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ABSTRACT 

Upper extremity (UE) sensorimotor impairments are a significant cause of post-stroke 

long-term disability. Sensory deficits can impact motor outcomes and hinder 

participation in daily activities. However, sensory impairments are often ignored in 

traditional practices because of the lack of reliable measures. Manual measurements 

depend on subjective experiences, which are hard to maintain consistently across a 

larger stroke population. To address this issue, electroencephalography (EEG) has been 

used to identify transient sensory neural responses and provide objective data for 

sensory impairments. However, its interpretation still relies heavily on human 

professionals, a process that can be both time-consuming and labor-intensive given the 

large amount of data generated. Machine-learning (ML) techniques, specifically 

support vector machine (SVM) models with kernel functions, can help reduce the 

burden of analyzing neuroimaging data. These models can automatically analyze 

massive amounts of data and make predictions. However, the automatic evaluation of 

EEG data in post-stroke sensory impairments using SVM techniques is yet to be fully 

investigated. 

In addition to the sensorimotor evaluation, conventional physical training is the usual 

therapy for motor recovery after stroke, along with sensorimotor evaluation. These 

therapies require intensive and repeated exercises to improve sensorimotor function. 

However, they do not produce significant long-term results. This may be due to the 

inadequate central nervous system (CNS) stimulation for neuronal changes. 
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Noninvasive stimulation of the spinal cord, such as trans-spinal electrical stimulation 

(tsES), aims to increase the excitability of the spinal circuits and the responsiveness of 

the remaining neural pathways. Some studies have shown that spinal cord electrical 

stimulation can enhance upper limb motor control and decrease muscle spasticity after 

stroke. However, more research is needed to assess the immediate effect of tsES on the 

cortical signals that control the peripheral muscles during voluntary movements of the 

UE after stroke. Also, the rehabilitation effects of tsES on the interactions of cortical, 

spinal, and muscle activities after stroke are poorly understood. 

Therefore, the main objectives of this study were: (i) to establish an EEG-based SVM 

classification model to evaluate poststroke impairments in fine tactile sensation 

automatically; (ii) to evaluate the immediate effects of tsES on the cortical and muscular 

signals during voluntary UE contractions; (iii) to investigate the rehabilitation effects 

of tsES and voluntary physical training on the interactions of cortical, spinal, and 

muscular signals during upper limb movements in the long-term. The study was 

conducted as follows: 

The first section developed an ML model incorporating SVM to assess post-stroke 

impairments related to fine tactile sensation. The experiment involved stroke and 

unimpaired participants. Stimulations were administered using cotton, nylon, and wool 

fabrics, targeting different UE of stroke participants and the dominant UE of 

unimpaired participants. The average and maximal relative spectral power (RSP) values 

of the EEG signals were utilized as inputs to feed the SVM model. The model's 
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generalization exhibited noteworthy accuracy variances when evaluating fabric 

stimulations within higher frequency bands, specifically the beta/gamma range. The 

EEG-based SVM-ML model aligned with the manual assessment of cortical responses 

to textile stimulations, indicating its potential for the automatic evaluation of fine tactile 

sensations following a stroke. 

The second section examined the immediate effects of tsES on the cortical and muscular 

signals during voluntary UE contractions in chronic stroke patients. Twelve patients 

performed wrist-hand motion tasks at submaximal levels with tsES applied to the 

cervical spinal cord. Data acquisition involved collecting both EEG and EMG data from 

the sensorimotor cortex and the distal and proximal muscles of the UE. The cortico-

muscular coherence (CMCoh), laterality index (LI) of peak CMCoh, and EMG 

activation level parameters were compared between non-tsES and tsES conditions. The 

results showed that tsES significantly increased the CMCoh and LI in the agonist distal 

muscles, decreased the activation levels of EMG in the antagonist distal muscle and 

proximal UE muscles, and increased the LI of the proximal UE muscles. 

The third section investigated how cervical tsES training affects the patterns of cortico-

muscular descending signals during voluntary movements in chronic stroke patients. 

Twenty patients were divided into tsES and control groups. They underwent twenty 

sessions of tsES with VPT or VPT alone. The evaluation outcomes, including clinical 

scores, CMCoh, LI, and EMG activation level, were measured before, after, and three 

months after the training. The tsES group showed significant differences in the 
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outcomes across the sessions. The clinical scores, such as FMA and MAS, improved 

significantly. The laterality index of distal and proximal muscles increased significantly. 

The CMCoh and EMG activation levels of antagonist distal and proximal muscles 

decreased significantly.  

In conclusion, the EEG-based SVM-ML model exhibited outcomes that closely 

resembled the manual assessment of cortical responses to fabric stimulations; this could 

help to automate the measurement of fine tactile sensations in individuals who have 

experienced a stroke. In addition, the non-invasive cervical tsES combined with VPT 

in chronic stroke patients enhanced upper limb functional outcomes and reduced 

muscular spasticity. It also enhanced the responsiveness of residual descending 

pathways by increasing spinal cord excitability while reducing compensatory effects in 

proximal upper limb muscles. These findings suggested that tsES could be used as an 

adjunct to physical rehabilitation to facilitate long-term recovery of upper limb motor 

function in individuals with chronic stroke. 
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CHAPTER 1 

INTRODUCTION 

1.1 Stroke 

1.1.1 Upper Extremity Sensorimotor Impairments 

Upper extremity (UE) sensorimotor impairments are one of the main causes of post-

stroke disability. These impairments include muscle weakness, spasticity, synergies in 

motor control, and somatosensory impairments [1]. Within the first 72 hours after stroke, 

upper limb function deficits are observed in 48% to 77% of individuals. At the chronic 

stage, motor impairments affect 33% to 66% of survivors, while somatosensory 

impairments affect 21% to 54% [1, 2]. The motor impairments are due to disrupted 

transmission of signals from the sensorimotor cortex, the region responsible for 

generating impulses to the spinal cord, which carries out the movement by signaling 

the upper limb muscles [3]. Consequently, individuals experience delays in initiating 

and ceasing muscle contractions, as well as a slow development of force, resulting in 

limited ability to move quickly and negative functional consequences [4]. 

Somatosensory impairments refer to deficiencies in sensation arising from skin, 

muscles, or joints, including light touch, pressure, temperature, or pain perception [5]. 

The extent of weakness and stroke severity often correlate with these impairments. 

Prolonged loss of sensation further contributes to motor dysfunction by distorting 
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internal task representations and impeding precise control of motor output [4]. Thus, 

somatosensory deficits can impact motor outcomes and hinder participation in daily 

activities. Despite extensive research on motor recovery, there has been a relatively 

dearth of studies focusing on the investigation of somatosensory functions following a 

stroke. Consequently, the rehabilitation of sensory functions has not received adequate 

attention within conventional approaches, and the intricate mechanisms governing 

sensory recovery and its interaction with motor recovery remain elusive [6]. This 

knowledge gap primarily arises from ineffective assessments for assessing 

somatosensory impairments following a stroke [7]. 

1.1.2 Stroke Prevalence 

According to the latest data from World Stroke Organization (WSO) Global Stroke Fact 

Sheet 2022, stroke continues to rank as the second most prevalent cause of mortality 

globally and the third leading cause when considering the combined impact of death 

and disability [8]. The number of cases rose dramatically from 1990 to 2019, with a 

70.0% rise in incident strokes, a 43.0% increase in stroke-related deaths, and a 143.0% 

increase in DALYs [9, 10]. In particular, in mainland China, the age-adjusted incidence 

rate of stroke was recorded at 297 per 100,000 individuals, which stands as the highest 

among studies employing similar methodologies [11]. While the overall incidence of 

stroke has declined in high-income countries, there has been a rising trend in stroke 

incidence among younger populations worldwide [12]. In Hong Kong, the report from 
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the LKS Faculty of Medicine, HKUMed, shows that the incidence of ‘young stroke’ 

(stroke individuals aged 18 to 55 years) has increased by 30% from 2001 to 2021 [13]. 

The economic costs associated with post-stroke care are huge, with around 34% of the 

total global healthcare expenditure allocated to addressing the consequences of stroke 

[14]. In the United States, the average healthcare expenditure per individual for stroke-

related services is estimated to be USD 140,048 [15]. These alarming statistical findings 

highlight the widespread prevalence of stroke, the increasing incidence among younger 

individuals, and the significant burden it imposes on society. 

1.2 Evaluation of Post-Stroke Sensory Impairments 

1.2.1 Clinical Assessment 

Standardized clinical assessments are commonly used in clinical practice to evaluate 

post-stroke somatosensory impairments [6]. It includes the Fugl-Meyer Sensory Scale, 

Nottingham Sensory Assessment (NSA), Erasmus-modified NSA, Rivermead 

assessment of somatosensory performance (RASP), and Quantitative sensory testing 

(QST) [6, 16]. These tools aim to evaluate various facets of sensation and establish 

uniform metrics free from subjective interpretations by stroke patients [6]. Although 

healthcare professionals and therapists acknowledge the significance of assessing 

somatosensory function, the assessment process relies on the assessor's individual 

experiences, making it challenging to achieve consistency in measurements, especially 

when dealing with a larger stroke population over an extended period [17]. In routine 
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clinical care, the testing of somatosensory deficits is often conducted superficially, 

following poorly standardized protocols that may raise concerns about the reliability 

and reproducibility of the results [18]. 

1.2.2 Neuroimaging-based Quantitative Evaluation 

The advent of neuroimaging techniques, enabling comprehensive in vivo mapping of 

brain function, has revealed that behavioral impairments and potential recovery are 

intricately associated with intricate and widespread alterations in brain functional 

activity [19]. These techniques provide valuable imaging biomarkers to predict post-

stroke sensorimotor impairments [20]. Prominent neuroimaging methods utilized in this 

context encompass functional magnetic resonance imaging (fMRI), positron emission 

tomography (PET), and electroencephalography (EEG), etc. [21-23]. Different 

modalities facilitate the examination of alterations in neural circuitry throughout the 

process of sensorimotor recovery following a stroke [24]. For instance, findings from 

fMRI have revealed that cortical reorganization, which is closely linked to motor 

recovery, is associated with task-induced activation not only in the remaining 

ipsilesional cortex but also in contralesional regions during motor tasks in unimpaired 

individuals [25, 26]. PET studies can identify the ischemic penumbra in stroke 

individuals, indicating the need for intervention when cerebral blood flow (CBF) values 

drop below 60% and cerebral metabolic rate of oxygen (CMRO2) values exceed 40% 

of the normal range [27]. EEG measurements have been utilized to document brain 
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reorganization, suggesting that motor impairment following stroke may be associated 

with inhibitory effects induced by the affected motor cortex [28]. Among these 

neuroimaging techniques, EEG analysis stands out because it captures detailed 

information about the timing of neural responses, facilitating a deeper understanding of 

the cortical processes associated with post-stroke sensory deficits [28]. However, 

despite significant research efforts to understand changes in brain function, 

neuroimaging-based assessments often yield extensive data, which rely heavily on 

human experts, leading to time-consuming and labor-intensive processes [29]. 

1.2.3 Machine Learning Model-based Automatic Evaluation 

Machine learning (ML) has emerged as a powerful method in neuroimaging data 

interpretation by delivering accurate and quick prediction outcomes with reduced 

workforce workload [30]. Supervised ML, which generalizes rules or patterns from 

labeled input data to generate predictions or classifications on unseen data, has been 

widely utilized in post-stroke sensorimotor impairments [31]. Commonly used 

supervised ML algorithms for classifications include linear discriminant analysis 

(LDA), artificial neural network (ANN), and support vector machines (SVM) [32, 33]. 

In the context of post-stroke sensorimotor impairment evaluation using neuroimaging 

data, ML algorithms have been applied to EEG information as input features [34]. These 

features can be EEG spectra, EEG waveform features, or EEG time-frequency features 

[7]. Once the EEG features are computed, they are fed into the ML algorithm to learn 
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patterns associated with sensorimotor impairment [35]. LDA has shown limited 

classification accuracies among recent ML studies due to its simple linear 

transformation for feature mapping, which may not efficiently construct the optimal 

classification boundary for multi-dimensional EEG data [36]. Models based on ANN 

provide nonlinear feature space transformation capabilities, but overfitting can be a 

challenge when determining hyperparameters [36]. In contrast, SVM-based models 

address the overfitting issue using kernel functions and have shown promise in reducing 

classification errors [37]. Nevertheless, the comprehensive exploration of SVM-ML 

techniques for automatically evaluating post-stroke sensory impairment data remains 

uncharted, mainly territory within the existing literature. 

1.3 Electrical Stimulation-based Sensorimotor Recovery 

1.3.1 Conventional Physical Therapy Programs 

Regarding post-stroke sensorimotor recovery in stroke patients, conventional physical 

therapy rehabilitation programs are commonly employed in clinical settings as standard 

therapies [38]. These programs encompass various rehabilitation strategies, such as 

Bobath, proprioceptive neuromuscular facilitation, motor relearning, and functional 

strengthening approaches [39-41]. These programs involve activity-based physical 

therapy that could provide intensive and high-repetition training to assist the 

sensorimotor recovery of stroke individuals [42]. While these approaches were 

developed early and predominantly rely on empirical rather than scientific evidence, 
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their concepts are widely adopted in routine rehabilitation programs for stroke patients 

seeking to regain motor functions [43]. Several studies have demonstrated the positive 

effects of these interventions on motor function recovery following strokes [44-46]. 

However, there were no significant differences in the functional outcomes achieved 

through conventional rehabilitation strategies over a 4-year follow-up period [47]. 

Moreover, traditional rehabilitation often incorporates a compensatory strategy to 

promote some degree of independence among stroke patients [48]. The insufficient 

intervention of central nervous system (CNS), necessary for inducing neuronal changes, 

can give rise to the development of "learned disuse" issues and a progressive decline in 

latent function, resulting in a deterioration in disability [49, 50]. Therefore, 

conventional physical therapy rehabilitation programs highlight the necessity for 

enhanced CNS activation to facilitate long-term changes in motor function. 

1.3.2 Neuromodulation Interventions 

In recent decades, there have been advancements in utilizing neuromodulation 

interventions within rehabilitation technologies to facilitate and maximize sensorimotor 

recovery for stroke patients [51]. Most of these techniques are grounded in 

neuroscientific evidence, particularly in relation to the association with neural 

reorganization [52]. Researchers have proposed implanted CNS electrical stimulation 

(ES) as a potential option to deliver neural modulation intervention by involving the 

surgical placement of a small array of electrodes in specific regions of the brain or 
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spinal cord, such as deep brain stimulation (DBS) and epidural spinal cord stimulation 

(eSCS) [53, 54]. Researchers have shown that cervical epidural spinal cord stimulation 

alone could promote upper limb motor movements. It can improve functional abilities 

combined with intensive physical therapy training [55]. Additionally, long-term eSCS 

with training has demonstrated the potential to recover voluntary movement in chronic 

neurological diseases, even without ongoing stimulation [56]. However, it is essential 

to acknowledge that these improvements through implanted CNS ES come with 

inherent risks, including infection, bleeding, and potential patient injury resulting from 

interactions between the stimulation devices and other therapeutic instruments like 

ultrasound and MRI [57]. 

1.3.3 Trans-spinal Electrical Stimulation (tsES) 

In contrast to the surgically implanted techniques, noninvasive electrical stimulation 

techniques for the spinal cord, such as trans-spinal electrical stimulation (tsES), offer a 

safer, more affordable, and easily portable alternative [58]. The spinal cord modulation 

via tsES utilizes a unique waveform of high-frequency electric current to reach the 

spinal networks from the skin surface [59]. Previous studies suggested that 

transcutaneous stimulation to the spinal cord can activate spinal circuitry resembling 

that of eSCS and could enhance functional recovery comparable to the results of eSCS 

when paired with physical therapy training [49]. Utilizing computational modeling and 

EMG research, noninvasive spinal cord stimulation has been proven effective in 
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augmenting the excitability of local spinal networks through the activation of dorsal 

root afferents, further enhancing signal transmission [60]. Noteworthy observations 

from case studies and clinical trials have shown that tsES has led to improvements in 

hand and arm function, reduction in muscular spasticity, as well as enhanced walking 

ability among individuals with neurological impairments, including those with spinal 

cord injury (SCI) and traumatic brain injury (TBI) [59]. Despite the limited research on 

the application of tsES for motor restoration in stroke patients, recent preliminary 

findings have shown positive outcomes of spinal cord electrical stimulation in 

enhancing motor control of the upper limb and releasing muscle spasticity after stroke 

[61][62]. A single study demonstrated the potential of epidural cervical electrical 

stimulation in an immediate enhancement of force for hand grip among individuals with 

chronic stroke [61]. The influences of electrical stimulation in C6 spine were evaluated 

by another research, and it revealed a tendency towards decreasing flexor muscular 

spasticity poststroke. This reduction was achieved by decreasing extra excitation of 

alpha motoneurons in the spinal cord [62]. These studies have demonstrated the 

potential effectiveness of spinal cord stimulation, which involves modulating the 

excitation state of intact spinal circuitry to improve the responsiveness to the residual 

neural pathways [63]. However, the current scientific literature exhibits a dearth of 

studies that have comprehensively assessed the immediate influence of tsES in cortical 

descending patterns on peripheral muscles during UE voluntary movements after stroke, 

which may potentially affect brain neuroplasticity in rehabilitation. 
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Early reports of clinical trials on tsES also demonstrated its potential to impact CNS 

excitability and facilitate functional change in patients with neurological deficits when 

paired with conventional physical therapy training [64]. It represents that tsES is a 

clinically powerful assistant to physical therapy, mitigating the risks and accessibility 

concerns associated with surgical procedures [49]. Understanding the mechanisms that 

tsES on the cortical, spinal cord circuitry, and muscle activities is crucial to ensure the 

stimulation is precisely applied to therapeutically relevant sites for enhancing upper 

limb motor function in post-stroke rehabilitation [65]. Additionally, optimal stimulation 

parameters are paramount in maximizing the rehabilitative effects. However, the 

training effects of the tsES-based neuromodulation technique in cortical, spinal cord 

circuitry, and muscle activity coupling patterns after stroke have not been fully explored. 

1.4 Objectives 

As previously mentioned, assessing post-stroke sensory impairments through 

neuroimaging generates vast data, necessitating costly manual evaluation. To address 

this challenge, ML algorithms can be employed to develop an automated predictive 

model. SVM-based models are particularly effective in minimizing complexity and 

mitigating overfitting issues through kernel functions. However, the literature lacks a 

comprehensive exploration of ML techniques for automatic evaluation of neuroimaging 

data of sensory impairments, particularly about fine tactile sensation, a fundamental 

somatosensory function for acquiring external information through touch. Moreover, 
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non-invasive spinal cord stimulation using tsES has shown promising rehabilitative 

effects in enhancing motor functions following stroke. Nevertheless, there is a lack of 

studies examining the immediate influence of tsES on cortical descending patterns 

affecting peripheral muscles during voluntary UE movements after stroke. This 

investigation holds the potential to impact brain neuroplasticity during rehabilitation. 

Finally, a comprehensive clinical trial was undertaken to evaluate the enduring 

ramifications of tsES training when coupled with physical training. It explored the 

effects of tsES on cortico-muscular coupling patterns in the affected upper limb by 

comparing measurements between stroke subjects who received tsES along with 

voluntary physical training (VPT) and age-matched stroke individuals who solely 

underwent VPT. In summary, this study has three primary objectives:  

(1) Development of a novel EEG-based SVM-ML model with kernel functions to 

automatically evaluate fine tactile sensation impairments in post-stroke individuals. 

(2) Investigation of the immediate effects of tsES on cortico-muscular descending 

patterns during voluntary contractions of upper extremity muscles by analyzing cortico-

muscular coherence (CMCoh) and electromyography (EMG) in individuals with 

chronic stroke. 

(3) Examination of the training effects of tsES on cortico-muscular coupling patterns 

during upper limb movements on the affected side of individuals with chronic stroke. 
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CHAPTER 2 

EVALUATION OF POST-STROKE IMPAIRMENT IN 

FINE TACTILE SENSATION BY 

ELECTROENCEPHALOGRAPHY (EEG)-BASED 

MACHINE LEARNING 

2.1 Introduction 

Roughly half of individuals who have experienced a stroke have reported enduring 

sensory deficits pertaining to both somatosensation and proprioception, as supported 

by studies [67, 68]. For instance, stroke patients may struggle with sensing pressure, 

pain, temperature, and gentle touch [69]. These impairments can restrict their day-to-

day activities and functional autonomy while impeding their post-stroke motor recovery 

[70, 71]. Fine tactile sensation is a basic somatosensory function that enables the 

acquisition of touch-based information [72]. Moreover, research has demonstrated that 

fine tactile sensation plays a role in maintaining body posture by providing spatial cues 

[73] and facilitating position control by improving sensory feedback [74, 75]. However, 

sensory rehabilitation has received less attention than motor rehabilitation in 

conventional practice due to the absence of reliable assessment methods for sensory 

deficits [76]. 

 Accurate and efficient evaluations of sensory impairments play a crucial role in the 

ongoing rehabilitation of stroke survivors, requiring repeated measurements during 
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follow-up [66]. Nevertheless, traditional assessments of sensory impairments have been 

subjective and manual [67]. For instance, the FMA [68] and Semmes–Weinstein 

monofilament (SWM) test [69] are widely applied to evaluate fine tactile sensations, as 

the assessment results are easy to interpret. Nevertheless, the measurement process 

heavily relies on the assessor's expertise, making it challenging to maintain consistency 

in measurements as the number of stroke patients grows over time [70]. 

 A growing body of research is developing neuroimaging-based methods to assess 

sensory impairments objectively, and neuroimaging refers to the use of various 

techniques to visualize and study the structure, function, or activity of the brain [71]. 

These innovative technologies involve PET, fMRI, and EEG [23, 72-77]. These 

approaches reveal changes in neural circuits during post-stroke sensorimotor recovery; 

however, they require expensive and complex medical equipment and preparations 

during comparison with the conventional professionals’ evaluation [78]. In those 

methods, EEG falls under the category of functional neuroimaging because it provides 

functional information about brain activity and allows researchers and clinicians to 

study brain function, cognitive processes, and neurological disorders through the 

measurement and analysis of electrical signals generated by the brain [78]. EEG stands 

out due to its high resolution in temporal patterns and ability to capture fast sensory 

responses during fine textile stimuli [79, 80]. For instance, a study used EEG to 

compare the impact of various tactile stimuli missions, such as passive or active 

movement of a board, on cortex activation following a stroke [81]. The results revealed 

that the rhythm of sensory, as through the EEG relative powers in right hemisphere, 

exhibited a significantly greater magnitude during the activation of tactile perception 

compared to passive tactile perception in the affected left hemisphere [81]. Our 

previous study [81] used EEG to quantify sensory deterioration in delicate tactile 
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sensation after stroke during textile fabric stimulation, which emulates the typical 

interaction between fabric and skin. We detected disparities in the intensities of EEG 

relative spectral power (RSP) across various frequency ranges between the healthy and 

cohorts of stroke [82]. Nevertheless, measurements based on neuroimaging generate 

substantial amounts of material, necessitating the involvement of experts for 

interpretation, thus leading to extended processing time and high workload processes 

[83, 84].  

 Machine learning (ML) is a promising technique for interpreting neuroimaging data 

with less human effort [30]. It possesses the capability to construct an automated 

predictive model by acquiring knowledge of the correlations between attributes and 

targets from a given dataset of historical records. Subsequently, this model can be 

utilized to conduct repetitive analyses on extensive datasets [85]. Researchers are 

currently exploring diverse machine learning (ML) algorithms for the identification, 

categorization, and characterization of neuroimaging material [30]. For example, in a 

particular study, the EEG frequency spectra were employed as input features for an 

LDA (linear discriminant analysis) model to successfully classify various types of hand 

grasps based on the intentions of single trials [86]. An alternate investigation utilized 

the waveform characteristics of EEG as inputs for an artificial neural network (ANN) 

model to discern between right and wrong feedback during movements of the arm and 

foot [87]. However, both studies reported limited classification accuracies ranging from 

41% to 86% [86, 87]. These suboptimal results could be attributed to the limitations of 

simple linear transformation employed by LDA for feature mapping, resulting in the 

establishment of non-efficiency final classification functions for EEG with multiple 

channels [88, 89]. While ANN-related methods possess non-linear capabilities of 

feature mapping, they often encounter overfitting issues, particularly when confronted 
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with numerous hyperparameters that require optimization during network training, such 

as the number of hidden layers and nodes [89]. Conversely, models based on support 

vector machines (SVM) address the overfitting issue using kernel functions [90]. 

Kernel functions could decrease the complexity of models by enabling implicit 

nonlinear transformations of feature spaces, eliminating the necessity for explicit 

mathematical expressions. Hence, during model development, Optimization is 

primarily required for specific hyperparameters associated with the kernel functions of 

SVM models [91]. SVM-ML models commonly employ diverse kernel functions, such 

as linear, polynomial, and radial basis function (RBF) kernels. For instance, in one 

particular investigation, SVM with a linear kernel was employed in classifying motor 

imagery based on EEG data specific to individual subjects, utilizing spectrum 

characteristics derived from frequency bands and channels [92]. One study evaluated 

the prediction results of SVM classification model with polynomial kernel in EEG data 

related to motor imagery [93]. Another study employed an RBF kernel in SVM 

classification model to distinguish EEG data related to imagined upper limb motions 

[94]. These investigations explored determining accuracies ranging from 67% to 92.8% 

[92-94]. Among the mentioned kernel functions, the RBF kernel is commonly preferred 

in SVM algorithms due to the superior results in handling nonlinearities during feature 

transformation, requiring fewer hyperparameters in comparison to other two kernels 

[95, 96].  

 The literature has not extensively investigated the utilization of SVM-ML techniques 

for automatic evaluations of neuroimaging data, particularly in fine tactile sensation. In 

a study conducted by Kim et al., they focused on extracting features related to alpha 

and gamma band powers from EEG data during touch interactions with various objects 
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[97]. Nevertheless, their evaluation was limited to the tactile perception of individuals 

without impairments, and they reported modest distinguishing results (68.1%) with the 

application of LDA classification algorithm [97]. Therefore, we aimed to develop a 

novel SVM model with EEG data to assess the deficiency in fine tactile sensation after 

stroke automatically. 

2.2 Methodology 

By utilizing EEG to assess cortical responses to precise tactile stimuli on the upper 

extremities, we built an SVM-ML model. The study involved two groups of participants: 

stroke survivors and healthy individuals. Our study involved the application of various 

fabric materials, including cotton, nylon, and wool, to elicit sensory stimulation on their 

skin. As a reference point for model development and optimization, we employed the 

RSP features obtained from the fabric stimulation of cotton as the input of baseline. The 

principal objective of the model was to classify the responses observed among different 

groups, specifically: 1) the stroke survivors’ affected sides (SA), 2) the stroke survivors’ 

unaffected sides (SU), and 3) the healthy individuals’ dominant sides (UD). To assess 

the model's performance in a broader context, we subsequently evaluated its ability to 

generalize using the RSP features obtained from stimulations with various fabrics. 

During the evaluation process, we considered arm differences, both with and without 

involving them. 

2.2.1 EEG Acquisitions during Fabric Stimuli 

Prior to commencing the research, ethical approval was obtained from the Human 
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Subjects Ethics Sub-committee (HSESC) of the Hong Kong Polytechnic University. 

Subsequently, twelve individuals with chronic stroke were recruited as the "stroke 

group," while fifteen healthy individuals were enlisted as the "control group". 

Comprehensive demographic information for both groups can be found in Table 2.1. 

In order to be eligible for inclusion in the stroke group, individuals needed to fulfill 

specific criteria, which consisted of the following: (1) having singular and unilateral 

brain damage resulting from a stroke that had occurred at least six months prior and (2) 

having the stroke impairments in subcortical-related region to assure measurable EEG 

signals in the cortical region. The statistical analysis, conducted using an independent 

t-test, indicated no significant difference in age between the two groups (P > 0.05). To 

assess the normality of the data, the Shapiro-Wilk test [98] was employed. 

Figure 2.1 illustrates experimental arrangement and procedure in the tactile stimulation 

involving fabric materials. The study encompassed three distinct fabric types (cotton, 

nylon, and wool) of equal dimensions but possessing different textural characteristics. 

We placed the fabrics alternatively on the ventral forearm of the upper limb (Figure 

2.1(c)). The ventral forearm of the upper limb was selected as our main stimulation area 

was primarily based on the presence of the FCR-FD muscle in that region. The sensory 

function of the FCR-FD muscle is closely associated with eliciting motor function in 

the wrist and hand, which are the specific areas of investigation in Chapter 3 and 

Chapter 4. Every trial included a 30-second initial assessment without tactile 

stimulation, succeeded by 13-second stimulation periods with each fabric in a random 
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order, with 60-second intervals between them. This stimuli trial was done three times 

for every arm. We recorded the EEG data using a 64-channel whole brain system [99] 

at a 1000 Hz sampling rate. During the data measurements, each subject was instructed 

to remain awake while wearing earplugs and an eye mask to minimize noise from the 

surrounding visual and auditory stimuli. Further details of the study setup can be found 

according to [82]. 

 

Figure 2.1 EEG experimental setup and protocol. 

Table 2.1 The demographic attributes and clinical assessments for both stroke and 

control cohorts are outlined in [82]. 

 

Note: Data are given as mean ± SD.  
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2.2.2 Feature Extraction for SVM Classification Model 

An SVM model was utilized to analyze features from EEG, specifically the 𝑅𝑆𝑃!"#$ 

and 𝑅𝑆𝑃!#% values in various frequency bands, as inputs. These features correspond 

to the average and maximum cortical alterations observed during tactile stimulations. 

These alterations were identified manually based on former research findings [82]. The 

data from EEG was recorded in real-time at 1000 Hz. To prepare the RSP features of 

EEG data, a Butterworth bandpass filter was applied in the frequency range of 0.1 to 

100 Hz to remove irrelevant high-frequency components from the EEG. Then, a 

Butterworth notch filter was employed to minimize 50 Hz noise originating from the 

environment, specifically targeting frequencies between 49 Hz and 51 Hz. After the 

filtering process, the trial data was divided into epochs, consisting of a 30-second 

baseline before stimulation and three 13-second stimulations with various textile types. 

The SA group yielded a total of 108 EEG samples, obtained by multiplying 12 

participants by three trials and then by three fabric stimuli. Similarly, the SU group 

produced 108 EEG samples calculated using the same formula. On the other hand, the 

UD group generated 135 EEG samples, consisting of 15 participants undergoing three 

trials with three fabric stimuli each. Afterward, the EEG samples were converted using 

the Pwelch estimation method to obtain power spectra. This method is commonly 

employed to estimate the power spectral density of a given signal [100]. The frequency 

range of 0.1-100 Hz for every epoch of EEG was further divided into five distinct ranges: 

delta frequency range of 0.5-4 Hz, theta frequency range of 4-8 Hz, alpha frequency 
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range of 8-12 Hz, beta frequency range of 12-30 Hz, and gamma frequency range of 

30-100 Hz [101]. Lastly, the RSP [102] of every band and textile stimulation were 

obtained using the specific equations, which are outlined as follows: 

 

Where 𝑝(𝑓) denotes the density of power spectral; 𝑓& , 𝑓' represent the low cutoff 

frequency and high cutoff frequency, respectively; 𝑃(𝑓&, 𝑓')  denotes the power 

spectrum within the frequency range from 𝑓& to 𝑓'; while 𝑃(#)"*+$" represents EEG 

data’s power spectrum before stimulation in every experiment. The spectrum 

processing of the obtained data was conducted offline using a toolbox of EEGLAB on 

MATLAB (Natick, MA, USA). 

RSP features of multichannel EEG were represented by the 𝑅𝑆𝑃!"#$ and  𝑅𝑆𝑃!#% 

values obtained by each channel of EEG, where 𝑅𝑆𝑃!"#$ signifies average RSP value 

across all channels within a specific frequency band in a data trial, while 𝑅𝑆𝑃!#% 

corresponds to the most considerable RSP value in all channels of EEG. Subsequently, 

to obtain the 𝑅𝑆𝑃!"#$  and 𝑅𝑆𝑃!#%  values, values, we performed calculations on 

EEG data with 62 channels. These channels involve the entire brain cortex region. The 

calculations were conducted separately for each frequency band. We further normalized 

the original values using z-score normalization to reduce the variation of the ranges for 

the 𝑅𝑆𝑃!"#$ and 𝑅𝑆𝑃!#%,. This normalization technique scales all the 𝑅𝑆𝑃!"#$ and 
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𝑅𝑆𝑃!#%  values to have a zero average and unit standard deviation, resulting in a 

consistent range for comparison purposes [103]: 

 

where 𝑅𝑆𝑃+ represents the original spectral feature, which can be either 𝑅𝑆𝑃!"#$ or 

𝑅𝑆𝑃!#% . The 𝜇,-.  denotes the mean of 𝑅𝑆𝑃+ , while 𝜎,-.  represents the standard 

deviation of 𝑅𝑆𝑃+ . To normalize the spectral features, we calculate 𝑅𝑆𝑃+/ , which 

represents the normalized feature of spectrum. These features are subsequently utilized 

as features feeding into the ML classification model. 

2.2.3 SVM-ML Model Configuration 

The SVM-ML model’s configuration is depicted in Figure 2.2, showcasing the process 

of optimizing the RBF kernel function, as well as implementing a k-fold cross-

validation (CV) strategy. The features (such as 𝑅𝑆𝑃!"#$  and 𝑅𝑆𝑃!#% ) obtained 

during cotton textile stimulation, were utilized as benchmark inputs. The choice of 

cotton fabric as the stimulus for model establishment stems from its widespread use in 

daily life, as it comes into direct contact with the skin. Cotton fabric is known to provide 

a comfortable feeling with minimal stimulation intensity compared to other materials 

[104]. Additionally, cotton fabric demonstrates neutral textile physical properties when 

quantitatively assessed using the fabric touch tester (FTT) [105]. These properties, 

including smoothness and thickness, are comparable to nylon and wool fabrics [82]. 
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Consequently, the RSP features of EEG triggered by the cotton textile were considered 

suitable benchmark inputs for configuring the ML classification model. 

 

Figure 2.2 Flowchart for parameters optimization in ML classification model. 

The primary objective of optimizing the RBF in the ML classification model was to 

determine the decision function which yielded highest classification precision when 

applied to RSP features associated with cotton textile stimuli. During the development 

of the ML classification model, two hyperparameters were optimized: scaling 

hyperparameter γ and the regularization hyperparameter C [106]. To explore the best 

(γ, C) parameters, we implemented a technique known as "grid exploration" [107]. This 

method entailed generating a series of candidate values for (γ, C) in sequences that 

exponentially increased. These values ranged from γ = 2^(-15), 2^(-13), ..., 2^(9), and 

C = 2^(-5), 2^(-3), ..., 2^(15), which are frequently employed intervals in SVM-ML 

investigations centered around EEG data for the purpose of discovering the most 

optimized hyperparameters [95, 108, 109]. Using these pre-defined scales, we 

generated a total of 143 pairs encompassing (γ, C). Every pair was subsequently utilized 
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for the construction of RBF kernel. To assess classification performance of every pair, 

we employed a three-fold cross-validation (CV) approach, considering the largest 

common divisor of both the twelve stroke patients and fifteen healthy controls. The 

utilization of this approach aligns with a widely employed pilot estimation technique 

that has been observed according to previous research endeavors [110]. Following the 

evaluation process, we identified the pair of hyperparameters that produced the highest 

classification accuracy. This particular configuration was deemed the optimal choice 

for our model. To implement the SVM algorithm, we utilized the toolbox of Scikit-

learn, an open-source machine learning toolbox with Python language [111]. 

Figure 2.3 presents the outcomes of the grid search analysis conducted for (γ, C). 

Within this figure, Figures 2.3(a)-(e) exhibit the respective accuracies achieved by 

various pairs of (γ, C) pairs when differentiating between the groups of UD, SA, and 

SU, utilizing the 𝑅𝑆𝑃!"#$  and 𝑅𝑆𝑃!#%  as input features. The red dots in Figures 

2.3(a)-(e) represent the coordinates and corresponding accuracy values attained for 

every band of frequency. Among the range of accuracies obtained, the model reached 

its highest accuracy (67.4%) within the gamma band, precisely at γ=2^(3) and C=2^(9). 
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Figure 2.3 Results of grid search analysis of (γ, C) in SVM classification model with 

RSP features from 62-channel EEG in five frequency bands. 

 

The sensorimotor cortex, which is the primary region responsible for reacting to sensory 

stimuli [112], played a crucial role in the testing of SVM classification model. During 

this testing phase, exclusive focus was placed on EEG channels that cover this region. 

The inputs to the model were the 𝑅𝑆𝑃!"#$  and 𝑅𝑆𝑃!#%  of the 21-channel EEG. 
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These channels, which encompass the sensorimotor area, include FC1–FC6, FCZ, C1–

C6, CZ, CP1–CP6, and CPZ [113]. Results of accuracies achieved utilizing RSP 

characteristics with EEG of 21 channels are depicted in Figure 2.4. Notably, the highest 

accuracy of 76.8% was accomplished in the gamma band at γ=2^(1) and C=2^(3). 

 

Figure 2.4 Results of grid search analysis of (γ, C) in SVM classification model with 

RSP features from 21-channel EEG in five frequency bands. 
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Table 2.2 summarizes the accuracies obtained by the SVM-ML model when employing 

distinct hyperparameter pairs of the RBF kernel to differentiate among three groups in 

different frequency bands. The table provides a comparison of the accuracy 

performance for both the 21-channel and 62-channel EEG channel set selections. 

Among the various bands of frequency, the gamma band stands out with notably high 

accuracy, resulting in two distinct channel sets. The accuracies of mean and peak 

attained in RSP features of EEG with 21 channels were superior to that obtained RSP 

features of EEG with 62 channels. Consequently, the pair (γ=2^(1), C=2^(3)) of RSP 

features with 21 channels was identified as the optimal choice for the SVM model. 

Table 2.2 The classification results of SVM classification model for distinguishing 

three groups with different hyperparameter pairs in RBF kernel in various frequency 

bands. 

 

Note: Data are given as mean ± SD.  

 

After selecting hyperparameters in RBF kernel, implementation of k-fold cross-

validation (CV) followed, utilizing the RSP features calculated from the EEG data of 
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21 channels. The main objective of employing a k-fold CV was to improve the overall 

generalization performance of the SVM classification model. In comparison to a simple 

random split of train and test data, k-fold CV guarantees the inclusion of every data 

point in an original dataset in both training and testing sets. This meticulous process 

helps mitigate biased evaluations and promotes a more reliable assessment of the 

model's performance [114]. In order to reduce the fluctuation in accuracy assessments 

arising from a solitary execution of k-fold cross-validation, the procedure underwent 

replication on ten occasions, culminating in the computation of the average estimation 

[115-117]. Typically, values of k, such as 5 or 10, are used as they strike a balance 

between bias and variance in model evaluation [114, 118]. Throughout our research 

endeavor, we utilized a diverse set of k values spanning from 2 to 10 to scrutinize their 

impact on the model's performance. Furthermore, we incorporated the leave-one-out 

cross-validation (CV) as an additional point of reference, where k corresponds to the 

total quantity of data points in the whole dataset. Compared to alternative k-fold CV 

methodologies like five-fold and ten-fold CV, the approach with leave-one-out demands 

a higher computational overhead. Nevertheless, it furnishes a dependable assessment 

of the model's classification results because every individual sample serves as an entire 

test dataset [114]. 

Table 2.3 presents a comprehensive depiction of the performance attained by the SVM 

classification model, encompassing multiple frequency bands for discriminating among 

the groups of UD, SA, and SU. This evaluation involved the application of various k-
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fold CV configurations. Utilizing a six-fold cross-validation (CV) strategy, the gamma 

band emerged as the most productive, leading to the attainment of the highest accuracy 

rate recorded at 75.4%. Notably, comparable success was observed in the leave-one-out 

CV, where the gamma band achieved a classification accuracy of 74.4%. Consequently, 

these findings led to the selection of a six-fold CV as the optimal evaluation approach 

when leveraging RSP features extracted from EEG with the 21 channels as input for 

classification model. 

Table 2.3 The classification results of SVM model in distinguishing three groups with 

various k-fold CV configurations with various frequency bands. 

 

Note: Data are given as mean ± SD.  

 

2.2.4 Generalization Performance of SVM Classification Model 

We established the SVM-ML framework by utilizing RSP characteristics acquired 
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while subjecting the cotton fabric to stimulation. Consequently, we proceeded to 

explore the model's capability to generalize and distinguish upper-limb groups 

employing inputs from various fabric types, namely nylon, wool, and cotton. The model 

was provided with the recorded RSP features obtained from each stimulation, and the 

outcomes are presented in Table 2.4. The distinguishing results of the diverse fabric 

stimulations did not conform to a normal distribution (P < 0.5) within every band of 

frequency. Remarkably, notable distinctions between groups were observed in the 

performance (P < 0.001) across stimulations of fabric in all five bands. The model 

demonstrated exceptional performance in the gamma band, exhibiting the highest 

classification accuracies across different fabric stimulations. Specifically, the cotton 

stimulation yielded an impressive accuracy of 75.4%, while the nylon stimulation 

achieved a remarkable accuracy of 83.5%. Notably, the wool stimulation surpassed both 

with an outstanding accuracy of 84.3%. 

A comprehensive analysis of the SVM-ML model's overall accuracies across various 

fabric stimulations within each frequency band is presented in Figure 2.5. Significant 

differences were obtained in all five frequency bands when comparing the three stimuli 

of textile (P < 0.001), with one exception: gamma band where no significant difference 

was found between the stimulations of nylon and wool (P > 0.05). Furthermore, SVM 

model utilizing stimuli of nylon and wool exhibited higher results of accuracy with 

significance in frequency bands of beta and gamma compared to the model using 

stimulation of cotton (P < 0.001). All statistical results were obtained using Kruskal-
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Wallis with Bonferroni post-hoc test. 

Table 2.4 The comprehensive classification accuracies of SVM model for 

distinguishing various textile stimulations. 

Note: Data are given as mean ± SD.  

 

Figure 2.5 The comprehensive classification performance of SVM classification model 

with respect to textile stimulus in five different bands.  

 

Table 2.5 provides an evaluation of the model's generalized performance, taking into 

consideration the variations in arm responses during stimulations with various fabrics. 

The distinguishing results of each group for different fabric stimulations deviated from 

normal distribution (P<0.5). Significant distinctions were observed in classification 
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accuracies (P<0.001) for each textile stimulation in every frequency band, with one 

exception: the SU group in the gamma band did not exhibit the statistically significant 

difference (P>0.05). Impressively, gamma band consistently demonstrated the highest 

distinguishing results in every group. All statistical results were obtained using Kruskal-

Wallis test. 

Figure 2.6 provides a comprehensive visual comparison of classification performance 

achieved by the SVM classification model for each textile stimulation, taking into 

account the arm differences, as derived from accuracies presented in Table 2.4 and 

Figure 2.5. For the group of SA, we obtained significant variations in accuracies for 

the fabric stimulations within the beta band (P<0.001) and gamma band (P<0.05). 

However, when comparing nylon textile and wool textile across all bands, except for 

the beta and gamma bands, no significant differences were found (P>0.05). For group 

of SU, we identified significant disparities in the textile stimulations within the delta, 

alpha, and beta frequency bands (P<0.05). Nevertheless, in the theta band, no 

statistically significant disparities were found among cotton textile and nylon textile 

(P>0.05). For group of UD, we detected statistically significant variations at accuracy 

results for the textile stimulus across all bands of frequency (P<0.001), except for the 

gamma band, where the distinction between nylon textile and wool textile did not yield 

statistically significant results (P>0.05). All statistical results were obtained using 

Kruskal-Wallis with Bonferroni post-hoc test. 
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Table 2.5 The comprehensive classification performance of SVM model in 

distinguishing three groups with various textile stimulations. 

 

Note: Data are given as mean ± SD.  

 

 

Figure 2.6 The comprehensive classification performance of SVM classification model 

regarding textile stimulus in five different bands involving the upper limb differences.  
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(a)                              (b) 

Figure 2.7 The difference of classification performance of SVM classification model 

regarding (a) impairments’ level and (b) affected side/unaffected side in beta band.  

 

The effects of impairment level and the affected/unaffected side on classification 

accuracy was summarized in Figure 2.7. Specifically, Figure 2.7(a) depicted the 

classification accuracies of Leave-one-out cross-validation for each stroke subject 

under different fabric stimulations at the beta frequency band. Figure 2.7(b) displayed 

the classification accuracies of Leave-one-out cross-validation for each stroke subject 

when considering the affected/unaffected side at the beta frequency band. Notably, it 

was observed that the accuracy increased with higher FMA wrist/hand values (Figure 

2.7(a)). Moreover, nylon and wool exhibited a more pronounced increasing trend 

compared to cotton for the same stroke patient, resulting in better accuracy (Figure 

2.7(a)). Additionally, in the case of the same stroke patient, the unaffected side achieved 

higher classification accuracy than the affected side.  
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2.3 Discussion 

We constructed the SVM classification model with EEG data that the RSP features were 

extracted from cotton textile stimuli as the benchmark. We evaluated the generalization 

results of the model by the comparison of the distinguishing results for different fabric 

stimuli. 

2.3.1 The Configuration of SVM Classification Model 

RBF Kernel Configuration 

In order to optimize the performance of our SVM-ML model, we conducted a grid 

search for the pair of parameters (γ, C) specifically for the kernel of RBF. Figures 2.3 

and 2.4 illustrate the results of this grid search, showcasing the highest classification 

results achieved within the defined scale for the pair. Other SVM-based studies used 

similar boundaries for the pair, such as one study utilized the range (γ: e^(−8) - e^(8), 

C: e^(−8) - e^(8)) [119], while another study used (γ: 2^(−15) - 2^(3), C: 2^(−5) - 2^(15)) 

[95]. These observations suggest that the most effective values for the (γ, C) resided 

within the conventional exploration range. Furthermore, our SVM classification model, 

equipped with a more comprehensive exploration space, proved effective in accurately 

classifying the RSP of EEG data gathered during sensation evaluation. It is crucial to 

note that classification boundary complexity utilized by model for classification 

purposes is greatly influenced by the kernel scaling parameter γ [120]. The decision 

function is more linear for smaller γ values and curved for larger γ values [120]. The 
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model chose the optimal γ value (2^(1)) near the upper limit of predefined range of γ, 

implying that the EEG data from various upper-limb groups had a relatively strong 

nonlinearity in their original space of feature vectors. To capture these nonlinear 

relationships, the model successfully mapped the original EEG data to a higher-

dimensional space, resulting in a decision function with a distinct "curved" shape. In 

the context of the SVM-ML model, the regularization parameter C plays a critical role 

in determining the penalty imposed for distance from the correct classification of the 

trained EEG sample [120]. With higher values of C, the penalty degree increases, 

leading to a smaller percentage of data with misclassified in the phase of training. SVM 

model opted for a relatively lower value of C (2^(3)) in contrast to predefined range, 

which indicated that established model was more tolerant of percentage of data with 

misclassified while striving to discover the optimal classification boundary. Such 

tolerance suggested the presence of potential overlapping in the various groups of 

training dataset close to the classification function, indicating the intricacies in the 

classification task. Remarkably, the model, equipped with the best pair of 

hyperparameters (γ, C), attained a commendable classification accuracy (76.8%). This 

level of accuracy aligns with prior studies that have concentrated on the SVM algorithm 

for the multifaceted differentiation of EEG signals, where reported accuracies exceeded 

71.0% [121, 122]. 
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EEG Channel Selection 

Our observations showed that the model utilizing the EEG with 21 channels 

outperformed the model utilizing the EEG with 62 channels in terms of overall 

accuracies, disregarding discrepancies related to the arms (as shown in Table 2.2). 

Specifically, the EEG with 21 channels focuses on encompassing sensorimotor brain 

region, serving as the primary region in the brain responsible for processing sensory 

stimulations [123, 124]. The accuracies from the EEG of 21 channels indicated that the 

sensorimotor region’s ability to directly process cortical signals, enabling SVM 

classification model to capture sensory distinctions presented by various fabric samples 

effectively. Notably, prior investigations have also substantiated the notion that the 

sensorimotor cortex predominantly captures significant variations in RSP across 

different frequency bands during stimulations of sensory, irrespective of whether 

individuals are unimpaired or belong to the stroke population [82, 125, 126]. However, 

passive fabric stimulation experiments involved non-voluntary activities extending the 

sensorimotor region [82]. Such a circumstance potentially poses an obstacle to the 

SVM-ML model's ability to discern brain responses to textile stimulations accurately. 

Voluntary cognitive activities also interfered with the measurement of responses of 

brain to sensory stimuli [127]. A prime example of this can be observed in the context 

of sensory evaluation after stroke, where individuals affected by sensory impairments 

displayed the capacity to distinguish various textile stimulations owing to 

compensatory cognitive processing. This compensation arises from factors such as 
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individual experiences and the preservation of residual sensory neural tracts [82]. This 

study aimed to minimize the impact of voluntary cognitive activities by instructing 

subjects to maintain wakefulness while refraining from mental engagement in textile 

stimulations. The objective was to concentrate on capturing the direct brain cortex 

responses evoked by subtle textile sensations. By utilizing a 21-channel EEG to detect 

the RSP (repetitive sensory stimulation) features of the sensorimotor cortex, the study 

deemed these features adequate for discerning variations in the direct brain cortex 

responses to sensory stimuli. 

The findings revealed that the model obtained superior accuracies in the beta and 

gamma bands' frequency bands when differentiating between textile stimulations 

without considering differences in arm positions (Table 2.2). This was in line with the 

prior research in neurophysiology that delved into the intricate responses of the brain 

to tactile stimuli induced by textiles [126, 128]. Neural responses to textile sensations 

within the brain cortex arise from the intricate interplay between the skin and fabric 

interactions, featured by activations in the beta and gamma frequency bands of the EEG 

[129]. The oscillations of beta band are thought to play a role in the process of phasic 

synchronization in primary sensory cortex and secondary sensory cortex during the 

processing of fine sensory [130]. Furthermore, researchers have made noteworthy 

observations regarding the synchronization of neuronal assemblies in the sensorimotor 

brain region. These assemblies demonstrate expansive neural synchronization, 

oscillating within the frequency band of beta during prolonged hand lever press 
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activities [131]. These findings provide compelling evidence that primary sensory and 

motor cortex are intricately linked within a cortical network synchronized in the beta 

frequency range [131]. These findings suggest a strong association among primary 

sensory and motor brain regions, forming a cortical network that is synchronized in the 

beta band. Additionally, a study has provided evidence indicating that oscillations in 

beta band in brain region of sensorimotor play a crucial role in featuring affective textile 

stimulation through intricate interactions with diverse fabric types [132]. Furthermore, 

another study has proved distinct beta-oscillation patterns for pleasant and unpleasant 

fine senses [126]. In the context of tactile stimuli, gamma oscillations have also been 

observed in the sensorimotor cortex. These oscillations serve as a temporal code, 

playing a vital role in orchestrating the temporal organization of higher-order 

processing of somatosensory information. This temporal organization is of utmost 

significance for seamlessly integrating sensory information [133, 134]. Furthermore, 

Aya et al. have revealed that oscillations of gamma frequency band are simultaneously 

induced in both the primary and secondary sensory brain regions when the sensory 

stimulations input, underscoring their significance in establishing functional cortico-

cortical relationships and transferring sensory potentials [135]. In a study conducted by 

Bauer et al., it was demonstrated that spatial tactile attention enhances and prolongs 

gamma oscillations elicited by tactile stimuli in sensorimotor cortex [136]. The study 

highlighted the significance of gamma-band synchronization in processing behaviorally 

relevant stimulations within the somatosensory system [136]. As a result, RSP changes 
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within the frequency bands of beta and gamma serve as highly informative input 

features for the SVM classification model, enabling effective classification of different 

fabric stimulations in both individuals without impairments and stroke patients. 

K-Fold CV 

In the process of determining the most suitable value for k in CV, the SVM-ML model 

demonstrated remarkable accuracy when employing a six-fold CV approach within the 

gamma band, as evidenced by the data presented in Table 2.3. The accuracies of 

different k values within the band of gamma were also similar, indicating the SVM-ML 

model's consistent and reliable classification performance across different split 

strategies of datasets [137]. Furthermore, the model's performance, assessed through 

leave-one-out CV technique, demonstrated performance comparable to that of the k-

fold CV approach, specifically within the frequency band of gamma. This finding 

signifies the model's ability to provide unbiased assessment, showcasing the leave-one-

out CV as a unique variant for k-fold CV, where every individual data point effectively 

serves as a whole testing dataset [138]. Nevertheless, leave-one-out CV had a higher 

computational cost than other k values in the CV during assessing the performance of 

SVM model, aligning with similar findings in previous studies [138, 139]. 

Consequently, our preference lies in utilizing the six-fold CV, as it enables us to conduct 

comprehensive evaluations of the model. 
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2.3.2 The SVM Classification Model Generalization 

Various Textile Stimulations 

We evaluated the model’s performance of generalization by comparing accuracies for 

different fabric stimulations in the gamma band (Table 2.4, Figure 2.5, and Figure 

2.7(a)). The accuracy levels observed for wool and nylon fabrics exhibited a notable 

increase compared to that of cotton textiles. The divergence can be attributed to the 

varying degrees of stimulation intensity these fabrics exert on the skin. Chen et al. 

conducted a study demonstrating that higher frequency bands’ neural oscillations, such 

as the gamma band, were comparatively lower during the execution of easier tasks 

[140]. However, as the difficulty of the task increased, these oscillations intensified, 

indicating an adaptive response aimed at extracting additional patterns via the sensation 

environment. Regarding fabric stimulation, cotton is ubiquitous in everyday activities 

which typically generates least intense stimuli in the passive tactile sensation [82]. 

Conversely, other two fabrics contribute to a more considerable pronounced tactile 

sensation owing to the distinctive material characteristics. The interaction with these 

fabrics may necessitate increased neural effort and cortical capacities to elicit 

corresponding responses for the provided stimuli [82]. This notion finds further support 

in the research conducted by Jiao et al., where it was observed that wool evoked a 

relatively vigorous tactile stimulation resembling scratching, thereby giving rise to a 

sensation of discomfort [141]. The findings of Jiao et al. provided further evidence to 
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support the notion that wool fabric triggers a comparatively intense tactile stimulation 

resembling scratching, leading to a sensation of discomfort. Moreover, their research 

revealed that woolen textiles induced larger RSP characteristics in EEG compared to 

nylon and cotton textiles [141]. Furthermore, one study was conducted where they 

observed significantly elevated event-related potential (ERP) in response to nylon 

fabric compared to cotton fabric. This observation suggests that tactile sensation with 

nylon fabric resulted in reduced distraction and improved allocation of cortical 

resources [129]. Consequently, the model obtained higher accuracies when utilizing the 

EEG features of nylon and wool fabrics instead of cotton fabric.  

Various Upper-Limb Groups 

The performance of our model was evaluated in terms of classifying fabric stimulations 

while involving upper limb differences. The results of this evaluation are presented in 

Table 2.5, Figure 2.6, and Figure 2.7(b). We observed significant differences in 

accuracy when classifying post-stroke stimulations with various textiles, particularly in 

the higher bands of frequency, when contrasted with unimpaired individuals. The 

discrepancy obtained when distinguishing different fabric stimuli among the various 

upper-limb groups aligns with the findings from manual measurements that compared 

the distinctions on RSP features of EEG among individuals affected by stroke with 

those without any impairments. The manual evaluations indicated that the power 

spectra for fine touch stimulation in post-stroke individuals were higher during the 
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frequency bands of beta/gamma [82]. SVM classification model effectively detected 

comparable patterns to manual evaluations by leveraging the utilization of EEG's RSP 

characteristics and RBF kernel's characteristics transformation capability. The 

incorporation of the mean and maximum values of the RSPs as input characteristics in 

the SVM model demonstrated an efficient ability to capture noteworthy variations 

observed in RSP features across various arm cohorts. Previous manual investigations 

have highlighted the association between EEG RSP patterns elicited by fabric 

stimulations and neuroplastic changes post-stroke [142]. Specifically, these 

investigations have indicated that damage to brain neurons resulting in sensorimotor 

function impairments after stroke can lead to cortical rewiring within various neural 

subsets [143, 144]. In response to such lesional functions, the brain can exhibit neural 

compensation, which manifests as a redistribution of the patterns of brain cortex 

reactions to stimuli [145]. Leveraging its exceptional characteristics’ transformation 

ability, SVM algorithm with RBF kernel demonstrates the ability to determine the best 

classification boundary among multiple arm groups. Through implicit transformation 

of the original RSP feature space into a higher dimensional space of feature, the SVM 

effectively reduces the number of hyperparameters that need to be determined. 

Consequently, this feature mapping procedure ensures the model's ability to generalize 

well when presented with new input data [90]. In diverse clinical settings, prior research 

has consistently shown that SVM with a kernel of RBF exhibits low misclassification 

rates. Importantly, this SVM model effectively handles the intricacies involved in the 
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classification process [89, 146, 147]. Due to intricate nature of EEG RSP characteristics 

and characteristics transformation ability of kernel function in RBF, it could be 

anticipated that the proposed model would exhibit comparable performance to that of 

manual inspection in distinguishing individuals without impairments from those who 

have experienced a stroke. 

2.4 Periodic Summary 

Our study involved the development of an SVM classification model with EEG signals, 

specifically focusing on the RSP features (𝑅𝑆𝑃!"#$ and 𝑅𝑆𝑃!#%) derived from cotton 

fabric stimulation. These features were found to be highly responsive to textile stimulus, 

which were served as indicative input characteristics for the established model. To 

assess model's performance in generalization, we conducted a comparative evaluation 

of classification accuracies for different fabric stimulations, taking into account 

differences in arm conditions. The model demonstrated significant variations in 

accuracy when considering fabric stimulations after a stroke, particularly in higher 

frequency bands such as beta and gamma bands. These results mirrored the RSP 

patterns observed in manual investigations, where distinctions between post-stroke 

individuals and those without impairments were evident. This finding indicated that our 

model could effectively emulate manual assessments of cortical reactions to textile 

stimulus, thereby facilitating automated assessments of fine tactile sensation in post-

stroke individuals. 
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CHAPTER 3  

EFFECTS OF NON-INVASIVE CERVICAL CORD 

NEUROMODULATION BY TRANS-SPINAL 

ELECTRICAL STIMULATION ON CORTICO-

MUSCULAR DESCENDING PATTERNS IN UPPER 

EXTREMITY OF CHRONIC STROKE SURVIVORS 

3.1 Introduction 

Stroke stands as a prominent contributor to enduring motor impairments, and around 

3/4 of people having motor deficiencies in the upper limbs [148]. Motor deficits in 

individuals may potentially arise from lesions that impact both the sensorimotor cortex 

and the neural descending pathways [149]. These lesions can disrupt the relations of 

excitation and inhibition potentials between brain and prefrail muscles, resulting in 

altered descending patterns. This alteration often manifests as muscle spasticity and 

compensation on the contralesional side [150]. Muscle spasticity refers to involuntary 

muscle contractions that emerge due to a loss of inhibitory control over the spinal cords 

alpha motoneurons in the poststroke [151]. Consequently, stroke survivors in chronic 

stages commonly experience extra excitability of α motor neurons, leading to 

involuntary muscle contractions [151]. For the muscles responsible for UE movements, 

the distal UE muscles, which control hand and wrist joints, are particularly easy to the 

disturb of muscular spasticity and poststroke cortical compensation. This susceptibility 
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arises from the requirement of a higher precision and control degree in distal 

movements compared to proximal UE movements involving the shoulder and elbow 

joints [152]. However, the compensatory rehabilitation approaches typically used in 

routine practice offer limited benefits to wrist-hand motor functions. These 

interventions often encourage compensatory motions involving the shoulder and elbow 

joints once the desired daily task is achieved [153, 154]. Moreover, the motor neural 

tracts responsible for the distal muscles primarily originate from the lesioned side of 

hemisphere, and only few motor neural tracts originating from the contralesional 

hemisphere compared with those serving the proximal UE muscles [155]. Consequently, 

in neuroplasticity from brain to the muscles, poststroke 'learned disuse' can easily affect 

wrist-hand muscular functions. This occurs due to the lack of effective controls of 

excitation or inhibition specifically targeted at the distal UE muscles [156].  

The strength of residual motor neural pathways from lesioned brain to the distal muscles 

of wrist and hand can vary according to the poststroke lesions impairments’ level [157]. 

MEPs obtained through TMS or CMCoh assessed using EMG/EEG in voluntary 

muscular contractions provide insights into this assessment [158, 159]. Stroke survivors 

often exhibit significantly decreased CMCoh and MEPs. These findings are related with 

impairments in offering useful neural potentials in the brain cortex and transmitting 

residual motor neural drives [160, 161]. Restoring the center of cortex in the lesioned 

brain poststroke currently lacks immediate methods. This process relies on Hebbian 

neuroplasticity, which can be strengthened by repeatedly exciting the neurocircuitries 
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by repetitive training in long-term [162, 163]. However, when the ipsilesional neural 

tracts remain weak poststroke, facilitating the transferring efficiency of remaining 

motor neurons innervated the upper limb muscles can be achieved by the modulation 

of spine’s excitation [164]. Trans-spinal electrical stimulation (tsES) emerges as a non-

invasive technology that can modulate excitatory thresholds in circuitries of spine 

through applying transcutaneous current [61, 165]. Researchers have explored tsES 

application in individuals with spinal cord injury (SCI) to enhance neural pathways 

across lesioned locations and restore upper limb motor function [166]. For instance, 

previous research showcased the immediate modulation of spine circuits' excitability 

and improved motor control for proximal UE muscles in SCI patients via tsES. This 

was achieved by employing rectangular shape of waveforms with 1 ms from C5 to C6 

spincal cord [167]. In addition, tsES has been utilized from C3 to C6 spinal cord for 

aiding the enhancement of UE in the motor control, including UE tasks like finger grip 

and pinch, among participants experiencing SCI in spinal cord [168]. These 

applications have the objective of providing motoneurons’ activation within circuits in 

spine, taking them closer to the activation threshold. This, in turn, facilitates the 

propagation of impulses through the motor neurons via the remaining motor control 

tracts via brain [169, 170]. Moreover, tsES has proven to be effective in reducing UE 

muscular spasticity in SCI patients. Various parameters of electrical stimulation have 

been used, including pulses of biphasic rectangular at 30 Hz [171]. The primary 

mechanism behind this effect involves current stimulation of local neural tracts in spine, 
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achieved through dorsal column neural tracts, as well as engagement of the processes 

that activate presynaptic inhibition [172].  

Despite the limited research conducted on the application of tsES for motor restoration 

in stroke patients, recent preliminary findings have shown positive outcomes of spinal 

cord electrical stimulation in enhancing motor control of the upper limb and releasing 

muscle spasticity after stroke [61, 62]. In a specific study, it was revealed that the 

electrical stimulation administered in cervical spine led to immediate enhancements in 

grip force of hand poststroke [61]. However, the invasively implanted electrodes are 

associated with inherent risks, such as infection and bleeding [173]. Another research 

endeavor examined the impact of direct electrical stimulation targeting the C6 spine 

segment, which yielded noteworthy findings. A potential trend was observed, indicating 

a reduction in spasticity within the wrist flexor muscles. This reduction was achieved 

by lowering the extra excitation present in α motor neurons of spine subsequent to a 

stroke [62]. These studies have demonstrated the potential effectiveness of spinal cord 

stimulation, which involves modulating the excitation state of intact spinal circuitry to 

improve the responsiveness to the residual neural pathways [62]. However, there is a 

lack of research assessing the instant influence of tsES in cortical motor neural patterns 

on peripheral muscles during UE voluntary movements after stroke, which may have 

the potential to affect brain neuroplasticity in rehabilitation. Consequently, the primary 

aim of the research was examining the instant influences of tsES in cortico-muscular 

descending motor patterns in voluntary movements of UE, focusing specifically on 
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lesioned side of chronic stroke patients. 

3.2 Methodology 

In this particular study, the primary focus was to investigate the influences of tsES on 

cortico-muscular motor neural tracts in poststroke patients’ UE. The research employed 

measurements of EEG/EMG to evaluate influence of tsES in lesioned side, with a 

specific emphasis on extension/flexion tasks of wrist and hand. The analysis involved 

utilization of CMCoh to examine related coupling among the cortex and upper limb’s 

muscles, thereby facilitating the evaluation of motor control. To assess compensation 

from the contralesional hemisphere, peak CMCoh’s laterality index (LI) was employed. 

Furthermore, the acquired activation level of EMG was utilized to assess couplings of 

muscular activation within the UE. 

3.2.1 Experimental Setup 
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Figure 3.1 The tsES experimental setup. (a) A stroke patient with application of tsES 

in cervical spine; An illustration of tsES electrodes (b) and electrical stimulation (c).  

 

The experimental setup was demonstrated in Figure 3.1, encompassing the placement 

of cervical spine stimulation site, configuration of electrical current, and the selection 

of electrodes. Within this setup, a subject poststroke was comfortably sit in a chair, 

while their lesioned upper limb remained in a silent state (Figure 3.1(a)). To ensure 

proper alignment, the forearm of the affected upper extremity was positioned neutrally 

on the horizontal plastic slab, confirming that hand's strength exertion was 

perpendicular to gravity [174]. The configuration of tsES in cervical spine was carried 

out by an electrical neurostimulator (DS8R). As illustrated in Figure 3.1(b), the circular 

cathode electrode, measuring 3 cm in diameter, was accurately placed within C4 to C6. 

In addition, two anode electrodes, sized 8.5 × 6 cm, were interconnected, and positioned 

bilaterally over the acromioclavicular joints. The choice of C4 to C6 for electrical 

stimulation was based on the specific involvement of the cervical spinal nerves at 

different spinal levels in providing muscular control and sensory function of upper limb 

muscles [22]. More precisely, the nerves from C4 to C5 are responsible for controlling 

proximal muscles in the UE, as well as those from C5 to C6 govern distal muscles in 

the UE [23, 24]. The electrical stimulation in this study was applied in the waveform of 

alternating current, by using rectangular biphasic pulses with 30 Hz, where the direction 
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of flow changes cyclically over time. The designation of anode and cathode is merely 

a matter of terminology and was determined based on previous studies [175, 176]. Once 

the area of electrical stimulation was determined, the current was administered in bursts 

comprising of ten pulses of rectangular (100 µs for each pulse). The electrical 

stimulation were transferred at 30 Hz (Figure 3.1(c)) [175, 176]. This choice of 

waveform helps maintain a balanced electrical charge during the stimulation process, 

promoting the safe and effective delivery of electrical stimulation without causing harm 

to the tissue in the stimulated area [177, 178]. A 10 kHz was employed as the carrier 

frequency to avoid perception of pain sensation. The choice of frequency helps reduce 

the discomfort associated with the stimulation, thereby enabling the use of larger 

electrical current [59]. It's important to note that the selection of tsES employed in the 

research was successfully used in SCI and TBI patients, who suggested reasonable 

levels of pain during the stimulation process [166, 179].  

Figure 3.2 shows the procedure of setting the stimulation current intensity (measured 

in mA) through feedback provided by stroke participants. Initially, the stimulation 

current intensity was set at 0 mA while gradually increased in increments of 5 mA from 

5 to 50 mA, with smaller 1 mA increments used between 50 and 80 mA to minimize 

discomfort [176]. Before each increment, participants confirmed their tolerance of the 

sensation for at least half minute. In cases where the current was considered not 

tolerable, it was then decreased with one increment and subsequently utilized as the 

optimal intensity for subsequent motor control tasks. A maximum stimulation intensity 
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threshold of 80 mA was implemented for all participants to ensure safety. This threshold 

was continuously monitored throughout the experiment to maintain safe stimulation 

levels on the skin of the cervical spine, based on previous studies involving human 

subjects [180]. Moreover, participants' physiological responses, including pressure of 

blood and rate of heart, were supervised real-time at three-minute intervals in process 

of determining stimulation current. 

 

Figure 3.2 The confirmation of stimulation electrical current. 

 

To attach electrodes of EEG, a cap of 64 channels was placed on stroke subject’s scalp. 

Reference electrodes were placed at left earlobe, while the ground electrode was 

situated at AFz electrode, following the 10-20 standard system. A total of 21 channels 

were utilized to obtain signals of EEG, specifically targeting the cortex of sensory and 

motion. These channels covered the following areas: C1, C2, C3, C4, C5, C6, CZ, CP1, 

CP2, CP3, CP4, CP5, CP6, CPZ, FC1, FC2, FC3, FC4, FC5, FC6, and FCZ. The 
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sensorimotor cortex was specifically chosen for electrode placement due to its role as 

the main source of cortico-muscular motor neural tracts [181]. For the collection of 

EMG signals, five UE muscles were targeted: ECU-ED, FCR-FD, APB, BIC and TRI. 

The bipolar determination with a 20 mm inter-electrode space was used to capture the 

signals of EMG for every muscle of upper limb. The olecranon of the elbow was 

selected as the reference electrodes. Prior to attaching these electrodes, the surface of 

skin was thoroughly cleaned via abrasive gel and cotton pads to maintain the impedance 

below five kΩ. For amplification of the EEG signals, the g.USBamp amplifier was 

employed, providing a 10,000-fold amplification. Subsequently, the signals were 

subjected to filtering using the bandpass filter spanning in 2-100 Hz. Similarly, the 

signals of EMG were augmented via the identical amplifier, providing the 1000-fold 

amplification. These signals were further filtered using a bandpass filter range of 10-

500 Hz. Additionally, both EEG and EMG underwent further filtering with a 50 Hz 

filter to eliminate any interference. In order to obtain the synchronized EMG/EMG data, 

a DAQ board was selected. The DAQ board operated at the 1200 Hz’s sampling 

frequency, enabling acquisition of high-resolution data. For visual feedback of motor 

control of wrist and hand, online processing utilized data of EMG obtained specifically 

from the distal UE muscles. These signals were processed in real-time to provide 

feedback through a custom interface made via LABVIEW. The interface allowed for 

interactive control and visualization of the wrist-hand motion based on the acquired 

EMG signals. As shown in Figure 3.1(a), the interface displayed a color range spanning 
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from left side to the right side, serving as a visual representation to the progressive 

levels of agonist muscle contraction. This color range depicted the spectrum from 0-

100% of the iMVC in extension/flexion of wrist and hand. For instance, the extension 

task utilized EMG data of ECU-ED muscle, while the flexion task employed EMG data 

of FCR-FD muscle. The process of performing iMVC was described in Section 3.2.3 

Evaluation Protocol. Throughout measurement process, the movement of the blue 

pointer responsible to the instantaneous changes in the agonist muscles’ contraction 

levels. Simultaneously, the interface featured two constant red pointers that denoted 

reasonable range of 10% error in the motion control. These red pointers served as visual 

indicators, ensuring that the measured contraction levels remained within the 

designated range [182]. The real-time contraction levels of the agonist muscle i were 

obtained as follows [183]: 

 

Where EMGi is the mean value in rectified envelope of EMG in muscle i within a 

window of 100 ms; EMGmax(i) denotes the mean value of the rectified envelope of 

instant EMG for muscle "i" during maximal force. EMGbaseline(i) represents the mean 

value of the rectified envelope of instant EMG for muscle "i" in the state of relax.  

3.2.2 Subject Recruitment 

Following the acquisition of ethical clearance from the HSESC, recruitment of chronic 
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stroke individuals was initiated, adhering to the inclusion criteria: (i) Age from 30-70 

years old; (ii) Minimal six months since experiencing a unilateral brain damage; (iii) 

Adequate cognitive abilities to understand experiment's content and fundamental 

suggestions (MMSE > 21); (iv) appropriate muscle tone in upper limb (MAS < 3); (v) 

Moderate to severe motor impairments on the affected side of the upper limb (15 < 

FMA-UE < 55); (vi) detectable voluntary EMG signal; (vii) Ability to sit up for a 

minimum of 60 minutes. The exclusion criteria consisted of the following: (i) 

Musculoskeletal dysfunction in upper limb; (ii) Recent botulinum toxin injection in last 

six months in UE muscles; (iii) Presence of any implanted metal or electronic stimulator, 

such as a cardiac pacemaker, cochlear implant, etc.; (iv) Use of medications that affect 

neural excitability, such as antidepressants, antipsychotics, etc.; (v) History of epilepsy 

or current pregnancy. Finally, a total of 12 individuals who had survived chronic stroke 

were recruited, with an average age of 51.7 ± 11.3 years. The average time since stroke 

occurrence was 8.8 ± 5.9 years. Table 3.1 summarizes the demographic information of 

involved subjects.  
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Table 3.1 Demographic information of stroke participants. 

 

Note: H: Hemorrhagic; I: Ischemic. 

The stroke participants in Chapter 3 were distinct from those in Chapter 2 due to 

differences in the experimental procedures. Ethical approval from the university is 

required for experiments involving human subjects. Both Chapter 2 and Chapter 3 

received separate ethical approvals, resulting in a time delay between the two 

experiments. In Chapter 2, we initially conducted the experiment focused on assessing 

fine tactile sensation through fabric stimulation after obtaining the necessary ethical 

approval. Subsequently, in Chapter 3, we performed the tsES experiment by recruiting 

new stroke subjects from our pool of patients. This was necessary because some stroke 

patients from study I either declined participation or were not available due to personal 

reasons. 
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3.2.3 Evaluation Protocol 

Prior to the sessions, an initial measurement of iMVC was performed to establish the 

relaxed and maximal levels of EMG data for visual feedback in the perform of motor 

control tasks involving five specific muscles. The iMVC assessment of agonist muscle 

followed the protocol outlined in reference [27] and involved three repetitions with the 

following steps: (i) The subject maintained the upper limb in a resting state for five 

seconds to obtain the relaxed signal of EMG; (ii) The subject was then instructed to 

fastly generate maximal strength with muscle and sustain contraction for 5 seconds. To 

impede fatigue of muscles, a 5-minute break was provided between consecutive 

contractions. The highest value among three iMVC assessments was chosen as the 

maximal level of EMG for every muscle in upper limb. 

 

Figure 3.3 The protocol for motions tasks with tsES in the wrist and hand. 
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Following measuring iMVC, motion tasks were conducted in two sessions in lesioned 

side of patients poststroke (Figure 3.3). The 1st session focused on extension/ flexion 

in wrist and hand, without employing tsES. Two distinct degrees of muscular 

contraction, representing twenty percent and forty percent of each subject's iMVC, were 

utilized and labeled as 20% Ex, 40% Ex, 20% Fx, and 40% Fx. The participants 

poststroke followed randomly presented motion task names displayed on a monitor 

screen to perform the wrist-hand contractions. The objective was to achieve best 

muscular control, defined as maintaining a zero percent deviation from central line for 

thirty-five seconds, with fluctuations within an error of -10% to +10%. To prevent 

muscle fatigue, each motion task was repeated five times, with a 2-minute rest period 

between each repetition. Muscle fatigue was assessed by monitoring the average EMG 

power spectrum’s frequency, considering a 10% reduction as an indication of fatigue 

[184, 185]. No signs of muscle fatigue were observed throughout the entire duration of 

the wrist-hand extension and flexion.  

After completing the 1st session of motion, the neurostimulator was activated. Based on 

stroke participant's feedback following the procedure outlined in Section 3.2.1 of the 

Experimental Setup, the optimal current of current was confirmed. Across all 

participants, the mean value of the optimal electrical current was 42.9 ± 13.9 mA, 

ranging from 12-70 mA. Following the confirmation of the optimal electrical current, 

tsES was applied on cervical spine. The stroke patient was then asked to conduct 2nd 

session of motion, which had the identical procedures as 1st session. The tsES duration 
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matched the duration of motor functions in UE, totaling 1660 seconds. This duration 

was derived from four motion tasks, each comprising five 35-second trials, along with 

two 2-minute rest periods. To ensure the accuracy of signals of collected EEG/EMG, 

stroke participants were advised to avoid head movements and eye blink, prior to every 

trial in two sessions of motions. 

3.2.4 EEG and EMG Processing 

To assess impact of tsES on cortico-muscular interactions, several factors were 

examined, involving CMCoh, LI, and activation levels of EMG. A comparison was 

made between the phenomenon of not involving tsES and involving tsES to assess any 

differences or effects. The captured EEG signals underwent a filtration process 

employing a 3rd-order Butterworth bandstop filter. This filtering step aimed to remove 

any potential artifacts caused by the applied stimulation during the task involving 

movement of the wrist and hand. Specifically, a band-stop filter with a range of 29-31 

Hz was applied to effectively attenuate the artifacts of stimulation occurring at a 

frequency of 30 Hz, thus minimizing their impact on obtained EEG, as practiced in 

[186]. The application of electrical stimulation resulted in a noticeable and consistent 

results in obtained EEG data for time domain, as depicted in Figure 3.4(a) to (b). In 

the domain of frequency, PSD of EEG exhibited a prominent peak at 30 Hz, as shown 

in Figure 3.4(c). However, upon implementing band-stop filter, spectra of EEG 

exhibited a similarity to those obtained in the absence of electrical stimulation. This 
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observation indicates that the effectiveness of band-stop filter in eliminating the 

artifacts from the EEG. 

 

Figure 3.4 EEG signals from CZ channel for a 1s’ interval of upper limb flexion at 20% 

iMVC when activating tsES. The time domain representation of the EEG amplitude is 

depicted in (a)~(b). The EEG PSD in domain of frequency is shown in (c).  

 

To estimate the cortico-muscular coupling patterns, coherence among EEG via 

sensorimotor cortex and EMG via five upper limb muscles were analyzed. The CMCoh 

was specifically calculated within the beta frequency band, ranging from 13-29 Hz. It 

is worth noting that the beta frequency band is known to exhibit the most pronounced 

CMCoh during steady and moderate isometric muscle contractions [187, 188]. The 

calculation of CMCoh values was performed using the following method: 
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Where PEEG, EMG(f) represents cross-spectrum density, PEEG(f), PEMG(f) are auto-

spectrum densities of the data of EEG/EMG. The coupling estimation offers a 

standardized assessment for magnitude of CMCoh patterns, shown as a continuous 

numerical value within the range of 0 to 1. A value of 0 signifies a total absence of 

connection, while a value of 1 signifies a perfect correlation [160]. The statistical 

significance of the CMCoh value was determined based on a threshold of P < 0.05. This 

significance level was established by comparing the CMCoh value to the confidence 

level (CL), and it could be obtained by Equation (3.4):  

 

Where the parameter L represents epochs of trial. For every EEG/EMG trial, the 

duration was thirty seconds. Initially, the trials were 35 seconds long, but the final 5 

seconds were removed. Each trial was then divided into 1200 data points, representing 

1-second segments, with a 50% overlap between adjacent segments. A total of 275 trial 

epochs were obtained, resulting from 55 trial segments multiplied by 5 trial numbers. 

These trial epochs provided the EEG/EMG data for evaluation. To determine statistical 

significance of the CMC values, a confidence level (CL) of 0.011 was utilized. This CL 

served as the threshold to assess whether the CMC values exceeded the expected level 

of chance occurrence. The maximal CMCoh were measured for every muscle in UE. 
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This measurement aimed to obtain the most significant CMCoh among EEG/EMG 

signals for motion tasks of UE. By identifying the peak CMCoh values, the specific 

instances of high coherence between the cortical EEG activity and the corresponding 

muscle activation were determined for each UE muscle [189]. To visualize activation 

region in the cortex with the highest CMCoh, the topography of the peak CMCoh was 

employed. Additionally, LI was employed to evaluate the relative hemispheric 

lateralization of the peak CMCoh in all stroke participants, as shown in Equation (3.5):   

 

Where CMCoh in the ipsilesional, contralesional, and midsagittal hemispheres are 

represented by Cohipsilesional, Cohcontralesional, and Cohmidsagittal. The LI values, which 

indicate hemisphere dominance of peak CMCoh, are assessed based on whether they 

are smaller than 1 (indicating contralesional hemisphere dominance) or larger than 1 

(indicating ipsilesional hemisphere dominance) [190].  

To assess the results for muscle activation in motion tasks of wrist and hand, the 

normalized EMG activation levels were utilized [191]. The initial EMG for a specific 

muscle, denoted as muscle i, was first standardized via relaxed and maximal levels in 

the period of iMVC. This normalization process was achieved using Equation (3.6). 

Subsequently, the activation level of EEG for muscle i was determined using Equation 

(3.7): 
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Where standardized EMG of muscle i is represented as EMGNormalized(i), 

∫ EMG0123456789(6)(t)dt	
<
= is envelope of muscle i’s EMG during T. After normalization, 

the activation level of muscle i's EMG is computed as EMGActLevel(i). The evaluation of 

EEG/EMG data was performed by applying customized code based on FieldTrip in 

MATLAB R2019b, which can be found at http://www.fieldtrip.fcdonders.nl. This 

customized code facilitated the analysis and processing of the EEG and EMG data, 

enabling the acquisition of the evaluation outcomes.  

3.2.5 Statistical Analysis 

Figure 3.5 presents the statistical analysis to compare the obtained CMCoh-related 

parameters without tsES and with tsES. The normality of these measurements was 

assessed via Shapiro-Wilk test. Regarding the CMCoh values, it was found that both 

groups displayed a normal distribution at both iMVC levels of every motion (P > 0.05). 

However, exceptions were observed in TRI (40% Ex), BIC (20% Fx), APB (20% Ex & 

40% Fx), where the distribution deviated from normality (P < 0.05). Regarding the LI, 

it was observed that both groups exhibited a normal distribution in ECU-ED at both 

iMVC level of Ex, as well as 20% Fx’s FCR-FD. However, in 40% Fx of FCR-FD, the 

distribution deviated from normality (P < 0.05). The activation levels of EMG in two 

groups exhibited the normal distribution (P > 0.05), except for FCR-FD (20% Ex), BIC 
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(40% Ex), TRI (20% & 40% Fx), where distribution deviated from normality. For the 

parameters that exhibited a normal distribution (P > 0.05), a paired t-test was employed 

to assess the differences without tsES and with tsES. On the other hand, for parameters 

that did not follow a normal distribution (P < 0.05), Wilcoxon signed-rank test was 

utilized for assessing conditions’ variations without and with tsES. In this study, a 

statistical significance level of 0.05 was predetermined. 

 

Figure 3.5 The flowchart of the statistical analysis. 

3.3 Results 

3.3.1 Cortico-muscular Coherence 

 

(a)  
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(b)  

Figure 3.6 CMCoh during (a) extension and (b) flexion in wrist and hand without tsES 

and with tsES. The observed differences were indicated follows: ‘*’: P < 0.05 and ‘**’: 

P < 0.01 (Paired t-test), ‘#’: P < 0.05 (Wilcoxon signed rank test). 

 

In Figure 3.6, the CMCoh values are presented for wrist-hand motions, comparing 

without tsES and with tsES. Table 3.2 and Table 3.3 provide the detailed conclusion of 

the statistical findings considering CMCoh. Specifically, during extension motion, the 

ECU-ED’s CMCoh statistically increased under tsES in two levels of extension 

contraction (p < 0.05). In contrast, BIC exhibited the statistical reduction in CMCoh 

with tsES at two levels of extension contraction (p < 0.05). Similarly, TRI showed a 

notable reduction in CMCoh at both contraction levels (p < 0.05). Furthermore, it was 

found that ECU-ED’s CMCoh statistically increased from twenty to forty percent 

extension at two conditions. During flexion tasks of wrist and hand, muscle of FCR-FD 

showed a statistically increase in CMCoh at twenty percent of flexion (p < 0.05). 

Conversely, the CMCoh values of TRI and BIC showed a significant decrease at two 
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levels of agonist muscles during tsES (p < 0.05), other than BIC at forty percent of 

flexion. Nevertheless, no statistical variations observed when comparing CMCoh 

values of other upper limb muscles within and with group comparisons. 

 

Table 3.2 CMCoh of upper limb muscles during extension of wrist and hand without 

tsES and with tsES. 

 

Note: The observed differences is indicated: ‘*’: P < 0.05 and ‘**’: P < 0.01 (Paired t-

test), and ‘#’: P < 0.05 (Wilcoxon signed-rank test). 
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Table 3.3 CMCoh of upper limb muscles during flexion of wrist and hand without tsES 

and with tsES. 

 

Note: The observed differences is indicated: ‘*’: P < 0.05 (Paired t-test), and ‘#’: P < 

0.05 (Wilcoxon signed rank test). 
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3.3.2 Cortico-muscular Coherence Topography 

 

Figure 3.7 Topographies of CMCoh in a stroke subject (left hemiplegia) during wrist-

hand motions. The muscles included are ECU-ED, BIC, and TRI for (a) 20% and (b) 

40% Ex. The muscles included are FCR-FD, BIC, and TRI for (c) 20% and (d) 40% Fx. 

The topographies are presented for both without tsES and with tsES. 

 

In Figure 3.7, we observe the topographies of CMCoh in the stroke patient (left 

hemiplegia). The visual representation illustrates the effect of applying tsES, which 

seemed to induce a shift in the peak CMCoh channel. Specifically, during the extension 

of upper limb, there is a distinct shift in the CMCoh channel of peak value from the 

non-lesion side to lesioned side of cortex. Specifically, at 20% Ex (Figure 3.7(a)), we 

observe the following shifts in the peak CMCoh channel for the corresponding muscles: 
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for ECU-ED, the CMCoh moves from CP3-FCZ; for BIC, the CMCoh shifts from FC1-

C1; for TRI, the CMCoh transitions from CP5-CP1. For forty percent of extension 

(Figure 3.7(b)), we observe further shifts in the peak CMCoh channel for the muscles 

involved in wrist-hand extension. The specific changes are as follows: for ECU-ED, 

CMCoh shifts from FC5-CP2; for BIC, CMCoh moves from FC3-CP4; for TRI, 

CMCoh transitions from C5-FCZ. Similarly, we observe the shift pattern at twenty 

percent of flexion (Figure 3.7(c)) during flexion of wrist and hand. CMCoh for FCR-

FD shifts from CP5-C1, while for BIC, it moves from FC1-CP4. Furthermore, at forty 

percent of flexion (Figure 3.7(d)), we observed a specific shift in CMCoh of BIC. It 

transitions from FC1-C5. 

 

(a)  

 

(b)  
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Figure 3.8 LI during (a) extension and (b) flexion of wrist and hand.  

 

In Figure 3.8, the LI during extension and flexion of wrist and hand are presented. 

Further detailed statistical analysis of LI values could be obtained in Table 3.4 & 3.5. 

During the extension motion tasks, there were significant differences in LI in the 

following muscles: ECU-ED exhibited significantly higher LI values at both 20% and 

40% Ex. BIC showed significantly higher LI values at 20% Ex. TRI demonstrated 

significantly higher LI values at 40% Ex. These differences were determined through a 

Paired t-test (p < 0.05). In the case of the flexion motion tasks, there were significant 

differences in LI values in the following muscles: FCR-FD exhibited significantly 

higher LI values at 20% Fx. BIC showed significantly higher LI values at 20% Fx. This 

difference was determined using a Wilcoxon signed-rank test (p < 0.05), whereas no 

statistical variation in LI was observed in FCR-FD at forty percent of flexion. 
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Table 3.4 LI values during extension of wrist and hand without tsES and with tsES. 

 

Note: The observed differences is indicated as follows: '*' denotes P < 0.05 based on 

Paired t-test. 
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Table 3.5 LI values during flexion of wrist and hand without tsES and with tsES. 

 

Note: The observed differences is indicated as follows: '*' denotes P < 0.05 based on 

Paired t-test, and ‘#’ for P < 0.05 based on Wilcoxon signed rank test. 

 

3.3.3 EMG Activation Level 

 

(a)  
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(b)  

Figure 3.9 EMG activation levels during (a) extension and (b) flexion of wrist and hand 

without tsES and with tsES. 

 

Figure 3.9 illustrates the EMG activation levels during motions of wrist and hand. 

Table 3.6 and Table 3.7 contain the significant details, including p-values and effect 

sizes, for the activation levels of EMG. In the case of the 20% Ex condition, there was 

a significant decrease in the EMG activation levels of the FCR-FD (p < 0.05) and BIC 

(p < 0.05). Conversely, the activation levels of the EMG in APB showed a significant 

increase (p < 0.05). During the 40% Ex condition, there were significant decreases in 

the EMG activation levels of the FCR-FD, TRI (p < 0.05), and BIC (p < 0.05). The 20% 

Fx condition showed a significant increase in the EMG activation level of the APB 

muscle (p < 0.05). Conversely, the BIC muscle exhibited a significant decrease in its 

activation level of EMG (p < 0.05). For the forty percent of flexion condition, the 

activation level of EMG for the TRI muscle demonstrated a statistical decrease (p < 

0.05). However, no significant differences were observed in the activation levels of 

EMG for the other muscles when comparing between different groups. 
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Table 3.6 EMG activation level of upper limb muscles during extension of wrist and 

hand without tsES and with tsES. 

 

Note: The observed differences is indicated as follows: ‘*’ for P < 0.05 (Paired t-test), 

and ‘#’ for P < 0.05 (Wilcoxon signed rank test). 
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Table 3.7 EMG activation level of upper limb muscles during flexion of wrist and hand 

without tsES and with tsES. 

 

Note: The observed differences is indicated as follows: ‘*’ for P < 0.05 (Paired t-test), 

and ‘#’ for P < 0.05 (Wilcoxon signed rank test). 

 

3.4 Discussion 

The primary objective of this study was to investigate the instant influence of tsES on 

cortico-muscular motor control patterns in upper limbs of individuals diagnosed with 

stroke during movement of wrist and hand. The study specifically focused on 

comparing the differences in coherence between CMCoh, the LI, and activation levels 

of EMG without tsES and with tsES. According to the findings of the study, it was 

observed that the values of coherence between CMCoh moved to the lesioned side when 

tsES was applied. The shift in peak CMCoh suggests that tsES has the potential to 
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instantly improve remaining motor control pathways that originate from the lesioned 

side. As a result, tsES may also help decrease compensation influences exerted by the 

non-lesioned brain side in motion controlling of distal muscles in the UE (Figure 3.10). 

 

Figure 3.10 The illustration of tsES neuromodulation mechanism 

 

3.4.1 tsES improved excitation/ inhibition control of UE muscles 

The improved excitation controlling of cerebral cortex for the muscles was illustrated 

via substantial improvement in CMCoh of agonist UE muscles, such as ECU-ED in 

twenty and forty percent’s extension, FCR-FD in twenty percent’s flexion) (Figure 3.6). 

The changes in CMCoh provide evidence of the immediate impact of tsES on enhancing 

the precision for controlling motion tasks of wrist and hand at different difficulty levels. 

This effect is attributed to the interactions between sensory and motor neural networks 

in cervical spine. These networks actively regulate physiological states, resulting in an 

amplified responsiveness to descending neural tracts’ signals originating from the 
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cerebral cortex [192]. The sensory pathways in the cervical spinal cord, known as 

ascending tracts, transmit somatosensory information from the body to the brain 

through the white matter of the spinal cord [192]. During tsES, the focus is primarily 

on providing "touch sensation" in the dorsal/posterior root, where the gracilis and 

cuneate fasciculi transmit this sensory information to the cerebral cortex [192]. In this 

study, the stroke patients actively engaged in voluntary movements, which primarily 

involved the descending tract known as the lateral corticospinal tract [192]. 

Prior research involving persons has employed PAD as a method for examining the 

effects in recruiting group Ia/Ib neural fibers in MEPs of cervical spine [193, 194]. The 

results obtained from this study provided confirmation that the application of 

continuous electrical stimulation exhibits a preferential activation and recruitment of 

proprioceptive sensory fibers with larger to medium diameters. These specific fibers 

are primarily situated in the dorsal root/column [195]. These myelinated axons, found 

within the neural tracts of the vertebral canal, exhibit greater responsiveness to external 

electrical stimulation due to their lower excitation thresholds compared to alpha motor 

fibers [196]. Located in the dorsal root of the spine, where their neuronal somas are 

situated, these fibers are capable of transferring potentials of excitatory to the spinal 

motoneurons and interneurons through both mono- and poly-synaptic proprioceptive 

circuits [197]. As a result, the elevation of membrane potentials in spinal neurons 

enhances the response for spinal neural tracts to motor control that originate from the 

brain [198]. 
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In the case of stroke participants, there was no disparity in the CMCoh of antagonist 

muscles among the conditions without tsES and with tsES. However, activation levels 

of EMG in FCR-FD during wrist-hand extension exhibited a significant decrease when 

tsES was applied (Figure 3.9(a)). The observed decrease in muscular output implied the 

potential recruitment of local inhibition neural tracts in spine, leading to precise 

interactive inhibition [199]. Reciprocal inhibition primarily occurs through the 

mediation of Ia afferents, that convey inhibition potentials toward the antagonist UE 

muscle, suppressing the activation while in motion [200]. Nevertheless, evidence shows 

a decrease in transmission along the interactive inhibitory tracts in patients affected by 

stroke. This results in heightened excitability of the α motoneurons responsible for 

regulating antagonist UE muscle [201, 202]. Electrical stimulation assists in 

depolarizing Ia fibers located in posterior column, subsequently establishing robust 

synaptic connections with spinal cord’s inhibitory interneurons [203]. By activating 

these inhibitory interneurons, it is possible to augment the inhibitory regulation of the 

antagonist muscle, thereby diminishing its recruitment and enhancing coordination 

between muscles of agonist/antagonist [204]. 

3.4.2 tsES decreased cortical/proximal muscular compensation 

influence 

During execution of wrist-hand extension and flexion movements, the proximal 

muscles, specifically the BIC and TRI as illustrated in Figure 3.6, exhibited a notable 
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decrease in peak CMCoh when tsES was applied. The observed phenomenon indicates 

a relatively diminished allocation of cortical resources for the innervation of proximal 

muscles in the UE during distal motions of upper limb. The tsES was found to elicit a 

decreasing trend in activation levels of EMG in proximal muscles (Figure 3.9). Distal 

movements of the upper extremity showed a reduced reliance on proximal muscular 

compensation, indicating the influence of continuous spinal cord stimulation on the 

improved physiological condition of neural tracts in spine. This heightened 

physiological state increases the response of neural tracts in spine to supraspinal 

commands transmitted through the remaining motor pathways [205, 206]. The 

application of tsES resulted in a notable increase in the LI within the proximal muscles 

of upper limb in execution of motions in wrist and hand (Figure 3.8). Specifically, the 

BIC demonstrated a significant increase in LI in 20% extension/flexion in wrist and 

hand, while the TRI demonstrated a LI increase of 40% during wrist-hand extension 

when tsES was applied. The reorientation of lateralization in hemisphere to the 

ipsilesional side led to decreased control from the non-lesioned side to proximal UE 

muscles, consequently reducing compensation of these muscles. Prior research has 

examined the compensatory contractions displayed by the proximal UE muscles 

following a stroke, revealing a relocation of the cortical motor controlling center for 

these muscles to the contralesional side [183]. Furthermore, an fMRI investigation has 

documented heightened flow of blood for multiple cortices within the non-lesioned side 

when stroke patients executed gripping tasks. This finding suggests a higher level of 
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activation in the contralesional cortex compared to individuals without impairments 

serving as control participants [26]. While proximal-to-distal compensation in the UE 

offers an alternative for impaired distal movement following a stroke, it can also 

contribute to the phenomenon known as "learned disuse". Unfortunately, learned disuse 

can lead to additional motor deficits such as reduced dexterity and the development of 

abnormal muscle synergies [207]. Impairment of motor control in distal UE muscles 

exhibits greater severity because of the damage sustained by the main sensorimotor area 

and its associated motor control neural pathway after stroke, in contrast to the 

impairment observed in proximal UE muscles. The variation observed can be attributed 

to the fact that the distal muscles of the UE primarily receive innervation from the 

lateral CST, which was mainly from the ipsilesional side. This tract is more susceptible 

to damage caused by stroke, leading to the observed differences. Conversely, the 

anterior CST, responsible for controlling the proximal muscles of the UE, remains 

primarily ipsilateral in spine and is comparatively less influenced by damage resulting 

from a stroke [208]. In the majority of stroke patients, lesions of the motor pathways 

are typically partial. While some residual pathways may remain intact, these circuits 

are often unable to transfer an adequate level of excitability required to stimulate the 

motor neurons in the upper limb muscles [209, 210]. Through the utilization of 

electrical stimulation, tsES effectively modulates the excitability of the spinal cord. 

This modulation helps lower the threshold for motoneurons in transferring motor 

impulses. The aim is to promote the combination of residual motor control tracts from 
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the central nervous system [164]. As a result of this integration, there is an increased 

propagation signals from of motor control in residual descending neural tracts [211]. 

Consequently, there was a reduction in cortical compensatory effects originating from 

the contralesional hemisphere, which is responsible for the proximal UE muscles during 

movements of distal UE.   

The obtained elevation in the LI within the distal muscles of the UE, specifically in the 

ECU-ED for 20% Extension and 40% Extension, as well as in the FCR-FD for 20% 

Flexion (Figure 3.8), serves as additional evidence supporting the presence of 

improved residual descending control. As previously discussed, the application of 

stimulation current for spinal cord has the ability to adjust the physiological state of 

tracts, thereby promoting relations among the motor tracts originating from the lesioned 

side and distal UE muscles that they innervate [208]. These findings align with previous 

research, which suggested that long-lasting current to cervical spine resulted in 

increased force and control of the hand [212]. More specifically, individuals with SCI 

exhibited the ability to generate higher levels of hand grip force. Moreover, the 

stimulation of multiple segments at the C3-C7 resulted in an increase in the evoked 

response of distal UE muscles, while the recruitment of UE muscles in the proximal 

side decreased [212]. The improvement of plasticity in synapse from lesioned side may 

account for the observed increased synergies of the UE during movements of distal UE 

muscles [213]. In the context of synaptic plasticity, there is a complex interplay and 

connectivity among the motor axons and neurons within spine [213]. The electrical 
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stimulation induces an excitability state in the corticospinal anterior horn, facilitating 

the strengthening of synaptic plasticity through the arrival of descending impulses from 

the brain [214]. In the context of the organization of motor neurons, it has been observed 

that the cortico-motoneurons responsible for distal upper limb muscles do not exert 

inhibitory control over those governing proximal muscles at the cortical level. This 

phenomenon can be attributed to the topographical arrangement of motor neurons of 

the spine, guided by two fundamental principles: the flexor/extensor and 

proximal/distal rule. According to the flexor/extensor rule, motoneurons innervating 

UD muscles are positioned posteriorly to those innervating extensor muscles. Similarly, 

the proximal/distal rule dictates that motoneurons responsible for distal muscles, such 

as hand muscles, are located laterally in relation to motoneurons controlling proximal 

muscles of. Consequently, this process enhances the likelihood of following neuronal 

firing, in accordance with the principles of the Hebbian-type learning effect. Through 

current stimulation of synaptic efficiency is enhanced, leading to an increased 

likelihood of firing [214]. 

One limitation in the research was small sample size of participants included. We 

continued collecting individuals until we observed significant differences in most of the 

obtained parameters. Eventually, we recruited twelve subjects with variable 

impairments in motor functions, and the results showed that tsES modulated neuro-

muscular interactions in poststroke individuals. However, the study lacked access to 

neuroimaging data that would provide precise information about the location of the 
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participants' brain lesions. Motor impairments were solely evaluated through behavioral 

assessments, focusing on the paralyzed side. Despite the wide range of motor 

impairments observed in the participants, we obtained findings from the recruited 

individuals. This suggests that tsES may be an efficient method of neuromodulation for 

individuals with different degrees of impairment following a stroke. 

In future studies, we plan to address these limitations by increasing the sample size and 

investigating the instant influences of tsES for various subtypes poststroke. We aim to 

categorize participants based on the location of their brain lesions and severity of motor 

impairments, which will provide further insights into the variations among different 

subgroups. Furthermore, the changes in CMCoh of proximal muscles, specifically the 

BIC and TRI, apart from wrist movement, and other single-joint movements such as 

elbow movement will be executed. This additional investigation aims to compare the 

alterations in CMCoh observed in muscles involved in single-joint movements with 

those occurring during multi-joint movements. Finally, we will conduct clinical trials 

to examine the training results of tsES in affected upper limb poststroke. These trials 

will involve multiple sessions of training that combine tsES with VPT exercises, 

allowing us to gain a better understanding of the potential benefits of this intervention. 

3.5 Periodic Summary 

In this study, our investigation focused on the instant impact of tsES in cortico-muscular 

coupling during voluntary muscular movements of the affected distal UE in individuals 
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poststroke. Electrophysiological measurements, such as coherence between cortex and 

muscles, LI, and activation levels of EMG, were utilized for the analysis. The findings 

of this study revealed that by providing long-lasting current stimulation to cervical 

spine, it is possible to improve the excitation and inhibition effects of UE muscles in 

UE. This stimulation technique also helps to minimize the compensatory effects in the 

cortical region and proximal muscles. In particular, through the modulation of sensory 

and motor networks tracts in the cervical spine, tsES facilitated enhancement of motor 

controlling excitation effects to agonist muscle, while concurrently improving local 

inhibition motor control to antagonist muscle. The changes in brain lateralization to the 

lesioned side, along with reduced activation levels of EMG in proximal muscles of UE, 

suggesting a decline in compensation from cortical side and proximal muscular side. 

The implications of these findings indicate that tsES has the potential to improve 

responses to motor control tracts from the lesioned brain by adjusting cervical spine 

excitation. This highlights the possibility of utilizing tsES as an additional input to 

improve motor recovery poststroke, particularly for upper extremities. 
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CHAPTER 4  

REHABILITATIVE EFFECTS OF NON-INVASIVE 

CERVICAL TRANS-SPINAL ELECTRICAL 

STIMULATION ON UPPER LIMB REHABILITATION 

IN CHRONIC STROKE  

4.1 Introduction 

Stroke continues to be a significant factor in long-term disability, affecting around 80% 

of survivors with upper limb motor impairments [2, 215]. Facilitating the restoration in 

motor function for upper extremities is crucial in persons who have experienced a stroke, 

as it empowers them to engage in fundamental tasks necessary for daily living. This 

improvement in motor ability not only enhances their level of independence but also 

has a positive impact on their overall quality of life [216]. To regain motor function in 

stroke patients’ upper extremities, current rehabilitation techniques heavily rely on 

intensive and repetitive occupational and physical training programs [217]. However, 

the effects of recovery typically diminish after six months to one year after stroke, and 

individuals who receive inadequate rehabilitation support may experience further 

deterioration [218]. Consequently, there is a pressing need for the development and 

implementation of enhanced rehabilitation technologies that can significantly improve 

the long-term motor restoration in the upper extremities following a stroke. 

Over the past few years, there has been an increasing utilization of stimulation-based 
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neuromodulation interventions in rehabilitation technologies, including deep brain 

stimulation (DBS), epidural spinal cord stimulation (eSCS), repetitive transcranial 

magnetic stimulation (rTMS), and tsES [219-221]. This is primarily due to their 

association with neural reorganization, which has been recognized as a crucial factor in 

facilitating motor recovery [222]. Encouraging outcomes have been witnessed when 

employing DBS and eSCS as interventions to enhance motor recovery among 

individuals afflicted with central neurological conditions, including TBI, SCI, and 

stroke [223-225]. These relevant studies primarily focused on the surgical implantation 

of a small array of electrodes in specific brain or cervical spinal cord areas. The 

objective behind this approach was to effectively modulate the impact of electrical 

stimulation on the neural system [226]. Although these techniques have been 

demonstrated effectiveness in improving motor functions after stroke by precisely 

modulating the neuronal circuitry, they are associated with the risks of infection, 

bleeding, and the patient injury caused by the interaction between the stimulation 

devices and other therapeutic instruments, such as ultrasound and MRI [173].  

In contrast to the surgically implanted techniques, non-invasive stimulation techniques 

(e.g., rTMS and tsES) could modulate the neural activity in brain or spinal cord with 

fewer associated side effects [227, 228]. However, the high-frequency rTMS has been 

reported to induce epileptic seizures in a few cases and may not be suitable for patients 

who had partial brain resection [229]. The utilization of tsES offers a safer, easier-to-

operate, and more affordable alternative to modulate the spinal cord [230]. To achieve 
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this, a distinctive waveform of high-frequency electric current is utilized, which 

traverses from the surface of the skin to reach the spinal networks [230]. This innovative 

approach has shown promising results, as evidenced by recent studies demonstrating 

noteworthy enhancements in upper limb motor function among individuals with 

chronic SCI individuals who received cervical tsES intervention and voluntary physical 

training (VPT) [168, 212]. For example, maximum hand grip strength was improved 

after 4-week voluntary hand grip training combined with eight sessions of non-invasive 

cervical tsES (monophasic waveform at 30 Hz) delivered along the midline between 

C3-C4 and C6-C7 spinal levels [212]. Another study revealed that hand lateral pinch 

strength exhibited an increase after a four-week intervention involving combined 

transcutaneous spinal stimulation (biphasic and rectangular waveform with 30 Hz at 

C3-C4 and C6-C7 levels) and VPT. Furthermore, this functional improvement was 

sustained during a follow-up period of over three months without additional treatment 

[168]. Both studies also observed a notable augmentation in the amplitude of spinal 

motor evoked potentials (MEPs) for distal upper limb muscles following tsES 

intervention [168, 212]. These findings indicated that tsES combined with VPT could 

improve the effectiveness of residual corticospinal tract by augmenting the inter-

neuronal spinal circuits excitability and reducing the threshold for motor impulse 

propagation [169]. In individuals with chronic stroke, the spinal circuits below the 

cortical lesion remain intact, and there has been a scarcity of studies that have 

specifically explored the impacts of spinal cord electrical stimulation on the process of 
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upper extremity motor recovery [61, 164]. For example, Powell et al. determined the 

immediate assistive effects of continuous cervical electrical stimulation (biphasic 

waveform with 40-100 Hz at C4-T1 levels) in facilitating motor function in the arm and 

hand [61]. Blanc et al. concluded that stroke subjects with intervention combing direct 

tsES and peripheral nerve stimulation achieved significant reductions in upper 

extremity spasticity and improvement in motor function compared to the shame 

condition [62]. These pilot studies showed the potential of tsES in enhancing upper 

limb motor function in chronic stroke. However, both studies focused exclusively on 

the effects of tsES and non-tsES conditions, thereby overlooking the potential 

combined rehabilitation effects of tsES and conventional VPT in chronic stroke. In 

addition, these studies solely evaluated the kinematics and functional movements, 

without assessing the impact of tsES on the remaining descending pathways from 

central nervous system (CNS) to the peripheral muscles in chronic stroke patients.  

The interaction patterns between CNS activity and muscle activity could be captured 

through specific parameters obtained from electroencephalography (EEG) and 

electromyography (EMG), such as spinal MEPs and cortico-muscular coherence (CMC) 

[231, 232]. Previous studies on CMC in stroke patients have explored the connections 

between sensorimotor cortex activity and muscle activity in the upper extremities 

during tasks involving upper limb motion. These studies have indicated that analyzing 

changes in CMC can provide insights into the cortico-muscular patterns associated with 

upper extremity motor functions [156, 183, 233]. Therefore, the primary objective of 
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current research was to examine rehabilitative effects of non-invasive tsES for affected 

upper extremities affected by chronic stroke in individuals. 

4.2 Methodology 

To investigate the rehabilitation effects of tsES, a randomized controlled trial (RCT) 

was conducted, involving individuals diagnosed with chronic stroke. The participants 

were divided into two groups: one group received tsES in conjunction with voluntary 

physical training (VPT), while the other group solely underwent VPT. Measurements 

were then compared between these two groups of stroke subjects in order to assess the 

impact of tsES on the rehabilitation process. The evaluated outcomes included clinical 

scores, as well as three electrophysiology-related parameters (CMC, laterality index, 

and EMG activation level) at three different evaluation time points (pre-, post-, and 

3MFU training). 

4.2.1 Experimental Setup of Trans-spinal Electrical Stimulation 
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Figure 4.1 The experimental setup for trans-spinal electrical stimulation training. (a) 

the configurations that delivers electrical stimulation and training tools. (b) the 

illustration stimulation waveforms generated by function generator and neurostimulator. 

(c) the illustration of specific stimulation sites of cathode electrode (C4-C6) and anode 

electrodes (acromioclavicular joints) on a stroke subject. 

 

Figure 4.1 depicts the experimental setup utilized for tsES training. This involved the 

use of the neurostimulator (DS8R, Digitimer, UK) and an arbitrary function generator 

(Tektronix, AFG1022, USA) to deliver non-invasive and painless cervical electrical 

stimulation (Figure 4.1(a)). The function generator and the neurostimulator were 

connected using a BNC cable, with the function generator supplying a monophasic and 

rectangular waveform signal to trigger the neurostimulator (Figure 4.1(b)). The trigger 

signal consisted of 10 cycles of rectangular, monophasic waveform. Upon detecting the 

ascending trend of the trigger signal, the neurostimulator emitted a biphasic and 

rectangular pulse, resulting in 10 cycles of pulses being generated (Figure 4.1(b)). The 

stimulation protocol involved delivering ten 0.1ms rectangular biphasic pulses at a 

carrier frequency of 10kHz and a burst frequency of 30Hz (Figure 4.1(c)). This 

stimulation approach leveraged the painless effects of high-frequency stimulation and 

the charge-balancing properties of a biphasic waveform, which helps prevent potential 

tissue damage [234, 235]. To apply the stimulation, a single rounded self-adhesive 
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hydrogel surface electrode was meticulously placed on middle line of skin surface over 

the C4-C6 spinous processes as the cathode. Additionally, two rectangular self-adhesive 

hydrogel surface electrodes were attached to acromioclavicular joints of shoulders, with 

one electrode per side serving as the anode. Before the electrode placement, thorough 

skin preparation was carried out to minimize skin impedance. This involved 

meticulously cleaning the skin using scrubs and 75% alcohol, followed by a drying 

process. 

 

Figure 4.2 The flowchart for modulating the electrical stimulation intensity by the 

function generator and neurostimulator. 

 

Figure 4.2 demonstrates how the stimulation intensity was adjusted by the 

neurostimulator and function generator. The process of determining the optimal 

stimulation intensity for a stroke individual is as follows: (1) the stimulation intensity 
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of the neurostimulator was initiated from 0 mA and gradually increased in 5 mA 

increments until the stroke patient could sense it on the cervical area; (2) the stimulation 

cycles on the function generator were increased from 1 to 10; (3) the intensity of the 

stimulation was gradually increased in 5mA increments for stimulation levels below 

50mA, and in 1mA increments for stimulation levels ranging from 50mA to 79mA [236]. 

The maximum level of stimulation intensity was set at 80mA, which was adopted by 

previous studies [237]; (4) during the adjustment of the stimulation intensity, the 

participant was instructed to provide feedback on the comfort level of the delivered 

stimulation. If the intensity could not be increased further and tolerated for the duration 

of a 20-minute training session, the current intensity was regarded as the optimal 

stimulation intensity for the patient.  

4.2.2 tsES Rehabilitation Program 

Subjects Recruitment 

Following the acquisition of ethical clearance from the HSESC, consent forms 

regarding the purpose of the research have been signed by participants before the 

experiment.  
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Figure 4.3 The flowchart of Consolidated Standards of Reporting Trials (CONSORT) 

for randomized trial design. 

 

Figure 4.3 depicts the presentation of the flowchart adhering to the CONSORT. The 

inclusion criteria of this study included: (a) age (years old): 30-75; (b) stroke lasting 

longer than six months, with unilateral brain lesion and motor impairment; (c) sufficient 

cognitive ability, demonstrated by a score higher than 21 on the MMSE; (d) scores 

lower than 3 on the MAS for elbow, wrist, finger; (e) FMA-UE score between 15 and 

45; (f) exhibiting detectable voluntary EMG signals in five upper extremity muscles, 

including ECU-ED, FCR-FD, BIC, TRI, APB; (g) capability to maintain a seated 

position for at least 60 minutes, with acceptable assistance if needed. The exclusion 

criteria were as follows: (a) botulinum toxin injection before six months; (b) current 
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use of medications or treatments that can affect muscle tone or upper limb motor 

function; (c) a history of substance or drug abuse; (d) participation in other studies 

related to upper limb motor function recovery; (e) pregnancy or plans to become 

pregnant during the study, or epilepsy; (f) allergies to electrodes or electrical stimulation; 

(g) the presence of metal implants or stimulators, including but not limited to 

pacemakers or deep brain stimulators. A random assignment was conducted to allocate 

all participants into two coherent: the tsES group and the control group. There were ten 

participants in each group. 

Training Protocol 

 

Figure 4.4 The timeline and configuration of the training protocol. (a) the timeline of 

the training protocol, including 20 training sessions and three evaluations at pre-, post-, 

and 3-month follow-up training. (b) the illustration of a stroke individual received trans-

spinal electrical stimulation when performing voluntary physical training. (c) the 

illustration of four types of voluntary physical training. 
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The timeline of the training protocol for both groups is depicted in Figure 4.4(a). The 

initial pre-training phase involved three consecutive days of clinical assessments 

conducted by two blinded assessors who were unaware of the group assignments. This 

process was to minimize any potential influence on motor performance caused by 

factors such as nervousness in stroke subjects, subjective judgments by the assessors, 

and other external factors [238]. Additionally, one CMC evaluation was performed 

before the training sessions. The second stage encompassed 20 training sessions. After 

the training, the post-training assessment stage was immediately conducted, which 

included one clinical assessment and one CMC evaluation. Finally, participants 

returned to the laboratory for a 3-month follow-up (3MFU) evaluation, which 

comprised one clinical assessment and one CMC evaluation. 

Each training session for stroke participants in both groups had a duration of 50 minutes 

and was divided into three phases: (1) 20 minutes of tsES stimulation combined with 

VPT in the tsES group (Figure 4.4(b)), while the control group performed VPT along 

with sham stimulation; (2) a 10-minute rest period was implemented to minimize the 

muscle fatigue and spasticity; (3) 20 minutes of VPT training without tsES for both 

groups, which ensured that the stimulation intensity applied to the cervical spine in the 

tsES group remained within a safe range [239]. During the first and third phases of each 

training session, the participant was instructed to engage the affected upper limb in 
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tasks that involved four different types of tools (Figure 4.4(c)): (a) stacking towers: the 

participant was required to open the hand, grasp rings of various sizes, and place each 

ring above the central hole of a stationary pedestal before releasing their grip; (b) 

stacking cups: the participant needed to sequentially insert smaller cups into larger cups 

until the most miniature cup was correctly positioned; (c) placing sticks: the participant 

was instructed to open the hand, grasp three differently sized sticks, and subsequently 

place these sticks into the corresponding holes located on a wooden board positioned 

on the desk; (d) grasping cubes: the participant used their fingers to grip cubes and then 

release them. Each type of task needed to be used at least once in both the first and third 

training phases.  

4.2.3 Training Effects Evaluation 

Clinical Assessment 

A comparative analysis was conducted between the tsES and control groups, focusing 

on various assessment measures. These measures encompassed the FMA in three 

distinct categories: full score, wrist/hand score, and shoulder/elbow score. Additionally, 

the MAS was utilized, which comprised three categories: finger, wrist, and elbow. Other 

assessment tools employed included the MSS, ARAT, FIM, WMFT scores, and WMFT 

time. To minimize the impact of different assessors on the clinical assessments, the 

same assessor was assigned to conduct the pre-, post-, and 3MFU-training assessments 

for each participant.  
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Cortico-muscular Coherence Evaluation 

To assess the CMC patterns during upper limb extension and flexion tasks, a data 

collection process was undertaken. Specifically, the EEG was recorded via 

sensorimotor cortex. Simultaneously, EMG was obtained from five distinct groups of 

upper limb muscles. To enhance the quality of the recorded signals, both the EEG and 

EMG data were augmented by applying the g.USBamp amplifier. The EEG underwent 

amplification with a multiplication factor of 10,000, whereas the EMG was augmented 

using the factor of 1,000. To ensure appropriate signal processing, the bandpass filter 

settings were 2-100 Hz for EEG signals and 10-500 Hz for EMG signals. 

Synchronization and recording of both EEG/EMG was achieved using the data 

collecting board, specifically at 1200 Hz sampling frequency. 

 

Figure 4.5 The timeline and visual interface of the wrist-hand motions for CMC 

evaluation. 

The timeline of the wrist-hand extension and flexion tasks during pre-, post-, and 3MFU 

training stages was presented in Figure 4.5(a). The initial step involved the acquisition 

of isometric maximal voluntary contraction (iMVC) EMG signals [62]. The participant 

received instructions to engage in iMVC for each of the five target muscles, sustaining 
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effort for five seconds. To minimize potential muscle fatigue, a 5-minute resting period 

was allowed. The iMVC EMG signals were collected three times, and the highest 

recorded value among the three trials was chosen as maximal EMG for every muscle. 

Following the iMVC acquisition, the participant randomly performed two types of tasks: 

extension and flexion for wrist and hand at a level in 40% iMVC level of agonist 

muscles (ECU-ED/FCR-FD for extension/flexion). Figure 4.5(b) displays the visual 

interface of extension and flexion tasks for wrist and hand. A customized operational 

interface was created using LABVIEW software (National Instruments Corp., USA). 

This interface displayed a colored spectrum on the computer screen, which represented 

the current level of EMG activation in real time. The spectrum ranged from 0% (green 

color) to 100% (red color), calculated using baseline and iMVC values of agonist 

muscles. Throughout the tasks, the contraction level of the agonist muscles (ECU-

ED/FCR-FD for extension/flexion) was continuously recorded and calculated. To 

provide feedback to the participant, a blue pointer was used on the interface, while two 

yellow pointers indicated the acceptable error range (±10%) for the tasks [182]. The 

𝐸𝑀𝐺>?$@A#>@+?$(+) was calculated as: 

 

Here, 𝐸𝑀𝐺+ represents the mean of the rectified EMG envelope of the agonist muscles 

i in a window of 0.1-second, while 𝐸𝑀𝐺!#%		 and 𝐸𝑀𝐺(#)"*+$"	  represent the 

corresponding average values during maximum force and at rest, respectively [183]. 
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Each trial was performed for 35 seconds, and after completing the first and second trials 

of each task, a 2-minute rest period was provided. The same rest period was given after 

completing the third and fourth trials. To mitigate potential artifacts caused by 

fluctuations at the end of the task, the final 5 seconds of each trial were excluded. Each 

trial's data series was segmented into 1200 data points using a 1-second window with a 

50% overlap. There were 55 segments within each trial, and a total of 275 trial epochs 

of EEG and EMG signals across the five trials for each participant. After preprocessing 

the EEG signals, the CMC was calculated to assess the connection pattern among the 

sensorimotor area with upper limb muscles. CMC value was derived using the 

following formulation: 

 

Here, 𝑃CCD,CFD(𝑓) represents cross-spectral density of EEG and EMG data, while 

𝑃CCD(𝑓) and 𝑃CFD(𝑓) represent the auto-spectral density of EEG and EMG data at 

frequency of 𝑓, respectively. The 𝐶𝑀𝐶CCD,CFD(G) value ranges from 0 to 1, indicating 

the strength of correlation between both signals, ranging from no correlation to a perfect 

correlation [160]. The preprocessing and calculation involving electrophysiological 

signals were executed via custom code implemented with toolbox of fieldtrip in 

MATLAB R2019b (http://www.fieldtrip.fcdonders.nl, The MathWorks Inc., Natick, 

MA, USA). To determine the statistical significance of the CMC value (p < 0.05), a 

http://www.fieldtrip.fcdonders.nl/
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confidence level (CL) was obtained via the formula: 

 

In this formula, L represents the number of trial epochs. If the calculated CMC value 

exceeds the threshold of 0.011, it suggests that the value of CMC is significant at p-

value < 0.05.  

Laterality Index 

Peak CMC values were then used to generate a hot spot map of the sensorimotor cortex 

to visually inspecting the brain lateralization, and the calculation of a laterality index 

was conducted using the following formula: 

 

Here, 𝐶𝑀𝐶+H)+*")+?$#*, 𝐶𝑀𝐶>?$@A#*")+?$#* 	, and 𝐶𝑀𝐶!+I)#J+@@#* correspond to largest 

CMC in ipsilesional hemisphere, contralesional hemisphere, and midsagittal line. 

Laterality index provides a measure of dominance between the hemispheres. If the 

calculated laterality index is greater than 1, it indicates that the ipsilesional hemisphere 

exhibits a predominant peak CMC value. Conversely, if the laterality index is smaller 

than 1, it suggests that the contralesional hemisphere demonstrates a predominant peak 

CMC value [190]. 

EMG Activation Level 
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The normalization of raw EMG activation level of each muscle was obtained with the 

baseline ( 𝐸𝑀𝐺(#)"*+$"(+) ) and iMVC level ( 𝐸𝑀𝐺!#%(+) ) of EMG signals of 

corresponding muscle. Subsequently, EMG activation level was calculated using 

formula (4.7): 

 

Here, normalized EMG signals of muscle i (𝐸𝑀𝐺K?A!#*+L"I(+) ) underwent linear 

envelope processing over a specific time interval (T) to produce 

∫ 𝐸𝑀𝐺K?A!#*+L"I(+)(𝑡)𝑑𝑡
M
= , which was further calculated to obtain normalized muscle 

i’s EMG activation level (𝐸𝑀𝐺N>@O"P"*(+)). 

4.2.4 Statistical Analysis 

 

Figure 4.6 The flowchart of the statistical analysis. 

 

The normality of the collected parameters, including clinical assessments, CMC, 

laterality index, and EMG activation level, was examined using the Shapiro-Wilk test. 
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The statistical results suggested that the FMA, MSS, ARAT, WMFT, CMC, laterality 

index, and EMG activation level exhibited a distribution of normality (P > 0.05), and 

the MAS and FIM scores demonstrated a distribution of non-normality (P < 0.05). For 

the parameters following a normal distribution, an independent t-test confirmed no 

significant difference (P > 0.05) in the assessments before the training intervention. To 

evaluate the effects of the group (experimental or control) and session (pre-, post-, and 

3MFU) factors on the measured outcomes, a two-way ANCOVA was employed, with 

pre-intervention scores serving as covariates. To compare the differences within each 

group across various time points, a one-way ANOVA was conducted, and Bonferroni 

correction method was applied. Additionally, a post hoc between-group comparison 

was conducted using a one-way ANCOVA by using pre-intervention scores as the 

covariate, analyzing outcomes at the post-intervention and 3MFU time points. The 

Friedman test was applied to assess the intragroup variations at various time points for 

the parameters that did not exhibit a normal distribution (specifically, the MAS and FIM 

scores). Subsequently, we used a Bonferroni post-hoc test to examine these variations 

in detail. Quade's ANCOVA was performed to assess intergroup differences at the post-

intervention and 3MFU time points, with pre-intervention scores utilized as covariates. 

A statistical significance level of 0.05 was utilized as the threshold to determine the 

presence of statistical significance, serving as a benchmark for evaluating the observed 

results. 
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4.3 Results 

4.3.1 Clinical Assessment 

 

Figure 4.7 The clinical scores assessed prior to the initial training session and after the 

completion of 20 training sessions, as well as during 3MFU for both tsES and control 

groups: (a) FMA full score, wrist/hand score, and shoulder/elbow score, (b) MAS score 

at the finger, the wrist, and the elbow, (c) WMFT score and time, (d) MSS, ARAT, and 

FIM. Each evaluation session is presented with the mean value accompanied by the 

standard error (SE). 

Figure 4.7 displays the clinical scores compared between tsES group and control group 

in three stages. The overall statistical data was presented in Table 4.1. Significant 

variations were evident concerning the grouping and assessment sessions in both the 

FMA total score and FMA wrist/hand score, as indicated by the statistical analysis (P < 

0.05, Two-way ANCOVA, see Table 4.1). Within the tsES group, FMA full score 

showed significant differences among the different evaluation sessions (P < 0.01, One-
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way ANCOVA, Table 4.1). More specifically, significant improvements were noted in 

both the FMA total score and FMA wrist/hand sub-scores, demonstrating a substantial 

increase from the pre-training to post-training session (P < 0.05, Table 4.1). 

Furthermore, a significant enhancement in the FMA total score was noted between pre-

training session and the 3MFU evaluation (P < 0.01, Table 4.1). In contrast, within 

control group, no significant differences were found among the three FMA score 

categories in relation to the session factor (P > 0.05, Table 4.1). In addition, a 

statistically significant disparity in FMA total score during post-training stage was 

observed between two groups (P < 0.05, Table 4.1). The above pairwise comparison 

was conducted using One-way ANOVA with Bonferroni post hoc tests. 

In Figure 4.7(b), significant reductions were observed in MAS scores of fingers, wrist, 

elbow in group of tsES both before and after training period (P < 0.01, Table 4.1). This 

decline in scores was also evident when comparing the pre-training session to the 

3MFU evaluation (P < 0.05, Table 4.1). Conversely, within the control group, no 

notable differences were found in the three MAS sub-scores based on the session factor 

(P > 0.05, Table 4.1). The above pairwise comparison was conducted using Friedman 

test with Bonferroni post hoc tests. Furthermore, when examining the MAS wrist score 

between the tsES and control groups at the 3MFU stage, a statistically significant 

distinction was observed (P < 0.05, Quade's ANCOVA, Table 4.1).  

The statistical analysis revealed a significant impact of the group factor on both the 
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WMFT-score and time (P < 0.05, Two-way ANCOVA, Table 4.1, Figure 4.7(c)). When 

comparing the pre- and post-training assessments as well as the pre-training and 3MFU 

assessments, the tsES group exhibited a notable rise in WMFT-score and a fall in 

WMFT-time (P < 0.05, Table 4.1). Conversely, no significant differences were obtained 

within group of control in relation to session factor (P > 0.05, Table 4.1). There was a 

significant intergroup variance at both the post-training and 3MFU time points (P < 

0.05, Table 4.1). Figure 4.7(d) illustrates the MSS, ARAT, and FIM scores. In both 

groups, the ARAT score increased significantly from pre-training to post-training (P < 

0.05, Table 4.1). The above pairwise comparison was conducted using One-way 

ANOVA with Bonferroni post hoc tests. Furthermore, the results obtained from MSS 

and ARAT did not reveal any session- or group-specific differences (P > 0.05, Two-way 

ANCOVA, Table 4.1).
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Table 4.1 The average and standard error, and statistical analyses of clinical assessments. 

Measurement Group 
Pre Post 3MFU 

One-way 
ANOVA 

Two-way Repeated Measures ANCOVA 

Session Group S*G 

Mean ± Standard Error P (Partial 𝜼𝟐) P (Partial 𝜼𝟐) 

FMA-full score 
tsES 37.9±3.0 42.9±3.4 41.2±2.9 0.008**(0.354) 

0.009**(0.286) 0.028*(0.211) 0.957(0.000) 
Control 37.6±3.8 36.5±4.0 37.2±3.9 0.861(0.013) 

 
P(Partial 
𝜂") 

0.946(0.017) 0.020*(0.231) 0.072(0.146) 
    

FMA-wrist/hand tsES 17.6±1.7 20.8±1.8 19.9±1.1 0.099(0.190) 
0.009**(0.282) 0.078(0.141) 0.807(0.003) 

 Control 16.7±1.9 16.7±2.0 17.0±2.0 0.830(0.017) 

 
P(Partial 
𝜂") 

0.747(0.077) 0.058(0.020) 0.195(0.079)   
  

FMA-
shoulder/elbow 

tsES 20.8±2.2 19.8±2.2 20.3±2.2 
0.692(0.033) 

0.079(0.140) 0.065(0.153) 0.755(0.005) 
 Control 20.1±1.8 22.3±2.1 21.3±2.1 0.122(0.174) 

 
P(Partial 
𝜂") 

0.514(0.075) 0.033*(0.199) 0.196(0.078)  
   

MAS-finger tsES 1.8±0.2 1.2±0.2 1.2±0.2 0.009## 
-- -- -- 

 Control 1.9±0.2 1.6±0.2 1.6±0.3 0.494 
 P 0.523 0.242 0.198     

MAS-wrist tsES 1.5±0.1 1.0±0.2 1.1±0.2 0.006##  
-- -- -- 

 Control 1.8±0.2 1.5±0.2 1.7±0.2 0.486  
 P 0.117 0.043# 0.089     

MAS-elbow tsES 2.3±0.2 1.6±0.2 1.7±0.2 0.010#  -- -- -- 
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 Control 2.1±0.2 1.9±0.2 1.9±0.2 0.273 
 P 0.502 0.443 0.378     

WMFT-score tsES 3.2±0.2 3.7±0.2 3.9±0.2 0.000**(0.745) 
0.096(0.127) 0.007**(0.296) 0.518(0.020) 

 Control 3.2±0.2 3.4±0.2 3.4±0.2 0.211(0.132) 

 
P(Partial 
𝜂") 

0.937(0.026) 0.010*(0.276) 0.016*(0.248)     

WMFT-time tsES 36.9±5.3 25.9±3.9 20.7±3.3 0.000**(0.621) 
0.267(0.058) 0.001**(0.418) 0.227(0.069) 

 Control 38.0±6.4 36.2±6.1 36.8±6.0 0.684(0.034) 

 
P(Partial 
𝜂") 

0.892(0.043) 0.007**(0.298) 0.002**(0.385)     

MSS tsES 27.7±1.7 28.9±2.0 29.4±2.0 0.079(0.206) 
0.875(0.001) 0.655(0.010) 0.098(0.125) 

 Control 25.5±2.3 24.9±2.4 25.0±2.6 0.762(0.024) 

 
P(Partial 
𝜂") 

0.435(0.191) 0.099(0.124) 0.693(0.008)   
  

ARAT tsES 27.3±2.4 34.2±2.9 34.5±2.4 0.005**(0.386) 
0.392(0.035) 0.687(0.008) 0.050(0.171) 

 Control 22.8±2.4 25.8±3.0 26.4±3.6 0.042*(0.250) 

 
P(Partial 
𝜂!) 

0.285(0.303) 0.384(0.037) 0.077(0.141)     

FIM tsES 66.3±0.4 66.4±0.2 66.4±0.3 0.422 
-- -- -- 

 Control 66.0±0.3 66.1±0.3 66.0±0.4 0.878 
 P 0.497 0.410 0.514     

Note: The observed differences are denoted as follows: ‘*’ for P < 0.05 and ‘**’ for P < 0.01 (One-way ANOVA with Bonferroni post hoc 

tests); ‘#’ for P < 0.05 and ‘##’ for P < 0.01 (Friedman test with Bonferroni post hoc tests).
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4.3.1 Cortico-muscular Coherence 

 

(a) 

 

(b) 

Figure 4.8 The cortico-muscular coherence during the extension (a) and flexion (b) 

tasks in wrist and hand before initial training sessions, after 20 training sessions, and at 

the 3MFU for both the tsES and control groups. 

 

Figure 4.8 depicts the CMC values of five upper limb muscles (ECU-ED, FCR-FD, 

BCI, TRI, and APB) across two motion tasks (extension and flexion) during three 

different sessions (pre-training, post-training, and 3MFU). Table 4.2 and Table 4.3 
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present the detailed CMC values, including the probabilities of Two-way ANCOVA 

(session and group factor), One-way ANOVA (session factor), and One-way ANCOVA 

(group factor). For wrist-hand extension task (Figure 4.8(a)), the study observed 

significant differences in the CMC values of muscles when considering the session 

factor (Two-way ANCOVA, Table 4.2). Specifically, significant disparities were 

detected among the FCR-FD muscle, BIC muscle, and TRI muscle regarding the 

session factor (P < 0.05). APB muscle exhibited significant differences in session factor 

(P < 0.001) and in interaction among session and group factors (P < 0.05). Furthermore, 

a noteworthy variance in CMC values across sessions for the FCR-FD muscle, TRI 

muscle, and BIC muscle in group of tsES (P < 0.05, One-way ANOVA, Table 4.2). 

Notably, a decrease in CMC values was observed when comparing the pre-training and 

post-training assessments for FCR-FD, TRI, and APB muscles (P < 0.05, Table 4.2). 

Additionally, a reduction in CMC values was noted in FCR-FD, BIC, TRI, and APB 

muscles between pre-training and 3MFU assessments (P < 0.05, Table 4.2). In 

reference to wrist-hand flexion task (Figure 4.8(b)), the CMC values of the ECU-ED 

and BCI muscles showed significant differences concerning the session factor (P < 0.05, 

Two-way ANCOVA, Table 4.3). Furthermore, in group of tsES, significant differences 

for CMC values were observed for the ECU-ED, FCR-FD, TRI, and BIC muscles 

across different sessions (P < 0.05, One-way ANCOVA, Table 4.3). Moreover, a 

significant decrease was indicated in CMC values for the ECU-ED and BIC from the 

pre-training to post-training assessments (P < 0.05, Table 4.3). Similarly, all five 
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muscles except for FCR-FD exhibited a significant decline in values of CMC when 

comparing pre-training and 3MFU assessments (P < 0.05, Table 4.3). However, no 

significant variations were observed in control group across the five muscles 

concerning the session factors (P > 0.05, Table 4.2 & 4.3). The above pairwise 

comparison was conducted using One-way ANOVA with Bonferroni post hoc tests. 

Table 4.2 The mean and standard error, and the statistical analyses of cortico-muscular 

coherence during wrist-hand extension. 

 

Note: The observed differences are denoted as follows: ‘*’ for P < 0.05 and ‘**’ for P 

< 0.01 (One-way ANOVA with Bonferroni post hoc tests). 
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Table 4.3 The mean and standard error, and the statistical analyses of cortico-muscular 

coherence during wrist-hand flexion. 

 

Note: The observed differences are denoted as follows: ‘*’ for P < 0.05 and ‘**’ for P 

< 0.01 (One-way ANOVA with Bonferroni post hoc tests). 

 

4.3.2 Cortico-muscular Coherence Topography 

Figure 4.9 illustrates the CMC topographies of two left hemiplegia stroke participants, 

who were chosen as representative cases, during different training periods (pre-training, 

post-training, and 3MFU) when performing two wrist-hand motor tasks (extension and 

flexion). For wrist-hand extension task, it was observed that upper extremities muscles 

of individuals in tsES group displayed a noteworthy shift in the peak channel of CMC 

activation. Specifically, there was a relocation of the peak channel of CMC from left 

hemisphere (contralesional) to right hemisphere (ipsilesional). Specifically, the ECU-

ED muscle moved from CZ to FC3 to C4, and the FCR-FD muscle moved from CP1 



 

111 

to FC6 to CPZ (Figure 4.9(a)). Furthermore, the TRI muscle moved from CP3 to FC6 

to CP1 during the three phases of training. For the wrist-hand flexion task, a similar 

shifted pattern was also observed: the ECU-ED muscle shifted from CZ to FC6 to C1, 

and the FCR-FD muscle shifted from CZ to FCZ to CP4 (Figure 4.9 (a)). The 

unimpaired participant did not exhibit clear patterns of alterations in the shift of CMC 

peak channel (Figure 4.9 (b)).  

 

Figure 4.9 The CMC topographies of upper limb muscles during wrist-hand motions 

in two representative stroke subjects with left hemiplegia from (a) tsES group and (b) 

control group, respectively. 
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Figure 4.10 The laterality index before initial training sessions, after 20 training 

sessions, as well as 3MFU in both tsES and control groups during wrist-hand extension 

and flexion. 

 

Figure 4.10 shows the laterality index of CMC for upper limb muscles in both tsES 

group and control group. Table 4.4 presents detailed laterality index values, including 

two-way ANCOVA probabilities for session and group factors, one-way ANCOVA 

probabilities for session factor, and one-way ANCOVA probabilities for group factor. 

During the wrist-hand extension task depicted in Figure 4.10, noteworthy disparities 

were observed in the laterality index of three muscles: ECU-ED, FCR-FD, and TRI. 

These disparities were detected in relation to the session factor, as well as the 

interactions between session and group factors (p < 0.05, Two-way ANCOVA, Table 

4.4). Significant variations in the laterality index of the ECU-ED, FCR-FD, and TRI 

muscles were observed across multiple sessions within the tsES group (One-way 

ANOVA, Table 4.4). These differences encompassed the laterality index values from 

pre- and post-training assessments for the ECU-ED and FCR-FD muscles (P < 0.05, 
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Table 4.4). Additionally, laterality index exhibited significant differences from pre-

training to the 3MFU assessments for the ECU-ED and TRI muscles (P < 0.05, Table 

4.4). In contrast, unimpaired participants demonstrated a significant increase solely in 

FCR-FD muscle when comparing pre-training and 3MFU assessments (P < 0.05, Table 

4.4). Regarding flexion task in wrist and hand depicted in Figure 4.10, the laterality 

index values of the ECU-ED and TRI muscles exhibited noteworthy differences for 

session factor (P < 0.05, Two-way ANCOVA, Table 4.4). Overall, our findings indicate 

significant disparities in the laterality index of ECU-ED muscle, FCR-FD muscle, and 

TRI muscle across various sessions within the tsES group (One-way ANOVA, Table 

4.4). Specifically, ECU-ED and TRI muscles experienced a significant increase in the 

laterality index when comparing the pre-training and post-training assessments (P < 

0.05, Table 4.4). However, no significant changes in the upper limb muscles were 

observed between training sessions within the control group (P > 0.05, Table 4.4). The 

above pairwise comparison was conducted using One-way ANOVA with Bonferroni 

post hoc tests. 
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Table 4.4 The average and standard error, and the statistical analyses of laterality index 

during extension and flexion of wrist and hand. 

 

Note: The observed differences are denoted as follows: ‘*’ for P < 0.05 and ‘**’ for P 

< 0.01 (One-way ANOVA with Bonferroni post hoc tests) 

 

4.3.3 EMG Activation Level 

Figure 4.11 visually illustrates activation levels of EMG in upper limb muscles for both 

groups. The comprehensive data regarding the precise values of EMG activation levels 

were presented in Table 4.5 and Table 4.6. These values encompass probabilities for 

the two-way ANCOVA (session factor/group factor) and separate one-way ANCOVA 

probabilities (session factor/group factor). Notably, in the context of the wrist-hand 

extension tasks illustrated in Figure 4.11(a), the session factor revealed significant 

discrepancies in activation levels for EMG in FCR-FD and proximal muscles (BIC and 
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TRI) (P < 0.05, Two-way ANCOVA, Table 4.5). Moreover, a significant distinction in 

activation levels for EMG in FCR-FD and proximal muscles (BIC and TRI) was 

observed across sessions within the tsES group (P < 0.05, One-way ANOVA, Table 

4.5). Furthermore, the assessment between pre-training and post-training periods 

demonstrated a noteworthy decrease in activation levels for EMG for FCR-FD muscle, 

BIC muscle, TRI muscle, and APB muscle (P < 0.05, Table 4.5). In a similar vein, a 

substantial reduction in EMG activation levels of the FCR-FD muscle, BIC muscle, and 

TRI muscle was obtained between the pre-training and 3MFU evaluations (P < 0.05, 

Table 4.5).  

Within wrist-hand flexion tasks (Figure 4.11(b)), the activation level of EMG for ECU-

ED, BCI, APB displayed significant variations in relation to session factor (P < 0.05, 

Two-way ANCOVA, Table 4.6). Similarly, when considering tsES group, ECU-ED, 

BCI, and APB muscles exhibited significant differences within the session factor (P < 

0.05, Table 4.6). Specifically, a significant decrease in activation levels of EMG for 

ECU-ED and BIC muscles was observed from pre-training phase to the post-training 

phase (P < 0.05, Table 4.6). Furthermore, activation levels of EMG for ECU-ED, BIC, 

TRI, APB muscles displayed a significant decrease from the pre-training phase to the 

3MFU phase (P < 0.05, Table 4.6). Conversely, no significant variations were observed 

in the upper extremities’ muscles of the unimpaired group by the session factors (P > 

0.05, One-way ANOVA with Bonferroni post hoc tests, Table 4.5 & 4.6). The above 
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pairwise comparison was conducted using One-way ANOVA with Bonferroni post hoc 

tests. 

 

(a) 

 

(b) 

Figure 4.11 The EMG activation level during the extension (a) and flexion (b) tasks in 

wrist and hand before initial training sessions, after 20 training sessions, and at the 

3MFU for both the tsES and control groups. 
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Table 4.5 The mean and standard error, and the statistical analyses of EMG activation 

level during wrist-hand extension. 

 

Note: The observed differences are denoted as follows: ‘*’ for P < 0.05 (One-way 

ANOVA with Bonferroni post hoc tests). 

 

Table 4.6 The mean and standard error, and the statistical analyses of EMG activation 

level during wrist-hand flexion. 

 

Note: The observed differences is denoted as follows: ‘*’ for P < 0.05 and ‘**’ for P < 

0.01 (One-way ANOVA with Bonferroni post hoc tests). 
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4.4 Discussion 

The primary objective for this research endeavor was to examine the impact of 

integrating tsES with VPT in the upper limb motor rehabilitation among chronic stroke 

individuals. To achieve this objective, a clinical trial was implemented, employing a 

comparative analysis of the effects produced by the combination of tsES and VPT 

versus the use of VPT alone. Various parameters were measured during different 

evaluation sessions, namely before training, after training, and 3MFU. These 

measurements encompassed clinical assessments, CMC, laterality index, and activation 

level of EMG. The findings revealed that the group receiving tsES with VPT 

demonstrated more favorable outcomes in terms of motor performance and muscle tone. 

This combined intervention improved the cortical and muscular control of distal 

muscles while reducing the compensatory use of proximal muscles. The mechanisms 

underlying these improvements involved enhanced excitability of spinal neural circuits 

due to cervical tsES, as well as increased responsiveness of residual excitatory and 

inhibitory pathways from the ipsilesional hemisphere. 

4.4.1 Training Effectiveness on Upper Limb Motor Functions 

The effectiveness of tsES training was indicated by the improvements in upper limb 

functional outcomes and releasement in muscular spasticity. Our findings showed that 

the stroke individuals who received tsES exhibited elevated motor performance based 

on clinical evaluations, including FMA, WMFT, and ARAT. More specifically, the 
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FMA-full score was increased significantly across different evaluation time points 

(Figure 4.7(a) & Table 4.1). The FMA graded selective upper limb movements, 

ranging from abnormal voluntary synergy movements to fractionated and isolated joint 

movements [240]. It has been consistently recognized as a reliable indicator of motor 

impairment severity after stroke [240]. Higher FMA motor scores in the upper limb for 

the tsES group were associated with reduced motor impairments and increased ability 

to perform isolated joint movement [241]. Notably, significant differences were 

observed in both intra-group comparisons across evaluation time points and inter-group 

comparisons across the group factor for WMFT-time and WMFT-score (Figure 4.7(c) 

& Table 4.1). The WMFT measures post-stroke upper limb motor abilities through 

time-based and multiple-joint functional tasks [242]. The significant decrease in 

WMFT-time indicated that stroke patients with tsES were able to complete complex 

motions and functional tasks at a higher movement speed compared to the participants 

without tsES [243, 244]. Although the ARAT scoring of control group with VPT 

showed a similar significant increase from pre-training to post-training evaluation, 

similar to the tsES group, it is noteworthy that the tsES group demonstrated an 

additional significant increase in ARAT scores from the post-training to the 3MFU 

evaluation (Figure 4.7(d) & Table 4.1). This finding suggests the presence of 

significant and enduring effects resulting from the integration of tsES in the 

rehabilitation process. The ARAT used standardized equipment (e.g., woodblocks, alloy 

tubes, and marbles) to assess the hand and arm movements (e.g., grasp, grip, and pinch) 
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[245]. The significant increase in the ARAT scores of 3MFU evaluation demonstrated 

that the stroke participants with tsES achieved sustained improvement in the 

performance of purposeful upper limb motor activities [246]. In addition to the 

functional outcomes' improvement, stroke individuals who received tsES experienced 

a significant reduction in muscular spasticity in the upper limb, as indicated by 

decreased MAS scores in the finger, wrist, and elbow (Figure 4.7(b) & Table 4.1). The 

MAS could evaluate the reflex activities elicited in specific muscles during resistance 

to the passive movement [247]. The significant decrease in MAS scores after 

intervention with tsES indicated that the stroke patients had lower muscle tone. This 

reduction in muscle tone facilitated smoother and more effortless movement of affected 

upper extremity throughout its entire motion range, as compared with control group 

[248]. The observed motor recovery and muscle spasticity releasement revealed by 

these clinical assessments could be attributed to the cortical reorganization in and 

around lesion areas. This cortical reorganization could involve an increase in both the 

quantity and density of dendrites’ synapses, as well as the unmasking of latent neural 

networks [249]. The functional recovery indicated by these clinical assessments 

suggested that cervical spinal electrical stimulation assisted stroke individuals in 

enhancing the effectiveness of regaining independence in activities of daily living [250, 

251]. 
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4.4.2 Improved Cortical and Muscular Control of Distal Upper Limb 

The Inhibitory Control of Antagonist Muscles 

In the stroke participants who received tsES, an improvement in inhibitory control from 

the sensorimotor cortex to the antagonist muscles was observed, as evidenced by a 

significant decrease in CMC (e.g., FCR-FD in extension and ECU-ED in flexion) 

during post-training and 3MFU evaluations (Figure 4.8, Table 4.2 & 4.3). The primary 

neurophysiological mechanism driving the improvement was the increased excitability 

of the spinal neural circuits due to the cervical tsES [194]. This excitation provided 

additional neuromodulatory input to the motor recovery, complementing the effects of 

pure physical therapy interventions [252]. Previous studies utilizing computational 

modeling to construct the induced electric field by the spinal current stimulation have 

demonstrated that the increased excitability of spinal networks occurs through the 

activation of dorsal root afferents [253, 254]. The activation of sensory afferents via 

dorsal roots could recruit spinal interneuronal circuitry across the multiple segments of 

the spinal cord, augmenting the responses from the “silent” residual descending 

inhibitory pathways [255]. Our findings align with this observation, as our results 

demonstrated a significant elevation in the laterality index within the antagonist 

muscles (Figure 4.8 & Table 4.4), indicating the relocation in the cortical control center 

from the contralesional side to the ipsilesional side (Figure 4.8). Moreover, empirical 

studies utilizing EMG in human subjects have provided evidence that the targeted 
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dorsal root activation through cervical tsES could increase the motor axons’ excitability 

in ventral roots by trans-synaptic transmission [256]. This direct activation of motor 

pools that innervate the upper extremity muscles plays a significant role in modulating 

the sensory-motor pathways [256]. Therefore, the inhibitory control toward antagonist 

muscles during voluntary motions was increased. This aligns with the distinct reduction 

in activation levels of EMG for distal antagonist muscles in extension and flexion 

motion tasks of wrist and hand (Figure 4.11, Table 4.5 & 4.6). 

The Excitatory Control of Agonist Muscles 

Although the cortical control to the agonist muscles did not show a significant increase 

in CMC after tsES, the laterality index of these muscles significantly increased after 20 

training sessions following tsES (Figure 4.8 & Table 4.4). This suggested that cervical 

spinal circuitry stimulation also amplifies the responsiveness of residual excitatory 

control signals from the ipsilesional hemisphere to the agonist muscles. However, the 

insufficient activation of alpha motoneurons limited the effects of the cortical control 

from the cortex to the agonist muscles, resulting in a failure to induce the muscle 

responses [257]. Alpha motoneurons in the upper limb muscles were affected by the 

chronic stroke, including factors such as the location and severity of the stroke, the type 

and duration of the rehabilitation [151]. In uninjured individuals, there is a balance 

between the activation of alpha motoneurons in agonist and antagonist muscles, 

allowing for smooth coordination of upper limb movements [258]. Stroke lesions could 
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damage the connection between alpha motoneurons and the descending neural tracts, 

leading to reduced activation of agonist alpha motoneurons and increased activation of 

antagonist alpha motoneurons (i.e., muscle weakness and spasticity) [151, 258]. The 

abnormal structural changes and degeneration of alpha motoneurons would occur in the 

process of chronic stroke, particularly in the agonist muscles [259]. These agonist alpha 

motoneurons experience impaired abilities to generate action potentials and transmit 

contraction signals to the corresponding muscles [260]. Consequently, the agonist 

muscles became less sensitive to the residual excitatory control signals from the 

ipsilesional hemisphere, even when amplified by the non-invasive cervical spinal cord 

electrical stimulation. 

4.4.3 Reduced Compensatory Effects from Proximal Upper Limb 

The stroke participants with tsES demonstrated a reduction in reliance on compensatory 

effects during extension and flexion motions of wrist and hand. This was evidenced by 

a significant reduction in the levels of activation obtained in proximal muscles 

(TRI/BIC muscles), as measured by parameters: CMC and activation levels of EMG. 

(Figure 4.8, Table 4.2 & 4.3). The compensation strategies from the proximal upper 

limb muscles occur because of stroke-related damages to the ipsilesional brain regions 

responsible for executing motor control of distal muscles such as primary motor cortex 

[49]. Compared to distal upper extremities muscles, the proportion of descending neural 

pathways originating from the hemisphere opposite to the side of the stroke and 
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innervating proximal upper extremity muscles is more significant [261]. It indicated 

that proximal muscles were less affected by stroke lesions [261]. However, proximal 

compensation strategies could have negative consequences for long-term upper limb 

motor function recovery, such as joint deformities, nerve compression [4]. With the 

application of cervical tsES, the remaining descending inhibitory control from the 

ipsilesional hemisphere to the motor pools of proximal muscles was augmented via 

activating the preferentially sensory and motor roots in the intact spinal circuits [262]. 

The significantly increased laterality index observed in this study (Figure 4.8 & Table 

4.4) provided evidence that the descending neural tracts innervating the proximal 

muscles have shifted to the ipsilesional hemisphere. This observation aligns with prior 

research studies that have consistently shown the effectiveness of cervical tsES in 

enhancing wrist-hand function and reducing shoulder compensatory movements in SCI 

people by modulating the corticospinal tract (CST) and augmenting the responses from 

the cortex [263]. Consequently, the application of cervical tsES can effectively engage 

sensory-motor pathways, leading to the activation of motor pools that innervate the 

proximal muscles of the upper limb. 

4.5 Periodic Summary 

In this study, the rehabilitation effects of combining non-invasive cervical spinal cord 

electrical stimulation with physical therapy on the motor restoration of affected upper 

limbs in chronic stroke individuals were investigated. The clinical scores indicated the 
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effectiveness of tsES training by the improvement in upper limb functional outcomes 

and releasement in muscular spasticity. The relocation of the peak CMC to the 

ipsilesional sensorimotor cortex in the distal upper limb muscles demonstrated that tsES 

could augment the responsiveness from residual excitatory and inhibitory descending 

pathways by elevating the excitability of spinal cord. The observed decrease in CMC 

and activation levels of EMG in upper limb muscles of proximal side suggested a 

decrease in compensation influence of cortical and muscular side. The improved 

outcomes proved the advantage of tsES as an assistant approach to physical 

rehabilitation interventions in facilitating long-term upper limb motor recovery among 

chronic stroke individuals. 
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CHAPTER 5 

CONCLUSIONS 

Post-stroke rehabilitation places significant emphasis on evaluating and recovering 

sensorimotor function in the upper limb. One potential approach to assess post-stroke 

sensory impairments is through the use of neuroimaging data-driven machine learning, 

which can help reduce the labor-intensive workload associated with manual evaluation 

conducted by healthcare professionals. Furthermore, non-invasive neuromodulation 

techniques targeting UE motor function could offer a novel assistive strategy to enhance 

neuro-reorganization in the affected side of the brain. To explore these possibilities, 

three experiments were conducted in this study: (i) development of a novel EEG-based 

SVM-ML model to automatically evaluate fine tactile sensation impairments in post-

stroke individuals; (ii) evaluation of instant influences of tsES in cortico-muscular 

control coupling in voluntary contractions of upper limb muscles; (iii) investigation of 

the rehabilitation influences of tsES on UE motor recovery in affected side stroke 

patient. 

The initial experiment carried out in this study involved the development of an EEG-

based SVM-ML model specifically designed to evaluate impairments in fine tactile 

sensation. The SVM-ML model utilized average and maximal RSP values extracted 

from the EEG signals as inputs. The results demonstrated significant differences in 

accuracies across fabric stimulations in higher frequency bands (beta/gamma), 
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indicating the potential of the SVM-ML model for automatically evaluating post-stroke 

fine tactile sensations and its alignment with a manual assessment of cortical responses 

for textile stimulations. 

In the second experiment of the study, the instant influences of tsES in cortical and 

muscular signals of voluntary upper limb movements were investigated in individuals 

with chronic stroke. The findings revealed that tsES results in a statistically increase in 

CMCoh and LI for agonist distal muscles, a decrease in activation levels of EMG in 

antagonist distal muscle and proximal UE muscles, and an increase in the LI of the 

proximal UE muscles.  

The third experiment of the study involved the implementation of a randomized clinical 

trial to explore training influences of tsES on upper limb motor recovery for individuals 

poststroke. The tsES group demonstrated significant differences in the evaluated 

outcomes throughout the training sessions. There were significant enhancements 

observed in the clinical assessments, including FMA and MAS, indicating enhanced 

motor function and released muscle spasticity. The laterality index of distal and 

proximal muscles also showed a significant increase, while the CMCoh and EMG 

activation levels of antagonist distal muscles and proximal muscles decreased 

significantly.  

In conclusion, the EEG-based SVM classification model demonstrated potential for 

automating the assessment of fine tactile sensations after stroke, offering a more 
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efficient and objective assessment method. The combination of non-invasive cervical 

tsES with VPT in chronic stroke patients resulted in significant improvements in upper 

limb functionality and reduction in muscular spasticity. The tsES intervention 

facilitated enhanced responsiveness of residual descending pathways, increasing spinal 

cord excitability, and mitigating compensatory effects in proximal upper limb muscles, 

suggesting its potential as an adjunctive approach for long-term upper limb motor 

function recovery in chronic stroke rehabilitation. 

We will undertake further research focusing on the following four aspects: 

 

(1) Investigation of fine-tuned SVM-ML models (Chapter 2) that facilitate the 

automatic evaluation of sensory functions alteration under tsES (Chapter 3).  

(2) Implementation of deep learning methods to analyze the time series data obtained 

during the evaluation of the rehabilitative effects of tsES combined with VPT (Chapter 

4). By leveraging these advanced techniques, we aim to extract valuable insights and 

make accurate prognosis predictions, which can greatly contribute to personalized 
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treatment approaches. 

(3) Expansion of our data collection efforts to include additional quantified and 

objective parameters, such as descending CMCoh, ascending CMCoh, and functional 

connectivity (Chapter 3). Investigation of optimization in personalized tsES stimulation 

parameters and shifted patterns in different lesional locations and impairments level 

(Chapter 3). These parameters will play a crucial role in deepening our understanding 

of both immediate effects of tsES and rehabilitation effects of tsES combined with VPT.  

(4) Exploration of the rehabilitation effectiveness achieved by incorporating revised 

sensorimotor relearning strategies into tsES specifically targeted at lesioned side of 

persons suffering from chronic stroke (Chapter 4). The investigation aims to uncover 

novel strategies for enhancing rehabilitation outcomes and improving the quality of life 

for these individuals. 
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APPENDICES 

Appendices A: Clinical Assessments for Upper Extremity 

A-1: Mini-mental State Examination (MMSE) 
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Form adopted from:   

http://www.heartinstitutehd.com/Misc/Forms/MMSE.1276128605.pdf 

 

 

 

 

 

 

 

http://www.heartinstitutehd.com/Misc/Forms/MMSE.1276128605.pdf
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A-2: Modified Ashworth Scale (MAS) 
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Form adopted from:  

https://www.sralab.org/sites/default/files/2017-

06/Modified%20Ashworth%20Scale%20Instructions.pdf 
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A-3: Motor Status Score (MSS) 
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Form adopted from:  

https://journals.sagepub.com/doi/abs/10.1177/154596830201600306 

 

 

 

 

 

 

 

 

https://journals.sagepub.com/doi/abs/10.1177/154596830201600306
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A-4: Fugl-Meyer Assessment for Upper Extremity (FMA-UE) 
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Form adopted from: 

https://www.gu.se/en/neuroscience-physiology/fugl-meyer-assessment  

https://www.gu.se/en/neuroscience-physiology/fugl-meyer-assessment


 

140 

A-5: Action Research Arm Test (ARAT) 
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Form adopted from: 

https://faculty.ksu.edu.sa/sites/default/files/action_research_arm_test.pdf 

 

 

 

 

 

 

https://faculty.ksu.edu.sa/sites/default/files/action_research_arm_test.pdf
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A-6: Functional Independence Measurement (FIM) 

 

 

Form adopted from:  

https://www.physio-pedia.com/Functional_Independence_Measure_(FIM) 

https://www.physio-pedia.com/Functional_Independence_Measure_(FIM)
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A-7: Wolf Motor Function Test (WMFT) 
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Form adopted from:  

https://strokengine.ca/en/assessments/wmft/ 

 

 

 

 

 

 

 

 

 

https://strokengine.ca/en/assessments/wmft/
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Appendices B: Consent Form for Chapter 3 and Chapter 4 
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