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Abstract 

The growing urbanization and increasing population break the balance of travel demand and road 

capacity in metropolises, causing heavy traffic congestion. Public transit can transport more people than 

private vehicles while occupying fewer road resources. Improving transit service can effectively 

alleviate traffic congestion as better transit service can attract more travelers by buses from private cars. 

Moreover, traffic lights at intersections bring signal delays, which even become the primary source of 

transit delays and harm bus efficiency and reliability. Hence, transit signal priority (TSP) is an essential 

measure to reduce traffic congestion and promote transit reliability at signalized intersections. The 

emerging connected vehicle technology and reinforcement learning (RL) algorithms provide the 

opportunity for more intelligent TSP strategies due to more detailed and accurate information and more 

robust algorithms. 

The first work proposes an extended Dueling Double Deep Q-learning with Invalid action masking 

(eD3QNI) algorithm for TSP strategy at isolated intersections in a connected environment. The 

algorithm considers multiple conflicting bus priority requests and the constraints on the traffic light and 

phase skipping rule, aiming to improve the person delay of buses. Simulation results demonstrate that 

eD3QNI produces lower average person delay and schedule delay than other methods. It also shows 

that the invalid action masking (IAM) method is superior to the usual variable decision points (VDP) 

method in terms of high convergence speed, effective performance improvement, and application of 

domain knowledge on the RL algorithm.  

To extend the above work into a multi-intersection environment, the second work develops a 

Cooperative TSP strategy of Variable phase (CTSPV) by MARL to improve transit schedule adherence 

at arterial roads. Agents determine the phase of the next step so that the phase sequence and duration 

are varied with the real-time traffic conditions considering the trade-off between transits and non-

transits, the multiple conflicting bus requests, and the cooperation between different agents. Three kinds 

of traffic constraints are tested, and their results verified the necessity of proper restrictions on RL to 

guarantee experience quality and training efficiency. This work analyzes the signal timing pattern 

difference between CTSPV and fixed-time signal and proves the good performance of RL-learned 

knowledge. 

As headway regularity is another essential indicator for transit reliability besides schedule 

adherence, the third work develops a Cooperative TSP strategy of Variable phase for Headway 

adherence (CTSPVH) to improve transit headway adherence at arterial roads. The proposed approach 

considers four critical aspects, i.e., complicated states with multiple conflicting bus requests, rational 

actions constrained by domain knowledge, comprehensive rewards balancing buses and cars, and a 

collaborative training scheme among agents. They are correspondingly addressed by proper state 

representation, IAM algorithms to mask out irrational actions, and reward functions formulated by 

general traffic queue and transit headway deviation.  

Those three strategies solve the key problems of TSP approaches and incorporate traffic domain 

knowledge with RL to ensure action rationality, avoiding severe congestion and serious accidents 

caused by irrational actions. Therefore, those three intelligent and safe strategies have bright prospects 

in practical applications to improve transit efficiency and reliability.  
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Chapter 1  

Introduction 

1.1 Background 

The development of public transportation is a common and effective measure to alleviate traffic 

congestion caused by the growing urbanization and increasing population in metropolises worldwide 

(Chu et al., 2020). It can transport more people than private vehicles while occupying fewer road 

resources. Specifically, a private car can only carry up to 5 travelers at a time; in contrast, an ordinary 

single-deck bus can carry up to 80 passengers. In a sense, one bus can replace at least 16 cars to transport 

people. Improving the transit service can attract more travelers to use it rather than private cars in the 

city with a small bus ratio, but also can effectively improve the bus efficiency and reliability in the city 

with an already high bus ratio (Xu et al., 2022b). In addition, Traffic lights are widely used to control 

conflicting movements at intersections by assigning their right of way over time, e.g., there are already 

1916 signalized intersections in Hong Kong by the end of 2019, according to the statistics of the 

transport department. It can improve traffic efficiency but also block some movements to wait for the 

green time at intersections, including buses. The signal delays caused by traffic lights are the primary 

source of transit delays, accounting for over 20% of total travel time in dense areas (Shalaby et al., 

2021), and would lead to schedule delays. As a consequence, traffic signals highly affect transit 

efficiency and reliability.  

Hence, various measures have been implemented to enhance the transit service quality by 

prioritizing buses these years. Those measures are divided into two kinds: one is the spatial approach 

to provide bus lanes, such as dedicated or intermittent bus lanes, and flexible space-sharing methods 

(Guler and Cassidy, 2012; Haitao et al., 2018); the other is the temporal method to prioritize buses by a 

traffic signal, i.e., transit signal priority (TSP) (Bie et al., 2020; Ghaffari et al., 2020). The latter method 

is more cost-effective than the former, owing to the fewer changes to the infrastructure and greater 

flexibility to real-time traffic. Additionally, some latest studies cooperated the holding control at bus 

stops (Abdelhalim and Abbas, 2021) and the speed advisory for buses (Lee and Wang, 2022) with TSP 

strategies to provide signal priority for more buses at once. 

Public transport researchers developed various TSP strategies to prioritize buses going through 

intersections, which can significantly decrease signal delays and improve schedule adherence (Sheffield 

et al., 2021; Xiao et al., 2022). The advanced TSP system typically comprises four fundamental parts 

(Smith et al., 2005). First, the Detection System utilized a range of technology to collect information on 

general traffic and transit vehicles, like queue length at approaches and buses’ location and passenger 

occupancy. Those detecting technologies include loop detectors, infrared detectors, radio frequency tag 

readers, GPS, connected vehicle (CV) technology, etc. Second, the Priority Request Generator 

generates single or multiple priority requests. Third, the Priority Request Server receives and triages 

those requests as necessary. Fourth, the Signal Controller responds to those requests through various 
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TSP strategies and executes signal control. 

Existing TSP strategies fall into three types, i.e., passive, active, and adaptive strategies (Bagherian 

et al., 2015; Truong et al., 2017). Passive strategy. The transit signal should be pre-set based on the 

arrival time of buses. Therefore, its efficiency is highly reliant on the stability and accuracy of traffic 

demands, and it will not be an intelligent choice for unpredictable and variable traffic. Active strategy. 

There need several detectors at intersections to detect the approaching of the bus, and then signal timing 

is updated. Various approaches have been proposed to respond to a transit priority request, such as 1) 

green extension, which extends the green time to allow the detected bus to pass through the intersection, 

2) red truncation, also called early green, which truncates red time earlier to shorten the waiting time 

for the green time serving detected buses, 3) phase insertion which inserts one transit phase into the 

normal signal sequence, 4) phase skipping which skips non-priority phases to let detected bus clear the 

intersection faster, and so on. And the results of this strategy also mainly depend on the accuracy of 

some variables. Active TSP can also be subdivided into unconditional (Shi et al., 2017) and conditional 

methods (Cvijovic et al., 2022). Unconditional active TSP would prioritize buses whenever requested; 

conversely, conditional active TSP provides bus priority only when some criteria are satisfied, such as 

large schedule delay, heavy passenger occupancy, etc. Adaptive strategy. It should be implemented 

based on the traffic states to optimize some general performance measures, such as maximizing 

headway regularity (Ling and Shalaby, 2003), minimizing the vehicular delay of all vehicles 

(Mirchandani et al., 2001),  person delay (Christofa et al., 2013), and other weighted combinations of 

person delay or schedule delay (Yang et al., 2019; Zeng et al., 2021).  

1.2 Motivations and Objectives 

The development of public transportation has emerged as a widely adopted solution to tackle the 

escalating traffic congestion resulting from rapid urbanization and population growth. Among the 

various operational strategies,  TSP stands out as one of the most effective approaches to enhance the 

efficiency and reliability of transit vehicles, thereby fostering the advancement of public transportation. 

In this context, the motivations for this research are as follows.  

(1) Opportunities brought by the RL methods: 

Reinforcement learning (RL) algorithms have been widely applied to traffic signal control (TSC) 

and have achieved great success in real-time signal control due to the following two advantages: 1) 

Flexibility: RL can be model-free, and it does not require a predefined analytical model of the traffic 

system. It learns directly from interactions with the environment and can capture the non-linear 

relationships between traffic signal settings and traffic flow, making it suitable for situations where the 

traffic dynamics are complex or unknown. This flexibility is particularly advantageous in real-world 

traffic scenarios, which often involve non-linear and stochastic behavior. Therefore, RL-based TSC is 

more robust as it can adapt to various complex and dynamic traffic scenarios more effectively compared 

to traditional methods that rely on fixed control rules. 2) Optimization: RL can optimize traffic signal 

control policies based on long-term cumulative rewards. By considering the overall system performance, 

RL algorithms can optimize traffic signal control policies to minimize congestion, reduce travel times, 

and improve traffic flow efficiency. 

The existing TSP methods, like traditional TSC, also have certain limitations in dealing with 

complex and dynamic traffic situations and long-term optimization. Therefore, it is an opportunity to 

develop smarter and more efficient TSP with the deep reinforcement learning (DRL) algorithm and CV 
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technology, adapting to complicated traffic situations and optimizing long-term performance.  

(2) Challenges posed by the RL methods 

However, the application of RL in TSC also has some challenges, including 1) Safety: RL 

algorithms must be carefully designed and trained to ensure that they do not inadvertently create unsafe 

traffic conditions or violate traffic regulations; 2) Scalability: RL algorithms may struggle to scale to 

large, complex traffic networks with varying traffic patterns and multiple intersections. 

Most researchers in computer science devote themselves to improving the RL algorithm and 

verifying the efficiency of their algorithm in the application of TSC. Still, the formulation of their RL 

framework lacks the transportation domain knowledge, including the minimum and maximum green 

time constraints and the phase-skipping rules, to consider traffic problems and ensure safety. For 

example, most existing RL methods allow for fully flexible skips decided by agents without any 

constraint, which would confuse drivers and frustrate drivers getting skipped multiple times. 

Considering safety and equity issues, we should restrict irrational actions that would cause severe 

problems in actual traffic. Hence, it is necessary to develop a rational DRL-based TSP that combines 

transportation engineers’ knowledge. 

Even though some works consider minimum green time constraints, they fulfill this requirement 

by setting a very long decision step, which exceeds the minimum green time (El-Tantawy et al., 2014; 

Kai et al., 2019; Wan and Hwang, 2018). As an example, the agent is only allowed to modify signals 

every 15 s, but for TSP control, this large step length will cause signal timing not to be modified in time 

to give transit priority, as after 15 s, the buses may have been queuing for some time already. Therefore, 

the proper method to consider transportation domain knowledge for TSP should be proposed. 

The second scalability challenge of RL mentioned above encourages us to think about how to 

apply RL to the environment with dynamic traffic patterns and multiple intersections. Hence, it is also 

crucial to consider scenarios with various traffic volumes, bus schedules, etc., and extend the application 

of RL from isolated intersections into multiple intersections. 

(3) Other issues related to TSP strategies 

Other practical issues need to be addressed for the TSP strategies. Firstly, giving priority to buses 

will deprive some private cars of benefits and thus affect their performance. Hence, the trade-off 

between transit and non-transits in TSP strategies is somewhat tricky. Secondly, in complex real-world 

environments, there are multiple bus lines so that many buses may approach an intersection from 

conflicting directions at the same time and request signal priority. Effectively handling multiple 

conflicting bus priority requests is a crucial problem and highly influences the performance of TSP 

strategies. Thirdly, traffic flows between adjacent intersections can affect each other, so when 

optimizing TSC, researchers consider the cooperation between them, aiming to create a steady flow. 

Cooperative optimization becomes much more complicated for intersections with TSP strategies, but it 

is still critical as it can amplify the benefits of TSP strategies. Fourthly, TSP strategies can be designed 

to realize different operational goals, including person delay, bus schedule adherence, and bus headway 

adherence. It is important to think of the corresponding RL framework to satisfy different needs. 

Based on these motivations, the objectives of this study are as follows:  

▪ Propose efficient TSP strategies with DRL methods that can adapt to complex traffic 

conditions and optimize performance by long-term rewards. 

▪ Develop TSP strategies that incorporate the transportation domain knowledge about traffic 
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light constraints (i.e., the minimum and maximum green time) and phase skipping rule 

into the DRL framework so that the actions chosen by the target methods are guaranteed 

to be rational and effective. 

▪ Propose TSP strategies for isolated signalized intersections and then extend to arterial 

roads with multiple signalized intersections, considering various traffic conditions. 

▪ Effectively solve the trade-off between transit and non-transits, multiple conflicting bus 

priority requests, and cooperation among agents for arterial roads, and significantly 

improve the person delay, bus schedule adherence, or headway adherence. 

1.3 Organization of thesis 

Based on the above research backgrounds and objectives, the rest of this thesis concentrates on 

answering the question of how to implement transit signal priority by the reinforcement learning 

approaches efficiently. The remainder of this thesis is structured as follows: 

▪ Chapter 2 presents a comprehensive literature review. It begins with a description of 

existing transit signal priority strategies, followed by a brief demonstration of the data 

collection of CV technology and elementary knowledge of RL algorithm. These facilitate 

more intelligent TSP strategies owing to providing detailed and accurate information and 

robust algorithms for traffic signal control.  Then the recent research on the application of 

RL algorithms in traffic signal control is also reviewed. The last part of the literature 

review describes transit reliability and summarizes its related research as it is a vital aspect 

for evaluating bus operation.  

▪ Chapter 3 proposes an RL-based TSP strategy for the isolated intersection in a connected 

environment. It considers multiple conflicting bus priority requests and the constraints on 

the traffic light and phase skipping rule, aiming to improve the person delay of buses. 

Simulation experiments are conducted to demonstrate the good performance of the 

proposed method. This chapter also studies the effects of connected buses’ penetration 

rates on the proposed method and the performance of different specific reward functions. 

▪ Chapter 4 develops a MARL-based TSP strategy for the arterial road with multiple 

intersections to improve transit schedule adherence. It considers the trade-off between 

transits and non-transits, the multiple conflicting bus requests, the constraints on the traffic 

light and phase skipping rule, and the cooperation between different agents. Experiments 

are conducted, and the effects of traffic light constraints on the RL algorithm are analyzed. 

To figure out how the proposed RL-based method works, this chapter also analyzes the 

signal timing pattern from cycle length, phase duration, skipping pattern, and action-

choosing pattern. Rule-based strategies are generalized from those patterns and are tested 

to prove the good performance of RL-learned knowledge. 

▪ Chapter 5 extends the work of Chapter 4 to improve transit headway adherence. It 

considers all the factors of Chapter 4 and also adds 1s  all-red time to consider the loss of 

phase transition. Simulation experiments are conducted to show the results compared with 

traditional fixed-time signal and bus holding strategy. In the end, this chapter also analyzes 

bus holding’s limitations and discusses the proposed method’s benefits. 

▪ Chapter 6 concludes the thesis by summarizing those studies, specifying contributions, 

and discussing future works.
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Chapter 2  

Literature review 

2.1 Transit signal priority 

Transit signal priority (TSP) seeks to modify the existing traffic lights in real-time to facilitate bus 

movements to pass through intersections for improving bus service. Relevant research has proven a 

wide range of benefits, such as reducing bus travel time (Ghaffari et al., 2020), decreasing bus or 

passenger delay (Ma et al., 2014), improving bus schedule adherence (Yang et al., 2019; Zeng et al., 

2021). Literature related to TSP strategies mainly focuses on the following issues: 

1) Optimizing objectives. Numerous researchers have dedicated themselves to seeking the TSP 

strategies with considerable improvement on bus service and less damage on private vehicles by 

formulating the proper objectives and constraints of optimization algorithm (Ma et al., 2014; Thodi et 

al., 2021; Yang et al., 2019; Zeng et al., 2021). The objectives must be suitable for finding the trade-off 

between prioritized buses and non-prioritized vehicles. Person-based optimizing objectives are more 

commonly used than vehicle-based ones, like maximizing person capacity (Ma et al., 2014), minimizing 

person delay (Christofa et al., 2016; Christofa et al., 2013; Thodi et al., 2021). They aim at system 

efficiency, but those approaches do not give transit absolute priority to attract travelers from other modes. 

In addition, these methods are model-based, and the model formulation and variable selection are highly 

dependent on the objective setting. As a result, the model has to be redesigned if we want to achieve 

other different objectives. 

2) Accuracy of variables. The effectiveness of active TSP depends on the accurate information of 

buses, e.g., the estimated time of arrival (ETA) of buses, which is of great significance to respond to the 

priority request of buses. Thus, we not only need to come up with an efficient model to implement the 

active TSP but also need to work out more precise indicators for this active strategy. In recent years, 

many efforts have been made to predict more accurate ETA, like traffic-based calculation, regression 

models, and machine learning methods (Zhang et al., 2020). Hence, the requirement of variables’ 

accuracy limits the effectiveness of TSP and increases the difficulty of proposing a better strategy.  

3) Conflicting priority requests. Cities always have intertwined bus routes, leading to conflicting 

priority requests. The serving sequence has tremendous significance on traffic efficiency. In the past, 

the first-come-first-serve policy was commonly used to arrange multiple bus priority requests, but it 

was proved to lead to extra delays by later studies (Head et al., 2006). Ma et al. (2013) firstly interpreted 

the serving sequence of multiple requests as a multistage decision process. They proposed a dynamic 

programming model for an isolated intersection under different traffic demand and bus states, i.e., bus 

occupancy and schedule deviation. Christofa et al. (2013) and Hu et al. (2016) developed different 

person-delay-based optimization methods to schedule multiple conflicting priority requests at an 

isolated intersection. These optimization processes are mixed-integer nonlinear program and binary 

mixed-integer linear program, respectively, of which objective functions minimize the total and per 
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person delay. However, as all of them are model-based approaches, the performance is dependent on 

the model assumption, and models only are applicable to realize the designed specific goals. Xu et al. 

(2022a) calculated the priority value for each bus by a fuzzy controller to handle the multiple conflicting 

TSP requests. Xu et al. (2022b) integrated TSP into max-pressure control policy and determined the 

serving sequence of conflicting requests by the optimal solution of a mixed-integer linear program that 

maximizes the total pressure; however, their method only works for bus rapid transit with exclusive bus 

lanes.  

4) Traffic signal cycle. Many studies have assumed fixed cycle length when designing TSP 

strategies to easily formulate the optimization objective, e.g. minimizing cumulative delay in one cycle 

(Christofa et al., 2016; Christofa et al., 2013; Thodi et al., 2021). Although the fixed cycle length 

assumption can facilitate the implementation of arterial traffic signal coordination, it will limit the 

performance of TSP strategies at isolated intersections. Yu et al. (2017) realized this issue and worked 

out the TSP strategy with flexible cycle length by formulating objectives as the cumulative delay within 

a fixed planning horizon including two cycles. Later, they proposed implementing phase rotation in the 

person-based TSP in 2018 and continued integrating phase sequence optimization into the person-based 

framework in 2022 to provide TSP, which can optimize phase sequences, cycle lengths, and phase splits 

simultaneously by minimizing the cumulative delay within a fixed time span. However, research on 

TSP with flexible cycles is still limited. Most of the existing methods with flexible cycles still calculate 

signal timings by cycles or make adjustments to one base signal timing scheme; however, it is not 

intelligent enough to react immediately to the real-time traffic state during a cycle. 

5) Cooperation of multiple intersections. Existing research developed a range of TSP strategies 

at isolated intersections using rule-based logic (Zlatkovic et al., 2012), mathematical programming 

model (Liu et al., 2021), and artificial intelligence (Alizadeh Shabestray and Abdulhai, 2019; 

Stevanovic et al., 2008). However, researchers also realized that cooperation between adjacent 

intersections is essential to ensure that the gain of TSP at the current intersection would not be wasted 

at downstream intersections. For coordinated corridors, Christofa et al. (2016) presented a real-time 

signal control system by one mixed integer linear program to minimize the person delay of two 

consecutive intersections during a design cycle so as to provide priority to transits with high occupancy. 

Zeng et al. (2021) devised route-based TSP by linear programming to provide bus priority at the route 

level, aiming to use the least signal deviations to improve bus schedule adherence for all considered 

buses in any route, not only in arterial. From the perspective of a network level, Li et al. (2022) proposed 

a regionally coordinated bus priority signal control approach considering pedestrian and passenger 

delays. It contains two stages solved by genetic algorithms: 1) to obtain the basic regionally coordinated 

signal timing and 2) to implement transit signal priority based on bus arrival time. Xu et al. (2022a) 

described a multi-agent TSP control method using fuzzy logic for traffic networks considering 

conflicting priority requests. In this approach, one agent controlled one intersection and determined the 

signal timing in the next cycle based on collected local information and communicated neighbor 

information. In summary, those existing methods are all model-based and suffer from common 

limitations of model-based methods, such as optimizing objectives, accuracy of bus arrival time, and 

model assumptions. They use cycle-based optimization or modify one base signal timing, which cannot 

respond to real-time traffic in a timely. 

To summarize the above five aspects, most existing methods are model-based, and their 

performance highly relies on objective settings, variable accuracy, and model assumptions. There is a 

need to develop more robust methods that can consistently achieve desirable outcomes without 
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significant performance degradation in the face of changing objectives, inaccurately predicted variables, 

and discrepancies between actual situations and model assumptions. In addition, most existing methods 

calculate signal timings by cycles or make adjustments to one base signal timing scheme when 

considering flexible traffic signal cycles and multi-intersection cooperation. However, it would be more 

flexible and intelligent to determine the signal at each time step according to the current traffic state of 

general traffic and buses. The CV technology and intelligent algorithm provide new opportunities for 

the advanced TSP strategy to better tackle the problems mentioned above. 

2.2 Connected vehicle technology 

CV technology makes communication among vehicles and vehicles/infrastructures possible. 

Vehicles equipped with the vehicle to infrastructure (V2I) Onboard Units (OBU) can transmit route data 

and current operating states to the Roadside Unit (RSU), which could be connected with the traffic 

signal control system (Zeng et al., 2021). More accurate and detailed traffic information can be collected 

in such an environment, like the real-time bus location from GPS, bus schedule deviation, bus 

occupancy from electronic payment systems or automatic passenger counters (APC), which are crucial 

variables for TSP. More innovative TSP strategies can be developed as more information can be 

obtained from advanced communication technologies than sparse road detectors and be transmitted 

quickly (Cvijovic et al., 2022). 

2.3 Reinforcement learning 

(1) Single-agent RL 

Reinforcement learning (RL) is a subfield of machine learning and an effective tool for solving 

problems formulated as the Markov Decision Process (MDP). Given the process is in one state 𝑠𝑡 at 

step 𝑡, the decision-maker chooses an action 𝑎𝑡 and the process would move to another state 𝑠𝑡+1 at the 

next step 𝑡 + 1, finally obtaining a reward 𝑟𝑡 correspondingly. State, action, reward, and next state form 

one transition < 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡, 𝑠𝑡+1 >. 

Figure 2.1 shows the structure of the RL method. In RL, we call the decision-maker the agent, and 

the thing outside the agent is called the environment, which can interact with the agent to execute actions 

and provide the next state and immediate reward (Sutton and Barto, 2018). After numerous repeated 

interactions with the environment, the RL agent strives to find the optimal policy 𝜋∗  which can 

maximize the expected return 𝐺𝑡. Some terminologies used are explained as follows. 

Policy. It maps states to probabilities of selecting each action. For example, if the agent is following 

policy 𝜋 to choose action, then 𝜋(𝑎|𝑠) denotes the probability of choosing action 𝑎 given state 𝑠. 

Return. This is a long-term reward, given by the sum of future discounted rewards: 

 𝐺𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯ = ∑ 𝛾𝑘𝑟𝑡+𝑘
∞
𝑘=0  (2.1) 

where 𝛾 is the discounting factor, 0 ≤ 𝛾 ≤ 1, which determines the present value of future rewards, e.g., 

if a reward 𝑟𝑡+𝑘 will be received after 𝑘 time steps, the present value of the reward worth only 𝛾𝑘 times 

𝑟𝑡+𝑘. Hence, if 𝛾 = 0, the agent only focuses on maximizing immediate rewards; in contrast, if 𝛾 < 1, 

the agent will consider both immediate and future rewards. The closer 𝛾 is to 1, the stronger the agent 

takes future rewards into account. 
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Figure 2.1.  The structure of the RL method.  

Value functions. RL involves state-value functions (or action-value functions) to estimate the 

goodness of being in a given state (or of performing a given action in a given state) for the agent. The 

goodness is valued by the expected return. 

The state-value function 𝑉𝜋(𝑠) is the expected return under policy 𝜋 when starting from state 𝑠, 

given by 

 𝑉𝜋(𝑠) = 𝔼𝜋[𝐺𝑡|𝑠𝑡] = 𝔼𝜋[∑ 𝛾𝑘𝑟𝑡+𝑘
∞
𝑘=0 |𝑠𝑡 = 𝑠] (2.2) 

where 𝔼𝜋[∗] denotes the expected value of a variable under policy 𝜋, and 𝑡 is the time step.  

Similarly, the action-value function 𝑄𝜋(𝑠, 𝑎) is the expected return of choosing action 𝑎 in state 𝑠 

under policy 𝜋, given by 

 𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋[𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] = 𝔼𝜋[∑ 𝛾𝑘𝑟𝑡+𝑘
∞
𝑘=0 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (2.3) 

We call the RL method, which approximates value functions using deep neural networks (DNNs) 

as deep reinforcement learning (DRL). 

RL algorithms fall into different types, as Figure 2.2 shows. Below describes the details. 

 

Figure 2.2.  RL algorithms. 

Model-based and Model-free: Model-based RL algorithms require a model of the environment 

to estimate the distribution of state transition probability and help the agent learn, while model-free RL 

algorithms only rely on trial-and-error learning, which is a significant difference from common dynamic 

programming methods. The model-free RL algorithms can also be classified into two types, i.e., value-

based and policy-based algorithms.  

Value-based and policy-based: Value-based methods are to learn the state-value or action-value 

function, while policy-based algorithms are to learn the policy function directly. Hence, it is more like 

that policy-based methods learn the actor, and value-based methods learn one critic which can evaluate 

how good the actor is and find the best actor. Table 2.1 lists some classical model-free RL algorithms 

in recent years.  
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On-policy and off-policy: Those are different techniques to learn the optimal policy. On-policy 

methods evaluate and improve the policy used for taking actions, whereas off-policy methods evaluate 

and improve a policy different from that used to take actions. In other words, off-policy learning has 

two policies, target policy being learned about and more exploratory behavior policy used to generate 

behavior. It facilitates finding the optimal policy, unlike the near-optimal policy from on-policy learning 

using the same policy to learn and take actions. Almost all value-based methods are off-policy because 

they allow to use the experience data from other policies to train agents, and they even have the replay 

buffer to store the experience from different policies and randomly replay them in training process, such 

as DQN. However, most policy-based methods are on-policy. 

Table 2.1.  Classical model-free RL algorithms. 

Algorithms  Descriptions Types  Policy 

SARSA (Rummery and 

Niranjan, 1994) 

State–Action–Reward–State–

Action 

Value-based On-policy 

DQN (Mnih et al., 2015) Deep Q network Value-based Off-

policy 

D3QN (Wang et al., 2016) Double dueling deep Q network Value-based Off-

policy 

REINFORCE (Williams, 

1992) 

Monte-Carlo Policy-Gradient 

Control 

Policy-based On-policy 

A2C (Sutton et al., 1999) Advantage Actor-Critic Value-based and 

Policy-based 

On-policy 

DDPG (Timothy et al., 2019) Deep Deterministic Policy 

Gradient 

Value-based and 

Policy-based 

Off-

policy 

 

 

Figure 2.3.  Training and execution schemes of MARL. 

 

(2) Multi-agent RL 

Muti-agent reinforcement learning (MARL) is an extension of the single-agent RL for more 

complex environments. The key to MARL is the relationship between agents during the training and 

execution process. Current MARL methods can be divided into three types from the perspective of the 

training and execution schemes (Gronauer and Diepold, 2021) as Figure 2.3 shows: 1) distributed 

training decentralized execution (DTDE) (Tan, 1993), 2) centralized training centralized execution 

(CTCE) (Gupta et al., 2017), and 3) centralized training decentralized execution (CTDE) (Rashid et al., 

2018; Sunehag et al., 2018). DTDE treats all agents independently, and agents’ learning does not rely 

on any shared knowledge; on the contrary, CTCE requires communications between different agents 



10 

 

and integrates all agents as a joint agent, which trains and executes together considering mutual 

conditions. Hence, the flaw of DTDE is that the environment is non-stationary from the perspective of 

a single agent with partial observability, reducing learning efficiency. CTCE also suffers the drawback 

of the curse of dimensionality and heavy reliance on communication infrastructures.  

In contrast, CTDE uses mutual information during training but allows independent decision-

making for agents during execution. More specifically for value-based methods, CTDE incorporates 

extra information such as observations, joint actions, and agents’ policies to the centralized action-value 

function during learning. The action value (Q-value) estimates the goodness (expected return) of taking 

one action according to a policy given a specific state. In online execution, agents can behave 

independently yet cooperatively without the centralized action-value function for information sharing, 

facilitating a decentralized implementation. The shared information during training can help agents to 

overcome the environmental non-stationarity caused by multiple varying policies of agents to improve 

learning performance. In one centralized Q function, poor agents are likely to be eclipsed by those well-

performed agents. Like multi-person collaboration, lazy people may be hidden among hardworking 

people because there is only one overall evaluation for the task. Therefore, researchers of the CTDE 

method are devoted to proposing different formulations of the centralized value function to properly 

decompose the gains resulting from each agent and tackle the credit assignment problems. 

2.4 RL-based traffic signal control 

In recent years, significant success has been achieved in traffic signal control (TSC) by artificial 

intelligent techniques, especially RL methods from early tabular Q-learning algorithm to current DRL 

approaches (El-Tantawy et al., 2014; Genders and Razavi, 2019; La and Bhatnagar, 2011; Liang et al., 

2019; Rasheed et al., 2020; Wang et al., 2021). According to the concept of RL, in our TSC field, the 

environment is the road network, and the agent is usually the signal controller. The agent will perceive 

traffic conditions and learn to determine the traffic signals that maximize total network performance by 

training from numerous experienced transitions. Existing research results show that significant 

advantages of RL methods on TSC problem over other approaches include below two aspects (Genders 

and Razavi, 2019): 

(1) The TSC methods commonly used in the past require models to establish the relationship 

between signal timing and other traffic states to represent reality, like Australian SCATS and English 

SCOOTS systems. In contrast, well-trained model-free RL methods are more robust to dynamic traffic 

states as it learns a policy directly from interactions with the environment, not relying on explicit models 

for dynamic or transition probabilities. It just needs sample sequences of states, actions, and rewards 

from actual or simulated interaction with an environment to train. (2) RL leverages the structure of the 

problem and the information obtained from the interactions between the agent and the environment to 

learn which actions in specific states lead to rewards. This is in contrast to evolutionary methods, which 

do not explicitly consider such individual environment interactions but rely on genetic operators and 

fitness evaluation for evolution. 

(1) RL-based TSP 

Similarly, the RL algorithm can also be one preferred approach to realize a more efficient TSP. 

This method builds the interaction framework between the environment and agents rather than 

analyzing different situations and their optimization programs. The agent senses the environment state, 

including information about buses, private cars, and signal timing, and chooses the action accordingly. 
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The environment conducts the action, modifies the traffic signal, and obtains the next state and 

immediate reward for the agent. Using experiences about states, actions, and rewards, the agent learns 

to choose the action which brings the largest cumulative reward given a state. Therefore, the model-free 

RL approach benefits from robustly adapting to dynamic traffic states without assumptions on the 

optimization model.  

The first work of RL for TSP is by Ling and Shalaby (2003), which realized adaptive TSP for the 

single intersection along the King Streetcar route through a tabular Q-learning algorithm to minimize 

the headway deviation. However, the studied case with a single streetcar route is somewhat simplified 

than the real traffic with numerous intertwined bus routes at intersections. Later DRL algorithms also 

were used to propose TSP strategies for states with high dimensionalities, like DQN (Alizadeh 

Shabestray and Abdulhai, 2019) and proximal policy optimization with model-based acceleration 

(PPOMA) (Guo and Wang, 2021). They can extract critical features from the raw state information by 

DNNs, so it is not prerequisite to provide completed data, such as ETA.  

Although the above DRL methods show good performance on traffic efficiency, they have 

limitations: 1) Both works just considered limited bus/tram routes, which is far simple than actual traffic 

conditions of cities with high bus ratios. 2) Both works used variable phase sequences, but no 

mechanism was designed to consider the rationality for phase skipping. Hence, irrational actions may 

appear in model-free DRL and would cause damage in the real environment, such as two continuous 

skips for one phase and extremely disordered phase sequence, which may lead to driver anxiety and 

confusion, respectively. 

(2) MARL-based TSC 

A range of RL algorithms have achieved great success in traffic signal control at isolated 

intersections (Alegre et al., 2022; Han et al., 2021; Mao et al., 2022; Wan and Hwang, 2018), but those 

single-agent RL methods are not scalable to the large network with an extremely high dimension of 

states and actions (La and Bhatnagar, 2011). Hence, Multi-agent RL methods (MARL) have also been 

applied to arterial roads or larger networks, treating each intersection (Chu et al., 2020) or a combination 

of several intersections (Wang et al., 2021) as one agent. 

As aforementioned, MARL with CTDE scheme performs better than other MARL due to without 

environment stationary and curse of dimensionality. Therefore, below summarizes the related works of 

MARL-based TSC under the CTDE scheme on assigning credits to different agents. Tan et al. (2020) 

used dense layers to approximate the global Q-value based on other agents’ Q-values, which is an 

extension of the Value Decomposition Network (Sunehag et al., 2018) to decompose the total Q-value 

as the sum of individual Q-value. Similarly, Zhang et al. (2021) considered the contributions of local 

agents to global traffic and then formulated the total Q-value as the contribution-weighted sum of other 

agents’ Q-value. Ma and Wu (2022) deployed the QMIX method (Rashid et al., 2018), which added one 

mixing network taking individual Q-value and global states as input to generate the total Q-value.  

Although various works show the effectiveness of MARL approaches on traffic signal control, 

neither considers the priority strategy for transits. Hence, it is one opportunity to design real-time 

cooperative TSP strategies using MARL to improve bus reliability. 

2.5 Transit reliability 

Reliability is a crucial attribute in evaluating the quality of transit service and determining the 

travel experience of transit users. A basic definition of bus reliability is the stability of the transit 
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performance over time, such as travel time, waiting time, boarding time, seat availability, and so on 

(Turnquist, 1981). Hence, it is directly related to the attractiveness of public transit to current and 

potential riders (Chen et al., 2009). Besides transit users, transit reliability is also significant to transit 

operators as operational costs are tied to transit service levels.  

Schedule adherence is one of the essential elements for the reliability of transit service. It is also 

an important indicator to characterize on-time performance. The early or late arrival of buses would 

result in transit users missing the bus or increasing the waiting time, influencing transferring if any, and 

causing uncertainty of arrival time at destination. And for bus operators, the failure to meet on-time 

targets may result in penalties or reduced compensation. Therefore, many existing studies propose 

various priority measures to decrease the bus schedule delay, which is the delay time compared to the 

bus schedule. TSP is one of the most effective priority measures, as mentioned in Section 2.1 Transit 

signal priority (Chow et al., 2017; Liang et al., 2022). 

Another element significantly affecting bus reliability is headway adherence. Transit users will 

focus more on schedule adherence when bus schedules are rare, while they will focus more on headway 

adherence when bus schedules are frequent. The variability of traffic states and passenger demand 

always leads to headway instability. Once the headway between the target bus and the bus in front 

increases, there will be more people waiting at bus stations, and then the longer boarding time caused 

by increasing waiting passengers would increase bus dwell time and enlarge the headway more. Then 

the headway between the target bus and the bus behind decreases, and the fewer waiting persons and 

less boarding time would cause the bus behind run faster and finally catch on the target bus after a 

period of time. This phenomenon is well-known as bus bunching. In this situation, more transit users 

experience crowded buses and wait for a long time, deteriorating travel comfort.  

To better understand the effects of headway adherence on the person waiting phenomenon, the 

arrival and departure of persons at a stop are shown in Figure 2.4 and Figure 2.5 under late arrival and 

early arrival. Schedule headway is always set evenly, but actual headway can be uneven due to many 

factors, such as traffic conditions and passenger demand. In Figure 2.4 (a), the black line denotes person 

arrivals, and the red and blue lines represent actual and expected person departure, respectively. One 

bus arrives late after time 𝑡′, so there are more arrived person waiting for this late bus. Blue area is the 

cumulative waiting time when one bus comes late, while the red area is the cumulative waiting time 

when buses arrive on schedule. The first blue triangle area after time 𝑡′ is much bigger than the red one, 

showing a much larger waiting time for persons. If there is a passenger capacity control for buses like 

in Figure 2.4 (b), the first bus after time 𝑡′ does not have enough capacity for all waiting persons, then 

the rest who fail to board are required to wait for the second bus. Assume that the second bus has enough 

capacity for all the waiting people when it arrives at the stop. Compared to the blue area of Figure 2.4 

(a) and (b), we can find that capacity control cause waiting time worse, and the dark blue area of Figure 

2.4 (b) is the increased waiting time under capacity control compared to no capacity control. Fewer 

people arrive for the early arrival situation, so it is not easy to overpass bus capacity, which is simpler 

than late arrival situation. Figure 2.5 shows the case that the first bus after time 𝑡′ arrives early but 

following buses arrive following the scheduled headway, so the blue area is small. However, if the first 

bus arrives early, it is more likely that the following bus comes with a large headway (larger than 

scheduled headway), which will cause a situation like Figure 2.4 (a). Then the cumulative waiting time 

would increase a lot. 

Therefore, nonadherence to headway has a significant negative influence. To even out headway 

and also solve bus bunching problems, a variety of strategies have been developed, i.e., bus holding 
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strategy (Daganzo, 2009), speed control (Daganzo and Pilachowski, 2011), transit signal priority 

(Anderson and Daganzo, 2020; Chow et al., 2017; Liang et al., 2022), etc. As their name suggests, the 

bus holding strategy is to hold early arrival buses at stations, and speed control uses an adaptive control 

scheme to accelerate the late buses and decelerate the early buses. The former mainly works for 

decreasing headway to delay early arrival buses, and other methods for increasing headway, like stop-

skipping and bus insertion, would deteriorate the experience of waiting people and increase costs of bus 

operators as it requires many spare buses and spaces for placing those buses. Moreover, speed control 

must always trace and control all buses, which is more complicated than TSP strategies. TSP strategies 

are usually used to decrease bus delay and improve schedule adherence; however, they are also effective 

for headway adherence, e.g., prioritizing buses arriving late with large headway and not prioritizing 

buses arriving early with small headway. 

 

Figure 2.4. The cumulative person waiting time when the bus arrives late.  

 

Figure 2.5.  The cumulative person waiting time when the bus arrives early. 
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Chapter 3   

TSP at isolated intersection 

This chapter proposes a TSP strategy at the isolated intersection based on the DRL framework in 

a connected environment to improve bus efficiency and reduce the person delay of buses. This chapter 

is orgainized as follows. Section 3.1 introduces the methodology of this chapter and describes the 

proposed eD3QNI algorithm. The experiment framework are presented in Section 3.2. Experiment 

results are showed in Section 3.3. Section 3.4 discusses the performance of the proposed approach. 

Section 3.5 summarizes this chapter. 

3.1 Methodology 

3.1.1 Problem statement 

RL is a promising alternative approach to determine the optimal relationships between actions and 

their cumulative effects (rewards) on the given traffic environment (states). Thus, it can adapt to 

complicated changes in traffic and make the best traffic control actions (Rasheed et al., 2020). TSP 

process can be defined as MDP by state, action, reward and unobservable state transition probability. 

The TSP strategy of a typical four-leg signalized intersection with four bus stops is studied. Figure 3.1 

shows the intersection layout and phase configuration. 

Figure 3.1.  The studied environment. 

Twelve vehicle movements and bus routes are considered, i.e., right-turn, through, left-turn right-

hand traffic of eastbound (EB), westbound (WB), southbound (SB), and northbound (NB) approaches. 

A standard 4-phase design is adopted which is applied in many countries, e.g., Australia. The adoption 

 

 

(a) Intersection layout (b) Phase sequence 

𝑃0 𝑃1 𝑃2 𝑃3 
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of this phasing scheme hides a lane setup requirement that there be separate lanes for left turns. The 

problem is formulated based on concepts from MDP, and the intersection is treated as the agent to 

control the signal timing. More specifically, the state 𝑠𝑡, the action 𝑎𝑡, and the reward 𝑟𝑡 are required to 

be defined at discrete time step 𝑡, 𝑡 = 0,1,2,3… 

(1) State 

To realize the TSP strategy, sufficient state information should be transmitted to the agent, 

including the information about the whole traffic and the bus movements. The first one shows the entire 

traffic conditions at the signalized intersection, and the second bus information provides the current 

state of the bus. 

a. The whole traffic 

This part contains three elements, i.e., average speed 𝑆𝐴 and queue length 𝐿𝑄 of approach lanes, 

and current phase 𝑃𝐶 . Both average speed and queue length can be measured or estimated by 

conventional detection technologies such as loop detectors and cameras at intersections, and the CV 

technology is not needed. 

As there are four approach links, each of which is composed of three lanes, the matrix 𝑆𝐴 can be 

expressed as: 

𝑆𝐴 = [

𝑆𝐴11

𝑆𝐴21

𝑆𝐴31

𝑆𝐴41

𝑆𝐴12

𝑆𝐴22

𝑆𝐴32

𝑆𝐴42

𝑆𝐴13

𝑆𝐴23

𝑆𝐴33

𝑆𝐴43

]                                               (3.1) 

where 𝑆𝐴𝑙𝜑 represents the average speed on the lane 𝜑 of the approach link 𝑙; 𝜑 ∈ Φ𝑙 , and Φ𝑙 is the lane 

set of approach link 𝑙 ; 𝑙 ∈ Ψ , and Ψ  is the approach set. In this studied 4-leg intersection, 𝑙 =

1,2,3,4; 𝜑 = 1,2,3. The actual form of the above matrix can vary depending on real lane settings. 

The same as the matrix 𝑆𝐴, matrix 𝐿𝑄 can be expressed as: 

𝐿𝑄 =

[
 
 
 
𝐿𝑄11

𝐿𝑄21

𝐿𝑄31

𝐿𝑄41

𝐿𝑄12

𝐿𝑄22

𝐿𝑄32

𝐿𝑄42

𝐿𝑄13

𝐿𝑄23

𝐿𝑄33

𝐿𝑄43]
 
 
 

                                             (3.2) 

where 𝐿𝑄𝑙𝜑 represents the queue length on the lane 𝜑 ( 𝜑 ∈ Φ𝑙) of the approach link 𝑙 (𝑙 ∈ Ψ). 

Figure 3.1(b) shows the phase combinations, and 4 phases are considered. For better processing in 

the neural network, phases are encoded by one-hot encoding (Zhou et al., 2020). That is 

𝑃𝑝 (𝑝 = 0,1,2,3), where 𝑃𝑝 = 1 if phase 𝑝 shows green light, otherwise 𝑃𝑝 = 0. Therefore, the current 

phase 𝑃𝐶 is given by the below vector:  

𝑃𝐶 = [𝑃0 𝑃1 𝑃2 𝑃3]
𝑇                                             (3.3) 

b. The bus movements 

Three indicators are selected to represent the states of buses, i.e., distance to the stop line 𝐷, bus 

schedule delay 𝑆𝐷 ,  and bus occupancy 𝑂 . 𝐷  can be detected by the camera, loop detectors, or 

calculated by GPS information; the latter two information can be obtained from the bus operator, who 

needs V2I Onboard Units of buses to transmit the location captured by GPS and the occupancy collected 

by APC to them. Only the approaching buses within 100 m from the stop line will be recorded.  
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Distance to the stop line 𝐷  can be easily calculated based on the current location of the 

approaching bus and the location of the stop line to show the distance from the ego bus to the stop line 

of its approach.  

Bus schedule delay 𝑆𝐷 reflects the delay of a bus as compared against its schedule. Bus schedule 

deviation 𝑆𝐷𝑉𝜛  can be obtained based on the GPS when the buses arrive at bus stop 𝜛 . And the 

schedule delay of a bus that is driving between two stops can be calculated by 

 𝑆𝐷 = max(0, 𝑆𝐷𝑉𝜛 + 𝑆𝐷𝑡) (3.4) 

where 𝑆𝐷𝑡 is the schedule delay from the nearest stop 𝜛 passed by the bus to the current location at 

simulation step 𝑡, which is formulated as 𝑆𝐷𝑡 = 𝑇𝑇𝑡 −
𝑇𝐷𝑡

𝑉𝑠
. 𝑇𝑇𝑡 and 𝑇𝐷𝑡 are the travel time and distance 

from stop 𝜛 until simulation step 𝑡, respectively. 𝑉𝑠 is the bus schedule speed, set to be 4.0 m/s. If buses 

have not arrived at any stops in the experiment, we will regard the start point of the network as a stop. 

𝑆𝐷𝑉𝜛 will be the given initial schedule deviation of this bus and 𝑆𝐷𝑡 is calculated from entering the 

network to the current location at step 𝑡. It should be noted that when the bus is not late than its schedule, 

that is (𝑆𝐷𝑉𝑠 + 𝑆𝐷𝑡) is a negative value, 𝑆𝐷 should be 0. This is because we set that only late buses 

need to consider different priorities based on the corresponding state. Thus, all the specific early arrival 

time of non-late buses are neglected. 

Bus occupancy 𝑂  should be retrieved from the bus company by APC. If the exact number of 

passengers is not easy to obtain, we can just set several levels to represent the bus occupancy based on 

the e-payment record or in-car camera. 

These three indicators are formed as a matrix 𝑆𝐵𝑈𝑆 to represent the states of buses. In order to fix 

the size of states for neural network training, the matrix is designated to be 12×3 (as shown in Table 

3.1), in which three buses’ information will be considered for the movements of each phase.  

Table 3.1.  The matrix of buses’ states. 

 

The buses of north-south through (𝑃0), north-south left-turn (𝑃1), west-east through (𝑃2), and west-

east left-turn (𝑃3) are recorded in the first, second, third, and last three rows of the matrix. If there are 

less than three buses detected at approaches of one phase flow, the blank space in the matrix would be 

0. If there are more than three buses detected at approaches of one phase flow, calculate the indicator 

𝑝𝑟𝑖𝑜 =  𝑆𝐷 ∗ 𝑂 (𝐷 + 𝜀)⁄  where 𝜀 = 10−5 to avoid the case that the denominator becomes 0. Shorter 

distance to stop line, larger schedule delay, and larger occupancy, respectively, will result in higher 

value of 𝑝𝑟𝑖𝑜. Hence, information of three buses with the largest 3 𝑝𝑟𝑖𝑜 values will be filled into the 

matrix for each phase flow. Moreover, we emphasize that information of buses at all the 4 phases are 

contained in the state, rather than only the bus whose route is served by the current phase. 
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In summary, the state 𝑠𝑡 is defined as 𝑠𝑡 ≜ (𝑆𝐴, 𝐿𝑄, 𝑃𝐶, 𝑆𝐵𝑢𝑠). 

(2) Action 

This study considers two schemes: 1) the fixed sequence (FS) scheme without phase-skipping, 2) 

the variable phase (VP) scheme with phase-skipping. At each time step, the agent will select one action 

𝑎𝑡 based on the current state 𝑠𝑡 to receive a new state 𝑠𝑡+1. 

For the FS scheme, the action space Å = (0,1). 𝑎𝑡 = 0 when keeping the current phase; 𝑎𝑡 = 1 

when switching to the next phase. For the VP scheme, the action space Å = (0,1,2,3). That is, 𝑎𝑡 is the 

phase of the next step. If the next phase turns out to be the same as the current phase, keep the current 

phase and run one more step, else run out of the yellow time and switch to the next phase. 

(3) Reward 

The reward function is the key for the agent to learn to take the best action gradually. It is also one 

element that differentiates RL methods from other types of machine learning approaches. The agent 

will seek to obtain a policy that maximizes the expected return. In this experiment, the expected return 

can be derived from Eq (2.1) to 𝐺𝑡 = 𝐸[∑ 𝛾 𝑡̃−𝑡𝑟𝑡̃
𝑇
𝑡̃=𝑡 ] where 𝑇 is the time step at which one episode 

terminates (Mnih et al., 2013). The goal of each agent is to give late bus priorities at the intersection to 

improve the efficiency of buses to a good performance level by minimizing the person delay of buses 

at the intersection. Therefore, we define the reward as: 

 𝑟𝑡 = −∑ (𝑑̂𝑘𝑡 ∗ 𝑂𝑘𝑡𝑘 ) ∑ 𝑂𝑘𝑡𝑘⁄  (3.5) 

where 𝑘 is the index of the bus in the whole intersection; 𝑂𝑘𝑡 is the occupancy of bus 𝑘 at time 𝑡; and 

𝑑̂𝑘𝑡  is the good performance delay of bus 𝑘  at time 𝑡 , which means the delay compared to good 

performance, formulated as 𝑑̂𝑘𝑡 = 𝑇𝑇𝑘𝑡 −
𝑇𝐷𝑘𝑡

𝐺𝑉𝐵𝑢𝑠
; 𝑇𝑇𝑘𝑡 and 𝑇𝐷𝑘𝑡 are travel time and travel distance of 

bus 𝑘 at time 𝑡; 𝐺𝑉𝐵𝑢𝑠 is the good performance velocity of bus, set to be 5.56 m/s. Note that all the 

buses in this intersection will be considered. 

Here good performance delay 𝑑̂𝑘𝑡 is used to formulate the reward functions, rather than the normal 

delay 𝑑𝑘, given by 𝑑𝑘𝑡 = 𝑇𝑇𝑘𝑡 −
𝑇𝐷𝑘𝑡

𝐷𝑉𝐵𝑢𝑠
 where 𝐷𝑉𝐵𝑢𝑠 is the desired velocity of the bus, set to be 16.67 

m/s. The reason is that bus generally cannot run at desired speed due to the traffic situation and dwell 

time, so more positive immediate rewards can be collected by 𝑑̂𝑘𝑡, and more meaningful samples are 

saved to let agents learn better. 

In addition, two alternative reward functions designed for other operational goals are discussed in 

Section 3.4.2 Performance of different reward functions. Considering this study’s purpose and practical 

feasibility, they are not introduced here. 

(4) Basic constraints 

We should intervene partly in the interaction between the agent and the environment to meet the 

restrictions of traffic safety, efficiency, and comfort. According to traffic engineering knowledge, two 

types of constraints are required to be satisfied in the RL structure, i.e., the constraints of minimum and 

maximum green time and the phase skipping rule.  

a. The constraints of minimum and maximum green time 

The green time should satisfy the minimum green time 𝐺𝑚𝑖𝑛 to guarantee the safety of pedestrians 

to cross an intersection. It should also not exceed the maximum green time 𝐺𝑚𝑎𝑥 to avoid too long 
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waiting for other approaches’ movements.  

b. The constraints for the phase skipping rule 

This part only applies to the VP scheme. Because it is undesired to continuously skip a certain 

phase multiple times or skip the phase with a long queue, which will lead to drivers’ frustration, we can 

set the phase skipping rule as: 

▪ When the queue length of one phase flow exceeds the predefined threshold, this phase cannot 

be skipped. 

▪ Each phase cannot be skipped twice in a row if there are vehicles detected in its corresponding 

approach lane. 

Such a phase skipping rule is designed to avoid inappropriate skipping and provide a valid action 

space for the agent to choose the action from. 

(5) Evaluation metrics 

Person-based metrics are widely used to evaluate the impacts of control strategies on travellers, 

like the person delay and person lateness. Road-based metrics also can describe the whole traffic 

situation, such as the queue length. Hence, we can use the following metrics to assess the performance 

of TSP strategies, including person-based metrics and road-based metrics. 

a. Average person delay of buses (APDB) 

 𝐴𝑃𝐷𝐵 = ∑ ∑ (𝑑𝑘𝑡 ∗ 𝑂𝑘𝑡𝑘 )𝑡 ∑ ∑ 𝑂𝑘𝑡𝑘𝑡⁄  (3.6) 

b. Average person delay of cars (APDC) 

 𝐴𝑃𝐷𝐶 = ∑ ∑ (𝑑𝑐𝑡 ∗ 𝑁𝑃𝑐𝑡𝑐 )𝑡 ∑ ∑ 𝑁𝑃𝑐𝑡𝑐𝑡⁄  (3.7) 

where 𝑑𝑐𝑡 is the normal delay of car 𝑐 at time 𝑡, given by 𝑑𝑐𝑡 = 𝑇𝑇𝑐𝑡 −
𝑇𝐷𝑐𝑡

𝐷𝑉𝐶𝑎𝑟
 , 𝐷𝑉𝐶𝑎𝑟 is the desired 

velocity of cars, set to be 16.67 m/s; 𝑁𝑃𝑐 is the number of passengers in the car 𝑐. 

c. Average person delay (APD) 

 𝐴𝑃𝐷 = ∑ (∑ 𝑑𝑘𝑡 ∗ 𝑂𝑘𝑡𝑘 + ∑ 𝑑𝑐𝑡 ∗ 𝑁𝑃𝑐𝑡𝑐 )𝑡 ∑ (∑ 𝑂𝑘𝑡𝑘 + ∑ 𝑁𝑃𝑐𝑡𝑐 )𝑡⁄  (3.8) 

where 𝑏 and 𝑐 is the bus and car index, respectively. 

d. Queue  

 𝑄𝑢𝑒𝑢𝑒 =
∑ ∑ ∑ 𝐿𝑄𝑙𝜑𝑡𝜑𝑙𝑡

𝑇∗∑ |Φ𝑙|𝑙
 (3.9) 

where 𝐿𝑄𝑙𝜑𝑡  is the queue length on the lane 𝜑 (𝜑 ∈ Φ𝑙)  of the approach link 𝑙 (𝑙 ∈ Ψ)  at time 

𝑡 (𝑡 ∈ [0, T]). |Φ𝑙| is the size of the approach set, e.g., number of lanes of the approach link 𝑙. 

e. Lateness 

The lateness means the average time incurred by waiting persons due to bus schedule delays. It is 

formulated as 

  𝐿𝑎𝑡𝑒𝑛𝑒𝑠𝑠 = ∑ ∑ (𝑆𝐷𝑘𝑡 ∗ 𝑂𝑘𝑡)𝑘𝑡 ∑ ∑ 𝑂𝑘𝑡𝑘𝑡⁄  (3.10) 

where 𝑆𝐷𝑘𝑡 and 𝑂𝑘𝑡 are the schedule delay and passenger occupancy of bus 𝑘 at time 𝑡. 
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3.1.2 eD3QNI algorithm 

The proposed DRL for TSP strategy is an extended Dueling double deep Q-learning with Invalid 

action masking (eD3QNI) algorithm, which uses prioritized experience replay (PER) to sample batches, 

and 𝜖 -greedy method to explore experiences. D3QN has the advantages of high efficiency of samples 

usage and good convergence performance. Given that the reward function is formulated as the negative 

value of delay, many negative immediate rewards would be received within one period, but the agent 

can not learn useful knowledge from experiences with very negative rewards. PER can replay more 

essential transitions, such as samples with a positive reward, thereby helping the agent learn more 

efficiently (Schaul et al., 2016).  

The eD3QNI’s framework, as displayed in Figure 3.2, is the same as the typical framework of 

D3QN. First, it randomly initializes the phase for the environment, and after a duration of warm-up 

time, the initial state is received from the environment. The agent receives the state and chooses the best 

action. Then the environment conducts this action and obtains the next state and the associated reward. 

The tuple composed of the state, the action, the reward, and the next state is stored in replay memory. 

Its TD-error, computed as the priority term, and its index are stored into the sum-tree (Schaul et al., 

2016). Sum-tree is a binary tree data structure where the value of a node is the sum value of its left and 

right children, and it can be used to conduct proportional prioritization. When the number of the tuples 

reaches the batch size, one mini-batch will be sampled by sum-tree to train the main network. After the 

training, new TD-errors are obtained, and the priority in the sum-tree should be updated. Parameters of 

the target network will be updated every certain number of learning steps. 

Environment

Main 

Network

Target 

Network

Loss function

State Action

Reward

Replay memory

Prioritized sampling

mini batch

Agent

Store memory

Every Nrep step

 

Figure 3.2.  The framework of eD3QNI. 

Figure 3.3 shows the architecture of DNN of the above eD3QNI, taking the VP scheme as an 

example. The state information obtained from the environment is input to this DNN to extract features 

firstly. After concatenation, the features will be input into two fully connected layers to get the state-

value and the advantages for each action (Wang et al., 2016). Finally, the action-value for all actions is 

output from this network by summarizing those two terms. This value is the expected cumulative reward 

received when taking the corresponding action based on the given state. The only difference between 

𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃) 𝑄̂ 
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the DNN of the FS and VP schemes is the output size of the advantages and the final action-value, i.e., 

2 for the FS scheme and 4 for the VP scheme. LeakyReLU is a type of activation function based on the 

ReLU, but it has a small slope for negative values, rather than making them equal to zero. Its use 

introduces the nonlinear characteristics into DNN. 
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Figure 3.3.  The architecture of DNN of the eD3QNI agent for the VP scheme. 

As for the basic constraints, two methods can be used, i.e., variable decision point (VDP) and 

invalid action masking (IAM). 

(1) Variable decision point (VDP) 

This approach has been employed in several existing studies of RL-based TSP strategies (El-

Tantawy et al., 2014; Kai et al., 2019; Wan and Hwang, 2018) for the consideration of the minimum 

green time. The agent only selects actions at decision points instead of at every time step. For each 

phase, the decision point is between its minimum and maximum green times. Figure 3.4 shows one 

example. In this example, the time between two actions is variable. When the action is keeping the 

current phase and the green time duration satisfies the minimum and maximum green times, the 

environment extends the current phase by one time step, of which step length ∆𝑡𝜆 = 1s; when the action 

is switching to another phase or is keeping the current phase but the green time duration exceeds the 

maximum green time, then the environment should go through the yellow time 𝑌 and 𝐺𝑚𝑖𝑛𝑝
 at this step, 

thus ∆𝑡𝜆 = 𝑌 + 𝐺𝑚𝑖𝑛𝑝
. 

 

        Figure 3.4.  The decision points for the agent. 
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(2) Invalid action masking (IAM) 

IAM is an approach to mask the invalid actions sampled from the entire action space. It has been 

proven to work well in Policy Gradient method, even in a situation with large-space invalid actions 

(Huang and Ontañón, 2020). In this work, we adopted IAM to handle the constraints for green time and 

phase skipping rule, masking the invalid actions during the acting and training process.  

For identifying the invalid actions, the states will add one more tuple 𝑆𝑚𝑎𝑠𝑘 ≜

(𝐺𝑚𝑖𝑛, 𝐺𝑚𝑎𝑥, 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑆𝑘𝑖𝑝𝐶𝑛𝑡𝑟)  as the states for masking, which shows the minimum and 

maximum green time, the current duration of this phase, and the skipped times of each phase. Hence  

𝑠𝑡 ≜ (𝑆𝐴 , 𝐿𝑄 , 𝑃𝐶 , 𝑆𝐵𝑢𝑠, 𝑆𝑚𝑎𝑠𝑘) . 𝐺𝑚𝑖𝑛 , 𝐺𝑚𝑎𝑥 , and 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛  is one integer value individually, and 

𝑆𝑘𝑖𝑝𝐶𝑛𝑡𝑟  is a 4×1 matrix only filled with the number of 0 or 1. Invalid actions are judged by the 

following principles: 

▪ When the action does not satisfy the minimum and maximum green time constraint, it is 

regarded as an invalid action.  

▪ When the queue length of one phase flow is not less than the threshold 𝑸𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅, phases after 

this phase in a signal cycle will be the invalid actions. This signal cycle refers to the cycle from 

the current phase to the next 3 phases in this study. For example, if the current phase is phase 

1, the signal cycle will be phases 1-2-3-0. If the queue length of phase 2 exceeds 𝑸𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅, 

phase 3 and 0 will be invalid actions, and the action space only includes phases 1 and 2. The 

agent will determine keeping the current phase 1 or switching to phase 2 with a long queue 

length directly.  

▪ When there is one phase flow with queue less than 𝑸𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅, and has been skipped once in 

signal control, phases after this phase in a signal cycle will be the invalid actions to guarantee 

the phase not be skipped the second time. For example, if the current phase is phase 0, i.e., the 

signal cycle will be phase 0-1-2-3, and phase 3 has been skipped once, the action space will 

include phase 0 to 3 since there is no phase after phase 3 in this cycle. 

For masking actions, we add a large negative value 𝑉𝑎𝑙𝑢𝑒−  into the logits of invalid actions 

outputted from the training network of the PG method. Similarly, the considerable negative value 

𝑉𝑎𝑙𝑢𝑒− can be added into the Q values of invalid actions outputted from eD3QN (see Pseudocode of 

IAM). In this case, the step length is also variable as step length ∆𝑡𝜆 = 1 when the action is keeping 

current phase, and ∆𝑡𝜆 = 𝑌 + 1 when the action is switching to another phase. 

The whole process of the proposed method can be explained with its pseudocode (see Algorithm 

eD3QNI). The 𝜖 of 𝜖-greedy method is designed to decay exponentially with the simulation steps. 

3.2 Experiment 

3.2.1 Simulated environment 

(1) Simulation platform 

The experiment is built in a widely used simulation platform, SUMO (Simulation of Urban 

MObility) (Krajzewicz et al., 2002). It is open-source software with abundant packages to efficiently 

conduct large-scale microscopic traffic simulation, developed mainly by the Institute of Transportation 

Systems of German Aerospace Center. In this software, an API (Application Programming Interface), 
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named TraCI (Traffic Control Interface), allows users to manipulate the traffic simulation online and 

retrieve various values of objects in the simulation. 

 

(2) Environment layout 

The simulated intersection is 301 m × 301 m area, with four links. Each link has one right-turn 

and through lane, one through lane, and one left-turn lane, of which the width is 3.5 m. And there have 

been set 10-meters-long bus stops at the most-right lane of each link, 100 m far from the stop line.  Both 

twelve car movements and bus movements are set in this simulation from different approaches. Lane 

area detectors (E2) are placed in every approach lane with 150-meters in length.  

(3) Traffic demands 

Two traffic demands (shown in Table 3.2) are considered, of which the summation of critical flow 

ratios at this intersection are about 0.6 and 0.8 to represent normal and high traffic demand, respectively. 

The flow ratio means flow volume/saturation flow rate. The probability method is used to generate the 

traffic flow.  

Table 3.2.   Traffic demands in simulation. 

Demand 
Vehicle 

type 

North-south (veh/h) West-east (veh/h) 

Through Right-turn Left-turn Through Right-turn Left-turn 

Normal 
Car 270 38 150 450 48 230 

Bus 30 12 30 30 12 30 

High 
Car 340 36 180 580 46 290 

Bus 60 24 60 60 24 60 

 

(4) Traffic signal 

The phase considered in the simulation is the same as the example of Figure 3.1(b). The phase of 

Pseudocode of IAM 
Given 𝑄𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝑉𝑎𝑙𝑢𝑒−, (𝑠𝜆, 𝑎𝜆, 𝑅𝜆, ∆𝑡𝜆)  

𝑠𝑘 ≜ (𝑆𝐴 , 𝐿𝑄 , 𝑃𝐶 , 𝑆𝐵𝑢𝑠 , 𝑆𝑚𝑎𝑠𝑘), 𝑆𝑚𝑎𝑠𝑘 ≜ (𝐺𝑚𝑖𝑛,𝐺𝑚𝑎𝑥, 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑆𝑘𝑖𝑝𝐶𝑛𝑡𝑟) 

Initialize 1×4 matrix 𝑀𝜆 with all zeros to represent mask values of all phases 

Calculate average queue length of each phase 𝐴𝐿𝑄  based on 𝐿𝑄 

if 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 < 𝐺𝑚𝑖𝑛  𝐭𝐡𝐞𝐧 

𝑀𝜆[𝑗] = 𝑉𝑎𝑙𝑢𝑒− for 𝑗 ∈ {the phase-switching actions}  
elif 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ≥ 𝐺𝑚𝑎𝑥 𝐭𝐡𝐞𝐧 

𝑀𝜆[𝑗] = 𝑉𝑎𝑙𝑢𝑒− for 𝑗 ∈ {the phase-keeping actions} 

end if 

  

if Variable Phase scheme with phase skipping 𝐭𝐡𝐞𝐧 

 for phase p = 0 to 3 do 

  if 0<𝐴𝐿𝑄𝑝
<𝑄𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  𝐭𝐡𝐞𝐧 

   if 𝑆𝑘𝑖𝑝𝐶𝑛𝑡𝑟𝑝=1 𝐭𝐡𝐞𝐧 

𝑀𝜆[𝑗] = 𝑉𝑎𝑙𝑢𝑒− for 𝑗 ∈ {the phase-skipping actions}  
  end if 

  else 𝐴𝐿𝑄𝑝
≥ 𝑄𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝐭𝐡𝐞𝐧 

𝑀𝜆[𝑗] = 𝑉𝑎𝑙𝑢𝑒− for 𝑗 ∈ {the phase-skipping actions}  
 end if 

end for 

end if 

Obtaining the masked Q values 𝑄𝑚𝑎𝑠𝑘𝑒𝑑  = 𝑀𝜆 + 𝑄 

choose action based on 𝑎𝜆 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄𝑚𝑎𝑠𝑘𝑒𝑑(𝑠𝜆, 𝑎𝜆; 𝜃) 
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each step, excluding the warm-up period, is decided by the action from the proposed algorithm. By 

webster’s method, we can get the fixed-time signal (FT) (𝑃0, 𝑃1, 𝑃2, 𝑃3) for the two demands are 9 s, 

10 s, 15 s, 14 s, and 21 s, 22 s, 33 s, 32 s respectively, with 3 s yellow time after each phase. The 

minimum green time 𝐺𝑚𝑖𝑛 for each phase is calculated by 𝐷𝐶𝑟𝑜𝑠𝑠 𝑉𝑃𝑒𝑑⁄ . As the refuge islands are set 

in the middle of crosswalks, the crosswalk width 𝐷𝐶𝑟𝑜𝑠𝑠 can be 3*3.5=10.5 m. Considering pedestrian 

walking speed 𝑉𝑃𝑒𝑑=1.2 m/s, 𝐺𝑚𝑖𝑛=10.5/1.2=9 s for each phase. The maximum green time for each 

phase is set to be 10 s more than FT, i.e., 19 s, 20 s, 25 s, 24 s for normal demand and 31 s, 32 s, 43 s, 

and 42 s for high demand. 

 

 

(5) Bus information 

Like car flows, 12 routes for buses are fully implemented in the network, i.e., EB/WB/NB/SB 

Algorithm eD3QNI 
Input: Discount factor 𝛾, maximum epsilon 𝜖𝑚𝑎𝑥, minimum epsilon 𝜖𝑚𝑖𝑛, epsilon decrement 𝜖𝑑𝑒𝑐, learning 

rate 𝛼, replay memory size 𝑆𝑟𝑒𝑝, batch size 𝑆𝑏𝑎𝑡 ,  the number of iterations to replace parameters 𝑁𝑟𝑒𝑝, the 

number of episodes N, simulation time T, simulation warm-up time Twarm 

Initialize replay memory Ω with zeros and sum-tree with  𝑝1 = 1, Δ = 0 

Initialize main network 𝜃 and target network 𝜃− = 𝜃 

      for episode = 1 to 𝑁𝑒 do 

               Initialize environment  

               for t = 1 to T do 

if t < Twarm then 

           run simulation one step, 𝑐𝑜𝑢𝑛𝑡 = 0, 𝜆 = 0 

           return 

end if 

obtain state 𝑠1 and action 𝑎1, 𝑐𝑜𝑢𝑛𝑡 += 1, 𝜆 += 1, 𝑖𝑛𝑑𝑒𝑥 = 𝑐𝑜𝑢𝑡%𝑆𝑚𝑒𝑚 

epsilon 𝜖 = 𝜖𝑚𝑎𝑥 ∗ 𝑒−𝜖𝑑𝑒𝑐∗𝑐𝑜𝑢𝑛𝑡 if 𝜖 > 𝜖𝑚𝑖𝑛 else  𝜖𝑚𝑖𝑛 

Choose action 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄𝑚𝑎𝑠𝑘𝑒𝑑(𝑠𝑘 , 𝑎𝑘; 𝜃) with probability (1 − 𝜖) or randomly 

choose one with probability  𝜖 

Simulate one step ∆𝑡𝜆, calculate reward 𝑟𝜆 by 𝑟𝜆 = ∑ 𝛾𝑡−1𝑟𝑡
∆𝑡𝜆
𝑡=1  and get next state 𝑠𝜆+1 

Calculate TD-error 𝛿𝜆 = 𝑄̂ − 𝑄(𝑠𝜆, 𝑎𝜆) by 

𝑄(𝑠𝜆 , 𝑎𝜆) = 𝑉(𝑠𝜆, 𝑎𝜆) + (𝐴(𝑠𝜆 , 𝑎𝜆) −
1

|𝒜|
∑ 𝐴(𝑠𝜆 , 𝑎

′)
𝑎′

) 

𝑄̂ = {
𝑟𝜆                                          , ∑ ∆𝑡𝜆𝜆 = 𝑇

𝑟𝜆 + 𝛾∆𝑡𝜆𝑄̂(𝑠𝜆+1, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎′∈𝐴𝑄𝑚𝑎𝑠𝑘𝑒𝑑(𝑠𝜆+1, 𝑎
′; 𝜃); 𝜃−), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

   t = t + ∆𝑡𝜆 

if replay memory reaches the size  𝑆𝑟𝑒𝑝 then 

Delete the oldest memory tuples 

end if 

Store tuple (𝑠𝜆, 𝑎𝜆, 𝑟𝜆, 𝑠𝜆+1, ∆𝑡𝜆) to replay memory and add (𝛿𝜆, 𝑖𝑛𝑑𝑒𝑥) into the sum-tree 

if the number of stored memories > 𝑆𝑏𝑎𝑡  then 

for i=1 to 𝑆𝑏𝑎𝑡  do 

Sample transition 𝑖 ∽ 𝑃(𝑖) = (𝑝𝑖 + 𝜉)𝜆 ∑ (𝑝𝑗 + 𝜉)𝜆
𝑗⁄ , 𝜉 = 0.01, 𝜆 =

0.6 

Calculate importance-sampling weight 𝜔𝑖 = (𝑆𝑚𝑒𝑚 ∗ 𝑃(𝑖))−𝜇 max 𝜔𝑖⁄ , 

𝛽 = min (1, 𝜇 + 𝜎), 𝜇0 = 0.4, 𝜎 = 0.001 

Calculate TD-error 𝛿𝑖 and update priority 𝑝𝑖 ← |𝛿𝑖| 
Accumulate weight changes Δ ← Δ + 𝜔𝑖𝛿𝑖∇𝜃𝑄(𝑠𝑖 , 𝑎𝑖) 

          end for 

Update weights 𝜃 ← 𝜃 + Δ and reset Δ = 0 

Update target network 𝜃− ← 𝜃 every 𝑁𝑟𝑒𝑝 step 

end if 

  end for 

      end for 
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through/right-turn/left-turn. Bus lines of through and right-turn at EB, WB, NB, SB approach will stop 

at Stops 0, 1, 2, 3, respectively. All the left-turn bus lines will not stop at any bus stops. However, one 

total bus flow is specified for each route rather than individually considering the flow of each bus line 

in one route because several bus lines may share the same route at an intersection in real traffic. As 

Table 3.2 shows, the bus flow of North-south/West-east through, right-turn, left-turn routes are 30, 12, 

30 veh/h under normal demand, and 60, 24, 60 veh/h under high demand. To account for the 

stochasticity of bus arrivals as a result of a combination of different bus lines that share the same given 

route, the above bus flows are generated by a binomial distribution with probability of 0.0083, 0.0033, 

0.0083 under normal demand, and by a binomial distribution with probability of 0.0167, 0.0067, 0.0167 

under high demand. Since buses would have schedule delays in their running, each bus will be given 

an initial schedule deviation when entering the intersection.  

The distances of approaching buses to the stop line are retrieved from E2 detectors. In reality, the 

bus schedule deviation and occupancy can be received by CV technology. However, in the simulation, 

the bus occupancy is generated by randint syntax from 1 to 70, and the initial bus schedule deviation is 

generated by multiplying 120 with the 200 values from a standard normal distribution. Different sets of 

numbers will be generated for various episodes by changing the random seed. In this way, we can 

generally control the number of passengers and schedule delays in one episode simulation and duplicate 

the number settings for other methods in the same episode, making it easy to compare the results of 

different methods.  

In the simulation, cars are set to carry 1.2 person per vehicle. After setting the above information, 

each episode will simulate 1500 s, of which the first 300 s is for warm-up, and normal and high demand 

simulate for 600 s successively. Numbers are generated randomly to be the SUMO seeds of different 

episodes. 

3.2.2 Compared methods 

To evaluate the performance of the proposed method, we compare it with the following baseline 

approaches. The detailed calculations and algorithms are presented in Appendix A. 

(1) Fixed-time signal (FT): The signal timing is pre-set and fixed (see Appendix A-I). Phases are 

cycled in a fixed sequence, and their durations are calculated by the webster’s method in this experiment. 

It is a commonly used control strategy due to its simplicity. 

(2) Active TSP (ATSP): Two kinds of active TSP strategies are modelled as the benchmarks of 

fixed sequence and variable phase scheme, ATSPF and ATSPV, which can compare with eD3QNI 

method of fixed sequence and variable phase scheme, respectively (see Appendix A-II). ATSPF 

considers only green extension and red truncation under the fixed sequence scheme. It is the 

modification of Thodi et al. (2021) ’s work and prioritizes the buses with the larger total person lateness 

(Total person lateness = Bus occupancy*Bus schedule delay). ATSPV prioritizes the phases with the 

largest sum value of 𝑝𝑟𝑖𝑜 and follows phase skipping rule under the variable phase scheme. 

(3) eD3QNV, eD3QNI: The eD3QNI and eD3QNV are eD3QN methods with IAM and VDP, 

respectively. The eD3QNV algorithm can only satisfy the constraints for green time, while the eD3QNI 

algorithm can satisfy constraints for green times and the phase skipping rule in the variable phase 

scheme. The eD3QNI can store more experience than eD3QNV due to the selecting actions at each time 

step rather than certain decision points. These two approaches are analyzed under fixed sequence and 

variable phase schemes. 
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(4) REINFORCE:  This policy-based approach is a modification of the work of Williams (1992) 

by adding the IAM in the algorithm (see Appendix A-III). Given that the action space in this research 

is discrete and not more than 4, the stochastic policy has been taken, meaning actions are chosen based 

on the probability. In this case, a large negative value 𝑉𝑎𝑙𝑢𝑒−will be added into the logits of invalid 

actions outputted from Policy Gradient method to mask invalid actions. 

(5) Advantage Actor-Critic (A2C): This is another Policy Gradient method with the central aspect 

of n-step updating, which is the crucial difference from REINFORCE updated until the end of one 

episode (see Appendix A-IV). We adopt a one-step updating algorithm with IAM here to value its 

performance. 

(6) Deep Deterministic Policy Gradient (DDPG): This algorithm was proposed to realize off-

policy learning with continuous action by combing the ideas of DQN and Deep Policy Gradient (DPG) 

(Timothy et al., 2019) (see Appendix A-V). We also add IAM into it here to implement constraints. 

For REINFORCE method, its DNN also firstly extract features, like Figure 3.3, but the 

concatenated features after LeakyReLU activation will be input to a fully connected layer and output 

the logits of all actions. Then we can compute the probability of selecting different actions by 

categorical distributions based on obtained logit values, and choose the action. The other two gradient 

policy methods have two networks: actor network to select action and critic network to assess that action. 

Their actor networks are the same as the REINFORCE, while their critic networks will finally output 

one state-value, instead of the logits value of all actions, by inputting LeakyReLU activated 

concatenated features into one fully connected layer. The action is selected with a certain probability, 

which means these methods already can explore. Because the feature extraction part of actor and critic 

networks is the same, these two networks’ feature extraction layers can share the same parameters. 

Hence, those parameters will be updated cumulatively by the loss of these two networks. 

The learning parameters of all models are set in Table 3.3. These parameters have been tried in 

many combinations to get the best one. 

Table 3.3.  Model parameters. 

Parameters eD3QN REINFORCE/A2C DDPG 

Discount factor 𝛾 0.99 0.99 0.99 

Learning rate 𝛼 0.0001 0.0001 0.0001 

Learning rate 𝛽 - - 0.0001 

The number of iterations to replace 

Parameters 𝑁𝑟𝑒𝑝 
2000 - - 

Network updating parameter 𝜏 - - 0.001 

Replay memory size 𝑆𝑟𝑒𝑝 20000 - 20000 

Batch size 𝑆𝑏𝑎𝑡 64 - 64 

Maximum epsilon 𝜖𝑚𝑎𝑥 0.6 - - 

Minimum epsilon 𝜖𝑚𝑖𝑛 0.1 - - 

Epsilon decrement 𝜖𝑑𝑒𝑐 5e-5 - - 

Size of action space 2 (for FS) / 4 (for VP) 

SUMO simulation step length 1 s / step 

Simulation time T 1500 s 

Simulation warm-up time 𝑇𝑤𝑎𝑟𝑚 300 s 

Queue length threshold 𝑄𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 30 m 

The number of episodes N 800 
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3.3 Results 

In this section, the proposed method is evaluated by microscopic traffic simulation. The simulation 

results reveal the proposed method’s efficiency. 

3.3.1 The comparison of proposed methods and baselines 

The value of cumulative reward of each episode, also called the score, is computed to plot the 

learning curve, which can represent the efficiency of methods. Since each episode’s score constantly 

oscillates, average scores per 20 episodes are computed to plot the learning curve to make the curve 

smoother and easier to observe learning trends. The learning curves of all methods are shown in Figure 

3.5. It can be seen from the figure that eD3QNI converges to the best results after about 550 and 400 

episodes for the FS scheme and VP scheme, respectively. In comparison, other methods do not 

significantly improve during the training process, and the A2C algorithm even drops down dramatically 

in the first 50 episodes for the VP scheme. Though eD3QNI does not perform better than other methods 

before 550 episodes for the FS scheme, the converged score is the highest one, also obviously higher 

than ATSPF’s score. The fixed sequence of phases and satisfaction of minimum and maximum green 

times limit the flexibility of the proposed algorithm to make decisions, so the differences between scores 

of all methods are not very obvious. On the contrary, for the variable phase scheme, the benefits of 

eD3QNI over ATSPV are fully reflected as about 50 more scores are received by eD3QNI than ATSPV 

on average. 

 
(a) Fixed sequence (FS) scheme                          (b) Variable phase (VP) scheme 

Figure 3.5.  The learning curve of different methods. 

Such efficiency difference between different algorithms is because REINFORCE method updates 

every episode without guaranteeing the improvement of each update, and the sample utilization is much 

lower than eD3QNI with experience replay buffer, resulting in low learning efficiency. Moreover, the 

A2C method updates every step, which is very likely to cause erroneous parameter updates. The reason 

is that worse actions may be chosen during exploration, especially at the beginning of the training, as 

the policy network is just initialized, and incorrect logits value will be outputted from DNN. Though 

the DDPG method combines the advantages of DQN and PG algorithms, it reaches remarkable benefits 

on the continuous and large action space. In this study, the actions are discrete with only 2 or 4 terms, 

so the agent can directly approximate the action value or state value with little computation. 

Figure 3.6 depicts the performance results of different methods for the FS scheme and VP scheme, 

except for poor-performing A2C. Performance indicators are calculated by averaging each model’s last 
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100 episodes data because of high fluctuations within a small number of episodes. They include average 

person delay (APD), average person delay of buses (APDB), average person delay of cars (APDC), 

queue per lane, and lateness per person. The improvement rates are based on FT’s performance. The 

positive value means improvement, that is, decrease for the delay, queue, and lateness, and vice versa. 

It can be seen from Figure 3.6 that eD3QNI outperforms active TSP strategy and other RL methods in 

terms of the reduced average person delay (0.7% for FS scheme and 2.7% for VP scheme), reduced 

average person delay of buses (1.6% for FS scheme and 3.5% for VP scheme) and decreased lateness 

(3.3% for FS scheme and 10.6% for VP scheme). Compared with FT and ATSP, though the queue gets 

worse in the eD3QNI method, the queue only increases 3.9 and 1.3 m/lane for FS and VP compared to 

the FT strategy, 3.0 m/lane for FS scheme compared to ATSPF strategy. The simulation results also 

reveal the trade-off between buses and private vehicles in the TSP strategy; that is, the more the average 

person delay of buses decreased, the more the average person delay of cars increased.  

In overall, we see that the proposed TSP strategy by the eD3QNI algorithm has benefits as it 

improves the average person delay and lateness with negligible adverse effects on the queue.  

 
(a) Fixed sequence (FS) scheme                          (b) Variable phase (VP) scheme 

Figure 3.6.  Performance improvement rates of different methods. 

3.3.2 The comparison of VDP and IAM 

Both VDP and IAM are used in the eD3QN algorithm to analyze their performance, i.e., eD3QNI 

and eD3QNV. VDP just can satisfy the green time of basic constraints, while IAM can also consider 

the phase skipping rule and avoid long waiting situations of drivers, which considers more 

transportation domain knowledge. The left plot of Figure 3.7 shows the learning curve of the scores. 

From this, we can know performances of these four algorithms get improved with the episodes. 

However, they oscillate highly, and it is not easy to observe the convergence efficiency. Hence, the 

more stable metric, approximated action-value Q by DNN, is also measured to display the learning 

curve. We run the simulation with the random policy before training and collect 64 states to track their 

maximum predicted Q value in the training process. The metric average Q value is calculated by 

averaging the tracked value of those states, of which the result is shown in the right plot of Figure 3.7 

The reason why the average Q value does not get increased like theory is as follows. As the DNN is 

initialized at the beginning of the training, the initial Q value will be estimated to be 0. And the reward 

is formulated by the delay indicator in this study. Therefore, the Q value will be negative, and the 

average Q value must gradually decrease with episodes.  

As presented in Figure 3.7, eD3QNI converges at about 400 and 600 episodes for FS and VP 
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schemes, respectively, while eD3QNV converges at almost 750 episodes for two schemes. After 

converging, the IAM strategy can reach a higher average Q value than the VDP strategy. Hence, the 

IAM strategy converges faster than the VDP strategy. Table 3.4 lists the performance comparison of 

the VDP and IAM strategies. IAM strategy has more significant improvements on average person delay, 

average person delay of bus, and lateness, which is also better than the ATSP approach. 

 

Figure 3.7.  The learning curve comparison of VDP and IAM. 

Table 3.4.  The performance improvement rates’ comparison of VDP and IAM. 

Method 
Delay (s/person) Queue 

(m/lane) 

Lateness 

(s/person) Total Bus Car 

FS 

ATSPF 0.2% 0.4% -1.7% -2.9% 2.3% 

eD3QNV -0.4% 0.3% -6.0% -13.4% 0.0% 

eD3QNI 0.7% 1.6% -6.2% -13.6% 3.3% 

VP 

ATSPV 0.6% 0.8% -1.9% -5.3% 5.5% 

eD3QNV 1.7% 3.2% -8.3% -18.5% -3.7% 

eD3QNI 2.7% 3.5% -4.2% -4.3% 10.6% 

 

Hence, the IAM method is superior to VDP in terms of high convergence speed and effective 

performance improvement. Most importantly, it offers a way to add transportation domain knowledge 

to the RL algorithm by masking the invalid actions of violating corresponding principles. 

3.3.3 The comparison of FS and VP 

The VP scheme brings more flexibility than the FS scheme for RL to train to choose the best 

actions. Buses can get more priorities to get the right of way at the intersection so the bus delay can be 

reduced more. Although the increased delay may be more severe for cars in the meantime, the person 

delay still gets more significant improvement than the FS scheme. 

3.4 Discussions 

3.4.1 Impacts of CV penetration rates 

As the implementation of the proposed RL algorithm does not need any individual car information, 

only buses are considered to be equipped with CV technology. However, in reality, not all buses are 

equipped with V2I OBU to transmit their information to traffic signal control systems. Hence, the agent 
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can only receive states of partial buses. In this case, it is essential to discuss the impacts of CVs’ 

penetration rates of buses on the performance of the proposed algorithm. Penetration rates mean the 

proportion of buses with CV technology. If the penetration rate equals 0, no bus information is sent to 

the agent, and the agent will fail as no reward can be returned. Thus, we just evaluate the impacts of 

penetration rates from 20% to 100% with the increment of 20%.Figure 3.8 presents the results of the 

proposed algorithm for the VP scheme with different penetration rates. To better compare the effect of 

penetration rates on performance, results of two ATSP strategies are added as the benchmark at the 

leftmost side in Figure 3.8(b). 

  
                                   (a) Learning curve                                   (b) Performance improvement rates 

Figure 3.8.  Comparing results of different penetration rates. 

From Figure 3.8(a), it can be seen that the penetration rate does not affect the convergence 

efficiency of the eD3QNI algorithm, as they all get converged at around 400 episodes. However, in 

Figure 3.8(b), the scenario with a higher penetration rate shows better performance, including the lower 

average person delay and lateness, and the smaller queue. Moreover, the average delay reduces steadily 

with the increase of penetration rates, while the lateness decreases vastly before 60% of connected buses’ 

penetration and decreases less after that. When not more than 40% and 60% of buses are equipped with 

CV technology, the performance of the eD3QNI algorithm will be worse than the performance of 

ATSPF and ATSPV respectively in terms of average person delay and lateness. 

3.4.2 Performance of different reward functions 

As the RL method is to maximize the expected cumulative reward, the effect of the proposed 

eD3QNI highly depends on the reward formulation. The aforementioned results are all based on the 

reward function given by the average person delay of buses as Eq (3.5), called Reward 1. In order to 

analyze the impacts of reward functions on the efficiency of the proposed algorithm, two more reward 

functions are formulated as: 

Reward 2: 

 𝑟𝑡 = −∑ (𝑑̂𝑘𝑡 ∗ 𝑆𝐷𝑘𝑡 ∗ 𝑂𝑘𝑡)𝑘 ∑ (𝑆𝐷𝑘𝑡 ∗ 𝑂𝑘𝑡𝑘⁄ ) (3.11) 

Reward 3:  

 𝑟𝑡 = 𝑅𝐵𝑢𝑠 + 𝑤𝑅𝐶𝑎𝑟 = −∑ (𝑑̂𝑘𝑡 ∗ 𝑂𝑘𝑡)𝑘 ∑ 𝑂𝑘𝑡𝑘⁄ − 𝑤 ∗ ∑ (𝑑𝑐𝑡 ∗ 𝑁𝑃𝑐𝑡)𝑐 ∑ 𝑁𝑃𝑐𝑡𝑐⁄  (3.12) 

where 𝑤 is a weight. 

As shown in Eq (3.11)-(3.12), Reward 2 is formulated as the average delay of buses weighted by 
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total lateness, and Reward 3 is the weighted sum of average person delay of buses and cars. On-time 

performance is an indicator of the ability to be on time in transportation, and it becomes the critical 

target of public transportation service. The function of Reward 2 is one way to improve the on-time 

performance. In addition, many current TSP strategies are conditional as the performance of private 

vehicles will be considered to determine whether give bus priority. The formulation of reward 3 is the 

method to implement conditional TSP strategy in the RL algorithm. Therefore, Reward 3 can consider 

the operational efficiency of both cars and buses when conducting TSP, which is different from Reward 

1 for the unconditional TSP strategy aiming to prioritize late buses. 

Using Reward 3 requires knowledge of both bus occupancy and car occupancy. In the simulation, 

we have collected the actual passenger occupancy of each bus every time step, but assumed all cars 

have the same average passenger occupancy 1.2 person/veh to simply evaluate the performance of 

Reward 3, because APC systems are installed on transit vehicles but not yet for cars. The weight of 

Reward 3 will influence the proposed TSP strategy results. For example, a larger weight for cars will 

lead the agent to focus more on cars than buses, and then the benefits of buses will be reduced. Note 

that buses are set to carry about 35 person/veh on average, while cars are set to carry only 1.2 person/veh, 

so the number of passengers carried by a bus dominates that carried by a car. If the weight for cars is 

not properly assigned, the reward that considers the benefits of both bus and cars (i.e., total person delay) 

will be outperformed by the reward that only considers the benefit of buses (i.e., person delay of buses). 

Thus, sensitivity analysis of weights has been conducted by eD3QNI under the VP scheme, 

considering weights of 0.01, 0.03, 0.15, and 1.5. Additionally, Reward 1 can be regarded as Reward 3 

with a weight of 0. Note that the ratio of passenger occupancies of a bus and a car is 35/1.2 ≈ 30. 

According to the number of passengers carried, one bus is equivalent to 30 cars. Therefore, the weight 

being 1/30 =0.03 implies that the reward function equally considers the benefits of one bus and one car. 

Figure 3.9 shows performance improvement rates of Reward 1, Reward 2 and Reward 3 with different 

weights based on FT. From the figure, we can see that when Reward 3’s weight is less than 0.03, APDC 

is nearly unchanged, but the improvement of APDB is reduced with the increase of weight so that the 

improvement of APD is also reduced. Moreover, as the weight increases greater than 0.03, APDC and 

APDB increase, and the improvement of APD is reduced. Therefore, when Reward 3’s weight is 0.03, 

which means that one bus and one car are given nearly equal preference, it achieves the maximal 

improvement on APDB and minimal adverse effect on APDC, resulting in the highest improvement of 

APD. 

Choosing 0.03 as the weight of Reward 3, we evaluate the performance of three reward functions 

by eD3QNI under the VP scheme. From Figure 3.9, when the delay weighted by lateness (Reward 2) is 

the reward function, the lateness will decrease more than Reward 1; when the reward function considers 

the delay of cars (Reward 3), the TSP will have a less negative effect on cars than Reward 1. 

The results show that specific reward functions can be designed based on the proposed RL 

framework to develop TSP strategies with users’ different preferences, like minimizing bus passenger 

delay, improving on-time performance, or decreasing car delay. However, when adopting the reward 

function, which improves the operational efficiency of both cars and buses, all cars are required to 

install occupant classification systems and connected technology to collect and transmit car passenger 

occupancy, and the weight of the reward function should be appropriately adopted. The weight is 

recommended to be the ratio of passenger occupancies of cars and buses to consider the benefits of one 

bus and one car equally. To clarify different use cases of those reward functions, Table 3.5 lists their 

comparisons. It is clearer to identify the applicable case for each reward function, considering the goal 
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and the technology required to obtain needed information. 

 

 

Figure 3.9.  Performance comparison between different reward functions. (Note: R1 and R2 are Reward 1 

and Reward 2, respectively; R3_0.01, R3_0.03, R3_0.15, R3_1.5 are Reward 3 with weight of 0.01, 0.03, 

0.15, 1.5, respectively.) 

 

Table 3.5.  Comparisons between different reward functions. 

Details 

Reward functions 

Reward 1 (Eq (3.5)) 
Reward 2  

(Eq (3.11)) 
Reward 3 (Eq (3.12)) 

Goals 

To reduce the 

person delay of 

buses 

To improve the on-

time performance of 

buses 

To reduce the person delay of 

both cars and buses 

Information 

required to 

transmit to 

traffic signal 

systems by 

Conventional 

detection 

technologies 

Average speed and queue length measured by cameras at intersections 

V2I 

technology 

▪ Bus location captured by GPS 

▪ Bus schedule deviation measured when arriving at bus stops 

▪ Bus passenger occupancy by electronic payment systems or automatic 

passenger counters installed in buses 

  Car passenger occupancy by 

occupant classification systems 

installed in connected cars 

Advantages 

It is practically 

feasible and can 

significantly 

improve transit 

efficiency. 

It will decrease 

lateness more than 

the TSP strategy 

with other reward 

functions. 

It has a less negative effect on 

cars and even achieves the best 

performance in total person 

delay when a proper weight of 

the function is adopted. 

Disadvantages and 

challenges 

It will have a 

relatively more 

negative effect on 

the car’s efficiency. 

The benefits on 

average person 

delay are cut 

compared to other 

reward functions. 

▪ Every car needs to be 

equipped with occupant 

classification systems and 

connected technology to 

collect and transmit car 

passenger occupancy, which 

is not feasible yet. 

▪  The performance is very 

susceptible to the weight 

value of the function, which 

is not easy to find a proper 

one. 

 

-10%

-5%

0%

5%

10%

15%

APD APDB APDC  Queue Lateness

Im
p

ro
v
e
m

en
t 

ra
te

s

Performance indicators

R1 R2 R3_0.01

R3_0.03 R3_0.15 R3_1.5



32 

 

3.5 Summary 

This chapter proposes the eD3QNI algorithm for the TSP strategy at isolated intersections to 

improve bus operational efficiency. Compared to existing studies, the proposed method utilizes invalid 

action masking for traffic signal constraints and phase skipping rule, adopts a person-based reward 

function, and considers multiple conflicting bus priority requests. Hence, it is a driver-friendly and 

person-based strategy and is more robust to dynamic traffic with complex bus routes than existing 

research with model assumptions, fixed cycle length, or limited bus lines.  

The proposed algorithm is evaluated by embedding it into a microscopic traffic simulation 

platform. The simulation results show that the eD3QNI method can effectively exploit the unknown 

deep-buried relationship between the environment and the agent and achieve better results of bus 

operational efficiency than fixed-time signal, active TSP strategy, and other common RL methods. The 

eD3QNI could become an effective TSP strategy when the method’s parameters are trained well. Note 

that, in this algorithm, it is the employment of the IAM strategy that provides a way to incorporate 

traffic engineers’ knowledge into the development of an RL scheme for rational TSP strategy. 

Furthermore, the evaluation results prove the improved performance of the proposed method over the 

traditional VDP method in terms of the training process, convergence speed, and improvement in 

traffic-related metrics. The penetration rates of connected buses do not affect the convergence efficiency 

of the proposed algorithm, although the larger it is, the better performance this algorithm achieves. 

Finally, the proposed framework can accommodate different specific reward functions to develop TSP 

strategies to realize different operation goals. 
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Chapter 4  

TSP at multiple intersections to improve 

schedule adherence 

This chapter extends the work from an isolated intersection to an arterial road with multiple 

intersections. With the increase in the number of intersections, more difficulties arise, including 1) how 

to handle cooperation among intersections when they may make decisions asynchronously, 2) how to 

ensure the experience quality and training efficiency when the environment becomes much more 

complicated, and 3) how to formulate proper reward functions by feasible obtained data to promote 

schedule adherence while considering the trade-off between transit and non-transit vehicles. This 

chapter will address those issues and propose a cooperative TSP strategy at multiple intersections based 

on the MARL framework to improve bus schedule adherence. 

This chapter is organized as follows. Section 4.1 introduces the methodology of this chapter and 

describes the proposed CTSPV algorithm. The experiment framework is presented in Section 4.2. 

Experiment results are shown in Section 4.3. Section 4.4 discusses the signal results of the proposed 

approach. Section 4.5 summarizes this chapter. 

4.1 Methodology 

4.1.1 Problem statement 

This work considers an arterial road with 𝑁 signalized intersections, and several conflicting bus 

routes pass through those intersections. The traffic signal controller needs to determine the phase at the 

next step for each intersection according to the observed real-time traffic, e.g., detected vehicle speed, 

queue length, and information on approaching buses. Once the signal timings are executed, the detection 

system will observe new traffic conditions, and we can calculate some performance metrics to obtain 

immediate feedback for those signal timings. Hence, it can be described as a MDP and solved by MARL. 

Below are detailed descriptions of this problem. 

(1) Agents 

Each intersection along the arterial is controlled by an agent, which takes traffic conditions as the 

state 𝑠𝑡, traffic signal as an action 𝑎𝑡, and performance feedback as a joint reward 𝑟𝑡 for each step 𝑡. It 

is constructed by the RL algorithm and can learn from transition experiences to choose actions 

maximizing discounted cumulative reward 𝐺𝑡 = ∑ 𝛾𝑘∞
𝑘=0 𝑟𝑡+𝑘+1 where 𝛾 is a discounting factor, 0 <

𝛾 < 1 (Sutton and Barto, 2018).  
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(2) State 

At each step 𝑡, the state 𝑠𝑡 composes four parts of the local intersection, including average speed 

𝑆𝐴, queue length 𝐿𝑄, current phase 𝑃𝐶, and bus state 𝑆𝐵𝑢𝑠. 

a. Average speed 𝑺𝑨 

 𝑆𝐴 = {𝑆𝐴𝑙𝑚}, 𝑙 ∈ Ψ,𝑚 ∈ 𝑀𝑙 (4.1) 

where 𝑆𝐴𝑙𝑚 represents the average speed of movement 𝑚 at the approach link 𝑙; Ψ is the approach set, 

usually containing southbound, northbound, eastbound, and westbound; 𝑀𝑙 is the movement set for 

approach link 𝑙, including through and left-turn movements for right-hand traffic, in which right-turns 

are permitted to pass on red. 

b. Queue length 𝑳𝑸 

 𝐿𝑄 = {𝐿𝑄𝑙𝑚}, 𝑙 ∈ Ψ,𝑚 ∈ 𝑀𝑙 (4.2) 

where 𝐿𝑄𝑙𝑚  represents the queue length of movement 𝑚  at the approach link 𝑙 . Here we take the 

maximum queue length for the movement with more than one lane. 

c. Current phase 𝑷𝑪 

It is a one-hot encoding vector where the value of one refers to the current phase. If we consider a 

signal scheme with four phases, the vector would have eight values, successively meaning the green 

and the yellow of those four phases. 

d. Bus state 𝑺𝑩𝒖𝒔 

A proper representation of the bus state will allow agents to better serve bus priority requests, even 

in cases with multiple conflicting priority requests. In this work, we also record the distance to the stop 

line 𝐷, schedule delay 𝑆𝐷, and passenger occupancy 𝑂 of buses approaching the intersection as in 

Chapter 3. Schedule delay is the delay of one bus compared to its schedule, and we set it to be 0 if the 

bus is not late. Passenger occupancy is the number of bus passengers that the onboard APCs can obtain. 

Hence, the bus state is denoted by 

 𝑆𝐵𝑢𝑠 = {𝐷𝑝𝑏 , 𝑆𝐷𝑝𝑏, 𝑂𝑝𝑏}, 𝑝 ∈ P, 𝑏 ∈ Γ (4.3) 

where 𝐷𝑝𝑏 , 𝑆𝐷𝑝𝑏 , and 𝑂𝑝𝑏  represent the distance to the stop line, schedule delay, and passenger 

occupancy of bus 𝑏, which requests the green time of phase 𝑝. 𝑃 is the phase set, e.g., 𝑃 = {0,1,2,3} if 

four phases are considered in the signal scheme. Γ is the bus set with a fixed total number, and here we 

set |Γ| = 3 so we only put the information of the three most urgent buses in 𝑆𝐵𝑢𝑠 for each phase 𝑝. The 

urgency is measured by 
𝑆𝐷𝑝𝑏𝑂𝑝𝑏

𝐷𝑝𝑏+𝛿
 where 𝛿 = 10−5  to avoid invalid calculations. Therefore, we can 

simultaneously consider 12 bus requests from different directions at each intersection. 

(3) Action 

In this study, the action 𝑎𝑡 of agents is to choose one phase for the next step 𝑡 + 1 from a set of 

valid signal phases 𝐴𝑡 at each step 𝑡, and thus agents can decide the phase duration and sequence. To 

tackle the asynchronous decision-making between different agents, we also treat the yellow time as an 

action so that each agent can choose one action at every step. Then the universal action space is a set of 

the green and the yellow of all considered phases. In contrast, the valid action space is a subset of them. 
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We deploy Invalid Action Masking (Huang and Ontañón, 2020) to mask the actions that do not satisfy 

basic constraints based on traffic engineering knowledge. The masking method is to add a large negative 

value on the original action-value 𝑄 and then choose the action maximizing the masked action-value 

𝑄𝑚𝑎𝑠𝑘𝑒𝑑. Phases can only be valid when they satisfy the basic constraints.  

Basic constraints consist of two aspects: signal constraints and skipping rules.  

a. Signal constraints 

Signal constraints contain two parts, i.e., the minimum green time 𝐺𝑚𝑖𝑛 and maximum green time 

𝐺𝑚𝑎𝑥 , which are essential for traffic signal control. This study considers three constraint settings, 

namely Cons_1, Cons_2, and Cons_3. We use the Cons_3 to evaluate the performance of the proposed 

method compared to other approaches. Still, we also analyze the results of these three constraints in 

Section 4.3.3 Effects of Gmin and Gmax constraints and explain why Cons_3 is chosen. 

• Cons_1: 

 𝐺𝑚𝑖𝑛 =
𝐷𝐶𝑟𝑜𝑠𝑠

2𝑉𝑃𝑒𝑑
, 𝐺𝑚𝑎𝑥 = 𝐺𝑚𝑖𝑛 + 100 (4.4) 

where 𝐷𝐶𝑟𝑜𝑠𝑠  is the length of the pedestrian crossing (unit: m); 𝑉𝑃𝑒𝑑  is the average velocity of 

pedestrians, set as 1.2 m/s. 

• Cons_2:   

 𝐺𝑚𝑖𝑛 = max (
𝐷𝐶𝑟𝑜𝑠𝑠

2𝑉𝑃𝑒𝑑
,
𝐶∗𝑞

𝑓
) , 𝐺𝑚𝑎𝑥 = 𝐺𝑚𝑖𝑛 + 30 (4.5) 

where 𝐶 is the cycle length of baseline fixed-time signal (unit: s); 𝑞 is the traffic volume (veh/h); 𝑓 is 

the saturation flow (veh/h). 

• Cons_3: 

𝐺𝑚𝑖𝑛 = max(
𝐷𝐶𝑟𝑜𝑠𝑠

2𝑉𝑃𝑒𝑑
, 3 + 2

𝐿𝑄𝑝−
∑ 𝐿𝑄𝑝̇𝑝̇∈𝑃,𝑝̇≠𝑝

|𝑃|−1

7.62
) , 𝐺𝑚𝑎𝑥 = {

120, for the major through phase

90, for the minor through phase

60, for the left-turn phase

 (4.6) 

where 𝐿𝑄𝑝 is the maximum queue length of phase 𝑝’s movements (unit: m), e.g., if phase 𝑝 is minor 

through phase, then we take the maximum of two-way minor through movements’ queue. |𝑃| is the size 

of phase set 𝑃. 

It should be noted that we set 3 seconds for yellow time. Finally, the valid action space 𝐴𝑡 will 

have the following situations: 1) When 𝐺𝑚𝑖𝑛 is not satisfied, the agent can only keep the current phase, 

i.e., 𝐴𝑡 = current green; 2) When both 𝐺𝑚𝑖𝑛 and 𝐺𝑚𝑎𝑥 are satisfied, the agent can choose to keep the 

current phase or switch to yellow, i.e., 𝐴𝑡 = current green and yellow; 3) When it is during a yellow 

time, or the phase duration reaches 𝐺𝑚𝑎𝑥, the agent only can choose yellow, i.e., 𝐴𝑡 = yellow; 4) When 

it is the end of yellow time, the agent can choose any green phase, i.e., 𝐴𝑡 = any green. 

b. Skipping rules 

We use the same phase skipping rules in isolated work: 1) phases cannot be skipped twice in a row 

when a queue is detected for the phase; or 2) phases cannot be skipped when the phase has a queue over 

certain threshold. Therefore, once one phase cannot be skipped, phases after that phase in the defined 

sequence will be invalid actions. 
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(4) Reward function 

After executing action 𝑎𝑡, agents receive a joint reward 𝑟𝑡 from the environment. We expect the 

proposed strategy can 1) prioritize buses to improve bus schedule adherence and bring less detrimental 

effects on non-prioritized traffic, and 2) improve the general traffic efficiency when there are few buses. 

Hence, the reward is defined as the weighted sum of queue density and bus lateness, given by Eq (4.7). 

In practice, these two terms also are more feasible to obtain by the detection system than the total person 

delay, which is usually used. 

 𝑟𝑡 = 𝑤1
∑ ∑  𝐿𝑄𝑙𝜑𝑡𝜑𝑙

∑ ∑ 𝐷𝑒𝑡𝑙𝜑𝜑𝑙
+ 𝑤2

∑ (𝑆𝐷𝑘𝑡∗𝑂𝑘𝑡)𝑘

∑ 𝑂𝑘𝑡𝑘
 (4.7) 

where 𝐿𝑄𝑙𝜑𝑡 and 𝐷𝑒𝑡𝑙𝜑 represent the queue length at time 𝑡 and detector length on the lane 𝜑 of the 

approach link 𝑙  in the whole network, respectively; 𝑆𝐷𝑘𝑡  and 𝑂𝑘𝑡  represent the schedule delay and 

passenger occupancy of bus 𝑘 in the road network at time 𝑡; 𝑤1 and 𝑤2 are two negative weights for 

queues of general traffic and lateness of buses, respectively. 

(5) Evaluation metrics 

We introduce various metrics to assess the performance of MARL-based TSP strategies on 

learning efficiency and traffic conditions. 

(1) Algorithm learning metrics: 

• Scores: It is the sum of immediate rewards in one episode. After observing the scores with the 

training episodes, we can plot one learning curve to show the learning efficiency and convergence 

point. 

• Qtot: This value reflects how well agents perform joint actions under a specific state and policy. 

We expect it to increase with the training steps. Like scores, their evolution during training can be 

used to represent the learning curve, and we can observe the learning performance. MARL networks 

need many steps to train; therefore, we extract this value per 1000 training steps. 

(2) Traffic performance metrics: 

• Average person delay: This belongs to person-based metrics. In this study, we compute the Average 

Person Delay for general traffic, Cars, and Buses, denoted as APD, APDC, and APDB by Eq (3.6)

-(3.8). 

• Queue: This is a road-based metric that can be calculated by detected queue length on the road. It 

is the queue length averaged by lanes and time, given by Eq (3.9). 

• Lateness: It is the average lateness of each bus passenger per time step, computed by Eq (3.10). 

4.1.2 CTSPV algorithm 

This study proposes the Cooperative TSP strategy of Variable phase (CTSPV) based on QMIX 

(Rashid et al., 2018) and Dueling Double Deep Q Network (D3QN) (Wang et al., 2016). It masks invalid 

actions by the IAM algorithm (Huang and Ontañón, 2020) to satisfy basic constraints, and samples 

minibatch by PER (Schaul et al., 2016) to improve sample efficiency and speed learning. It also explores 

experiences by the 𝜖 -greedy approach, which randomly chooses actions with a probability of 𝜖 .  

Algorithm 1 provides the pesudocode to implement the proposed CTSPV approach, and Figure 4.1 

illustrates its framework to approximate individual and total action-value given the state, action and 

reward. 
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The proposed method conforms to CTDE. Agents are trained by the loss functions formulated by 

the total Q-value, 𝑄𝑡𝑜𝑡  (also called centralized Q-value) but execute solely by choosing actions after 

observing a local state in accordance with their own 𝑄. We define 𝑄𝑡𝑜𝑡(𝑆𝑡, Λ𝑡; Θ) as the total Q-value 

of joint action Λ𝑡  by main networks with parameters Θ  given the global state 𝑆𝑡  at time 𝑡 , and 

𝑄𝑖(𝑠𝑡
𝑖 , 𝑎𝑡

𝑖 ; 𝜃𝑖) as the Q-value of action 𝑎𝑡
𝑖  for agent 𝑖 (𝑖 ∈ 𝑁) by the network with parameters 𝜃𝑖 given 

the state 𝑠𝑡
𝑖 at time 𝑡. 𝑁 is the number of intersections. 

The loss function for training is computed by 

 ℒ(Θ) = ∑ (𝑦𝑡𝑜𝑡 − 𝑄𝑡𝑜𝑡(𝑆𝑡, Λ𝑡; Θ))2𝑆𝑏𝑎𝑡

𝑖=1  (4.8) 

where  𝑦𝑡𝑜𝑡 = 𝑟𝑡 + 𝛾𝑄̂𝑡𝑜𝑡(𝑆𝑡
′, Λ𝑡

′ ; Θ−), 𝑄̂𝑡𝑜𝑡(𝑆𝑡
′, Λ𝑡

′ ; Θ−) is the total Q-value of the target network, given 

by 𝑄̂𝑡𝑜𝑡 = 𝑄𝑡𝑜𝑡 (𝑆𝑡
′, 𝑎𝑟𝑔maxΛ𝑡

′𝑄𝑡𝑜𝑡(𝑆𝑡
′, Λ𝑡

′
; Θ); Θ−); 𝑆𝑡

′ is the next global state at time 𝑡; Θ− is the 

Algorithm 1: CTSPV algorithm 

 Input: Discount factor 𝛾, learning rate 𝛼, epsilon of 𝜖-greedy 𝜖, target networks update iterations 𝑁𝑟𝑒𝑝, 

replay buffer 𝐵 and its size 𝑆𝑟𝑒𝑝, minibatch size 𝑆𝑏𝑎𝑡 , number of episodes 𝑁𝑒, traffic simulation time 𝑇, 

simulation warm-up time 𝑇𝑤, number of agents 𝑁 

 Output: trained parameters of the CTSPV algorithm 
1 Initialize replay buffer 𝐵, minibatch 𝑀𝐵, main network parameters Θ, and target network parameters 

Θ−
← Θ, training step 𝜏 ← 0 

2 for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1  to 𝑁𝑒 do 

3  for 𝑡 = 1 to 𝑇 do 

4   Run one simulation step 

5   if 𝑡 ≥ 𝑇𝑤  then 

6    // Execute and store experience 

7    Obtain state information 𝑆𝑡 = {𝑠𝑡
𝑖} for all agents 𝑖 ∈ {1, … , 𝑁} 

8    for agent 𝑖 = 1 to N do 

9     Obtain valid action space 𝐴𝑡
𝑖 , generate 𝑟𝑎𝑛𝑑 ← Uniform(0,1) 

10     
Choose action 𝑎𝑡

𝑖 = {
argmax𝑎𝑄𝑚𝑎𝑠𝑘𝑒𝑑(𝑠𝑡

𝑖 , 𝑎𝑡
𝑖 ; 𝜃), 𝑟𝑎𝑛𝑑 > 𝜖

random 𝑎 ∈ 𝐴𝑡
𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

11    end for 

12    Execute action Λ𝑡 = {𝑎𝑡
𝑖} for all 𝑖 ∈ {1, … , 𝑁} and receive the latest state 𝑆′

𝑡 = {𝑠′
𝑡
𝑖
} for all 𝑖 ∈

{1, … , 𝑁} and reward 𝑟𝑡 (Eq (4.7)) 

13    if replay buffer reaches the size  𝑆𝑟𝑒𝑝 then 

14     Delete the oldest experience tuples in 𝐵 

15    end if 

16    𝐵 ← 𝐵 ∪ {𝑆𝑡 , Λ𝑡 , 𝑆
′
𝑡 , 𝑟𝑡} 

17    Calculate and store the importance weight of each experience for priority experience replay 

18    // Train networks 

19    if the number of stored experiences > 𝑆𝑏𝑎𝑡  then 

20     Sample a minibatch 𝑀𝐵 from 𝐵 by PER 

21     for 𝑗 in 𝑀𝐵 do 

22      Calculate TD-error 𝜎𝑗 = 𝑦𝑡𝑜𝑡𝑗
− 𝑄𝑡𝑜𝑡𝑗

 and update the importance weight of sample 𝑗 

23     end for 

24     Update main network parameters Θ, 𝜏 ← 𝜏 + 1 

25     if 𝜏 % 𝑁𝑟𝑒𝑝 = 0 then 

26      Update target network parameters Θ−
← Θ 

27     end if 

28    end if 

29   end if 

30  end for 

31 end for 
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parameters of target networks for all agents.  

 

 

Figure 4.1.  The QMIX framework of the proposed method. 

 

In the proposed method, each agent selects action 𝑎𝑡
𝑖  given its policy and 𝑠𝑡

𝑖, and then calculate 

their own 𝑄𝑖(𝑠𝑡
𝑖 , 𝑎𝑡

𝑖 ; 𝜃𝑖), which is then fed into the mixing network along with the global state 𝑆𝑡 to 

approximate 𝑄𝑡𝑜𝑡(𝑆𝑡, Λ𝑡; Θ) for centralized training. Hence, the centralized value function relies on the 

cooperation of all agents to maximize its outputs. The mixing network ensures that the joint action from 

performing argmax 𝑄𝑡𝑜𝑡 is equal to the set of individual actions from performing argmax 𝑄 of each 

agent, which is realized by constraining the non-negative monotonicity between 𝑄𝑡𝑜𝑡 and each 𝑄, i.e., 

Eq (4.9). The monotonicity is guaranteed by restricting parameters to be non-negative, as the ReLU 

function of the mixing network illustrated in Figure 4.1. 

 
𝜕𝑄𝑡𝑜𝑡(𝑆𝑡,Λ𝑡;Θ)

𝜕𝑄𝑖(𝑠𝑡
𝑖 ,𝑎𝑡

𝑖 ;𝜃𝑖)
≥ 0, 𝑖 ∈ 𝑁 (4.9) 

Additionally, the credit assignment among agents can be learned in the mixing network during the 

training procedure by having 𝑄𝑡𝑜𝑡 conditioned on the extra information, like the global state. Overall, 

the proposed method is trained with a centralized value function, which needs agents’ cooperation to 

maximize their shared reward and learn a proper credit assignment; accordingly, the well-trained agent 

of each intersection can yield cooperative actions on traffic signals when performing independently, 

which can achieve the minimum queue length and bus schedule delay. 
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4.2 Experiment 

4.2.1 Simulated environment 

To evaluate the performance of the proposed CTSPV strategy, we simulated an arterial in the 

SUMO platform as the environment to interact with agents. As shown in Figure 4.2, three intersections 

are considered in the simulated environment, of which the east-west direction is the major road, and the 

three north-south roads are minor. The spacing between two adjacent intersections is 450 m. There are 

a total of eight entrances and exits, composing 56 Origin-Destination (OD) pairs.  

Traffic demands: We set five periods for such OD-pairs traffic demands, in which the flow ratios 

of arterial through movements are about 0.35, 0.5, 0.55, 0.45, and 0.3, respectively. Those five periods 

(S1~S5) are set for 15, 15, 30, 15, and 15 mins to simulate the traffic volume increases from off-peak 

to peak and then decreases to off-peak. As for transit, we consider six two-way bus lines, as illustrated 

in Figure 4.2. The headway of Line E0/W0 is scheduled to 10 mins for S1 and S5, and 5 mins for the 

other three periods, while the headway of rest lines is scheduled to 20 mins for S1 and S5, and 10 mins 

for the other three periods. We also set random seeds for SUMO to generate vehicles differently with 

episodes. 

 

Figure 4.2.  The layout of the simulated environment. 

Traffic signal phase: Each intersection is controlled by the traffic signal with a typical four-phase 

scheme, i.e., major through phase 𝑃0, major left-turn phase 𝑃1, minor through phase 𝑃2, and minor left-

turn phase 𝑃3. Agents can decide the phase duration and skip some phases in each step. 

Bus settings: Bus will be inserted into this network according to its schedule headway and a 

random delay, which is produced by a normal distribution N(0,1202). We also simulate passengers of 

different bus routes getting on at each bus stop and getting off three stops later. At each stop, the 

passenger arrival rate of Line E0/W0 is 0.0167 person/s for S1 and S5, and 0.033 person/s for other 

periods, while the passenger arrival rate of rest lines is 0.0083 person/s for S1 and S5, and 0.0167 

person/s for other periods. Therefore, the bus occupancy changes with the passenger, and we also set 
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an occupancy capacity of 70 pax for each bus. 

4.2.2 Compared methods 

We compare our proposed CTSPV method with the following baselines.  

(1) Coordinated Fixed-Time signal (CFT): We obtain the optimal fixed signal timing considering 

arterial coordination by SIDRA INTERSECTION, a microanalysis software to aid in designing and 

evaluating isolated or network of intersections. To show the coordination effect of CFT, we plot the 

time-space diagram of major through movements taking signal timings for demand of period 1 as an 

example, as shown in Figure 4.3. CFT can provide sufficient green bandwidth for through movements 

to pass three intersections efficiently. 

 

Figure 4.3. The time-space diagram of through movement at major road under S1 demand. 

(2) Independent Fixed Time with Phase Skipping (IFTPS): We use SIDRA software to obtain the 

base signal timing for each intersection independently. Then, at the end of yellow, we allow skipping 

to the most urgent valid phase following the skipping rules mentioned in Section 4.1.1(3) Action. The 

urgency of phase 𝑝 is determined by F value 

 𝐹𝑝 =  𝜉𝑆𝑝𝑒𝑒𝑑𝑝 +  𝜚𝑄𝑢𝑒𝑢𝑒𝑝 +  𝜂𝑃𝑟𝑖𝑜𝑝 (4.10) 

where 𝑆𝑝𝑒𝑒𝑑𝑝, 𝑄𝑢𝑒𝑢𝑒𝑝 and 𝑃𝑟𝑖𝑜𝑝 are the average speed, average queue length, and bus urgency of 

phase 𝑝 movements, 𝑃𝑟𝑖𝑜𝑝 = ∑
𝑆𝐷𝑝𝑏𝑂𝑝𝑏

𝐷𝑝𝑏+𝛿𝑏 , 𝜉 = −0.1, 𝜚 = 0.01, 𝜂 = 0.001. The variables of this F 

value are calculated by RL methods’ input information (states). 

(2) Long Queue First Algorithm (LQFA): It is an online adaptive signal control strategy (Ahmed 

et al., 2023), which prioritizes lanes with longer queue lengths. 

(3) MARL methods:  

• Independent Q Learning (IQL): Each intersection is controlled by an independent eD3QNI agent, 

as proposed in Section 3.1.2 eD3QNI algorithm. Hence it is a kind of DTDE method. 

• Value Decomposition Network (VDN): It is also a CTDE method, introducing a total Q to realize 

the cooperation between different agents. Its only difference from the proposed method is that the 
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total Q-value is calculated by 𝑄𝑡𝑜𝑡(𝑆𝑡, Λ𝑡; Θ) = ∑ 𝑄𝑖(𝑠𝑡
𝑖 , 𝑎𝑡

𝑖 ; 𝜃𝑖)𝑁
𝑖=0 , instead of by the mixing 

network. 

The parameters of the proposed method and other MARL methods are described in Table 4.1. 

Table 4.1.  The parameters settings. 

Parameters Value 

Discount factor 0.99 

Learning rate 0.0001 

Epsilon of 𝜖-greedy Exponentially decade from 0.6 to 0.1 with a rate 5e-5 

Target networks replace iterations 2000 

Size of the replay buffer 20000 

Size of minibatch 64 

Number of episodes 160 

Traffic simulation time 5700 s (the first 300 s for warm-up) 

𝑤1 and 𝑤2 for the reward -1 and -1/6000 

4.3 Results 

In this section, the proposed CTSPV method and other baselines are evaluated with Cons_3 by 

microscopic traffic simulation. For each episode, we take different random seeds to start the simulation. 

The simulation results reveal the proposed method’s efficiency. 

4.3.1 Algorithm learning 

The learning curve can clearly illustrate the learning efficiency and convergence performance. In 

this study, both scores and Qtot are used to plot the learning curve, as shown in Figure 4.4. To observe 

the learning trends easily, we also compute the average score and Qtot per 20 values. The left figure (a) 

is the curve of scores with episodes for a total and five individual periods, in which solid lines are the 

averaged scores. It shows all six learning curves increase and basically flatten after 30 episodes. And 

the most significant improvement is contributed to the learned knowledge for periods with heavy traffic 

demand, i.e., S3. The periods with similar traffic demand shows similar learning performance, i.e., S1 

& S5, and S2 & S4. In addition, the right figure (b) plots the curve of Qtot with episodes, displaying 

that the proposed CTSPV strategy finally converges after 0.7 million training steps. Therefore, the 

proposed algorithm can learn well from interactions with the environment. 

 

 

(a) Scores. (S1~S5 refers to the five periods of traffic 

demands, and the Total is the sum of all five periods) 

 

(b) Qtot. 

Figure 4.4.  The learning curve of the CTSPV strategy. 
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4.3.2 Performance comparison 

We average the last converged 60 episodes to calculate evaluation metrics. Based on the metrics 

value of the CFT method, we compute the improvement rate of other approaches, as illustrated in Figure 

4.5. The improvements of different periods are also given. Looking at the total value for each metric, 

we can find the CTSPV strategy improves most for all performance indices, in which queue, lateness, 

and average person delay (APD) decrease by 31.6%, 17.0%, and 8.7%, respectively. Moreover, 

focusing on car-dominated indicators (such as APDC and queue), the worst to best methods are IFTPS, 

IQL, VDN, CTSPV, and LQFA; for example, their queue lengths compared to CFT significantly 

decrease by 2.0%, 27.2%, 30.0%, and 32.2%, respectively. As LQFA is specifically designed to reduce 

queue length, it improves car-dominated metrics the most. However, focusing on bus-related metrics 

(such as APDB and lateness), the worst to best methods are IFTPS, IQL, LQFA, VDN, and CTSPV. In 

detail, their corresponding lateness compared to CFT significantly reduces by 4.9%, 12.2%, 13.7%, 

16.0%, and 17.0%, respectively. It proves that the proposed CTSPV can reduce schedule delay and 

improve schedule adherence the most. Comparing them in pairs, the slightly better performance of 

IFTPS than CFT shows the benefits of skipping unurgent phases; VDN yielding better performance 

than IQL shows the advantages of cooperation among agents; the improvement of CTSPV over the 

VDN proves the significance of the proper credit assignment among agents, i.e., specifying the 

contributions of each agent’s action on outcomes. Consequently, the proposed strategy with the above 

three superiorities achieves the best results. 

 

Figure 4.5.  The performance comparison of the CTSPV strategy with baselines. 

 

From the detailed five-period view, CTSPV has the largest improvement rates on all performance 

metrics for all traffic demands. Additionally, the CTSPV improves more on scores, APD, APDC, and 

queue during periods with less traffic demand, while the metrics related to buses, i.e., APDB and 

Lateness, improve most during S3 with heavy demand. Therefore, under higher demand, the CTSPV 

strategy can improve bus on-time performance more significantly. 

4.3.3 Effects of Gmin and Gmax constraints 

In this study, we integrate signal constraints into the RL algorithm to constrain the action-choosing 

behavior of agents. Hence, such restrictions of 𝐺𝑚𝑖𝑛  and 𝐺𝑚𝑎𝑥  directly influence the proposed 

algorithm’s effect. We calculate the performance metrics under three signal constraints mentioned in 

Section 4.1.1(3) Signal constraints. As given by Eq (4.4)-(4.6), 𝐺𝑚𝑖𝑛 of Cons_1, roughly referring to 

pedestrians’ crossing time, is very small so that agents have fewer limitations on choosing actions; 𝐺𝑚𝑖𝑛 
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of Cons_2 aims to clear all queues for each phase, and such large 𝐺𝑚𝑖𝑛 make final signal outcomes 

close to the CFT; lastly, 𝐺𝑚𝑖𝑛 of Cons_3 is formulated by a normalized queue length and guarantees 

the current phase’s queue can be cleared to the average queue of other phases. Cons_1 and Cons_2 are 

preset before the simulation, but Cons_3 updates at the yellow end of every phase during the simulation, 

which is the time for agents to decide the next phase. 

Figure 4.6 illustrates improvement rates under these three constraints compared to the CFT. The 

improvement results show Cons_3 > Cons_2 > Cons_1. Results of Cons_1 demonstrate it is not as 

expected that RL algorithms with larger flexibility to explore and exploit will learn better knowledge. 

Conversely, if we do not constrain a proper 𝐺𝑚𝑖𝑛, agents will switch phases frequently with a small 

phase duration during initial exploration. Then with running of simulation and increase of traffic 

demand, more vehicles will queue and even queue up to the start of the road network causing the 

generated vehicles fail to insert into the simulated network. Meanwhile, many bad experiences will be 

stored in the replay buffer. The worse experience would cause bad training, leading to choosing bad 

actions and storing poor experiences. Finally, it forms a vicious cycle. Therefore, with the increase in 

simulation time, the scenario of Cons_1 gets worse and worse, more than 80% worse than CFT in most 

indices. In addition, 𝐺𝑚𝑖𝑛 of Cons_2 is too large and limits much on the agents. The proposed strategy 

under Cons_2 can perform well in off-peak periods but is still worse than CFT for heavy traffic flow. 

Eventually, we find that Cons_3 is the most proper constraint to avoid the vicious circle of bad actions 

and leave enough flexibility for agents to decide the phase duration and sequence. Such restrictions on 

RL algorithms can guarantee learning efficiency and effectiveness. 

 

Figure 4.6.  The comparison of the CTSPV strategy under different signal constraints. 

4.4 Discussions 

To clearly demonstrate the proposed algorithm’s advantages, we record the signal timing outcomes 

of the last 10 episodes to analyze its signal timing pattern from cycle length, phase duration, skipping 

pattern, and action-choosing pattern. To compute the cycle length and skipping counters, we define a 

base phase sequence, i.e., major through phase 𝑃0 → major left-turn phase 𝑃1 → minor through phase 

𝑃2 → minor left-turn phase 𝑃3. Once we observe the phase number descending with the simulation, that 

phase will belong to a new cycle. 
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4.4.1 Signal timing pattern 

(1) Cycle length 

We plot the cycle length of the last episode with the simulation time in Figure 4.7. The cycle length 

changes all the time due to the phase skipping and varied phase duration. To easily observe the 

difference between CFT and the proposed method’s signal results, we calculated the average cycle 

length of 10 episodes in each period for the CTSPV strategy, as listed in Table 4.2. It shows that the 

cycle length of the CTSPV algorithm becomes larger as the traffic demand increase. The cycle lengths 

of CFT are also added to the last column of Table 4.2. Due to the signal coordination, different 

intersections share the same length for CFT. Compared with CFT, the cycle length of CTSPV for 

various periods always is about half. Such smaller cycle lengths may be brought by the shorter phase 

duration or phase skipping.  

 

(2) Phase duration 

For each phase, phase duration is the duration of green time. We calculate the average duration of 

each phase under different periods. If one phase is skipped, we do not consider it as 0 duration but just 

neglect it when taking the average. Table 4.3 summarizes the phase duration of different intersections 

for both CTSPV and CFT strategies under five periods. From the table, the duration of all phases for 

the CTSPV is smaller than that of the CFT, and both CTSPV and CFT tend to set longer green time for 

phases with larger traffic volume, for example, the duration of major through 𝑃0 is larger than that of 

minor through 𝑃2 under the same period; the duration of 𝑃0 under period S3 is larger than under other 

periods with lower traffic demand. We can also see that the sum duration of all phases, including 12s 

yellow time for different periods, is always smaller than that period’s cycle length. The reason is that 

there are frequent phase skippings. Finally, we can conclude that the proposed CTSPV tends to make 

shorter green time and skip phase frequently. 

 

 

Figure 4.7.  The cycle length with simulation time for the last episode. 

Table 4.2.  The cycle length of the CTSPV and CFT strategies under different periods. 

Periods 
CTSPV 

CFT 
Intersection 1 Intersection 2 Intersection 3 

S1 34 47 34 68 

S2 49 53 53 142 

S3 67 56 69 146 

S4 54 55 52 86 

S5 34 47 33 62 
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Table 4.3.  The phase duration of the CTSPV and CFT strategies under different periods. 

Intersection Periods 
CTSPV CFT 

𝑃0 𝑃1 𝑃2 𝑃3 𝑃0 𝑃1 𝑃2 𝑃3 

1 

S1 11 10 9 9 26 12 9 9 

S2 18 15 9 9 69 35 17 9 

S3 27 18 10 9 71 36 18 9 

S4 21 15 9 9 38 18 9 9 

S5 11 9 9 9 22 10 9 9 

2 

S1 25 7 9 9 32 6 9 9 

S2 27 7 10 9 89 12 20 9 

S3 29 7 10 9 92 12 21 9 

S4 28 7 10 9 48 6 11 9 

S5 26 7 10 9 26 6 9 9 

3 

S1 12 10 9 9 26 12 9 9 

S2 20 15 9 9 69 35 17 9 

S3 29 18 10 9 71 36 18 9 

S4 20 14 9 9 38 18 9 9 

S5 11 9 9 9 22 10 9 9 

(3) Skipping pattern 

a. Number of phase skippings 

We count the number of phase skippings in 10 episodes and compute the average number, as 

demonstrated in Table 4.4. Phases 𝑃0 , 𝑃1 , 𝑃2 , and 𝑃3  account for about 4%, 22%, 31% and 43%, 

respectively. Hence, agents tend to skip minor roads and left-turn phases, with less traffic flow. 

Table 4.4.  The number of phase skippings. 

Intersection 
Number of phase skipping 

𝑃0 𝑃1 𝑃2 𝑃3 

1 5 25 41 57 

2 4 31 34 49 

3 5 25 41 55 

b. Number of type skippings 

In accordance with the queue length and bus priority requests, we can divide the environment 

states into four types: Type1: without queue and bus request, Type2: without queue and with bus request, 

Type3: with queue and without bus request, Type4: with queue and bus request. Then we also count the 

number of skips and non-skips for each type. Note that only the situation that can be skipped but not 

skipped is counted, and the situation that is constrained, i.e., cannot be skipped is ignored. From Table 

4.5, the total number of different types shows that most states are in Type 1, and very few are in Type 

2. Ignoring Type 2, we can obtain that the frequency of skips is 91%, 56%, and 34% for Type 1, Type 

3, and Type 4. Therefore, agents have learned to skip the phases without queue length and bus priority 

requests (Type 1). 

Table 4.5.  The number of skips and non-skips for different types. 

Intersection 

Number of skips Number of non-skips Total number 

Type 

1 

Type 

2 

Type 

3 

Type 

4 

Type 

1 

Type 

2 

Type 

3 

Type 

4 

Type 

1 

Type 

2 

Type 

3 

Type 

4 

1 43 1 74 9 5 1 54 12 

133 3 416 53 2 31 0 85 2 4 0 75 11 

3 47 1 72 7 3 0 56 12 
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(4) Action-choosing pattern 

The phase-changing data is collected to analyze the action-choosing pattern of the CTSPV strategy. 

Situations that are constrained to only one valid action would not be considered. Hence, the analyzing 

data records the current phase, and the agent chooses which action from what kind of valid action space. 

In summary, here are eight situations as illustrated in Figure 4.8. Taking situation Ⅰ as an example, the 

current phase is the yellow end of 𝑃0. When 𝑃2 cannot be skipped due to the observed skipping times 

or queue length, the valid action space is [𝑃1, 𝑃2]; conversely, when 𝑃2 can be skipped, 𝑃3 would also 

be valid action, so that the valid action space is [𝑃1, 𝑃2, 𝑃3]. 

Table 4.6 lists the total number of actions under different situations in 10 episodes, and also gives 

the corresponding ratio of choosing each valid action. From Table 4.6, we can know that (1) Situation 

Ⅰ 𝑃1 and 𝑃2 are roughly chosen with the same large ratio, while there is only about a 10% chance to 

select 𝑃3; (2) Situation Ⅱ Three phases are equally to be selected; hence we separately observe the 

choosing ratio under two action spaces to analyze its pattern. As all intersections show a similar pattern, 

so we just take Intersection 1 as one example to explain here, and its choosing ratios of all situations 

are listed in Figure 4.8. As the figure shows, the ratio for Ⅱ-1 is 𝑃2 = 0.31, 𝑃3 = 0.69, and for Ⅱ-2 is 

𝑃0 = 0.57, 𝑃2 = 0.27, 𝑃3 = 0.16 . Therefore, we can find that agents want to go to 𝑃0  as soon as 

possible so that they will choose the last phase 𝑃3 which is closer to 𝑃0 in Ⅱ-1, or directly choose 𝑃0 in 

Ⅱ-2; (3) Situation Ⅲ Agents will not skip 𝑃0 in about 80% of cases; (4) Situation Ⅳ Agents will just 

switch to 𝑃0 with a likelihood of about 70%.  

 

 

Figure 4.8.  The action-choosing situations and ratios of choosing each phase. 

Table 4.6.  The total number and corresponding ratio of actions chosen in 10 episodes. 

Intersection Situation 
Current 

phase 

Number Ratio 

𝑃0 𝑃1 𝑃2 𝑃3 𝑃0 𝑃1 𝑃2 𝑃3 

1 

Ⅰ 𝑃0 - 198 183 40 - 0.47 0.43 0.10 

Ⅱ 𝑃1 173 - 151 195 0.33 - 0.29 0.38 

Ⅲ 𝑃2 390 7 - 62 0.85 0.02 - 0.14 

Ⅳ 𝑃3 86 19 26 - 0.66 0.15 0.20 - 

 Ⅰ 𝑃0 - 386 267 33 - 0.56 0.39 0.05 

 Ⅱ 𝑃1 129 - 97 181 0.32 - 0.24 0.44 

2 Ⅲ 𝑃2 354 7 - 56 0.85 0.02 - 0.13 

 Ⅳ 𝑃3 119 19 14 - 0.78 0.13 0.09 - 

 Ⅰ 𝑃0 - 159 180 52 - 0.41 0.46 0.13 

3 Ⅱ 𝑃1 188 - 154 168 0.37 - 0.30 0.33 

 Ⅲ 𝑃2 351 14 - 101 0.75 0.03 - 0.22 

 Ⅳ 𝑃3 89 17 17 - 0.72 0.14 0.14 - 
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Only situation I does not have a clear pattern to choose action, so the decision tree model is used 

to explain the action-choosing behavior in this situation further. Here, the dependent variable is the 

chosen phase, and the independent variables are the average queue length 𝑄𝑢𝑒𝑢𝑒𝑝 and bus urgency 

𝑃𝑟𝑖𝑜𝑝 of phase 𝑝 (𝑝 = 1,2,3) movements. Because three intersections have the same tendency, we just 

show the results of Intersection 1 as the example in Figure 4.9. When there is no queue or the queue is 

less than 2.5 m in the movements of 𝑃2, 80% and 65% will not skip the next phase 𝑃1, respectively; 

when the queue of 𝑃2’s movements is larger than 2.5 m but smaller than 6.25 m, agents would like to 

skip 𝑃1 and switch to queued 𝑃2 with a ratio of 53%; when the queue of 𝑃2’s movements is larger than 

6.25 m, a much higher ratio, up to 83%, will switch to 𝑃2.  

Therefore, we can summarize the action-choosing pattern briefly as follows.  

Situation I. Agents tend to choose the next phase 𝑃1; only when the minor through 𝑃2 queues more 

than one vehicle, they tend to skip the next phase 𝑃1 and switch to 𝑃2.  

Situation Ⅱ. Agents tend to choose 𝑃3 which is closer to major through 𝑃0 when 𝑃0 is not valid 

(Situation Ⅱ-1), otherwise directly choose 𝑃0 (Situation Ⅱ-2). 

Situation Ⅲ. Agents tend to skip the minor left-turn 𝑃3 with less traffic volume and choose the 

major through 𝑃0 with the heaviest traffic. 

Situation Ⅳ. Agents tend to choose the next phase 𝑃0. 

 

Figure 4.9.  The decision tree results of the first intersection in situation Ⅰ. (Category 1, 2, and 3 refer to 𝑃1, 

𝑃2, and 𝑃3. Queue_2 refers to the queue of 𝑃2.) 

4.4.2 Generalized rule-based methods 

The above action-choosing pattern, summarized from the RL-based CTSPV method, can be 

utilized as one rule-based skipping strategy, which can decide phases and allow phase skipping. 

Integrating this rule-based skipping separately with the fixed phase duration as IFTPS by SIDRA, the 

average phase duration (in Section 4.4.1(2) Phase duration) of the CTSPV method, and variable phase 

duration by F value of Eq (4.10), three rule-based TSP strategies can be generalized, namely Fixed Time 

with Rule-Based Skipping (FTRBS), Average Duration with Rule-Based Skipping (ADRBS), and F-

value with Rule-Based Skipping (FRBS). For the FRBS method, if the F value of the current phase is 
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the largest one, then keep the current phase; otherwise, switch to yellow. The pseudocode of FRBS is 

present in Appendix B. Simulations are conducted to evaluate these generalized rule-based methods by 

comparing them to the RL-based CTSPV method. Table 4.7 illustrates the difference of those comparing 

TSP strategies, and Figure 4.10 shows their performance. We just present the total performance here 

because different traffic demand periods show the same tendency.  

Table 4.7.  The summary of detailed methods for different TSP strategies. 

Methods 
Phase duration  Phase sequence 

Fixed  Variable  Fixed  Variable 

CFT 
Coordinated Fixed SIDRA 

plan 

  Fixed SIDRA 

plan 
 

IFTPS Fixed SIDRA plan    F-value 

FTRBS Fixed SIDRA plan  
 

 
Action-choosing 

pattern 

ADRBS Average phase duration  
 

 
Action-choosing 

pattern 

FRBS  F-value 
 

 
Action-choosing 

pattern 

CTSPV  RL   RL 

From Figure 4.10, FTRBS outperforms IFTPS and CFT so that the action-choosing pattern of the 

RL method is better than the F-value rule and Fixed SIDRA plan, though F-value uses the same input 

information of the RL method. However, the improvements of IFTPS and FTRBS are tiny compared to 

ADRBS with the average phase duration of the RL method and other variable phase duration methods. 

The average phase duration of RL achieves much better results than the fixed one by SIDRA. Hence, 

the learned knowledge of the RL method, including the average phase duration and action-choosing 

pattern, is superior to the traditional traffic signal-timing optimization model, like SIDRA. Even though 

ADRBS deploys the learned knowledge, the duration of phases is fixed for each period, so it improves 

less than the other two approaches with variable phase duration and variable phase sequences. 

Additionally, it is surprising that the FRBS approach performs the same well as the RL-based CTSPV.  

 

Figure 4.10.  The performance comparison of different rule-based strategies. (The unit of APD, APDC, 

APDB: s/pax, the unit of Queue: m/lane, the unit of Lateness: s/pax.) 

4.5 Summary 

This chapter proposes a CTSPV algorithm by MARL for the arterial road to improve transit 

schedule adherence. It flexibly changes phase sequence and duration following real-time traffic 

conditions considering the trade-off between transits and non-prioritized vehicles, the multiple 
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conflicting bus requests, and the cooperation between agents. The proposed method utilizes invalid 

action masking to satisfy traffic constraints and solve the asynchronous decision-making of agents.  

Simulation results show that the proposed method excels in algorithm learning and traffic 

performance owing to three superiorities, i.e., skippings of unurgent phases, agents’ cooperation, and 

the proper credit assignment among agents. It is highly essential to set appropriate signal constraints for 

the RL method to avoid the vicious cycle of bad actions, poor experiences, and worse training. The best 

minimum green time is formulated by the normalized queue length due to efficient learning and 

improved traffic performance. This work records the signal timings of the proposed CTSPV and first 

analyzes the signal-timing pattern of the RL method. Results show that RL agents tend to have variable 

cycle length, short phase duration, and frequent phase skipping than traditional traffic control methods. 

Agents are more likely to skip phases with less traffic demand and without bus priority requests and 

always choose the phase with heavy traffic demand, like major through phase 𝑃0. More specifically, 

when the intersection is at the yellow end of the major through phase, the agent would like to choose 

the subsequent major left-turn phase, or long-queued minor through phase; otherwise, agents tend to go 

to the major through phase. The results of rule-based strategies generalized by those patterns also prove 

the good performance of RL-learned knowledge. 



50 

 

 

Chapter 5  

TSP at multiple intersections to improve    

headway adherence 

This chapter extends the work from promoting bus schedule adherence to headway adherence. In 

the process of changing research objectives, new problems may arise, including how to formulate 

headway and design proper reward functions to realize goals. Different from Chapter 4, this chapter 

also considers phase transition loss.  

This chapter is organized as follows. Section 5.1 introduces the methodology of this chapter and 

describes the proposed CTSPVH algorithm. The experiment framework is presented in Section 5.2. 

Experiment results are shown in Section 5.3. Section 5.4 discusses the limitations of the baseline and 

the benefits of the proposed approach. Section 5.5 summarizes this chapter. 

5.1 Methodology 

5.1.1 Problem statement 

This work considers an arterial road with 𝑁 signalized intersections and complex bus routes from 

different directions. Each intersection is equipped with a multi-phase signal controller with three signals 

per phase, containing green, yellow, and red. As presented in Section 2.5 Transit reliability, headway 

adherence significantly influence bus reliability and passenger waiting time. Therefore, this work aims 

to develop a TSP strategy to modify traffic signals in real-time to promote headway adherence based 

on the observed traffic states. The modification on the traffic signal is regarded as the action, and the 

improvement of headway adherence is the reward. Therefore, this problem can be modeled as MDP 

with the objective of decreasing headway deviation and be addressed by MARL. The following 

describes the four key components of this MARL framework, including agent, state, action, and reward. 

And the performance evaluation metrics are also presented in the last part. 

(1) Agent 

The signal controller of each intersection is a learning-based agent. Given the observed state 𝑠𝑡
𝑖 of 

the environment at time step 𝑡 (𝑡 ∈ 𝑇), the agent of intersection 𝑖 (𝑖 ∈ 𝑁) takes an action 𝑎𝑡
𝑖 ∈ 𝐴𝑡

𝑖  (𝐴𝑡
𝑖  is 

the valid action space) following a policy 𝜋 and then obtains a reward 𝑟𝑡
𝑖 when the environment transits 

to the next state 𝑠′
𝑡
𝑖
 (i.e., 𝑠𝑡+1

𝑖 ). The objective of agents is to find an optimal policy 𝜋∗ which maximizes 

the expected return. 
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(2) State 

For intersection 𝑖, the state represents four-part information at each time step 𝑡, i.e., 𝑠𝑡
𝑖 = (𝑆𝐴𝑡

𝑖 ,

𝐿𝑄𝑡

𝑖 , 𝑃𝐶𝑡
𝑖 , 𝑆𝐵𝑢𝑠𝑡

𝑖 ). 

a. Average speed 𝑺𝑨𝒕
𝒊 

 𝑆𝐴𝑡
𝑖 = {𝑆𝐴𝑙𝑚𝑡

𝑖 }, 𝑙 ∈ Ψ,𝑚 ∈ 𝑀𝑙 (5.1) 

where 𝑆𝐴𝑙𝑚𝑡
𝑖  represents the average speed of movement 𝑚 at the approach link 𝑙 for intersection 𝑖 at 

time 𝑡; Ψ is the approach set, including southbound (SB), northbound (NB), eastbound (EB), and 

westbound (WB) approaches; 𝑀𝑙 is the movement set of approach link 𝑙, containing through and left-

turn movements for right-hand traffic, in which right-turns are permitted to pass on red. 

b. Queue length 𝑳𝑸𝒕

𝒊 

 𝐿𝑄𝑡

𝑖 = {𝐿𝑄𝑙𝑚𝑡

𝑖} , 𝑙 ∈ Ψ,𝑚 ∈ 𝑀𝑙 (5.2) 

where 𝐿𝑄𝑙𝑚𝑡

𝑖  represents the queue length of movement 𝑚 at the approach link 𝑙 for intersection 𝑖 at time 

𝑡. If a traffic movement occupies more than one lane, e.g., two lanes for through traffic, then we take 

the maximum queue length of those lanes as the queue length of that movement. 

c. Current phase 𝑷𝑪𝒕
𝒊 

It is a one-hot encoding vector with several values, each representing one traffic light indication: 

green, yellow, and all-red time of all phases. The vector consists of 0 in all cells except for a single 1 in 

a cell used uniquely to represent the current signal situation. For example, if the current signal shows 

the green time of the second phase in a common four-phase signal scheme, 𝑃𝐶𝑡
𝑖 =

(0,0,0,1,0,0,0,0,0,0,0,0)𝑇. 

d. Bus state 𝑺𝑩𝒖𝒔𝒕
𝒊 

The representation of bus information will determine the effectiveness of  RL agents serving bus 

priority requests on headway adherence, especially in complex situations with multiple conflicting 

priority requests. In this work, we also collect the distance to the stop line 𝐷, schedule delay 𝑆𝐷, and 

passenger occupancy 𝑂 of buses approaching the intersection as former two chapters. Bus schedule 

delay is the delay of a bus compared to its schedule, which we set to 0 if the bus is not late than schedule. 

Passenger occupancy is the number of bus passengers available by the onboard APCs. Moreover, 

forward headway deviation 𝐹𝐻𝐷, backward headway deviation 𝐵𝐻𝐷, and whether at bus stops 𝐴𝑡𝑆 are 

also included. 

Headway deviation is the deviation of the current headway from the scheduled headway, which is 

an essential indicator to reflect the headway adherence. It is easy to calculate buses’ headway deviation 

when they arrive at bus stops, as the arrival time of all buses at stops are collected, and the headway is 

the difference between the arrival time of the current bus and the last bus at this stop. However, it is 

rather complicated to obtain the headway deviation in real-time. In this study, we develop an approach 

to approximately calculate real-time headway deviation based on the relationships between headway 

and schedule delay. 

Here are two headway deviations, forward headway deviation 𝐹𝐻𝐷  and backward headway 
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deviation 𝐵𝐻𝐷. Figure 5.1 shows the headway and schedule delay diagram. The green vehicle is the 

current bus, and the bus in front (or behind) is called the forward (or backward) bus here. Forward (or 

backward) headway is the headway between the current bus and the corresponding forward (or 

backward) bus. Forward (or backward) headway deviation is the deviation of forward (or backward) 

headway from scheduled headway. In this work, it should be noted that each bus entering the network 

is given an initial schedule deviation 𝐼𝑆𝐷. 𝐼𝑆𝐷𝑘 denotes the initial schedule deviation of bus 𝑘; 𝐹𝐻𝑡
𝑘 

and 𝐵𝐻𝑡
𝑘 are the forward and backward headway of bus 𝑘 at time 𝑡; 𝑆𝐻 denotes the scheduled headway; 

𝐹𝐻𝐷𝑡
𝑘 and 𝐵𝐻𝐷𝑡

𝑘 are the forward and backward headway deviation of bus 𝑘 at time 𝑡. For each bus 

line, the real-time headway deviations are computed as follows.  

1) When the first bus of each line enters the network: 

It should be noted that when the first bus of each line enters the network, there is no forward buses 

but backward buses have already been scheduled. Therefore, they can be given by 

 𝐹𝐻𝐷𝑡0
1 = 𝐼𝑆𝐷1 (5.3) 

 𝐵𝐻𝐷𝑡0
1 = 𝐼𝑆𝐷2 − 𝐼𝑆𝐷1 (5.4) 

2) When the following bus 𝑘 enters the network: 

 𝐹𝐻𝐷𝑡
𝑘 = 𝐵𝐻𝐷𝑡

𝑘−1 (5.5) 

 𝐵𝐻𝐷𝑡
𝑘 = 𝐼𝑆𝐷𝑘+1 − 𝐼𝑆𝐷𝑘 (5.6) 

3) When bus 𝑘 runs in the network:  

In Figure 5.1, we describe the distance of buses by time as all buses of one line set the same 

commercial speed, and distance can be approximated by multiplying the time with the scheduled speed 

when buses run between two bus stops. From Figure 5.1, we can derive:  

 𝐹𝐻𝑡
𝑘 = 𝐹𝐻𝑡−𝛥𝑡

𝑘 − 𝛥𝑡 + 𝛿𝑐 + 𝛥𝑡 − 𝛿𝑓 = 𝐹𝐻𝑡−𝛥𝑡
𝑘 + 𝛿𝑐 − 𝛿𝑓 (5.7) 

where 𝛿𝑐 = 𝛥𝑡 −
𝛥𝐷𝑐

𝑉
, 𝛿𝑓 = 𝛥𝑡 −

𝛥𝐷𝑓

𝑉
; 𝛿𝑐 and 𝛿𝑓 are the delay of the current and forward buses in 𝛥𝑡; 

𝛥𝐷𝑐  and 𝛥𝐷𝑓 are the traveled distance of the current and forward buses in 𝛥𝑡 ; 𝑉  is the pre-set 

commercial speed of buses, 20km/h. The green bus of Figure 5.1 actually runs ahead of the expected 

location after 𝛥𝑡, so 𝛿𝑐 is negative and has a positive sign in the above formula. 

 

Figure 5.1 The headway and schedule delay diagram. 

According to the definition, we know 

 𝐹𝐻𝐷𝑡
𝑘 = 𝐹𝐻𝑡

𝑘 − 𝑆𝐻 (5.8) 

Based on Eq (5.8), Eq (5.7) can be derived to 
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 𝐹𝐻𝐷𝑡
𝑘 = 𝐹𝐻𝐷𝑡−𝛥𝑡

𝑘 + 𝛿𝑐 − 𝛿𝑓 (5.9) 

Similarly, the calculation of backward schedule deviation can be derived as follows: 

 𝐵𝐻𝐷𝑡
𝑘 = 𝐵𝐻𝑡

𝑘 − 𝑆𝐻 (5.10) 

 𝐵𝐻𝑡
𝑘 = 𝐵𝐻𝑡−𝛥𝑡

𝑘 − 𝛥𝑡 + 𝛿𝑏 + 𝛥𝑡 − 𝛿𝑐 = 𝐵𝐻𝑡−𝛥𝑡
𝑘 + 𝛿𝑏 − 𝛿𝑐 (5.11) 

 𝐵𝐻𝐷𝑡
𝑘 = 𝐵𝐻𝐷𝑡−𝛥𝑡

𝑘 + 𝛿𝑏 − 𝛿𝑐 (5.12) 

where 𝛿𝑏 = 𝛥𝑡 −
𝛥𝐷𝑏

𝑉
; 𝛿𝑏 is the delay of the backward buses in 𝛥𝑡; 𝛥𝐷𝑏 is the traveled distance of the 

backward buses in 𝛥𝑡. 

In addition, the relationship between forward and backward schedule deviation can be described 

as 

 𝐹𝐻𝐷𝑡
𝑘 = 𝐵𝐻𝐷𝑡

𝑘−1 (5.13) 

Hence, we can calculate real-time 𝐵𝐻𝐷 by Eq (5.12) and use Eq (5.13) to obtain 𝐹𝐻𝐷 when buses 

run in the network. For the metric 𝐴𝑡𝑆,  many sensors are installed at bus stops that can detect when a 

bus has arrived and also the GPS can retrieve the real-time location of buses to verify whether buses 

are at bus stops. 𝐴𝑡𝑆 = 1 if the bus is at stops; otherwise, 𝐴𝑡𝑆 = 0.  

Finally, the bus state is denoted by six-tuple information of buses arriving at intersections: 

 𝑆𝐵𝑢𝑠 = {𝐷𝑝𝑏 , 𝑆𝐷𝑝𝑏, 𝑂𝑝𝑏 , 𝐹𝐻𝐷𝑝𝑏 , 𝐵𝐻𝐷𝑝𝑏, 𝐴𝑡𝑆𝑝𝑏}, 𝑝 ∈ P, 𝑏 ∈ Γ (5.14) 

where 𝐷𝑝𝑏 , 𝑆𝐷𝑝𝑏, 𝑂𝑝𝑏 , 𝐹𝐻𝐷𝑝𝑏 , and 𝐵𝐻𝐷𝑝𝑏  represent the distance to the stop line, schedule delay, 

passenger occupancy, forward headway deviation, and backward headway deviation of bus 𝑏, which 

requests the green time of phase 𝑝. 𝐴𝑡𝑆𝑝𝑏 denotes whether bus 𝑏 controlled by phase 𝑝 is at bus stops. 

𝑃 is the phase set, such as 𝑃 = {0,1,2,3} in a four-phase signal scheme. It should be noted that the bus 

state only considers buses that have already arrived at intersections. We define the arrival of one bus as 

1) its distance to the stop line is less than 40 m, or 2) it queues at the intersection.  Γ is the bus set, and 

here we set |Γ| = 3. Thus, if there are more than three arrived buses detected at an intersection and 

requesting phase 𝑝, we only put the information of the three most urgent buses in 𝑆𝐵𝑢𝑠 for phase 𝑝. The 

urgency is measured by 
|𝐹𝐻𝐷𝑝𝑏|+|𝐵𝐻𝐷𝑝𝑏|

𝐷𝑝𝑏+𝛿
 where 𝛿 = 1 to avoid invalid calculations because we think 

buses with larger headway deviation and closer to the stop line are much more urgent to consider. 

Therefore, we can simultaneously consider up to 12 bus requests from different directions at each 

intersection. Finally, 𝑆𝐵𝑢𝑠 is a 12x6 matrix. 

(3) Action 

Consider a series of traffic phases allowing phase skipping. The valid action space 𝐴𝑡
𝑖  is a set of 

valid signal phases for intersection 𝑖 at each step 𝑡. The validity is determined by signal constraints 

(namely, the minimum and maximum green time) and skipping rules of Chapter 4. Therefore, agent 𝑖 

selects next step’s phase from 𝐴𝑡
𝑖  as action 𝑎𝑡

𝑖  each step. In this case, the phase duration and sequence 

are totally determined by agents.  

The signal constraints would cause asynchronous decision-making time of different agents as 

agents are restricted to experience yellow time and all-red time when the last action is to change to 

another phase. Such asynchrony would increase the difficulty of cooperation among agents as 

cooperation requires agents to consider each other’s actions when they make decisions. To address the 
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asynchrony of agents, we also treat the yellow time and all-red time as an action so that each agent can 

select one action at every step. Then the universal action space is a set of the green, yellow, and all-red 

of all considered phases. The valid action space is a subset of them. 

In this study, we set 3s yellow time and 1s all-red time before transitioning to another phase to 

guarantee the phase transition safety and also consider the phase transition loss. 

(4) Reward function 

This work seeks the optimal policy that can 1) prioritize transits to promote bus headway 

adherence while bringing less detrimental effects (e.g., queue length) on non-transit vehicles, and 2) 

improve the general traffic efficiency when there are few buses. Considering the cooperation among 

agents and their co-efforts on the network performance, all agents utilize a joint reward 𝑟𝑡. Hence, the 

reward 𝑟𝑡
𝑖 is defined as the weighted sum of queue density and headway gains, given by Eq (5.15).  

 𝑟𝑡 = 𝑤1
∑ ∑  𝐿𝑄𝑙𝜑𝑡𝜑𝑙

∑ ∑ 𝐷𝑒𝑡𝑙𝜑𝜑𝑙
+ 𝑤2 ∑ 𝜙𝑘(𝐹𝐻𝐷𝑡

𝑘 − 𝐵𝐻𝐷𝑡
𝑘)𝑘  (5.15) 

where 𝐿𝑄𝑙𝜑𝑡 and 𝐷𝑒𝑡𝑙𝜑 represent the queue length at time 𝑡 and detector length on the lane 𝜑 of the 

approach link 𝑙 in the whole network, respectively; 𝜙𝑘 = {
1,   action=the green phase for bus 𝑘

−1,   others
 and 

bus 𝑘 belongs to buses in 𝑆𝐵𝑢𝑠; 𝑤1 and 𝑤2 are a negative weight for queues of general traffic and a 

positive weight for headway gains of buses, respectively. 

Here we take both forward and backward directions into consideration in headway gains. Note 

that, according to Eq (5.8) and Eq (5.10), the positive value of 𝐹𝐻𝐷  and 𝐵𝐻𝐷  denote the larger 

headway than scheduled one. It is positive to select the green phase for bus 𝑘 when bus 𝑘 has a larger 

forward headway than scheduled headway as prioritizing bus 𝑘 benefits on shortening the distance with 

the forward bus. In contrast, it is harmful to select the green phase for bus 𝑘 when bus 𝑘 has a larger 

backward headway than scheduled headway as prioritizing bus 𝑘 enlarges the distance with backward 

bus and deteriorates headway adherence; vice visa. 

(5) Evaluation metrics 

We evaluate the MARL-based TSP strategies regarding learning efficiency and traffic 

performance, as in Chapter 4. And we also introduce several new indexes of traffic performance: 

• Average headway deviation (AHD): It is the average headway deviation of each bus, computed by 

 𝐴𝐻𝐷 = ∑ ∑ |𝐹𝐻𝐷𝑡
𝑘|𝑘𝑡 ∑ |𝐾𝑡|𝑡⁄ , 𝑘 ∈ 𝐾𝑡 (5.16) 

where 𝐾𝑡 is the set of buses running in the network at time 𝑡 and |𝐾𝑡| represents the total number 

of buses.  

• Average bi-headway difference (ABHD): This term shows how even the forward and backward 

headway is. It is defined as the average difference between forward and backward headway 

deviations: 

 𝐴𝐵𝐻𝐷 = ∑ ∑ |𝐹𝐻𝐷𝑡
𝑘 − 𝐵𝐻𝐷𝑡

𝑘|𝑘𝑡 ∑ |𝐾𝑡|𝑡⁄ , 𝑘 ∈ 𝐾𝑡 (5.17) 

• Average person waiting time (APWT): This belongs to person-based metrics and is calculated by: 

 𝐴𝑃𝑊𝑇 = ∑ 𝑤𝑛𝑡𝑡 /∑ 𝑖𝑛𝑡𝑡  (5.18) 

where 𝑤𝑛𝑡 denotes the number of persons waiting for buses at time 𝑡, and its sum in time 𝑇 equals 

the waiting time of all persons;  𝑖𝑛𝑡 denotes the number of inserted people at time 𝑡 and its sum in 

time 𝑇 equals the total number of inserted persons in the network. 
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• Average person running delay on bus (APRDB): This is also a person-based metric to reflect the 

running performance of buses, which can be computed by 

 𝐴𝑃𝑅𝐷𝐵 = ∑ ∑ (𝑑𝑘𝑡 ∗ 𝑂𝑘𝑡𝑘 )𝑡 /(∑ 𝑖𝑛𝑡𝑡 − 𝑤𝑛𝑇) (5.19) 

where 𝑤𝑛𝑇 denotes the number of persons waiting for buses at the last time step 𝑇. The numerator 

is the total running delay of all passengers on buses, and the denominator is the total number of 

inserted passengers in time 𝑇. 

• Total person delay on bus (TPDB): The total person delay consists of waiting delays at bus stops 

and running delays on buses. Hence, we can calculate 𝐴𝑃𝑊𝑇 by roughly summing 𝐴𝑃𝑊𝑇  and 

𝐴𝑃𝑅𝐷𝐵 together. 

5.1.2 CTSPVH algorithm 

This work utilizes the same MARL framework of Chapter 4 to propose the Cooperative TSP 

strategy of Variable phase for Headway adherence (CTSPVH). It is also based on QMIX and D3QN, 

and its pseudocode is the same as the CTSPV algorithm. The only difference with the CTSPV approach 

is the size of convolutional (Conv) and fully connected (FC) layers for approximating Q value due to 

the different representations of state, action, and reward. Figure 5.2 shows the CTSPVH framework, 

using DNN to approximate the Q value of each agent and mixing network to obtain the global Q value. 

 

Figure 5.2. The CTSPVH framework. 

5.2 Experiment 

5.2.1 Simulated environment 

To assess the performance of the proposed CTSPVH strategy, we simulated a three-intersection 

arterial by SUMO as the environment to interact with RL agents, as shown in Figure 5.3. Each 

intersection has four legs, of which EB and WB approaches on the major roads have three lanes, and 

SB and NB approaches on minor roads have only two lanes. The spacing between two adjacent 

intersections is 450m. 

Traffic demands: The simulated network has eight inflows and eight outflows, so 56 OD pairs are 

set. We consider 5-period demands, of which the flow ratios are around 0.35, 0.5, 0.55, 0.45, and 0.3, 

respectively. The total simulation time is 5700 s, in which the warm-up is 5 mins, and the time of S1~S5 
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are 15, 15, 30, 15, and 15 mins, respectively.  

The environment has six two-way bus lines, as shown in Figure 5.3 ( the same as Figure 4.2). To 

determine bus schedules for better studying headway adherence, related literature is summarized in 

Table 5.1. Referring to those studies, we set a 5-min headway for S2~S4 with higher demand and a 10-

min headway for S1 and S5 with lower demand. 

 

Figure 5.3. Simulated environment. 

Table 5.1. Summarization of scheduled headway of related literature. 

Paper  Scheduled headway 

Van Oort et al. (2010) 5 mins 

Anderson and Daganzo (2020) 10 mins 

Long et al. (2020) 1.5~3 mins 

Khan et al. (2023) 2~20 mins 

Wang and Sun (2020) 8 mins 

Zhou et al. (2022) 5 mins 

 

Traffic signal phase: The traffic signal of each intersection adopts a standard four-phase scheme 

as shown in Figure 5.3, namely, major through phase 𝑃0, major left-turn phase 𝑃1, minor through phase 

𝑃2, and minor left-turn phase 𝑃3. All right turns are allowed to pass on red. We emphasize there is a 1s 

all-red time after 3s yellow and before the green time of other phases. 
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Bus settings: All buses are given one random initial schedule deviation, following a normal 

distribution N(0,1802), so that the inserted time of each bus is determined by the sum of scheduled 

headway and that initial schedule deviation. The capacity of each bus is 70 pax, and the boarding time 

per person is 2 s. At each stop, the passenger arrival rate of each line is 0.0083 person/s for S1 and S5 

and 0.0167 person/s for other periods. 

5.2.2 Compared methods 

We compared the proposed CTSPVH approach with the following baselines. Parameters settings 

are shown in Table 5.2. 

(1) Coordinated Fixed-Time signal (CFT): We obtain the optimal fixed signal timing considering 

arterial coordination by SIDRA INTERSECTION, as shown in Table 5.3. As Figure 4.3 in Chapter 4 

shows, CFT provides sufficient green bandwidth and coordinates well. 

(2) CTSPV: This is a cooperative TSP strategy by MARL framework for arterial roads to improve 

schedule adherence, referred to Section 4.1.2 CTSPV algorithm. 

(3) Bus Holding strategy (BH): We refer to the work of Daganzo (2009) and use this strategy to 

hold buses with small headway at bus stops (see Appendix ). Traffic signals at all intersections are 

controlled by CFT.  

Table 5.2. The parameters settings. 

Parameters Value 

Discounting factor 0.99 

Learning rate 0.0001 

Epsilon of 𝜖-greedy Exponentially decade from 0.6 to 0.1 with a rate 5e-5 

Target networks replace iterations 2000 

Size of the replay buffer 20000 

Size of minibatch 64 

Number of episodes 160 

𝑤1 and 𝑤2 for the reward -1 and 1/5120 

Table 5.3. Signal timings of CFT. 

Intersection Periods 
Green time (s) Yellow 

time (s) 

All-red 

time (s) 

Cycle 

time (s) 

Offset 

(s) 𝑃0 𝑃1 𝑃2 𝑃3 

1 

S1 26 12 9 9 

3 1 

72 

0 

S2 69 35 17 9 146 

S3 71 36 18 9 150 

S4 38 18 9 9 90 

S5 22 10 9 9 66 

2 

S1 32 6 9 9 72 

35 

S2 89 12 20 9 146 

S3 92 12 21 9 150 

S4 48 6 11 9 90 

S5 26 6 9 9 66 

3 

S1 26 12 9 9 72 2 

S2 69 35 17 9 146 70 

S3 71 36 18 9 150 70 

S4 38 18 9 9 90 70 

S5 22 10 9 9 66 8 
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5.3 Results 

This section assesses the proposed CTSPVH approach and compares it with other baselines. 

Traffic simulation of each episode sets different random seeds, facilitating testing varied traffic 

situations. Simulation results show the learning efficiency and network performance of the proposed 

method. 

5.3.1 Algorithm learning 

Learning efficiency can be clearly obtained from the learning curve. Here, two indicators are 

computed to plot the learning curve: scores and average Q value. Scores are the cumulative rewards in 

one episode. The average Q value is an average of 64 Q values, which is the Q value of the best action 

selected for a given 64 states under the current policy. As agents’ policies are updated with learning, 

changes of scores and average Q value illustrate algorithm learning performance. The results are shown 

in Figure 5.4. 

In Figure 5.4 (a), dotted lines are actual scores with episodes, and solid lines are average scores 

per 20 episodes, making them more stable than dotted ones. The scores of the peak demand (S3) are 

lower than off-peaks (S1,2,4 and 5), and score improvements of peak demand are much larger than off-

peaks with the training process. After 50 episodes, total scores become much more stable, which 

illustrates the algorithm roughly converges. In addition, Figure 5.4 (b) shows varieties of the average Q 

value with the simulation time for different agents. Because the average Q value is obtained by 

conditioning on given 64 states all the time without any randomness, its curve does not oscillate much 

as scores. Hence, curves of average Q value are more intuitive to find that agents roughly converge after 

50 episodes, and each agent has learned policies from centralized learning. It should be noted that the 

decreases in agents 1 and 3’s average Q value with training do not mean agents 1 and 3 are learning 

worse. The given 64 states may be bad situations for agents 1 and 3, and those two agents should obtain 

negative values, but agents don’t learn enough knowledge at the beginning of training so they obtain 

inaccurate positive Q values. Then agents learn with time and gradually obtain the accurate negative Q 

value. Hence, we should focus on the tendency of Figure 5.4 (b), which show the learning effectiveness. 

 

 

(a) Scores. (S1~S5 refers to the five periods of traffic demands, and the Total is the sum of all five 

periods) 
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(b) Average Q value 

Figure 5.4. The learning curve of the CTSPVH strategy. 

5.3.2 Performance comparison 

The learning curve shows that the proposed algorithm has converged after 50 episodes. Hence, we 

reported average performance metrics of the last 60 episodes for performance evaluations. Figure 5.5 

summarizes the performance improvement rates of various approaches compared with the CFT method. 

BH reduces AHD, ABHD, and APWT by 17.5%, 26.1%, and 16.4%, respectively, which are the highest 

rates among all methods, but it also seriously increases APD, Queue, and APRDB by 10%, 9.5%, and 

45%, respectively. BH holds buses with small headway to improve headway adherence and reduce 

person waiting time at bus stops while holding behaviors delay buses and passengers in buses heavily. 

Overall, the delay of transit users increases, namely TPDB, by 14.8%. Therefore, the implementation 

of BH improves transit headway adherence with severe adverse impacts on general traffic and running 

delay of buses. Detail reasons are discussed in Section 5.4.1 Limitations of the BH method. In contrast, 

CTSPVH significantly decreases AHD and ABHD by 6.5% and 5.3%, without any negative influence 

on general traffic. For example, it even slightly reduces APD, Queue, APRDB, and TPDB by 0.5%, 

2.7%, 2.7%, and 2.3%, respectively. The CTSPV approach is designed to promote bus schedule 

adherence and decrease queue length; hence, it improves lateness and queue the most, i.e., by 6.6% and 

25.8%, respectively. 

 

 

Figure 5.5. The comparison of performance improvement rates. 
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In summary, BH minimizes headway deviation, but delays and queues increase dramatically; 

CTSPV minimizes queues and delays significantly, but has no improvement on headway adherence; 

however, CTSPVH significantly improves headway adherence while ensuring nonnegative impacts on 

queue and delays. 

5.3.3 Weight setting 

To facilitate practical application, we need to find proper weights to formulate the reward function. 

In Eq (5.15), we can set 𝑤1 = −1 and test various values of 𝑤2. Figure 5.6 shows the performance 

comparison when 𝑤2 varies from 1/12000 to 1/2400. As the formulation, the higher 𝑤2 is, the more 

emphasis is on headway gains compared to queue length. Hence, results of larger 𝑤2 show a smaller 

decrease in delay, queue, and lateness, but greater improvements in headway deviation and person 

waiting time. As the changes of APRDB are always larger than APWT with the changes of 𝑤2, the 

TPDB improvement would change correspondingly with APRDB. 

This work aims to minimize headway deviation without negative impacts on general traffic, 

including delays and queues. Therefore, we need to find a balance between those two parts. We obtain 

the CFT approach’s queue and AHD (also equals the average FHD and BHD) are 22.88 m/lane and 

195.23 s, respectively. Thus, the average queue density (the first part of reward function Eq (5.15)) in a 

300-m length would be 22.88/300 = 0.07627, and the average bi-headway difference (the second part 

of reward function Eq (5.15)), i.e., average value of |𝐹𝐻𝐷 − 𝐵𝐻𝐷| , would fall into [0, 390.46] as 

|𝐹𝐻𝐷| − |𝐵𝐻𝐷| ≤ |𝐹𝐻𝐷 − 𝐵𝐻𝐷| ≤ |𝐹𝐻𝐷| + |𝐵𝐻𝐷| . When balancing queue density and headway 

gains and putting equal emphasis on them, we can set 𝑤1 = −1,𝑤2 =
average queue density

maximum of average bi-headway diferrence
=

0.07626

390.46
≈

1

5120
. As Figure 5.6 shows, in this case, CTSPVH can 

reduce AHD, ABHD, and APWT by 6.5%, 5.3%, and 1.8%, while APD, Queue, Lateness, APRDB, and 

TPDB also decrease by 0.5%, 2.7%, 2.6%, 2.7%, and 2.3%. 

In practice, after collecting average queue length and headway deviation, balancing weights can 

be determined to perform well in headway adherence without negative impact on general traffic. 

 

Figure 5.6. Performance comparison of different weight settings. 
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two questions: one is why does BH perform so poorly on delay in this study, and the other one is why 

does CTSPVH improve a little on APWT? 

5.4.1 Limitations of the BH method 

Bus holding strategy has been widely implemented to improve transit reliability; however, in this 

experiment, simulation results show that the BH method improves headway adherence and person 

waiting time significantly but imposes greater costs on bus delay, car delay, and queue. According to 

the principle of bus holding strategy, we can infer that the bus delay and person delay on buses would 

increase a little after holding buses at a stop, but the simulation results are much worse than we expected. 

By visualizing simulations, we found a severe problem, i.e., heavy queueing after bus stops due to the 

bus holding strategy, as shown in Figure 5.7. 

 

 

Figure 5.7. Queuing after bus stops due to bus holding strategy. 

This problem happens when the length of the bus stop bay is limited, and one ahead holding bus 

occupies this bay area; other following buses scheduled to use the same stop would queue and even 

influence car movements. The queue of following buses and cars results in increased delays for both 

bus and car travelers and decreased bus service reliability. Moreover, after that holding bus finished its 

holding time, the following buses of other lines may also need to hold at this stop, so that the queue is 

not easy to clear due to the holding strategy of a large amount of bus lines. In reality, we usually focus 

on one the most key bus line or route with high passenger demand or serious unregular headway to 

consider implementing bus holding. Then, those essential buses can benefit a lot from the holding 

strategy with fewer adverse effects on other vehicles. Overall, there are two reasons for this queueing 

problem: the limited space of bus stop bays and the large amount of holding bus lines. 

Consequently, the above two reasons for the BH strategy’s poor performance are its limitations in 

real traffic; namely, the BH strategy can only be applied to networks with long bus stop bays and for a 

limited number of bus lines. 

5.4.2 Benefits of the CTSPVH method 

Simulation results do not show a significant improvement of the CTSPVH approach on APWT 

compared to the CFT approach, only 1.8%, even though it greatly decreases headway deviation by 6.5%, 

which seems inconsistent with the advantages of headway adherence on reducing person waiting time. 

To answer this question, we plot three bus trajectories of one line to analyze possible reasons. 

As Figure 5.8 shows, X-axis denotes the time, and Y-axis represents the space. One bus line has 

many bus stops with an intersection between two stops. The studied network with three intersections 

Holding bus Queue 
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only contains around four stops from 𝑖 to 𝑖 + 3 for most lines like Line E0/W0, other stops after 𝑖 + 3 

is the downstream of the studied network. For simplification, we do not plot the queue time of buses 

before stop lines at signalized intersections and just change the slopes of bus trajectories between two 

stops. For example, if a bus queue a long time before the stop line to wait for the green time, the slop 

of corresponding trajectories between two stops, including this intersection, becomes much smaller; 

otherwise, the slop becomes larger when a bus is given a signal priority and pass this intersection quickly. 

There are three bus trajectories: red dotted lines are scheduled bus trajectories, black solid lines are bus 

trajectories controlled by CFT without TSP, and green dash lines are bus trajectories with CTSPVH 

strategy. We assume that the first bus travels on schedule, and the initial schedule deviation set for the 

second (third) bus is positive (negative), so the second (third) bus enters the studied network with large 

(small) headway. 

For the second bus without TSP control, the large headway may cause more person arrivals and 

enlarge its dwell time. Then headway gradually increases, and the situation becomes increasingly worse. 

However, in an ideal situation, the CTSPVH strategy can always give signal priority to this bus so that 

it travels faster at every intersection and arrives at the next bus stop earlier than without TSP control. A 

smaller headway deviation than without control would shorten the dwell time and further reduce 

headway. After TSP of several intersections, headway will gradually decrease and eventually reach the 

scheduled one, thus can bringing the bus trajectory back to the scheduled one. 

In contrast, for the third bus without TSP control, the small headway at the beginning will make 

the headway shorter and shorter. This third bus even catches on the second bus at stop 𝑖 + 3, and those 

two buses bunch together. However, the CTSPVH can delay this bus a bit at intersections by giving the 

signal to other movements. After a few intersections, such headway deviation can also be corrected. 

As we mentioned in Section 2.5, the headway irregularities and bus bunching problems can lead 

to a large person waiting time, but these conditions are gradually exacerbated downstream (the gray 

area of Figure 5.8) with time. Because our studied network contains only one short arterial road with 

three intersections (the white area of Figure 5.8), the negative impacts of headway irregularities do not 

affect passenger waiting time too much, and the effect of early and late arriving buses on passenger 

waiting time is somewhat neutralized, so the improvements of CTSPVH strategy would not be so 

significant. The improvement of APWT by the CTSPVH approach would be larger if the studied 

environment covered the whole bus line because it can significantly improve the headway deviation, as 

the results in the studied network show. 

Additionally, the TSP strategy enables to process buses whose headways are small and large, while 

the BH strategy can only hold small-headway buses. This is another benefit of the CTSPV method. 

Compared to the two limitations of the BH strategy, CTSPV also has no limits on bus stop bays and has 

the ability to serve various bus lines. 
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Figure 5.8. Bus trajectories of one line. 

5.5 Summary 

This chapter proposes a CTSPVH algorithm by Multi-agent RL (MARL) for the arterial road to 

improve transit headway adherence. It determines traffic signals of the next step based on real-time 

conditions of transits and non-transits, considering multiple conflicting bus requests, rational action 

constraints, a balance between buses and cars, and collaboration among intersections. 

Simulation results show that the proposed method outperforms fixed-time signal and bus holding 

strategy when phase transition losses are considered due to greater improvements in transits and less 

harm to general traffic. The reward function’s weight determines the focus of the proposed algorithm: 

the higher the weight of headway gains is, the more emphasis is on the transit headway, and the more 

significant improvements are achieved in headway adherence but with more negative effects on queue 

and delays. When the weight of the headway part sets to be the quotient of average queue density and 

average headway deviation, the CTSPVH algorithm decreases headway deviation significantly (i.e., by 

6.5%) without negative effects on general traffic (i.e., APD decreases by 0.5% and Queue decreases by 

2.7%) comparing to CFT method. Then we discussed the harm of the BH method due to limited bus 

bay length and many holding lines. Holding buses would block following buses that are expected to use 

the same stop and even cause queues of cars behind. In contrast, the benefits of CTSPVH were also 

discussed. Although the APWT at the studied intersections decreased slightly, the improvement would 

be more significant downstream. Due to these existing and potential advantages, the proposed method 

has a promising application in practice.
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Chapter 6  

Conclusions 

6.1 Summary 

This thesis presented three RL-based TSP strategies, ranging from isolated intersections to arterial 

roads with multiple intersections to improve transit reliability in terms of schedule and headway 

adherence, respectively.  

Chapter 3 proposed an eD3QNI algorithm by single-agent RL for the isolated intersections. This 

algorithm considers multiple conflicting bus priority requests, adopts a person-based reward function, 

and utilizes invalid action masking to incorporate traffic domain knowledge (i.e., traffic signal 

constraints and phase skipping rule) with RL to guarantee action rationality. Simulation results showed 

the benefits of the eD3QNI method over fixed-time signal, active TSP strategy, and other common RL 

methods, invalid action maksing stratege over variable decision point method, and variable phase 

scheme over fixed sequece scheme in terms of the training process, convergence speed, and 

improvement in traffic-related metrics. The impacts of CV penetration rates were discussed, and found 

it would not influence the proposed algorithm’s convergence efficiency but affect traffic performance. 

At the end of the chapter also discussed the performance of different reward functions and verified that 

the proposed eD3QNI algorithm could accommodate other specific reward functions to realize different 

operation goals. 

Based on studies of single-agent RL on isolated intersections, Chapter 4 proposed a CTSPV 

algorithm by MARL for the arterial road to improve transit schedule adherence. It adopted the QMIX 

framework in which every single agent also used the eD3QNI algorithm, invalid action masking 

strategy to satisfy traffic constraints and solve the asynchronous decision-making of agents, and variable 

phase scheme to flexibly change phase sequence and duration following real-time traffic conditions. 

The reward function was designed to consider the trade-off between transits and non-prioritized vehicles. 

Simulation results proved the superiorities of the CTSPV algorithm and the essentials of appropriate 

signal constraints. Then signal timing patterns of the CTSPV algorithm were discussed, and found the 

tendency of variable cycle length, short phase duration, and frequent phase skipping to higher demand 

phases for RL agents compared to traditional traffic control methods. Evaluation results of rule-based 

methods generalized from those patterns prove the good performance of RL-learned knowledge. 

Extending the above studies, Chapter 5 proposed a CTSPVH algorithm by MARL for the arterial 

road to improve transit headway adherence. It utilized the same framework as the CTSPV algorithm 

but designed specific state representation, action space, and reward functions to consider transit 

headway and phase transition loss. Simulation results show that the proposed algorithm reduces 

headway deviation significantly without adverse influence on non-transit vehicles, which is superior to 

the coordinated fixed-time signal and bus holding strategy. Also, we analyzed the impacts of the reward 

function’s weight on performance. It found that since the CTSPVH algorithm performs optimally 
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considering the trade-off between transits and cars, the weight of the headway part is better to set as the 

quotient of average queue density and average headway deviation. Finally, the limitations of bus holding 

strategy and the benefits of CTSPVH were discussed to further emphasize the promising application of 

the proposed method in promoting bus reliability in practice. 

6.2 Contributions 

The contribution of this thesis can be summarized according to the three main works above. 

The first work (in Chapter 3) about the eD3QNI algorithm at isolated intersections contributes 

threefold.  

▪ The eD3QNI algorithm can incorporate traffic engineers’ knowledge (domain knowledge) 

into the RL to guarantee action rationality and improve the agent’s learning efficiency and 

traffic performance. Specifically, the employment of the so-called IAM strategy provides 

a way to integrate human engineering knowledge into the development of an RL scheme. 

By doing so, the proposed method not only guarantees the rationality for the application 

of DRL in terms of considering the minimum and maximum green times and phase 

skipping rule, but also aims to improve person-based performance by prioritizing buses 

with large total person lateness. Moreover, the IAM strategy provides the TSP with 

flexible cycle length, as the phase duration is determined by the agent without fixed cycle 

length constraints.  

▪ The eD3QNI algorithm enables addressing complex multiple priority requests problem. 

In existing studies of DRL for TSP, it is assumed that priority requests from only one route 

(including up and down directions) can occur at one time. However, our proposed method 

represents proper information of multiple buses from conflicting routes in an appropriate 

form of states, and its agent learns to choose the action and prioritizes the approaching 

buses in multiple routes by modifying the signal timing.  

▪ The eD3QNI algorithm is evaluated in scenarios with various CVs’ penetration rates and 

different reward functions. This method can be applied to realize different operational 

goals by modifying the reward structure. 

The second work (in Chapter 4) about the CTSPV algorithm at arterials has the following four 

main contributions.  

▪ First, we develop a MARL framework to realize a cooperative TSP strategy with variable 

phases. It is a totally data-driven approach and flexibly changes traffic signals (including 

phase sequence and duration) in accordance with real-time traffic conditions at each time 

step, differing from other existing TSP methods that change signal timings by cycles or 

make adjustments to one base signal.  

▪ Second, the proposed method prioritizes buses and improves the efficiency of both transits 

and non-transits by formulating the reward function as the combination of observable 

metrics, i.e., queue length and bus lateness. It also solves multiple priority requests well 

by providing agents with the state of urgent buses from different directions. Moreover, it 

achieves multi-intersection cooperation by deploying the mixing network of the QMIX 

framework.  

▪ Third, the proposed method with invalid action masking approach can satisfy the 

constraints of minimum/maximum green time and skipping rule and solve the 
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asynchronous decision-making of different agents by setting all agents choosing actions 

at every step. In addition, we test several minimum/maximum green time constraints to 

analyze their effects on the proposed approach and find the proper constraints for the RL 

method to learn efficiently.  

▪ Last but not least, this is the first paper that analyzes the signal timing outcomes of the RL 

method to explain why RL performs better than conventional methods. We have analyzed 

the signal timing pattern of the proposed method in terms of cycle length, phase durations, 

phase-skipping pattern, and action-choosing pattern. We also generalize some rule-based 

strategies by those patterns and evaluate their performance. 

Contributions of the third work (in Chapter 5) about the CTSPVH algorithm at arterials can be 

concluded to the following four contributions. 

▪ The relationship between headway deviation and bus delay was discussed, on the basis of 

which we propose a calculation approach for forward and backward headway deviations 

in real-time. 

▪ The CTSPVH algorithm, like the CTSPV algorithm in Chapter 4, considers four crucial 

components, i.e., complex state representation with multiple conflicting buses, rational 

actions constrained by domain knowledge, comprehensive rewards balancing transits and 

non-transits, and a centralized training scheme for cooperation among agents. 

▪ Based on the above considerations, this work designs specific state representation, action 

space, and reward functions for arterial traffic control, which can improve transit headway 

adherence with less cost on non-transit vehicles. In addition, how to set weights of reward 

functions for the CTSPVH algorithm’s optimal performance has also been discussed for 

practical applications. 

▪ Compared with the second work in Chapter 4, we also consider phase transition loss by 

setting 3s yellow time and 1s all-red time between phase transitions. The results proved 

the superiority of RL-based signal control over other traditional methods in situations with 

phase transitions.  

6.3 Future work 

The following directions can be further explored in the future.  

▪ Firstly, the low simulation speed of SUMO affects the algorithm training speed. We can 

integrate one analytical model in the RL algorithm, which can predict state transition and 

approximate reward fast. It helps to reduce the necessity of numerous environmental 

interactions by SUMO, and can plan and speed up the training.  

▪ Secondly, the information of connected cars can enhance the estimates of state variables 

conventionally from fixed-point detectors. In the future, we can measure state variables 

by information all from CVs and evaluate the CV penetration rates’ influence of both cars 

and buses on the efficiency of the proposed algorithm. 

▪ More systematic sensitivity analysis on the internal parameters for RL methods can be 

conducted to provide guidance of parameter settings. 

▪ Another possible future direction is to specify the objective agents for communications 

and design direct communications between agents. It does not make much sense for one 

agent to share information with distant agents, so there is a need to specify which agents 
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need mutual communication. In this way, we can decompose large networks into many 

small communication groups where agents share information mutually. In addition, the 

increase in the number of intersections would enlarge the neural networks and slow the 

training process for the proposed method, so we need first to determine which agents are 

necessary to communicate with which and then think of more efficient communication 

ways, such as directly sharing some local information with neighbor agents or sharing 

learned parameters. 

▪ Last but not least, combinations with BH or transit speed advisory can improve TSP 

strategies’ performance. The implementation of TSP strategies has limited adjustment for 

headway compared to BH approaches; therefore, collaboration with BH can better adjust 

small headways. In addition, the TSP strategy would be more effective if it could serve 

the priority requests of multiple buses at the same time. Transit speed advisory is able to 

advise bus drivers to modify speed and pass intersections with other buses, which gained 

signal priority. Similarly, speed advisory can further adjust transit headway by suggesting 

deceleration for small headway and acceleration for large headway. However, those 

combinations increase the complexity of research problems, as the mutual effects of bus 

holding time, real-time transit speed, and traffic signals must be considered. Whether 

using traditional model-based methods or RL algorithms, we need to figure out an 

appropriate problem formulation. In this case, it would be better to select an entire bus line 

for the case study rather than a few arterial intersections along the bus route for a thorough 

performance evaluation. 

 

 



68 

 

 

Appendix 

A Framework of comparing methods in Chapter 3 

A-I FT method 

Given phase 𝑝  with flow volume per lane of movement m 𝑣𝑚(𝑚 ∈ 𝐽𝑝)  where 𝐽𝑝  is the set of 

movements for phase 𝑝. 

1) Calculate the critical flow rations 𝑓𝑝 

Calculate the saturation flow rate per lane of movement j: 𝑠𝑗 = 1 𝑓𝑟𝑒𝑒 𝑓𝑙𝑜𝑤 ℎ𝑒𝑎𝑑𝑤𝑎𝑦⁄  

𝑓𝑝 = max(𝑣𝑚 𝑠𝑚⁄ ) ,𝑚 ∈ 𝐽𝑝 

𝐹 = ∑ 𝑓𝑝
𝑝

 

2) Calculate the cycle length 𝐶 

𝐶 =
1.5𝐿 + 5

1 − 𝐹
 

where 𝐿 is the loss time in the cycle, and it simply equals the sum of all red time and yellow time. 

In this research, 𝐿 = 12 s with no all-red time and 3s yellow time for 4 phases. We should round 

up the value of  𝐶. If 𝐶 is larger than 120s, it will be set as 120s as a large cycle will bring the 

waiting anxiety of drivers. 

3) Calculate the green time 𝑔𝑝 

𝑔𝑝 =
𝑓𝑝

𝐹
(𝐶 − 𝐿) 

Note: We should round up or round down the value 𝑔𝑝 and maintain the value of 𝐶. 
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A-II ATSP method 

(1) ATSPF method 

Have buses in 

phase i

Start the cycle with 

phase 0, i=0

Run gmini

Extend green ge

Have buses in 

phase i+1

Run (cgi-gmini)
Have buses in 

phase i+1

prioe   priot

Truncate red gt

Y

Y

Y

Phase i=4

Calculate curG

i=i+1

CurG = G

i=0

Y

N

ge 0 

gt 0 

N N

Y

Y

Y

Y

N
gt 0 

N

N

N

Calculate ge

Calculate gt

Calculate gt

 

However, the initial queue should be assumed to be 0 for the ATSP method, and thus there is 

another strict minimum green time 𝐺𝑚𝑖𝑛̂, given by max (𝐷𝐶𝑟𝑜𝑠𝑠 𝑉𝑃𝑒𝑑⁄ , 𝐶 ∗ 𝑣/𝑠),  where 𝐶 is the cycle 

length, equalling 60 s and 120 s for two demands individually; 𝑣 and 𝑠 is the flow volume and saturation 
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flow rate. we can get the 𝐺𝑚𝑖𝑛̂ of 𝑃0, 𝑃1, 𝑃2, 𝑃3 for two demands are 9 s, 9 s, 11 s, 10 s and 19 s, 20 s, 

29 s, 29 s, respectively.  

 

Given 𝐺 = {𝑔𝑖} , 𝐺𝑚𝑖𝑛 = {𝑔𝑚𝑖𝑛𝑖}, 𝐺𝑚𝑎𝑥 = {𝑔𝑚𝑎𝑥𝑖}, 𝐶𝑢𝑟𝐺 = {𝑐𝑔𝑖}, 𝑖 ∈ 𝑃. 

▪ Green extension time 𝒈𝒆 

For bus k in 𝑆𝑏𝑢𝑠 of phase i: 

𝑒𝑚𝑎𝑥𝑖 = min(∑ (𝑐𝑔𝑗 − 𝑔𝑚𝑖𝑛𝑗)
𝑗>𝑝

, 10) 

If 𝑐𝑔𝑖 − 𝑔𝑚𝑖𝑛𝑖 < 𝐸𝑇𝐴𝑘 < 𝑐𝑔𝑖 − 𝑔𝑚𝑖𝑛𝑖 + 𝑒𝑚𝑎𝑥𝑖: 

𝑔𝑒𝑘 = 𝐸𝑇𝐴𝑘 − (𝑐𝑔𝑖 − 𝑔𝑚𝑖𝑛𝑖) 

Else: 

𝑔𝑒𝑘 = 0 

𝑔𝑒 = max(𝑔𝑒𝑘) 

▪ Red truncation time 𝒈𝒕 

For bus k in 𝑆𝑏𝑢𝑠 of phase i: 

If 𝐸𝑇𝐴𝑘 < 𝑐𝑔𝑖 − 𝑔𝑚𝑖𝑛𝑖: 

𝑔𝑡𝑘 = 𝑐𝑔𝑖 − 𝑔𝑚𝑖𝑛𝑖 − max(0, 𝐸𝑇𝐴𝑘 − 3) 

Else: 

𝑔𝑡𝑘 = 0 

𝑔𝑡 = max(𝑔𝑡𝑘) 

▪ Current green time of all phases 𝑪𝒖𝒓𝑮 = {𝒄𝒈𝒊} 

At the beginning of the cycle, 𝐶𝑢𝑟𝐺 = 𝐺 

Then, when GE is implemented, 

𝑐𝑔𝑖 = {

𝑐𝑔𝑖 + 𝑔𝑒                                                    , 𝑖 is current phase 𝑝

𝑐𝑔𝑖 − 𝑔𝑒 (𝑐𝑔𝑖 − 𝑔𝑚𝑖𝑛𝑖) ∑ (𝑐𝑔𝑗 − 𝑔𝑚𝑖𝑛𝑗)
𝑗>𝑝

⁄ , 𝑖 is another phase except for 𝑝 

Then, when RT is implemented, 

𝑐𝑔𝑖 = {

𝑐𝑔𝑖 − 𝑔𝑡                       , 𝑖 is current phase 𝑝

𝑐𝑔𝑖 + 𝑔𝑡 𝑔𝑚𝑖𝑛𝑖 ∑ 𝑔𝑚𝑖𝑛𝑗
𝑗>𝑝

⁄ , 𝑖 is another phase except for 𝑝 

▪ Priority for GE and RT 𝒑𝒓𝒊𝒐𝒆, 𝒑𝒓𝒊𝒐𝒕 

𝑝𝑟𝑖𝑜 =  ∑ 𝑆𝐷𝑘 ∗ 𝑂𝑘 (𝐸𝑇𝐴𝑘 + 𝜀)⁄𝑘  where 𝜀 = 10−5. 𝑝𝑟𝑖𝑜𝑒 and 𝑝𝑟𝑖𝑜𝑡 are the 𝑝𝑟𝑖𝑜 term for GE and 

RT buses. 
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(2) ATSPV method 

 

 

A-III REINFORCE algorithm 

 

 

 

Pseudocode of ATSPV method of choosing action 

Obtain valid action space 𝐴𝑡 by IAM method to consider constraints of green time and phase skipping rule 

Calculate 𝑝𝑟𝑖𝑜𝑖 = ∑ 𝑆𝐷𝑘 ∗ 𝑂𝑘 (𝐸𝑇𝐴𝑘 + 𝜀)⁄𝑘  where 𝜀 = 10−5, k is the index of three buses with the largest 

𝑝𝑟𝑖𝑜 of phase 𝑖, 𝑖 ∈ 𝐴𝑡. 𝑃𝑅𝐼𝑂 = {𝑝𝑟𝑖𝑜𝑖}, 𝑖 ∈ 𝐴𝑡. 

if len(argmax
𝑖

𝑃𝑅𝐼𝑂) =1: 

 choose 𝑎𝑐𝑡𝑖𝑜𝑛 = argmax
𝑖

𝑃𝑅𝐼𝑂  

elif current_phase in argmax
𝑖

𝑃𝑅𝐼𝑂: 

 choose action = current_phase 

else choose action = the phase in argmax
𝑖

𝑃𝑅𝐼𝑂 which is nearest to current_phase in the signal cycle (This  

       signal cycle means from the current phase to the next 3 phases) 

end if 

 

 

Algorithm REINFORCE 

Input: Discount factor 𝛾, learning rate 𝛼, the number of episodes N, simulation time T, simulation 

warm-up time Twarm 

Initialize parameter 𝜃 of policy 𝜋𝜃(𝑎|𝑠)  

      for episode = 1 to 𝑁𝑒 do 

               Initialize environment  

               for t = 1 to T do 

if t < Twarm then 

          run simulation one step, 𝑐𝑜𝑢𝑛𝑡 = 0, 𝜆 = 0 

          return 

end if 

obtain state 𝑠1 and action 𝑎1, 𝜆 += 1 

Choose action 𝑎𝜆 ∽ 𝜋𝜃(𝑎𝜆|𝑠𝜆)  

Simulate one step, calculate reward 𝑅𝑘 by 𝑟𝜆 = ∑ 𝛾𝑡−1𝑟𝑡
∆𝑡𝜆
𝑡=1  and get next state 𝑠𝜆+1 

Store tuple (𝑠𝜆, 𝑎𝜆, 𝑟𝜆, ∆𝑡𝜆)  

t = t + ∆𝑡𝜆 

  end for 

ℕ = 𝜆 

for 𝜆 = 1 to ℕ do 

 Calculate discounted return 𝐺𝜆 = ∑ 𝛾𝜆′
−𝜆𝑟𝜆′

𝑇
𝜆′

=𝜆
 

Accumulate weight changes 𝜃 ← 𝜃 + 𝛼𝛾𝜆𝐺𝜆∇𝜃 ln 𝜋𝜃(𝑎𝜆|𝑠𝜆)  

  end for 

Update weights 𝜃 

      end for 



72 

 

A-IV A2C algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm A2C 

Input: Discount factor 𝛾, learning rate 𝛼, the number of episodes 𝑁𝑒, simulation time T, simulation 

warm-up time Twarm 

Initialize parameter 𝜃, 𝜔 of policy 𝜋𝜃(𝑎|𝑠) and 𝑉𝜔(𝑠) 

      for episode = 1 to 𝑁𝑒 do 

               Initialize environment  

               for t = 1 to T do 

if t < Twarm then 

          run simulation one step, 𝑐𝑜𝑢𝑛𝑡 = 0, 𝜆 = 0 

          return 

end if 

obtain state 𝑠1 and action 𝑎1, 𝜆 += 1 

Choose action 𝑎𝜆 ∽ 𝜋𝜃(𝑎𝜆|𝑠𝜆)  

Simulate one step, calculate reward 𝑅𝑘 by 𝑟𝜆 = ∑ 𝛾𝑡−1𝑟𝑡
∆𝑡𝜆
𝑡=1  and get next state 𝑠𝜆+1 

Calculate TD-error 𝛿𝜆 = 𝑉̂ − 𝑉(𝑠𝜆) by 𝑉̂ = {
𝑟𝜆                                 , ∑ ∆𝑡𝜆𝑡 = 𝑇

𝑟𝜆 + 𝛾∆𝑡𝜆𝑉̂(𝑠𝜆+1; 𝜔), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Update weight 𝜔 ← 𝜔 + 𝛼𝛿𝜆∇𝜔𝑉𝜔(𝑠𝜆) 

Update weight 𝜃 ← 𝜃 + 𝛼𝛾𝜆𝛿𝑘∇𝜃 ln 𝜋𝜃(𝑎𝜆|𝑠𝜆)  

t = t + ∆𝑡𝜆 

  end for 

      end for 
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A-V DDPG algorithm 

 

  

Algorithm DDPG 

Input: Discount factor 𝛾, actor learning rate 𝛼, critic learning rate 𝛽, target network update rate 𝜏, 

replay memory size 𝑆𝑚𝑒𝑚, batch size 𝑆𝑏𝑎𝑡,  the number of episodes N, simulation time T, simulation 

warm-up time Twarm 

Initialize parameter 𝜃, 𝜔 of actor 𝜋𝜃(𝑎|𝑠) and critic 𝑉𝜔(𝑠) 

Initialize parameter 𝜃− = 𝜃,𝜔− = 𝜔 of target actor 𝜋𝜃−(𝑎|𝑠) and target critic 𝑉𝜔−(𝑠) 

      for episode = 1 to 𝑁𝑒 do 

               Initialize environment  

               for t = 1 to T do 

if t < Twarm then 

          run simulation one step, 𝑐𝑜𝑢𝑛𝑡 = 0, 𝜆 = 0 

          return 

end if 

obtain state 𝑠1 and action 𝑎1, 𝑐𝑜𝑢𝑛𝑡 += 1, 𝜆 += 1 

Choose action 𝑎𝜆 ∽ 𝜋𝜃(𝑎𝜆|𝑠𝜆)  

Simulate one step, calculate reward 𝑟𝜆 by 𝑟𝜆 = ∑ 𝛾𝑡−1𝑟𝑡
∆𝑡𝜆
𝑡=1  and get next state 𝑠𝜆 

if replay memory reaches the size  𝑆𝑟𝑒𝑝 then 

Delete the oldest memory tuples 

end if 

Store tuple (𝑠𝜆, 𝑎𝜆, 𝑟𝜆, 𝑠𝜆+1, ∆𝑡𝜆) to replay memory 

t = t + ∆𝑡𝜆 

if the number of stored memories > 𝑆𝑏𝑎𝑡 then 

for i=1 to 𝑆𝑏𝑎𝑡 do 

Calculate critic TD-error 𝛿𝑖 = 𝑟𝑖 + 𝛾∆𝑡𝑖𝑉𝜔−(𝑠𝑖+1) − 𝑉𝜔(𝑠𝑖) 

Accumulate weight changes 𝜔 ← 𝜔 + 𝛽𝛿𝑖∇𝜔𝑉𝜔(𝑠𝑖) 

Accumulate weight changes 𝜃 ← 𝜃 + 𝛼𝛿𝑖∇𝜃 ln 𝜋𝜃(𝑎𝑖|𝑠𝑖) 

  end for 

Update actor and critic networks’ weights 𝜔, 𝜃 

Update target critic network 𝜔− ← 𝜏𝜔 + (1 − 𝜏)𝜔 

Update target actor network 𝜃− ← 𝜏𝜃 + (1 − 𝜏)𝜃 

end if 

  end for 

      end for 
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B  Framework of FRBS method in Chapter 4 

Pseudocode: FRBS method 

 Input: traffic simulation time 𝑇 , simulation warm-up time 𝑇𝑤 , number of agents 𝑁 , the number of 

episodes 𝑁𝑒, full action space Å = {𝑃0, 𝑃1, 𝑃2, 𝑃3} 
1 for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1  to 𝑁𝑒 do 

2  for 𝑡 = 1 to 𝑇 do 

3   Run one simulation step 

4   if 𝑡 ≥ 𝑇𝑤  then 

5    for agent 𝑖 = 1 to N do 

6     Obtain current phase 𝜑𝑡
𝑖  and valid action space 𝐴𝑡

𝑖  

7     if len(𝐴𝑡
𝑖 ) == 1 then 

8      Choose the only valid action 𝑎𝑡
𝑖 = 𝐴𝑡

𝑖  

9     else 

10      // F-value method (related to phase duration) 

11      if yellow in 𝐴𝑡
𝑖  then 

12       Calculate F-value 𝐹𝑝 (Eq (4.10)) of all phases 𝑝 ∈ Å 

13       
Choose the action 𝑎𝑡

𝑖 = {
𝜑𝑡

𝑖 , if 𝐹
𝜑𝑡

𝑖 = max
𝑝∈Å

𝐹𝑝

yellow, otherwise
 

14      // Action-choosing pattern (related to phase sequence) 

15      else 

16       if 𝜑𝑡
𝑖==0 then 

17        
Choose the action 𝑎𝑡

𝑖 = {
𝑃2, if 𝑄𝑢𝑒𝑢𝑒𝑃2

>  2.5

𝑃1, otherwise
   

18       else 

19        
Choose the action 𝑎𝑡

𝑖 = {
𝑃3, if 𝑃0 not in 𝐴𝑡

𝑖  
𝑃0, otherwise

 

20       end if 

21      end if 

22     end if 

23    end for 

24    Execute action Λ𝑡 = {𝑎𝑡
𝑖} for all 𝑖 ∈ {1, … , 𝑁} 

25   end if 

26  end for 

27 end for 
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C  Framework of BH method in Chapter 5 

Referred to the work of Daganzo (2009), holding time is given by 

𝐷𝑛,𝑠 = 𝑑𝑠 + (𝛼 + 𝛽𝑠)(𝑆𝐻 − ℎ𝑛,𝑠) 

▪ 𝛼 is a term related to sensitivity to control, 𝛼 ∈ (0,1). Here we set it to be 0.5. 

▪ 𝛽𝑠 is a dimensionless parameter that expresses the marginal increase in bus delays from a one-

unit increase in bus headway. For most bus routes, the increased bus delay depends mainly on 

boarding as alighting is quick. Intuitively, a one-unit increase in bus headway will increase 𝜆 

of people arriving at the bus stop and increase (𝐵𝑇 ∗ 𝜆) boarding time, which is the primary 

source of bus delay. Therefore, here we set 𝛽𝑠 = 𝐵𝑇 ∗ 𝜆. 

▪ 𝑑𝑠 is the average bus delay at equilibrium at stop 𝑠, satisfying 𝑑𝑠 ≥ 3(𝛼 + 𝛽𝑠)𝜎𝑛𝑠 where 𝜎𝑛𝑠 is 

the headway variance of bus 𝑛 at stop 𝑠. Here we finally use 𝑑𝑠 = 3(𝛼 + 𝛽𝑠)𝜎𝑛𝑠. Because the 

headway deviation we set follows a normal distribution with an expectation of 0, 𝜎𝑛𝑠 = 0 and 

then 𝑑𝑠 = 0. 

▪ 𝑆𝐻 is scheduled headway. 

▪ ℎ𝑛,𝑠 is the actual headway of bus 𝑛 at stop 𝑠, which can be easily obtained by the difference in 

arrival time between bus 𝑛 and the last bus 𝑛 − 1. 

 

 

 

 

 

 

Pseudocode of BH method 

Given 𝛼 = 0.5, 𝜎𝑛𝑠 = 0, person arrival rate 𝜆 = {
0.0083, for S1 and S5
0.0167, for other periods

, boarding time per 

person 𝐵𝑇 = 2, bus scheduled headway 𝑆𝐻 = {
10, for S1 and S5
5, for other periods

. 

if bus 𝑛 arrives bus stop 𝑠: 

        record arrival time 𝑡𝑛,𝑠 

       calculate ℎ𝑛,𝑠 = 𝑡𝑛,𝑠 − 𝑡𝑛−1,𝑠 

       calculate 𝐷𝑛,𝑠 = 𝑑𝑠 + (𝛼 + 𝛽𝑠)(𝑆𝐻 − ℎ𝑛,𝑠) 

        hold bus for 𝐷𝑛,𝑠 by syntax setStop in SUMO 
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