14 suggests 

that if the operational cost increases to four times its current value, the conventional 

ships will outperform autonomous ones. The findings from both tables indicate that 

operational costs have a significant impact on ship operations due to their substantial 

proportion. If the technology and skilled technicians required for autonomous ships 

become excessively expensive, shipping companies may opt for conventional ships. 

However, as technology continues to advance, the cost of autonomous ships is 

expected to decrease gradually, making them increasingly competitive in the future. 
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Therefore, once they are allowed to be widely adopted in the maritime industry and 

their costs become manageable, autonomous ships have the potential to replace 

traditional ships. 

Table 3-13: The impact of capital cost 

Coefficient Total profit Voyage cost Capital cost Profit Ship fleet 
1 150,573 42,839 5,219 198,631 1 A-M, 1 A-L 
2 145,353 42,839 10,439 198,631 1 A-M, 1 A-L 
4 140,198 43,913 11,726 195,837 1 C-S, 1 A-M 
6 135,266 43,913 16,658 195,837 1 C-S, 1 A-M 
8 130,335 43,913 21,589 195,837 1 C-S, 1 A-M 

10 123,959 65,996 4,356 194,312 1 C-S, 1 C-L 
 

Table 3-14: The impact of operational cost 

Coefficient Total profit Voyage cost Capital cost Profit Ship fleet 
1 150,573 42,839 5,219 198,631 1 A-M, 1 A-L 
2 137,724 54,969 5,219 197,912 1 A-M, 1 A-L 
3 126,166 62,196 4,795 193,156 1 A-S, 1 A-L 
4 123,959 65,996 4,356 194,312 1 C-S, 1 C-L 
6 123,959 65,996 4,356 194,312 1 C-S, 1 C-L 
8 123,959 65,996 4,356 194,312 1 C-S, 1 C-L 

 

The Impact of Demand Satisfaction 

In the previous analysis, we found that in order to maximize total profit, not all 

demands are satisfied. In this section, we explore the impact of satisfying all demands. 

Results are shown in Table 3-15. The first column indicates whether the constraints by 

which all demands should be satisfied are considered. We find that when all demands 

are required to be fulfilled, the total profit decreases. The reason is that the number of 

ports that can be served during a voyage is reduced. Therefore, more sequences must 

be travelled, increasing voyage costs. 

Table 3-15: Comparison between the cases with and without constraints of demand 
satisfaction 

All demand  Total profit Voyage cost Capital cost Service profit Ship fleet Route  

No 150,573 42,839 5,219 198,631 1 A-M, 1 A-L 
two routes: 
one sequence 
two sequences 

Yes 143,933 50,822 5,219 199,975 1 A-M, 1 A-L 
two routes: 
two sequences 
two sequences 
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The Impact of technology development and government intervention 

The level of automation in autonomous ships is continuously evolving. The IMO 

has classified them into four levels based on their degree of automation: crewed ship 

with automated processes and decision support (degree one); remotely controlled ship 

with seafarers on board (degree two); remotely controlled ship without seafarers on 

board (degree three); and fully autonomous ship (degree four). Based on whether there 

are seafarers on board, we can further divide all the ships into two categories: low 

degree and high degree. For the low degree ships, we assume that they have the same 

exterior design as the conventional ships, while for high degree ships, we assume that 

the deckhouse and accommodation structures are removed so that they have greater 

capacity for cargoes. Table 3-16 and Table 3-17 illustrate the impact of capital and 

operational costs when considering both conventional ships and low-degree 

autonomous ships. We assume that low-degree autonomous ships have the same 

capacity as conventional ships, but their cost structure aligns with that of the 

autonomous ships discussed in Chapter 3.5.1. The results in Table 3-16 and Table 3-17 

align with the trends observed in the impact of cost structure. Since low-degree 

autonomous ships do not possess a capacity advantage, their adoption will primarily 

depend on the level of capital and operational costs. Only when these costs are 

sufficiently low will low-degree autonomous ships be chosen. For high-degree 

autonomous ships, where autonomous ships have greater capacity, the optimization 

results align with those discussed in the impact of cost structure. 

Table 3-16: The impact of capital cost when both conventional ships and low degree 
autonomous ships are involved 

Coefficient Total profit Voyage cost Capital cost Profit Ship fleet 
1 136,553 52,964 4,795 194,312 1 A-S, 1 A-L 
2 131,758 52,964 9,589 194,312 1 A-S, 1 A-L 
3 127,217 56,971 10,123 194,312 1 C-S, 1 A-L 
4 124,464 56,971 12,877 194,312 1 C-S, 1 A-L 
6 123,959 65,996 4,356 194,312 1 C-S, 1 C-L 
8 123,959 65,996 4,356 194,312 1 C-S, 1 C-L 
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Table 3-17: The impact of operational cost when both conventional ships and low 
degree autonomous ships are involved 

Coefficient Total profit Voyage cost Capital cost Profit Ship fleet 
1 136,553 52,964 4,795 194,312 1 A-S, 1 A-L 
2 123,959 65,996 4,356 194,312 1 C-S, 1 C-L 
3 123,959 65,996 4,356 194,312 1 C-S, 1 C-L 

Another crucial factor that influences the adoption of autonomous ships is 

government policies. Government intervention may be driven by objectives such as 

promoting technological innovation, stimulating economic growth, reducing 

environmental impact, and enhancing maritime safety. The government can stimulate 

the adoption of autonomous ships by offering subsidies or establishing regulations on 

the proportion of autonomous ships owned by shipping companies. Subsidies can 

effectively reduce either the capital or the operational costs, and their impacts align 

with those discussed in the impact of cost structure. Setting the proportion of 

autonomous ships owned by shipping companies can yield different outcomes, as 

demonstrated in Table 3-18. In the previous analysis, conventional ships were 

considered only when the operational costs of low-degree autonomous ships and high-

degree autonomous ships respectively increased to two and four times their original 

values. Therefore, we use the results obtained by scaling the operational costs to the 

corresponding multiples as the reference for comparison. Table 3-18 indicates that 

when autonomous ships are advantageous, there is no need to set a proportion because 

the optimal results will not include conventional ships. However, if conventional ships 

are preferred, setting the proportion will reduce the profits of shipping companies. In 

such cases, the government would need to provide additional benefits to compensate 

for the profit losses. 

 In summary, the level of automation and government policies, such as subsidies 

and regulations on the proportion of autonomous ships owned by shipping companies, 

play a significant role in shaping the application of autonomous ships. Higher levels 

of automation can provide autonomous ships with a capacity advantage. However, 

when making decisions, shipping companies must also consider the impact of costs. 

Government intervention can potentially result in reduced profits for shipping 

companies. Therefore, it is necessary to provide compensation measures to mitigate 

any financial losses incurred by these companies. 
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Table 3-18: The impact of setting proportion 
Case Proportion Total profit Voyage cost Capital cost Profit Ship fleet 

I none 123,959 65,996 4,356 194,312 1 C-S, 1 C-L 
10% 123,272 66,505 4,534 194,312 1 C-L, 1 A-S 
30% 123,272 66,505 4,534 194,312 1 C-L, 1 A-S 
50% 123,272 66,505 4,534 194,312 1 C-L, 1 A-S 

100% 121,064 68,453 4,795 194,312 1 A-S, 1 A-L 
II none 123,959 65,996 4,356 194,312 1 C-S, 1 C-L 

10% 121,408 65,951 5,000 192,359 1 C-M, 1 A-L 
30% 121,408 65,951 5,000 192,359 1 C-M, 1 A-L 
50% 121,408 65,951 5,000 192,359 1 C-M, 1 A-L 

100% 114,702 73,660 4,795 193,156 1 A-S, 1 A-L 
Notes: Case I denotes the condition where conventional ships and autonomous ships with seafarers on 
board are considered, while Case II denotes the condition where conventional ships and autonomous 
ships without seafarers on board are considered. The “none” in the “Proportion” column means there 
is no restriction on the proportion of the autonomous ships. 

3.6 CONCLUSIONS 

Although autonomous ships may be the future of the shipping industry, they are 

currently in the early stages. Very little research has been conducted on the influence 

of autonomous ships on conventional ones in national waterways. In this paper, we 

have developed a two-stage stochastic programming model to investigate the impact 

of autonomous ships on shipping company operations. In the first stage, optimal 

routes, fleet composition, and fleet assignment are determined without the realization 

of demand uncertainty. In the second stage, when demand realization becomes known, 

the liner company determines the delivery pattern, i.e., the volume of cargo loaded on 

each ship from each feeder port. The objective is to maximize the expected total profit. 

An approximation algorithm SAA and an exact solution method TPBBC were 

proposed to solve the problem. To speed up the computations, we have used 

acceleration strategies, such as column generation and variable fixing. 

The solution methods were validated by numerical experiments based on real-

world data. After comparison, TPBBCCGVF-I was proved to be more suitable and 

efficient for this research. Sensitivity analyses are conducted to further explore the 

influences of key factors and derive valuable managerial insights to guide practical 

implementation in shipping companies. Our results show that autonomous ships are 

competitive under most of the scenarios considered. Besides, it was proved that the 

satisfaction of all demands will lead to a decrease in total profits. 
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Despite the contributions and insights provided by this study, there are certain 

limitations that should be acknowledged. Firstly, this research assumes full automation 

of ships that can operate without human intervention. However, in reality, autonomous 

ship technology is still in the research and development stage, and achieving full 

automation requires multiple stages of development and testing. Therefore, to better 

reflect the evolutionary process of autonomous ships, future research can consider 

developing a multi-period model that incorporates the characteristics of autonomous 

ships at different stages of development. Secondly, the current study addresses demand 

uncertainty by using scenarios, which may not capture the full range of demand 

characteristics. To overcome this limitation, future research can explore the use of 

advanced data analytics and machine learning techniques to enhance the accuracy of 

demand modelling.  



 

 

Chapter 4: Optimal subsidy design for energy generation in ship berthing 57 

Chapter 4: Optimal subsidy design for 
energy generation in ship 
berthing8 

This chapter focuses on addressing the challenge of reducing the maximum 

sulfur content in exhaust gas to comply with maritime regulations. When berthing, 

three prominent methods are employed for regulatory compliance: marine diesel oil, 

scrubber, and shore power. While scrubber and shore power possess greater potential 

for emission reduction, they may incur higher costs compared to marine diesel oil. In 

an effort to encourage the adoption of scrubber and shore power, the government 

provides subsidies. Consequently, this chapter introduces a bi-level mixed-integer 

programming model designed to align with the objectives of both the government and 

ship operators. Given the intricate interdependence within the bi-level structure, 

solving the problem poses challenges. An efficient method integrating transformation 

and linearization is proposed for resolution. Numerous numerical experiments are 

conducted to assess the model's performance. The results indicate that the promotion 

of scrubber or shore power should commence with larger ships. Additionally, 

increasing the number of ships equipped with scrubber or shore power leads to a 

reduction in subsidies. Furthermore, each subsidy corresponds to a specific utilization 

range, enabling the government to tailor the subsidy amount according to the targeted 

utilization level. 

4.1 INTRODUCTION 

Environment is the foundation for human survival and development, so 

environmental protection has undoubtedly become the consensus of all walks of life. 

Shipping, the backbone of economic development, becomes one of the biggest threats 

to the environment. According to the Fourth IMO GHG Study, shipping emissions, 

including greenhouse gas (GHG), SOx, and particulate matter (PM), represent a non-

 
 
8 Wang, W., Wang, S., & Zhen, L. (2023). Optimal subsidy design for energy generation in ship berthing. 
Maritime Policy & Management, 1-14. 
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negligible percentage of total annual anthropogenic emissions and are increasing every 

year. These exhaust emissions cause more than 70,000 premature deaths annually all 

over the world (Huang, et al. 2018). Endresen et al. (2003) show that nearly 70% of 

ship emissions come within 400 km of land, greatly contribute to air quality 

degradation in coastal areas. This pollution is of particular concern due to its proximity 

to the population in coastal areas and its potential to grow continually. If no effective 

control measures are implemented, problems caused by exhaust emissions will be 

exacerbated. 

To reduce ship air pollution, IMO (International Maritime Organization) enacted 

MARPOL Annex VI9 to limit the main air pollutants, SOx and NOx, contained in ships 

exhaust gas and revised it by reducing the maximum sulphur content in the exhaust 

gas to 0.1% by 2015 in emission control area (ECA) and globally to 0.5% by 2020. 

This sulphur content cap could be achieved by using abatement technologies, such as 

scrubber, or alternative compliant fuels. 

According to the Fourth IMO GHG Study, heavy fuel oil (HFO), cheap but high 

in sulphur, remains the dominant fuel in international shipping, accounting for 79% of 

total fuel consumption by energy content in 2018. This type of oil, with a sulphur 

content of up to 3.5%, cannot meet the requirement of IMO and thus needs to use 

scrubber to clean exhaust gap before emission. Marine diesel oil (MDO) that is more 

expensive than HFO but can abide by the 0.5% sulphur content regulation has 

experienced 6% market share growth in recent years. Another emerging and promising 

energy supply method, shore power, has been successfully implemented in several 

ports around the world (Qi, Wang, and Peng 2020). All these methods could greatly 

reduce sulphur emission and comply with IMO regulations, but their efficiency and 

costs vary significantly. For example, scrubber can reduce 90–99% SOx and 60–85% 

PM and using shore power will not generate emissions in port areas. About the cost, 

the acquisition costs of scrubbers for 15,000, 110,000, and 310,000 dwt ships are 2.6, 

3.3 and 4.2 million USD respectively (Lindstad, Rehn, and Eskeland 2017). Prices of 

HFO and MDO change every day. Taking Singapore as an example, prices of HFO 

 
 
9  The introduction of MARPOL Annex VI can refer to this website: 
https://www.imo.org/en/OurWork/Environment/Pages/Index-of-MEPC-Resolutions-and-Guidelines-
related-to-MARPOL-Annex-VI.aspx  

https://www.imo.org/en/OurWork/Environment/Pages/Index-of-MEPC-Resolutions-and-Guidelines-related-to-MARPOL-Annex-VI.aspx
https://www.imo.org/en/OurWork/Environment/Pages/Index-of-MEPC-Resolutions-and-Guidelines-related-to-MARPOL-Annex-VI.aspx


 

 

Chapter 4: Optimal subsidy design for energy generation in ship berthing 59 

and MDO were 390 and 648.5 USD/mt respectively on February 7, 2023, but changed 

to 406.5 and 662.5 USD/mt respectively on the next day. The modification cost of a 

ship to receive onshore power ranges from 500,000 to 2 million USD (Wang, Mao, 

and Rutherford 2015). The shore power price ranged between 0.17–0.2 USD/kWh for 

ports along the coastline of China in 2019 (Wang, Qi, and Laporte 2022). Since ship 

operators are most concerned with cost, they usually choose the least costly method, 

which may not be the most ideal approach to environmental protection. Therefore, the 

government needs to make subsidy plan to reduce the cost born by ship operators to 

steer them towards efficient green methods. 

Therefore, this research involves two decision-making parties: the government 

aims to achieve the desired utilization level10 of each method at the lowest subsidy 

cost, while the ship operators adopt the least costly energy generating method. A bi-

level optimization model is developed to formulate this problem, which is difficult to 

solve due to the interdependence and nonlinearity. We therefore convert the bi-level 

model into single-level model and linearize the nonlinear components to make it 

computationally tractable. Several numerical experiments are conducted to evaluate 

the performance of the model. Valuable managerial insights are also derived from 

sensitivity analyses. 

4.2 RESEARCH GAP  

  After reviewing literature, we can find that most research considers only one 

innovative technology to solve environmental problem in maritime industry. However, 

the proliferation of pollution abatement technologies gives ships at berth more options. 

Therefore, one contribution of this research is to simultaneously consider three 

techniques: MDO, scrubber, and shore power. Besides, increasing the number of 

available techniques does not change the model, which means this model is very 

flexible for practical policy making. There are price differences between these three 

technologies, so in order to promote a certain technology, we need to consider subsidy. 

 
 
10  Since green technologies such as scrubber and shore power can significantly reduce harmful 
emissions, to promote the use of these technologies, some governments may set target utilization level. 
For example, the California Air Resources Board (CARB) requires that every vessel coming into a 
regulated California port either use shore power (e.g., plug in to the local electrical grid) or a CARB-
approved control technology, such as scrubber, to reduce harmful emissions. 
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Another contribution is that we consider ship type and target utilization level of three 

techniques when designing subsidy. Under the same subsidy plan, ships in different 

types will act differently. Different utilization level will influence subsidy plan. 

Therefore, results obtained from the model considering ship type and target utilization 

level are more instructive for practical implementation. The third contribution is that 

we propose a bi-level mixed integer programming model to solve the problem which 

is rarely used in subsidy design in ship operation management. 

4.3 PROBLEM DESCRIPTION AND FORMULATION 

4.3.1 Problem Description 

This chapter presents a bi-level optimization model involving government and 

ship operators. The methodological framework is the Stackelberg game where the 

government is the leader that determines subsidy for each energy generation method, 

aiming to achieve the desired utilization levels at the lowest cost, while the ship 

operators are followers that choose the lowest cost energy generation method 

considering government subsidies. 

In this article we consider a port that abides by 0.5% sulphur content regulation 

and has already installed shore power facilities to provide shore power service to ships. 

Ships that visit this port can be divided into four types: without scrubber and shore 

power equipment, with only scrubber, with only shore power equipment, and with both 

scrubber and shore power equipment. The first type can only use MDO to supply 

energy while berthing. The second can choose between MDO and HFO. If HFO is 

used, exhaust gas needs to be cleaned by scrubber. The third can choose between MDO 

and shore power. The last one can choose among MDO, HFO, and shore power. The 

energy generation methods while berthing, i.e., MDO, HFO, and shore power, are 

represented by a set 𝐼𝐼. It is indexed by 𝑖𝑖 with 𝑖𝑖 = 0 indicating a ship uses MDO to 

generate energy, 𝑖𝑖 = 1 indicating a ship uses HFO to provide energy while using 

scrubber to clean exhaust gas, and 𝑖𝑖 = 2 indicating a ship uses shore power to supply 

energy. Ships visiting this port are represented by a set 𝑉𝑉. We assume that information 

about ship set 𝑉𝑉 is known, including total number of ships, equipment that each ship 

owns, total energy consumption while berthing, and cost of each method to provide 

required energy. The total number of ships visiting this port is denoted by 𝑛𝑛. The 

number of ships equipped with scrubber but not shore power, with shore power but 
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not scrubber, and with both scrubber and shore power are denoted as 𝑛𝑛𝑠𝑠, 𝑛𝑛𝑝𝑝, and 𝑛𝑛𝑠𝑠𝑝𝑝, 

respectively. Since using scrubber and shore power could greatly reduce sulphur 

emissions, government has set the minimum utilization levels 𝛼𝛼  and 𝛽𝛽  of the two 

technologies, where 𝛼𝛼 ≤ 𝑛𝑛𝑠𝑠+𝑛𝑛𝑠𝑠𝑝𝑝
𝑛𝑛

, 𝛽𝛽 ≤ 𝑛𝑛𝑝𝑝+𝑛𝑛𝑠𝑠𝑝𝑝
𝑛𝑛

, and 𝛼𝛼 + 𝛽𝛽 ≤ 𝑛𝑛𝑠𝑠+𝑛𝑛𝑝𝑝+𝑛𝑛𝑠𝑠𝑝𝑝
𝑛𝑛

. To achieve 

these levels, government needs to provide subsidy 𝑠𝑠𝑖𝑖  for a ship that uses energy 

generation method 𝑖𝑖 ∈ 𝐼𝐼 to lower the energy cost. The operator of ship 𝑣𝑣 ∈ 𝑉𝑉 react 

according to subsidy to make decisions 𝑥𝑥𝑖𝑖𝑣𝑣 on whether to use power generation method 

𝑖𝑖 (𝑥𝑥𝑖𝑖𝑣𝑣 = 1) or not (𝑥𝑥𝑖𝑖𝑣𝑣 = 0). 

4.3.2 Mathematical Model 

Before presenting the mathematical model, we list all the notations in Table 4-1. 

Table 4-1: Notations used in this research 

Notations Definition 
Sets and Indices 

𝐼𝐼 Set of energy supply methods while berthing, where 𝐼𝐼 = {0=MDO, 
1=HFO+scrubber, 2=shore power} 

𝑉𝑉 Set of ships visiting a port 
𝑖𝑖 Index of energy supply method while berthing, 𝑖𝑖 ∈ 𝐼𝐼 
𝑣𝑣 Index of a ship, 𝑣𝑣 ∈ 𝑉𝑉 
Parameters 
𝐶𝐶𝑖𝑖𝑣𝑣 Cost of powering ship 𝑣𝑣 using method 𝑖𝑖 (it does not include government subsidy) 
𝐾𝐾𝑖𝑖𝑣𝑣 Binary parameter, =1 if ship 𝑣𝑣 can be powered by method 𝑖𝑖, and =0 otherwise 
𝛼𝛼 The minimum utilization level of scrubber 
𝛽𝛽 The minimum utilization level of shore power 
Decision variables 
𝑥𝑥𝑖𝑖𝑣𝑣 Binary variable, =1 if ship 𝑣𝑣 uses method 𝑖𝑖 to generate energy, and =0 otherwise 
𝑠𝑠𝑖𝑖 Government subsidy for using method 𝑖𝑖 
�⃗�𝑥𝑣𝑣 Vector of decision variable 𝑥𝑥𝑖𝑖𝑣𝑣 for ship 𝑣𝑣, where �⃗�𝑥𝑣𝑣 = (𝑥𝑥0𝑣𝑣, 𝑥𝑥1𝑣𝑣, 𝑥𝑥2𝑣𝑣) 
𝑠𝑠 Vector of decision variable 𝑠𝑠𝑖𝑖, where 𝑠𝑠𝑖𝑖 = (𝑠𝑠0, 𝑠𝑠1, 𝑠𝑠2) 

 

Then the problem faced by the government can be described by the following 

model: 

Min ∑ ∑ 𝑠𝑠𝑖𝑖𝑖𝑖∈𝐼𝐼𝑣𝑣∈𝑉𝑉 𝑥𝑥𝑖𝑖𝑣𝑣 (4-1) 

subject to 
∑ 𝑥𝑥1𝑣𝑣𝑣𝑣∈𝑉𝑉

|𝑉𝑉|
≥ 𝛼𝛼 (4-2) 

∑ 𝑥𝑥2𝑣𝑣𝑣𝑣∈𝑉𝑉
|𝑉𝑉|

≥ 𝛽𝛽 (4-3) 

𝑠𝑠𝑖𝑖 ≥ 0, ∀𝑖𝑖 ∈ 𝐼𝐼 (4-4) 

�⃗�𝑥𝑣𝑣 ∈ Φ𝑣𝑣(𝑠𝑠) , ∀𝑣𝑣 ∈ 𝑉𝑉 (4-5) 
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where Φ𝑣𝑣(𝑠𝑠) is determined by the following model: 

Φ𝑣𝑣(𝑠𝑠) = argmin ∑ (𝐶𝐶𝑖𝑖𝑣𝑣 − 𝑠𝑠𝑖𝑖)𝑥𝑥𝑖𝑖𝑣𝑣𝑖𝑖∈𝐼𝐼  (4-6) 

subject to 

∑ 𝑥𝑥𝑖𝑖𝑣𝑣𝑖𝑖∈𝐼𝐼 = 1 (4-7) 

𝑥𝑥𝑖𝑖𝑣𝑣 ≤ 𝐾𝐾𝑖𝑖𝑣𝑣, ∀𝑖𝑖 ∈ 𝐼𝐼 (4-8) 

𝑥𝑥𝑖𝑖𝑣𝑣 ∈ {0,1}, ∀𝑖𝑖 ∈ 𝐼𝐼. (4-9) 

The objective function (4-1) aims to minimize total subsidy. Constraint (4-2) and 

(4-3) set utilization rate for scrubber and shore power separately. Constraints (4-4) 

specify the domains of the subsidy decision. Parameters 𝑥𝑥𝑖𝑖𝑣𝑣 depend on decisions of 

ship operators, which are denoted by Φ𝑣𝑣(𝑠𝑠). 

Since each ship makes decisions independently, we build Φ𝑣𝑣(𝑠𝑠) for each ship 

𝑣𝑣 ∈ 𝑉𝑉. The objective function (4-6) aims to minimize its energy cost while berthing. 

Constraint (4-7) requires that each ship must choose one method for energy supply. 

Constraints (4-8) state that if a ship is to be powered by certain method, it must have 

corresponding equipment. Constraints (4-9) are domains of decision of ship operators. 

4.4 SOLUTION METHOD 

The problem is difficult to solve because of the interdependence between bi-

level structure. The leader’s decisions have an impact on the follower’s decisions, 

which in turn, influence the leader’s objective function value. What is more, the 

problem is non-linear. Therefore, we first convert the bilevel model into an equivalent 

single-level model, and then reformulate the model by linearization. This new model 

could be easily solved by an off-the-shelf CPLEX solver. 

4.4.1 Single-level Model 

Since ship operators are most concerned with cost, they will choose the available 

and least costly method of energy generation. Therefore, the decision-making process 

at the ship level can be represented by the following constraints: 

(𝐶𝐶𝑖𝑖𝑣𝑣 − 𝑠𝑠𝑖𝑖) − �𝐶𝐶𝑗𝑗𝑣𝑣 − 𝑠𝑠𝑗𝑗� ≤ 𝑀𝑀𝑣𝑣�1 − 𝑥𝑥𝑖𝑖𝑣𝑣 + 1 − 𝐾𝐾𝑗𝑗𝑣𝑣�, ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐼𝐼\{𝑖𝑖}, 𝑣𝑣 ∈ 𝑉𝑉 (4-10) 

where 𝑀𝑀𝑣𝑣 = max
𝑖𝑖=0,1,2

𝐶𝐶𝑖𝑖𝑣𝑣. 

Constraints (4-10) ensure that ship operator will choose the available and lowest 

cost method. This transformation is successful because the lower-level problem is a 
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binary decision problem that does not entail continuous variables or nonlinear 

constraints. 

4.4.2 Model Linearization  

The objective (4-1) contains the product of decision variables, namely 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑣𝑣. We 

linearize it by introducing decision variables 𝑧𝑧𝑖𝑖𝑣𝑣, which means the subsidy for ship 𝑣𝑣 

to be powered by method 𝑖𝑖. Then the objective function is converted to: 

Min ∑ ∑ 𝑧𝑧𝑖𝑖𝑣𝑣𝑖𝑖∈𝐼𝐼𝑣𝑣∈𝑉𝑉  (4-11) 

with four set of constraints: 

𝑠𝑠𝑖𝑖 − 𝑧𝑧𝑖𝑖𝑣𝑣 ≤ 𝑀𝑀�(1 − 𝑥𝑥𝑖𝑖𝑣𝑣) , ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑣𝑣 ∈ 𝑉𝑉 (4-12) 

𝑧𝑧𝑖𝑖𝑣𝑣 ≥ 0, ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑣𝑣 ∈ 𝑉𝑉 (4-13) 

𝑧𝑧𝑖𝑖𝑣𝑣 ≤ 𝑠𝑠𝑖𝑖, ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑣𝑣 ∈ 𝑉𝑉 (4-14) 

𝑧𝑧𝑖𝑖𝑣𝑣 ≤ 𝑀𝑀�𝑥𝑥𝑖𝑖𝑣𝑣, ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑣𝑣 ∈ 𝑉𝑉 (4-15) 

where 𝑀𝑀� = max
𝑣𝑣∈𝑉𝑉

max
𝑖𝑖=0,1,2

𝐶𝐶𝑖𝑖𝑣𝑣. 

The bilevel model is therefore converted into an equivalent single-level model 

with objective function (4-11) and constraints (4-2)–(4-4), (4-7)–(4-9), (4-10), (4-12)–

(4-15). 

4.5 NUMERICAL EXPERIMENTS  

In this section, we conducted multiple numerical experiments to validate the 

model and derive managerial insights. These experiments have different values of 

crucial parameters, including 𝐶𝐶𝑖𝑖𝑣𝑣, 𝐾𝐾𝑖𝑖𝑣𝑣, 𝛼𝛼, and 𝛽𝛽. All the experiments were carried out 

on a Dell XPS 15 9500 laptop with i7-10750H CPU, 2.60 GHz processing speed and 

16 GB of memory. The model was implemented in C++ and solved by CPLEX 12.10. 

4.5.1 Parameter Setting  

The parameters were based on existing studies and reports. The Port of Shanghai 

(POS) is selected to test subsidy plan under different experiments. Dai et al. (2019) 

divide container ships visiting POS into 4 categories according to their capacities, i.e., 

0–4000 TEU, 4000–8000 TEU, 8000–12000 TEU and 12000+ TEU. For each 

category, ships fall into this category are the same, which means that these ships have 

the same capacity, power consumption at berth, and gross tonnage that are set to the 
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average values of this category. The total annual energy consumption for ships that 

belong to category 𝑡𝑡 while berthing is calculated by following equations: 

𝐸𝐸𝑡𝑡 = 𝑁𝑁𝑡𝑡 × 𝐴𝐴𝑃𝑃𝑡𝑡 × 𝑇𝑇𝑡𝑡 (4-16) 

𝐴𝐴𝑃𝑃𝑡𝑡 = 𝑊𝑊𝑡𝑡 × 𝑅𝑅 × 𝐿𝐿 (4-17) 

where 𝐸𝐸𝑡𝑡 is the total annual energy consumption at berth (kWh); 𝑁𝑁𝑡𝑡 is the total number 

of annual ship calls; 𝐴𝐴𝑃𝑃𝑡𝑡  is average power consumption at berth (kW); 𝑇𝑇𝑡𝑡  is the 

average berthing time for each ship call (h). Since when ships use shore power, it takes 

an average of 2 hours to connect devices, we added 2 hours to 𝑇𝑇𝑡𝑡 for ships using shore 

power. 𝑊𝑊𝑡𝑡 is the gross tonnage of the ships in category 𝑡𝑡 (ton). 𝑅𝑅 is the ratio of power 

consumption by tonnage, set to 0.2 kW/t, and 𝐿𝐿  (set to 0.17) is load factor that 

measures the utilization rate of power consumption. The values of parameters related 

to energy consumption are shown in Table 4-2.  

Table 4-2: Parameter values related to the ship category 

 Ship category 
I II III IV 

Average capacity (TEU) 2,000 6,000 10,000 15,000 
Average gross tonnage (ton) 20,000 60,000 100,000 150,000 
Total ship calls 6,612 2,628 1,608 1,152 
Average time at berth (h) 33.2 19.8 24.8 28.9 

 

To calculate cost for each energy supply method per ship call, we first calculate 

energy consumption of each energy supply method. For MDO and HFO, we need to 

multiply energy conversion rate. As shown in Wild (2005), it takes an average of 244g 

MDO or 260.5g HFO to generate 1 kWh energy. We then multiply energy 

consumption by the corresponding energy price. The price information is obtained 

from Lindstad, Rehn, and Eskeland (2017) and Yu, Voß, and Tang (2019). The prices 

for MDO, HFO, and shore power are 644 USD/mt, 491 USD/mt, and 0.12 USD/kWh. 

Having cost and energy consumption information, the energy cost using different 

energy supply methods for a ship call can be calculated. The results are shown in Table 

4-3.  
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Table 4-3: Costs (dollar) of energy supply methods per ship call 

 Ship category 
I II III IV 

MDO 3,548 6,347 13,250 23,160 
HFO 6,299 7,607 14,182 23,306 
Shore power 6,489 8,024 14,606 23,673 

 

Table 4-2 shows ship category according to average gross tonnage. We also 

mentioned in Chapter  4.3.1 that ships visiting a port can be divided into four types: 

without scrubber and shore power equipment, with only scrubber, with only shore 

power equipment, and with both scrubber and shore power equipment. Therefore, we 

have 16 ship types and we use parameter 𝑟𝑟𝑐𝑐𝑡𝑡 to represent the ratio of ships that are 

equipped with 𝑡𝑡 devices, where 𝑡𝑡 = {neither, scrubber, shore power, both}, in category 

𝑐𝑐, where 𝑐𝑐 = {I, II, III, IV}. For example, if 𝑟𝑟𝐼𝐼𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟 = 5%, it means that the number 

of ships that are equipped with scrubber in category I is 331 (6612 × 5%). We set 6 

scenarios for the ratio which are shown in Table 4-4. We assume that the proportion 

of ships equipped with a certain device is equal in different ship categories. 

Table 4-4: Scenarios for type ratio 

 Neither Scrubber Shore power Both 
Scenario 1 85% 5% 5% 5% 
Scenario 2 70% 10% 10% 10% 
Scenario 3 55% 15% 15% 15% 
Scenario 4 40% 20% 20% 20% 
Scenario 5 25% 25% 25% 25% 
Scenario 6 10% 30% 30% 30% 

 

4.5.2 Computational Performance 

We set both 𝛼𝛼 and 𝛽𝛽 to 5% under 6 scenarios. The computational results under 

6 scenarios are shown in Table 4-5. The second column is the total subsidy for all ship 

calls. The third column is the subsidy for each energy supply method for one ship call, 

where the first number is the subsidy for using MDO, the second one is the subsidy 

when powering ships with HFO and cleaning exhaust gas with scrubber, and the last 

number is the subsidy for using shore power. The last column is the running time. 
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Table 4-5: Results for 6 scenarios 

 Objective (USD) Subsidy for Methods (USD) Time (s) 
Scenario 1 3,415,200 {0, 2751, 2941} 2.75 
Scenario 2 1,762,200 {0, 1260, 1677} 14.3 
Scenario 3 1,372,800 {0, 932, 1356} 37.02 
Scenario 4 1,372,800 {0, 932, 1356} 121.27 
Scenario 5 1,372,800 {0, 932, 1356} 109.94 
Scenario 6 - - >7200 

Note: “-” means results cannot be obtained within 7200s. 

Table 4-5 shows that under the same value of 𝛼𝛼 and 𝛽𝛽, increasing the proportion 

of ships equipped with scrubber and shore power devices could reduce total subsidy. 

Because both shore power and scrubber have scale economy, which means it is more 

beneficial for large-size ships. With the increase of ship size, the cost gap between 

energy supply methods becomes smaller and thus the subsidies for energy supply 

methods decrease. From scenario 1 to 6, the ratio of ships equipped with scrubber, 

shore power devices, and both increase from 5% to 30%, which means more large 

ships have the mentioned equipment. Since the subsidy for larger ships is cheaper and 

the requirements for ships using scrubber and shore power remain the same, more 

large-size ships will be subsidized and thus the total subsidy reduces. 

  The subsidy for each energy supply method will also reduce. As ships will 

choose the cheapest available supply method (i.e., MDO), to make ships use scrubber, 

the subsidy for using scrubber should be at least the cost gap between MDO and 

scrubber. It is the same for shore power. Since we set requirements for both scrubber 

and shore power, the cost for these three methods should be equal for at least one 

category. The cost gaps decrease as ship size increases. With more large ships being 

able to use scrubber and shore power, the subsidies for these two methods decrease. 

  Solution time increases with scenario and for scenarios 6, results even cannot 

be obtained within 7200s. Because as the ratio increases, the constraints become more 

and more relaxed, the number of iterations increases during the solution process, and 

the convergence becomes slower, so the solution time becomes longer. 

  Figure 4-1 shows the proportion of ships using different energy supply methods 

in each category under 5 scenarios (Results for scenarios 6 are not shown since we did 

not obtain them). We can find that the proportion of ships using scrubber and shore 

power decreases in category I and II while increases in category III and IV when the 
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ratio of ships equipped with these devices increases. This suggests that when 

promoting scrubber and shore power in maritime industry, it is more cost-effective to 

implement on large ships. 

 

Figure 4-1: The proportion of ships using different energy supply methods in each 
category under 5 scenarios 

4.5.3 Sensitivity Analysis 

In this section, we investigated the impacts of some crucial parameters, such as 

𝛼𝛼, 𝛽𝛽, and 𝐾𝐾𝑖𝑖𝑣𝑣. Since all scenarios should have the same trend, only with different key 

points, we conducted the sensitivity analysis on scenario 1.  

  In scenario 1, the ratios of ships equipped without any devices, with only 

scrubber, with only shore power devices, and with both equipment are 85%, 5%, 5%, 

and 5%, respectively. To study the impacts of 𝛼𝛼 and 𝛽𝛽, we set one of them to 0 and the 

other from 1% to 10%. Figure 4-2 shows the proportion of ships using a certain energy 

supply method in different ship types with the change of 𝛼𝛼 and 𝛽𝛽. I, II, III, and IV 

represent ship category, which were mentioned in Chapter 4.5.1. N, S, P, and B 

represent the equipment owned by ships, where N means ships have neither scrubber 

nor shore power devices, S means ships only have scrubber, P means ships only have 

shore power equipment, and B means ships have both devices. Therefore, we can 

obtain 16 ship types. Figure 4-2 (a) and Figure 4-2 (b) show the impacts of 𝛼𝛼, which 

means 𝛽𝛽 was set to 0. Therefore, none of the ships chose shore power because of the 

expensive cost. With the increase of 𝛼𝛼, the proportion of scrubber-capable ships using 

MDO is on the decline, such as IS, IB, IIS, IIB, IIIS, IIIB, IVS, and IVB. While the 

proportion of using scrubbers is on the rise for these ship types. The ratio of category 
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IV changes first, until category I. Because the subsidy for ships of category IV to use 

scrubber is the cheapest while the most expensive for category I. The ratio for IVB 

remains at 0 for MDO utilization while 100% for HFO. Because all ship calls of this 

type represent less than 1% of the total number of ship calls. Therefore, to achieve 1% 

scrubber utilization, all ship calls of this type chose HFO. For ships belong to N and 

P, since they are not equipped with scrubber, they can only use MDO. The ratio for 

these ships remains at 100% for MDO utilization while 0 for HFO. 

  The same trend can be found for the impacts of 𝛽𝛽 in Figure 4-2 (c) and Figure 

4-2 (d), but for the different ship types. The proportion of ships belong to P and B 

using MDO declines, while increases for using shore power. For ships belong to N and 

S, since they do not have shore power equipment, they can only use MDO. The ratio 

for these ships remains at 100% for MDO utilization while 0 for shore power. The 

change for category I to IV also has a similar pattern. 

 

(a) The impact of 𝛼𝛼 on the usage of MDO 

 

(b) The impact of 𝛼𝛼 on the usage of HFO 

 

(c) The impact of 𝛽𝛽 on the usage of MDO 

 

(d) The impact of 𝛽𝛽 on the usage of shore power 

Figure 4-2: The proportion of ships using different energy supply methods 

The impacts of 𝛼𝛼 and 𝛽𝛽 on subsidy is shown in Figure 4-3. When we discuss the 

impacts of 𝛼𝛼, the subsidy for both MDO and shore power are 0. Therefore, we only 

show the trend for the subsidy for scrubber. This is the same for 𝛽𝛽, where we only 
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show the subsidy for shore power. We can see that with the increase of 𝛼𝛼 and 𝛽𝛽, the 

subsidy for scrubber and shore power also increases. Because large ships require less 

subsidies, they are given priority. 

 

Figure 4-3: The impacts of 𝛼𝛼 and 𝛽𝛽 on subsidy 

To investigate the impacts of 𝐾𝐾𝑖𝑖𝑣𝑣, we designed a new scenario where all ships 

are equipped with both scrubber and shore power devices. Because we want to figure 

out what the subsidy plan will be without equipment restriction. When all ships can 

choose among all the energy supply methods, they will choose the cheapest one. Table 

4-6 shows the subsidy for scrubber and the range of 𝛼𝛼 when only subsidy for scrubber 

is allowed. When no subsidy is given, all ship calls chose MDO. When the subsidy is 

146, the cost of using MDO and HFO is the same for ship category IV. Therefore, all 

ship calls of category IV can choose between MDO and HFO. When the subsidy is 

932, the cost of using MDO and HFO is the same for ship category III, while HFO is 

the cheapest in category IV. Therefore, all ship calls of category IV chose HFO while 

those of category III can choose between MDO and HFO. It is the same when subsidy 

is 1260 and 2750. Table 4-7 shows the subsidy for shore power and the range of 𝛽𝛽 

when only subsidy for shore power is allowed. Table 4-8 shows the subsidy for 

scrubber and shore power and the range of 𝛼𝛼 and 𝛽𝛽. The calculation rule for subsidy 

and the range is the same as that in Table 4-6. Figure 4-4 compares the subsidy for 

scrubber and shore power under 7 scenarios when 𝛼𝛼 and 𝛽𝛽 are set to 5%. We can find 

that when more ships are equipped with scrubber and shore power devices, the subsidy 

can be reduced during promotion. 
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Table 4-6: The subsidy for scrubber and the range of 𝛼𝛼 when only subsidy for 
scrubber is allowed 

subsidy for scrubber the range of 𝛼𝛼 
0 0 

146 0–9.6% 
932 9.6%–23% 
1260 23%–44.9% 
2750 44.9%–100% 

 
Table 4-7: The subsidy for shore power and the range of 𝛽𝛽 when only subsidy for 

shore power is allowed 
 

subsidy for shore power the range of 𝛽𝛽 
0 0 

513 0–9.6% 
1356 9.6%–23% 
1677 23%–44.9% 
2941 44.9%–100% 

 
Table 4-8: The subsidy for scrubber and shore power and the range of 𝛼𝛼 and 𝛽𝛽 

 
subsidy for 

scrubber 
subsidy for 
shore power the range of 𝛼𝛼 the range of 𝛽𝛽 the range of 

𝑎𝑎 + 𝑏𝑏 
0 0 0 0 0 

146 513 0–𝑎𝑎 0–𝑏𝑏 0–9.6% 
932 1356 0–𝑎𝑎 9.6%–9.6%+𝑏𝑏 0–13.4% 
1260 1677 13.4%–13.4%+𝑎𝑎 9.6%–9.6%+𝑏𝑏 0–21.9% 
2750 2941 44.9%–44.9%+𝑎𝑎 0–𝑏𝑏 0–55.1% 

 

 
Figure 4-4: The subsidy for scrubber and shore power under 7 scenarios 

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7

subsidy for scrubber subsidy for shore power



 

 

Chapter 4: Optimal subsidy design for energy generation in ship berthing 71 

We could also study the impacts of 𝐶𝐶𝑖𝑖𝑣𝑣. But it is obvious that reducing cost could 

reduce subsidy because the gap will become closer. When technology development 

makes the cost of using scrubber and shore power lower than MDO, no subsidy will 

need. All ships will actively choose these two supply methods. 

  From the analysis of Chapter 4.5.2 and Chapter 4.5.3, we can obtain the 

following managerial insights. First, in the initial stage of the promotion of scrubber 

or shore power, we should start with large ships. Because there is scale economy when 

installing scrubber or shore power for large ships. Besides, large ships consume more 

energy. The unit energy consumption cost of HFO and shore power is lower than 

MDO. Therefore, it is more cost-effective and easier to persuade large ships to use 

scrubber or shore power than small-size ships. Second, increasing the number of ships 

equipped with scrubber or shore power will reduce subsidy. Usually, the government 

chooses a one-time subsidy for ships willing to install the equipment. This research 

suggests that the government could also consider subsidizing ships for usage of 

scrubber or shore power. The more ships that are willing to install these devices, the 

less subsidy that the government will pay. Third, each subsidy corresponds to a 

utilization range. The government can choose the subsidy amount according to the 

target utilization level. 

4.6 CONCLUSIONS 

This research optimizes subsidy plan to promote the use of scrubber and shore 

power in maritime industry to reduce berth emissions. A bi-level optimization model 

is developed to formulate this problem where the government in the upper level 

minimizes total subsidy amount while ship operators in the lower level choose the 

cheapest available energy supply method. The problem is difficult to solve due to the 

interdependence and nonlinearity. We therefore convert the bi-level model into single-

level model and linearize the nonlinear components to make it computationally 

tractable.  

We conduct several numerical experiments using the data of Port of Shanghai to 

evaluate the performance of the model. Results suggest that in the initial stage of the 

promotion of scrubber or shore power, we should start with large ships. Besides, 

increasing the number of ships equipped with scrubber or shore power will reduce 

subsidy. Third, each subsidy corresponds to a utilization range. The government can 
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choose the subsidy amount according to the target utilization level. These results can 

provide guidance for the practical implementation of subsidies to promote the adoption 

of green technologies. 

One limitation of this research is that we use average value of each ship category 

due to data limitation. It would be better if we could get more accurate data. For the 

future research, first, we can use machine learning to predict the parameter values for 

each ship category and use them as model input. Second, we can reformulate a more 

comprehensive model. For example, we can incorporate the emission reduction 

efficiency of different green technologies in the objective function. We take the sum 

of total subsidy and emission amount as a new objective function in the upper level. 

Also, for the lower-level problem, we can add ship operation cost in the model. For 

instance, different green technologies may have differences in fuel consumption, and 

we add the sum of bunkering cost in the objective function. Correspondingly, we need 

to add constraints regarding fuel consumption. Modifying the objective functions and 

constraints can make the model more comprehensive. 



 

 

Chapter 5: A bi-level programming approach to optimize ship fouling cleaning 73 

Chapter 5: A bi-level programming 
approach to optimize ship 
fouling cleaning11 

This chapter focuses on cleaning the ship fouling that has significant adverse 

effect on both vessel performance and environmental sustainability. It involves two 

parties: cleaning service providers and shipping companies. The former decides the 

deployment of the cleaning equipment, while the latter decides when and where the 

fouling should be cleaned. The interaction between the two parties is formulated 

through a bi-level model. The computational complexity of the bi-level model is 

greatly simplified by transforming it into a single-level model. Numerical experiments 

are conducted using real-world data to evaluate the performance of the proposed 

models. Additionally, sensitivity analyses are performed to investigate the influence 

of key parameters. 

5.1 INTRODUCTION 

Maritime shipping is a crucial component of global logistics, responsible for 

delivering over 80% of global trade by volume in 2022 according to the United Nations 

Conference on Trade and Development (UNCTAD). During shipping voyages, 

various marine organisms, such as algae, plants, and small animals, attach to the 

surface of a ship’s hull, leading to ship fouling. Such ship fouling has significant 

adverse effects on both vessel performance and environmental sustainability. First, it 

increases hydrodynamic drag, which in turn increases fuel consumption and 

greenhouse gas emissions. Utama and Nugroho (2018) provide an overview of the 

relationship between biofouling, ship drag, and fuel consumption. Hakim et al. (2017) 

conclude that fuel consumption in-creases by about 10% in a year due to marine 

fouling. Second, ship fouling can facilitate the transport and introduction of non-native 

species, leading to ecological disturbance and potential damage to marine ecosystems. 

 
 
11 Wang, W., Guo, H., Li, F., Zhen, L., & Wang, S. (2023). A bi-level programming approach to optimize 
ship fouling cleaning. Journal of Marine Science and Engineering, 11(12), 2324. 
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Fitridge et al. (2012) show that a conservative estimate of the direct economic losses 

caused by biofouling on the aqua-culture industry is 5%–10%. Therefore, it is 

imperative to regularly clean ship hulls to reduce the adverse impacts of biofouling. 

There are two main approaches to keeping a ship’s hull clean: the first approach is to 

use antifouling coatings (Farkas et al., 2021), and the second is hull cleaning 

(Dinariyana et al., 2022; Farkas et al., 2022). Antifouling coatings, as the name 

suggests, involve the application of special coatings to the surface of a ship’s hull to 

reduce the attachment of pollutants and marine organisms. These coatings typically 

contain additives that deter biofouling, making the surface of a ship’s hull easier to 

clean than in the absence of such coatings. Conversely, hull cleaning involves the 

physical or chemical removal of pollutants and marine organisms that have already 

attached to the surface of a ship’s hull. Methods used include scraping, high-pressure 

water cleaning, high-frequency ultrasonic cleaning, and chemical cleaning. 

This chapter primarily focuses on the second approach, that is, the cleaning of a 

ship’s hull when pollutants and marine organisms are already attached. Those 

interested in antifouling coatings can refer to references (Yebra, Kiil, and Dam-

Johansen, 2004; Maan et al., 2020). Many countries have issued regulations on 

biofouling cleaning. For example, New Zealand and Australia require all vessels to 

carry out hull cleaning within 30 days of arrival in their ports 1. These regulations aim 

to prevent the spread of invasive species due to contaminated hulls and to maintain the 

ecological balance of marine ecosystems. 

The hull cleaning process involves two parties: cleaning service providers and 

shipping companies. The former provide cleaning equipment and services, aiming to 

maximize their profits, whereas the latter decide whether and where to use the cleaning 

service such that their cost is minimized. To formulate the interaction between the two 

parties, a bi-level non-linear programming model was developed. In the upper level of 

the model, the service provider makes decisions regarding the deployment of 

equipment, considering factors such as service revenue and equipment costs. 

Meanwhile, in the lower level, shipping companies optimize their cleaning decisions 

by balancing the cost of fouling cleaning, the additional fuel cost caused by fouling, 

and the availability of cleaning equipment. The problem is challenging from a 

computational standpoint due to the interaction between the decisions at both levels 
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and the non-linearity of the lower-level problem. To address the complexity of the 

problem, the bi-level non-linear model is transformed into a single-level linear model 

using the big-M method, a mathematical technique used in linear programming to 

handle constraints with binary decision variables. The transformed problem can be 

easily solved by the off-the-shelf Gurobi solver, a widely used software package for 

linear programming (LP), mixed-integer linear programming (MILP), quadratic 

programming (QP), mixed-integer quadratic programming (MIQP), and other related 

optimization problems. Numerical experiments are conducted to compare the 

performance of the proposed solution method with a heuristic algorithm that iteratively 

solves the up-per-level and lower-level problems in sequence until the upper-level 

solution remains unchanged. The results demonstrate that the proposed method, which 

transforms the bi-level model into a single-level model, is well suited to the problem 

as it significantly speeds up computation compared with the heuristic algorithm. 

Furthermore, the results of the numerical experiments suggest that cleaning service 

providers engage in partial demand fulfillment to maximize profit. In addition, it is 

recommended that equipment procurement be prioritized in the first year. Sensitivity 

analyses are per-formed to explore the impact of key parameters. The findings reveal 

that requiring full demand satisfaction results in a USD 27 million loss in profit for the 

cleaning service providers. Increases in the purchase cost of equipment also decrease 

the providers’ profits and potentially lead to some service providers exiting the market. 

However, in-creasing cleaning price will increase total profits at the expense of 

fulfilling only a portion of the demands.  

5.2 RESEARCH GAP 

While the literature has extensively examined the effects of fouling, cleaning 

methods, and cleaning schedules, there remains a gap in comprehensive research that 

simultaneously addresses the optimal locations and timing for ship cleaning, as well 

as the appropriate number of devices to be deployed. Also, the bi-level models have 

not been conducted to explore ship fouling cleaning when cleaning service providers 

and ships interact with each other. Therefore, the main contributions of this research 

are three folds. First, this study provides a quantitative approach to optimize the 

fouling cleaning process, which is a unique contribution compared to the existing 

literature. By applying mathematical techniques and optimization methods, the present 
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research offers a systematic framework for achieving efficient and effective foul 

cleaning. Second, the present research introduces a bi-level model that incorporates 

both service providers and demanders. In this model, the upper-level decision makers, 

who are the service providers, determine the optimal deployment of cleaning 

equipment, including location, quantity, and timing, in order to maximize total profits. 

On the other hand, the lower-level decision makers, which are the ships, decide when 

and where to clean fouling to minimize the total cost. It is important to note that the 

upper-level deployment decision influences the cleaning decisions of the lower-level 

ships, while the lower-level decisions also impact the upper-level deployment. This 

bi-level model allows for the simultaneous optimization of equipment deployment and 

service purchase decisions. By considering the interactions between these two groups, 

the study offers comprehensive solutions that address the needs and objectives of both 

service providers and demanders. Third, to enhance computational efficiency, the 

present research transforms the complex bi-level non-linear problem into a single-level 

linear problem through the big-M method, which converts the formulation of the 

lower-level problem into constraints for the upper-level problem. By doing so, the two 

problems are effectively merged into a single-level optimization problem, which can 

be solved using linear programming techniques. This transformation simplifies the 

optimization process and reduces the computational complexity, resulting in faster 

solution times. 

5.3 PROBLEM DESCRIPTION AND FORMULATION 

This section presents problem description and the model formulation. The main 

nomenclature is summarized in Table 5-1, and additional ones will be introduced 

whenever necessary.  
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Table 5-1: Nomenclature 

Sets 
𝑅𝑅 Set of container shipping routes, indexed by 𝑟𝑟, 𝑟𝑟 ∈ 𝑅𝑅 
𝑃𝑃 Set of all ports on shipping routes, indexed by 𝑝𝑝, 𝑝𝑝 ∈ 𝑃𝑃 
𝑆𝑆 Set of homogenous ships, indexed by 𝑠𝑠, 𝑠𝑠 ∈ 𝑆𝑆 
𝑁𝑁 Planning period, indexed by 𝑛𝑛, 𝑛𝑛 ∈ {1, … , |𝑁𝑁|} 
Φ𝑠𝑠 An ordered set of port–time pairs of ship 𝑠𝑠  
Φ𝑠𝑠𝑘𝑘 Set of all port–time pairs of ship 𝑠𝑠 at the 𝑘𝑘th year  
Ω𝑠𝑠 Set of all port–time pairs of ship 𝑠𝑠 that have 𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡∗ = 1  

Ω𝑠𝑠𝑘𝑘 Set of all port–time pairs of ship 𝑠𝑠 that have 𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡∗ = 1 and 365(𝑘𝑘 −
1) < 𝑡𝑡 ≤ 365𝑘𝑘 

V𝑠𝑠𝑝𝑝𝑡𝑡 
Set of ships that are in service at port 𝑝𝑝 when ship 𝑠𝑠 arrives at this port 
at the port–time pair (𝑝𝑝, 𝑡𝑡) 

ℤ0+ Set of non-negative integers 
Parameters 

𝐶𝐶𝑓𝑓 The unit fuel cost (USD/nautical mile) 
𝐶𝐶𝑝𝑝 The cleaning price (USD) at port 𝑝𝑝 
𝐶𝐶𝑠𝑠 The amortized purchasing cost (USD/year) of cleaning equipment 

𝐿𝐿𝑠𝑠𝑝𝑝 The distance (nautical mile) of the next leg for ship 𝑠𝑠 after visiting port 
𝑝𝑝 

𝐷𝐷𝑠𝑠𝑝𝑝 The dwell time (days) of ship 𝑠𝑠 at port 𝑝𝑝 
𝛼𝛼 The increase in the rate of fouling (kg/m2·day) 

𝛽𝛽 The coefficient between fuel consumption growth rate and ship fouling 
level 

𝜋𝜋𝑠𝑠𝑝𝑝𝑡𝑡 The position of port–time pair (𝑝𝑝, 𝑡𝑡) at set Φ𝑠𝑠 
𝜏𝜏𝑠𝑠𝑝𝑝𝑡𝑡 The position of port–time pair (𝑝𝑝, 𝑡𝑡) at set Ω𝑠𝑠 

Decision variables 

𝑥𝑥𝑝𝑝𝑛𝑛 The amount of equipment to be deployed at port 𝑝𝑝 at the beginning of 
the 𝑛𝑛th year 

𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡 
Binary variable which equals 1 if the ship 𝑠𝑠 cleans fouling at the port–
time pair (𝑝𝑝, 𝑡𝑡) or 0 otherwise 

𝐹𝐹𝑠𝑠𝑝𝑝𝑡𝑡 The fouling accumulation (kg) on a ship 𝑠𝑠 at port–time pair (𝑝𝑝, 𝑡𝑡) 
 

The present research designs the plan for cleaning equipment deployment and 

ship fouling cleaning in a liner shipping network with a set of shipping routes, with 

the set indicated by 𝑅𝑅. Let 𝑁𝑁 be the set of the planning horizon consisting of |𝑁𝑁| time 

periods, each corresponding to a year. In this context, the route 𝑟𝑟 ∈ 𝑅𝑅 is defined as a 

closed loop, serving |𝑃𝑃𝑟𝑟|  ports of call and |𝐴𝐴𝑟𝑟|  legs, where |𝐴𝐴𝑟𝑟| = |𝑃𝑃𝑟𝑟| − 1 . For 

instance, the route 𝑟𝑟 can be described by (𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑,𝑎𝑎) where port 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, and 𝑎𝑎 are 

the first, second, third, fourth, and fifth port of call, respectively. The voyage from the 

𝑖𝑖th port of call to the (𝑖𝑖 + 1)th port of call is the 𝑖𝑖th leg. The collection of all ports within 

these routes forms the set 𝑃𝑃. A fleet of homogeneous ships, denoted as 𝑆𝑆, sails along 
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these routes. Each ship 𝑠𝑠 ∈ 𝑆𝑆 operates exclusively and repeatedly on a single route, as 

illustrated in Figure 5-1. In contrast, a route may accommodate multiple ships with 

diverse schedules, as depicted in Figure 5-2. When ship 𝑠𝑠 arrives at port 𝑝𝑝, its time of 

arrival is recorded as 𝑡𝑡 (measured in days), creating a port–time pair denoted as (𝑝𝑝, 𝑡𝑡). 

These pairs are arranged in the order of the ship’s ports of call. For any 𝑛𝑛 ∈ 𝑁𝑁, there 

is an ordered set Φ𝑠𝑠𝑛𝑛 including all the port–time pairs of ship 𝑠𝑠 in which the time 𝑡𝑡 

satisfies 365(𝑛𝑛 − 1) < 𝑡𝑡 ≤ 365𝑛𝑛 . All port–time pairs of ship 𝑠𝑠  during planning 

period 𝑁𝑁  are combined to form the ordered set Φ𝑠𝑠 , where Φ𝑠𝑠 = ⋃ Φ𝑠𝑠𝑛𝑛𝑛𝑛∈𝑁𝑁 . It is 

important to note that all ships accumulate fouling during their voyages. It is assumed 

that biofouling does not increase while a ship is in motion due to its high speed. 

However, when a ship remains stationary, such as when floating or at berth, fouling 

accumulates linearly with time at a rate of 𝛼𝛼. The extent of fouling accumulation on 

ship 𝑠𝑠 when arriving at a given port–time pair (𝑝𝑝, 𝑡𝑡) is denoted as 𝐹𝐹𝑠𝑠𝑝𝑝𝑡𝑡 (kg/m2). For 

instance, in Figure 5-1, ship 𝑠𝑠 departs from port 𝑎𝑎 without any fouling on the first day. 

After three days of sailing, it arrives at port 𝑏𝑏 with no fouling accumulation (𝐹𝐹𝑠𝑠𝑠𝑠4 =

0). However, after spending two days berthed at port 𝑏𝑏 , the fouling on the ship 

increases to 2𝛼𝛼 (𝐹𝐹𝑠𝑠𝑠𝑠4 + 2𝛼𝛼 = 2𝛼𝛼). Furthermore, it is assumed that the growth rate of 

fuel consumption is linearly related to fouling, with a coefficient of 𝛽𝛽. For example, 

considering the fouling of ship 𝑠𝑠 before departing from port 𝑏𝑏 as 2𝛼𝛼, fuel consumption 

will increase by the proportion of 2𝛼𝛼𝛽𝛽 when the ship travels from port 𝑏𝑏 to port 𝑐𝑐. 

 

Figure 5-1: An example of a ship sailing repeatedly on a route  
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Note: Each of the ships may have a different schedule, and their positions along the route vary based on 
their individual schedules. 

Figure 5-2: An example of a route accommodating multiple ships with diverse 
schedules 

5.3.1 Bi-level Decisions 

Two parties are involved in the present research: cleaning service providers and 

ships. The service providers provide fouling cleaning services at different ports with 

different prices, while ships arriving at a port of call decide whether to purchase the 

fouling cleaning service from the service providers. The research problem is 

formulated as a bi-level model. In the upper level, service providers optimize their 

service deployment strategies. In the lower level, ships, as the customers of fouling 

cleaning services, optimize their cleaning decisions. 

Before introducing the bi-level problem, it should be mentioned that ships are 

cost-driven, which means that regardless of the deployment plans proposed by service 

providers, each ship 𝑠𝑠 has its own optimal decisions as to where to use the cleaning 

service. The decisions are exclusively determined by total costs, as shown in the 

following model: 

[P1] Minimize ∑ ��𝐹𝐹𝑠𝑠𝑝𝑝𝑡𝑡 + 𝛼𝛼𝐷𝐷𝑠𝑠𝑝𝑝�𝛽𝛽�1 − 𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡�𝐶𝐶𝑓𝑓𝐿𝐿𝑠𝑠𝑝𝑝 + 𝐶𝐶𝑝𝑝𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡�(𝑝𝑝,𝑡𝑡)∈Φ𝑠𝑠  (5-1) 

subject to 

𝐹𝐹𝑠𝑠𝑝𝑝𝑡𝑡 = �𝐹𝐹𝑠𝑠𝑝𝑝′𝑡𝑡′ + 𝛼𝛼𝐷𝐷𝑠𝑠𝑝𝑝′��1 − 𝑦𝑦𝑠𝑠𝑝𝑝′𝑡𝑡′�, ∀(𝑝𝑝, 𝑡𝑡), (𝑝𝑝′, 𝑡𝑡′) ∈ Φ𝑠𝑠: π𝑠𝑠𝑝𝑝𝑡𝑡 − π𝑠𝑠𝑝𝑝′𝑡𝑡′ = 1 (5-2) 

𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡 ∈ {0,1}, ∀(𝑝𝑝, 𝑡𝑡) ∈ Φ𝑠𝑠. (5-3) 

The objective Function (5-1) minimizes total costs which consist of additional 

fuel costs incurred by biofouling and cleaning costs. Constraints (5-2) are a state 
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transition function between two consecutive states. Constraints (5-3) define 𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡 to be 

binary. 

Since P1 is deterministic, the optimal solutions 𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡∗ , ∀(𝑝𝑝, 𝑡𝑡) ∈ Φ𝑠𝑠, 𝑠𝑠 ∈ 𝑆𝑆 can be 

easily obtained. For each 𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡∗ = 1 , it means that ship 𝑠𝑠  requires a cleaning service 

when arriving at port–time pair (𝑝𝑝, 𝑡𝑡) . Let Ω𝑠𝑠  and Ω𝑠𝑠𝑘𝑘  be the set for ship 𝑠𝑠  that 

includes all port–time pairs (𝑝𝑝, 𝑡𝑡) that have 𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡∗ = 1 and the port–time pairs that have 

𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡∗ = 1 and 365(𝑘𝑘 − 1) < 𝑡𝑡 ≤ 365𝑘𝑘, respectively. Therefore, Ω𝑠𝑠 can be regarded as 

the demand for cleaning services for ship 𝑠𝑠. Having ship demands, the bi-level decision 

problem can be formulated.  

The service providers collectively act as the leader, whose main goal is to 

maximize profits by designing an optimal deployment plan for cleaning equipment. 

Their profits are derived from service revenue minus equipment costs. It is worth 

noting that different prices for cleaning services exist at different ports, while the 

equipment costs remain the same. Since fouling accumulation occurs over a period of 

time, the service providers are not required to purchase all the equipment in the first 

year. Instead, they determine the amount of equipment to be purchased at the beginning 

of each year (𝑛𝑛 th year) for each port, denoted as 𝑥𝑥𝑝𝑝𝑛𝑛 . Deploying more equipment 

allows for the servicing of a greater number of ships, thus increasing service revenue. 

However, it also leads to higher equipment costs. Hence, the service providers need to 

carefully design the deployment plan to balance between revenue and costs. 

On the other hand, the ships, as the followers, determine whether and where to 

utilize the cleaning service under the given the deployment plan �⃗�𝑥. To maximize the 

total profits, the deployment plan made by service providers may not be able to serve 

all demands. Consequently, the ships that cannot be served will not use the cleaning 

service on the subsequent voyages and instead turn to other techniques, such as 

antifouling painting. Because ship demands are the best choice based on total costs, 

any violation will increase total costs, and it is assumed that ships do not accept cost 

increases. The total demands when ship 𝑠𝑠 arrives at port 𝑝𝑝 at port–time pair (𝑝𝑝, 𝑡𝑡) is 

denoted as |V𝑠𝑠𝑝𝑝𝑡𝑡|. Given the deployment plan �⃗�𝑥, the choices of ship 𝑠𝑠 can be modeled 

as follows: 

[P2] 𝑌𝑌𝑠𝑠(�⃗�𝑥) = argmin ∑ ∑ ��V𝑠𝑠𝑝𝑝𝑡𝑡� + 1 − ∑ 𝑥𝑥𝑝𝑝𝑛𝑛𝑘𝑘
𝑛𝑛=1 �𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡(𝑝𝑝,𝑡𝑡)∈Ω𝑠𝑠𝑠𝑠𝑘𝑘∈𝑁𝑁  (5-4) 
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subject to 

𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡 ≤ 𝑦𝑦𝑠𝑠𝑝𝑝′𝑡𝑡′, ∀(𝑝𝑝, 𝑡𝑡), (𝑝𝑝′, 𝑡𝑡′) ∈ Ω𝑠𝑠: τ𝑠𝑠𝑝𝑝𝑡𝑡 − τ𝑠𝑠𝑝𝑝′𝑡𝑡′ = 1 (5-5) 

𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡 ∈ {0,1}, ∀(𝑝𝑝, 𝑡𝑡) ∈ Ω𝑠𝑠. (5-6) 

Let (𝑝𝑝, 𝑡𝑡) ∈ Ω𝑠𝑠 be the first pair at which the equipment supply is insufficient to 

satisfy demands, i.e., �V𝑠𝑠𝑝𝑝𝑡𝑡� + 1 > ∑ 𝑥𝑥𝑝𝑝𝑛𝑛𝑘𝑘
𝑛𝑛=1  . In the optimal solution, there will be 

𝑦𝑦𝑠𝑠𝑝𝑝′𝑡𝑡′:τ𝑠𝑠𝑝𝑝′𝑡𝑡′<τ𝑠𝑠𝑝𝑝𝑡𝑡 = 1  and 𝑦𝑦𝑠𝑠𝑝𝑝′𝑡𝑡′:τ𝑠𝑠𝑝𝑝′𝑡𝑡′≥τ𝑠𝑠𝑝𝑝𝑡𝑡 = 0 . This means that when the port can 

provide sufficient equipment, the ship 𝑠𝑠 will use the service. Conversely, if the port 

cannot meet requirements, the ship 𝑠𝑠 will not use the service. Constraints (5-5) state 

that the ship will leave the market and turn to other techniques once it cannot be served. 

Constraints (5-6) define 𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡 to be binary.  

5.3.2 Model Formulation 

Given the lower-level solution 𝑌𝑌𝑠𝑠(�⃗�𝑥) , ∀𝑠𝑠 ∈ 𝑆𝑆 , the service providers can 

maximize total profits by designing the equipment deployment plan as follows: 

[P3] Maximize ∑ ∑ 𝐶𝐶𝑝𝑝𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡(𝑝𝑝,𝑡𝑡)∈Ω𝑠𝑠𝑠𝑠∈𝑆𝑆 − ∑ ∑ 𝐶𝐶𝑠𝑠𝑥𝑥𝑝𝑝𝑛𝑛(|𝑁𝑁| − 𝑛𝑛 + 1)𝑛𝑛∈𝑁𝑁𝑝𝑝∈𝑃𝑃  (5-7) 

subject to 

𝑥𝑥𝑝𝑝𝑛𝑛 ∈ ℤ0+, ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑛𝑛 ∈ 𝑁𝑁 (5-8) 

�⃗�𝑦𝑠𝑠 ∈ 𝑌𝑌𝑠𝑠(�⃗�𝑥), ∀𝑠𝑠 ∈ 𝑆𝑆 (5-9) 

where Constraints (5-8) impose non-negativity conditions on the decision variables of 

service providers. Constraints (5-9) indicate that 𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡 depends on the decisions of ship 

𝑠𝑠 at the lower-level problem, denoted by 𝑌𝑌𝑠𝑠(�⃗�𝑥). The optimal decisions of ship 𝑠𝑠 are 

determined by P2. If there exists more than one optimal solution to the lower-level 

problem, the ships will select the one that benefits upper-level decision makers. 

5.4 SOLUTION METHOD 

Bi-level problems are known for their computational complexity due to their 

hierarchical structure and the requirement to solve both an upper-level and a lower-

level problem simultaneously. Furthermore, the presence of non-linearity in the lower-

level problem adds to the computational challenge. However, there is a method to 

alleviate this complexity by transforming the bi-level non-linear problem into a single-
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level linear programming problem, which is shown in Figure 5-3. The reason for this 

transformation is that the lower-level problem involves a trade-off between demand 

and supply, which can be represented by binary decision variables. By substituting this 

trade-off with binary decision variables, we can then use binary variables to convert 

the objective function of the lower-level problem (P2) into constraints for the upper-

level problem (P3). By doing so, the two problems are effectively merged into a single-

level optimization problem, which can be solved using linear programming 

techniques. This transformation simplifies computational complexity and allows for 

the utilization of efficient linear programming algorithms. P2 requires that if �V𝑠𝑠𝑝𝑝𝑡𝑡� ≥

∑ 𝑥𝑥𝑝𝑝𝑛𝑛𝑘𝑘
𝑛𝑛=1 , 𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡 = 0, and if �V𝑠𝑠𝑝𝑝𝑡𝑡� + 1 ≤ ∑ 𝑥𝑥𝑝𝑝𝑛𝑛𝑘𝑘

𝑛𝑛=1 , 𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡 can be a value of zero or one 

depending on the decision made at the last port–time pair, which means that if the 

existing equipment is insufficient to cover the demand, the ship will not use cleaning 

services any more even if it can be served in the subsequent ports of call. Therefore, 

let 𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡  and 𝑦𝑦𝑠𝑠𝑝𝑝′𝑡𝑡′  denote the decision at the current and the last port–time pair, 

respectively, where τ𝑠𝑠𝑝𝑝𝑡𝑡 − τ𝑠𝑠𝑝𝑝′𝑡𝑡′ = 1 . When �V𝑠𝑠𝑝𝑝𝑡𝑡� + 1 ≤ ∑ 𝑥𝑥𝑝𝑝𝑛𝑛𝑘𝑘
𝑛𝑛=1  , if 𝑦𝑦𝑠𝑠𝑝𝑝′𝑡𝑡′ = 1 , 

𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡 = 1, and if 𝑦𝑦𝑠𝑠𝑝𝑝′𝑡𝑡′ = 0, 𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡 = 0. To transform the bi-level problem into a single-

level problem, the binary variable 𝑤𝑤𝑠𝑠𝑝𝑝𝑡𝑡 , ∀(𝑝𝑝, 𝑡𝑡) ∈ Ω𝑠𝑠  is defined to indicate the 

relationship between �V𝑠𝑠𝑝𝑝𝑡𝑡� and ∑ 𝑥𝑥𝑝𝑝𝑛𝑛𝑘𝑘
𝑛𝑛=1 . If 𝑤𝑤𝑠𝑠𝑝𝑝𝑡𝑡 = 1, �V𝑠𝑠𝑝𝑝𝑡𝑡� + 1 ≤ ∑ 𝑥𝑥𝑝𝑝𝑛𝑛𝑘𝑘

𝑛𝑛=1 , and if 

𝑤𝑤𝑠𝑠𝑝𝑝𝑡𝑡 = 0, �V𝑠𝑠𝑝𝑝𝑡𝑡� ≥ ∑ 𝑥𝑥𝑝𝑝𝑛𝑛𝑘𝑘
𝑛𝑛=1 . When 𝑤𝑤𝑠𝑠𝑝𝑝𝑡𝑡 = 0, it is necessary to ensure 𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡 = 0, and 

when 𝑤𝑤𝑠𝑠𝑝𝑝𝑡𝑡 = 1, we should obtain 𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡 = 𝑦𝑦𝑠𝑠𝑝𝑝′𝑡𝑡′. The transformation from a bi-level 

problem to a single-level problem using the big-M method is as follows: 

[P4] �V𝑠𝑠𝑝𝑝𝑡𝑡� ≥ ∑ 𝑥𝑥𝑝𝑝𝑛𝑛𝑘𝑘
𝑛𝑛=1 − 𝑀𝑀𝑤𝑤𝑠𝑠𝑝𝑝𝑡𝑡, ∀(𝑝𝑝, 𝑡𝑡) ∈ Ω𝑠𝑠𝑘𝑘, 𝑘𝑘 ∈ 𝑁𝑁 (5-10) 

�V𝑠𝑠𝑝𝑝𝑡𝑡� + 1 ≤ ∑ 𝑥𝑥𝑝𝑝𝑛𝑛𝑘𝑘
𝑛𝑛=1 + 𝑀𝑀�1 − 𝑤𝑤𝑠𝑠𝑝𝑝𝑡𝑡�, ∀(𝑝𝑝, 𝑡𝑡) ∈ Ω𝑠𝑠𝑘𝑘, 𝑘𝑘 ∈ 𝑁𝑁 (5-11) 

𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡 − 𝑦𝑦𝑠𝑠𝑝𝑝′𝑡𝑡′ ≤ 1 − 𝑤𝑤𝑠𝑠𝑝𝑝𝑡𝑡, ∀(𝑝𝑝, 𝑡𝑡), (𝑝𝑝′, 𝑡𝑡′) ∈ Ω𝑠𝑠: τ𝑠𝑠𝑝𝑝𝑡𝑡 − τ𝑠𝑠𝑝𝑝′𝑡𝑡′ = 1 (5-12) 

𝑦𝑦𝑠𝑠𝑝𝑝′𝑡𝑡′ − 𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡 ≤ 1 − 𝑤𝑤𝑠𝑠𝑝𝑝𝑡𝑡, ∀(𝑝𝑝, 𝑡𝑡), (𝑝𝑝′, 𝑡𝑡′) ∈ Ω𝑠𝑠: τ𝑠𝑠𝑝𝑝𝑡𝑡 − τ𝑠𝑠𝑝𝑝′𝑡𝑡′ = 1 (5-13) 

𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡 ≤ 𝑤𝑤𝑠𝑠𝑝𝑝𝑡𝑡, ∀(𝑝𝑝, 𝑡𝑡) ∈ Ω𝑠𝑠 (5-14) 

where 𝑀𝑀 is the total number of ships in the network plus one. The inequalities in P4 

are equivalent to (5-4) and (5-5). 
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Figure 5-3: The flowchart of the solution method 

5.5 NUMERICAL EXPERIMENTS 

In this section, the performance of the solution method is evaluated using real-

world data. The proposed approach, which transforms the bi-level problem into a 

single-level problem, is compared with a heuristic algorithm that sequentially solves 

the upper-level and lower-level problems. This comparison demonstrates the 

superiority of the proposed method. Furthermore, the optimal decisions of both service 

providers and ships are determined using the proposed method, and the interaction 

between these two parties is analyzed. Additionally, sensitivity analysis is conducted 

to assess the influence of key parameters. All the experiments were carried out on a 

laptop with 6 CPU cores, 2.6 GHz processing speed, and 24 GB of memory. The model 

is coded in Python and solved by Gurobi 9.5.0. 

5.5.1 Parameter Setting  

Five routes, listed in Table 5-2, were selected from the Asia–Europe network of 

a global liner shipping company to evaluate the performance of the proposed model. 

These routes contain 18 ports, as shown in Figure 5-4. A total of 250 ships travels on 

these routes, with 100 ships sailing on each of the first four routes and 50 ships sailing 

on the last route. The departure time of ships on the five routes is randomly generated 

from the ranges [1, 75], [1, 80], [1, 90], [1, 85], and [1, 40], respectively. The second 

numbers in the brackets are the duration required for a ship to complete the 

corresponding route. The sailing speed is 12 knots, and the planning period is set to 

five years. The dwell time at each port of call is randomly generated from the range 

[5, 15]. Having the departure time from the first port of call, the distance between ports 
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of call, ship dwell time, and sailing speed, the set of port–time pairs of each ship can 

be calculated. The unit fuel cost is USD 110.6/nautical mile according to Meng, Du, 

and Wang (2016) and Wu et al. (2023). The ship cleaning price is randomly generated 

from [26808, 40549] according to Schultz et al. (2011). The amortized purchasing cost 

is set to USD 100,000/year. According to Bryers and Characklis (1981) and Hakim et 

al. (2017), 𝛼𝛼 and 𝛽𝛽 are estimated to be 6.72 and 0.0001, respectively. 

Table 5-2: Ship routes 

Index Route 

1 Ningbo → Xiamen → Yantian → Tanjung Pelepas → Rotterdam → Port Tanger Med → 
Hong Kong → Ningbo  

2 Shanghai → Yantian → Tanjung Pelepas → Colombo → Port Tanger Med → Hamburg 
→ Antwerp → Port Tanger Med → Singapore → Laem Chabang → Ningbo → Shanghai 

3 
Antwerp → Rotterdam → Algeciras → Singapore → Hong Kong → Shanghai → 
Qingdao → Busan → Ningbo → Shanghai→ Yantian → Tanjung Pelepas → Sines → 
Antwerp 

4 Busan → Ningbo → Tanjung Pelepas→ Rotterdam → Tanjung Pelepas → Shanghai → 
Qingdao → Ningbo → Busan 

5 Shanghai → Tanjung Pelepas → Chittagong → Tanjung Pelepas → Singapore → Laem 
Chabang → Ningbo → Shanghai 

 

 

Figure 5-4: All ports of the selected routes 

5.5.2 Computational Performance 

To test the performance of the solution method, it is compared with an algorithm 

described in Algorithm 1. This algorithm iteratively solves the upper-level and lower-

level problem in sequence until the upper-level solution stays unchanged. A 

comparison between the proposed solution method and Algorithm 1 is shown in Table 

5-3. Since the planning period will influence total demand, the computation times of 

the different methods under different planning periods are shown. Results show that 
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transforming the bi-level model to a single level speeds up computation, and the 

proposed method is therefore suitable for our problem. 

Algorithm 1. The heuristic for solving bi-level problems 

1 Initialization: Regard all 𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡 = 1 in Problem (1), denoted by 𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡∗ , as the 
input of P3 

2 Repeat until 𝑥𝑥𝑝𝑝𝑛𝑛∗  stays unchanged: 
3 Solve P3 with 𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡∗  and obtain 𝑥𝑥𝑝𝑝𝑛𝑛∗  
4 Solve P2 with 𝑥𝑥𝑝𝑝𝑛𝑛∗  and obtain 𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡∗  
5 Return 𝑥𝑥𝑝𝑝𝑛𝑛∗  and 𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡∗  

 

Table 5-3: Comparison between the proposed solution method and Algorithm 1 

Planning Period 
Computation Time 

Single Level Algorithm 
5 17.1 390.8 

10 19.7 430.8 
20 20.3 480.5 

 
Before solving the bi-level problem, the optimal solution for P1 is first obtained 

as the input of the bi-level problem. The time consumption is 89.4 s. Every port–time 

pair with 𝑦𝑦𝑠𝑠𝑝𝑝𝑡𝑡 = 1 is regarded as a cleaning demand. The demand distribution on each 

port over five years is shown in Figure 5-5. It shows that the demand is concentrated 

in only six ports, with only slight variations in demand from year to year at each port. 

 

Figure 5-5: Demand distribution over the planning period 
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Having the demand, the bi-level problem can be solved, which takes 17.1 s. The 

deployment plan of the cleaning equipment is shown in Figure 5-6. Only four ports are 

deployed with equipment considering the revenue earned by providing service and the 

equipment purchase costs. It is worth noting that most of the equipment is purchased 

in the first year, with a small number of purchases in the second and third year. The 

reason can be found from Figure 5-7, which presents the maximal daily demand of the 

four ports in each year. The maximal demand is roughly the same each year, explaining 

why procurement is concentrated in the first year. However, there is a slight increase 

in demand in the second and third year, resulting in additional purchases. The total 

profit earned for providing cleaning services over the planning period is around USD 

45.7 million. 

 

Figure 5-6: The deployment plan of the cleaning equipment 

 

Figure 5-7: The maximal daily demand of the four ports in each year 
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For ships, due to the deployment plan of devices, not all demands can be 

satisfied. Figure 5-8 shows a comparison between initial demand and satisfied demand. 

The lighter bars on the left represent initial demand, while the darker bars on the right 

represent satisfied demand. Since the Shanghai and Ningbo ports are not equipped with 

cleaning devices, the demand for these two ports is lost. Similarly, the Singapore and 

Tanjung Pelepas ports see demand lost due to insufficient equipment supply. 

 

Figure 5-8: The comparison between initial demand and satisfied demand 

5.5.3 Sensitivity Analysis 

In this chapter, the impacts of some key parameters are analyzed, such as the 

demand satisfaction requirements, the cleaning price, and the purchase costs. 

It can be seen from the above analysis that some demand is lost due to the lack 

of cleaning equipment. What if we require all demand be satisfied? The answers are 

shown in Table 5-4. When requiring all demand be satisfied, the service providers can 

earn USD 34 million more in revenue but spend USD 61 million more on equipment, 

resulting in a USD 27 million loss in profit. The equipment deployment plan also 

changes, as shown in Figure 5-9. The lighter bars on the left represent results without 

the full demand satisfaction requirement, while the darker bars on the right represent 

the results of full demand satisfaction. It shows that the ports that previously had no 

equipment, i.e., Ningbo and Yantian, are now equipped with cleaning devices. The 

other four ports that previously provided services are now equipped with more 
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equipment, especially in the third year. It suggests that in order for service providers 

to maintain a loyal customer base, they may need to make a trade-off by sacrificing a 

portion of their profits. 

Table 5-4: The comparison between partial satisfaction and full satisfaction of 
demand 

 Revenue  
(USD, Millions) 

Cost  
(USD, Millions) 

Profit  
(USD, Millions) 

Partial satisfaction 153 107 46 
Full satisfaction 187 168 19 
Change 34 61 −27 

 

 

Figure 5-9: Comparison of equipment deployment plans before and after the full 
demand satisfaction requirement 

Second, the impact of cleaning price is explored. The cleaning price in each port 

is changed in proportion from 0.1 to 10. The influences on demand, equipment 

deployment, and profits are shown in Figure 5-9 and elaborated below.  

Figure 5-10 (a) shows total port demand before (referred to as initial demand) 

and after (referred to as actual demand) the ship is affected by the equipment 

deployment plan. It shows that when cleaning price is too low, even with very high 

demand, service providers are reluctant to provide service because the revenue cannot 

cover the cost. With the increase in cleaning price, the initial demand continues to 

decline because expensive cleaning costs discourage ships from cleaning for longer 
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periods of time until the additional fouling costs become prohibitively high. As a result, 

cleaning frequency decreases, which is reflected in the initial demand. The actual 

satisfied demand follows a broadly similar trend to the initial demand, except for a 

slight increase when price increases by 2 to 2.5 times. The slight increase can be 

explained by Figure 5-10 (b), which depicts the total demand in each year when the 

price is 2 and 2.5 times the original price. It is worth noting that when price increases 

by 2 to 2.5 times, there is only a slight drop in demand. Because the revenue from each 

demand is increasing, service providers will serve as many demands as possible, so 

the actual demand will increase slightly. When the price continues to increase because 

the initial demand is falling, the actual demand is also falling, though the gap between 

the two will become smaller and smaller. 

The total amount of purchased equipment in each year is shown in Figure 5-10 

(c). When the cleaning price is too low, service providers will not purchase any 

equipment. When prices continue to increase, equipment purchases generally show a 

downward trend. However, there is an exception. The reason can be found in Figure 

5-11, which shows the annual equipment deployment of the five ports (because other 

ports have no equipment deployment). When cleaning price increases, the initial 

demand may shift between different ports. For example, the ships sailing on route 1 in 

Table 5-2 may change their cleaning port from Rotterdam to Ningbo because the rising 

cleaning price allows ships to sail a longer distance before cleaning. The demand 

change may result in previously unequipped ports such as Ningbo now having 

equipment, previously equipped ports such as Rotterdam now without equipment, and 

changes in deployment between ports. 

Overall, increasing cleaning price can increase profits, as shown in Figure 5-10 

(d). However, in extreme cases when there is no demand, service providers will exit 

the market. 
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(a) Total demand in all ports (b) Annual demand in all ports 

 

 

 

 
(c) The total amount of annual purchased equipment (d) Total profit of service providers 

Figure 5-10: The influences of cleaning price 
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(a) Ningbo (b) Singapore (c) Tangier 

  

 

(d) Rotterdam (e) Tanjung Pelepas  

Figure 5-11: The amount of annual equipment deployed at five ports 

Finally, the impact of purchase cost was investigated. Purchase cost was changed 

in proportion from 0.5 to 2.0 with a step size of 0.1, as shown in Figure 5-12. Figure 

5-12 (a), (b) present the variation in equipment deployment plans and total profit. 

Changing purchase cost does not affect initial demand because purchase cost does not 

appear in the model of P1, so with the increase in purchase cost the potential revenue 

stays the same while the cost of equipment increases, resulting in a profit loss and 

therefore resulting in a reduction in the total amount of purchased equipment. When 

profit reaches zero, service providers will exit the market, which means no fouling 

cleaning service can be found in the market. 
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(a) The impact on equipment deployment (b) The impact on service profit 

Figure 5-12: The influences of purchase cost 

5.6 DISCUSSIONS 

There are three main limitations to be acknowledged in this study. Firstly, the 

assumption that ships that cannot be served will not use the cleaning service on 

subsequent voyages and will opt for alternative techniques like antifouling painting 

may have practical implications. Under this assumption, if a ship decides to clean 

fouling during a port visit but cannot find available cleaning equipment, it will never 

use the cleaning service again. This means that the service providers lose this customer 

permanently. This assumption has an impact on the demand for cleaning services, as 

well as the equipment procurement and deployment decisions made by service 

providers. If delayed cleaning is allowed, the ship may decide to use the cleaning 

service at the next port of call, thereby maintaining demand. With increased demand, 

the revenue of service providers may increase. Future research could consider this 

aspect and modify the formulation of the model accordingly. Instead of pre-calculating 

the cleaning demand in P1, the objective function of P1 can become the lower-level 

objective function. The decision-making process will be constrained by the 

deployment of cleaning equipment in the upper level, taking into account the 

possibility of delayed cleaning. 

Secondly, the present study assumes that cleaning demands are primarily driven 

by cost considerations. While cost is an important factor, there are situations where 

ships are obliged to undergo fouling cleaning irrespective of its cost-effectiveness. For 

instance, certain countries may enforce regulations mandating the cleaning of fouling 
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before a ship’s entry into their ports. This regulatory requirement significantly 

influences the demand for cleaning services. To incorporate this realistic situation, 

future research could introduce a binary parameter for each port that indicates cleaning 

requirements. If the parameter is set to 1, it signifies that cleaning before the visit is 

re-quired, otherwise there is no such requirement. This parameter can then be 

incorporated into the constraints of the lower-level problem to restrict the cleaning 

decisions accordingly. 

Thirdly, this study is based on the assumption that biofouling does not increase 

while a ship is in motion due to its high speed. However, this assumption may not be 

universally applicable and can be influenced by various factors, including the specific 

marine environment, vessel design, and the duration of ship operation. These factors 

can affect the extent of biofouling settlement during ship motion. To address this 

limitation and enhance the model’s applicability to a wider range of scenarios, we will 

consider incorporating fouling accumulation while ships are in motion into the 

accumulation function in future research. This addition will provide a more 

comprehensive and accurate representation of biofouling dynamics, accounting for the 

influence of ship motion on fouling accumulation. 

These modifications will address the limitations of the current study and provide 

a more comprehensive and realistic understanding of the fouling cleaning decision-

making process. By considering the possibility of delayed cleaning and incorporating 

regulatory requirements, research can offer practical insights for decision makers in 

the industry and enhance the applicability of findings. 

5.7 CONCLUSIONS 

This research develops a bi-level model to optimize the hull cleaning process. 

To overcome computational complexity, an efficient approach leveraging the big-M 

method is employed to convert the problem into a computationally tractable single-

level formulation. Comprehensive numerical experiments are conducted to assess the 

performance of the developed models. The findings highlight several important 

insights. Firstly, the results indicate that service providers may choose to sacrifice a 

portion of the demand in order to maximize profits. Additionally, there is a notable 

concentration of equipment procurement in the initial year due to high demand during 

that period. Sensitivity analyses are additionally conducted to investigate the impact 
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of key parameters on the system. Notably, the results elucidate that pursuing complete 

demand satisfaction may yield a substantial USD 27 million loss in profit. 

Furthermore, manipulating the cleaning price exerts a direct influence on demand 

levels and equipment purchases, thereby affecting overall profitability. Additionally, 

variations in purchase costs directly impact profits, resulting in corresponding 

adjustments to the total number of equipment purchases. Finally, the study reveals that 

market exit becomes a likely outcome in scenarios where service providers fail to 

generate profits.  

These findings provide valuable insights into optimization of the hull cleaning 

process and offer practical implications for decision makers in the industry. For service 

providers, understanding the trade-off between demand satisfaction and profit 

maximization can help them make strategic decisions on how to best allocate their 

resources and prioritize their operations. By strategically sacrificing a portion of the 

demand, service providers can optimize their profitability and resource utilization. 

Furthermore, the observed concentration of equipment procurement in the initial year 

due to high demand highlights the need for proactive planning and allocation of 

resources. Understanding this pattern can assist service providers in effectively 

managing their equipment inventory and optimizing their procurement strategies to 

meet the fluctuating demand. Additionally, this study reveals that service providers 

can directly in-fluence demand levels and equipment purchases by manipulating 

cleaning prices, thereby affecting their overall profitability. These findings provide 

valuable guidance for decision makers in formulating pricing strategies to maximize 

profitability. For ship operators, the insights gained from this study can help them 

develop cost-effective cleaning strategies. By considering factors such as pricing 

strategies, equipment procurement patterns, and cost considerations, ship operators 

can minimize expenses while maintaining the desired level of cleanliness. Importantly, 

the practical implications of this study extend beyond financial considerations. By 

optimizing the hull cleaning process, decision makers can significantly reduce the 

environmental impact associated with marine fouling and improve operational 

efficiency.
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Chapter 6: Conclusions and Future 
Research 

6.1 CONCLUSIONS 

As sustainability becomes a widely acknowledged and shared goal, the shipping 

industry, a cornerstone of global trade, has been actively exploring diverse avenues to 

achieve this objective. This thesis delves into three approaches for realizing 

sustainability: autonomous vessels, cleaner energy generation, and fouling cleaning. 

Autonomous ships, with their numerous advantages, are poised to emerge as a 

potential trend in the future. Nevertheless, there is a notable dearth of research 

examining the influence of autonomous ships on traditional vessels and the shipping 

industry concerning routes, fleet composition, fleet assignment, and demand 

fulfillment. Consequently, the initial study in this thesis develops a two-stage 

stochastic programming model to delve into these impacts. The overarching objective 

is to maximize the expected service profit. The computational complexity is addressed 

by both sample average approximation and a two-phase Benders-based branch-and-

cut algorithm. Additional acceleration strategies, including column generation and 

variable fixing, are employed to expedite computations. Through extensive numerical 

experiments, the performances of various solution methods are rigorously compared 

and validated. The results indicate that regarding each scenario as an independent 

subproblem yields superior performance compared to aggregating all scenarios. 

Furthermore, the modified two-phase algorithm outperforms the original one, and the 

implementation of acceleration techniques substantially reduces computation time. 

Additionally, the sensitivity analysis yields valuable managerial insights. It 

underscores that autonomous ships, in general, exhibit greater competitiveness, and 

strategically sacrificing partial demand can be a beneficial approach. 

The second study delves into the subsidy design for energy generation methods 

at berths, aiming to meet targeted emissions goals. Three distinct methods, i.e., heavy 

fuel oil with scrubber, marine diesel oil, and shore power, entail varying costs and 

emission levels. The objective is to attain the desired utilization level of these methods 
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with the minimal subsidy. While the government provides the subsidy, ship operators 

make the crucial decision regarding the energy generation method. Consequently, a 

bi-level optimization model is devised to encapsulate the intricate interaction between 

these two stakeholders. The complexity of the problem, arising from interdependence 

and nonlinearity, presents a significant challenge. However, a solution method 

incorporating model transformation and linearization proves instrumental in 

simplifying the computational process. Numerical experiments are conducted to 

validate the model, revealing insightful results. It becomes evident that providing 

subsidies to larger vessels is more advantageous in the initial stages. Moreover, an 

increase in the adoption of scrubbers or shore power-equipped ships results in reduced 

subsidies, and varying subsidy amounts correspond to different adoption levels. 

The third study focuses on cleaning the ship fouling to minimize adverse effects 

on both vessel performance and environmental sustainability. This process involves 

two key entities: cleaning service providers and shipping companies. The former is 

responsible for determining the strategic deployment of cleaning equipment, while the 

latter decides the timing and location for fouling removal. A bi-level model has been 

formulated to capture the intricate interdependence between these two parties. The 

computational complexity of this bi-level model has been effectively addressed 

through a transformative approach. The study employs comprehensive numerical 

experiments that yield valuable managerial insights. These insights establish a clear 

correlation between demand fulfillment and profits, offering guidance to service 

providers regarding optimal equipment deployment strategies over time. Furthermore, 

sensitivity analysis highlights the significant impact that adjustments to cleaning prices 

and purchase costs can have on fouling cleaning demand and equipment deployment.   

6.2 FUTURE RESEARCH 

Future research can be extended in two main directions. Firstly, there is a need 

to explore additional methods that contribute to sustainability. Secondly, optimization 

efforts should be directed towards the three approaches discussed in the paper.  

The pursuit of sustainability in the maritime industry has given rise to numerous 

solution methods. One notable development is the implementation of new international 

regulations by various maritime organizations, imposing restrictions on maritime 

operations. A compelling avenue for future research lies in delving into how shipping 
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companies will respond to and navigate these evolving policies, exploring the dynamic 

interactions and adaptations within the industry. 

In addition to regulatory measures, the adoption of cleaner and renewable fuels 

presents a pivotal strategy. Fuels such as low-sulfur alternatives, liquefied natural gas 

(LNG), and the integration of wind-assisted propulsion systems and solar panels offer 

substantial promise in reducing harmful emissions. However, the widespread adoption 

of these fuels faces challenges related to accessibility and costs, necessitating a 

nuanced examination. A pertinent research direction involves the redesign of the 

shipping network to accommodate different propulsion fuels, considering the diverse 

operational implications and economic feasibility. 

Further exploration into technological advancements forms another crucial 

dimension of sustainable maritime practices. For instance, the emergence of 

electricity-powered or hydrogen-fueled ships presents unique operational 

characteristics. A research approach that incorporates these distinctive features into 

the analysis could significantly enhance our understanding of their operational 

dynamics and concurrently improve both operational and environmental efficiency. 

In summary, the multifaceted nature of achieving sustainability in the maritime 

sector demands a comprehensive research agenda. Investigating industry responses to 

evolving regulations, optimizing shipping networks for diverse propulsion fuels, and 

understanding the operational intricacies of advanced technologies are key areas that 

promise valuable insights and advancements toward a more sustainable future for 

maritime operations. 

Expanding further on optimization possibilities, a nuanced exploration of the 

modeling assumptions is essential. Investigating how to incorporate real-world 

complexities into the models can enhance their accuracy and applicability. For instance, 

considering varying environmental conditions, market dynamics, and regulatory 

changes in the modeling framework would contribute to a more comprehensive 

understanding of the system. 

Moreover, the efficiency of solving these optimized models can be a focal point 

for improvement. Exploring advanced computational techniques, optimization 

algorithms, or machine learning approaches may streamline the solving process, 



 

 

Chapter 6: Conclusions and Future Research 98 

making it more scalable and adaptable to complex scenarios. This avenue of research 

could lead to faster and more accurate decision-making tools for stakeholders in the 

maritime industry. 

In addition to the static nature of data, the temporal aspect of the shipping 

industry poses a challenge. Optimizing models to incorporate dynamic data, such as 

real-time weather conditions, market trends, and geopolitical events, can provide a 

more realistic representation of the operational environment. This dynamic approach 

enables decision-makers to respond promptly to changing circumstances, contributing 

to increased operational resilience and efficiency. 

Furthermore, a critical aspect to consider is the integration of sustainability 

metrics into the optimization models. Assessing the environmental impact of different 

operational decisions and incorporating eco-friendly criteria can align with the 

industry's growing focus on sustainable practices. 

Lastly, exploring ways to enhance the collaboration between stakeholders in the 

maritime sector is another avenue for improvement. Developing models that facilitate 

effective communication and coordination between cleaning service providers, 

shipping companies, and regulatory bodies could lead to more harmonized and 

sustainable industry practices. 

In summary, optimization possibilities extend beyond refining modeling 

assumptions and include advancements in computational efficiency, incorporation of 

dynamic data, integration of sustainability metrics, and fostering collaborative 

frameworks among industry stakeholders. These areas present exciting opportunities 

for researchers and practitioners alike to contribute to the ongoing development of 

sustainable and efficient practices in the maritime sector. 
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Appendices 

Appendix A: Generating feasible routes in Chapter 2 

Label setting algorithm is a common approach used to solve minimum-cost 

network flow problems. The efficiency of label setting in this research is mainly 

affected by two main factors. The first is the number of ports. The second is two types 

of constraints used during sequence and route generation process, namely the ship type 

constraint and the duration constraint. To speed up the computation process, we first 

group feeder ports by vessel type. Each port 𝑝𝑝 can be visited by a ship in ship type set 

𝑉𝑉𝑝𝑝. For each vessel type 𝑣𝑣 ∈ 𝑉𝑉, we have a set of feeder ports 𝑃𝑃𝑣𝑣 = {1, … , |𝑃𝑃𝑣𝑣|}, where 

𝑣𝑣 ∈ 𝑉𝑉𝑝𝑝, ∀𝑝𝑝 ∈ 𝑃𝑃𝑣𝑣. This grouping procedure has two main benefits. First, it can make the 

number of ports in each group less than total number of ports, hence reducing the 

computation time. Second, it eliminates the procedure to judge whether ship type 

constraint is satisfied. 

We define a forward path 𝑓𝑓𝑣𝑣 = (0, 𝑖𝑖1, … , 𝑖𝑖𝑛𝑛) for each vessel type 𝑣𝑣, which is a 

sequence or part of a sequence. It starts at the hub port 𝑝𝑝0 (denoted by 0), visits a set 

of feeder ports 𝑃𝑃𝑓𝑓𝑣𝑣 = {𝑖𝑖1, … , 𝑖𝑖𝑛𝑛−1} ⊆ 𝑃𝑃𝑣𝑣, and ends at port 𝑖𝑖𝑛𝑛 ∈ {0} ∪ 𝑃𝑃𝑣𝑣\𝑃𝑃𝑓𝑓𝑣𝑣. If it ends 

at port {0}, it is a complete sequence, otherwise it is part of a sequence. We associate 

a label 𝐿𝐿𝑓𝑓𝑣𝑣 = (𝑃𝑃𝑓𝑓𝑣𝑣 , 𝑖𝑖𝑛𝑛,𝑇𝑇𝑓𝑓𝑣𝑣) with each path 𝑓𝑓𝑣𝑣 = (0, 𝑖𝑖1, … , 𝑖𝑖𝑛𝑛), where 𝑃𝑃𝑓𝑓𝑣𝑣 is the set of 

feeder ports that this path has already visited, 𝑖𝑖𝑛𝑛 is the last port of the path, 𝑇𝑇𝑓𝑓𝑣𝑣 is the 

duration of the path, including the sailing time and the dwell time. Because of duration 

constraints, a label is feasible only if 𝑇𝑇𝑓𝑓𝑣𝑣 ≤ 𝛼𝛼 . Clearly, each feasible path 𝑓𝑓𝑣𝑣 =

(0, 𝑖𝑖1, … , 𝑖𝑖𝑛𝑛), where 𝑖𝑖𝑛𝑛 = 0 corresponds to a feasible sequence. To generate a feasible 

sequence set, we initialize a label with 𝑃𝑃𝑣𝑣
𝑓𝑓 = ∅, 𝑖𝑖𝑛𝑛 = 0, 𝑇𝑇𝑓𝑓𝑣𝑣 = 0. This means that this 

path has just started from the hub port. In the first extension, the path must visit a 

feeder port 𝑖𝑖𝑛𝑛′ ∈ 𝑃𝑃𝑣𝑣. In the next extensions, it can either visit a feeder port 𝑖𝑖𝑛𝑛′ ∈ 𝑃𝑃𝑣𝑣 or 

back to hub port 𝑖𝑖𝑛𝑛′ = 0. For the sake of clarity, we explain the first and next iterations 

separately as follows: 

First iteration: Let 𝐿𝐿𝑓𝑓𝑣𝑣′ represents the label generated by extending 𝐿𝐿𝑓𝑓𝑣𝑣 with 𝑖𝑖𝑛𝑛′ ∈

𝑃𝑃𝑣𝑣. It is constructed as follows: 

• 𝑃𝑃𝑓𝑓𝑣𝑣′ = 𝑃𝑃𝑓𝑓𝑣𝑣 ∪ {𝑖𝑖𝑛𝑛′ }; 
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• 𝑇𝑇𝑓𝑓𝑣𝑣′ = 𝑇𝑇𝑓𝑓𝑣𝑣 + 𝑡𝑡𝑖𝑖𝑛𝑛 + 𝑡𝑡𝑖𝑖𝑛𝑛,𝑖𝑖𝑛𝑛′ ; 

where 𝑡𝑡𝑖𝑖𝑛𝑛 is the dwell time at port 𝑖𝑖𝑛𝑛, 𝑡𝑡𝑖𝑖𝑛𝑛,𝑖𝑖𝑛𝑛′  is the travel time from port 𝑖𝑖𝑛𝑛 to port 𝑖𝑖𝑛𝑛′ . 

Next iterations:  

(1) If 𝑖𝑖𝑛𝑛′ ∈ 𝑃𝑃𝑣𝑣\𝑃𝑃𝑓𝑓𝑣𝑣, the label 𝐿𝐿𝑓𝑓𝑣𝑣′ is constructed the same as the first iteration. 

(2) If 𝑖𝑖𝑛𝑛′ = 0, the label 𝐿𝐿𝑓𝑓𝑣𝑣′ is constructed as follows: 

• 𝑃𝑃𝑓𝑓𝑣𝑣′ = 𝑃𝑃𝑓𝑓𝑣𝑣; 

• 𝑇𝑇𝑓𝑓𝑣𝑣′ = 𝑇𝑇𝑓𝑓𝑣𝑣 + 𝑡𝑡𝑖𝑖𝑛𝑛 + 𝑡𝑡𝑖𝑖𝑛𝑛,0. 

To speed up the solution process and reduce the number of labels generated, the 

following dominance rule can be applied. Given two labels 𝐿𝐿𝑓𝑓𝑣𝑣1 = �𝑃𝑃𝑓𝑓𝑣𝑣1 , 𝑖𝑖𝑛𝑛1 ,𝑇𝑇𝑓𝑓𝑣𝑣1� and 

𝐿𝐿𝑓𝑓𝑣𝑣2 = �𝑃𝑃𝑓𝑓𝑣𝑣2 , 𝑖𝑖𝑛𝑛2,𝑇𝑇𝑓𝑓𝑣𝑣2� , 𝐿𝐿𝑓𝑓𝑣𝑣1  dominates 𝐿𝐿𝑓𝑓𝑣𝑣2  if (i) 𝑃𝑃𝑓𝑓𝑣𝑣1 = 𝑃𝑃𝑓𝑓𝑣𝑣2 , (ii) 𝑖𝑖𝑛𝑛1 = 𝑖𝑖𝑛𝑛2 , (iii) 𝑇𝑇𝑓𝑓𝑣𝑣1 <

𝑇𝑇𝑓𝑓𝑣𝑣2. 

Proof: If relations (i)–(iii) hold for 𝐿𝐿𝑓𝑓𝑣𝑣1 and 𝐿𝐿𝑓𝑓𝑣𝑣2, then for any port 𝑖𝑖𝑛𝑛′ ∈ 𝑃𝑃𝑣𝑣\𝑃𝑃𝑓𝑓𝑣𝑣2 

such that 𝐿𝐿𝑓𝑓𝑣𝑣2  can be extended toward 𝑖𝑖𝑛𝑛′  to form a feasible label 𝐿𝐿𝑓𝑓𝑣𝑣2
′

=

�𝑃𝑃𝑓𝑓𝑣𝑣2
′
, 𝑖𝑖𝑛𝑛′ ,𝑇𝑇𝑓𝑓𝑣𝑣2

′
� , 𝐿𝐿𝑓𝑓𝑣𝑣1  can be extended toward 𝑗𝑗  to form a feasible label 𝐿𝐿𝑓𝑓𝑣𝑣1

′
=

�𝑃𝑃𝑓𝑓𝑣𝑣1
′
, 𝑖𝑖𝑛𝑛′ ,𝑇𝑇𝑓𝑓𝑣𝑣1

′
� with relations (i)–(iii) still holding for 𝐿𝐿𝑓𝑓𝑣𝑣1

′
 and 𝐿𝐿𝑓𝑓𝑣𝑣2

′
. 

Thus, by applying the above argument repeatedly until 𝑖𝑖𝑛𝑛′ = 0 , 𝐿𝐿𝑓𝑓𝑣𝑣2  can be 

extended toward 𝑖𝑖𝑛𝑛′ = 0 to form a feasible label 𝐿𝐿𝑓𝑓𝑣𝑣2
′

= �𝑃𝑃𝑓𝑓𝑣𝑣2
′
, 0,𝑇𝑇𝑓𝑓𝑣𝑣2

′
�, 𝐿𝐿𝑓𝑓𝑣𝑣1  can be 

extended toward 𝑖𝑖𝑛𝑛′ = 0 to form a feasible label 𝐿𝐿𝑓𝑓𝑣𝑣1
′

= �𝑃𝑃𝑓𝑓𝑣𝑣1
′
, 0,𝑇𝑇𝑓𝑓𝑣𝑣1

′
� with relations 

(i)–(iii) still holding for 𝐿𝐿𝑓𝑓𝑣𝑣1
′
 and 𝐿𝐿𝑓𝑓𝑣𝑣2

′
. 

Since 𝑖𝑖𝑛𝑛′ = 0, both 𝐿𝐿𝑓𝑓𝑣𝑣1
′
 and 𝐿𝐿𝑓𝑓𝑣𝑣2

′
 are feasible and complete labels and feasible 

sequences. We can conclude that for every feasible and complete label 𝐿𝐿𝑓𝑓𝑣𝑣2
′
 extending 

from 𝐿𝐿𝑓𝑓𝑣𝑣2, there exists a feasible and complete label 𝐿𝐿𝑓𝑓𝑣𝑣1
′
 extending from 𝐿𝐿𝑓𝑓𝑣𝑣1 that has 

an equal or smaller duration. Therefore, 𝐿𝐿𝑓𝑓𝑣𝑣1 dominates 𝐿𝐿𝑓𝑓𝑣𝑣2. 

  The dominance rule can delete dominated subsequences and sequences during 

sequence generating process, which improves solution efficiency. Using a label setting 

algorithm augmented by dominance rules, we obtain all feasible sequences for each 
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vessel type 𝑣𝑣 ∈ 𝑉𝑉. We then use sequences of the same vessel type as an input to the 

dynamic programming model in order to generate feasible routes. Finally, we obtain 

all feasible routes. 
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Appendix B: Proof that SP is feasible and bounded in Chapter 2 

It is easy to show that 𝑦𝑦𝑠𝑠
𝑝𝑝(𝜔𝜔) = 0, ∀𝑝𝑝 ∈ 𝑃𝑃𝑠𝑠 , 𝑠𝑠 ∈ 𝑆𝑆, 𝜔𝜔 ∈ Ω is feasible solution 

regardless of first-stage solution 𝒙𝒙, which proves the feasibility. We construct two 

expressions ∑ ∑ �𝐹𝐹𝑝𝑝 − 𝐶𝐶𝑝𝑝ℎ�𝐷𝐷𝑝𝑝(𝜔𝜔)𝑝𝑝∈𝑃𝑃𝑠𝑠𝑠𝑠∈𝑆𝑆  and 1
|Ω|
∑ ∑ �𝐹𝐹𝑝𝑝 − 𝐶𝐶𝑝𝑝ℎ�𝐷𝐷𝑝𝑝(𝜔𝜔)𝑝𝑝∈𝑃𝑃𝜔𝜔∈Ω , which 

are the maximum value that SP (13) and (15) can achieve, respectively. This proves 

the boundness. 
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Appendix C: Proof of Proposition 1 in Chapter 2 

Proof. Given a feasible solution 𝒙𝒙′ and 𝒚𝒚′ and the optimal solution 𝒙𝒙∗ and 𝒚𝒚∗ of 𝑷𝑷, 

and a feasible dual solution 𝝎𝝎 of the linear relaxation of 𝑷𝑷, we deduct: 

𝑧𝑧(𝑷𝑷) = ∑ 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖∗ 𝑛𝑛1
𝑖𝑖=1 + ∑ 𝑑𝑑𝑗𝑗𝑦𝑦𝑗𝑗∗ 𝑛𝑛2

𝑗𝑗=1  (1) 

𝑧𝑧(𝑷𝑷) ≤ ∑ 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖∗ 𝑛𝑛1
𝑖𝑖=1 + ∑ 𝑑𝑑𝑗𝑗𝑦𝑦𝑗𝑗∗ 𝑛𝑛2

𝑗𝑗=1 + 𝝎𝝎�𝒉𝒉 − ∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖∗ 𝑛𝑛1
𝑖𝑖=1 − ∑ 𝑏𝑏𝑗𝑗𝑦𝑦𝑗𝑗∗ 𝑛𝑛2

𝑗𝑗=1 � (2) 

𝑧𝑧(𝑷𝑷) ≤ ∑ (𝑐𝑐𝑖𝑖−𝝎𝝎𝑎𝑎𝑖𝑖)𝑥𝑥𝑖𝑖∗ 𝑛𝑛1
𝑖𝑖=1 + ∑ (𝑑𝑑𝑗𝑗 − 𝝎𝝎𝑏𝑏𝑗𝑗)𝑦𝑦𝑗𝑗∗ 𝑛𝑛2

𝑗𝑗=1 +  𝝎𝝎𝒉𝒉, (3) 

where 𝑎𝑎𝑖𝑖 (resp. 𝑏𝑏𝑗𝑗) is the 𝑖𝑖𝑡𝑡ℎ (resp. 𝑗𝑗𝑡𝑡ℎ) column coefficient vector of matrix 𝑨𝑨 (resp. 

𝑩𝑩) and 𝑐𝑐𝑖𝑖 (resp. 𝑑𝑑𝑗𝑗) is the 𝑖𝑖𝑡𝑡ℎ (resp. 𝑗𝑗𝑡𝑡ℎ) coefficient of vector 𝒄𝒄 (resp. 𝒅𝒅). Since 𝝎𝝎 is a 

feasible dual solution, we have 𝑑𝑑𝑗𝑗 − 𝝎𝝎𝑏𝑏𝑗𝑗 ≤ 0 for all 𝑗𝑗 ∈ {1, … ,𝑛𝑛2}. Therefore,  

𝑧𝑧(𝑷𝑷) ≤ ∑ (𝑐𝑐𝑖𝑖−𝝎𝝎𝑎𝑎𝑖𝑖)𝑥𝑥𝑖𝑖∗ 𝑛𝑛1
𝑖𝑖=1 +  𝝎𝝎𝒉𝒉 (4) 

after transformation, and we have (𝑐𝑐𝑖𝑖−𝝎𝝎𝑎𝑎𝑖𝑖)𝑥𝑥𝑖𝑖∗ ≥ ∑ (𝑐𝑐𝑖𝑖−𝝎𝝎𝑎𝑎𝑖𝑖)𝑥𝑥𝑖𝑖∗ 𝑛𝑛1
𝑖𝑖=1 ≥ 𝑧𝑧(𝑷𝑷) −𝝎𝝎𝒉𝒉 

for all 𝑖𝑖 ∈ {1, … ,𝑛𝑛1} . Since 𝑧𝑧(𝑷𝑷) ≥ 𝒄𝒄𝒙𝒙′ + 𝒅𝒅𝒚𝒚′ , it holds that (𝑐𝑐𝑖𝑖−𝝎𝝎𝑎𝑎𝑖𝑖)𝑥𝑥𝑖𝑖∗ ≥ 𝒄𝒄𝒙𝒙′ +

𝒅𝒅𝒚𝒚′ − 𝝎𝝎𝒉𝒉 for all 𝑖𝑖 ∈ {1, … ,𝑛𝑛1}, which completes the proof. 
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