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Abstract

Flight delays are common in the airline industry, resulting in massive costs, opera-

tional inefficiencies, and poor passenger experience. Delays disrupt tightly scheduled

flight plans and propagating throughout the network when buffers are inadequate.

The Federal Aviation Administration reports that flight delays cost airlines billions of

dollars annually in the United States. Causes include weather, congestion, crew is-

sues and late arrivals of aircraft. Notably, over 30% of delays stem from late arrivals,

underscoring the impact of delay propagation.

This thesis investigates airline scheduling problems under time-dependent uncertainty

in flight delays through robust optimization techniques. It focuses on two key issues:

robust flight retiming and robust aircraft routing. Flight retiming involves optimizing

departure and arrival times to build in buffers that can absorb propagated delays. Air-

craft routing assigns flights to aircraft sequences while minimizing overall propagated

delay. Both problems are tackled using robust optimizationmodels incorporating time-

dependent delay uncertainty distributions.

A novel event-based framework is proposed, which decomposes flights into four dis-

tinct phases: departure, cruise, arrival and turnaround. This approach captures the

time dynamics of delays more accurately than traditional leg-based models. Delays

are linked to specific airport events during particular time blocks rather than entire

flight legs. The framework allows the construction of innovative time-dependent un-

certainty sets representing primary delays at airports conditional on the time of day.

These sets capture the variability of delays caused by changing contextual factors like

congestion and weather throughout the day.

To address the flight retiming problem, a robust optimization model is developed to

minimize worst-case propagated delays by reallocating cruise and turnaround buffers.

The model employs the proposed time-dependent uncertainty sets, and solutions are

obtained using an iterative cutting-plane algorithm. Experiments conducted on real

airline data demonstrate a substantial reduction in propagated delays compared to the

iii
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original schedules and traditional non-time-dependent robust optimization. Further-

more, the study offers insights into strategically allocating buffer time based on the

time-varying delay of flight.

Building upon the flight retiming model, a robust optimization formulation is pre-

sented for the aircraft routing problem. The formulation employs a event-block-based

time-dependent uncertainty set, which captures spatiotemporal delay correlations. To

tackle the complexity of this problem, efficient matheuristic algorithms are designed

by combining column-and-row generation with route set expansion techniques. Ex-

perimental results demonstrate substantial improvements in both speed and solution

quality compared to commercial solvers. Furthermore, the aircraft routingmodel high-

lights the advantages of time-dependent modeling in minimizing the worst-case, av-

erage, and volatility of propagated delays.

This thesis makes important contributions by reformulating traditional airline opti-

mization problems to handle time-varying delay uncertainties. The proposed tech-

niques enable more reliable capacity planning, improved aircraft utilization, and en-

hanced customer service. Moreover, extending this research has the potential to en-

hance airline scheduling resilience and enhance operational efficiency. The use of an

event-based modeling framework represents a critical advancement in capturing the

time dynamics within delay uncertainty distributions. Our studymakes a fundamental

contribution to the field of aviation scheduling and other related scheduling problems,

establishing the groundwork for further advancements in the industry.
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Chapter 1

Introduction

Flight delays are widespread in the airline industry, resulting in massive costs, op-

erational inefficiencies, and poor passenger experience. Delays may disrupt planned

schedules, leading to decreased operational efficiency and customer satisfaction. Ac-

cording to the Federal Aviation Administration (FAA), the total yearly cost of flight

delays in the U.S. airline industry runs into billions of dollars in additional expenses

for airlines [32]. In 2021, even with fewer flights operated each day due to the outbreak

of COVID-19, at least one in five flights operated by U.S. airlines, which is more than

0.7 million operations, were late by more than 15 minutes [18].

These delays can be classified into primary and propagated [19, 43, 75]. Primary delays,

also known as non-propagated delays, refer to delays arising from unusual weather,

equipment failure, security issues, passenger or baggage boarding problems, runway

or bridge congestion, etc. The delays caused by the late arrival of preceding inbound

flights are referred to as propagated delays.

Propagated delays are frequently encountered in airline operations. As shown in Fig-

ure 1.1, nearly one-third of flight delays result from the late arrival of aircraft on

preceding flights. To mitigate its impact, airlines can schedule some buffer time into

their flight operations. However, this additional time will lead to a decrease in flight

frequency and, consequently, reduced profits. Therefore, establishing an appropriate

schedule is crucial. Several existing studies aim to tackle this issue by addressing the
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2 Chapter 1. Introduction

uncertainty of flights’ primary delays in an effort to mitigate delay propagation and

develop more robust scheduling solutions [26, 75].

Figure 1.1: Flight delays by cause of delay in total operations in the U.S. (January -
December 2021) Source: Bureau of Transportation Statistics

When it comes to primary flight delays, it is widely recognized that time plays a

significant role. For instance, Xu et al. [74] showed that departure time and sched-

uled turnaround time commonly impact delay predictions, along with factors such as

weather and airport capacity. Empirical research by Brueckner et al. [15] examined

the relationship between slack time and explanatory variables, including time-of-day

departure. Moreover, Brueckner et al. [16] conducted a study on airlines and their

operations, specifically focusing on the impact of departure time indicators on flight

delays. Their findings revealed that these indicators play a significant role in deter-

mining the occurrence and duration of flight delays. In other words, primary factors

such as weather, congestion, and connections exhibit high uncertainty and variability

over time. Therefore, effectively accounting for time-dependent delay uncertainty is

crucial for mitigating propagation and improving robustness.

This thesis examines airline scheduling problems under time-dependent uncertainty

in flight delays using robust optimization. It specifically focuses on two fundamental

problems: robust flight retiming and robust aircraft routing. The flight retiming prob-

lem aims to optimally reallocate flight cruise and turnaround buffers to effectively

handle potential disruptions, thereby minimizing the worst-case delay propagation.

On the other hand, the aircraft routing problem involves assigning flights to aircraft



3

routings in order to reduce the total propagated delay. Both problems are addressed

using a robust approach that proactively incorporates delay uncertainty into the plan-

ning process.

Extensive literature highlights various strategies tomitigate propagated delays through

scheduling [26, 43, 75]. As a result, airlines can minimize the impact of delays on sub-

sequent flights, thereby significantly improving overall operational efficiency. A key

limitation of previous studies is their static assumption about delays over time. That is,

the delay uncertainty, such as a distribution or an uncertainty set, is unrelated to either

the departure time or the arrival time in their models. Hence, sub-optimal solutions

may arise when a decision can change the arrival/departure time of each flight. In tra-

ditional models, uncertainty about the primary delay of a flight occurs throughout the

entire flight leg, and the turnaround acts as a link between two flights. A buffer time

can be set to absorb the delay passed on by the previous flight. However, these mod-

els do not take into consideration the time dependence of uncertain information, nor

do they consider that airlines can shorten the cruise time to absorb the delay already

incurred.

However, as we have mentioned, delays exhibit high variability throughout the day

due to changing conditions. Ignoring this temporal dynamism leads to sub-optimal

plans. Therefore, capturing primary delay uncertainties as time-dependent distribu-

tions is pivotal for robust planning. This enables the recognition of where delays are

most likely to occur and the proactive incorporation of buffers. Capturing the time-

varying nature of delays is critical for more resilient scheduling.

To capture the time-varying nature of delays, this research proposes an innovative

event-based framework for modeling the dynamics of flight operations. The frame-

work divides flight operations into four distinct phases: departure, cruise, arrival, and

turnaround (as shown in Figure 1.2(a)). The departure and arrival phases are crit-

ical stages where disruptions commonly occur. The departure phase involves pre-

departure preparations, runway taxiing, and initial climbing, while the arrival phase

encompasses landing and taxiing into designated arrival bays. By treating departure
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and arrival as separate events, we can effectively capture and analyze the relevant fac-

tors at different times and airports. This approach enables a more accurate depiction

of the uncertainty associated with primary delays.

In contrast, the cruise and turnaround phases serve as essential buffers between a

flight’s departure and arrival stages. The cruise phase initiates once the aircraft achieves

its designated cruising altitude and persists until the descent for landing. This phase

is characterized by a relatively stable flight with fewer disturbances. By allowing for a

relaxed cruise duration, airlines provide flexibility for the captain to adjust the flight’s

speed slightly in the event of a delayed departure. This adjustment helps to reduce

uncertainty upon arrival.

On the other hand, the turnaround phase occurs from the moment the aircraft lands

until it takes off for its next flight. This phase involves a variety of tasks that must

be performed by different teams, including fueling operations and cabin preparations,

among others. Despite the numerous activities involved, turnarounds can be remark-

ably efficient, showcasing effective collaboration among ground teams. The turnaround

buffer refers to the difference between the scheduled turnaround time and the shortest

feasible turnaround time.

Figure 1.2 illustrates the four-phase flight operation process for two consecutive flights,

f ′ and f , demonstrating how delays propagate between events. In Figure 1.2(a), the

departure event of a specific flight is connected to the arrival event through the cruise

phase, while the turnaround phase links the arrival event to the subsequent flight’s

departure event. In Figure 1.2(b), a primary delay at the departure event causes a delay

in the event’s end time. This primary delay is partially absorbed by the available cruise

buffer and transforms into a propagated delay, resulting in a delay in the start time of

the subsequent arrival event. Similarly, the delay at the arrival event is then passed

on to the departure event of the subsequent flight after accounting for the turnaround

buffer.
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(a) The four-phase flight operation process

(b) Delay propagation: from departure event to arrival event

Figure 1.2: An illustration of delay propagation in two consecutive flights

This four-phase flight operation process provides a more accurate characterization of

the delay uncertainty compared to traditional leg-based models. By associating delays

with specific events and time periods, the impact of time-dependent factors is explicitly

incorporated. Capturing these temporal dynamics within the uncertainty set is key to

robust planning.

Both robust optimization problems in chapters 3 and 4 adopt an event-based frame-

work to formulate time-dependent uncertainty sets. Delay propagation between dis-

tinct flight events is modeled using constraints that link the phases. Consequently, the

flight schedules are optimized by better accounting for time-varying delay risks and

strategically allocating buffers to minimize worst-case propagated delays.

In Chapter 3, we study the flight retiming problem, where decisions directly affect

flight leg takeoff and landing times. By also considering the impact of delays over

time, we can effectively validate the importance of time-dependent delay modeling.

We do this by solving our designed problem model and comparing it to the traditional

model.
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In Chapter 4, we study the more complex and comprehensive aircraft routing problem

to further explore the applicability of time-dependent delay consideration to broader

scenarios. Due to its complexity, we design novel mathematical heuristics to solve

this problem. Compared to commercial solvers, our algorithm achieves significant

improvements in both solving time and solution quality. It effectively leverages the

characteristics of the model, making it possible to extend the time-dependent delay

framework to more extensive application problems.

Together, the two core chapters highlight the value of incorporating time-dependent

aspects within delay uncertainty for airline scheduling. The proposed techniques pro-

vide a strong analytical basis for improved capacity planning, aircraft utilization, and

customer service. This research has potential extensions to crew scheduling, passen-

ger disruption management, and integrated airline recovery models. By strengthening

delay propagation resilience, this work offers invaluable insights for both airlines and

the transportation community.

• Proposes an event-based framework to model flight operations in phases and

better capture time-dependent delay uncertainty.

• Develops novel time-dependent uncertainty sets using flight data statistics to

represent primary delays specific to airports, events and time blocks.

• Formulates robust optimization models for flight retiming and aircraft routing

to minimize worst-case propagated delays.

• Designs efficient solution algorithms based on iterative cutting plane and row-

column generation with math heuristics.

• Conducts computational experiments on real airline data that demonstrate sig-

nificant improvements over original and traditional schedules.

• Provides data-driven insights on incorporating temporal aspects into airline sched-

ule optimization for improved robustness.
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In summary, this thesis makes important contributions by reformulating traditional

airline optimization problems to capture time-dependent uncertainties. The result-

ing models, solutions and insights pave the way for more reliable and efficient airline

operations.



Chapter 2

Literature Review

Flight schedules are generally established 6 to 12 months in advance, but they fre-

quently undergo adjustments as the departure date approaches [47]. As highlighted

by Al-Thani et al. [5], as airlines approach actual travel dates, various factors, such

as more accurate demand or delay forecasts, become evident, prompting airlines to

iteratively adapt their schedules.

The optimization of aircraft scheduling in the face of uncertainties is a crucial chal-

lenge in the aviation industry. Delays and disruptions can have a significant impact

on operational efficiency and passenger satisfaction. Extant literature has addressed

these challenges through various methods, focusing on aircraft retiming and aircraft

routing to provide flexibility and robustness in airline operations.

2.1 Airline Scheduling

The flight schedule forms the core of an airline’s planning process, designed to opti-

mize the utilization of its resources to meet customer demands and maximize profits

[30]. Airline scheduling involves the creation and optimization of flight schedules for

an airline’s fleet, strategically determining flight timings, frequencies, and routes to en-

hance operational efficiency, meet customer needs, and reduce costs. This vital aspect

plays a critical role in ensuring smooth operations, maintaining high service quality,

8
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and achieving profitability in the highly competitive aviation industry. The decision

space to this problem is immense: airlines can choose any combination of where to fly,

when to fly, and what to fly.

Airline scheduling comprises two distinct planning levels: strategic-level and operational-

level scheduling. Strategic-level planning occurs months or even years ahead, where

airlinesmake vital decisions such as expanding flight networks, introducing new routes,

acquiring aircraft, and adjusting overall capacity to align with projected market de-

mand and growth trends [3, 47]. This phase involves extensive analysis of market

forecasts, customer preferences, and industry trends, serving as a blueprint for the

airline’s future operations.

Due to the need for accuracy in flight schedules, which are established well in advance

(ranging fromweeks to a year), they often require updates as departure dates approach

and demand forecasts improve [5]. These updates primarily involve revising planned

aircraft routes to accommodate re-fleeting decisions, address breakdowns, and incor-

porate rerouting due to disruptions.

This short-term planning (which is so called operational level) involves making deci-

sions to ensure the efficient execution of the strategic plan. Tasks at the operational

level include adjusting departure and arrival times (flight retiming, [1, 19, 26, 64, 73]),

managing crew schedules [25, 54], reassigning aircraft [33, 64, 65], allocating airport

slots [22], and rerouting flights [61, 64, 66, 75, 77] for specific aircraft in response to im-

mediate changes in demand or operational constraints. Airlines must exhibit agility

and adaptability at this level to handle unforeseen events, optimize resources, and

maintain a seamless day-to-day operation aligned with the broader strategic vision.

The successful coordination of both strategic and operational-level scheduling is es-

sential for airlines to deliver high-quality service, maximize profitability, and remain

competitive in the dynamic aviation industry.

Our thesis focuses on the operational level, taking uncertainty into consideration to

address the challenges that arise in this critical aspect of airline scheduling. Specifi-

cally, we examine the impact of uncertainty on flight retiming, a direct and relatively
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minor change in airline scheduling, as well as the core focus of airline scheduling - air-

craft rerouting. Our study aims to shed light on the uncertainties associated with time

dependence from both these perspectives, offering valuable insights into how airlines

can better cope with and manage uncertainties in their scheduling processes.

2.1.1 Flight Retiming Problem

Numerous studies have explored flight retiming decisions as part of an integrated air-

line scheduling model, encompassing various sub-problems to achieve a more com-

prehensive planning schedule [19]. For instance, Cacchiani and Salazar-González [19]

proposed a heuristic approach that incorporates flight retiming, fleet assignment, air-

craft routing, and crew pairing. Airlines can choose the start time of a flight from a

set of options in this context. Integrating flight retiming with other critical aspects of

airline operations, Mercier and Soumis [54] examined an integrated aircraft routing,

crew scheduling, and flight retiming model. They proposed generating a set of possi-

ble departure times for each flight and selecting a departure time for each leg within a

given time window. Incorporating robustness in their approach, Ahmed et al. [2] study

a robust weekly aircraft maintenance routing and retiming problem. They employed a

Monte-Carlo simulation procedure to iteratively adjust flight departure times. To fur-

ther reduce delay propagation, Dunbar et al. [26] extended their previous work [25]

by introducing a new algorithm that considers random primary delay. They also pre-

sented a heuristic algorithm to retime existing aircraft and crew schedules, effectively

reducing the cost of delay propagation.

Other studies have adopted a two-stage process, where retiming decisions are made

after fixing the flight routes. Zhu et al. [78], for instance, aimed to maximize profit

while considering recovery and minimum turnover constraints in the second stage of

their model.
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2.1.2 Aircraft Routing Problem

The aircraft routing problem is a critical aspect of delay management in air transporta-

tion, involving the assignment of specific aircraft to each flight one day before oper-

ations [36]. Addressing delays in air travel is essential, as they can lead to increased

costs and passenger dissatisfaction. Effective aircraft routing seeks to minimize the

propagation of delays and their overall impact. Uncertainty plays a pivotal role in this

problem, directly influencing the reliability and efficiency of flight operations. Ne-

glecting uncertainty can result in suboptimal routing decisions, increased delays, and

higher costs for airlines. Incorporating uncertainty into the aircraft routing problem

allows researchers and practitioners to develop robust and flexible routing strategies,

improving the overall resilience of the airline’s operations.

A considerable body of literature has focused on airline rescheduling to enhance op-

erational performance in the face of unforeseen disruptions by rerouting aircraft [33,

43, 61, 64, 66, 75, 77]. For instance, Ahmed et al. [2] developed an enhanced two-level

optimization algorithm that addresses decisions regarding aircraft routing and incor-

porates retiming considerations. Addressing both technical crew and flight attendants,

Weide et al. [71] introduced an iterative approach to solve robust integrated aircraft

routing and crew pairing scheduling problems. Moreover, Duran et al. [28] took into

account controllable cruise time and uncertainty in non-cruise time when developing

a robust model for airline scheduling.

By examining these studies and investigating the uncertainties associated with flight

retiming and aircraft rerouting, our thesis aims to contribute to the development of

more effective and efficient airline scheduling strategies.

2.1.3 Review of Proactive Airline Scheduling

Within the domain of airline scheduling, there has been a substantial body of research

addressing uncertainties related to flight delays. Ahmadbeygi et al. [1] minimized total

propagated delay by reallocating buffer time in schedules in the framework of propa-

gation trees. Yan and Kung [75] considered the correlation between flight delays and
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proposed a new robust model to generate an efficient solution. They proposed an un-

certainty set and assumed that the primary delay of each flight leg lives in that uncer-

tainty set. Some studies also assumed that flight leg delays follow specific probability

distributions. For example, Lan et al. [43] fitted the primary delay for each flight leg

with an independent log-normal distribution using historical data and mentioned the

Gamma and Weibull distributions as potential candidate distributions. Ahmed et al.

[4] randomly generated primary delays in the Monte-Carlo simulation and then found

the best buffer time by a particle swarm optimization algorithm. Aloulou et al. [6]

also randomly generated primary delays within a bounded interval. They proposed

an integrated model for the robust aircraft routing and flight retiming problem and

then derived a non-decreasing function, mapping the buffer into a scalar to represent

the robustness, according to the fact that the greater the buffer, the more delay it can

absorb.

These studies emphasize the importance of implementing proactive strategies during

the planning stage to mitigate potential disruptions. The focus is on enhancing the

robustness of generated plans and reducing their sensitivity to potential disruptions.

This proactive approach aims to minimize the likelihood and severity of potential dis-

ruptions. However, it is worth noting that despite these proactive approaches, there

is literature on recovery measures after disruptions occur. These measures, known as

reactive strategies, continue to be an area of interest [7, 20, 41, 46]. In our study, we

specifically focus on the proactive planning, which involves retiming flight departure

and arrival times weeks ahead of the actual flight execution.

One of our main objectives is to highlight the vital role of proactive planning in effec-

tively managing time-dependent uncertainty. Previous studies have often overlooked

time-dependent uncertainty related to delays, focusing primarily on uncertainty as-

sociated with specific flight legs without considering the temporal aspect. In these

studies, the uncertainty sets or distributions of delays remain unchanged even though

the decision may change the timing of the original flight leg.
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2.2 Uncertainty in Airline Scheduling

2.2.1 Traditional Approaches to Address Uncertainty

Uncertainty in the airline scheduling problem involves the utilization of stochastic

modeling or robust optimization techniques. These approaches are essential for deal-

ing with the unpredictable nature of air travel, where various factors like weather con-

ditions, airspace congestion, and other unforeseen events can impact flight schedules.

By incorporating these methodologies, airlines and aviation companies can develop

more resilient and efficient routing strategies that account for uncertainty.

Scholars handle uncertain information in different ways. Stochastic models play a vital

role in addressing uncertainty by incorporating probabilistic information and random

variables, providing valuable insights for decision-making. With these models, dif-

ferent routing options can be evaluated based on their expected performance under

uncertain conditions. In one such study, Lan et al. [43] presented two approaches

aimed at developing robust plans to mitigate flight delays and disruptions. The first

approach emphasizes efficient aircraft routing to minimize the propagation of delays,

while the second approach focuses on optimizing flight departure times to minimize

the impact of disruptions on passengers. Moreover, Ahmadbeygi et al. [1] minimized

total propagated delay by reallocating slack in schedules in the framework of propaga-

tion trees. Many subsequent researchers who studied aircraft routing problem, such as

Ahmed et al. [2, 4], Dunbar et al. [25, 26] followed this stochastic discrete optimization

approach.

In contrast, robust optimization methods, as explored by Yan and Kung [75], involved

the characterization of primary delays by utilizing an uncertainty set that effectively

captures the interdependencies and correlations among flight delays. Their perfor-

mance is compared with the work of Dunbar et al. [26]. Additionally, Marla et al. [52]

conducted a comparative analysis of various strategies for constructing robust solu-

tions to optimize aircraft routing problems. These strategies were categorized into

domain-specific approaches, probability distribution-based approaches, and probabil-

ity distribution-free approaches. In another study by Ahmed et al. [4], primary delays
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are randomly generated, and the best buffer time is determined using a particle swarm

optimization algorithm. Aloulou et al. [6] proposed an integrated model for the robust

aircraft routing and flight retiming problem and then derived a non-decreasing func-

tion, mapping the buffer into a scalar to represent the robustness, according to the fact

that the greater the buffer, the more delay it can absorb.

By leveraging stochastic modeling and robust optimization, the aviation industry can

enhance the reliability and efficiency of aircraft routing, effectively managing uncer-

tainties and reducing the impact of delays and disruptions on airline scheduling.

2.2.2 The Importance of Considering Time-dependent Uncer-

tainty

Previous studies have primarily focused on uncertainty related to specific flight legs,

assuming that the uncertainty distributions or sets remain unchanged despite changes

in flight timings. However, in our study, the uncertainty of primary flight delay is in-

trinsically linked to the event’s start time. Flight retiming decisions have the potential

to alter the departure and arrival event start times, thereby influencing the uncertain

primary delay. As a result, the uncertain information in our study should not be treated

as independent of time.

In practical scenarios, adjusting the departure and arrival times of a flight directly im-

pacts the potential primary delay, consequently affecting the propagated delay that

spreads throughout the airline network. Scholars widely acknowledge that time is

a critical factor influencing primary delays, as evidenced by various empirical stud-

ies. For instance, Xu et al. [74] demonstrated that, in addition to weather and airport

capacity, departure time and scheduled turnaround time are significant factors in pre-

dicting flight delays. Moreover, Brueckner et al. [15] conducted an empirical study

to establish the correlation between slack time between flight pairs and explanatory

variables, including time-of-day departure variables. Similarly, Brueckner et al. [16]
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utilized departure-time dummy variables to investigate the relationship between de-

parture time and propagated delays. Their findings highlighted the impact of departure

time on whether a flight is delayed and the duration of the delay.

Considering the crucial role of time in influencing primary delays and propagated

delays, our study incorporates time-dependent uncertainty to develop more accurate

and effective strategies for aircraft routing and flight retiming, thereby enhancing the

overall resilience and efficiency of airline operations.

2.2.3 Decision-Dependent Uncertainty

Airline scheduling decisions are influenced by the uncertainty surrounding the pri-

mary delay, which, in turn, may alter the actual time of the flight event. This type of

uncertainty, dependent on the specific flight event and influenced by its corresponding

actual time, is known as endogenous uncertainty or decision-dependent uncertainty

[24, 40, 63].

Endogenous uncertainty can be mainly classified into two types. The first type re-

lates to decisions that directly impact the parameters within a distribution or set, as

illustrated by Hellemo et al. [40]. For example, in the context of retrofitting planning,

uncertainty is represented by the condition of the transport network following a disas-

ter. By retrofitting a link, its probability of survival increases, consequently impacting

the probability distribution of the transport network’s random state after a disaster

event.

The second type involves decisions that influence which random parameters are re-

alized or result in different parameter realizations. Studies often employ multi-stage

models, where uncertainty parameters are determined based on decision-making at

specific stages [37, 38, 42, 63].

In airline scheduling, Şafak et al. [63] investigated time-dependent uncertainty, where

the variability in flight demand is contingent on the departure time of each flight. The

departure time vector plays a crucial role in influencing the probability of different
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realizations of random passenger demand. In their research, the uncertainty variables

revolve around demand rather than the primary delay, classifying it within the second

type of endogenous uncertainty.

In this work, where uncertainty is time-dependent and similar to Nohadani and Roy

[56], the decision-dependent uncertainty set utilized also exhibits time dependence.

Although decision-makers cannot directly alter factors causing delays, they can make

decisions to effectively mitigate these factors, thereby reducing the propagation of

delays. Thus, the uncertainty in our study falls within the category of endogenous

uncertainties.

2.2.4 Other Time-dependent Related Problem

Wen et al. [72] and Sun et al. [68] studied the crew pairing problem (CPP) and consid-

ered time-variant flying times. Wen et al. [72] proposed a robust crew pairing optimiza-

tion model that incorporates a heteroscedastic regression model to represent the flying

time of each flight leg. This model takes into account the departure time as a param-

eter. The researchers derived recursive analytical formulas to estimate the expected

departure time and arrival time of each subsequent flight leg, based on the departure

time and expected arrival time of the preceding leg. The objective of their optimization

model is to minimize schedule deviations from these expected times. Sun et al. [68]

also considered time-variant parameters like flight departure/arrival times that depend

on delays from previous flights. They model the flight departure time and arrival time

as random variables that depend on propagated delays from previous flights. Specifi-

cally, they derived probabilistic distributions for these times based on assumed delay

distributions like truncated normal or log-normal. They developed a scenario-based

stochastic program that incorporates these random times into integrated crew pairing

and aircraft routing decisions to optimize them across multiple scenarios simultane-

ously. Both studies proved the importance of explicitly considering time variation and

its impact on scheduling decisions.
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Some other studies about flight retiming or aircraft routing problems under Ground

Delay Programming (GDP) also considered time-dependent uncertainty [17, 73]. GDP

is a common method used by aviation authorities (e.g., the Federal Aviation Admin-

istration) to control the release times of flights planned to enter an airport. Similarly,

when a GDP is announced, airlines can make rescheduling decisions to meet their ob-

jectives better. For instance, Woo and Moon [73] randomly generated a series of GDP

scenarios based on assumed probability distributions. However, an airline’s decision

point is when a flight’s scheduled arrival time is updated due to a GDP, not several days

before departure when a delay forecast is issued. Furthermore, the airline’s decision

is based on the aviation authority’s control, not on predictions derived from historical

data.

A substantial body of literature on routing problems outside of the airline industry con-

siders time-dependent uncertainty. For instance, travel times may vary exogenously

due to traffic congestion, weather conditions, moving targets ormobile obstacles. They

may also vary endogenously whenever the decision maker can set the vehicles’ speeds

to trade-off between fuel consumption and travel time [35]. Time-dependent prob-

lems naturally arise in diverse applications, including route planning in road networks,

travel planning in public transit networks, and vehicle routing. Delling and Wagner

[23] examined a route planning problem where travel times on time-dependent con-

nections fluctuate frequently throughout the day. Eglese et al. [29] developed road

timetables where individual road speeds differ considerably hour-to-hour. They fore-

casted time-dependent travel times based on past observations at similar times of day,

days of week, and seasons.

A substantial body of literature on routing problems outside of the airline industry con-

siders time-dependent uncertainty. This uncertainty arises when travel times are sub-

ject to exogenous variations due to factors such as traffic congestion, adverse weather

conditions, dynamic targets, or obstacles in motion. Additionally, travel times can

vary endogenously when decision-makers have the ability to adjust vehicle speeds to

balance fuel consumption and travel time trade-offs [35]. Delling and Wagner [23]

investigated a route planning problem in which travel times are time-dependent. On

the other hand,Eglese et al. [29] developed road timetables that account for substantial
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variations in individual road speeds from one time period to another. Their approach

involved forecasting time-dependent travel times by leveraging past observations from

similar time characteristics.

Some studies considered time-dependent travel time or service time but use a de-

terministic function with time as the independent variable to represent this change

[10, 50], or based on an extended node network, departure or arrival events at different

times are linked by different connections (with different cost to represent time-varied

characteristics) in the timetable [9]. As can be seen, a deterministic time function or

the construction of multiple node replicas at different times in a time-expanding net-

work is very dependent on the accuracy of data predictions. Therefore, other scholars

suggested a stochastic time function or create robust models [34, 44]. Even if random-

ness is introduced to build more robust results, the model still needs sufficient data

to support a prior probability or an uncertainty set. This has been well supported in

many scenarios of vehicle routing problems with the advent of the significant data era.

However, in the field of aviation, it is still difficult to deal with the time-dependent data

of flights, which makes time-dependent characteristics rarely considered in aviation

scheduling models. Time-dependent routing is indeed an emerging research area ripe

for innovation. Previously, the aviation industry found time-dependent data difficult

to capture and model. Our research pioneers a novel event framework to construct

time-dependent uncertainty sets, overcoming data limitations. With this four-event

framework, we can now model time-dependent uncertainties - a major advancement

for aviation routing research.

2.3 Solving Strategies andEvaluationMethods inRo-

bust Airline Scheduling

The Aircraft Routing Problem (ARP) is a classic NP-hard problem. Roy and Tomlin

[62] reduced it to a 3D matching problem and proved ARP to be NP-hard. As the scale

of problems increases, finding the optimal schedule for NP-hard problems becomes
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computationally expensive due to the lack of known algorithms that can solve them

within polynomial time.

To address the computational costs of combinatorial optimization, alternative satis-

factory approaches have been developed, including meta-heuristics such as simulated

annealing, tabu search, genetic algorithms, and particle swarm optimization [57, 59].

These assess the promise of different solution states and guide the search process. Sev-

eral studies have applied these techniques to the Aircraft Routing Problem. Yang and

Yang [76] used a Genetic Algorithm, Liang et al. [45] proposed a two-stage column

generation approach with bounds on the pricing subproblem, and Maher et al. [49]

developed branch-and-price heuristics. Başdere and Bilge [8] combined exact (branch-

and-bound) and heuristic (compressed annealing) methods to solve an aircraft main-

tenance routing problem for tracking remaining times.

Moreover, when dealing with decision-dependent uncertainty, studies often involve

models with approximation [58] or transformation [27, 48, 79]. For instance, Peeta

et al. [58] employed a combination of feasible space search and sampling to approx-

imate the expected objective function of the stochastic problem through a random

sample of scenarios. They used a first-order approximation procedure to reformulate

the approximate deterministic program. Another common approach in models with

decision-dependent uncertainty is the use of linear, conic, or Lagrangian duality to

reformulate the linear duality robust counterparts [48].

It is crucial to establish quantitative metrics that can effectively evaluate schedule ro-

bustness. Evaluation typically employs two main approaches:

1. Scenario-based evaluation: This method involves executing the planned sched-

ule under various scenarios and assessing the deviation between the realized

schedule and the planned schedule.

2. Surrogate measures: These measures are designed to provide accurate estimates

of schedule robustness. For example, Hazır et al. [39] introduced slack-based

surrogate measures as a means to evaluate the robustness of project schedules.
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This thesis follows the approach of Yan and Kung [75] and Dunbar et al. [26], which

involves generating scenarios to evaluate the obtained schedules.



Chapter 3

Flight Retiming Problem Under

Time-dependent Uncertainty

3.1 Introduction

The flight retiming problem involves optimally adjusting the departure and arrival

times of flights within an existing airline schedule. By modifying the timing of flights,

airlines can build in buffer time to absorb propagated delays and improve the sched-

ule’s robustness. The goal is to strategically allocate slack to minimize the worst-case

impact of disruptions on the overall flight network.

Figure 3.1 illustrates a straightforward example involving three airports (Airport A,

Airport B, and Airport C) and two flights (F1 and F2). In the diagram, ’MTT’ repre-

sents the minimum turnaround time required for ground connections, indicating the

minimum time interval needed for an aircraft to complete necessary tasks (such as

refueling, cleaning, and boarding) between two consecutive flights. The scheduled

departure and arrival times for the two flights are denoted as deps(i) and arrs(i), re-

spectively, while dep(i) and arr(i) represent the actual departure and arrival times for

each flight on a specific day. Consequently, the difference deps(i)− dep(i) signifies

the departure delay, and arrs(i)−arr(i) indicates the arrival delay for each flight.

21
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As seen in Figure 3.1, both the departure and arrival phases of Flight F1 experience

primary delays. These delays cannot be fully mitigated by the buffer time allocated

in the schedule. Even though no primary delays occur at Flight F2’s departure and

arrival phases, the propagated delay cascading from Flight F1 through the flight net-

work causes the departure and subsequent arrival phases of Flight F2 to deviate from

their scheduled times. This example clearly illustrates the relationship between flight

departure and arrival times and how delays propagate within a flight network.

Figure 3.1: An example of two flight leg and delay propagated

Moreover, Figure 3.2 illustrates an example of a flight involving three airports (Airport

A, B, C) and three flight legs. In Figure 3.2(a), a typical three-flight routing is depicted,

where Flight F1 operates from Airport A to Airport B, followed by Flight F2 from

Airport B to Airport C, and finally Flight F3 from Airport C back to Airport A. The

notation ’MTT 12’ represents the minimum turnaround time required between Flight

F1 and Flight F2, while ’Buffer 12’ denotes the allocated buffer time for the turnaround

phase. Similarly, ’MTT 23’ and ’Buffer 23’ indicate the minimum turnaround time and

buffer time between Flight F2 and Flight F3, respectively.

The dotted arrow in Figure 3.2(a) represents the actual flight departure and arrival

situation on a specific day. It can be observed that the departure and arrival stages of

Flight F1 experience delays exceeding the scheduled buffer time. Consequently, Flight

F2 is also delayed accordingly, and this delay is ultimately absorbed by ’Buffer 23’.
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What if we rescheduled the flight buffers by retiming these flights? Figure 3.2(b) de-

picts an example of a possible retiming schedule for the routing shown in Figure 3.2(a).

In this revised schedule, we retain the same landing times for F1 and F3, but we slightly

postpone the departure of F2. This adjustment increases the allocated buffer time,

known as ’Buffer 12’, between Flight F1 and Flight F2, while decreasing the ’Buffer 23’

between Flight F2 and Flight F3. As a result, Flight F2 can still depart on time, and

the delay in its arrival is reduced. This, in turn, decreases the total delay time for the

entire route.

(a) A typical three leg flight routing

(b) A possible schedule to adjust the departure and arrival time of F2

Figure 3.2: An example of three flight leg and retiming decision

Some studies have focused specifically on flight retiming to confront disruptions. Sto-

jković et al. [67] examined day-of-operations activities, modifying plans to recover

fromminor disruptions while maintaining crew connections, aircraft routing, and pas-

senger itineraries. They allowed increasing departure times and expediting activities
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to minimize resource costs and passenger inconvenience. Ahmadbeygi et al. [1] redis-

tributed existing slack, making minor flight time changes to reduce delay propagation.

They highlighted the significant downstream impacts of primary delays without ade-

quate buffer.

Meanwhile, many studies consider flight retiming jointly with other scheduling deci-

sions in integrated airline optimization models. These aim to develop comprehensive

schedules optimizing multiple aspects. Cacchiani and Salazar-González [19] proposed

a heuristic approach combining flight retiming with fleet assignment, aircraft routing,

and crew pairing. Airlines select flight start times from a set of options. Zhu et al.

[78] studied a two-stage process with retiming in the second stage after fixing routes,

maximizing profit under recovery and turnover constraints. Mercier and Soumis [54]

developed an integrated model with aircraft routing, crew scheduling, and flight re-

timing, generating possible departure times and selecting one within a time window

for each leg. Ahmed et al. [2] presented a robust weekly aircraft maintenance rout-

ing and retiming model using Monte-Carlo simulation to iteratively adjust departure

times. Dunbar et al. [26] extended earlier work to further reduce propagated delays by

incorporating random primary delays and proposing a heuristic retiming algorithm.

Our studies fall within the first type, specifically adjusting the takeoff and landing

times of flights, thereby deciding the slack size in the flight operation process.

Building on these existing studies, we recognize that most past work treats delay un-

certainty as time-invariant. However, delays intrinsically depend on contextual factors

like weather and congestion that vary over time, as mentioned in Chapter 1. Cap-

turing the time dynamics of delay uncertainty is crucial for effective flight retiming.

Figure 3.3 illustrates an example of delay uncertainty variation due to flight retiming.

Suppose a flight f takes off at an airport, and an abnormal accident or adverse weather

occurs at 9 o’clock, resulting in a large delay in the flight departing from the airport.

After 25 minutes, the congestion situation is relieved, and until 55 minutes later, it

returns to normal. As shown in Figure 3.3, we use U1 to represent abnormal con-

gestion conditions, U2 to represent normal conditions, and U3 to represent recovery

periods. Assuming that flight f is scheduled to depart at 9:10 if the flight is postponed

by 30 minutes or 50 minutes (flight f ′ and flight f ′′), the congestion situation will be
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completely different, which will greatly reduce the possibility of delay. Therefore, to

reduce flight delay and its propagation as much as possible, it is necessary to make a

more reasonable and scientific flight schedule and consider the delay change in time

dimension.

Figure 3.3: An example of flight departure time decisions under time-dynamic delay
uncertainty

This chapter proposes a novel time-dependent modeling approach, enabling airlines

to avoid high-delay periods by strategically allocating buffers. The following sec-

tions present our time-dependent framework, robust optimization model, and solution

method to generate robust flight schedules, minimizing worst-case propagated delays.

3.2 Problem Description and Formulations

In this section, we first describe and define the flight retiming problem. Next, a de-

terministic basic flight retiming model adapted from the literature is given. Then,

we introduce and define a general uncertainty set which can capture time-dependent

uncertainty. Finally, we present a robust optimization model under time-dependent

uncertainty.

3.2.1 Fight Retiming Problem Description

By optimizing flight schedules to be more resilient against propagated delays, airlines

can significantly reduce total passenger delays and improve on-time performance. This

provides value to both airlines and passengers in terms of reduced passenger waiting
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times, fewer missed connections, and overall schedule reliability. Flight retiming op-

timization is an important capability for airlines to minimize the impact of delays and

disruptions on their passengers.

Our flight retiming optimization aims to minimize the worst-case total propagated de-

lay across all flights. Within a 2-3 day planning horizon before the actual flight date, we

re-adjusted the buffer times, including cruise and turnaround buffers, for every flight

on all routes. The adjusted departure and arrival times account for updated forecasts

of primary delays like weather, airline resources, and airport capacity. These primary

delays comprise an uncertainty set that is both unpredictable and time-dependent. The

resulting flight schedule reduces susceptibility to delayswhile still meeting operational

constraints like minimum cruise and connection times.

3.2.2 The Deterministic Flight Retiming Model

In this subsection, we first introduce the deterministic flight retiming model. Table 3.1

lists the notations of each set in our models. Given a set of flights F , each flight

f ∈ F with the tentative departure and arrival information, we reallocate the cruise

and turnaround buffer for every flight route for a specific airline by adjusting the de-

parture and arrival time of those flights. We use β and α to denote the departure

and arrival events, respectively. xβ

f and xα
f represent the departure and arrival time

of each flight leg f . Since the objective is to regenerate flight schedules with minimal

worst-case total propagated delay, the newly generated schedule should preserve the

original sequence of flight legs. In addition, it should meet the minimum cruise time

requirement for each flight f and the minimum turnaround time requirement between

each flight pair, ( f ′, f ) ∈ P .
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Table 3.1: Notations for the flight retiming problem

T Set of periods, τ ∈ {1, . . . , |T |}

F Set of flights, f ∈ {1, . . . , |F |}.

K Set of airports, k ∈ {1, . . . , |K |}

P Set of paired flights, ( f ′, f ) is a pair of two consecutive flights on a route

S Set of scenarios, s ∈ {1, . . . , |S |}

E Set of events, e ∈ {1, . . . , |E |}.

R∗ Non-negative real number set, R+∪{0}

xβ

f The newly scheduled departure time of each flight leg f

xα
f The newly scheduled arrival time of each flight leg f

η t
( f ′, f ) The minimal turnaround time between the flight pair ( f ′, f )

gt
( f ′, f ) The turnaround buffer between the flight pair ( f ′, f )

ηc
f The minimal cruise time of flight f

gc
f The cruise buffer of flight f

pβ

f The propagated delay of the departure events of flight f

pα
f The propagated delay of the arrival events of flight f

uβ

f ,τ Equal to 1 if the actual start time of the departure flight event falls within

the time interval of the time block τ

uα
f ,τ Equal to 1 if the actual start time of the arrival flight event falls within

the time interval of the time block τ

δ The primary delay

[ν
β

f ,ν
β

f ] The retiming interval of departure events of flight f

[να
f ,ν

α
f ] The retiming interval of arrival events of flight f

[T τ ,T τ ] The time interval of the time block τ

Flight legs, represented by the variable f , are composed of two key events: departure

and arrival. The flexibility to adjust these departure and arrival times offers airlines

the chance to allocate slack, which helps minimize passenger disruptions and ensures

optimal aircraft productivity. This adjustment process typically occurs within specific
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time windows that commence several weeks prior to the flight leg’s scheduled depar-

ture and continue until the actual day of departure[43]. ν
β

f and να
f represent the orig-

inally scheduled departure and arrival start time of flight leg f . The decision variable

xβ

f denotes the rescheduled start time of the departure event of flight leg f , which can

only be adjusted within a certain interval [νβ

f ,ν
β

f ]. Similarly, the decision variable xα
f

denotes the rescheduled start time of the arrival event of flight leg f , which is within

the interval [να
f ,ν

α
f ]. Let pβ

f and pα
f be the propagated delay cascaded to the depar-

ture and arrival events, respectively. In the traditional models, pυ
f is used to denote the

propagated delay cascaded from the previous flight. In our event-based framework, for

a flight f , the propagated delay cascaded to the departure event, pβ

f , is approximately

equivalent to pυ
f , the propagated delay passed on by the preceding flight in the tradi-

tional leg-based framework. Furthermore, the propagated delay of the arrival event in

the event-based framework, pα
f , is the propagated delay passed on by the preceding

departure event, which is largely overlooked in the leg-based framework.

η t
( f ′, f ) and gt

( f ′, f ) represent the minimum turnaround time and the turnaround buffer

between the flight pair ( f ′, f ), respectively. Similarly, ηc
f and gc

f represent the mini-

mum cruise time and the cruise buffer of flight f . Here, we assume that ∆
β

f and ∆α
f

represent themean duration of each event. The buffer time between each pair of events

is calculated as follows in Equations (3.1).

gt
( f ′, f ) = xβ

f − (xα

f ′ +∆
α

f ′)−η
t
( f ′, f ) = xβ

f − xα

f ′ − (∆α

f ′ +η
t
( f ′, f )) (3.1a)

gc
f = xα

f − (xβ

f +∆
β

f )−η
c
f = xα

f − xβ

f − (∆
β

f +η
c
f ) (3.1b)

Given that ∆ and η are treated as constants, we can simplify the model by replacing

(∆
β

f +ηc
f ) with ηc

f and (∆α

f ′ +η t
( f ′, f )) with η t

( f ′, f ).

Given the primary delay δ , when there are no preceding events for a departure event,

the propagated delay pβ

f is 0. The propagated delay for the flight pair ( f ′, f ) on a fixed

flight route can be simply represented by pβ

f , where pβ

f is determined by pα

f ′ and the

turnaround buffer between the pair ( f ′, f ). Similarly, pα
f is determined based on the

preceding event’s pβ

f and the cruise buffer of flight f . For computational tractability we

assume (as in Lan et al. [43]) that the primary delay is independent of the propagated
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delay. Thus, the expressions for the propagated delay can be defined as follows in

Equations (3.2a)-(3.2b).

pβ

f (δ ) = max(0, pα

f ′ +δ
α

f ′ −gt
( f ′, f )) (3.2a)

pα
f (δ ) = max(0, pβ

f +δ
β

f −gc
f ) (3.2b)

In these equations, δ represents the primary delay. The propagated delay pβ

f is calcu-

lated based on the preceding arrival event’s propagated delay pα

f ′ , the primary delay

δ α

f ′ , and the turnaround buffer gt
( f ′, f ). Similarly, the propagated delay pα

f is calculated

based on the preceding departure event’s propagated delay pβ

f , the primary delay δ
β

f ,

and the cruise buffer gc
f . The max function ensures that the propagated delays are

non-negative.

Let δ
β

f denote the primary delay for each departure event and δ α
f denote the primary

delay for each arrival event. Based on these definitions, we can formulate a determin-

istic basic event-based flight retiming model (FRM) as follows.

(FRM) min ∑
f∈F

pβ

f (3.3a)

s.t. gt
( f ′, f ) = xβ

f − xα

f ′ −η
t
( f ′, f ) ∀( f ′, f ) ∈ P (3.3b)

gc
f = xα

f − xβ

f −η
c
f ∀ f ∈ F (3.3c)

pβ

f = max(0, pα

f ′ +δ
α

f ′ −gt
( f ′, f )) ∀( f ′, f ) ∈ P (3.3d)

pα
f = max(0, pβ

f +δ
β

f −gc
f ) ∀ f ∈ F (3.3e)

xβ

f ∈ [ν
β

f ,ν
β

f ] ∀ f ∈ F (3.3f)

xα
f ∈ [να

f ,ν
α
f ] ∀ f ∈ F (3.3g)

pβ

f , pα
f ,g

c
f ∈ R∗ ∀ f ∈ F (3.3h)

gt
( f ′, f ) ∈ R∗ ∀( f ′, f ) ∈ P (3.3i)

While the event-based framework allows for the optimization of the propagated delay

for both departure and arrival events, as well as the overall delay over all flights, we

choose to concentrate solely on the total propagated delay of departure events in order
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to maintain consistency with established practices in literature. Consequently, Objec-

tive Function (3.3a) minimizes of total propagated delay of departure events over all

flights. Moreover, Flights may have different importance and weight because factors

such as passenger demand, connectivity, time sensitivity, revenue generation, strategic

considerations, and operational constraints can vary across different flights. We could

also extend the Objective Function (3.3a) to Equation (3.3a′) to cooperate the weight

consideration, where c f represents the weight of each flight.

min ∑
f∈F

c f pβ

f (3.3a′)

Constraints (3.3b)-(3.3c) are the turnaround and cruise buffer time constraints had been

described in Equations (3.1a)-(3.1b). The former ensure the connection time of each

pair, ( f ′, f ), covers their minimal turnaround time, and the latter ensure the cruise time

of each flight f covers the minimal cruise time. Constraints (3.3d)-(3.3e) are the con-

straints for propagated delay of departure and arrival events for each flight leg based

on Equations (3.2a)-(3.2b). It should be noted that these constraints are specific to air-

craft. To protect key passenger itineraries, additional constraints should be introduced.

Specifically, we denote the flight pair set Pρ to represent each individual flight pair

( f ′, f ) within the key passenger itineraries, and the propagated delay through such a

pair is denoted by pρ

( f ′, f ). The buffer time between these key passenger itineraries is

represented by gρ

( f ′, f ). Therefore, for every flight leg pair ( f ′, f ) ∈ Pρ , constraints in

the form of Equations (3.4a)-(3.4c) should be included to enforce a minimal passenger

connection time, denoted as η
p
( f ′, f ), between the flight pair ( f ′, f ).

gρ

( f ′, f ) = xβ

f − xα

f ′ −η
p
( f ′, f ) ∀( f ′, f ) ∈ Pρ

(3.4a)

pρ

( f ′, f ) = max(0, pα

f ′ +δ
α

f ′ −gρ

( f ′, f )) ∀( f ′, f ) ∈ Pρ

(3.4b)

pβ

f = max(0, pα

f ′ +δ
α

f ′ −gt
( f ′, f ), pρ

( f ′′, f )+δ
α

f ′′ −gρ

( f ′′, f )) ∀( f ′, f ) ∈ P,∀( f ′′, f ) ∈ Pρ

(3.4c)
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Constraints (3.4a) are the passenger connection buffer time constraints andConstraints

(3.4b) define the restrictions on the propagated delay of flight f along the key passen-

ger itineraries. To fully incorporate the propagation effects through these passenger

itineraries, Constraints (3.3f) should be extended to form a new set of constraints, de-

noted as Constraints (3.4c). However, we do not include this constraints or present

computational results for this restriction due to lack of data. Next, we formulate a

robust time-dependent model extended from the event-based FRM model.

Next, we formulate a robust time-dependent model extended from the basic model.

3.3 Validation offlight delay sensitivity to short time

interval

As airline operations, such as flight retiming, require coordination among airports, air

traffic control agencies, and airlines, it is important to note that airlines have limited

flexibility in adjusting flight schedules. Therefore, it is crucial to validate that flight

delays remain responsive to changes within short time intervals and maintain their

time-dependent characteristics.

Using the ASQP dataset, we conduct a statistical analysis of the primary delay for

takeoffs and landings at 64 airports of Southwest Airlines (WN), across different time

blocks. Our findings are consistent with existing research in the literature, indicating

a variation in the distribution of primary delay over time.

Using DEN as an example, one of the busiest airports in the United States, as an ex-

ample, Figure 3.4 illustrates the distribution of primary delay for flights departing and

arriving during the three time blocks 15:20-16:20 in local time (time block 46-48). It

clearly indicates that for departing flights, the primary delay is generally larger be-

tween 16:00 and 16:20 (time block 48) compared to 15:20-16:00 (time blocks 46 and

47). Similarly, for arriving flights, the primary delay is smaller in the 15:20-15:40 (time

block 46) compared to the other two time blocks. This figure visually illustrates the
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distribution of delay in different time blocks and highlights the differences between

some adjacent time blocks.

Figure 3.4: An illustration of delay propagation in two consecutive flights

Furthermore, we conduct hypothesis tests for every pair of adjacent time blocks and

summarize the proportion of pairs showing significant results. We employ both para-

metric testing, specifically the Kolmogorov-Smirnov Test [21, 53], and non-parametric

testing, namely the Mann-Whitney U rank test [51]. We set the significance level to

be 0.05, with the null hypothesis stating that the distribution of primary delay for

each pair of adjacent time blocks is identical. In the Kolmogorov-Smirnov Test for de-

parture events, 40.13% of pairs of adjacent time blocks have a p-value less than 0.05,

indicating a significant difference in the distribution of primary delay. Likewise, for

arrival events, 31.62% of pairs of adjacent time blocks show a significant difference in

the distribution of primary delay at the same confidence level. In the Mann-Whitney

U rank test, we observe similar results, with 42.54% of departure events and 35.62% of

arrival events exhibiting a significant difference in the distribution of primary delay.

The consistency in results obtained from both types of tests provides a high level of

confidence in these findings.
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3.4 Time-dependent Uncertainty Set Ua

Yan and Kung [75] introduced an uncertainty set when studying the flight rerouting

problem. They used δ υ ∈R|F | to represent the uncertain primary delay for each flight

leg. In addition to sample means and standard deviation of each flight (µυ
f and συ

f ),

they also considered the correlations among different flights and created a sample co-

variance matrix, Λυ ⪰ 0,Λυ ∈R|F |×|F |. The uncertain set they introduced is defined

in Equation (3.5). Γ ∈ [0,+∞), the budget of uncertainty, is an exogenous variable.

Uυ :=
{

δ
υ
f ∈ R|F | | s.t.

∣∣∣(δ υ
f −µ

υ
f )/(σ

υ
f )
∣∣∣≤ Γ,∀ f ∈ F ;

∥∥∥Λ
υ−1/2

(δ υ −µ
υ)
∥∥∥

1
≤
√

|F |×Γ

}
.

(3.5)

The constraints in this uncertainty set Uυ (Eq. (3.5)) are commonly used in the robust

optimization literature (see Bertsimas et al. [14], Yan and Kung [75], for example). The

first set of constraints in the set are box constraints for each primary delay restricting

the extent to which the primary delay deviates from its historical mean. The second

constraints are inspired by the central limit theorem, taking the correlation of primary

delays between different flights into consideration. We follow Yan and Kung [75] and

use L1-Norm in these constraints.

In this work, we define a new uncertainty set that takes the time-dependent uncer-

tainty about the primary delay into account. Based on the four-phase flight operation

process described in Chapter 1, we extend the uncertainty set Uυ (Eq. (3.5)) with a

new time dimension, as shown in Equation (3.6). In Equation (3.6), time of day is dis-

cretized into |T | time blocks of the same length. Two sample covariance matrixes

Λe ⪰ 0,Λe ∈ R|T |×|T | and Λτ ⪰ 0,Λτ ∈ R|E |×|E | are created. We also use e ∈ E in-

stead of f ∈ F to represent the uncertainty set in a more general way for different

types of events.

U0 :=


δe,τ ∈ R|E |×|T | | s.t. |(δe,τ −µe,τ)/(σe,τ)| ≤ Γ,∀e ∈ E ,∀τ ∈ T ;∥∥∥Λe

−1/2(δe −µe)
∥∥∥

1
≤
√
|T |×Γ,δe = {δe,0,δe,1...δe,|T |}∥∥∥Λτ

−1/2(δτ −µτ)
∥∥∥

1
≤
√
|E |×Γ,δτ = {δ0,τ ,δ1,τ ...δ|E |,τ}

 . (3.6)
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In Equation (3.6), δe,τ represents the primary delay in time block τ of event e. Since

we consider two types of correlation, according to the central limit theorem, the sec-

ond and third constraints describe the correlation of delays at different time blocks

for the same event and the correlation of delays of different events at the same time

block, respectively. To observe this, when primary delays δe are uncorrelated, Λe =

diag(σ2
e,τ)τ∈T

, the second constraint is reduced to
∥∥diag(1/σe,τ)τ∈T (δe −µe)

∥∥
1 ≤√

|T |×Γ,µe ∈ R|T |.If we regard each flight leg as an event, and ignore the descrip-

tion of the time dimension, then U0 in Equation (3.6) becomes Uυ in Equation (3.5).

When the time dimension is considered, δ
β

f ,τ and δ α
f ,τ represent the uncertain primary

delay for the departure and arrival event of flight leg f at time block τ .

Aircraft taking off and landing at the same airport at the same time experience the

same weather conditions. They also experience uncertainties that occur in the airport,

such as the allocation of runways, boarding bridges, and other human or non-human

resources. Therefore, we use δ
β

k,τ and δ α
k,τ instead of δ

β

f ,τ and δ α
f ,τ to represent the

uncertain primary delay of each event at each time block. Nevertheless, the correla-

tion between primary delays at different time blocks from/to the same airport is also

considered. The sample means and variances of the time block of each airport and a

sample covariance matrix Λk ⪰ 0,Λk ∈ R|T |×|T | are calculated. Because the airports

are usually considered far away from each other, departure and arrival events at dif-

ferent airports are unlikely to interact with each other. Therefore, we directly derive

U1 (Eq. (3.7)) from Equation (3.6) omitting the correlation constraint between airports

at the same time block.

U1
a :=


δk,τ ∈ R|K |×|T | | s.t.

∣∣(δk,τ −µk,τ)/(σk,τ)
∣∣≤ Γ,∀k ∈ K ,∀τ ∈ T ;∥∥∥Λk

−1/2(δk −µk)
∥∥∥

1
≤
√
|T |×Γ,δk = {δk,0,δk,1...δk,|T |}

 . (3.7)

Γ is referred to as the budget of uncertainty, which determines how conservative the

uncertainty set is. Moreover, an auxiliary variable vk,i,k ∈ K , i ∈ T is used to equiv-

alently formulate the uncertainty set as a polyhedral set, where λk,τ ∈ R|T | is the ith
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row of matrix Λk
−1/2.

U2
a :=


δk,τ ∈ R|K |×|T | | s.t.

∣∣(δk,τ −µk,τ)/(σk,τ)
∣∣≤ Γ,∀k ∈ K ,∀τ ∈ T ;

±λk,i(δk −µk)≤ vk,i,∀i ∈ {1, . . . , |T |},∑
i

vk,i ≤
√
|T |×Γ

 . (3.8)

It should be noted that the uncertainty set contains at least one scenario that satisfies

all the constraints, with all elements of the uncertainty set assigned their mean values.

This guarantees the availability of a feasible scenario for any schedule.

3.4.1 Robust Optimization Model under Time-dependent Un-

certainty

In this section, we propose a robust time-dependent model under time-dependent un-

certainty by extending the basic deterministic flight retiming model (FRM) using the

time-dependent uncertainty set U2.

The objective function of the robust time-dependent flight retiming model (RTDFRM)

is presented in Equation (3.9). It seeks to minimize the maximum total propagated

delay, considering the primary delay of departure and arrival events defined within the

uncertainty set U2 (Eq. (3.8)). Thus, the objective of RTDFRM is to identify a schedule

that achieves the minimum worst-case total propagated delay.

(RTDFRM) min
x,g∈R∗|F |

max
δ∈U2

∑
f∈F

pβ

f (3.9)

When decision variables xα , xβ , gt
( f ′, f ) and gc

f , i.e. the scheduled departure and arrival

time as well as the cruise and turnaround buffers, are determined, an inner separation

problem (ISP) of RTDFRM is then formulated in Equation (3.10a)-(3.10p) to find the

worst total propagated delay scenario in the uncertainty set U2 (Eq. (3.8)). We further

introduce a set of binary decision variables uβ

f ,τ and uα
f ,τ in the robust time-dependent

model. The binary decision variable is equal to one when the scheduled departure or

arrival time of flight f is at time block τ . Airport information for flight leg f is denoted
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as k( f ). Primary delays of departure and arrival event at each time block are denoted

by δ
β

k( f ),τ and δ α

k( f ),τ , respectively.

(ISP) max ∑
f∈F

pβ

f (3.10a)

s.t.

∑
τ

uβ

f ,τ = ∑
τ

uα
f ,τ = 1 ∀ f ∈ F

(3.10b)

T τuβ

f ,τ ≤ xβ

f + pβ

f ≤ T τ +M(1−uβ

f ,τ) ∀ f ∈ F ,∀τ ∈ T

(3.10c)

T uα
f ,τ ≤ xα

f + pα
f ≤ T τ +M(1−uα

f ,τ) ∀ f ∈ F ,∀τ ∈ T

(3.10d)

δ
β

k( f ),τ −M(1−uβ

f ,τ)≤ δ
β

f ≤ δ
β

k( f ),τ +M(1−uβ

f ,τ) ∀ f ∈ F

(3.10e)

δ
α

k( f ),τ −M(1−uα
f ,τ)≤ δ

α
f ≤ δ

α

k( f ),τ +M(1−uα
f ,τ) ∀ f ∈ F

(3.10f)

pβ

f = max(0, pα

f ′ +δ
α

f ′ −gt
( f ′, f )) ∀( f ′, f ) ∈ P

(3.10g)

pα
f = max(0, pβ

f +δ
β

f −gc
f ) ∀ f ∈ F

(3.10h)∣∣∣∣∣∣
(δ

β

k( f ),τ −µ
β

f ,τ)

(σ
β

f ,τ)

∣∣∣∣∣∣≤ Γ ∀ f ∈ F ,∀τ ∈ T

(3.10i)∣∣∣∣∣(δ
α

k( f ),τ −µα
f ,τ)

(σα
f ,τ)

∣∣∣∣∣≤ Γ ∀ f ∈ F ,∀τ ∈ T

(3.10j)

∑
i∈{1,...,|T |}

vβ

f ,i ≤
√

|T |×Γ ∀ f ∈ F

(3.10k)
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±λ
β

k( f ),i

T
· (δ β

k( f )−µ
β

f )≤ v f ,i ∀ f ∈ F ,∀i ∈ {1, . . . , |T |}

(3.10l)

∑
i∈{1,...,|T |}

vα
f ,i ≤

√
|T |×Γ ∀ f ∈ F

(3.10m)

±λ
α

k( f ),i
T · (δ α

k( f )−µ
α
f )≤ v f ,i ∀ f ∈ F ,∀i ∈ {1, . . . , |T |}

(3.10n)

δ
β

k( f ),τ ,δ
α

k( f ),τ , pβ

f , pα
f ,δ

β

f ,δ
α
f ∈ R∗ ∀ f ∈ F

(3.10o)

uβ

f ,τ ,u
α
f ,τ ∈ {0,1} ∀ f ∈ F ,∀τ ∈ T

(3.10p)

Objective function (3.10a) is the inner function of Equation (3.9) to find the worst-case

scenario in terms of total propagated delay. Constraints (3.10b) restrict each flight to

one single departure or arrival time block. In Constraints (3.10c)-(3.10d), [T τ ,T τ] de-

notes the interval of each time block τ (in minute). Constraints (3.10c)-(3.10d) ensure

that each departure and arrival event is assigned to a specific time block, taking into

account the propagated delay that has impacted start time of the event. The actual start

time of each event (x+ p) must fall within the interval [T τ ,T τ] of time block τ when the

corresponding u variable equals to 1. Constraints (3.10e)-(3.10f) enforce that the pri-

mary departure or arrival delay of each flight, represented as δ
β

f and δ α
f respectively,

is equivalent to the primary delay within the corresponding time block. It should be

noted that in this inner model, the variables xα , xβ , gt
( f ′, f ) and gc

f in Equation (3.9)

are considered as fixed parameters. Hence, the propagated delay can be calculated by

Constraints (3.10g)-(3.10h). Constraints (3.10i)-(3.10n) are the constraints that define

the uncertainty set U2 (Eq. (3.8)).
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3.5 Solution Method

Considering a time-dependent delay, our model accommodates this as an endogenous

uncertainty as depicted in Figure 3.5. The start time of each event determines the pri-

mary delay experienced in each event, which subsequently governs the propagated

delay of each event. To mitigate this propagated delay, the start time of the event

needs adjustment. Hence, our model encapsulates endogenous uncertainty, present-

ing a complex problem for resolution. In this section, we first linearize the model,

subsequently introducing our iterative algorithms.

Figure 3.5: The interdependence of retiming, delays, and propagation

3.5.1 Model Linearization

Nonlinear Constraints (3.10g)-(3.10h) can be linearized using a big-M reformulation

with auxiliary indicator variables Iβ

f and Iα
f . As defined in Constraints (3.10o), vari-

ables pβ

f and pα
f are greater than or equal to 0. Thus, the linear form of Constraints (3.10g)-

(3.10h) can be written as the follows.

pβ

f ≤ pα

f ′ +δ
α

f ′ −gt
( f ′, f )+M× Iβ

f ∀( f ′, f ) ∈ P (3.11a)

pβ

f ≤ 0+M× (1− Iβ

f ) ∀ f ∈ F (3.11b)

pβ

f ≥ pα

f ′ +δ
α

f ′ −gt
( f ′, f ) ∀( f ′, f ) ∈ P (3.11c)

pα
f ≤ pβ

f +δ
β

f −gc
f +M× Iα

f ∀ f ∈ F (3.11d)

pα
f ≤ 0+M× (1− Iα

f ) ∀ f ∈ F (3.11e)

pα
f ≥ pβ

f +δ
β

f −gc
f ∀ f ∈ F (3.11f)
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In Constraints (3.11a)-(3.11f), when the auxiliary variable Iβ

f is set to 1, pβ

f is con-

strained to be 0. This occurs when the turnaround slack time of the flight pair ( f ′, f )

exceeds the sum of the propagated delay and the primary arrival delay of flight f ′. On

the other hand, when Iβ

f is 0, the propagated delay of flight f is defined as the differ-

ence between the primary arrival delay and the turnaround slack time, as indicated

by by Constraints (3.11a) and Constraints (3.11c). Similarly, Constraints (3.10h) that

restrict pα
f are linearized using auxiliary variables Iα

f in Constraints (3.11d)-(3.11f).

3.5.2 An Iterative Cutting-plane Algorithm

Since there exist integer variables in RTDFRM (such as Iβ

f , I
α
f ,u

β

f ,τ and uα
f ,τ ), the trans-

formation from an integer programming problem to its dual form for obtaining the

robust counterpart(RC) introduced by [11] may result in a non-integer dual solution.

Thus, we follow the iterative approach first proposed by Bertsimas et al. [12] and de-

velop an iterative cutting-plane algorithm. It iteratively tackles the inner separation

problems to finds theworst-case scenario, where RTDFRM is solvedwith a finite subset

of the constraints. An epigraph formulation of RTDFRM (epi-RTDFRM) with a finite

subset of scenarios is given in Equation (3.12a)-(3.12o). New variables with scenarios

dimension (s ∈ S ), pβ

f ,s,u
β

f ,τ,s and uα
f ,τ,s, are introduced.

(epi-RTDFRM)

min Ψ (3.12a)

s.t.

Ψ ≥ ∑
f∈F

pβ

f ,s, ∀s ∈ S (3.12b)

gt
( f ′, f ) = xβ

f − xα

f ′ −η
g
( f ′, f ), ∀( f ′, f ) ∈ P (3.12c)

gc
f = xα

f − xβ

f −η
c
f , ∀ f ∈ F (3.12d)

∑
τ

uβ

f ,τ,s = 1, ∀ f ∈ F ,∀s ∈ S (3.12e)

∑
τ

uα
f ,τ,s = 1, ∀ f ∈ F ,∀s ∈ S (3.12f)

T τuβ

f ,τ,s ≤ xβ

f + pβ

f ,s ≤ T τ +M(1−uβ

f ,τ,s), ∀ f ∈ F ,∀τ ∈ T ,∀s ∈ S (3.12g)
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T τuα
f ,τ,s ≤ xα

f + pα
f ≤ T τ +M(1−uα

f ,τ,s) ∀ f ∈ F ,∀τ ∈ T ,∀s ∈ S (3.12h)

pβ

f ,s ≥ pα

f ′,s +∑
τ

(δ α

k( f )′,τ ×uα
f ,τ,s)−gt

( f ′, f ) ∀( f ′, f ) ∈ P,∀s ∈ S (3.12i)

pα
f ,s ≥ pβ

f ,s +∑
τ

(δ
β

k( f ),τ ×uβ

f ,τ,s)−gc
f ∀ f ∈ F ,∀s ∈ S (3.12j)

uβ

f ,τ,s,u
α
f ,τ,s ∈ {0,1} ∀ f ∈ F ,∀τ ∈ T ,∀s ∈ S (3.12k)

xβ

f ∈ [ν
β

f ,ν
β

f ],x
α
f ∈ [να

f ,ν
α
f ],g

c
f ∈ R∗ ∀ f ∈ F (3.12l)

pβ

f ,s, pα
f ,s ∈ R∗ ∀ f ∈ F ,∀s ∈ S (3.12m)

pβ

f ,s = 0 ∀ f ∈ F 0,∀s ∈ S (3.12n)

gt
( f ′, f ) ∈ R∗ ∀( f ′, f ) ∈ P (3.12o)

Objective function (3.12a) minimizes Ψ, which is the maximum of the total propagated

departure delay among all scenarios in setS . Buffer constraints (3.12c)-(3.12d) remain

the same as Constraints (3.3b)-(3.3c). Constraints (3.12e)-(3.12h) also remain the same

as Constraints (3.10b)-(3.10d), restricting binary variables u for each event in each sce-

nario. Finally, Constraints (3.12n)-(3.12j) restrict the propagated delay on the whole

flight network. While Constraints (3.12k)-(3.12o) serve as variable definitions.

We decompose RTDFRM into two models: a relaxed form of epi-RTDFRM and an in-

ner separation problem. To solve these models, we develop an iterative cutting-plane

algorithm based on the idea Bertsimas et al. [12], as shown in Algorithm 1.
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Algorithm 1: Framework for Flight Retiming Problem
Data: Uncertainty set based on historical flight on-time information.

Result: A retimed flight timetable based on the given uncertainty set.

1 while true do

2 Solve relaxed epi-RTDFRM with an empty scenario set, get an optimal

schedule ϒ∗ and a lower bound of the objective Ψ;

3 Solve the inner separation problem with the obtained schedule ϒ∗. Get the

worst total propagated delay, Ψ̂ and the corresponding primary delays Θ̂;

4 if Ψ̂ > Ψ then

5 Add Θ̂ into scenario set S ;

6 else

7 return Ψ̂ and Schedule ϒ∗;

8 end

9 Solve epi-RTDFRM under scenarios S , get optimal schedule ϒ∗ and an lower

bound of the objective Ψ;

10 end

The algorithm begins by obtaining a currently optimal schedule ϒ∗ and a lower bound

of the objective function Ψ using a finite subset of the scenario set that captures the

primary delays of each event. Then, the algorithm enters an iterative procedure where,

in each iteration, the worst-case total propagated delay Ψ̂ is computed by solving the

inner separation problem with respect to the current schedule ϒ∗. If the lower bound

Ψ is greater than or equal to Ψ̂, the currently optimal schedule ϒ∗ is a global opti-

mal solution. In this case, the iteration terminates. If Ψ is smaller than Ψ̂, a newly

found scenario related to primary delays is added to the scenario set, and the iteration

continues. The convergence of this iterative cutting-plane algorithm is guaranteed as

long as the uncertainty set is a convex set. However, the actual computational time

required is influenced by various factors including the characteristics of the dataset,

the complexity of flight routes, and the extent to which the time dimension is divided.
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3.6 Numerical Experiments

In this section, we first introduce the flight data source and benchmarks in the ex-

periments. Next, the detailed experimental setup is discussed. We then compare our

time-dependent model to the non-time-dependent model with respect to the worst-

case and average performance. Finally, we examine the experiment results and give a

few important managerial insights. In the experiments, data processing is done using

Python 3, and the algorithms are implemented in Java. All experiments are conducted

on a 2.3GHz 11th Gen Intel Core i7 mobile processor with 16 GB RAM running Win-

dows 10 64-bit operating system. We use IBM ILOG CPLEX 12.9 for solving the MILP

models. Relevant data sets and source code are uploaded to a public Github reposi-

tory1.

3.6.1 Data Source and Setup

WeuseAirline ServiceQuality Performance System (ASQP) as the historical database [31].

The on-time performance of flights operated by large air carriers in the U.S. is tracked

by the U.S. Department of Transportation’s Bureau of Transportation Statistics (BTS).

ASQP is one of the databases provided by BTS, which includes information on airline

on-time performance, flight delays, and cancellations.

From the ASQP dataset, we calculate the minimum turnaround time and minimum

cruise time according to the method developed by Pyrgiotis [60]. We filter out the

turnaround and cruise time data that satisfy Pyrgiotis’s criteria and select the turnaround

or cruise connection where flights actually use buffer time to compensate for the delay.

Both the minimum cruise time and minimum turnaround time are calculated based on

the average turnaround time and average cruise time of these selected connections,

respectively.

We also obtain the flight route information for each day and the overall delay data for

each flight leg from the ASQP dataset and process the data according to the process
1https://github.com/ToughJ/FlightRetiming
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proposed by Lan et al. [43] when estimating the primary delay for each flight. We

calculate the overall delay of each departure and arrival event from the on-time per-

formance data. Then, we estimate the propagated delay cascaded to each event e by

subtracting the connection buffer between an event pair (e′,e) from the overall delay

of event e′. An event pair here refers to either a pair of departure and arrival events

of the same flight leg or a pair that consists of the arrival event of a previous flight leg

and a departure event of the consecutive flight leg. Finally, we calculate the primary

delay for each event as the difference between overall delay and the propagated delay

cascaded to that event.

In the experiments, we extract Southwest Airlines’ daily flight schedule for 30 con-

secutive days (From July 22 to August 20) as the designated testing period. According

to our analysis, we find that the airline had a significant change in flight schedule on

August 21, 2008 because flight legs before and after August 20 were considerably dif-

ferent. For consistency, we then use the actual performance of flights before August

20 from ASQP to build the testing set (from July 22 to August 20) and the training

set (from June 22 to July 21). Next, we select flight data of Southwest Airlines among

fifteen airports, and all selected flights operated on a daily basis during this period.

Table 3.2 illustrates the number of flight legs for each day. We find that most flight

routes have two or three flight legs, while the longest route consists of six flight legs.

There are also fluctuations in the number of flight legs and flight routes on different

days. The majority of days involve over 40 routes, indicating a busy flight schedule

with a larger number of flights and destinations.
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Table 3.2: Characteristics of daily schedules

Day Date # of flight legs # of flight routes Day Date # of flight legs # of flight routes

1 July 22 239 105 16 August 6 156 68

2 July 23 225 92 17 August 7 235 98

3 July 24 210 85 18 August 8 115 282

4 July 25 260 100 19 August 9 86 40

5 July 26 27 13 20 August 10 201 87

6 July 27 157 69 21 August 11 206 89

7 July 28 167 71 22 August 12 169 68

8 July 29 268 115 23 August 13 235 99

9 July 30 313 131 24 August 14 338 146

10 July 31 243 99 25 August 15 205 86

11 August 1 304 130 26 August 16 56 26

12 August 2 29 14 27 August 17 187 74

13 August 3 196 82 28 August 18 227 94

14 August 4 329 136 29 August 19 267 108

15 August 5 305 134 30 August 20 253 106

Moreover, in the computational experiment, we discretize the time dimension into a

series of 20-minute time blocks. Additionally, we set the retiming interval [νβ

f ,ν
β

f ] and

[να
f ,ν

α
f ] to be within a interval of ±20 minutes from the original departure time ν

β

f

and arrival time να
f . Thus, a buffer time of up to 40 minutes could be allocated for

each flight route. It is worth noting that the choice of time block duration and the

retiming interval can be adjusted based on the specific operational requirements and

characteristics of the airline industry. For instance, in some cases, a shorter time block

duration of 15 minutes might be preferred to capture more fine-grained scheduling

details.

To model the time-dependent uncertainty in flight primary delays, we analyze the

historical data in the training set by pairing each flight’s primary delay with the cor-

responding time block and airport information. This pairing enables us to establish a

relationship between the primary delays and the specific time and location context in

which they occur. We obtain two sets of delay values: δ
β

k,τ for departure events and

δ α
k,τ for arrival events. These datasets represent the primary delays experienced by
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flights during different time blocks throughout the operational day. Next, we calcu-

late descriptive statistics such as means, variances, and covariance matrices. Based on

the statistics, we model uncertainty sets that define the range of possible values for

primary delays.

3.6.2 Non-time-dependent Benchmark

To evaluate the effectiveness of the proposed time-dependent model (RTDFRM), we

compare our time-dependent schedule (TDS) with the flight schedule obtained by the

traditional leg-based model with a non-time-dependent uncertainty set as well as the

original flight schedule provided by the computer reservations system (CRS). In order

to obtain the non-time-dependent schedule (NTDS), we use the non-time-dependent

uncertainty set Uυ (see Eq. (3.5)) proposed by Yan and Kung [75] and formulate a

robust non-time-dependent flight retiming model according to Equations (3.3a)-(3.3i)

as follows.

(NTDRFRM) min
xβ

f ,x
α
f

max
δ f∈Uυ

∑
f∈F

pυ
f (3.13a)

s.t. gt
( f ′, f ) = xβ

f − xα

f ′ −η
t
( f ′, f ), ∀( f ′, f ) ∈ P (3.13b)

gc
f = xα

f − xβ

f −η
c
f , ∀ f ∈ F (3.13c)

pυ
f ≤ pυ

f ′ +δ f ′ −gt
( f ′, f )−gc +M× Iυ

f ∀( f ′, f ) ∈ P (3.13d)

pυ
f ≤ 0+M× (1− Iυ

f ) ∀ f ∈ F (3.13e)

xβ

f ∈ [ν
β

f ,ν
β

f ],x
α
f ∈ [να

f ,ν
α
f ], pυ

f ,g
c
f ∈ R∗ ∀ f ∈ F (3.13f)

gt
( f ′, f ) ∈ R∗ ∀( f ′, f ) ∈ P (3.13g)

Objective function (3.13a) is similar to the objective function in RTDFRM (Eq. (3.9))

that minimizes the worst-case total propagated delay, where pυ
f denotes the propa-

gated delay passed on by the preceding flight in the traditional leg-based model. Con-

straints (3.13b)-(3.13c) are the buffer constraints. Constraints (3.13d)-(3.13e) are the

linearized constraints that set limits to the propagated delay of each flight. Algorithm 1

is also applied to solve the above non-time-dependent model.
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The uncertainty sets used in RTDFRM and the non-time-dependent model, U2 and

Uυ , are generated based on the same historical data for Southwest Airlines from the

training set, precisely 30 days prior to the designated testing period. Even though

constraints in these two uncertainty sets are different, the parameters in both sets are

derived from the same historical data, thus allowing comparison between the time-

dependent schedule (TDS) and the non-time-dependent schedule (NTDS) on the same

basis.

3.6.3 Experimental Results and Managerial Insights

The iterative cutting-plane Algorithm 1 is applied to solve RTDFRM and non-time-

dependent model separately on the uncertainty set. For each daywithin the designated

testing period, new schedules (TDS & NTDS) are generated and compared to the orig-

inal CRS schedules using the testing set. To conduct the evaluation experiments, we

randomly generate 1000 scenarios. These 1000 scenarios follow a multivariate normal

distribution, and the mean, standard deviation, and covariance are calculated based

on the primary delay data from the testing set. We calculate both the maximum total

propagated delay (representing the worst-case scenario) and the average total propa-

gated delay each day to evaluate and compare the performance of each schedule.

Because the budget of uncertainty controls how the uncertainty set is, different budget

results in different flight schedules. We first conduct the computational experiments on

our time-dependent schedule (TDS) over a range of values of the budget of uncertainty

Γ∈{0.5,1.0,1.5,2.0,2.5,3} and compare TDS to the original CRS schedule. The result

is shown in Figure 3.6. The valuewithin each group in Figure 3.6 represents the average

relative reduction in the total propagated delay of TDS compared to CRS across the

designated testing period, calculated from 30 schedules. It is easy to see that there

exists a significant improvement in TDS over the CRS schedule with respect to the

worst-case and the average performance.
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(a) (b)

Figure 3.6: Relative reduction of TDS over CRS (30-day average)

We also compare the performance of NTDS over the same range of Γ value. The result

is depicted in Figure 3.7. We only see a small improvement in NTDS over the CRS

schedule in the worst case, which is no more than 1.5% total propagated delay reduc-

tion in all groups. In Figure 3.7, we find that there is no strong correlation between

the maximum value of total propagated delay and Γ. When Γ = 1.5, NTDS achieves

the greatest reduction in the total propagated delay on average, and therefore, we set

Γ = 1.5 for further comparison.

(a) (b)

Figure 3.7: Relative reduction of NTDS over CRS (30-day average)

The results of TDS solved with different values of Γ and the comparison with the

original CRS schedule and NTDS are summarized in Table 3.3. Each row describes
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the statistical result of a different type of schedule. Column 2 represents the cumu-

lative maximum total propagated delay across all schedules of the same type during

the designated 30-day testing period. Columns 4-5 illustrate the relative reduction in

propagated delay compared with CRS and NTDS. Similarly, Columns 3, 6 and 7 show

the cumulative average total propagated delay in the 30-day testing period and the

relative reduction over CRS and NTDS, respectively.

From Table 3.3, we find that TDS outperforms NTDS in terms of the maximum and av-

erage total propagated delay. While NTDS improves CRS by 1.5% in theworst-case per-

formance (maximum total propagated delay) and 4.7% on average, TDS clearly makes

much more significant improvement. Solved with different values of Γ, TDS makes

improvement over CRS by no less than 36.6% and improves NTDS by no less 32.7% in

the average performance. In terms of the worst-case performance, TDS improves CRS

by no less than 27.1% and by no less 26.6%. Moreover, from Figure 3.7 and Table 3.3,

we find that the improvement on maximum total propagated delay increases as Γ in-

creases, from 27.1% when Γ = 0.5 to 34.6% when Γ = 3. The reason for this is that

the larger value of Γ, the stronger the ability of RTDFRM possesses when coping with

extreme cases. When Γ = 1.0, TDS achieves the greatest reduction in average total

propagated delay.

Table 3.3: Performance summary on different schedules over the 30-day testing period

Relative reduction
Cumulative total propagated delay (min)

Max. Avg.Schedule

Max. Avg. over CRS over NTDS over CRS over NTDS

CRS 40386.62 28139.43 - - - -

NTDS 39789.28 26818.37 1.5% - 4.7% -

TDS(Γ=0.5) 29205.72 17829.65 27.7% 26.6% 36.6% 33.5%

TDS(Γ=1.0) 28797.98 17516.28 28.7% 27.6% 37.8% 34.7%

TDS(Γ=1.5) 29010.30 18046.28 28.2% 27.1% 35.9% 32.7%

TDS(Γ=2.0) 28501.57 17352.81 29.4% 28.4% 38.3% 35.3%

TDS(Γ=2.5) 26983.91 17424.92 33.2% 32.2% 38.1% 35.0%

Table 3.4 illustrates in detail the comparison among the three schedules (the original

CRS schedule, TDS and NTDS) for the thirty-day testing period. Column 2 lists the

number of flight legs on a particular day. Columns 3-8 show the maximum and the
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average total propagated delay each day. Columns 9-12 show the relative improvement

in percentage for TDS compared with CRS and NTDS.

Our analysis of 30 days of flight data shows that TDS outperforms both CRS and NTDS

in terms of maximum and average total propagated delay. TDS outperforms CRS on

28 days and NTDS on 29 days in terms of maximum propagated delay. In terms of

average total propagated delay, TDS surpasses CRS on all 30 days and NTDS on 29

days. Interestingly, we also find that TDS’s worse performance on Day 5 and Day

12 tends to correspond to days with relatively few flight legs. However, when the

number of flights is greater than 50 per flight route, TDS performs well in reducing

total propagation delay, indicating its effectiveness in high-volume flight scenarios.

Our findings suggest that while it may not be feasible for all flight routes to avoid unfa-

vorable time blocks with severe conditions, using the time-dependent model RTDFRM

can provide a feasible scheduling strategy tomitigate the overall propagated delay. Our

analysis highlights the potential benefits of using TDS in high-volume flight scenarios

and the effectiveness of RTDFRM in reducing total propagation delay.
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Table 3.4: Comparative results among TDS, NTDS and CRS on a daily basis over 30-
day testing period

Day

# of

flight

legs

Total propagated delay (min) Relative gap(%)
Run

Time (s)

# of

Iterations
Original CRS schedule TDS (Γ=1.5) NTDS (Γ=1.0) TDS to CRS TDS to NTDS

Max Avg Max Avg Max Avg Max % Avg % Max % Avg %

1 239 3047 2133 2248 1831 2641 2231 26% 14% 15% 18% 7.1 5

2 225 1951 1066 1412 1153 1986 1658 28% -8% 29% 30% 4.7 5

3 210 3392 2175 1732 1358 2519 2079 49% 38% 31% 35% 12.6 6

4 260 4153 2686 1873 1372 2791 2373 55% 49% 33% 42% 2197.4 14

5 27 655 304 472 230 367 213 28% 24% -29% -8% 0.4 2

6 157 1569 798 1198 911 1765 1466 24% -14% 32% 38% 1 3

7 167 1053 582 784 553 1193 991 25% 5% 34% 44% 1.2 3

8 268 2271 1452 1698 1404 2599 2142 25% 3% 35% 34% 13.6 5

9 313 2180 1397 1911 1568 2219 1919 12% -12% 14% 18% 10.7 5

10 243 2519 1695 1845 1393 2314 1875 27% 18% 20% 26% 3.5 4

11 304 2338 1699 2584 2123 2932 2524 -11% -25% 12% 16% 4.7 4

12 29 373 132 437 249 445 285 -17% -89% 2% 13% 0.3 2

13 196 2528 1595 2180 1699 2502 2132 14% -7% 13% 20% 6 6

14 329 3748 2430 1213 897 2799 2404 68% 63% 57% 63% 3600 20

15 305 2303 1610 1741 1399 2412 2022 24% 13% 28% 31% 16.5 5

16 156 2191 1557 997 700 1878 1568 54% 55% 47% 55% 3600 111

17 235 2524 1680 1412 1089 2199 1829 44% 35% 36% 40% 20.2 7

18 282 2555 1758 1377 989 2845 2400 46% 44% 52% 59% 3600 22

19 86 2016 962 769 536 1039 700 62% 44% 26% 23% 1 3

20 201 2050 1562 1494 1212 1928 1580 27% 22% 22% 23% 1.6 3

21 206 2528 1747 1860 1497 2341 1951 26% 14% 21% 23% 7.2 5

22 169 2115 1273 1685 1156 1889 1446 20% 9% 11% 20% 2.2 3

23 235 2111 1320 2116 1648 2334 1947 0% -25% 9% 15% 7.4 5

24 338 1975 1285 1568 1136 2922 2493 21% 12% 46% 54% 3600 22

25 205 3106 2054 1721 1222 2974 2251 45% 41% 42% 46% 209.5 16

26 56 1668 869 716 469 795 553 57% 46% 10% 15% 0.9 3

27 187 3452 2340 1508 1140 2341 1911 56% 51% 36% 40% 29 7

28 227 2501 1519 1861 1491 2356 1972 26% 2% 21% 24% 5.1 4

29 267 2294 1444 1714 1351 2367 2046 25% 6% 28% 34% 21.5 5

30 253 2218 1412 2010 1622 2453 2054 9% -15% 18% 21% 12.5 5

For further analysis, we randomly select a route on Day 1 from the solution. We ex-

amine a three-leg route from Los Angeles International Airport (LAX) to Harry Reid

International Airport (LAS), as illustrated in Figure 3.8. The upper part of Figure 3.8

includes error bars indicating the means and 95% confidence intervals of the primary

delays within the specific time block, based on the testing set. In the lower part of

the figure, each departure or arrival event is represented by a forward-slashed (/) or

a back-slashed (\) rectangular box. These boxes are further connected with different
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types of horizontal lines to represent all three schedules: TDS, NTDS, and the CRS

schedule. Numbers are added to indicate the allocated buffer time for each respective

connection phase.

Figure 3.8: An example of buffer allocation for a three-leg route from LAX to LAS

The retiming approach, whether NTDS or TDS, effectively modifies the original CRS

schedule in Figure 3.8 by allocating additional buffer time along the flight route. How-

ever, there are significant differences between the two schedules. NTDS does not al-

locate any buffer time during cruise phases, even when there is a high likelihood of

delays in the first departure event at LAX. While NTDS faces difficulties in allocating

adequate cruise buffer, it tends to allocate more buffer time to the turnaround connec-

tion phase between the last two flights, such as a 63-minute turnaround buffer before

the flight leg MSY-LAS. This is because NTDS assumes that primary delays occurring

at different time blocks of a flight event have an equal impact, regardless of their spe-

cific time of occurrence. Therefore, NTDS allocates more slack towards the end of the

route, believing that this additional buffer can accommodate any delay accumulated

during the propagation, irrespective of time-dependent uncertainty in the primary de-

lay. On the other hand, TDS effectively utilizes multiple cruise periods and allocates a

buffer time of 17 minutes during the cruise phase of Leg LAX-PHX and 15minutes dur-

ing the cruise phase of Leg PHX-MSY to promptly mitigate propagated delays along

the flight route.
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In Figure 3.9, we analyze the buffer allocated to each route in the schedule according

to the time-dependent schedule (TDS) and the non-time-dependent schedule (NTDS).

We plot a buffer frequency graph for TDS and NTDS corresponding to the number

of flight legs included in each route. The data in the first and third rows are from

the event-based model (TDS), while the data in the second and third rows are from

the leg-based model (NTDS). Ranging from a two-flight leg route to a seven-flight leg

route, the x-axis in the figure indicates the number of events in the route (including

departure and arrival events), and the y-axis indicates the buffer value preceding each

event.

As seen in Figure 3.9, the buffer assigned under TDS is more evenly distributed com-

pared to the buffer assigned under NTDS. Similar to our previous example in Fig-

ure 3.8, NTDS prefers to assign buffers toward the end of the route. Additionally,

NTDS does not have the ability to distinguish between cruise buffers and turnaround

buffers, whereas the event-based model used to generate TDS can account for the dif-

ference and make reasonable use of both.

In general, the computational experiments confirm that significant improvement can

be obtained by using the time-dependent model RTDFRM that takes time-dependent

uncertainty into account in the flight retiming problem. Important parameter values

in the time-dependent uncertainty set can be conveniently estimated based on the

historical flight on-time performance data. When coupled with an effective iterative

cutting-plane algorithm that is easy to implement, RTDFRM demonstrates a great deal

of potential in tactical flight planning. Lastly, it is important to acknowledge that flight

retiming may lead to increased operational costs for airlines, including potential fees

associated with changes in airport slots. In order to make well-informed decisions

regarding flight retiming strategies, airlines should evaluate the cost implications in-

volved as well.
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Figure 3.9: An example of buffer allocation for a three-leg route from LAX to LAS
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3.7 Summary

This paper examines the flight retiming problem faced by airlines under time-dependent

uncertainty. The objective of the problem is to minimize the worst-case total propa-

gated delay of departures of all flights under a given time-dependent uncertainty set.

We define a general event-based time-dependent uncertainty set and then propose a

flight retiming model based on the uncertainty set. An iterative cutting-plane algo-

rithm is proposed to solve the model, which can generate a solution of good quality

within a reasonable time limit. Our findings demonstrate that the flight schedule gen-

erated by our model exhibits better performance compared to both the original sched-

ule and schedules obtained by traditional leg-basedmodels. The incorporation of time-

dependent uncertainties yields a substantial improvement, benefiting airline planning

operations in the avoidance of congested time periods during flight scheduling. By

strategically allocating buffers within the flight schedule to accommodate delays, the

losses stemming from the propagation of delays throughout the flight network can be

mitigated.

The proposed time-dependent uncertainty set and robust time-dependent model can

provide a good starting point for future research in flight scheduling that considers

propagated delay. First, solution methods other than the proposed iterative cutting-

plane algorithm can be developed to handle more flights or a shorter time block length

for different practical cases accordingly. Second, the robust time-dependentmodelmay

be applied to other scheduling problems in airline operations management, such as the

aircraft routing problem. Third, there is potential to extend and enhance the current

method for discretizing the time dimension to make the model more practical and

efficient. A sub-problem can be formulated and solved to determine the number and

length of time blocks per day. Lastly, given that flight retiming can lead to increased

operational costs for airlines, it is worth studying how airlines canmakewell-informed

decisions about balancing the reduction in delays achieved through flight retiming

strategies with the cost implications involved.



Chapter 4

Aircraft Routing Problem Under

Time-dependent Uncertainty

4.1 Introduction

4.1.1 Aircraft Routing Problem

The aircraft routing problem is a critical planning challenge in airline operations that

involves the assignment of aircraft to routes with the objective of minimizing overall

costs. This problem falls under the category of fleet assignment problems, which are

extensively studied in the field of operations research.

In the real-world, airlines manage a large number of daily flights using diverse fleets

consisting of different types of aircraft. The primary objective of the aircraft routing

problem is to determine the optimal routing for these aircraft, ensuring the coverage

of all scheduled flights while adhering to various operational constraints. Specifically,

the problem aims to identify suitable routes, represented as sequences of flight legs,

for each aircraft type, taking into consideration the following factors:

• Each scheduled flight is covered by exactly one aircraft route

55
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• Aircraft maintenance requirements are satisfied, e.g. inspection every certain

hours at maintenance stations

• Aircraft utilization is maximized to reduce operational costs

• Connections between flight legs are feasible within time windows

Solving the aircraft routing problem effectively enables airlines to maximize their prof-

its by enhancing aircraft utilization, minimizing crew costs, and reducing delays and

cancellations. Typically, this problem is formulated as an integer program and ad-

dressed using column generation techniques, as the number of potential routes in-

creases exponentially with the complexity of the flight network.

Figure 4.1 illustrates an example of a flight network with two routes and a total of

four flights. The first route comprises flights F1 and F2, with the aircraft traveling

from Airport A to Airport B and then from Airport B to Airport C. The second route

consists of flights F3 and F4, where the aircraft flies from Airport D to Airport B and

then from Airport B to Airport A.

Figure 4.1: An example of flight network with two routes and flight exchange for
reduce delay propagation
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Let’s consider a scenario where flight F1 experiences a significant departure delay,

subsequently causing a delay in the following flight, F2. Coincidentally, the airplane

assigned to the other route is also present at airport B before the scheduled takeoff of

flight F2. In such a situation, it becomes feasible to exchange the subsequent tasks of

these two airplanes. Specifically, the initially delayed airplane can perform the task

of flight F4, which was originally scheduled to depart later than its original task, F2.

Meanwhile, the second airplane can take on the task of flight F2. Consequently, the

delay initially occurring in flight F1 is effectively contained, and it no longer propagates

through the flight network to affect subsequent flights. This simple illustration of a

flight network with two routes aptly showcases the possibilities and potential benefits

that arise from flight schedule adjustments and exchanges.

4.1.2 Uncertainty in Airline Operations

In practice, airline operations are faced with various sources of uncertainty, including

weather conditions, airspace congestion, and aircraft breakdowns. These uncertainties

can result in delays, diversions, or cancellations that disrupt tightly scheduled opera-

tions if not properly managed. Even minor delays can have significant ripple effects

along aircraft routes, impacting multiple downstream flights, especially when there is

limited slack time.

The propagation of delays leads to increased operational costs, revenue losses from

cancellations or diversions, and poor on-time performance metrics. In fact, it is es-

timated that propagated delays account for more than 30% of total delays in the U.S.

airline system. This highlights the importance of generating robust schedules that can

withstand uncertainties.

As mentioned in Chapter 1 and Chapter 2, we consider time-dependent delay uncer-

tainties in our approach. Figure 4.2 presents two instances of a flight network, illustrat-

ing scenarios where time-dependent delay uncertainty can impact decision-making in

aircraft routing. The first scenario, depicted in Figure 4.2(a), aligns with the case pre-

sented in Figure 4.1, showing two original routes: F1-F2 and F3-F4.
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In Figure 4.2, the condition of each flight at different time intervals is represented by a

series of rectangles. Four consecutive rectangles below the departure or arrival event

denote the flight’s condition during takeoff or landing. Empty rectangles represent

optimal flight conditions, indicatingminor delays in the scheduled departure or arrival.

Shaded rectangles indicate challenging flight conditions, signifying a high likelihood

of significant delays.

From Figure 4.2(a), we can observe that flight F1 is likely to experience a significant

delay during takeoff, subsequently causing a delay in its arrival at Airport B. In such

cases, an turnaround buffer between flights F1 and F2 may not be sufficient to absorb

the delay, leading to a subsequent delay for flight F2. Additionally, if there is a delay in

flight F2’s takeoff due to occupied runway resources by other airlines, the delay could

further escalate. However, the takeoff conditions for flight F4, belonging to another

route, are better, and the delay has less impact on it. Therefore, after careful evaluation,

the decision-maker chooses to reroute the subsequent flight of F1 to F4, allowing the

aircraft from flight F3 to complete the task of F2, thereby minimizing the overall delay.

Similarly, in Figure 4.2(b), flight F1 is projected to experience a significant delay, which

could affect subsequent flights F2 and F3. Moreover, due to heavy traffic at flight F2’s

destination airport C, a delay in flight F2 could disrupt its normal landing sequence,

leading to a wait and potentially impacting subsequent flight F3.

Flights F4-F5-F6 are expected to maintain their schedules. Additionally, compared to

Airport C, flight F5’s destination, Airport E experiences less congestion. Hence, al-

though with a delay, no additional waiting time (primary delay) is anticipated. Con-

sequently, at transit Airport B, the on-time aircraft from flight F4 is reassigned to con-

duct flights F2 and F3, while the delayed aircraft from flight F1 is scheduled to conduct

flights F5 and F6. This strategy minimizes the total and propagated delays. These

examples underscore the importance of considering time uncertainty in mitigating

propagation delays in aircraft routing problems within extensive flight networks.
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(a) Example of two-leg routes

(b) Example of three-leg routes

Figure 4.2: Examples of flight network and the impact for time-dependent delay un-
certainty

4.1.3 Robust Aircraft Routing Problem

To better handle uncertainties, our approach focuses on the robust aircraft routing

problem. This problem aims to find routes that minimize the worst-case overall prop-

agated delaywhen flight delays fall within a pre-specified uncertainty set. By explicitly
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considering uncertainty during planning, our approach generates more robust and re-

silient schedules. Instead of optimizing schedules based on average-case performance

as in stochastic models, we optimize against the worst possible scenario of delays.

When the primary objective is to maximize profit by increasing aircraft utilization and

reducing crew salaries during ground time, it often results in tightly scheduled routes

that quickly propagate delays across the network. Therefore, it is crucial to implement

proactive planning methods that address such delays and disruptions. Extensive liter-

ature highlights various strategies for mitigating propagated delays through strategic

routing, such as integrated planning [26], dynamic airspace configuration [43], and

schedule recovery [75]. By carefully selecting routing options, airlines can minimize

the impact of delays on subsequent flights, thereby significantly improving total op-

erational efficiency.

However, factors contributing to primary delays, such as weather conditions and air

traffic congestion, exhibit temporal variations. It is essential to consider such time

dependency when designing routing strategies. Traditional approaches that ignore

these temporal dynamics can lead to sub-optimal results. Therefore, a novel and crucial

aspect of the aircraft routing problem is recognizing the time-dependent nature of

primary delays.

In our work, we propose a new formulation of the robust aircraft routing problem and

develop efficient solution methods. Our approach can model the correlation between

flight leg delays in different time-blocks, which previous works have not adequately

addressed. We demonstrate that considering this correlation provides better protection

against propagated delays in practical scenarios.

By addressing the time-dependent nature of primary delays and incorporating the cor-

relation between flight leg delays, our approach offers a more comprehensive and ef-

fective solution to the robust aircraft routing problem.
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4.2 Mathematical Model

In this section, we focus on tackling the robust aircraft routing problem by employing

robust optimization within the context of time-dependent uncertainty. We outline

our mathematical formulation and discuss our approach to modeling and constructing

uncertainty sets for delays of each event.

4.2.1 Robust Aircraft Routing Formulation

The aircraft routing problem can be formally stated as follows: Given a set of periodic

flights, the aircraft routing problem aims to identify a minimum-cost set of routings for

a single fleet type. In our problem, the cost associated with each routing is determined

by the overall propagated delay of the flights included. To ensure efficient and practical

solutions, the problem must satisfy several constraints:

• Flight coverage constraints ensure that each flight is included in exactly one

aircraft routing.

• Fleet count constraints limit the number of aircraft that can be assigned.

• Flight feasible constraints guarantee that each flight satisfies theminimum cruise

duration and minimum turnaround duration requirements.

Table 4.1 provides an overview of the sets, variables, and parameters utilized in our

models. In the context of flight f ∈F, the labelsα and β denote each flight’s arrival and

departure events. For clarity, we use χα
f and χ

β

f to represent the departure and arrival

times, respectively, for each flight leg f . Additionally, flight event e ∈ E is employed

to denote the arrival and departure events of each flight in our study.
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Table 4.1: Notations for aircraft routing problem

Notation Description

T Set of time-blocks in a day, where t ∈ 1, . . . , |T|

F Set of flights, where f ∈ {1, . . . , |F|}

E Set of events, including departure and arrival events for each flight,

where e ∈ {1, . . . , |E|= 2×|F|}

K Set of airports, where k ∈ {1, . . . , |K|}

P Set of paired flights, ( f ′, f ), representing two consecutive flights on a

route where the minimum turnaround time is satisfied

R Set of routes, where r ∈ {1, . . . , |R|}

S Set of primary delay scenarios, where s ∈ {1, . . . , |S|}

A Set of all time-blocks for each airport, for both departure and arrival

events, where a ∈ {1, . . . , |A|= |K|× |T|}

B Set of all possible time-blocks for each flight, including blocks for depar-

ture and arrival events, where b ∈ {1, . . . , |B|= |E|× |T|}

y( f , f ′) Equal to 1 if the flight pair ( f , f ′) is connected

zr Equal to 1 if route r is used in the optimal solution

ub Equal to 1 if the actual start time of the corresponding flight event falls

within the time range of the event-block b

pβ

f , pα
f The propagated delay of the departure and arrival events of flight f

δ Disruption in each event

dβ

f ,d
α
f The actual primary delay of the departure and arrival events of flight f

gt
( f , f ′) The turnaround buffer between the flight pair ( f , f ′)

gc
f The cruise buffer of flight f

χ
β

f ,χ
α
f The scheduled departure or arrival time of flight f

ψr The overall propagated delay of route r

η f ,r Equal to 1 if the flight leg f is in route r

Ro The number of assigned aircraft

[T b,T b] The time range of the event-block b

As flight departure and arrival are distinct events, we represent the propagated delay
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between them separately. Let pβ

f denote the propagated delay cascaded to the depar-

ture event and pα
f represent the propagated delay cascaded to the arrival event. When

the flight routing is determined, given the primary delay δ , we can calculate the prop-

agated delay for each flight’s departure and arrival event. For a root departure event

without any preceding event, the propagated delay pβ

f is 0. When flight pair ( f ′, f ) is

included in the routing, pβ

f is determined by pα

f ′ and the turnaround buffer between

the pair ( f ′, f ). The value of pα
f is determined by the preceding event’s pβ

f and the

cruise buffer of flight f . Thus, the expressions for the propagated delay can be defined

as:

pβ

f (δ ) = max{0, pα

f ′ +δ
α

f ′ −gt
( f ′, f )} (4.1a)

pα
f (δ ) = max{0, pβ

f +δ
β

f −gc
f } (4.1b)

Equation (4.1a) and Equation (4.1b) can also be expressed in terms of event structure.

When given the primary delay for each event, δe, the delay propagated from event e′

to event e is given by:

pe(δ ) = max{0, pe′ +δe′ −g(e′,e)} (4.2)

In our event-based framework, we observe that pβ

f is approximately equivalent to the

propagated delay passed on by the preceding flight in the traditional leg-based frame-

work. Additionally, pα
f captures the propagated delay from the preceding departure

event, which is often overlooked in the traditional leg-based framework.

With the notation mentioned above, given flight event delays δ , we formulate the de-

terministic Aircraft Routing Problem (ARP) as a route-based integer program, aiming

to minimize the overall propagated delay of departure events, which is equivalent to
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the leg-based propagated delay. The ARP is represented as follows:

(ARP) min ∑
r∈R

ψrzr (4.3a)

s.t. ∑
r∈R

zr ≤ Ro (4.3b)

∑
r∈R

η f ,rzr = 1 ∀ f ∈ F (4.3c)

zr ∈ {0,1} ∀r ∈ R (4.3d)

In Objective (4.3a), we aim to select a set of feasible routes that minimize the overall

propagated delay. Constraint (4.3b) enforces the fleet count constraint, while Con-

straints (4.3c) ensure that each flight is assigned to precisely one route.

As Yan and Kung [75] proposed an uncertainty in terms of flight leg primary delay,

we extend this concept to include uncertainty in terms of flight event primary delay.

To improve the robustness of our model against primary delays associated with flight

events within a predefined uncertainty set Ub, we propose the formulation of the Ro-

bust Aircraft Routing Problem (RARP):

(RARP) min
z

max
δ∈Ub

∑
r∈R

ψrzr = ∑
r∈R

∑
f∈Fr

pβ

f (δ )zr (4.4a)

s.t. ∑
r∈R

zr ≤ Ro (4.4b)

∑
r∈R

η f rzr = 1 ∀ f ∈ F (4.4c)

zr ∈ {0,1} ∀r ∈ R (4.4d)

Objective (4.4a) aims to minimize the overall propagated delay while considering the

uncertainty Ub in the flight event primary delays. The detail about the uncertainty set

Ub is introduced in Section 4.2.2.
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4.2.2 Uncertainty Set Ub for Event-block Primary Delay

Building upon the work of Yan and Kung [75], we developed a modified primary delay

uncertainty set that enables us to capture the time-dependent characteristics of delays.

Yan and Kung [75] introduced a leg-based primary delay uncertainty set that utilizes

a polyhedral representation. The uncertainty set utilized in our approach is derived

from the central limit theorem, taking into account the correlation structure among

delays of flight legs.

In our research paper, we propose a comprehensive framework to capture and analyze

the time-dependent uncertainty in the primary delays of different time of flight events.

Compared to the uncertainty set proposed by Yan and Kung [75], which focuses on the

uncertainty in delays at the flight leg level, we have extended the dimensionality of

our uncertainty set by incorporating the time dimension in addition to the existing

flight event dimension. This extension allows us to capture the variations of delays

at different points in time. To achieve this, we discretize the time of day into |T| time

blocks of equal length, enabling a structured representation of time. Building upon

this time discretization, we introduce the concept of an event-block, denoted by b ∈B,

which represents a specific time block for a particular flight event.

The set of possible event-blocks, denoted as B, encompasses all potential time blocks

for the departure and arrival events of all flights. In a given delay scenario, the primary

delay experienced by each flight event in the route is determined by the actual event

time in that scenario. Specifically, the primary delay of an event is equal to the delay

associated with the corresponding event-block in the delay scenario. To model this

relationship, we introduce an indicator variable ub that indicates which event-block

each event belongs to.

Let χe represent the scheduled time of a flight event e, and pe denote the propagated

delay passed on to this event. For each indicator variable ub, where b∈Be corresponds

to the departure event of flight f , we set ub = 1 if the actual start time of the event,

χe + pe, falls within the time range of event-block b, i.e., [T b,T b]. Otherwise, ub is set
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to 0. The mathematical formulations are presented as follows:

ub =

1, if χe + pe ∈ [T b,T b]

0, otherwise
(4.5a)

de = δb ·ub (4.5b)

With the definition of event-blocks established, we introduce the uncertainty set to

describe the primary delay associated with each event-block. Building upon the re-

search conducted by [75], we also consider the correlation between primary delays

of different event-blocks, acknowledging the inter-dependencies present in the sys-

tem. To initiate this process, we leverage historical schedule data obtained from the

Airline Service Quality Performance (ASQP) database. This is done by subtracting the

propagated delay from the total event delay using the algorithm proposed by [43]. Sub-

sequently, we compute the primary delays’ sample means and standard deviations for

each event-block (µb and σb). To quantify the correlation, we construct a sample co-

variance matrix Λ ⪰ 0, where Λ ∈R|B|×|B|. This covariance matrix allows us to model

the relationships and dependencies between different event-blocks. The uncertain set,

defined in Equation (4.6), captures the range of possible values for the primary delays

of event-blocks.

Ub :=


δb ∈ R∗|B||s.t. |(δb −µb)/(σb)| ≤ Γ,∀b ∈ B;∥∥∥Λ

−1/2(δ −µ)
∥∥∥≤

√
|B|×Γ,where

δ = [δ1,δ2, ...δ|B|]
T ,µ = [µ1,µ2, ...µ|B|]

T

 . (4.6)

Here, Γ ∈ [0,+∞) is an exogenous parameter referred to as the budget of uncertainty,

which provides flexibility in controlling the level of uncertainty considered in the anal-

ysis. The first set of constraints in the set imposes box constraints on each primary

delay, limiting the deviation from its historical mean. The second set of constraints

considers the central limit theorem and takes into account the correlation of primary

delays between different event-blocks.

To formulate the uncertainty set as a polyhedral set, we introduce an auxiliary variable
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vb for each event-block b ∈ B. Equation (4.7) represents the equivalent formulation,

where λb corresponds to the ith row of the matrix Λ
−1/2. The constraints in this

formulation ensure that the uncertainty set is bounded within a polyhedral region,

with the auxiliary variables providing away to enforce the correlation structure among

the primary delays.

Ub :=


δb ∈ R∗|B||∃ ∈ R|B|,s.t.

∑
b

vb ≤
√
|B|×Γ;±λb(δ −µ)≤ vb,

∀i ∈ {1, . . . , |B|}; |(δb −µb)/(σb)| ≤ Γ,∀b ∈ B;


. (4.7)

Overall, This uncertainty set, outlined in Equations (4.6) and (4.7), allows us to analyze

and characterize the primary delays of event-blocks while accounting for their time-

dependent nature and correlations between different blocks.

4.3 Optimization Framework

In this section, we present an iterative column-and-row generation framework to solve

the robust aircraft routing problem (RARP) model introduced in Section 4.2.1. Addi-

tionally, we propose a single-scenario matheuristic approach (SSMH) for an effective

and efficient solution.

4.3.1 Iterative Column-and-row Generation Framework

The robust aircraft routing problem, as described in Equations (4.4), poses a challenge

due to the extensive number of possible decision variables involved, which represent

various aircraft routes. Explicitly enumerating all feasible routes is not practical in this

context. To address this issue, branch and price methods are commonly used.

However, applying the conventional dualization approach proposed by Ben-Tal and

Nemirovski [11] becomes challenging in this scenario for two reasons. First, the initial

model lacks a complete set of decision variables, which hinders the application of the
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dualization approach. Second, there are numerous binary indicators used to manage

the time block dimension, further complicating the process.

In response to these challenges, we propose an iterative column-and-row generation

method, inspired by the work of Bertsimas et al. [12] and Yan and Kung [75]. This

approach aims to obtain the robust counterpart (RC) by iteratively generating columns

and rows in the model. By doing so, we can effectively handle the large number of

decision variables and binary indicators involved in the problem, allowing us to find

feasible solutions for the robust aircraft routing problem.

The iterative framework of a row and column generation algorithm is an iterative pro-

cess that combines column generation and cutting-plane generation (row generation)

to efficiently solve the robust aircraft routing problem. Column generation is respon-

sible for generating feasible and useful routes for the relaxed master problem, while

row generation identifies the worst-case primary delay scenario based on the current

best route schedule.

To implement the cutting-plane generation approach, we use the epigraph formulation

of RARP (epi-RARP) with a finite subset of scenarios presented in Equations (4.8a)-

(4.8e). This formulation introduces new route costs with scenario dimensions (s ∈ S),

represented as ψr,s.

(epi-RARP) min
Ω

Ω (4.8a)

s.t. ∑
r

ψr,szr ≤ Ω ∀s ∈ S (4.8b)

∑
r∈R

zr ≤ Ro (4.8c)

∑
r∈R

η f ,rzr = 1 ∀ f ∈ F (4.8d)

zr ∈ {0,1} ∀r ∈ R (4.8e)

The objective function (4.8a) minimizes Ω, which represents the maximum overall

propagated departure delay among all scenarios in the set S. Constraints (4.8c)-(4.8e)

remain the same as Constraints (4.4b)-(4.4d). The constraints (4.8b) are referred to as
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robustifying constraints, as mentioned in Yan and Kung [75], as they protect against

all possible flight primary delays in the uncertainty set.

4.3.1.1 Row Generation — the Separation Problem

For the Robust Aircraft Routing Problem (RARP), as shown in Equation (4.4), once the

optimal decision variables zr are determined, an inner separation problem (ISP) can be

formulated to find the worst-case delay scenario within the pre-specified uncertainty

set Ub. Here, Rz denotes the set of feasible routes with zr = 1.

To formulate the ISP, we introduce the coefficient ce to represent the propagated delay

of each event. Specifically, we set ce = 1 for all departure events and ce = 0 for all

arrival events. As a result, the objective function of the ISP can be expressed as:

max
δ∈Ub

∑
r∈Rz

∑
f∈Fr

pβ

f = ∑
r∈Rz

∑
e∈Er

ce pe (4.9)

The ISP is given by the following equations:

(ISP) max
δ∈Ub

∑
r∈Rz

∑
e∈Er

ce pe (4.10a)

s.t. ∑
b∈Be

ub = 1 ∀e ∈ E (4.10b)

ub =

1, if χe + pe ∈ [T b,T b],e = e(b)

0, otherwise
∀b ∈ B (4.10c)

de = δb ·ub ∀b ∈ B (4.10d)

pe(δ ) = max{0, pe′ +de′ −g(e′,e)} ∀(e′,e) ∈ Pe (4.10e)

de, pe ∈ R∗ ∀e ∈ E (4.10f)

ub ∈ {0,1} ∀b ∈ B (4.10g)

δb ∈ Ub ∀b ∈ B (4.10h)

In the ISP, the objective function (4.10a) maximizes the sum of the propagated depar-

ture delays for all flights when the route schedule is given. Constraints (4.10b) ensures
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that each flight event e is assigned to exactly one event-block b. Constraints (4.10c)

defines the indicator variable ub such that it equals one if the actual start time of event

e, χe + pe, falls within the range of time block b, [T b,T b]. Constraints (4.10d) deter-

mines the primary delay de of event e based on the corresponding event block delay

δb. Constraints (4.10e) calculates the propagated delay pe(δ ) as Constraints (4.2). Con-

straints (4.10f) and (4.10g) define the variable domains for de, pe, ub, and δb, respec-

tively. Constraints (4.10h) force the primary delay of each event-block δb lies in our

uncertainty set Ub.

The piece-wise equations (4.10c) and nonlinear equations (4.10d) can be transformed

into linear form using the following reformulation. In these equations, M1
e and M2

e are

large positive constants serving as upper bounds:

de ≤ δb +M1
e × (1−ub) ∀e ∈ E,∀b ∈ Be (4.11a)

de ≥ δb −M1
e × (1−ub) ∀e ∈ E,∀b ∈ Be (4.11b)

T bub ≤ χe + pe ≤ T b +M2
e (1−ub) ∀e ∈ E,∀b ∈ Be (4.11c)

Constraints (4.11a) and Constraints (4.11b) force de exactly equal to the primary delay

at event-block b when ub equals to 1. Constraints (4.11c) target each departure and

arrival event to each time block after the propagated delay has delayed the start of the

event.

And another nonlinear constraint (4.10e) can be linearized with a big-M reformulation

using auxiliary indicator variables Ie. Given that variables pe are greater than or equal

to 0, the linearized form of Constraints (4.10e) is as follows:

pe′ +de′ −g(e′,e) ≤ M3
e (1− Ie) ∀(e′,e) ∈ Pe

Rz (4.12a)

pe ≤ M3
e Ie ∀e ∈ E (4.12b)

pe ≤ pe′ +de′ −g(e′,e)+M4
(e′,e)Ie ∀r ∈ Rz,∀(e′,e) ∈ Pe

Rz
(4.12c)

pe ≥ pe′ +de′ −g(e′,e)−M3
e Ie ∀(e′,e) ∈ Pe

Rz
(4.12d)

In Constraints (4.12a), when there is a delay propagated from event e′ to event e, the

left-hand side of the inequality enforces Ie = 1. Constraints (4.12b) indicate that when
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there is no delay propagation from event e′ to event e, then the corresponding value

of pe must be 0. And Constraints (4.12c) and Constraints (4.12d) force pe exactly equal

to the delay propagated from event e′ when Ie equals to 0.

To ensure tight and effective bounds for the big-M constants, careful selection for the

value of big-M is required. M1
e is set as the upper bound of the primary delay of each

event, and M3
e is set as the upper bound of the propagated delay of event e in the route

schedule Rz. Additionally, M4
(e′,e) is assigned as the slack time between the event pair

(e′,e), which is predetermined. And M2
e is determined as the sum of the scheduled

time for the event e and the upper bound of the propagated delay of event e, M3
e .

By selecting these big-M constants appropriately, we can improve the accuracy and

effectiveness in modeling the problem.

4.3.1.2 Column Generation — the Pricing Problem

By solving for the ISP, we obtain the worst-case delay scenario for the current route

schedule. This scenario is then added to the scenario set S, introducing a new robusti-

fying constraint in Equation (4.8b). To accommodate this constraint, new routes need

to be generated and added to the current route set R. This is achieved through the use

of column-generation techniques, which allow us to identify and incorporate valuable

routes into the existing set. Notice that column generation does not guarantee an in-

teger solution for the final result. To ensure an exact solution, branch and price, which

combines column generation with branch-and-bound, should also be employed.

In the column generation approach, the dual prices obtained from solving the linear

relaxation of the epi-RARP are utilized to find a new column through the pricing prob-

lem (PP). The PP is a minimization problem, where the objective is to minimize the

reduced cost. A negative reduced cost is essential for a new column to have the poten-

tial to improve the objective value of the epi-RARP. The reduced cost is formulated as

follows:

min∑
s

ψsπ
0
s −∑

f
η f π

2
f −π

1
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Here, π0, π1, and π2 represent the given dual prices corresponding to Equations (4.8b)-

(4.8d). Thus, the pricing problem (PP) can be described by the following equations:

(PP) min ∑
s

ψsπ
0
s −∑

f
η f π

2
f −π

1 (4.13a)

s.t. ∑
f ′∈F1

f

y( f ′, f ) = ∑
f ′′∈F2

f

y( f , f ′′) = η f ∀ f ∈ F (4.13b)

ψs ≥ ∑
e

ce · pe,s ∀s ∈ S (4.13c)

∑
b∈B f

ub = η f ∀ f ∈ F (4.13d)

ub,s =

1, if χe + pe,s ∈ [T b,T b]

0, otherwise
∀b ∈ B,∀s ∈ S (4.13e)

de,s = δb,s ·ub,s ∀b ∈ B,∀s ∈ S (4.13f)

pe,s = max{0, pe′,s +de′,s −g(e′,e)} ∀(e′,e) ∈ Pe,∀s ∈ S (4.13g)

y( f ′, f ) ∈ {0,1} ∀( f ′, f ) ∈ P (4.13h)

de,s, pe,s ∈ R∗ ∀e ∈ E,∀s ∈ S (4.13i)

ub,s ∈ {0,1} ∀b ∈ B,∀s ∈ S (4.13j)

ψs ∈ R∗ ∀s ∈ S (4.13k)

Objective (4.13a) is tominimize the reduced cost. Constraints (4.13b) is the flowbalance

constraints that ensure that the total incoming flow from the first stage is equal to the

total outgoing flow from the second stage, and η f represent if flight leg f are included

in the route to be added. Constraints (4.13c) are robustifying constraints accounting

for the delays in the objective function and finding the worst-case scenario for the

newly generated column from the current scenario set. And Constraints (4.13d)-(4.13g)

extend Constraints (4.10b)-(4.10e) in the inner separation problem (ISP) to incorporate

the scenario dimension.

The linearization approach for Constraints (4.13d)-(4.13f) follows the same procedure

as described in Section 4.3.1.1. However, the linearization of Constraints (4.13g) re-

quires additional considerations to determine the usage of flights and flight pairs. Thus,
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the indicator variables Iβ

f ,s and Iα
f ,s should work in conjunction with binary variables

y( f ′, f ) and η f . These indicator and binary variables indicate whether flight f or flight

pair ( f ′, f ) is included in the newly generated solution, respectively. The linearization

is represented by the following equations:

Iβ

f ,s ≤ y( f ′, f ) ∀( f ′, f ) ∈ P,∀s ∈ S (4.14a)

pα

f ′,s +dα

f ′,s −g f ′, f ≤ M3
f (1− y( f ′, f )+ Iβ

f ,s)) ∀( f ′, f ) ∈ P,∀s ∈ S (4.14b)

pβ

f ,s ≤ M3
f (1− y( f ′, f )+ Iβ

f ,s)) ∀( f ′, f ) ∈ P,∀s ∈ S (4.14c)

pβ

f ,s ≥ pα

f ′,s +dα

f ′,s −g f ′, f −M4
f (2− y( f ′, f )− Iβ

f ,s) ∀( f ′, f ) ∈ P,∀s ∈ S (4.14d)

pβ

f ,s ≤ pα

f ′,s +dα

f ′,s −g f ′, f +M3
f (2− y( f ′, f )− Iβ

f ,s) ∀( f ′, f ) ∈ P,∀s ∈ S (4.14e)

Iα
f ,s ≤ η f ∀ f ∈ F,∀s ∈ S (4.14f)

pβ

f ,s +dβ

f ,s −h f ≤ M3
f (1−η f + Iα

f ,s) ∀ f ∈ F,∀s ∈ S (4.14g)

pα
f ,s ≤ M3

f (1−η f + Iα
f ,s) ∀ f ∈ F,∀s ∈ S (4.14h)

pα
f ,s ≥ pβ

f ,s +dβ

f ,s −h f −M4
f (2−η f − Iα

f ,s) ∀ f ∈ F,∀s ∈ S (4.14i)

pα
f ,s ≤ pβ

f ,s +dβ

f ,s −h f +M3
f (2−η f − Iα

f ,s)) ∀ f ∈ F,∀s ∈ S (4.14j)

Constraints (4.14a) and Constraints (4.14b) ensure that when a flight or a flight pair

is not included in the newly generated route, the corresponding indicator variables

Iβ

f ,s and Iα
f ,s should be set to 0. Moreover, the remaining constraints have the same

structure as Constraints (4.12a)-(4.12d). Therefore, the selection of the big-M values

M3
f and M4

f follows the same approach as M3
e and M4

e .

4.3.2 Matheuristic Algorithms

TThe pricing problem is known to be challenging to solve. Traditional label setting

or label correcting algorithms are commonly used, but they prove ineffective for our

specific problem due to the time-dependent nature of the primary delay. The delay in

the current event can have a counter-intuitive effect on the subsequent event, leading

to a reduction in the overall delay of the entire route. This dynamic relationship makes
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it impossible to establish a dominant condition between different routes until the en-

tire route is determined and fixed. Consequently, a labeling algorithm is not suitable

for our case. To overcome this challenge, we introduce heuristic algorithms based on

mathematical formulations. These heuristics leverage mathematical models and tech-

niques to provide approximate solutions or near-optimal routes within a reasonable

computational time.

4.3.2.1 Single Scenario Pricing Problem

In the pricing problem, determining the overall propagated delay of the route in the

worst-case scenario requires evaluating all the delay scenarios. As the number of sce-

narios in the scenario set increases, the corresponding constraints and variables also

snowball during the iterative process. In addition, Constraint (4.13b) plays a crucial

role as an aggregate constraint, making it challenging to directly decompose the Pric-

ing Problem (PP) for different scenarios.

We develop a two-phase algorithm incorporating decomposition and a checking pro-

cess for finding useful columns. In the first phase, the Pricing Problem (PP) is decom-

posed into multiple sub-problems, each corresponding to a specific scenario. These

sub-problems utilize a novel objective function called the sub-reduced cost RCs(r) =

φs −∑ f η f π2
f −π1. Lemma 4.1 demonstrates that if a route needs to be added in the

original PP, it can be found within one of the sub-problems.

Lemma 4.1. RCs(r) means the sub reduced cost. RC(r) means the actual reduced cost.

For a given route r, if RC(r) < 0, then there exists at least one scenario s ∈ S such that

RCs(r)< 0.

Proof. Let’s consider the assumption: RC(r)< 0 and ∀s ∈ S,RCs(r)≥ 0.

for s ∈ S, RCs(r)≥ 0, we have φs(r)−∑ f π f η f ≥ 0.

Since ∑s πs = 1, we can multiply each RCs(r) by the corresponding coefficient πs, sum

them up, and we get:
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∑s πs(φs(r)−∑ f π f η f )=∑s πsφs(r)−∑s πs(∑ f π f η f )=∑s πsφs(r)−∑ f π f η f =RC(r)≥

0.

However, according to our initial assumption,RC(r)< 0.

These two statements contradict each other, leading us to the conclusion that our as-

sumption is incorrect.

Based on Lemma 4.1, we can establish a termination condition as follows:

Proposition 4.2. If RC∗
s ≥ 0 for each single-scenario sub pricing problem, it implies that

there is no route r with RC(r)< 0.

The condition presented in Proposition 4.2 serves as a reliable optimality criterion for

column generation. It allows for efficient termination of the algorithm, as it signifies

that no further columns need to be generated.

In the second phase, the sub-problems are solved independently, resulting in a set of

routes with the minimal sub-reduced cost. Each route in this set undergoes a examina-

tion, wherewe assesswhether the actual reduced costRC(r)=∑s ψsπ
0
s −∑ f η f π2

f −π1

is less than zero. If a route satisfies this condition, it is considered valuable and added

to the relaxed master problem.

4.3.2.2 Local Search Routes Set Expansion

In addition to the two-phase algorithm described in Section 4.3.2.1, we incorporate

a local search approach (Algorithm 2) to expand further the route set obtained from

the single-scenario sub pricing problems. This local search technique aims to identify

additional routes that can contribute to improving the overall solution.
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Algorithm 2: Single scenario column generation with local search
input : A network with flights F and flight pairs P, a delay scenario set S and

dual price π from RMP

output : Route set Rq to be added in RMP

initialize: Set Route set Rp = /0 and Rq = /0

1 for s ∈ S do

2 Solve single scenario sub pricing problem for each scenario s;

3 if An optimal route r with RCs(r)< 0 is found then

4 Add route r in Rp;

5 end

6 if RC(r)< 0 and r /∈ Rq then

7 Add route r in Rq;

8 end

9 end

10 for ro ∈ Rp do

11 Local search based on route ro using the introduced operators;

12 if A route r with RC(r)< 0 is found and r /∈ Rq then

13 Add route r in Rq;

14 end

15 end

The local search starts with the initial set of routes obtained from the single scenario

pricing problems. It systematically explores neighboring solutions by making incre-

mental modifications to the routes. These modifications can include adding or remov-

ing segments or changing connecting flights. We utilize five main operators in the

local search approach:

1. Head insertion operator This operator inserts a flight at the beginning of a route.

2. Tail insertion operator This operator inserts a flight at the end of a route.

3. Two-to-two replacement operator: This operator replaces a flight pair in a route

with a new flight pair.
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4. Two-to-one replacement operator: This operator replaces two connectivity flights

in a route with a single new flight.

5. One-to-two replacement operator: This operator replaces a single flight in a

route with two connectivity flights.

Figure 4.3 shows the examples of how the five operators work. Each block is a flight

leg with the departure and arrival airport information. Since the length of a route

falls within the range of two to seven flights, three types of replacements are possible.

Additionally, to maintain the uniqueness of columns, duplicate columns are not added.

Given that any column with RC(r)≥ 0 has already been added to the relaxed master

problem (epi-RARP), it is only necessary to ensure that there are no duplicate columns

within the searched column set.

Figure 4.3: Five operators diagram for local search routes set expansion

By incorporating this local search technique into the algorithm, we can effectively

explore the solution space and identify promising routes that contribute to improving

the objective function. This iterative process of route expansion and improvement

strengthens the overall effectiveness and efficiency of the algorithm in finding near-

optimal solutions for the robust aircraft routing problem.
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4.3.3 Overall Algorithms

The overall algorithm, summarized as Algorithm 3, employs an iterative approach to

solve the Robust Aircraft Routing Problem (RARP). The algorithm combines the solu-

tion of the separation and pricing problems to incorporate robustifying constraints and

introduce new columns iteratively. This process continues until the upper bound, ob-

tained from the separation problem, matches the optimal value of the current relaxed

epi-RARP problem. This iterative process with the matheuristic approach strikes a

balance between computational complexity and solution quality, enabling the efficient

solution of the RARP model and the generation of high-quality solutions.

Algorithm 3: Overall algorithms
input : A Network with Flights F and Flight Pairs P, a delay scenario set S

output : The optimal Route Schedule ϒ∗

initialize: Set current route schedule ϒ∗ as the original route schedule in

historical data and set lower bound of objective Ψ to 0

1 repeat

2 Solve the ISP with the current best schedule ϒ∗;

3 Get the worst overall propagated delay, Ψ̂, and the corresponding primary

event delays scenario s;

4 Add primary event delays scenario s to the scenario set S;

5 Solve the epi-RARP using Algorithm 2, obtaining the new optimal route

schedule ϒ∗, and the objective value of the relaxed epi-RARP is Ψ;

6 until Ψ̂ ≤ Ψ;

7 Return Ψ̂ and Schedule ϒ∗;

4.4 Numerical Case Studies Based On Historical De-

lay Data

In this section, we present the results of our numerical experiments, starting with an

introduction to the data set. We then provide details about the experimental setup, in-

cluding the parameters and limitations employed. Next, we compare the performance
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of our algorithm with the advanced solver, explicitly evaluating the solution qual-

ity and computational time. Finally, we assess the effectiveness and efficiency of our

approach in solving the aircraft routing problem by comparing our time-dependent

model to the non-time-dependent model with respect to the worst-case, average and

volatility performance. We extract several important managerial insights based on

examining the experiment results.

4.4.1 Data Source and Experiments Setup

We utilize the Airline Service Quality Performance System (ASQP [31]) as our histor-

ical database, sourced from the U.S. Department of Transportation’s Bureau of Trans-

portation Statistics (BTS). ASQP is a comprehensive database that tracks the on-time

performance of flights operated by major air carriers in the U.S., providing valuable

information on flight delays, cancellations, and overall airline service quality.

Using the ASQP dataset, we employ the method developed by Pyrgiotis [60] to calcu-

late the minimum turnaround time andminimum cruise time. We filter the turnaround

and cruise time data based on Pyrgiotis’s criteria, focusing on connections where

flights utilize buffer time to compensate for delays. By averaging the selected con-

nections’ turnaround and cruise times, we obtain the minimum values for each.

Furthermore, we extract flight route information and total delay data from the ASQP

dataset. Following the approach proposed by Lan et al. [43] for estimating primary

delays, we process the data accordingly. Based on the minimum turnaround time, we

construct a flight pair set P comprising feasible flight pairs that satisfy the minimum

connection constraints.

To calculate the propagated delay between events, we determine the total delay for

each departure and arrival event using the on-time performance data. Subtracting the

connection buffer time between event pairs (e′,e) from the total delay of event e′,

we estimate the cascaded propagated delay to event e. Event pairs can be either the

departure and arrival events of the same flight leg or the arrival event of a preceding

leg and the departure event of the subsequent leg. Finally, we compute the primary
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delay for each event as the difference between the total delay and the propagated delay,

thereby constructing the uncertainty sets.

To incorporate time-dependent uncertainty in flight primary delays, we analyze histor-

ical data by pairing primary delay values with corresponding time blocks and airport

information. This pairing enables us to establish a correlation between primary delays

and the specific time and location of occurrence. By associating primary delays with

airport-block (combined time-block information with airport) pairs, we can derive de-

lay values for each airport-block a ∈ A in each data sample. Since our uncertainty set

consists of event-block (combined time-block information with flight event) elements

b ∈B, we map the set B toA to obtain delay values for each event-block. The resulting

datasets represent primary delays experienced by flights at different times throughout

the operating day. We then compute statistical metrics such as mean, variance, and

covariance matrices. Leveraging these statistical measures and the covariance matrix,

we construct an uncertainty set that encompasses the possible range of primary delay

values.

We perform all our experiments using actual data from a prominent U.S. airline, Jet

Blue, in 2007. The network characteristics of the fleet types under consideration are

provided in Table (4.2). Network b6-1 and Network b6-2 are two of the most prominent

fleet types of Jet Blue. Note that the selected flights and routes are operated daily in the

experimental period we choose. In accordance with the approach outlined by Yan and

Kung [75], we generated various routings by utilizing ASQP data that incorporates his-

torical flight primary delays for the 31-day period in July 2007, serving as the training

set. Subsequently, we conducted an out-of-sample evaluation of these routings using

the 31-day period in August 2007, which served as the testing set.

Table 4.2: Characteristics of two networks

Network # of flight legs # of routes

b6-1 106 24

b6-2 117 23
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In the experiments, data processing is done using Python 3, and the algorithms are

implemented in Java. All experiments are conducted on a 2.5 GHz Intel Xeon processor

running RedHat Linux operating system(version 8.8). We use IBM ILOG CPLEX 12.9

for solving the MILP models. We limit all our code running within 16-core threads.

Relevant data sets and source code are uploaded to a public Github repository1.

4.4.2 Evaluation for the Matheuristic Algorithms

First, we conducted an evaluation of the effectiveness of our matheuristic row and

column generation algorithm. For the evaluation, we utilized Algorithm 3 to obtain

optimal solutions for the given flight network. The iteration process under Network

b6-1 is presented in Table 4.3, with a budget of uncertainty (Γ) set at 1.0. The first col-

umn indicates the iteration number, while the second column displays the lower bound

of the solution obtained from the linearized relaxed master problem. The current solu-

tion value is used to assess the quality of the solution, obtained through the worst-case

value found by the inner separation problem (ISP). The Time Used column and Rela-

tive Gap column provide information on the running time and the relative gap of our

solution. The relative gap is calculated as the difference between the linear relaxation

objective of the master problem and the current solution objective. As not all routes

are included in the master problem, the relative gap serves as a reference for determin-

ing solution convergence rather than the actual optimality gap. This approach finds

high-quality solutions efficiently without explicitly solving the exponential number of

scenarios. Information about additional iteration processes will be mentioned later. It

is evident that the duration of each iteration is not significantly lengthy, and the 4%

gap observed in the final result can be considered relatively optimal.

It is worth noting that while the lower bound monotonically increases with each it-

eration, the worst-case target values of the solutions found in each iteration are not

constant. Generally, these values decrease as the iterations progress, but there is also

a tendency for them to oscillate. This behavior arises from the fact that the optimal
1https://github.com/ToughJ
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solution found in the current scenario set may encounter scenarios with more signifi-

cant delays within the uncertainty set. Hence, it becomes crucial to employ strategies

such as saving the optimal solution and potentially replacing it with a new solution

during the solution process.

Table 4.3: Iteration process for Network b6-1 with Γ = 1.0

Cut Iteration Linear Obj of RMP Current Sol Value Time Used Relative Gap

1 258 564 550.856 54%

2 335 592 668.785 43%

3 401.8916 459 928.712 12%

4 426.988 590 936.658 28%

5 426.988 476 975.476 10%

6 421.7184 431 1007.74 4%

For comparison purposes, we employed two different approaches to solving the prob-

lem: the iterative column-and-row generation framework using the commercial soft-

ware solver CPLEX and our single-scenario matheuristic algorithm denoted. Both ap-

proaches were subjected to a time limit of 10,000 seconds. If the total running time

exceeded the time limit before an iteration began, the algorithm would terminate. The

solutions obtained and corresponding performance metrics are presented in Table (4.4)

for Network b6-1 and Table (4.5) for Network b6-2, respectively.



4.4. Numerical Case Studies Based On Historical Delay Data 83

Table 4.4: Solution performance for Network b6-1

cplex matheuristic approach

Γ obj time(s)

# of

robusifying

cuts added

obj time(s)

# of

robusifying

cuts added

∆

0.2 23 112 1 23 94 1 0

0.4 66 147 1 66 291 2 0

0.6 144 293 2 143 210 2 -1

0.8 279 5644 5 298 367 5 19

1.0 431 12819 7 431 1008 6 0

1.2 680 12645 3 606 297 17 -74

1.4 1045 13723 3 880 1296 90 -165

1.6 1268 20191 3 1137 626 52 -131

1.8 1764 25810 3 1549 1073 68 -215

2.0 2377 30432 3 1952 10890 303 -425

Table 4.5: Solution performance for Network b6-2

cplex matheuristic approach

Γ obj time(s)

# of

robusifying

cuts added

obj time(s)

# of

robusifying

cuts added

∆

0.2 66 163 1 66 95 1 0

0.4 184 778 1 184 165 1 0

0.6 371 1023 4 365 598 6 -6

0.8 612 11069 6 586 642 10 -26

1.0 896 13633 7 876 968 31 -20

1.2 1155 13429 5 1125 638 48 -30

1.4 1594 10045 5 1522 898 47 -72

1.6 2262 11849 5 2079 1971 101 -183

1.8 2758 14623 4 2682 1667 220 -76

2.0 3567 16299 5 3466 6024 303 -101
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Table (4.4) and Table (4.5) provide a comprehensive comparison of the performance be-

tween the two approaches. The "Γ" column represents different budget values ranging

from 0.2 to 2.0 for the uncertainty set, which directly impacts the resulting flight sched-

ules. Higher values indicate a larger budget of uncertainty, leading to more conserva-

tive uncertainty sets. The "obj" column represents the quality of the solution obtained

by each method, serving as a measure of the solution’s objective value. The "time"

column indicates the duration taken by each method to solve the problem. Columns 5

and 9 represent the number of robustifying cuts added until the algorithms converge.

Finally, the "∆" column quantifies the difference in the final overall propagated delay

between the solutions obtained from the two approaches.

Note that the running time increases as the value of Γ increases for both approaches.

It can be clearly seen that when the value of Γ is greater than 0.4, the approach using

a commercial solver cannot stop within the running time limit, and the final results

also reflect a large gap. Compared to the approach using a commercial solver, our

matheuristic algorithm dramatically reduces the running time and generates more ro-

bustifying cuts. Except when Γ = 2.0, the running time of our approach in all the ten

groups of test for both networks is beyond 3 hours.

We observe that as the value of Γ increases, the running time of the approach using

a commercial solver gradually increases. Similarly, the running time of our algorithm

shows an increasing trend, although not strictly monotonic. Furthermore, the objec-

tive values for both approaches vary depending on the value of Γ. Generally, higher

values of Γ lead to higher objective values for both methods. This can be attributed

to the fact that a more conservative estimate of uncertainty results in a more signifi-

cant disruption described in the uncertainty set, leading to a larger overall propagated

delay. Also, a more conservative estimate of uncertainty means more different delay

scenarios are considered, which also increases the size of the solution space, leading

to a longer running time.

In the first two sets of tests conducted on both networks, both methods achieved the

same target values, and the solver reported a gap of 0, indicating that the obtained

solutions were optimal. This demonstrates that our algorithm can find the optimal
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solution faster than the approach using a commercial solver when the solution space

is relatively small. Moreover, as the solution space becomes larger, the objective val-

ues obtained by our approach are smaller than those obtained by the approach using a

commercial solver, except for the fourth set of experiments in Network b6-1. This indi-

cates that our algorithm is not onlymore time-efficient but also produces better-quality

solutions than the approach using a commercial solver. Overall, the comparison be-

tween the two sets of results confirms the effectiveness and efficiency of our proposed

algorithm.

4.4.3 Compared with Three Schedules

To verify the importance of considering time-dependent uncertainty, this section com-

pares our time-dependentmodelwith a non-time-dependentmodel. The time-dependent

schedule (TDS) is obtained using Algorithm 2, while the non-time-dependent sched-

ule (NTDS) is obtained using a traditional leg-based model with a non-time-dependent

uncertainty set. The non-time-dependent uncertainty set follows the one proposed by

Yan and Kung [75] and is described as follows:

Uυ :=


δ

υ
f ∈ R|F| | s.t.

∣∣∣(δ υ
f −µ

υ
f )/(σ

υ
f )
∣∣∣≤ Γ,∀ f ∈ F;∥∥∥Λ

υ−1/2
(δ υ −µ

υ)
∥∥∥

1
≤
√
|F|×Γ

 . (4.15)

The time-dependent uncertainty set U1
b (Equation (4.7)) and the non-time-dependent

uncertainty set Uυ (Equation (4.15)) are generated using the same historical data from

Jet Blue Airline (the training set). Although the constraints in these two uncertainty

sets are different, the parameters in both sets are derived from the same historical

data, enabling a fair comparison between the time-dependent schedule (TDS) and the

non-time-dependent schedule (NTDS) on the same basis. Furthermore, both TDS and

NTDS are compared with the computer reservations system (CRS) schedule obtained

from the historical data.
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We evaluate the performance of the three schedules (TDS, NTDS, and the CRS sched-

ule) using the same criteria as previous studies [75]: average overall propagated de-

lay, volatility of overall propagated delay (standard deviation), and worst-case overall

propagated delay (maximum value). The budget of uncertainty, denoted as Γ, plays a

crucial role in determining the flight schedules as it controls the uncertainty set. In

Section 4.4.2, we obtained TDSs for various values of Γ ranging from 0.2 to 2.0 in 0.2

increments. We now assess the performance of these TDSs based on the three eval-

uation criteria using the 30 scenarios in July 2007 from the historical data. Figure 4.4

and 4.5 depicts the relative improvement of TDSs and NTDS over the CRS schedule for

each criterion. Figure 4.4 is for Network b6-1 and Figure 4.5 is for Network b6-2. The

horizontal baseline in each figure represents the relative improvement of NTDS over

the CRS schedule. Previous literature [13] has focused on selecting the budget of un-

certainty based on probabilistic guarantees to ensure robust feasibility of constraints

in the uncertainty set with a certain probability. However, in our case, the uncertainty

in the uncertainty set does not affect the feasibility of the routes but only influences

the overall propagated delay. We can consider combining the three proposed criteria

to choose a relatively better schedule for further analysis.
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(a) Max.

(b) Avg.

(c) SD

Figure 4.4: Relative reduction over the CRS schedule for Network b6-1 (July 2007)
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(a) Max.

(b) Avg.

(c) SD

Figure 4.5: Relative reduction over the CRS schedule for Network b6-2 (July 2007)
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In Figure 4.4, it is observed that when Γ exceeds 0.4, TDS consistently outperforms

NTDS across all three evaluation criteria for Network b6-1. Moreover, a clear upward

trend is evident before Γ falls below 1.2, suggesting that as the conservative degree

of the uncertainty set increases, it leads to improved optimization by reducing delay

uncertainty. However, once Γ surpasses 1.2, the performance results fluctuate, and at

Γ = 2.0, a slight downward trend is observed.

Figure 4.5 also illustrates the superiority of TDS over NTDS in terms of maximum

overall propagated delay in the majority of the results for Network b6-2. Notably,

at Γ = 1.8, TDS demonstrates better performance across all three criteria, offering

valuable guidance for selecting an appropriate value of Γ. Additionally, in Figure 4.5,

a discernible trend is observed in the Max overall propagated delay criteria, showing

improvement with increasing values of Gamma.

Furthermore, Table 4.6 provides summary statistics for the propagated delay perfor-

mance criteria based on the training set (July 2007). The table presents the performance

of the CRS schedule, NTDS, and TDS for various Γ values. Columns 3-8 correspond

to Network b6-1, while columns 9-14 correspond to Network b6-2. The table also

includes the difference gap between TDS and NTDS, indicating the improvement in

overall propagated delay performance for each criterion.

Analyzing the results for network b6-1 in the July 2007 evaluation, selecting TDS with

Γ = 1.8 leads to a significant reduction in the overall maximum propagation delay

from 5535.4 minutes to 2079.4 minutes. This improvement corresponds to an average

propagation delay reduction of 32.6minutes per flight, considering a total of 106 flights.

Moreover, the maximum propagation delay of TDS with Γ= 1.8 is approximately 1000

minutes better than that of NTDS.

On the other hand, for network b6-2, the improvement is somewhat less pronounced.

TDS with Γ = 1.8 still outperforms the CRS schedule by 738.5 minutes in terms of

maximum propagation delay and is approximately 9% better than NTDS.
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Table 4.6: Comparison performance on the three criteria of different schedules (July
2007)

Schedule
Network b6-1 Network b6-2

Max. diff. % Avg. diff. % SD diff. % Max. diff. % Avg. diff. % SD diff. %

CRS 5535.4 - 548.2 - 1036.6 - 4751.4 - 429.3 - 874.1 -

NTDS 3184.8 - 271.4 - 579.2 - 4391.1 - 371.4 - 802.4 -

TDS

0.2 3983.8 -25% 328.4 -21% 729.4 -26% 4437.6 -1% 368.2 1% 811.7 -1%

0.4 3582.1 -12% 298.7 -10% 667.7 -15% 4352.1 1% 380.5 -2% 803.0 0%

0.6 3184.8 0% 271.4 0% 594.6 -3% 4385.7 0% 394.4 -6% 800.0 0%

0.8 3113.5 2% 252.2 7% 573.4 1% 4241.5 3% 375.0 -1% 782.5 2%

1.0 2665.2 16% 242.0 11% 498.4 14% 4234.0 4% 385.4 -4% 769.8 4%

1.2 2554.6 20% 240.0 12% 470.0 19% 4362.3 1% 407.8 -10% 796.0 1%

1.4 2736.5 14% 254.6 6% 504.2 13% 4314.0 2% 401.1 -8% 792.4 1%

1.6 2266.9 29% 237.5 13% 426.9 26% 4087.5 7% 367.7 1% 752.1 6%

1.8 2079.4 35% 237.6 12% 414.6 28% 4012.9 9% 394.5 -6% 752.8 6%

2.0 2404.3 25% 244.4 10% 460.5 20% 4380.9 0% 391.5 -5% 787.3 2%

When evaluating the optimal schedules derived from the robust model based on the

training data against the testing data (August 2007), the corresponding results are pre-

sented in Table 4.7. TDS with Γ = 1.8 is selected as the representative.

Table 4.7: Evaluation of the three schedules

Schedule
Network b6-1 Network b6-2

Max. diff. % Avg. diff. % SD diff. % Max. diff. % Avg. diff. % SD diff. %

CRS 2484.3 - 395.1 - 558.6 - 2066.1 - 323.1 - 504.0 -

NTDS 838.8 - 159.6 - 205.1 - 2162.1 - 270.3 - 411.2 -

TDS 585.2 30% 137.2 14% 167.7 18% 1469.3 32% 249.1 8% 370.6 10%

Furthermore, Table 4.8 presents the ten types of TDS based on various budget of un-

certainty scenarios. Notably, a substantial reduction in propagated delay is observed

across all three schedules when the best budget (Γ = 1.8) is employed. This finding

demonstrates the promising performance of the chosen budget during the evaluation

of the training data, suggesting its adequacy for the testing data.

Upon analysis, it is observed that when the budget of uncertainty is small, the perfor-

mance of TDS in the test data is relatively poor, particularly for network b6-1, where

TDS underperforms compared to NTDS. However, for network b6-1, TDS consistently
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outperforms NTDS in extreme dimensions when the budget of uncertainty exceeds

0.8. Notably, having more than two-thirds of the sample TDS in both the mean and

deviation dimensions proves to be advantageous.

For network b6-2, TDS exhibits superior performance in extreme dimensions across

all tests, surpassing NTDS in both mean and deviation dimensions in the majority of

cases. Overall, in the test data, TDS outperforms NTDS. It is worth emphasizing that

selecting a reasonable budget of uncertainty is crucial for achieving improved results.

Table 4.8: Comparison performance on the three criteria of different schedules (Au-
gust 2007)

Schedule
Network b6-1 Network b6-2

Max. diff. % Avg. diff. % SD diff. % Max. diff. % Avg. diff. % SD diff. %

CRS 2484.3 - 395.1 - 558.6 - 2066.1 - 323.1 - 504.0 -

NTDS 838.8 - 159.6 - 205.1 - 2162.1 - 270.3 - 411.2 -

TDS

0.2 1248.5 -49% 207.4 -30% 296.6 -45% 2096.8 3% 255.1 6% 416.9 -1%

0.4 982.3 -17% 198.0 -24% 284.5 -39% 1631.0 25% 231.1 15% 352.7 14%

0.6 948.1 -13% 154.9 3% 220.9 -8% 1829.8 15% 242.5 10% 377.5 8%

0.8 869.4 -4% 151.1 5% 214.6 -5% 2107.8 3% 267.1 1% 422.4 -3%

1.0 635.6 24% 153.4 4% 197.3 4% 1812.6 16% 256.2 5% 426.4 -4%

1.2 823.0 2% 161.9 -1% 207.2 -1% 2059.0 5% 283.8 -5% 434.2 -6%

1.4 838.8 0% 174.9 -10% 229.7 -12% 1904.2 12% 296.4 -10% 419.4 -2%

1.6 743.2 11% 159.6 0% 189.7 8% 1889.8 13% 298.4 -10% 451.3 -10%

1.8 585.2 30% 137.2 14% 167.7 18% 1469.3 32% 249.1 8% 370.6 10%

2.0 828.6 1% 149.3 6% 204.0 1% 1835.9 15% 285.5 -6% 422.4 -3%

These results clearly demonstrate a significant improvement in all three criteria for

both Network b6-1 and Network b6-2 when comparing NTDS and TDS to the CRS

schedule. This improvement indicates that the robust model, which adjusts the flight

routes in relation to the original plan, effectively reduces delays in the flight network

transmission. Furthermore, the models that take into account time-dependent raw

delays, such as NTDS and TDS, outperform the CRS schedule in terms of results. This

highlights the importance of considering the uncertainty of time-dependent original

delays when optimizing flight schedules.

Our findings suggest that while it may not be feasible for all flight routes to avoid

unfavorable time blocks with severe conditions, using the time-dependent model can
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provide a feasible scheduling strategy to mitigate the overall propagated delay. Over-

all, the numerical experiments conducted in this study provide empirical evidence sup-

porting the superiority of our algorithm in terms of solution quality and computational

efficiency. These findings contribute to a better understanding of the practical impli-

cations and benefits of incorporating time-dependent uncertainty in aircraft routing

optimization.

4.5 Case Studies Based on Simulated Delay Data

Following Yan and Kung [75]’s work, to provide more insights into the relative perfor-

mance of time-dependent schedules (TDS) over non-time-dependent schedules (NTDS),

we conduct additional computational experiments where primary flight delay data are

generated from simulated probability distributions rather than historical data.

According to Tu et al. [69] and Yan and Kung [75], primary flight leg delays are better

characterized as a composite of multiple distributions with parameters that may vary

over time rather than correspond to a single distribution. Thus, we conduct case stud-

ies using simulated delay data to account for distribution ambiguity in data trained

on historical records. We consider three representative probability distributions as in

Yan and Kung [75]: truncated normal, gamma, and log-normal. Additional candidate

distributions are suggested by Tu et al. [69] and Mueller and Chatterji [55] that are

commonly used to model flight delays.

For the training data set, we leverage historical flight delay data from July 2007, as

in Section 4.4.1, to estimate necessary statistics. Unlike previous leg delay data, we

calculate primary delays based on flight blocks since flights are only operated once

daily, preventing direct observation of daily delays across blocks.

To estimate delays for unoperated flight blocks, we utilize overall airport delay in-

formation. Let dβ

τ,t denote the average departure delay for block τ on day t and dβ

f ,t

the actual departure delay for flight f on day t . For unoperated block τ , the expected
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delay is calculated as dβ

f ,τ,t = maxdβ

f ,t +(dβ

τ,t −dτ0,t)
β ,0 where τ0 is the actual depar-

ture block. This allows estimating means, variances, and covariance of block delays

grouped by time of day. Since we focus on the time-varying characteristics of flight

delays, we group flight blocks by time of day and calculate statistics within each group.

When estimating covariance matrices between flight block pairs, the singularity may

arise easily when the number of variables exceeds the sample size. To address this, we

employ a bagging method proposed by Wang et al. [70] to obtain a full-rank Pearson

correlation matrix and, thus, a non-singular covariance matrix. Specifically, we imple-

ment the baggingmethod to obtain a full-rank Pearson correlationmatrix, allowing the

estimation of a non-singular covariance matrix even with many flight block variables

relative to the sample size. This overcomes potential issues in calculating covariance

statistics when focusing on time-dependent delay patterns.

We utilize Spearman correlation coefficient instead of the more commonly used Pear-

son correlation coefficient in our analysis. Spearman’s rho preserves the relative or-

dering of values under nonlinear transformations, making it suitable for generalizing

random variables with different distributions while maintaining the same correlation

structure. This characteristic facilitates the simulation of delay patterns.

To construct the training dataset, we generate 1,000 samples per flight leg. We fix the

Spearman rank correlation coefficient matrix for the simulated data based on the cor-

relation patterns observed during the training period in July 2007, thereby preserving

the temporal correlation structure observed in the historical data.

To demonstrate the robustness of our algorithm, we create simulated testing data fol-

lowing a similar approach to Yan and Kung [75]. We generate three groups with flight

leg delays distributed as truncated normal, gamma, and log-normal distributions.

For each group, we generate 19 testing instances by systematically varying the follow-

ing parameters:

• Mean: While keeping the standard deviation and correlation structure constant

at the training set values, we test means ranging from 0.5 to 2 times the training

mean.
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• Standard Deviation: Holding the mean and correlation constant, we examine

standard deviations ranging from 0.5 to 2 times the training value.

• Correlation Structure: For the correlation structure variation, we keep the other

statistical properties (mean and standard deviation) of the testing set consistent

with the training set. We generate testing data with different correlation coef-

ficient matrices by varying the correlation multiplier α ∈ (−∞,1]. The value of

α controls the deviation from the training set’s correlation structure. A value

of α = 0 indicates no change in the correlation structure. Here are the different

correlation structures and their corresponding α values:

– ln(3/4): Moderate negative correlation

– ln(5/6): Mild negative correlation

– ln(11/12): Slight negative correlation

– 0: No correlation

– ln(1+(e−1)/12): Slight positive correlation

– ln(1+(e−1)/6): Mild positive correlation

– ln(1+(e−1)/4): Moderate positive correlation

We apply our procedure to Networks b6-1 and b6-2 from Section 4.4.1, modeling uncer-

tainty sets based on the training data. Table 4.9 displays the iterative solution process

for Network b6-1 under the log-normal distribution when the uncertainty budget Γ is

set to 1.2. Table 4.10 displays the iteration solution process for Network b6-1 under

the truncated normal distribution when the uncertainty budget Γ is set to 2.0. These

tables present representative examples to illustrate the algorithm solution process.

The first column of Tables 4.9 and 4.10 counts the number of iterations. The second

column displays the linear relaxation objective value of the epigraph form of the mas-

ter problem (epi-RARP). The third column shows the objective value of the current

solution, obtained by solving the inner separation problem to find the worst-case sce-

nario in the uncertainty set. The relative gap is calculated as the difference between the

linear relaxation objective of the master problem and the current solution objective.
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Table 4.9: Iteration process for Network b6-1 under log-normal normal distribution
when the budget of uncertainty Γ = 1.2

Cut

Iteration

Linear Relaxation of

(epi-RARP)

Current Solution

Value

Time Used

(s)

Relative

Gap

1 244 1456 192.224 83%

2 540.6939 1471 286.745 63%

3 600.1108 785 309.924 24%

4 648.9454 1153 338.164 44%

5 647.4919 1004 367.083 36%

6 646.3989 1031 391.219 37%

7 648.9798 747 549.043 13%

8 651.6479 873 552.836 25%

9 650.2994 967 587.291 33%

10 654.2222 747 590.988 12%

Table 4.10: Iteration process for Network b6-1 under truncated normal distribution
when the budget of uncertainty Γ = 2.0

Cut
Iteration

Linear Relaxation of
(epi-RARP)

Current Solution
Value

Time Used
(s)

Relative
Gap

1 1210 7689 192.841 84%
2 1383.515 6609 387.484 79%
3 1954.146 6847 404.734 71%
4 2163.633 5586 453.944 61%
5 2293.348 7276 475.114 68%
6 2408.965 6581 491.637 63%

...
31 2749.295 6051 1521.194 55%
32 2756.769 7382 1573.103 63%
33 2756.769 7753 1646.902 64%
34 2785.13 6160 1694.14 55%
35 2785.839 6505 1758.482 57%
36 2785.847 5542 1814.66 50%

We then evaluate performance on the training set to decide the uncertainty budget

size yielding the best reduction in mean performance overall propagated delay. Tables

4.11-4.16 report the relative performance ratio (RPR) under the three distributions for

both networks across multiple uncertainty budget values. Specifically, for the gamma
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distribution, we select Γ = 1.8 for Network b6-1 and Γ = 0.6 for Network b6-2. For the

log-normal distribution, values of Γ = 1.2 and Γ = 0.6 are chosen for networks b6-1

and b6-2, respectively. Under the truncated normal distribution, Γ = 2.0 is used for

Network b6-1 and Γ = 1.2 for Network b6-2. These uncertainty budgets demonstrated

the best training set performance for each network-distribution combination.

Table 4.11: Relative performance ratio (RPR) under gamma distribution of training
data for Network b6-1

Γ in the

uncertainty set
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

RPR of extreme

value reduction

(%)

-2.0 16.2 24.4 24.2 24.4 6.5 13.6 28.7 27.9 32.3

RPR of mean

reduction (%)
29.7 44.7 46.1 41.5 39.2 36.9 28.1 43.8 44.7 36.6

RPR of SD

reduction (%)
18.7 33.7 36.2 32.0 30.0 23.6 25.3 35.4 31.7 30.1

Table 4.12: Relative performance ratio (RPR) under gamma distribution of training
data for Network b6-2

Γ in the
uncertainty set 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

RPR of extreme
value reduction

(%)
16.1 21.4 18.8 -13.7 -9.9 -12.4 -1.0 0.8 19.5 -10.6

RPR of mean
reduction (%) 15.7 16.7 18.1 16.6 14.3 14.8 14.3 12.7 11.6 10.8

RPR of SD
reduction (%) 14.4 16.7 17.6 11.8 12.7 12.4 15.9 16.5 17.7 11.0
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Table 4.13: Relative performance ratio (RPR) under log-normal distribution of training
data for Network b6-1

Γ in the

uncertainty set
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

RPR of extreme

value reduction

(%)

28.3 28.9 28.7 32.7 30.0 33.7 32.7 26.9 18.6 26.3

RPR of mean

reduction (%)
30.8 26.8 29.8 31.6 30.8 33.9 25.1 29.3 33.1 27.8

RPR of SD

reduction (%)
29.6 27.0 29.6 30.1 27.2 29.0 27.8 27.7 24.5 28.2

Table 4.14: Relative performance ratio (RPR) under log-normal distribution of training
data for Network b6-2

Γ in the

uncertainty set
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

RPR of extreme

value reduction

(%)

15.1 4.2 41.1 37.5 38.9 14.5 11.6 11.6 14.5 14.5

RPR of mean

reduction (%)
44.4 40.6 50.4 47.2 45.5 38.7 38.7 38.7 38.7 38.5

RPR of SD

reduction (%)
30.5 23.8 40.2 37.9 36.8 21.7 21.3 21.2 21.7 21.6
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Table 4.15: Relative performance ratio (RPR) under truncated normal distribution of
training data for Network b6-1

Γ in the

uncertainty set
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

RPR of extreme

value reduction

(%)

24.8 45.2 42.0 48.0 41.5 43.2 42.5 44.9 41.6 44.7

RPR of mean

reduction (%)
44.6 48.2 49.6 54.0 47.3 49.7 54.7 53.2 47.3 54.9

RPR of SD

reduction (%)
29.4 42.5 38.9 47.0 41.9 42.0 47.5 45.3 43.1 46.5

Table 4.16: Relative performance ratio (RPR) under truncated normal distribution of
training data for Network b6-2

Γ in the

uncertainty set
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

RPR of extreme

value reduction

(%)

22.7 12.8 20.7 18.9 16.1 12.4 21.1 24.5 4.8 18.8

RPR of mean

reduction (%)
23.3 23.4 25.2 22.8 17.1 23.5 20.4 22.4 16.9 21.2

RPR of SD

reduction (%)
20.5 17.9 22.5 18.8 19.1 16.7 16.7 22.3 18.9 12.0

To assess the performance of TDS in comparison to NTDS, we calculate the relative

performance ratio (RPR) as 100×(NTDS - TDS)/NTDS for each performance criterion.

The results are presented in Tables 4.17-4.19, where each table corresponds to a specific

testing data delay distribution.
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Across the 114 total testing sets, TDS consistently outperforms NTDS in reducing the

average value and standard deviation for all performance criteria. Moreover, TDS ex-

hibits superior performance in reducing extreme values in 96% of cases (110 out of

114).

By conducting simulations involving thousands of cases, we find that the advantage

of the time-dependent scheme in terms of average and deviation performance is more

stable compared to the results obtained from a one-month test of historical data. This

confirms that solutions incorporating time dependency yield better performance when

faced with uncertainty.

We also find that the RPR reduction of TDS versus NTDS is insensitive to adjustments

in the testing data generation multipliers. However, in some cases, like the log-normal

distribution for network b6-1, extreme value performance decreases up to 27.62% for

a small number of samples. Such large fluctuations in extreme values, which depend

strongly on individual samples, are acceptable given the sample size of thousands.

Table 4.17: Relative performance ratio (RPR) under different mean/SD/correlation
multiplier of testing data following gamma distribution

Multiplier

of mean

Multiplier

of SD

Multiplier of

correlation

RPR of Max.

reduction (%)

RPR of Avg.

reduction (%)

RPR of SD

reduction (%)

Flight network b6-1, Γ = 1.8

0.50 1.00 0.00 39.44 39.94 35.93

0.75 1.00 0.00 28.29 41.25 35.21

1.00 1.00 0.00 46.94 43.38 37.26

1.25 1.00 0.00 48.43 45.49 37.15

1.50 1.00 0.00 25.47 47.52 42.90

1.75 1.00 0.00 48.52 47.55 41.24

2.00 1.00 0.00 51.05 48.52 43.03

1.00 0.50 0.00 42.07 50.06 45.32

1.00 0.75 0.00 29.07 46.07 40.20

1.00 1.25 0.00 52.51 41.34 36.30

1.00 1.50 0.00 47.32 40.63 35.72

Continued on next page
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Table 4.17: Relative performance ratio (RPR) under different mean/SD/correlation
multiplier of testing data following gamma distribution (Continued)

Multiplier

of mean

Multiplier

of SD

Multiplier of

correlation

RPR of Max.

reduction (%)

RPR of Avg.

reduction (%)

RPR of SD

reduction (%)

1.00 1.75 0.00 22.75 40.64 33.34

1.00 2.00 0.00 36.65 39.87 33.06

1.00 1.00 ln(3/4) 52.70 44.63 40.86

1.00 1.00 ln(5/6) 58.33 44.77 42.32

1.00 1.00 ln(11/12) 34.44 43.58 36.71

1.00 1.00 ln(1+(e-1)/12) 40.60 41.18 33.35

1.00 1.00 ln(1+(e-1)/6) 27.88 40.71 31.72

1.00 1.00 ln(1+(e-1)/4) 35.77 40.83 33.19

Flight network b6-2, Γ = 0.6

0.50 1.00 0.00 29.68 12.49 15.93

0.75 1.00 0.00 19.34 12.55 16.68

1.00 1.00 0.00 19.51 11.55 17.67

1.25 1.00 0.00 37.37 11.68 16.60

1.50 1.00 0.00 16.08 12.81 17.10

1.75 1.00 0.00 12.18 13.56 18.30

2.00 1.00 0.00 12.40 13.60 16.54

1.00 0.50 0.00 10.34 5.48 12.63

1.00 0.75 0.00 10.05 10.45 13.88

1.00 1.25 0.00 17.46 11.66 14.18

1.00 1.50 0.00 15.78 13.64 15.87

1.00 1.75 0.00 9.44 12.99 14.34

1.00 2.00 0.00 11.24 13.35 15.17

1.00 1.00 ln(3/4) 17.24 11.50 13.13

1.00 1.00 ln(5/6) 20.14 11.06 14.68

1.00 1.00 ln(11/12) 2.07 11.73 15.75

1.00 1.00 ln(1+(e-1)/12) 17.67 12.04 18.16

1.00 1.00 ln(1+(e-1)/6) 0.01 11.44 12.68

1.00 1.00 ln(1+(e-1)/4) 21.89 13.12 18.32
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Table 4.18: Relative performance ratio (RPR) under different mean/SD/correlation
multiplier of testing data following log-normal distribution

Multiplier

of mean

Multiplier

of SD

Multiplier of

correlation

RPR of Max.

reduction (%)

RPR of Avg.

reduction (%)

RPR of SD

reduction (%)

Flight network b6-1, Γ = 1.2

0.50 1.00 0.00 37.51 38.52 26.47

0.75 1.00 0.00 11.87 39.11 23.60

1.00 1.00 0.00 9.58 38.98 24.03

1.25 1.00 0.00 26.89 38.58 22.11

1.50 1.00 0.00 10.28 39.74 20.17

1.75 1.00 0.00 30.67 40.07 19.94

2.00 1.00 0.00 15.30 40.26 20.44

1.00 0.50 0.00 11.99 36.96 17.22

1.00 0.75 0.00 5.88 38.72 21.58

1.00 1.25 0.00 19.88 37.70 20.43

1.00 1.50 0.00 -27.62 38.23 22.02

1.00 1.75 0.00 12.24 37.96 23.25

1.00 2.00 0.00 -8.90 37.80 22.42

1.00 1.00 ln(3/4) 1.35 40.26 24.44

1.00 1.00 ln(5/6) 19.11 39.40 25.31

1.00 1.00 ln(11/12) -1.38 39.66 22.85

1.00 1.00 ln(1+(e-1)/12) 24.85 37.45 19.72

1.00 1.00 ln(1+(e-1)/6) 22.82 40.18 28.36

1.00 1.00 ln(1+(e-1)/4) 14.48 38.66 21.74

Flight network b6-2, Γ = 0.6

0.50 1.00 0.00 21.73 22.61 24.16

0.75 1.00 0.00 33.69 23.80 27.07

1.00 1.00 0.00 -2.20 22.11 23.53

1.25 1.00 0.00 12.64 22.64 24.56

1.50 1.00 0.00 18.79 22.03 23.08

1.75 1.00 0.00 28.86 22.07 24.80

Continued on next page



102 Chapter 4. Aircraft Routing Problem Under Time-dependent Uncertainty

Table 4.18: Relative performance ratio (RPR) under different mean/SD/correlation
multiplier of testing data following log-normal distribution (Continued)

Multiplier

of mean

Multiplier

of SD

Multiplier of

correlation

RPR of Max.

reduction (%)

RPR of Avg.

reduction (%)

RPR of SD

reduction (%)

2.00 1.00 0.00 16.83 21.75 24.12

1.00 0.50 0.00 15.15 15.90 21.99

1.00 0.75 0.00 29.45 21.45 26.67

1.00 1.25 0.00 26.05 24.06 25.75

1.00 1.50 0.00 27.00 25.05 27.24

1.00 1.75 0.00 15.92 24.30 24.81

1.00 2.00 0.00 36.44 24.84 26.77

1.00 1.00 ln(3/4) 21.78 22.83 23.77

1.00 1.00 ln(5/6) 17.32 22.06 23.00

1.00 1.00 ln(11/12) 18.63 23.14 24.50

1.00 1.00 ln(1+(e-1)/12) 24.79 23.05 25.56

1.00 1.00 ln(1+(e-1)/6) 18.29 22.83 25.05

1.00 1.00 ln(1+(e-1)/4) 19.32 24.13 28.01

Table 4.19: Relative performance ratio (RPR) under different mean/SD/correlation
multiplier of testing data following truncated normal distribution

Multiplier

of mean

Multiplier

of SD

Multiplier of

correlation

RPR of Max.

reduction (%)

RPR of Avg.

reduction (%)

RPR of SD

reduction (%)

Flight network b6-1, Γ = 2.0

0.50 1.00 0.00 44.93 41.91 35.71

0.75 1.00 0.00 42.66 43.19 39.42

1.00 1.00 0.00 47.94 44.23 41.41

1.25 1.00 0.00 46.03 45.38 42.45

1.50 1.00 0.00 41.60 47.32 43.07

1.75 1.00 0.00 41.78 48.07 44.95

2.00 1.00 0.00 41.13 48.97 42.63

Continued on next page
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Table 4.19: Relative performance ratio (RPR) under different mean/SD/correlation
multiplier of testing data following truncated normal distribution (Continued)

Multiplier

of mean

Multiplier

of SD

Multiplier of

correlation

RPR of Max.

reduction (%)

RPR of Avg.

reduction (%)

RPR of SD

reduction (%)

1.00 0.50 0.00 41.97 40.40 40.19

1.00 0.75 0.00 35.35 43.24 41.70

1.00 1.25 0.00 47.72 45.27 41.09

1.00 1.50 0.00 40.20 45.63 42.12

1.00 1.75 0.00 47.69 45.80 40.94

1.00 2.00 0.00 49.22 46.28 40.05

1.00 1.00 ln(3/4) 50.92 44.25 41.41

1.00 1.00 ln(5/6) 34.22 43.66 35.81

1.00 1.00 ln(11/12) 35.34 43.84 38.47

1.00 1.00 ln(1+(e-1)/12) 39.00 43.51 35.62

1.00 1.00 ln(1+(e-1)/6) 40.90 43.09 36.71

1.00 1.00 ln(1+(e-1)/4) 49.22 42.93 39.71

Flight network b6-2, Γ = 1.2

0.50 1.00 0.00 27.04 28.23 23.78

0.75 1.00 0.00 22.85 29.02 23.92

1.00 1.00 0.00 27.40 28.86 23.76

1.25 1.00 0.00 25.08 28.90 22.66

1.50 1.00 0.00 30.95 28.45 24.51

1.75 1.00 0.00 29.52 29.03 25.52

2.00 1.00 0.00 27.22 29.48 25.32

1.00 0.50 0.00 22.69 27.29 20.52

1.00 0.75 0.00 18.30 27.83 21.56

1.00 1.25 0.00 23.25 29.13 25.70

1.00 1.50 0.00 31.95 29.34 24.74

1.00 1.75 0.00 27.52 29.25 25.09

1.00 2.00 0.00 25.12 29.58 24.91

1.00 1.00 ln(3/4) 30.84 28.77 23.82

1.00 1.00 ln(5/6) 20.94 28.89 23.28

1.00 1.00 ln(11/12) 21.27 28.32 22.70

Continued on next page
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Table 4.19: Relative performance ratio (RPR) under different mean/SD/correlation
multiplier of testing data following truncated normal distribution (Continued)

Multiplier

of mean

Multiplier

of SD

Multiplier of

correlation

RPR of Max.

reduction (%)

RPR of Avg.

reduction (%)

RPR of SD

reduction (%)

1.00 1.00 ln(1+(e-1)/12) 24.26 29.02 23.53

1.00 1.00 ln(1+(e-1)/6) 21.63 28.99 24.30

1.00 1.00 ln(1+(e-1)/4) 27.17 28.45 23.77

In summary, the results of our simulation tests, in combination with previous tests us-

ing historical data, confirm that time-dependent modeling approaches can efficiently

develop more robust flight routing solutions. By accounting for temporal variation in

delays, time-dependent solutions enable airlines to mitigate potential delay propaga-

tion effects better. This helps reduce operating costs associated with deviations for

the aviation industry overall. Our findings thus demonstrate the value of consider-

ing time-varying characteristics when scheduling flights to contend with uncertainty

from delays.

4.6 Comparison ofUncertainty Sets and Intra-Airport

Delay Analysis

As mentioned in Section 4.2.2, we model a different uncertainty set Ub compared to

the uncertainty set Ua used in Chapter 3. The elements in Ub are event-blocks b ∈ B,

representing delay for each flight event across all possible time-blocks. In contrast, Ua

comprises airport-blocks a ∈A, capturing delay δk,τ (also, δa) for each airport k during

time-block τ .

Modeling delays using airport-blocks assumes aircraft operating at the same airport

in the same time period experience similar uncertainties related to weather, runway

usage, and other factors. This aggregation simplifies data collection and reduces the



4.6. Comparison of Uncertainty Sets and Intra-Airport Delay Analysis 105

solution space size compared to flight-specific blocks. However, it ignores potential

differences between flight events at the airport during that time. To address this limi-

tation, we adopt the event-block representation in Ub for this chapter. As an example,

underUa, flights 1 and 2 departing from the same airport in the same time-block would

always have identical sampled delays. However, under Ub, these flights may exhibit

distinct delay profiles.

We conduct an analysis using historical data fromASQP, specifically focusing on flight

performance data for all JetBlue aircraft (not only the Network b6-1 and b6-2) in July

and August 2007. The primary delays of each event-block were classified into their

respective airport-block. Subsequently, we calculated the standard deviation within

each airport-block to evaluate the variation in primary delay values across different

event-blocks within the same airport-block.

Columns 3-5 in Table 4.20 present the frequency of event-blocks within a particular

range of standard deviations. Furthermore, Column 1, titled "Unique," indicates the

frequency of time blocks that contain solely one flight leg. In these instances, as there

is only one data point available, it is not possible to calculate a standard deviation. It

is worth noting that more than 40% of airport-blocks comprise solely one flight leg.

Among the remaining airport-blocks, approximately half exhibit standard deviations

of less than 5, confirming the reasonable modeling of uncertainty sets (the uncertainty

set Ua) described in Chapter 3. However, there are still several airport-blocks with

standard deviations exceeding 5, including instances with standard deviations exceed-

ing 100.

Table 4.20: Frequency of event-block standard deviations

Unique
Standard Deviations (min)

Total
SD = 0 0 < SD ≤ 5 SD > 5

Number 328,167 98,282 150,381 158,535 735,365

Ratio 44.6% 13.4% 20.4% 21.6% -
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Figure 4.6 illustrates the frequency plot of standard deviations across different event-

blocks, providing a visual representation of the variability in flight delays within a

single airport-block. When combined with Figure 4.6, it becomes evident that there is

a strong motivation to develop a new uncertainty set (the uncertainty set Ub) capable

of capturing the variability of flight primary delays among different flight legs within

a single airport-block.

Figure 4.6: Variability of flight delays in a single airport-block: frequency plot of stan-
dard deviation across event-blocks for JetBlue Airlines in July and August 2007

We then analyze delaymetrics of scenarios generated usingUb in Sections 4.4.3 and 4.5.

Table 4.21 summarizes delay variability between event-blocks within the same airport-

block for sample networks. Despite having the same airport-block, delays showed

high volatility across event-blocks based on historical or simulated data. For instance,

maximum delays ranged from 44 to 199 minutes, highlighting unpredictability even

within an airport environment.
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Table 4.21: Comparison of delay metrics between event-blocks within the same
airport-block

Network
Data

Source
Distribution

Budget of

Uncertainty

Delay

Max. span Max. SD Avg. SD

b6-1 Historical - 1.8 159.00 5.17 1.53

b6-2 Historical - 1.8 134.00 3.19 1.03

b6-2 Historical - 0.4 44.00 1.58 0.66

b6-2 Simulated
Truncated

Normal
1.8 199.00 8.68 3.07

b6-2 Simulated Log-Normal 2.0 118.00 6.48 1.96

Finally, we conduct additional experiments using Algorithm 3 with uncertainty setUa.

Table 4.22 lists the results, presenting performance comparisons of propagated delay

using uncertainty sets for two flight networks, b6-1 and b6-2. The columns "Max,"

"Avg," and "SD" represent the maximum, average, and standard deviation of the prop-

agated delay performance, respectively. The "Iterations" column indicates the number

of iterations required to obtain the solution, while the "Running Time (s)" column de-

notes the time taken to compute the solution in seconds.

As seen in Table 4.22 and Tables 4.4 and 4.5 in Section 4.4.3, the solution using uncer-

tainty setUa has better runtime performance than using uncertainty setUb, especially

when Γ = 2.0, where the solution time using Ua is greatly improved compared to Ub.

However, the solution times of the two methods are on the same order of magnitude

overall, which indicates the running time of both approaches is efficient using Algo-

rithm 3.
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Table 4.22: Performance comparison of propagated delay using uncertainty setUa for
Networks b6-1 and b6-2

Network Γ
Propagated Delay Performance

Iterations Running Time (s)
Max Avg SD

b6-1

0.2 3185 271 595 1 76.6

0.4 3185 271 595 1 68.5

0.6 3104 268 581 2 272.5

0.8 2713 260 527 3 172.5

1.0 2139 226 411 5 598.5

1.2 2402 245 465 25 820.9

1.4 2813 255 523 55 480.5

1.6 2546 244 481 42 628.1

1.8 2739 234 503 141 1336.0

2.0 3177 258 570 61 1031.8

b6-2

0.2 4743 375 859 1 93.4

0.4 4106 359 758 1 157.3

0.6 4725 390 851 3 241.4

0.8 4630 373 838 12 557.2

1.0 4580 385 834 19 381.8

1.2 5064 410 907 26 297.5

1.4 4124 377 764 39 526.3

1.6 4124 389 764 73 954.7

1.8 4488 406 817 161 1394.2

2.0 4069 421 754 400 3055.3

Tables 4.23 - 4.24 further compare the propagated delay performance for different time-

dependent schedules (TDS) using different uncertainty sets against the CRS schedule

and non-time-dependent schedule (NTDS). We choose the best budget of uncertainty

(Γ) value for each approach in both networks. The tables include the maximum, av-

erage, and standard deviation of propagated delay for each schedule, along with the

percentage difference between the two TDSs.
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In Tables 4.23 and 4.24, the solutions that utilize Ua in both networks demonstrate

inferior performance compared to those using Ub on the training set (July 2007). The

differences in maximum and standard deviation performance for Network b6-1 reach

up to 24.1% and 17.5% respectively. Furthermore,Ua performsworse in all three criteria

on the test set (August 2007). Consequently, by updating the uncertainty set from Ua

toUb, the performance improves as it better captures the actual differences within the

same airport-block.

Table 4.23: Propagated delay performance for different schedules for Network b6-1

The CRS

Schedule
NTDS

TDS with Ua

(Γ = 1.8)

TDS with Ub

(Γ = 1.8)

Diff. between

Two TDSs

July

2007

Max 5535.42 3184.80 2739.39 2079.43 24.1%

Avg 548.24 271.37 234.11 237.59 -1.5%

SD 1036.59 579.20 502.60 414.59 17.5%

August

2007

Max 2484.25 838.78 808.30 585.18 27.6%

Avg 395.15 159.58 138.42 137.17 0.9%

SD 558.56 205.14 201.61 167.67 16.8%

Cut Iterations - - 141 68.00 -

Running Time (s) - - 1036 1073 -37

Table 4.24: Propagated delay performance for different schedules for Network b6-2

The CRS

Schedule
NTDS

TDS with Ua

(Γ = 0.4)

TDS with Ub

(Γ = 1.8)

Diff. between

Two TDSs%

July

2007

Max 4751.43 4380.95 4105.80 4087.50 0.4%

Avg 429.33 391.47 359.33 367.72 -2.3%

SD 874.10 787.34 757.93 752.11 0.8%

August

2007

Max 2066.14 2162.05 1723.49 1469.28 14.7%

Avg 323.10 270.31 249.28 249.07 0.1%

SD 504.02 411.24 371.00 370.58 0.1%

Cut Iterations - - 2 220.00 -

Running Time (s) - - 157 1667 -1510
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In summary, the Ua solution has shorter and more stable running times, but Ub yields

better performance. The choice between uncertainty sets depends on operational

needs and data size. These analyses motivate adopting Ub to capture greater flight-

specific delay variability versus the aggregated airport-block modeling. The event-

block representation shows significantly higher intra-airport variability than assumed

under previous airport-block assumptions.

4.7 Summary

In conclusion, this paper addresses a robust aircraft routing problemunder time-dependent

uncertainty, aiming to minimize the worst-case overall propagated delay of aircraft

routings within a given uncertainty set. To achieve this, we propose an innovative

event-based framework and an iterative row-and-column generation approach com-

plemented by a matheuristic algorithm to enhance solution quality and efficiency. Ex-

perimental results demonstrate the superiority of our model compared to the original

schedule and traditional leg-based models. The obtained flight schedule significantly

improves airline operations management, providing enhanced performance and re-

silience. By considering time-dependent uncertainties and incorporating robustness,

our model elevates reliability and customer satisfaction in flight operations.

In future research, several promising directions can be pursued to build upon the find-

ings of this study. First, the proposed time-dependent uncertainty set and robust

time-dependent model serve as a strong foundation for further exploration in flight

scheduling considering the propagated delay. Extending the application of the ro-

bust time-dependent model to other airline operations management problems, such

as crew scheduling, could yield valuable insights and improvements in overall opera-

tional efficiency. Additionally, enhancing the current method for discretizing the time

dimension to achieve a more practical and efficient model could be an essential area

of focus. Introducing a sub-problem to determine the optimal number and length of

time blocks per day would allow for greater flexibility in capturing variations in flight

schedules. Furthermore, future investigations could explore the model’s adaptability
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to accommodate other sources of uncertainty, such as weather conditions or air traffic

congestion, broadening its applicability in real-world scenarios. Embracing advanced

machine learning or artificial intelligence techniques could also provide innovative so-

lutions to tackle the complexities of scheduling in an evolving aviation landscape. By

pursuing these avenues, researchers can further advance the field of aircraft routing,

enhancing the reliability, resilience, and customer satisfaction of airline operations.



Chapter 5

Conclusions and Future Works

5.1 Conclusions

This thesis addresses airline scheduling problems under time-dependent uncertainty

in flight delays through the application of robust optimization. It focuses on two fun-

damental problems: robust flight retiming and robust aircraft routing.

For flight retiming, we optimally reallocate flight cruise and turnaround buffers to

mitigate potential disruptions, thereby minimizing worst-case delay propagation. A

novel event-based framework is proposed to better model flight operations in phases

and capture time-dependent delay uncertainty. This framework decomposes flights

into four distinct events — departure, cruise, arrival, and turnaround. By associating

delays with specific events and time periods, the impact of time-varying factors is

explicitly incorporated. We define a general event-based time-dependent uncertainty

set and then propose a robust time-dependent model based on the uncertainty set. An

iterative cutting-plane algorithm is developed to solve the model efficiently.

For aircraft routing, building upon the work of [75] and our flight retiming model,

our uncertainty set extends the dimensionality by incorporating the time dimension

in addition to the existing flight event dimension. Leveraging this time-dependent

112
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uncertainty set, we develop a event-block based robust optimization model and de-

sign efficient solution algorithms based on iterative column-and-row generation with

mathematical heuristics.

A significant contribution is the proposal of an event-based framework to model flight

operations in phases, which more accurately captures time-dependent delay uncer-

tainty. This framework breaks down flights into four distinct events—departure, cruise,

arrival, and turnaround. By linking delays with specific events and time periods, the

impact of time-varying factors is explicitly incorporated. Novel time-dependent un-

certainty sets are developed to represent primary delays specific to airports, events,

and time blocks.

This thesis developed robust optimization models to minimize propagated delays for

flight retiming and aircraft routing, respectively. The flight retiming models are solved

using a row-generation framework that iteratively adds cutting planes. The results

directly demonstrate the importance of time-dependent delay modeling compared to

traditional approaches.

To further explore the applicability of considering time-dependent delays, a more com-

plex and comprehensive aircraft routing problem was examined. Due to its increased

complexity, novel mathematical heuristics algorithms were designed to solve this chal-

lenging problem. These algorithms based on this model can obtain good-quality solu-

tions in a short time. Our algorithm achieved significant improvements in both solving

time and solution quality compared to commercial solvers.

This thesis provides data-driven insights on incorporating temporal aspects into air-

line schedule optimization for enhanced robustness. The proposed techniques offer

a robust analytical basis for improved capacity planning, aircraft utilization, and cus-

tomer service. This research has potential extensions to crew scheduling, passenger

disruption management, and integrated airline recovery models.
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5.2 Future Research Directions

In future research, several promising directions can be pursued to build upon the find-

ings of this study.

First, extending the application of the robust time-dependent model to other airline op-

erations management problems, such as crew scheduling, could yield valuable insights

and improvements in operational efficiency. Accounting for uncertainty in flight de-

lays and how that uncertainty evolves over time is essential for robust crew scheduling

decisions that mitigate risks to crews and operations from delay cascades. However,

adding these realistic assumptions to the already complex crew scheduling problem

presents challenges that must be addressed.

Second, one key aspect of themodel that deserves further attention is the discretization

of the time dimension. The current approach of discretizing time into evenly spaced

blocks could be enhanced to produce amore practical and efficientmodel. For example,

the degree of dispersion can be adjusted according to the size of the data collected and

the size of the problem. Specifically, the extra decision work can help us strategically

discrete times.

Introducing an additional sub-problem to determine the optimal number and length of

time blocks on a daily basis has the potential to improve flexibility in capturing flight

schedule variations while balancing modeling granularity with solving complexity.

Uneven discretization may reduce computational difficulty by addressing inconsisten-

cies in delay sensitivity across time periods, and both uniform and non-uniform block

structures should be explored further to determine an optimized formulation for dis-

cretizing the time dimension.

Moreover, integrating advanced machine learning or artificial intelligence techniques

may provide innovative scheduling solutions considering complexity. Designing novel

objective functions capturing retiming costs and benefits or extendingmodels tomulti-

objective formulations with competing metrics are other potential avenues.
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The proposed time-dependent uncertainty set and robust time-dependent model could

serve as a starting point for such research. Additional industries facing dynamic un-

certainties, like maritime and surface transportation, may also adopt time-dependent

planning concepts proposed in this research.

In summary, this thesis makes significant contributions by reformulating traditional

airline optimization problems to capture temporal aspects. The resulting models, solu-

tions, and insights provide a pathway towards more reliable airline scheduling under

uncertainty. By strengthening delay propagation resilience, this work offers invalu-

able guidance for both airlines and transportation researchers. The proposed time-

dependent frameworks represent a significant leap forward for modeling and address-

ing time-varying challenges in complex scheduling domains.
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