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ABSTRACT

Upper extremity (UE) sensorimotor impairments are a significant cause of post-stroke
long-term disability. Sensory deficits can impact motor outcomes and hinder
participation in daily activities. However, sensory impairments are often ignored in
traditional practices because of the lack of reliable measures. Manual measurements
depend on subjective experiences, which are hard to maintain consistently across a
larger stroke population. To address this issue, electroencephalography (EEG) has been
used to identify transient sensory neural responses and provide objective data for
sensory impairments. However, its interpretation still relies heavily on human
professionals, a process that can be both time-consuming and labor-intensive given the
large amount of data generated. Machine-learning (ML) techniques, specifically
support vector machine (SVM) models with kernel functions, can help reduce the
burden of analyzing neuroimaging data. These models can automatically analyze
massive amounts of data and make predictions. However, the automatic evaluation of
EEG data in post-stroke sensory impairments using SVM techniques is yet to be fully

investigated.

In addition to the sensorimotor evaluation, conventional physical training is the usual
therapy for motor recovery after stroke, along with sensorimotor evaluation. These
therapies require intensive and repeated exercises to improve sensorimotor function.
However, they do not produce significant long-term results. This may be due to the

inadequate central nervous system (CNS) stimulation for neuronal changes.
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Noninvasive stimulation of the spinal cord, such as trans-spinal electrical stimulation
(tsES), aims to increase the excitability of the spinal circuits and the responsiveness of
the remaining neural pathways. Some studies have shown that spinal cord electrical
stimulation can enhance upper limb motor control and decrease muscle spasticity after
stroke. However, more research is needed to assess the immediate effect of tSES on the
cortical signals that control the peripheral muscles during voluntary movements of the
UE after stroke. Also, the rehabilitation effects of tsES on the interactions of cortical,

spinal, and muscle activities after stroke are poorly understood.

Therefore, the main objectives of this study were: (i) to establish an EEG-based SVM
classification model to evaluate poststroke impairments in fine tactile sensation
automatically; (ii) to evaluate the immediate effects of tSES on the cortical and muscular
signals during voluntary UE contractions; (iii) to investigate the rehabilitation effects
of tsES and voluntary physical training on the interactions of cortical, spinal, and
muscular signals during upper limb movements in the long-term. The study was

conducted as follows:

The first section developed an ML model incorporating SVM to assess post-stroke
impairments related to fine tactile sensation. The experiment involved stroke and
unimpaired participants. Stimulations were administered using cotton, nylon, and wool
fabrics, targeting different UE of stroke participants and the dominant UE of
unimpaired participants. The average and maximal relative spectral power (RSP) values

of the EEG signals were utilized as inputs to feed the SVM model. The model's
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generalization exhibited noteworthy accuracy variances when evaluating fabric
stimulations within higher frequency bands, specifically the beta/gamma range. The
EEG-based SVM-ML model aligned with the manual assessment of cortical responses
to textile stimulations, indicating its potential for the automatic evaluation of fine tactile

sensations following a stroke.

The second section examined the immediate effects of tsES on the cortical and muscular
signals during voluntary UE contractions in chronic stroke patients. Twelve patients
performed wrist-hand motion tasks at submaximal levels with tsES applied to the
cervical spinal cord. Data acquisition involved collecting both EEG and EMG data from
the sensorimotor cortex and the distal and proximal muscles of the UE. The cortico-
muscular coherence (CMCoh), laterality index (LI) of peak CMCoh, and EMG
activation level parameters were compared between non-tsES and tsES conditions. The
results showed that tsES significantly increased the CMCoh and LI in the agonist distal
muscles, decreased the activation levels of EMG in the antagonist distal muscle and

proximal UE muscles, and increased the LI of the proximal UE muscles.

The third section investigated how cervical tsES training affects the patterns of cortico-
muscular descending signals during voluntary movements in chronic stroke patients.
Twenty patients were divided into tsES and control groups. They underwent twenty
sessions of tsES with VPT or VPT alone. The evaluation outcomes, including clinical
scores, CMCoh, LI, and EMG activation level, were measured before, after, and three

months after the training. The tsES group showed significant differences in the
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outcomes across the sessions. The clinical scores, such as FMA and MAS, improved
significantly. The laterality index of distal and proximal muscles increased significantly.
The CMCoh and EMG activation levels of antagonist distal and proximal muscles

decreased significantly.

In conclusion, the EEG-based SVM-ML model exhibited outcomes that closely
resembled the manual assessment of cortical responses to fabric stimulations; this could
help to automate the measurement of fine tactile sensations in individuals who have
experienced a stroke. In addition, the non-invasive cervical tsES combined with VPT
in chronic stroke patients enhanced upper limb functional outcomes and reduced
muscular spasticity. It also enhanced the responsiveness of residual descending
pathways by increasing spinal cord excitability while reducing compensatory effects in
proximal upper limb muscles. These findings suggested that tsES could be used as an
adjunct to physical rehabilitation to facilitate long-term recovery of upper limb motor

function in individuals with chronic stroke.



PUBLICATIONS ARISING FROM THE THESIS

Journals:

(1) .N. Zhang, Y .H. Huang, F.Q. Ye, B.B. Yang, Z.Y. Li, X.L. Hu. Evaluation of
Post-Stroke Impairment in Fine Tactile Sensation by Electroencephalography
(EEG)-Based Machine Learning. Applied Sciences, 2022, 12, 4796.

(2) J.N. Zhang®, S. Zhou', F. Chen, T.W. Wong, S. Ng, Z.Y. Li, Y.J. Zhou, S.M. Zhang,
S. Guo, X.L. Hu. Automatic theranostics for long-term neurorehabilitation after
stroke. Frontiers in Aging Neuroscience, 2023, 15, 1154795.

(3) J.N. Zhang, M.E. Wang, M. Alam, Y.P. Zheng, F.Q. Ye, S. Zhou, X.L. Hu. Effects
of Non-invasive Cervical Cord Neuromodulation by Trans-spinal Electrical
Stimulation on Cortico-muscular Descending Patterns in Upper Extremity of
Chronic Stroke Survivors. Journal of Neural Engineering, 2023, under review.

(4) J.N. Zhang, M.E. Wang, M. Alam, Y.P. Zheng, K.L. Wan, F.Q. Ye, S. Zhou, X.L.
Hu. Rehabilitative Effects of Non-invasive Cervical Trans-Spinal Electrical
Stimulation (tsES) on Upper Limb Rehabilitation in Chronic Stroke. Journal of
NeuroEngineering and Rehabilitation, 2023, to be submitted.

(5) F.Q. Ye, W. Rong, W.M. Li, K.T. Wong, M.K. Pang, H.W. Wai, L. Li, Z.C. Hong,
S. Guo, Z.H. Ma, Y.P. Zheng, M. Zhang, N. Chow, S. Zhou, J.N. Zhang, X.L.. Hu*,
F.Chen*, W. Poon. Unilateral Ankle-foot Exoneuromusculoskeleton with Balance-
sensing Feedback for Self-help Telerehabilitation after Stroke. Journal of

NeuroEngineering and Rehabilitation, 2023, under review.



Conference papers:

(1

)

J.N. Zhang, Y.H. Huang, X.L. Hu. Trans-spinal Electrical Stimulation-induced
Sensorimotor Rehabilitation of the Upper Extremity after Stroke with EEG-based
Machine Learning. Hong Kong Medical and Healthcare Device Industries

Association Student Research Award, 2023, Hong Kong SAR, P. R. China.

J.N. Zhang, Y.H. Huang, X.L. Hu. Evaluation of Post-stroke Impairment in Fine
Tactile Sensation by Electroencephalography (EEG)-based Machine Learning. 1st
Asia-Pacific Neuroscience Student Congress and HKSAN 2nd Annual Conference,

2021, Hong Kong SAR, P. R. China.

VIl



ACKNOWLEDGEMENTS

First and foremost, I am profoundly grateful to my supervisor, Dr. HU Xiaoling. Your
exceptional expertise and meticulous attitude in scientific research have shaped my
research career. Thank you for your constant encouragement and tremendous patience
over the past three years. I am truly fortunate and honored to have worked under your

supervision.

I also sincerely thank my joint supervisor, Dr. ZHOU Yongjin. Your constructive
feedback and insightful suggestions were essential for my research. I want to thank my
cooperators, Prof. ZHENG Yongping, Dr. Alam, Dr. Ciaran, and Miss. Lyn. You have

provided me with valuable technical support.

I am grateful to my lab colleagues, Dr. HUANG Yanhuan, Dr. YE Fuqiang, Dr. ZHOU
Sa, Dr. GUO Ziqi, Miss. WANG Maner and Mr. WAN Kalim for their assistance in
clinical assessments, patient training, and data processing; Dr. NAM Chingyi, Miss.
QING Wanyi, Mr. LIN Legeng, Mr. Pan Changjie, Dr. YANG Bibo, and Mr. ZENG

Qingtang for their suggestions and support.

I want to thank all the experimental participants. Their willingness to participate and

provide invaluable data has been the cornerstone of this research.

Finally, I would like to express my heartfelt appreciation to my family. You are always
my strongest supporter and cheerleader. You have given me your unconditional love,
care, and encouragement. You have also sacrificed a lot for me. I dedicate this research

to them.

VIII



TABLE OF CONTENTS

CERTIFICATE OF ORIGINALITY ..ottt I
ABSTRACT ...ttt ettt ettt ettt et e b b e I
PUBLICATIONS ARISING FROM THE THESIS.......ccccooiiiiiiieeeeeeeeee VI
ACKNOWLEDGEMENTS ..ottt sttt VIII
TABLE OF CONTENTS ...ttt IX
LIST OF FIGURES ....coiiiiiiiiiieeeesee et s XIV
LIST OF ABBREVIATIONS ..ottt XX
LIST OF APPENDICES ...ttt XXIV
CHAPTER 1 .ottt ettt ettt sttt 1
INTRODUCTION ..ottt ettt sttt ettt et sae b ebesseeneeneas 1
Lo SSEEOKE 1ot 1
1.1.1 Upper Extremity Sensorimotor Impairments...........cccceecvereeveereeneennen. 1

1.1.2 Stroke Prevalence...........ccooeeviiiiiiiiiiieiieieeeeeeeeesee e 2

1.2 Evaluation of Post-Stroke Sensory Impairments ...........cccceecveerveeieenieeneeennens 3

1.2.1 Clinical ASSESSIMENL .....cc.eeruieeiriiniieieeienieenie ettt 3

1.2.2 Neuroimaging-based Quantitative Evaluation............ccccevveeveniincnnnen. 4

1.2.3 Machine Learning Model-based Automatic Evaluation ....................... 5

IX



1.3 Electrical Stimulation-based Sensorimotor ReCOVery ...........coccueveuierienieennnn. 6

1.3.1 Conventional Physical Therapy Programs...........c.ccccceevieniienienieennnene 6

1.3.2 Neuromodulation INterventions ..........c.cceceererrierieneenieneeneeieneesieeens 7

1.3.3 Trans-spinal Electrical Stimulation (tSES)..........ccccooeiiiiiniiiiniiiniieen. 8

1.4 ODJECHIVES ..eeuvieiiieiieeiie ettt ettt ettt e et e st et e st e e bt essaeenseesateenseessseensaensseenne 10
CHAPTER 2 ..ottt ettt st st ens 12

EVALUATION OF POST-STROKE IMPAIRMENT IN FINE TACTILE

SENSATION BY ELECTROENCEPHALOGRAPHY (EEG)-BASED MACHINE

LEARNING ...ttt ettt ettt sttt st ettt et sae b ebeeneene e 12
2.1 TNOAUCTION ...ttt ettt st 12

2.2 MEthOAOIOZY ...oovvieiiieiieeiit ettt ettt ettt et e et e e et s nae e 16
2.2.1 EEG Acquisitions during Fabric Stimuli ..........cc.coccevveeiiniineinennnene. 16

2.2.2 Feature Extraction for SVM Classification Model..............ccccoeueenee. 19

2.2.3 SVM-ML Model Configuration...........cccceeecueenieeieenieeieenieeieeieeene 21

2.2.4 Generalization Performance of SVM Classification Model................ 28

2.3 DISCUSSION ...ttt ettt ettt ettt ettt et st e bt et e sbtesbe et e saeenbeenteeseenees 34
2.3.1 The Configuration of SVM Classification Model ..........c..cccccevuennnenne. 34

2.3.2 The SVM Classification Model Generalization.............cccceveevuennnenne. 40



2.4 PeriodiC SUMMATY .....ccueeiiieiieeieeiie et eiee s esiee e eteesreeteesaeebeessseeseesnseenne 43

CHAPTER 3 ..o 44

EFFECTS OF NON-INVASIVE CERVICAL CORD NEUROMODULATION BY
TRANS-SPINAL ELECTRICAL STIMULATION ON CORTICO-MUSCULAR

DESCENDING PATTERNS IN UPPER EXTREMITY OF CHRONIC STROKE

SURVIVORS ...ttt ettt bbbt eneeneas 44
3.1 INEOAUCHION ...ttt sttt st 44
3.2 MEthOAOIOZY ..c..veeiiieiiieie et e 48

3.2.1 Experimental SEtUP ........cccueeeuieriieiiieiieeieeeie ettt 48
3.2.2 Subject ReCTUItMENL.......cceiviieiiieiieiie ettt 53
3.2.3 Evaluation Protocol.........cccccooiiiiiiiiniiniiieiieiecicseeeee e 56
3.2.4 EEG and EMG Processing...........ccceevveeiienieeniienieeiieeie e sve e 58
3.2.5 Statistical ANALYSIS .....cceeriieiiieeiieiieeie e 62
3.3 RESUILS .ottt 63
3.3.1 Cortico-muscular CONETENCE .........coeevuereerieniieienienieeie st 63
3.3.2 Cortico-muscular Coherence Topography ..........ccceeceeeveenieerieenneennen. 67
3.3.3 EMG Activation Level........ccccooiviiniiniiiiiiicienieeeeeeeeee 71
3.4 DISCUSSION ...ttt sttt ettt ettt ettt sttt et s be et et esbe e bt satesaeenaeas 74

3.4.1 tsES enhanced excitatory and inhibitory control of the UE muscles..75

XI



3.4.2 tsES decreased cortical and proximal muscular compensatory effects

...................................................................................................................... 77
3.5 PeriodiC SUMMATY .......cooiiiiiieiieeiieeiie ettt ettt ettt e s eetaeseaeeseaennas 82
CHAPTER 4 ..ottt sttt enes 44

REHABILITATIVE EFFECTS OF NON-INVASIVE CERVICAL TRANS-SPINAL

ELECTRICAL STIMULATION ON UPPER LIMB REHABILITATION IN

CHRONIC STROKE ..ottt et 84
4.1 TNEOAUCTION ...ttt sttt st sttt e 84
4.2 MEthOAOLOZY ...eovvieiieiiieeiiieie ettt ettt ettt e e e e eteesnae e 88

4.2.1 Experimental Setup of Trans-spinal Electrical Stimulation................ 88
4.2.2 tsES Rehabilitation Program............cccceeevieiiiiniieiiienieciieieceeeeeee 91
4.2.3 Training Effects Evaluation ...........cccocceeviiiiiiiniiniiieiecceeeceeeee, 95
4.2.4 Statistical ANALYSIS.....cccuieriiiiiiiiieeiierie et 100
4.3 RESUILS ..ottt 102
4.3.1 Clinical ASSESSINENL .....ccueruieriiriiriietieienieenie sttt ettt eieesieeaeas 102
4.3.1 Cortico-muscular CORETENCE .........cccveevirienieriinieieeieneeeeeesieea 107
4.3.2 Cortico-muscular Coherence Topography .........ccccceeveerieeriienieennnen. 110
4.3.3 EMG Activation Level.........cccooiiiiiiiiiniinieiieneieceneeesesee 114
4.4 DISCUSSION ...ttt sttt st et e itesbt bt eatesbte bt et e satenbeentesanenbeeneeas 118



4.4.1 Training Effectiveness on Upper Limb Motor Functions................. 118

4.4.2 Improved Cortical and Muscular Control of Distal Upper Limb .....121

4.4.3 Reduced Compensatory Effects from Proximal Upper Limb........... 123

4.5 PeriodiC SUMMATY .....ccueeiiieiieriieeiiesiie et esite et siteeteeseteeaeeeeeebeenaeesaeeseans 124
CHAPTER S ..ottt st 126
CONCLUSIONS ..ottt sttt ettt st 126
APPENDICES ...ttt s 130
REFERENCES ...ttt s 147

XIII



LIST OF FIGURES

Figure 2.1 EEG experimental setup and protocol..........cccceceeverieniineriinienenieneeens 18
Figure 2.2 Flowchart for parameters optimization in ML classification model. ......... 22
Figure 2.3 Results of grid search analysis of (y, C) in SVM classification model with
RSP features from 62-channel EEG in five frequency bands. .........c.cccceviienieninennn. 24
Figure 2.4 Results of grid search analysis of (y, C) in SVM classification model with
RSP features from 21-channel EEG in five frequency bands. ...........cccceviieniiinnnnnnnn. 25
Figure 2.5 The comprehensive classification performance of SVM classification model
with respect to textile stimulus in five different bands. ...........coccoviiniiiinininiinnn. 30
Figure 2.6 The comprehensive classification performance of SVM classification model

regarding textile stimulus in five different bands involving the upper limb differences.

Figure 2.7 The difference of classification performance of SVM classification model

regarding (a) impairments’ level and (b) affected side/unaffected side in beta band. .33

Figure 3.1 The tsES experimental setup. (a) A stroke patient with application of tsES in

cervical spine; An illustration of tsES electrodes (b) and electrical stimulation (c)....49

Figure 3.2 The confirmation of stimulation electrical current. ...........ccccceceevierveneennene 51

Figure 3.3 The protocol for motions tasks with tsES in the wrist and hand. ............... 56

Figure 3.4 EEG signals from CZ channel for a 1s’ interval of upper limb flexion at 20%
iMVC when activating tsES. The time domain representation of the EEG amplitude is

depicted in (a)~(b). The EEG PSD in domain of frequency is shown in (c). .............. 59
XIvV



Figure 3.5 The flowchart of the statistical analysis. .........cccceververiiniiiinieniienees 63

Figure 3.6 CMCoh during (a) extension and (b) flexion in wrist and hand without tsES
and with tsES. The observed differences were indicated follows: ‘*’: P <0.05 and “**’:

P <0.01 (Paired t-test), ‘*: P < 0.05 (Wilcoxon signed rank test)..............cccereueeene.. 64

Figure 3.7 Topographies of CMCoh in a stroke subject (left hemiplegia) during wrist-
hand motions. The muscles included are ECU-ED, BIC, and TRI for (a) 20% and (b)
40% Ex. The muscles included are FCR-FD, BIC, and TRI for (¢) 20% and (d) 40% Fx.

The topographies are presented for both without tsES and with tsES. ........................ 67

Figure 3.8 LI during (a) extension and (b) flexion of wrist and hand. ........................ 69

Figure 3.9 EMG activation levels during (a) extension and (b) flexion of wrist and hand

Without tSES and With tSES. ... .ooo ittt eeeeeees 72

Figure 3.10 The illustration of tsES neuromodulation mechanism ..............ccceeennee. 75

Figure 4.1 The experimental setup for trans-spinal electrical stimulation training. (a)
the configurations that delivers electrical stimulation and training tools. (b) the
illustration stimulation waveforms generated by function generator and neurostimulator.
(c) the illustration of specific stimulation sites of cathode electrode (C4-C6) and anode

electrodes (acromioclavicular joints) on a stroke SuUbject. .........ccceeeeriierieenieenieeneennn. 89

Figure 4.2 The flowchart for modulating the electrical stimulation intensity by the
function generator and neUroStIMUIALOTL. .........c.cccuieiiieiiiriieieeie e 90

Figure 4.3 The flowchart of Consolidated Standards of Reporting Trials (CONSORT)

XV



for randomized trial deSIZN. .....ceevuieiiiiiiieiieee e 92
Figure 4.4 The timeline and configuration of the training protocol. (a) the timeline of
the training protocol, including 20 training sessions and three evaluations at pre-, post-,
and 3-month follow-up training. (b) the illustration of a stroke individual received trans-
spinal electrical stimulation when performing voluntary physical training. (c) the
illustration of four types of voluntary physical training. ...........cccccceevevierieniieeneennnnnn. 93
Figure 4.5 The timeline and visual interface of the wrist-hand motions for CMC
EVALUALION. ..uiiiitititcet ettt e 96
Figure 4.6 The flowchart of the statistical analysis. ........ccccoevvererienieniiiiiniinenee 100
Figure 4.7 The clinical scores assessed prior to the initial training session and after the
completion of 20 training sessions, as well as during 3MFU for both tsES and control
groups: (a) FMA full score, wrist/hand score, and shoulder/elbow score, (b) MAS score
at the finger, the wrist, and the elbow, (c) WMFT score and time, (d) MSS, ARAT, and
FIM. Each evaluation session is presented with the mean value accompanied by the
standard €r1Or (SE). ...c.vviiiieeeeeeee e e 102
Figure 4.8 The cortico-muscular coherence during the extension (a) and flexion (b)
tasks in wrist and hand before initial training sessions, after 20 training sessions, and at
the 3MFU for both the tsES and control groups. .........cccceecveevieriiienieniiieieeieeeeee. 107
Figure 4.9 The CMC topographies of upper limb muscles during wrist-hand motions in
two representative stroke subjects with left hemiplegia from (a) tsES group and (b)
CONLIOl Eroup, TESPECLIVELY. ..eouviiiiiieiiiriieieeie ettt 111

Figure 4.10 The laterality index before initial training sessions, after 20 training

XVI



sessions, as well as 3MFU in both tsES and control groups during wrist-hand extension
AN FIEXIOM. ..ottt 112
Figure 4.11 The EMG activation level during the extension (a) and flexion (b) tasks in
wrist and hand before initial training sessions, after 20 training sessions, and at the

3MFU for both the tSES and control groups. .........cccceecueevieeiienieniiieniecieeeeeie e 116

XVII



LIST OF TABLES

Table 2.1 The demographic attributes and clinical assessments for both stroke and

control cohorts are outlined in [81]........cooiiiiiiiiiiiieeeee e 18

Table 2.2 The classification results of SVM classification model for distinguishing three

groups with different hyperparameter pairs in RBF kernel in various frequency bands.

Table 2.3 The classification results of SVM model in distinguishing three groups with

various k-fold CV configurations with various frequency bands. ...........cccccceevvennee. 28

Table 2.4 The comprehensive classification accuracies of SVM model for

distinguishing various textile stimulations.............cccceerieriiierieniiierieeeee e 30

Table 2.5 The comprehensive classification performance of SVM model in

distinguishing three groups with various textile stimulations.............ccccevceeveriencennen. 32

Table 3.1 Demographic information of stroke participants. ...........cccceeeververierieneenens 55

Table 3.2 CMCoh of upper limb muscles during extension of wrist and hand without

tSES and WIth tSES. ..ottt ettt e e 65

Table 3.3 CMCoh of upper limb muscles during flexion of wrist and hand without tsES

AN W B E S . oo 66

Table 3.4 LI values during extension of wrist and hand without tsES and with tsES. 70

Table 3.5 LI values during flexion of wrist and hand without tsES and with tsES. ....71

XVIII



Table 3.6 EMG activation level of upper limb muscles during extension of wrist and

hand without tSES and With tSES. ......ooiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeee et 73

Table 3.7 EMG activation level of upper limb muscles during flexion of wrist and hand

WIthout tSES and With tSES. .. cooi ittt eeeeeees 74

Table 4.1 The average and standard error, and statistical analyses of clinical assessments.

Table 4.2 The mean and standard error, and the statistical analyses of cortico-muscular

coherence during wrist-hand eXteNSION. .........cceeueeriiriiienieeiieie et 109

Table 4.3 The mean and standard error, and the statistical analyses of cortico-muscular

coherence during wrist-hand fleXion. ..........cccceeeiiiiiiiiiirieceeeeeee e 110

Table 4.4 The average and standard error, and the statistical analyses of laterality index

during wrist-hand extension and fleXion...........cccveviiriiierieeiiienie e 114

Table 4.5 The mean and standard error, and the statistical analyses of EMG activation

level during wrist-hand eXtEeNSION. .......cccueevuieriieiiierie ettt 117

Table 4.6 The mean and standard error, and the statistical analyses of EMG activation

level during wrist-hand fleXion. ..........ccccueeiiiiriiiiiiie e 117

XIX



ANCOVA

ANOVA

ANN

APB

ARAT

BIC

CBF

CL

CMC

CMCoh

CMRO;

CNS

CONSORT

CcvV

DALYs

DBS

ECU

ED

LIST OF ABBREVIATIONS

Analysis of Covariance

Analysis of Variance

Artificial Neural Network

Abductor Pollicis Brevis

Action Research Arm Test

Biceps Brachii

Cerebral Blood Flow

Confidence Level

Cortico-muscular Coupling

Cortico-muscular Coherence

Cerebral Metabolic Rate of Oxygen

Central Nervous System

Consolidated Standards of Reporting Trials

Cross-validation

Disability-adjusted Life-years

Deep Brain Stimulation

Extensor Carpi Ulnaris

Extensor Digitorum

XX



EEG

EMG

ERP

ES

eSCS

FCR

FD

FIM

FMA

fMRI

FTT

HSESC

iMVC

LDA

LI

MAS

MEPs

MMSE

ML

Electroencephalography

Electromyography

Event-related Potential

Electrical Stimulation

epidural Spinal Cord Stimulation

Flexor Carpi Radialis

Flexor Digitorum

Functional Independence Measurement

Fugl-Meyer Assessment

Functional Magnetic Resonance Imaging

Fabric Touch Tester

Human Subjects Ethics Sub-committee

isometric Maximal Voluntary Contraction

Linear Discriminant Analysis

Laterality Index

Modified Ashworth Scale

Motor Evoked Potentials

Mini-Mental State Examination

Machine Learning

XXI



MSS

NSA

QST

RASP

RCT

PAD

PET

PSD

RSP

rTMS

SA

SD

SE

SU

SCI

SWM

SVM

TBI

Motor Status Score

Nottingham Sensory Assessment

Quantitative Sensory Testing

Rivermead Assessment of Somatosensory Performance

Randomized Controlled Trial

Post-activation Depression

Positron Emission Tomography

Power Spectral Density

Radial Basis Function

Relative Spectral Power

repetitive Transcranial Magnetic Stimulation

Affected Sides of Individuals after Stroke

Standard Deviation

Standard Error

Unaffected Sides of Individuals after Stroke

Spinal Cord Injury

Semmes—Weinstein Monofilament

Support Vector Machines

Traumatic Brain Injury

XXII



TMS

TRI

tsES

UE

UD

VPT

WMEFT

WSO

3MFU

Transcranial Magnetic Stimulation

Triceps Brachii

Trans-spinal Electrical Stimulation

Upper Extremity

Dominant Sides of Unimpaired Participants

Voluntary Physical Training

Wolf Motor Function Test

World Stroke Organization

3-month Follow-up

XXIII



LIST OF APPENDICES

Appendices A: Clinical Assessments for Upper EXtremity ...........ccccceevveeiieniennnnne. 130
Appendices B: Consent Form for Chapter 3 and Chapter 4 .........cc.ccocevieveriineenen. 145
A-1: Mini-mental State Examination (MMSE) .........ccccooviiiiiiiiieieeceeeeee e 130
A-2: Modified Ashworth Scale (MAS).....ccuiioiiiiee e 133
A-3: Motor Status SCOTe (IMSS) ..o e 135
A-4: Fugl-Meyer Assessment for Upper Extremity (FMA-UE)..........ccccooevveniiennnnne. 138
A-5: Action Research Arm Test (ARAT) .....ooooiiiieiieeeeeeeeeee e 140
A-6: Functional Independence Measurement (FIM) ..........cccoccveeviiniiiiniinieeniiene 142
A-7: Wolf Motor Function Test (WMFT) .......ccocoooiiiiiiiieeeeceeeeeee e 143

XXIV



CHAPTER 1

INTRODUCTION

1.1 Stroke

1.1.1 Upper Extremity Sensorimotor Impairments

Upper extremity (UE) sensorimotor impairments are one of the main causes of post-
stroke disability. These impairments include muscle weakness, spasticity, synergies in
motor control, and somatosensory impairments [1]. Within the first 72 hours after stroke,
upper limb function deficits are observed in 48% to 77% of individuals. At the chronic
stage, motor impairments affect 33% to 66% of survivors, while somatosensory
impairments affect 21% to 54% [1, 2]. The motor impairments are due to disrupted
transmission of signals from the sensorimotor cortex, the region responsible for
generating impulses to the spinal cord, which carries out the movement by signaling
the upper limb muscles [3]. Consequently, individuals experience delays in initiating
and ceasing muscle contractions, as well as a slow development of force, resulting in

limited ability to move quickly and negative functional consequences [4].

Somatosensory impairments refer to deficiencies in sensation arising from skin,
muscles, or joints, including light touch, pressure, temperature, or pain perception [5].
The extent of weakness and stroke severity often correlate with these impairments.

Prolonged loss of sensation further contributes to motor dysfunction by distorting



internal task representations and impeding precise control of motor output [4]. Thus,
somatosensory deficits can impact motor outcomes and hinder participation in daily
activities. Despite extensive research on motor recovery, there has been a relatively
dearth of studies focusing on the investigation of somatosensory functions following a
stroke. Consequently, the rehabilitation of sensory functions has not received adequate
attention within conventional approaches, and the intricate mechanisms governing
sensory recovery and its interaction with motor recovery remain elusive [6]. This
knowledge gap primarily arises from ineffective assessments for assessing

somatosensory impairments following a stroke [7].

1.1.2 Stroke Prevalence

According to the latest data from World Stroke Organization (WSO) Global Stroke Fact
Sheet 2022, stroke continues to rank as the second most prevalent cause of mortality
globally and the third leading cause when considering the combined impact of death
and disability [8]. The number of cases rose dramatically from 1990 to 2019, with a
70.0% rise in incident strokes, a 43.0% increase in stroke-related deaths, and a 143.0%
increase in DALY [9, 10]. In particular, in mainland China, the age-adjusted incidence
rate of stroke was recorded at 297 per 100,000 individuals, which stands as the highest
among studies employing similar methodologies [11]. While the overall incidence of
stroke has declined in high-income countries, there has been a rising trend in stroke

incidence among younger populations worldwide [12]. In Hong Kong, the report from



the LKS Faculty of Medicine, HKUMed, shows that the incidence of ‘young stroke’
(stroke individuals aged 18 to 55 years) has increased by 30% from 2001 to 2021 [13].
The economic costs associated with post-stroke care are huge, with around 34% of the
total global healthcare expenditure allocated to addressing the consequences of stroke
[14]. In the United States, the average healthcare expenditure per individual for stroke-
related services is estimated to be USD 140,048 [15]. These alarming statistical findings
highlight the widespread prevalence of stroke, the increasing incidence among younger

individuals, and the significant burden it imposes on society.

1.2 Evaluation of Post-Stroke Sensory Impairments

1.2.1 Clinical Assessment

Standardized clinical assessments are commonly used in clinical practice to evaluate
post-stroke somatosensory impairments [6]. It includes the Fugl-Meyer Sensory Scale,
Nottingham Sensory Assessment (NSA), Erasmus-modified NSA, Rivermead
assessment of somatosensory performance (RASP), and Quantitative sensory testing
(QST) [6, 16]. These tools aim to evaluate various facets of sensation and establish
uniform metrics free from subjective interpretations by stroke patients [6]. Although
healthcare professionals and therapists acknowledge the significance of assessing
somatosensory function, the assessment process relies on the assessor's individual
experiences, making it challenging to achieve consistency in measurements, especially

when dealing with a larger stroke population over an extended period [17]. In routine
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clinical care, the testing of somatosensory deficits is often conducted superficially,
following poorly standardized protocols that may raise concerns about the reliability

and reproducibility of the results [18].

1.2.2 Neuroimaging-based Quantitative Evaluation

The advent of neuroimaging techniques, enabling comprehensive in vivo mapping of
brain function, has revealed that behavioral impairments and potential recovery are
intricately associated with intricate and widespread alterations in brain functional
activity [19]. These techniques provide valuable imaging biomarkers to predict post-
stroke sensorimotor impairments [20]. Prominent neuroimaging methods utilized in this
context encompass functional magnetic resonance imaging (fMRI), positron emission
tomography (PET), and electroencephalography (EEG), etc. [21-23]. Different
modalities facilitate the examination of alterations in neural circuitry throughout the
process of sensorimotor recovery following a stroke [24]. For instance, findings from
fMRI have revealed that cortical reorganization, which is closely linked to motor
recovery, is associated with task-induced activation not only in the remaining
ipsilesional cortex but also in contralesional regions during motor tasks in unimpaired
individuals [25, 26]. PET studies can identify the ischemic penumbra in stroke
individuals, indicating the need for intervention when cerebral blood flow (CBF) values
drop below 60% and cerebral metabolic rate of oxygen (CMRO>) values exceed 40%

of the normal range [27]. EEG measurements have been utilized to document brain



reorganization, suggesting that motor impairment following stroke may be associated
with inhibitory effects induced by the affected motor cortex [28]. Among these
neuroimaging techniques, EEG analysis stands out because it captures detailed
information about the timing of neural responses, facilitating a deeper understanding of
the cortical processes associated with post-stroke sensory deficits [28]. However,
despite significant research efforts to understand changes in brain function,
neuroimaging-based assessments often yield extensive data, which rely heavily on

human experts, leading to time-consuming and labor-intensive processes [29].

1.2.3 Machine Learning Model-based Automatic Evaluation

Machine learning (ML) has emerged as a powerful method in neuroimaging data
interpretation by delivering accurate and quick prediction outcomes with reduced
workforce workload [30]. Supervised ML, which generalizes rules or patterns from
labeled input data to generate predictions or classifications on unseen data, has been
widely utilized in post-stroke sensorimotor impairments [31]. Commonly used
supervised ML algorithms for classifications include linear discriminant analysis
(LDA), artificial neural network (ANN), and support vector machines (SVM) [32, 33].
In the context of post-stroke sensorimotor impairment evaluation using neuroimaging
data, ML algorithms have been applied to EEG information as input features [34]. These
features can be EEG spectra, EEG waveform features, or EEG time-frequency features

[7]. Once the EEG features are computed, they are fed into the ML algorithm to learn



patterns associated with sensorimotor impairment [35]. LDA has shown limited
classification accuracies among recent ML studies due to its simple linear
transformation for feature mapping, which may not efficiently construct the optimal
classification boundary for multi-dimensional EEG data [36]. Models based on ANN
provide nonlinear feature space transformation capabilities, but overfitting can be a
challenge when determining hyperparameters [36]. In contrast, SVM-based models
address the overfitting issue using kernel functions and have shown promise in reducing
classification errors [37]. Nevertheless, the comprehensive exploration of SVM-ML
techniques for automatically evaluating post-stroke sensory impairment data remains

uncharted, mainly territory within the existing literature.

1.3 Electrical Stimulation-based Sensorimotor Recovery

1.3.1 Conventional Physical Therapy Programs

Regarding post-stroke sensorimotor recovery in stroke patients, conventional physical
therapy rehabilitation programs are commonly employed in clinical settings as standard
therapies [38]. These programs encompass various rehabilitation strategies, such as
Bobath, proprioceptive neuromuscular facilitation, motor relearning, and functional
strengthening approaches [39-41]. These programs involve activity-based physical
therapy that could provide intensive and high-repetition training to assist the
sensorimotor recovery of stroke individuals [42]. While these approaches were

developed early and predominantly rely on empirical rather than scientific evidence,
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their concepts are widely adopted in routine rehabilitation programs for stroke patients
seeking to regain motor functions [43]. Several studies have demonstrated the positive
effects of these interventions on motor function recovery following strokes [44-46].
However, there were no significant differences in the functional outcomes achieved
through conventional rehabilitation strategies over a 4-year follow-up period [47].
Moreover, traditional rehabilitation often incorporates a compensatory strategy to
promote some degree of independence among stroke patients [48]. The insufficient
intervention of central nervous system (CNS), necessary for inducing neuronal changes,
can give rise to the development of "learned disuse" issues and a progressive decline in
latent function, resulting in a deterioration in disability [49, 50]. Therefore,
conventional physical therapy rehabilitation programs highlight the necessity for

enhanced CNS activation to facilitate long-term changes in motor function.

1.3.2 Neuromodulation Interventions

In recent decades, there have been advancements in utilizing neuromodulation
interventions within rehabilitation technologies to facilitate and maximize sensorimotor
recovery for stroke patients [51]. Most of these techniques are grounded in
neuroscientific evidence, particularly in relation to the association with neural
reorganization [52]. Researchers have proposed implanted CNS electrical stimulation
(ES) as a potential option to deliver neural modulation intervention by involving the

surgical placement of a small array of electrodes in specific regions of the brain or



spinal cord, such as deep brain stimulation (DBS) and epidural spinal cord stimulation
(eSCS) [53, 54]. Researchers have shown that cervical epidural spinal cord stimulation
alone could promote upper limb motor movements. It can improve functional abilities
combined with intensive physical therapy training [55]. Additionally, long-term eSCS
with training has demonstrated the potential to recover voluntary movement in chronic
neurological diseases, even without ongoing stimulation [56]. However, it is essential
to acknowledge that these improvements through implanted CNS ES come with
inherent risks, including infection, bleeding, and potential patient injury resulting from
interactions between the stimulation devices and other therapeutic instruments like

ultrasound and MRI [57].

1.3.3 Trans-spinal Electrical Stimulation (tsES)

In contrast to the surgically implanted techniques, noninvasive electrical stimulation
techniques for the spinal cord, such as trans-spinal electrical stimulation (tsES), offer a
safer, more affordable, and easily portable alternative [58]. The spinal cord modulation
via tsES utilizes a unique waveform of high-frequency electric current to reach the
spinal networks from the skin surface [59]. Previous studies suggested that
transcutaneous stimulation to the spinal cord can activate spinal circuitry resembling
that of eSCS and could enhance functional recovery comparable to the results of eSCS
when paired with physical therapy training [49]. Utilizing computational modeling and

EMG research, noninvasive spinal cord stimulation has been proven effective in



augmenting the excitability of local spinal networks through the activation of dorsal
root afferents, further enhancing signal transmission [60]. Noteworthy observations
from case studies and clinical trials have shown that tsES has led to improvements in
hand and arm function, reduction in muscular spasticity, as well as enhanced walking
ability among individuals with neurological impairments, including those with spinal
cord injury (SCI) and traumatic brain injury (TBI) [59]. Despite the limited research on
the application of tsES for motor restoration in stroke patients, recent preliminary
findings have shown positive outcomes of spinal cord electrical stimulation in
enhancing motor control of the upper limb and releasing muscle spasticity after stroke
[61][62]. A single study demonstrated the potential of epidural cervical electrical
stimulation in an immediate enhancement of force for hand grip among individuals with
chronic stroke [61]. The influences of electrical stimulation in C6 spine were evaluated
by another research, and it revealed a tendency towards decreasing flexor muscular
spasticity poststroke. This reduction was achieved by decreasing extra excitation of
alpha motoneurons in the spinal cord [62]. These studies have demonstrated the
potential effectiveness of spinal cord stimulation, which involves modulating the
excitation state of intact spinal circuitry to improve the responsiveness to the residual
neural pathways [63]. However, the current scientific literature exhibits a dearth of
studies that have comprehensively assessed the immediate influence of tsES in cortical
descending patterns on peripheral muscles during UE voluntary movements after stroke,

which may potentially affect brain neuroplasticity in rehabilitation.



Early reports of clinical trials on tsES also demonstrated its potential to impact CNS
excitability and facilitate functional change in patients with neurological deficits when
paired with conventional physical therapy training [64]. It represents that tsES is a
clinically powerful assistant to physical therapy, mitigating the risks and accessibility
concerns associated with surgical procedures [49]. Understanding the mechanisms that
tsES on the cortical, spinal cord circuitry, and muscle activities is crucial to ensure the
stimulation is precisely applied to therapeutically relevant sites for enhancing upper
limb motor function in post-stroke rehabilitation [65]. Additionally, optimal stimulation
parameters are paramount in maximizing the rehabilitative effects. However, the
training effects of the tsES-based neuromodulation technique in cortical, spinal cord

circuitry, and muscle activity coupling patterns after stroke have not been fully explored.

1.4 Objectives

As previously mentioned, assessing post-stroke sensory impairments through
neuroimaging generates vast data, necessitating costly manual evaluation. To address
this challenge, ML algorithms can be employed to develop an automated predictive
model. SVM-based models are particularly effective in minimizing complexity and
mitigating overfitting issues through kernel functions. However, the literature lacks a
comprehensive exploration of ML techniques for automatic evaluation of neuroimaging
data of sensory impairments, particularly about fine tactile sensation, a fundamental

somatosensory function for acquiring external information through touch. Moreover,
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non-invasive spinal cord stimulation using tsES has shown promising rehabilitative
effects in enhancing motor functions following stroke. Nevertheless, there is a lack of
studies examining the immediate influence of tsES on cortical descending patterns
affecting peripheral muscles during voluntary UE movements after stroke. This
investigation holds the potential to impact brain neuroplasticity during rehabilitation.
Finally, a comprehensive clinical trial was undertaken to evaluate the enduring
ramifications of tsES training when coupled with physical training. It explored the
effects of tsSES on cortico-muscular coupling patterns in the affected upper limb by
comparing measurements between stroke subjects who received tsES along with
voluntary physical training (VPT) and age-matched stroke individuals who solely

underwent VPT. In summary, this study has three primary objectives:

(1) Development of a novel EEG-based SVM-ML model with kernel functions to

automatically evaluate fine tactile sensation impairments in post-stroke individuals.

(2) Investigation of the immediate effects of tsES on cortico-muscular descending
patterns during voluntary contractions of upper extremity muscles by analyzing cortico-
muscular coherence (CMCoh) and electromyography (EMG) in individuals with

chronic stroke.

(3) Examination of the training effects of tsES on cortico-muscular coupling patterns

during upper limb movements on the affected side of individuals with chronic stroke.
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CHAPTER 2

EVALUATION OF POST-STROKE IMPAIRMENT IN
FINE TACTILE SENSATION BY
ELECTROENCEPHALOGRAPHY (EEG)-BASED

MACHINE LEARNING

2.1 Introduction

Roughly half of individuals who have experienced a stroke have reported enduring
sensory deficits pertaining to both somatosensation and proprioception, as supported
by studies [67, 68]. For instance, stroke patients may struggle with sensing pressure,
pain, temperature, and gentle touch [69]. These impairments can restrict their day-to-
day activities and functional autonomy while impeding their post-stroke motor recovery
[70, 71]. Fine tactile sensation is a basic somatosensory function that enables the
acquisition of touch-based information [72]. Moreover, research has demonstrated that
fine tactile sensation plays a role in maintaining body posture by providing spatial cues
[73] and facilitating position control by improving sensory feedback [74, 75]. However,
sensory rehabilitation has received less attention than motor rehabilitation in
conventional practice due to the absence of reliable assessment methods for sensory

deficits [76].

Accurate and efficient evaluations of sensory impairments play a crucial role in the

ongoing rehabilitation of stroke survivors, requiring repeated measurements during
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follow-up [66]. Nevertheless, traditional assessments of sensory impairments have been
subjective and manual [67]. For instance, the FMA [68] and Semmes—Weinstein
monofilament (SWM) test [69] are widely applied to evaluate fine tactile sensations, as
the assessment results are easy to interpret. Nevertheless, the measurement process
heavily relies on the assessor's expertise, making it challenging to maintain consistency
in measurements as the number of stroke patients grows over time [70].

A growing body of research is developing neuroimaging-based methods to assess
sensory impairments objectively, and neuroimaging refers to the use of various
techniques to visualize and study the structure, function, or activity of the brain [71].
These innovative technologies involve PET, fMRI, and EEG [23, 72-77]. These
approaches reveal changes in neural circuits during post-stroke sensorimotor recovery;
however, they require expensive and complex medical equipment and preparations
during comparison with the conventional professionals’ evaluation [78]. In those
methods, EEG falls under the category of functional neuroimaging because it provides
functional information about brain activity and allows researchers and clinicians to
study brain function, cognitive processes, and neurological disorders through the
measurement and analysis of electrical signals generated by the brain [78]. EEG stands
out due to its high resolution in temporal patterns and ability to capture fast sensory
responses during fine textile stimuli [79, 80]. For instance, a study used EEG to
compare the impact of various tactile stimuli missions, such as passive or active
movement of a board, on cortex activation following a stroke [81]. The results revealed
that the rhythm of sensory, as through the EEG relative powers in right hemisphere,
exhibited a significantly greater magnitude during the activation of tactile perception
compared to passive tactile perception in the affected left hemisphere [81]. Our

previous study [81] used EEG to quantify sensory deterioration in delicate tactile
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sensation after stroke during textile fabric stimulation, which emulates the typical
interaction between fabric and skin. We detected disparities in the intensities of EEG
relative spectral power (RSP) across various frequency ranges between the healthy and
cohorts of stroke [82]. Nevertheless, measurements based on neuroimaging generate
substantial amounts of material, necessitating the involvement of experts for
interpretation, thus leading to extended processing time and high workload processes
[83, 84].

Machine learning (ML) is a promising technique for interpreting neuroimaging data
with less human effort [30]. It possesses the capability to construct an automated
predictive model by acquiring knowledge of the correlations between attributes and
targets from a given dataset of historical records. Subsequently, this model can be
utilized to conduct repetitive analyses on extensive datasets [85]. Researchers are
currently exploring diverse machine learning (ML) algorithms for the identification,
categorization, and characterization of neuroimaging material [30]. For example, in a
particular study, the EEG frequency spectra were employed as input features for an
LDA (linear discriminant analysis) model to successfully classify various types of hand
grasps based on the intentions of single trials [86]. An alternate investigation utilized
the waveform characteristics of EEG as inputs for an artificial neural network (ANN)
model to discern between right and wrong feedback during movements of the arm and
foot [87]. However, both studies reported limited classification accuracies ranging from
41% to 86% [86, 87]. These suboptimal results could be attributed to the limitations of
simple linear transformation employed by LDA for feature mapping, resulting in the
establishment of non-efficiency final classification functions for EEG with multiple
channels [88, 89]. While ANN-related methods possess non-linear capabilities of

feature mapping, they often encounter overfitting issues, particularly when confronted
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with numerous hyperparameters that require optimization during network training, such
as the number of hidden layers and nodes [89]. Conversely, models based on support
vector machines (SVM) address the overfitting issue using kernel functions [90].
Kernel functions could decrease the complexity of models by enabling implicit
nonlinear transformations of feature spaces, eliminating the necessity for explicit
mathematical expressions. Hence, during model development, Optimization is
primarily required for specific hyperparameters associated with the kernel functions of
SVM models [91]. SVM-ML models commonly employ diverse kernel functions, such
as linear, polynomial, and radial basis function (RBF) kernels. For instance, in one
particular investigation, SVM with a linear kernel was employed in classifying motor
imagery based on EEG data specific to individual subjects, utilizing spectrum
characteristics derived from frequency bands and channels [92]. One study evaluated
the prediction results of SVM classification model with polynomial kernel in EEG data
related to motor imagery [93]. Another study employed an RBF kernel in SVM
classification model to distinguish EEG data related to imagined upper limb motions
[94]. These investigations explored determining accuracies ranging from 67% to 92.8%
[92-94]. Among the mentioned kernel functions, the RBF kernel is commonly preferred
in SVM algorithms due to the superior results in handling nonlinearities during feature
transformation, requiring fewer hyperparameters in comparison to other two kernels

[95, 96].

The literature has not extensively investigated the utilization of SVM-ML techniques
for automatic evaluations of neuroimaging data, particularly in fine tactile sensation. In
a study conducted by Kim et al., they focused on extracting features related to alpha

and gamma band powers from EEG data during touch interactions with various objects
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[97]. Nevertheless, their evaluation was limited to the tactile perception of individuals
without impairments, and they reported modest distinguishing results (68.1%) with the
application of LDA classification algorithm [97]. Therefore, we aimed to develop a
novel SVM model with EEG data to assess the deficiency in fine tactile sensation after

stroke automatically.

2.2 Methodology

By utilizing EEG to assess cortical responses to precise tactile stimuli on the upper
extremities, we built an SVM-ML model. The study involved two groups of participants:
stroke survivors and healthy individuals. Our study involved the application of various
fabric materials, including cotton, nylon, and wool, to elicit sensory stimulation on their
skin. As a reference point for model development and optimization, we employed the
RSP features obtained from the fabric stimulation of cotton as the input of baseline. The
principal objective of the model was to classify the responses observed among different
groups, specifically: 1) the stroke survivors’ affected sides (SA), 2) the stroke survivors’
unaffected sides (SU), and 3) the healthy individuals’ dominant sides (UD). To assess
the model's performance in a broader context, we subsequently evaluated its ability to
generalize using the RSP features obtained from stimulations with various fabrics.
During the evaluation process, we considered arm differences, both with and without

involving them.

2.2.1 EEG Acquisitions during Fabric Stimuli

Prior to commencing the research, ethical approval was obtained from the Human
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Subjects Ethics Sub-committee (HSESC) of the Hong Kong Polytechnic University.
Subsequently, twelve individuals with chronic stroke were recruited as the "stroke
group," while fifteen healthy individuals were enlisted as the "control group".
Comprehensive demographic information for both groups can be found in Table 2.1.
In order to be eligible for inclusion in the stroke group, individuals needed to fulfill
specific criteria, which consisted of the following: (1) having singular and unilateral
brain damage resulting from a stroke that had occurred at least six months prior and (2)
having the stroke impairments in subcortical-related region to assure measurable EEG
signals in the cortical region. The statistical analysis, conducted using an independent
t-test, indicated no significant difference in age between the two groups (P > 0.05). To

assess the normality of the data, the Shapiro-Wilk test [98] was employed.

Figure 2.1 illustrates experimental arrangement and procedure in the tactile stimulation
involving fabric materials. The study encompassed three distinct fabric types (cotton,
nylon, and wool) of equal dimensions but possessing different textural characteristics.
We placed the fabrics alternatively on the ventral forearm of the upper limb (Figure
2.1(c)). The ventral forearm of the upper limb was selected as our main stimulation area
was primarily based on the presence of the FCR-FD muscle in that region. The sensory
function of the FCR-FD muscle is closely associated with eliciting motor function in
the wrist and hand, which are the specific areas of investigation in Chapter 3 and
Chapter 4. Every trial included a 30-second initial assessment without tactile

stimulation, succeeded by 13-second stimulation periods with each fabric in a random
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order, with 60-second intervals between them. This stimuli trial was done three times
for every arm. We recorded the EEG data using a 64-channel whole brain system [99]
at a 1000 Hz sampling rate. During the data measurements, each subject was instructed
to remain awake while wearing earplugs and an eye mask to minimize noise from the
surrounding visual and auditory stimuli. Further details of the study setup can be found

according to [82].

J EEG Cap
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- | -
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Figure 2.1 EEG experimental setup and protocol.

Table 2.1 The demographic attributes and clinical assessments for both stroke and

control cohorts are outlined in [82].

Measure Stroke group (n=12) Control group (n=15)
Age in years 55.1£16.0 46.4+174

Gender (male/female) 111 5/10

Stroke type (ischemic/hemorrhagic) 10/2 --

Affected side (right/left) 6/6 --

Years since stroke 149+58 -

FMA (upper extremity) 425+152 -

FMA (light touch on forearm) 1+0 --

MAS (elbow) 1.1+0.7 --

Note: Data are given as mean + SD.
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2.2.2 Feature Extraction for SVM Classification Model

An SVM model was utilized to analyze features from EEG, specifically the RSP,,.qn
and RSP,,, values in various frequency bands, as inputs. These features correspond
to the average and maximum cortical alterations observed during tactile stimulations.
These alterations were identified manually based on former research findings [82]. The
data from EEG was recorded in real-time at 1000 Hz. To prepare the RSP features of
EEG data, a Butterworth bandpass filter was applied in the frequency range of 0.1 to
100 Hz to remove irrelevant high-frequency components from the EEG. Then, a
Butterworth notch filter was employed to minimize 50 Hz noise originating from the
environment, specifically targeting frequencies between 49 Hz and 51 Hz. After the
filtering process, the trial data was divided into epochs, consisting of a 30-second
baseline before stimulation and three 13-second stimulations with various textile types.
The SA group yielded a total of 108 EEG samples, obtained by multiplying 12
participants by three trials and then by three fabric stimuli. Similarly, the SU group
produced 108 EEG samples calculated using the same formula. On the other hand, the
UD group generated 135 EEG samples, consisting of 15 participants undergoing three
trials with three fabric stimuli each. Afterward, the EEG samples were converted using
the Pwelch estimation method to obtain power spectra. This method is commonly
employed to estimate the power spectral density of a given signal [100]. The frequency
range of 0.1-100 Hz for every epoch of EEG was further divided into five distinct ranges:

delta frequency range of 0.5-4 Hz, theta frequency range of 4-8 Hz, alpha frequency
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range of 8-12 Hz, beta frequency range of 12-30 Hz, and gamma frequency range of
30-100 Hz [101]. Lastly, the RSP [102] of every band and textile stimulation were

obtained using the specific equations, which are outlined as follows:

P(fuf) = [ p(H)af (2.1)

_ _P(if2) _ Ppasetine(f1.12) M
RSP(fy, f2) = P(0.1,100) P(0.1,100) (2:2)

Where p(f) denotes the density of power spectral; f; , f, represent the low cutoff
frequency and high cutoff frequency, respectively; P(fi,f,) denotes the power
spectrum within the frequency range from f; to f,; while Ppgge1ine represents EEG
data’s power spectrum before stimulation in every experiment. The spectrum
processing of the obtained data was conducted offline using a toolbox of EEGLAB on

MATLAB (Natick, MA, USA).

RSP features of multichannel EEG were represented by the RSP, oqn and RSPy
values obtained by each channel of EEG, where RSP,,.,, signifies average RSP value
across all channels within a specific frequency band in a data trial, while RSP,
corresponds to the most considerable RSP value in all channels of EEG. Subsequently,
to obtain the RSPy.qn, and RSP, values, values, we performed calculations on
EEG data with 62 channels. These channels involve the entire brain cortex region. The
calculations were conducted separately for each frequency band. We further normalized
the original values using z-score normalization to reduce the variation of the ranges for

the RSP,cqn and RSP, .y, This normalization technique scales all the RSP,,.,, and
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RSP, values to have a zero average and unit standard deviation, resulting in a

consistent range for comparison purposes [103]:

RSP, = RSPi—prsp (2.3)

ORSP

where RSP; represents the original spectral feature, which can be either RSP,,,.,, or
RSP, 4. The pgrsp denotes the mean of RSP;, while oggp represents the standard
deviation of RSP;. To normalize the spectral features, we calculate RSP;’, which
represents the normalized feature of spectrum. These features are subsequently utilized

as features feeding into the ML classification model.

2.2.3 SVM-ML Model Configuration

The SVM-ML model’s configuration is depicted in Figure 2.2, showcasing the process
of optimizing the RBF kernel function, as well as implementing a k-fold cross-
validation (CV) strategy. The features (such as RSP,.,, and RSP,,,) obtained
during cotton textile stimulation, were utilized as benchmark inputs. The choice of
cotton fabric as the stimulus for model establishment stems from its widespread use in
daily life, as it comes into direct contact with the skin. Cotton fabric is known to provide
a comfortable feeling with minimal stimulation intensity compared to other materials
[104]. Additionally, cotton fabric demonstrates neutral textile physical properties when
quantitatively assessed using the fabric touch tester (FTT) [105]. These properties,

including smoothness and thickness, are comparable to nylon and wool fabrics [82].

21



Consequently, the RSP features of EEG triggered by the cotton textile were considered

suitable benchmark inputs for configuring the ML classification model.

SVM RBF Kernel
0,0
Foriin 'k
Feature array | Training: v Trained 3_fold CV |Best predictio: b Optimal SVM Kernel
Fold 1 All folds SVM modell Prediction| °T>™9 Function
Fold 2 I excepti 7 Make prediction F N
K4 v conFoudi Average
Fold 3 Testing: |/’ Foldi |Store Foldi
Fold i Prediction predictioll Acc2
4 Accuracy array
RSP"IE("I&RSP"L(IA‘
Cotton Fabric
Stimulation EEG LOO
2-fold CV Optimal SVM Kernel
+ P Function — Optimal k-fold CV
10-fold CV

Figure 2.2 Flowchart for parameters optimization in ML classification model.

The primary objective of optimizing the RBF in the ML classification model was to
determine the decision function which yielded highest classification precision when
applied to RSP features associated with cotton textile stimuli. During the development
of the ML classification model, two hyperparameters were optimized: scaling
hyperparameter y and the regularization hyperparameter C [106]. To explore the best
(v, C) parameters, we implemented a technique known as "grid exploration" [107]. This
method entailed generating a series of candidate values for (y, C) in sequences that
exponentially increased. These values ranged from y = 2(-15), 2(-13), ..., 2"(9), and
C = 27(-5), 2™(-3), ..., 2(15), which are frequently employed intervals in SVM-ML
investigations centered around EEG data for the purpose of discovering the most
optimized hyperparameters [95, 108, 109]. Using these pre-defined scales, we

generated a total of 143 pairs encompassing (y, C). Every pair was subsequently utilized
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for the construction of RBF kernel. To assess classification performance of every pair,
we employed a three-fold cross-validation (CV) approach, considering the largest
common divisor of both the twelve stroke patients and fifteen healthy controls. The
utilization of this approach aligns with a widely employed pilot estimation technique
that has been observed according to previous research endeavors [110]. Following the
evaluation process, we identified the pair of hyperparameters that produced the highest
classification accuracy. This particular configuration was deemed the optimal choice
for our model. To implement the SVM algorithm, we utilized the toolbox of Scikit-

learn, an open-source machine learning toolbox with Python language [111].

Figure 2.3 presents the outcomes of the grid search analysis conducted for (y, C).
Within this figure, Figures 2.3(a)-(e) exhibit the respective accuracies achieved by
various pairs of (y, C) pairs when differentiating between the groups of UD, SA, and
SU, utilizing the RSP,cqn and RSP, as input features. The red dots in Figures
2.3(a)-(e) represent the coordinates and corresponding accuracy values attained for
every band of frequency. Among the range of accuracies obtained, the model reached

its highest accuracy (67.4%) within the gamma band, precisely at y=2"(3) and C=2"(9).
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Figure 2.3 Results of grid search analysis of (y, C) in SVM classification model with

RSP features from 62-channel EEG in five frequency bands.

The sensorimotor cortex, which is the primary region responsible for reacting to sensory
stimuli [112], played a crucial role in the testing of SVM classification model. During
this testing phase, exclusive focus was placed on EEG channels that cover this region.

The inputs to the model were the RSP,,.,, and RSP,,, of the 21-channel EEG.
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These channels, which encompass the sensorimotor area, include FC1-FC6, FCZ, C1—
C6, CZ, CP1-CP6, and CPZ [113]. Results of accuracies achieved utilizing RSP
characteristics with EEG of 21 channels are depicted in Figure 2.4. Notably, the highest

accuracy of 76.8% was accomplished in the gamma band at y=2"(1) and C=2"(3).
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Figure 2.4 Results of grid search analysis of (y, C) in SVM classification model with

RSP features from 21-channel EEG in five frequency bands.
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Table 2.2 summarizes the accuracies obtained by the SVM-ML model when employing
distinct hyperparameter pairs of the RBF kernel to differentiate among three groups in
different frequency bands. The table provides a comparison of the accuracy
performance for both the 21-channel and 62-channel EEG channel set selections.
Among the various bands of frequency, the gamma band stands out with notably high
accuracy, resulting in two distinct channel sets. The accuracies of mean and peak
attained in RSP features of EEG with 21 channels were superior to that obtained RSP
features of EEG with 62 channels. Consequently, the pair (y=2"(1), C=2"(3)) of RSP

features with 21 channels was identified as the optimal choice for the SVM model.

Table 2.2 The classification results of SVM classification model for distinguishing

three groups with different hyperparameter pairs in RBF kernel in various frequency

bands.
EEG channel
sumber Delta Theta Alpha Beta Gamma

Average Acc 33.5%+0.05 37.8%+0.05 35.8%+0.03 38.2%+0.04 44.7%+0.11

62 Peak Acc 38.5% 51.8% 40.0% 47.6% 67.4%
PeakLoc(y.C) (2%.29) (23,2hH (25,2YH 27,29 (25,29
Average Acc 39.1%+0.06 35.6%+0.04 33.2%+0.06 41.3%+0.07 49.2%+0.16

21 Peak Acc 57.3% 403% 38.5% 57.8% 76.8%

Peak Loc (.{’ C) (2-3: 211) (23’ 215) (2-137 215) (2-:': 213) (21’ 22)

Note: Data are given as mean + SD.

After selecting hyperparameters in RBF kernel, implementation of k-fold cross-
validation (CV) followed, utilizing the RSP features calculated from the EEG data of
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21 channels. The main objective of employing a k-fold CV was to improve the overall
generalization performance of the SVM classification model. In comparison to a simple
random split of train and test data, k-fold CV guarantees the inclusion of every data
point in an original dataset in both training and testing sets. This meticulous process
helps mitigate biased evaluations and promotes a more reliable assessment of the
model's performance [114]. In order to reduce the fluctuation in accuracy assessments
arising from a solitary execution of k-fold cross-validation, the procedure underwent
replication on ten occasions, culminating in the computation of the average estimation
[115-117]. Typically, values of k, such as 5 or 10, are used as they strike a balance
between bias and variance in model evaluation [114, 118]. Throughout our research
endeavor, we utilized a diverse set of k values spanning from 2 to 10 to scrutinize their
impact on the model's performance. Furthermore, we incorporated the leave-one-out
cross-validation (CV) as an additional point of reference, where k corresponds to the
total quantity of data points in the whole dataset. Compared to alternative k-fold CV
methodologies like five-fold and ten-fold CV, the approach with leave-one-out demands
a higher computational overhead. Nevertheless, it furnishes a dependable assessment
of the model's classification results because every individual sample serves as an entire

test dataset [114].

Table 2.3 presents a comprehensive depiction of the performance attained by the SVM
classification model, encompassing multiple frequency bands for discriminating among

the groups of UD, SA, and SU. This evaluation involved the application of various k-
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fold CV configurations. Utilizing a six-fold cross-validation (CV) strategy, the gamma
band emerged as the most productive, leading to the attainment of the highest accuracy
rate recorded at 75.4%. Notably, comparable success was observed in the leave-one-out
CV, where the gamma band achieved a classification accuracy of 74.4%. Consequently,
these findings led to the selection of a six-fold CV as the optimal evaluation approach
when leveraging RSP features extracted from EEG with the 21 channels as input for

classification model.

Table 2.3 The classification results of SVM model in distinguishing three groups with

various k-fold CV configurations with various frequency bands.

Accuracy
CV
Delta Theta Alpha Beta Gamma
2-fold 49.6%+0.07 38.1%+0.06 27.6%+0.06 50.7%+0.07 73.8%+0.05
3-fold 49.1%+0.06 33.3%+0.07 26.0%+0.05 51.0%+0.05 74.5%+0.04
4-fold 40.7%+0.06 34.7%+0.06 23.9%+0.05 50.1%+0.05 74.8%+0.04
5-fold 49.7%+0.06 32.4%+0.05 26.1%+0.05 51.2%+0.04 75.0%+0.03
6-fold 53.2%z+0.05 35.0%=+0.06 22.2%+0.05 50.8%+0.05 75.4%+0.04
7-fold 46.7%+0.06 32.6%+0.05 32.9%+0.05 48.2%+0.06 72.6%+0.04
$-fold 47.0%+0.07 31.3%+0.06 28.9%+0.06 47.2%+0.06 74.8%+0.04
9_fold 40.5%+0.07 31.4%=+0.06 27.8%+0.06 49.1%+0.06 74.7%+0.05
10-fold 51.7%+0.07 33.0%+0.06 25.9%+0.06 50.0%=+0.05 74.8%+0.05
Leave-one-out 513% 282% 12.8% 53.8% 74.4%

Note: Data are given as mean + SD.

2.2.4 Generalization Performance of SVM Classification Model

We established the SVM-ML framework by utilizing RSP characteristics acquired
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while subjecting the cotton fabric to stimulation. Consequently, we proceeded to
explore the model's capability to generalize and distinguish upper-limb groups
employing inputs from various fabric types, namely nylon, wool, and cotton. The model
was provided with the recorded RSP features obtained from each stimulation, and the
outcomes are presented in Table 2.4. The distinguishing results of the diverse fabric
stimulations did not conform to a normal distribution (P < 0.5) within every band of
frequency. Remarkably, notable distinctions between groups were observed in the
performance (P < 0.001) across stimulations of fabric in all five bands. The model
demonstrated exceptional performance in the gamma band, exhibiting the highest
classification accuracies across different fabric stimulations. Specifically, the cotton
stimulation yielded an impressive accuracy of 75.4%, while the nylon stimulation
achieved a remarkable accuracy of 83.5%. Notably, the wool stimulation surpassed both

with an outstanding accuracy of 84.3%.

A comprehensive analysis of the SVM-ML model's overall accuracies across various
fabric stimulations within each frequency band is presented in Figure 2.5. Significant
differences were obtained in all five frequency bands when comparing the three stimuli
of textile (P <0.001), with one exception: gamma band where no significant difference
was found between the stimulations of nylon and wool (P > 0.05). Furthermore, SVM
model utilizing stimuli of nylon and wool exhibited higher results of accuracy with
significance in frequency bands of beta and gamma compared to the model using

stimulation of cotton (P < 0.001). All statistical results were obtained using Kruskal-
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Wallis with Bonferroni post-hoc test.

Table 2.4 The comprehensive classification accuracies of SVM model for

distinguishing various textile stimulations.

Fabric Accuracy
stimulation Delta Theta Alpha Beta Gamma
Cotton 53.2%+0.05 35.0%+0.06 22.3%+0.05 50.8%+0.05 75.4%+0.04
Nylon 21.0%+0.04 40.6%+0.05 51.4%+0.04 63.2%+0.03 83.5%+0.02
Wool 30.3%+0.04 25.6%+0.06 43.0%+0.05 69.2%+0.04 84.3%+0.03
Significance (p-value) <0.001+=** <0.001**= <0.001%*=* <0.001%** <0.001#*=

Note: Data are given as mean + SD.
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Figure 2.5 The comprehensive classification performance of SVM classification model

with respect to textile stimulus in five different bands.

Table 2.5 provides an evaluation of the model's generalized performance, taking into
consideration the variations in arm responses during stimulations with various fabrics.
The distinguishing results of each group for different fabric stimulations deviated from

normal distribution (P<(0.5). Significant distinctions were observed in classification
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accuracies (P<0.001) for each textile stimulation in every frequency band, with one
exception: the SU group in the gamma band did not exhibit the statistically significant
difference (P>0.05). Impressively, gamma band consistently demonstrated the highest
distinguishing results in every group. All statistical results were obtained using Kruskal-

Wallis test.

Figure 2.6 provides a comprehensive visual comparison of classification performance
achieved by the SVM classification model for each textile stimulation, taking into
account the arm differences, as derived from accuracies presented in Table 2.4 and
Figure 2.5. For the group of SA, we obtained significant variations in accuracies for
the fabric stimulations within the beta band (P<0.001) and gamma band (P<0.05).
However, when comparing nylon textile and wool textile across all bands, except for
the beta and gamma bands, no significant differences were found (P>0.05). For group
of SU, we identified significant disparities in the textile stimulations within the delta,
alpha, and beta frequency bands (P<0.05). Nevertheless, in the theta band, no
statistically significant disparities were found among cotton textile and nylon textile
(P>0.05). For group of UD, we detected statistically significant variations at accuracy
results for the textile stimulus across all bands of frequency (P<0.001), except for the
gamma band, where the distinction between nylon textile and wool textile did not yield
statistically significant results (P>0.05). All statistical results were obtained using

Kruskal-Wallis with Bonferroni post-hoc test.

31



Table 2.5 The comprehensive classification performance of SVM model in

distinguishing three groups with various textile stimulations.

Fabric Accuracy
stimulation Delta Theta Alpha Beta Gamma
Cotton 47.9%+0.09  28.8%+0.11  28.5%+0.10 48.9%+0.10  59.7%+0.08
Nylon 26.8%+0.09  31.9%+0.08 54.1%+0.11 64.3%+0.10  76.2%+0.06
SA
Wool 229%+009  21.7%+0.08  51.1%+0.11  53.6%+0.08 78.9%+0.04
p-value <0.001%#3* <0.001*** <0.001#** <0.001#** <0.001#3*
Cotton 483%+0.08  409%+0.13  27.0%+0.09 69.3%+0.05  91.0%+0.04
Nylon 155%+0.07  405%+0.13  61.7%+0.04 74.9%+0.01  91.2%+0.03
SU
Wool 503%+0.03  27.8%+0.08  40.1%+004  84.9%+0.04 91.6%+0.01
p-value <0.001%#3* <0.001*=*= <0.001**= <0.001*** =0.05
Cotton 514%+0.14  31.6%+0.10 22.0%+0.12 353%+0.12  78.0%z+0.10
Nylon 24.0%+0.09  51.9%+0.07 39.2%+0.10 53.7%+0.05  83.4%z+0.01
UD
Wool 19.8%+0.09  30.0%+0.11 36.9%+0.10  71.9%+0.08 84.1%+0.06
p-value <0.001#3* <0.001*=*= <0.001**= <0.001*** <0.001#3*
Note: Data are given as mean + SD.
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Figure 2.6 The comprehensive classification performance of SVM classification model
regarding textile stimulus in five different bands involving the upper limb differences.

32



s
=
o
=

Nyloa Cottan_SA
Cotton

Cattan_SU
Wool

Accuracy (Beta)
=
Py
Accuracy (Beta)
=
Py

=
S
e
=

L s 10 15 20 25 3 0 H 10 15 20 25 30
FMA wrist/hand FMA wrist/hand

(a) (b)
Figure 2.7 The difference of classification performance of SVM classification model

regarding (a) impairments’ level and (b) affected side/unaffected side in beta band.

The effects of impairment level and the affected/unaffected side on classification
accuracy was summarized in Figure 2.7. Specifically, Figure 2.7(a) depicted the
classification accuracies of Leave-one-out cross-validation for each stroke subject
under different fabric stimulations at the beta frequency band. Figure 2.7(b) displayed
the classification accuracies of Leave-one-out cross-validation for each stroke subject
when considering the affected/unaffected side at the beta frequency band. Notably, it
was observed that the accuracy increased with higher FMA wrist/hand values (Figure
2.7(a)). Moreover, nylon and wool exhibited a more pronounced increasing trend
compared to cotton for the same stroke patient, resulting in better accuracy (Figure
2.7(a)). Additionally, in the case of the same stroke patient, the unaffected side achieved

higher classification accuracy than the affected side.
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2.3 Discussion

We constructed the SVM classification model with EEG data that the RSP features were
extracted from cotton textile stimuli as the benchmark. We evaluated the generalization
results of the model by the comparison of the distinguishing results for different fabric

stimuli.

2.3.1 The Configuration of SVM Classification Model

RBF Kernel Configuration

In order to optimize the performance of our SVM-ML model, we conducted a grid
search for the pair of parameters (y, C) specifically for the kernel of RBF. Figures 2.3
and 2.4 illustrate the results of this grid search, showcasing the highest classification
results achieved within the defined scale for the pair. Other SVM-based studies used
similar boundaries for the pair, such as one study utilized the range (y: e"(—8) - e"(8),
C: e(—8) - e(8)) [119], while another study used (y: 2(—15) - 2(3), C: 2(—5) - 27(15))
[95]. These observations suggest that the most effective values for the (y, C) resided
within the conventional exploration range. Furthermore, our SVM classification model,
equipped with a more comprehensive exploration space, proved effective in accurately
classifying the RSP of EEG data gathered during sensation evaluation. It is crucial to
note that classification boundary complexity utilized by model for classification
purposes is greatly influenced by the kernel scaling parameter y [120]. The decision

function is more linear for smaller y values and curved for larger y values [120]. The
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model chose the optimal y value (2*(1)) near the upper limit of predefined range of v,
implying that the EEG data from various upper-limb groups had a relatively strong
nonlinearity in their original space of feature vectors. To capture these nonlinear
relationships, the model successfully mapped the original EEG data to a higher-
dimensional space, resulting in a decision function with a distinct "curved" shape. In
the context of the SVM-ML model, the regularization parameter C plays a critical role
in determining the penalty imposed for distance from the correct classification of the
trained EEG sample [120]. With higher values of C, the penalty degree increases,
leading to a smaller percentage of data with misclassified in the phase of training. SVM
model opted for a relatively lower value of C (2”(3)) in contrast to predefined range,
which indicated that established model was more tolerant of percentage of data with
misclassified while striving to discover the optimal classification boundary. Such
tolerance suggested the presence of potential overlapping in the various groups of
training dataset close to the classification function, indicating the intricacies in the
classification task. Remarkably, the model, equipped with the best pair of
hyperparameters (y, C), attained a commendable classification accuracy (76.8%). This
level of accuracy aligns with prior studies that have concentrated on the SVM algorithm
for the multifaceted differentiation of EEG signals, where reported accuracies exceeded

71.0% [121, 122].
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EEG Channel Selection

Our observations showed that the model utilizing the EEG with 21 channels
outperformed the model utilizing the EEG with 62 channels in terms of overall
accuracies, disregarding discrepancies related to the arms (as shown in Table 2.2).
Specifically, the EEG with 21 channels focuses on encompassing sensorimotor brain
region, serving as the primary region in the brain responsible for processing sensory
stimulations [123, 124]. The accuracies from the EEG of 21 channels indicated that the
sensorimotor region’s ability to directly process cortical signals, enabling SVM
classification model to capture sensory distinctions presented by various fabric samples
effectively. Notably, prior investigations have also substantiated the notion that the
sensorimotor cortex predominantly captures significant variations in RSP across
different frequency bands during stimulations of sensory, irrespective of whether
individuals are unimpaired or belong to the stroke population [82, 125, 126]. However,
passive fabric stimulation experiments involved non-voluntary activities extending the
sensorimotor region [82]. Such a circumstance potentially poses an obstacle to the
SVM-ML model's ability to discern brain responses to textile stimulations accurately.
Voluntary cognitive activities also interfered with the measurement of responses of
brain to sensory stimuli [127]. A prime example of this can be observed in the context
of sensory evaluation after stroke, where individuals affected by sensory impairments
displayed the capacity to distinguish various textile stimulations owing to

compensatory cognitive processing. This compensation arises from factors such as
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individual experiences and the preservation of residual sensory neural tracts [82]. This
study aimed to minimize the impact of voluntary cognitive activities by instructing
subjects to maintain wakefulness while refraining from mental engagement in textile
stimulations. The objective was to concentrate on capturing the direct brain cortex
responses evoked by subtle textile sensations. By utilizing a 21-channel EEG to detect
the RSP (repetitive sensory stimulation) features of the sensorimotor cortex, the study
deemed these features adequate for discerning variations in the direct brain cortex

responses to sensory stimuli.

The findings revealed that the model obtained superior accuracies in the beta and
gamma bands' frequency bands when differentiating between textile stimulations
without considering differences in arm positions (Table 2.2). This was in line with the
prior research in neurophysiology that delved into the intricate responses of the brain
to tactile stimuli induced by textiles [126, 128]. Neural responses to textile sensations
within the brain cortex arise from the intricate interplay between the skin and fabric
interactions, featured by activations in the beta and gamma frequency bands of the EEG
[129]. The oscillations of beta band are thought to play a role in the process of phasic
synchronization in primary sensory cortex and secondary sensory cortex during the
processing of fine sensory [130]. Furthermore, researchers have made noteworthy
observations regarding the synchronization of neuronal assemblies in the sensorimotor
brain region. These assemblies demonstrate expansive neural synchronization,

oscillating within the frequency band of beta during prolonged hand lever press
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activities [131]. These findings provide compelling evidence that primary sensory and
motor cortex are intricately linked within a cortical network synchronized in the beta
frequency range [131]. These findings suggest a strong association among primary
sensory and motor brain regions, forming a cortical network that is synchronized in the
beta band. Additionally, a study has provided evidence indicating that oscillations in
beta band in brain region of sensorimotor play a crucial role in featuring affective textile
stimulation through intricate interactions with diverse fabric types [132]. Furthermore,
another study has proved distinct beta-oscillation patterns for pleasant and unpleasant
fine senses [126]. In the context of tactile stimuli, gamma oscillations have also been
observed in the sensorimotor cortex. These oscillations serve as a temporal code,
playing a vital role in orchestrating the temporal organization of higher-order
processing of somatosensory information. This temporal organization is of utmost
significance for seamlessly integrating sensory information [133, 134]. Furthermore,
Aya et al. have revealed that oscillations of gamma frequency band are simultaneously
induced in both the primary and secondary sensory brain regions when the sensory
stimulations input, underscoring their significance in establishing functional cortico-
cortical relationships and transferring sensory potentials [135]. In a study conducted by
Bauer et al., it was demonstrated that spatial tactile attention enhances and prolongs
gamma oscillations elicited by tactile stimuli in sensorimotor cortex [136]. The study
highlighted the significance of gamma-band synchronization in processing behaviorally

relevant stimulations within the somatosensory system [136]. As a result, RSP changes
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within the frequency bands of beta and gamma serve as highly informative input
features for the SVM classification model, enabling effective classification of different

fabric stimulations in both individuals without impairments and stroke patients.

K-Fold CV

In the process of determining the most suitable value for k in CV, the SVM-ML model
demonstrated remarkable accuracy when employing a six-fold CV approach within the
gamma band, as evidenced by the data presented in Table 2.3. The accuracies of
different k values within the band of gamma were also similar, indicating the SVM-ML
model's consistent and reliable classification performance across different split
strategies of datasets [137]. Furthermore, the model's performance, assessed through
leave-one-out CV technique, demonstrated performance comparable to that of the k-
fold CV approach, specifically within the frequency band of gamma. This finding
signifies the model's ability to provide unbiased assessment, showcasing the leave-one-
out CV as a unique variant for k-fold CV, where every individual data point effectively
serves as a whole testing dataset [138]. Nevertheless, leave-one-out CV had a higher
computational cost than other k values in the CV during assessing the performance of
SVM model, aligning with similar findings in previous studies [138, 139].
Consequently, our preference lies in utilizing the six-fold CV, as it enables us to conduct

comprehensive evaluations of the model.
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2.3.2 The SVM Classification Model Generalization

Various Textile Stimulations

We evaluated the model’s performance of generalization by comparing accuracies for
different fabric stimulations in the gamma band (Table 2.4, Figure 2.5, and Figure
2.7(a)). The accuracy levels observed for wool and nylon fabrics exhibited a notable
increase compared to that of cotton textiles. The divergence can be attributed to the
varying degrees of stimulation intensity these fabrics exert on the skin. Chen et al.
conducted a study demonstrating that higher frequency bands’ neural oscillations, such
as the gamma band, were comparatively lower during the execution of easier tasks
[140]. However, as the difficulty of the task increased, these oscillations intensified,
indicating an adaptive response aimed at extracting additional patterns via the sensation
environment. Regarding fabric stimulation, cotton is ubiquitous in everyday activities
which typically generates least intense stimuli in the passive tactile sensation [82].
Conversely, other two fabrics contribute to a more considerable pronounced tactile
sensation owing to the distinctive material characteristics. The interaction with these
fabrics may necessitate increased neural effort and cortical capacities to elicit
corresponding responses for the provided stimuli [82]. This notion finds further support
in the research conducted by Jiao et al., where it was observed that wool evoked a
relatively vigorous tactile stimulation resembling scratching, thereby giving rise to a

sensation of discomfort [141]. The findings of Jiao et al. provided further evidence to
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support the notion that wool fabric triggers a comparatively intense tactile stimulation
resembling scratching, leading to a sensation of discomfort. Moreover, their research
revealed that woolen textiles induced larger RSP characteristics in EEG compared to
nylon and cotton textiles [141]. Furthermore, one study was conducted where they
observed significantly elevated event-related potential (ERP) in response to nylon
fabric compared to cotton fabric. This observation suggests that tactile sensation with
nylon fabric resulted in reduced distraction and improved allocation of cortical
resources [ 129]. Consequently, the model obtained higher accuracies when utilizing the

EEG features of nylon and wool fabrics instead of cotton fabric.

Various Upper-Limb Groups

The performance of our model was evaluated in terms of classifying fabric stimulations
while involving upper limb differences. The results of this evaluation are presented in
Table 2.5, Figure 2.6, and Figure 2.7(b). We observed significant differences in
accuracy when classifying post-stroke stimulations with various textiles, particularly in
the higher bands of frequency, when contrasted with unimpaired individuals. The
discrepancy obtained when distinguishing different fabric stimuli among the various
upper-limb groups aligns with the findings from manual measurements that compared
the distinctions on RSP features of EEG among individuals affected by stroke with
those without any impairments. The manual evaluations indicated that the power

spectra for fine touch stimulation in post-stroke individuals were higher during the
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frequency bands of beta/gamma [82]. SVM classification model effectively detected
comparable patterns to manual evaluations by leveraging the utilization of EEG's RSP
characteristics and RBF kernel's characteristics transformation capability. The
incorporation of the mean and maximum values of the RSPs as input characteristics in
the SVM model demonstrated an efficient ability to capture noteworthy variations
observed in RSP features across various arm cohorts. Previous manual investigations
have highlighted the association between EEG RSP patterns elicited by fabric
stimulations and neuroplastic changes post-stroke [142]. Specifically, these
investigations have indicated that damage to brain neurons resulting in sensorimotor
function impairments after stroke can lead to cortical rewiring within various neural
subsets [143, 144]. In response to such lesional functions, the brain can exhibit neural
compensation, which manifests as a redistribution of the patterns of brain cortex
reactions to stimuli [145]. Leveraging its exceptional characteristics’ transformation
ability, SVM algorithm with RBF kernel demonstrates the ability to determine the best
classification boundary among multiple arm groups. Through implicit transformation
of the original RSP feature space into a higher dimensional space of feature, the SVM
effectively reduces the number of hyperparameters that need to be determined.
Consequently, this feature mapping procedure ensures the model's ability to generalize
well when presented with new input data [90]. In diverse clinical settings, prior research
has consistently shown that SVM with a kernel of RBF exhibits low misclassification

rates. Importantly, this SVM model effectively handles the intricacies involved in the
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classification process [89, 146, 147]. Due to intricate nature of EEG RSP characteristics
and characteristics transformation ability of kernel function in RBF, it could be
anticipated that the proposed model would exhibit comparable performance to that of
manual inspection in distinguishing individuals without impairments from those who

have experienced a stroke.

2.4 Periodic Summary

Our study involved the development of an SVM classification model with EEG signals,
specifically focusing on the RSP features (RSP,0qn and RSP,,,,) derived from cotton
fabric stimulation. These features were found to be highly responsive to textile stimulus,
which were served as indicative input characteristics for the established model. To
assess model's performance in generalization, we conducted a comparative evaluation
of classification accuracies for different fabric stimulations, taking into account
differences in arm conditions. The model demonstrated significant variations in
accuracy when considering fabric stimulations after a stroke, particularly in higher
frequency bands such as beta and gamma bands. These results mirrored the RSP
patterns observed in manual investigations, where distinctions between post-stroke
individuals and those without impairments were evident. This finding indicated that our
model could effectively emulate manual assessments of cortical reactions to textile
stimulus, thereby facilitating automated assessments of fine tactile sensation in post-

stroke individuals.
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CHAPTER 3

EFFECTS OF NON-INVASIVE CERVICAL CORD
NEUROMODULATION BY TRANS-SPINAL
ELECTRICAL STIMULATION ON CORTICO-
MUSCULAR DESCENDING PATTERNS IN UPPER

EXTREMITY OF CHRONIC STROKE SURVIVORS

3.1 Introduction

Stroke stands as a prominent contributor to enduring motor impairments, and around
3/4 of people having motor deficiencies in the upper limbs [148]. Motor deficits in
individuals may potentially arise from lesions that impact both the sensorimotor cortex
and the neural descending pathways [149]. These lesions can disrupt the relations of
excitation and inhibition potentials between brain and prefrail muscles, resulting in
altered descending patterns. This alteration often manifests as muscle spasticity and
compensation on the contralesional side [150]. Muscle spasticity refers to involuntary
muscle contractions that emerge due to a loss of inhibitory control over the spinal cords
alpha motoneurons in the poststroke [151]. Consequently, stroke survivors in chronic
stages commonly experience extra excitability of o motor neurons, leading to
involuntary muscle contractions [151]. For the muscles responsible for UE movements,
the distal UE muscles, which control hand and wrist joints, are particularly easy to the

disturb of muscular spasticity and poststroke cortical compensation. This susceptibility

44



arises from the requirement of a higher precision and control degree in distal
movements compared to proximal UE movements involving the shoulder and elbow
joints [152]. However, the compensatory rehabilitation approaches typically used in
routine practice offer limited benefits to wrist-hand motor functions. These
interventions often encourage compensatory motions involving the shoulder and elbow
joints once the desired daily task is achieved [153, 154]. Moreover, the motor neural
tracts responsible for the distal muscles primarily originate from the lesioned side of
hemisphere, and only few motor neural tracts originating from the contralesional
hemisphere compared with those serving the proximal UE muscles [155]. Consequently,
in neuroplasticity from brain to the muscles, poststroke 'learned disuse' can easily affect
wrist-hand muscular functions. This occurs due to the lack of effective controls of

excitation or inhibition specifically targeted at the distal UE muscles [156].

The strength of residual motor neural pathways from lesioned brain to the distal muscles
of wrist and hand can vary according to the poststroke lesions impairments’ level [157].
MEPs obtained through TMS or CMCoh assessed using EMG/EEG in voluntary
muscular contractions provide insights into this assessment [ 158, 159]. Stroke survivors
often exhibit significantly decreased CMCoh and MEPs. These findings are related with
impairments in offering useful neural potentials in the brain cortex and transmitting
residual motor neural drives [160, 161]. Restoring the center of cortex in the lesioned
brain poststroke currently lacks immediate methods. This process relies on Hebbian

neuroplasticity, which can be strengthened by repeatedly exciting the neurocircuitries
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by repetitive training in long-term [162, 163]. However, when the ipsilesional neural
tracts remain weak poststroke, facilitating the transferring efficiency of remaining
motor neurons innervated the upper limb muscles can be achieved by the modulation
of spine’s excitation [164]. Trans-spinal electrical stimulation (tsES) emerges as a non-
invasive technology that can modulate excitatory thresholds in circuitries of spine
through applying transcutaneous current [61, 165]. Researchers have explored tsES
application in individuals with spinal cord injury (SCI) to enhance neural pathways
across lesioned locations and restore upper limb motor function [166]. For instance,
previous research showcased the immediate modulation of spine circuits' excitability
and improved motor control for proximal UE muscles in SCI patients via tsES. This
was achieved by employing rectangular shape of waveforms with 1 ms from C5 to C6
spincal cord [167]. In addition, tsES has been utilized from C3 to C6 spinal cord for
aiding the enhancement of UE in the motor control, including UE tasks like finger grip
and pinch, among participants experiencing SCI in spinal cord [168]. These
applications have the objective of providing motoneurons’ activation within circuits in
spine, taking them closer to the activation threshold. This, in turn, facilitates the
propagation of impulses through the motor neurons via the remaining motor control
tracts via brain [169, 170]. Moreover, tsES has proven to be effective in reducing UE
muscular spasticity in SCI patients. Various parameters of electrical stimulation have
been used, including pulses of biphasic rectangular at 30 Hz [171]. The primary

mechanism behind this effect involves current stimulation of local neural tracts in spine,

46



achieved through dorsal column neural tracts, as well as engagement of the processes

that activate presynaptic inhibition [172].

Despite the limited research conducted on the application of tsES for motor restoration
in stroke patients, recent preliminary findings have shown positive outcomes of spinal
cord electrical stimulation in enhancing motor control of the upper limb and releasing
muscle spasticity after stroke [61, 62]. In a specific study, it was revealed that the
electrical stimulation administered in cervical spine led to immediate enhancements in
grip force of hand poststroke [61]. However, the invasively implanted electrodes are
associated with inherent risks, such as infection and bleeding [173]. Another research
endeavor examined the impact of direct electrical stimulation targeting the C6 spine
segment, which yielded noteworthy findings. A potential trend was observed, indicating
a reduction in spasticity within the wrist flexor muscles. This reduction was achieved
by lowering the extra excitation present in o motor neurons of spine subsequent to a
stroke [62]. These studies have demonstrated the potential effectiveness of spinal cord
stimulation, which involves modulating the excitation state of intact spinal circuitry to
improve the responsiveness to the residual neural pathways [62]. However, there is a
lack of research assessing the instant influence of tsES in cortical motor neural patterns
on peripheral muscles during UE voluntary movements after stroke, which may have
the potential to affect brain neuroplasticity in rehabilitation. Consequently, the primary
aim of the research was examining the instant influences of tsES in cortico-muscular

descending motor patterns in voluntary movements of UE, focusing specifically on
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lesioned side of chronic stroke patients.

3.2 Methodology

In this particular study, the primary focus was to investigate the influences of tsES on
cortico-muscular motor neural tracts in poststroke patients’ UE. The research employed
measurements of EEG/EMG to evaluate influence of tsES in lesioned side, with a
specific emphasis on extension/flexion tasks of wrist and hand. The analysis involved
utilization of CMCoh to examine related coupling among the cortex and upper limb’s
muscles, thereby facilitating the evaluation of motor control. To assess compensation
from the contralesional hemisphere, peak CMCoh'’s laterality index (LI) was employed.
Furthermore, the acquired activation level of EMG was utilized to assess couplings of

muscular activation within the UE.

3.2.1 Experimental Setup
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Figure 3.1 The tsES experimental setup. (a) A stroke patient with application of tsES

in cervical spine; An illustration of tsES electrodes (b) and electrical stimulation (c).

The experimental setup was demonstrated in Figure 3.1, encompassing the placement
of cervical spine stimulation site, configuration of electrical current, and the selection
of electrodes. Within this setup, a subject poststroke was comfortably sit in a chair,
while their lesioned upper limb remained in a silent state (Figure 3.1(a)). To ensure
proper alignment, the forearm of the affected upper extremity was positioned neutrally
on the horizontal plastic slab, confirming that hand's strength exertion was
perpendicular to gravity [174]. The configuration of tsES in cervical spine was carried
out by an electrical neurostimulator (DS8R). As illustrated in Figure 3.1(b), the circular
cathode electrode, measuring 3 cm in diameter, was accurately placed within C4 to C6.
In addition, two anode electrodes, sized 8.5 x 6 cm, were interconnected, and positioned
bilaterally over the acromioclavicular joints. The choice of C4 to C6 for electrical
stimulation was based on the specific involvement of the cervical spinal nerves at
different spinal levels in providing muscular control and sensory function of upper limb
muscles [22]. More precisely, the nerves from C4 to C5 are responsible for controlling
proximal muscles in the UE, as well as those from C5 to C6 govern distal muscles in
the UE [23, 24]. The electrical stimulation in this study was applied in the waveform of

alternating current, by using rectangular biphasic pulses with 30 Hz, where the direction
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of flow changes cyclically over time. The designation of anode and cathode is merely
a matter of terminology and was determined based on previous studies [175, 176]. Once
the area of electrical stimulation was determined, the current was administered in bursts
comprising of ten pulses of rectangular (100 ps for each pulse). The electrical
stimulation were transferred at 30 Hz (Figure 3.1(c)) [175, 176]. This choice of
waveform helps maintain a balanced electrical charge during the stimulation process,
promoting the safe and effective delivery of electrical stimulation without causing harm
to the tissue in the stimulated area [177, 178]. A 10 kHz was employed as the carrier
frequency to avoid perception of pain sensation. The choice of frequency helps reduce
the discomfort associated with the stimulation, thereby enabling the use of larger
electrical current [59]. It's important to note that the selection of tsSES employed in the
research was successfully used in SCI and TBI patients, who suggested reasonable

levels of pain during the stimulation process [166, 179].

Figure 3.2 shows the procedure of setting the stimulation current intensity (measured
in mA) through feedback provided by stroke participants. Initially, the stimulation
current intensity was set at 0 mA while gradually increased in increments of 5 mA from
5 to 50 mA, with smaller 1 mA increments used between 50 and 80 mA to minimize
discomfort [176]. Before each increment, participants confirmed their tolerance of the
sensation for at least half minute. In cases where the current was considered not
tolerable, it was then decreased with one increment and subsequently utilized as the

optimal intensity for subsequent motor control tasks. A maximum stimulation intensity
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threshold of 80 mA was implemented for all participants to ensure safety. This threshold
was continuously monitored throughout the experiment to maintain safe stimulation
levels on the skin of the cervical spine, based on previous studies involving human
subjects [180]. Moreover, participants' physiological responses, including pressure of
blood and rate of heart, were supervised real-time at three-minute intervals in process

of determining stimulation current.
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Figure 3.2 The confirmation of stimulation electrical current.

To attach electrodes of EEG, a cap of 64 channels was placed on stroke subject’s scalp.
Reference electrodes were placed at left earlobe, while the ground electrode was
situated at AFz electrode, following the 10-20 standard system. A total of 21 channels
were utilized to obtain signals of EEG, specifically targeting the cortex of sensory and
motion. These channels covered the following areas: C1, C2, C3, C4, C5, C6, CZ, CP1,

CP2, CP3, CP4, CP5, CP6, CPZ, FC1, FC2, FC3, FC4, FC5, FC6, and FCZ. The
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sensorimotor cortex was specifically chosen for electrode placement due to its role as
the main source of cortico-muscular motor neural tracts [181]. For the collection of
EMG signals, five UE muscles were targeted: ECU-ED, FCR-FD, APB, BIC and TRI.
The bipolar determination with a 20 mm inter-electrode space was used to capture the
signals of EMG for every muscle of upper limb. The olecranon of the elbow was
selected as the reference electrodes. Prior to attaching these electrodes, the surface of
skin was thoroughly cleaned via abrasive gel and cotton pads to maintain the impedance
below five kQ. For amplification of the EEG signals, the g.USBamp amplifier was
employed, providing a 10,000-fold amplification. Subsequently, the signals were
subjected to filtering using the bandpass filter spanning in 2-100 Hz. Similarly, the
signals of EMG were augmented via the identical amplifier, providing the 1000-fold
amplification. These signals were further filtered using a bandpass filter range of 10-
500 Hz. Additionally, both EEG and EMG underwent further filtering with a 50 Hz
filter to eliminate any interference. In order to obtain the synchronized EMG/EMG data,
a DAQ board was selected. The DAQ board operated at the 1200 Hz’s sampling
frequency, enabling acquisition of high-resolution data. For visual feedback of motor
control of wrist and hand, online processing utilized data of EMG obtained specifically
from the distal UE muscles. These signals were processed in real-time to provide
feedback through a custom interface made via LABVIEW. The interface allowed for
interactive control and visualization of the wrist-hand motion based on the acquired

EMG signals. As shown in Figure 3.1(a), the interface displayed a color range spanning
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from left side to the right side, serving as a visual representation to the progressive
levels of agonist muscle contraction. This color range depicted the spectrum from 0-
100% of the iMVC in extension/flexion of wrist and hand. For instance, the extension
task utilized EMG data of ECU-ED muscle, while the flexion task employed EMG data
of FCR-FD muscle. The process of performing iMVC was described in Section 3.2.3
Evaluation Protocol. Throughout measurement process, the movement of the blue
pointer responsible to the instantaneous changes in the agonist muscles’ contraction
levels. Simultaneously, the interface featured two constant red pointers that denoted
reasonable range of 10% error in the motion control. These red pointers served as visual
indicators, ensuring that the measured contraction levels remained within the
designated range [182]. The real-time contraction levels of the agonist muscle i were

obtained as follows [183]:

EMG;—EMGpaseline(i)
EMGmaxii:_EMGbaseline( i)

EMGcontraction() = X 100% (3.1)

Where EMG; is the mean value in rectified envelope of EMG in muscle i within a

window of 100 ms; EMGmaxi) denotes the mean value of the rectified envelope of

Hi"

instant EMG for muscle during maximal force. EMGpaseline(i) represents the mean

Hi"

value of the rectified envelope of instant EMG for muscle "i" in the state of relax.

3.2.2 Subject Recruitment

Following the acquisition of ethical clearance from the HSESC, recruitment of chronic
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stroke individuals was initiated, adhering to the inclusion criteria: (i) Age from 30-70
years old; (i1)) Minimal six months since experiencing a unilateral brain damage; (iii)
Adequate cognitive abilities to understand experiment's content and fundamental
suggestions (MMSE > 21); (iv) appropriate muscle tone in upper limb (MAS < 3); (v)
Moderate to severe motor impairments on the affected side of the upper limb (15 <
FMA-UE < 55); (vi) detectable voluntary EMG signal; (vii) Ability to sit up for a
minimum of 60 minutes. The exclusion criteria consisted of the following: (i)
Musculoskeletal dysfunction in upper limb; (ii) Recent botulinum toxin injection in last
six months in UE muscles; (iii) Presence of any implanted metal or electronic stimulator,
such as a cardiac pacemaker, cochlear implant, etc.; (iv) Use of medications that affect
neural excitability, such as antidepressants, antipsychotics, etc.; (v) History of epilepsy
or current pregnancy. Finally, a total of 12 individuals who had survived chronic stroke
were recruited, with an average age of 51.7 &+ 11.3 years. The average time since stroke
occurrence was 8.8 + 5.9 years. Table 3.1 summarizes the demographic information of

involved subjects.
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Table 3.1 Demographic information of stroke participants.

Subject Age Gender Stroke type Affected side Years since FMAUE MAS-
(vears) (male/female) (HT) (vight/left) stroke wrist
1 63 H Left 6 39 2
2 65 F I Right 13 50 1.4
3 51 F H Left 8 36 1
4 54 M H Left 3 21 3
5 37 M H Right 19 45 14
6 41 F H Right 7 55 1
7 50 F H Left 3 49 1
8 59 M I Right 11 50 2
9 41 F H Right 10 19 2
10 67 M I Left 19 35 3
1 34 M H Left 3 43 1.4
12 58 F H Right 3 43 14
Overall 51.7£11.3 6/6 9/3 6/6 8.8£5.9 404=11.2  1.7£0.7

Note: H: Hemorrhagic; I: Ischemic.

The stroke participants in Chapter 3 were distinct from those in Chapter 2 due to
differences in the experimental procedures. Ethical approval from the university is
required for experiments involving human subjects. Both Chapter 2 and Chapter 3
received separate ethical approvals, resulting in a time delay between the two
experiments. In Chapter 2, we initially conducted the experiment focused on assessing
fine tactile sensation through fabric stimulation after obtaining the necessary ethical
approval. Subsequently, in Chapter 3, we performed the tsES experiment by recruiting
new stroke subjects from our pool of patients. This was necessary because some stroke
patients from study I either declined participation or were not available due to personal

reasons.
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3.2.3 Evaluation Protocol

Prior to the sessions, an initial measurement of iMVC was performed to establish the
relaxed and maximal levels of EMG data for visual feedback in the perform of motor
control tasks involving five specific muscles. The iMVC assessment of agonist muscle
followed the protocol outlined in reference [27] and involved three repetitions with the
following steps: (i) The subject maintained the upper limb in a resting state for five
seconds to obtain the relaxed signal of EMG; (ii) The subject was then instructed to
fastly generate maximal strength with muscle and sustain contraction for 5 seconds. To
impede fatigue of muscles, a 5-minute break was provided between consecutive
contractions. The highest value among three iMVC assessments was chosen as the

maximal level of EMG for every muscle in upper limb.

Motions in Random Order:
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Figure 3.3 The protocol for motions tasks with tsES in the wrist and hand.
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Following measuring iMVC, motion tasks were conducted in two sessions in lesioned
side of patients poststroke (Figure 3.3). The 1% session focused on extension/ flexion
in wrist and hand, without employing tsES. Two distinct degrees of muscular
contraction, representing twenty percent and forty percent of each subject's iIMVC, were
utilized and labeled as 20% Ex, 40% Ex, 20% Fx, and 40% Fx. The participants
poststroke followed randomly presented motion task names displayed on a monitor
screen to perform the wrist-hand contractions. The objective was to achieve best
muscular control, defined as maintaining a zero percent deviation from central line for
thirty-five seconds, with fluctuations within an error of -10% to +10%. To prevent
muscle fatigue, each motion task was repeated five times, with a 2-minute rest period
between each repetition. Muscle fatigue was assessed by monitoring the average EMG
power spectrum’s frequency, considering a 10% reduction as an indication of fatigue
[184, 185]. No signs of muscle fatigue were observed throughout the entire duration of

the wrist-hand extension and flexion.

After completing the 1% session of motion, the neurostimulator was activated. Based on
stroke participant's feedback following the procedure outlined in Section 3.2.1 of the
Experimental Setup, the optimal current of current was confirmed. Across all
participants, the mean value of the optimal electrical current was 42.9 £ 13.9 mA,
ranging from 12-70 mA. Following the confirmation of the optimal electrical current,
tsES was applied on cervical spine. The stroke patient was then asked to conduct 2"

session of motion, which had the identical procedures as 1% session. The tsES duration
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matched the duration of motor functions in UE, totaling 1660 seconds. This duration
was derived from four motion tasks, each comprising five 35-second trials, along with
two 2-minute rest periods. To ensure the accuracy of signals of collected EEG/EMG,
stroke participants were advised to avoid head movements and eye blink, prior to every

trial in two sessions of motions.

3.2.4 EEG and EMG Processing

To assess impact of tSES on cortico-muscular interactions, several factors were
examined, involving CMCoh, LI, and activation levels of EMG. A comparison was
made between the phenomenon of not involving tsES and involving tsES to assess any
differences or effects. The captured EEG signals underwent a filtration process
employing a 3"-order Butterworth bandstop filter. This filtering step aimed to remove
any potential artifacts caused by the applied stimulation during the task involving
movement of the wrist and hand. Specifically, a band-stop filter with a range of 29-31
Hz was applied to effectively attenuate the artifacts of stimulation occurring at a
frequency of 30 Hz, thus minimizing their impact on obtained EEG, as practiced in
[186]. The application of electrical stimulation resulted in a noticeable and consistent
results in obtained EEG data for time domain, as depicted in Figure 3.4(a) to (b). In
the domain of frequency, PSD of EEG exhibited a prominent peak at 30 Hz, as shown
in Figure 3.4(c). However, upon implementing band-stop filter, spectra of EEG

exhibited a similarity to those obtained in the absence of electrical stimulation. This
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observation indicates that the effectiveness of band-stop filter in eliminating the

artifacts from the EEG.
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Figure 3.4 EEG signals from CZ channel for a 1s’ interval of upper limb flexion at 20%
iMVC when activating tsES. The time domain representation of the EEG amplitude is

depicted in (a)~(b). The EEG PSD in domain of frequency is shown in (c).

To estimate the cortico-muscular coupling patterns, coherence among EEG via
sensorimotor cortex and EMG via five upper limb muscles were analyzed. The CMCoh
was specifically calculated within the beta frequency band, ranging from 13-29 Hz. It
is worth noting that the beta frequency band is known to exhibit the most pronounced
CMCoh during steady and moderate isometric muscle contractions [187, 188]. The

calculation of CMCoh values was performed using the following method:
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Where Peeg, emc(f) represents cross-spectrum density, Peec(f), Pemc(f) are auto-
spectrum densities of the data of EEG/EMG. The coupling estimation offers a
standardized assessment for magnitude of CMCoh patterns, shown as a continuous
numerical value within the range of 0 to 1. A value of 0 signifies a total absence of
connection, while a value of 1 signifies a perfect correlation [160]. The statistical
significance of the CMCoh value was determined based on a threshold of P <0.05. This
significance level was established by comparing the CMCoh value to the confidence

level (CL), and it could be obtained by Equation (3.4):

CL =1 —0.05%/¢-1) (3.4)

Where the parameter L represents epochs of trial. For every EEG/EMG trial, the
duration was thirty seconds. Initially, the trials were 35 seconds long, but the final 5
seconds were removed. Each trial was then divided into 1200 data points, representing
1-second segments, with a 50% overlap between adjacent segments. A total of 275 trial
epochs were obtained, resulting from 55 trial segments multiplied by 5 trial numbers.
These trial epochs provided the EEG/EMG data for evaluation. To determine statistical
significance of the CMC values, a confidence level (CL) of 0.011 was utilized. This CL
served as the threshold to assess whether the CMC values exceeded the expected level

of chance occurrence. The maximal CMCoh were measured for every muscle in UE.
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This measurement aimed to obtain the most significant CMCoh among EEG/EMG
signals for motion tasks of UE. By identifying the peak CMCoh values, the specific
instances of high coherence between the cortical EEG activity and the corresponding
muscle activation were determined for each UE muscle [189]. To visualize activation
region in the cortex with the highest CMCoh, the topography of the peak CMCoh was
employed. Additionally, LI was employed to evaluate the relative hemispheric

lateralization of the peak CMCoh in all stroke participants, as shown in Equation (3.5):

Cohjpsilesional (3.5)

Laterality Index =

max(COhcontralesional'COhmiclsagittal)

Where CMCoh in the ipsilesional, contralesional, and midsagittal hemispheres are
represented by Cohipsilesional, COhcontratesional, ad COhmidsagittal. The LI values, which
indicate hemisphere dominance of peak CMCoh, are assessed based on whether they
are smaller than 1 (indicating contralesional hemisphere dominance) or larger than 1

(indicating ipsilesional hemisphere dominance) [190].

To assess the results for muscle activation in motion tasks of wrist and hand, the
normalized EMG activation levels were utilized [191]. The initial EMG for a specific
muscle, denoted as muscle 1, was first standardized via relaxed and maximal levels in
the period of iMVC. This normalization process was achieved using Equation (3.6).
Subsequently, the activation level of EEG for muscle 1 was determined using Equation

(3.7):
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EMGyormalized iy =
Nmmahzed(l) EMGmax(i)_EMGbaselme(i)

1 T
EMGActLevel(i) = EJ‘O EMGNormalized(i) (Ddt (3.7)

Where standardized EMG of muscle i is represented as EMGnNomalized(),
) OT EMGyormatizeaci) (D dt is envelope of muscle i’s EMG during T. After normalization,
the activation level of muscle i's EMG is computed as EMGacirevelii). The evaluation of
EEG/EMG data was performed by applying customized code based on FieldTrip in
MATLAB R2019b, which can be found at http://www.fieldtrip.fcdonders.nl. This
customized code facilitated the analysis and processing of the EEG and EMG data,

enabling the acquisition of the evaluation outcomes.

3.2.5 Statistical Analysis

Figure 3.5 presents the statistical analysis to compare the obtained CMCoh-related
parameters without tsES and with tsES. The normality of these measurements was
assessed via Shapiro-Wilk test. Regarding the CMCoh values, it was found that both
groups displayed a normal distribution at both iMVC levels of every motion (P > 0.05).
However, exceptions were observed in TRI (40% Ex), BIC (20% Fx), APB (20% Ex &
40% Fx), where the distribution deviated from normality (P < 0.05). Regarding the LI,
it was observed that both groups exhibited a normal distribution in ECU-ED at both
IMVC level of Ex, as well as 20% Fx’s FCR-FD. However, in 40% Fx of FCR-FD, the
distribution deviated from normality (P < 0.05). The activation levels of EMG in two

groups exhibited the normal distribution (P > 0.05), except for FCR-FD (20% Ex), BIC
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(40% Ex), TRI (20% & 40% Fx), where distribution deviated from normality. For the
parameters that exhibited a normal distribution (P > 0.05), a paired t-test was employed
to assess the differences without tsES and with tsES. On the other hand, for parameters
that did not follow a normal distribution (P < 0.05), Wilcoxon signed-rank test was
utilized for assessing conditions’ variations without and with tsES. In this study, a

statistical significance level of 0.05 was predetermined.
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Figure 3.5 The flowchart of the statistical analysis.

3.3 Results
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Figure 3.6 CMCoh during (a) extension and (b) flexion in wrist and hand without tsES
and with tsES. The observed differences were indicated follows: ‘*’: P <0.05 and “**’:

P <0.01 (Paired t-test), ‘*: P <0.05 (Wilcoxon signed rank test).

In Figure 3.6, the CMCoh values are presented for wrist-hand motions, comparing
without tsES and with tsES. Table 3.2 and Table 3.3 provide the detailed conclusion of
the statistical findings considering CMCoh. Specifically, during extension motion, the
ECU-ED’s CMCoh statistically increased under tsES in two levels of extension
contraction (p < 0.05). In contrast, BIC exhibited the statistical reduction in CMCoh
with tsES at two levels of extension contraction (p < 0.05). Similarly, TRI showed a
notable reduction in CMCoh at both contraction levels (p < 0.05). Furthermore, it was
found that ECU-ED’s CMCoh statistically increased from twenty to forty percent
extension at two conditions. During flexion tasks of wrist and hand, muscle of FCR-FD
showed a statistically increase in CMCoh at twenty percent of flexion (p < 0.05).

Conversely, the CMCoh values of TRI and BIC showed a significant decrease at two
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levels of agonist muscles during tsES (p < 0.05), other than BIC at forty percent of
flexion. Nevertheless, no statistical variations observed when comparing CMCoh

values of other upper limb muscles within and with group comparisons.

Table 3.2 CMCoh of upper limb muscles during extension of wrist and hand without

tsES and with tsES.

20%Extension 40%Extension
Muscle P (Partial 5?)
CMCoh (Mean+SD)
ECU-ED Non-tsES 0.187+0.009 0.212=0.011 0.009*%(0.457)
tsES 0.217+£0.011 0.247£0.019 0.023%(0.618)
P (Partial n*) 0.030* (0.801) 0.036* (0.767)
FCR-FD Non-tsES 0.240+0.031 0.233=0.024 0.846(0.063)
tsES 0.232+0.020 0.239x0.018 0.321(0.127)
P (Partial 7°) 0.829(0.070) 0.590(0.061)
BIC Non-tsES 0.265+0.028 0.230=0.019 0.285(0.340)
tsES 0.203=0.013 0.208=0.008 0.749(0.202)
P (Partial n®) 0.048%(0.686) 0.041%(0.397)
TRI Non-tsES 0.275£0.037 0.241=0.024 0.878(0.048)
tsES 0.204+0.010 0.215=0.018 0.799(0.081)
P (Partial n?)  0.010%(0.579) 0.047% (0.629)
APB Non-tsES .255+0.029 0.239x0.020 0.612(0.166)
tsES 0.236+0.031 0.237=0.017 0.610(0.161)
P (Partial n*) 0.241(0.371) 0.907(0.038)

Note: The observed differences is indicated: “*’: P < 0.05 and “**’: P <0.01 (Paired t-

test), and ‘#’: P < 0.05 (Wilcoxon signed-rank test).
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Table 3.3 CMCoh of upper limb muscles during flexion of wrist and hand without tsES

and with tsES.
20%Flexion 40%7Flexion
Muscle P (Partial %)
CMCoh (Mean*SD)

ECU-ED Non-tsES 0.217+0.020 0.212=0.015 0.820(0.074)
tsES 0.208=0.011 0.215£0.012 0.603(0.170)

P (Partial 7%) 0.717(0.118) 0.921(0.032)
FCR-FD Non-tsES 0.194=0.010 0.233=0.018 0.376(0.670)
tsES 0.214=0.021 0.201=0.009 0.462(0.155)

P (Pattial n2)  0.043%(0.070) 0.206(0.430)
BIC Non-tsES 0.245=0.026 0.241=0.019 0.878(0.050)
tsES 0.204=0.008 0.224+0.018 0.304(0.345)

P (Partial 7%) 0.045% 0.538(0.202)
TRI Non-tsES 0.243=0.017 0.262=0.020 0.346(0.315)
tsES 0.205=0.017 0.207=0.014 0.869(0.054)

P (Partial 1°) 0.016%(0.477) 0.023%(0.671)
APB Non-tsES 0.260=0.023 0.221=0.018 0.445(0.242)
tsES 0.238+0.020 0.215=0.013 0.575(0.117)

P (Partial 1%) 0.219(0.417) 0.445(0.278)

Note: The observed differences is indicated: “*’: P < 0.05 (Paired t-test), and ‘#’: P <

0.05 (Wilcoxon signed rank test).
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3.3.2 Cortico-muscular Coherence Topography
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Figure 3.7 Topographies of CMCoh in a stroke subject (left hemiplegia) during wrist-

hand motions. The muscles included are ECU-ED, BIC, and TRI for (a) 20% and (b)

40% Ex. The muscles included are FCR-FD, BIC, and TRI for (c) 20% and (d) 40% Fx.

The topographies are presented for both without tsES and with tsES.

In Figure 3.7, we observe the topographies of CMCoh in the stroke patient (left

hemiplegia). The visual representation illustrates the effect of applying tsES, which

seemed to induce a shift in the peak CMCoh channel. Specifically, during the extension

of upper limb, there is a distinct shift in the CMCoh channel of peak value from the

non-lesion side to lesioned side of cortex. Specifically, at 20% Ex (Figure 3.7(a)), we

observe the following shifts in the peak CMCoh channel for the corresponding muscles:
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for ECU-ED, the CMCoh moves from CP3-FCZ; for BIC, the CMCoh shifts from FC1-
C1; for TRI, the CMCoh transitions from CP5-CP1. For forty percent of extension
(Figure 3.7(b)), we observe further shifts in the peak CMCoh channel for the muscles
involved in wrist-hand extension. The specific changes are as follows: for ECU-ED,
CMCoh shifts from FC5-CP2; for BIC, CMCoh moves from FC3-CP4; for TRI,
CMCoh transitions from C5-FCZ. Similarly, we observe the shift pattern at twenty
percent of flexion (Figure 3.7(c)) during flexion of wrist and hand. CMCoh for FCR-
FD shifts from CP5-C1, while for BIC, it moves from FC1-CP4. Furthermore, at forty
percent of flexion (Figure 3.7(d)), we observed a specific shift in CMCoh of BIC. It

transitions from FC1-C5.
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Figure 3.8 LI during (a) extension and (b) flexion of wrist and hand.

In Figure 3.8, the LI during extension and flexion of wrist and hand are presented.
Further detailed statistical analysis of LI values could be obtained in Table 3.4 & 3.5.
During the extension motion tasks, there were significant differences in LI in the
following muscles: ECU-ED exhibited significantly higher LI values at both 20% and
40% Ex. BIC showed significantly higher LI values at 20% Ex. TRI demonstrated
significantly higher LI values at 40% Ex. These differences were determined through a
Paired t-test (p < 0.05). In the case of the flexion motion tasks, there were significant
differences in LI values in the following muscles: FCR-FD exhibited significantly
higher LI values at 20% Fx. BIC showed significantly higher LI values at 20% Fx. This
difference was determined using a Wilcoxon signed-rank test (p < 0.05), whereas no

statistical variation in LI was observed in FCR-FD at forty percent of flexion.
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Table 3.4 LI values during extension of wrist and hand without tsES and with tsES.

20%Extension 40%Ex Extension
Muscle
Laterality Index (Mean+SD)
ECU-ED Non-tsES 0.901+0.036 0.892+0.024
tsES 1.039+0.052 1.002+0.039
P (Partial 52) 0.039*(0.680) 0.040*(0.680)
BIC Non-tsES 0.889+0.025 1.015%0.040
tsES 0.976+0.031 0.968+0.029
P (Partial 12) 0.019%(0.796) 0.332(0.282)
TRI Non-tsES 1.010+0.032 0.921£0.033
tsES 1.046+0.054 1.033=0.038
P (Patial 12) 0.325(0.300) 0.026*(0.742)

Note: The observed differences is indicated as follows: '*' denotes P < 0.05 based on

Paired t-test.
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Table 3.5 LI values during flexion of wrist and hand without tsES and with tsES.

20%Flexion 40%Flexion
Muscle
Laterality Index (Mean+SD)
FCR-FD Non-tsES 0.952+0.044 0.960+0.045
tsES 1.056+0.033 0.971+0.033
P (Partial n?) 0.031%(0.711) 0.805(0.079)
BIC Non-tsES 0.919+0.028 1.049+0.032
tsES 1.025+£0.038 1.052+0.055
P (Partial n?) 0.023% 0.951(0.014)
TRI Non-tsES 0.976+0.030 0.995+0.048
tsES 0.976+0.038 0.955+0.028
P (Partial n%) 0.988(0.000) 0.446(0.224)

Note: The observed differences is indicated as follows: '*' denotes P < 0.05 based on

Paired t-test, and ‘#’ for P < 0.05 based on Wilcoxon signed rank test.

3.3.3 EMG Activation Level
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Figure 3.9 EMG activation levels during (a) extension and (b) flexion of wrist and hand

without tsES and with tsES.

Figure 3.9 illustrates the EMG activation levels during motions of wrist and hand.
Table 3.6 and Table 3.7 contain the significant details, including p-values and effect
sizes, for the activation levels of EMG. In the case of the 20% Ex condition, there was
a significant decrease in the EMG activation levels of the FCR-FD (p < 0.05) and BIC
(p <0.05). Conversely, the activation levels of the EMG in APB showed a significant
increase (p < 0.05). During the 40% Ex condition, there were significant decreases in
the EMG activation levels of the FCR-FD, TRI (p < 0.05), and BIC (p <0.05). The 20%
Fx condition showed a significant increase in the EMG activation level of the APB
muscle (p < 0.05). Conversely, the BIC muscle exhibited a significant decrease in its
activation level of EMG (p < 0.05). For the forty percent of flexion condition, the
activation level of EMG for the TRI muscle demonstrated a statistical decrease (p <
0.05). However, no significant differences were observed in the activation levels of

EMG for the other muscles when comparing between different groups.
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Table 3.6 EMG activation level of upper limb muscles during extension of wrist and

hand without tsES and with tsES.

FCR-FD BIC TRI APB

Motion
EMG activation level (Mean + SD)

20%Ex Non-tsES 0.258=0.022 0.231=0.021 0.217=0.034 0.213+0.037
tsES 0.217=0.031 0.208=0.017 0.232=0.031 0.250+0.027

P (Partial n?) 0.041% 0.038%(0.292) 0.542(0.200) 0.025%(0.385)

40%Ex Non-tsES 0.387=0.021 0.348=0.049 0.346=0.039 0.304+0.044
tsES 0.356=0.034 0.308=0.011 0.307=0.028 0.352+0.029

P (Partial %)  0.040%(0.757) 0.039" 0.019%(0.363)  0.291(0.355)

Note: The observed differences is indicated as follows: ‘*’ for P < 0.05 (Paired t-test),

and ‘#’ for P < 0.05 (Wilcoxon signed rank test).
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Table 3.7 EMG activation level of upper limb muscles during flexion of wrist and hand

without tsES and with tsES.

ECU-ED BIC TRI APB
Motion
EMG activation level (Mean + SD)
20%Fx Non-tsES 0.248+0.027 0.259+0.020 0.218+0.020 0.223+0.033
tsES 0.279+0.011 0.220+0.017 0.253+0.026 0.274+0.020
P (Partial n*)  0.405(0.276)  0.043*(0.744) 0.445 0.018*(0.458)
40%Fx Non-tsES 0.324+0.037 0.347+0.014 0.328+0.009 0.318+0.030
tsES 0.395+0.055 0.319+0.023 0.293+0.023 0.368+0.039
P (Partial n%)  0.067(0.646) 0.148(0.501) 0.033% 0.368(0.300)

Note: The observed differences is indicated as follows: ‘*’ for P < 0.05 (Paired t-test),

and ‘#’ for P < 0.05 (Wilcoxon signed rank test).

3.4 Discussion

The primary objective of this study was to investigate the instant influence of tsES on

cortico-muscular motor control patterns in upper limbs of individuals diagnosed with

stroke during movement of wrist and hand. The study specifically focused on

comparing the differences in coherence between CMCoh, the LI, and activation levels

of EMG without tsES and with tsES. According to the findings of the study, it was

observed that the values of coherence between CMCoh moved to the lesioned side when

tsES was applied. The shift in peak CMCoh suggests that tsES has the potential to
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instantly improve remaining motor control pathways that originate from the lesioned
side. As a result, tsES may also help decrease compensation influences exerted by the

non-lesioned brain side in motion controlling of distal muscles in the UE (Figure 3.10).
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Figure 3.10 The illustration of tsES neuromodulation mechanism

3.4.1 tsES improved excitation/ inhibition control of UE muscles

The improved excitation controlling of cerebral cortex for the muscles was illustrated
via substantial improvement in CMCoh of agonist UE muscles, such as ECU-ED in
twenty and forty percent’s extension, FCR-FD in twenty percent’s flexion) (Figure 3.6).
The changes in CMCoh provide evidence of the immediate impact of tsES on enhancing
the precision for controlling motion tasks of wrist and hand at different difficulty levels.
This effect is attributed to the interactions between sensory and motor neural networks
in cervical spine. These networks actively regulate physiological states, resulting in an

amplified responsiveness to descending neural tracts’ signals originating from the
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cerebral cortex [192]. The sensory pathways in the cervical spinal cord, known as
ascending tracts, transmit somatosensory information from the body to the brain
through the white matter of the spinal cord [192]. During tsES, the focus is primarily
on providing "touch sensation" in the dorsal/posterior root, where the gracilis and
cuneate fasciculi transmit this sensory information to the cerebral cortex [192]. In this
study, the stroke patients actively engaged in voluntary movements, which primarily

involved the descending tract known as the lateral corticospinal tract [192].

Prior research involving persons has employed PAD as a method for examining the
effects in recruiting group la/Ib neural fibers in MEPs of cervical spine [193, 194]. The
results obtained from this study provided confirmation that the application of
continuous electrical stimulation exhibits a preferential activation and recruitment of
proprioceptive sensory fibers with larger to medium diameters. These specific fibers
are primarily situated in the dorsal root/column [195]. These myelinated axons, found
within the neural tracts of the vertebral canal, exhibit greater responsiveness to external
electrical stimulation due to their lower excitation thresholds compared to alpha motor
fibers [196]. Located in the dorsal root of the spine, where their neuronal somas are
situated, these fibers are capable of transferring potentials of excitatory to the spinal
motoneurons and interneurons through both mono- and poly-synaptic proprioceptive
circuits [197]. As a result, the elevation of membrane potentials in spinal neurons
enhances the response for spinal neural tracts to motor control that originate from the

brain [198].
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In the case of stroke participants, there was no disparity in the CMCoh of antagonist
muscles among the conditions without tsES and with tsES. However, activation levels
of EMG in FCR-FD during wrist-hand extension exhibited a significant decrease when
tsES was applied (Figure 3.9(a)). The observed decrease in muscular output implied the
potential recruitment of local inhibition neural tracts in spine, leading to precise
interactive inhibition [199]. Reciprocal inhibition primarily occurs through the
mediation of Ia afferents, that convey inhibition potentials toward the antagonist UE
muscle, suppressing the activation while in motion [200]. Nevertheless, evidence shows
a decrease in transmission along the interactive inhibitory tracts in patients affected by
stroke. This results in heightened excitability of the a motoneurons responsible for
regulating antagonist UE muscle [201, 202]. Electrical stimulation assists in
depolarizing Ia fibers located in posterior column, subsequently establishing robust
synaptic connections with spinal cord’s inhibitory interneurons [203]. By activating
these inhibitory interneurons, it is possible to augment the inhibitory regulation of the
antagonist muscle, thereby diminishing its recruitment and enhancing coordination

between muscles of agonist/antagonist [204].

3.4.2 tsES decreased cortical/proximal muscular compensation

influence

During execution of wrist-hand extension and flexion movements, the proximal

muscles, specifically the BIC and TRI as illustrated in Figure 3.6, exhibited a notable
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decrease in peak CMCoh when tsES was applied. The observed phenomenon indicates
a relatively diminished allocation of cortical resources for the innervation of proximal
muscles in the UE during distal motions of upper limb. The tsES was found to elicit a
decreasing trend in activation levels of EMG in proximal muscles (Figure 3.9). Distal
movements of the upper extremity showed a reduced reliance on proximal muscular
compensation, indicating the influence of continuous spinal cord stimulation on the
improved physiological condition of neural tracts in spine. This heightened
physiological state increases the response of neural tracts in spine to supraspinal
commands transmitted through the remaining motor pathways [205, 206]. The
application of tsES resulted in a notable increase in the LI within the proximal muscles
of upper limb in execution of motions in wrist and hand (Figure 3.8). Specifically, the
BIC demonstrated a significant increase in LI in 20% extension/flexion in wrist and
hand, while the TRI demonstrated a LI increase of 40% during wrist-hand extension
when tsES was applied. The reorientation of lateralization in hemisphere to the
ipsilesional side led to decreased control from the non-lesioned side to proximal UE
muscles, consequently reducing compensation of these muscles. Prior research has
examined the compensatory contractions displayed by the proximal UE muscles
following a stroke, revealing a relocation of the cortical motor controlling center for
these muscles to the contralesional side [183]. Furthermore, an fMRI investigation has
documented heightened flow of blood for multiple cortices within the non-lesioned side

when stroke patients executed gripping tasks. This finding suggests a higher level of

78



activation in the contralesional cortex compared to individuals without impairments
serving as control participants [26]. While proximal-to-distal compensation in the UE
offers an alternative for impaired distal movement following a stroke, it can also
contribute to the phenomenon known as "learned disuse". Unfortunately, learned disuse
can lead to additional motor deficits such as reduced dexterity and the development of
abnormal muscle synergies [207]. Impairment of motor control in distal UE muscles
exhibits greater severity because of the damage sustained by the main sensorimotor area
and its associated motor control neural pathway after stroke, in contrast to the
impairment observed in proximal UE muscles. The variation observed can be attributed
to the fact that the distal muscles of the UE primarily receive innervation from the
lateral CST, which was mainly from the ipsilesional side. This tract is more susceptible
to damage caused by stroke, leading to the observed differences. Conversely, the
anterior CST, responsible for controlling the proximal muscles of the UE, remains
primarily ipsilateral in spine and is comparatively less influenced by damage resulting
from a stroke [208]. In the majority of stroke patients, lesions of the motor pathways
are typically partial. While some residual pathways may remain intact, these circuits
are often unable to transfer an adequate level of excitability required to stimulate the
motor neurons in the upper limb muscles [209, 210]. Through the utilization of
electrical stimulation, tsES effectively modulates the excitability of the spinal cord.
This modulation helps lower the threshold for motoneurons in transferring motor

impulses. The aim is to promote the combination of residual motor control tracts from
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the central nervous system [164]. As a result of this integration, there is an increased
propagation signals from of motor control in residual descending neural tracts [211].
Consequently, there was a reduction in cortical compensatory effects originating from
the contralesional hemisphere, which is responsible for the proximal UE muscles during

movements of distal UE.

The obtained elevation in the LI within the distal muscles of the UE, specifically in the
ECU-ED for 20% Extension and 40% Extension, as well as in the FCR-FD for 20%
Flexion (Figure 3.8), serves as additional evidence supporting the presence of
improved residual descending control. As previously discussed, the application of
stimulation current for spinal cord has the ability to adjust the physiological state of
tracts, thereby promoting relations among the motor tracts originating from the lesioned
side and distal UE muscles that they innervate [208]. These findings align with previous
research, which suggested that long-lasting current to cervical spine resulted in
increased force and control of the hand [212]. More specifically, individuals with SCI
exhibited the ability to generate higher levels of hand grip force. Moreover, the
stimulation of multiple segments at the C3-C7 resulted in an increase in the evoked
response of distal UE muscles, while the recruitment of UE muscles in the proximal
side decreased [212]. The improvement of plasticity in synapse from lesioned side may
account for the observed increased synergies of the UE during movements of distal UE
muscles [213]. In the context of synaptic plasticity, there is a complex interplay and

connectivity among the motor axons and neurons within spine [213]. The electrical
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stimulation induces an excitability state in the corticospinal anterior horn, facilitating
the strengthening of synaptic plasticity through the arrival of descending impulses from
the brain [214]. In the context of the organization of motor neurons, it has been observed
that the cortico-motoneurons responsible for distal upper limb muscles do not exert
inhibitory control over those governing proximal muscles at the cortical level. This
phenomenon can be attributed to the topographical arrangement of motor neurons of
the spine, guided by two fundamental principles: the flexor/extensor and
proximal/distal rule. According to the flexor/extensor rule, motoneurons innervating
UD muscles are positioned posteriorly to those innervating extensor muscles. Similarly,
the proximal/distal rule dictates that motoneurons responsible for distal muscles, such
as hand muscles, are located laterally in relation to motoneurons controlling proximal
muscles of. Consequently, this process enhances the likelihood of following neuronal
firing, in accordance with the principles of the Hebbian-type learning effect. Through
current stimulation of synaptic efficiency is enhanced, leading to an increased

likelihood of firing [214].

One limitation in the research was small sample size of participants included. We
continued collecting individuals until we observed significant differences in most of the
obtained parameters. Eventually, we recruited twelve subjects with variable
impairments in motor functions, and the results showed that tsES modulated neuro-
muscular interactions in poststroke individuals. However, the study lacked access to

neuroimaging data that would provide precise information about the location of the
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participants' brain lesions. Motor impairments were solely evaluated through behavioral
assessments, focusing on the paralyzed side. Despite the wide range of motor
impairments observed in the participants, we obtained findings from the recruited
individuals. This suggests that tsES may be an efficient method of neuromodulation for

individuals with different degrees of impairment following a stroke.

In future studies, we plan to address these limitations by increasing the sample size and
investigating the instant influences of tsES for various subtypes poststroke. We aim to
categorize participants based on the location of their brain lesions and severity of motor
impairments, which will provide further insights into the variations among different
subgroups. Furthermore, the changes in CMCoh of proximal muscles, specifically the
BIC and TRI, apart from wrist movement, and other single-joint movements such as
elbow movement will be executed. This additional investigation aims to compare the
alterations in CMCoh observed in muscles involved in single-joint movements with
those occurring during multi-joint movements. Finally, we will conduct clinical trials
to examine the training results of tsES in affected upper limb poststroke. These trials
will involve multiple sessions of training that combine tsES with VPT exercises,

allowing us to gain a better understanding of the potential benefits of this intervention.

3.5 Periodic Summary

In this study, our investigation focused on the instant impact of tsES in cortico-muscular

coupling during voluntary muscular movements of the affected distal UE in individuals
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poststroke. Electrophysiological measurements, such as coherence between cortex and
muscles, LI, and activation levels of EMG, were utilized for the analysis. The findings
of this study revealed that by providing long-lasting current stimulation to cervical
spine, it is possible to improve the excitation and inhibition effects of UE muscles in
UE. This stimulation technique also helps to minimize the compensatory effects in the
cortical region and proximal muscles. In particular, through the modulation of sensory
and motor networks tracts in the cervical spine, tsES facilitated enhancement of motor
controlling excitation effects to agonist muscle, while concurrently improving local
inhibition motor control to antagonist muscle. The changes in brain lateralization to the
lesioned side, along with reduced activation levels of EMG in proximal muscles of UE,
suggesting a decline in compensation from cortical side and proximal muscular side.
The implications of these findings indicate that tsES has the potential to improve
responses to motor control tracts from the lesioned brain by adjusting cervical spine
excitation. This highlights the possibility of utilizing tsES as an additional input to

improve motor recovery poststroke, particularly for upper extremities.
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CHAPTER 4

REHABILITATIVE EFFECTS OF NON-INVASIVE
CERVICAL TRANS-SPINAL ELECTRICAL
STIMULATION ON UPPER LIMB REHABILITATION

IN CHRONIC STROKE

4.1 Introduction

Stroke continues to be a significant factor in long-term disability, affecting around 80%
of survivors with upper limb motor impairments [2, 215]. Facilitating the restoration in
motor function for upper extremities is crucial in persons who have experienced a stroke,
as it empowers them to engage in fundamental tasks necessary for daily living. This
improvement in motor ability not only enhances their level of independence but also
has a positive impact on their overall quality of life [216]. To regain motor function in
stroke patients’ upper extremities, current rehabilitation techniques heavily rely on
intensive and repetitive occupational and physical training programs [217]. However,
the effects of recovery typically diminish after six months to one year after stroke, and
individuals who receive inadequate rehabilitation support may experience further
deterioration [218]. Consequently, there is a pressing need for the development and
implementation of enhanced rehabilitation technologies that can significantly improve

the long-term motor restoration in the upper extremities following a stroke.

Over the past few years, there has been an increasing utilization of stimulation-based
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neuromodulation interventions in rehabilitation technologies, including deep brain
stimulation (DBS), epidural spinal cord stimulation (eSCS), repetitive transcranial
magnetic stimulation (rTMS), and tsES [219-221]. This is primarily due to their
association with neural reorganization, which has been recognized as a crucial factor in
facilitating motor recovery [222]. Encouraging outcomes have been witnessed when
employing DBS and eSCS as interventions to enhance motor recovery among
individuals afflicted with central neurological conditions, including TBI, SCI, and
stroke [223-225]. These relevant studies primarily focused on the surgical implantation
of a small array of electrodes in specific brain or cervical spinal cord areas. The
objective behind this approach was to effectively modulate the impact of electrical
stimulation on the neural system [226]. Although these techniques have been
demonstrated effectiveness in improving motor functions after stroke by precisely
modulating the neuronal circuitry, they are associated with the risks of infection,
bleeding, and the patient injury caused by the interaction between the stimulation

devices and other therapeutic instruments, such as ultrasound and MRI [173].

In contrast to the surgically implanted techniques, non-invasive stimulation techniques
(e.g., 'rTMS and tsES) could modulate the neural activity in brain or spinal cord with
fewer associated side effects [227, 228]. However, the high-frequency rTMS has been
reported to induce epileptic seizures in a few cases and may not be suitable for patients
who had partial brain resection [229]. The utilization of tsES offers a safer, easier-to-

operate, and more affordable alternative to modulate the spinal cord [230]. To achieve
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this, a distinctive waveform of high-frequency electric current is utilized, which
traverses from the surface of the skin to reach the spinal networks [230]. This innovative
approach has shown promising results, as evidenced by recent studies demonstrating
noteworthy enhancements in upper limb motor function among individuals with
chronic SCI individuals who received cervical tsES intervention and voluntary physical
training (VPT) [168, 212]. For example, maximum hand grip strength was improved
after 4-week voluntary hand grip training combined with eight sessions of non-invasive
cervical tsES (monophasic waveform at 30 Hz) delivered along the midline between
C3-C4 and C6-C7 spinal levels [212]. Another study revealed that hand lateral pinch
strength exhibited an increase after a four-week intervention involving combined
transcutaneous spinal stimulation (biphasic and rectangular waveform with 30 Hz at
C3-C4 and C6-C7 levels) and VPT. Furthermore, this functional improvement was
sustained during a follow-up period of over three months without additional treatment
[168]. Both studies also observed a notable augmentation in the amplitude of spinal
motor evoked potentials (MEPs) for distal upper limb muscles following tsES
intervention [168, 212]. These findings indicated that tsES combined with VPT could
improve the effectiveness of residual corticospinal tract by augmenting the inter-
neuronal spinal circuits excitability and reducing the threshold for motor impulse
propagation [169]. In individuals with chronic stroke, the spinal circuits below the
cortical lesion remain intact, and there has been a scarcity of studies that have

specifically explored the impacts of spinal cord electrical stimulation on the process of
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upper extremity motor recovery [61, 164]. For example, Powell et al. determined the
immediate assistive effects of continuous cervical electrical stimulation (biphasic
waveform with 40-100 Hz at C4-T1 levels) in facilitating motor function in the arm and
hand [61]. Blanc et al. concluded that stroke subjects with intervention combing direct
tsES and peripheral nerve stimulation achieved significant reductions in upper
extremity spasticity and improvement in motor function compared to the shame
condition [62]. These pilot studies showed the potential of tsES in enhancing upper
limb motor function in chronic stroke. However, both studies focused exclusively on
the effects of tsES and non-tsES conditions, thereby overlooking the potential
combined rehabilitation effects of tsES and conventional VPT in chronic stroke. In
addition, these studies solely evaluated the kinematics and functional movements,
without assessing the impact of tsES on the remaining descending pathways from

central nervous system (CNS) to the peripheral muscles in chronic stroke patients.

The interaction patterns between CNS activity and muscle activity could be captured
through specific parameters obtained from electroencephalography (EEG) and
electromyography (EMG), such as spinal MEPs and cortico-muscular coherence (CMC)
[231, 232]. Previous studies on CMC in stroke patients have explored the connections
between sensorimotor cortex activity and muscle activity in the upper extremities
during tasks involving upper limb motion. These studies have indicated that analyzing
changes in CMC can provide insights into the cortico-muscular patterns associated with

upper extremity motor functions [156, 183, 233]. Therefore, the primary objective of
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current research was to examine rehabilitative effects of non-invasive tsES for affected

upper extremities affected by chronic stroke in individuals.

4.2 Methodology

To investigate the rehabilitation effects of tsES, a randomized controlled trial (RCT)
was conducted, involving individuals diagnosed with chronic stroke. The participants
were divided into two groups: one group received tsES in conjunction with voluntary
physical training (VPT), while the other group solely underwent VPT. Measurements
were then compared between these two groups of stroke subjects in order to assess the
impact of tsES on the rehabilitation process. The evaluated outcomes included clinical
scores, as well as three electrophysiology-related parameters (CMC, laterality index,
and EMG activation level) at three different evaluation time points (pre-, post-, and

3MFU training).

4.2.1 Experimental Setup of Trans-spinal Electrical Stimulation

Neurosti
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Figure 4.1 The experimental setup for trans-spinal electrical stimulation training. (a)
the configurations that delivers electrical stimulation and training tools. (b) the
illustration stimulation waveforms generated by function generator and neurostimulator.
(c) the illustration of specific stimulation sites of cathode electrode (C4-C6) and anode

electrodes (acromioclavicular joints) on a stroke subject.

Figure 4.1 depicts the experimental setup utilized for tsES training. This involved the
use of the neurostimulator (DS8R, Digitimer, UK) and an arbitrary function generator
(Tektronix, AFG1022, USA) to deliver non-invasive and painless cervical electrical
stimulation (Figure 4.1(a)). The function generator and the neurostimulator were
connected using a BNC cable, with the function generator supplying a monophasic and
rectangular waveform signal to trigger the neurostimulator (Figure 4.1(b)). The trigger
signal consisted of 10 cycles of rectangular, monophasic waveform. Upon detecting the
ascending trend of the trigger signal, the neurostimulator emitted a biphasic and
rectangular pulse, resulting in 10 cycles of pulses being generated (Figure 4.1(b)). The
stimulation protocol involved delivering ten 0.1ms rectangular biphasic pulses at a
carrier frequency of 10kHz and a burst frequency of 30Hz (Figure 4.1(c)). This
stimulation approach leveraged the painless effects of high-frequency stimulation and
the charge-balancing properties of a biphasic waveform, which helps prevent potential

tissue damage [234, 235]. To apply the stimulation, a single rounded self-adhesive
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hydrogel surface electrode was meticulously placed on middle line of skin surface over
the C4-C6 spinous processes as the cathode. Additionally, two rectangular self-adhesive
hydrogel surface electrodes were attached to acromioclavicular joints of shoulders, with
one electrode per side serving as the anode. Before the electrode placement, thorough
skin preparation was carried out to minimize skin impedance. This involved
meticulously cleaning the skin using scrubs and 75% alcohol, followed by a drying

process.

Initial current: Feeling_ on Not | Increase Current
OmA the cervical? (Step size: SmA)

Yes

Increase

Turn on .
..... cycles

generator

|Optimized initial
current

+ 5 mA (<50 mA)

1mA + 1 mA (50~79 mA)
Yes Reach 80
mA

Not
Uncomfortable? >———( Achieve desired i
current

Figure 4.2 The flowchart for modulating the electrical stimulation intensity by the

function generator and neurostimulator.

Figure 4.2 demonstrates how the stimulation intensity was adjusted by the
neurostimulator and function generator. The process of determining the optimal

stimulation intensity for a stroke individual is as follows: (1) the stimulation intensity

90



of the neurostimulator was initiated from 0 mA and gradually increased in 5 mA
increments until the stroke patient could sense it on the cervical area; (2) the stimulation
cycles on the function generator were increased from 1 to 10; (3) the intensity of the
stimulation was gradually increased in SmA increments for stimulation levels below
50mA, and in 1mA increments for stimulation levels ranging from 50mA to 79mA [236].
The maximum level of stimulation intensity was set at 80mA, which was adopted by
previous studies [237]; (4) during the adjustment of the stimulation intensity, the
participant was instructed to provide feedback on the comfort level of the delivered
stimulation. If the intensity could not be increased further and tolerated for the duration
of a 20-minute training session, the current intensity was regarded as the optimal

stimulation intensity for the patient.

4.2.2 tsES Rehabilitation Program

Subjects Recruitment

Following the acquisition of ethical clearance from the HSESC, consent forms
regarding the purpose of the research have been signed by participants before the

experiment.
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Assessed for eligibility
(0=33) Excluded (n=11)

- Not meeting inclusion criteria (n=7)
FMA full-score <15 or >45 (n=3)
MAS sub-score >3 (n=4)

- Declined to participate (n=3)

Randomized - Other reasons (n=1)
(n=22)
tsES intervention +VPT VPT
(n=11) (n=11)
Completed pre-training evaluation | |Completed pre-training evaluation
(n=11) (n=11)
Completed 20 training sessions Completed 20 training sessions
(n=10) (n=10)

Gave up (n=1) Gave up (n=1)
Completed post-training evaluation| | Completed post-training evaluation
(n=10) (n=10)

Completed 3MFU evaluation Completed 3MFU evaluation
(n=10) (n=10)

Figure 4.3 The flowchart of Consolidated Standards of Reporting Trials (CONSORT)

for randomized trial design.

Figure 4.3 depicts the presentation of the flowchart adhering to the CONSORT. The
inclusion criteria of this study included: (a) age (years old): 30-75; (b) stroke lasting
longer than six months, with unilateral brain lesion and motor impairment; (c) sufficient
cognitive ability, demonstrated by a score higher than 21 on the MMSE; (d) scores
lower than 3 on the MAS for elbow, wrist, finger; (¢) FMA-UE score between 15 and
45; (f) exhibiting detectable voluntary EMG signals in five upper extremity muscles,
including ECU-ED, FCR-FD, BIC, TRI, APB; (g) capability to maintain a seated
position for at least 60 minutes, with acceptable assistance if needed. The exclusion

criteria were as follows: (a) botulinum toxin injection before six months; (b) current
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use of medications or treatments that can affect muscle tone or upper limb motor
function; (c) a history of substance or drug abuse; (d) participation in other studies
related to upper limb motor function recovery; (e) pregnancy or plans to become
pregnant during the study, or epilepsy; (f) allergies to electrodes or electrical stimulation;
(g) the presence of metal implants or stimulators, including but not limited to
pacemakers or deep brain stimulators. A random assignment was conducted to allocate

all participants into two coherent: the tSES group and the control group. There were ten

participants in each group.

Training Protocol

1 1
Pre-Evaluation 20 Training Sessions Post Evaluation : 3MFU Evaluation :
H 2

Time

Training Tools Function

Generator

(b)

Figure 4.4 The timeline and configuration of the training protocol. (a) the timeline of
the training protocol, including 20 training sessions and three evaluations at pre-, post-,
and 3-month follow-up training. (b) the illustration of a stroke individual received trans-
spinal electrical stimulation when performing voluntary physical training. (c) the

illustration of four types of voluntary physical training.
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The timeline of the training protocol for both groups is depicted in Figure 4.4(a). The
initial pre-training phase involved three consecutive days of clinical assessments
conducted by two blinded assessors who were unaware of the group assignments. This
process was to minimize any potential influence on motor performance caused by
factors such as nervousness in stroke subjects, subjective judgments by the assessors,
and other external factors [238]. Additionally, one CMC evaluation was performed
before the training sessions. The second stage encompassed 20 training sessions. After
the training, the post-training assessment stage was immediately conducted, which
included one clinical assessment and one CMC evaluation. Finally, participants
returned to the laboratory for a 3-month follow-up (3MFU) evaluation, which

comprised one clinical assessment and one CMC evaluation.

Each training session for stroke participants in both groups had a duration of 50 minutes
and was divided into three phases: (1) 20 minutes of tsES stimulation combined with
VPT in the tsES group (Figure 4.4(b)), while the control group performed VPT along
with sham stimulation; (2) a 10-minute rest period was implemented to minimize the
muscle fatigue and spasticity; (3) 20 minutes of VPT training without tsES for both
groups, which ensured that the stimulation intensity applied to the cervical spine in the
tsES group remained within a safe range [239]. During the first and third phases of each

training session, the participant was instructed to engage the affected upper limb in
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tasks that involved four different types of tools (Figure 4.4(c)): (a) stacking towers: the
participant was required to open the hand, grasp rings of various sizes, and place each
ring above the central hole of a stationary pedestal before releasing their grip; (b)
stacking cups: the participant needed to sequentially insert smaller cups into larger cups
until the most miniature cup was correctly positioned; (c) placing sticks: the participant
was instructed to open the hand, grasp three differently sized sticks, and subsequently
place these sticks into the corresponding holes located on a wooden board positioned
on the desk; (d) grasping cubes: the participant used their fingers to grip cubes and then
release them. Each type of task needed to be used at least once in both the first and third

training phases.

4.2.3 Training Effects Evaluation

Clinical Assessment

A comparative analysis was conducted between the tsES and control groups, focusing
on various assessment measures. These measures encompassed the FMA in three
distinct categories: full score, wrist/hand score, and shoulder/elbow score. Additionally,
the MAS was utilized, which comprised three categories: finger, wrist, and elbow. Other
assessment tools employed included the MSS, ARAT, FIM, WMFT scores, and WMFT
time. To minimize the impact of different assessors on the clinical assessments, the
same assessor was assigned to conduct the pre-, post-, and 3MFU-training assessments

for each participant.
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Cortico-muscular Coherence Evaluation

To assess the CMC patterns during upper limb extension and flexion tasks, a data
collection process was undertaken. Specifically, the EEG was recorded via
sensorimotor cortex. Simultaneously, EMG was obtained from five distinct groups of
upper limb muscles. To enhance the quality of the recorded signals, both the EEG and
EMG data were augmented by applying the g.USBamp amplifier. The EEG underwent
amplification with a multiplication factor of 10,000, whereas the EMG was augmented
using the factor of 1,000. To ensure appropriate signal processing, the bandpass filter
settings were 2-100 Hz for EEG signals and 10-500 Hz for EMG signals.
Synchronization and recording of both EEG/EMG was achieved using the data

collecting board, specifically at 1200 Hz sampling frequency.

Error Interval
Trial 5

>

iMVC Test | Trial 1| Trial 2| Rest | Trial 3 | Trial 4| Rest

\ ) Time 10%  +10%

T
Extension / Flexion Tasks

(2) (b)

Figure 4.5 The timeline and visual interface of the wrist-hand motions for CMC

evaluation.

The timeline of the wrist-hand extension and flexion tasks during pre-, post-, and 3SMFU
training stages was presented in Figure 4.5(a). The initial step involved the acquisition
of isometric maximal voluntary contraction (iMVC) EMG signals [62]. The participant

received instructions to engage in iMVC for each of the five target muscles, sustaining
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effort for five seconds. To minimize potential muscle fatigue, a 5S-minute resting period
was allowed. The iMVC EMG signals were collected three times, and the highest
recorded value among the three trials was chosen as maximal EMG for every muscle.
Following the iMVC acquisition, the participant randomly performed two types of tasks:
extension and flexion for wrist and hand at a level in 40% iMVC level of agonist
muscles (ECU-ED/FCR-FD for extension/flexion). Figure 4.5(b) displays the visual
interface of extension and flexion tasks for wrist and hand. A customized operational
interface was created using LABVIEW software (National Instruments Corp., USA).
This interface displayed a colored spectrum on the computer screen, which represented
the current level of EMG activation in real time. The spectrum ranged from 0% (green
color) to 100% (red color), calculated using baseline and iMVC values of agonist
muscles. Throughout the tasks, the contraction level of the agonist muscles (ECU-
ED/FCR-FD for extension/flexion) was continuously recorded and calculated. To
provide feedback to the participant, a blue pointer was used on the interface, while two
yellow pointers indicated the acceptable error range (+10%) for the tasks [182]. The

EMG ontractioniy Was calculated as:

EMG;—EMGpgseline
EMGmax—EMGpaseline

EMGcontraction(i) = X 100% (4.1)

Here, EMG; represents the mean of the rectified EMG envelope of the agonist muscles
i in a window of 0.1-second, while EMG,,,, and EMGp4seiine represent the

corresponding average values during maximum force and at rest, respectively [183].
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Each trial was performed for 35 seconds, and after completing the first and second trials
of each task, a 2-minute rest period was provided. The same rest period was given after
completing the third and fourth trials. To mitigate potential artifacts caused by
fluctuations at the end of the task, the final 5 seconds of each trial were excluded. Each
trial's data series was segmented into 1200 data points using a 1-second window with a
50% overlap. There were 55 segments within each trial, and a total of 275 trial epochs
of EEG and EMG signals across the five trials for each participant. After preprocessing
the EEG signals, the CMC was calculated to assess the connection pattern among the
sensorimotor area with upper limb muscles. CMC value was derived using the
following formulation:

|PeeceMc(F)I? (4.2)

CMCEEG'EMGU) - Peec(f)-Pemc(f)

Peeceme(F) = ~ iy EEG(EMG; () (43)

Here, Pgggemc(f) represents cross-spectral density of EEG and EMG data, while
Pere(f) and Pgpye(f) represent the auto-spectral density of EEG and EMG data at
frequency of f, respectively. The CMCggg pme(r) value ranges from O to 1, indicating
the strength of correlation between both signals, ranging from no correlation to a perfect
correlation [160]. The preprocessing and calculation involving electrophysiological
signals were executed via custom code implemented with toolbox of fieldtrip in

MATLAB R2019b (http://www.fieldtrip.fcdonders.nl, The MathWorks Inc., Natick,

MA, USA). To determine the statistical significance of the CMC value (p < 0.05), a

98


http://www.fieldtrip.fcdonders.nl/

confidence level (CL) was obtained via the formula:
CL=1-0.05-0 (4.4)

In this formula, L represents the number of trial epochs. If the calculated CMC value
exceeds the threshold of 0.011, it suggests that the value of CMC is significant at p-

value < 0.05.
Laterality Index

Peak CMC values were then used to generate a hot spot map of the sensorimotor cortex
to visually inspecting the brain lateralization, and the calculation of a laterality index

was conducted using the following formula:

CMCipsilesional

Laterality Index = (4.5)

max (CMCeontratesional-CMCmidsagittal)

Here, CMCipsitesionats CMCeontratesionar » and CMCinigsagitear correspond to largest
CMC in ipsilesional hemisphere, contralesional hemisphere, and midsagittal line.
Laterality index provides a measure of dominance between the hemispheres. If the
calculated laterality index is greater than 1, it indicates that the ipsilesional hemisphere
exhibits a predominant peak CMC value. Conversely, if the laterality index is smaller
than 1, it suggests that the contralesional hemisphere demonstrates a predominant peak

CMC value [190].

EMG Activation Level
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The normalization of raw EMG activation level of each muscle was obtained with the
baseline ( EMGpgsetineiy ) and iIMVC level ( EMGpaxy ) of EMG signals of
corresponding muscle. Subsequently, EMG activation level was calculated using

formula (4.7):

EMGorigin(iy~EMGpaseline(i)
EMGNormalized(i) = mome =2 X 100% (4.6)
EMGmax(i)y~EMGpaseline(i)

1T
EMGuctrevery = ;fo EMGyormatizeaq)(t)dt  (4.7)

Here, normalized EMG signals of muscle i (EMGyormaiizeaqy) underwent linear
envelope processing over a specific time interval (T) to produce
) OT EMGyormatizea)(t)dt, which was further calculated to obtain normalized muscle

1’s EMG activation level (EMGactpever(iy)-

4.2.4 Statistical Analysis

— ¢" Parametric tests . -
Clinical assessments:  Evaluate intragroup
One-way difference of tsES or control
FMA, MAS, IVI_SS, Two-way ANOVA — group at different time points
ARAT, FIM, WMFT Normality tests: | P05 IBaseline comparison: Repeate o Evaluate variable differences 7 with Bonferroni post hoc tests
[ Shapiro-Wilk test | ™ [ Tndependent r-test Measures with re’i?;::::iioup and \\One-way __, _Evaluate intergroup
ANCOVA ANCOVA difference at respective post-|
EEG & EMG-related parameters: and 3MFU time points
CMC, Laterality Index, P<0.05
EMG activation level

Non-parametric tests
Evaluate intragroup difference of tsES or control group at different time

Friedman —s points with Bonferroni post hoc tests

- test

\\ Quade's Evaluate intergroup difference at respective post- and 3MFU time
ANCOVA points with the pre-assessment as a covariate

Figure 4.6 The flowchart of the statistical analysis.

The normality of the collected parameters, including clinical assessments, CMC,

laterality index, and EMG activation level, was examined using the Shapiro-Wilk test.
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The statistical results suggested that the FMA, MSS, ARAT, WMFT, CMC, laterality
index, and EMG activation level exhibited a distribution of normality (P > 0.05), and
the MAS and FIM scores demonstrated a distribution of non-normality (P < 0.05). For
the parameters following a normal distribution, an independent t-test confirmed no
significant difference (P > 0.05) in the assessments before the training intervention. To
evaluate the effects of the group (experimental or control) and session (pre-, post-, and
3MFU) factors on the measured outcomes, a two-way ANCOVA was employed, with
pre-intervention scores serving as covariates. To compare the differences within each
group across various time points, a one-way ANOVA was conducted, and Bonferroni
correction method was applied. Additionally, a post hoc between-group comparison
was conducted using a one-way ANCOVA by using pre-intervention scores as the
covariate, analyzing outcomes at the post-intervention and 3MFU time points. The
Friedman test was applied to assess the intragroup variations at various time points for
the parameters that did not exhibit a normal distribution (specifically, the MAS and FIM
scores). Subsequently, we used a Bonferroni post-hoc test to examine these variations
in detail. Quade's ANCOVA was performed to assess intergroup differences at the post-
intervention and 3MFU time points, with pre-intervention scores utilized as covariates.
A statistical significance level of 0.05 was utilized as the threshold to determine the
presence of statistical significance, serving as a benchmark for evaluating the observed

results.
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4.3 Results

4.3.1 Clinical Assessment
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Figure 4.7 The clinical scores assessed prior to the initial training session and after the
completion of 20 training sessions, as well as during 3MFU for both tsES and control
groups: (a) FMA full score, wrist/hand score, and shoulder/elbow score, (b) MAS score
at the finger, the wrist, and the elbow, (c) WMFT score and time, (d) MSS, ARAT, and
FIM. Each evaluation session is presented with the mean value accompanied by the

standard error (SE).

Figure 4.7 displays the clinical scores compared between tsES group and control group
in three stages. The overall statistical data was presented in Table 4.1. Significant
variations were evident concerning the grouping and assessment sessions in both the
FMA total score and FMA wrist/hand score, as indicated by the statistical analysis (P <
0.05, Two-way ANCOVA, see Table 4.1). Within the tsES group, FMA full score

showed significant differences among the different evaluation sessions (P < 0.01, One-
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way ANCOVA, Table 4.1). More specifically, significant improvements were noted in
both the FMA total score and FMA wrist/hand sub-scores, demonstrating a substantial
increase from the pre-training to post-training session (P < 0.05, Table 4.1).
Furthermore, a significant enhancement in the FMA total score was noted between pre-
training session and the 3MFU evaluation (P < 0.01, Table 4.1). In contrast, within
control group, no significant differences were found among the three FMA score
categories in relation to the session factor (P > 0.05, Table 4.1). In addition, a
statistically significant disparity in FMA total score during post-training stage was
observed between two groups (P < 0.05, Table 4.1). The above pairwise comparison

was conducted using One-way ANOVA with Bonferroni post hoc tests.

In Figure 4.7(b), significant reductions were observed in MAS scores of fingers, wrist,
elbow in group of tsES both before and after training period (P < 0.01, Table 4.1). This
decline in scores was also evident when comparing the pre-training session to the
3MFU evaluation (P < 0.05, Table 4.1). Conversely, within the control group, no
notable differences were found in the three MAS sub-scores based on the session factor
(P > 0.05, Table 4.1). The above pairwise comparison was conducted using Friedman
test with Bonferroni post hoc tests. Furthermore, when examining the MAS wrist score
between the tsES and control groups at the 3MFU stage, a statistically significant

distinction was observed (P < 0.05, Quade's ANCOVA, Table 4.1).

The statistical analysis revealed a significant impact of the group factor on both the
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WMFT-score and time (P <0.05, Two-way ANCOVA, Table 4.1, Figure 4.7(c)). When
comparing the pre- and post-training assessments as well as the pre-training and 3MFU
assessments, the tsES group exhibited a notable rise in WMFT-score and a fall in
WMFT-time (P <0.05, Table 4.1). Conversely, no significant differences were obtained
within group of control in relation to session factor (P > 0.05, Table 4.1). There was a
significant intergroup variance at both the post-training and 3MFU time points (P <
0.05, Table 4.1). Figure 4.7(d) illustrates the MSS, ARAT, and FIM scores. In both
groups, the ARAT score increased significantly from pre-training to post-training (P <
0.05, Table 4.1). The above pairwise comparison was conducted using One-way
ANOVA with Bonferroni post hoc tests. Furthermore, the results obtained from MSS
and ARAT did not reveal any session- or group-specific differences (P > 0.05, Two-way

ANCOVA, Table 4.1).
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Table 4.1 The average and standard error, and statistical analyses of clinical assessments.

One-way Two-way Repeated Measures ANCOVA
Pre Post 3MFU
Measurement Group ANOVA Session Group S*G
Mean = Standard Error P (Partial n?) P (Partial n?)
tsES 37.9+3.0 42.9+3.4 41.2£2.9 0.008**(0.354)
FMA-full score 0.009**(0.286) 0.028%(0.211)  0.957(0.000)
Control 37.6£3.8 36.5+4.0 37.243.9 0.861(0.013)
P(Partial
2 0.946(0.017)  0.020*%(0.231)  0.072(0.146)
n
FMA-wrist/hand  tsES 17.6+1.7 20.8+1.8 19.9+1.1 0.099(0.190)
0.009%*(0.282) 0.078(0.141) 0.807(0.003)
Control 16.7+1.9 16.7+2.0 17.0£2.0 0.830(0.017)
P(Partial
2 0.747(0.077)  0.058(0.020) 0.195(0.079)
n
FMA- tsES 20.8£2.2 19.8+£2.2 20.3£2.2
0.692(0.033)
shoulder/elbow 0.079(0.140) 0.065(0.153) 0.755(0.005)
Control 20.1£1.8 22.3+2.1 21.3+£2.1 0.122(0.174)
P(Partial
2 0.514(0.075)  0.033*%(0.199)  0.196(0.078)
n
MAS-finger tsES 1.84+0.2 1.240.2 1.240.2 0.009*
Control 1.9+0.2 1.6+0.2 1.6+0.3 0.494
P 0.523 0.242 0.198
MAS-wrist tsES 1.5+0.1 1.0+0.2 1.1+0.2 0.006"
Control 1.8+0.2 1.5+0.2 1.7+0.2 0.486
P 0.117 0.043" 0.089
MAS-elbow tsES 2.3+0.2 1.6+0.2 1.7+0.2 0.010* -- -- --
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Control 2.1+0.2 1.9+0.2 1.9+0.2 0.273

P 0.502 0.443 0.378
WMFT-score tsES 3.240.2 3.7+0.2 3.9+0.2 0.000%*(0.745)
0.096(0.127) 0.007*%*(0.296) 0.518(0.020)
Control 3.2+0.2 3.4+0.2 3.4+0.2 0.211(0.132)
P(Partial
2 0.937(0.026)  0.010%(0.276)  0.016*(0.248)
U]
WMFT-time tsES 36.9+5.3 25.9+£3.9 20.743.3 0.000%*(0.621)
0.267(0.058) 0.001*%*(0.418) 0.227(0.069)
Control 38.0+£6.4 36.246.1 36.84£6.0 0.684(0.034)
P(Partial
2 0.892(0.043)  0.007%%(0.298) 0.002**(0.385)
U]
MSS tsES 27.7£1.7 28.9£2.0 29.4+2.0 0.079(0.206)
0.875(0.001) 0.655(0.010) 0.098(0.125)
Control 25.5£2.3 24.9+£2.4 25.0£2.6 0.762(0.024)
P(Partial
2 0.435(0.191)  0.099(0.124) 0.693(0.008)
U]
ARAT tsES 27.3+£2.4 342429 34.5£2.4 0.005%*(0.386)
0.392(0.035) 0.687(0.008) 0.050(0.171)
Control 22.842.4 25.84£3.0 26.4+3.6 0.042%(0.250)
P(Partial
2y 0.285(0.303)  0.384(0.037) 0.077(0.141)
n
FIM tsES 66.31£0.4 66.4+0.2 66.4+0.3 0.422
Control 66.0+0.3 66.1+0.3 66.0+0.4 0.878
P 0.497 0.410 0.514

Note: The observed differences are denoted as follows: “*’ for P < 0.05 and “**’ for P < 0.01 (One-way ANOVA with Bonferroni post hoc

tests); “*” for P < 0.05 and “*** for P < 0.01 (Friedman test with Bonferroni post hoc tests).
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4.3.1 Cortico-muscular Coherence
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Figure 4.8 The cortico-muscular coherence during the extension (a) and flexion (b)

tasks in wrist and hand before initial training sessions, after 20 training sessions, and at

the 3MFU for both the tsES and control groups.

Figure 4.8 depicts the CMC values of five upper limb muscles (ECU-ED, FCR-FD,

BCI, TRI, and APB) across two motion tasks (extension and flexion) during three

different sessions (pre-training, post-training, and 3MFU). Table 4.2 and Table 4.3
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present the detailed CMC values, including the probabilities of Two-way ANCOVA
(session and group factor), One-way ANOVA (session factor), and One-way ANCOVA
(group factor). For wrist-hand extension task (Figure 4.8(a)), the study observed
significant differences in the CMC values of muscles when considering the session
factor (Two-way ANCOVA, Table 4.2). Specifically, significant disparities were
detected among the FCR-FD muscle, BIC muscle, and TRI muscle regarding the
session factor (P <0.05). APB muscle exhibited significant differences in session factor
(P<0.001) and in interaction among session and group factors (P < 0.05). Furthermore,
a noteworthy variance in CMC values across sessions for the FCR-FD muscle, TRI
muscle, and BIC muscle in group of tsES (P < 0.05, One-way ANOVA, Table 4.2).
Notably, a decrease in CMC values was observed when comparing the pre-training and
post-training assessments for FCR-FD, TRI, and APB muscles (P < 0.05, Table 4.2).
Additionally, a reduction in CMC values was noted in FCR-FD, BIC, TRI, and APB
muscles between pre-training and 3MFU assessments (P < 0.05, Table 4.2). In
reference to wrist-hand flexion task (Figure 4.8(b)), the CMC values of the ECU-ED
and BCI muscles showed significant differences concerning the session factor (P <0.05,
Two-way ANCOVA, Table 4.3). Furthermore, in group of tsES, significant differences
for CMC values were observed for the ECU-ED, FCR-FD, TRI, and BIC muscles
across different sessions (P < 0.05, One-way ANCOVA, Table 4.3). Moreover, a
significant decrease was indicated in CMC values for the ECU-ED and BIC from the

pre-training to post-training assessments (P < 0.05, Table 4.3). Similarly, all five
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muscles except for FCR-FD exhibited a significant decline in values of CMC when
comparing pre-training and 3MFU assessments (P < 0.05, Table 4.3). However, no
significant variations were observed in control group across the five muscles
concerning the session factors (P > 0.05, Table 4.2 & 4.3). The above pairwise

comparison was conducted using One-way ANOVA with Bonferroni post hoc tests.

Table 4.2 The mean and standard error, and the statistical analyses of cortico-muscular

coherence during wrist-hand extension.

One-way Two-way ANCOVA
Pre Post 3MFU i "
Muscle Group ANOVA Session Group $*G
Mean = Standard Error P (Partial %) P (Partial 7%)
ECU-ED tsES 0284=0042 0234=0023 0238=0010  0.161(0.184) 0105(0118) 0525 (0.023 0.906 (0.005
Control 0256=0034 0218=0.015 230=0.013 0.500 (0.074) i ’ =25 (0.023) ’ 005)
P(Partial n*) 0.621(0.225) 0.721(0.008)  0.719 (0.008)
FCR-FD tsES 0281=0040 0236=0029 0206=0014  0.025%(0.337) 00305 (0.177)  0790(0.004) 0239 (0.076)
Control 0248=0026 0220=0013 0231=0012  0.532(0.068) ’ o ’ s
P(Partial n*) 0.502(0.307) 0.947(0.000)  0.076 (0.174)
BIC tsES 0278=0036 0241=0.023 0.220=0.013 0.039* (0.302) . -
< - R 0.039* (0.164)  0.629(0.013)  0.581 (0.030)
Control 0259=0034 0211=0016 0.229=0.015 0.408 (0.095)
P(Partial n*) 0.718(0.164)  0.334(0.055)  0.460(0.033)
TRI tsES 0.311=0.038 1238 =0.028 0212=0.013 0.002%* (0.493) 0.017% (0.203 0.797 (0.004) 0.127 (0.108)
Control 0258=0036 0236=0023 0243=0014  0.782(0.027) ’ ©:20) 910 27 0.
P(Partial n*) 0.327(0451) 0.366(0.048)  0.046* (0.215)
APB tsES 0303=0044 0227=0.026 0.221=0.028 0.001** (0.515) . .
. i 0.009%* (0.231)  0.799(0.004)  0.046* (0.157)
Control 0249=0030 0224=0015 0251=0014  0.488(0.077)

P(Partial n*) 0.327(0450) 0.322(0.058) 0.045* (0.216)

Note: The observed differences are denoted as follows: ‘*’ for P < 0.05 and ‘**’ for P

< 0.01 (One-way ANOVA with Bonferroni post hoc tests).
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Table 4.3 The mean and standard error, and the statistical analyses of cortico-muscular

coherence during wrist-hand flexion.

One-way Two-way ANCOVA
Pre Post 3MFU N
Muscle Group ANOVA Session Group S*G
Mean =+ Standard Error P (Partial n?) P (Partial %)
ECU-ED tsES 0301=0.030 0226=0.017 0.228 =0.013 0.005%* (0.442) _
B 0.048% (0.003)  0.524 (0.003)  0.249 (0.006)
Control 0246=0.017 0235=0.038 0.227+0.016 0.843 (0.019)
P(Partial %) 0.120(0.712)  0.512(0.026)  0.572(0.019)
FCR-FD tsES 0271+0.026 0.233=0.021 0.216=0.019 0.043* (0.293)
_ 0.151 (0.100) 0.997 (0.000) 0.433 (0.043)
Control 0.243=0.024 0.252=0.038 0.224=0.013 0.661 (0.043)
P(Partial n°) 0451 (0.345) 0.472(0.031)  0.342(0.053)
BIC tsES 0301=0.033 0226=0.013 0.227+0.021 0.026* (0.333)
< - N - 0.040* (0.163)  0.369 (0.018) 0.426 (0.046)
Control 0.253=0.024 0.234=0.038 0.241=0.020 0.621 (0.052)
P(Partial n%)  0.261(0.519)  0.730 (0.007)  0.910 (0.001)
TRI tsES 0.292=0.028 0.248=0.020 0.226 =0.017 0.019* (0.357) _ _
3 ) 0.230(0.078)  0.519(0.023)  0.158 (0.097)
Control 0.236=0.015 0235=0.038 0.241=0.020 0.973 (0.003)
P(Partial n%) 0.102(0.771)  0.799 (0.004)  0.062 (0.190)
APB tsES 0.279=0.031 0.225=0.017 0.216 =0.007 0.059 (0.270)
R R - _ 0260 (0.072)  0.808 (0.003)  0.263 (0.072)
Control 0.244=0.020 0.261=0.038 0.232=0.020 0.727 (0.035)

P (Partial n*)  0.354(0.425)  0.328 (0.056) 0.264 (0.073)

Note: The observed differences are denoted as follows: “*’ for P < 0.05 and ‘**’ for P

< 0.01 (One-way ANOVA with Bonferroni post hoc tests).

4.3.2 Cortico-muscular Coherence Topography

Figure 4.9 illustrates the CMC topographies of two left hemiplegia stroke participants,
who were chosen as representative cases, during different training periods (pre-training,
post-training, and 3MFU) when performing two wrist-hand motor tasks (extension and
flexion). For wrist-hand extension task, it was observed that upper extremities muscles
of individuals in tsES group displayed a noteworthy shift in the peak channel of CMC
activation. Specifically, there was a relocation of the peak channel of CMC from left
hemisphere (contralesional) to right hemisphere (ipsilesional). Specifically, the ECU-

ED muscle moved from CZ to FC3 to C4, and the FCR-FD muscle moved from CP1

110



to FC6 to CPZ (Figure 4.9(a)). Furthermore, the TRI muscle moved from CP3 to FC6
to CP1 during the three phases of training. For the wrist-hand flexion task, a similar
shifted pattern was also observed: the ECU-ED muscle shifted from CZ to FC6 to C1,
and the FCR-FD muscle shifted from CZ to FCZ to CP4 (Figure 4.9 (a)). The
unimpaired participant did not exhibit clear patterns of alterations in the shift of CMC

peak channel (Figure 4.9 (b)).

Extension

(a) tsES (b) Control

Figure 4.9 The CMC topographies of upper limb muscles during wrist-hand motions
in two representative stroke subjects with left hemiplegia from (a) tsES group and (b)

control group, respectively.
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Figure 4.10 The laterality index before initial training sessions, after 20 training
sessions, as well as 3MFU in both tsES and control groups during wrist-hand extension

and flexion.

Figure 4.10 shows the laterality index of CMC for upper limb muscles in both tsES
group and control group. Table 4.4 presents detailed laterality index values, including
two-way ANCOVA probabilities for session and group factors, one-way ANCOVA
probabilities for session factor, and one-way ANCOVA probabilities for group factor.
During the wrist-hand extension task depicted in Figure 4.10, noteworthy disparities
were observed in the laterality index of three muscles: ECU-ED, FCR-FD, and TRI.
These disparities were detected in relation to the session factor, as well as the
interactions between session and group factors (p < 0.05, Two-way ANCOVA, Table
4.4). Significant variations in the laterality index of the ECU-ED, FCR-FD, and TRI
muscles were observed across multiple sessions within the tsES group (One-way
ANOVA, Table 4.4). These differences encompassed the laterality index values from

pre- and post-training assessments for the ECU-ED and FCR-FD muscles (P < 0.05,
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Table 4.4). Additionally, laterality index exhibited significant differences from pre-
training to the 3MFU assessments for the ECU-ED and TRI muscles (P < 0.05, Table
4.4). In contrast, unimpaired participants demonstrated a significant increase solely in
FCR-FD muscle when comparing pre-training and 3MFU assessments (P < 0.05, Table
4.4). Regarding flexion task in wrist and hand depicted in Figure 4.10, the laterality
index values of the ECU-ED and TRI muscles exhibited noteworthy differences for
session factor (P < 0.05, Two-way ANCOVA, Table 4.4). Overall, our findings indicate
significant disparities in the laterality index of ECU-ED muscle, FCR-FD muscle, and
TRI muscle across various sessions within the tsES group (One-way ANOVA, Table
4.4). Specifically, ECU-ED and TRI muscles experienced a significant increase in the
laterality index when comparing the pre-training and post-training assessments (P <
0.05, Table 4.4). However, no significant changes in the upper limb muscles were
observed between training sessions within the control group (P > 0.05, Table 4.4). The
above pairwise comparison was conducted using One-way ANOVA with Bonferroni

post hoc tests.
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Table 4.4 The average and standard error, and the statistical analyses of laterality index

during extension and flexion of wrist and hand.

One-way Two-way ANCOVA
Pre Post 3MFU N
Motion Muscle Group ANOVA Session Group S*G
Mean + Standard Error P (Partial 7%) P (Partial %)
Extension ECU-ED tsES 0.868=0.046  1.028=0.046 1.045=0.036 0.005** (0.442) i
0.033*(0.172)  0.265 (0.069) 0.018* (0.200)
Control 0.946=0.060 0.883=0.030 0.976 = 0.021 0.256 (0.140)
P (Partial »°)  0.314(0.488)  0.019* (0.284)  0.060 (0.193)
Extension FCR-FD tsES 0.919=0.039  1.030=0.041 0.953 =0.037 0.031* (0.320)
- - . 0.039* (0.164)  0.535(0.022 0.026* (0.184)
Control 0.938=0.036  0.960 = 0.043 1.085=0.053 0.048* (0.286)
P (Partial n*)  0.727(0.163)  0.112(0.142) 0.067 (0.184)
Extension TRI tsES 0.835=0.052 0.973=0.055 1.070 = 0.049 0.010* (0.400) . _ .
_ 0.025% (0.185)  0.152(0.111) 0.014* (0.213)
Control 0.949=0.039 0.791=0.038 0.951 = 0.065 0.068 (0.258)
P (Partial »°)  0.095(0.813)  0.022* (0.272)  0.208 (0.092)
Flexion ECU-ED tsES 0914=0034 0.997=0.044 0.958 = 0.027 0.043* (0.295) ~ 0.028* (0.180)  0.855(0.002) 0.140 (0.103)
Control 0.867=0.024  0.936=0.046 1.047 £ 0.062 0.343 (0.235)
P (Partial n*)  0.276 (0.466)  0.512 (0.026) 0.572(0.019)
Flexion FCR-FD tsES 0.924=0.038 1.014=0.064 0.954=0.033 0.633 (0.026)
0.153 (0.116) 0.408 (0.041) 0.401 (0.042)
Control 0.967=0.043  0.949=0.038 0.949 = 0.047 0.808 (0.007)
P (Partial n%)  0.727(0.339)  0.294 (0.064) 0.897 (0.001)
Flexion TRI tsES 0.887=0.032 0.994=0.051 1.031=0.047 0.009%* (0.549)
0.027* (0.180)  0.976 (0.000) 0.282 (0.068)
Control 0.920=0.051 1.036=0.061 0.952=0.041 0.155 (0.187)

P(Partial n?)  0.588(0.243) 0674 (0.011)  0.105 (0.147)

Note: The observed differences are denoted as follows: ‘*’ for P < 0.05 and ‘**’ for P

<0.01 (One-way ANOVA with Bonferroni post hoc tests)

4.3.3 EMG Activation Level

Figure 4.11 visually illustrates activation levels of EMG in upper limb muscles for both
groups. The comprehensive data regarding the precise values of EMG activation levels
were presented in Table 4.5 and Table 4.6. These values encompass probabilities for
the two-way ANCOVA (session factor/group factor) and separate one-way ANCOVA
probabilities (session factor/group factor). Notably, in the context of the wrist-hand
extension tasks illustrated in Figure 4.11(a), the session factor revealed significant

discrepancies in activation levels for EMG in FCR-FD and proximal muscles (BIC and
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TRI) (P < 0.05, Two-way ANCOVA, Table 4.5). Moreover, a significant distinction in
activation levels for EMG in FCR-FD and proximal muscles (BIC and TRI) was
observed across sessions within the tsES group (P < 0.05, One-way ANOVA, Table
4.5). Furthermore, the assessment between pre-training and post-training periods
demonstrated a noteworthy decrease in activation levels for EMG for FCR-FD muscle,
BIC muscle, TRI muscle, and APB muscle (P < 0.05, Table 4.5). In a similar vein, a
substantial reduction in EMG activation levels of the FCR-FD muscle, BIC muscle, and
TRI muscle was obtained between the pre-training and 3MFU evaluations (P < 0.05,

Table 4.5).

Within wrist-hand flexion tasks (Figure 4.11(b)), the activation level of EMG for ECU-
ED, BCI, APB displayed significant variations in relation to session factor (P < 0.05,
Two-way ANCOVA, Table 4.6). Similarly, when considering tsES group, ECU-ED,
BCI, and APB muscles exhibited significant differences within the session factor (P <
0.05, Table 4.6). Specifically, a significant decrease in activation levels of EMG for
ECU-ED and BIC muscles was observed from pre-training phase to the post-training
phase (P <0.05, Table 4.6). Furthermore, activation levels of EMG for ECU-ED, BIC,
TRI, APB muscles displayed a significant decrease from the pre-training phase to the
3MFU phase (P <0.05, Table 4.6). Conversely, no significant variations were observed
in the upper extremities’ muscles of the unimpaired group by the session factors (P >

0.05, One-way ANOVA with Bonferroni post hoc tests, Table 4.5 & 4.6). The above
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pairwise comparison was conducted using One-way ANOVA with Bonferroni post hoc

tests.
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Figure 4.11 The EMG activation level during the extension (a) and flexion (b) tasks in

wrist and hand before initial training sessions, after 20 training sessions, and at the

3MFU for both the tsES and control groups.
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Table 4.5 The mean and standard error, and the statistical analyses of EMG activation

level during wrist-hand extension.

One-way Two-way ANCOVA
Pre Post 3MFU L -
Muscle Group ANOVA Session Group S*G
Mean + Standard Error P (Partial %) P (Partial %)
FCR-FD tsES 0323=0.044 0.238=0.028 0.246 = 0.025 0.030* (0.390) _
~ ) 0.033% (0.136)  0.735(0.006)  0.970 (0.001)
Control 0.348=0083 0.256=0.038 0.254=0.030 0.261 (0.126)
P(Partial 7°) 0.792(0.114)  0.792(0.004)  0.884 (0.001)
BIC tsES 0.253=0.029 0.187+0.019 0.199 =0.021 0.019* (0.441)
0.019* (0.180)  0.653 (0.010) 0.966 (0.002)
Control 0272=0.062 0.202=0.034 0.197=0.021 0.176 (0.159)
P(Partial n%)  0.717 (0.114)  0.865(0.002)  0.748 (0.006)
TRI tsES 0.273=0.035 0.205=0.022 0.186 = 0.021 0.034* (0.287)
- 0.035* (0.154)  0.898 (0.001) 0.895 (0.006)
Control 0.264=0.048 0.209=0.044 0.204 = 0.028 0.412 (0.085)
P(Partial n%)  0.882 (0.064)  0.884 (0.001)  0.363 (0.018)
APB tsES 0236=0.032 0254=0.058 0.172 = 0.020 0.193 (0.152)
- 0.219 (0.073) 0.993 (0.000) 0.395 (0.043)
Control 0.280=0.086 0.188=0.033 0.193 £ 0.026 0.368 (0.093)

P(Partial n%)  0.634 (0.206) 0.286(0.060)  0.637 (0.012)

Note: The observed differences are denoted as follows: ‘*’ for P < 0.05 (One-way

ANOVA with Bonferroni post hoc tests).

Table 4.6 The mean and standard error, and the statistical analyses of EMG activation

level during wrist-hand flexion.

One-way Two-way ANCOVA
Pre Post 3MFU L -
Muscle Group ANOVA Session Group S*G
Mean + Standard Error P (Partial 7%) P (Partial 3%)
ECU-ED tsES 0.345=0.091 0.245=0.073 0.173 =0.030 0.024* (0.312)
_ 0.031* (0.160)  0.190 (0.084) 0.749 (0.014)
Control 0.505=0.143  0.297=0.053 0.300 = 0.066 0.204 (0.147)
P(Partial n°)  0.385(0.403)  0.856(0.002)  0.121(0.122)
BIC tsES 0.300=0.036 0.250=0.032 0.211=0.021 0.019*(0.329)  0.013* (0.195)  0.211 (0.077) 0.697 (0.018)
Control 0.378=0.064 0.347=0.079 0.249=0.029 0.141 (0.178)
P(Pattial n%)  0.303 (0.451)  0.625(0.013)  0.427 (0.034)
TRI tsES 0.299=0.051 0.235+0.036 0.187=0.023 0.005** (0.411)  0.002** (0.267) 0.290 (0.056) 0.954 (0.002)
Control 0.357=0.059 0.307=0.066 0.242=0.029 0.105 (0.201)
P(Partial 7°)  0.468 (0.315)  0.564 (0.018)  0.234 (0.074)
APB tsES 0271=0.047 0.261=0.047 0.170=0.021 0.039* (0.278) _ ~ ~
0.052 (0.137) 0.257 (0.064) 0.685 (0.019)
Control 0.370=0.096 0.432=0.166 0.238=0.029 0.242(0.132)

P(Partial %) 0367 (0.394)  0.724(0.007)  0.133 (0.115)

Note: The observed differences is denoted as follows: “*’ for P < (0.05 and ‘**’ for P <

0.01 (One-way ANOVA with Bonferroni post hoc tests).
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4.4 Discussion

The primary objective for this research endeavor was to examine the impact of
integrating tsES with VPT in the upper limb motor rehabilitation among chronic stroke
individuals. To achieve this objective, a clinical trial was implemented, employing a
comparative analysis of the effects produced by the combination of tsES and VPT
versus the use of VPT alone. Various parameters were measured during different
evaluation sessions, namely before training, after training, and 3MFU. These
measurements encompassed clinical assessments, CMC, laterality index, and activation
level of EMG. The findings revealed that the group receiving tsES with VPT
demonstrated more favorable outcomes in terms of motor performance and muscle tone.
This combined intervention improved the cortical and muscular control of distal
muscles while reducing the compensatory use of proximal muscles. The mechanisms
underlying these improvements involved enhanced excitability of spinal neural circuits
due to cervical tsES, as well as increased responsiveness of residual excitatory and

inhibitory pathways from the ipsilesional hemisphere.

4.4.1 Training Effectiveness on Upper Limb Motor Functions

The effectiveness of tsES training was indicated by the improvements in upper limb
functional outcomes and releasement in muscular spasticity. Our findings showed that
the stroke individuals who received tsES exhibited elevated motor performance based

on clinical evaluations, including FMA, WMFT, and ARAT. More specifically, the
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FMA-full score was increased significantly across different evaluation time points
(Figure 4.7(a) & Table 4.1). The FMA graded selective upper limb movements,
ranging from abnormal voluntary synergy movements to fractionated and isolated joint
movements [240]. It has been consistently recognized as a reliable indicator of motor
impairment severity after stroke [240]. Higher FMA motor scores in the upper limb for
the tsES group were associated with reduced motor impairments and increased ability
to perform isolated joint movement [241]. Notably, significant differences were
observed in both intra-group comparisons across evaluation time points and inter-group
comparisons across the group factor for WMFT-time and WMFT-score (Figure 4.7(c)
& Table 4.1). The WMFT measures post-stroke upper limb motor abilities through
time-based and multiple-joint functional tasks [242]. The significant decrease in
WMFT-time indicated that stroke patients with tsES were able to complete complex
motions and functional tasks at a higher movement speed compared to the participants
without tsES [243, 244]. Although the ARAT scoring of control group with VPT
showed a similar significant increase from pre-training to post-training evaluation,
similar to the tsES group, it is noteworthy that the tsES group demonstrated an
additional significant increase in ARAT scores from the post-training to the 3MFU
evaluation (Figure 4.7(d) & Table 4.1). This finding suggests the presence of
significant and enduring effects resulting from the integration of tsES in the
rehabilitation process. The ARAT used standardized equipment (e.g., woodblocks, alloy

tubes, and marbles) to assess the hand and arm movements (e.g., grasp, grip, and pinch)
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[245]. The significant increase in the ARAT scores of 3MFU evaluation demonstrated
that the stroke participants with tsES achieved sustained improvement in the
performance of purposeful upper limb motor activities [246]. In addition to the
functional outcomes' improvement, stroke individuals who received tsES experienced
a significant reduction in muscular spasticity in the upper limb, as indicated by
decreased MAS scores in the finger, wrist, and elbow (Figure 4.7(b) & Table 4.1). The
MAS could evaluate the reflex activities elicited in specific muscles during resistance
to the passive movement [247]. The significant decrease in MAS scores after
intervention with tsES indicated that the stroke patients had lower muscle tone. This
reduction in muscle tone facilitated smoother and more effortless movement of affected
upper extremity throughout its entire motion range, as compared with control group
[248]. The observed motor recovery and muscle spasticity releasement revealed by
these clinical assessments could be attributed to the cortical reorganization in and
around lesion areas. This cortical reorganization could involve an increase in both the
quantity and density of dendrites’ synapses, as well as the unmasking of latent neural
networks [249]. The functional recovery indicated by these clinical assessments
suggested that cervical spinal electrical stimulation assisted stroke individuals in
enhancing the effectiveness of regaining independence in activities of daily living [250,

251].
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4.4.2 Improved Cortical and Muscular Control of Distal Upper Limb

The Inhibitory Control of Antagonist Muscles

In the stroke participants who received tsES, an improvement in inhibitory control from
the sensorimotor cortex to the antagonist muscles was observed, as evidenced by a
significant decrease in CMC (e.g., FCR-FD in extension and ECU-ED in flexion)
during post-training and 3MFU evaluations (Figure 4.8, Table 4.2 & 4.3). The primary
neurophysiological mechanism driving the improvement was the increased excitability
of the spinal neural circuits due to the cervical tsES [194]. This excitation provided
additional neuromodulatory input to the motor recovery, complementing the effects of
pure physical therapy interventions [252]. Previous studies utilizing computational
modeling to construct the induced electric field by the spinal current stimulation have
demonstrated that the increased excitability of spinal networks occurs through the
activation of dorsal root afferents [253, 254]. The activation of sensory afferents via
dorsal roots could recruit spinal interneuronal circuitry across the multiple segments of
the spinal cord, augmenting the responses from the “silent” residual descending
inhibitory pathways [255]. Our findings align with this observation, as our results
demonstrated a significant elevation in the laterality index within the antagonist
muscles (Figure 4.8 & Table 4.4), indicating the relocation in the cortical control center
from the contralesional side to the ipsilesional side (Figure 4.8). Moreover, empirical

studies utilizing EMG in human subjects have provided evidence that the targeted
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dorsal root activation through cervical tsES could increase the motor axons’ excitability
in ventral roots by trans-synaptic transmission [256]. This direct activation of motor
pools that innervate the upper extremity muscles plays a significant role in modulating
the sensory-motor pathways [256]. Therefore, the inhibitory control toward antagonist
muscles during voluntary motions was increased. This aligns with the distinct reduction
in activation levels of EMG for distal antagonist muscles in extension and flexion

motion tasks of wrist and hand (Figure 4.11, Table 4.5 & 4.6).

The Excitatory Control of Agonist Muscles

Although the cortical control to the agonist muscles did not show a significant increase
in CMC after tsES, the laterality index of these muscles significantly increased after 20
training sessions following tsES (Figure 4.8 & Table 4.4). This suggested that cervical
spinal circuitry stimulation also amplifies the responsiveness of residual excitatory
control signals from the ipsilesional hemisphere to the agonist muscles. However, the
insufficient activation of alpha motoneurons limited the effects of the cortical control
from the cortex to the agonist muscles, resulting in a failure to induce the muscle
responses [257]. Alpha motoneurons in the upper limb muscles were affected by the
chronic stroke, including factors such as the location and severity of the stroke, the type
and duration of the rehabilitation [151]. In uninjured individuals, there is a balance
between the activation of alpha motoneurons in agonist and antagonist muscles,

allowing for smooth coordination of upper limb movements [258]. Stroke lesions could
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damage the connection between alpha motoneurons and the descending neural tracts,
leading to reduced activation of agonist alpha motoneurons and increased activation of
antagonist alpha motoneurons (i.e., muscle weakness and spasticity) [151, 258]. The
abnormal structural changes and degeneration of alpha motoneurons would occur in the
process of chronic stroke, particularly in the agonist muscles [259]. These agonist alpha
motoneurons experience impaired abilities to generate action potentials and transmit
contraction signals to the corresponding muscles [260]. Consequently, the agonist
muscles became less sensitive to the residual excitatory control signals from the
ipsilesional hemisphere, even when amplified by the non-invasive cervical spinal cord

electrical stimulation.

4.4.3 Reduced Compensatory Effects from Proximal Upper Limb

The stroke participants with tsES demonstrated a reduction in reliance on compensatory
effects during extension and flexion motions of wrist and hand. This was evidenced by
a significant reduction in the levels of activation obtained in proximal muscles
(TRI/BIC muscles), as measured by parameters: CMC and activation levels of EMG.
(Figure 4.8, Table 4.2 & 4.3). The compensation strategies from the proximal upper
limb muscles occur because of stroke-related damages to the ipsilesional brain regions
responsible for executing motor control of distal muscles such as primary motor cortex
[49]. Compared to distal upper extremities muscles, the proportion of descending neural

pathways originating from the hemisphere opposite to the side of the stroke and
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innervating proximal upper extremity muscles is more significant [261]. It indicated
that proximal muscles were less affected by stroke lesions [261]. However, proximal
compensation strategies could have negative consequences for long-term upper limb
motor function recovery, such as joint deformities, nerve compression [4]. With the
application of cervical tsES, the remaining descending inhibitory control from the
ipsilesional hemisphere to the motor pools of proximal muscles was augmented via
activating the preferentially sensory and motor roots in the intact spinal circuits [262].
The significantly increased laterality index observed in this study (Figure 4.8 & Table
4.4) provided evidence that the descending neural tracts innervating the proximal
muscles have shifted to the ipsilesional hemisphere. This observation aligns with prior
research studies that have consistently shown the effectiveness of cervical tsES in
enhancing wrist-hand function and reducing shoulder compensatory movements in SCI
people by modulating the corticospinal tract (CST) and augmenting the responses from
the cortex [263]. Consequently, the application of cervical tsES can effectively engage
sensory-motor pathways, leading to the activation of motor pools that innervate the

proximal muscles of the upper limb.

4.5 Periodic Summary

In this study, the rehabilitation effects of combining non-invasive cervical spinal cord
electrical stimulation with physical therapy on the motor restoration of affected upper

limbs in chronic stroke individuals were investigated. The clinical scores indicated the
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effectiveness of tsES training by the improvement in upper limb functional outcomes
and releasement in muscular spasticity. The relocation of the peak CMC to the
ipsilesional sensorimotor cortex in the distal upper limb muscles demonstrated that tsES
could augment the responsiveness from residual excitatory and inhibitory descending
pathways by elevating the excitability of spinal cord. The observed decrease in CMC
and activation levels of EMG in upper limb muscles of proximal side suggested a
decrease in compensation influence of cortical and muscular side. The improved
outcomes proved the advantage of tsES as an assistant approach to physical
rehabilitation interventions in facilitating long-term upper limb motor recovery among

chronic stroke individuals.
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CHAPTER S

CONCLUSIONS

Post-stroke rehabilitation places significant emphasis on evaluating and recovering
sensorimotor function in the upper limb. One potential approach to assess post-stroke
sensory impairments is through the use of neuroimaging data-driven machine learning,
which can help reduce the labor-intensive workload associated with manual evaluation
conducted by healthcare professionals. Furthermore, non-invasive neuromodulation
techniques targeting UE motor function could offer a novel assistive strategy to enhance
neuro-reorganization in the affected side of the brain. To explore these possibilities,
three experiments were conducted in this study: (i) development of a novel EEG-based
SVM-ML model to automatically evaluate fine tactile sensation impairments in post-
stroke individuals; (ii) evaluation of instant influences of tsES in cortico-muscular
control coupling in voluntary contractions of upper limb muscles; (iii) investigation of
the rehabilitation influences of tsES on UE motor recovery in affected side stroke

patient.

The initial experiment carried out in this study involved the development of an EEG-
based SVM-ML model specifically designed to evaluate impairments in fine tactile
sensation. The SVM-ML model utilized average and maximal RSP values extracted
from the EEG signals as inputs. The results demonstrated significant differences in

accuracies across fabric stimulations in higher frequency bands (beta/gamma),
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indicating the potential of the SVM-ML model for automatically evaluating post-stroke
fine tactile sensations and its alignment with a manual assessment of cortical responses

for textile stimulations.

In the second experiment of the study, the instant influences of tsES in cortical and
muscular signals of voluntary upper limb movements were investigated in individuals
with chronic stroke. The findings revealed that tsES results in a statistically increase in
CMCoh and LI for agonist distal muscles, a decrease in activation levels of EMG in
antagonist distal muscle and proximal UE muscles, and an increase in the LI of the

proximal UE muscles.

The third experiment of the study involved the implementation of a randomized clinical
trial to explore training influences of tsES on upper limb motor recovery for individuals
poststroke. The tsES group demonstrated significant differences in the evaluated
outcomes throughout the training sessions. There were significant enhancements
observed in the clinical assessments, including FMA and MAS, indicating enhanced
motor function and released muscle spasticity. The laterality index of distal and
proximal muscles also showed a significant increase, while the CMCoh and EMG
activation levels of antagonist distal muscles and proximal muscles decreased

significantly.

In conclusion, the EEG-based SVM classification model demonstrated potential for

automating the assessment of fine tactile sensations after stroke, offering a more
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efficient and objective assessment method. The combination of non-invasive cervical
tsES with VPT in chronic stroke patients resulted in significant improvements in upper
limb functionality and reduction in muscular spasticity. The tsES intervention
facilitated enhanced responsiveness of residual descending pathways, increasing spinal
cord excitability, and mitigating compensatory effects in proximal upper limb muscles,
suggesting its potential as an adjunctive approach for long-term upper limb motor

function recovery in chronic stroke rehabilitation.

We will undertake further research focusing on the following four aspects:

Chapter 2

EEG-based SVM-ML model
) Fine-tune model with CMCoh under tsES

/ Retrain DL model with time series clinical & CMCoh A

Automated assessment of . sénmry alteration under tsES Prediction of sensorirﬁqfor recovery with tsES
Chapter 3 g . Chapter 4 A
tsES evaluation tsES training
:Ascending cortico-muscular patterns evaluation; Personalized tsES parameters H

H . . . R > Revised sensorimotor relearning programs
iPersonalized stimulation parameters optimization; :

EShifted patterns in different lesional locations & levelsé

(1) Investigation of fine-tuned SVM-ML models (Chapter 2) that facilitate the

automatic evaluation of sensory functions alteration under tsES (Chapter 3).

(2) Implementation of deep learning methods to analyze the time series data obtained
during the evaluation of the rehabilitative effects of tsES combined with VPT (Chapter
4). By leveraging these advanced techniques, we aim to extract valuable insights and

make accurate prognosis predictions, which can greatly contribute to personalized
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treatment approaches.

(3) Expansion of our data collection efforts to include additional quantified and
objective parameters, such as descending CMCoh, ascending CMCoh, and functional
connectivity (Chapter 3). Investigation of optimization in personalized tsES stimulation
parameters and shifted patterns in different lesional locations and impairments level
(Chapter 3). These parameters will play a crucial role in deepening our understanding

of both immediate effects of tsES and rehabilitation effects of tsES combined with VPT.

(4) Exploration of the rehabilitation effectiveness achieved by incorporating revised
sensorimotor relearning strategies into tsES specifically targeted at lesioned side of
persons suffering from chronic stroke (Chapter 4). The investigation aims to uncover
novel strategies for enhancing rehabilitation outcomes and improving the quality of life

for these individuals.
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APPENDICES

Appendices A: Clinical Assessments for Upper Extremity

A-1: Mini-mental State Examination (MMSE)

Mini-Mental State Examination (MMSE)

Patient’'s Name:

Date:

Instructions: Ask the questions in the order listed. Score one point for each correct
response within each question or activity.

Maximum | Patient's .
Score Score Questions

5 “What is the year? Season? Date? Day of the week? Month?”

5 “Where are we now: State? County? Town/city? Hospital? Floor?”
The examiner names three unrelated objects clearly and slowly, then

3 asks the patient to name all three of them. The patient’s response is
used for scoring. The examiner repeats them until patient learns all of
them, if possible. Number of trials:
“I would like you to count backward from 100 by sevens.” (93, 86, 79,

5 72, 65, ...) Stop after five answers.
Alternative: “Spell WORLD backwards.” (D-L-R-O-W)

3 “Earlier | told you the names of three things. Can you tell me what those
were?”

2 Show the patient two simple objects, such as a wristwatch and a pencil,
and ask the patient to name them.

1 “Repeat the phrase: ‘No ifs, ands, or buts.”

3 “Take the paper in your right hand, fold it in half, and put it on the floor.”
(The examiner gives the patient a piece of blank paper.)

1 “Please read this and do what it says.” (Written instruction is “Close
your eyes.”)

1 “Make up and write a sentence about anything.” (This sentence must
contain a noun and a verb.)
“Please copy this picture.” (The examiner gives the patient a blank
piece of paper and asks him/her to draw the symbol below. All 10
angles must be present and two must intersect.)

| e

30 TOTAL

(Adapted from Rovner & Folstein, 1987)
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Instructions for administration and scoring of the MMSE

Orientation (10 points):

« Ask for the date. Then specifically ask for parts omitted (e.g., "Can you also tell me what season it
is?"). One point for each correct answer.

e Askin turn, "Can you tell me the name of this hospital (town, county, etc.)?" One point for each
correct answer.

Reagistration (3 points):

« Say the names of three unrelated objects clearly and slowly, allowing approximately one second for
each. After you have said all three, ask the patient to repeat them. The number of objects the
patient names correctly upon the first repetition determines the score (0-3). If the patient does not
repeat all three objects the first time, continue saying the names until the patient is able to repeat all
three items, up to six trials. Record the number of trials it takes for the patient to learn the words. If
the patient does not eventually learn all three, recall cannot be meaningfully tested.

« After completing this task, tell the patient, "Try to remember the words, as | will ask for them in a
little while."

Attention and Calculation (5 points):

« Ask the patient to begin with 100 and count backward by sevens. Stop after five subtractions (93,
86, 79, 72, 65). Score the total number of correct answers.

« [fthe patient cannot or will not perform the subtraction task, ask the patient to spell the word "world"
backwards. The score is the number of letters in correct order (e.g., dirow=5, dlorw=3).

Recall (3 points):
« Ask the patient if he or she can recall the three words you previously asked him or her to
remember. Score the total number of correct answers (0-3).

Lanquage and Praxis (9 points):

« Naming: Show the patient a wrist watch and ask the patient what it is. Repeat with a pencil. Score
one point for each correct naming (0-2).

« Repetition: Ask the patient to repeat the sentence after you ("No ifs, ands, or buts."). Allow only one
trial. Score O or 1.

« 3-Stage Command: Give the patient a piece of blank paper and say, "Take this paper in your right
hand, fold it in half, and put it on the floor.” Score one point for each part of the command correctly
executed.

« Reading: On a blank piece of paper print the sentence, "Close your eyes,” in letters large enough
for the patient to see clearly. Ask the patient to read the sentence and do what it says. Score one
point only if the patient actually closes his or her eyes. This is not a test of memory, so you may
prompt the patient to "do what it says" after the patient reads the sentence.

« Writing: Give the patient a blank piece of paper and ask him or her to write a sentence for you. Do
not dictate a sentence; it should be written spontaneously. The sentence must contain a subject
and a verb and make sense. Correct grammar and punctuation are not necessary.

« Copying: Show the patient the picture of two intersecting pentagons and ask the patient to copy the
figure exactly as it is. All ten angles must be present and two must intersect to score one point.
Ignore tremor and rotation.

(Folstein, Folstein & McHugh, 1875)

131



Interpretation of the MMSE

Method Score Interpretation
Single Cutoff <24 Abnormal
Range <21 Increased odds of dementie_l
=25 Decreased odds of dementia
21 Abnormal for 8" grade education
Education <23 Abnormal for high school education
<24 Abnormal for college education
24-30 No cognitive impairment
Severity 18-23 Mild cognitive impairment
0-17 Severe cognitive impairment
Sources:

e Crum RM, Anthony JC, Bassett SS, Folstein MF. Population-based norms for the mini-mental state
examination by age and educational level. JAMA. 1993;269(18):2386-2391.

« Folstein MF, Folstein SE, McHugh PR. "Mini-mental state": a practical method for grading the cognitive state
of patients for the clinician. J Psychiatr Res. 1975;12:189-198.

¢ Rovner BW, Folstein MF. Mini-mental state exam in clinical practice. Hosp Pract. 1987;22(1A):99, 103, 106,
110.

e Tombaugh TN, Mcintyre NJ. The mini-mental state examination: a comprehensive review. J Am Geriatr Soc.
1992;40(9):922-935.

Form adopted from:

http://www.heartinstitutehd.com/Misc/Forms/MMSE.1276128605 .pdf
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A-2: Modified Ashworth Scale (MAS)

Modified Ashworth Scale Instructions
General Information (derived Bohannon and Smith, 1987):

e Place the patient in a supine position

e [f testing a muscle that primarily flexes a joint, place the joint in a maximally
flexed position and move to a position of maximal extension over one second
(count "one thousand one")

e [f testing a muscle that primarily extends a joint, place the joint in 2 maximally
extended position and move to a position of maximal flexion over one second
(count "one thousand one")

e Score based on the classification below

Scoring (taken from Bohannon and Smith, 1987):

0 No increase in muscle tone

1 Slight increase in muscle tone, manifested by a catch and release or by minimal
resistance at the end of the range of motion when the affected part(s) is moved in
flexion or extension

1+  Slight increase in muscle tone, manifested by a catch, followed by minimal
resistance throughout the remainder (less than half) of the ROM

2 More marked increase in muscle tone through most of the ROM, but
affected pari(s) easily moved

3 Considerable increase in muscle tone, passive movement difficult

4 Affected part(s) rigid in flexion or extension

Patient Instructions:
The patient should be instructed to relax.
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Modified Ashworth Scale Testing Form

Name: Date:

[
S
(¢]

Muscle Tested

Reference for test instructions:
Bohannon, R. and Smith, M. (1987). "Interrater reliability of a modified Ashworth scale
of muscle spasticity." Physical Therapy 67(2): 206.

Form adopted from:

https://www.sralab.org/sites/default/files/2017-

06/Modified%20Ashworth%20Scale%20Instructions.pdf
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A-3: Motor Status Score (MSS)

SEATED ACTIVE RANGE OF MOTION (CHECK WHEELCHAIR POSITIONING)

Shoulder Movement
1. A. Shoulder flexion to 90°, elbow 0°, forearm neutral
Deltoid, Rotator Cuff
B. If placed, can position be held?
Deltoid, Rotator Cuff
2. A. Shoulder abduction to 90°, elbow 0°, forearm pronated
Deltoid, Rotator Cuff
B. If placed, can position be held?
Deltoid, Rotator Cuff
3. A. Shoulder flex 90°-150°, elbow 0°
Deltoid, Rotator Cuff
B. If placed, can position be held?
Deltoid, Rotator Cuff
4. A. Touch top of head
Deltoid, Rotator Cuff, Biceps Brachii, Triceps Brachii
B. If placed, can position be held?
Deltoid, Rotator Cuff, Biceps Brachii, Triceps Brachii
5. A. Touch small of back
Subscapularis, Pectoralis Major, Latissimus Dorsi, Teres Major.
Deltoid, Upper Trapezius
B. If placed, can position be held?
Subscapularis, Pectoralis Major, Latissimus Dorsi, Teres Major
6. Scapular elevation
Upper Trapezius, Levator Scapulae
7. Protraction/retraction of the scapula arm supported on table or lap
Serratus Anterior, Rbomboids Major. Minor. Middle Trapezius
8. A. Shoulder lex 0°=30°, elbow starts at 90°
Deltoid, Supraspinatus
B. Shoulder to 30° extension with elbow flex, forearm supported on table
Latissimus Dorsi, Teres Major, Posterior Deltoid
9. A. Shoulder 0°, elbow 90°, shoulder internal rotation to abdomen
Subscapularis, Pectoralis Major, Lattisimus Dorsi, Teres Major
B. Shoulder 0°, elbow 90°, shoulder external rotation
Infraspinatus, Teres Minor
10. Touch opposite knee
Pectoralis Major, Triceps Brachii, Pronator Group

Elbow/Forearm
1. A. Forearm pronation from midposition shoulder 0°, elbow 90°
Pronator Group
B. Forearm supination from midposition shoulder 0°, elbow 90°
Biceps Brachii, Supinator
2. A.Elbow 0°, fully flex
Biceps Brachii, Brachialis, Brachioradialis
B.If placed, can position be held?
Biceps Brachii, Brachialis, Brachioradialis
3. Full elbow flexion, extend to 0° (gravity eliminated or against gravity)
Triceps Brachii
4. Touch opposite shoulder
Deltoid, Rotator Cuff, Pectoralis Major, Biceps
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Wrist
1. Wrist extension with shoulder 0°, elbow 90°, forearm pronated
Extensor Canpi Radialis Longus, Brevis, Extensor Canpi Ulnaris
2. Wirist flex with shoulder 0°, elbow 90°, forearm supinated
Flexor Carpi Radialis, Flexor Carpi Ulnaris
3. Wrist circumduction shoulder 0°, elbow 90°, forearm pronated
Extensor Camnpi, Radialis, Ulnaris, Flexor Carpi Radialis, Ulnaris

Hand
1. Fingers—mass flexion (fingers to palm)
Flexor Digitorum Superficialis, Profundus, Flexor Digiti Minimi
2. Fingers—mass extension
Extensor Digitorum, Extensor Indicis, Extensor Digiti Minimi
3. Hook grasp
Flexor Digitorum Superficialis, Profundus
4. Intrinsic plus position
Interossei Volar, Dorsal
5. Thumb adduction
Abductor Pollicis Longus, Abductor Pollicis Brevis
6. Thumb adduction
Adductor Pollicis
7. Opposition to base of digit
Opponens Pollicis
8. A. Opposition to digit 2 (tip pinch)
B. Opposition to digit 3 (tip pinch)
C. Opposition to digit 4 (tip pinch)
Opponens Pollicis, Flexor Digitorum Superficialis, Profundus,
Flexor Pollicis Longus, Interossei
D. Opposition to digit 5 (tip pinch)
Opponens Pollicis, Opponens Digiti Minimi, Flexor Pollicis Longus,
Flexor Digitorum Superficialis, Profundus, Interossei
9. A. Opposition to digit 2 (pad pinch)
B. Opposition to digit 3.(pad pinch)
C. Opposition to digit 4 (pad pinch)
D. Opposition to digit 5 (pad pinch)
Opponens Pollicis, Flexor Pollicis Brevis, Abductor Pollicis Brevis, Flexor
Digitorum Superficialis, Profundus, Interossei, Opponens Digiti Minimi
10. Controlled grasp with soda can grasp, place 2—4 inches away, release
11. Pincer grasp with pen (sign name, date, or 3 vertical lines)
12. Lateral pinch with key

Total movement scale

Movement
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Upper Extremity Motor Status Assessment

Patient name:

Scored by:

Date:

MOVEMENT SCALE—SHOULDER/ELBOW

no volitional movement or no contraction

contraction or patient initiating first few degrees of movement
= performs partly/incomplete or uncontrolled motion

lacking last few degrees of motion

completes full range, decreased control or timing

performs faultlessly (complete, controlled motion)

T-O
LI |

Iy = -
I+
“m

(8]
1

Place and hold (shoulder: 1B, 2B, 3B, 4B, 5B; elbow: 2B-0 or 1)

MOVEMENT SCALE—WRIST, HAND, AND FINGER

= no volitional movement or contraction
= performs partial movement
= performs complete movement faultlessly

[SSIC

Form adopted from:

https://journals.sagepub.com/doi/abs/10.1177/154596830201600306
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A-4: Fugl-Meyer Assessment for Upper Extremity (FMA-UE)

FMA-UE PROTOCOL Rehabilitation Medicine, University of Gothenburg
FUGL-MEYER ASSESSMENT ID:

UPPER EXTREMITY (FMA-UE) Date:

Assessment of sensorimotor function Examiner:

Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S: The post-stroke hemiplegic patient. A method for evaluation of physical
performance. Scand J Rehabil Med 1975, 7:13-31.

A. UPPER EXTREMITY, sitting position

l. Reflex activity none | can be elicited
Flexors: biceps and finger flexors (at least one) 0 2
Extensors: triceps 0 2

Subtotal | (max 4)

Il. Volitional movement within synergies, without gravitational help none | partial | full
Flexor synergy: Hand from Shoulder  retraction 0 1 2
contralateral knee to ipsilateral ear. elevation 0 1 2
From extensor synergy (shoulder abduction (90°) 0 1 2
adduction/ internal rotation, elbow external rotation 0 1 2
extension, forearm pronation) to flexor Elbow flexion 0 1 2
synergy (shoulder abduction/ external Forearm supination 0 1 5
rotation, elbow flexion, forearm

supination). Shoulder  adduction/internal rotation 0 1 2
Extensor synergy: Hand from Elbow extension 0 1 2
ipsilateral ear to the contralateral knee | Forearm pronation 0 1 2

Subtotal Il (max 18)

lll. Volitional movement mixing synergies, without compensation none | partial | full
Hand to lumbar spine cannot perform or hand in front of ant-sup iliac spine 0
hand on lap hand behind ant-sup iliac spine (without compensation) 1

hand to lumbar spine (without compensation) 2
Shoulder flexion 0°- 90° | immediate abduction or elbow flexion 0
elbow at 0° abduction or elbow flexion during movement 1
pronation-supination 0° flexion 90°, no shoulder abduction or elbow flexion 2
Pronation-supination no pronation/supination, starting position impossible 0
elbow at-90° limited pronation/supination, maintains starting position 1
shoulder at 0° full pronation/supination, maintains starting position 2

Subtotal 1l (max6)

IV. Volitional movement with little or no synergy none | partial | full
Shoulder abduction 0 - 90° | immediate supination or elbow flexion 0

elbow at 0° supination or elbow flexion during movement 1

forearm neutral abduction 90°, maintains extension and pronation 2
Shoulder flexion 90° - 180° | immediate abduction or elbow flexion 0

elbow at 0° abduction or elbow flexion during movement 1
pronation-supination 0° flexion 180°, no shoulder abduction or elbow flexion 2
Pronation/supination no pronation/supination, starting position impossible 0

elbow at 0° limited pronation/supination, maintains start position 1

shoulder at 30°- 90° flexion full pronation/supination, maintains starting position 2

Subtotal [V (max 6)

V. Normal reflex activity assessed only if full score of 6 points is achieved in

part 1V; compare with the unaffected side hyper | lively | normal

Biceps. tricens 2 of 3 reflexes markedly hyperactive 0
>ICeps, Ps, 1 reflex markedly hyperactive or at least 2 reflexes lively 1
finger flexors . . .
maximum of 1 reflex lively, none hyperactive 2

Subtotal V (max 2)

Total A (max36)
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FMA-UE PROTOCOL Rehabilitation Medicine, University of Gothenburg

B. WRIST support may be provided at the elbow to take or hold the starting none -

. . . . . . partial | full
position, no support at wrist, check the passive range of motion prior testing
Stability at 15° dorsiflexion less than 15° active dorsiflexion 0
elbow at 90°, forearm pronated dorsiflexion 15°, no resistance tolerated 1
shoulder at 0° maintains dorsiflexion against resistance 2
Repeated dorsifexion / volar flexion cannot perform volitionally 0
elbow at 90°, forearm pronated limited active range of motion 1
shoulder at 0°, slight finger flexion full active range of motion, smoothly 2
Stability at 15° dorsiflexion less than 15° active dorsiflexion 0
elbow at 0°, forearm pronated dorsiflexion 15°, no resistance tolerated 1
slight shoulder flexion/abduction maintains dorsiflexion against resistance 2
Repeated dorsifexion / volar flexion cannot perform volitionally 0
elbow at 0°, forearm pronated limited active range of motion 1
slight shoulder flexion/abduction full active range of motion, smoothly 2
Circumduction cannot perform volitionally 0
elbow at 90°, forearm pronated jerky movement or incomplete 1
shoulder at 0° complete and smooth circumduction 2

Total B (max 10)

C. HAND support may be provided at the elbow to keep 90° flexion, no support at none | partial | full
the wrist, compare with unaffected hand, the objects are interposed, active grasp
Mass flexion

. . . 0 1 2
from full active or passive extension
Mass extension

- . . 0 1 2
from full active or passive flexion
GRASP
a. Hook grasp cannot be performed 0
flexion in PIP and DIP (digits 1I-V), can hold position but weak 1
extension in MCP 1I-V maintains position against resistance 2
b. Thumb adduction cannot be performed 0
1-st CMC, MCP, IP at 0°, scrap of paper | can hold paper but not against tug 1
between thumb and 2-nd MCP joint can hold paper against a tug 2
c. Pincer grasp, opposition cannot be performed 0
pulpa of the thumb against the pulpa of | can hold pencil but not against tug 1
2-nd finger, pencil, tug upward can hold pencil against a tug 2
d. Cylinder grasp cannot be performed 0
cylinder shaped object (small can) can hold cylinder but not against tug 1
tug upward, opposition of thumb and can hold cylinder against a tug 2
fingers
e. Spherical grasp cannot be performed 0
fingers in abduction/flexion, thumb can hold ball but not against tug 1
opposed, tennis ball, tug away can hold ball against a tug 2

Total C max 14)

D. COQRDINATIONISPEED, sitting, after one trial with both arms, eyes | torved | slight | none
closed, tip of the index finger from knee to nose, 5 times as fast as possible
Tremor 0 1 2
. pronounced or unsystematic 0
Dysmetria slight and systematic 1
no dysmetria 2
2 6s 2-5s <2s
Time 6 or more seconds slower than unaffected side 0
start and end with the 2-5 seconds slower than unaffected side 1
hand on the knee less than 2 seconds difference 2

Total D maxe)

TOTAL A-D (maxes)

Form adopted from:

https://www.gu.se/en/neuroscience-physiology/fugl-meyer-assessment
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A-5: Action Research Arm Test (ARAT)

ACTION Patient Name:
RESEARCH Rater Name:
ARM TEST

Instructions

There are four subtests: Grasp, Grip, Pinch, Gross Movement. Items in each are ordered so that:

e if the subject passes the first, no more need to be administered and he scores top marks for that subtest:

e if the subject fails the first and fails the second, he scores zero, and again no more tests need to be

performed in that subtest;

e otherwise he needs to complete all tasks within the subtest

Activity

Score

Grasp
1

. Block, wood, 10 ¢cm cube (If score = 3, total = 18 and to Grip)

Pick up a 10 ¢cm block

(=]

Pick up 2.5 cm block
3. Block. wood, 5 ¢cm cube
4. Block, wood, 7.5 cm cube
5. Ball (Cricket), 7.5 cm diameter
6. Stone 10x25x 1 ecm
CoefTicient of reproducibility = 0.98
CoefTicient of scalability =094

Grip

1. Pour water from glass to glass (If score = 3, total = 12, and go to Pinch)

2. Tube 2.25 em (If score = 0, total = 0 and go to Pinch)
3. Tube 1 x 16 cm

4. Washer (3.5 cm diameter) over bolt

CoefTicient of reproducibility = 0.99

CoefTicient of scalability =098

Pinch

1. Ball bearing, 6 mm, 3" finger and thumb (If score = 3, total = 18 and go to Grossmt)

(=]

. Ball bearing 2™ finger and thumb
. Ball bearing 1 finger and thumb
. Marble 3* finger and thumb
. Marble 2 finger and thumb
CoefTicient of reproducibility = 0.99

= Y N

CoefTicient of scalability =098
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. Block, wood, 2.5 ¢cm cube (If score = 0, total = 0 and go to Grip)

. Marble, 1.5 cm, index finger and thumb (If score = 0, total = 0 and go to Grossmt)



Grossmt (Gross Movement)

1. Place hand behind head (If score = 3, total = 9 and finish)
2. (If score = 0, total = 0 and finish

3. Place hand on top of head

4. Hand to mouth

CoefTicient of reproducibility =0.98

CoefTicient of scalability =097
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Form adopted from:

https://faculty.ksu.edu.sa/sites/default/files/action_research arm_test.pdf
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A-6: Functional Independence Measurement (FIM)

ADMISSION

DISCHARGE

FOLLOW-UP

| Self-Care

|A. Eating

|B. Grooming

|C. Bathing

ID. Dressing - Upper Body

|E. Dressing - Lower Body

|F. Toileting

|Sphlncter Control

|G. Bladder Management

|H. Bowel Management

|Transfers

||. Bed, Chair, Wheelchair

|J. Toilet

|K. Tub, Shower

| Locomotion

|L. Walk/Wheelchair

|M. Stairs

| Motor Subtotal Score

| Communication

[N. Comprehension

|O. Expression

|Social Cognition

|P. Social Interaction

|Q. Problem Solving

IR. Memory

| Cognitive Subtotal Score

| TOTAL FIM Score

|
|
|
|
|
|
I
|
|
I
I
|
|
|
|
|
|
|
|
|
|
|
|
I
|
I
|
|

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

|
|
|
|
I
I
I
I
|
I
I
I
I
|
|
I
I
I
I
|
|
|
|
I
I
I
I
|

Independent

7 Complete Independence (Timely, Safely)
6 Modified Independence (Device)

NO HELPER

Modified Dependence

orm<mr

5 Supervision (Subject =
4 Minimal Assist (Subject = 75%+)
3 Moderate Assist (Subject = 50%+)

Complete Dependence
2 Maximal Assist (Subject = 25%+)
1 Total Assist (Subject =

100%+)

less than 25%)

HELPER

Note: Leave no blanks. Enter 1 if patient is not testable due to risk.

Form adopted from:

https://www.physio-pedia.com/Functional Independence Measure (FIM)
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A-7: Wolf Motor Function Test (WMFT)

Type/Purpose of Test: The purpose of this test is to quantify upper extremity UE motor ability through a series of timed
and functional tasks.

Population: Used primarily for stroke patients but could be used for people with impaired UE motor ability. *Limited
usefulness for patients with chronic stroke and TBI who are lower functioning in motor deficit. Or for acute or sub-acute
stroke before spontaneous recovery has completed.

Focus of measurement:
___Organic systems (X)Abilities ___Participation/life habits ___Environmental Factors

Ease of Administration:

General Description of the WMFT

All tasks are performed as quickly as possible and are truncated at

120 seconds. Tasks are as follows:

1. Forearm to table (side): Subject attempts to place forearm on the table by abduction at the shoulder.

2. Forearm to box (side): Subject attempts to place a forearm on the box by abduction at the shoulder.

3. Extend elbow (side): Subject attempts to reach across the table by extending the elbow (to the side).

4. Extend elbow (to the side), with weight: Subject attempts to push the sandbag against outer wrist joint across the table by
extending the elbow.

5. Hand to table (front): Subject attempts to place involved hand on the table.

6. Hand to box (front): Subject attempts to place hand on the box.

7. Reach and retrieve (front): Subject attempts to pull 1-Ib weight across the table by using elbow flexion and cupped wrist.
8. Lift can (front): Subject attempts to lift can and bring it close to lips with a cylindrical grasp.

9. Lift pencil (front): Subject attempts to pick up pencil by using 3-jaw chuck grasp

10. Pick up paper clip (front): Subject attempts to pick up paper clip by using a pincer grasp.

11. Stack checkers (front): Subject attempts to stack checkers onto the center checker.

12. Flip cards (front): Using the pincer grasp, patient attempts to flip each card over.

13. Turning the key in lock (front): Using pincer grasp, while maintaining contact, patient tums key fully to the left and right.
14. Fold towel (front): Subject grasps towel, folds it lengthwise, and then uses the tested hand to fold the towel in half again.
15. Lift basket (standing): Subject picks up basket by grasping the handles and placing it on bedside table.

Clarity of Directions:
Very clear and easy to follow directions for the administrator of the test and the test taker.

Scoring Procedures:

The speed at which functional tasks can be completed is measured by performance time and the movement quality when
completing the tasks is measured by functional ability.

Speed is measured by timing the task with a stopwatch from start to finish.

Movement quality during the task is measured by functional ability using a 6-point ordinal scale, where 0 = does not attempt
with the involved arm and 5 = arm does participate/movement appears to be normal.

Examiner Qualification & Training
No qualification or training required.

143



Standardization: _ Norms __ Criterion Referenced __ Other None were mentioned in the manual.

Reliability: The inter-test and inter-rater reliability, and internal consistency and stability of the test is high for both the
performance time and Functional Ability rating scale measures, ranging from .88 to .98, with most values ~ .95

Validity: Construct validity, criterion validity

Manual: ____ Excellent (X) Adequate Poor

What is (are) the setting/s that you would anticipate using this assessment?
I could see this used in any setting where a person with a stroke or UE motor impairment is being treated. Inpatient,
outpatient, home health, related research, etc. (acute rehab might be a little premature for this type of test.)

Summary of strengths and weaknesses:

Weakness:

| think that it is very easy for interraters to be consistent with the timing part of the test but | think there could be some
difference of opinion for the movement quality assessment. A patient could become very frustrated if they were not able to
do well in a timed test environment.

Strength:
There are mostly functional measurements of UE use. It is something that can be used fo track progress of a patient.
Very easy to learn and administer. Not expensive to simulate in a clinic or wherever you want to use it.

Form adopted from:

https://strokengine.ca/en/assessments/wmft/
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Appendices B: Consent Form for Chapter 3 and Chapter 4

?b |ll'1|”\ II(LH\I( UNIVERSITY
v Frp g A
CONSENT TO PARTICIPATE IN RESEARCH

Restoring functional capacity of the upper extremity using mass volitional
training and trans-spinal electrical stimulation in individuals with chronic
Stroke

I hereby consent to participate in the captioned research
supervised by Dr. Monzurul Alam, Dr. Xiaoling Hu and Prof. Yong-Ping Zheng.

I understand that information obtained from this research may be used in future
research and publication(s). However, my nght to privacy will be retained, i.e. my
personal details will not be revealed.

The procedure as set out in the attached information sheet has been fully explained. I
understand the benefit and potential nsks involved. My participation in the project 1s
voluntary.

I acknowledge that I have the right to question any part of the procedure and can
withdraw at any time without penalty of any kind.

Name of participant:

Signature of participant:

Name of researcher:

Signature of researcher:

Date:
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