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Abstract

The next generation of the industry has depicted a visionary blue-print of

human-centricity in futuristic manufacturing systems. In the modern manu-

facturing sector, there has already begun a dramatic shift from the traditional

mode of mass production towards mass personalization, driven by the increas-

ing prevalence of personalization culture and customization requirements.

The conventional approach for mass production has predominantly relied

on the use of automated production lines, along with machines and robots

that operate on preprogrammed routines. Although this method has demon-

strated effectiveness in the era of mass production, the lack of intelligence

and flexibility largely restrict its capacity to dynamically adjust to the fre-

quently changing production schedule and specifications typical in mass

personalization scenarios. To mitigate these limitations, human-robot collab-

oration (HRC) has emerged as an advanced manufacturing paradigm and is

gaining traction as a promising solution to mass personalization since it can

simultaneously leverage the consistent strength and repetitive precision of

robots and the flexibility, creativity, and versatility of humans.

Over the past decade, a considerable amount of research efforts have been

dedicated to HRC, addressing issues such as system architecture, collabo-

ration strategy planning, and safety considerations. Among these topics,

context awareness has drawn significant attention as it forms the bedrock of
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critical functionalities such as collision avoidance and robot motion planning.

Existing research works in context awareness have extensively concentrated

on certain aspects of human recognition, such as activity recognition and

intention prediction, due to the paramount importance of human safety in

HRC systems. Nevertheless, there has been a noticeable shortage in address-

ing other vital components of the HRC scene, which can also substantially

influence the collaborative working process. In order to fill this gap, this

thesis aims to provide a systematic vision-based methodology for holistic

scene understanding in HRC, which takes into account the cognition of HRC

scene elements including 1) objects, 2) humans, and 3) environments, cou-

pled with 4) visual reasoning to gather and compile visual information into

semantic knowledge for subsequent robot decision-making and proactive

collaboration. In this thesis, the four aspects are examined and potential

solutions are explored to demonstrate the applicability of the vision-based

holistic scene understanding scheme in HRC settings.

Firstly, a high-resolution network-based two-stage 6-DoF (Degree of Freedom)

pose estimation model is constructed to enhance the object perception skill

for subsequent robotic manipulation and collaboration strategy planning.

Given the visual observation of an industrial workpiece, the first stage makes

a coarse estimation of the 6-DoF pose to narrow down the solution space, and

the second stage takes the coarse result along with the original image to refine

the pose parameters to produce finer estimation results. In HRC scenarios, the

workpieces are frequently manipulated by human hands, leading to another

issue – the hand-object occlusion. Regarding this problem, an integrated

hand-object 3D dense pose estimation model is designed with an explicit

occlusion-aware training strategy aiming to mitigate the occlusion-related

accuracy degradation (Chapter 3).
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Then a vision-based human digital twin (HDT) modelling approach is ex-

plored in the HRC scenarios, hoping to serve as a holistic and centralized

digital representation of human operator status for seamless integration

into the cyber-physical production system (Chapter 4). The proposed HDT

model is primarily composed of a convolutional neural network designed

to concurrently monitor various aspects of hierarchical human status, in-

cluding 3D human posture, action intention, and ergonomic risk assessment.

Subsequently, based on the HDT information, a novel robotic motion plan-

ning strategy is introduced, which is focused on the adaptive optimization

of the robotic motion trajectory, aiming to enhance the effectiveness and

efficiency of robotic movements in complex environments. The proposed

HDT modelling scheme provides an exemplary solution of how to model

various human states from vision data with a unified deep learning model in

an end-to-end manner.

Thirdly, a research endeavour is devoted to the perception of the HRC envi-

ronment, for which a multi-granularity HRC scene segmentation scheme is

proposed, along with a specifically devised semantic segmentation network

with a bunch of advanced network designs (Chapter 5). Traditional semantic

segmentation models mostly rely on a single-granularity semantic level. This

formulation cannot adapt to different HRC situations where the requirements

of semantic granularity are diversified such as a close-range collaborative

assembly task versus a robotic workspace navigation case. Aiming to address

this issue, the proposed model is designed to provide a hierarchical repre-

sentation of the HRC scene which can dynamically switch between different

semantic levels to flexibly accommodate the constantly changing needs of

various HRC tasks.
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Lastly, a vision-language reasoning approach is investigated to take a step

further from visual perception to human-like reasoning and understanding

of the HRC situation (Chapter 6). To address the inherent ambiguity of sole

vision-based human-robot communication such as unclear reference of target

objects or action intentions, linguistic data is introduced to complement

visual data in the form of a vision-language guided referred object retrieval

model. Based on the retrieved target object location, a large language model-

based robotic action planning strategy is devised to adaptively generate

executable robotic action code via natural form language interaction with

the human operator. The incorporation of vision-language data demonstrates

a viable pathway to achieve complex reasoning to enhance embodied robotic

intelligence and maximize HRC working efficiency.

Keywords: Human-robot collaboration, holistic scene understanding, smart

manufacturing, computer vision.
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1
Introduction

The futuristic manufacturing paradigm is envisioned as a human-centric one,

where humans and intelligent machines work in symbiosis with ultimate

flexibility. Meanwhile, driven by the growing demand for personalized prod-

ucts and the need to cater to diverse customization requirements, the shift

from traditional mass production to mass personalization also necessitates

a flexible automation mechanism. To fill in this gap, human-robot collab-

oration (HRC) is emerging as a key approach, combining the precision of

robots with the creativity and adaptability of humans, making it well-suited

for the dynamic needs of futuristic manufacturing systems. This chapter

commences with an examination of the background information of this study,

particularly focusing on different aspects of visual perception in the HRC

domain. Subsequently, the significance of the research, its scope, and the

objectives are outlined. Finally, the structure of this thesis is presented.

1.1 Background

The landscape of manufacturing is undergoing a transformative phase, tran-

sitioning from traditional mass production methods to a more nuanced

approach of mass personalization. This evolution aims to cater to the dy-

namic and rapidly evolving consumer needs and market trends. In an attempt

to enhance operational efficiency and productivity, industrial robots have

been extensively integrated into manufacturing environments. However,
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their limited flexibility and problem-solving capabilities pose significant chal-

lenges. In response to these limitations, the concept of HRC has gained

significant attention within the manufacturing sector. Recent studies [1]

highlight HRC’s potential to mitigate these challenges by synergizing the

respective strengths of humans and robots, exploiting the precision and

strength of robotic systems, complemented by the adaptability and creative

problem-solving abilities inherent in human operators. HRC teams function

within a shared workspace, engaging in cooperative tasks, as depicted in [2],

thereby enhancing the overall efficacy of the manufacturing process.

In collaborative workspaces, humans possess an innate ability to interpret

environmental cues, a skill not inherent in their robotic partners. Significant

research efforts have been devoted to enhancing context awareness in HRC,

as reported in various studies [3, 4]. The objective of these endeavours is to

equip robots with the capacity for environmental perception and reasoning

with considerable accuracy, thereby augmenting both productivity and safety

in human-robot interactive settings. Although the application of computer

vision techniques has been prevalent in enhancing the cognitive functions of

robots, these methods have predominantly concentrated on human cognition

such as gesture and activity recognition to facilitate direct communication

and prevent collisions in shared environments [1, 5, 6, 7]. However, there

remains a noticeable lack of attention towards other crucial scene elements,

which can also significantly influence the dynamics of collaborative work.

On the other hand, the topic of vision-based scene understanding has been

explored predominantly within the field of computer vision in recent years

[8, 9, 10]. These studies have concentrated extensively on the reconstruction

of scene layouts and the arrangement of objects in general daily scenes

2 Chapter 1 Introduction



such as the living room and kitchen. Nevertheless, it is notable that these

investigations primarily focus on the environmental structural aspects, with

little attention to the integration of human-related cognition in industrial

contexts, let alone HRC scenarios.

To connect the dots scattered in previous research works, this study aims

at providing a holistic perspective for vision-based scene understanding in

HRC applications, including computer vision-based cognition of 1) object, 2)

human, 3) environment, and 4) visual reasoning to gather and compile visual

information into semantic knowledge for subsequent robot decision-making

and proactive collaboration.

Concerning the four key facets of scene understanding, a substantial body of

research works have been reported. However, the majority of these studies

have been focused on general application contexts rather than specifically

addressing the nuances of HRC scenarios, which are distinct in their inherent

challenges and complexities stemming from the need to bridge the cognition

and intelligence gap between humans and robots. Therefore, this thesis will

delve into identifying the unique challenges for the cognition of HRC scene

elements, based on which improvement strategies and potential solutions

will be tailored to each identified aspect.

1.2 Research Scope

In the study on holistic scene understanding, the primary focus centres

on the recognition of HRC scene elements including objects, humans, and

environments, as well as the ability for abstract reasoning about these visual

1.2 Research Scope 3
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Fig. 1.1: Research scope of vision-based holistic scene understanding for HRC.

elements to achieve a comprehensive understanding of the HRC scene. The

research scope and content organisation are shown in Fig. 1.1.

In the initial phase, the focus is on the perception of industrial objects within

HRC contexts. It is crucial in HRC teamwork for the robot to be aware of

the components being manipulated or the tools required to enable proactive

decision-making for subsequent collaborative tasks. The initial efforts are

directed towards the accurate estimation of the 6-DoF (Degree of Freedom)

object pose, utilizing High-Resolution Networks (HRNet). Additionally, we

further explore the joint 3D pose estimation of human hands and workpieces

to address the prevalent issue of hand-object occlusion.

Subsequently, the attention will shift to the construction of a digital twin

of the human operator, which aims to model the 3D dense posture of the
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human body in real-time along with a series of other human factors such

as action intentions and ergonomic risks. The primary research endeavours

will be invested in building an end-to-end deep learning model that can

simultaneously capture the multiple aspects of human status during the HRC

working process. Based on the human body information, an adaptive robotic

motion planning scheme will be explored to dynamically adjust the robotic

movements in order to optimize human well-being without compromising

the HRC system efficiency.

The third aspect pertains to environment parsing. Here, the emphasis is on

representing the HRC scene in a hierarchical manner, which is crucial for

providing dynamic semantic guidance and enabling flexible task fulfilment

within collaborative environments. The research efforts will be devoted to the

design and construction of such a hierarchical environment parsing model

with multiple granularities of semantics.

Lastly, based on the scene information, a visual reasoning approach will be

investigated, which takes into account both the visual context and linguistic

cues in HRC scenarios. By endowing the collaborative robot with visual

reasoning abilities, it can operate beyond the confines of predefined pro-

gramming, reason in a human-like logical abstraction, and autonomously

determine its actions based on the current status of HRC work and task

specifications.
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1.3 Research Objectives

Motivated by the limited exploration of HRC-oriented visual perception

approaches, the primary aim of this research is to delve into four key facets of

scene understanding in HRC, develop solutions to address existing limitations

in these areas, and ultimately foster a holistic understanding of HRC scenarios.

This ability of holistic scene understanding is pivotal for enhancing complex

robotic reasoning and decision-making processes. Corresponding research

objectives addressing the four aspects are stated as follows.

Objective 1: Development of a 6-DoF industrial object pose estimation

method for HRC cases, with a special focus on the occlusion between

workpieces and human hands.

An inevitable challenge in object recognition within HRC contexts is the

occlusion resulting from hand-object interactions. Although the interplay

between humans and objects is crucial, the explicit investigation of occluded

hand-object perception remains underreported in the literature, especially

regarding adaptive robot decision-making in close-proximity collaborations

with partial hand-object occlusions. This study aims to first build a fundamen-

tal 6-DoF industrial object pose estimation model to enable adaptive robotic

manipulation of workpieces in the HRC scenario. Then a further endeavour

will be directed to explore the joint estimation of 3D hand-object pose in HRC

cases with a specific consideration of the visual occlusion issue. Through

real-time inference of hand-object poses, the intention is to effectively moni-

tor the most vital and frequent situation—hand-object interactions—in HRC

settings, thereby offering valuable insights for robotic actions.
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Objective 2: Formulation of a vision-based reconstruction approach

for human digital twin (HDT) modelling and adaptive robotic motion

planning in HRC.

Human safety considerations make human perception a significant compo-

nent of visual understanding in HRC. Despite extensive exploration of human

perception in image processing, multisensory devices, and deep learning

within HRC, the construction of a comprehensive human digital twin, es-

pecially from visual observations, remains underreported. As a centralized

digital representation of various human data that can be easily and seamlessly

integrated into a cyber-physical production system, HDT is of substantial

importance, hence necessitating the exploration of related technologies. This

study aims to propose an exemplary solution to construct a vision-based

HDT that can concurrently monitor different facets of human states in an

end-to-end manner with real-time performance, thereby facilitating subse-

quent adaptive robotic planning to proactively and timely respond to human

movement and status fluctuations.

Objective 3: Establishment of a scene segmentation model for multi-

granularity semantic understanding of the HRC environment.

Regarding visual environment parsing in HRC applications, the standard

practice involves visual segmentation representing scene elements at a single-

granularity semantic level. However, this approach falls short of detailed

workspace modelling in advanced HRC systems, such as extremely flexible

manufacturing floors. A more nuanced, hierarchical, and hybrid environmen-

tal representation is preferable. Consequently, this project seeks to introduce
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a multi-granularity scene segmentation network, enabling the parsing and

representation of HRC environments across varied semantic levels.

Objective 4: Exploration of a vision-language reasoning method for

ambiguity mitigation in human-robot communication.

Achieving complex, human-like reasoning skills remains a main pursuit in

artificial intelligence and robotics, particularly for human-robot collabora-

tive manufacturing, to ensure reliable and effective collaboration between

humans and robots. Preliminary research in HRC has utilized various method-

ologies, from mathematical to deep learning models, to achieve visual rea-

soning. However, these approaches often oversimplify reasoning tasks as

direct mappings from visual or language cues to specific decisions or actions,

neglecting the integration of knowledge, common sense, and vision-language

observations. Regarding this issue, this study aims to propose a vision-

language model that can intelligently locate the target object referred to by

the language cue, and further leverage the outstanding reasoning capability

and embedded world knowledge of Large Language Models (LLMs) to proac-

tively and dynamically reason about the vision-language information and

generate feasible action plans for collaborative robots to fulfil HRC tasks.

1.4 Thesis Structure

The rest content of this thesis is organized as follows:
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Chapter 2 reviews previous works related to the four aspects of holistic

scene understanding in the HRC context. Limitations and challenges that are

not well addressed will be highlighted.

Chapter 3 first introduces the proposed high-resolution 6-DoF object pose

estimation model and then extends the pose estimation to joint hand-object

3D pose estimation to cope with the notorious occlusion issue.

Chapter 4 presents the proposed vision-based human digital twin mod-

elling approach for human operator monitoring in the HRC environment and

demonstrates a feasible adaptive robotic motion planning strategy based on

the real-time HDT information.

Chapter 5 depicts a multi-granularity scene segmentation model for HRC

environment perception enhancement in hopes of providing a more flexible

scene representation to accommodate fast changing HRC tasks.

Chapter 6 illustrates a vision-language reasoning approach that mainly

consists of a vision-language-guided referred object retrieval model which

can efficiently and intelligently locate the desired object specified by the

human language instruction in the HRC scene. A large language model is

then adopted to synthesize a reasonable robotic action plan based on the

previously retrieved target object and the human language instruction.

Chapter 7 summarizes the accomplishments and contributions of this project

and discusses future steps.
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2
Literature Review

The literature review in this chapter delves into the key facets of HRC by

exploring various methodologies for object perception, human recognition,

environmental parsing, and visual reasoning within HRC systems. A critical

analysis of the research gaps in Section 2.5 highlights challenges and potential

research directions in the four aspects. This rigorous review aims to identify

the opportunities and challenges for holistic scene understanding in HRC,

ultimately guiding the direction for future research endeavours.

2.1 Object Perception for HRC

Objects, including workpieces, tools, etc., pervasively exist in HRC scenarios.

It is fundamental during HRC assembly that the robot should be aware

of where the ongoing assembly area is, what parts are still missing, and

which tools should be used so that it can proactively make decisions about

subsequent collaboration actions. This section mainly focuses on computer

vision-based object perception methods that have been adopted in previous

HRC-related works, since the topic of visual perception of general objects

would be too vast to be covered in this review. The following discussion

of vision-based object perception in HRC is divided into three key aspects:

identification, localization, and pose estimation.
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2.1.1 Object Identification

The most fundamental task of object perception in an HRC scenario is to

identify what an object is and what attributes it has so that the robot can

autonomously deduce the expected actions associated with the target object.

Concretely, the task of object identification mainly has two aspects: 1) plainly

classifying the objects into different categories such as wrenches, screws,

gears, etc. and 2) elaborately identifying the affordances of objects based

on the utilization or attribute such as grasping position, tool functionality,

and so on. One example depicting the difference between classification and

affordance is shown in Fig. 2.1. Object identification is beneficial during HRC

because it allows the robot to autonomously understand which object serves

what purpose and proactively carry out collaborative assistance without

explicit programming or commanding. Existing works focusing on this task

are listed in Table 2.1.

Probability

Classification

Affordance

screwdriver
ice pick
pliers
…

screwdriving
stabbing
cutting
…

0.92
0.55
0.01

0.91
0.78
0.02

Category

Affordance Score

Fig. 2.1: A demonstration of the difference between classification and affordance
identification.

1) Classification

Classification is a fundamental problem in computer vision and machine

learning. Here the focus is mainly on the applications of object classifica-

tion in HRC manufacturing. Ferreira et al. [11] reported a laser scanning-
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based solution for spray coating in flexible robotic cells, which utilized laser

scanning-based 3D reconstruction and K-Nearest Neighbors (KNN) for the

classification of workpieces. In another work [12], the authors also adopted

a laser range finder as the main sensor but utilized it to scan through the

working space following a pre-defined path to generate grayscale images of

the workstation, and further leveraged the invariant moments of Hu features

along with KNN, Neural Networks (NN) and Support Vector Machine (SVM)

to classify different objects. Although these methods can achieve very high

precision owing to the laser sensor, the time-consuming nature of laser scan-

ning largely restricts the application scenarios, and the KNN classifier with

handcrafted features can be vulnerable when facing working environment

fluctuations.

Table 2.1: Literature of object identification.

Category Application Key Elements Source

Classification

Spray coating Laser; KNN [11]
Pick and place Laser; KNN [12]

Real-time recognition LightNet; Multi-task [13]
Pick and place Novel object; Multi-view CNN [14]
Pick and place Novel object; ResNet50 [15]

Welding Pix2pix; AlexNet [16]
Robust recognition CNN; SVM [17]

Affordance

Pick and place MobileNetv2; VGG16 [18]
Pick and place Canny; Hough line [19]

Grasping CNN; Task-specific grasp [20]
Grasping Seach-based learning [21]

Affordance detection S-HMP; SRF [22]
Affordance detection CNN [23]
Affordance detection Encoder-decoder CNN [24]

Being one of the most powerful classifiers, CNNs (Convolutional Neural

Networks) are also commonly found to serve for object classification in

recent manufacturing research. Zhi et al. [13] reported an approach for

real-time object cognition in human-robot interaction applications and a

lightweight CNN model called LightNet has been proposed to recognize 3D
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objects by predicting the object class and orientation concurrently. Kasaei

[14] proposed OrthographicNet which could handle 3D object recognition via

multi-view CNN features and integrated human guidance to classify objects

with novel categories. Dehghan et al. [15] also aimed at the novel object

recognition problem and leverages human interactions to teach the robot

novel object categories while training a ResNet-50 model. Feng et al. [16]

made an attempt to apply CNNs to welding penetration status recognition

utilizing pix2pix generative model for image denoising and AlexNet for image

selection. Keller et al. [17] studied the influence of illumination for more

robust object classification via CNN feature extractor and SVM classifier.

These CNN-based approaches can accurately recognize industrial objects and

maintain robustness to varied environments, but the notorious data-hungry

issue might prevent them from being applied in many resource-constrained

scenarios.

2) Affordance

The plain classification method is able to categorize target objects sufficiently

enough for normal robotic applications, but for Proactive HRC objects should

be identified in a more subtle way. The concept of affordance was first

proposed in the field of perceptual psychology [25] and later introduced into

robotics to represent the interactive properties of objects, such as where the

grasping points are and what actions could be carried out with the objects.

For example, D’Avella et al. [19] studied the problem of recognizing the

picking points of objects in cluttered environments via Canny edge detector

and Hough lines, while Nguyen et al. [18] reported a work to recognize the

picking angle of objects in a robotic pick-and-place task, during which CNN

models such as MobileNetv2 and VGG16 were adopted.
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Kokic et al. [20] proposed a deep learning method for identifying which task

an object could afford and how to grasp the object for specific tasks. Chatila

et al. [21] adopted a search-based learning method to learn the affordance

of environment objects such as grasp-ability for robotic interactions. Myers

et al. [22] reported two approaches to learn the affordances of different tool

parts including superpixel-based hierarchical matching pursuit (S-HMP) and

structured random forests (SRF) to learn the affordances of different tool

parts, while Nguyen et al. [23] also concentrated on this task but employed

CNN models, which, according to the reported results, perform better than

HMP and SRF-based methods. Thermos et al. [24] reported a solution to

understand the affordances of daily objects that are being interacted with

by humans, where an encoder-decoder CNN model was leveraged to jointly

reason the affordance class and saliency map. These works for learning

object affordance build a solid foundation for identifying objects beyond plain

classification. Nevertheless, how to effectively learn the object affordance

from unlabeled data during the robot operation process still remains a gap.

2.1.2 Object Localization

Another essential step of object perception is object localization, which means

locating the objects of interest in the HRC environment and extracting their

positions or coordinates in the image plane as shown in Fig. 2.2. It can

be further converted to world coordinates if the cameras are calibrated.

Existing works that leverage computer vision-based methods to tackle the

object localization problem are classified into three categories based on

the format of localized object position: 1) Detection, which represents the

object positions with bounding boxes around the objects; 2) Segmentation,

which localizes the objects based on their geometric information and output
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pixel-level segmentation results; and 3) Others, which mainly rely on prior

knowledge or geometrical information to locate the objects. Related works

under this topic are listed in Table 2.2.

Tool 

Localization

Part 

Localization

Fig. 2.2: Example of tools and parts localization.

1) Detection

Recently, CNN has emerged as the state-of-the-art method in object detection

and many other computer vision tasks because of the ability to autonomously

learn stronger feature representations over manually designed ones. One-

stage CNN detection models, including You Only Look Once (YOLO) series

[26, 32] and Single Shot Detector (SSD) series [28, 29], are prevailing in

workpiece detection for their simplicity and efficiency. Two-stage models,

specifically the R-CNN series, can gain better performance in applications

with looser time constraints such as junior operator training [27] or with

higher accuracy requirements such as detecting industrial components from

a heavily cluttered background [30, 31].

Although CNNs are leading the trend in object detection, yet hand-crafted

feature descriptors still have a place in industrial applications. CNN model

can achieve better accuracy and robustness providing enough training data

and can be easily accelerated via GPU (Graphics Processing Unit) because
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Table 2.2: Literature of object localization.

Category Application Key Elements Source

Detection

Workpiece YOLOv3 [26]
Assembly Faster R-CNN [27]
Assembly SSD [28]

Pick and place Mobilenet SSD [29]
Pick and place Mask R-CNN [30]

HRI Mask R-CNN; Super-pixel [31]
Handover YOLOv3 [32]

Object handling Haar-like features [33]
Workpiece Marker based localization [34]

Robot system LBP features [35]

Segmentation

Object handling Contour segmentation [36]
Assembly Background substraction [37]

HRI Color-based segmentation [38]

Welding Sobel; Hough line [39]
Assembly Edge and shape-based [40]

Others

Object handling 3D CAD model [41]
PCB soldering Shape matching [42]

Assembly Distance-based rules [43]
Pick and place Multi-sensory [44]

of its parallel nature. However, in practical industrial applications, GPUs

and large datasets are not always available, in which cases CNN generally

performs poorly in terms of efficiency and reconfigurability, leaving space for

hand-crafted features, which can provide an agile solution for novel scenarios

by simply tweaking some parameters without heavy GPU training. Astanin

et al. [33] aimed for a better detection rate of reflective metal workpieces for

the application in flexible robotic cells, which is achieved via the multi-scale

Viola-Jones detector integrated with Haar-like feature descriptor and decision

trees. Castaman et al. [35] proposed an Unmanned Ground Vehicle (UGV)

system with an LBP (Local Binary Pattern) feature descriptor applied to detect

the wrench and valve. In another work [34] by Hsieh et al., printed markers

are attached to target objects and the system only needs to detect the markers

through multiple cameras to localize the targets. The main drawback of hand-
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crafted feature-based detection methods is the limited detection performance,

but they are the appropriate choice for proof-of-concept and applications in

controlled environments.

In general, these detection models can produce excellent localization results

for industrial objects owing to the simplified formulation of bounding box

regression, which, however, is also regarded as a bottleneck since it cannot

accurately describe the geometric appearance of different objects.

2) Segmentation

If the target object is easily separable from the background, simple image

processing techniques such as background subtraction would suffice to locate

and segment the object. Hoffmann et al. [36] exploited 3D depth information

and level-set based contour segmentation method to extract the contour of

tools held by a robot arm and locate the tooltips for the robot to further

execute some subtle actions such as operating a hand drill or drawing with a

pencil. In [37], Aliev et al. explored the segmentation of workpieces delivered

by a MiR100 AGV under command from human operators via background

subtraction. Jirak et al. [38] proposed a method to address object ambiguity

during human-robot interaction by taking human pointing direction into

consideration, and colour-based image segmentation is leveraged to segment

the desired object.

Some other works leverage the prior information about the shape of the

target object. Dinham et al. [39] adopted the Sobel edge detector and Hough

Line Transform to segment welding seams based on the knowledge that they

are most likely in the shape of lines, while Lee et al. [40] also detected
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working-in-progress parts during the electric motor assembly process based

on the Canny edge detector and shape information, and further transmitted

the progress information to workers via Augmented Reality (AR) to achieve

human-robot collaboration.

CNN-based methods have also been introduced into the segmentation task

and made considerable progress in recent years. Back et al. [30] reported the

adoption of Mask R-CNN in industrial component detection and segmentation

with an RGB-D (Red Green Blue-Depth) data fusion and data synthesis

strategy. Azagra et al. [31] presented a solution to incrementally teach

the robot new objects via human-robot interaction, where Mask R-CNN is

also employed for object segmentation. Although Mask R-CNN is equipped

with the instance segmentation ability, the segmentation results only have

relatively low resolution due to the model design and time efficiency concern.

Another issue of segmentation approaches is that they can only extract the

2D silhouette but are unable to represent the 3D shape of the target object.

3) Others

Other works, which mainly rely on prior knowledge or geometrical informa-

tion to locate the objects, do not fall into the aforementioned two categories

and hence are classified as others. In some applications such as robotic prod-

uct packaging and cooperative robotic soldering, the precise shapes or models

of the target objects were provided [41, 42], in which cases image feature

descriptors such as Speeded Up Robust Features (SURF) were combined with

the object models to find the best matching target position in images.
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As for the cases that do not require the exact positions but the rough occu-

pancy of objects to achieve collision avoidance, depth sensors such as ToF

(Time of Flight) cameras and LiDAR (Light Detection and Ranging) along

with straightforward distance-based rules are proven to be sufficient [43,

44] without being overwhelmed by complex vision algorithms and compu-

tational overheads. The application of these methods is rather confined

since the manual rule and algorithm process have to be redefined for specific

scenarios.

2.1.3 Object Pose Estimation

In an HRC environment, the frequent human-robot interactions put a greater

demand on the precision of object perception especially when the target

objects are close to the human body. Object pose estimation serves as the

missing puzzle piece towards autonomous robot manipulation since it could

provide precise object postures in the form of a mapping between 3D object

models and sensory observations. Literature of object pose estimation is

listed in Table 2.3, and we further divide them into two categories based on

the main input or feature source.

1) 2D Methods

2D RGB cameras, as the most available, applicable and affordable sensors,

have encouraged a lot of attempts to tackle the 6-DoF pose estimation prob-

lem merely using 2D images as the input source, despite the 3D nature of the

6-DoF pose estimation task.
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Table 2.3: Literature of object pose.

Category Application Key Elements Source

2D

Assembly 3D edgelets [45]

Robot object handling Shaver handles [41]

Assembly Line2D; Canny [46]

Workpiece pose estima-
tion

Line ending points; PnP [47]

Point cloud

Robot system Global descriptor [48]

Pick and place
Fast Point Feature His-
togram

[49]

Pick and place PointNet++; YOLOv2 [50]

Robot system Mask R-CNN [51]

Robot system PPF; ICP [52]

Assembly OBB; ICP [53]

The most straightforward approach to estimating 6-DoF pose from a 2D

image is comparing and matching the 3D object model to 2D observation.

Abdallah et al. [45] applied object pose estimation to inspect aeronautical

assembly parts status by mapping the 3D CAD (Computer-Aided Design)

model to observation images and ensure the presence and installing positions

of parts. Meanwhile, Tsarouch et al. [41] leveraged the 3D CAD model of

shavers to localize shaver handles during production lines for further robotic

picking and placing.

Some other works move further along this path by exploiting more hand-

crafted features from 2D images. For instance, Hagelskjaer et al. [46]

proposed a method to obtain precise 6-DoF pose by first applying Lind2D

matching algorithm to obtain coarse pose and employing Canny edge detector

and scene-specific spatial constraints to refine the pose results. He et al.

[47] also reported a hand-crafted feature-based method, which exploits

the straight lines and ending points of metal parts and resorts to the PnP

(Perspective-n-Point) solver to retrieve the 6-DoF pose results.

2.1 Object Perception for HRC 21



2) 3D Methods

Despite the benefits of only using 2D RGB cameras, depth information still

weighs heavily in the process of precise 6-DoF pose estimation. A commonly

adopted approach of exploiting depth information is to transform the depth

or RGB-D images into point clouds.

Luo et al. [48] proposed a robotic system for manufacturing automation

which captures RGB-D images via Kinect camera and simply transforms into

point clouds as the input to the processing algorithm. It then estimates the

6-DoF pose of objects through geometry-based global feature descriptors.

Efforts have also been made to exploit point-based features [49], which

adopted the Fast Point Feature Histogram to estimate object poses for picking

and placing applications.

Post-refinement of the estimated pose is a frequently used technique to

obtain a more accurate 6-DoF pose result. Bedaka et al. [52] reported an

automatic path-planning robotic system that leverages Point Pair Features

(PPF) and Iterative Closest Point (ICP) algorithm to estimate the 6-DoF poses

of manufacturing objects, while Franceschi et al. [53] proposed a method that

adopts the Oriented Bounding Box (OBB) to obtain rough pose estimations

and ICP for refinement in the assembly process of bulky components such as

a sidewall panel of an aeroplane.

Although CNN-based 6-DoF pose estimation methods still struggle with

mediocre performance, CNNs are not uncommon in related applications.

Zhang et al. [50] introduced the PointNet++ model to extract key points

from the point cloud to facilitate further pose estimation tasks. In another

22 Chapter 2 Literature Review



work, Nguyen et al. [51] proposed a robotic system for decaking 3D-printed

parts, in which Mask R-CNN was utilized for object localization and point

cloud segmentation, based on which the object pose could be obtained via

simple point cloud-based calculations.

Despite better pose estimation accuracy facilitated by the additional depth

information, a common deficiency of these approaches is the lack of explicit

consideration for object occlusion, which could severely damage the pose

estimation performance of existing methods.

2.2 Human Recognition for HRC

Human, as the most essential participant of HRC, has been regarded as the

main research subject by numerous research works for almost all aspects of

human recognition that one can think of. It is reasonable since intelligence

would never be too much for robots to recognize humans in an HRC working

scene regarding human safety and collaboration efficiency. Concretely, in this

section, three facets of human recognition are examined: human localization,

human activity, and human pose.

2.2.1 Human Localization

To achieve effective human-robot collaboration, the position or location of

human operators in an HRC scenario should be firstly localized, so that the

robot could proactively plan its collaborative actions without colliding with

human bodies. During the review process, it was found that previous works
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in HRC about human position recognition mainly focused on two topics:

human body detection and face detection. The former topic hopes to make

the human body position fully acknowledged by robots, while the latter

wants to achieve more than just localization but further verifying the human

identity. Table 2.4 indicates related previous works.

1) Human detection

Safety is the most important factor that one should consider in the designing

process of an HRC system. Collision avoidance, as the fundamental level

of safety requirement, could be achieved by detecting human bodies in an

HRC scene through various approaches. Shariatee et al. [54] proposed a safe

collaboration method for collaborative assembly workstations that leverages

image processing techniques such as edge detection and morphological

filtering to segment human and robot positions from RGB-D images obtained

by a Kinect camera, and further measure the distance between them to

calculate danger index. Tashtoush et al. [55] followed a similar path by

monitoring the HRC workspace via a top-view Kinect RGB-D camera, while

the difference is that this work leveraged a specifically designed background-

foreground algorithm to detect human bodies. The main drawback of these

hand-crafted localization methods is they are barely able to distinguish

between the human body and other obstacles of similar size, thus can only

be applied in controlled environments.

Ample research works have also explored the utilization of CNN models

for human body detection. Liu et al. [56] proposed a safety system for

HRC assembly that localizes human body positions via RGB-D camera and

represents human and robot occupancy via OctMap, and further recognizes

24 Chapter 2 Literature Review



Table 2.4: Literature of human localization.

Category Application Key Elements Source

Human body
detection

HRC workstation
Segmentation;
Danger index

[54]

HRC workstation B-F algorithm; Kinect [55]

Collaborative assembly OctMap; CNN [56]
Safe HRC FMG; CNN [57]

Pedestrian detection Mask R-CNN; LiDAR [58]
Human following MobileNet-SSD [59]

HRI OpenPose; SVM [60]
Safe HRC YOLO; Bayesian DNN [61]

Face
detection

Surveillance HMD; Haar feature [62]

Collaborative assembly AWS DeepLens [63]
Human following SSD; FaceNet; KCF [64]

Real-time HRI SFPD; Multi-task [65]

human actions through CNN models. Meanwhile, Anvaripour et al. [57]

proposed a collision detection method for proximal human-robot cooperation

utilizing a wearable Force Myography band as the data source and a CNN

model as the classifier. The prevailing CNN-based detection models have also

been widely adopted to achieve active human following or collision avoidance

such as Mask R-CNN [58], MobileNet-SSD [59], and YOLO [61], while human

pose estimation models such as OpenPose have also been leveraged as human

body detectors to facilitate human-robot communication [60]. Unlike objects,

human bodies have fewer variations in terms of geometric features, which can

substantially facilitate data collection and model training, and further enable

CNN-based methods to be the preferred choice when it comes to human

detection if detailed human posture and body shape are not required.

2) Face Detection
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As face is the most distinguishable area of the human body, some works in

HRC also resort to face detection to retrieve human position information and

get an opportunity to identify human operators.

Do et al. [62] reported an HRC surveillance application that allows human

operators to control a mobile robot via a head-mounted display (HMD) to

patrol the environment, detect human faces via the Haar feature, and send

face images back to the HMD for human operators to recognize face identities.

Lazaro et al. [63] attached an AWS (Amazon Web Services) Deeplens to a

YuMi robot in the HRC assembly process to detect and recognize human faces

for identification and unexpected leaving detection. Hwang et al. [64] aimed

to achieve specific person following for mobile robots by employing SSD

detector to locate humans and FaceNet model to identify the target human

face. Meanwhile, Fiedler et al. [65] focused more on the running time of

face detection and hope to achieve real-time HRI (Human-Robot Interaction)

via a specifically designed SFPD (Simultaneous Face and Person Detection)

model, which can be regarded as a multi-task extension of SSD. Although

face detection has attracted less attention than body detection in the current

HRC field, it can serve as the indispensable pre-process for further identity

authentication especially when multi-human is involved.

2.2.2 Human Activity

A large body of existing works has been devoted to human activity recognition,

which is convinced to play a pivotal role in HRC since human actions could

exhibit a certain ambiguity that makes it hard for robots to act accordingly or

proactively. To tackle this problem, some researchers put major efforts into

the activity recognition part, which mainly studies the recognition of ongoing
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activities such as the ones illustrated in Fig. 2.3, while others devote more to

the prediction side, which considers more about the future action intentions.

Table 2.5 shows involved works and their key elements.

Robot Stopping Dismantling Handover

Object Picking Robot Guiding

Fig. 2.3: HRC assembly activity example.

1) Recognition

The task of human activity recognition has attracted much attention in the

HRC area. Concretely, the formulation of the task is that robots are supposed

to understand the engaging activities of a person given past and present

observations by camera or other sensors.

Some works only leverage RGB cameras as the data source. Wang et al.

[4] reported a collaborative engine assembly case, during which a deep

learning-based method was proposed to continuously analyze human opera-

tors’ working actions such as grasping a screwdriver or plugging in a small

part. Xiong et al. [66] also aimed at human activity recognition in the HRC

engine assembly task and introduced a two-stream CNN model that consists

of a spatial stream designed to extract spatial features from a single RGB

frame and a temporal stream that takes optical flow maps as input to exploit
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Table 2.5: Literature of human activity.

Category Application Key Elements Source

Recognition

Collaborative assembly AlexNet [4]
Collaborative assembly Two-stream CNN [66]
Collaborative assembly 3D LRCN; 3D CNN; LSTM [67]

Companion robot STJ-CNN; Skeleton [68]
Hand-object action Hand skeleton; TCN [69]

Collaborative packaging LSTM; VAE; DRL [70]

Safe HRC
3D CNN; 1D CNN;

RGBD+Tactile
[71]

Ergonomics in HRC IMU; EMG; Random Forest [72]
Sustainable HRC EMG; CNN; Fatigue [73]

Seamless HRC
Mixture-of-experts;
Graphical attention

[74]

Real-time action DC-CNN; IMU [75]

Hands-free HRI
Eye gazing; head action;

MR glasses
[76]

Prediction

Collaborative disassembly CNN; LSTM [77]

Collaborative maintenance
Mask R-CNN;

3D CNN; LSTM
[78]

Surveillance CNN; Optical flow [79]
Collaborative assembly CNN; VMM [80]

Collaborative manipulation Gaussian mixture model [81]
Reactive robotic response ATCRF; Object affordance [82]
Collaborative assembly HMM [83]

Human following Reinforcement learning [84]
Online HRI CVAE; Kinect [85]

Human imitation OpenPose; Motion GAN [86]
Human-robot handover LSTM-RNN [87]

Collaborative manipulation RNN; Object affordance [88]
Collaborative assembly Kinect; RNN [89]

Human imitation VAE; Motion embedding [90]
Social HRI CVAE; LSTM [91]

Social HRC EM-ART; Deep ART [92]
Ergonomic risk prediction VGG16; TCN [93]

Attention estimation Eye-tracking; ANN [94]
Attention estimation Skeleton data; LSTM [95]
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temporal information. Meanwhile, Wen et al. [67] reported a method to

recognize sub-assembly activities of the visual controller assembly process

such as mainboard assembly and camera assembly, and a 3D LRCN (Long-

term Recurrent Convolutional Network) model composed of 3D convolutions

and LSTM (Long Short-Term Memory) module was proposed to achieve this

target. Human skeleton joints have also been explored to facilitate human

daily activity recognition for a companion robot in [68], which proposed

a Spatio-Temporal Joint based Convolutional Neural Network (STJ-CNN)

model to parse human body parts and skeleton joints features. Sabater et al.

[69] focused on the recognition of hand-object interactive activities based

on hand skeleton extraction and TCN (Temporal Convolutional Neural Net-

works). Ghadirzadeh et al. [70] made an attempt to implement human-robot

collaborative packaging in an unsupervised manner leveraging Deep Rein-

forcement Learning (DRL) incorporated with VAE (Variational Autoencoder)

and LSTM modules for implicit human action representation. RGB data may

have the advantage of convenience and availability, but multisensory data

can provide more latent information that might also be vital for human action

recognition.

Amin et al. [71] reported a study that implements safety monitoring in HRC

via a mixed-perception method that inputs skeleton images into a 3D CNN

model to obtain human activity results and leverages tactile sensor data for

contact detection. In the work by Yoshikawa et al. [72], inertial measurement

unit (IMU) and electromyography (EMG) were utilized to assist robots in

evaluating ergonomic workload by recognizing human activities using rule-

based method and Random Forest classifier, while [73] also adopted EMG

to recognize human fatigue in a sustainable HRC workspace via CNN model.

Islam et al. [74] work towards seamless HRC via a Multi-GAT (Multimodal
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Graph Attention) model for human activity recognition that combines RGB,

depth, skeleton, and physical sensor data via a graphical attention mechanism

to capture multimodal correlation features. Real-time action cognition for

potential human-robot application was considered by Alemayoh et al. [75],

in which IMU data collected by smartphone is processed by the proposed

DC-CNN (Double-channel CNN) model to obtain the action category. Park

et al. [76] studied hands-free HRI via a multimodal interaction method that

captures eye gazing and head orientation data by MR (Mixed Reality) glasses.

Multisensory data-based approaches can achieve promising results, but the

main problem is that these sensors normally have to be worn by humans,

which may cause discomfort in long-term HRC working.

2) Prediction

Human activity recognition can suffice for reactive HRC applications, but

Proactive HRC poses a greater challenge for timely response, for which future

activity or motion prediction should be able to provide a feasible approach.

Some researchers resort to predicting the intended actions of human op-

erators. Liu et al. [77] focused on intention prediction during a desktop

disassembly process via a motion recognition and prediction network con-

sisting of convolutional layers and LSTM layers which could predict the

label of the intended action of the operator. Alati et al. [78] attempted to

enable the robot assistant to infer human needs in a collaborative warehouse

maintenance task through a human intention prediction method which also

leverages 3D convolution and LSTM. Bibi et al. [79] explored the integration

of Transformed Optical Flow Components (TOFCs) into CNN architecture

to anticipate ongoing human interactions, while Zhang et al. [80] made an
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attempt to predict human assembling actions during HRC motor assembly

leveraging variable-length Markov modelling (VMM) and CNN models. The

limitation of these intention prediction works is they can only provide future

action labels, which is insufficient for robots to achieve autonomous collision

avoidance and more subtle robot planning.

Motion trajectory prediction can empower robots to forecast human actions in

a more delicate manner. Some earlier works [81, 82, 83] exploit probabilistic

models to predict future human motion for collaborative assembly or robotic

manipulation tasks, where GMM (Gaussian Mixture Model), CRF (Condi-

tional Random Field), and HMM (Hidden Markov Model) are adopted or

enhanced in these works to fulfil the task. Recently, more attention has been

paid to skeleton-level trajectory prediction in HRC-related applications mainly

through two types of methods: recurrent neural networks (RNN, LSTM, etc.)

and deep generative models (VAE, GAN, etc.). RNN-based models are mainly

adopted in proximal HRC working scenarios such as human-robot handover

[87], collaborative object manipulation [88], and assembly [89], where the

focus is to avoid colliding with human body by foreseeing human skeletal

trajectory. Another line of works considered more about the multiple pos-

sibilities of human motion prediction for human imitation or HRI, relying

on generative models such as GAN (Generative Adversarial Network) [86]

and VAE [85, 90, 91] to generate multimodal trajectories of future human

intention for proactive robot planning. Bayoumi et al. [84] considered a

more concrete human-following situation for mobile robots, during which

humans might be partially occluded by scene objects but the robot still needs

to predict the human walking path through explicitly encoding occlusions

into the reward function of reinforcement learning. Although the impressive

performance of trajectory forecasting has been demonstrated in the literature,
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a fundamental problem rarely mentioned is how to evaluate the quality of

predicted trajectory in ongoing HRC missions, and prevent disastrous robotic

actions promptly when the prediction is unreliable.

Prediction of other latent representations has also been explored in previous

works. Lee et al. [92] proposed an episodic memory mechanism based

on EM-ART and Deep ART models and applied it in learning the relations

between human actions and emotional states to predict future human emo-

tions in a social HRC case. Parsa et al. [93] aimed at the prediction of

ergonomic risk of indoor object manipulation activities of human operators,

which was implemented with VGG16 network as spatial feature extractor and

encoder-decoder TCN (Temporal Convolutional Network) model for temporal

information aggregation. Human attention estimation for human-robot inter-

action has also been intensively studied in previous works [94, 95], where

eye-tracking or human skeleton data are collected as the main information

source and Neural Networks such as ANN and LSTM are leveraged as the

main models.

2.2.3 Human Pose Recognition

A vast body of works has explored the human activity recognition task, but

less attention has been paid to human pose recognition, which inclines to

explore the detailed posture of the human body on a finer granularity. There

is ample literature demonstrating the utilization of human pose recognition

in HRC scenarios, which are mainly divided into two categories, i.e., full body

and hand. Despite being a part of the human body, hands serve different

purposes from full body in most existing research works as they are the
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most expressive organs. Therefore, we decided to discuss body and hand

separately. The general categorization can be found in Table 2.6.

1) Body Pose

Human body pose is normally formulated as skeleton or joint maps inferred

from sensor data to support fine-grained robot planning in HRC. Kinect cam-

eras are often utilized to capture the human body and generate skeleton

maps. The Kinect-shipped vision algorithms enabled some previous works

in HRC disassembly or teleoperation applications [96, 97]. CNN models

are also widely adopted in static body pose estimation. Liu et al. [98]

leveraged PoseNet to estimate body joint locations to achieve collision-free

HRC assembly. Van et al. [99] focused on the ergonomic adaption prob-

lem in HRC while utilizing OpenPose as the body pose estimator and joint

angle-based rules for further ergonomic analysis. Another work [100] chose

pressure sensors to recognize the standing postures of workers in an HRC

manufacturing workspace via fusing CNN, KNN, and SVM classifiers based

on Dempster–Shafer evidence.

It can be easily identified that previous works in the HRC domain mainly

consider 2D human pose modelling in the form of sparse joint or skeleton

maps, while the human awareness of robots could be significantly enhanced

with a more complete 3D dense modelling of the human body.

2) Hand Gesture
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Table 2.6: Literature of human pose.

Category Application Key Elements Source

Body

Teleoperation Kinect [97]

HRC disassembly Kinect [96]

Human standing posture
CNN; KNN; SVM;
Dempster-Shafer

[100]

Ergonomics in HRC
OpenPose; Angle-based
rules

[99]

Safe HRC OctMap; PoseNet [98]

Hand

Teleoperation HOG [101]

HRC surgery HMM [102]

Robotic hand imitation ANN [103]

Gesture-based control
Hu moment; Random For-
est

[104]

Gesture-based control SoCJ feature; SVM [105]

Gesture-based control HOG [106]

Gesture-based control EEG; EMG [107]

Multimodal control CNN; LSTM; Multi-modal [108]

Dual-hand gesture RI-SSD; VGG19 [109]

Gesture-based control Faster R-CNN [110]

Safe HRC
Inception v3; OpenPose;
Kinect

[111]

Gesture-based control 3D SSD [112]

Space HRI FF-SSD [113]

Dynamic gesture cognition CNN; LSTM; Optical flow [114]

Dynamic gesture cognition CNN; LSTM; Attention [115]

Cross-domain gesture cog-
nition

Leap Motion; SVM; CNN [116]

Cross-subject gesture cogni-
tion

EMG; CNN; LSTM [117]

Gesture-based program-
ming

R-FCN [118]

Service robot interaction
RGB-D; Inertial sensor;
LSTM

[119]

Surgical robot teleopera-
tion

Leap Motion; LSTM-RNN [120]
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Hand gesture recognition is a prevalent topic in human-robot interaction and

human-robot collaboration because it is intuitive, effective, and expressive

serving as a robot-controlling interface.

Earlier works tended to employ hand-crafted feature-based solutions to

recognize hand gestures. [101, 106] both relied on the Histogram of Oriented

Gradient (HOG) to serve as the feature descriptor to facilitate subsequent

hand gesture classification or tracking for further human-robot teleoperation

or gesture-based robot control. Chen et al. [104] utilized Hu moment

feature descriptor and random forest classifier to differentiate hand gestures

as a remote robot controlling solution. Hendrix et al. [105] proposed a

solution to recognize hand gestures and verified the control of a robotic

manufacturing assistant in a limited-access scenario with the combination of

the Shape of Connected Joints (SoCJ) feature and SVM classifier. HMM was

adopted in [102] to facilitate instrument delivery for a surgical assistance

robot, while ANN was leveraged in [103] to recognize hand gestures for

robotic hand imitation. Unlike vision-based works, [107] resorted to EMG

and Electroencephalography (EEG) for hand gesture recognition and robot

control. Hand-crafted feature-based methods generally suffer from poor

robustness as mentioned in earlier sections, therefore recent works present

an inclination to shift towards deep learning solutions.

A large amount of deep learning-based works for hand gesture recognition

have emerged in recent years. Liu et al. [108] proposed a solution towards

HRC manufacturing that leverages multimodal fusion of speech, body motion

and hand gesture based on CNN and LSTM models, which are also regarded

as the core models for hand gesture recognition in [114, 115]. Gao et al.

[109] reported an application in an astronaut-robot interaction system, where
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dual hands detection and gesture recognition are implemented based on

ResNet-Inception-Single Shot MultiBox Detector (RI-SSD), while other SSD

variants were also adopted for hand gesture-based human-robot interaction

such as 3D SSD [112] and FF-SSD (feature-map-fused single shot multibox

detector) [113]. Region-based object detectors have also been applied in

hand gesture recognition for human-robot collaborative controlling by Nuzzi

and her group in [110, 118]. Leap Motion Controller is another prevalent

choice in HRI application [116] and teleoperated surgery [120] since it has an

integrated visual hand gesture recognition system and further action analysis

could be achieved with extra deep learning models on top of the extracted

gesture data. Other sensors such as EMG [117] and inertial sensor [119]

were also leveraged to facilitate hand gesture recognition along with CNN,

and LSTM models. Despite the better performance and robustness of recent

works, a tough problem that remains is the self-occlusion of the human hand

where some fingers might be occluded by the hand itself, making it hard to

capture the information via visual sensors.

2.3 Environment Parsing for HRC

With object-level and human-level information obtained, robots could already

perform collaborative actions in some relatively simple tasks such as tool or

workpiece delivery in a fixed workstation. Nevertheless, to deal with more

complex tasks such as navigating to places out of sight to fetch a specific

object required in an HRC assembly process, robots should be equipped

with the skill to perceive and model the whole working environment more

comprehensively. In this section, existing works related to environment
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parsing are summarized into three categories based on the utilized mapping

representations, which are illustrated in Table 2.7.

Table 2.7: Literature of environment parsing.

Category Application Key Elements Source

Scene graph

General robotics DAG; RSG [121]
Scene description GCN; RNN [122]

Safe HRC
Mask R-CNN; Fuzzy logic;
Safety

[123]

Safe HRC Mask R-CNN; MSDN [124]

2D map

HRI GVG; Confidence tree [125]
Robot navigation CNN; U-Net [126]
Robot navigation SLAM; LSTM; Mask R-CNN [127]
HRI 3D CNN; Robot team [128]

3D approach

Disassembly CAD model [129]
Safe HRC Kinect; Point clouds [130]
Teleoperation VR; Kinect; PointNet [131]
Safe HRC OctMap; PoseNet [98]
Safe HRC OctMap; MDP; RL [132]
Safe HRC Point clouds; RTLS [133]

Safe HRC
MR; Digital twin; Point
clouds

[134]

2.3.1 Scene Graph

Among these representations, scene graph may be the most abstract one,

which transforms the perception results of the environment into a topological

graph structure. Blumenthal et al. [121] proposed a method called Robot

Scene Graph (RSG), which leverages a Directed Acyclic Graph (DAG) to

represent and manage 3D geometric entities for general robotic applications.

Moon et al. [122] studied the generation of natural language description

from environment images for further human-robot communication leverag-

ing graph convolution networks (GCN) to extract local features from a 3D

semantic graph map and LSTM to generate scene description. Hata et al.

[123] reported a more specific application of scene graph for safe HRC in
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a warehouse navigation case, in which Mask R-CNN is utilized to segment

scene objects from images and subsequently encode the extracted object in-

formation into a scene graph for further fuzzy logic-based risk management,

while Riaz et al. [124] considered a similar warehouse scenario for HRC

safety analysis leveraging the proposed MSDN (Multi-level Scene Description

Neural Networks) to generate scene graphs and region captions. Being a

compact and efficient representation of the environment, scene graph is

widely adopted in robotic applications, but the graph-based structure also

undermines the ability to capture geometric relations between objects.

2.3.2 2D Map

To be able to represent detailed geometric relations of scene elements, 2D

map is a natural choice following human practice, which normally takes

the form of an overhead view. Liao et al. [125] employed occupancy grid

mapping to generate a local map from laser range data for robot navigation

based on generalized Voronoi graph (GVG) data representation and a con-

fidence tree was introduced to fuse the classification results from different

granularity layers to obtain the final place classification result. Hiller et al.

[126] explored the residential environment modelling for autonomous robots

leveraging existing occupancy grids as input to CNN classifier for patch-level

door localization and U-Net for pixel-level door segmentation. In a work

towards robot navigation under human instructions from Hu et al. [127], the

semantic map generated via SLAM (simultaneous localization and mapping)

technique was leveraged to represent the global map of the environment,

Mask R-CNN was employed to detect scene objects, and LSTM was utilized to

parse human instructions and provide constraints to the grounding process

based on the map and scene elements. Dias et al. [128] leveraged occupancy
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grids to represent the positions of a robot team and to serve as an interactive

interface, through which a 3D CNN model was applied to learn from human

demonstrations about robot controlling sequences. 2D map techniques are

suitable for planar navigation in relatively simple environments, but the lack

of height information hinders its application in more complex scenarios such

as aeroplane cabins.

2.3.3 3D Approach

In some applications such as HRC assembly, delicate 3D information is re-

quired to represent the environment on a finer scale so that the robots could

carry out more sophisticated operations without colliding with scene objects.

Some works directly utilized the point cloud generated via RGB-D cameras to

represent the environment [130, 131], while others adopted the representa-

tion of a voxel map, which could be regarded as a quantified 3D grid mapping

of the original point cloud. Abou Moughlbay et al. [130] proposed a monitor-

ing system for HRC production environment consisting of four Kinect RGB-D

cameras, which are utilized to generate point clouds of the workspace, and

then downsample the point clouds to voxel grids after filtering and trimming.

Friedrich et al. [129] employed voxel maps to represent the recognized scene

objects in an autonomous robot-space exploration task, during which the

initial modelling is constructed via CAD models and later updated through

vision data. A similar technique, OctMap was utilized in [98] to represent

the 3D occupancy status of an HRC working space so that the robot could

actively avoid collision with human operators and other objects. Liu et al.

[132] aimed at collision-free robot planning for HRC manufacturing tasks,

during which OctMap is also leveraged for workspace monitoring, while MDP

(Markov Decision Process) and RL (Reinforcement Learning) techniques are
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adopted for collision avoidance. Slovak et al. [133] aimed to develop a

safe HRC shared workspace by employing point cloud and RTLS (Real-time

Location System) technology to reconstruct the 3D environment. Choi et al.

[134] proposed a safety measurement method for HRC system, utilizing 3D

point cloud representation for the physical environment and synchronizing

with a digital twin model in real-time for further distance measurement in

the virtual space. 3D approaches contain the most abundant environmental

information which could support finer-grained HRC action planning and exe-

cution, but generally requires more storage and computational resource, and

might cost much more time to search for appropriate robot actions in large

areas, which makes it less flexible to fit for different industrial practice.

2.4 Visual Reasoning for HRC

Table 2.8: Literature of visual reasoning.

Category Application Key Elements Source

Visual cue

Collaborative assembly Bayesian decision-making [135]

Collaborative assembly ConvVAE; LSTM [136]

HRI
Siamese network; Spatial
attention

[137]

Collaborative assembly Dual-input CNN [138]

Visual &
Language

HRI Case-based reasoning [139]

HRI cooking support CNN; HHMM [140]

HRC fault diagnosis MDP [141]

Human-guided pickup Hourglass network; RNN [142]

Human-guided pickup
Bi-LSTM; U-Net; Multi-
head attention

[143]

Explainable HRC
CNN; RNN; Logical reason-
ing

[144]

Collaborative assembly
TC-VQA; CNN; Symbolic
reasoning

[145]

HRI Multi-view VQA [146]
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The perception of objects, humans and the environment could provide a

holistic understanding of an HRC working scene. To bridge the gap between

scene understanding and proactive decision-making, a reasoning mechanism

is necessary for robots when collaborating with human operators. In this sec-

tion, we primarily focus on visual reasoning, which refers to reasoning about

the latent meaning of visual cues or indications for future robot actions from

visual observations of an HRC scene. Related works about visual reasoning

are listed in Table 2.8, among which it is found that except for vision-only

solutions, some works additionally introduced language information to com-

pensate for the ambiguity caused by sole visual cues.

2.4.1 Visual Cue

Reasoning based on visual cues is a fundamental requirement of higher-level

cognitive intelligence for collaborative robots, where some initial explorations

have been conducted in previous works. Rahman et al. [135] reported an

HRC scheme that could automatically reason about which sensing mode

(human or robot) of assembly parts detection to take based on the confi-

dence and cost of observations and regret-based Bayesian decision-making

method. Murata et al. [136] proposed a method for HRC assembly that relies

on ConvVAE and LSTM models to reason from the goal image and visual

observation to determine which part should be delivered to the human for

assembling operations.

Some works attempted to incorporate more human guidance during the

visual reasoning process. Venkatesh et al. [137] tried to teach robots to

localize novel objects by adding the human pointing cues to the object image,

and leveraged the Siamese network and spatial attention mechanism to
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accomplish the localization task. Sun et al. [138] proposed a dual-input

CNN model which takes as input the assembly part image and workspace

context image simultaneously to facilitate robot learning through human

demonstration.

Visual information may have a certain level of ambiguity. For instance, when a

human reaches out his hand towards robot collaborators to ask for something

during assembly, the wanted object could either be a workpiece or a tool

judging from mere visual observations. Thus, it is not uncommon to see that

natural language information is included in the visual reasoning task.

2.4.2 Visual and Language Cue

It is natural to introduce human language as an additional reasoning cue for

it is more accurate and compact. Earlier attempts mainly relied on mathemat-

ical models or knowledge-based models to implement the reasoning process

with visual and language cues as supplementary information. Roncancio et al.

[139] integrated object localization, human activity recognition, and speech

recognition into a case-based reasoning system of a service robot, which

mainly models prior knowledge via episodic memory mechanism. Hayes et al.

[141] aimed at an HRC fault diagnosis task leveraging the Markov Decision

Process as the policy model for a robot to generate the action policy based

on visual observations and human queries and further generate a policy

explanation in human language for better interpretability.

Recent works show an inclination to put more effort into data-driven deep

learning models for end-to-end visual reasoning. Ahn et al. [142] studied

the human-guided pickup task and proposed a Text2Pickup network, which
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consists of an Hourglass network and an RNN, to locate the desired object for

robots to pick up based on human language commands and workspace image

observations, and additionally generate interactive questions for human to

clarify when the initial command is vague. Venkatesh et al. [143] followed a

similar task that requires the robot to reason about picking coordinates of

objects from language and image input, but employed a different approach

that leverages Bi-LSTM and multi-head attention to extract language features,

which is subsequently combined with image features to be input to a U-Net

model to generate the object coordinates.

Riley et al. [144] reported an attempt to tackle the task of explanatory

Visual Question Answering (VQA) for HRC via the integration of CNN, RNN,

logical reasoning, and inductive learning. Tan et al. [145] also considered

the task of VQA, but proposed a new VQA task and dataset for task-oriented

collaborative question answering (TC-VQA) for HRC gearbox assembly, and

provided a baseline method that leverages deep learning-based object and

hand detection, gesture recognition along with symbolic reasoning to gen-

erate answers. Qiu et al. [146] explored the VQA problem in a multiview

setting for human-robot interaction, where the robot needs to autonomously

choose a better viewpoint to obtain the necessary information to answer the

questions correctly. The exploration of visual reasoning in HRC scenarios is

still in its infancy, and currently the task setting and solution are rather naive

and still far away from practical deployment.
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2.5 Research Gaps

The above review of existing literature presents a brief glimpse of the current

application status of vision techniques in HRC environments. Some limita-

tions and research gaps have also been revealed through the review process

and are summarized here.

2.5.1 Precise Object Modeling for

Co-Manipulation

Despite the wide adoption of computer vision technologies such as object

detection [27], and object classification [16] in robotic and industrial appli-

cations, there is a lack of discussion about precise object modelling under

the topic of human-robot collaboration. In existing HRC assembly works,

robots still mainly serve as assistants to human operators and leave the subtle

assembly process to humans, partially because the uncertainty introduced

by human partners prevents robots from obtaining the precise geometric

pose information of the assembly parts. In such cases, real-time precise

6-DoF object pose estimation techniques can be particularly useful. Although

there have already been some discussions about 6-DoF pose estimation for

industrial parts [47], several limitations such as the dependency on object

CAD models, weakness to occlusion, and computational inefficiency, severely

hindered its application in HRC scenarios.

A major challenge emerges when dealing with occlusion, which is pervasive

during HRC manufacturing, especially when human or robot agents are
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handling objects. Hand-crafted feature-based 6-DoF pose estimation methods

are generally fragile when facing severe occlusions, while stronger performing

CNN models could achieve better results under occlusion, but still suffer from

it. A possible alleviation to this problem is an explicit modelling of the

occlusion area with extra constraints and priors potentially provided by the

occluding human hands, which will be elaborated in the following content.

2.5.2 Finer-Scale Human Worker Body

Reconstruction

Human perception-related works contributed quite a large portion to visual

understanding in HRC, due to the highest priority of human safety. During

the review process, it was found that traditional image processing, multi-

sensory devices, and deep learning models have been substantially explored

in HRC scenarios. Nevertheless, it still has a long way ahead to massive

application because existing methods could only partially perceive the hu-

man body through wearable devices or only obtain the rough position via

visual detection or skeleton recognition instead of fine-scale 3D geometric

modelling. On the other hand, there is a recent trend towards dense human

pose modelling, including dense body pose [147, 148] and dense hand pose

[149, 150], in the computer vision community, which might be adopted for

finer-scale human worker perception in Proactive HRC cases. Besides 3D

human pose estimation, another remaining challenge is how to provide a

more comprehensive human worker model that can capture multiple facets

of human status in real-time to facilitate on-site robotic decision-making

and motion planning. Regarding this research gap, a potential solution is
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to construct a human digital twin of the human operators during the HRC

working process which will be discussed in later chapters.

2.5.3 Hierarchical and Hybrid Workspace

Modeling

Based on the review result of visual environment parsing in HRC applications,

it is found that most researchers followed the routine of first recognizing the

environment via vision algorithms and then representing scene elements with

certain mapping techniques. The summarized scene representations (scene

graph, 2D map, 3D representation) each have their own particular strength

and weaknesses as mentioned in previous sections. However, none of them

alone could suffice for comprehensive workspace modelling in future HRC

systems such as extremely flexible manufacturing shop floors, where mobile

robots need to be able to execute fine-grained collaborative production ac-

tions which require a delicate scene representation, as well as coarse-grained

medium-to-long navigation tasks that demand responsive real-time route

recommendation. A hierarchical and hybrid environment representation

would be preferred in the above-mentioned HRC situation. The representa-

tion should possess multiple abstraction layers with different semantic levels

to accommodate varied-grained applications.
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2.5.4 Advanced Vision-Language Collaborative

Reasoning

The capability of performing complex human-like reasoning is always the

pursuit of artificial intelligence and robotics, which also stands true in

HRC manufacturing to achieve truly reliable and seamless collaboration

between humans and robots. Ample research works related to vision or

vision-language-based reasoning have been conducted in HRC scenarios,

leveraging various techniques ranging from mathematical models to deep

learning models, but several shortcomings ought to be pointed out that per-

vasively exist in those works. One is that current research works mainly

formulate the reasoning task as a naive mapping from visual or language

cues to certain decisions or actions, without much consideration about the

incorporation of prior knowledge and vision-language observations. Another

issue is the limited consideration of the unique characteristics of applying

reasoning techniques in HRC scenarios, which is the close and frequent

interactions between humans and robots. Including human operators in

the reasoning loop of the HRC system can better leverage human creativity

and intelligence to achieve a more efficient collaborative reasoning scheme.

However, introducing human intervention in every step of HRC process is

highly impractical. The ability to autonomously determine when to ask for

human assistance requires closer investigations.
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3
Industrial Workpiece Pose

Estimation

In human-robot collaboration scenarios, industrial objects such as workpieces,

tools, and other components are pervasively present. For instance, during the

assembly process, it is crucial for the robot to be aware of the ongoing assem-

bly area, identify the remaining missing parts, and recognize the required

tools. This enables the robot to proactively make decisions about its subse-

quent collaboration actions. In this chapter, we mainly focus on the 6-DoF

estimation of industrial workpieces since it is the foundation for subsequent

robotic manipulation in the HRC process. Another major challenge, i.e., the

mutual occlusion between the human hand and industrial workpieces, will

also be discussed in the second part of this chapter.

The research work presented in this chapter is based on a conference paper

presented at the 2021 IEEE 17th International Conference on Automation

Science and Engineering (CASE) [151], and a journal paper published in the

IEEE Transactions on Automation Science and Engineering [152].

3.1 Introduction

Object perception, especially object pose estimation, is the most essential

skill that a collaborative robot needs to possess in order to build a basic
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understanding of the HRC scene objects, which are omnipresent in the HRC

environment such as the assembly parts, working tools, et cetera. Traditional

object pose estimation approaches mainly focus on matching corresponding

key point pairs between observed 2D images and 3D object models via

hand-crafted feature descriptors. However, key points are hard to discover

from images when the parts are piled up in disorder or occluded by other

distractors, e.g., human hands. Although the emerging deep learning-based

methods are capable of inferring the poses of occluded parts, the accuracy

is not satisfactory largely due to the loss of spatial resolution from multiple

downsampling operations inside convolutional neural networks. To overcome

this challenge, the first part of this chapter proposes a 6-DoF pose estimation

model consisting of a pose estimator and a pose refiner, by leveraging the

High-Resolution Network as the backbone network. Experiments are further

conducted on a dataset of industrial parts to demonstrate its effectiveness.

To delve deeper into the occlusion issue of object pose estimation, especially

the occlusion caused by human hands as is a frequent case in HRC scenarios,

the pose estimation of human hands is further taken into account in the

second part of this chapter. Explicit human-object perceptions are significant

but remain little reported in the literature for adaptive robot decision-making,

especially in the close proximity co-work with partial occlusions. Aiming to

bridge this gap, this study proposes a vision-based 3D dense hand-object pose

estimation approach for HRC cases. First, a mask-guided attentive module is

proposed to better attend to hand and object areas, respectively. Meanwhile,

explicit consideration of the occluded area in the input image is introduced

to mitigate the performance degradation caused by visual occlusion, which is

inevitable during HRC hand-object interactions. In addition, a 3D hand-object

pose dataset is collected for a lithium-ion battery disassembly scenario in the
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lab environment with comparative experiments carried out to demonstrate

the effectiveness of the proposed method.

3.1.1 Object Pose Estimation

Pose estimation of industrial parts has a significant value in smart manu-

facturing and human-robot collaboration. For instance, robots need to be

able to consistently recognize objects of interest to cope with uncertainties

introduced by human collaborators or flexible production. 2D information-

based methods approach this problem by image object detection or instance

segmentation [153], which can only provide 2D location and shape for 2D

tasks such as planar grasping. For more complex tasks such as human-robot

handover, 3D information is indispensable since the objects can be presented

at any location with any orientation in the workspace.

The problem of 3D location and shape estimation is normally formulated

as 6-DoF pose estimation, which refers to the estimation of rotation and

translation parameters between the observed image and 3D object model.

Traditionally, hand-crafted feature-based methods were proposed to tackle

this problem by matching key point pairs between image and 3D object

model [154, 155], but these methods suffer from occlusion and textureless

objects, in which cases it is difficult to find sufficient key points. Another

line of work regard pose estimation as a template matching problem [156,

157], which could mitigate the problem of textureless objects, but occlusion

still remains unsolved. Convolutional neural network is recently introduced

into this field in recent studies [158, 159, 160], since it shows dominant

performance in other computer vision tasks. Although CNN-based methods

are capable of predicting object pose under occlusion, the overall accuracy is
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not satisfactory. One possible explanation is that those methods borrow the

backbone network design from classification models such as VGGNet [161]

and GoogLeNet [162], which gradually reduces the feature map resolution by

pooling operations, making it hard for the model to capture subtle differences

of object poses.

Aiming at exploiting the advantage of high-resolution features, in this study,

High-Resolution Network (HRNet) [163] is leveraged as the backbone net-

work, upon which a model is constructed that directly predicts 6-DoF pose

parameters from RGB-D data. The key idea behind HRNet is to keep a

high-resolution branch as well as several gradually lower-resolution branches

in parallel and fuse the features from different branches multiple times at

certain positions of the network. This is from the commonly acknowledged in-

sight that low-resolution feature maps represent semantic information better

while high-resolution feature maps contain more precise spatial information.

As for 6D pose estimation, this study suggests that it not only requires strong

semantic representations to recognize the object appearance but also needs

precise spatial features to distinguish small variations of object pose. In

addition, an extra refining network is adopted to refine the predicted coarse

6-DoF pose. The strategy of pose refinement is widely adopted to improve

the accuracy of pose estimation in previous work such as [154, 157, 159,

164]. While many of them utilize iterative optimization methods such as

ICP algorithm [154], this study instead aims to predict the distance between

coarse estimation and ground-truth pose by a CNN model, which takes the

same network design as the coarse pose estimation network.
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3.1.2 Hand-Object Pose Estimation

Human interventions and interactions are inevitable in HRC tasks because

of the essential role of human operators in the HRC team, which makes

it natural to additionally take the human hand into account during object

perception. Ample research works have been devoted to the recognition

of either human bodies or objects. For instance, human body information

[165, 96] and hand gesture cues [166, 108] have been actively leveraged

to recognize the human motion and intention via deep learning models in

HRC applications. On the other hand, the identification and localization

information of industrial objects have also been exploited via computer vision

techniques in previous HRC studies [167, 168, 169] to facilitate adaptive

robot manipulation and collaboration.

However, insufficient attention has been paid to jointly recognize the human

hand and object, and to reconstruct their 3D dense geometries, which is

believed to be crucial for robots to carry out interactive actions with human

operators in close proximity. For instance, in a human-robot handover case,

the ability to simultaneously exploit the 3D spatial relation of hand and object

is preferred for the robot to plan the handover position and timing proactively.

Meanwhile, this close-range human-robot co-manipulation in HRC can bring

up another issue, which is the partial occlusion between the hand and object.

For instance, the disassembly tool/part being handed over from human to

robot is very likely to be partially occluded by the human hand from the

robot view, which could cause the robot to misjudge the grasping position

and fail to undertake the action accurately and safely.
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Regarding the image occlusion issue, some recent efforts in the computer

vision community have been made by leveraging generative models to synthe-

size the content of occluded areas in an input image [170]. These generative

methods can produce visually plausible non-occluded images, but they are

not suitable for subsequent recognition tasks since the generated images

contain many artefacts that do not exist in natural images. Another line of

works explored the pixel-level discrimination of occluder and occludee [171]

to facilitate 2D instance segmentation. Although the core idea is ingenious,

these works focus more on general daily objects and only 2D information,

which renders it infeasible for direct application in 3D hand-object pose

estimation.

Motivated by the aforementioned problems, this study additionally focuses

on the simultaneous 3D dense reconstruction of hand-object poses from

partially occluded observations in HRC activities. An integrated model for

hand-object pose estimation is proposed with binary mask guidance for better

hand and object attention separation, as well as an explicit occlusion-aware

mechanism designed to minimize the reconstruction error caused by hand-

object occlusion.

3.2 High-Resolution 6-DoF Pose

Estimation of Industrial Parts

In this section, the proposed high-resolution network-based 6-DoF pose

estimation method is explained in detail. Provided with the observed RGB-D

image and 3D object model, the objective of 6-DoF pose estimation is to
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infer the object pose parameters, which are normally presented as a SE(3)

transformation (SE: Special Euclidean Group) consisting of a 3-DoF rotation

R and a 3-DoF translation t. With the estimated R, t and the object’s 3D

model, the complete 3D information of the object can be well obtained. The

overall architecture of the proposed model for 6-DoF pose estimation of

industrial parts is illustrated in Fig. 3.1. The architecture mainly consists

of three stages, i.e., industrial parts detection, coarse pose estimation, and

pose refinement. The detection stage takes RGB images as input, and output

parts bounding boxes and classification results. The detection stage can be

regarded as a preprocessing step and the following pose estimation stages

are actually agnostic to which specific detection model is used, so this study

simply adopts Faster R-CNN [172] as the detector. Then in the coarse pose

estimation stage, an HRNet-based pose estimation network is constructed

to better distinguish small pose differences of industrial parts by taking

advantage of high-resolution features. The coarse pose estimation network

takes the cropped RGB-D patch of the detected part as input and estimates

the rotation R and translation t respectively. The final stage is designed

for pose refinement, which first generates a rendered RGB-D image based

on the estimated coarse pose parameters and the object 3D model, then

concatenates the rendered image and the cropped image together as the

input, and estimates the pose deviations ∆R and ∆t. By applying the

predicted ∆R and ∆t to the coarse R and t, the final 6-DoF pose estimation

is obtained.

3.2.1 Industrial Part Detection

The first step of this work is to extract the regions of interest for industrial

parts. Concretely, the observed image might contain multiple industrial parts,
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Fig. 3.1: Overall architecture of the high-resolution 6-DoF pose estimation model.

for which the individual regions and categories need to be extracted first

to facilitate subsequent 6-DoF pose estimation. For a specific part in the

image, the image patch will be cropped according to the detection results

which are normally represented as bounding boxes. Then the following pose

estimation processes only need to consider the cropped image area, which

brings two benefits: 1) The removal of irrelevant image area could ease the

model training process; 2) Better computational efficiency. Meanwhile, the

part category given by the classification results will be used to decide which

part model should be applied to the rendering process in the pose refinement

stage. Therefore, a successful detector Faster R-CNN is employed to locate

industrial parts in complex industrial scenarios, regardless of occlusion and

textureless interference. Under this prerequisite, the work can pay more

attention to the following two-stage pose estimation.
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3.2.2 Coarse Pose Estimation

Instead of segmenting each object with extra branches [158], this study

simply crops the part region from the observed image as input of the pose

estimation model. Based on the cropped RGB-D image, the pose estimation

model can directly regress the part pose parameters including the rotation

matrix R and translation vector t of the part to fully recover its pose in 3D

space. The details are illustrated as follows. d image as input of the pose

estimation model. Based on the cropped RGB-D image, a pose estimation

model will directly regress the part pose parameters. This section illustrates

the details of the pose estimation model as follows.

1) Depth Image

The introduction of depth image plays an essential role in the pose estimation

model. Existing methods such as [173, 158] tend to tackle the 6-DoF pose

estimation problem only from RGB images, which could bring uncertainties

for the translation estimation. Without depth information, a traditional pose

estimation model has to memorize the size of a specific object for coordinate

transformation, which can be further utilized to transform each object from

2D image pixels to 3D space. This is not only difficult for the model to learn,

but also prone to error when facing similar objects with different actual sizes,

which is often the case for industrial parts such as bolts. Although Xiang et al.

[158] have explored tackling this problem with the ICP refinement algorithm,

it is infeasible for real industrial applications due to the time-consuming

computation.
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To avoid the above issue, this study simply attaches the depth image as an

extra channel to the RGB image to form an RGB-D image, which is further

input to the pose estimation model for processing.

2) High-Resolution Feature Extraction

A critical limitation that hinders current methods [174, 158] of 6-DoF pose

estimation is that deep neural networks are prone to lose spatially feature

representation after the gradually downsampling operations, e.g., VGGNet

[161] and GoogLeNet [162]. Inspired by [163], this study adopts the back-

bone network design of High-Resolution Networks, which can ensure both

spatially precise and semantically strong feature representation for 6-DoF

pose estimation. The major differences between classification network design

and high-resolution network design are shown as Fig. 3.2. While normal deep

learning networks quickly decrease the feature map size, the high-resolution

network maintains the spatial resolution throughout the process.

…

…

……
Classification Network High-Resolution Network

Fig. 3.2: Backbone comparison.

The input to the network has the shape 4 × H × W , where 4 represents the

4-channel RGB-D image, H means image height and W means image width.

The first two convolution layers have 3 × 3 kernels and the strides are 2, after

which the feature map resolution is decreased to H
4 × W

4 .
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The main body of the network consists of several parallel branches with

different spatial resolutions. As Fig. 3.1 (b) shows, the uppermost branch

maintains the resolution H
4 × W

4 until the final fusion, while gradually lower-

resolution branches are added to the network one-by-one with 1
2 of resolution

of the previous branch until there are four branches with different resolu-

tions.

In the middle of the model, there are interleaved connections between the

parallel branches every few convolutions. It is commonly acknowledged that

low-resolution feature maps represent semantic information better while

high-resolution feature maps contain more precise spatial information. The

interleaved design is leveraged to better fuse and exchange information

between multiresolution branches.

At the final part of the network, feature maps from higher-resolution branches

are first downsampled by 1
2 and concatenated with the ones from lower-

resolution branches. This process repeats until all the features are squeezed

into the final feature maps, which are further processed by 2 fully connected

(FC) layers sequentially. Finally, the translation parameters are estimated by

an FC layer with 3 neurons and the rotation parameters are estimated by

another FC layer with 4 neurons.

3) 6-DoF Pose Estimation

With the definition of input format and network structure in previous parts,

the model is ready to do forward inference. To be able to train the model, a

loss function is required to represent the prediction error. In this part, the

3.2 High-Resolution 6-DoF Pose Estimation of Industrial Parts 59



pose parameterization is first introduced and then the loss function is defined

based on the estimated pose parameters.

The 6-DoF pose is represented by a rotation R and a translation t. Let

t = (tx, ty, tz)T be the translation vector of the object, where tx and ty

represent the object center in the image coordinates and tz the average

distance from the object to the camera. Here tx and ty are actually the pixel

deviations from the left-top corner of the cropped image patch to the centre

of the object for the convenience of implementation. The actual position

could be easily obtained by combining this representation and the bounding

box coordinates of the object from the detection stage. And the loss function

for translation regression is defined as:

Lt(t̂, t) =


0.5(t̂ − t)2 if

∣∣∣t̂ − t
∣∣∣ < 1∣∣∣t̂ − t

∣∣∣ − 0.5 otherwise

, (3.1)

where t̂ denotes the ground truth translation and t denotes the estimated

translation. Notice that this is the smooth-L1 loss function [172], which

is differentiable at 0. Following existing work [158], the rotation R is

represented using a quaternion q = qr + qii + qjj + qkk as follows:

R =


1 − 2

(
q2

j + q2
k

)
2 (qiqj − qkqr) 2 (qiqk + qjqr)

2 (qiqj + qkqr) 1 − 2 (q2
i + q2

k) 2 (qjqk − qiqr)

2 (qiqk − qjqr) 2 (qjqk + qiqr) 1 − 2
(
q2

i + q2
j

)

 , (3.2)

which is easier for the model to learn than naive rotation angles. And the

loss function for rotation regression is defined as:

LR(R̂, R) = 1
N

∑
i∈N

min
j∈N

∥∥∥R̂xi − Rxj

∥∥∥2
, (3.3)
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where xi denotes the ith point of N points of the 3D object model, xj the

jth point, R̂ the ground truth rotation, and R the estimated rotation. The

basic idea is to apply the ground-truth rotation and estimated rotation to a

point of the object model and calculate the L2 distance. But for symmetrical

objects, different rotation angles might result in the same appearance, which

cannot be represented well by simply taking the L2 distance of applying

rotation matrices to the same point. So this loss function instead measures

the distance between a point with the estimated rotation and the closest point

with the ground-truth rotation. The overall loss function is simply defined as

the sum of the previous two loss functions:

Loverall = LR + Lt (3.4)

3.2.3 Pose Refinement

To improve the pose estimation accuracy, a pose refinement stage is intro-

duced in this study. The goal is to predict the pose estimation error of the

coarse pose estimation stage. To achieve this goal, the estimated pose from

the previous stage is first applied to the 3D object model to obtain a rendered

RGB-D image, which is then concatenated with the cropped RGB-D image

same as the input of the coarse pose estimation stage to form an 8-channel

tensor as the input of pose refinement model.

The backbone network of pose refinement takes the same design as the coarse

pose estimation stage. Although this is not compulsory, this study utilizes

the same backbone model for the convenience of implementation and also

exploits the advantage of high-resolution feature representation. The output
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format is also highly similar to that of the coarse pose estimation stage. The

only difference is that the estimated target is the relative pose error ∆R and

∆t rather than absolute pose parameters. Applying the estimated pose error

to the coarse pose, the final pose is obtained as follows:

Rfinal = ∆RR, (3.5)

tfinal = t + ∆t, (3.6)

where Rfinal and tfinal represent the final rotation and translation. The loss

functions for pose refinement also take the same form as in coarse pose

estimation but replacing R and t with Rfinal and tfinal respectively.

3.3 Hand-Object Pose Estimation with

Explicit Occlusion Awareness

The overall model architecture of the proposed joint hand-object 3D pose

estimation model is shown in Fig. 3.3, in which the model is mainly divided

into three parts: (a) mask-guided attentive feature extraction, (b) hand-

object dense pose estimation, and (c) occlusion awareness. A monocular RGB

image I ∈ R3×H×W , which contains the hand-object interaction is captured as

the input to the proposed model. It is assumed that the hand-object area and

the object type are already known since they are not the focus of this study

and can be easily obtained via an object detection model. The image I is

first input into the backbone network, which is designed based on ResNet50

[175], for hand and object feature extraction guided by hand and object

binary masks respectively. Then in the hand-object pose estimation part,

the extracted feature vectors are input to several fully connected layers to
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predict the pose parameters including hand translation Thand, pose Phand,

shape Shand, object rotation Θobj, and object translation Tobj, which are

subsequently applied to the object 3D model and MANO (hand Model with

Articulated and Non-rigid defOrmations) hand model [176] to obtain the 3D

geometric reconstructions. And the rendered ternary mask can be further

generated by projecting the 3D reconstructions back to 2D image plane via

differentiable rendering [177]. Meanwhile, the intermediate feature maps

from the feature extraction stage are leveraged to construct an FPN-like

(Feaure Pyramid Network) [178] subnetwork to predict the ternary mask

in a segmentation fashion. Finally, the consistency between the predicted

and rendered ternary masks is calculated and regarded as a constraint term

Lconsist in the training loss function which will be elaborated in more detail

in the following sections.
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Fig. 3.3: Architecture of the proposed integrated hand-object dense pose estimation
model.
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3.3.1 Mask-Guided Attentive Feature Extraction

Feature extraction is an essential step to create a nonlinear mapping between

the image space and the high-dimensional feature space in order to produce

a compact and expressive feature representation F ∈ RN of the input image

I. It is widely accepted that deep learning models, especially CNNs, are

highly effective for image feature extraction, thus we also follow the spirit

to construct the feature extractor based on the renowned ResNet50 [175].

Previous works normally employ ResNet directly for hand-object feature

extraction [179], which can bring certain ambiguity especially when the

hand and object are partially occluded by each other. To make the model

better attend to hand and object areas respectively, we decided to introduce

hand and object binary masks M ∈ RH×W as intermediate supervision

signals during model training, which naturally leads to separated branches

for hand feature Fhand ∈ RN and object feature Fobj ∈ RN . The details of the

proposed mask-guided attentive module and the backbone model structure

are illustrated as follows.

1) Mask-Guided Attentive Residual Block

The original ResNet was designed to classify the most salient object in an

image into its corresponding category, which may not be directly suitable

for this task where there are two main subjects. Inspired by the recently

prevailing spatial attention mechanism, we propose the mask-guided atten-

tive residual (MAR) block to incorporate binary masks of the hand Mhand or

object Mobj into the original residual block.
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(a) Original bottleneck residual block. (b) Proposed MAR block.
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Fig. 3.4: Comparison between the original residual block (a) and the proposed
mask-guided attentive residual block (b).

The detailed comparison between the proposed MAR block and the original

one is depicted in Fig. 3.4. Following He et al.’s definition [175], the original

residual block can be defined as:

y = ϕ (H (x) + x) , (3.7)

where x and y are the input and output of the residual block, H represents

the in-between layers, and ϕ denotes the ReLU activation function. Hence,

the proposed MAR block can be formulated as:

y = ϕ (H1(x) ⊙ (σ (H2 (H1(x)))) + H1(x) + x) , (3.8)

where H1 represents the original operations as H in (3.7), H2 the extra layers

for binary mask generation, σ the Sigmoid function, and ⊙ the element-wise

product. During training, the generated binary mask is compared with the
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ground-truth mask through the binary cross-entropy loss, which is denoted

as:

Latt_mask = − 1
HW

∑
i∈MHW

(yi · log(pi) + (1 − yi) · log(1 − pi)), (3.9)

where yi is the binary label of a pixel, pi is the predicted probability of the

pixel being foreground, MHW represents the generated binary mask with H

and W being the height and width respectively. The objective of this design

is to impose extra supervision throughout the feature extraction process so

that the learned feature can be more focused on the target area.

2) Parallel Feature Extraction Branches

With the MAR block, the backbone network naturally takes form in a branched

shape as the goal is to enhance the model attention for hand or object

exclusively in separate branches, which can also benefit the model training

by reducing the ambiguity of the supervision signals. The detailed structure

of the feature extraction network is illustrated in Table 3.1. The first column

denotes the names of different layer groups, the second column represents

the size of output (i.e., C for channels, H for height, and W for width)

for each layer, and the third one shows the details of the model structure.

The input to the network is an RGB image I ∈ R3×H×W with H = 270

and W = 480 following the practice in [179]. The image is first processed

by a 7 × 7 convolution layer and a 3 × 3 max pooling layer for low-level

feature extraction. Then the model splits into two branches for hand and

object respectively with the same structure, where the only difference is the

intermediate mask supervision for each MAR block. The design for layer

groups Conv2_x to Conv5_x generally follows the original ResNet50 with

only the last residual block of each layer group replaced with the MAR block.

66 Chapter 3 Industrial Workpiece Pose Estimation



Table 3.1: Architecture of the Feature Extraction Network

Layers
Size

(C × H × W )
Model

Input 3 × 270 × 480

Conv1
64 × 135 × 240 Conv, 7 × 7, 64, Stride 2
64 × 68 × 120 Max Pool, 3 × 3, Stride 2

(Hand Branch) (Object Branch)

Conv2_x 256 × 68 × 120

 1 × 1, 64
3 × 3, 64
1 × 1, 256

 × 2

 1 × 1, 64
3 × 3, 64
1 × 1, 256

 × 2
 1 × 1, 64

3 × 3, 64
1 × 1, 256


MAR

× 1

 1 × 1, 64
3 × 3, 64
1 × 1, 256


MAR

× 1

Conv3_x 512 × 34 × 60

1 × 1, 128
3 × 3, 128
1 × 1, 512

 × 3

1 × 1, 128
3 × 3, 128
1 × 1, 512

 × 3
1 × 1, 128

3 × 3, 128
1 × 1, 512


MAR

× 1

1 × 1, 128
3 × 3, 128
1 × 1, 512


MAR

× 1

Conv4_x 1024 × 17 × 30

 1 × 1, 256
3 × 3, 256
1 × 1, 1024

 × 5

 1 × 1, 256
3 × 3, 256
1 × 1, 1024

 × 5
 1 × 1, 256

3 × 3, 256
1 × 1, 1024


MAR

× 1

 1 × 1, 256
3 × 3, 256
1 × 1, 1024


MAR

× 1

Conv5_x 2048 × 9 × 15

 1 × 1, 512
3 × 3, 512
1 × 1, 2048

 × 2

 1 × 1, 512
3 × 3, 512
1 × 1, 2048

 × 2
 1 × 1, 512

3 × 3, 512
1 × 1, 2048


MAR

× 1

 1 × 1, 512
3 × 3, 512
1 × 1, 2048


MAR

× 1

2048 × 1 × 1 Average Pool Average Pool

Finally, average pooling layers are utilized to convert the feature maps into

feature vectors Fhand ∈ RN and Fobj ∈ RN with N = 2048.
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3.3.2 Hand-Object Dense Pose Estimation

After feature extraction, the second part of the proposed model focuses on the

estimation of the pose parameters for hand and object and the reconstruction

of the 3D geometry.

1) 3D Hand Reconstruction

To simplify the problem of 3D hand reconstruction, we employ a parametric

model MANO [176], which is able to generate a 3D hand mesh based on

a set of pose and shape parameters. Following the practice in [179], the

hand feature vector Fhand ∈ R2048 is taken as input to several FC layers which

subsequently regress the pose parameters Phand ∈ R15 that represent the 3D

rotations of hand joints, and shape parameters Shand ∈ R10 for controlling

the shape characteristics of different hands such as the length between joints.

An additional FC layer branch is introduced to predict the spatial translation

Thand ∈ R3. The process of the MANO model can be symbolized as:

(Vhand, Jhand) = MANO (Phand, Shand) + Thand, (3.10)

where Vhand ∈ RN×3 represents the 3D coordinates of the hand mesh vertices

with N = 778, and Jhand ∈ RM×3 the hand skeleton joints with M = 21. Dur-

ing training, the hand reconstruction supervision is imposed via calculating

the l2 loss between the estimated hand joints and the ground truth:

Lhand = 1
M

∑
i∈M

∥∥∥Ji − Ĵi

∥∥∥2
, (3.11)
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where Ji ∈ Jhand represents a hand joint and Ĵi is the corresponding ground

truth annotation. Meanwhile, two l2 regularization loss terms are applied

to the training including LPhand
= ∑

i ∥Pi∥2 and LShand
= ∑

i ∥Si∥2 to prevent

extreme values for these parameters, which may cause unnatural hand

geometry.

The output hand mesh is in the 3D camera coordinates, which already

implicitly includes the camera extrinsic parameters in the pose parameters.

To further reproject the 3D hand vertices into the 2D image plane, the

perspective projection is employed based on the camera intrinsic matrix:


u

v

1

 = 1
z


fx 0 cx

0 fy cy

0 0 1




x

y

z

 , (3.12)

where (u, v) represent the pixel location in 2D image plane, (x, y, z) are the

3D coordinates of a vertex. (fx, fy, cx, cy) are the camera intrinsic parameters,

where (fx, fy) are the horizontal and vertical focal lengths, and (cx, cy) are

the center position of the camera view.

2) 6-DoF Object Pose Estimation

The pose estimation for object is less perplexing than its hand counterpart

as we assume the workpieces and tools are rigid and their corresponding 3D

mesh models are provided. The problem is commonly formulated as 6-DoF

pose estimation as in [47, 180, 181]. Like the hand parameter regression, a

similar FC branch is appended after the object feature vector Fobj ∈ R2048 to

predict the spatial rotation Θobj = (α, β, γ) ∈ R3 in the Euler angles form and

translation Tobj = (tx, ty, tz) ∈ R3 of the target object. The rotation matrix
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Robj ∈ SO(3) can be easily constructed from the estimated spatial rotation

angles, based on which the transformation from the canonical object mesh

model to its estimated pose can be denoted as:

Vobj = RobjVcan + Tobj, (3.13)

where Vobj ∈ RN×3 denotes the coordinates of object vertices in the estimated

pose, while Vcan ∈ RN×3 represents the given object mesh model in the

canonical pose. Then the loss for object pose estimation is similarly defined

as a l2 loss as the hand pose. Nevertheless, instead of the hand joints, the

distance of the vertices is measured, since there is no joint point in the object

model:

Lobj = 1
N

∑
i∈N

∥∥∥Vi − V̂i

∥∥∥2
, (3.14)

where Vi ∈ Vobj is the ith object vertex and V̂i the ground truth. The repro-

jection of object vertices to 2D space follows the same rule as in the case of

hand.

3.3.3 Explicit Occlusion Awareness

The mutual occlusion between hand and object has always been a challenging

issue in the hand-object pose estimation task because of the performance

degradation caused by the loss of discriminant features in the occluded area.

To mitigate this problem, an extra occlusion-aware mechanism is introduced,

which can empower the model by explicitly predicting the ternary mask of

the occlusion area via a FPN-like structure and further constraining it by

comparing with the rendered ternary mask from the estimated hand-object

pose.
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1) Ternary Occlusion Mask Prediction

The ternary occlusion mask is proposed in this study as an extension of the

binary mask. A binary mask generally represents the background pixels

with 0 and foreground 1, while a ternary mask additionally represents the

occlusion area with value 2. Let Mt ∈ RH×W denotes the ternary mask, then

we have

Mt(i, j) =



2 if (i, j) ∈ Phand ∩ Pobj

1 if (i, j) ∈ Phand ∪ Pobj and

(i, j) /∈ Phand ∩ Pobj

0 otherwise,

(3.15)

where Mt(i, j) is the pixel at position (i, j). Phand and Pobj represent the pixel

set of hand and object areas, respectively.

Inspired by the FPN network [178], we extract the intermediate feature maps

from the hand and object branches, concatenate them at different scales, and

add convolution and upsampling operations to form a bottom-up pathway.

Upsampling is mainly utilized to adapt the spatial sizes between different

scales, while 1 × 1 convolution is leveraged to accommodate the channel size

of feature maps. Finally, a 3 × 3 convolution layer is stacked upon the largest

merged feature map to obtain the ternary mask prediction Mt_pred ∈ RH×W

with H = 68 and W = 120. A cross-entropy loss Lt_pred, which is widely used

in segmentation tasks, is adopted for model training.

2) Neural Rendering-Based Occlusion Consistency

With the estimated pose and mesh models, one can also obtain a rendered

ternary mask Mt_render ∈ RH×W via differentiable rendering technique [177],
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which is also called neural rendering when integrated into a neural net-

work. The normal rendering process is non-differentiable because of the

discrete nature of the rasterization operation, while differentiable rendering

provides an approximation for the gradient of rasterization, thus making the

whole rendering process differentiable and possible to be incorporated in the

gradient-based optimization.

The ternary mask prediction can provide occlusion-aware supervision signals

through the back-propagation only to the front part of the model but not

the pose estimation layers, which can be addressed by rendering the 3D

mesh models in estimated poses back to the image plane to generate the

rendered ternary mask. Similarly, a cross-entropy loss Lt_render is leveraged

for training. Meanwhile, with the predicted and rendered ternary masks, an

extra constraint loss term can be defined as:

Lconsist = ∥Mt_pred − Mt_render∥2 , (3.16)

which is supposed to constrain the two ternary masks to be consistent with

each other, and the overall loss function for the model can be finally written

as:

Loverall = Lhand + Lobj +

λ1Lt_pred + λ2Lt_render +

λ3Ls_hand + λ4Lp_hand + λ5Lconsist, (3.17)

where λi denoting the corresponding weights of the loss terms which are

empirically set as λ1 = λ2 = 1×10−5, λ3 = λ4 = 1×10−6, and λ5 = 1×10−7.
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3.4 Experimental Results

3.4.1 Evaluation of the Object Pose Estimation

Model

The performance of the proposed model is evaluated on the new test set.

Following [158], the average distance with symmetrical objects (ADD-S) is

leveraged as the evaluation metric:

ADD − S = 1
N

∑
i∈N

min
j∈N

∥∥∥(R̂xi + t̂) − (Rxj + t)
∥∥∥2

, (3.18)

which basically takes the same idea as the loss function for rotation regression.

While previous work normally choose a predefined distance threshold to

calculate the percent accuracy, this study directly reports the average distance

calculated by equation (3.18) for simplicity.

Table 3.2 presents the evaluation results comparison between the baseline

model and the proposed model. The baseline model was proposed in [182],

which had the best performance on the utilized dataset, and only the single-

view model is adopted in the experiments of this work because the dataset

only contains single-view data. The main differences between the baseline

model and the proposed model lie in the backbone design and depth im-

age usage. Concretely, the baseline model uses EfficientNet-B3 [183] as

the backbone network, which is the state-of-the-art classification model on

ImageNet, and the baseline model only takes RGB image as input without

depth channel.
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Table 3.2: Evaluation Results Comparison

Method Backbone Depth Refinement ADD-S

Baseline[182] EfficientNet-B3
w/o w/o 0.0636
w/o w/ 0.0252

Proposed HRNetV2-W32
w/ w/o 0.0442
w/ w/ 0.0163

As Table 3.2 depicts, the proposed model with refinement has the smallest

ADD-S distance of 0.0163 on the test set. Compared with the baseline model,

the proposed model performs better with or without the refinement stage,

suggesting that the introduction of the high-resolution model design and

depth image significantly improves the performance. Note that the reported

results of the baseline model are different from the original paper because

the experimental setup and the evaluation metric are different. In terms of

evaluation time for a single sample, the baseline model requires 0.69s on

average for the whole process but varies from 0.4s to 0.9s depending on the

number of objects presented, while the proposed model is about 0.2s slower

on average.

Fig. 3.5 demonstrates some examples of 6-DoF pose estimation results. For

each pair, the left picture is the input image and the right one represents the

rendered image according to the estimated 6-DoF pose parameters. The left

two columns show some good examples, while the right two columns are

several failure cases, which shows the model still has trouble estimating the

rotation of symmetrical objects.

74 Chapter 3 Industrial Workpiece Pose Estimation



Images Results Images Results

Fig. 3.5: Examples of 6-DoF pose estimation results.

3.4.2 Evaluation of the Hand-Object Pose

Estimation Model

The prosperity of the electrical vehicle (E-V) industry in recent years poses

a foreseeable challenge in the near future that, an enormous amount of

ageing E-V battery modules will flush into the recycling market putting heavy

pressure on the disassembly operations. While employing collaborative robots

seems to be a viable solution, the limited cognitive capabilities for real-time

interactions of human hands and disassembly workpieces largely hinder the

HRCD (human-robot collaborative disassembly) efficiency.

To demonstrate the effectiveness of the hand-object pose estimation approach,

a case study on the HRCD of Li-ion (Lithium-ion) battery module is conducted,

as depicted in Fig. 3.6. In this context, hand-object interaction images are

captured and organized into a dataset for the evaluation of the proposed

method. Other comparative experiments on a public dataset are also carried

out to further demonstrate the generalization and universality of the proposed

approach.
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Fig. 3.6: Demonstration of the human-robot collaborative Li-ion battery module
disassembly.

1) Human-Robot Collaborative Li-ion Battery Disassembly

Data Collection. During the simulated Li-ion battery disassembly task, a

human operator is instructed to perform some of the disassembly steps, such

as unfastening the screws, opening the module shell, cutting the connecting

wires, etc., while the robot aims to mainly provide some assistance, such as

delivering the disassembly tools, picking the disconnected parts and plac-

ing into baskets. Meanwhile, an industrial camera is installed to capture

images of the working area in the disassembly process, and the hand-object

interaction areas are further extracted as the input to the pose estimation

model.

In total, 501 images were collected, including 6 types of different disassembly

tools and parts: 1) screwdriver, 2) wire cutter, 3) hammer, 4) structural

part, 5) small battery pack, and 6) long battery pack. The hand-object 3D
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pose labels are annotated manually, with 400 samples randomly selected for

model training and 101 samples for evaluation.

Experimental Setup. The model is implemented using Pytorch deep learning

library and trained with an RTX3080 GPU for acceleration. The backbone

layers are initialized with the weights from the pretrained ResNet50 model

provided by Pytorch, while other layers are randomly initialized. Adam

optimizer is employed for model training with initial learning rate 1 × 10−5,

batch size 2, and 1000 training epochs.

Evaluation Results. To evaluate the hand-object 3D pose estimation per-

formance of the proposed method, the mean joint error is calculated for

hand pose evaluation and the mean vertex error for object, following the

practice in [179]. The two metrics have similar forms as (3.11) and (3.14)

respectively.

The quantitative comparison result is illustrated in Table 3.3. The single-

frame model from one of the state-of-the-art works [179] is leveraged as

the baseline model. Three variants of the proposed model consisting of

different components are included in the experiments. The Branched model

denotes the branched feature extraction network but without the MAR block,

which exhibits a moderate improvement over the baseline model. The MAR

block contributes considerably to the decrease of the pose estimation error,

while the Occlusion awareness mainly promotes the object pose estimation

accuracy, which is as expected since the object is normally the one that is

being occluded by hand in the data. The last row of the table shows the

performance of the overall model, from which we can observe a considerable

improvement over the baseline method by around 15% for object and 21%
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for hand. In terms of inference speed, the model can achieve 39 FPS (frames

per second) on an RTX3080 GPU, which is sufficiently fast for real-time

applications.

Table 3.3: Pose Estimation Performance on The Collected Dataset

Method Components
Object Pose
Error (mm)

Hand Pose
Error (mm)

Hasson et al.
[179]

Baseline 45.45 45.81

Ours

Branched model 43.63 40.22

Branched model +
MAR block

41.60 36.01

Branched model +
MAR block +

Occlusion awareness
38.40 35.99

The qualitative results on some of the collected images are presented in Fig.

3.7. The first row presents the input RGB images, the second row is the

visualization of the estimated hand-object pose from the baseline method,

the third one depicts the results from the model, and the final row is the

projection overlay of 3D meshes to the image plane, from which it is easier

to inspect the accuracy of the estimation results of the model. Although it is

evident that the method can achieve better alignment between the estimated

poses and the input images, the results are still far from perfect, especially

when taking a closer look at the overlay images. One possible reason is that

the dataset scale is relatively small with only several hundreds of samples,

which may not be sufficient to fully cover all possible hand-object interaction

angles and postures.

2) Experiments on the F-PHAB Dataset

To further demonstrate the generalization ability and universality of the

proposed model, some additional experiments are conducted on a large-scale
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Input Baseline Ours Overlay

Fig. 3.7: Qualitative comparison on the test data between the baseline and the
proposed model. We select one sample for each of the 6 object categories
for demonstration.

public hand-object dataset F-PHAB (First-Person Hand Action Benchmark)

[184], which was collected in a daily hand-object interaction scenario con-

sisting of more than 100K images. The experimental results of our model

compared with some state-of-the-art methods are shown in Table 3.4. The

hand and object pose errors of some methods [185, 179, 186] are directly

extracted from the published papers. For Doosti et al. [187], we modified

their open source code to train the full model, since the experiments reported

in their paper followed a different setting from ours. And the object pose

error of [187] is not provided because their method only represents the object

pose by bounding box coordinates, which cannot be directly compared with

the posed object meshes in our method. It can be easily identified from the

table that our model achieves the overall best accuracy in both hand and

object pose estimation.
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The computational cost and number of parameters are also appended in

Table 3.4, which are calculated based on the open source implementations of

these methods except for [186], of which no code is provided. It can be seen

that our model is relatively bulkier and computationally heavier than the

compared ones. This is not unexpected considering that our model utilizes

two separate branches for hand and object respectively. Nevertheless, our

model is still able to achieve a fast inference speed (39 FPS) with GPU accel-

eration as mentioned earlier, therefore we believe the extra computational

cost should not be a major issue preventing it from real-time applications.

Table 3.4: Pose Estimation Performance and Model Complexity Comparison on The
F-PHAB Dataset

Method
Object Pose
Error (mm)

Hand Pose
Error (mm) FLOPs Params

Tekin et al. [185] 24.89 15.81 13.62G 14.31M

Hasson et al. [179] 22.30 18.00 38.46G 11.99M

Huang et al. [186] 21.37 15.18 - -

Doosti et al. [187] - 15.62 8.28G 23.90M

Ours 20.73 14.34 96.50G 29.45M

3.4.3 Discussions

The experimental results on the collaborative Li-ion battery disassembly

data and the public F-PHAB dataset both show consistent improvements of

our proposed approach over previous works, in terms of 3D hand-object

pose estimation. This is mainly attributed to better hand-object attention

separation brought by the mask-guided attentive feature extraction model

and enhanced occlusion robustness owing to the explicit occlusion awareness

mechanism. Compared with existing works, our proposed method can not

only produce the 3D hand-object pose estimation via an integrated model,
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but also take a step further to gain insights from the inherent problems in the

hand-object interaction scenarios, such as hand-object area ambiguity and

mutual occlusion.

This simultaneous hand-object pose perception scheme is capable to enhance

robot cognition skills, especially in HRCD scenarios to enable adaptive robot

decision-makings and proactive collision avoidance. Nevertheless, some

issues like limited data scale and lack of temporal information should be

delved deeper in future explorations.

3.5 Chapter Summary

The HRC manufacturing paradigm puts collaborative robots on the manufac-

turing shop floor to work seamlessly alongside human operators. To equip

those robots with the ability to understand the ongoing human hand-object

interactions in an HRC environment, a high-resolution network-based 6-DoF

object pose estimation model and an integrated hand-object 3D pose esti-

mation approach were proposed in this chapter. The main contributions of

this chapter can be summarized in threefold: 1) a two-stage coarse-to-refine

6-DoF pose estimation model with high-resolution feature exploration abil-

ity was proposed for industrial parts; 2) for hand-object pose estimation, a

mask-guided attentive residual block was proposed in cooperation with the

branched model structure to achieve finer hand-object attention separation

during the feature extraction stage; 3) an FPN-like subnetwork was leveraged

to predict the occlusion ternary mask which was compared with the rendered

mask from the estimated hand-object pose to achieve explicit occlusion aware-

ness to further reduce the pose estimation error caused by the occlusion.
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The subsequent experimental results on both the public benchmarks and the

Li-ion battery disassembly case demonstrated an obvious improvement over

existing methods.

82 Chapter 3 Industrial Workpiece Pose Estimation



4
Human Operator Digital Twin

Modelling

As mentioned in Chapter 2, human recognition is one of the most prevail-

ing topics of vision application in previous HRC research works. It is not

unanticipated since human plays the most important role in an HRC team.

In order to enhance both human well-being and robotic flexibility within

HRC, existing research efforts focused on human body perception but lack a

holistic perspective of the human operator. A novel approach to addressing

this challenge is the construction of an HDT, which serves as a centralized

digital representation of various human data for seamless integration into

the cyber-physical production system. However, the implementation of visual

perception-based HDT remains underreported within the HRC realm. To this

end, this chapter proposes an exemplary vision-based HDT model for highly

dynamic HRC applications. The model mainly consists of a convolutional

neural network that can simultaneously model the hierarchical human status

including 3D human posture, action intention, and ergonomic risk. Then,

on the basis of the constructed HDT, a robotic motion planning strategy is

further introduced with the aim of adaptively optimizing the robotic motion

trajectory.

The research content presented in this chapter is mainly based on a journal

paper published in the Journal of Manufacturing Science and Engineering

[188].
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4.1 Introduction

The vision of Industry 5.0 has put additional emphasis on the transition from

a technology-centred fashion to a sustainable, human-centric, and resilient

industry [189]. Unlike the traditional purely profit-driven manufacturing

paradigm, a human-centric approach prioritizes the well-being of human

operators throughout the entire manufacturing process. In this context,

human-robot collaboration has become increasingly prevailing in recent

years because of the ability to unleash the full potential of human-centric

creative problem solving with the assistance of robotic automation when

encountered with flexible or uncertain situations [2, 190, 191].

To enhance human well-being during HRC, it is essential for the robot to

be equipped with the ability to perceive the human body in an accurate

and timely manner, to which abundant research efforts have been devoted

over the years. Some previous researchers have adopted wearable sensors

[192] or motion capture suits [193] to perceive human body posture for

robotic applications. Although the pose capturing accuracy has been widely

acknowledged, wearing additional equipment can cause human discomfort,

especially after working long hours, and may not be practical in actual

manufacturing shopfloors.

Another trend is to leverage computer vision techniques to parse human

postures and actions via RGB or depth cameras in a non-intrusive way. For

instance, Liu et al. [98] adopted RGB-D sensors and deep learning models

to capture human skeleton pose and spatial occupancy to achieve real-time

collision avoidance in an HRC system. Parsa et al. [93] proposed a spatial-

temporal convolutional neural network to recognize human actions and
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associated ergonomic risks from RGB-D video streams. However, most of

these works only managed to consider a certain recognition task such as

skeleton pose recognition, action recognition, etc., which leaves the holistic

modelling of human operators largely unexplored. One promising approach

to address this challenge is the creation of an HDT, which offers a unified

digital representation of diverse human data that can be seamlessly integrated

into the cyber-physical production system. The deployment of HDT can be

advantageous for optimizing system performance and facilitating solution

recommendations during HRC operations. Although the concept of HDT has

been actively investigated by recent scholarly discourse [194, 195, 196], the

practical implementation of HDT for HRC cases has received scant attention

in the literature.

Therefore, this chapter presents a vision-based HDT model based on deep

convolutional neural networks with concurrent consideration of multiple

aspects of human status perception including 3D human posture, action

intention, and ergonomic risk. This study intends to provide an exemplary

implementation of HDT that can gather more holistic human information to

enhance the adaptivity and flexibility of cobots (Collaborative Robots) during

motion planning and action execution.

4.2 Vision-based HDT Modelling

Following the definition of HDT in [195], we extend it into the HRC context

as "a virtual representation of a human worker that is used to optimize the

collaboration between humans and robots". This HDT is an integrated model

created from vision data and is used to facilitate the description, prediction,
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and visualization of one or more characteristics of a human or class of humans

as they perform within the human-robot scenarios with the aim to identify

opportunities to improve worker well-being and ensure effective and safe

collaboration between humans and robots.
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Fig. 4.1: The proposed HDT perception model for HRC

Specifically, based on visual observation of an HRC scene, the proposed

vision-based HDT model is established to perceive and synchronize the hu-

man operator status which primarily focuses on three specific recognition

aspects of the human digital twin including the 3D posture, action intention,

and ergonomic risk. The concrete model is depicted in Fig. 4.1, which mainly

consists of a cutting-edge CNN backbone and specifically designed functional

branches. A short RGB-D sequence V = {It}T
t=1, where It represents a single

frame, of an HRC scene is captured as the input data. Although RGB infor-

mation alone is sufficient for various recognition needs, the complimentary

depth data can provide absolute distance values which are indispensable for

the mapping between the HDT and the real world. Then an HRNet-W32

backbone [163] is leveraged to process V and extract intermediate feature

maps Fint ∈ RC×H×W with C = 480, based on which several specifically pur-

posed branches are further constructed: 1) part attention branch, 2) 3D pose
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branch, 3) action branch, and 4) ergonomic branch, to fulfil different per-

ception requirements of the HDT modelling process. For simplicity, we only

illustrate the single frame case until the aggregation of sequential features

right before LSTM modules, which then refine the sequential information

and regress into different perception results. Through this unified model, the

intended human status can be extracted all at once and updated to the HDT

model in real-time. More details of the proposed model will be elaborated in

the following subsections.

4.2.1 Body Part Attention

Human body only amounts to a small fraction of the entire image of an HRC

scene, which can pose potential hindrances for the CNN model to focus on

the relevant area and make reliable recognition assertions if not provided

with explicit guidance. To this end, we propose the body part attention

mechanism as a direct cue indicating the whereabouts of the human body

and highlighting different body parts.

Based on the intermediate feature Fint extracted by the backbone network,

two 3 × 3 convolution layers with 480 and 128 channels, respectively, are

first applied to shrink the feature maps, which are then compressed into

(J + 1) × H × W by another convolution layer. J = 24 stands for the number

of body joints as well as body parts, the extra 1 channel represents the

background, and H = W = 56 are the height and width of the feature maps.

A softmax function σ is utilized to convert the feature maps to part attention

mask Fpart ∈ RJ×H×W , of which each pixel value indicates the likelihood of

that pixel belonging to a certain body part. Finally, the part attention mask

will be applied to the task-specific feature maps of the following branches to
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constrain the features to be focused on the body part areas. Fpart is reshaped

to HW × J for the convenience of subsequent multiplications.

4.2.2 3D Human Pose Reconstruction

The most essential component of the proposed HDT is the recognition and

reconstruction of human body posture and 3D mesh. Earlier approaches to

3D reconstruction normally rely on multi-perspective data and tend to be

time-consuming, while in this work we adopted the SMPL (Skinned Multi-

Person Linear Model) [197] human body model which can largely simplify

the reconstruction process by blending and stretching a prior template human

body mesh model towards the target posture according to the estimated body

parameters. Let M ∈ R6890×3 represents the generated 3D body mesh, and

J ∈ RJ×3 represents 3D skeleton joint coordinates. Then the process of

human mesh updating can be simply denoted as:

(M, J ) = SMPL (θ, β) , (4.1)

where θ ∈ RJ×3 denotes the estimated pose parameters, including the local

rotation parameters for the body joints and the global rotation parameters.

β ∈ R10 is the shape parameters drawing from the first 10 PCA (Principal

Component Analysis) shape coefficients from the SMPL convention. We adopt

the parameter settings and the gender-neutral model following previous

practices [198, 199].
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Getting back to the proposed model, the mentioned body parameters are

estimated via the 3D pose branch, which follows a similar design strategy

as the part attention branch in terms of the first several layers, but later

splits into two sub-branches with individual feature maps Fp ∈ RCp×H×W

and Fs ∈ RCs×H×W , where Cp = 128 and Cs = 64, for better decoupling the

pose and shape parameter regressions. Fp and Fs will be then reshaped and

multiplied with the reshaped part attention mask Fpart as mentioned in the

previous section for better body area feature emphasis. Note that this process

applies to each frame of the input video clip, resulting in two sequential

features Fpt ∈ RT ×Cp×J and Fst ∈ RT ×Cs×J , which will be exploited by two

LSTM modules with hidden size 2048 for temporal coherence aggregation

and further regressed to the corresponding body parameters θt and βt for the

whole sequence T . For training, three loss terms are employed to provide

supervision on the body parameters, joint coordinates, and part attention

map, respectively:

LSMP L =
∑
t∈T

∥∥∥θt − θ̂t

∥∥∥2

2
+

∑
t∈T

∥∥∥βt − β̂t

∥∥∥2

2
, (4.2)

Ljoint =
∑
t∈T

∥∥∥Jt − Ĵt

∥∥∥2

2
, (4.3)

Lpart = −
∑
t∈T

∑
i∈(J+1)

yi,t log(pi,t). (4.4)

LSMP L and Ljoint aims at measuring the difference between estimations θt,

βt, Jt and their corresponding ground truth labels θ̂t, β̂t, Ĵt. Specifically,

LSMP L is formulated as the summation of two MSE (Mean Squared Error)

loss functions over the temporal sequence T , which supervises the regression

of SMPL model parameters θt and βt for body joint rotations and body
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shape coefficients based on the SMPL convention. Similarly, Ljoint is defined

following the same principle to constrain the learning of 3D skeleton joint

coordinates. These two loss functions have been widely adopted in existing

literature for SMPL-based 3D human pose estimation. Lpart employs a pixel-

wise cross-entropy loss—a standard loss for segmentation tasks—for part

attention mask segmentation with yi,t denoting the one-hot vector of ground

truth label for a pixel at frame t, and pi,t the prediction.

4.2.3 Action Recognition and Ergonomic

Evaluation

To complement the HDT perception model, a higher semantic level is also

indispensable when dealing with abstract reasoning and robotic motion

optimization with regard to prioritized human-centricity, for which two

representative tasks are taken into consideration in this part: human action

intention recognition and ergonomic risk evaluation.

Human action recognition can enable the proactive adaptation of robotic

planning to the human operator to achieve more natural and efficient HRC.

In the proposed model, an extra action branch is constructed on top of the

backbone network to predict the human action intention class. This branch

adopts a similar structure to the 3D pose branch with the only difference

lying in the final fully connected layers after LSTM, where the extracted

spatial-temporal feature is first transformed into T × JCa with Ca = 64,

and then regressed to T × N with N = 5 types of actions, which is further

converted via a softmax operation into the predicted probability distribution.

During training, cross-entropy loss is utilized for supervision:
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Laction = −
∑
t∈T

∑
x∈N

yx,t log(px,t), (4.5)

where yx,t denoting ground truth label and px,t is the predicted probability

vector.

On the other hand, automatically evaluating the ergonomic risks of the

human body is of great importance for robotic actions towards reducing

occupational disease in a human-centric HRC environment. In this work,

we adopted the REBA (Rapid Entire Body Assessment) [200] ergonomic

assessment tool to rate the musculoskeletal disorder risk of a body posture on

a scale of 1-15. Although it is possible to calculate the REBA scores directly

from the body joints, the non-differentiable nature of the process renders

it unrealistic to be directly embedded into a gradient-based optimization

model. Therefore, we alternatively resort to regressing the REBA score via

an extra neural network branch, which follows a similar design as the action

branch but differs at the final fully connected layer that regresses the T ×JCe

feature vector, where Ce = 64, into T × 1. SmoothL1 [201] loss function is

leveraged here for supervising since it has a smoother gradient transition

at 0, which, as generally believed, leads to a better regression performance.

The loss function can be formulated as:

Lt =


0.5(yt − ŷt)2 if |yt − ŷt| < 1

|yt − ŷt| − 0.5 otherwise
(4.6)

Lreba =
∑
t∈T

Lt, (4.7)
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where yt denotes the regressed REBA score, and ŷt the ground truth label.

With all the loss terms presented, the overall loss function can be defined as

the weighted sum of the loss terms:

Loverall = λ1LSMP L + λ2Ljoint + λ3Lpart

λ4Laction + λ5Lreba, (4.8)

where λi represents the weight for each loss term. In this work, we empirically

set λ1 = 0.2, λ2 = 1, λ3 = 0.02, and λ4 = λ5 = 0.1 based on experimental

trials with the aim of prioritizing the posture reconstruction related terms

since they are the most challenging part for learning.

4.3 HDT-based Adaptive HRC

4.3.1 Overview

Although the main focus of this work is the vision-based HDT modelling

approach as elaborated above, it is also necessary to demonstrate the de-

ployment and applicability of the HDT. The conceptual framework of the

HDT-based adaptive HRC system is illustrated in Fig. 4.2. For an HRC scene

in the physical space where the human operator is working with the robot

in close range, RGB-D data will be captured and processed by the proposed

perception model to obtain real-time human status and synchronize with

the HDT in cyberspace. The updated HDT model is capable of providing
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Fig. 4.2: Overview of the HDT-based adaptive HRC system

cognitive redundancy with a comprehensive understanding of the status of

the human operator so that human safety and working efficiency can be

optimized adaptively during robotic decision-making and motion planning.

The optimized motion commands will then be delivered to the cobot via the

feedback channel. Note that since this study mainly focuses on the human

digital twin, other elements in the HRC environment are not included in the

digital mock-up.

With the HDT perception model serving as the physical-to-cyber bridge,

the feedback module operates as the backward passage from cyberspace to

the physical counterpart. Unlike the normal definition of the bi-directional

digital twin, in the HDT case, it is impractical to directly control the physical

human state from cyberspace. Therefore, we resort to realizing the feedback

module with adaptive robotic controlling based on the HDT information as an

indirect way to influence human behaviour during HRC with considerations

of optimized collaboration efficacy and human wellbeing.
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4.3.2 Adaptive Robotic Motion Control
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Fig. 4.3: The HDT-based adaptive robotic motion control

The HDT-based adaptive robotic motion control strategy is depicted in Fig.

4.3. First, the decision-making step is responsible for the selection of robotic

action objectives, such as picking up a workpiece or handing it over to the

human, along with the associated task specifications, such as the handover

position. In this process, the predicted human action intention is leveraged

as the main cue to decide the robot task for proactive assistance, for which a

Finite State Machine (FSM) [202] is employed to map the human operator

action intentions to different robotic action states as illustrated in Fig. 4.3. Af-

ter booting up into the initial state, the robot will first enter the standby state,

which is the default state to return to immediately after the completion of

other robot actions. One-directional arrows indicate the transition condition

between different states, while bidirectional arrows mean that the robot will
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switch back to the previous state after successful execution without further

commands. The decided current robotic task will be transmitted along with

the body posture and ergonomic status into the motion planning part.

Subsequently, the adaptive motion planning step will try to generate a viable

robotic motion trajectory to fulfil the designated robot task while satisfying

constraints including collision avoidance and ergonomically friendliness. An

Artificial Potential Fields (APF) based motion planner [203] is adopted in

this step. Although the APF method is a rather simple motion planner and

may not be suitable for all complex scenarios, it can be effective for certain

situations such as collision avoidance, and is especially suitable to incorporate

different aspects of human information as potential fields without greatly

increasing the algorithm complexity. The task-associated goal position for the

end-effector is encoded as an attractive potential, which can be formulated

as:

Ua = ka

2
∥∥∥qg − q

∥∥∥2
, (4.9)

where q is the robot configuration, qg the goal configuration, and ka the

scaling factor. The human body is naturally treated as an obstacle and repre-

sented as a repulsive potential for collision avoidance, while the interaction

points with high ergonomic risk are regarded as virtual obstacles that the

robot should try to avoid. The repulsive potential for obstacle i can be

represented as:

Ur,i =


0 di(q) > c

kr,i

2(di(q)−c)2 0 ≤ di(q) ≤ c

, (4.10)

Ur =
∑

i

Ur,i, (4.11)
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where di(q) is the distance to the obstacle, c the maximum obstacle avoidance

distance, and kr,i the weight factor for different obstacles. To apply the

potentials to a robot manipulator, we choose a set of control points p1, ..., pN

with the first N -1 points representing the robot joint links and the last point

for the end-effector. The end-effector will be influenced by both the attractive

and repulsive potentials which result in the total potential Ut = Ua +Ur, while

other points will only be affected by Ur. The combined force fields will be

utilized as the reference velocities:

q̇ = −
N−1∑
i=1

JT
i (q)∇Ur (pi) − JT

N(q)∇Ut (pN) , (4.12)

where Ji(q) is the Jacobian matrix associated with pi. Finally, the planned

motion will be translated into corresponding control commands and sent to

the robot controller for execution.

4.4 Experimental Results

To demonstrate the utility and capability of the proposed HDT model, ex-

periments are conducted for a simulated HRC disassembly scenario in our

lab environment, during which serval participants are designated to work

alongside a UR5 robot arm and repetitively carry out several possible types

of disassembly actions. An Azure Kinect RGB-D camera is deployed to cap-

ture the HRC scene data, which will be sent to a GPU server to establish

and update the HDT, based on which adaptive robotic motion will then be

planned and performed to provide assistance to the human operator. In the

following experiments, the proposed perception model for HDT modelling

will first be evaluated and compared with some baseline approaches, and
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then the HDT-based adaptive robotic control strategy will be demonstrated

in a simulation environment.

4.4.1 HDT Modelling for HRC Disassembly

Scenario

1) Data Collection and Experimental Settings

For the evaluation of the HDT perception model performance, RGB-D data

of the disassembly scenario were collected via the Azure Kinect camera and

trimmed into fix-length (T=16) clips, each of which contains one of 5 types

of human action including 1) dismantling, 2) part picking, 3) robot handover,

4) robot guiding, and 5) robot stopping. We chose these classes because they

are the most typical and representative human actions in an HRC disassembly

scenario. After removing invalid or low-quality data, there were 939 clips

as the overall experiment dataset, which was further split into a training set

with 751 clips and a testing set with 188. For data annotation, the action

intention ground truth labels were first manually annotated, then the human

pose labels were generated by iteratively fitting the SMPL model to a given

human image [204]. Ergonomic risk labels were calculated according to the

REBA ergonomic assessment steps while ignoring joint load since we do not

have force data.

The HDT perception model is programmed using the prevailing PyTorch

deep-learning library with an Nvidia RTX3090 GPU leveraged for hardware

acceleration. Adam optimizer is employed with learning rate 5 × 10−5, batch

size 2, and 100 training epochs.
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2) Evaluation Results

Table 4.1: Evaluation results of the HDT perception model

Method
MPJPE
(mm)

Action Intention
Accuracy

Ergonomic Score
Mean Error

HMR [198] 67.19 - -

PARE [199] 55.04 - -

ST-GCN [205] - 94.24% -

MTL [206] - 95.15% 0.83

Ours 48.98 98.54% 0.66

To quantitatively evaluate the performance of the HDT perception model,

MPJPE (Mean Per Joint Position Error) is leveraged for the measurement

of the reconstructed body pose error, accuracy for action recognition, and

mean error for ergonomic risk score regression. After training the proposed

model and compared models on the training dataset, evaluation was con-

ducted on the testing set and the mentioned metrics were calculated and

reported, which are shown in Table 4.1. Since there is no previous work

that simultaneously addresses these three aspects, we chose several baseline

methods regarding different tasks. For pose estimation, HMR (Human Mesh

Recovery) [198] mainly leverages a ResNet-50 model to estimate human pose

parameters, while PARE (Part Attention REgressor) [199] considers the part

attention similar to ours but does not involve temporal information. ST-GCN

[205] employs GCN (Graph Convolutional Network) to recognize human

action directly from skeleton joint data, and MTL (Multi-Task Learning) [206]

extends the GCN to additionally regress REBA ergonomic scores. Compared

to the baseline methods, the proposed model achieves better performance

on all three recognition tasks. In terms of human pose reconstruction, we

believe it owes to the enhanced feature extraction ability of the backbone
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Fig. 4.4: Qualitative examples of the HDT perception model

HRNet, the more focused attentional guidance provided by the body part

attention mechanism, and the temporal coherence information. As for action

and ergonomic score prediction, the sole dependency on skeleton data of the

baseline model weighs against its ability to exploit other heuristic features

during human-robot interactions, while the proposed model can better lever-

age the overall visual observations and thus achieves better accuracy. Fig.

4.4 presents several example results from the HDT model to qualitatively

illustrate in a visualized manner in order to provide an intuitive impression

of its performance. Note that we just randomly chose one sample for each

human action category, so there are no orderly or sequential relations be-

tween these examples. But one can still easily compose or imagine a possible

sequence of tasks with these actions: the human operator first 1) dismantles

some parts from the workpiece, then uses gestures to 4) guide the robot to

come closer, and signs the robot again to 5) make it stop when close enough;
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subsequently, the human 2) picks up a part and 3) handovers to the robot,

then 4) guides it again to move away. And further actions can be added to

the model to adapt it to more types of HRC tasks.

4.4.2 HDT-based Adaptive Cobot Motion Control

To demonstrate the HDT-based adaptive robot control for HRC scenarios, an

experiment is further conducted in a simulation environment as illustrated in

Fig. 4.5, in which a human operator is working in close range with a UR5

robot arm to fulfil some manipulation tasks. To simplify the repetitive experi-

ments, videos of a human operator carrying out different actions in the real

world were recorded offline, from which the HDT was established following

the proposed modelling approach. Frame-wise human data were extracted

from the HDT and imported into the PyBullet simulation environment, while

a UR5 was positioned alongside the human operator attempting to reach

some predefined goal points based on different human actions. The human

sequence was replayed over again for each simulation episode.

Fig. 4.5: Illustration of the adaptive cobot motion control

Since the human body is constantly moving around, the objective of the

cobot motion planning would be to reach the target point with adaptive

collision avoidance with the human body while avoiding high ergonomic risk

interaction points. We first iterated through human sequence data to identify

frames with predicted REBA scores higher than 8 (high risk according to
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the REBA assessment) and stored the corresponding human hand positions

in these frames as high-risk points. Then the APF-based motion planner as

described in Section 4.3.2 was applied to plan and control the UR5 robot.

We ran the simulation for 1000 rounds and the robot was able to reach the

designated targets without collision for 959 times. Although this experiment

seems rather naive, it depicts the fundamental application of the HDT model

in HRC scenes and exhibits its effectiveness.

4.4.3 Discussions

Based on the proposed HDT perception model, comparative experiments

were first conducted on the collected HRC data for the evaluation of percep-

tion performance, which evidently shows better accuracy in all three tasks

over the baseline models. This is mainly attributed to the end-to-end struc-

ture that integrates the three functionalities into a unified neural network,

which is beneficial for exploiting and reusing more robust visual feature

representations with extra support from the enhanced backbone model and

part attention mechanism. Then a simplified case of the HDT-based cobot

motion control was demonstrated in a simulated close-range HRC scenario,

and a success rate of 95.9% was obtained from the trials. This simple glimpse

can already reflect the huge potential of the HDT model in futuristic human-

centric manufacturing systems, especially in cases where fine-grained human

information is demanded. Nevertheless, some issues such as limited data

sources, limited perception tasks, and lack of more complex case studies still

exist and should be investigated more closely in future endeavours.
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4.5 Chapter Summary

One of the trends in the next generation of industry is to shift away from a

purely profit-driven manufacturing approach towards a more human-centric

one. HRC is seen as a natural choice to achieve this, as it has the poten-

tial to unleash the combined strength of humans and robots. To equip the

robot with a comprehensive understanding of its human partner beyond

standalone recognition tasks, this chapter proposes a vision-based HDT mod-

elling approach that addresses multiple human perception aspects with a

unified deep learning model in an end-to-end manner. The main contribu-

tions are summarized as follows: 1) a specifically designed deep learning

architecture was proposed to simultaneously perceive human 3D posture,

action intention, and ergonomic risk to accomplish the HDT modelling; 2) an

adaptive robotic motion control strategy based on the proposed HDT model

was presented to demonstrate the fundamental application of the HDT model

in HRC scenarios.
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5
Multi-Granularity Workspace

Parsing

With object-level and human-level information obtained, robots could already

perform collaborative actions in some relatively simple tasks such as tool or

workpiece delivery in a fixed workstation. Nevertheless, to deal with more

complex tasks such as navigating to places out of sight to fetch a specific

object required in an HRC assembly process, robots should be equipped

with the skill to perceive and model the whole working environment more

comprehensively. Existing robotic systems normally adopt a single-granularity

semantic segmentation scheme for environment perception, which lacks

the flexibility to be implemented in various HRC situations. To fill the

gap, this chapter presents a multi-granularity scene segmentation network.

Inspired by modern network designs, we construct an encoder network

with two ConvNext-T backbones for RGB and depth respectively, and a

decoder network consisting of multi-scale supervision and multi-granularity

segmentation branches.

The research content of this chapter is based on a conference paper presented

at the 2022 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS) [207].
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5.1 Introduction

The modern trend of mass personalization in the manufacturing industry

has incited tremendous interest and inclination to adopt human-robot col-

laboration in the manufacturing shop floor for the complementary strength

of human and robot teams, and the flexibility to swiftly adapt to diverse

individualized production demands [2].

To achieve autonomous navigation and adaptive collaboration in a shared

space with human operators, the robot should be equipped with an advanced

cognition system that can constantly perceive the surrounding environment.

Earlier robotic systems mainly rely on raw sensory data such as force and

depth values to construct the robotic perception and controlling strategy

[208], while a recent trend is to empower the robotic perception skills by

incorporating semantics into the scene perception process [209].

A commonly used technology is semantic segmentation, which leverages the

visual observation of the environment as input and segments it into different

semantic regions at a pixel level. A large body of work has been devoted to

the semantic segmentation task in the computer vision community over the

last decades, ranging from image processing-based methods to the recently

prevailing deep learning-based approaches [210]. However, most existing

works only consider the scene segmentation task in a single granularity,

which adopts a uniform criterion for the segmentation of all scenes regardless

of the perception distance and intended objectives. This single-granularity

scheme cannot suffice for volatile situations that a robot often encounters in

a human-robot environment. For example, a human body can be segmented

as a whole for collision avoidance when the robot is navigating at a distance,
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but in a close-range co-assembly case, the hands and arms of a human should

be distinguished for delicate robotic interactions with human hands.

Therefore, this work aims to extend the scene segmentation with a multi-

granularity task formulation including three levels of granularity: area level,

entity level, and part level. With this multi-granularity scene representation,

the cobot can adaptively alternate its attention among different granularity

levels according to its current situation and further analyze the environmental

information to facilitate subsequent decision-making and motion planning.

In this work, an RGB-D camera is utilized to capture the HRC scene since

it is more affordable and delivers reasonable performance in indoor scenes.

A multi-granularity scene segmentation network is proposed, which takes

the form of the prevalent encoder-decoder structure. The encoder network,

which is developed based on the ConvNext backbone [211], fuses the RGB

and depth information into a unified feature representation, upon which

the decoder network is constructed leveraging multi-level refinement and

multi-task strategies that can simultaneously produce multi-granularity seg-

mentation results. A simulated case in a human-robot collaborative battery

module disassembly scenario is studied to demonstrate the effectiveness of

the proposed model, and comparative experiments are carried out on a public

dataset NYU-Depth V2 [212] to illustrate the generality.

5.1.1 Environment Perception in HRC

As a prerequisite of human-robot collaborative systems, vision-based envi-

ronment perception has been extensively investigated in the literature [191].

Some works directly employ raw sensory data such as RGB-D camera or
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LiDAR to ensure safety for human-robot teams. Liu et al. [98] presented a

collision avoidance strategy which constructed an OctMap from the depth

sensory data of the environment to enable collision-free human-robot col-

laboration. A point cloud-based scene perception approach was leveraged

by Choi et al. [134] to synchronize the physical environment status with a

digital twin model of the human-robot collaborative workspace to measure

the safety distance in the virtual realm.

Another trend is to leverage semantics in the environment perception process.

Butler et al. [213] reported an interactive scene segmentation scheme that

additionally introduces human aids into the robotic scene perception process

to increase object segmentation performance. To achieve safe robotic naviga-

tion with natural language instructions in a complex indoor environment, Hu

et al. [127] leveraged a 2D map generated by SLAM to represent the global

environment and adopted the Mask R-CNN model to realise instance-level

scene segmentation for local robotic observations. The limitation of these

works is only a single level of semantics is considered, which is not flexible

enough to adapt to multi-granularity HRC activities.

5.1.2 RGB-D Semantic Segmentation

RGB-D cameras are widely used in robotic perception systems as they can pro-

vide 3D environmental information while being more affordable than LiDAR.

Many efforts have been devoted to investigating the RGB-D information-

based semantic segmentation task. One line of works attempts to project the

RGB-D data into 3D space and carry out semantic segmentation based on

3D point cloud or voxel data [214, 215]. However, a major issue is current

neural networks are generally inefficient when processing 3D volumetric data,
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which renders it impractical to deploy in time-sensitive robotic applications.

A more feasible way is processing the RGB and depth images separately

and then fusing the features together [216, 217, 218]. Chen et al. [218]

proposed the SA-Gate model which adopted an intertwined fusion strategy

between the RGB and depth encoder branches. Seichter et al. [217] fo-

cused more on the efficient design of the segmentation encoder and decoder

networks to facilitate robotic applications. Nevertheless, these works still

mainly rely on the ResNet backbone for feature extraction, which has already

been outperformed on many vision tasks by some modern networks such as

Swin Transformer [219] and ConvNext [211]. Another line of work that is

closely related to this work is the multi-task semantic segmentation [220,

221, 222]. Although various pixel-level prediction tasks such as edge map,

surface normal, and object part segmentation have been considered in these

works, it has been rarely mentioned to implement semantic segmentation

in a multi-granularity manner, which we believe has great potential in HRC

environments.

5.2 Multi-Granularity Segmentation

Network for HRC Scenes

The volatile nature of robot tasks in an HRC environment renders a single-

granularity scene perception scheme rather fragile due to the lack of flexibility

and versatility. Thus, we employ a multi-granularity scene segmentation

model to enhance the cognitive capability of the robot. In this section, the

multi-granularity segmentation criterion for the demonstrative HRC scenario
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will first be disclosed, then the proposed multi-granularity scene segmentation

network architecture will be described in detail.

5.2.1 Multi-Granularity Segmentation Criterion

A typical semantic segmentation task normally adopts a segmentation crite-

rion solely based on the entity level such as a robot or a person, and remains

unchanged for images taken from different perspectives and distances as

in some renowned public datasets [223, 212]. To enhance the perception

flexibility of collaborative robots, we expand the segmentation criterion for

the HRC disassembly case into three levels, i.e., area level, entity level, and

part level, the detailed definition of which is depicted in Fig. 5.1.
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Fig. 5.1: Multi-granularity segmentation criterion.

The area level is employed to handle coarse-grain robotic tasks such as

navigating to a specific work area. Here we heuristically define 5 types of

areas in an HRC scenario.

The entity level in this work is aligned with the traditional semantic segmen-

tation criterion which segments different entities based on their semantic
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categories. This is reserved for general perception purposes of autonomous

robots.

The part level, on the other hand, is defined in a finer grain, which splits

an entity into its constituent parts based on different functionalities and

possibilities to interact with robotic end effectors. This level can be beneficial

to some delicate tasks such as human-robot co-assembly, where the recog-

nition of detailed parts such as product components and human hands is a

prerequisite.

5.2.2 Model Architecture

The overall architecture of the proposed multi-granularity segmentation

model (MGS-Net) is depicted in Fig. 5.2. The general model design follows

the encoder-decoder structure. The encoder consists of two branches of

networks, which are adopted from the ConvNext model [211], for RGB and

depth information, respectively. The decoder part is inspired by the ESANet

(Efficient Scene Analysis Network) [217] following a lightweight design,

and we further extend it with multiscale refinement and multi-granularity

segmentation designs.

1) RGB-D Encoder

The purpose of the encoder network is to extract RGB and depth features and

aggregate them at different stages so that the complementary information

in the RGB and depth maps can be better exploited. The RGB and depth

branches follow the same philosophy of ConvNext [211], the main difference

is the incorporation of the Fusion Module.
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Fig. 5.2: The structure of the proposed multi-granularity segmentation network
(MGS-Net).

The ConvNext is a modernized version of ResNet with some micro and macro

design principles borrowed from Visual Transformer models. With a similar

computational cost as ResNet, ConvNext performs better by a considerable

margin. In this work, we employ the ConvNext-T variant for simplicity. Fig.

5.3(a) shows the details of a ConvNext block, of which the major difference

is the introduction of the depthwise convolution layer, Layer Normalization,

and GELU (Gaussian Error Linear Units) activation function.

At each stage of the backbone network, we fuse depth features into the RGB

branch via the Fusion Module, which leverages the channel attention module

proposed in [224] to enable an adaptive and learnable fusion mechanism.

The detailed structure is illustrated in Fig. 5.3(b).
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Fig. 5.3: The structure of ConvNext block and Fusion Module.

After the feature extraction of the encoder part, we additionally employ

the Pyramid Pooling Module [225] to process the features with different

pooling scales, which is believed to be able to aggregate global and local

context information and has been proved to be beneficial for segmentation

performance by previous research works.

2) Multi-Granularity Decoder

The decoder network mainly consists of three consecutive Decoder Modules,

which gradually decode and enlarge the feature maps, and an Output Head,

which recovers the feature map scale to match the input image size and

output the final segmentation results.

The Decoder Module is depicted in Fig. 5.4(a), in which the first part contains

a 3×3 convolution layer and a factorized Residual Block [226] composed of

several 3×1 and 1×3 convolutions, which is meant for better computational

efficiency. Then the flow branches into a main path and a side output path.

The main path consists of a nearest upsampling operation and a depthwise
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Fig. 5.4: The Decoder Module and Output Head of the decoder network.

convolution layer, and the skip connection from the encoder is additionally

attached to the output feature map. On the other hand, the side output path

is intended to provide multiscale segmentation supervision by producing side

segmentation results on different decoder stages. For each stage, the side

path will output three levels of segmentation results simultaneously with the

same network structure, which mainly consists of a nearest upsampling, a

simplified spatial attention module, and an output 1×1 convolution. The

upsampling and spatial attention are utilized to incorporate the smaller-scale

segmentation results to produce refined segmentation. Note that for the first

Decoder Module, there is no refinement connection since it is already at the

smallest scale. The detail is shown in yellow in the figure.

The final stage of the decoder is the Output Head which will recover the

feature map to the input size so that a pixel-wise segmentation result can be

generated. The main feature map is first processed by a 3×3 convolution,

then the previous side segmentation result is merged into the main feature in

a similar way as in the Decoder Module. After two consecutive upsampling

stages, the final segmentation results are generated. The three branches for

multi-granularity segmentation all follow similar network structures with the

112 Chapter 5 Multi-Granularity Workspace Parsing



only difference lying in the final output channels according to the categories

of different granularity levels defined in Section 5.2.1.

For the segmentation supervision, we adopt the Cross-Entropy loss with

additional weight terms for each class based on the number of pixels present

in the ground truth segmentation map. The weighted Cross Entropy loss can

be formulated as:

LW CE = −
∑
i∈C

wi · yi log(pi), (5.1)

where C is the number of classes, wi the weight of the class, yi the one-

hot vector of ground truth label, and pi the prediction. We apply this loss

function to all the segmentation supervisions of different scales and different

granularities, including 4 scales × 3 granularities. The overall loss function

is simply the summation of these loss terms.

5.3 Experimental Results

In this section, we first carry out some experiments on an HRC battery

module disassembly environment. Human-robot collaborative disassembly is

regarded as a viable solution to address the increasing labour demand and

safety issues of the disassembly and recycling of end-of-life Li-ion batteries.

Current cobots normally adopt a single-granularity perception system, which

cannot suffice for the flexibility demand of HRCD environments. Thus, we

simulated this collaborative battery disassembly case to demonstrate the

effectiveness of the proposed multi-granularity segmentation model.

To illustrate the generality and universality of the proposed model, further

experiments on the publicly available NYUv2 dataset are also presented

5.3 Experimental Results 113



by means of comparative studies with previous state-of-the-art models and

ablation studies for evaluating different components of the network.

5.3.1 Implementation Details

The proposed model is implemented via Pytorch and accelerated by a Nvidia

RTX3080Ti GPU. The backbone part of the encoder is initialized with the

pretrained weights provided by [211]. Other layers are randomly initialized.

AdamW optimizer with initial learning rate 1e-4 is leveraged along with the

cosine annealing scheduler with warm restart, where T0 = 5, Tmult = 3. The

model is trained for 500 epochs with batch size 4. Other common training

techniques such as data augmentation including random resizing, crop, and

flipping are also adopted following the common practice.

5.3.2 Human-Robot Collaborative Disassembly

Case

The first part of the experiments is conducted in a simulated Li-ion battery

disassembly scenario, where a human operator is carrying out disassembly

operations with assistance from a robot collaborator. The data collection

setup and experimental results are shown in the following content.

1) Data Collection

While the human-robot team is working on the disassembly task, an RGB-D

camera is placed at different view angles and different distances around
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Fig. 5.5: Qualitative results in the HRCD case.

the working area to simulate the possible views of a mobile cobot. Several

hundreds of images were captured, but we only managed to annotate 40

of them due to limited manpower and the non-trivial nature of manual

annotation of the three levels of segmentation labels. But we believe this

quantity of samples should suffice for the demonstration of the proposed

model since only a single HRCD scene is considered.

2) Results

We split the annotated samples into two subsets with 32 samples for training

and 8 for testing. After the training of the multi-granularity segmentation

model, we evaluate the model performance based on the commonly used

mIoU (mean Intersection-over-Union) metric, which basically measures the

overlap between the predicted segmentation result and the ground truth,

to show how well the model performs on the testing data. The proposed
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model achieves 84.90, 75.07, and 69.47 in terms of mIoU on the three

levels (Area, Entity, and Part) of granularity proposed in this work, and some

qualitative results are illustrated in Fig. 5.5, in which the images are cropped

to square for the convenience of illustration. Although the produced multi-

granularity segmentation result seems reasonable in general, some noise and

errors still widely exist in boundary areas and small structures, which we

believe are mainly because of the limited dataset size. As a part of a robotic

system, the inference speed of the model is also an imperative concern. The

Pytorch implementation of the proposed model can achieve 62 FPS with GPU

acceleration, which can satisfy the laboratory demonstration purpose. For

more time-sensitive robotic applications, more techniques such as pruning,

quantization, etc., can be further exploited in future research works. Here

we do not compare with other methods since we believe the dataset size is

too small to make a fair comparison, which is also the reason we decided to

additionally employ the public dataset for comparative evaluation.

5.3.3 Experiments on the NYU-Depth V2 Dataset

The NYU-Depth V2 dataset [212] is a frequently utilized benchmark for

evaluating RGB-D semantic segmentation algorithms. The dataset contains

1,449 indoor scene RGB-D samples with pixel-level semantic labelling, which,

according to the proposed multi-granularity criterion, is mainly defined on

an entity level with 40 classes of entities. We follow the original split of the

dataset, which includes 795 samples for training and 654 for testing. As the

dataset only contains single-granularity semantic annotations, we made some

adjustments to the proposed model by retargeting the area level and part

level branches to predict edge maps and normal maps instead as in [222].
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These two tasks serve as extra supervision to facilitate the model training but

are not evaluated as they are not the main focus of this work.

1) Comparative Results

The evaluation results of the proposed MGS-Net compared with some recent

state-of-the-art methods are listed in Table 5.1. We adopt three common

metrics, including PixAcc (pixel accuracy), mAcc (mean accuracy), and mIoU,

which are widely used in previous works. Based on these metrics, we can

see that the proposed model is on par with the top performers. One reason

of this achievement is the ConvNext backbone. With only a slightly higher

computational cost than ResNet50, the ConvNext backbone shows better

feature extraction ability than some bulkier models such as ResNet-101 and

ResNet-152. The adoption of other modern network designs, such as multi-

scale supervision, multi-level refinement connection, multi-task prediction,

etc., also largely contribute to the performance, which will be depicted and

discussed in more detail in the ablation study part.

Table 5.1: Experimental results on NYUv2 dataset compared with state-of-the-art
methods.

Method Backbone PixAcc mAcc mIoU

RefineNet [227] ResNet-152 74.40 59.60 47.60
MTI-Net [222] HRNet48-V2 75.30 62.90 49.00
PADNet [221] ResNet-50 75.20 62.30 50.20
ESANet [217] ResNet-50 - - 50.53
Zig-Zag [228] ResNet-152 77.00 64.00 51.20
ShapeConv [216] ResNext-101 76.40 63.50 51.30
SA-Gate [218] ResNet-101 77.90 - 52.40

MGS-Net (ours) ConvNext-T 77.41 66.45 52.86

2) Ablation Study
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Table 5.2 lists the results of the ablation study, during which we mainly

consider 5 components: backbone, optimizer, multi-scale supervision (MS),

multi-task prediction (MT), and refinement connection (Refine). It can be

identified that each component has contributed to the overall performance

improvement. While the ConvNext backbone contributes to the improvement

as expected, the AdamW optimizer with cosine annealing scheduler also

makes a significant impact on the performance by enabling a faster conver-

gence and smoother training process. The multi-scale supervision provides a

substantial improvement, which we believe is because the extra constraints

force the model to learn more from multi-scale features. The refinement

connection is actually a part of the multi-scale supervision strategy which

serves as a bridge between different scales of side supervision in a refinement

manner. The multi-task prediction, or multi-granularity in the original design,

presents moderate improvement by providing extra supervision signals from

two extra tasks. In general, the experiments on the public dataset have clearly

demonstrated the effectiveness and generality of the MGS-Net.

Table 5.2: Ablation study of the model components on NYUv2 dataset.

Backbone Optimizer MS Refine MT mIoU

ResNet50 Adam 47.74
ResNet50 Adam ✓ 49.27

ConvNext-T Adam ✓ 50.27
ConvNext-T AdamW+CosAnneal ✓ 51.98
ConvNext-T AdamW+CosAnneal ✓ ✓ 52.01
ConvNext-T AdamW+CosAnneal ✓ ✓ ✓ 52.86

5.3.4 Discussions

This chapter introduces a novel multi-granularity scene segmentation net-

work designed to enhance environment perception in HRC systems. Tested in

a simulated battery disassembly scenario, the network demonstrated superior
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segmentation performance across different granularity levels: area, entity,

and part. This adaptability is crucial for dynamic HRC environments. The

network’s architecture, integrating ConvNext backbones with multi-level

refinement and multi-task strategies, proved effective, achieving high seg-

mentation accuracies with mIoU scores of 84.90%, 75.07%, and 69.47%

across the respective granularities. These results highlight its capability to

provide detailed and contextually relevant segmentation results essential for

effective HRC. However, the study faces limitations, particularly the small

size of the training dataset and the need for computational optimization for

real-time applications. Future work could focus on expanding the dataset, en-

hancing processing speeds through advanced neural network techniques, and

incorporating richer sensory inputs to improve the model’s generalizability

and efficiency in diverse industrial environments.

5.4 Chapter Summary

Motivated by the lack of a flexible environment perception scheme in current

HRC systems, we proposed a multi-granularity scene segmentation model

in this work, aiming to simultaneously segment the environment into dif-

ferent granularity of semantics to accommodate the constantly changing

needs during cobot operations. By incorporating a bunch of modern network

design strategies, the proposed MGS-Net has achieved prominent results

in the collaborative battery disassembly case and demonstrated compara-

tive performance with state-of-the-art methods on the NYUv2 dataset. The

main contributions of this chapter can be summarized as follows: 1) an

RGB-D segmentation network MGS-Net was proposed leveraging modern

network designs such as the ConvNext backbone, multi-scale supervision,
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multi-granularity prediction, et cetera, 2) the multi-granularity segmentation

criterion was defined in an HRCD scenario and the feasibility of the proposed

model was demonstrated based on this criterion, and 3) the model was

further evaluated on the NYUv2 dataset and achieved comparable results to

state-of-the-art methods.

120 Chapter 5 Multi-Granularity Workspace Parsing



6
Vision and Language-Based

Collaborative Reasoning

The perception of object, human and environment could provide a holistic

understanding of an HRC working scene. To bridge the gap between scene

understanding and proactive decision-making, a reasoning mechanism is

necessary for robots when collaborating with human operators. The ultimate

goal of vision-based scene understanding is for the robot to proactively rea-

son and decide what to do next based on the holistic scene information. In

the smart manufacturing context, the robot collaborator in an HRC team

should be able to autonomously perceive the ongoing production status and

flexibly adapt to different operations without explicit pre-programming. This

ability of abstract reasoning is the missing puzzle piece towards holistic

scene understanding. In this chapter, we will delve deeper into a vision and

language-based reasoning approach and explore the potential of integrating

vision-language cues and Large Language Models into the robotic reason-

ing functionality, and further refine and smooth the reasoning process by

including human guidance in the loop.

The research work of this chapter is extracted from a journal manuscript

submitted to the Journal of Manufacturing Systems [229].
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6.1 Introduction

The emerging paradigm of HRC in recent years has been regarded as the most

promising avenue to achieve mass personalization [1] and can drastically

reshape the manufacturing landscape by combining the best of both human

and robotic merits: the creativity and critical thinking of human operators,

coupled with the precision and efficiency offered by robotic counterparts [2,

230]. While this synergy has the potential to deliver unparalleled productivity,

the seamless and flexible collaboration between humans and robots continues

to pose significant challenges, especially in terms of effective communication

and task understanding [231, 232].

Existing HRC approaches mainly rely on visual perception to autonomously

recognize the collaborative environment [191, 233, 234] since vision data

contain rich semantic information that enables robots to detect and interact

with humans and objects in their vicinity. However, sole vision-based methods

often struggle to fully comprehend the inherent ambiguity that prevalently

exists in human-robot communication, such as unclear human gestures,

leading to misinterpretations and subsequent compromises of efficiency [6,

235]. This naturally leads to an exploration of seeking complementary

modalities of data to enhance the communication channel.

Human language, as a more precise representation of human intentions, has

attracted abundant research interest in the HRC field, especially in guiding

robots based on varied language commands [236, 237]. Nevertheless, many

of these works normally oversimplify the task formulation by classifying

the language instructions into predefined categories and preprogramming

robots to respond in predetermined ways, which can considerably restrict
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the flexibility and extendability of possible input language commands, and

more severely, prevent the robot from understanding the nuances embedded

in human language, thus cannot effectively cope with the ambiguity during

human-robot communication.

Recently, the remarkable advancements in large language models have ob-

tained enormous attention in the research community because of their capa-

bility of understanding and generating human-like text [238, 239], providing

a potential avenue to complement visual cues and alleviate communication

ambiguity in HRC. However, while these LLMs have been applied and tested

in daily contexts, their potential within the HRC manufacturing scenarios,

especially how to associate and cooperate with visual perception systems,

remains largely underreported. It is, therefore, necessary to explore how to

leverage the unprecedented linguistic capability of LLMs and integrate them

into the HRC perception and reasoning system to reduce uncertainty and

improve HRC efficiency.

In response to these issues, this chapter proposes a vision-language reasoning

approach for ambiguity mitigation in human-robot collaborative manufactur-

ing scenarios. A novel referred object retrieval model is first proposed, which

aims at finding the goal object in visual observations based on the specifica-

tions of paired language commands. Meanwhile, a human-guided refinement

strategy is introduced to refine the referred object retrieval performance by

requesting human operators to click on the image. The retrieval model is

expected to reduce the object-reference ambiguity during HRC, enabling the

robot to accurately understand the object being referred to by the human

operator. Then an LLM-based robotic action planner is designed to generate
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feasible robot action sequences with reference to the language commands as

well as the retrieved object locations.

6.2 Vision-Language Reasoning for

Ambiguity Mitigation

As mentioned above, pure vision-based clues may exhibit a certain level of

vagueness when it comes to reasoning about the human’s intended robotic

action due to inherent visual ambiguity. Therefore, to alleviate the commu-

nication ambiguity, the human language modality is introduced to provide

explicit instructions about robotic action targets.

The overview of the proposed approach is demonstrated in Figure 6.1. Specif-

ically, the target reference expression will first be extracted from the full

language command by an LLM, the implication cue of which will be lever-

aged by the proposed referred object retrieval model to locate the target

object in the image observation for the robot to interact with.

While in most cases this should suffice to deliver reasonable object geometric

locations, the model may struggle for some samples because of the probabilis-

tic and blackbox nature of neural network models. Thus a backup plan will

also be proposed to remedy low-confidence segmentation results by asking

human operators for additional clicking input to provide further location

information.
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The extracted object location will then be fed along with the language com-

mand into the LLM-based robot planning module to generate corresponding

robotic action sequences in the form of executable codes that evoke APIs (Ap-

plication Programming Interface) for primitive robotic skills such as moving

to a certain coordinate or opening the gripper. The vast world knowledge

and common sense reasoning ability embedded in the LLM model will fuel

the planner to creatively combine primitive robotic skills and yield feasible

solutions to address the designated tasks.

RGB Image

Natural Language 
Command

put the cap on 
the assembly 
to your right. Large Language 

Model

Referred Object 
Retrieval

Object 
Location 

Action Plans:
target_pos = obj_retrieval(‘assembly’)
move_to(target_pos)
open_gripper()
…

Execution

the assembly 
to your right

Reference
Expression 
Extraction

Human 
Guidance If confidence < 𝜽

Fig. 6.1: Overview of the proposed vision-language reasoning approach for HRC

6.2.1 Ambiguity-aware Referred Object Retrieval

The identification and localization of the target object is the most important

component of the overall vision-language reasoning approach as the human

commands are designed to center around an assembly tool or part in the

HRC scene. Given an image I of the HRC scene and a reference expression

E in the natural language form, the referred object retrieval model aims at

identifying and segmenting the target object from I based on the reference

cue in E . The explicit indication of the requested target through human
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language serves as an effective device to fight against the first ambiguity

source in sole visual cue. Another major source of ambiguity resides in the

calculation process of the neural network, regarding which a confidence

score s of the output object mask M is additionally produced to represent

the uncertain or ambiguous level of the generated mask responding to E .

Human assistance will be requested if s is below a threshold to provide a

single click on the target object which will be incorporated into the input to

refine the segmentation result. The referred object segmentation model and

the human-guided refinement strategy are depicted in Figure 6.2 and will be

described in more detail in the following content.
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Fig. 6.2: Architecture of the proposed referred object retrieval model for HRC

1) Vision-Language Encoders

We mainly employ the CLIP (Contrastive Language-Image Pretraining) [240]

model as the image and text encoder for the outstanding vision-language

alignment ability provided by its web-scale pre-trained model. The captured

HRC scene image I ∈ R3×H×W , where H = W = 416, is first input into

the CLIP ResNet50 image encoder to extract the visual features. The visual
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features from the last 3 stages, including f 1
v ∈ RC1× H

8 × W
8 , f 2

v ∈ RC2× H
16 × W

16 ,

and f 3
v ∈ RC3× H

32 × W
32 , with C1 = 512, C2 = C3 = 1024, will be extracted and

fed into the decoder module for further processing.

On the other hand, the input reference expression E ∈ RL, where L = 17 is

the maximum length of the expression, is processed by a Transformer model

[241] with the pre-trained weights from CLIP to extract the text feature

ft ∈ RL×C . The Transformer utilizes a lower-case byte pair encoding (BPE)

[242] representation for text, which is segmented to different sentences by

[SOS] and [EOS] tokens. The activation of the final Transformer layer at

the [EOS] token is extracted and further converted into the sentence-level

feature representation fs ∈ RC .

2) Cross-Modal Feature Fusion

Following the practice in [243], we fix the pre-trained weights of the CLIP

encoders while introducing extra trainable Bridge modules to fuse the in-

termediate visual fv and text features ft to achieve cross-modality feature

fusion. In this way, the strong capability of the pre-trained CLIP model could

be preserved, the target domain vision-language feature interaction could be

additionally learned by the Bridge modules, and the training process could

be tremendously accelerated since most parameters are stored in the CLIP

models.

The Bridge module takes in the visual feature fv and text feature ft and

outputs the corresponding f
′
v and f

′
t with fused cross-modal information.

Concretely, fv will first be transformed to a predefined size Cp × Hp × Wp,

where Cp = 64, Hp = H
16 , Wp = W

16 , by a stride-2 convolutional layer or
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deconvolutional layer depending on whether the input height and width are

higher than Hp and Wp. Meanwhile, the text feature ft is also resized to

match the predetermined size L × Cp via a linear layer. Then a Multi-Head

Attention (MHA) [244] module along with the residual connection and layer

normalization will be applied to the vision and text features respectively. The

MHA is defined as:

MHA(Q, K, V ) = Concat(head1 . . . , headh)W O, (6.1)

headi = Attention(QW Q
i , KW K

i , V W V
i ), (6.2)

Attention(Q, K, V ) = softmax
(

QKT /
√

dk

)
V, (6.3)

where Q, K, V stand for query, key, and value respectively with dimensions

dk = 64. W O, W Q
i , W K

i , W V
i are the weight matrices of the linear projections

inside MHA. h = 6 is the number of parallel heads utilized in this module.

The first MHA module in the Bridge functions as the self-attention mechanism

since the input Q, K, V are all from the same source. The second one serves

as the cross-modal attention as Q comes from visual features while K, V

come from text features. Residual connection and layer normalization are

employed for each module following the standard Transformer block design.

Then a fully connected feed-forward network is applied, upon which a final

de-/convolutional and linear layer is constructed to recover the vision and

text features to their original size.

3) Segmentation Decoder

As mentioned above, the multi-scale visual features f 1
v , f 2

v , f 3
v and sentence

feature fs are sent to the decoder for segmentation generation. The detailed

structure of the decoder is illustrated in Figure 6.2. Similar to the Bridge
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module, the multi-scale visual features will first be transformed to be of the

same spatial size Hp × Wp via de-/convolutional layers, followed by MHA

modules as described in the previous part with fs as query and key for extra

vision-language feature fusion. Then the three branches of features are fused

together by concatenation, after which a 1 × 1 convolution is first applied,

closely followed by a coordinate convolution [245] which means a 2D spatial

coordinate feature with the shape 2 × H
16 × W

16 will be attached to the fused

feature maps before processed by an additional 3 × 3 convolutional layer.

Subsequently, several Transformer decoder blocks are borrowed to continue

processing the fused visual feature fv and sentence feature fs. The fixed

sine spatial positional encoding is first imposed, and the following self-

attention, cross-attention, and feed-forward modules are similar to the ones

adopted in the Bridge module. After the Transformer decoder, the final

stage will consider how to project the features back to the image plane

to obtain the mask prediction M. The output cross-modal feature from

the Transformer decoder can be denoted as fc ∈ RC1× H
16 × W

16 , which will go

through a combination of 2× upsampling and 3 × 3 convolution for twice,

resulting in an upscaled feature map fup ∈ RH
4 × W

4 . The final target object

mask prediction M ∈ RH
4 × W

4 can be further obtained by applying a sigmoid

function to fup. For training, a binary cross-entropy loss will be leveraged to

guide the learning process of the mask prediction:

Lmask = − 1
ĤŴ

∑
i∈M

(yi · log(pi) + (1 − yi) · log(1 − pi)), (6.4)

where yi denotes the pixel label, pi the probability of a pixel belonging to the

target area, and Ĥ = H
4 , Ŵ = W

4 .
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Meanwhile, to be able to represent the ambiguity or uncertainty of the

predicted target mask, we further introduce a small branch to generate a

mask score. The final feature map fup will first be resized to match fc, and

later concatenated with fc to be further regressed by a linear layer and a

sigmoid activation function to obtain a score ranging from 0 to 1, depicting

the estimated intersection percentage of the predicted mask with the ground

truth mask. L2 loss is adopted for the mask score prediction:

Lscore = ∥s − ŝ∥2 , (6.5)

where s is the predicted mask score, while ŝ is the ground truth intersection

score. Since we already have the ground truth mask during training, ŝ

can be easily obtained by calculating the intersection-over-union of the

predicted mask and the ground truth mask on the fly without requiring

manual annotation. The overall loss function is the weighted sum of these

two loss terms and can be written as:

Loverall = Lmask + λLscore, (6.6)

where λ is empirically set as 0.1 so that the mask prediction task can be paid

more attention during optimization.

6.2.2 Human-Guided Refinement Strategy

The model mentioned above should be able to effectively locate the target

object based on the reference expression. However, due to the inherent

probabilistic nature and random fluctuations of neural network models, the

model may not perform well for some samples, in which cases a fail-safe
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mechanism should exist. Regarding this issue, a human-guided refinement

strategy is proposed by including human intervention in the model inference

loop to improve the referred object segmentation accuracy.

The rationale behind the extra bother of the mask score prediction is the

requirement of an indicator for the mask ambiguity or uncertainty that

can inform the human operator whether intervention is needed. When the

estimated score s is below a certain threshold θ = 0.5, the human operator

will be asked to provide extra information about the target goal in the form

of a click on the image. A binary click mask Mclick ∈ RH×W will be generated

based on the click coordinate consisting of a foreground circle centring

around the click with a diameter of 5 pixels. The click mask will then be

concatenated with the original input image I to form a new visual input

into the referred object retrieval model and a fresh round of inference will

be carried out to produce a refined estimation of the referred target mask.

During training, it is not practical to seek human assistance for every training

iteration, thus we simulate human click by randomly sampling some points

inside the ground truth mask area and feed the model with or without the

click mask with a probability of 0.5. For the cases where there is no click

mask input, the extra input channel is set as an empty background.

For actual deployment in HRC manufacturing scenarios, this is a rather

natural and reasonable strategy that offers the human operator a channel to

correct algorithm mistakes without interrupting the production process.
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6.2.3 LLM-Based Reasoning for Robot Planning

Based on the object location information provided by the referred object

retrieval model, the object-referring ambiguity can already be effectively

counteracted through the joint consideration of vision and language cues.

Nonetheless, the full robotic task designated by the human language com-

mand still requires further comprehension and deduction in order to be

translated into executable robotic action sequences, for which LLM is intro-

duced as an adaptive robotic action planner. The proposed planner leverages

the most advanced large language models like GPT-4 (Generative Pre-trained

Transformer) to facilitate the generation of precise, context-aware robotic

action plans, thereby enhancing the effectiveness and reliability of the collab-

orative tasks undertaken in the manufacturing environment.

The LLM-based planner is tasked with two essential functions: 1) extracting

reference expressions from the natural language commands, and 2) planning

the robotic actions based on the full command, primitive robotic skills, and

target object locations. The first functionality is rather straightforward to

implement with simple prompts demonstrating the reference expression

extraction task with a few examples, while the second requires a more

complicated construction of prompts.

1) Prompt Composition

The LLM-based robot action planner operates by first processing the input

prompts, which are meticulously structured to contain essential components

including domain knowledge of the dis-/assembly task, robotic primitive

skill functions, utility functions, third-party libraries, few-shot examples,

132 Chapter 6 Vision and Language-Based Collaborative Reasoning



# Domain Knowledge 
The general assembly steps of a gear pump: 1) prepare the case, 2) install 
gears, 3) install bearings, 4) attach the cap, ... 
# Third-party Libraries
import numpy as np
import cv2
import torch
...
# Robotic Primitive Skills
def move_to(coord): 
    return is_success
def move_axis(axis, dist):
    return is_success 
def open_gripper():
    return is_success
def obj_retrieval(image, obj_ref):
    return obj_mask
...
# Utility Functions
def get_image(): # obtain RGB-D image from camera
    return image, depth
def get_obj_center(obj_mask):
    return pix_xy
def trans_image2robot(pix_xy, depth):
    return xyz
...
# Examples
Input instruction: Put the cap on the assembly to your right.
Action plan demonstration: 
def main():
    image, depth = get_image()
    obj_ref = "on the assembly to your right"
    obj_mask = obj_retrieval(image, obj_ref)
    pix_xy = get_obj_center(obj_mask)
    xyz = trans_image2robot(pix_xy, depth)
    if not move_to(xyz[3]+50):
        return False
    if not open_gripper():
        return False
... 
# Instruction
INSTRUCTION = Pick the gear from the component bin and put to the assembly. 
First extract the sub-instruction containing the target location of the 
following command: [INSTRUCTION]. Assign the sub-instruction to the obj_ref 
variable in the generated code.
Then generate the main function only for the full instruction based on the 
previous information.

def main():
    # Part 1: Picking the gear from the component bin
    image, depth = get_image() # Get the current image and depth
    # Sub-instruction containing the object to be picked
    obj_ref = "gear from the component bin" 
    obj_mask = obj_retrieval(image, obj_ref) # Find the object in the image
    # Get the center position of the object in the image
    pix_xy = get_obj_center(obj_mask)
    # Translate image coordinates to robot coordinates
    xyz = trans_image2robot(pix_xy, depth)
    if not move_to(xyz):  # Move to the object
        return False
    if not open_gripper():  # Open the gripper to prepare for picking
        return False
    if not move_axis('z', -10):  # Move closer to the object on z-axis
        return False
    if not close_gripper():  # Close the gripper to pick the object
        return False
    # Part 2: Putting the gear to the assembly
    # Sub-instruction containing the target location
    obj_ref = "to the assembly”
    # Find the target location in the image
    obj_mask = obj_retrieval(image, obj_ref)
    # Get the center position of the target location in the image
    pix_xy = get_obj_center(obj_mask)
    # Translate image coordinates to robot coordinates
    xyz = trans_image2robot(pix_xy, depth) 
    if not move_to(xyz):  # Move to the target location
        return False
    if not open_gripper():  # Open the gripper to release the object
        return False
    # Return True if the whole process is completed successfully
    return True

Large Language 
Model

Prompt

Generated Action Plan

Fig. 6.3: A demonstration of the prompt composition.

and the human instruction, as shown in Figure 6.3. Based on the prompt

design strategies from [246, 247], we additionally incorporate manufacturing

domain knowledge, such as the component information or assembly order

of a certain product, into the input prompt so that the LLM can better adapt

to specific industrial scenarios. The robotic primitive skill functions contain

the APIs to the code implementations of essential robotic actions, which will

be described in more detail in the next section. Utility functions refer to

some helpful functions such as extracting the center of an object mask or

transforming the image-plane coordinate into the robot coordinate. Third-

party libraries include some widely used libraries such as NumPy, OpenCV,

and PyTorch, while the few-shot examples provide some demonstrative input-

output pairs for the LLM to achieve in-context learning [248]. Finally, the

human language instruction is inserted to complete the full prompt.

2) Robotic Primitive Skills
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As mentioned above, the most essential and indispensable part of the prompt

is the robotic primitive skills, each associated with specific APIs to facilitate

direct control and execution of tasks by the robot. The functionality descrip-

tions of the APIs should also be included in the prompt so that the LLM

can understand how to leverage them. Table 6.1 demonstrates examples of

some of the primitive skills. Each of these skills and APIs is implemented

through the Python interface of the official robotic driver. Based on the most

fundamental primitive robotic actions such as move_to() or open_gripper(),

more complex skills can be autonomously constructed. For example, the pick-

and-place skill could be wraped into pick_place() by combining move_to(),

open_gripper(), and close_gripper(). The actual implementation of these

skills largely depends on the robot driver so that the LLM does not have

to delve into the motion trajectory planning level. One advantage of the

abstraction of robotic skills is the decoupling of robotic action planning and

the actual implementation of robotic action control, which makes it more

versatile and adaptive to different models of robots. Here we only include

a minimum set of primitive skills for a robot arm to conduct pick-and-place

tasks in order to illustrate the workflow of leveraging LLM as a robotic action

planner. Note that other skills can always be added to the list so that the LLM

can generate action plans for more complex scenarios and tasks.

Primitive Skills API

move to position move_to(coord)

move along axis move_axis(axis, dist)

open gripper open_gripper()

close gripper close_gripper()
call the referred

object retrieval model
obj_retrieval(image, obj_ref)

Table 6.1: Robotic Primitive Skills and Corresponding APIs
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6.3 Experimental Results

To demonstrate the utility and effectiveness of the proposed vision-language

reasoning approach, experiments are carried out in a simulated HRC assembly

scenario in the lab environment, in which the human-robot team is designated

to assemble a gear pump module. The human operator will guide a UR5

robot arm via language command to accomplish certain sub-tasks such as

fetching an assembly part. An Azure Kinect RGB-D camera is positioned

above the working station to monitor the whole assembly area. To verify

the performance of the proposed method, we first evaluate the referred

object retrieval model against existing works on the HRC scenario data and

a public dataset, and then the LLM robotic action planner is assessed based

on some specifically synthesized language commands that mimic possible

human instructions.

6.3.1 Experiments for Referred Object Retrieval

1) Evaluation on the HRC Assembly Case

Data Collection. To evaluate the proposed referred object retrieval model, a

dataset consisting of paired images and reference expressions should be first

set up. Specifically, during the assembling process of the gear pump module,

the Kinect camera will capture images of the assembly working station which

covers the area of different parts or tools that may be required by a certain

assembling step. The human operator is mainly responsible for guiding the

robot arm to execute different sub-tasks through language instructions. In

order to build a dataset with enough data variance, the images of the HRC
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assembly scenes are first captured, each of which will then be manually

allocated 2 to 3 handcrafted reference expressions to its contained objects.

The corresponding segmentation masks for these referred objects are also

manually annotated. In total, we collected 463 data pairs, 370 of which are

utilized as training data, while the rest are regarded as the testing set.

Experimental Settings. The referred object retrieval model is implemented

using PyTorch, which is the most widely employed deep learning library for its

flexibility and user-friendliness. For hardware acceleration, a Nvidia RTX3090

GPU is leveraged to train and evaluate the model. The pre-trained weights of

the CLIP image and sentence encoders are borrowed from the original CLIP

paper [240]. The pre-trained weights of the Bridge and Decoder modules

are partially adopted from [243] for the common layers, while the additional

layers are randomly initialized. Adam optimizer with initial learning rate

1 × 10−4 and batch size 32 is adopted to train the model.

Table 6.2: Referred Object Segmentation Performance on the HRC Dataset

Method Components mIoU

Xu et al. [243] - 79.04

Ours

w/ mask score +
w/o click input 79.31

w/o mask score +
w/ click input 82.91

w/ mask score +
w/ click input 83.18

Evaluation Results. To evaluate the performance of the proposed referred

object retrieval model, we adopt the mIoU metric, which is a standard

metric normally utilized to measure segmentation model performance. In

the referred object segmentation case, it calculates the overlap between the

estimated target object segmentation mask and the ground truth mask over

136 Chapter 6 Vision and Language-Based Collaborative Reasoning



the testing set. The quantitative evaluation results are illustrated in Table 6.2,

which compares the proposed model with some previous approaches and

includes a brief ablation study. Compared to the baseline model [243], the

proposed model with mask score prediction and click input performs the best,

which demonstrates the effectiveness and superiority of the proposed model.

To validate the effect of the two main components including the mask score

prediction branch and the click input strategy, we also include the evaluation

results of two variants of the proposed model–one excludes the click input

and the other additionally excludes the mask score prediction–both showing

inferior results than the full model depicted in the last row of the table. While

the mask score can only marginally improve the accuracy, the click input

strategy has a considerably higher impact on the model performance since

the human click is in fact quite strong prior knowledge and rather inefficient

if human intervention is required for every case. The mask score prediction is

thus designed to minimize the ratio of human intervention by automatically

evaluating the mask quality to achieve a balance between accuracy and

efficiency.

Some qualitative examples are illustrated in Figure 6.4 containing input-

output pairs from the proposed model to provide an intuitive visualization of

the model performance. As shown in the figure, the object retrieval model

can successfully comprehend the reference text and provide the target object

segmentation mask in the HRC scenario. One sample to be noted is in the last

row, in which we deliberately feed a nonexistent reference expression with

an incorrect location description. Since the target object is not in the referred

location, the model is confused and yields responses in both the target object

and the referred location, which illustrates that the proposed model can
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indeed understand both the referred object and the referred location instead

of simply responding to the target object.

2) Evaluation on the RefCOCO dataset

Dataset Introduction. To further illustrate the universality of the proposed

model to different scenarios and scalability to large-scale data, we addition-

ally conduct comparative experiments on a public dataset RefCOCO [249]. It

is a prevailing benchmark dataset for referring object segmentation, encom-

passing 19,994 images paired with 142,210 referring expressions for 50,000

unique objects derived from the MSCOCO dataset [250]. It is systematically

partitioned into four subsets: 120,624 for training, 10,834 for validation,

5,657 for test A, and 5,095 for test B. Every image incorporates at least two

objects, underscoring the dataset’s comprehensive and nuanced construction

for evaluating reference segmentation models.

Table 6.3: Comparative Experiments on the RefCOCO Dataset

Method
mIoU

val test A test B

Ding et al. [251] 65.65 68.29 62.73

Wang et al. [252] 70.47 73.18 66.10

Xu et al. [243] 71.06 74.11 66.66

Ours 77.23 79.53 74.88

Evaluation Results. Table 6.3 lists the comparative results of the proposed

model with some existing approaches. As mentioned above, the RefCOCO

dataset has three subsets besides the training set. Therefore, the evaluated

metrics for these three subsets are all provided following the common practice.

The evaluation metric values of the compared methods are directly borrowed

from the best results reported in the corresponding published papers. As
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the bearing in the bottom right

the base plate in the top right

the gear in the middle left

the cap in the human hand

the bracket at the bottom left

the cap in the human hand

Input Predicted Mask Overlay

Fig. 6.4: Qualitative samples of referred object segmentation.
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for the proposed method, the evaluation results are obtained from the full

model with all the contributed components. From the listed experimental

results, we can observe a considerable improvement in the proposed model

over other methods. We mainly attribute this achievement to the adoption

of the click input strategy which provides a strong prior for the approximate

whereabouts of the target object. While this might seem a bit unfair to other

compared methods at first glance, it is in fact quite practical and effortless to

implement in HRC scenarios where interactions between humans and robots

already pervasively exist in various manufacturing stages.

6.3.2 Experiments for LLM-Based Robot Planning

The second part of the experiments focuses on demonstrating the effective-

ness of the LLM-based robotic planning strategy. To be able to quantitatively

evaluate the robot action planning effectiveness, we predefined 3 subtask

instructions extracted from the HRC gear pump assembly procedure: 1) fetch

a gear pump case from the storage area, 2) place a gear into the case, and 3)

pick a case cover and put onto the assembly, representing the most frequent

cases in the assembling process. For each of these tasks, the LLM-generated

robotic action plans will be evaluated by human experts based on the cor-

rectness of function calls and the feasibility of the action sequence. The LLM

generation process is repeated 20 times for each subtask, and the success

rate is utilized as the evaluation metric. In terms of LLMs, we adopt GPT-3.5

and GPT-4 [253] via OpenAI API, and LLaMA-2 (Large Language Model Meta

AI) [254] for comparative study. The comparison results are shown in Table

6.4, from which we can observe an obvious superiority of the GPT-4 model,

which is not unexpected given its tremendously larger amounts of parameters.

However, the close-source nature of GPT models renders it infeasible to be
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applied in off-line environments and time-sensitive production scenarios,

which leaves abundant opportunities for open-source models such as LLaMA

and compressing and accelerating technologies.

Table 6.4: Results of the LLM-based Robot Planning

Model Task 1 Task 2 Task 3 Average

LLaMA2-7b 7/20 6/20 3/20 26.7%

GPT-3.5 17/20 19/20 15/20 85.0%

GPT-4 19/20 20/20 17/20 93.3%

6.3.3 Discussions

The experimental results of our proposed referred object retrieval model

exhibit consistent improvements on our HRC gear pump assembly dataset

and the RefCOCO dataset. While the pretrained CLIP encoders, cross-modal

fusion, and decoder design each make a solid contribution to the model

performance, the main merit of our approach is the better leveraging of

the human-robot symbiotic environment via the human-guided refinement

strategy, which is naturally available in an HRC scenario. Compared with

existing methods that already incorporate human language instructions to

locate target objects, our proposed model simply moves a step further by

requesting the human operator to click on the image when the confidence

of the segmentation result is unsatisfactory. On the other hand, the brief

experimental verification of the LLM-based robotic action planner also makes

a preliminary demonstration of how to integrate LLMs into a human-robot

collaborative manufacturing system. Though being premature for actual

deployment in production environments for issues such as network latency

and computational cost, the tremendous potential of LLMs will undoubt-
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edly empower futuristic HRC systems with more advanced intelligence and

flexibility.

6.4 Chapter Summary

The forthcoming industrial transition has prioritized human centricity over

purely profit-oriented drives, in which context HRC is considered a promising

solution. Motivated by the visual information ambiguity and insufficient

exploitation of human language cues in previous HRC systems, a vision-

language-based reasoning approach is proposed in this chapter. The main

contributions can be summarized in twofold: 1) Proposed a referred object

retrieval model for spotting target object location based on vision-language

input fueled by pretrained CLIP encoders, cross-modal fusion, Transformer-

like decoder design, and human-guided refinement strategy. 2) Explored

LLM-based robotic action planning strategy for generating robotic action

plans for HRC scenarios in the form of executable code, featured with a

specially and meticulously designed prompt structure containing task-specific

domain knowledge and robotic primitive skills. Further experimental studies

for these two major aspects have been conducted and demonstrated favor-

able results of the proposed approach. Nevertheless, some limitations still

exist such as the extra computational cost of the human-guided refinement

strategy and the network and response latency of the LLM-based robotic

planner. To further investigate these challenges, some potential future re-

search directions include: 1) incorporating other modalities of data into

human-robot interactions to reduce the task complexity of object indication

understanding; 2) developing light-weight LLM models for specific industrial

scenarios instead of general purpose to shrink the model parameters scales;
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and 3) compressing or distillating opensource LLM models for offline and

time-sensitive HRC cases.
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7
Conclusions

This research has marked a leap forward as a systematic exploration of vision-

based approaches for holistic scene understanding in HRC. The four aspects of

scene understanding have been systematically investigated to form a holistic

perspective which paved the way for subsequent collaborative robot decision-

making in HRC systems. The objectives illustrated in the early chapters have

been met by: 1) developing a high-resolution 6-DoF pose estimation model

for industrial components and incorporating explicit occlusion awareness

to refine hand-object pose estimation, 2) advancing human operator digital

twin modelling for improved human-robot interaction, 3) innovating multi-

granularity workspace parsing for more nuanced environment perception in

HRC, and 4) pioneering vision-language reasoning for ambiguity mitigation,

thus facilitating a more intuitive and efficient human-robot collaboration.

This chapter summarizes the key contributions, discusses the research lim-

itations, and outlines future work directions in Sections 7.1, 7.2, and 7.3,

respectively.

7.1 Contributions

The main goal of this project is to investigate the research gaps and establish

solutions for vision-based holistic understanding in HRC scenarios, specif-

ically in four aspects: object perception, human recognition, environment

parsing, and visual reasoning. At the beginning of this project, a systematic
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survey was conducted around the four aspects of vision-based holistic scene

understanding. Then the following chapters each contributed to a specific

facet, the contributions of which are listed as follows.

Contribution 1: A high-resolution network-based 6-DoF pose estimation

model of industrial parts has been proposed aiming to facilitate HRC

disassembly, which later extended to the investigation of joint hand-

object reconstruction motivated by the frequent mutual occlusion.

To equip collaborative robots with the ability to understand the objects and

ongoing human hand-object interactions in an HRC environment, the initial

endeavour of this project has been devoted to the 6-DoF pose estimation of

industrial workpieces. A novel high-resolution network-based 6-DoF pose

estimation model for industrial parts was first designed to improve the

accuracy and success rate of robotic manipulation. This model, composed

of a coarse pose estimation stage followed by a refinement stage, utilizes

the High-Resolution Network as the backbone to extract high-resolution

feature representations. The rotation and translation parameters are first

roughly estimated in the first stage and then refined in the subsequent stage.

Empirical evaluations demonstrate that this model outperforms baseline

models on an industrial parts dataset. Motivated by the prevalent hand-

object occlusion issue during HRC, an integrated hand-object pose estimation

model was further proposed. This model employs a mask-guided attentive

residual block within a branched model structure, facilitating the hand-object

attention separation during feature extraction. Additionally, an FPN-like

subnetwork was introduced to predict the occlusion ternary mask, which is

then compared with a rendered mask from the estimated hand-object pose to

provide explicit occlusion awareness, thereby reducing pose estimation errors
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caused by hand-object occlusions. The subsequent experimental results on

both the Li-ion data disassembly data and a public hand-object pose dataset

demonstrated an obvious improvement over existing methods.

Contribution 2: A vision-based human digital twin modelling approach

has been proposed to serve as an exemplary implementation of onsite

human operator digitalization and monitoring for HRC.

Aiming to provide robots with a comprehensive understanding capability of

their human partners beyond standalone recognition tasks and also fill the

gap of lacking practical solutions to the vision-based HDT, this research work

proposes a vision-based HDT modelling approach that integrates multiple

perspectives of human perceptions into a unified deep learning model which

can operate in an end-to-end manner in the onsite HRC scenarios. The pri-

mary contributions can be summarized in twofold: 1) A specifically designed

deep learning architecture is tailored to concurrently assess 3D human pos-

ture, action intention, and ergonomic risk, thus facilitating effective HDT

modelling. 2) Based on the real-time updated HDT information, an adaptive

robotic motion control strategy is developed and demonstrated in the HRC

contexts to serve as an example of the potential applications of the HDT

model in HRC cases.

Contribution 3: A multi-granularity scene segmentation model has been

studied aiming to provide multi-granularity semantics for flexible HRC

tasks.

In response to the absence of a flexible environment perception scheme in

current HRC systems, this study introduced a multi-granularity scene segmen-
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tation model, aiming to segment the HRC environment into various semantic

granularities, thereby being able to adapt to the dynamically changing require-

ments prevalent in HRC situations. By integrating a series of modern network

design strategies, the proposed model has achieved prominent results in

the collaborative battery disassembly case and demonstrated comparative

performance with state-of-the-art methods on the NYUv2 dataset. The main

contributions can be summarized as follows: 1) an RGB-D segmentation

network MGS-Net was proposed leveraging modern network designs such

as the ConvNext backbone, multi-scale supervision, multi-granularity predic-

tion, et cetera; 2) a multi-granularity segmentation criterion was established

in an HRC scenario and the feasibility of the proposed model was demon-

strated based on this criterion; 3) the model performance was evaluated on

the NYUv2 dataset and demonstrated comparable results to state-of-the-art

methods.

Contribution 4: A vision and language-guided reasoning method has

been presented to reduce the uncertainty of human-robot communica-

tion in HRC scenarios.

To further enhance the robotic embodied intelligence with abstract and logical

reasoning ability, the final step of this thesis was dedicated to the exploration

of visual reasoning technologies. Motivated by the ambiguity inherent in

visual information and the limited exploitation of human linguistic cues,

a vision-language-based referred object retrieval model was first proposed.

Then a large language model was also employed to boost the natural-form

human-robot communication. The main contributions can be summarized in

twofold: 1) This study proposed a referred object retrieval model for spotting

target object location based on vision-language input. This model leverages
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a combination of pre-trained CLIP encoders and cross-modal feature fusion,

along with a Transformer-like decoding mechanism. It further incorporates a

human-guided refinement process to include humans in the inference loop,

which is a unique strength that can be leveraged in HRC contexts. 2) The

application of large language models in robotic action planning specific to

HRC contexts was explored. A carefully crafted prompt structure was studied,

which incorporates both domain-specific knowledge relevant to the task at

hand and primitive robotic skills. This structure ensures that the generated

plans are both relevant and practical for real-world HRC applications.

7.2 Limitations

Limitation 1: The dependency on annotated data for model training.

Although the employment of deep learning models in the holistic understand-

ing of HRC scenes has illustrated excellent performance during preliminary

studies, the requirement of a large dataset with ground truth annotations can

impede the deployment of the proposed models since it may not be always

fulfilled. On the one hand, in manufacturing scenarios, it is impractical to

collect a large-scale dataset since each factory and production line is highly

customized and can be tremendously different from each other. On the other

hand, even with a large-scale dataset, the manual annotation would demand

too much human labour. A possible solution is to explore a high-fidelity

simulation environment that could synthesize almost indefinite variations

of data to fuel the training of deep learning models. Another direction is to

develop semi- or unsupervised training techniques to hopefully reduce the

dependency on annotated data.
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Limitation 2: The throughput latency and heavy computational cost of

deep learning-based scene understanding models.

The second issue regarding the adoption of deep learning models in the

holistic scene understanding scheme is the heavy reliance on computational

resources and power, and the high latency associated with it. With the

parameter scales growing larger, deep learning models seem to be able

to consistently deliver better performance, especially with the most recent

Transformer-based models. However, this phenomenon also gradually shifts

deep learning models away from being able to run on traditional computing

hardware in the manufacturing site. While many try to deploy the models

in cloud servers, the inevitable network latency also poses another chal-

lenge. Therefore, compression and acceleration technologies should be paid

more attention when applying the proposed models in the actual production

environment.

Limitation 3: The lack of consideration of multi-modal data source.

This study mainly discussed visual data-based, such as RGB image and

depth image, approaches for holistic scene understanding in HRC due to the

affordability and availability of vision sensors. Although human language

has also been introduced as a complementary modality in the last part of the

thesis, it is worthwhile to devote more effort to investigating the integration

of more types of modalities such as acoustic data and wearable sensors. The

incorporation of multiple modalities of data sources can potentially introduce

a novel perspective to address existing technological challenges that have

proved to be difficult to tackle with visual data alone, thereby improving the
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cognition skills of collaborative robots and further boosting the HRC working

efficacy.

Limitation 4: The limited incorporation of holistic scene understanding

into the collaborative robot controlling scheme.

This thesis closely contemplated the four aspects of holistic scene understand-

ing and proposed several approaches to address the unique challenges in

each of these aspects. Nevertheless, the proposed methods are still largely

confined within the perception and scene understanding scope, while the

incorporation of the perceived results with collaborative robot control strate-

gies has only been superficially scratched without in-depth consideration.

More explorations could be made with regard to integrating the scene un-

derstanding skills into the adaptive controlling or robot learning process in

order to achieve more flexible collaboration and improve the overall HRC

productivity.

Limitation 5: The lack of in-depth theoretical analysis regarding the

rationale of customized deep learning model architecture design.

This thesis investigated several deep learning architectures for different visual

understanding objectives and proposed customized and modified models to

enhance scene understanding performance for further improvement in HRC

efficacy. Although intuitive insights behind these model design choices were

provided, a deeper theoretical examination to validate the effectiveness of

the approaches is lacking. More analyses and discussions from a principle

level, such as cognitive science, could be explored to fill in this gap, and

thereby consolidating the theoretical underpinnings of the research works.
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7.3 Future Research Directions

The concept of seamless collaboration between human and robotic agents

depicts a splendid vision for futuristic manufacturing. While this thesis has

made a trivial contribution to the field by devising potential solutions to each

of the four aspects of HRC scene understanding, the ultimate comprehension

of the holistic scene perspective of HRC remains a topic with significant room

for advancement. This section outlines several promising future research

directions that are critical to the progression of HRC.

(1) Semi-/unsupervised object pose estimation with minimum data re-

liance and sim-to-real transfer.

As stated earlier, one major issue that weighs heavily against the current

6-DoF object pose estimation approaches is the dependency on large-scale

labelled data. The present formulation of deep learning-based 6-DoF pose

estimation is in fact ill-posed since it is impossible to collect object images

from all possible view angles. Several possible techniques could be taken

better advantage of in future research: 1) The exploration and exploitation of

semi-/unsupervised model training schemes for reduced manual annotation

demand. 2) The adoption of sim-to-real transfer techniques for better learning

performance on simulation-synthesized data. While these technologies are

still nowhere near maturity, the combination of them is definitely a promising

line of work to explore.

(2) Dismountable modular human digital twin model with dynamic plug-

and-play design for flexible customization of different HRC scenarios.
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The proposed HDT model in this thesis managed to integrate three aspects

of human operator body status into an end-to-end deep learning perception

model including human 3D posture, human action intention, and ergonomic

risk of the current human posture. However, after the training process of the

model, it is impossible to modify the perception functionalities such as adding

or removing a branch without going over the training process altogether. On

the other hand, a dismountable modular design of the HDT model can greatly

facilitate the flexibility of the model to be applied in more HRC scenarios. To

tackle this issue, possible future research directions include: 1) leveraging

contrastive learning strategies to separate the feature extraction pretraining

stage and the downstream specific task alignment training stage, and 2)

adopting Transformer structures to modularly train a series of decoders for

different functionalities while sharing the same encoder to improve inference

efficiency. It is envisioned that in the future a library of different general

human perception modules might be shared and exchanged and can be easily

plugged into different HDT systems via mere graphical interfaces without

programming.

(3) HRC scene parsing with multiple views of data and advanced neural

representations.

The multi-granularity scene segmentation model proposed in Chapter 5

focuses on how to perceive multiple levels of semantics from a single view

of camera observation in one go. While being efficient, the incompleteness

of the visual scene information would inevitably result in failures in some

corner cases, which is unacceptable for serious manufacturing scenarios. In

order to obtain a more comprehensive and accurate representation of the

HRC environment, future directions could be: 1) leveraging multiple-view
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camera data to update the digital representation of the HRC scene in real-time

via 3D reconstruction or SLAM (Simultaneous Localization And Mapping)

technologies for multiple fixed cameras or single mobile camera, respectively,

and 2) exploring implicit neural representations of the 3D HRC scene to

encode the 3D geometries in a more efficient fashion.

(4) Lightweight reasoning approach with multimodal data sources and

unified scene element description.

As discussed in Section 6, the final leap from scene perception to scene under-

standing is visual reasoning, which resembles the human abstract reasoning

process based on human sensory information. Although current vision-

language models and large language models have exhibited unprecedented

intelligence and understanding capability, the computational resources re-

quired to train these models are astronomical. And the unavoidable latency

issue is also an urgent factor preventing these large models from being widely

deployed in real production environments. One future direction therefore

naturally should be how to compress and accelerate the large models without

compromising their human-like intelligence. On the other hand, when adopt-

ing large vision and language models in the holistic scene understanding

perspective, how to efficiently and adequately incorporate the perceived

scene element information into the reasoning process is also a promising

direction.

(5) Human cognition process-inspired principle perspective for improved

vision and cross-modal scene understanding.
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As mentioned in the limitation section, the research works presented in this

thesis focused more on how to intuitively modify existing deep learning mod-

els to better fit into specific HRC scene characteristics. However, the absence

of a higher principle level considerations renders these customizations less

attractive in terms of scientific solidity. In this regard, more explorations in

the future could be devoted into the biological human cognition process in

order to draw more reasonable and plausible insights and provide more solid

theoretical understandings.
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