

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

HIGH-PERFORMANCE SCHEDULING OF

DEEP LEARNING TASKS IN

COLLABORATIVE EDGE COMPUTING

MINGJIN ZHANG

PhD

The Hong Kong Polytechnic University

2024

The Hong Kong Polytechnic University

Department of Computing

High-performance Scheduling of Deep Learning Tasks in

Collaborative Edge Computing

Mingjin ZHANG

A thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

May 2024

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published

or written, nor material that has been accepted for the award of any

other degree or diploma, except where due acknowledgment has been

made in the text.

Signature:

Name of Student: Mingjin ZHANG

Abstract

In recent years, deep learning (DL) models and algorithms have been extensively

used in various applications. Traditionally, DL tasks, including model training and

inference, are usually performed on centralized cloud servers in data centers due to

their powerful and abundant computing resources. However, the computation on

the cloud usually suffers from high communication costs, long response latency, and

privacy concerns. In this case, edge computing was proposed recently to migrate the

computation and services from the remote cloud to the network edge on edge nodes,

closer to the data sources.

However, performing deep learning model training and inference tasks at the edge

is challenging. While the deep learning models are usually computation-intensive

and resource-greedy, the computation resources on edge nodes are constrained, which

may not be able to burden the training and inference tasks. Besides, the data are

usually on geo-distributed edge nodes, which are from different stakeholders and have

heterogeneous networking and computation capabilities. Furthermore, deep learning

tasks have inner characteristics. There are various model training paradigms. Many

hyper-parameters, such as batch size, learning rate, and aggregation frequency, can

affect the model performance. Also, many AI applications involve a set of dependent

DL models, making it more complex.

To address the above problems, this study aims to schedule the AI model training

and inference tasks among heterogeneous edge devices and cloud servers to reduce

i

latency while preserving accuracy by jointly considering the edge resources and the

characteristics of the deep learning tasks. This thesis makes the following three con-

tributions.

First, design and develop ENTS, an edge-native task scheduling system runtime, to

schedule the deep learning tasks among large-scale, geo-distributed, and heteroge-

neous edge nodes. While existing task scheduling systems for edge computing con-

sider only computation resources, ENTS collaboratively schedules computation and

networking resources while considering both the DL task profile and resource status.

Second, schedule the model training tasks in edge computing to reduce overall train-

ing time. Existing distributed machine learning framework at edge suffers from the

heterogeneous and constrained edge resources. We propose a novel federated learn-

ing framework that adaptively splits and schedules the training tasks among the

heterogeneous edge nodes and the FL server for acceleration without compromising

accuracy.

Third, schedule the inference tasks among edge nodes to achieve low latency and high

system throughput. While existing methods focus on the cloud-edge collaboration,

and seldom consider the collaboration among edge nodes, we develop a collaborative

edge intelligence platform to enable edge nodes to share the data and computation

resources for performing latency-sensitive video analytics tasks.

In summary, this thesis systematically investigates the requirements and solves the

deep learning tasks scheduling problem for achieving high-performance model training

and deployment in edge computing. The proposed framework and solutions address

the challenging issues resulting from constrained and heterogeneous edge resources,

and complexity of DNN model training and inference tasks. We also outline future

directions, including decentralized scheduling framework for edge resources from mul-

tiple stakeholders and general programming models for efficient workload partition of

deep learning tasks.

ii

Publications Arising from the Thesis

1. Mingjin Zhang, Jiannong Cao, Jon Crowcroft, Lei Yang, Yuvraj Sahni, Shan

Jiang, Yinfeng Cao, “EdgeSplit: Resource-aware Task Scheduling for Accelerat-

ing Distributed Model Training in Heterogeneous Edge Computing”, manuscript

submitted to IEEE Transactions on Parallel and Distributed Systems.

2. Mingjin Zhang, Jiannong Cao, Lei Yang, Shan Jiang, “Resource-efficient Paral-

lel Split Learning in Heterogeneous Edge Computing”, in International Confer-

ence on Computing, Networking and Communication (ICNC 2024).

3. Mingin Zhang, Jiannong Cao, Lei Yang, Liang Zhang, Yuvraj Sahni, Shan

Jiang, “ENTS: An Edge Native Task Scheduling System for Collaborative Edge

Computing”, in The Seventh ACM/IEEE Symposium on Edge Computing (SEC)

(2022).

4. Mingin Zhang, Jiannong Cao, Yuvraj Sahni, Qianyi Chen, Shan Jiang, Lei

Yang, “Blockchain-based Collaborative Edge Intelligence for Trustworthy and

Real-time Video Surveillance”, in IEEE Transactions on Industrial Informatics

(2022).

5. Mingin Zhang, Jiannong Cao, Yuvraj Sahni, Qianyi Chen, Shan Jiang, Tao Wu,

“EaaS: A Service-Oriented Edge Computing Framework Towards Distributed

Intelligence”, in IEEE Congress on Intelligent and Service-Oriented Systems

Engineering (2022).

iii

6. Yinfeng Cao, Jiannong Cao, Dongbin Bai, Zhiyuan Hu, Kaile Wang, Mingjin Zhang,

“PolyVerse: An Edge Computing-Empowered Metaverse with Physical-to-Virtual

Projection”, in IEEE International Conference on Intelligent Metaverse Tech-

nologies & Applications (iMETA2023).

7. Xiangchun Chen, Jiannong Cao, Zhixuan Liang, Yuvraj Sahni, Mingjin Zhang,

“Digital Twin-assisted Reinforcement Learning for Dynamic Microservice Of-

floading in Edge Computing”, in The 20th IEEE International Conference on

Mobile Ad-Hoc and Smart Systems (MASS) (2023).

8. Lei Yang, Yanyan Lu, Jiannong Cao, Jiaming Huang, Mingjin Zhang, “E-Tree

Learning: A Novel Decentralized Model Learning Framework for Edge AI”, in

IEEE Internet of Things Journal (2021).

iv

Acknowledgments

Time really flies. It feels like just yesterday when I arrived in Hong Kong in 2019, yet

here I am, five years later, at the end of an enriching and enlightening journey. At this

moment, I am overwhelmed with profound joy and gratitude for the knowledge and

skills I have gained, particularly in the field of edge intelligence. This area of study

aims to enable faster and more secure artificial intelligence closer to the data source,

ultimately achieving ubiquitous intelligence. My journey through this cutting-edge

field has not only been academically fulfilling but has also ignited a deeper passion

for exploring the frontiers of science and technology.

Apart from the joy of getting knowledge, my heart is brimming with gratitude.

First and foremost, I want to thank my supervisor, Professor Jiannong Cao. His

guidance has been instrumental in shaping my understanding of what constitutes

high-quality and impactful research. He has consistently encouraged me to think big

and tackle challenging problems.

Second, I want to thank my mentor Professor Jon Crowcroft at the University of

Cambridge. I am deeply appreciative of his kind guidance and encouragement. My

gratitude also extends to friends there for their daily discussion and companion. They

are Yilei Liang, Guoliang He, Andrew Jeffery, Chris Jensen, Justas Brazauskas, Ro-

man Kolcun, and Vadim Safronov. The six months I spent there were filled with

invaluable experiences. It is the happiest and most comfortable period of my PhD

journey.

v

Third, I extend my heartfelt thanks to my co-authors at IMCL including Dr. Lei

Yang, Dr. Sahni Yuvraj, Dr. Qianyi Chen, Dr. Shan Jiang, Mr. Yinfeng Cao, and

Mr. Xiangchun Chen. Your collaboration and insights have been vital in enriching

my research work. The synergy of working together on complex problems has not only

led to successful outcomes but has also been a source of great learning and enjoyment.

Fourth, thanks to my peers and colleagues in our research group IMCL. They are

Dr. Yuqi Wang, Dr. Wengen Li, Dr. Zhuo Li, Dr. Jia Wang, Dr. Yanni Yang, Dr.

Jiaxing Shen, Dr. Yu Yang, Dr. Ruosong Yang, Dr. Liang Zhang, Dr. Zhixuan Liang,

Dr. Shuaiqi Liu, Dr. Zhiyuan Wen, Mr. Zhiyuan Hu, Ms Esther KU. Your support

and camaraderie have been indispensable. The mutual respect, encouragement, and

intellectual stimulation has been a cornerstone of this wonderful journey.

Last but certainly not least, I express my deepest appreciation to my parents and

family. Your unwavering support, faith, and love have been my strongest pillars. You

have been my constant source of motivation and strength, and this achievement is as

much yours as it is mine.

vi

Table of Contents

Abstract i

Publications Arising from the Thesis iii

Acknowledgments v

List of Figures xi

List of Tables xiv

1 Introduction 1

1.1 Background and Motivations . 1

1.2 Research Objectives and Framework 3

1.3 Thesis Organization . 5

2 Literature Review 7

2.1 Task scheduling in Edge Computing 7

2.2 Model Training at Edge . 9

2.3 Model Inference at Edge . 11

vii

3 Edge-native Task Scheduling System 15

3.1 Overview . 15

3.2 Background and Motivations . 18

3.2.1 Kubernetes Scheduler . 19

3.2.2 A Motivating Example . 20

3.3 System Overview . 22

3.3.1 Design Goals . 22

3.3.2 System Architecture . 23

3.4 System Design . 25

3.4.1 Application Development and Profiling 25

3.4.2 Collaborative Task Scheduling 27

3.4.3 Distributed Task Execution 29

3.5 Collaborative Task Scheduling with Data Streaming Applications . . 31

3.5.1 System Model. 31

3.5.2 Problem Formulation . 32

3.5.3 Proposed Solution . 33

3.5.4 Online Scheduling . 36

3.6 Experimental Results . 40

3.6.1 Experimental Setup . 40

3.6.2 Results and Analysis . 42

3.7 Conclusion . 47

viii

4 Scheduling Model Training Tasks 48

4.1 Overview . 48

4.2 Motivations . 52

4.3 Framework of EdgeSplit . 53

4.3.1 EdgeSplit Framework . 54

4.3.2 Challenges . 57

4.4 Methodology . 58

4.4.1 Determine the Best Partition Points 58

4.4.2 Alleviate Memory Overhead 64

4.5 Experimental Evaluation . 67

4.5.1 Experimental Setup . 67

4.5.2 Results and Analysis . 70

4.6 Conclusion . 77

5 Scheduling Model Inference Tasks 78

5.1 Overview . 78

5.2 Related Work . 82

5.3 System Design . 84

5.3.1 System Model . 84

5.3.2 System Components . 85

5.4 Joint Stream Mapping and Task Scheduling for Pedestrian Re-identification 86

5.4.1 Pedestrian Re-identification Pipeline 87

ix

5.4.2 Motivations of Joint Stream Mapping and Task Scheduling . . 89

5.4.3 Problem Formulation . 91

5.4.4 Optimization Solution . 93

5.5 Implementation and Performance Evaluation 96

5.5.1 System Implementation . 96

5.5.2 Evaluation Metrics and Experimental Settings 98

5.5.3 Influence of Number of Edge Devices 100

5.5.4 Influence of Dynamic Workload 101

5.5.5 Effects of Bandwidth . 103

5.6 Conclusion . 104

6 Conclusion and Future Directions 105

6.1 Conclusion . 105

6.2 Future Research . 106

References 108

x

List of Figures

1.1 System Structure of High-performance Scheduling of Deep Learning

Tasks in Collaborative Edge Computing 4

3.1 Components of Kubernetes System 19

3.2 A Motivating Example of Collaborative Task Scheduling 21

3.3 Architecture of the ENTS System . 23

3.4 Code Snippet of User Application . 26

3.5 Code Snippet of Application Configuration 27

3.6 ENTS Task Scheduling Workflow . 28

3.7 Collaborative Task Scheduling Strategy 29

3.8 Bandwidth Allocation and Customized Routing of Network Manager 30

3.9 Application Graph of Object Attributes Recognition 40

3.10 Test Environment of ENTS . 42

xi

3.11 a) Impact of the number of edge nodes on average throughput with

average bandwidth 1Mbps. b) Impact of the number of edge nodes

on average throughput with average bandwidth 10Mbps. c) Impact

of the number of edge nodes on average waiting time. d) Impact of

the number of submitted jobs on average throughput. e) Impact of

the number of submitted jobs on average waiting time. f) Impact of

average bandwidth on average throughput. 44

4.1 Overview of EdgeSplit. Edge devices train part of the full model with

different depths adapting to local resources and offload the rest of

model training task to the FL server for acceleration. 50

4.2 Federated learning on heterogeneous edge devices suffers from the strag-

gler issue. 52

4.3 Framework of EdgeSplit. It consists of three stages: model and device

profiling, task scheduling optimization, and online split edge training. 54

4.4 Output data size varies across DNN layers. Random model partition

can hardly generate optimal execution latency. 57

4.5 EdgeSplit with SplitPipe mechanism to reduce memory overhead by

pipeling and reusing duplicated layers of partial models. 65

4.6 Different task execution strategy of SplitPipe. Backward-First strat-

egy reduces memory overhead by releasing memory space of cached

intermediate variables. 66

4.7 Hybrid testbed with physical and emulated devices 68

4.8 Convergence Time v.s. Accuracy. EdgeSplit achieves fast convergence

without accuracy loss . 72

4.9 Impact of Number of Edge Devices 73

xii

4.10 Impact of Total Bandwidth . 74

4.11 Impact of number of edge devices on system overhead. 77

5.1 System model of distributed and collaborative edge intelligence system

for video surveillance . 83

5.2 Model pipeline and task offloading of pedestrian re-identification . . . 87

5.3 A motivation example of joint stream mapping and task scheduling:

(a) random camera streams and local execution; (b) scheduling camera

streams and local execution; (c) random camera streams and offloading

ML models; (d) joint scheduling of camera streams and offloading ML

models. 90

5.4 Demo of pedestrian re-identification (with mosaics for anonymization) 97

5.5 Throughput vs. number of devices . 100

5.6 Workload dynamics in real-world deployment 101

5.7 Throughput vs. dynamic workload 102

5.8 Latency vs. dynamic workload . 102

5.9 Throughput vs. bandwidth . 103

5.10 Latency vs. bandwidth . 103

xiii

List of Tables

3.1 Specifications of Physical Devices . 43

4.1 List of notations . 59

4.2 Specifications of heterogeneous physical devices 69

4.3 One-round training time on physical devices (s) 71

4.4 Comparison of per-round training time. Best partition points and ac-

celeration ratio to vanilla FL are given. 71

4.5 Performance of EdgeSplit with different serverpipe mechanisms. Mem-

ory: the active peak memory footprint within the training; Round-

Time: the average round time in the training. 75

5.1 Comparison of the related work of video analytics 80

xiv

Chapter 1

Introduction

This research studies how to enable the high-performance execution of DNN models

and applications in edge computing environment by scheduling and distribute the

computation tasks among geo-distributed and heterogeneous edge nodes and cloud

servers. In this chapter, we first describe the background of deploying DNN models

and applications at the network edge and motivate our research. In Section 1.2,

we introduce the research objective and system structure. Finally, we outline the

organization of this thesis in Section 1.3.

1.1 Background and Motivations

Recent advances in deep learning have driven the development of applications with ad-

vanced analytics services, including computation vision [85] and natural language pro-

cessing [93]. DL tasks, including model training and inference, are usually computation-

extensive and resource-greedy, which are traditionally trained and deployed in the

cloud with the data collected from end devices. Though the cloud-based deep learn-

ing has achieved great success, there are still several drawbacks: 1) long transmission

latency. There is usually a long distance from the end devices to the cloud center,

1

Chapter 1. Introduction

which makes it less feasible to support the time-critical applications, such as VR

Gaming [21], autonomous driving [66]. 2) privacy concerns. Since all the data at

end devices will be sent to the cloud, there may be some security issues during the

transmission and cloud storage. 3) high communication cost. Large amount of data

transmission may lead to high bandwidth cost and network traffic. Thus, edge com-

puting was proposed recently to migrate the computation and services from cloud to

the network edge, where DNN models are trained and deployed locally on the edge

nodes (such as bases stations, edge gateways, roadside units, .etc), closer to data

sources.

Due to its great benefits of privacy protection and agile response speed, deep learning

at edge has become the key enabling technology for various time-critical and mission-

critical applications, e.g., real-time edge video analytics, autonomous driving, and in-

telligent manufacturing. However, deep learning at edge is vastly different from that

of cloud. Servers at cloud are usually with powerful computation abilities. However,

edge nodes are with constraint compute capacity, which may not be able perform the

computing intensive and resource-greedy deep learning tasks solely. Hence, collabora-

tive edge computing becomes a promising solution, where geo-distributed edge nodes

and cloud servers collaborate to share computation resources and data to perform

application tasks.

A fundamental problem is to efficiently distribute the deep learning tasks among col-

laborating geo-distributed edge nodes for meeting applications’ performance require-

ments, such as latency, privacy, and throughput. However, it is nontrivial. First,

computation resources of edge nodes and cloud servers are heterogeneous with differ-

ent capabilities. Besides, different from the cloud server in data centers, which are

connected by stable and high-bandwidth networks, edge nodes are usually connected

with low-bandwidth and intermittent network. The scheduling of deep learning tasks

at edge requires joint consideration and optimization of the computation and net-

working resources. Second, data collected from end devices are centralized stored in

2

1.2. Research Objectives and Framework

the cloud. However, for distributed deep learning at edge, data distributes in various

devices and may belong to different stakeholders. Such differences make it difficult

to efficiently train and deploy machine learning models at edge. Third, deep learning

tasks have inner characteristics. There are various model training paradigms, such

as federated learning, gossip learning, hierarchical federated learning. Many hyper-

parameters, such as batch size, learning rate, and aggregation frequency, can affect

the model performance. Moreover, many AI applications involve a set of dependent

DL models rather than a single model, making it more complex.

In the following, I sometimes use edge devices to refer to edge nodes. Moreover, the

role of edge devices may change in different environments. For example, in smart

wearable scenario, mobile phones act as edge device compared to smart watches,

as watches may offload computation to phones. However, in mobile edge computing

scenario, base station becomes edge devices, as mobile phones can offload computation

to base stations. We will make clear the definition of edge devices in dedicated research

work.

1.2 Research Objectives and Framework

In this thesis, we aims to study high-performance task scheduling framework, algo-

rithms, and methods to efficiently distribute training and inference tasks among edge

nodes and cloud servers, by jointly considering and optimizing the underlying edge

resources and the characteristics of the deep learning tasks. To achieve the research

objective, I designed a task scheduling system structure for collaborative edge com-

puting. Within the system structure, I developed an edge-native task scheduling

system runtime. Above the runtime, I designed resource-aware scheduling algorithms

for AI training and inference tasks, respectively.

The system structure of collaborative scheduling for deep learning tasks is summa-

3

Chapter 1. Introduction

Video Surveillance

Edge Infrastructure

Edge AI

System

Applications Large Language Model …

Cloud Server
(Networking, Computing, Data)

Edge Device
(Networking, Computing, Data)

Edge Device
(Networking, Computing, Data)

Model Partition Node Selection

Model Training

Aggregation

Frequency

Model Inference

Single-point

…

Data Computing Networking

Multi-points

Model Partition

Collaborative Resource Management and Task Scheduling

Task Task
1

2

3

Edge-native

scheduling

runtime

AI training task

scheduling

AI inference task scheduling

Figure 1.1: System Structure of High-performance Scheduling of Deep Learning Tasks in Collabo-

rative Edge Computing

rized and illustrated in Fig. 4.3. There are three layers from bottom to top. The

first layer is the edge infrastructure layer, where there are multiple edge nodes with

localized data interconnected with each other via particular networks. In mobile edge

computing, edge devices are MEC servers deployed behind base stations, and they are

interconnected by the cellular back-haul networks. In industrial IoTs, the edge devices

could be smart routers or switches with build-in high performance CPU/GPU cores.

The edge devices are interconnected by wireless mesh network. The middle layer is

edge AI system layer, which we are more focused on. In this layer, we enable edge

devices to share computation resources and collaboratively schedule the training and

inference tasks to reduce the inference latency and accelerate the model training in

heterogeneous and constraint computing and networking resources. More specifically,

we will study collaborative task scheduling system to jointly manage and schedule

the computation and networking resources. Based on the scheduling system, we will

study solutions to schedule model training and inference tasks, respectively. Algo-

rithms and solutions in the middle layer will be used to support various applications

at the top layer, such as real-time video surveillance and industrial IoT.

4

1.3. Thesis Organization

1.3 Thesis Organization

The rest of the thesis is organized as follows:

• In chapter 2, we review the literature related to this thesis, including task

scheduling algorithms and systems, DNN model training, and DNN model in-

ference in edge computing scenario.

• In chapter 3, we design and develop an edge-native task scheduling system

to schedule the containerized deep learning tasks among geo-distributed edge

nodes. Existing task scheduling systems are not dedicated for edge computing

and neglect some edge-native features. They are not designed to optimize the

performance-sensitive edge-native applications and lacks joint scheduling of the

computation and networking resources. We hence develop ENTS by extending

Kubernetes with the unique ability to collaboratively schedule computation and

networking resources, which comprehensively considers both DNN task profile

and resource status. We showcase the superior efficacy of ENTS with a case

study on an edge video analytics applications empowered by DNN models. We

mathematically formulate a joint task allocation and flow scheduling problem

that maximizes the job throughput. We design two novel online scheduling

algorithms to optimally decide the task allocation, bandwidth allocation, and

flow routing policies, for maximizing the average application throughput.

• In chapter 4, we study the DNN model training task scheduling based on the

scheduling framework. We propose EdgeSplit, a novel FL training framework to

accelerate FL on heterogeneous and resource-constraint edge devices. EdgeSplit

enables model training on low-resource edge devices by partitioning the model

between edge devices and the FL server and leverages heterogeneous computa-

tion capabilities to achieve acceleration. To minimize the overall training time,

we formulate a task scheduling problem to jointly decide the model partition

5

Chapter 1. Introduction

point and allocated bandwidth for each edge device. We propose a simple and

efficient alternating algorithm to iteratively optimize the two decision variables

for solving the problem.

• In chapter 5, we study the DNN inference task scheduling at edge. We design

a distributed and collaborative edge intelligence (DCEI) approach for trust-

worthy and real-time video surveillance. In DCEI, geo-distributed edge devices

collaborate by sharing data and computation resources to perform computation-

intensive video analytics tasks. We formulate and solve a joint stream mapping

and task scheduling problem to schedule video streams and machine learning

models among edge devices to reduce task execution time. A pedestrian re-

identification prototype is implemented and deployed based on DCEI with ex-

tensive performance evaluation, indicating the superiority of DCEI in terms

of latency reduction and throughput improvement by leveraging collaboration

among edge devices.

• Chapter 6 concludes this thesis with summarization of the main contents and

our vision of the future research.

6

Chapter 2

Literature Review

In this chapter, we present the literature review on task scheduling and DNN model

training and inference in edge computing scenario.

2.1 Task scheduling in Edge Computing

This section introduces the work of task scheduling in edge computing from two

aspects, i.e., system and algorithm.

Task Scheduling System. Edge nodes has heterogeneous resource and software

environment. To abstract the heterogeneous edge resources and provide a unified

software environment for distributed task execution, virtualization mechanisms, i.e.,

virtual machine and container, has been proposed and studied for years . Container

technology is highly suitable for edge computing, as it provides lightweight resource

virtualization and enables fast application development and flexible service deploy-

ment over heterogeneous edge nodes. There are several industrial systems to schedule

containerized applications, including Swarm [99], Kubernetes [71], and Mesos [35].

Among them, Kubernetes is the most popular and has established its leadership [10].

The default scheduler of Kubernetes (K8S) [71] is an online scheduler that implements

7

Chapter 2. Literature Review

a greedy multi-criteria decision-making (MCDM) algorithm. MCDM scores the avail-

able nodes with pre-defined rules and selects the highest scoring node for scheduling.

K8S is originally designed for cloud computing. Recently, there are some works that

aim to tailor K8S to fit the edge computing environment. K3s [51] aims to simplify

K8S and provide lightweight K8S distribution. KubeEdge [114] and OpenYurt extend

the K8S capability to the edge by enabling the virtual network connection between

edge servers and VMs in the cloud. However, those solutions do not change the

core idea of task scheduling of Kubernetes. They are not application performance

sensitive.

Task Scheduling Algorithm. Scheduling in edge computing has some edge-native

features. First, edge applications have service-level-objectives (SLOs) of the perfor-

mance during execution. Traditionally, SLOs in cloud computing, defines measure

capacity guarantee of applications, e.g., available memory to a provisioned VM or

container. However, in edge computing, edge-native applications usually have high

requirements of the service level objectives, such as latency, throughout, and privacy.

Edge computing is promised to provide low latency and real-time response and ser-

vices. Second, data are distributed. Different from cloud server and cloud storage,

edge devices and data are geo-distributed, whose network connections are limited

and dynamic. The data and edge device locality have great influence to the optimal

scheduling. Third, resources on edge node are limited. Many intelligent edge applica-

tions such as object detection and tracing, video analytics are complex and resource

greedy. When deploying those applications at edge, they must be partitioned and de-

ployed on the geo-distributed edge nodes, which leads to frequent communication and

intermediate data transmission over the low-bandwidth edge network. Hence, task

scheduling algorithms in edge computing needs to jointly consider the coupled data,

networking, and computing resources and make optimized task scheduling strategies

to meet edge application SLOs.

Sundar et al. [100] proposed a heuristic algorithm for scheduling dependent tasks

8

2.2. Model Training at Edge

in a generic cloud computing system by greedily optimizing the scheduling of each

task subject to its time constraint. Wang et al. [108] developed a deep reinforcement

learning-based task offloading scheme, which leverages the off-policy reinforcement

learning algorithm with a sequence-to-sequence neural network to capture the task

dependency of applications. Nevertheless, they fail to consider the orchestration of

the network flows [69], which necessarily results in network congestion and prolonged

task completion time. There are some works [89, 90] optimizing the average task

completion time and jointly considering the task allocation and flow scheduling.

Due to the complexity of making joint task scheduling decisions, deep reinforcement

learning has recently been applied to solve the scheduling problem. Chen et al. [74]

adopted deep Q-Learning to obtain the offloading strategy in an ultradense network.

However, this algorithm has the long-term cost of delay in computation offloading.

To reduce the longterm delay, Chen et al. [13] proposed a double deep Qnetwork

(DQN)-based strategic computation offloading algorithm. Dinh et al. [18] focused

on multi-user multi-edge-node task offloading problems using Q-learning in MEC. To

address the problem of high energy consumption, Huang et al. [39] considered the

system computing performance under either partial or binary offloading policy in the

MEC network and proposed a Deep-Q Network (DQN) based task offloading and

resource allocation algorithm for the MEC.

2.2 Model Training at Edge

A significant problem of edge learning is to train accurate models with the distributed

data on multiple edge devices. Federated learning (FL) is one of the most popular

solutions, which enables collaborative model training among various edge devices

without privacy violation. However, Federated Learning suffers from the straggler

issue. In each training round, the FL server is required to wait for the updated

parameters of all the participants, which may lead to a long time of the model train-

9

Chapter 2. Literature Review

ing. The straggler issue is mainly caused by the following reasons: 1) Heterogeneous

network connection. The status, i.e., bandwidth and distances of the network links

connecting the edge devices and the server are usually versatile. 2) Heterogeneous

computation capacity. The time of local training may be vastly different due to the

computation capacities of the edge devices. Moreover, some edge devices with limited

memory may not have the ability to burden the training tasks due to the complex-

ity and great footprint requirements of the ML models. Recent work in accelerating

model training at edge can be roughly divided into two categories: algorithm level,

and architecture level.

To improve the communication efficiency, previous works usually focus on reducing

the total amount of transmission bits, e.g., communication compression that com-

presses the communication data exchanged between the worker and servers. Sparsi-

fication [111] [53] and quantization [1] [94] are the two mainstream for compressing

communication data. Sparsification [63] [101] is a selection method that only a frac-

tion of the gradient is sent by the workers in each iteration. The top-k dimensions

with the largest absolute value are sent by workers in [63]. Stich et al. propose the

sparsified SGD with memory, a family of sparse schemes with both convergence and

practical performance guarantees. In this approach, a concise convergence anslysis

of SGD with k-sparsification or compression is given. Beyond these methods, Dou-

bleSqueeze [101] further proposes sparsifying both the gradients sent from workere

to the server and the model updates sent from the server to the workers. To reduce

the uplink communication costs, the work in [52] proposed structured and sketched

updates method, and compression techniques were adopted to reduce parameter di-

mension in this work. In [109], gradient selection and adaptive adjustment of learning

rate were used for efficient compression.

Other works also consider accelerating federated learning in practical wireless edge

network. [83] proposed a partial synchronization parallel schema to enable the parallel

model training on the mobile clients in a relay-assisted wireless edge network. They

10

2.3. Model Inference at Edge

aim to optimize the communication efficiency for gradient aggregation and model syn-

chronization among large-scale devices. [86] jointly optimize the batch size selection

and communication resource allocation to accelerate DNN training in wireless feder-

ated edge learning systems. Apart from reducing the size of the transmission, [67] also

adopts momentum gradient descent (MGD) to replace the commonly used stochastic

gradient descent to improve the convergence rate. The author shows that the MGD

can accelerate the convergence rate of the federated model training.

Model splitting is one of the representative architecture-level methods. Splitting

learning [27] partitions the deep neural network into two parts, where the shallow

part is trained on the client and the deep part is trained on the server. Such schema

can leverage the heterogeneous computing capacity of the clients and server to reduce

the model training time. However, the training is performed in a sequential man-

ner. JointDNN [22] exploits the layer granularity of DNN architecture for run-time

partitioning in edge-cloud environment. Recently, [105] integrates splitting learning

and federated learning to support parallel and distributed model training. But they

do not consider how to split the model for faster convergence and they do not con-

sider the network model in practical federated learning system. Though, these works

leverage the model splitting to handle the device heterogeneity for model training ac-

celeration, they did not consider how to split the neural network models with respect

to the heterogeneous computation and communication resources.

2.3 Model Inference at Edge

The objective of model inference at edge is to accelerate the inference with satis-

fied accuracy. Generally speaking, large and complex neural network models always

show good performance than shallow models due to the powerful representation abil-

ity. However, complex neural networks are always resource-greedy and computation-

intensive. It’s challenging to deploy the complex AI models on resource-constraint

11

Chapter 2. Literature Review

edge devices. To tackle the problem, several existing methods are proposed, e.g.,

model compression [16, 30, 36, 37, 42, 84, 95], model partition [50, 59, 132, 134], and

model early exit [58,102,103], to reduce the complexity of the model executed on the

edge devices.

Han et al. [30] learn important weights and connections in the neural network. They

prune those redundant connections to get concise model based on the fact that many

weights are closer to zero. [84] use weight quantization to represent the weights with

only a few bits so that the size of stored weights can be reduced. Different from

the aforementioned model-level work, [95] leverage knowledge-level distillation [36] to

train a small DNN, which imitate a larger and powerful DNN but with less complex

model structure and parameters. Model partition tries to utilize the heterogeneous

computing capacity among edge devices and cloud server to accelerate the model

inference. Generally, it split the model into two parts with the shallow part running

on the edge device and the deep part executing on the cloud. There are generally two

kinds of partition, horizontal partition and vertical partition. The horizontal partition

[50] splits the neural network model in a layer-wise with the output of the former

layers transmitted to the cloud for the execution of the latter layers. The selection

point depends on both the model characteristics and the dynamic factors, such as

computing capacity of the edge device, wireless network conditions. The vertical

partition tries to explore the inference parallelism by distribute the computation tasks

into several parts which can run simultaneously [134]. Model early exit leverage the

trade-off between the model accuracy and the processing delay. Generally, a deeper

model with more layers learns informative feature representations and output results

with higher confidence. However, As DNNs grow larger and deeper, the computation

costs become unaffordable for edge devices to run real-time and energy-sensitive DL

applications. In this case, model early exit inserts some branches at the exit point of

the neural network model. If the confidence at a exit point is higher than a threshold,

the model will not execute the rest part and exit from the inserted branches. Li

12

2.3. Model Inference at Edge

et al. [58] proposed a three-stage end-edge co-inference framework to automatically

and intelligently selects the best partition point and exit point of a DNN model to

maximize the accuracy while satisfying the requirement on the execution latency.

They first train a regression model to predict the performance of different types of

DNN layer and train the branch network in the offline training stage. At the online

optimization stage, a DNN optimizer selects the best partition point and early-exit

point of DNNs to maximize the accuracy while providing performance guarantee

on the end-to-end latency. Finally, at the co-inference stage, the edge server will

execute the layer before the partition point and the rest will run on the mobile device.

Compared to directly offloading DL computations to the cloud, this approach has

lower communication costs and can achieve higher inference accuracy then those of

the pruned or quantized DL models on edge devices.

Though the proposed method has largely reduce the complexity of the AI models,

Few of them consider the run-time dynamics, e.g., the variation of the communication

bandwidth and computation resources of the edge devices. Constraint and dynamic

resources are key characteristics of the edge devices, which affects the run-time perfor-

mance of the model inference a lot. For instance, the fluctuations on communication

bandwidth between edge and cloud may make the workload offloading strategy sub-

optimal, incurring additional inference delay. The changes of data characteristics,

e.g., switching from bright scene to dark scene for an image object detector, will

cause dynamic end-to-end delays for the model early exit method since the inference

path may exit at different branches.

Extending the static model inference acceleration methods, several efforts [23,24,65,

133] proposed dynamic neural networks that allow selective execution to improve DNN

compute efficiency. NestDNN [24] considers multi-tenant DL models running on an

edge device, which leads to dynamic resource competition. With the model pruning

and recovery scheme, it transforms the DL model into a set of descendant models,

in which the descendant model with fewer resource requirements shares its model

13

Chapter 2. Literature Review

parameters with the descendant model requiring more resources, making itself nested

inside the descendent model requiring more resources without taking extra memory

space. In this way, the multi-capacity model provides variable resource-accuracy

trade-off with a compact memory footprint, hence ensuring efficient multi-tenant

DL on the resource-constrain edge device. D2NN [65] optimizes dynamic resource-

accuracy trade-offs, while its complicated network structure incurs significant memory

overhead, making it ill-suited for resource-constrained platforms. Existing approaches

usually requires careful consideration of model architecture and the optimization of a

large set of model parameters, e.g., the model partition point in workload offloading

mechanism and compression level in model compression. Such optimization usually

leads to high computation overhead, which makes them less feasible to the online

manner. To tackle the problem, EdgeML [133] leverage AutoML [25,118] to automate

the decision making in model partition and model early exit for achieving desirable

latency-accuracy-energy trade-off under dynamic run-time conditions. They train

a reinforcement learning model [75] offline with the profiled branch insertion and

model partition points, as well as the response time and the energy consumption. On

the online inference stage, the reinforcement learning model dynamically control the

model execution, i.e., determining the partition and exit points, to fit the run-time

dynamics.

Though the above work considers some characteristics of the run-time dynamics, most

of them only consider the edge-cloud collaboration, e.g., offloading the computation

tasks to the cloud servers. They neglect the edge-edge collaboration, where multiple

edge devices can collaborate with each other by sharing both data and computation

resources. Edge-edge collaboration can reduce the data transmission latency and

avoid the privacy violation in some degree. It leaves an open research area to jointly

consider the computation, data, and networking resources among multiple edge de-

vices.

14

Chapter 3

Edge-native Task Scheduling System

In this chapter, we design and develop an edge-native task scheduling system for

collaborative edge computing. This chapter is organized as follows. We present an

overview of this work in Section 3.1. Section 3.2 provides further motivation for our

work by discussing the significance of collaborative task scheduling, which jointly

orchestrates the coupled edge resources. Section 3.3 overviews the design goals and

main components of the system. Section 3.4 presents the design details. In Section 3.5,

we formulate the collaborative task scheduling problem and propose online solutions

for a video analytics application. Section 3.6 shows the evaluation results. Finally,

Section 5.6 concludes this chapter.

3.1 Overview

Collaborative edge computing (CEC) is a popular and new edge computing paradigm

enabling sharing of data, computation, and networking resources among geo-distributed

and heterogeneous edge nodes, including edge servers, edge gateways, and mobile

phones [126]. CEC is promising and beneficial because it provides higher reliability

and lower latency and facilitates collaboration among different stakeholders [78].

15

Chapter 3. Edge-native Task Scheduling System

Task scheduling is a fundamental problem of collaborative edge computing, which

refers to the arrangement of the user-generated application tasks to the heterogeneous

edge nodes by deciding when, where, and how to offload the tasks and how to manage

and utilize the underlying computation, storage, and networking resources [72]. Many

works have investigated the task scheduling problems in collaborative edge comput-

ing [74]. Recently, there has been a trend of scheduling containerized application

workloads among the geo-distributed and heterogeneous edge infrastructure [122].

This is because the container technology provides lightweight resource virtualization

and enables fast application development and flexible service deployment over het-

erogeneous edge nodes.

There are several solutions to orchestrate containerized applications, such as Swarm

[99], Kubernetes [71], and Mesos [35]. Among them, Kubernetes has established its

leadership [10]. Many works have studied optimizing the Kubernetes scheduler for the

cloud environment, where cloud servers with abundant computation resources are in-

terconnected with a high-bandwidth and stable network in a data center [9]. However,

Kubernetes is designed not dedicated to edge computing, neglects the unique features

of edge nativeness, and lacks adequate support for edge-native applications [31].

First, edge-native applications are usually performance-aware, demanding high through-

put, low latency, and strict privacy. The Kubernetes scheduler is mainly designed to

ensure resource provision of workloads, such as the capacity of requested memory and

CPU cores. It lacks support to meet the performance requirements of edge-native

applications. Second, edge-native applications are with inner dependencies. Many

intelligent edge applications are resource-greedy and complex, consisting of lots of

inter-dependent components which are usually deployed to multiple edge nodes con-

sidering the constraint resource of a single node. However, the Kubernetes scheduler

fails to consider the application’s inner structure. Third, the data, computation,

and networking resources are heterogeneous and coupled with each other. Applica-

tion deployed on heterogeneous edge nodes experiences distinct performance, and the

16

3.1. Overview

coupled resources require joint orchestration. However, Kubernetes concentrates on

orchestrating computation resources without jointly considering the data locality and

networking resources, which may lead to underutilized resources and poor perfor-

mance of workloads. Though some works [88] [112] consider the inner dependencies

of workloads and the computation resources among edge nodes for optimizing the

application performance, they fail to consider the data locality and resource hetero-

geneity.

In this chapter, we designed and developed ENTS, the first edge-native task schedul-

ing system, to manage the geo-distributed and heterogeneous resources of edge in-

frastructures and enable efficient task scheduling among distributed edge nodes to

optimize application performance. ENTS is developed based on Kubernetes, allowing

Kubernetes to collaboratively schedule computation and networking resources con-

sidering both job profile and resource status. Specifically, to parse the inner depen-

dencies of the user-submitted jobs, we adopt a data flow programming model, where

each task in a job is programmed as a functional module. A profiler is designed to

profile the job’s execution time on heterogeneous edge nodes. The job profile infor-

mation will later be used to facilitate efficient task scheduling. We also developed a

network manager to manage the networking resources, which collaborates with the

Kubernetes original components to jointly orchestrate the coupled resources under

the coordination of a newly designed collaborative online scheduler. The scheduler

runs the intelligent scheduling algorithms to generate the task scheduling policies to

optimize the application performance.

To showcase the efficacy of ENTS, we formulate a joint task allocation and flow

scheduling problem for data streaming applications as a case study. The problem is

a mixed integrated non-linear problem proven to be NP-hard [69]. We design two

online algorithms to solve the problem, which decides how to partition the job, where

to allocate the tasks, and how to allocate the routing path and bandwidth for in-

termediate data flow to optimize the average job throughput. The efficacy of the

17

Chapter 3. Edge-native Task Scheduling System

proposed system is illustrated by developing a real-world testbed for a representative

edge video analytics application, namely, object attribute recognition. We develop a

real-world hybrid testbed with both physical and virtual edge nodes to evaluate the

system even in large scale. Online jobs will continuously arrive and be partitioned

and scheduled among the edge nodes. We have comprehensively evaluated the per-

formance of the designed system by comparing it with the state-of-the-art regarding

different metrics, including average job throughput and average waiting time. The

evaluation results show that our edge-native task scheduling approach improves the

performance significantly.

The main contributions of this work are as follows:

• We design and develop ENTS to manage the data, computation, and network-

ing resources in the heterogeneous geo-distributed edge infrastructure. ENTS

is the first work to jointly manage coupled edge resources for optimizing the

performance of edge-native applications.

• We formulate a joint task allocation and flow scheduling problem for data

streaming applications and propose two online algorithms to solve the prob-

lem.

• We evaluate the performance of proposed solutions in a real-world testbed with

a video analytics application. The experimental results indicate the superiority

of ENTS over the baseline approaches in terms of higher job throughput and

lower latency.

3.2 Background and Motivations

In this section, we introduce some background knowledge of the Kubernetes scheduler

and illustrate the motivations for designing ENTS through some concise examples.

18

3.2. Background and Motivations

Controller

Manager

API Serveretcd

Scheduler

Kubelet

Pod Pod

Kubelet

Pod Pod

Kubernetes Master
Worker Node

Worker Node

Figure 3.1: Components of Kubernetes System

3.2.1 Kubernetes Scheduler

Fig. 3.1 depicts the components of Kubernetes with a master-client architecture.

There is at least one centralized master managing resources and scheduling container-

ized workloads across multiple worker nodes (clients). The pod is the basic unit of

Kubernetes to schedule the workload. A pod can contain one or more containers.

There are mainly four components in the master node. The API server is an entry

point to manage the whole cluster, providing services via Restful APIs. Components

communicate and interact with each other through the API server. Etcd is a key-

value pair distributed database that records the cluster status, such as node resource

availability, location, states, and namespace. The scheduler is responsible for schedul-

ing pods. It parses the operational requirements of pods and binds a pod to the best

fit node. The controller manager is responsible for monitoring the overall state of the

cluster. It launches a daemon running in a continuous loop and is responsible for col-

lecting cluster information. Kubelet is the node agent in the clients. It is responsible

for reporting events and resource usage and managing containers.

When scheduling user-submitted workloads, the scheduler first takes a pod pending

to be scheduled from the etcd database and then binds the pod to the corresponding

client node according to the pre-defined scheduling policies. The scheduling policy

19

Chapter 3. Edge-native Task Scheduling System

is sent to Kubelet on the client nodes via the API server. After receiving the poli-

cies, Kubelet lunches the pods and monitors the pods’ execution status. Kubernetes

scheduler adopts a multi-criteria decision-making algorithm in two stages. The first

stage is node filtering, where the scheduler will select candidate nodes capable of run-

ning the pods by applying a set of filters, such as memory and storage availability.

Those filters are also known as predicates. The second stage is node scoring. It scores

all the candidates based on one or more strategies, such as LeastRequestedPriority,

which allocates pods to the nodes with the least computation resource consumption,

and BanlancedResourceAllocation, which balances the resource consumption among

edge nodes. Those strategies are known as priorities. The scheduler will allocate a

pod to the node with the highest score.

3.2.2 A Motivating Example

As shown in Fig. 3.2, this section presents a motivating example articulating the

benefits of collaborative task scheduling, which jointly considers the coupled data,

computation, and networking resources in edge computing scenarios. The problem is

to allocate the application with dependent tasks, shown in Fig. 3.2(a), to a set of edge

nodes, shown in Fig. 3.2(b), such that the job throughput is maximized. Fig. 3.2(a)

shows the task graph of the job modeled as a directed acyclic graph. There are 6

tasks in the job, and the weight of the link between tasks indicates the volume of the

dependent data. Fig. 3.2(a) also shows the memory demand and workload of each

task. We assume that the total memory demand and workload are the sum of tasks,

i.e., 11 and 55, respectively. Note that the job is a streaming application, where

input data continuously arrives from the source, i.e., edge node e4. The amount of

the input data is 5. In Fig. 3.2(b), there are 5 edge nodes {e1, e2, e, e4, e5}. The

weight of the link between the edge nodes indicates the bandwidth. Similarly, the

table in Fig. 3.2(b) shows the available memory and computing power of the edge

nodes in the network.

20

3.2. Background and Motivations

(a) Task Graph and Characteristics

(b) Edge Network and Edge Node Resources

a

b

c d

e

Source

5

2

1 1

1

1

0.5

f

Task
Memory
Demand

Workload

a 1 5
b 2 10
c 2 10
d 2 10
e 3 15
f 1 5

e1

e3e2

e4 e5

20 20

5

10 10

15

6

Edge
Node

Memory
Available

Computing
Power

e1 24 200
e2 8 50
e3 8 50
e4 2 20
e5 4 30

e1

e3e2

e4 e5

Throughput = 2

20 20

5

10 10

15

6

f
sa
=10

(c) Job Allocation

without Task Partition

e1

e3e2

e4 e5

Throughput = 3.3

20 20

5

10 10

15
6

f
ac
=6.7

f
ab

=3.3

(e) Task Partition

with Bandwidth Allocation

e1

e3e2

e4 e5

Throughput = 2.5

20 20

5

10 10

15
6

f
ac
=5

f
ab

=5

(d) Job Allocation

with Task Partition

e1

e3e2

e4 e5

Throughput = 4

20 20

5

10 10

15
6

f
ac
=10

f
ab

=6

(f) Task Partition

with Customized Routing

Figure 3.2: A Motivating Example of Collaborative Task Scheduling

Fig. 3.2(c) shows the job allocation strategy without task partition, where the job

is scheduled to node e1 and the input data is transmitted from the source node

e4 to e1 indicated by data flow fsa, whose allocated bandwidth is 10 and routing

path is e4 → e2 → e1. The throughput is calculated by 1/max{5/10, 55/200} = 2.

Strategy in Fig. 3.2(c) is known as LeastRequestPriority, which are extensively used

in Kubernetes. Differently, Fig. 3.2(d) partition the job, where task a is allocated to

source node e4 and the rest tasks are allocated to node e1. Hence there are two data

flows indicated by fac and fab with the same routing path e4→ e2→ e1. By default,

two data flows equally share the bandwidth of link < e2, e4 >. The throughput of the

job using this strategy is 2.5, which is better than strategy in Fig. 3.2(c) as the raw

data transmission in (c) becomes the bottleneck. Further, Fig. 3.2(e) improves (d)

with the throughput 3.3 due to the optimized bandwidth sharing policy, where the

bandwidths allocated to flow fac and fab are proportional to the amount of dependent

data. Fig. 3.2(f) shows a throughput of 4 with customized routing policy, where the

flow fac selects the routing path e4→ e2→ e1 with the allocated bandwidth 10 and

the flow fab selects the path e4→ e3→ e1 with the allocated bandwidth 6.

From the above examples, we can see that joint consideration of the coupled resources

21

Chapter 3. Edge-native Task Scheduling System

by optimizing the task allocation strategies, the bandwidth allocation, and flow rout-

ing policies can improve the application performance. In the rest of this section, we

build ENTS system to orchestrate coupled edge resources and design optimal collab-

orative task scheduling algorithms by jointly considering the data, computing, and

networking resources of the geo-distributed edge nodes.

3.3 System Overview

This section gives an overview of the design goals and the system components. ENTS

is designed based on Kubernetes to manage the resources and schedule the workloads

over the geo-distributed, large-scale, and heterogeneous edge environment. It has two

main objectives: 1) Jointly manage and orchestrate the coupled and distributed data,

computation, and networking resources; 2) Enable effective distributed task execution

to achieve better performance of applications.

3.3.1 Design Goals

The design of ENTS obeys the principles as follows.

• Scalability. The system can be scaled to a large number of devices and services

retaining its high performance.

• Collaboration. The different edge nodes can collaborate to manage the dis-

tributed and heterogeneous resource regarding data, computation, and network-

ing.

• Universality. The system supports execution of various kinds of tasks and work-

loads.

22

3.3. System Overview

Profiler
Computation

Jobs

Collaborative

Online Scheduler

Other

Edge Nodes
Messenger

Volume Container Process . . .

Kubelet
Network

Manager

Device

Monitor

Task

Monitor

Meta Manager

Edge

Node

Compute

Controller

Network

Controller

Controller

Master

Figure 3.3: Architecture of the ENTS System

3.3.2 System Architecture

In Fig. 5.1, we show a birds-eye view of ENTS’s system architecture and functional

workflow. The system adopts the server-client architecture and is built based on Ku-

bernetes with a master node to manage the distributed resources and schedule the

tasks among edge nodes. Kubernetes components are used to manage the compu-

tation and storage resources of edge nodes. However, Kubernetes lacks support to

profile the job’s inner-dependency and execution time on heterogeneous edge nodes

and orchestrate networking resources. Hence, we develop new components to enhance

the ability of Kubernetes to orchestrate coupled resources considering the job profile.

The system follows the principles of service-oriented architecture, where functions of

the components are developed as services and can be called with APIs.

The components of the system are listed below.

• Profiler parses the input job and profiles the execution time of tasks on het-

erogeneous edge nodes. The job profile will be used to support intelligent task

scheduling.

23

Chapter 3. Edge-native Task Scheduling System

• Scheduler accesses the system information, such as CPU and GPU usage, net-

work conditions, and job profile. On this basis, it generates the policies of task

execution and resource allocation that optimizes job performance.

• Compute controller manages the computation and storage resources at the edge

nodes. It leverages the Kubernetes components API server and controller man-

ager to orchestrate the computation resources.

• Network controller and manager manage the networking resources of edge nodes,

such as bandwidth allocation, routing and forwarding of data flows.

• Messenger handles the message between the edge node and the master. We

extend the messaging of Kubernetes between the master and clients because it

lacks support for orchestrating network resources.

• Kubelet manages pods, containers, and data volumes. It is Kubernetes original

component, whose primary responsibility is for task execution.

• MetaManager is responsible for monitoring and storing device status and ap-

plication status. Specifically, the device and task monitors are responsible for

storing and retrieving metadata (device status and task execution status) to

and from a lightweight database. Such information will be sent to the master

node for supporting task scheduling.

ENTS is based on Kubernetes and reuses the key components of Kubernetes. It equips

Kubernetes with the ability to jointly orchestrate the networking and computation

resources to optimize the performance of edge-native applications. The general work-

flow of the system is described as follows. The profiler first parses the user-submitted

job and profiles the execution time of each task of the job on heterogeneous edge

nodes. The job profile information, including the inter-dependencies of tasks and

task execution time, will be used for later decision-making of task scheduling. The

scheduler generates the task execution policies by jointly considering the job profile

24

3.4. System Design

information, the data locality, available computation and networking resources of the

edge nodes. Specifically, the policies decide which node to allocate tasks, the band-

width allocation and the routing path of dataflows. The policies will be managed by

the network controller and the compute controller together, and then be executed by

the Kubelet and the network manager on the client nodes. The run-time character-

istics of tasks and the nodes’ status will be sent back to the controller in the master

and used for later task scheduling.

3.4 System Design

This section illustrates the details of the ENTS system workflow, including job pro-

filing, collaborative task scheduling, and distributed task execution.

3.4.1 Application Development and Profiling

To easily parse the user-submitted job and facilitate efficient distributed task execu-

tion, we adopt the data flow programming model [48], where each task in a job is

programmed as a function module. Tasks are loosely coupled with intermediate data

transmission. Note that many modern applications are modeled in such a way. Those

applications are complex in nature, structured on microservices architecture style,

consisting of a large number of inter-dependent and loosely coupled modules. Be-

sides, to support various kinds of workloads, the programming model is non-intrusive

to the user programming language. As shown in Fig. 3.4, we only require developers

to declare the tasks in the submitted job without intruding on the main functions of

the applications. Users can use any programming language to implement their appli-

cations. Compared with those programming models, which require users to learn lots

of pre-defined operations, such as Hadoop, Spark, and Flink, ENTS is easier to learn

and use.

25

Chapter 3. Edge-native Task Scheduling System

Figure 3.4: Code Snippet of User Application

Users are required to submit the job configuration so that the system can profile the

job and perform efficient task scheduling. As shown in Fig. 3.5, the configuration

explicitly defines the data source, dependencies among the tasks, and the resource

demand of each task. Particularly, the job consists of 4 tasks. The first task task0

demands 2GB memory and has subsequent tasks task1 and task2. After the user

submits the job configuration, ENTS will start the profiling. The objective of job

profiling is to estimate the running time of each task of the submitted job on het-

erogeneous edge nodes, which will then be used to support the collaborative task

scheduling. Since it may take much time to profile the job, depending on the com-

plexity of the job, we do the profiling offline. Specifically, the profiler will send the job

configuration to the edge nodes that meet the resource requirements of the job. Each

edge node will profile the job by executing the tasks under the requested resource and

send the job profile information back to the scheduler. Offline profiling is reasonable

for those long-running jobs, such as video analytics [128] and virtual reality [130].

Other methods can be used to measure the computing capability of edge nodes and

26

3.4. System Design

estimate the workload of the application in advance, which is more suitable for online

application profiling [55] [80]. We will study them in the future and incorporate the

mechanisms into ENTS.

Figure 3.5: Code Snippet of Application Configuration

3.4.2 Collaborative Task Scheduling

After a job is profiled, it will be added to a Job Queue and pending to be sched-

uled, as shown in Fig. 3.6. The job-related information, including task dependencies

and requested resources, the available computation resource of edge nodes, and the

status of the network will be sent to the scheduler to support the collaborative task

scheduling decisions. We will elaborate on the scheduling algorithms in Sec. 3.5.

27

Chapter 3. Edge-native Task Scheduling System

Job n . . . Job 2 Job 1
Collaborative

Online Scheduler

1

2

3 4

5

1 2

JobInfo

Compute

Controller

Network

Controller

Strategy

NodeInfo

NetworkInfo

Source

Source

2
e1

e3e2

e4 e5

1

2

3

1

4

5

20 20

5

10 10

15

6

f
45
=6

f
12

=6

f
13
=4

Master Edge Nodes

Figure 3.6: ENTS Task Scheduling Workflow

The scheduler generates the collaborative task scheduling strategy, which decides

where to allocate each task, how much the allocated bandwidth is, and the routing

path together with the communication port for each data flow. As shown in Fig. 3.7,

the job shown in Fig. 3.5 is partitioned into 3 tasks, where task0 and task1 are

allocated to edge nodes e1 and e2, respectively. Task2 and task3 are both allocated

to e3. The bandwidth of data flow f01 and f02 is restricted to 15Mbps and 10Mbps,

respectively. The source node port and destination port of flow f01 are set to be 8089

and 8090, respectively. The routing path of flow f13 is determined as {e2, e3, e4}.

Once the task scheduling strategy has been determined, they will be maintained by

the compute controller and network controller, respectively, and sent to the edge

nodes for execution. Specifically, the computation resource-related strategies, such

as where to allocate the task and how many resources are assigned to the task,

will be managed by Computer Controller, which interacts with the Kubelet on edge

nodes to ensure the start, status monitoring, and stop of the containerized task. The

networking resource-related strategies, such as port, bandwidth, and routing path of

data flow, are managed by the network controller, which interacts with the network

manager on edge nodes to ensure the communication and data transmission among

edge nodes. The two controllers jointly manage the edge resources and ensure the

correct execution of the collaborative task scheduling strategies with the coordination

of the scheduler.

28

3.4. System Design

Job n . . . Job 2 Job 1
Collaborative

Online Scheduler

1

2

3 4

5

1 2

JobInfo

Compute

Controller

Network

Controller

Strategy

NodeInfo

NetworkInfo

Source

Source

2
e1

e3e2

e4 e5

1

2

3

1

4

5

20 20

5

10 10

15

6

f
45
=6

f
12

=6

f
13
=4

Master Edge Nodes

Figure 3.7: Collaborative Task Scheduling Strategy

3.4.3 Distributed Task Execution

When the messenger receives the task execution policy, it will decompose the policies

into computation-related and networking-related policies. The computation-related

policies will be forwarded to and maintained by the Kubelet, while the networking-

related ones will be forwarded to and maintained by the network manager. Kubeetl

and network manager work together to ensure the proper execution of the assigned

task.

One important role of the network manager is to manage and orchestrate the network-

ing resources. In this work, we are mainly concerned with the bandwidth allocation

and customized routing of the cross-node data flows. For cross-node communica-

tion, Kubernetes usually adopts a flannel network [20]. As shown in Fig. 3.8, a data

29

Chapter 3. Edge-native Task Scheduling System

Source IP Destination IP Next Hop IP

192.168.1.100:8009

192.168.1.100:8010

192.168.1.103

192.168.1.103 192.168.1.103

192.168.1.102

.

Customized

Routing

Table

QoS queue

Bw = 3Mbps

QoS queue

Bw = 5Mbps

qdisc root

qdisc pod1

Package

qdisc pod2Customized

Bandwidth

Allocation

MAC

OuterIP

UDP

InnerIP

Payload

Local IP

Pod Network IP

eth0
Pod 1

eth0: 172.16.99.8

eth0

Pod 1

eth0: 172.16.99.8

Edge Node 1

(192.168.1.100)

docker 0

172.16.99.1

veth

veth

flannel1.1

172.16.99.0

eth

Local IP

eth0
Pod 1

eth0: 172.16.99.8

eth0

Pod 1

eth0: 172.16.99.8

Edge Node 2

(192.168.1.103)

docker 0

172.16.99.1

veth

veth

flannel1.1

172.16.99.0
eth

Local IP

Figure 3.8: Bandwidth Allocation and Customized Routing of Network Manager

package from Pod1 to Pod3 will first be forward to docker0 and then to the flannel

interface. The package will go through eth on edge node A and be sent to edge node

B, where a reverse process will be performed to analyze the Internal IP of the package

and route the package to the destination, i.e., Pod 3. To achieve the bandwidth allo-

cation and customized routing of data flow, for each data flow in a scheduled job, the

network manager will specify the {source_ip, source_ip_port, bandwidth_limit, des-

tination_ip, destination_ip_port}, as shown in Fig. 3.7. Through this information,

the network manager leverages the Linux kernel functions, i.e., Traffic Control and

30

3.5. Collaborative Task Scheduling with Data Streaming Applications

Iproute [40], to shape the bandwidth between two edge nodes and customize routing

for data packages. Traffic control creates Classful Queuing Disciplines (qdisc) to filter

and redirect network packages to a particular quality-of-service queue before sending

them out. The network manager also maintains the routing table of each assigned

task. As shown in Fig. 3.8, the data package going through port 8009 from edge node

1 will be forwarded to another edge node rather than go directly to the destination,

i.e., edge node 2. Also, the bandwidth of data flow from Pod1 of edge node 1 will be

shaped to 3Mbps.

After the network configuration takes effect, the kublet will launch the pod according

to the assigned computation-related policies, such as CPU and memory requests.

The device monitor and task monitor will consistently and continuously monitor the

status of the devices and the task.

3.5 Collaborative Task Scheduling with Data Stream-

ing Applications

In this section, we showcase the collaborative task scheduling of ENTS with represen-

tative data streaming applications, namely edge video analytics. We first introduce

the system model. Then, we formulate a joint task allocation and flow scheduling

problem for a single job scheduling and illustrate the proposed algorithms. On this

basis, we further propose two online scheduling algorithms to schedule multiple con-

tinuous arriving jobs to maximize the average job throughput.

3.5.1 System Model.

Edge video analytics [128] [119] [127] is a killer application of edge computing. The

network and application model used in formulating the problem is described as follows.

31

Chapter 3. Edge-native Task Scheduling System

Network Model. The communication network is a mesh network of edge nodes

connected using a multi-hop path. The network is modelled as an undirected graph

G = (V,E), where V is the set of edge nodes, V = {j|1 ≤ j ≤ M}, and E is the set

of links connecting different edge nodes, E = {lu,v|u, v ∈ V }. Here, M is the total

number of edge nodes. The computing capacity, maximum resource and available

resource of edge node j is PSj, Rj
max and Rj

avail, respectively. The bandwidth of link

l is represented by Bl. The network can be heterogeneous in terms of the computation

capacity of edge nodes and link bandwidth.

Application Model There will be multiple jobs submitted to the ENTS system by

the edge nodes. Each job is modeled as a directed acyclic graph J = (T, P), where

T is a set of dependent tasks and P represents the set of dependencies between the

tasks in the job. Pdi denotes the predecessor tasks of task Ti. The computation

workload and resource demand of task j is Cj and Rj
req. The amount of dependent

data between task j and task i is Di,j. The input data source of job J is assumed to

be located at an edge node sJ |sJ ∈ V .

3.5.2 Problem Formulation

The objective of the single job scheduling is to maximize the throughput of the job

by deciding where to allocate each task of the job, the routing path and bandwidth

allocation of each data flow caused by the intermediate data transmission. If two

dependent tasks are allocated to the same edge node, there will be no intermediate

data transmission and thus no data flow. The joint task allocation and flow scheduling

problem denoted as P1 is formulated as follows.

max

{
TP =

1

tp

}
(3.1)

tp = max

{
max
i∈T

(ticomp), max
i∈T,j∈Pdi

(ti,jcomm)

}
(3.2)

32

3.5. Collaborative Task Scheduling with Data Streaming Applications

ticomp = Xu
i ·

Ci

PSu

(3.3)

ti,jcomm = Xu
i ·Xv

j ·
Di,j

Blu,v

, j ∈ Pdi (3.4)

Xu
i ∈ {0, 1},∀i, u (3.5)

Eq. 3.3 indicates the computation time of task i, where Xu
i is a binary variable. Xu

i

equals to 1 if task i is allocated to edge node u, otherwise Xu
i equals to 0. Eq. 3.4

shows the transmission time of the intermediate data between dependent task i and

j. The throughput is TP = 1
tp

, where tp is constraint by the maximum transmission

and computation time as indicated by Eq. 3.2. P1 is a mixed Integrated Non-linear

problem (MINLP), which is proven to be NP-hard in literature.

3.5.3 Proposed Solution

To solve the problem P1, we decompose it into two sub-problems, i.e., allocate each

task of the job P2 and decide the routing path and bandwidth allocation of all the

data flows P3. To solve P2, we use a greedy algorithm to allocate each task to the

edge node, which can provide the least execution time, including the computation

time and the dependent data transmission time. To solve P3, we first relax it into

a convex problem, which can be solved by convex optimizers, and then derive the

solution for P3.

Solving Problem P2. The algorithm to solve P2 is shown in Algo. 1. For each

task in the job, the algorithm traverses all the edge nodes with satisfied resource

capacity and allocates the task to the edge node with the minimum execution time,

including both computation time and intermediate data transmission time (Line 3-

13). For calculating ti,jcomm, we set the bandwidth between two edge nodes as the

average bandwidth of all routing links. This is reasonable because the intermediate

data flow can have multiple choices to avoid network congestion. Later, we will adjust

33

Chapter 3. Edge-native Task Scheduling System

the allocated bandwidth and the routing path of the data flows in a more fine-grained

way in problem P3.

Algorithm 1: Task Allocation
Input: network G = (V,E), job J = (T, P),

Output: the task allocation policy Ti,j, the data flows FL

1 Initialize Ti,j ← 0 for all i, j;

2 Query the available resource Rj of all edge nodes;

3 for task Ti in job J = (T, P) do

4 for edge node j in network G = (V,E) do

5 if Rj
avail > Ri

req then

6 Calculate the computation time ticomp = Ci ÷ PSj;

7 Calculate the intermediate data transmission time ticomm = max ti,jcomm

using Eq. (4);

8 Calculate the execution time tjexec = tjcomp + tjcomm;

9 end

10 end

11 Allocate task Ti to node j∗ = minJ{tjexec};

12 Ti,j∗ ← 1;

13 Update Rj∗ for node j∗;

14 end

15 Calculate data flow fi =< source, destination, datasize > with Ti,j;

16 Add fi to data flows FL;

17 return Ti,j, FL

Solving Problem P3. After solving P2, we get the data flows FL, where we can

know the number of data flows Nf , the source, destination, and data volume of each

data flow fi. We then solve P3 to decide the routing path and bandwidth allocation

of each data flow. The P3 is formulated as follows.

34

3.5. Collaborative Task Scheduling with Data Streaming Applications

min max
i=1,...,Nf

{
Vi

bi

}
(3.6)

∑
i

∑
k:l∈Pk

i

biy
k
i ≤ Bl,∀l (3.7)

∑
k

yki = 1, ∀i (3.8)

yki ∈ {0, 1},∀i, k (3.9)

where Vi is the size of flow fi and bi is the bandwidth allocated to flow fi. P k
i is the

collection of all the possible routing paths of flow fi. yki is a binary variable. yki equals

to 1 if flow fi chooses the kth routing path of P k
i . Note that Eq. 3.7 indicates that

the sum of allocated bandwidth of all data flows going through link l cannot exceed

its capacity. Eq. 3.8 and Eq. 3.9 ensure that a data flow can only choose one routing

path.

The problem P3 is still a MINLP problem. Therefore, we resort to relaxing the integer

variable yki to a real variable yki ≥ 0. We name the relaxed problem P3 − Relax.

Due to the existence of term bi · yki , the P3 − Relax problem is still a non-linear

programming problem which is hard to solve. In the following, we transform the

P3 −Relax problem into an equivalent convex optimization problem.

An Equivalent Convex Problem. First, we introduce an variable TH such that

TH = max
i=1,...,Nf

{
Vi

bi

}
. Furthermore, we introduce another variable qi such that qi =

TH · bi, and variable mk
i = qi · yki . Then, the equivalent problem P3−Relax-Cvx is

formulated below.

minTH (3.10)

∑
i

∑
k:l∈Pk

i

mk
i ≤ Bl · TH,∀l (3.11)

35

Chapter 3. Edge-native Task Scheduling System

∑
k

mk
i = qi, ∀i (3.12)

mk
i ≥ 0,∀i, k (3.13)

qi ≥ Vi,∀i (3.14)

All constraint in the P3−Relax-Cvx is affine, and the objective function is convex.

Therefore, the P3 − Relax-Cvx problem is a convex optimization problem which

can be solved using convex optimizers [8].

However, since we relax the binary integer constraint, the solution may be that some

yki are decimal factions. To solve the problem, we route the ith data flow to a path

k∗ such that mk∗
i = maxk m

k
i . When the routing path is determined, the optimal

bandwidth allocation policies is given by

b∗i = min

{
Vi∑

i

∑
k:l∈Pk∗

i
Viyk

∗
i

}
, l ∈ P k∗

i (3.15)

The algorithm to solve P3 is shown in Algo. 2.

3.5.4 Online Scheduling

Algo. 1 and Algo. 2 study the task scheduling for one job. However, in a practical

ENTS system, jobs constantly arrive and share the resource in the network. Our

goal is to maximize the average job throughput. Motivated by this, we propose two

online scheduling algorithms, which run in the ENTS online scheduler and periodically

schedule all arrived jobs.

The online scheduler maintains two job queues: 1) a queue of jobs that are running,

denoted by Qrun, and 2) a queue of jobs that are waiting to be scheduled, denoted

by Qwait. The two online scheduling algorithms are: 1) schedule the job in Qwait one

by one, and 2) schedule the job in Qwait one by one but readjust the routing and

bandwidth sharing strategy by considering all the existing and coming data flows in

the edge network.

36

3.5. Collaborative Task Scheduling with Data Streaming Applications

Algorithm 2: Joint Routing and Bandwidth Allocation (JRBA)
Input: network G = (V,E), data flows FL,

Output: the routing policy yki , the bandwidth allocation policy bi, and job

throughput JTH

1 Solve P3 −Relax-Cvx and get {T ∗, q∗i ,m
k∗
i };

2 for flow fi in FL do

3 Initialize yki ← 0 for all k;

4 k∗ ← argk maxmk
i ;

5 yk
∗

i ← 1;

6 end

7 Calculate b∗i using Eq. 3.15;

8 Update Bl according to yk
∗

i , b∗i ;

9 JTH ← maxi=1,...,N

{
Vi

bi

}
;

10 return yki , bi, JTH

The first algorithm (OTFS) is shown in Algo. 3. For each job in the queue Qwait,

the algorithm first sorts the job in descending order of waiting time and schedules

the jobs in sequence (Line 6-9). During scheduling, the algorithm calls the procedure

Task Allocation (Algo. 1) and JRBA (Algo. 2) in turn (Line 9-13).

The second algorithm (OTFA) is shown in Algo. 4. Different from OTFS, which

makes task scheduling decisions based on the current status of the computation and

networking resource in the edge network, OTFA jointly manages the existing data

flows and the coming data flows. It first allocates the computation resources for

arriving jobs and then readjusts the networking resources for all data flows (Line

10-15).

37

Chapter 3. Edge-native Task Scheduling System

Algorithm 3: OTFS: Online Task Allocation and Flow Scheduling
Input: current time curT , network G = (V,E), Qwait

1 Jfinish ← all jobs finishing at curT ;

2 if Jfinish ̸= ∅ then

3 Release all computing resource and bandwidth allocated to Jfinish;

4 Update Rj and Bl for network;

5 end

6 if there are jobs arriving at curT then

7 Add jobs arriving at curT to Qwait;

8 end

9 Sort Qwait in descending order of waiting time;

10 for job Ji in Qwait do

11 Call the Task Allocation procedure to get {Ti,j, FL};

12 Call the JRBA procedure;

13 end

38

3.5. Collaborative Task Scheduling with Data Streaming Applications

Algorithm 4: OTFA: Online Scheduling Task Allocation Joint Flow Adjustment
Input: current time curT , network G = (V,E), Qwait, Qrun

1 Jfinish ← all jobs finishing at curT ;

2 if Jfinish ̸= ∅ then

3 Release all computing resource and bandwidth allocated to Jfinish;

4 Update Rj and Bl for network;

5 end

6 if there are jobs arriving at curT then

7 Add jobs arriving at curT to Qwait;

8 end

9 Sort Qwait in descending order of waiting time;

10 for job Ji in Qwait do

11 Call the Task Allocation procedure to get {Ti,j, FL};

12 end

13 Release all bandwidth allocated to data flows FLrun in Qrun;

14 Add FL to FLrun;

15 Call the procedure JRBA with FLrun;

39

Chapter 3. Edge-native Task Scheduling System

Tracking

& Result

Generation

10

Image

Capturing

1

Object

Detection

2

Color

Recognition

3

Gender

Recognition

4

Behavior

Recognition

5

Color

Recognition

6

Type

Recognition

7

Person

Re-identification

8

Vehicle

Re-identification

9

Figure 3.9: Application Graph of Object Attributes Recognition

3.6 Experimental Results

3.6.1 Experimental Setup

Benchmarks. To evaluate the ENTS system, we use a real-world live video analyt-

ics application, i.e., object attribute recognition [120], which is extensively used in

surveillance of public safety. The application graph is shown in Fig. 3.9, where we

have 10 functional modules. For modules 2 to 9, each of them is implemented with

a computing-extensive and resource-greedy DNN model [43] [117]. The application

takes the surveillance video as input and recognizes the attributes of pedestrians and

vehicles in the video, such as the color of cloth, gender of pedestrians, and type of

vehicles. Specifically, we use MobileNet-V2 [92] as the backbone network for object

detection in module 2. For attribute recognition and object re-identification, i.e.,

module 3 − 9, we use Resnet-50 [34] as the backbone network. We use the Kalman

filter to track the objects in module 10. The resolution of the video is 1920x1080 with

30fps and the size of each video frame is about 6MB. The application is implemented

with Python.

Baselines. We compared the proposed method with three state-of-the-art baselines

40

3.6. Experimental Results

as follows.

• LeastRequestPriority (LR). It schedules the whole job to the edge node with the

least resource consumption. The LR policy is frequently used in Kubernetes.

• BalancedResourceAllocation (BR). It schedules the whole job to the edge node,

which can balance the resource consumption among the edge nodes. BR is used

in Kubernetes to achieve workload balancing.

• Task Partition (TP). It partitions the job and schedules each task to the edge

nodes with the least execution time, including the transmission time and the

computation time. We adopt the default shortest path to transfer the inter-

mediate data. When multiple data flows go through the same link, all flows

equally share the link bandwidth.

Metrics. We employ two metrics as follows.

• Average Job Throughput. It is the average throughput of all submitted jobs. It

is an important metric to measure the performance of the scheduling algorithms.

• Average Waiting Time. It is the average waiting time of all submitted jobs, i.e.,

the time from the job submitted to the job scheduled. It is a metric reflecting

the effectiveness of the scheduler and system overhead.

Testbed Implementation. To test the system on a large scale geo-distributed

edge environment, we developed a hybrid testbed with both physical and virtual

edge nodes, as shown in Fig. 4.7. We use virtual machines to emulate virtual edge

nodes. While numerous virtual edge nodes enable us to test in a large-scale and

network-flexible testing environment, the incorporation of physical nodes guarantees

the fidelity of the testbed. We leverage Linux Traffic Control to configure the network

topology and bandwidth among the edge nodes. We vary the network link bandwidth,

e.g., from 1Mbps to 10Mbps, to emulate the physical distance among edge nodes. The

41

Chapter 3. Edge-native Task Scheduling System

Master

e1 e2 e3

VM VM. . .

Virtual Edge Nodes

Physical ServerEdge Nodes 1-3

Figure 3.10: Test Environment of ENTS

intuition is that the bandwidth should be low if two nodes are far away. Similar idea

is also adopted in [54].

Specifically, we randomly generate the network connection among edge nodes with

the average node degree as 3. We also enable routing and forwarding on each node so

that each node is both a compute node and a router. We use 4 raspberry pi, 2 Nvidia

Jetson Nano, and 2 Nvidia Jetson Xavier NX to represent physical edge nodes. A PC

equipped with four Intel Cores i9-7100U with 20GB RAM to act as the master node

to manage the edge nodes. Two servers are leveraged to host virtual machines acting

as virtual edge nodes. One is equipped with Intel(R) Xeon(R) Gold 6128 CPU with

192GB Memory, another is Intel(R) Core(TM) i9-10900F CPU with 64GB memory.

The specifications of the physical devices are shown in TAB. 4.2.

3.6.2 Results and Analysis

We test the performance of the ENTS system and the proposed online scheduling

algorithms under various situations.

Effects of Number of Edge Nodes. We evaluate the influence of the number

of edge nodes on the average job throughput and average waiting time to test the

scalability of ENTS. In this experiment, a total of 50 jobs are submitted by the

42

3.6. Experimental Results

Table 3.1: Specifications of Physical Devices

Name CPU Memory Performance

Raspberry Pi 1 core 1GB Low

Jetson Nano 6 cores 4GB Low

Jetson Xavier NX 6 cores 8GB Medium

Edge Server-1 64 cores 64GB High

Edge Server-2 128 cores 192GB High

edge nodes to the master with the arriving rate following a Poisson distribution with

λ = 0.5/second.

As shown in Fig. 3.11(a), TR, OTFS, and OTFA perform much better than LR and

BR, with higher average throughput. The average throughput of LR and BR does

not exceed 1. It is because LR and BR do not partition the job, which leads to the

transmission of source video data over a low-bandwidth edge network. It becomes

the bottleneck of the job throughput. Unlike LR and BR, the other three methods,

i.e., TP, OTFS, and OTFA, partition the job and enable distributed job execution,

avoiding raw data transmission. OTFA performs best with the highest throughput

among TP, OTFS, and OTFA. TP shares the bandwidth equally and assigns the

shortest routing path for network flows, which usually leads to traffic congestion

when multiple data flows pass through the same network link. Instead, OTFS and

OTFA optimize the networking resources by enabling optimal bandwidth sharing and

routing path selection concerning the end-to-end job throughput. OTFA goes further.

It considers all the available data flows in the network, which can improve the average

job throughput compared to OTFS.

We also observe that the average throughput does not show a linear growth with

an increasing number of edge nodes. Generally, when the number of edge nodes in-

creases, the network will have more resources and higher job throughput. However,

43

Chapter 3. Edge-native Task Scheduling System

Number of Edge Nodes
6050 7040302010

0

0.5

1.0

1.5

2.0

2.5

A
v

er
a

g
e

T
h

ro
u

g
h

p
u

t
(f

p
s)

Number of Edge Nodes
6050 7040302010

Number of Edge Nodes
6050 7040302010

1.5

2.0

2.5

3.0

3.5

A
v

er
a

g
e

T
h

ro
u

g
h

p
u

t
(f

p
s)

1.0

0.5

3

4

5

6

7

A
v

er
a

g
e

W
a

it
in

g
 T

im
e

(s
)

2

0

1

1.0

1.5

2

2.5

3

A
v

er
a

g
e

T
h

ro
u

g
h

p
u

t
(f

p
s)

0.5

0

Number of Edge Jobs
6050 7040302010

Number of Edge Jobs
6050 7040302010

1.0

1.5

2

2.5

3
A

v
er

a
g

e
W

a
it

in
g

 T
im

e
(s

)

0.5

0

1.5

2.0

2.5

3.0

3.5

A
v

er
a

g
e

T
h

ro
u

g
h

p
u

t
(f

p
s)

1.0

0.5

Average Network Bandwidth (Mbps)
1 205 10 15

(a) (b) (c)

(d) (e) (f)

LR
BR
TP

OTFA
OTFS

LR
BR
TP

OTFA
OTFS

LR
BR
TP

OTFA
OTFS

LR
BR
TP

OTFA
OTFS

LR
BR
TP

OTFA
OTFS

LR
BR
TP

OTFA
OTFS

Figure 3.11: a) Impact of the number of edge nodes on average throughput with average bandwidth

1Mbps. b) Impact of the number of edge nodes on average throughput with average bandwidth

10Mbps. c) Impact of the number of edge nodes on average waiting time. d) Impact of the number

of submitted jobs on average throughput. e) Impact of the number of submitted jobs on average

waiting time. f) Impact of average bandwidth on average throughput.

the throughput decreases slightly when the number of edge nodes increases from 10

to 20 and 30 to 40. It is because of the limited network bandwidth, i.e., 1Mbps with

a variance of 0.3 in our experiment. When the number of edge nodes increases, the

number of hops and network links between two edge nodes also increases, resulting

in more bottleneck communication paths. As shown in Fig. 3.11(b), when the aver-

age bandwidth of the edge network becomes 10Mbps, such fluctuation of the average

throughput will no longer exist. More specifically, it shows a linear growth as ex-

pected. It is because the network bandwidth is not the bottleneck anymore, and

there are fewer bottleneck communication paths.

Fig. 3.11(c) depicts the influence of the number of edge nodes on the waiting time.

When the number of the edge nodes is below 30, the average waiting time of TP,

OTFS, and OTFA is much smaller than that of LR and BR. The reason is that the

44

3.6. Experimental Results

former scheduling policies partition the job and allocate the task into edge nodes

with less abundant resources, improving resource utilization and the number of jobs

executable among the geo-distributed edge nodes. When the number of edge nodes is

above 30, the total resource is sufficient, where the average waiting time is dominated

by the running efficiency of the scheduling algorithms. Compared with the LR and

BR algorithms, TP, OTFS, and OTFA are required to traverse all the edge nodes for

each task and solve the formulated optimization problem, which increases the average

waiting time. However, we observe that when the number of edge nodes is below 50,

the average waiting time is no more than 1 second, and about 2.5 second when the

number of edge nodes is 70, which is still at a low level.

Effects of Number of Submitted Jobs. We evaluate the performance of the

average job throughput and wait time with a changing number of submitted jobs.

We set the average bandwidth as 1Mbps with a variance of 0.3. The number of edge

nodes is 30. The arriving rate of the submitted jobs follows a Poisson distributed

with λ = 0.5/second.

As shown in Fig. 3.11(d), when the number of submitted jobs is no more than 30,

our method performs similarly to the baseline. In such cases, the edge resources

are relatively abundant, and the proposed methods, i.e., OTFS and OTFA, tend to

yield similar decisions compared with the baseline methods. However, when there are

more jobs, the average throughput of LR and BR declines dramatically. It is because

multiple jobs compete for limited networking and computation resources. Without

partitioning the submitted jobs and optimizing the bandwidth allocation and routing

path of flows, LR and BR easily suffer from network congestion and fragmented com-

putation resource usage, degrading the average job throughput significantly. OTFA

performs the best. Compared to TR and OTFS, OTFA considers optimal bandwidth

sharing and routing path for incoming in addition to existing data flows, which can

further improve the averaging job throughput with better resource utilization when

there are more jobs.

45

Chapter 3. Edge-native Task Scheduling System

Fig. 3.11(e) depicts similar trends concerning the performance in average waiting time.

When the number of submitted jobs is below 50, the average waiting time for all the

mentioned methods is low, i.e., no larger than 0.5 without apparent fluctuation. We

can also see that the waiting time of LR and BR is shorter than that of TP, OTFS,

and OTFA. It is because the latter three approaches have to traverse all the edge

nodes for each task, which leads to more waiting time for scheduling jobs. When the

number of submitted jobs exceeds 50, TP, OTFS, and OTFA show consistent average

waiting times while the performance of LR and BR increases significantly. The reason

is that there are no available resources to schedule the new-coming jobs. The rest of

the jobs are required to wait in the job queue, which results in an increased average

waiting time. Compared to TR, OTFS, and OTFA, the other two methods, i.e., BR

and LR, do not partition the submitted job, which may easily lead to fragmented

resource consumption and thus serve fewer jobs.

Effects of Average Bandwidth. We also evaluate the performance of the average

job throughput with the variance of the average bandwidth of the edge network. We

set the number of edge nodes as 30 in this experiment and the number of submitted

jobs as 50 with the arriving rate following a Poisson distributed with λ = 0.5/second.

As shown in Fig. 3.11(f), the average throughput of all the methods increases with the

average bandwidth. More specifically, when the average bandwidth of the edge net-

work is no more than 5Mbps, OTFA outperforms other methods significantly because

it jointly considers and optimizes the data locality, the networking, and computing

resources of edge nodes. However, when the average bandwidth is above 10Mbps,

baselines and proposed methods tend to have similar performance. It is because the

bandwidth is relatively abundant now. However, OTFS and OTFA are slightly better

than LR and BR, as they optimize the bandwidth allocation and routing selection for

data flows in the edge network. BR outperforms LR as it aims to achieve balanced

resource consumption, enabling the powerful edge nodes to service more jobs.

In a nutshell, we evaluated and compared the performance of ENTS with the state-

46

3.7. Conclusion

of-the-art and proposed online algorithms for scheduling streaming jobs. Benefiting

from the ability to consider task dependencies and jointly optimize the limited coupled

computation and networking resources, ENTS achieves a 43%−220% improvement in

average throughput. Although the proposed solutions introduce additional overhead

in making the scheduling strategies, they can serve more jobs when resources of the

edge network are limited, which leads to less averaging waiting time.

3.7 Conclusion

In this chapter, we designed and developed ENTS, the first edge-native task schedul-

ing system, to manage geo-distributed and heterogeneous edge resources in collab-

orative edge computing. ENTS extends Kubernetes with the ability to jointly or-

chestrate computation and networking resources to optimize the application perfor-

mance. ENTS comprehensively considers both the application characteristics and

edge resource status. We show the superiority of ENTS with a case study on data

streaming applications, in which we formulate a joint task allocation and flow schedul-

ing problem and propose two online scheduling algorithms. Experiments on an object

attribute recognition application on a large number of edge nodes show ENTS achieves

improved performance.

47

Chapter 4

Scheduling Model Training Tasks

In this chapter, we design and develop an edge-native task scheduling system, namely

EdgeSplit, for collaborative edge computing. This chapter is organized as follows. We

present an overview of this work in Section 4.1. We further introduce the motivation

of proposing EdgeSplit in Section 4.2. We then elaborate the training process of

EdgeSplit and the methodology to reduce the model training time in Section 4.3.

Section 4.5 shows the evaluation results. Finally, Section 4.6 concludes this chapter.

4.1 Overview

In recent years, due to the great advancement of deep learning, AI models and algo-

rithms has been extensively used in various applications, including object detection,

natural language processing, and autonomous driving [56]. Traditionally, AI models

are trained on the cloud with the data collected from end devices due to its extensive

resource consumption. However, the cloud-based solution suffers from high communi-

cation costs, long response time, and privacy concerns [97]. Recently, edge empowered

AI, namely Edge AI, has been proposed to support the training and deployment of

AI models on edge devices (e.g., edge servers, edge gateways, and mobile phones) at

48

4.1. Overview

the network edge closer to the data sources [11,135].

A significant problem of Edge AI is to train accurate models with fast convergence

using the distributed data on edge devices. Federated learning (FL) [61, 73] is a

popular and promising solution, which enables collaborative model training without

privacy violation. In FL, edge devices first use their local data to train the AI model.

They then send the model updates, e.g., model weights or gradients, to the FL server

for aggregation. The FL server will send back the aggregated parameters for the next

round of local training. These steps are repeated multiple rounds until a desirable

accuracy is achieved. FL has seen recent success in various applications, such as

Google’s Gboard [32], health AI [87], and across government collaboration [70].

However, fast training of federated learning on edge devices faces two challenges:

1) constrained edge resources. Edge devices are usually with limited memory and

computation capabilities. Some edge devices, e.g., mobile phones, may not have the

ability to burden the training tasks due to the complexity and great memory footprint

requirements of large AI models; 2) heterogeneous edge resources. There are various

edge devices, such as mobile phones, edge servers, and raspberry pis. The computing

and networking capabilities of those devices are usually vastly different. The FL

server is required to wait for the updated parameters of all the participants, which

may lead to long waiting time.

The two challenges are not well addressed in existing works. Some works [28, 29, 64,

111] reduce the communication overhead for acceleration by compressing the trans-

mitted data. However, they lead to accuracy loss. Other works try to adaptively

select participants [12, 79, 110] and optimize model aggregation frequency [109, 116]

among heterogeneous edge devices. But they neglect the constraint edge resources,

where an edge device may not be able to perform the local training of a large AI

model. Recently, split learning [81, 107] was proposed to enable the model training

on low-resource mobile devices by splitting the full model between server and clients.

However, it is a sequential training paradigm and not suitable for the parallel fed-

49

Chapter 4. Scheduling Model Training Tasks

FL Server

Full model

Partial model Partial model Partial model

Heterogeneous

Edge Devices

Deploy

Activations Gradients
Backward

Propagation

Feed

Forward

Figure 4.1: Overview of EdgeSplit. Edge devices train part of the full model with different depths

adapting to local resources and offload the rest of model training task to the FL server for accelera-

tion.

erated learning. Moreover, it does not take into account the resource heterogeneity

among edge devices.

In this thesis, we rethink the problem from the perspective of training task scheduling.

We propose a novel training framework, named EdgeSplit, to accelerate federated

learning on heterogeneous and resource-constraint edge devices by enabling efficient

task offloading among edge devices and the FL server. As shown in Fig. 4.1, a

full model is partitioned into a set of shallow models with different depths at layer-

granularity, adapting to the local edge resources. Each device trains part of the full

model and partially offloads the rest of the training task to the FL server. Hence,

the local training on edge devices is divided into four steps, i.e., local forward, server

forward, server backward, and local backward. The server is responsible for both

the rest of model training task and parameters aggregation. EdgeSplit provides an

efficient and practical solution to train large models on low-resource edge devices and

leverages the powerful computation resource of FL server to accelerate the distributed

50

4.1. Overview

model training in heterogeneous edge computing.

However, it is non-trivial to achieve efficient and practical EdgeSplit. First, it is diffi-

cult to decide the optimal model partition point for each edge device for minimizing

the training time. The computation workload and size of parameters vary across the

layers of a DNN model. Simple decoupling can hardly reduce the training time. To

solve the challenge, we mathematically formulate a training task scheduling problem

to decide the model partition points and the bandwidth between an edge device and

the server, considering both devices’ computing capabilities and network bandwidth.

The problem is a mixed integer non-linear problem proven to be NP-hard. We hence

propose an efficient alternating algorithm to quickly find the optimal solution by it-

eratively optimizing the model splitting and bandwidth allocation strategy. Second,

handling the partial model training tasks offloaded from multiple edge devices leads to

high memory consumption of the FL server. We thereby design an SplitPipe mecha-

nism to alleviate the memory overhead by pipelining and reusing the duplicated layers

of the partial models on the server, making it more suitable to the resource-constraint

edge computing environment.

EdgeSplit is different from Split Learning. First, Split learning adopts fixed model

partition points for all edge devices, neglecting resource heterogeneity. Second, Split

learning does not address the memory overhead of the server. The efficacy of EdgeS-

plit is illustrated by developing a self-developed real-world testbed with both physical

and emulated edge devices to evaluate the system in large scale. We have comprehen-

sively evaluated the performance of EdgeSplit by comparing it with vanilla federated

learning and baselines under various settings. The evaluation results show that our

proposed EdgeSplit can achieve up to 5.5x acceleration. In a nutshell, our contribu-

tions are three folds:

• To the best of our knowledge, this is the first work that accelerates federated

learning on heterogeneous and resource-constraint edge devices by adaptively

51

Chapter 4. Scheduling Model Training Tasks

0 5 10 15 20 25 30 35

Time delay of single-round local training (s)

Xavier (Good)

NX (Medium)

Raspberry (Poor)

16 times

30 times

Figure 4.2: Federated learning on heterogeneous edge devices suffers from the straggler issue.

splitting and scheduling the training task. EdgeSplit significantly improves

training efficiency without compromising accuracy.

• We propose novel solutions to address the challenging issues for achieving ef-

ficient and practical EdgeSplit, including joint model splitting and bandwidth

allocation for fast training and SplitPipe mechanism to reduce memory over-

head.

• We evaluate the performance of EdgeSplit on a real-world testbed with vari-

ous benchmark models and datasets. The results indicate the superiority of

EdgeSplit in accelerating federated learning.

4.2 Motivations

Federated learning suffers from the straggler issue on heterogeneous edge

devices. There are two paradigms of federated learning. One is synchronous, and

another is asynchronous. In the former paradigm, the FL server waits for the model

updates from all participants and then performs the model aggregation. A large por-

tion of time is used to wait for the weights updates from other less powerful edge de-

vices, which is known as the straggler issue. It is usually caused by the heterogeneous

computing and networking capabilities of edge devices. In asynchronous federated

52

4.3. Framework of EdgeSplit

learning, the server doesn’t need to wait for the model updates from all participants.

It performs server-side model aggregation once it receives an update. Though it has

no straggler issue, the model convergence usually cannot be guaranteed [7]. Syn-

chronous federated learning is still the mainstream training paradigm. Fig. 4.2 shows

the time for one-round model training on three edge devices with different computing

capabilities. We train a LeNet model on raspberry pi and two different NVIDIA Jet-

son family platforms (i.e., NX AGX, and Xavier AGX). As shown in Fig. 4.2, there is

obvious heterogeneity among those devices. The single-epoch training on raspberry

pi with poor computation capability consumes about 30 times training latency than

that of Xavier AGX with good computation capability, and about 16 times training

latency than that of NX AGX with medium computation capability.

Edge devices with limited memory footprint cannot perform local model

training. Memory in neural network training is required to store input data, weight

parameters, and activations as an input propagates through the network. In training,

activations from a forward pass must be retained until they can be used to calculate

the gradients in the backward pass. We observe that a 50-layer ResNet model requires

12GB memory if we use a 32-bit floating-point value to store model parameters.

However, mobile phones are usually equipped with 8GB RAM. They can hardly hold

the full ResNet model. Moreover, neural networks are getting larger and larger, such

as transformers [62] and foundation models [6]. It is challenging to perform federated

learning on edge devices to train large models with localized data. EdgeSplit is hence

a promising way, which solves the resource constraint of edge devices by splitting the

model and can utilize other heterogeneous resources to accelerate the FL training.

4.3 Framework of EdgeSplit

We first introduce the training framework and the benefits of EdgeSplit. We then

illustrate the challenges to achieve efficient EdgeSplit.

53

Chapter 4. Scheduling Model Training Tasks

Profile execution

latency

Profile layer

characteristics

Training task

scheduling

Full DNN

model

…

Profiling Stage

1) Profiling layers’ execution delay on each edge

device and layers’ output size and weights

2) Decide partition point and allocated

bandwidth for each edge device

Task Scheduling Stage Split Training Stage

3) client forward; send activations;

server forward; server backward; send

gradients; client backward

FL Server

a) layers’ execution delay

b) layers’ output and

weight size

c) Total bandwidth

Shallow

model

Middle

model
Deep

model

Full

model

Feed

forward

Back

propagation

Training &
aggregation

Figure 4.3: Framework of EdgeSplit. It consists of three stages: model and device profiling, task

scheduling optimization, and online split edge training.

4.3.1 EdgeSplit Framework

Fig. 4.3 shows the workflow of the EdgeSplit framework, which consists of three

stages: model and device profiling, task scheduling optimization, and online edge

split training.

At the profiling stage, EdgeSplit mainly performs two steps: 1) profiling the execution

time of each layer of the neural network on different edge devices and the FL server;

2) profiling the size of output for each layer of the trained model. More specifically,

we perform one training epoch on each edge device and the server, and then record

the execution delays and output size of different DNN layers. We repeat this process

dozens of times and then calculate the average delay for a more accurate and stable

value. Note that the output size of each layer in the model is fixed and just needs to

be profiled once. Those profiling information will then be used to support intelligent

task scheduling strategies, which decide how to partition the model and allocate the

bandwidth between edge devices and the server.

At the task scheduling optimization stage, the EdgeSplit scheduler determines the best

54

4.3. Framework of EdgeSplit

partition point for each edge device and the bandwidth allocated to each edge device.

The optimization problem aims to minimize the training time for accelerating the

federated learning. It takes the following as inputs for the task scheduling algorithm:

1) the profiled average execution time of different model layers in all edge devices and

the FL server; 2) the profiled size of output for each layer of the model; 3) the total

bandwidth between the server and edge devices.

At the online split edge training stage, after getting the best partition points of the

given DNN model, the partial model for each edge device are determined. The server

first performs weights initiation and sends partial weights to edge devices, which will

then conduct partial model training with localized data. After finishing the local

feed forward process, edge devices will send the outputs of partial models to the

server, which is responsible for the rest of feed forward training. The server also

performs back propagation and sends back the gradients to edge devices for local

back propagation and local weights updates. The edge devices then use the updated

weights to perform the next batch of local feed forward. The process will be repeated

several times, subjecting to the number of batches in an epoch. Finally, edge devices

send back the updated weights, which will be aggregated in the server and go for

the next round of training until the model gets convergence. The steps of one-round

training of EdgeSplit are shown in Algo. 5.

Benefits. EdgeSplit is suitable for accelerating federated learning on heterogeneous

edge devices for three reasons.

• Resource-efficient. Edge devices only need to train part of the full model,

subjecting to the local computing capabilities and the bandwidth between an

edge node and the server. It enables training resource-greedy AI models on

resource-constraint edge devices, such as raspberry pi, which has only 1GB

memory.

• Communication-efficient. In EdgeSplit, only activations of the partition

55

Chapter 4. Scheduling Model Training Tasks

Algorithm 5: Procedures of a single round of EdgeSplit Training
Input: A Server S, DNN model W to be trained, M edge devices

E = {e1, e2, ..., eM}Mi=1

1 The server decides the model partition points for each edge device and sends the

initial weights Le1 , Le2 , ..., LeM ;

2 for epochs do

3 for batches do

// Feed forward

4 Each edge device performs feed forward of the partial model with

localized data;

5 Each device shares the outputs/activations of the partial models to the

server;

6 Server S finished the rest of the training;

// Back propagation

7 Server S performs back propagation and sends back the gradients to edge

devices;

8 Each edge device gets the gradients and does local back propagation and

updates its weights;

9 end

// Weights aggregation

10 Each edge device sends the updated partial weights to the server for

aggregation;

11 Server S collects and aggregates all updated weights from edge devices and

sends back the aggregated weights Lu
e1
, Lu

e2
, ..., Lu

eM
to edge devices;

12 end

13 return Model W

56

4.3. Framework of EdgeSplit

conv3a

conv3b

conv4a

conv4b

conv4c

conv5a

conv5b

conv5c fc6
0

2

4

6

8

10

D
at

a
S

iz
e

(B
y

te
s)

10
6

In-layer output data size

Input data size

Figure 4.4: Output data size varies across DNN layers. Random model partition can hardly generate

optimal execution latency.

layer and partial of full weights are transmitted between edge devices and the

server, which reduces network pressure and achieves fast training.

• No Accuracy Loss. EdgeSplit only offloads partial training tasks to the FL

server. It does not compress the data or modify any hyper-parameters of the

training. There is no accuracy loss of EdgeSplit compared to the original FL.

4.3.2 Challenges

Despite its great benefits, there are still several challenges to achieve efficient and

practical EdgeSplit.

First, determining the best partition points for a model on heterogeneous edge devices

is non-trial. As shown in previous works [50, 60], simple decoupling of a deep neural

network can hardly reduce its final execution latency in an edge-cloud deployment.

This is because the in-layer output data, to be transferred across the network, is vastly

different across the layers of a DNN model and is usually much larger than the original

input data, due to the existence of the convolutional layers. Fig. 4.4 shows the data

57

Chapter 4. Scheduling Model Training Tasks

size of some layers of a VGG16 model and the input data size with a 128 batch size

on the CIFAR-10 dataset. Moreover, the overall training time is not only related to

the execution latency of a single edge-server pair, but also largely influenced by other

edge devices with heterogeneous resources. The overall training time is determined

by the straggler. Furthermore, edge devices share the bandwidth. The allocated

bandwidth to each edge device will affect the efficiency of data transmission.

Second, high memory consumption of the server leads to scalability issue. When there

are 1, 000 edge devices participating in the federated learning, the server may have

to load 1, 000 server-side models in the memory, which will be used to handle the

activations from edge devices and complete the whole training process. Hosting such

large number of DNN models will dramatically increase the burden of the FL server.

It is suitable for cloud computing scenarios where the server is located in cloud data

centers and can leverage the high flexibility of cloud servers to address the server-side

pressure, i.e., allocating more cloud servers. However, for those less powerful servers,

for example, base stations and edge gateways, it is still a concern.

4.4 Methodology

In this section, we detail the solutions to address the aforementioned challenges for

achieving practical and efficient EdgeSplit.

4.4.1 Determine the Best Partition Points

The following shows details about the problem formulation and the task scheduling

algorithms to decide the best model partition points for each edge device.

58

4.4. Methodology

Table 4.1: List of notations

Symbol Descriptions

Xi,j binary variable, whether layer j of a model is the partition point

for edge device i

T f
i,j forward time from layer 1 to layer j on device i

T b
i,j backward time from layer j to layer 1 on device i

Sf
i,j forward time from layer j + 1 to end layer on the server

Sb
i,j backward time from end layer to layer j + 1 on the server

M total number of edge devices

N number of partitionable layers of a DNN model

Oj Output size of layer j of a given model

Bi bandwidth allocated to edge device i

Pj number of parameters from layer 1 to layer j

System Model. We consider a network consisting of M edge devices and a server.

The edge devices have heterogeneous computation capabilities, and the server is lo-

cated in the remote cloud and is much more powerful than edge devices in terms of

computation capability. The edge devices and the server are interconnected, and the

total bandwidth between the server and edge devices is denoted by B. Bandwidth

between an edge device i and the server is Bi, 1 ≤ i ≤M .

DNN models are usually with a layered architecture. Different layers have different

sizes of parameters and output data. We assume the model is with N feasible partition

layers. Oj represents the size of output/activations of layer j, 1 ≤ i ≤ N . Pj is number

of parameters from layer 1 to layer j. Other notations used in this thesis is shown in

Table. 4.1.

Problem Formulation. There are three main contributing components to the train-

ing time in each round: 1) forward computation time of local edge devices and the

59

Chapter 4. Scheduling Model Training Tasks

server; 2) back propagation time of the server and local edge devices; and 3) in-

termediate data transmission time to send/receive activations/gradients and weights

between edge devices and the server.

In the forward phase, the computation time T f
batch for edge device i in a batch is

calculated by

T f
batch =

N∑
j=1

T f
i,j ∗Xi,j +

N∑
j=1

Sf
i,j ∗Xi,j (4.1)

where Xi,j equals to 1 if layer j of the model is selected as the partition point for

edge device i. Otherwise, Xi,j equals to 0. In Eq. (4.1),
∑N

j=1 T
f
i,j ∗ Xi,j represents

the feed forward time on local edge device i, and
∑N

j=1 S
f
i,j ∗Xi,j represents the rest

of feed forward time performed on the server.

In the backward phase, the computation time T b
batch for edge device i is calculated by

T b
batch =

N∑
j=1

(Sb
i,j + T b

i,j) ∗Xi,j (4.2)

The communication time to send the activations to and get gradients from the server

is calculated by

T g
batch =

∑N
j=1Oj ∗Xi,j

Bi

∗ 2 (4.3)

where Oj ∗ Xi,j is the amount of activations (gradients) to be transmitted if layer

j is the partition layer for device i, i.e., Xi,j = 1. This is only one partition point

for a model on an edge device, hence
∑N

j=1Oj ∗Xi,j indicates the amount of activa-

tions/gradients for device i. The activations and gradients are assumed to have the

same size, as they are decided by the shape of the partition layer, i.e., the number of

neurons in this layer.

Note that, edge device i also has to receive the initial weights from the server at the

beginning of the training and sends back the updated weights when finishing a round

of training. The communication time to receive and send the weights is calculated by

60

4.4. Methodology

Eq. (4.4), where
∑N

j=1 Pj ∗Xi,j indicates the amount of weights to be sent for edge

device i.

Tw
batch =

∑N
j=1 Pj ∗Xi,j

Bi

∗ 2 (4.4)

Hence, the time for a round of training of edge device i is calculated by Eq. 4.5, where

b is the number of batches.

T r
i = b ∗ (T f

batch + T b
batch + T g

batch) + Tw
batch (4.5)

Objective. The problem of minimizing the training time of EdgeSplit by jointly

deciding model partition and bandwidth allocation is formulated as follows. We

denote this problem as P1. As shown in the objective function Eq. (4.6), the overall

training time is determined by maximum training time of edge devices, and our

objective is to minimize the maximum training time for acceleration. Eq. (4.8) is the

constraint. It ensures that there is one and only one partition point for the model on

an edge device. Eq. (4.9) indicates the allocated bandwidth to edge devices should

not exceed the total bandwidth.

P1: min
Xi,j ,Bi

max {T r
1 , T

r
2 , ..., T

r
i }

M
i=1 (4.6)

Subject to constraints:

Xi,j ∈ {0, 1}, ∀i, j (4.7)

N∑
j=1

Xi,j = 1, ∀i (4.8)

M∑
i=1

Bi ≤ B (4.9)

Problem Solution. There are both binary variable Xi,j and continuous variable Bi

in P1. The problem is hence a mixed integer non-linear problem, which is proven to

be NP-hard in literature and is hard to solve. To solve the problem, we first simplify

61

Chapter 4. Scheduling Model Training Tasks

the original problem P1 and then propose an efficient alternating algorithm to solve

it. T r
i can be simplified and rewritten as follows:

T r
i =

N∑
j=1

(Ai,j +
Cj

Bi

) ∗Xi,j (4.10)

where Ai,j = b ∗ (T f
i,j + Sf

i,j + Sb
i,j + T b

i,j) and Cj = (b ∗ Oj + Pj) ∗ 2. In Eq. (4.10),

Ai,j and Cj are deterministic and there are two variables Xi,j and Bi. We observe

that once fix Bi, there is an analytical solution for Xi,j, and once fix Xi,j, the original

problem P1 becomes a convex problem. Instead of relaxing Xi,j to a continuous

variable, which is usually adopted, we propose an alternative minimization method

to solve the problem, which alternatively search and optimize Xi,j and Bi. There are

three steps of the method.

Step 1: Fix Bi, then P1 can be solved directly. The corresponding analytical solution

of Xi,j is given by Eq. (4.11). It indicates that the selected partition layer j should

be able to minimize the one-round training time of an edge device.

Xi,j =

1, j = argmin

j
(Ai,j +

Cj

Bi
)

0 otherwise.
(4.11)

Step 2: Fix Xi,j getting from step 1, and the original problem P1 is transformed to

following problem P2.

P2: min
Bi

max {T r
1 , T

r
2 , ..., T

r
i }

M
i=1

M∑
i=1

Bi ≤ B
(4.12)

Note that, in problem P2, T r
i is convex and the objective function max {T r

1 , T
r
2 , ..., T

r
i }

M
i=1

is the stagnation point maximum function of M convex functions, which is also con-

vex. The constraint
∑M

i=1 Bi ≤ B is linear. Hence, problem P2 is a convex problem,

which can be solved by convex optimizers [17].

62

4.4. Methodology

Algorithm 6: Joint model partition and bandwidth allocation
Input: Profiled data T f

i,j, S
f
i,j, Sb

i,j, T b
i,j, Su

i,j, T u
i,j, Oj, Pj; total bandwidth B; D

and batch size b

Output: the model splitting strategy Xi,j and bandwidth allocation strategy Bi

1 Initialize Bi for all edge devices;

2 Initialize a large one-round training time Topt ← INF ;

3 for iterations do

// Step 1

4 Calculate X∗
i,j∗ by solving Eq. (4.11);

5 Fix model splitting strategy by assigning X∗
i,j∗ ← 1;

// Step 2

6 Solve convex problem P2 and get optimal objective value T r∗
i∗ and B∗

i for all

edge devices;

7 if Topt > T r∗
i∗ then

8 Topt ← T r∗
i∗ ;

9 Fix B∗
i for all edge devices;

10 else

11 break;

12 end

13 end

14 return X∗
i,j∗ , B∗

i

Step 3: We then repeat the alternative minimization process, i.e., step 1 and step 2,

for several times, and the solution of original problem P1 will be found.

The algorithm is shown in Alg. 6. More specifically, the input includes the profiled

model characteristics. We first randomly initialize Bi and Topt with an infinite value.

We then performs Stage 1 by fixing Bi (line 1-5). After getting Xi,j, we solve problem

P2 through a convex optimizer and get the solution of Bi (line 6). Finally, if the Topt

63

Chapter 4. Scheduling Model Training Tasks

keeps decrease, we continue iterate this process (line 7-12). Otherwise, we break this

process to get the optimal model splitting and bandwidth allocation strategy.

4.4.2 Alleviate Memory Overhead

In EdgeSplit, the partial models have to be loaded in the FL server, which will perform

the rest of the model training tasks. As shown in Fig. 5.2(a), suppose there are 3

edge devices and the full model to be trained has 10 layers. The partition points

of the 3 edge devices are 4, 6, 8, respectively. The FL server thereby has to load

three partial models with layer 5-10, 7-10, and 9-10. Hosting those partial models

and their corresponding weights in the FL server leads to high memory consumption.

We observe that when training 20 ResNet50 models at the server, the active peak

memory goes up to 220GB. Further, the computation resource of the server is not

fully utilized. For the partial model with layer 5− 10, when layer 5 is executed, layer

6− 10 consume the memory but wait for execution.

We notice that for those partial models, there are overlaps among the layers loaded

into the memory. For example, layer 7 − 10 are duplicated for partial model 1 and

partial model 2, and layer 9−10 are duplicated for partial model 2 and partial model

3. Hence, we propose a SplitPipe mechanism to reduce the memory consumption of

the FL server by pipelining the partial model and reusing the duplicated layers on

the server.

As shown in Fig. 5.2(b), the deepest partial model with layer 5−10 is split into several

small partial models, i.e., layer 5 − 6, layer 7 − 8, and layer 9 − 10. Those partial

models concurrently handle the tasks from client 1− 3. When layer 5− 6 finishes the

computation tasks from client 1, it forwards the activations of layer 6 to layer 7− 8,

which completes the computation task from client 2 and forwards the activations of

layer 8 to layer 9− 10. Layer 9− 10 finishes the task request from client 3 and then

handles the request from client 2. In such case, only layers 5 − 10 are fed into the

64

4.4. Methodology

5 6 7 8 9 10

7 8 9 10

9 10

Client 1

Client 2

Client 3

5 6 7 8 9 10Client 1

Client 2 Client 3

F3 F2 F1 B3 B2 B1

F2 F1 B2 B1

F1 B1Layer 5-6

Layer 7-8

Layer 9-10

3 2 1 1 2 3

2 1 1 2

1 1

F3 B3 F2 B2 F1 B1

F2 F1 B2 B1

F1 B1Layer 5-6

Layer 7-8

Layer 9-10

FL ServerClients

Partial Model 1 Partial Model 2 Partial Model 3

(a) Server-side program in EdgeSplit

5 6 7 8 9 10Client 1

Client 2 Client 3

Partial Model 1 Partial Model 2 Partial Model 3

Server

(b) SplitPipe mechanism in EdgeSplit

Figure 4.5: EdgeSplit with SplitPipe mechanism to reduce memory overhead by pipeling and reusing

duplicated layers of partial models.

memory and can greatly reduce the memory. The partial models LP to be loaded

in the server is indicated by Eq. (4.13), where X∗
i,j∗ is the model partition point for

edge device i determined by Alg. 6 and Index(·) is a function returning the index of

non-zero elements of a list.

LP = Index(
M∑
i=1

X∗
i,j∗) (4.13)

However, a partial model under the SplitPipe has to serve multiple task requests

concurrently. For example, in Fig. 5.2(b), layer 7 − 8 may have to handle the re-

quest both from client 2 and the request from its preceding layers, i.e., layer 5 − 6.

Different task requests correspond to different model parameters. To avoid loading

multiple partial model parameters simultaneously, which may lead to high memory

65

Chapter 4. Scheduling Model Training Tasks
5 6 7 8 9 10

7 8 9 10

9 10

Client 1

Client 2

Client 3

5 6 7 8 9 10Client 1

Client 2 Client 3

F3 F2 F1 B3 B2 B1

F2 F1 B2 B1

F1 B1Layer 5-6

Layer 7-8

Layer 9-10

3 2 1 1 2 3

2 1 1 2

1 1

F3 B3 F2 B2 F1 B1

F2 F1 B2 B1

F1 B1Layer 5-6

Layer 7-8

Layer 9-10

FL ServerClients

Partial Model 1 Partial Model 2 Partial Model 3

(a) SplitPipe with First-in-First-Serve

5 6 7 8 9 10

7 8 9 10

9 10

Client 1

Client 2

Client 3

5 6 7 8 9 10Client 1

Client 2 Client 3

F3 F2 F1 B3 B2 B1

F2 F1 B2 B1

F1 B1Layer 5-6

Layer 7-8

Layer 9-10

3 2 1 1 2 3

2 1 1 2

1 1

F3 B3 F2 B2 F1 B1

F2 F1 B2 B1

F1 B1Layer 5-6

Layer 7-8

Layer 9-10

FL ServerClients

Partial Model 1 Partial Model 2 Partial Model 3

(b) SplitPipe with Backward-First

Figure 4.6: Different task execution strategy of SplitPipe. Backward-First strategy reduces memory

overhead by releasing memory space of cached intermediate variables.

consumption, we adopt the dynamic model loading technique, where a partial model

saves the parameters into disk after handling a task request and then loads the new

parameters from disk to serve the new coming task request. We denote this strategy

as SplitPipe-RW.

SplitPipe-RW may lead to prolonged task executing time as the model parameters

need to be written into the disk and loaded into the memory. We additionally de-

sign a SplitPipe-BF mechanism to reduce memory overhead to avoid frequent I/O

operations, by optimizing the task execution procedure. An ideal case is that, after

finishing the request from client 2, the request from layer 5 − 6 just arrives. How-

ever, in practical systems, it may not be true, and the concurrent tasks may wait for

execution. Fig. 4.6(a) shows a naive task execution strategy, which adopts a first-

in-first-serve principle. F1, F2, and F3 represent the forward calculation of client 1,

client 2, and client 3, respectively. Similarly, B1, B2, and B3 indicate the back propa-

66

4.5. Experimental Evaluation

gation. In this case, partial models in Fig. 5.2(b) will maintain a task queue and serve

the requests in the queue one by one according to request arrival time. To further

reduce the memory overhead, the SplitPipe-BF mechanism adopt a backward-first

principle, as shown in Fig. 4.6(b). In SplitPipe-bf, the backward task has the high

priority. This is because in the forward propagation stage during model training, the

intermediate results, e.g., weights and activations of each layer, are required to be

cached and used for gradient calculation during back propagation. Those accumu-

lated intermediate results will lead to high active peak memory. The backward-first

strategy can release unnecessary intermediate variables in time and reduce memory

consumption. Taking F2 of Layer 9-10 (the forward calculation of the client 2 of layer

9-10) as an example. Before F2 is calculated, the reverse B3 of client 3 (the reverse

calculation of layer 9-10) is performed first. After the calculation is completed, the

intermediate variables of F3 can be released, so that F2 can reuse the memory space

of the intermediate variables of F3.

SplitPipe can efficiently reduce the memory consumption in the FL server, adapting

to cases when a resource less-abundant edge server at the network edge acts as the FL

server rather than the cloud servers in a data center. Moreover, SplitPipe is suitable

for the scenarios when there are multiple FL servers or one server with multiple

computing hardware, e.g., GPUs. In such scenarios, each partial model can easily

feed into a computing device, and fully utilize the computing resources.

4.5 Experimental Evaluation

4.5.1 Experimental Setup

Testbed. To test the system on a large-scale edge environment, we build a large-

scale hybrid testbed with high fidelity with both physical and virtual edge devices,

as shown in Fig. 4.7. We use Docker containers [5] to emulate virtual edge devices.

67

Chapter 4. Scheduling Model Training Tasks

FL Server

e1 e2 e3

Container . . .

Virtual Edge Devices

Physical Edge ServerPhysical Edge Device 1-3

Container

Figure 4.7: Hybrid testbed with physical and emulated devices

The Docker engine enables us to allocate different CPU resources to emulate resource

heterogeneity. While numerous virtual edge devices enable us to test in a large-

scale and network-flexible testing environment, the incorporation of physical nodes

guarantees the fidelity of the testbed. We leverage Linux Traffic Control to configure

the network topology and bandwidth among the edge devices and the FL server. We

vary the network link bandwidth, e.g., from 1Mbps to 10Mbps, to evaluate EdgeSplit

under different network conditions.

Regarding edge devices, we use raspberry pi, Nvidia Jetson Nano, Nvidia Jetson

Xavier NX, and Nvidia Jetson Xavier AGX to represent physical devices. Note that

the Jetson devices are equipped with embedded GPUs and are much more powerful

than raspberry pi. Among them, Xavier AGX has the best computation capability. A

powerful server equipped with Intel(R) Core(TM) i9-10900F CPU with 64GB memory

is used to act as the FL server to manage the edge devices and the training process.

In terms of virtual edge devices, we use an edge server to host Docker containers

acting as virtual edge devices. The edge server is equipped with Intel(R) Xeon(R)

Gold 6128 CPU with 192GB memory and 128 cores. Docker enables us to flexibly

configure the number of CPU cores and the memory of a container. The more CPU

cores, the more powerful the container is in terms of computation capability. The

specifications of the physical devices are shown in Table. 4.2.

68

4.5. Experimental Evaluation

Table 4.2: Specifications of heterogeneous physical devices

Name CPU Memory Performance

Raspberry Pi 1 core 1GB Low

Jetson Nano 6 cores 4GB Low

Jetson Xavier NX 6 cores 8GB Medium

Jetson Xavier AGX 12 cores 32GB Good

Edge Server 128 cores 192GB -

FL Server 64 cores 64GB High

Benchmark. The performance of experiments is highly relevant to the input data

and the models to be trained. To show the generality of EdgeSplit, we test various

DNN models, including LeNet [57], VGG-16 [98], ResNet-50 [33], and ResNet-101

[113]. They are classical and representative models and extensively used in both

academia and industry. Moreover, they have a variant depth of neural network from

5 to 101 layers, with distinct sizes of parameters and computation workloads.

We use three commonly used datasets, i.e., Fashion-MNIST, MNIST, and CIFAR-10.

MNIST dataset consists of handwritten digit images of 0 to 9 (i.e., 10 classes). Each

image has 28 × 28 pixels with a pixel value ranges from 0 to 255. It has a total of

60, 000 training and 10, 000 test samples. FashionMNIST consists of images of ten

clothing, including T-shirts, trousers, pullover, dress, and coat. Each sample has 28

× 28 pixel grayscale images the number of training and test samples equal to the

MNIST dataset. CIFAR10 consists of color images of ten objects (classes), including

airplane, cat, dog, bird, automobile, horse, and ship. It has 50, 000 training and 10,

000 test samples. Each sample in CIFAR10 has 32 × 32 pixels. For each dataset,

there are ten classes. We randomly assign 5 different classes for each edge device.

Baselines. We compare EdgeSplit with three methods.

• Vanilla Federated Learning (Vanilla FL). In this case, all training tasks are

69

Chapter 4. Scheduling Model Training Tasks

performed on local edge devices, and the server is only responsible for weights

aggregation as in FedAvg [73]. The bandwidth is equally shared among edge

devices.

• FL with adaptive bandwidth allocation (Adaptive FL). Adaptive band-

width allocation for accelerating FL is used in [86, 109]. In this case, training

tasks are also done locally. However, the bandwidth allocation is decided by

solving problem P2 in § 4.4.1. Adaptive FL is actually a special case of EdgeS-

plit, where the partition points for all edge devices are the last layer, indicating

the model is trained locally.

• EdgeSplit with fixed partition point (EdgeSplit-Fix). In this case, parti-

tion points for all the edge devices are the same, as in SplitFed [104]. We allocate

half of the layers on the edge devices and half of them on the FL server. The

bandwidth allocation strategy is the same as Adaptive FL.

4.5.2 Results and Analysis

We test the performance of the EdgeSplit and baselines under various situations. In

all the following experiments, the client selection ratio is set to be 1, which means all

edge devices participate in the training. The batch size is set to be 128 and the local

epoch is 1.

Overall Evaluation. We first test the one-round training time with four physical

devices, i.e., raspberry pi, jetson nano, jetson xavier NX, and jetson xavier agx. The

results are shown in Table. 4.3. We can see that, due to the memory constraints,

raspberry pi, jetson nano, and jetson xavier NX cannot train large DNN models, i.e.,

VGG16, ResNet50, and ResNet101. We observe that when training the ResNet50 and

ResNet101, the memory footprint can go up to 11GB, which exceeds the capacity of

those devices. However, EdgeSplit enables large model training on resource-constraint

70

4.5. Experimental Evaluation

devices by partitioning the model. Moreover, EdgeSplit also achieves training accel-

eration compared to vanilla FL and Adaptive FL. EdgeSplit achieves 1.52x speed

acceleration of one-round training when training LeNet on the MNIST dataset.

Table 4.3: One-round training time on physical devices (s)

Name Vanilla FL Adaptive FL EdgeSplit Acceleration

LeNet 370.2 369.4 243.4 1.52x

VGG16 - - 614.6 -

ResNet50 - - 3407.6 -

ResNet101 - - 2203.8 -

_ baselines cannot perform training due to limited memory

Table 4.4: Comparison of per-round training time. Best partition points and acceleration ratio to

vanilla FL are given.

Model Vanilla FL Adaptive FL EdgeSplit-Fix Ratio EdgeSplit Best Partition Points Ratio

LeNet 237.9 234.2 164.3 1.4x 134.8 [1,1,1,1,2,2,4,4] 1.76x

VGG16 969.6 953.2 384.2 2.5x 243.4 [1,1,3,3,13,13,13,13] 3.9x

ResNet50 1806 1800.4 696.6 3.0x 330.2 [1,1,1,1,2,2,49,49] 5.5x

ResNet101 1355.7 1352.3 693.6 1.9x 308.1 [1,1,1,1,1,1,8,8] 4.4x

We then use the hybrid testbed to emulate those heterogeneous edge devices to quanti-

tatively study the performance of EdgeSplit. We want to know how much acceleration

EdgeSplit can achieve. We set the memory of those emulated devices (i.e., containers)

as 12GB to train those large models. Moreover, we use the CPU cores ranging from

1 core to 5 core to emulate three types of virtual edge devices with heterogeneous

computation capabilities.

Table. 4.4 shows the per-round training time with 8 edge devices under 30Mbps

bandwidth. We can see that model partition methods, i.e., EdgeSplit-Fix and Edge-

Split, show obvious acceleration. This is because splitting the model can reduce local

training time and offload partial computational tasks to the powerful FL server for

71

Chapter 4. Scheduling Model Training Tasks

(a) LeNet on MNIST (b) VGG16 on CIFAR-10

(c) ResNet50 on FashionMNIST (d) ResNet101 on CIFAR-10

0 2000 4000 6000 8000 10000 12000 14000

Time(s)

10

20

30

40

50

60

70

80

90
A

cc
u

ra
cy

 (
%

)

Vanilla FL

Adaptive FL

EdgeSplit-Fix

EdgeSplit

0 1 2 3 4 5 6

Time(s) 10
4

10

20

30

40

50

60

70

80

A
cc

u
ra

cy
 (

%
)

Vanilla FL

Adaptive FL

EdgeSplit-Fix

EdgeSplit

0 0.5 1 1.5 2 2.5

Time(s) 10
5

10

20

30

40

50

60

70

80

90

A
cc

u
ra

cy
 (

%
)

Vanilla FL

Adaptive FL

EdgeSplit-Fix

EdgeSplit

0 5 10 15

Time(s) 10
4

0

10

20

30

40

50

60

70

80
A

cc
u

ra
cy

 (
%

)

Vanilla FL

Adaptive FL

EdgeSplit-Fix

EdgeSplit

Figure 4.8: Convergence Time v.s. Accuracy. EdgeSplit achieves fast convergence without accuracy

loss

acceleration. EdgeSplit outperforms EdgeSplit-Fix, achieving up to 5.5x acceleration

when training ResNet50, as it can adaptively adjust the partition points for each

edge device considering the heterogeneous local resources. We also observe Adaptive

FL achieves similar performance with Vanilla FL. This is because the bandwidth is

relatively abundant in this case, and the main bottleneck is from the computation.

More study about the influence of bandwidth is shown in later experiments. We also

train the models into convergence. Fig. 4.8 shows the accuracy changes with the

training time. EdgeSplit shows less training time in each round and can achieve fast

convergence without accuracy loss, compared to the various baseline methods.

Effects of Number of Edge Devices. We set the total bandwidth as 30Mbps.

As shown in Fig. 4.9, the one-round training time of baseline methods and EdgeSplit

72

4.5. Experimental Evaluation

8 20 32 48 60 72

Number of Edge Devices

140

160

180

200

220

240

O
n
e-

ro
u
n
d

 T
ra

in
in

g
 T

im
e

(s
)

Vanilla FL

Adaptive FL

EdgeSplit-Fix

EdgeSplit

8 20 32 48 60 72

Number of Edge Devices

200

400

600

800

1000

1200

O
n
e-

ro
u
n
d
 T

ra
in

in
g
 T

im
e

(s
)

Vanilla FL

Adaptive FL

EdgeSplit-Fix

EdgeSplit

8 20 32 48 60 72

Number of Edge Devices

500

1000

1500

O
n

e-
ro

u
n

d
 T

ra
in

in
g

 T
im

e
(s

)

Vanilla FL

Adaptive FL

EdgeSplit-Fix

EdgeSplit

(a) LeNet on MNIST (b) VGG16 on CIFAR-10

(c) ResNet50 on FashionMNIST (d) ResNet101 on CIFAR-10

8 20 32 48 60 72

Number of Edge Devices

400

600

800

1000

1200

1400

O
n

e-
ro

u
n

d
 T

ra
in

in
g

 T
im

e
(s

)
Vanilla FL

Adaptive FL

EdgeSplit-Fix

EdgeSplit

Figure 4.9: Impact of Number of Edge Devices

increases with the number of edge devices from 8 to 72. In this case, the average

bandwidth for each edge device decreases with the increasing number of edge devices,

which leads to prolonged parameter transmission and increased one-round training

time. However, compared to vanilla FL and adaptive FL, the increment of one-

round training time for EdgeSplit and EdgeSplit-Fix is much more apparent. This

is because they need to frequently transmit activations and gradients between edge

devices and the FL server. Massive edge devices lead to transmission congestion

and thus cause an increase in one-round training time. Things become worse for

EdgeSplit-Fix. As shown in Fig. 4.9 (a), (c), and (d), EdgeSplit-Fix consumes more

time to train the model when there are 72 edge devices. In this case, edge devices are

expected to burden more computational tasks as the average bandwidth is relatively

limited. However, EdgeSplit-Fix cannot adjust the amount of local computation as

the partition points are fixed.

73

Chapter 4. Scheduling Model Training Tasks

(a) LeNet on MNIST (b) VGG16 on CIFAR-10

(c) ResNet50 on FashionMNIST (d) ResNet101 on CIFAR-10

5 10 20 30 50

Total Bandwidth

180

200

220

240
O

n
e-

ro
u
n
d
 T

ra
in

in
g
 T

im
e

(s
)

Vanilla FL

Adaptive FL

EdgeSplit-Fix

EdgeSplit

5 10 20 3 0

Total Bandwidth

200

400

600

800

1000

1200

O
n

e-
ro

u
n

d
 T

ra
in

in
g

 T
im

e
(s

)

Vanilla FL

Adaptive FL

EdgeSplit-Fix

EdgeSplit

5 10 20 30 50

Total Bandwidth

500

1000

1500

O
n

e-
ro

u
n

d
 T

ra
in

in
g

 T
im

e
(s

)

Vanilla FL

Adaptive FL

EdgeSplit-Fix

EdgeSplit

5 10 20 3 0

Total Bandwidth

400

600

800

1000

1200

1400

O
n
e-

ro
u
n
d
 T

ra
in

in
g
 T

im
e

(s
)

Vanilla FL

Adaptive FL

EdgeSplit-Fix

EdgeSplit

0 5

0 5

Figure 4.10: Impact of Total Bandwidth

We can also see from Fig. 4.9(d) that the one-round training time of EdgeSplit and

adaptive FL is the same when the edge devices are more than 48. It shows that the

two methods yield the same model splitting and bandwidth allocation strategy. This

is because the data transmission cost is much higher in this case. EdgeSplit tends

to choose local model training rather than splitting the model. It also shows that

adaptive FL is a special case of EdgeSplit, where the whole model is trained locally.

Overall, the performance of EdgeSpit should not be worse than adaptive FL.

Effects of Total Bandwidth. We set the number of edge devices as 20. As shown in

Fig. 4.10, the one-round training time decreases with the increasing total bandwidth

as the data transmission cost becomes smaller. The speed acceleration ratio becomes

larger as the total bandwidth increases. For example, the acceleration ratio is about

1.3x under 5Mbps and then goes up to 3.1x under 50Mbps condition for VGG16. A

similar trend is also observed for ResNet50 and ResNet101. We also observe that in

74

4.5. Experimental Evaluation

some cases, the acceleration ratio is about 1x, i.e., for ResNet101 when bandwidth is

below 10Mbps. In such a case, the local computation time is the dominant factor,

and EdgeSplit tends not to split the model. It means the model training is performed

locally and the improvement is due to the bandwidth adjustment. Moreover, we

see that adaptive FL is much better than vanilla when the bandwidth is relatively

low. The gap between the two methods becomes small with the increasing total

bandwidth. For example, the gap in Fig.4.10(b) changes from 96s to 10s with the

bandwidth increasing from 5Mbps to 50Mbps. This is because adaptive FL can

efficiently utilize the bandwidth and allocate the bandwidth across edge devices when

the bandwidth is low. Compared to adaptive FL, EdgeSplit not only optimizes the

bandwidth allocation but also optimally decides the model splitting, which shows

apparent training acceleration.

Effects of SplitPipe We study the effects of SplitPipe on the memory usage and

training performance of EdgeSplit. We set the number of edge devices as 8 and the

total bandwidth as 30Mbps.

Table 4.5: Performance of EdgeSplit with different serverpipe mechanisms. Memory: the active

peak memory footprint within the training; Round-Time: the average round time in the training.

LeNet VGG16 ResNet50 ResNet101

Memory(GB) Round-Time(s) Memory(GB) Round-Time(s) Memory(GB) Round-Time(s) Memory(GB) Round-Time(s)

Split-NonPipe 0.2 124.6 8.81 218.1 87.9 283.5 14.336 285.6

SplitPipe-RW 0.038 136.1 1.47 245.2 15.44 333.4 2.46 312.6

SplitPipe-BF 0.163 134.8 6.93 243.4 64.4 330.2 10.12 308.1

We compare the performance of EdgeSplit with three mechanisms. Split-NonPipe in-

dicates EdgeSplit without SplitPipe approach, where the partial models are separately

loaded in the Fl server, as shown in Fig. 5.2(a). SplitPipe-RW represents EdgeSplit

with SplitPipe mechanism adopting dynamic model loading strategy, and SplitPipe-

BF indicates Backward-First principle. As shown in Table 4.5, the memory consump-

tion of SplitPipe-BF and SplitPipe-RW is much lower than that of Split-NonPipe.

SplitPipe-BF achieves around 18.6%, 21.3%, 26.7%, and 29.4% less active peak mem-

75

Chapter 4. Scheduling Model Training Tasks

ory consumption than SplitPipe-Non when training LeNet, VGG16, ResNet50, and

ResNet101, respectively. This is because the SplitPipe approach only needs to load

sequential partial models into the memory, and it adopts a Backward-first principle

when handling the concurrently arriving task request, which releases unnecessary in-

termediate results in the training and hence reduces memory consumption. We also

observe that though the active peak memory of SplitPipe-RW and SplitPipe-BF is

obviously less than that of Split-NonPipe, performance of SplitPipe-RW is better than

SplitPipe-BF. This is because SplitPipe-RW adopts dynamic model loading strategy

whose memory consumption is approximate to that of the longest partial model with

the most layers.

In terms of per-round training time, Split-NonPipe outperforms SplitPipe methods.

Split-NonPipe achieves about 7%, 10.3%, 14.1%, and 7.3% less average round-time

than SplitPipe-BF when training LeNet, VGG16, ResNet50, and ResNet101, respec-

tively. The reason is that a partial model in the SplitPipe schema has to burden the

training task of multiple edge devices simultaneously. The high workload may cause

the tasks in the queue waiting to be processed, and thus lead to a long per-round

training time. Though SplitPipe-RW has to frequently write and read model weights

from the disk, its performance is only slightly worse than SplitPipe-BF, achieving

around 1.3s, 1.8s, 3.2s, and 4.5s more average round-time. This is because the model

parameters saving and loading time are much lower than the training time. We ob-

serve that the model saving and loading time is about 0.2s for the ResNet50 model

in the server.

Overhead The main overhead of the system comes from the running time of the

task scheduling algorithm. We test the algorithm execution time with the change of

number of edge devices. The algorithm is running on the FL server, which generate

the model splitting and bandwidth allocation strategy. As shown in Fig. 4.11, for all

four models, the algorithm execution time increases with the number of edge devices.

Our algorithm is simple and efficient. When there are 30 edge devices, the running

76

4.6. Conclusion

10 20 30 50 60 70 100

Number of Edge Devices

0

0.5

1

1.5

2

2.5

3

O
v
er

h
ea

d
 (

s)

LeNet

VGG16

ResNet50

ResNet101

Figure 4.11: Impact of number of edge devices on system overhead.

time is approximately 1s. Even though there are 100 edge devices, the execution time

will not exceed 3s, which can be ignored compared to the training time of the four

models.

4.6 Conclusion

In this work, we propose EdgeSplit to accelerate federated learning on heteroge-

neous and resource-constraint edge devices. Through partitioning the full DNN model

adapting to the heterogeneous edge resources, EdgeSpit enables large model training

on low-resource edge devices and offloads part of the training task to the powerful FL

server to reduce model training time. Experiments under various settings show the

performance of EdgeSplit is not worse than vanilla FL and its variant. When there is

relatively abundant average bandwidth, EdgeSplit can achieve apparent acceleration

by jointly deciding the optimal model partition point and bandwidth allocation for

each edge device.

77

Chapter 5

Scheduling Model Inference Tasks

In this chapter, we design and develop an edge-native task scheduling system for

collaborative edge computing. This chapter is organized as follows. We present an

overview of this work in Section 5.1. Section 5.2 summarizes the related work and

articulates the motivations of this work. Section 5.3 presents the system design of

distributed and collaborative edge intelligence for trustworthy and real-time video

surveillance. Section 5.4 formulates the joint stream mapping and task scheduling

problem and elaborates on the proposed heuristic algorithm. Section 5.5 shows the

system implementation and performance evaluation. Finally, Section 5.6 concludes

this chapter.

5.1 Overview

Nowadays, cameras have been widely deployed in public and private areas, such as

traffic intersections, campuses, and grocery stores [129]. Driven by the recent break-

through in machine learning, especially deep learning, we can perform advanced video

analytics from the camera streams with deep learning models [76]. Collaborative video

surveillance aims to analyze the live video streams from the distributed cameras to

78

5.1. Overview

support a wide range of applications, including traffic control [68], security monitor-

ing, and object re-identification [4]. Because many of these applications have high

requirements for real-time responses, it is highly demanded to achieve low-latency

and high-throughput video stream processing.

There are many existing cloud-based video surveillance solutions [49]. However, these

solutions are centralized and reactive [125]. More specifically, video streams collected

from different cameras are sent to a centralized cloud server for storage and analytics

[26]. Due to the massive data transmission among cameras and servers, such a cloud-

based approach incurs bandwidth congestion, single point of failure, low scalability,

and high latency. Furthermore, the cloud-based solutions raise privacy concerns,

especially when the videos are confidential, e.g., smart home and warehousing [19].

In the past few years, there have been emerging works of edge computing-based video

surveillance that can reduce latency, improve scalability, and provide better services

compared to centralized surveillance solutions. This is because the computation tasks

are pushed to network edges closer to the data sources [91]. Some existing edge

computing-based video analytics solutions have considered leveraging the spatial and

temporal correlations among different cameras to fully discover the correlation among

distributed cameras [45]. There are also proactive video surveillance solutions for

vehicle tracking using edge devices [115]. Some works further considered the aspects

related to workload balancing to improve the performance of each edge device and

the whole video analytics applications [120] [41].

To summarize, existing works mainly consider sending the video streams to a nearby

edge computing device, which may lead to overloading and degrade application per-

formance dramatically [123]. This is because the video analytic applications are

usually computation-intensive while multiple video streams share the limited com-

putation resources of a single edge device [124]. Some works handle the resource

constraints of a single edge device by offloading some computation tasks to the re-

mote cloud [49] [14]. However, it bears unpredictable latency and limited bandwidth,

79

Chapter 5. Scheduling Model Inference Tasks

Table 5.1: Comparison of the related work of video analytics

Video Analytics

Solutions
Architecture

Adaptive

Workload

Model

Offloading

Stream

Scheduling

VideoStorm [121] Edge-Cloud ✗ ✗ ✗

Chameleon [46] Edge-Cloud ✗ ✗ ✗

NoScope [49] Edge-Cloud ✓ ✓ ✓

STVT [115] Edge-Cloud ✓ ✓ ✓

LAVEA [119] Edge-Edge ✓ ✓ ✓

VideoEdge [41] Edge-Edge ✓ ✓ ✓

Distream [120] Edge-Edge ✓ ✓ ✓

BCEI (this work) Edge-Edge ✓ ✓ ✓

and privacy concerns [26]. Instead, this work leverages distributed and collaborative

edge intelligence, where geo-distributed edge devices collaborate by sharing compu-

tation and data resources in an edge network to accomplish the video surveillance

tasks.

This thesis proposes a distributed and collaborative edge intelligence (DCEI) ap-

proach to support trustworthy and real-time video surveillance. The proposed solu-

tion enables proactive video surveillance, where multiple cameras stream the video

to different edge devices sharing computation resources and data. The key challenge

is how to design approaches that can efficiently sense the status of underlying edge

resources and intelligently assign the computation tasks among the edge devices. We

thereby design an online collaborative scheduler, taking the status of the resources

of the distributed edge devices and the task characteristics as input and generating

the distributed task execution policies. We formulate a joint stream mapping and

task scheduling problem, which maps the video stream and distributes the compu-

tation tasks to multiple edge devices. By solving the problem, the scheduler decides

80

5.1. Overview

which edge device the video stream should be assigned, how the tasks should be

partitioned, and where to execute the distributed tasks. Our system enables effi-

cient computation offloading and significantly improves resource utilization for edge

computing-based video surveillance. We have deployed a real-world prototype of

pedestrian re-identification to examine the practicability and high efficiency of DCEI.

More specifically, we deploy 7 Internet Protocol (IP) cameras at different locations

in an indoor environment to run the video surveillance task. These cameras send

video streams to a cluster of geo-distributed edge devices. The results show that the

proposed system can achieve nearly real-time performance. We have compared DCEI

with several benchmark solutions concerning various performance metrics, including

throughput and latency. The results show that DCEI outperforms the state-of-the-art

significantly.

The main contributions of this section are as follows:

• We propose distributed and collaborative edge intelligence (DCEI) approach,

which is the first to study the collaboration among geo-distributed edge devices

and generic for applications demanding trustworthiness and low latency.

• We apply DCEI for trustworthy and real-time video surveillance, in which we

have studied a joint stream mapping and task scheduling problem for the first

time and solved it using a heuristic algorithm.

• We deploy a real-world prototype of trustworthy and real-time video surveil-

lance and conduct extensive performance evaluation. The experimental results

indicate the superiority of DCEI over the benchmark approaches in terms of

latency reduction and throughput improvement.

81

Chapter 5. Scheduling Model Inference Tasks

5.2 Related Work

Real-time video analytics has been considered a killer application of edge comput-

ing [3]. Existing edge computing-based video analytics solutions mainly rely on the

cooperation among cameras, edge devices, and cloud servers to accomplish real-time

data analytics for computation-intensive and bandwidth-hungry video surveillance ap-

plications. Among them, solutions based on edge to cloud collaboration [14,26,49,125]

and edge to edge collaboration [41,77,119] have attracted most attention.

Edge-Cloud collaboration. Edge-cloud collaboration-based solutions can provide am-

plest computation resources owing to the participation of the cloud platform. Many

initial efforts on video analytics have considered edge-cloud collaboration. Zhang et

al. [121] proposed VideoStorm, which leverages an online scheduler on a cloud server

cluster to process queries of thousands of video streams sent by edge devices. Other

works also study workload partition between edge and cloud. [14] divided the ResNet

Model into three parts, which are deployed at the end, edge, and cloud, respectively.

The three parts collaboratively perform the inference tasks submitted by users. [125]

adopted serverless-based infrastructures to facilitate fine-grained and adaptive parti-

tioning of cloud-edge workloads.

Although edge-cloud collaboration benefits from the paradigms of both cloud com-

puting and edge computing, it still suffers from unpredictable latency because of

the limited bandwidth between edge and cloud. Moreover, sending the confidential

video data to the cloud may cause privacy issues. Such solutions do not explore the

potential of collaboration among edge devices to share resources.

Edge-Edge collaboration. Some works in literature have considered edge-to-edge col-

laboration, where each edge device collaborates with others to provide surveillance

services jointly. Neff et al. [77] proposed REVAMP2T, a pedestrian re-identification

algorithm that works on an encoded feature representation for each identified individ-

ual. Because no raw figure of pedestrians is shared among edge devices, the concern

82

5.2. Related Work

Scheduler Database

Master node
Connection between the

master node and edge device

Connection between

cameras and edge device

Pedestrian trajectory

Camera

Camera

Camera

Camera

Monitor

Database

Executor

Edge device

Monitor

Database

Executor

Edge device

Monitor

Database

Executor

Edge device

Monitor

Database

Executor

Edge device

Controller

Figure 5.1: System model of distributed and collaborative edge intelligence system for video surveil-

lance

of privacy is dramatically reduced. Another work in [44] also showed the advantage

of leveraging spatial-temporal correlation to scale the video analytics systems to large

camera deployments. The work in [47] presented the abstraction of camera clusters to

provide video analytics service. However, those existing works only support data-level

cooperation, and the distributed computation resources are not fully utilized.

Few attempts have been made to share computation resources among multiple edge

devices for video analytics. Yi et al. have designed LAVEA, a low-latency video edge

analytic system that leverages nearby edge devices to reduce the overall task comple-

tion time [119]. However, this work fails to consider collaborative video surveillance,

in which there are multiple video streams from different locations. Recent work Dis-

tream [120] adaptively balances the workloads across multiple intelligent cameras and

partitions the workloads between the smart cameras and the centralized edge clus-

ter. However, the edge devices in the cluster are not geo-distributed and deployed

in a centralized way, which ignores the data transmission cost and network topology

among edge devices.

Compared to existing works, this work enables collaboration among geo-distributed

83

Chapter 5. Scheduling Model Inference Tasks

edge devices by sharing both computation and data resources. Moreover, it considers

the stream transmission cost in the edge network and optimizes the real-time perfor-

mance of video analytics applications by jointly scheduling the camera streams and

the machine learning (ML) models. Table 5.1 shows a comparison of related works

on video analytics with our method.

5.3 System Design

This section first introduces the system model to deploy trustworthy and real-time

video surveillance applications. Then, we discuss the system’s key components to

manage edge resources and distribute the computation tasks among geo-distributed

edge devices.

5.3.1 System Model

Fig. 5.1 depicts the overall architecture of our proposed distributed and collaborative

edge intelligence approach. Multiple cameras are deployed to perform trustworthy

and real-time video surveillance tasks in a large-scale area. Unlike the specialized in-

telligent cameras that can perform some computation-intensive video analytical tasks,

we use low-cost commodity-off-the-shelf cameras whose computation capabilities are

meager. Several geo-distributed edge devices with heterogeneous computation ca-

pabilities are deployed near the cameras to reduce the data transmission cost and

provide near real-time response. Edge devices and cameras are interconnected within

a network so that each camera can stream the videos to any edge device. Also, the

computation tasks and data can be shared within the edge cluster.

Unlike cloud-based and traditional edge-based solutions, our system creates a shared

resource pool with geo-distributed edge devices and cameras within a network. The

benefits of the shared resource pool are as follows:

84

5.3. System Design

• Efficient resource sharing and load balancing. With a shared resource pool,

the computation tasks can be migrated among edge devices to achieve load

balancing and reduce the risk of single-node failure.

• Flexible access to input video streams and intermediate data. Instead of con-

necting one edge device with one camera, each device in the cluster can process

multiple video streams, which facilitates effective data sharing.

• Optimized scheduling to accelerate inference. The computation tasks can be

partitioned and scheduled among edge devices to reduce the execution time by

jointly considering the computation and networking resources.

5.3.2 System Components

Our system enables distributed intelligence among geo-distributed edge devices, which

share both computation resources and data to accomplish the video surveillance tasks.

The key is to sense the distributed edge resources and intelligently distribute the com-

putation tasks among the resource-constraint edge devices, considering the underlying

edge resources’ task characteristics and status.

The system adopts a master-client architecture, where the master is responsible for

monitoring the edge resource status and scheduling decisions on partitioning and

distributing the computation tasks among the edge devices. The key components of

the system and their roles are described below.

• Scheduler. The scheduler runs at the master node and accesses the cluster

status by communicating with the controller, which continuously monitors the

workload and available resources of the cluster, such as network topology, data

transmission rate, idle computation resources, and storage capacities, of each

edge device. The scheduler generates task partition and resource allocation

policies with a scheduling algorithm running inside.

85

Chapter 5. Scheduling Model Inference Tasks

• Controller. It monitors the edge resources by communicating with the monitors

on edge devices. Also, it manages the edge resource by messaging the task

partition and resource allocation policies to edge devices.

• Executor. The executor receives the task execution policies from the controller

and executes the assigned tasks.

• Monitor. It monitors the networking and computation status of the edge device

and sends it to the controller.

• Database. Each edge device has its local database instead of directly sending

the inference results to the master node. The local database should be synchro-

nized periodically with the global database on the master node to facilitate the

distributed task execution and data sharing.

The general workflow of the system is described as follows. The computation tasks will

be submitted to the scheduler, which generates the task execution policies by jointly

considering the performance metrics of the task, available computation, storage, and

networking resources of the edge devices. The policies decide how the task should be

partitioned and where the task should be executed. More details will be presented

in Sec. 5.4. The run-time characteristics of tasks and the resource status will be sent

back to the controller by the monitor and used for future decision-making.

5.4 Joint Stream Mapping and Task Scheduling for

Pedestrian Re-identification

We showcase the DCEI system with an edge video analytics application, namely

pedestrian re-identification, empowered by deep learning models. We formulate a

joint stream mapping and task scheduling problem to optimize the application latency,

considering where to schedule the video stream and deploy the deep learning models.

86

5.4. Joint Stream Mapping and Task Scheduling for Pedestrian Re-identification

Frame Ti Frame Ti Frame TjFrame Ti

Person ID: Q

Deep learning for

re-identification

Database

Edge device n

Scheduler

Edge device 1

Edge device 2

Edge device 3

Edge device n

Tracking

Re-

identification

Person in

Frame Ti-1

Person in

Frame Ti+1

Person ID: unknown Person ID: unknown

Pedestrian re-identification pipeline

Person ID: Q

Person ID: Q

……

Pedestrian

detection

Figure 5.2: Model pipeline and task offloading of pedestrian re-identification

In this section, we first introduce the pedestrian re-identification pipeline. Then,

we illustrate the benefits of jointly considering stream mapping and task scheduling.

We mathematically formulate the problem and introduce the optimization algorithms

based on this.

5.4.1 Pedestrian Re-identification Pipeline

We target those applications that employ state-of-the-art neural network models to

conduct various challenging video analytic tasks. Examples include object attribute

recognition and object re-identification, human activity recognition, and many others

[131]. Those applications typically adopts a cascaded architecture that leverages a

pipeline of neural network models to accomplish the video analytic task [120]. The

pipeline usually consists of an object detection model followed by some task-specific

models to perform various tasks on the detected objects within a video frame, e.g.,

object type, color, and shape.

Without loss of generality, we use the pedestrian re-identification application as an ex-

ample. Pedestrian re-identification aims to associate images of the same person taken

87

Chapter 5. Scheduling Model Inference Tasks

from different or the same cameras at different times. It is an essential technique

in video surveillance and has been widely applied in security areas such as pedes-

trian tracking, criminal event detection, and children remote monitoring [77] [4]. As

shown in Fig. 5.2, a general process of pedestrian re-identification can be abstracted

into a pipeline consisting of three phases, i.e., pedestrian detection, tracking, and

re-identification. A detection model will first process an input image to detect the

individual’s location, and the identified individual is tracked by monitoring the tra-

jectory. Afterward, discriminative features are extracted from the picture of tracked

pedestrians for comparison and re-identification. The pedestrian is then annotated

with the re-identification result during the later continuous tracking. The pipeline

shows that the re-identification model is not frequently called because the individual

will be assigned an ID and continuously tracked by the tracker once an individual is

re-identified.

Fig. 5.2 also shows an example of distributed task execution policies. The pedestrian

re-identification application is partitioned into pedestrian detection, tracking, and

re-identification tasks. While the detection task and tracking are executed on edge

device 1, the re-identification task is executed on edge device n. Edge device 1 sends

the intermediate data to edge device n to accomplish the overall task.

We use two deep learning models for pedestrian detection and re-identification. The

execution time of pedestrian tracking is much less than detection and re-identification

as we do not adopt the computation-intensive deep learning (DL) models for tracking.

Hence, we only consider the detection and re-identification models in the problem

formulation part.

88

5.4. Joint Stream Mapping and Task Scheduling for Pedestrian Re-identification

5.4.2 Motivations of Joint Stream Mapping and Task Schedul-

ing

This section describes a concise example to show the motivations of joint scheduling

of the video streams and deploying ML models on the edge devices. We consider a

network consisting of three edge devices that are fully connected. The application

model consists of two dependent tasks, i.e., pedestrian detection and re-identification,

where we assume each task takes 1 unit of time to be executed on each device. There

are four cameras that can stream the videos to any edge device. The first scheduling

problem is to decide on the edge device where each camera stream the video. Once the

video is streamed to an edge device, the device will use the ML model for the detection

task to detect any individual within the frame. The other ML model is to identify

the detected individual for the re-identification task. More specifically, the second

scheduling problem is to decide which edge device to offload the re-identification

ML model. The scheduling problems’ decisions are based on resource availability,

bandwidth constraints, and computation workload.

The scheduling result shown in Fig. 5.3(a) is based on randomly deciding the mapping

of video streams from cameras to edge devices and locally executing the ML models

in the pedestrian re-identification application. Such random scheduling of camera

streams and no offloading leads to the possibility of multiple cameras streaming the

video to one overloaded edge device, while other edge devices can either be lightly

loaded or even have no workload. In our example scenarios, three cameras (a, b, c)

stream video to edge device 1, while camera d streams video to edge device 2, and there

is no video streamed to edge device 3. The completion time for this random scheduling

is high (6 units in our example) and not optimal as it leads to inefficient usage of device

resources. An improvement over the random scheduling is shown in Fig. 5.3(b), where

we schedule the video streams from cameras while executing the ML models locally

on the edge devices. The scheduling of camera streams shown in Fig. 5.3(b) leads to a

89

Chapter 5. Scheduling Model Inference Tasks

Devices

Time

4 units

D2

D3

a

b

d

b

a

d

cc

Devices

D1

Time

D2

D3

ab
a

c

dd

4.5 units

b

c

Devices

D1

Time

3.5 units

D2

D3

a

d

b

a

d

cc

b

Devices

D1

D2

D3

a
b
c

b
a

c

dd

6 units

Time

(a) (b)

(c) (d)

D1

Figure 5.3: A motivation example of joint stream mapping and task scheduling: (a) random camera

streams and local execution; (b) scheduling camera streams and local execution; (c) random camera

streams and offloading ML models; (d) joint scheduling of camera streams and offloading ML models.

reduction in the completion time of the application from 6 to 4 units as it considers the

transmission time between cameras and edge devices. Another alternative approach

for improvement over the random scheduling is to make a scheduling decision on

offloading the ML model depending on the resource availability instead of locally

executing all the ML models as shown in Fig. 5.3(c). The scheduling result, shown in

Fig. 5.3(c), also leads to a reduction in completion time from 6 to 4.5 units compared

to random scheduling.

Although scheduling camera streams or offloading ML models separately leads to

some improvements in terms of task completion time, there are still further spaces

for efficiently utilizing the geo-distributed edge resources. Fig. 5.3(d) shows a joint

approach of scheduling camera video streams and offloading the ML models, which

leads to the best performance in terms of application completion time compared to the

random or other scheduling approaches. We have designed an online scheduler in the

90

5.4. Joint Stream Mapping and Task Scheduling for Pedestrian Re-identification

proposed DCEI system to enable joint scheduling of camera streams and offloading

ML models in the pedestrian re-identification application scenario. The following

sections show the problem formulation and proposed solution for this joint scheduling

problem in a dynamic distributed edge computing environment.

5.4.3 Problem Formulation

A random mapping of the camera video streams to edge devices leads to an un-

balanced workload and inferior performance. We formulate a joint stream mapping

and task scheduling problem to improve resource utilization and boost application

performance.

We assume a quasi-static slotted time model, where it is assumed that in each time

slot t, the controllers are aware of the different network and device metrics required

to make the decision. The metrics for different resources are assumed to be constant

in a time slot. The system consists of K cameras. Each camera can stream the video

to any edge device in the cluster. The network and application model can be defined

as:

Network model. The network is modelled as a graph G = (V,E), where V = {i|1 ≤

i ≤M} is the set of edge devices and E = {eij|i, j ∈ V } is the set of links connecting

different devices. The weight of each device is PSi, representing the computation

capacity of the device i. Each device also has a maximum resource of Ri
max and

the available resource is indicated by Ri
avail. We only consider the memory in this

section for the various resources of edge devices, e.g., CPU, memory, and storage. The

weight of link eij represents the bandwidth between devices i and j. The devices and

network links can be heterogeneous in computation capacity and bandwidth capacity,

respectively. The data rate for transmission between any two edge devices is Rij. The

video transmission time between camera k and edge device i is Tik.

Application model. The application model for the pedestrian re-identification applica-

91

Chapter 5. Scheduling Model Inference Tasks

tion studied in this section is a sequential DAG of two dependent tasks, i.e., detection

and re-identification. The computation load for detection and re-identification tasks

corresponding to camera stream k is CL1,k and CL2,k respectively. The dependent

data between the two tasks is Dk
1,2. Resource request of the detection model and

re-identification model is Rdet
req and Rreid

req , respectively.

Decision variables. Two decision variables correspond to mapping camera streams

and scheduling DL models. The first decision variable xik is binary, which is equal

to 1 if camera video stream k is scheduled to device i. It also indicates that the

detection task is deployed on device i. Another decision variable yik is also binary,

which is equal to 1 if the re-identification task corresponding to camera video stream

k is scheduled to device i.

Cost model. For each camera stream, either both the detection and re-identification

tasks can be locally executed, or the re-identification task can be offloaded to another

device. The time for executing the models on each device is dependent on the overall

workload and available computation capacity.

The total resource request on device i, notated as Ri, can be calculated as follows:

Ri =
K∑
k=1

(xik · CL1,k + yik · CL2,k) (5.1)

The overall processing time for camera stream k, i.e. Lk, can be calculated as:

Lk =
M∑
i=1

xik · Tik +
M∑
i=1

xik ·
CL1,k

PSi

+
M∑
j=1

yjk ·
CL2,k

PSj

+
M∑
i=1

M∑
j=1

xik · yjk ·
Dk

1,2

Ri,j

· σ(i− j)

∀j ∈ V, k ∈ {1, 2, · · · , K}

(5.2)

where σ(·) is an indicator function. Only when · is zero, σ(·) equals to 1, otherwise

92

5.4. Joint Stream Mapping and Task Scheduling for Pedestrian Re-identification

σ(·) equals to 0.

Objective function. The objective function of the problem is to minimize the sum of

completion time for all applications from camera streams.

min
xik,yik

K∑
k=1

Lk (5.3)

Constraints:

Ri ≤ Ri
max, ∀i ∈ V (5.4)

M∑
i=1

xik = 1, ∀j ∈ V, k ∈ {1, 2, · · · , K} (5.5)

M∑
j=1

yik = 1, ∀i ∈ V, k ∈ {1, 2, · · · , K} (5.6)

xik = {0, 1}, ∀i, j ∈ V, k ∈ {1, 2, · · · , K} (5.7)

yik = {0, 1}, ∀i, j ∈ V, k ∈ {1, 2, · · · , K} (5.8)

Eq. 5.4 indicates that the resource request on an edge device cannot exceed its max-

imum resource. Eq. 5.5 and Eq. 5.6 show that the detection model and the re-

identification model of a stream can only be deployed on one edge device. The formu-

lated optimization problem is nonlinear integer programming (NLP) problem. The

problem is NP-hard because the offloading problem can be reduced to a generalized

assignment problem, proven to be NP-hard in literature.

5.4.4 Optimization Solution

We have proposed a joint stream mapping and task scheduling heuristic algorithm

(JSTSH) that determines where to schedule each video stream and which edge device

to allocate the detection and the re-identification task. The algorithm is developed

considering two main principles.

93

Chapter 5. Scheduling Model Inference Tasks

Algorithm 7: Joint Stream Mapping and Tasks Scheduling Heuristic (JSTSH)
Input: Video stream V = {ki}Ki=1, {PSi}Mi=1 and {Rj

avail}
M
i=1

Output: Video and task allocation policy xik and yik

1 Create index I of streams in descending order of workload;

2 for t← 1 to K do // Stage 1

3 k ← I(t);

4 for each device i← 1 to M do

5 if Rj
avail > Rdet

req then

6 Calculate the execution time tiexec = Tik +
CL1,k

PSi
;

7 end

8 end

9 Calculate device i∗ with the shortest execution time i∗ = mini{tjexec};

10 xi∗,k ← 1, update Ri∗ for device i∗;

11 end

12 for t← 1 to K do // Stage 2

13 k ← I(t);

14 for each device i← 1 to M do

15 if Rj
avail > Rreid

req then

16 Calculate the intermidiate data transmission time ticomm = xik ·
Dk

1,2

Ri,j
;

17 Calcualte the inference time of detection model T i
reid =

CL2,k

PSi
;

18 Calculate the execution time tiexec = ticomm + tireid;

19 end

20 end

21 Calculate device i∗ with the shortest execution time i∗ = mini{tjexec};

22 Add i to candidate list Mdeployed;

23 if Vrest ̸= ∅ then

24 Schedule remaining streams to the device that satisfies Eq. 5.9;

25 end

26 Update Ri∗ for device i∗ yi∗,k ← 1;

27 end

28 return xik, yik, i = 1, 2, · · · ,M , k = 1, 2, · · · ,K

94

5.4. Joint Stream Mapping and Task Scheduling for Pedestrian Re-identification

• High workload first. Generally, the latency of handling video streams with high

workloads is much larger than those with moderate workloads. Suppose we

allocate edge resources to the video streams with a moderate workload first. In

that case, those video streams with a high workload may suffer from prolonged

latency when the rest of the edge resources are inadequate, further leading to

increased average latency of all video streams. Hence, we leverage a priority list

to rank all video streams according to their workloads.

• Reuse re-identification model. Following the pedestrian detection task, a re-

identification model is used to perform the re-identification task. In our pedes-

trian re-identification pipeline, the re-identification model is not frequently

called because an individual will be continuously tracked once the individual’s

ID is determined. For each video stream, if we jointly consider the deploy-

ment of the detection model and the re-identification model, it will lead to high

resource consumption. Hence, we consider the deployment of the two models

separately. When the available resources are constrained, the re-identification

model can be reused, which means a re-identification model can handle multiple

video streams.

Based on the two principles, we solve the problem in two stages. The first stage is to

schedule the video stream and the detection task. The second stage is to schedule the

re-identification task. We first determine the priority of stream scheduling by sorting

the video streams according to their workloads. Then in the first stage, we filter the

candidate edge devices with abundant resources to allocate the detection model. The

video stream is allocated to the edge device with minimum execution time, including

the raw video transmission time and the inference time of the detection model.

min
i
(xik ·

Dk
1,2

Ri,j

+
CL2,k

PSi

), i ∈Mdeployed, k ∈ Vrest (5.9)

After determining xik, we then allocate the re-identification models in stage 2. We

95

Chapter 5. Scheduling Model Inference Tasks

use a similar greedy idea to allocate the re-identification models as stage 1 does. The

difference is that we consider the scenario that idle computation resources may be less

abundant for deploying a re-identification model for each stream. Hence, we reuse

the re-identification model, where a deployed model can serve multiple streams. To

determine where to deploy the re-identification model, we allocate the re-identification

models for those streams with high workloads. When the available resources cannot

support the deployment of new re-identification models, we reuse the re-identification

model. The rest of the streams Vrest will be allocated to the edge device, which satisfies

Eq. 5.9. By solving Eq. 5.9, the rest of the streams will be scheduled to the deployed

re-identification model that can provide the least intermediate data transmission and

inference time.

5.5 Implementation and Performance Evaluation

This section presents the system implementation, evaluation metrics, and extensive

experimental results of the proposed distributed and collaborative edge intelligence

platform.

5.5.1 System Implementation

Testbed. We deploy the system in an indoor environment due to the privacy-preserving

policies of the campus. The floor is shown in the upper right of Fig. 5.4, with the

size 30 × 15m2. We implement the system with 7 IP cameras, 5 edge devices, and

1 master device. We use 3 Jetson Xavier NX and 2 Jetson Tx2 as the edge devices.

The Jetson Xavier NX has a 384-core Volta GPU with 8GB RAM, and the Jetson

Tx2 has a 256-core GPU with 8GB RAM. The computation capacity of the former

device is much stronger than the latter. Also, to emulate the heterogeneous resource,

we constrain the memory of Jetson Tx2 as 4GB. We use a powerful PC equipped with

96

5.5. Implementation and Performance Evaluation

Figure 5.4: Demo of pedestrian re-identification (with mosaics for anonymization)

four Intel Cores i9-7100U with 32 GB RAM to emulate the master. Three routers

connect the edge devices and cameras. To avoid single node failure, we use a backup

server to synchronize the status of the master node and recover the system when

the master node goes offline. To emulate the distance between the cameras and the

edge devices, we use the Linux traffic control to configure the bandwidth between the

cameras, edge devices, and edge devices.

Pedestrian re-identification pipeline. In the detection part, we use SSD-MobileNet-

V2 [43] to process the input image and locate pedestrians. SSD-MobileNet-V2 is

a lightweight deep convolution network that uses both depth-wise and point-wise

convolutions to decrease model complexity, i.e., the number of parameters and opera-

tions. We uses Kalman filter-based tracker due to its low computation cost compared

with DL-based approaches. Our target is to extract discriminative features for re-

identification. Considering the constrained resources of edge devices, we build the

feature extractor network with OSNet-AIN [2], which is light-weighted compared to

ResNet-50 [34] and DenseNet [38]. It can learn the global representation of the indi-

vidual’s appearance and capture the subtle details required for the re-identification

of individuals. We finetune the pretrained models of SSD-MobileNet-V2 and OSNet-

AIN. All the models are developed following serverless principles and called Restful

97

Chapter 5. Scheduling Model Inference Tasks

APIs [15].

We test the accuracy of the deep learning models. We run the system for a whole

workday, capturing around 346 pedestrians. Among which, 270 pedestrians are cor-

rectly re-identified with an overall accuracy of 78.3%. There are many false positives,

i.e., different pedestrians are not differentiated and thus identified with the same

identity, which is caused by differences in lighting and camera angles. More advanced

approaches can be applied to improve accuracy. However, it is not the focus of this

work.

Database. We use SQLite to record both the spatial and temporal information and

the discriminative pedestrian features, as well as the video analytics results. The

SQLite is a lightweight database often used in resource constraint embedded devices,

such as mobile phones, cameras, and home electronic devices. Each edge device has

its local database instead of directly sending the inference results to the master node,

which is usually vulnerable to an unstable network connection. The local database

should be synchronized periodically with the global database on the master node to

facilitate collaborative inference and pedestrian tracing. The synchronization period

is set to 10 seconds in our system. For example, when the data is not synchronized,

the video analytics results are still in the edge devices. The master will forward the

query request to edge devices and get the latest status from edge devices.

Fig. 5.4 shows the system interface. The camera views are on the left side of the

interface, where we can monitor pedestrian behavior in real-time. Authorized users

can also easily query the pedestrian trajectory, as shown on the right side.

5.5.2 Evaluation Metrics and Experimental Settings

We use the two following metrics to evaluate the performance of the proposed ap-

proach:

98

5.5. Implementation and Performance Evaluation

• Throughput. The cameras stream the input videos to the edge cluster contin-

uously, in which high throughput is required to process these incoming video

streams in real-time. Usually, Frames Per Second (FPS) measures the through-

put. We define the system throughput as the average FPS for all streams.

• Latency. Live video analytics applications require producing analytics results

within a short period. The task execution time for one stream includes video

transmission time, local execution time, task offloading time, and remote exe-

cution time. Since there is multiple input video stream, we define the latency

as the average task execution time for all streams.

The system schedules the video analytics tasks with stream mapping and task of-

floading (WMWO). We evaluate the system performance under different metrics and

compare it against several benchmark solutions.

• No mapping no offloading (NMNO). The input video streams are randomly

assigned to the edge devices, and all the computation tasks are executed locally.

• With mapping no offloading (WMNO). In this case, the input video streams

are assigned to the edge devices with the shortest video transmission time, and

all the computation tasks are executed locally.

• No mapping with offloading (NMWO). In this case, the input video streams

are randomly assigned to the edge devices, and the re-identification task can be

offloaded among the edge cluster.

NMNO and WMNO are non-offloading methods, and NMWO and WMWO are of-

floading methods. We test the performance of the proposed method and the baselines

under various situations, i.e., the number of edge devices, the number of pedestrians

in each input video stream, and different bandwidths of network links.

99

Chapter 5. Scheduling Model Inference Tasks

3 3.5 4 4.5 5 5.5 6 6.5 7

Number of devices

7

8

9

10

11

12

13

14

15

T
h

ro
u

g
h

p
u

t

no mapping, no offloading

with mapping, no offloading

no mapping, with offloading

with mapping, with offloading

Figure 5.5: Throughput vs. number of devices

5.5.3 Influence of Number of Edge Devices

The number of the input video stream is set to be 5. We increase the number of edge

devices from 3 to 7. As shown in Fig. 5.5, we can see that the proposed method,

i.e., WMWO, achieves the highest throughput with the variation of the number of

edge devices. When there are more edge devices than the input video streams, the

NMNO method keeps the throughput consistent as it cannot utilize the computation

resources of other edge devices. The WMNO achieves a slightly high throughput

than NMNO as it maps the input video streams to edge devices, considering the

heterogeneous computation capacities of the edge devices. Compared with WMNO,

NMWO does not schedule the input video streams. However, it dynamically offloads

the re-identification tasks, which can alleviate the computation workload on a single

edge device and leverage the heterogeneous computation capacity of edge devices to

improve the average throughput.

Though WMNO and NMWO can achieve higher throughput by either optimizing the

stream mapping decision or the task offloading decision, their performance is not bet-

ter than WMWO as WMWO jointly considers stream mapping and task offloading.

WMWO achieves 14%-36% throughput improvement compared with baseline meth-

ods. It shows that our proposed method can integrate the heterogeneous resources

100

5.5. Implementation and Performance Evaluation

0

100

200

300
CAM1

0

100

200

300
CAM2

0

100

200

300
CAM3

12:00 12:10 12:20 12:30

Time

0

100

200

300
W

o
rk

lo
a

d
CAM4

Figure 5.6: Workload dynamics in real-world deployment

of geo-distributed edge devices and improve application performance by jointly opti-

mizing the mapping and offloading decisions to improve the application throughput.

5.5.4 Influence of Dynamic Workload

We study the performance of the proposed method and various benchmarks under

dynamical workloads with a varying number of pedestrians in the input video streams.

The number of video streams and edge devices is set as 4 and 5, respectively. Fig. 5.6

shows the workloads generated from the 4 cameras on a weekday between 12:00 to

12:30. The workload of each video stream varies with the number of pedestrians in

a video stream and is dynamic as the content captured by each camera changes over

time. We can also see that the workloads are different across cameras. CAM1 and

CAM4 have a higher average workload than the other two cameras as they capture

people entering or leaving out the doors.

As shown in Fig. 5.7, while the throughput of NMNO and WMNO fluctuate a lot over

time, there is no noticeable change in offloading methods, i.e., throughput for WMNO

and NMWO. NMNO and WMNO show apparent performance degradation when there

is a high workload because edge devices with constrained resources may easily get

overloaded, further leading to the deterioration of the average throughput. Offloading

101

Chapter 5. Scheduling Model Inference Tasks

12:00 12:10 12:20 12:30

Time

11.5

12

12.5

13

13.5

14

14.5

T
h

ro
u

g
h

p
u

t

no mapping, no offloading

with mapping, no offloading

no mapping, with offloading

with mapping, with offloading

Figure 5.7: Throughput vs. dynamic workload

12:00 12:10 12:20 12:30

Time

0

0.5

1

1.5

2

2.5

L
a

te
n

c
y
 (

s
)

no mapping, no offloading

with mapping, no offloading

no mapping, with offloading

with mapping, with offloading

Figure 5.8: Latency vs. dynamic workload

methods show consistent performance because they leverage resource sharing and

schedule the dynamic workloads among edge devices. Similar trends are also observed

in terms of the latency of the application. From Fig. 5.8, we can also see that the

latency of offloading the task is similar to that of without offloading when there is a

low workload between 12:05 to 12:25, which is due to the data transmission latency of

offloading the re-ID task and getting back the re-identification results. When there is

a low workload, the data transmission latency is the main factor that constrains the

end-to-end latency of offloading methods. As the workload increases, the transmission

delay of intermediate data and model inference delay will increase. However, the

inference latency caused by overloaded edge devices becomes the main factor in this

102

5.5. Implementation and Performance Evaluation

5 10 20 30

Bandwidth (Mbps)

12.2

12.4

12.6

12.8

13

13.2

13.4

T
h
ro

u
g
h
p
u
t

no mapping, no offloading

with mapping, no offloading

no mapping, with offloading

with mapping, with offloading

Figure 5.9: Throughput vs. bandwidth

Bandwidth (Mbps)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

L
a

te
n

c
y

 (
s

)

no mapping, no offloading
with mapping, no offloading
no mapping, with offloading
with mapping, with offloading

5 302010 2515

Figure 5.10: Latency vs. bandwidth

case. In this case, offloading methods show apparent superiority.

5.5.5 Effects of Bandwidth

We also investigate the performance of the system in different bandwidth conditions.

Specifically, we leverage the Linux traffic control to manually set the bandwidth of

each link and study the system throughput under the average bandwidth of 5Mbps,

10Mbps, 20Mbps, and 30Mbps, respectively. The variance of bandwidth of network

links is 30%. For example, we increase the average bandwidth from 10 to 20 by

doubling the bandwidth of each link in the network.

103

Chapter 5. Scheduling Model Inference Tasks

It can be seen from Fig. 5.9, while the throughput of non-offloading methods keeps

consistent, the performance of offloading methods degrades with the decreasing band-

width due to the increased transmission delay. When the average bandwidth is

30Mbps, the throughput of offloading methods is much better than that of the non-

offloading methods. When the average bandwidths are 5Mbps or 10Mbps, the per-

formance of offloading methods is similar to no-offloading methods. We find that

the performance of offloading methods is highly affected by the transmission delay,

as shown in Fig. 5.10. When there is a long transmission delay, the performance

of offloading methods is approximate to non-offloading methods, which means that

the optimal policy in such cases is to execute the re-identification tasks locally, i.e.,

no-offloading.

The experimental results indicate that our proposed distributed and collaborative

edge intelligence (DCEI) approach can dramatically improve the real-time perfor-

mance of video analytics applications, especially when the resources of edge devices

are constrained. DCEI also shows superior performance in handling dynamic work-

loads as it integrates the geo-distributed resources and intelligently schedules the

video streams and the inference tasks.

5.6 Conclusion

This chapter proposes a trustworthy and real-time video surveillance system with

distributed and collaborative edge intelligence. We deploy the edge devices closer to

the cameras and create a distributed edge devices cluster where computation and data

resources can share within the cluster. We design a scheduler that jointly schedules

the camera streams to edge devices and offload tasks in the application pipeline to

improve resource utilization and performance. We have tested the efficacy of the

proposed solution with a pedestrian re-identification on a real-world prototype.

104

Chapter 6

Conclusion and Future Directions

In this chapter, we conclude this thesis in Section 6.1 and present future research

direction in Section 6.2.

6.1 Conclusion

In the past decade, due to the great advancement of deep neural networks, DL

models and algorithms have been extensively used in various applications, including

object detection, natural language processing, and autonomous driving. Tradition-

ally, DL models are trained and deployed on cloud data centers, as they are usually

computation-intensive and resource-greedy. Recently, edge computing has been pro-

posed to enable the training and inference of DL models on edge nodes at the network

edge closer to the data sources. However, the resource on edge nodes is usually con-

straint and may not be able to burden the training and inference tasks. Hence,

scheduling and distributing those tasks among distributed computing nodes is ur-

gently needed. However, scheduling those tasks in edge computing is vastly different

from that in the cloud, as edge nodes are distributed and heterogeneous, connecting

low-bandwidth and intermittent networks. It calls for new systems and algorithms.

105

Chapter 6. Conclusion and Future Directions

In this thesis, we identify the challenging issues of scheduling AI tasks among edge

nodes and cloud servers for high-performance training and inference, and address sev-

eral critical issues. In Chapter 3, we design a edge-native task scheduling system to

optimize the performance of DNN training an inference tasks by jointly considering

the underlying edge resource status and DNN task characteristics. We then study the

training task scheduling and inference task scheduling in Chapter 4 and Chapter 5,

respectively. More specifically, we propose EdgeSplit, a novel FL training frame-

work to accelerate FL on heterogeneous and resource-constraint edge devices without

compromising the accuracy in Chapter 4. In Chapter 5, we designed a distributed

and collaborative edge intelligence (DCEI) approach to enable geo-distributed edge

devices collaborate sharing data and computation resources to perform computation-

intensive video analytics tasks. The solutions presented in this thesis servers as a

preliminary step towards ubiquitous intelligence and attract extensive attention from

both the academia and industries. We believe AI capabilities are embedded in every

edge and IoT device and are accessible everywhere.

6.2 Future Research

We close this thesis by providing some suggestions for future research. We vision

that the following two directions are worth further exploration for achieving high-

performance deep learning in edge computing.

• Decentralized scheduling framework. Traditional resource management

architecture usually adopts a centralized method, where there is a centralized

manager to sense the resource information of distributed client nodes and make

decisions of task partition and scheduling. The edge-native task scheduling

framework proposed in Chapter 3 is also based on centralized architecture.

However, considering the fact that the edge nodes and cloud servers may belong

to different stakeholders, it may be impossible to adopt centralized scheduling.

106

6.2. Future Research

Hence, a decentralized architecture is needed, where a stakeholder centralized

make task scheduling decisions among its belonging nodes, and a decentralized

scheduling methods is adopted across stakeholders.

• General programming model for efficient neural network partition.

In Chapter 3 and Chapter 5, we do partition the applications empowered by

AI models. However, we do not partition the model itself. We partition the

application DAG and pipeline respectively, where each module composed of

DNN model is allocated to an edge node. In Chapter 4, we do partition the DNN

model. However, the implementation is based on CNNs, which have layered

neural network architecture. For RNN [96] and more sophisticated transformer

model [106], they have more complex architecture, which usually cannot easily

be partitioned.

Current programming tools, such as Pytorch and Tensorflow, support manually

partitioning the DNN models, e.g., specifying the partition points when pro-

gramming the model. However, they do not support dynamically partition the

model at runtime. For example, partitioning a model and distributing it to dis-

tributed edge nodes based on resources and communication conditions so that

the training and inference performance can be optimized. We will seek more

general methods to do the splitting. One possible direction is computational

graph partition. In fact, current deep learning libraries, such as Pytorch and

Tensorflow, will transform the neural networks into graphs during execution.

Partition of the transformed graph is a promising solution [82].

107

References

[1] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic.

Qsgd: Communication-efficient sgd via gradient quantization and encoding.

Advances in Neural Information Processing Systems, 30:1709–1720, 2017.

[2] Jon Almazan, Bojana Gajic, Naila Murray, and Diane Larlus. Re-id done

right: towards good practices for person re-identification. arXiv preprint

arXiv:1801.05339, 2018.

[3] Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bodík, Krishna Chintala-

pudi, Matthai Philipose, Lenin Ravindranath, and Sudipta Sinha. Real-time

video analytics: The killer app for edge computing. Computer, 50(10):58–67,

2017.

[4] Apurva Bedagkar-Gala and Shishir K Shah. A survey of approaches and trends

in person re-identification. Image and Vision Computing, 32(4):270–286, 2014.

[5] Carl Boettiger. An introduction to docker for reproducible research. ACM

SIGOPS Operating Systems Review, 49(1):71–79, 2015.

[6] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora,

Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut,

Emma Brunskill, et al. On the opportunities and risks of foundation models.

arXiv preprint arXiv:2108.07258, 2021.

108

References

[7] K. A. Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex

Ingerman, Vladimir Ivanov, Chloé M Kiddon, Jakub Konečný, Stefano Mazzoc-

chi, Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage,

and Jason Roselander. Towards federated learning at scale: System design. In

SysML 2019, 2019. To appear.

[8] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex Optimiza-

tion. Cambridge University Press, 2004.

[9] Eric A Brewer. Kubernetes and the path to cloud native. In ACM Symposium

on Cloud Computing, pages 167–167, 2015.

[10] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John

Wilkes. Borg, omega, and kubernetes. Communications of the ACM, 59(5):50–

57, 2016.

[11] Jiasi Chen and Xukan Ran. Deep learning with edge computing: A review.

Proceedings of the IEEE, 107(8):1655–1674, 2019.

[12] Mingzhe Chen, Zhaohui Yang, Walid Saad, Changchuan Yin, H Vincent Poor,

and Shuguang Cui. A joint learning and communications framework for feder-

ated learning over wireless networks. IEEE Transactions on Wireless Commu-

nications, 20(1):269–283, 2020.

[13] Xianfu Chen, Honggang Zhang, Celimuge Wu, Shiwen Mao, Yusheng Ji, and

Medhi Bennis. Optimized computation offloading performance in virtual edge

computing systems via deep reinforcement learning. IEEE Internet of Things

Journal, 6(3):4005–4018, 2018.

[14] Yanming Chen, Tianbo Yang, Chao Li, and Yiwen Zhang. A binarized

segmented resnet based on edge computing for re-identification. Sensors,

20(23):6902, 2020.

109

References

[15] Yifei Chen, Xiaolong Xu, and Weizheng Wang. Efficient web apis recommen-

dation with privacy-preservation for mobile app development in industry 4.0.

IEEE Transactions on Industrial Informatics, 2021.

[16] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect:

Training deep neural networks with binary weights during propagations. In

Advances in neural information processing systems, pages 3123–3131, 2015.

[17] Steven Diamond and Stephen Boyd. Cvxpy: A python-embedded modeling

language for convex optimization. The Journal of Machine Learning Research,

17(1):2909–2913, 2016.

[18] Thinh Quang Dinh, Quang Duy La, Tony QS Quek, and Hyundong Shin. Learn-

ing for computation offloading in mobile edge computing. IEEE Transactions

on Communications, 66(12):6353–6367, 2018.

[19] Haohua Du, Linlin Chen, Jianwei Qian, Jiahui Hou, Taeho Jung, and Xiang-

Yang Li. Patronus: A system for privacy-preserving cloud video surveillance.

IEEE Journal on Selected Areas in Communications, 38(6):1252–1261, 2020.

[20] Rajdeep Dua, Vaibhav Kohli, and Santosh Kumar Konduri. Learning Docker

Networking. Packt Publishing, 2016.

[21] Mohammed S Elbamby, Cristina Perfecto, Mehdi Bennis, and Klaus Doppler.

Edge computing meets millimeter-wave enabled vr: Paving the way to cutting

the cord. In 2018 IEEE Wireless Communications and Networking Conference

(WCNC), pages 1–6. IEEE, 2018.

[22] Amir Erfan Eshratifar, Mohammad Saeed Abrishami, and Massoud Pedram.

Jointdnn: An efficient training and inference engine for intelligent mobile cloud

computing services. IEEE Transactions on Mobile Computing, 2019.

110

References

[23] Biyi Fang, Xiao Zeng, Faen Zhang, Hui Xu, and Mi Zhang. Flexdnn: Input-

adaptive on-device deep learning for efficient mobile vision. In 2020 IEEE/ACM

Symposium on Edge Computing (SEC), pages 84–95. IEEE, 2020.

[24] Biyi Fang, Xiao Zeng, and Mi Zhang. Nestdnn: Resource-aware multi-tenant

on-device deep learning for continuous mobile vision. In Proceedings of the 24th

Annual International Conference on Mobile Computing and Networking, pages

115–127, 2018.

[25] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg,

Manuel Blum, and Frank Hutter. Efficient and robust automated machine

learning. Advances in neural information processing systems, 28, 2015.

[26] Philipp M Grulich and Faisal Nawab. Collaborative edge and cloud neural

networks for real-time video processing. Proceedings of the VLDB Endowment,

11(12):2046–2049, 2018.

[27] Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network

over multiple agents. Journal of Network and Computer Applications, 116:1–8,

2018.

[28] Farzin Haddadpour, Mohammad Mahdi Kamani, Aryan Mokhtari, and

Mehrdad Mahdavi. Federated learning with compression: Unified analysis and

sharp guarantees. In International Conference on Artificial Intelligence and

Statistics, pages 2350–2358. PMLR, 2021.

[29] Jenny Hamer, Mehryar Mohri, and Ananda Theertha Suresh. Fedboost: A

communication-efficient algorithm for federated learning. In International Con-

ference on Machine Learning, pages 3973–3983. PMLR, 2020.

[30] Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights

and connections for efficient neural networks. arXiv preprint arXiv:1506.02626,

2015.

111

References

[31] Yiwen Han, Shihao Shen, Xiaofei Wang, Shiqiang Wang, and Victor CM Leung.

Tailored learning-based scheduling for kubernetes-oriented edge-cloud system.

In IEEE Conference on Computer Communications, pages 1–10, 2021.

[32] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise

Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ra-

mage. Federated learning for mobile keyboard prediction. arXiv preprint

arXiv:1811.03604, 2018.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

[34] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet

loss for person re-identification. arXiv preprint arXiv:1703.07737, 2017.

[35] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D

Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for

{Fine-Grained} resource sharing in the data center. In USENIX Symposium on

Networked Systems Design and Implementation, 2011.

[36] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a

neural network. arXiv preprint arXiv:1503.02531, 2015.

[37] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:

Efficient convolutional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

[38] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

Densely connected convolutional networks. In Proceedings of the IEEE confer-

ence on Computer Vision and Pattern Recognition, pages 4700–4708, 2017.

112

References

[39] Liang Huang, Suzhi Bi, and Ying-Jun Angela Zhang. Deep reinforcement learn-

ing for online computation offloading in wireless powered mobile-edge com-

puting networks. IEEE Transactions on Mobile Computing, 19(11):2581–2593,

2019.

[40] Bert Hubert et al. Linux advanced routing & traffic control howto. Netherlabs

BV, 1:99–107, 2002.

[41] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodik, Leana Golubchik,

Minlan Yu, Paramvir Bahl, and Matthai Philipose. Videoedge: Processing

camera streams using hierarchical clusters. In IEEE/ACM Symposium on Edge

Computing (SEC), pages 115–131, 2018.

[42] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J

Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer

parameters and< 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.

[43] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,

Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and

training of neural networks for efficient integer-arithmetic-only inference. In

IEEE Conference on Computer Vision and Pattern Recognition, pages 2704–

2713, 2018.

[44] Samvit Jain, Ganesh Ananthanarayanan, Junchen Jiang, Yuanchao Shu, and

Joseph Gonzalez. Scaling video analytics systems to large camera deployments.

In Proceedings of the 20th International Workshop on Mobile Computing Sys-

tems and Applications, pages 9–14, 2019.

[45] Samvit Jain, Xun Zhang, Yuhao Zhou, Ganesh Ananthanarayanan, Junchen

Jiang, Yuanchao Shu, Paramvir Bahl, and Joseph Gonzalez. Spatula: Effi-

cient cross-camera video analytics on large camera networks. In IEEE/ACM

Symposium on Edge Computing (SEC), pages 110–124, 2020.

113

References

[46] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and

Ion Stoica. Chameleon: scalable adaptation of video analytics. In Proceedings

of the ACM Special Interest Group on Data Communication, pages 253–266,

2018.

[47] Junchen Jiang, Yuhao Zhou, Ganesh Ananthanarayanan, Yuanchao Shu, and

Andrew A Chien. Networked cameras are the new big data clusters. In The 3rd

Workshop on Hot Topics in Video Analytics and Intelligent Edges, pages 1–7,

2019.

[48] Wesley M Johnston, JR Paul Hanna, and Richard J Millar. Advances in

dataflow programming languages. ACM Computing Surveys, 36(1):1–34, 2004.

[49] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia.

Noscope: Optimizing neural network queries over video at scale. Proceedings of

the VLDB Endowment, 10(11):1586–1597, 2017.

[50] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Ja-

son Mars, and Lingjia Tang. Neurosurgeon: Collaborative intelligence between

the cloud and mobile edge. ACM SIGARCH Computer Architecture News,

45(1):615–629, 2017.

[51] Vojdan Kjorveziroski and Sonja Filiposka. Kubernetes distributions for the

edge: serverless performance evaluation. The Journal of Supercomputing, pages

1–28, 2022.

[52] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,

Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies for

improving communication efficiency. arXiv preprint arXiv:1610.05492, 2016.

[53] Jakub Konečnỳ and Peter Richtárik. Randomized distributed mean estimation:

Accuracy vs. communication. Frontiers in Applied Mathematics and Statistics,

4:62, 2018.

114

References

[54] Ondrej Krajsa and Lucie Fojtova. Rtt measurement and its dependence on the

real geographical distance. In 2011 34th International Conference on Telecom-

munications and Signal Processing (TSP), pages 231–234. IEEE, 2011.

[55] Yongin Kwon, Sangmin Lee, Hayoon Yi, Donghyun Kwon, Seungjun Yang,

Byung-Gon Chun, Ling Huang, Petros Maniatis, Mayur Naik, and Yunheung

Paek. Mantis: Automatic performance prediction for smartphone applications.

In USENIX Annual Technical Conference, pages 297–308, 2013.

[56] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,

521(7553):436–444, 2015.

[57] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.

[58] En Li, Zhi Zhou, and Xu Chen. Edge intelligence: On-demand deep learn-

ing model co-inference with device-edge synergy. In Proceedings of the 2018

Workshop on Mobile Edge Communications, pages 31–36, 2018.

[59] He Li, Kaoru Ota, and Mianxiong Dong. Learning iot in edge: Deep learning

for the internet of things with edge computing. IEEE network, 32(1):96–101,

2018.

[60] Hongshan Li, Chenghao Hu, Jingyan Jiang, Zhi Wang, Yonggang Wen, and

Wenwu Zhu. Jalad: Joint accuracy-and latency-aware deep structure decoupling

for edge-cloud execution. In 2018 IEEE 24th international conference on parallel

and distributed systems (ICPADS), pages 671–678. IEEE, 2018.

[61] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-

Chang Liang, Qiang Yang, Dusit Niyato, and Chunyan Miao. Federated learning

in mobile edge networks: A comprehensive survey. IEEE Communications

Surveys & Tutorials, 22(3):2031–2063, 2020.

115

References

[62] Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of

transformers. AI Open, 2022.

[63] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient

compression: Reducing the communication bandwidth for distributed training.

arXiv preprint arXiv:1712.01887, 2017.

[64] Heting Liu, Fang He, and Guohong Cao. Communication-efficient federated

learning for heterogeneous edge devices based on adaptive gradient quantiza-

tion. arXiv preprint arXiv:2212.08272, 2022.

[65] Lanlan Liu and Jia Deng. Dynamic deep neural networks: Optimizing accuracy-

efficiency trade-offs by selective execution. In Thirty-Second AAAI Conference

on Artificial Intelligence, 2018.

[66] Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong Shi.

Edge computing for autonomous driving: Opportunities and challenges. Pro-

ceedings of the IEEE, 107(8):1697–1716, 2019.

[67] Wei Liu, Li Chen, Yunfei Chen, and Wenyi Zhang. Accelerating federated

learning via momentum gradient descent. IEEE Transactions on Parallel and

Distributed Systems, 31(8):1754–1766, 2020.

[68] Xinchen Liu, Wu Liu, Huadong Ma, and Huiyuan Fu. Large-scale vehicle re-

identification in urban surveillance videos. In IEEE International Conference

on Multimedia and Expo (ICME), pages 1–6, 2016.

[69] Yujiong Liu, Shangguang Wang, Qinglin Zhao, Shiyu Du, Ao Zhou, Xiao Ma,

and Fangchun Yang. Dependency-aware task scheduling in vehicular edge com-

puting. IEEE Internet of Things Journal, 7(6):4961–4971, 2020.

[70] Guodong Long, Yue Tan, Jing Jiang, and Chengqi Zhang. Federated learning

for open banking. In Federated Learning: Privacy and Incentive, pages 240–254.

Springer, 2020.

116

References

[71] Marko Luksa. Kubernetes in action. Simon and Schuster, 2017.

[72] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B Letaief.

A survey on mobile edge computing: The communication perspective. IEEE

Communications Surveys & Tutorials, 19(4):2322–2358, 2017.

[73] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. Communication-efficient learning of deep networks from

decentralized data. In Artificial Intelligence and Statistics, pages 1273–1282.

PMLR, 2017.

[74] Jiaying Meng, Haisheng Tan, Chao Xu, Wanli Cao, Liuyan Liu, and Bojie Li.

Dedas: Online task dispatching and scheduling with bandwidth constraint in

edge computing. In IEEE Conference on Computer Communications, pages

2287–2295, 2019.

[75] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-

ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,

Georg Ostrovski, et al. Human-level control through deep reinforcement learn-

ing. nature, 518(7540):529–533, 2015.

[76] Rashmika Nawaratne, Damminda Alahakoon, Daswin De Silva, and Xinghuo

Yu. Spatiotemporal anomaly detection using deep learning for real-time video

surveillance. IEEE Transactions on Industrial Informatics, 16(1):393–402, 2019.

[77] Christopher Neff, Matías Mendieta, Shrey Mohan, Mohammadreza Baharani,

Samuel Rogers, and Hamed Tabkhi. Revamp2t: Real-time edge video analytics

for multicamera privacy-aware pedestrian tracking. IEEE Internet of Things

Journal, 7(4):2591–2602, 2019.

[78] Zhaolong Ning, Xiangjie Kong, Feng Xia, Weigang Hou, and Xiaojie Wang.

Green and sustainable cloud of things: Enabling collaborative edge computing.

IEEE Communications Magazine, 57(1):72–78, 2018.

117

References

[79] Takayuki Nishio and Ryo Yonetani. Client selection for federated learning with

heterogeneous resources in mobile edge. In ICC 2019-2019 IEEE international

conference on communications (ICC), pages 1–7. IEEE, 2019.

[80] Thanh-Phuong Pham, Juan J Durillo, and Thomas Fahringer. Predicting work-

flow task execution time in the cloud using a two-stage machine learning ap-

proach. IEEE Transactions on Cloud Computing, 8(1):256–268, 2017.

[81] Maarten G Poirot, Praneeth Vepakomma, Ken Chang, Jayashree Kalpathy-

Cramer, Rajiv Gupta, and Ramesh Raskar. Split learning for collaborative

deep learning in healthcare. arXiv preprint arXiv:1912.12115, 2019.

[82] Fareed Qararyah, Mohamed Wahib, Doğa Dikbayır, Mehmet Esat Belviranli,

and Didem Unat. A computational-graph partitioning method for training

memory-constrained dnns. Parallel computing, 104:102792, 2021.

[83] Zhihao Qu, Song Guo, Haozhao Wang, Baoliu Ye, Yi Wang, Albert Zomaya,

and Bin Tang. Partial synchronization to accelerate federated learning over

relay-assisted edge networks. IEEE Transactions on Mobile Computing, 2021.

[84] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi.

Xnor-net: Imagenet classification using binary convolutional neural networks.

In European conference on computer vision, pages 525–542. Springer, 2016.

[85] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only

look once: Unified, real-time object detection. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 779–788, 2016.

[86] Jinke Ren, Guanding Yu, and Guangyao Ding. Accelerating dnn training in

wireless federated edge learning systems. IEEE Journal on Selected Areas in

Communications, 39(1):219–232, 2020.

[87] Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R Roth, Shadi

Albarqouni, Spyridon Bakas, Mathieu N Galtier, Bennett A Landman, Klaus

118

References

Maier-Hein, et al. The future of digital health with federated learning. NPJ

digital medicine, 3(1):119, 2020.

[88] Fabiana Rossi, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli.

Geo-distributed efficient deployment of containers with kubernetes. Computer

Communications, 159:161–174, 2020.

[89] Yuvraj Sahni, Jiannong Cao, and Lei Yang. Data-aware task allocation for

achieving low latency in collaborative edge computing. IEEE Internet of Things

Journal, 6(2):3512–3524, 2018.

[90] Yuvraj Sahni, Jiannong Cao, Lei Yang, and Yusheng Ji. Multi-hop multi-

task partial computation offloading in collaborative edge computing. IEEE

Transactions on Parallel and Distributed Systems, 32(5):1133–1145, 2020.

[91] Yuvraj Sahni, Jiannong Cao, Shigeng Zhang, and Lei Yang. Edge mesh: A new

paradigm to enable distributed intelligence in internet of things. IEEE Access,

5:16441–16458, 2017.

[92] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In IEEE

Conference on Computer Vision and Pattern Recognition, pages 4510–4520,

2018.

[93] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural

networks, 61:85–117, 2015.

[94] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochas-

tic gradient descent and its application to data-parallel distributed training of

speech dnns. In Fifteenth Annual Conference of the International Speech Com-

munication Association, 2014.

[95] Ragini Sharma, Saman Biookaghazadeh, Baoxin Li, and Ming Zhao. Are exist-

ing knowledge transfer techniques effective for deep learning with edge devices?

119

References

In 2018 IEEE International Conference on Edge Computing (EDGE), pages

42–49. IEEE, 2018.

[96] Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and

long short-term memory (lstm) network. Physica D: Nonlinear Phenomena,

404:132306, 2020.

[97] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge com-

puting: Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646,

2016.

[98] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[99] Fabrizio Soppelsa and Chanwit Kaewkasi. Native docker clustering with swarm.

Packt Publishing, 2016.

[100] Sowndarya Sundar and Ben Liang. Offloading dependent tasks with communi-

cation delay and deadline constraint. In IEEE Conference on Computer Com-

munications, pages 37–45, 2018.

[101] Hanlin Tang, Chen Yu, Xiangru Lian, Tong Zhang, and Ji Liu. Doublesqueeze:

Parallel stochastic gradient descent with double-pass error-compensated com-

pression. In International Conference on Machine Learning, pages 6155–6165.

PMLR, 2019.

[102] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung.

Branchynet: Fast inference via early exiting from deep neural networks.

In 2016 23rd International Conference on Pattern Recognition (ICPR), pages

2464–2469. IEEE, 2016.

[103] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Distributed

deep neural networks over the cloud, the edge and end devices. In 2017 IEEE

120

References

37th International Conference on Distributed Computing Systems (ICDCS),

pages 328–339. IEEE, 2017.

[104] Chandra Thapa, Pathum Chamikara Mahawaga Arachchige, Seyit Camtepe,

and Lichao Sun. Splitfed: When federated learning meets split learning. In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages

8485–8493, 2022.

[105] Chandra Thapa, Mahawaga Arachchige Pathum Chamikara, and Seyit

Camtepe. Splitfed: When federated learning meets split learning. arXiv preprint

arXiv:2004.12088, 2020.

[106] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.

Advances in neural information processing systems, 30, 2017.

[107] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar.

Split learning for health: Distributed deep learning without sharing raw patient

data. arXiv preprint arXiv:1812.00564, 2018.

[108] Jin Wang, Jia Hu, Geyong Min, Wenhan Zhan, Albert Zomaya, and Nektar-

ios Georgalas. Dependent task offloading for edge computing based on deep

reinforcement learning. IEEE Transactions on Computers, 2021.

[109] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian

Makaya, Ting He, and Kevin Chan. Adaptive federated learning in resource

constrained edge computing systems. IEEE Journal on Selected Areas in Com-

munications, 37(6):1205–1221, 2019.

[110] Zhiyuan Wang, Hongli Xu, Jianchun Liu, Yang Xu, He Huang, and Yangming

Zhao. Accelerating federated learning with cluster construction and hierarchical

aggregation. IEEE Transactions on Mobile Computing, 2022.

121

References

[111] Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsi-

fication for communication-efficient distributed optimization. arXiv preprint

arXiv:1710.09854, 2017.

[112] Łukasz Wojciechowski, Krzysztof Opasiak, Jakub Latusek, Maciej Wereski, Vic-

tor Morales, Taewan Kim, and Moonki Hong. Netmarks: Network metrics-

aware kubernetes scheduler powered by service mesh. In IEEE Conference on

Computer Communications, pages 1–9, 2021.

[113] Zifeng Wu, Chunhua Shen, and Anton Van Den Hengel. Wider or deeper:

Revisiting the resnet model for visual recognition. Pattern Recognition, 90:119–

133, 2019.

[114] Ying Xiong, Yulin Sun, Li Xing, and Ying Huang. Extend cloud to edge with

kubeedge. In IEEE/ACM Symposium on Edge Computing, pages 373–377, 2018.

[115] Zhuangdi Xu, Sayan Sinha, Shah Harshil S, and Umakishore Ramachandran.

Space-time vehicle tracking at the edge of the network. In The 3rd Workshop

on Hot Topics in Video Analytics and Intelligent Edges, pages 15–20, 2019.

[116] Lei Yang, Yingqi Gan, Jiannong Cao, and Zhenyu Wang. Optimizing aggrega-

tion frequency for hierarchical model training in heterogeneous edge computing.

IEEE Transactions on Mobile Computing, 2022.

[117] Lei Yang, Yanyan Lu, Jiannong Cao, Jiaming Huang, and Mingjin Zhang. E-

tree learning: A novel decentralized model learning framework for edge ai. IEEE

Internet of Things Journal, 8(14):11290–11304, 2021.

[118] Quanming Yao, Mengshuo Wang, Yuqiang Chen, Wenyuan Dai, Yu-Feng

Li, Wei-Wei Tu, Qiang Yang, and Yang Yu. Taking human out of learn-

ing applications: A survey on automated machine learning. arXiv preprint

arXiv:1810.13306, 2018.

122

References

[119] Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi, and Qun

Li. Lavea: Latency-aware video analytics on edge computing platform. In

ACM/IEEE Symposium on Edge Computing, pages 1–13, 2017.

[120] Xiao Zeng, Biyi Fang, Haichen Shen, and Mi Zhang. Distream: scaling live

video analytics with workload-adaptive distributed edge intelligence. In ACM

Conference on Embedded Networked Sensor Systems, pages 409–421, 2020.

[121] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,

Paramvir Bahl, and Michael J Freedman. Live video analytics at scale with

approximation and delay-tolerance. In 14th USENIX Symposium on Networked

Systems Design and Implementation (NSDI), pages 377–392, 2017.

[122] Jiawei Zhang, Xiaochen Zhou, Tianyi Ge, Xudong Wang, and Taewon Hwang.

Joint task scheduling and containerizing for efficient edge computing. IEEE

Transactions on Parallel and Distributed Systems, 32(8):2086–2100, 2021.

[123] Jiwei Zhang, Md Zakirul Alam Bhuiyan, Xu Yang, Amit Kumar Singh, D Frank

Hsu, and Entao Luo. Trustworthy target tracking with collaborative deep rein-

forcement learning in edgeai-aided iot. IEEE Transactions on Industrial Infor-

matics, 18(2):1301–1309, 2021.

[124] Jiwei Zhang, Md Zakirul Alam Bhuiyan, Xu Yang, Tian Wang, Xuesong Xu,

Thaier Hayajneh, and Faiza Khan. Anticoncealer: Reliable detection of ad-

versary concealed behaviors in edgeai assisted iot. IEEE Internet of Things

Journal, 2021.

[125] Miao Zhang, Fangxin Wang, Yifei Zhu, Jiangchuan Liu, and Zhi Wang. To-

wards cloud-edge collaborative online video analytics with fine-grained server-

less pipelines. In Proceedings of the 12th ACM Multimedia Systems Conference,

pages 80–93, 2021.

123

References

[126] Mingjin Zhang, Jiannong Cao, Yuvraj Sahni, Qianyi Chen, Shan Jiang, and Tao

Wu. Eaas: A service-oriented edge computing framework towards distributed

intelligence. arXiv preprint arXiv:2209.06613, 2022.

[127] Mingjin Zhang, Jiannong Cao, Yuvraj Sahni, Qianyi Chen, Shan Jiang, and Lei

Yang. Blockchain-based collaborative edge intelligence for trustworthy and real-

time video surveillance. IEEE Transactions on Industrial Informatics, 2022.

[128] Qingyang Zhang, Hui Sun, Xiaopei Wu, and Hong Zhong. Edge video analytics

for public safety: A review. Proceedings of the IEEE, 107(8):1675–1696, 2019.

[129] Tianzhu Zhang, Si Liu, Changsheng Xu, and Hanqing Lu. Mining semantic

context information for intelligent video surveillance of traffic scenes. IEEE

Transactions on Industrial Informatics, 9(1):149–160, 2012.

[130] Wuyang Zhang, Jiachen Chen, Yanyong Zhang, and Dipankar Raychaudhuri.

Towards efficient edge cloud augmentation for virtual reality mmogs. In

ACM/IEEE Symposium on Edge Computing, pages 1–14, 2017.

[131] Wuyang Zhang, Zhezhi He, Luyang Liu, Zhenhua Jia, Yunxin Liu, Marco

Gruteser, Dipankar Raychaudhuri, and Yanyong Zhang. Elf: accelerate high-

resolution mobile deep vision with content-aware parallel offloading. In Pro-

ceedings of the 27th Annual International Conference on Mobile Computing

and Networking, pages 201–214, 2021.

[132] Zhihe Zhao, Zhehao Jiang, Neiwen Ling, Xian Shuai, and Guoliang Xing. Ecrt:

an edge computing system for real-time image-based object tracking. In Pro-

ceedings of the 16th ACM Conference on Embedded Networked Sensor Systems,

pages 394–395, 2018.

[133] Zhihe Zhao, Kai Wang, Neiwen Ling, and Guoliang Xing. Edgeml: An automl

framework for real-time deep learning on the edge. In Proceedings of the Inter-

124

References

national Conference on Internet-of-Things Design and Implementation, pages

133–144, 2021.

[134] Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer.

Deepthings: Distributed adaptive deep learning inference on resource-

constrained iot edge clusters. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 37(11):2348–2359, 2018.

[135] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. Edge

intelligence: Paving the last mile of artificial intelligence with edge computing.

Proceedings of the IEEE, 107(8):1738–1762, 2019.

125

	Abstract
	Publications Arising from the Thesis
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Background and Motivations
	Research Objectives and Framework
	Thesis Organization

	Literature Review
	Task scheduling in Edge Computing
	Model Training at Edge
	Model Inference at Edge

	Edge-native Task Scheduling System
	Overview
	Background and Motivations
	Kubernetes Scheduler
	A Motivating Example

	System Overview
	Design Goals
	System Architecture

	System Design
	Application Development and Profiling
	Collaborative Task Scheduling
	Distributed Task Execution

	Collaborative Task Scheduling with Data Streaming Applications
	System Model.
	Problem Formulation
	Proposed Solution
	Online Scheduling

	Experimental Results
	Experimental Setup
	Results and Analysis

	Conclusion

	Scheduling Model Training Tasks
	Overview
	Motivations
	Framework of EdgeSplit
	EdgeSplit Framework
	Challenges

	Methodology
	Determine the Best Partition Points
	Alleviate Memory Overhead

	Experimental Evaluation
	Experimental Setup
	Results and Analysis

	Conclusion

	Scheduling Model Inference Tasks
	Overview
	Related Work
	System Design
	System Model
	System Components

	Joint Stream Mapping and Task Scheduling for Pedestrian Re-identification
	Pedestrian Re-identification Pipeline
	Motivations of Joint Stream Mapping and Task Scheduling
	Problem Formulation
	Optimization Solution

	Implementation and Performance Evaluation
	System Implementation
	Evaluation Metrics and Experimental Settings
	Influence of Number of Edge Devices
	Influence of Dynamic Workload
	Effects of Bandwidth

	Conclusion

	Conclusion and Future Directions
	Conclusion
	Future Research

	References

