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Abstract 

This thesis achieves a quantitative model of artificial flagellated micro-swimmers 

(AFMSs) to predict the motility and steerability of an acoustically actuated AFMS. We 

first summarized the historical achievements and theoretical perspectives on 

microorganisms and their propulsion mechanisms, then reviewed the progress in 

actuation strategies of AFMSs, and finally focused on a simple sperm-like micro-

swimmer geometry, composed of an ellipsoidal head and a flagellum (tail) with the 

length of hundreds of micrometers. We argue that these AFMSs can swim by inducing 

head oscillations that beat the flagellum to achieve wavy motion and thus the propulsion 

in a low Reynolds number (LRN) Newtonian fluid environment. 

We provided the quantitative relation between head oscillation amplitude and 

acoustic pressure and frequency, and the theoretical account of how the flagellum is 

whipped, bringing about propulsion. The one-dimensional (1D) equations of motion 

(EOM) for a flagellum, treated as an Euler-Bernoulli viscoelastic beam, were then 

derived based on the resistive force theory (RFT) and solved by using the Galerkin 

method. In order to make our theoretical model applicable for designing the AFMS, we 

have involved the inertia term and material damping in the 1D EOM and considered 

the tapered cross-section of a flagellum. The numerical results reveal that the micro-

swimmer actuated by ultrasound can achieve a perceptible velocity, especially at 

resonance. Influences of nondimensional parameters, such as the resonance index, 

sperm number, and material damping coefficient, were discussed and a comparison 

with reported experimental results demonstrates the validity of the proposed 1D model. 

To deal with the steerability of micro-swimmers under magneto-acoustic actuation 

with significant non-linearity in EOM, we proposed a bar-joint model based on the 
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corrected resistive force theory (CRFT) for studying AFMSs propelled in a 2D acoustic 

field or with a rectangular cross-section. Note that the classical RFT for 3D cylindrical 

flagellum leads to over 90% deviation in terminal velocities from those of 2D fluid-

structure interaction (FSI) simulations, while the proposed CRFT bar-joint model can 

reduce the deviation to below 5%; hence, it enables a reliable prediction of the 2D 

locomotion of an acoustically actuated AFMS with a rectangular cross-section, which 

is the case in many experiments. Introduced in the CRFT is a single correction factor K 

determined by comparing the linear terminal velocities under acoustic actuation 

obtained from the CRFT with those from simulations. After the determination of K, 

detailed comparisons of trajectories between the CRFT-based bar-joint AFMS model 

and the FSI simulation were presented, exhibiting excellent consistency. Finally, a 

numerical demonstration of the purely acoustic or magneto-acoustic steering of an 

AFMS based on the CRFT was presented, which can be one of the choices for future 

AFMS-based precision therapy. 

Experimentally, AFMSs can be manufactured based on digital light processing (DLP) 

of UV-curable resins. We first determined the viscoelastic properties of a UV-cured 

resin through dynamic mechanical analysis (DMA). The high-frequency storage moduli 

and loss factors were obtained based on the assumption of time-temperature 

superposition (TTS), which were then applied in theoretical calculations. Though the 

extrapolation based on the TTS implied the uncertainty of high-frequency material 

response and there is limited accuracy in determining head oscillation amplitude, the 

differences between the measured terminal velocities of the AFMSs and the predicted 

ones are less than 50%, which, to us, is well acceptable. These results indicate that the 

motions of acoustic AFMS can be predicted, and thus, designed, which pave the way 

for their long-awaited applications in targeted therapy.  
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Chapter 1. Introduction 

1.1 Background 

In 1959, Richard Feynman conceived nanotechnology in his famous talk [1] and 

envisioned that maneuverable machines at an exceedingly small scale would be very 

useful in many fields. Although people have ever since fantasized about micro-robotics 

[2], the actuation and manipulation of micro-scaled robots have not been realized until 

the recent decade with the booming development of microfabrication. Among many 

potential applications, medical implementation could be the most significant impetus 

to develop microbotics [3]. For example, some commercialized swallowable medical 

devices [4] have been available. They can move inside the human body for diagnosis 

or surgery. The structure we focus on in this thesis is an artificial flagellated micro-

swimmer (AFMS), which incorporates a relatively rigid head and a flexible tail, where 

the tail is commonly named a flagellum in microbiology [5]. Herein, We focus on the 

flagellated, a.k.a. sperm-like, structure because its rigid head has the potential for cargo 

delivery, which can lay the foundation of targeted therapy for cancer treatment [6]. 

Besides, this design is simple to fabricate through layer-by-layer photocuring (i.e., 3D 

printing) [7, 8], which will be presented in this thesis. 

It should be noted that even if remotely controllable capsule endoscopes have been 

proposed in the past several years, these devices are still in millimeter scale to 

accommodate various functionalities, such as power supply, propulsion, navigation, 

imaging, signaling, and so forth [9]. As a result, the so-called milli-swimmers can only 

move in sufficiently large biological ducts, and the medical implementation such as the 

targeted therapy is restricted. Fortunately, the possibility of further downscaling these 

devices has been demonstrated with the advent of submillimeter micro-swimmers [6]. 
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Therefore, more medical applications can be anticipated. For example, we envision that 

a swarm of micro-swimmers could be direct to the position of the focus along the 

esophagus under an external excitation, as shown in Figure 1-1. There, they would 

release medicines into the inflammation site or kill cancer cells by utilizing the 

magneto-caloric effect. 

 

 

Figure 1-1. Sketch map of the application scenario about medical cargo delivery. 

 

1.2 Objectives and methodology of this thesis 

The objective of this thesis is to achieve a quantitative model of AFMSs to predict 

their motility and steerability under external actuation. For the motility of an AFMS, 

we attempt to first answer the questions on (i) the motion of the head under acoustic 

actuation, (ii) parameter optimization of the flagellum, (iii) the effect of inertia, (iv) the 
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effect of material damping, (v) the effect of the non-uniform flagellum. These questions 

are crucial because the answers to them can pave the road to far-reaching medical 

applications. The motion of the head acts as a bridge between the external actuation and 

the locomotion of the micro-swimmer; the parameter optimization is meaningful to the 

design and can assist us in the cost trade-off; inertia is the agent of energy conversion 

and the cause of resonance; material damping is the inherent property of the polymeric 

flagellum; the non-uniform flagellum provides a possibility for the geometric 

optimization of the flagellum. After the analysis of one-dimensional (1D) propulsion, 

in our analytical attempt to resolve the turn performance of an AFMS, it is found that 

the geometric nonlinearity leads to the coupled governing partial differential equations 

(PDEs) of the flagellum dynamics. Disentangling them was difficult and led to non-

convergent results. Therefore, for the steerability of an AFMS, we attempt to establish 

a 2D model of the flagellum to predict the trajectory of motion. This model should be 

simple to solve numerically and can be verified by our experiments. 

Concerning medical applications, the propulsion strategies that are apparently 

harmful, such as the chemical and electrical actuations, have been excluded, which has 

brought our attention to acoustic and magnetic ones. Generally speaking, the 

magnetically actuated devices are more maneuverable as reported in [10, 11], 

nevertheless, the driving strategy is limited to the acoustic actuation due to the 

requirements of bio-compatibility and medium-independence [12]. The directional 

motions of AFMSs under the acoustic actuation were observed in some experiments [7, 

13]. Authors therein considered that the propulsion arose from the strong acoustic 

streaming around sharp edges of AFMSs, which is a well-established mechanism for 

propelling swimmers excited by acoustic waves [14-16]. However, it is generally 

complex to obtain acoustic streaming surrounding a micro-swimmer (mainly via 
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numerical simulation based on the perturbation technique [16]), which gives rise to the 

difficulty of theoretical analyses, and sometimes, leads to significant discrepancies (e.g., 

the resonance frequency of the simulated value differs from the experimental 

observation in [13]). Fortunately, if a body is slender (i.e., the ratio of the characteristic 

width to length is less than 0.1 [17]), an asymptotic expression of fluid forces around 

solid boundaries can be obtained under a low Reynolds number (LRN), known as the 

resistive force theory (RFT) [18-24]. Gray and Hancock [25] and Lighthill [26] 

developed the RFT to describe LRN swimming problems. Recently, in the analyses of 

artificial micro-swimmers, the RFT is the most adopted [27-29]. For example, studied 

in [28] and [29] were the micro/nano-rods propelled by ultrasound, wherein the 

complex effect of acoustic waves was simplified into forces estimated based on the 

drags calculated using the RFT owing to the LRN, which avoids the analysis of 

complexed acoustic streaming. 

The above achievements and difficulties inspired us to develop the model of 

acoustically actuated AFMSs. Indeed, the footage of the sperm-like artificial micro-

swimmers provided in Ref. [7] is reminiscent of the swimming of natural spermatozoa 

[30-32]. Figure 1-2 is a recap of a sequence of tail deformation of the AFMS described 

in Ref. [7], which is very similar to the wiggling of a biological flagellum. Such a 

wiggling motion provides the propulsive force that can be determined based on the 

theories developed in the LRN regime. In this regime, the inertia of fluid can be 

neglected because the inertial force is much less than the viscous force [33]; and 

propulsion can only be achieved by breaking the time-reversal invariance [34], known 

as the ‘scallop theorem’. The wiggling of the flagellum as shown in Figure 1-2 is such 

a motion that provides forward thrust. Though microorganisms beat their flagella 

through the action of molecular motors embedded in the filaments [30, 35], it has been 
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shown that beating a flagellum at one of its ends can also give rise to the forward thrust, 

which has been theoretically studied [36-38] and experimentally verified [39]. 

Note that the effect of acoustic streaming cannot be neglected, which is near the tip 

of a flagellum. Intuitively, the effect of the acoustic streaming can be treated as forces 

causing flagellum wiggling but from the tail tip instead of the head. It is thus clear that 

the RFT can be widely employed to analyze the propulsion of an AFMS under the 

swimming mechanism we proposed. For the steering problem, one may derive the 2D 

governing PDEs of a flagellum via Hamilton's principle [40] if the dynamic profile of 

the flagellum is a known function [41]. Unfortunately, in swimming, the wiggling 

profile of a flagellum is not ad hoc. In addition, a flagellum becomes curved in turning 

[42], bringing about geometric nonlinearly, and the influence of the rigid-body motion 

further increases the nonlinearity of the problem. Therefore, a discrete flagellum model 

was developed to solve the 2D swimming problem (aka. the bar-joint model) [43]. The 

problem with these studies is that the derivation of RFT is based on circular cross-

sections, but the cross-sections of many artificial micro-swimmers are non-circular. For 

example, if layer-by-layer photocuring is applied to fabricate AFMSs, the cross-section 

of the flagellum is more like a rectangle [7]. Hence, we proposed a corrected RFT 

(CRFT) model to correct the classical RFT for 2D cases or flagellum with rectangular 

cross-sections. The theoretical process leads to a single correction factor K which can 

be determined by comparing the terminal swimming velocities obtained from the bar-

joint model based on the CRFT with those from 2D fluid-structure interaction (FSI) 

simulations. Nevertheless, the experimental verification of this theory is still 

unachieved. 

In the following chapters, we will first summarize the historical achievements and 

theoretical perspectives on microorganisms and their propulsion mechanisms, then 
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review the progress in actuation strategies of AFMSs in Chapter 2. After that, in 

Chapter 3, the 1D equations of motion (EOM) for a flagellum, treated as an Euler-

Bernoulli viscoelastic beam, will be derived based on the RFT and solved by using the 

Galerkin method. In order to make our theoretical model applicable to the design of an 

AFMS, we will involve the inertia term and material damping in the 1D EOM and 

consider the tapered cross-section of a flagellum. Influences of nondimensional 

parameters, such as the resonance index, sperm number, and material damping 

coefficient, will be discussed and a comparison with reported experimental results will 

also be demonstrated. Next, in Chapter 4, we will develop the 2D EOM of an AFMS 

based on a discrete bar-joint model for the flagellum and the CRFT for the AFMS with 

rectangular cross-sections. Therein, we will first state the swimming problem of 

corresponding FSI simulations, and then examples of convergence analyses of FSI 

simulation will be presented. After that, the correction factor K will be determined in 

terms of different geometrical, materials, and acoustic-actuation parameters. 

Comparisons of swimmer’s trajectories between the CRFT-based bar-joint model and 

the FSI simulation will then be presented as a verification of our theory, and a 

demonstration of the acoustic or magneto-acoustic steering strategy for the AFMS will 

be shown as the examples of applications. In Chapter 5, we aim to verify the CRFT 

models by comparing terminal velocities of AFMSs observed in experiments to those 

predicted by theoretical calculation. Therein, we will describe the fabrication of AFMSs, 

the corresponding materials characterization, the experimental platform for acoustic 

actuation and observation, and the comparison between experiments and theoretical 

calculations (i.e., FSI simulations and CRFT models). Finally, we will conclude and 

discuss the future work of this research in Chapter 6. 
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Figure 1-2. Kaynak et al.’s artificial micro-swimmer [7] beats the flagellum in an acoustic field: (a) the 

footage of swimming provided in [7]; (b) the overlapped profiles of the micro-swimmer showing the 

flagellum wiggling.  
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Chapter 2. Literature review 

2.1 Observations of microorganisms 

We define a "swimmer" as a creature or an object that moves by periodically 

changing its body configuration. This type of swimmer in nature, if the size is 

sufficiently small to be invisible to the naked eye, is usually called a microorganism. 

The biological observation of microorganisms began with the invention of the optical 

microscope in the 17th century when Anthony van Leeuwenhoek first observed 

swimming bacteria [44]. Since then, people have discovered that our world is full of 

swimming microorganisms like sperms, bacteria, protozoa, and algae. 

In accordance with the comprehensive review article [5], many tiny swimmers use 

one or more appendages to advance. The appendage can be a rather hard spiral that can 

rotate. For example, the motor organelles of Escherichia coli and Salmonella 

typhimurium are bacterial flagella, which consist of a rotating motor, a spiral filament, 

and a hook that connects the motor to the filament [31, 45, 46]. The diameter of the 

filament is around 20 nm with a 10-μm contour length of helix [37]. Each cell usually 

has several flagella. When the motor rotates counterclockwise, the filaments are 

wrapped in a bundle and the cell is pushed forward at a speed of 25–35 μm/s [47]. When 

the motor runs clockwise, the corresponding filaments get unbundled and undergo a 

"polymorphic" transformation, in which the helix's chirality changes; and these 

transformations can change the direction of cell movement [37]. Aside from the helical 

filament, the appendage can also be a flexible filament that undergoes whip-like motion 

driven by molecular motors, such as the sperms of many species [48].  

As shown in Figure 2-1, swimming bacteria have various flagellar configurations. 

For example, F. crescentus has a single right-handed spiral filament that is driven by a 
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rotating motor and can be turned in any direction. The motor rotates clockwise 

preferentially and drives the filament to make the body move forward [49]. When 

rotating counterclockwise, the filament pulls the body instead of pushing it. The motor 

of Rhodobacter sphaeroides only rotates in one direction, but it stops periodically [50]. 

The flagellar filaments form a tight coil prior to a stop and then extend into a spiral at 

a stop. Besides, a fraction of bacteria do not have flagella, they can also move slowly 

by sliding [51]. 

Eukaryotic flagella and cilia are much larger than bacterial flagella, with a diameter 

of about 200 nm and a complex internal structure [48]. The most common structure has 

a molecular motor or dynein which slides back and forth causing fluctuations that 

propagate along the flagella. The beat pattern and length between eukaryotic flagella 

and cilia are very different. For example, Chlamydomonas reinhardtii have both cilia 

and flagella. Cilia are short and have random or non-synchronized motions [48], while 

flagella’s motion has a clear pattern. During the power stroke, each flagellum stretches 

and bends at the bottom, which is a bit reminiscent of the motion of our arms in 

breaststroke. During the recovery stroke, the flagella regain their folding, causing less 

resistance underneath. 

Flagellated microorganisms, such as sperms, are more researched in the 

biomechanics community because of their simplicity—often involving only one 

flagellum for propulsion—and their large size which simplifies observation. One can 

notice two kinds of flagellar wave motions, helical and planar, and two corresponding 

trajectories of organisms. When the flagella move in a helical way, the overall trajectory 

is, in general, a straight line, though there exists helical rotation around the line [52-55]. 

It is interesting that in the case of planar flagellar motion, the trajectory turns out to be 

circular rather than linear [52, 54-57]. Further analysis demonstrates that the greater the 
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asymmetry of the flagellar wave motions, the smaller the radius of curvature [55]. This 

indicates the existence of a strong connection between the circular path and the 

asymmetric tail beating [58]. However, more detailed interpretations of the results of 

biological observation are requisite, especially for biomimicking. This is the reason 

why the investigations on the fundamental physics of natural micro-swimmers are 

emerging in an endless stream. 

 

 

Figure 2-1. Sketches of microscopic swimmers. Reproduced with permission [59]. Copyright 2019, 

Wiley. 

 

2.2 Swimming mechanisms of natural micro-swimmers 

2.2.1 Principles of swimming on micro-scale 

The physics of microscopic swimming is distinct from the macroscopic one. The 

world of microorganisms is “a world with the LRN”, where inertia hardly plays a role 

and viscous damping is predominant. A general definition of the Reynolds number is 

Re = ρ0UL/μ, where ρ0 is the fluid density, μ the dynamic viscosity of the fluid, U and 

L the characteristic velocity and the length of the fluid, respectively. The specific 
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Reynolds numbers for natural micro-swimmers are worth comparison [60]. In water, 

with fluid parameters ρ0 ≈ 1000 kg/m3 and μ ≈ 10−3 Pa·s, a swimming bacterium, such 

as E. coli, with U ≈ 10 μm/s and L ≈ 0.1 μm is of a Reynolds number Re ≈ 10−5–10−4. 

A human sperm with U ≈ 200 μm/s and L ≈ 50 μm moves at Re ≈ 10−2. Some larger 

ciliates, such as Paramecium, with U ≈ 1 mm/s and L ≈ 100 μm can have Re ≈ 0.1 [61]. 

It is noted that a micro-swimmer with a speed around 1000 μm/s is reasonable in nature. 

Furthermore, for some much larger swimmers, such as fishes, birds, and insects, it is 

noted that their Reynolds numbers are usually very large, and thus, their swimming 

strategies will not work on a small scale [60, 62-66]. 

The study of the mechanisms of locomotion at LRNs has a long history. In 1930, 

Ludwig [67] remarked that microorganisms that swing their stiff arms like paddles 

cannot perform net movements. After that, there have been some classical reviews from 

different perspectives. Some were from the perspective of fluid mechanics at LRNs [26, 

34, 61, 68, 69]; some focused on the general animal locomotion [70]; and others found 

incentive from the investigations of the biophysics and biology of cell mobility [46, 71]. 

In general, one can simplify the sophisticated hydrodynamic problems at LRNs by 

studying the limit case Re = 0, in which the Navier-Stokes equations reduce to the 

Stokes equations [72] following: 

2 0,    0fp − +  =   =u u ,  (2.1a, b) 

where u is the velocity field, and pf the fluid pressure. Since the Stokes equations, i.e., 

Eqs. (2.1a, b), are linear, the classical linear superposition method is practicable to solve 

the fluid field and pressure distribution. The Green’s function to Stokes flow G[P(s) – 

P(s + δ)] can be solved analytically [68] and is expressed as: 
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P P

,  (2.2) 

where I is the identity tensor, and the distance vector Psδ = P(s) – P(s + δ). Physically, 

G[P(s) – P(s + δ)] represents the velocity field at position P(s) due to a singularity force 

Ff acting on the fluid domain at position P(s + δ), and that is u[P(s)] = G[P(s) – P(s + 

δ)]Ff[P(s + δ)] based on the linear superposition. Evidently, the flow velocity is 

inversely proportional to the spatial distance, allowing the neglect of the far-field effect. 

A significant solution to Eqs. (2.1a, b) in terms of locomotion is denominated as 

directional anisotropy. For example, for a 2D problem, if there is a force ( ),0f fF=F  

exerted at P(s + δ) = (δ, 0), i.e., s = 0, one can derive the flow field u at P(s) = (0, 0) as 

( )4π ,0fF  =  u  from Eq. (2.2); if ( )0,f fF ⊥=F , u will then become 

( )0, 8πfF ⊥ =  u . That is, for the same applied force ( f fF F ⊥= ), the flow velocity 

in the parallel direction is twice that in the perpendicular one ( 2u u⊥= ). Alternatively, 

in order to obtain the same speed, it is imperative to apply a force twice greater in the 

vertical direction than in the parallel direction ( 2 f fF F ⊥= ). In this case, one may note 

that the corresponding drag coefficients c  and c⊥  (the coefficient of proportionality 

between the local force and velocity) are different (typically 2c c⊥  ), i.e., the drag 

anisotropy. As we mentioned earlier, most biological swimmers apply elongated 

appendages, known as flagella, to swim. These slender filaments can intuitively remind 

us that the fundamental principle of swimming through resistance-based thrust is just 

the use of drag anisotropy at LRNs. To illustrate these ideas, we can take an undulating 

filament as an example, as depicted in Figure 2-2. An infinitesimal element of the 

filament can be considered as rigid, and it moves at a speed of V which is at an angle 
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of Θ with regard to the whole filament. The horizontal component of the drag force fprop, 

which propels the swimmer, is expressed as:  

( )prop sin cosf c c⊥= −  V .  (2.3) 

With Eq. (2.3), only if the drag is anisotropic, e.g., 2c c⊥  , there will be a net force 

in the propulsive direction. This resistance-based thrust theory is the so-called RFT. 

The feasibility of resistance-based thrust mainly depends on the following two 

important physical inferences: first, due to the existence of drag anisotropy, a micro-

swimmer can generate propulsion in the direction perpendicular to the local movement 

direction of the filament; second, although the filament deforms reciprocally, it can still 

produce a non-zero time-averaged propulsive force [25, 73]. It should be accentuated 

that the periodic deformation of the filament needs to meet certain conditions to produce 

a non-zero time-averaged force as per Purcell's scallop theorem [34]. Purcell took 

scallops as an example for the explanation. Under LRNs, reciprocating motion cannot 

be used for movement; this is analogous to a scallop whose shell opens and closes 

alternatively while resulting in zero net displacements. Nevertheless, it is worth 

emphasizing that Purcell's scallop theorem is strictly valid only under the limited 

condition that all relevant Reynolds numbers in the swimming problem are zero. Many 

recent studies have been devoted to a more general issue by involving the inertia 

theorem (the Euler regime), and it has been found that the continuity of transition from 

the Stokerian regime to the Euler regime is normally dependent on the spatial symmetry 

of the problem [74-78]. 
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Figure 2-2. Understanding of drag anisotropy for slender filaments. Reproduced with permission [5]. 

Copyright 2009, IOP Publishing. 

 

2.2.2 Swimming mechanisms 

Gray and Hancock [25] and Lighthill [26] developed the aforementioned RFT to 

describe LRN swimming problems. This theory has been used to model the propulsion 

generated by spermatozoa [41], small earthworms [79], Chlamydomonas reinhardtii 

[80], and some swimmers in a granular material [81]. However, the drag coefficients 

were usually revised to better fit the observations rather than using the theoretical values 

given in Refs. [25] and [26]. This theory has also been employed to interpret the 

propulsion mechanisms of helical flagella [80, 82-87] and nanobots [33, 88-90]. 

However, the RFT ignores the long-range hydrodynamic interaction and only regards 

the viscous force acting on the immersed body as a function of local velocity [17]. Thus, 

the slender body theory (SBT) [26, 91], as well as its advanced version, the regularized 

Stokeslet theory [92], have been proposed to improve the accuracy of modeling. 

Intuitively, applying the SBT to a micro-swimmer with an undulating flagellum (whose 

propulsion is usually estimated by the RFT) can be straightforward. According to the 

derivation of SBT [18], appropriate geometries of flagella require two properties: a 



 
 

15 
 

small thickness-to-length ratio and a small displacement amplitude (compared with the 

wavelength) of the flagellum undulating. Fortunately, within an acceptable range, the 

predictions of SBT have shown great conformance with experimental observation [93] 

and the results of more complicated models established by the finite-element method 

[94], the regularized Stokeslet method [23], the boundary element method [95], etc. 

The equivalence between the SBT and the RFT has also been explored. For example, 

for helical flagella, the RFT was employed to express the forces and torques in terms 

of the translational and rotational velocities [25, 26]. Ref. [23] then experimentally 

examined the reliability of RFT and compared the experimental results with the 

theoretical predictions of the more involved SBT. All the theoretical predictions were 

in good accordance with experimental observations. 

It is noted that these studies usually assumed idealized modeling conditions, for 

example, the filament model was assumed to be sufficiently slender, with a prescribed 

dynamic profile, and far from the boundary to satisfy the SBT. Subsequent research has 

mainly focused on the dynamics of swimmers close to the non-skid or free-skiing 

boundary adopting boundary element methods [96-98]. Rorai et al. [17] investigated 

the dynamics of a flagellated micro-swimmer, which is, more specifically, a sperm-like 

swimmer as demonstrated in Figure 2-3, in an infinite domain by finite element 

simulation, and an excellent agreement between the regularized Stokeslet method and 

the finite element simulation was demonstrated. However, their simulation did not 

consider a fully coupled FSI where the whole structure can have a rigid body motion, 

thus it became difficult to imitate the holistic locomotion of the swimmer. Curatolo et 

al. [99] proposed an approach to coupling the overall rigid body motion with the FSI 

for a fish-like swimmer by employing the automatic remeshing technique, as shown in 

Figure 2-4. However, they did not test the reliability of the RFT. Obviously, the 
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geometry of the numerical model should be varied for a more comprehensive 

assessment of the analytical models, but the convergence of simulation can be a 

problem. Therefore, further research is needed to improve the numerical model of 

micro-swimmers through the FSI simulation. 

According to the aforementioned Purcell's scallop theorem [34], the breakthrough 

of the swimming problem for natural swimmers at LRNs is to find a nonreciprocal 

deformation approach. In 1951, Taylor found that a swimmer who deforms in a wave 

fashion can advance in an opposite direction to its traveling wave, and such a swimmer 

was named Taylor’s swimming sheet thereafter [36]. Generally speaking, all the 3D 

wave-like deformations can cause net propulsion, especially the spiral wave of flexible 

flagella [100]. It is noted that the original model of Taylor’s swimming sheet is 

infinitely long. Nevertheless, the Taylor sheet calculation is of great importance 

because it can be extended to finite objects. For example, to mimic the movement of 

ciliates such as opal and paramecium, Lighthill introduced an “envelope model”, where 

a traveling surface wave was exploited to simulate the swinging cilia embedded in the 

cell [101-103]. It is worth noting that the influence of inertia can be directly considered 

in the sheet calculation. In addition, it has been shown that if the flow separation is 

ignored, the swimming speed decreases with the increase of Reynolds number, and the 

asymptotic value at high Reynolds number is half of Taylor's result [104, 105]. When 

the Reynolds number is zero and the waveform is prescribed, the nearby rigid wall, if 

exists, can increase the swimming speed if the gap between them is reduced [104]. 
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Figure 2-3. Numerical simulations of natural swimmers: finite-element mesh around the sperm-like 

swimmer. Reproduced with permission [17]. It is an open access article that does not need to seek 

permission. 

 

 

Figure 2-4. Numerical simulations of natural swimmers: onset of vorticity of the fish-like swimmer. 

Reproduced with permission [99]. Copyright 2016, Elsevier. 

 

2.2.3 Dynamic behaviors of flagellated micro-swimmers 

Inspired by Taylor’s swimming sheet, one may have an intuitive understanding of 

the general problem of the self-propelled motion of flagellated swimmers at LRNs. For 

such micro-swimmers, their dynamic behaviors mainly arise from the interplay 

between the internal and external forces acting on them. Internal forces are normally 



 
 

18 
 

from elastic properties and can resist the bending of flagella and ensure the 

inextensibility of their bodies, while external forces are mainly due to the fluid viscosity 

(which can be estimated from the RFT or the SBT) that can cause deformations of 

flagella and hence non-trivial dynamic behaviors. In an earlier study, Machin [106] 

found that the amplitude of the bending wave decayed exponentially with the length of 

a flagellum due to the fact that the LRN corresponds to overdamping. However, Machin 

scrutinized the fact that the swing amplitude of the sperm flagella did not attenuate but 

gradually increased with the distance from the head. Therefore, he concluded that in 

order to be consistent with experimental observations, there must be an internal 

actuation torque distribution along flagella, which turns out to be actin filaments 

afterward. Their study lays the foundation for many subsequent FSI problems at LRN 

[38, 106-113] and has been further extended to the estimation of the actin filament’s 

persistence length [114, 115]. Wiggins et al. [38] followed Machin’s work and 

established the so-called hyper-diffusion equation with boundary conditions in terms of 

the normal drag coefficient c⊥  and the bending modulus EI for a flagellum with 

constant cross-section, which is given by 

( ) ( )4 4

0 0
2 2 3 3

 , 0  ;

at 0 : sin  , sin  ;
at  : 0 , 0 .

c c

a c a

c c

c y t EI y x x L

x y y t y x t
x L y x y x

  

⊥
   = −    
 = =   =
 =   =   =


  (2.4) 

In which, yc is the lateral displacement of the flagellum centerline with length L and is 

a function of time t and longitudinal coordinate x; y0a and θ0a are the translational and 

rotational amplitudes of the wiggly head; and ω is the angular frequency. Eq. (2.4) can 

be solved analytically by assuming yc as the following: 

( ) PDE

4

1
, nr x i t

c n
n

y x t G e e −

=

=  ,  (2.5) 



 
 

19 
 

where the four characteristic roots rPDEn are determined by 

4
PDE  , 1,2,3,4n

i cr n
EI
 ⊥= = .  (2.6) 

It can be seen that Eq. (2.5) conforms to the above-mentioned Machin’s solution [106], 

i.e., the fluctuation amplitude decays exponentially along the flagellum. Wiggins et al. 

[38] calculated the propulsive force by integrating the projected elastic force density 

along the flagellum because there was no other external force exerted on it. The 

expression of the normal elastic force fe is:  

( )2 2 3 / 2e e ef EI s =   + ,  (2.7) 

where κe denotes the curvature of the flagellum at the arc coordinate s. By integrating 

fe over the whole length L, the time-averaged propulsive force propF  for the case of the 

translational boundary condition (i.e., θ0a = 0) is expressed as: 

( )2
prop 0

1 Y
2 a pF y c S⊥= ,  (2.8) 

where Y is a function of the sperm number Sp, and they are both non-dimensional. The 

relation between Y and Sp is exhibited in Figure 2-5. For the case of pivoting prosthesis 

(i.e., y0a = 0), propF  has a similar expression in terms of Yp, which is also a function of 

the sperm number Sp as shown in Figure 2-5. It is noted that based on Eq. (2.6), the real 

part of the characteristic root 4 c EI ⊥  is of great significance and will influence the 

dynamic behavior of a sperm-like micro-swimmer. In fact, Sp is defined as 4L c EI ⊥ , 

which is the most popular non-dimensional parameter used in micro-swimmer studies 

[38, 106, 116] because it indicates the interplay between viscous and elastic forces on 

the flagellum. 
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In addition, the computed propulsive force based on the head movement has also 

been experimentally verified [110]. The propulsive force for a variable cross-section 

flagellum is proposed by Singh et al. [117]. One can first obtain the elastic force as: 

( ) ( )( ) ( )3 2 2 2 22e e e e ef EI EI s E I s s E I s   = −   −     −   ,  (2.9) 

where EI is a function of the arc length s. The propulsive force can then be estimated 

by integrating fe. If the diameter of the cross-section varies linearly, one can first derive 

the analytical solution of the EOM and then calculate the propulsive force by the RFT. 

When such a micro-swimmer is placed in a fluid field, the effects of external forces, 

fluid viscous stresses, and internal bending moments can lead to complex dynamic 

deformations of the flagellum, which successively influences the swimming properties 

of the micro-swimmer. There have been many experimental and theoretical studies on 

the dynamics of such swimmers with regard to different sorts of microscale flows, such 

as extensional flows [118-120], vortex arrays [121-123], simple shear flow [124-129], 

pressure-driven channel flows [130], and other micro-fluidic flows [131, 132]. Some 

investigations have involved more complicated external or internal forces, such as 

forces at the ends of filaments [38, 133], two-body interactions [134], internal actuation 

[111, 135, 136], and self-attraction due to capillary interactions [137]. 
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Figure 2-5. Scaling functions Y and Yp for propulsive force versus the sperm number Sp (which equals 

/ vL l ). Dotted (Y) and solid lines (Yp) indicate functions for the translational and pivoting prosthesis, 

respectively. Adapted with permission [38]. Copyright 1998, American Physical Society.  

 

2.3 Experimental achievements of artificial micro-swimmers 

2.3.1 Self-propulsion approach 

Artificial micro-swimmers or microrobots swim in an LRN regime just like 

microorganisms, requiring swimming strategies that are distinct from those of 

macroscale swimmers. Researchers have proposed various propulsion mechanisms, 

many of which are biomimetic, to drive and control artificial micro-swimmers remotely. 

It is noted that some mechanisms are not biomimicking; however, as they can move 

microdevices in the fluid, the latter were also called micro-swimmers. In this sense, the 

concept of swimming has been expanded to describe all artificial microdevices 



 
 

22 
 

propelled in the fluid. They are generally classified into three categories: self-

propulsion, external propulsion, and a combination of them [138]. 

The foundation of the self-propulsion approach is energy conversion. If there are 

local chemical reactions at the surface of a nano- or micro-swimmer, the chemical 

energy can be converted into kinetic energy. This energy transformation can eventually 

bring about the locomotion of artificial swimmers [139-144]. The first fully artificial 

self-propelled nano-engine was synthesized by Paxton et al. [145] in 2004 and then 

followed by Fournier-Bidoz et al. [146] Motivated by these achievements, some 

synthetic self-propelled micro-motors driven by catalytic reactions have been proposed 

[147-150]. While these autonomous swimmers can move at speeds close to 1.5 cm/s, 

they are not steerable. As a result, the application of these self-propelled micro-

swimmers normally limits to imprecise manipulations, which makes them incompetent 

for medical applications. To accurately control the movement of a swimmer, one may 

consider using field-propulsion rather than self-propulsion, and the field(s) can be 

magnetic, acoustic, photonic, thermal, or any combination of them [141, 151, 152]. 

 

2.3.2 Magnetic actuation 

The most renowned micro-robots actuated by rotating magnetic fields are helical 

swimmers [153, 154]. In 2007, Bell et al. [153] first reported a spiral-shaped magnetic 

swimmer that had a magnetic head and a spiral semiconductor tail made of a thin GaAs 

bilayer film as shown in Figure 2-6. This swimmer is an artificial duplicate of bacteria 

in terms of not only the dimensions but also the propulsion mechanism. Then, in 2012, 

Schuerle et al. reported a process to fabricate these magnetic swimmers by coating self-

assembled phospholipidic helices with a magnetic CoNiReP alloy using electroless 
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deposition [155]. After that, Gao et al. [156] developed a bio-template technique to 

manufacture magnetic microrobots through helical plant vessels in 2014. Recently, 

Nelson’s team has proposed soft micro-swimmers composed of stimuli-responsive 

hydrogel bilayers [157-159], where the layer of poly-N-isopropylacrylamide 

(PolyNIPAM) is thermally responsive. The blending of magnetic nanoparticles and 

PolyNIPAM enables the hydrogel to move under magnetic manipulations. Moreover, 

by exploiting magnetic fields or near-infrared radiation, such magnetic nanoparticles 

can also generate heat, which is able to deform the temperature-sensitive PolyNIPAM 

layer. Magnetic nanoparticles can also be exploited to control the rolling direction of 

the hydrogel and produce magnetic shape anisotropy through appropriate design. These 

flexible micro-swimmers can adapt the surrounding environment and be actuated by 

rotating magnetic fields (direction changes with time), revealing the prospects in 

medical applications [159]. 

Another widely applied magnetic actuation method is the oscillating magnetic field 

(intensity changes with time) which is usually perpendicular to the trajectory of the 

swimmer. Dreyfus et al. [116] fabricated a magnetic micro-swimmer that had a flexible 

filament composed of DNA-linked chains of paramagnetic colloidal beads and 

investigated its behaviors under the actuation of an oscillating magnetic field. Misra 

and co-workers demonstrated a sperm-like magnetic micro-swimmer composed of an 

ellipsoidal CoNi head and a soft flagellum made of SU-8 [160]. The on-off mechanism 

was also employed to actuate and control artificial micro-swimmers [161]. As shown 

in Figure 2-7, the repeated switch between “on” and “off” can generate a planar 

oscillating magnetic field. The basic driving principle of these microrobots is based on 

the “dual-mass-spring system” which consists of four main components: a gold head, 

two nickel segments as the body, and a gold tail. These segments are connected by three 
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springs, which are made of flexible silver, as demonstrated in Figure 2-7. When the 

magnetic field is “on”, the micro-swimmer is bent due to the magnetic forces on each 

segment. When “off”, the springs tend to restore the linkage to the original 

configuration. The transition during the “on/off” switching of the magnetic field brings 

about various instant configurations. When the magnetic field oscillates near the 

resonant frequency of the swimmer, the dynamic response of the micro-swimmer can 

result in a net displacement. When the magnetic field oscillates near the resonant 

frequency of the swimmer, the dynamic response of the micro-swimmer can result in a 

net displacement. 

 

 

Figure 2-6. Some examples of magnetic micro-swimmers: an artificial flagellum fabricated from a self-

rolled semiconductor. Reproduced with permission [11]. Copyright 2009, AIP Publishing. 
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Figure 2-7. Some examples of magnetic micro-swimmers: magnetic propulsion of an artificial nano-fish 

using a planar oscillating magnetic field. Reproduced with permission [161]. Copyright 2016, Wiley. 

 

2.3.3 Acoustic actuation 

Recently, acoustic actuation has been a considerably prevailing driving strategy for 

generating substantial propulsive force and has attracted much attention in terms of 

medical applications and lab-on-chip devices. Nevertheless, in consideration of its 

superb biocompatibility, the mechanisms of acoustic propulsion and precise 

manipulation deserve deep exploration. 

As exhibited in Figure 2-8, some early acoustic artificial nano-swimmers are 

designed as geometrically asymmetric and composed of rigid metallic nanorods [28], 

which can be suspended by an acoustic standing wave. Such an acoustic field, in which 

a series of nodes and antinodes are established from the bottom to the top, can be 

generated by the cooperation of a piezo transducer and a reflector. These nodes are also 

the extreme points of the acoustic pressure of the standing wave. If the compressibility 

and the density of a nano-swimmer are greater than those of its surrounding fluid, the 

swimmer will be propelled toward the nodes. Wang et al. [28, 162] found that the 

metallic nanorods could achieve a speed of around 200 μm/s. Moreover, they 

discovered that these nanorods exhibited striking interactions between nanorods. The 

manipulation of an acoustic nano-swimmer was realized by incorporating Ni into the 

electrochemically grown nanorods [163, 164], but it required to import an external 

magnetic field with a strength of 40–50 mT to steer the nanorods, which was too strong 

to be implemented in bio-applications. Although acoustic-based artificial swimmers 

have been considered feasible in various medical circumstances, further studies are 
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required to determine their driving mechanism and to predict their dynamic behaviors 

in biological environment. 

Another type of acoustically propelled device employs the resonant behavior of 

micro-scale trapped bubbles within polyethylene-glycol-based cavities under acoustic 

actuation [165, 166]. The trapped bubble will oscillate if it is subject to a long-

wavelength acoustic wave, especially when the wavelength is much larger than the 

bubble diameter. Based on this principle, some micro-swimmers embedded with 

bubbles of different sizes have been designed to navigate under acoustic actuation [165, 

166]. However, the controllability is poor due to the limitations of coupling between 

bubbles and the finite resonant region [165]. Recently, Ahmed et al. developed a hybrid 

magneto-acoustic soft microrobot [167]. As shown in Figure 2-9, their design includes 

an acoustic bubble at the center of the swimmer, and some superparamagnetic particles 

are carefully aligned along the length of the swimmer within a polymer matrix. 

Significant propulsive forces generated by these bubble-based swimmers are 

demonstrated, and the capability of swimming in viscous fluids makes practical 

applications more promising. However, the air bubbles can only remain stable for a few 

hours. Bubble-based swimmers for the next generation require more robust bubbles, 

and this may be achieved via the polymeric coating technique. 

We have mentioned in Chapter 2.1 that many microorganisms swim based on the 

flagellum, which could be a helix that rotates for propulsion or a flexible filament that 

wiggles for locomotion [5]. By mimicking the latter, Ahmed et al. [168] demonstrated 

the first flagellated artificial micro-swimmer (i.e., the AFMS) propelled by acoustically 

actuated flagellum motion in 2016. They have shown that the flagellated micro-

swimmer can be ten times faster than those propelled by acoustic streaming (i.e., 

without flagella). In the next year, as shown in Figure 2-10, Kaynak et al. [7] 
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synthesized a larger sperm-like swimmer (~180  60 μm) that can achieve the terminal 

speed of 1.2 mm/s. These two experimental studies suggest that an artificial micro-

swimmer with high motility must have one or several flagella; however, the mechanism 

of acoustic propulsion was not apparently elaborated therein. To comprehend it, we 

later proposed a driving mechanism based on head oscillation, which will be discussed 

in detail in Chapter 3. 

 

 

Figure 2-8. Some examples of acoustic micro-swimmers: schematics of the experimental setup and the 

acoustic propulsion of the nanorods. Reproduced with permission [28]. Copyright 2012, American 

Chemical Society. 
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Figure 2-9. Some examples of acoustic micro-swimmers: schematic illustrates the swimming 

mechanism of the magneto-acoustic soft microrobot. Reproduced with permission [167]. Copyright 2017, 

Wiley. 

 

 

Figure 2-10. Some examples of acoustic micro-swimmers: the experimental observation of flagellated 

micro-swimmers’ directional movement. Reproduced with permission [7]. Copyright 2017, Royal 

Society of Chemistry. 

 

2.3.4 Other actuation strategies 
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The possibility of employing optical and thermal energies for micro-swimmer 

actuation has also been explored. The first optically actuated micro-swimmer was 

fabricated by Jiang et al. [169], in which micro-swimmers were coated with a thin layer 

of Au onto silica hemispheres. This layer can absorb light and then generate a local 

temperature gradient which propels the micro-swimmers by thermophoresis. The 

further optical micro-swimmers exploit photocatalysis in which the propulsion arises 

from the light-induced catalytic reaction [170]. When the photocatalytic part of a micro-

swimmer in a solution is illuminated, electron-hole pairs are generated by the photons. 

These holes and electrons are distributed on the surface of the photocatalytic material 

where they can react with the surrounding solution, and meanwhile, byproducts will be 

produced. This mechanism is similar to the conventional chemically catalytic 

propulsion strategy [140]. The collective behavior under light illumination has also 

been noted. For example, Ibele et al. demonstrated the collective behavior of micro-

sized AgCl particles exposed to ultraviolet light in deionized water [171, 172]. 

Due to the difficulty of heat transfer, the strategy of heat-actuated micro- or nano-

motors has seldom been reported. One possible way of employing heat to propel micro-

swimmers is to incorporate an array of micro-heaters, which has been used in the study 

of a micro-swimmer consisting of shape memory alloy (SMA) components. During 

heating, the deformation of SMA parts can actuate the microrobot [173-175]. The 

attempt of propelling micro-objects, such as bubbles and droplets, by the temperature 

gradient technique has also been reported [176, 177]. 

In general, combinations of some of the aforementioned methods may enhance the 

propulsion and manipulation of small-scale swimmers. Sitti and Schmidt et al. have 

recently proposed the application of bioengineered and biohybrid bacteria in drug 

delivery systems [178, 179]. We can also find several realizations of micro-swimmers 
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that use magnetic power for control purposes (rather than for propulsion), for example, 

the micromotors that are self-driven in hydrogen peroxide (H2O2) solutions but 

magnetically navigated [180, 181]. Our study shown in Chapter 4 can be another 

example of the combination of acoustic and magnetic strategies. 

We have introduced many actuation strategies so far. To have a comparison of them, 

the representative references are summarized in Table 2-1. One may notice that the 

characteristic velocities and dimensions vary remarkably from one actuation 

mechanism to another. Among them, acoustic bubble oscillation provides the highest 

speed, but the micro-swimmers propelled through acoustic flagellum whipping 

probably have the most balanced combination of speed, dimension, and easiness of 

manufacturing. 

 

Table 2-1. Comparison of different actuation mechanisms. 

Actuation 
mechanism Representative sketch Characteristic 

velocity (μm/s) 
Characteristic 

dimension (μm) Ref.  

self-
electrophoresis  5 2  0.4 [147] 

Magnetically 
actuated helical 

rotation 
 0.5 10  2 [155] 

Magnetically 
actuated flagellum 

whipping 
 10 15  0.1 [182] 
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Acoustic bubble 
oscillation  10000 50  R10 [183] 

Acoustically 
actuated flagellum 

whipping 
 500 200  R30 [7] 

Optical actuation  3 R1 [172] 

Thermal actuation  100 R500 [177] 

 

2.4 Theoretical studies of artificial micro-swimmers 

2.4.1 Theoretical studies on propulsion mechanisms 

Most of the basic mechanisms of propulsion strategies have been reviewed in the 

above context. In this chapter, we briefly describe the theoretical foundation of different 

propulsion strategies. 

Micro-swimmers with bubbles have been widely studied. It has been unveiled that 

the driving forces, arising from the bubble oscillation, can be induced by H2O2 

decomposition. The bubble-based micro-swimmer introduced in [146] has a nickel 

segment acting as the catalyst for H2O2 decomposition, i.e., 

( ) ( ) ( )2 2 2 22H O O 2H Ol g l= + .  (2.10) 
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Alternatively, if the O2 gas generated based on Eq. (2.10) can be forced to flow along a 

prescribed direction, a micro-swimmer can also be propelled. This is the case of Pt-Au 

bimetallic nanorods [148], as demonstrated in Figure 2-11, which utilizes the difference 

in the catalytic effects of these two metals. On the Pt surface, oxidation occurs and O2 

is produced. The electrons flow along the metallic nanorod towards the Au side where 

reduction occurs. In this case, O2 is pushed toward the Au side because of the proton 

gradient (H+ ions are produced on the Pt side and consumed on the Au side), and the 

bimetallic nanorod moves in the opposite direction. 

Magnetic power is one of the most often employed propulsive strategies for artificial 

micro-swimmers due in large part to its prospect of remote and wireless operation, 

directional movement, and biocompatibility. In a magnetic field b, a permanent magnet 

or a magnetic dipole with the magnetization of m is subjected to a magnetic torque τm, 

which is the cross product of m and b, expressed as [184, 185]: 

m = τ m b .  (2.11a) 

If the magnetic gradient b is nonzero, the magnet m is subjected to a magnetic force: 

( )m = F m b . (2.11b) 

This is the reason why either a non-uniform or an oscillating magnetic field is applied 

to propel a magnetic micro-swimmer. 

As for the acoustically actuated artificial micro-swimmers, the understanding of the 

driving mechanism behind the locomotion is still fragmented to date. A prevailing view 

regards the acoustic radiation force FA as the streaming-induced Stokes drag subject to 

the micro-swimmer surface ∂Ω1, and the integral form is expressed as [168]: 
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1 1
2 1 1 2d dAF A A

 
=  −  σ n v v n ,  (2.12) 

where v1 and v2 are the vibration velocity of a micro-swimmer and the corresponding 

streaming velocity, respectively; A is the area of the micro-swimmer surface, and ρ1 the 

first order of fluid density vibration. The velocity field can be solved by the perturbation 

expansion approach [16, 168]. The bracket <> denotes the time-averaging within an 

acoustic period. The stress, σ2, is interlinked to v2. The first term in Eq. (2.12) arises 

from the acoustic microstreaming and the second is due to the structural vibration of 

the micro-swimmer. However, in most cases, Eq. (2.12) cannot be straightforwardly 

used to solve the swimming problem. The finite element simulation is helpful, but it is 

often ill-conditioned due to the complex FSI circumstance. 

Hence, more simplified models for theoretical calculation are needed for acoustic 

actuation. It is noted that the structure resonance of a micro-swimmer (related to the 

second term of Eq. (2.12)) may play an important role in propulsion (that is the reason 

why we consider the effect of the mass of the AFMS in Chapter 3). For example, for a 

bubble-based acoustic micro-swimmer, as shown in Figure 2-12 [186], the theoretical 

resonant frequency f0 of the gas bubble can be estimated by [187]:   

0
0 0 B

1
2π

B BPf
L L




= ,   (2.13)  

where κB is a frequency-dependent parameter related to the thermodynamic process, PB 

the initial pressure inside the bubble, ρ0 the fluid density, LB the bubble length, and L0 

the length of a liquid column outside the bubble (see Figure 2-12). If the surface tension 

effect is considered, a correction factor, which is in connection with the geometry of 

the bubble and the surface tension of the water-air interface, will be introduced into Eq. 
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(2.13) [188]. The oscillation amplitude and the propulsive force can also be estimated 

at resonance [189]. 

For a flagellated microrobot, e.g., a sperm-like artificial micro-swimmer, the 

dynamic behavior is more difficult to predict. Nevertheless, the review of natural 

microorganisms reminds us that we can convert this problem into a simple so-called 

hyper-diffusion problem [38], in which the drag force and the elastic force on the tail 

are balanced. Specifically, the simplification can bring about a PDE that governs the 

oscillation of a cantilever beam (the flagellum) which has oscillatory boundary 

conditions at its clamped end (the head), which will be further discussed in Chapter 3. 

As we have mentioned, many artificial micro-swimmers are bio-inspired. However, 

most studies only focus on the actuation strategies, fabrication processes, or 

experimental techniques; and the theoretical aspect (i.e., the principles of design and 

optimization) based on the swimming mechanisms at LRN is insufficiently addressed. 

Hence, as listed in Table 2-2, we categorized the references of natural and artificial 

micro-swimmers based on the types of propulsion mechanisms to remind the close 

relationship between them. Among them, the success in the theoretical description of 

microorganisms propelled by oscillating flagella [25, 38, 80, 190, 191] has inspired our 

preliminary work on AFMSs described in the next chapters. 
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Figure 2-11. Some examples of theoretical studies of artificial micro-swimmers: schematic of motion of 

a Pt–Au nanorod driven by the catalytic decomposition of hydrogen peroxide. Reproduced with 

permission [140]. Copyright 2015, Wiley. 

 

 

Figure 2-12. Some examples of theoretical studies of artificial micro-swimmers: a detailed image of an 

acoustic bubble actuator with the middle part removed, and the dark cylinder in the tube being the air 

bubble. Reproduced with permission [186]. Copyright 2006, IOP Publishing. 

 

Table 2-2. Categorized references of theoretical studies on propulsion mechanisms of microorganisms 

and their artificial counterparts. 

Propulsion mechanisms References of natural micro-
swimmers 

References of artificial micro-
swimmers 

Helical filament [23, 31, 82-84, 86, 87, 192-198] [10, 11, 156, 199-203] 

Undulating flagellum [17, 25, 27, 38, 80, 106, 117, 
190, 191] 

[7, 41, 73, 110, 116, 168, 202, 204, 
205] 

Cilia (multiple flagella) [61, 88, 206-209] [210, 211] 

Propagation of kinks 
(without flagellum) [212-214] [161, 215] 

 

2.4.2 Theoretical studies on the modeling of steering the AFMS 

It should be noted that the models of the AFMS are usually 1D, which confines the 

swimmer’s motion to a straight line. Considering the need for manipulation or steering 
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in applications, such a 1D model is insufficient. Establishing at least a 2D AFMS model 

to address plane motion is therefore indispensable. 

Inspired by Purcell’s three-link swimmer [34], a flexible flagellum has been 

modeled by using multiple rigid bars linked by flexible joints (aka. the bar-joint model) 

[43], which intrinsically fulfills the inextensible constraints of a flexible tail [216, 217]. 

As for the bar-joint model, let us shed some light on the possible strategies for steering 

a flagellated micro-swimmer propelled acoustically. We focus on this micro-swimmer 

because of the anticipation of its great potential in medical applications, considering the 

facts that ultrasound systems have been the most adopted clinical tools for diagnosis 

and therapy and a sperm-like structure is effortless to fabricate through 3D printing. It 

is noted that the governing equations for 2D flagellar dynamics are normally of 

significant non-linearity due to the geometric nonlinearity of the flagellum and the 

influence of the rigid body motion. Besides, decoupling of the equations is generally 

difficult and may involve improper simplification and render convergence problems. 

Therefore, a discrete flagellum model is desired to solve the swimming problem. In 

1976 [34], Purcell proposed a symmetric linkage with three links articulated at two 

hinges, known as Purcell’s three-link swimmer, which could be regarded as the 

“simplest animal” that could achieve locomotion at LRNs. Purcell demonstrated that 

this swimmer would be propelled along a straight line over one cycle of sequentially 

moving its front and rear bars. The dynamics of Purcell’s three-link swimmer has been 

further investigated since then [73, 218-221]. Inspired by Purcell’s three-link swimmer, 

using multi-link bars or bar-joint models, the dynamics of flexible flagella has been 

modeled. Alouges et al. [43] proposed a slender magneto-elastic swimmer, along which 

the magnetic-induced torques were distributed, and the governing equations of the 

elastic tail were reduced to a system of ordinary differential equations (ODEs). Their 
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group has also investigated the optimal stroke of a multi-link swimmer based on the 

criterion of optimal energy efficiency [222]. Moreau et al. [223] compared the classical 

elasto-hydrodynamic formulation with the bar-joint model via the coarse-graining 

formalism and demonstrated that the latter could achieve better numerical performance.  

It is generally nontrivial to verify and correct micro-swimmer models 

experimentally because geometries and material properties are often uncertain (or 

undermined in literature). In addition, the wiggling profile of a flagellum is difficult to 

capture under a microscope. Hence, numerical simulations dealing with FSI, which are 

usually based on the finite element method (FEM), were more desirable to verify a 

simplified micro-swimmer model. As we have mentioned before, Rorai et al. [17] 

studied a sperm-like micro-swimmer in a 3D infinite domain by FEM and demonstrated 

an excellent agreement between the SBT and the FSI simulations in terms of the 

propulsive matrix coefficients (see Figure 2-3). Nevertheless, the dynamic motion of 

the flagellum was specified a priori, and the swimmer for each time was fixed, i.e., the 

elasticity of the flagellum and the resultant rigid-body motion were not investigated. 

Curatolo et al. [99] employed the automatic remeshing technique [224, 225] to couple 

the structure’s rigid-body motion with FSI simulations for a fish-like swimmer (see 

Figure 2-4). However, they did not compare their simulation results with those of RFT 

or SBT. 

Undoubtedly, differences exist between the results of FSI simulations and the RFT 

or SBT models due to various reasons. For example, the RFT and SBT can hardly 

address fluid problems around a flagellum tip or a head-flagellum joint [17]. The fluid 

force exerted on a head is also difficult to estimate because the head is normally neither 

a sphere nor a slender body. Most importantly, the RFT and SBT are initially 

established for a slender cylindrical body, but the flagellum in 2D simulations 
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(considering that 3D simulations are computationally too demanding) approximates a 

slender body with rectangular cross-sections, which is often the case in experiments 

(e.g., [7]). In addition, the most prevailing AFMS fabrication is based on layer-by-layer 

photocuring (i.e., 3D printing) [8], which leads to flagella with rectangular cross-

sections and hence, the need for modifying SBT and RFT for them. 

The SBT for arbitrary cross-section has been developed by adding a dimensionless 

coefficient tensor K [226], depending only on the cross-sectional geometry, to the fluid 

velocity field. Borker et al. [227] extended this method to particle dynamics in shear 

flows and determined the magnitudes of components of K through FSI simulations. 

However, such a geometry-dependent K is insufficient to predict the locomotion of an 

AFMS because of the aforementioned complexities. In particular, when dealing with 

AFMS turning, the corrected SBT is still very difficult to solve [228]. Hence, we argue 

that a correction to RFT, considering both the effect of the non-circular cross-section 

and the match of the linear terminal speed with the corresponding FSI simulation, may 

be a better strategy for approximation. 

 

2.5 Summary 

In the first part of this chapter, we have recapitulated the historical studies and 

theoretical perspectives on natural micro-swimmers such as sperms, bacteria, protozoa, 

and algae. They use one or more appendages to advance, which can be relatively hard 

spirals that can rotate or flexible filaments that undergo whip-like motion. The 

fundamental principle of swimming through resistance-based thrust is the use of drag 

anisotropy at LRNs. RFT, SBT, and FEM simulations have also been developed to 

address more details of hydrodynamics. In short, a periodic nonreciprocal deformation 
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that can generate net propulsion arises from the interplay between the internal and 

external forces acting on each of the appendages, which has been clearly unveiled in 

the modeling of flagellated micro-swimmers. 

In the second part of this chapter, the actuation methods of artificial micros-

swimmers, classified into self-propulsion, external propulsion, and a combination of 

them, have been reviewed. A self-propulsion approach is generally based on local 

(electro-) chemical reactions, e.g., H2O2 decomposition at the surface of a nano- or 

micro-swimmer, by which the chemical energy can be converted into kinetic energy. 

External propulsions may involve magnetic, acoustic, optical, and thermal fields. 

Magnetic power is most employed because of its prospect of remote and wireless 

operation, directional movement, and biocompatibility. A magnetic micro-swimmer 

can be propelled via either a non-uniform or an oscillating magnetic field. Recently, 

acoustic actuation has been a considerably popular driving strategy because of its 

potential for medical applications and lab-on-chip devices. We have introduced 

acoustic microrobots driven by acoustic standing waves, resonant trapped bubbles, 

microstreaming, and head oscillation, which can generate substantial propulsive forces. 

The employment of optical and thermal energies and combinations of some of the 

aforementioned methods for micro-swimmer actuation have also been introduced in 

this chapter. The approach of establishing a 2D AFMS model to address plane motion 

has been finally mentioned, where a correction to the RFT is necessary. 
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Chapter 3. 1D model of AFMS based on the RFT —— 

straight motion 

3.1 Problem statement for acoustic propulsion 

An experimental system for actuating an AFMS is sketched in Figure 3-1. The actual 

experimental system is generally built on a glass slide [7, 13], and an acoustic 

transducer adheres to the glass slide to generate sound waves. Because the acoustic 

transducer is much larger than the microchannel, the acoustic wave inside the 

microchannel can be simplified as a plane wave that propagates along a prescribed wave 

vector. The micro-swimmer is composed of an ellipsoidal rigid head and a slenderly 

flexible tail which is designated as a flagellum here. The micro-swimmer suspends in 

an aqueous solution and swims headwards at a speed vprop propelled by the sound-

induced flagellum whipping. Following the theoretical works [38] on the actuation 

induced by head wiggling, we denote the motion of the rigid head by the translational 

displacement y0(t) and a rotational angle θ0(t), as shown in Figure 3-2. Under the 

acoustic actuation, it is intuitive to presume that both y0(t) and θ0(t) should be periodic 

with the acoustic frequency f. The wall of the microchannel is assumed to be the sound 

hard wall. A sound hard wall is a kind of ideal acoustic medium with a large acoustic 

impedance so that the incident waves can be completely reflected. Accordingly, 

standing waves may come forth in the microchannel, which will be assumed in our 

simulation of the head motion. 

We assume that the AFMS wiggles and whips its flagellum in the plane of acoustic 

wave propagation. This concurs with the experimental observation [13]. In biological 

systems, most observation of flagellum whipping also indicates that the motion is 2D 

[30, 41, 229]. We further assume that the Euler-Bernoulli beam theory is sufficiently 
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accurate to elucidate the flagellum motion and propulsion, following Refs. [35, 38, 230]. 

It should be remarked that the results derived from this linear assumption are 

conceivably to be highly in agreement with the large-amplitude ones [39], despite that 

the actual flagellum deflection is not small [35]. As shown in Figure 3-3, the head of 

the micro-swimmer is assumed to be a rigid end with a prescribed translation and 

rotation. Thus, the flagellum is considered as a cantilever beam agitated by the motion 

of the clamped end. For the expected medical application and also because of the 

experiments described, the materials of the micro-swimmer are assumed to be a kind of 

organic polymer, such as the polypyrrole (PPy) in Ref. [13] and the polyethylene glycol 

(PEG) in Ref. [7]. Thus, we employ the Kelvin-Voigt viscoelastic model to account for 

the inherent viscous effect. 

Inertia is inconsequential to a living microorganism in the LRN regime [26, 34] so 

that the mass was not involved in the past models [33, 35, 38, 230]. This gives a 

misconception that all the inertial terms in both fluid and solid domains can be 

neglected upon the LRN assumption. Nevertheless, the foundation of the RFT is the 

Stokes equation, wherein only the inertia of fluid is neglected. In addition, the 

expression of the Reynolds number is related to the density of the fluid but irrelevant 

to that of a flagellum. Therefore, it is necessary to scrutinize the effect of inertia of a 

flagellum based on the RFT especially when the flagellum whips at a high frequency 

under external actuation. Accordingly, in order to clarify the frequency dependence of 

the terminal velocity and the motility of the AFMS in the following sections, we take 

into account the density of the flagellum in our model. 
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Figure 3-1. Sketch of the experimental system for 1D propulsion. 

 

 

Figure 3-2. Diagrammatic sketches of the presumptive experimental scene for the problem statement. 
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3.2 Simulation of head wiggling under acoustic waves 

In order to understand the actuation mechanism, a 3D FEM simulation for the head 

motion is carried out by using the COMSOL Multiphysics Pressure Acoustics module 

and Multibody Dynamics module. The two physical modules are coupled by the 

Acoustic-Structure Boundary module [231]. Following Kaynak et al. [7], we first 

consider the cone-shaped head with two hemispherical ends (a.k.a. the droplet-like 

shape), as depicted in Figure 3-3. One transient sound pressure distribution is exhibited 

in Figure 3-4, which is as a case of the overall configuration of the simulation. A 

droplet-like head is initially placed at the center of a 1000×500×200 μm3 box. The 

cubical box is assumed to be full of viscous fluids at room temperature. The head is 

featured by the radius r1, r2 (r1 > r2) of the end spheres and the distance D between their 

centers, and the line between the two centers is set to be the longitudinal axis of the 

head. It is prescribed to be only able to translate perpendicular to its longitudinal axis 

and rotate in the plane of acoustic wave propagation. Besides, it is considered as a rigid 

body with a sound hard wall to scatter the acoustic waves.  

As shown in Figure 3-4, a plane wave is incident from the lower boundary to the 

upper one. To form standing sound waves, the left, right, and upper boundaries of the 

simulation box are set to be sound hard walls; only the lower boundary is set as a plane 

wave radiation border. On this border, a sinusoidal sound pressure with the amplitude 

p, the frequency f and the incident angle φi is applied. φi is set to be the angle between 

the wave vector and the longitudinal axis of the head, as shown in Figure 3-4. To specify 

the values of p and f, we refer to the clinical therapeutic ultrasound. As reviewed by Ter 

H.G. [232], the acceptable sound intensity Iacou is in the range from 0.125 W/cm2 to 3 

W/cm2, and the frequency f from 0.75 MHz to 5 MHz. The frequency range we adopt 

in our simulation is from 0.75 MHz to 3.75 MHz. The amplitude of sound pressure is 
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then calculated using the relation between the acoustic pressure and the sound intensity 

for a plane wave [233], which is expressed as: 

acou 0 02p I c= , (3.1) 

where ρ0 and c0 denote the density and sound velocity of the acoustic medium, 

respectively. The product ρ0c0 is called the characteristic acoustic impedance. In the 

human body, the tissue impedance is about 1.5×106 kg/m2/s [234], which is close to 

that of water. Therefore, we set ρ0 = 103 kg/m3 and c0 = 1500 m/s in our simulation. The 

amplitude of acoustic pressures, estimated from Eq. (3.1), can vary between 60 kPa and 

300 kPa. In the simulation, the shear and bulk viscosity of the fluid domain are set 

according to the gastric fluid [235] to be 0.01 Pa·s and 0.002 Pa·s, respectively. 

A battery of time-dependent simulations were carried out under two parametric 

sweeps, i.e., the sound pressure p from 60 kPa and 300 kPa, and the frequency f from 

0.75 MHz to 3.75 MHz. The results of the head translation and rotation at two extreme 

frequencies for φi = 90° are exhibited in Figure 3-5 and Figure 3-6, where the upward 

displacement and anticlockwise rotation are defined to be positive. Numerical 

simulations confirm that the displacement and rotating angle of the head are both 

harmonic functions of time with frequencies identical to the acoustic frequency, that is 

( )0 0 sinay t y t=  and ( ) ( )0 0 sina ht t   = + , where  = 2f is the angular frequency 

of the actuation. The phase angle difference between the translational and rotational 

movement is denoted by h. The amplitudes of the translational and rotational motion 

depend on the acoustic pressure and frequency, as shown in Figure 3-7 and Figure 3-8, 

respectively. The results indicate that the oscillating amplitude of the head is 

proportional to the sound pressure p and the reciprocal of acoustic frequency 1/f. Thus, 

y0a and θ0a can be expressed as: 
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0 0 , a u a
p py K K
f f= = ,     (3.2a, b)  

where Ku and Kθ denote the two coefficients of proportionality for the translation and 

rotation, respectively. 

It should be noted that Eq. (3.2a) does tally with the theoretical expression of the 

displacement amplitude Aacou of an acoustic particle of a plane wave [233]: 

acou
0 0

pA
c

= ,   (3.3) 

which expects that Ku is in the same order as 1/(20c0). It is apparent that the head can 

be approximately treated as a particle inside the acoustic medium because the sound 

wavelength is on the order of 1 mm under the prescribed conditions, far larger than the 

dimensions of the head. Therefore, the head oscillates in accordance with the acoustic 

wave. On the other hand, as one may notice from Figure 3-5 and Figure 3-6, the mean 

value of the displacement is different from zero in a period. It is a nonlinear 

phenomenon named the Stokes drift [236]. It is also due to the relatively small 

dimension of the head which will travel with the acoustic flow and move a net distance 

in each period. However, the effect of Stokes drift is ignored herein because we are not 

concerning about the small lateral trajectory of AFMSs in this thesis. Based on our 

simulation of a head referring to the actual acoustic micro-swimmer [7] with r1 = 25 

μm, r2 = 12.5 μm and D = 25 μm, we can obtain different values of Ku (in the unit of 

μm/Pa/s), K (in the unit of rad/Pa/s) and h with different incident angles i, as listed 

in Table 3-1. h could be 180° if the acoustic wave vector is perpendicular to the 

longitudinal axis of the head at t = 0, which is the case of φi = 90° in Table 3-1. And it 

is actually not far away from 180° at other φi. Ku and K will slightly differ when φi 
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changes a little. This phenomenon may be dependent on the specific outline of the head, 

which determines the pattern of the scattered field. The final acoustic scattered field 

will influence the values of Ku and K, which brings about the fluctuations of the 

amplitude of head oscillation, resulting in the error bars as shown in Figure 3-7 and 

Figure 3-8. It is seen that Ku, K, and h vary with the geometry of the head. As listed 

in Table 3-2, the rotational motion strictly vanishes if a head is symmetric about a 

transverse plane (i.e., r1 = r2), but becomes nonnegligible with h being 180° for a 

droplet-like (i.e., r1 > r2) head. Note that the phase angle difference h could deviate 

from 180° if the acoustic wave vector is not normal to the longitudinal axis of the head. 

The droplet-like head has the largest Ku and nonvanishing K, it is expected that the 

droplet-like head would be the best choice for propulsion. Nevertheless, according to 

Table 3-1, the coefficients of the amplitude can almost remain steady for a given head 

under different incident angles of sound waves, despite the influence of the lateral 

trajectory of the micro-swimmer herein. 

 

 

Figure 3-3. A three-dimensional model of the head with a droplet-like shape. 
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Figure 3-4. Instantaneous sound pressure distribution for the fluid domain. 

 

 

Figure 3-5. Amplitude vs. time at 0.75 MHz for one period at φi = 90° of the head with a droplet-like 

shape. 
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Figure 3-6. Amplitude vs. time at 3.75 MHz for one period at φi = 90°of the head with a droplet-like 

shape. 

 

 

Figure 3-7. Amplitude for each sound pressure under two extreme frequencies at φi = 90° of the head 

with a droplet-like shape. 
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Figure 3-8. Amplitude for each actuation frequency under two extreme sound pressures at φi = 90° of 

the head with a droplet-like shape. 

 

Table 3-1. Values for the actuation parameters Ku, Kθ and φh of the droplet-like head with different φi. 

φi Ku (μm/Pa/s) Kθ (rad/Pa/s) φh 

90° 0.419 0.00363 180° 

89.983° 0.416 0.00360 179.973° 

90.017° 0.407 0.00361 180.011° 

 

Table 3-2. Values for the actuation parameters Ku, Kθ and φh with different head shapes at φi = 90°. 

Shape r1 (μm) r2 (μm) D (μm) Ku (μm/Pa/s) Kθ (rad/Pa/s) φh 

Droplet 25 12.5 25 0.419 0.00363 180° 

Spherocylinder 25 25 25 0.373 0 / 

Sphere 25 25 0 0.396 0 / 
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3.3 The governing equations of the flagellum for the continuous model 

As indicated in Figure 3-9, the longitudinal axis and the transverse axis of the 

flagellum with the origin at the fixed end are denoted as the x-axis and y-axis, separately; 

the length and the area of the cross-section are denoted by L and As(x), respectively. 

The longitudinal and lateral displacement fields, designated as xs and ys, respectively, 

are assumed as: 

( ) ( ), ,  ,s s cx y x t y y x t= −  = ,  (3.4a, b) 

where Θ(x,t) and yc(x,t) denote the rotational angle and the lateral displacement of the 

centerline of the flagellar profile, respectively. And the Cauchy strain ε for the Euler-

Bernoulli beam can be expressed as: 

( )1
2

=   +  ε x x ,  (3.5) 

where ▽ is the Hamiltonian differential operator, and  
T,s sx y=x  the displacement 

vector,  the outer products. Then the substitution of the small-rotating-angle 

assumption for the Euler-Bernoulli beam, which is given by 

( ), cyx t
x


 =


,   (3.6) 

 will reach the expression of the longitudinal normal strain ε given by  

2

2
cyy

x



= −


.  (3.7) 

The material of the micro-swimmer is considered to be a kind of isotropic polymer. As 

per Ref. [237], the Kelvin-Voigt viscoelastic model is employed, i.e., the constitutive 

relation of normal stress  and the normal strain  is expressed as: 
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  E
t


  


= +


,  (3.8) 

where E and η are Young’s modulus and the material viscosity coefficient, respectively 

[238-240]. Hence, the strain energy Uσ over the whole volume Ω can be expressed as: 

( )d dU

 


=   , (3.9) 

and the kinetic energy Tσ in terms of the linear density ρs of the flagellum is given by 

( )
2

0

1 d
2

L
c

s s
yT A x x
t 

 =  
 

 ,  (3.10) 

then, the work done by nonconservative forces Wσ is expressed as: 

( ) ext ext0 00
, d d d d

c c

L

f c y cy y xx
W f x t y x F y ⊥

 ==
= + +     ,  (3.11) 

where ( ),ff x t⊥  represents the vertical fluid force distribution for the unit length of the 

flagellum, which is perpendicular to the longitudinal axis of the flagellum; Fexty and τext 

denote the external torque and vertical force at the clamped end of the flagellum, 

respectively. Now we can apply the variational techniques to reach the variations of the 

above energies, which are expressed as: 

( ) ( )

( ) ( ) ( ) ( )

2 2 2 3

2 2 2 20 0

2 3 2 3

0 02 2 2 2

d d
L L

c c
c c

L Lc c c c c
c

y yU EI x y x I x y x
x x x x t

y y y y yEI x I x EI x I x y
x x t x x x x t

   

   

      
= +   

       

        
+ + − +   

          

 
,  (3.12) 

( ) ( )
2

20 0
d d

L L
c c

s s c s s c
y yT A x y x A x y x

t t t    
   = −    

  ,  (3.13) 
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( ) ext ext00
0

, d +
L

c
f c y c x

x

yW f x t y x F y
x    ⊥ =

=


= +

 ,  (3.14)where ( ) 2d
s

sA
I x y A=   is 

the second moment of area of the flagellum cross-section, which is a function of x in 

case the flagellum is non-uniform. Now, we can substitute Eqs. (3.12), (3.13) and (3.14) 

into Hamilton's principle [40]: 

( )2

1

d 0
t

t
T U W t   − + = ,  (3.15) 

then we will reach the EOM of the flagellum, which is expressed as: 

( ) ( ) ( ) ( )
2 2 3

2 2 2 2 , ,    0c c c
s s f

y y yA x EI x I x f x t x L
t x x x t

  ⊥

    
+ + =   

     
.  (3.16) 

We can also obtain the internal bending moment M and shear force Ξ for the unit length 

of the flagellum from Eq. (3.12), which are expressed as: 

( ) ( ) ( )

( ) ( ) ( )

2 3

2 2

2 3

2 2

,  ;

,  .

c c

c c

y yM x t EI x I x
x x t

y yx t EI x I x
x x x t





  
= +

  


    = − +      

  (3.17) 

To avoid the complex analysis of external torque τext and force Fexty at the head end 

(actually, they will be addressed in Chapter 4), the boundary conditions are employed 

instead. The associated boundary conditions for this cantilever beam are formulated as: 

( )

( ) ( )
0 0at 0 : sin  ,  sin  ;

at  : , 0 ,  , 0 .

c
c a a h

yx y y t t
x

x L M L t L t

   
 = = = +


 = =  =

  (3.18) 

It is noteworthy that the clamped end wiggles with the head with the amplitude 

determined by Eqs. (3.2a, b), and the phase angle difference h could deviate from 180° 

if the acoustic wave vector is not normal to the longitudinal axis of the head.  
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In order to simplify the problem, the shape of the cross-section is simplified to be 

circular; and the diameter ds of the cross-section is assumed to be much smaller than 

the length of the tail. Under such restrictions, the tail appears to be sufficiently slender, 

and the vertical linear fluid force ff ⊥  would be proportional to the local lateral velocity 

in light of the so-called SBT [18, 21, 26, 241]. In the LRN regime, the fluid force can 

be analytically solved by adding the Stokeslet (Green’s function for a Stokes flow) and 

dipole strength together to satisfy the boundary conditions at the fluid-structure 

interface. Eventually, the fluid force perpendicular to the flagellum can be expressed 

as:  

( ), c
f

yf x t c
t⊥ ⊥


= −


,  (3.19) 

where the minus sign is owing to the fact that fluid force always hinders the local 

movement of the flagellum. The normal drag coefficient c⊥  is expressed as [21]:  

( )
( )( ) ( ) ( )( )2

4π=
ln 2 / 1 / 2 ln 2 1 π /12 / ln 2 /s s

c x
L d x L d x


⊥ − + − − .  (3.20) 

The tangent drag coefficient c  can be derived in a similar technique, which is given 

by [21]: 

( )
( )( ) ( ) ( )( )2

2π=
ln 2 / 3 / 2 ln 2 1 π /12 / ln 2 /s s

c x
L d x L d x



− + − − .  (3.21) 

It is more convenient to deduct the rigid motion of the flagellum from yc as: 

( )0 0sin sincr c a a hy y y t x t   = − − + .  (3.22) 

Considering brevity, the following non-dimensional terms are now imported: 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0
0

2

4

 ,  ,  ,   ,

, ,
,  , ,  , 

 ,  ,  .

a
a

c cr
c cr

s s

x yX t ft
L E L

y x t y x t
X t X t

L L
A x f c x f I x

H X Z X J X
E E L


 

 

 ⊥

= = = =

= =

= = =

  (3.23) 

In which, γ denotes the ratio of loss modulus to storage modulus for a Kelvin-Voigt 

model [237], i.e., the material damping. The substitution of Eqs. (3.17), (3.18), (3.19), 

(3.22) and (3.23) into Eq. (3.16) leads to the following non-dimensional equations 

governing the flagellum motion: 

( )
( ) ( )

2 2 2 3

2 2 2 2

2
0

2
0

2 3

2 2

2π

 4π sin 2π 2π cos2π

    + 4π sin 2π 2π cos 2π  ,  0 1 ;

at 0 : 0 , 0 ;

at 1 : 0 , 

cr cr cr cr

a

a h h

cr
cr

cr cr

JH Z J
t t X X X t

H t Z t

X H t Z t X

X
X

X J J
X X t

    



  




 


     
+ + + 

      

= −

 + − +   


= = =



  
= + =

   

2 3

2 2 0 .
2π

cr crJJ
X X X t

  














   + = 
    

           (3.24) 

Note that the variable ξcr in Eq. (3.24) is not the non-dimensional lateral displacement 

ξc of the flagellum, and there are only Dirichlet boundary conditions in Eq. (3.24), 

which are different from those in Eq. (3.18). Based on Eq. (3.22), ξc is expressed as: 

( ) ( ) ( )0 0, , sin 2π sin 2πc cr a a hX t X t t X t    = + + + .  (3.25) 
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Figure 3-9. The mechanical model for the flagellum. 

 

3.4 The terminal speed of a flagellated micro-swimmer along a straight line 

To calculate the speed of the artificial micro-swimmer based on the lateral 

displacement of the flagellum ( ),c X t , the RFT [17, 31, 68] is employed, which is a 

simple yet sufficiently accurate theory to estimate the propulsive force of 

microorganisms [38]. 

As shown in Eq. (3.19), the fluid force is in nature a sort of drag, which is always 

opposite to the direction of the local velocity /cy t  . As illustrated in Figure 3-10, the 

forward propulsion fprop within an infinitesimal flagellum segment, dx, is determined by 

the difference between the horizontal components of two forces ff ⊥  and ff  as 

follows: 

prop cos sinf ff f f ⊥=  −  ,  (3.26) 

where Θ is the slope angle of the flagellum, which is approximately equal to /cy x  , 

and expressions for ff ⊥  and ff  are similar to Eq. (3.19). Typically, the velocity vprop 

of the AFMS is proportional to the total propulsive force propdL
f x  with the scale factor 
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c . However, the drag of the head Fhead cannot be neglected due to the sizable radius in 

contrast to that of the flagellum. Simplifying the head to be a sphere with a larger radius 

RH = r1, the drag of the head can be given by [68] 

head prop6π HF R v= .   (3.27) 

Taking into account the resistance of the head, the balance of the fluid forces over the 

whole micro-swimmer is given by 

( )2 2
prop head prop head propd cos sin d d

L L L
f x F v c c x F c v x⊥= +  +  +   .   (3.28) 

Substituting Eqs. (3.26) and (3.27) into Eq. (3.28), and taking the average value over a 

period, the time-averaged terminal velocity propv  is expressed as: 

( )
2π

prop 20 0

0

1 d d
2πd 6π 1

c
L

c
L

cH

y
y xv c c x t
t yc x R

x





⊥

 
 

  = −
  + +   

  

 


.  (3.29) 

Using the dimensionless terms given in Eq. (3.23), Eq. (3.29) will be recast to 

( )
21 1

prop 1 20 0

0

1 d d
2πd 6π 1

c

c

cH

L Xv c c X t
tL c X R

X


 


⊥

 
 

  = −
  + +   

  

 


.  (3.30) 

Ultimately, the substitution of ( ),c X t  determined by Eqs. (3.24) and (3.25) into Eq. 

(3.30) leads to the terminal velocity of the micro-swimmer.  

There are certainly more accurate theories to evaluate the propulsive force based on 

the singular solutions for the equations of a Stokes flow such as the Regularized 

Stokeslet method [92] and Lighthill SBT [26]. Nonetheless, if the wavelength of the 
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profile is greater than a quarter of the tail, or the ratio of length to radius for the tail is 

larger than 10, the RFT does not differ much from other theories [17, 23]. This 

condition will be enforced in our succeeding studies to ensure the accuracy of Eq. (3.30). 

Following the convention in [242, 243], the motility of the micro-swimmer Vcs can 

be defined as: 

prop
cs

v
V c

Lf
= ,   (3.31) 

where the factor c  reflects the relative resistance between the head and the flagellum. 

In case that the flagellum is sufficiently slender, i.e., 2c c⊥ =  according to Ref. [68], 

and not connected with a head, 1c = . For a uniform flagellum, the motility Vcs and the 

factor c  are respectively expressed as: 

( ) ( ) ( )
1 1 2

0 0
1 d dcs c c cV t X X X t   = −      +  

   ,  (3.32) 

( )1 6π /
/ 1

HR Lc
c

c c


⊥

+
=

−
,  (3.33) 

where Vcs only depends on the normalized wiggling profile of the flagellum. 

In addition to the optimal speed, one may concern the impact of kinematic 

parameters on actuation efficiency. According to Wiggins et al. [38], we can estimate 

the actuation efficiency Eeffi of a flagellated micro-swimmer by comparing the power 

prop propdL
f v x  for longitudinal propulsion to the power arising from the local transverse 

drag tran sin cosf ff f f ⊥=  +   dissipated in transverse motions over a period, which 

is expressed as: 
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( )
( )

( )

( )

2π
prop prop0

effi 0
tran0

2π
prop 0

0

0

prop 20

2

d
d

2π d

cos sin d
d

2π sin cos d

d
1

2π

L

L
c

L

f f

L
c

f f

c
L

c

c

c c

f v x
E tyf x

t

v f f x
tyf f x

t

y
y xv c c x
t y

x

y yc c c
x t











⊥

⊥

⊥

⊥ ⊥

=




 − 
=


 + 



 
 

  −
  +   

  =
     − +   

      













( )

( ) ( )

2π

20

0

2

20

2π

2 20

0 0

d

d

d
2π

1
d

d 6π d

L

c
L

c

c

L L
c c

H

t

x

y
y xc c x
t y

x
t

y yc x R c c c x
x t









⊥

⊥ ⊥

  
 
  

  
  

  − 
   +       =

       + − +     
        







 

.  (3.34) 

Using the dimensionless terms given in Eq. (3.23), Eq. (3.34) will be recast to 

( )

( ) ( )

2

1

20

1

effi 2 20 1 1

0 0

d
1

d

d 6π d

c

c

c

c c
H

XL c c X
t

X
E t

L c X R c c c X
X t






 


⊥

⊥ ⊥

  
  

  − 
   +       =

       + − +     
        




 

.  (3.35) 
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Figure 3-10. Derivation for the propulsive force based on the RFT. 

 

3.5 Semi-analytical solutions for the 1D model 

In what follows, to solve the inhomogeneous PDE (3.24) with boundary conditions, 

Eq. (3.24) will be truncated to an ODE without any boundary condition. This technique 

is in the light of the Galerkin method [238-240, 244], then Eq. (3.24) can be solved by 

numerical method directly. As a result, the dependent variable ξcr can be decomposed 

by a convergent series of basis functions in terms of the nth vibration mode Φn, 

expressed as: 

( ) ( ) ( )
1

,
mn

cr n n
n

X t X q t
=

=  ,  (3.36) 

where nm represents the number of terms to be accumulated, or in other words, the 

number of modal superpositions; qn is the generalized coordinates which are explicit 

functions of the dimensionless time. To eliminate the boundary conditions for the 

cantilever beam, Φn is expressed with respect to the constant Gn as follows: 
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( ) ( )sin sinhcosh cos sinh sin
cosh cos

n n
n n n n n n

n n

r rX G r X r X r X r X
r r

 −
 = − + − + 

,  (3.37) 

where rn are the solutions of the equation given by 

cosh cos 1n nr r = − .     (3.38)                                                 

Eqs. (3.37) and (3.38) are the mode functions of an elastic cantilever beam with a 

uniform cross-section [245], which are normally exploited as the basis functions for 

non-uniform ones [239]. Optionally, rn can be estimated by a fitting formula: 

( )0.5 πnr n= − . The constant Gn is to normalize the nth modal function, i.e., let: 

1

0

0 ,  
d  

1 ,  n m

n m
X

n m


  =  =
 .  (3.39) 

Substituting Eq. (3.36) into Eq. (3.24), multiplying the resultant equation with Φj on 

both sides, and then, integrating the resultant equations over the whole flagellum, an 

equation set for ( )nq t  is resulted as: 

( )
( )

2

2
1 1 1

2 2
0 0 0

2
0 0 0

2π
4π 4π cos 2π sin sin 2π

  2π 4π sin 2π cos cos2π ,   1,2,..., ,

m m mn n n
n n

Hjn Zjn Jjn Jjn n
n n n

a Hj a xHj h a xZj h

a Zj a xHj h a xZj h m

q qS S S S q
t t
S S S t

S S S t j n



    

    

= = =

  + + + 
  

= + +

− − + =

  

   (3.40) 

where the integral constants 

1

0
dHjn j nS H X=   , 

1

0
dZjn j nS Z X=   , 

2 21

2 20
dn

Jjn jS J X
X X

   
=   

  
 ,  

1

0
dHj jS H X=  , 

1

0
dZj jS Z X=  , 

1

0
dxHj jS XH X=   and 

1

0
dxZj jS XZ X=   
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are parameters that can be precalculated. The ODEs Eq. (3.40) can be solved by using 

the built-in ODE solver ode15s in MATLAB [246]. If we only focus on the time-

averaged quantities and the steady-state response, the particular solutions for Eq. (3.40) 

will be of great importance. Thereupon, we presume that qn is a sinusoidal function 

with a frequency identical to the actuation one, expressed as: 

( ) ( )1 1 2 2sin 2π cos 2πn n n n nq Q t Q t = − − − ,  (3.41) 

where the coefficients 1nQ , 2nQ , 1n  and 2n  can be obtained by solving a set of 

algebraic equations as follows: 

( ) ( )

( ) ( )

( ) ( )

2
1 1 1 1

1
2 2

0 0 0

2
1 1 1 1

1

2
2 2 2 2

1

4π cos 2π sin
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4π cos 2π sin
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Jjn Hjn n n Jjn Zjn n n
n
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n
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n
n

Jjn Hjn n n Jjn Zjn n n
n

S S Q S S Q

S S S

S S Q S S Q

S S Q S S Q

  

    

  

  

=

=

=

 − + +
 

= + +

 − − + =
 

 − + +
 





( ) ( )

2
0 0 0

2
2 2 2 2

1

 

2π 4π sin 2π cos

4π sin 2π cos 0
m

a Zj a xHj h a xZj h

n

Jjn Hjn n n Jjn Zjn n n
n

S S S

S S Q S S Q

    

  
=














= − +

  − − + =

 





,  (3.42)  

 1,2,..., mj n= . 

For a uniform flagellum, the orthogonality condition, i.e. Eq. (3.39), can be exploited 

to simplify the calculation so that qn can be analytically solved and given by 

( ) ( )1 2sin 2π cos 2πn nu nu nu nuq Q t Q t = − − − ,   (3.43) 

where the three coefficients are expressed as: 

( ) ( )

2 2 4
0 1 0 2 0 2

1 2 24 2 4 4

cos sinns a n ns a n h p a n h
nu

n ns p n

S S S S
Q

r S r

      

 

+ +
=

− + +
,  (3.44) 
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( ) ( )

4 2 4
0 1 0 2 0 2

2 2 24 2 4 4

sin cosp a n ns a n h p a n h
nu

n ns p n

S S S S S
Q

r S r

     

 

− +
=

− + +
,  (3.45) 

4 4

4 2arctan p n
nu

n ns

S r
r






+
=

−
,  (3.46) 

where 
1

1 0
dn nS X=   and 

1

2 0
dn nS X X=  . In the above equations, we have 

introduced the following two non-dimensional parameters:  

4 2πpS Z J= ,   (3.47) 

2πns H J = ,   (3.48) 

which are named the sperm number [108] and the resonance index, respectively. The 

sperm number is the most frequently used parameter in the field of the sperm-like 

swimmer, which indicates the relative importance of viscous to elastic stresses on the 

filament [35, 38, 242]. Intuitively, it is proportional to the ratio of the length of the 

flagellum to the wavelength of the profile [35]. The resonance index ns renders the 

ratio between the actuation and the nth-order natural frequency of a cantilever beam fn 

[233], which is given by 

 2
n ns nf f r= ,   (3.49) 

where the quantity rn is determined by Eq. (3.38). In this chapter, ns will be used to 

illustrate the effect of resonance on the motility of an acoustically actuated AFMS.  
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3.6 Optimized micro-swimmer with a uniform elastic flagellum 

The AFMS can be regarded as an energy-harvesting device that collects the acoustic 

energy and converts it to its kinetic energy. Thus, the dynamic response of the swimmer 

in an acoustic field severely influences the swimming performance. It is apparent that 

the energy conversion efficiency will reach an extreme if the actuation frequency 

approaches a resonance frequency of flagellum. However, the terminal speed propv  of 

the micro-swimmer is not a monotonic function of the resonant frequency but 

maximizes at a certain value. 

Figure 3-11 shows an example of the terminal velocity for the micro-swimmer with 

a uniform elastic flagellum within a specific frequency band. The width of the 

frequency band f is set in the range of 1 - 3 MHz, which is the range of therapeutic 

ultrasound [232]. The amplitude of the sound pressure p is stipulated as 60 kPa based 

on this reference as well. The viscosity of the fluid μ is set according to the gastric fluid 

[235] to be 0.02 Pa·s. The shape of the head is prescribed as the droplet, and the 

parameters of head motion are according to Eqs. (3.2a, b) with Ku = 0.419, Kθ = 0.00363 

and φh = 180° at φi = 90°, as listed in Table 3-1 (or in Table 3-2). These parameters 

related to the head motion are also employed in this chapter. Other parameters are listed 

in Table 3-3 titled initial parameters, where the value of f denotes the actuation 

frequency at the maximal terminal velocity, and the value of propv  denotes the maximal 

terminal velocity within the parameter sweep. It is noted that the resonance can occur 

at three actuation frequencies, and the terminal speed maximizes at the second one, 

which is equal to 74.19 μm/s. Figure 3-12 illustrates the case of the terminal velocity 

for a micro-swimmer versus the flagellum length L in the range of 100 - 500 μm, which 

is selected as the probable range of the length of the artificial micro-swimmer. Other 
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parameters are the same as Figure 3-11, except that f is fixed at 1.94 MHz based on the 

results of Figure 3-11. According to Eqs. (3.23) and (3.49), the resonance frequency fn 

is proportional to the reciprocal of L2, thus, the plot for L vs. propv  can also embody the 

frequency response of the micro-swimmer. We can find that the maximal terminal 

velocity is not located at the extreme value of L at resonance. Parallel analyses are 

implemented in Figure 3-13 and Figure 3-14. Figure 3-13 illustrates the case of the 

terminal velocity versus Young’s modulus in the range of 10 - 1000 MPa, whereas 

Figure 3-14 illustrates the case of the terminal velocity versus the density of the 

flagellum in the range of 1000 - 2000 kg/m3, which are selected from Table 3-3 and all 

related to the natural frequency. Other parameters are the same as Figure 3-11, except 

that f is fixed at 1.94 MHz. The results from Figure 3-11, Figure 3-12, Figure 3-13 and 

Figure 3-14 verify that the terminal speed propv  of the micro-swimmer is not a linear 

function of the resonant frequency nor other design parameters. 

Because the effects of design parameters are nonlinear, let us exercise a design 

optimization to explore a parametric space. For the optimization, we only consider a 

uniform elastic flagellum because its terminal velocity, as well as the motility, can be 

analytically solved. In the subsequent two chapters, we will further describe the effects 

of resonance and the material damping of the flagellum on the motility of the micro-

swimmer.  

The optimization objective is to maximize the terminal velocity propv  within a 

specific frequency band. The parameters to be optimized are the flagellum’s density ρs, 

Young’s modulus E, diameter ds, and length L, as well as the actuation frequency f. The 

ranges of these parameters are shown in Table 3-3. These parametric ranges should 

have covered the most probable range of AFMSs made by an organic polymer. For 
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example, Young’s modulus varies in the range of 10 - 103 MPa, which covers most 

polymers [247, 248]; The ratio ds/L is set to be less than 0.1, which meets the 

applicability condition of the RFT; the ranges of remaining design parameters are the 

same as Figure 3-11 and Figure 3-12. A multi-island genetic algorithm [249] is utilized 

in our optimization. After iteration for 600 steps, the optimum combination of 

parameters is also shown in Table 3-3 titled Optimized parameters. It is noted that the 

optimized terminal speed is 740.9 μm/s, which is much greater than the results shown 

in Figure 3-11 and Figure 3-12. It is noted that natural micro-swimmers (such as sperms) 

generally swim at a speed in the order of 100 μm/s, which is slower than the predicted 

swimming speed of the AFMS. A frequency sweep based on the optimized flagellum 

indicates that the high speed is owing to the resonance response of vibration mode, as 

shown by the red solid line in Figure 3-15. This phenomenon indicates the essentiality 

of introducing the mass term into the swimming problem. Since the optimization is 

implemented with φh = 180°, in Figure 3-15, the effect of diverse actuation phase 

difference φh is also illustrated. The values of φh are selected from Table 3-1 in Chapter 

3.2 with corresponding Ku and Kθ, meanwhile, the remaining design parameters stay 

unchanged. It is observed from Figure 3-15 that at the actuation frequency for the 

maximal terminal velocity, the value of propv  with φh = 180° prevails over the other φh. 

Nevertheless, the deviation of the results for different φh is not conspicuous. Therefore, 

the actuation phase difference φh is always set to be 180° for all the subsequent parts of 

this chapter. 

It should be noted that the optimum speed given in Table 3-3 is achieved by 

resonance at the frequency of a high-vibration mode of the flagellum, which is around 

the fourteenth order of resonance. In this case, the acoustic frequency must be identical 

to the resonant frequency. In Figure 3-15, we can find that the full width of half 
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maximum (FWHM) of the highest velocity peak is only 0.011 MHz. That is, a 0.4% 

deviation in the frequency brings down the speed to half of the optimum magnitude. A 

further deviation of 1.9% leads to a 99% reduction of the terminal speed. In reality, the 

uncertainties in the mechanical properties and geometry of flagellum bring about the 

uncertainty of resonant frequency. Therefore, the design of the flagellum must allow a 

sufficiently large width of actuation frequency to achieve a reasonably high propulsive 

velocity. A preliminary design is to take the material damping into account. Figure 3-

16 exhibits the effect of the material damping on the frequency response, where all the 

design parameters are identical to the ones in Figure 3-15 except the ratio of loss 

modulus to storage modulus γ = 0.01. It is observed that the FWHM of the highest 

velocity peak increases to 0.036 MHz, and the half-peak frequency deviation increases 

to 1.2%. Although the peak value decreases to 120 μm/s, it is still acceptable for the 

medical application. That is, an appropriate combination of the parameters related to 

the resonance and material damping will enhance the motility Vcs. To make clear this 

point, the influence of resonance and material damping is discussed in the following 

sections. 

In Figure 3-11, Figure 3-15 and Figure 3-16, dotted lines therein represent the values 

for natural frequencies determined by Eq. (3.49), where all the formants lie on the 

natural frequencies. This spectrum of steady motion makes it clear that it is the theory 

of forced vibration that can be exploited to explain the dynamic properties of the 

flagellum, and the optimized velocity is just actuated at the 14th order of natural 

frequency in this case. This phenomenon indicates the essentiality of introducing the 

mass term into the swimming problem. Figure 3-17 demonstrates the actuation 

efficiency of the AFMS (estimated from Eq. (3.35)) in terms of the actuation frequency, 

where the natural frequencies (also represented by dotted lines) and other parameters 



 
 

67 
 

are the same as those in Figure 3-15. The natural frequency for the largest actuation 

efficiency in Figure 3-17 is just the same frequency for the largest terminal velocity in 

Figure 3-15, which indicates that a high terminal velocity may embody a condition of 

high efficiency. Thus, we will not discuss the actuation efficiency in the following 

sections in this thesis, instead, the terminal velocity and the motility of the AFMS will 

be considered. 

 

 

Figure 3-11. The frequency response within 1~3 MHz for the initial parameters. 
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Figure 3-12. L vs. propv  at 1.94 MHz for the parameters in Figure 3-11. 

 

 

Figure 3-13. E vs. propv  at 1.94 MHz for the parameters in Figure 3-11. 
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Figure 3-14. ρs vs. propv  at 1.94 MHz for the parameters in Figure 3-11. 

 

 

Figure 3-15. The frequency response within 1~3 MHz at optimized parameters with γ = 0 for three φh. 
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Figure 3-16. The frequency response within 1~3 MHz at optimized parameters with γ = 0.01 for φh = 

180°. 

 

 

Figure 3-17. The actuation efficiency within 1~3 MHz at optimized parameters with γ = 0 for φh = 180°. 
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Table 3-3. The parametric ranges and results for the initial and optimized parameters for φh = 180°. 

Parameters E 
(MPa) ds/L  

L 
(μm) 

ρs 
(kg/m3) 

f 
(MHz) 

propv  
(μm/s) 

Minimum values 10 
1000 

0.01 
0.1 

100 
500 

1000 
2000 

1  Maximum values 3 
Initial parameters 200 0.1 250 1200 1.94 74.19 

Optimized parameters 57.9 0.093 399 1865 2.93 740.9 
 

3.7 Effect of resonance  

In order to explicate the effect of resonance on Vcs of a uniform elastic flagellum, we 

explored the variation of Vcs in terms of two dimensionless parameters, i.e., the sperm 

number Sp given by Eq. (3.47) and the resonance index ωns given by Eq. (3.48). The 

calculation was performed with a few prescribed head actuations. In Figure 3-18, the 

results of ξ0a = 10-4, θ0a = 10-4 and φh = 180° are presented. Based on Eqs. (3.2a, b) and 

(3.23), it is noted that ξ0a/θ0a = Ku/Kθ/L. If the geometry of the head is prescribed, Ku 

and Kθ will be constants. Therefore, the quotient ξ0a/θ0a determines the length of 

flagellum L. For example, if ξ0a/θ0a = 1 and the actuation parameters are given by the 

row of φh = 180° in Table 3-1, the length of the flagellum is determined to be 115 μm. 

This length is close to the one reported in [7]. With this prescription, the motility Vcs 

can be calculated from Eq. (3.31) and is affected by Sp and ωns, which lead to various 

combinations of E, ds, ρs and f. Note that when ωns = 0, our model reduces to the case 

of the massless one, and the analytical expressions of the profile and velocity have been 

studied in [35, 38]. 

In Figure 3-18, Sp and ωns are varied in the ranges of 0 - 20 and 0 - 1400, respectively, 

based on the parametric ranges given in Table 3-3. It is observed that the motility Vcs 

maximizes in several resonance bands (red zones) and that Vcs could also be zero (white 

zones). As shown in Figure 3-19, the enlarged view of a resonant region for ωns from 
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280 to 320, if Sp is very small, the resonant Vcs regions will be very narrow for a certain 

Sp. This is an indication that the resonance-induced high-speed motion is very unstable. 

Results in Figure 3-18 and Figure 3-19 reveal that resonance could lead to motility 

higher than 2. However, these regions are narrow in terms of the band of ns. For 

example, the largest band of ns for Vcs ≥ 2 in Figure 3-19 is from 297.5 to 299.5 at Sp 

= 5. Such a narrow frequency band renders a tight tolerance of the geometrical and 

material property variation, which is impractical. Instead, one may reduce the 

requirement of Vcs to trade for a larger frequency band of efficient actuation. Let us 

suppose that the satisfactory motility is Vcs = 1. With ds = 10 m, L = 115 m, f = 3 

MHz, RH = 25 μm and  = 0.02 Pa.s, the terminal velocity propv  is about 54 m/s 

according to Eq. (3.31), which could have been adequate in a medical application (one 

may increase the acoustic pressure to obtain much larger speed). Thus, the band of ωns 

for Vcs ≥ 1 denotes the satisfactory frequency band (SFB) of the actuation. It is observed 

from Figure 3-18 and Figure 3-19 that the width of SFB increases with Sp and order of 

resonance, i.e., an appropriate selection of Sp can help to broaden the SFB. For example, 

when ωns = 296 and 301, the maximum SFB is achieved at Sp = 6, as depicted in Figure 

3-19. That is, a 1.7% deviation in the actuation frequency is acceptable with respect to 

the motility of the micro-swimmer, which is better than the index FWHM. It can be 

used to assess the effect of manufacturing error. For example, according to Eq. (3.23) 

and (3.48), ωns is inversely proportional to the diameter of the flagellum ds. If the 

accuracy of manufacturing of ds is ±1%, the deviation of ωns will be 0.99% - 1.01%, 

which is less than the maximum SFB. That is, the error of manufacturing is acceptable 

if the micro-swimmer is designed at a maximum SFB. 
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Figure 3-20 and Figure 3-21 highlight the influence of ns on the Vcs - Sp curves. The 

values of ns in Figure 3-20 are selected to be at low-, moderate- and high-order 

resonance, respectively. Based on Eq. (3.49), where 2
ns nr =  represents the case of 

resonance, we choose n = 4, 8 and 12 in Figure 3-20. With the increase of the resonant 

ns (or the acoustic frequency), the extreme point of Sp for the Vcs - Sp curve increases, 

and the peak value for Vcs is first increased and then decreased. However, at the region 

for Sp > 10, Vcs at all the three resonance conditions almost vanish. It can be understood 

by the physical meaning of the sperm number Sp. Because Sp is just the ratio of the fluid 

resistive force to the elastic force acting on the flagellum [108], a large Sp represents a 

considerable resistance, which is adverse to the behavior of resonance. But, if Sp is too 

small, the propulsive force will be scanty based on the RFT [25], meanwhile, a large 

bending modulus will block the generation of the wave along the flagellum, thus, the 

motility will be small according to the ‘scallop theorem’ in the LRN regime [34, 36]. 

Therefore, there will be a peak value at the Vcs - Sp curve. On the other hand, a larger 

ns at resonance indicates a smaller bending modulus according to Eq. (3.48), which 

results in a larger Sp. Hence, the extreme value of Sp becomes larger with the increase 

of the resonant ns. As a result, an opportune Sp should be selected discreetly to achieve 

high motility. Outside the resonance bands, the detailed influence of Sp on Vcs is shown 

in Figure 3-21. All the selected ωns in Figure 3-21 are pertaining to non-resonant 

scenarios. It is noted that the peak value of Vcs at the non-resonance region 

( ( )2 2
3 4 2 100ns r r = +  ) is thousands of times less than that at the resonance region. 

For the massless case (ns = 0), the motility increases with Sp and approaches a saturated 

value of 0.014. The case of ns = 1 in Figure 3-21 is used to verify the accuracy of our 

numerical model by comparing this small-mass result with the massless one, for which 
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the profile can be solved analytically based on the so-called hyper-diffusion equation 

[35, 38]. The error of our numerical model is acceptable, as shown in Figure 3-21. Note 

that if we neglect the mass, or the density of the flagellum is extremely small, the 

motility will be, in theory, very poor, even compared with the case of the non-resonance 

one. This is a demonstration that for the artificial sperm-like micro-swimmer actuated 

by ultrasound, the inertia effect is not negligible. 

 

 

Figure 3-18. The contour map of Vcs in terms of Sp and ωns at a fixed actuation, where ξ0a/θ0a = 1 and ξ0a 

= 1×10-4. 

 



 
 

75 
 

 

Figure 3-19. The detailed view of Figure 3-18 at ωns = 280 - 320. 

 

 

Figure 3-20. The correlation between Vcs and Sp for different ωns at the resonant zones. 
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Figure 3-21. The correlation between Vcs and Sp at different ωns which are far away from the resonant as 

well as ωns = 0. 

 

3.8 Effect of material damping 

The inherent damping in most polymers is nonnegligible [237]. Therefore, it is 

necessary to quantify the effect of the material damping on the motility of a micro-

swimmer. We assume that the material of the flagellum, generally an organic polymer, 

can be described by the Kelvin–Voigt model, in which the damping property is 

designated by γ, defined as the ratio of loss to storage moduli ηω/E [250], at the acoustic 

frequency ω. The range of γ is from 0 to 0.1 according to [237]. In this chapter, the 

parameters associated with the actuation, i.e., ξ0a/θ0a, ξ0a, Ku, Kθ and φh, are the same as 

those in the last chapter. Consequently, we also demonstrate a map of motility based 

on the parameters Sp and ωns with γ = 0.01, as shown in Figure 3-22, to compare with 

Figure 3-18. It is noted that the zones of Vcs > 2 (red areas) are shifted to the lower Sp 

side after γ = 0.01 is applied. This effect is more significant for the higher-order 
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resonance zones. As a result, the width of SFB for a small Sp, e.g., Sp = 2, is significantly 

increased at γ = 0.01. Figure 3-23 demonstrates the effect of γ from 0.0001 to 0.1 at Sp 

= 2, which represents a design of a micro-swimmer with a rather large bending modulus 

or small fluid viscosity [242]. In this case, if the material damping is not involved, Vcs 

is less than unity, as shown in Figure 3-18. However, with γ ranging from 0.001 to 0.01, 

Vcs in resonance zones becomes greater than one. Both Figure 3-22 and Figure 3-23 

indicate that a moderate γ benefits the short flagellum design, especially in the cases 

where the motility Vcs is required to be a reasonable value and the larger SFB is more 

desired. It should be noted that an excessively large value of γ will significantly reduce 

Vcs. When γ > 0.05, Vcs < 1. Thereupon, a moderately but not extremely large γ is 

beneficial to the flagellum designed at a large bending modulus or small fluid viscosity. 

Figure 3-24 and Figure 3-25 illustrate in more detail the variation of Vcs with Sp and 

resonant ωns. For the purpose of contrast, ωns are selected to be the same as those in 

Figure 3-20. The difference between Figure 3-24 and Figure 3-25 is the magnitude of 

γ, i.e., γ = 0.001 in Figure 3-24 and γ = 0.01 in Figure 3-25. It is noted from Figure 3-

24 and Figure 3-25 that all the extreme points vanish and the maximum value point of 

Vcs is located at the minimum value of Sp. The Vcs - Sp curve at resonance is changed 

into the monotonically decreasing one with the existence of the material damping. 

When γ = 0.001, the maximum Vcs for the three ωns decreases to about 1/3 or 1/4 of the 

original peak values in Figure 3-20; when γ = 0.01, these fractional numbers become 

1/30 or 1/40. It is also observed from Figure 3-24 that the maximum values of Vcs for 

ωns = 555.17 and ωns = 1305.3 are nearly the same, whereas this value for ωns = 555.17 

is greater than the one for ωns = 1305.3, as depicted in Figure 3-25. That is, the 

decrement of the motility for the higher resonance index will be more significant than 

the one for the lower resonance index if the material damping is quite large. It is noted 
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that the maximum values of Vcs are relatively centered, thereupon, if we extract all the 

maximum Vcs for each order of ωns at γ from 0.001 to 0.01, we will plot a maximum Vcs 

- γ curve, as shown in Figure 3-26. The percentages in Figure 3-26 denote the 

distributional error of the maximum Vcs at different ωns for a given γ, and they are all 

around 10%. This implies that the maximum Vcs for different resonant ωns can be 

concentrated within a reasonable bound and comply with the same rule in terms of γ. 

Note that the axes in Figure 3-26 are logarithmic, therefore, the straight line represents 

an exponential relationship. The slope of the line is -1, which indicates that the 

maximum Vcs at resonance is inversely proportional to γ. 

Outside the resonance bands, the detailed influence of γ on the Vcs - Sp curve is 

depicted in Figure 3-27. ωns is chosen to be the average of the 9th- and the 10th-order 

resonance index, which is ( )2 2
9 10 2 801.91ns r r = + = , therefore pertaining to a non-

resonant scenario. It is observed from Figure 3-27 that Vcs can remarkably increase for 

all the ranges of Sp when γ is at the maximum value (γ = 0.1) for the region far away 

from resonance. In other cases of γ, values of Vcs nearly remain the same. This indicates 

that we can select the material damping as large as possible if the AFMS is working at 

a non-resonant zone. All the phenomena associated with the material damping can be 

explained by the expressions of the amplitude of a uniform elastic flagellum, i.e., Eqs. 

(3.43), (3.44), (3.45) and (3.46). It is noted that the term γ always appears together with 

Sp, and the summation of them can be regarded as a whole term. Thus, the increase of 

γ is equivalent to the increase of Sp. The Vcs - Sp curve for resonant ωns with γ (Figure 

3-24 and Figure 3-25) corresponds to the one without γ (Figure 3-20) at a large Sp range; 

if the equivalent Sp is greater than the position of the extremum, the peak points will 

vanish and the curve becomes monotonic. In addition, in Eqs. (3.44), (3.45) and (3.46), 

γ always times rn
4 which is equivalent to the resonant ωns, so the influence of γ is more 
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remarkable for a higher order of ωns. It is observed from Figure 3-27 that the extreme 

point of Sp on a non-resonant condition is quite large because the resistive force is 

predominant for the propulsion of the flagellum. The increase of γ is just corresponding 

to a larger Sp, therefore, it is easy to understand the reason why the existence of material 

damping benefits the motility at a low sperm number. It can help us to determine the 

optimal intervals of Sp and then, we can restrainedly take advantage of γ to exalt the 

motility of the AFMS. 

 

 

Figure 3-22. The contour map of Vcs in terms of Sp and ωns at a fixed material damping where γ = 0.01. 
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Figure 3-23. The contour map of the effect of the material damping on the resonance at a fixed Sp = 2. 

 

 

Figure 3-24. The correlation between Vcs and Sp for different ωns at three resonant zones where γ = 0.001. 
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Figure 3-25. The correlation between Vcs and Sp for different ωns at three resonant zones where γ = 0.01. 

 

 

Figure 3-26. The maximum Vcs for all the ωns except the first order at different γ. 
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Figure 3-27. The correlation between Vcs and Sp for different γ at the region far away from the resonant 

zones where ωns = 801.91.   

 

3.9 Effect of tapering and comparison with existing experiments 

In this chapter, the effect of the non-uniform circular cross-section flagellum is 

elucidated. As mentioned in Chapter 3.3, the diameter of the circular cross-section is 

denoted by ds, and ds is herein defined as the function of the dimensionless abscissa X. 

The non-uniform cross-section influences two physic quantities, the area of the circular 

cross-section As and the second moment of area I. Here, As, I and the diameter ds can 

be expressed as: 

( ) ( )2π
4

s
s

d X
A X = ,   (3.50) 

( ) ( )4π
64

sd X
I X = ,   (3.51) 
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( ) ( ) ( )0s sd X d h X= ,   (3.52) 

( ) 1h X X = − ,  (3.53) 

where ds(0) represents the maximal value of ds, which is also the diameter of the 

flagellum at the head end; h denotes the tapering equation for the diameter of the cross-

section; λ is the relative slope of h, which is the index of the tapering; Λ denotes the 

power of h function. If Λ = 1, the diameter of the cross-section is linearly varied with 

the length of the flagellum. Taking into account the condition 0 1X  , it is easy to 

obtain that 0 1  . For the convenience of directly demonstrating the effects of the 

variable cross-section and comparing with the experimental results in Ref. [7], the 

design parameters for our numerical calculation in this chapter are selected in the 

vicinity of the ones in Ref. [7] as possible. Accordingly, we prescribe the parameters in 

Figure 3-28, Figure 3-29, Figure 3-30 and Figure 3-31 as ds(0) = 25 μm, L = 180 μm, E 

= 10 MPa, ρs = 1200 kg/m3, Λ = 1 and f = 4600 Hz, along with a head for RH = 25 μm 

and the fluid dynamic viscosity μ = 1 Pa·s. We neglect the rotation of the head, i.e., θ0a 

= 0 in this chapter. 

In Figure 3-28, we choose λ = 0.9, and the head amplitude y0a is taken from 10 μm 

to 40 μm, which is based on the experimental data reported in [7]. In Figure 3-29, λ can 

be varied from 0 to 1, and the head amplitude y0a = 40 μm. Otherwise, if we neglect the 

inertial term (ρs = 0), the governing equation of the elastic flagellum with a linearly 

non-uniform cross-section will be translated into a conventional Cauchy-Euler equation, 

and it can be solved analytically (see Appendix A). To compare the results of our 

numerical model to the analytical one, where the material damping is not considered, 

we take γ as 0 in Figure 3-28 and Figure 3-29. They illustrate the terminal velocity for 

different flagellum density ρs versus the head amplitude y0a and the relative slope λ, 
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respectively. It is noted that the results for ρs = 1200 kg/m3 and ρs = 1 kg/m3 are almost 

identical, as depicted in Figure 3-28 and Figure 3-29. It indicates that the AFMS is 

actuated at a non-resonant scenario. Therefore, this chapter is mainly exploring the 

locomotion of the AFMS far away from the resonance. The errors between the small-

mass results (ρs = 1) and the analytical one (ρs = 0) are shown in Figure 3-28 and Figure 

3-29, which are less than 5% for both the propv  - y0a curve and the propv  - λ curve. It 

demonstrates that our numerical model for the non-uniform flagellum case is reliable 

to a certain extent. It is noted that the terminal velocity will increase with λ, as illustrated 

in Figure 3-29. 

The contrast to the experiments in terms of the terminal velocity and the profiles of 

the micro-swimmer are respectively shown in Figure 3-30 and Figure 3-31, where we 

take the material damping γ as 5. γ normally ranges from 0.001 to 0.01 at the unity 

frequency, and it will increase with the vibration frequency [251]. As for the actuation 

frequency herein (4600 Hz), γ = 5 is acceptable to some extent. As illustrated in Figure 

3-30, the blue spots are the experimental results reported in [7]. A uniform cross-section 

case (λ = 0) and a tapered case (λ = 0.9) are selected to be compared with the 

experimental one. It is noted that results for λ = 0.9 adequately match the experimental 

results in [7]. In addition, the propv  - y0a curve for our numerical model seems like a 

parabola, which does just tally with the expectation in Ref. [38]. However, the result 

for λ = 0 shows very poor agreement with the experimental one. This indicates the 

necessity of the consideration of the non-uniform flagellum. The profiles of the micro-

swimmer for y0a equal to 12 μm within one oscillating period are demonstrated in Figure 

3-31. Different colors embody the sequence of motions which are divided into 6 instants 

for a period to externalize the spatial-temporal movement of the micro-swimmer. As 
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depicted in Figure 3-31, the head ends are merged into one to be analogous to the 

configuration of Figure 1-2(b). It is noted that the wavelength of the flagellum is greater 

than a quarter of its length, which conforms to the application condition for the RFT 

stated in Chapter 3.4. Moreover, the obtained results indicate that the amplitude of the 

tail is small enough compared with the length of the flagellum, which is conforming to 

the linear assumption in Chapter 3.1. The above results to a certain degree give the 

verification to the present model. 

Figure 3-32 demonstrates the effect of γ for different L at y0a = 40 μm and Figure 3-

33 illustrates the effect of λ for diverse tapering power Λ still at y0a = 40 μm. Other 

design parameters are the same as Figure 3-30. As plotted in Figure 3-32, the terminal 

velocity declines rapidly only when γ > 0.1. As for the effect of L, there is almost no 

difference for L < 200, whereas the terminal velocity will decrease with L if L > 200. 

However, this difference is not very large when γ > 0.1. Various laws of the tapering 

equation of the flagellum, which is embodied by Λ, can also influence the terminal 

velocity, as depicted in Figure 3-33. propv  decreases with the value of Λ but increases 

with λ. It accords with the description in Figure 3-29. That is, the non-uniform cross-

section is indeed conducive to the enhancement of the swimming velocity, and a larger 

slope of the tapered cross-section is recommended. 
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Figure 3-28. Head amplitude vs. terminal velocity at λ = 0.9 for the cases with inertia and without inertia. 

 

 

Figure 3-29. λ vs. terminal velocity at actuation y0a = 40 μm for the cases with inertia and without inertia. 
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Figure 3-30. The comparison between experimental [7] and theoretical results. 

 

 

Figure 3-31. The combination of the profiles at a head amplitude equal to 12 μm for the parameters the 

same as λ = 0.9 in Figure 3-30. 
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Figure 3-32. γ vs. terminal velocity for different L at y0a = 40 μm. 

 

 

Figure 3-33. λ vs. terminal velocity for different Λ at γ = 5 and y0a = 40 μm. 
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3.10 Summary 

In this chapter, we investigated a 1D theoretical model to estimate the speed of 

straight-line motion of an acoustically actuated AFMS based on the head-actuated 

mechanism, where an undulating flagellum was actuated by acoustic waves and treated 

as a clamped boundary condition in simulation. We found that the oscillating amplitude 

of the head depends linearly on the sound pressure while it is inversely proportional to 

the actuation frequency. The incident angle of the sound wave can slightly influence 

the proportionality factor. Then, an acceptable terminal velocity can be reached in the 

light of the head-inspired model. Taking into account the inertial term and the material 

damping, the continuous lateral EOM for the non-uniform flagellum was set up and the 

propulsive velocity was deduced from the RFT. 

Numerical solutions were achieved with the assistance of the Galerkin method. The 

results revealed that the actuation frequency of the optimal velocity lies on the natural 

frequency; thus, the inertial term cannot be neglected especially at resonance. However, 

the relationship between the terminal velocity and the order of the resonance is not 

monolithic. The optimal range for the sperm number will increase with the resonance 

index, and a considerably large sperm number will be adverse to the motility; but, a 

relatively large sperm number is beneficial to broaden the SFB. Thus, an opportune 

sperm number should be selected discreetly. A moderate value of the material damping 

for the material will broaden the SFB at a low sperm number as well as promote motility 

at the non-resonant region. However, excessive material damping results in 

considerably bad performance of the micro-swimmer. The maximum motility at 

resonance is inversely proportional to the material damping, and a small value of sperm 

number is profitable on this condition. It is preferred to design and fabricate an AFMS 

with a non-uniform flagellum of a larger slope of the tapered cross-section, and the 
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recommended tapering equation for the diameter is of a square root relation. The 

numerical results of the relationship between the terminal velocity and the head 

amplitude based on our theoretical model are in good agreement with the experimental 

results reported in [7]. The numerical results also coincide well with the ones from the 

analytical models which neglect the inertial term, including the hyper-diffusion model 

with uniform cross-section [35, 38] and the massless model with a linearly tapered 

flagellum. The novelty of our work in this chapter is to provide a theoretical model of 

actuation and propulsion of the AFMS, whose directional swimming has been 

experimentally observed before but lack of theoretical elaboration. Note that the RFT 

we employed for modeling is essentially a 3D theory, thus, the model we proposed in 

this chapter has the possibility of extrapolating our relevant research findings to the 

study of microrobots swimming in 3D space by adding the 3D rigid body motion of 

head as dependent variables to the EOM. 
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Chapter 4. 2D model of AFMS based on the CRFT —— 

rotation and steerability 

     4.1 Problem statement for the steering 

We consider an AFMS requiring acoustic excitations to propel. The concerned 

AFMS is composed of a rigid head and a flexible slender flagellum, as exhibited in 

Figure 4-1, where the structure has been meshed for the FSI simulation. The AFMS 

suspends in an aqueous solution and swims under an acoustic actuation that leads to the 

oscillations of the head and the whipping of the flagellum. According to the study in 

Chapter 3, the effect of periodic acoustic excitation for an AFMS can be assumed to be 

a periodic force Fext acting on the head with the actuation frequency f (or angular 

frequency ), that is ( )ext cosaF t F t= , where Fa is the amplitude of force. The head 

oscillation induced by Fext whips the flagellum, giving rise to the advancement of the 

AFMS at a terminal average speed of Vave. We focus firstly on the swimming problem 

that the average displacement of the micro-swimmer during several actuation periods 

keeps a straight line. It has been demonstrated both experimentally [7, 252] and 

theoretically [38, 43] that the micro-swimmer tends to align itself perpendicular to the 

direction of Fext. Hence, in the following FSI simulations, the only boundary condition 

is that the centroid of the head (or the end of the flagellum if the micro-swimmer has 

no head) is subject to a transverse harmonic force Fext. Consequently, the head oscillates 

transversely with an amplitude y0a. 

Figure 4-1 shows the mesh of the FSI model that was simulated using a built-in fully 

coupled 2D FSI solver in COMSOL Multiphysics [253]. The whole geometry can be 

divided into two domains: a rectangular fluid domain of 2000  500 µm2 (capacious 

enough for a micro-swimmer) and a solid one for the AFMS in the center of the fluid. 
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The radius of the circular head and the length of the flagellum are denoted by RH and L, 

respectively. For a 2D simulation, the cross-section of the flagellum is rectangular. The 

flagellar width Wy can be either uniform or tapered with a maximum of Wy0 at the root 

(the joint between the head and the flagellum). The micro-swimmer is assumed to have 

a uniform thickness of Wz. 

 

 

Figure 4-1. The configuration of an FSI simulation, wherein the gray area represents a mesh result of 

the fluid, and the blue area illustrates the deformable AFMS domain. 

 

     4.2 The convergence analyses of FSI simulations 

We investigate the steady-state swimming performances using the trajectory of the 

center of the head (or the right end of the flagellum). In the numerical simulations, the 

incompressible creeping flow module without the inertial term (Stokes flow) is 

employed for the fluid domain, while the solid mechanics module with plane strain 
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approximation for the solid domain (also without inertial term because it will not be at 

resonance in most cases according to the results of Chapter 3, and there is no inertial 

term in our CRFT model in this chapter) [254]. The micro-swimmer consists of two 

material models: a viscoelastic material for the flagellum and a rigid domain for the 

head [237]. Considering the expected medical applications and the current experiments, 

as we have mentioned in Chapter 3, the flagellar material is assumed to be a Kelvin-

Voigt viscoelastic material for representing an organic polymer, such as the PPy 

employed in Ref. [13] and the PEG employed in Ref. [7] as well as in our experiment. 

Fext is applied along the y-direction to the centroid of the head. If headless, Fext is 

applied to the right end of the flagellum. The automatic remeshing technique is 

employed to tackle the problems induced by large rigid-body motions, where the fluid 

domain (i.e., the gray area in Figure 4-1) is set as the moving mesh region based on the 

Winslow smoothing method [255], in which the mesh distortion parameter is set to 

unity. 

We first exemplify 2D simulations of two AFMS models as shown in Figure 4-2 and 

Figure 4-3. The first (Figure 4-2) one is a uniform flagellum (without head) with 

dimensions: L = 200 μm, Wz = 40 µm, and Wy = 12 µm, and swims in a fluid with the 

dynamic viscosity: µ = 0.1 Pa·s. The second one (Figure 4-3) is a sperm-like micro-

swimmer referring to the AFMS described in Ref. [7]. It has a thickness Wz = 20 µm, a 

cylindrical head with a radius RH = 20 µm, a tapered flagellum L = 200 μm, the width 

Wy = Wy0(1 – λX), where 0  X  1 is the length normalized by L, Wy0 = 20 μm, and the 

tapering index λ = 0.9 (see Chapter 3.9 for the power Λ = 1). Both micro-swimmers 

have the material properties: the storage Young’s modulus E = 10 MPa, material 

viscosity coefficient η = 10 Pa·s, and it is in the static fluids (u = 0). 
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Figure 4-2 and Figure 4-3 illustrate the fluid pressure distribution at t = 0.005 s. A 

vertical acoustic force Fext was applied at the right with a frequency of f = 1000 Hz and 

an amplitude of 2.7 N and 4 µN, for the uniform flagellum (Figure 4-2) and the sperm-

like micro-swimmer (Figure 4-3), respectively, to maintain an amplitude of y0a = 20 μm 

at the actuated end. It is observed that the average trajectory within a period of acoustic 

excitation is nearly a straight line parallel to the x-axis. The average (over one period) 

velocity in the first two periods varies (transient motion) and afterward stabilizes at 

383.4 μm/s (Figure 4-2) or 5537 μm/s (Figure 4-3). For the micro-swimmer herein, 

considering the fluid density ρ0 ~ 103 kg/m3, which leads to the Reynolds number Re = 

ρ0LU/μ = 7.668  10-4, which is sufficiently small to warrant the employment of the 

RFT (for the comparisons of Re, see Chapter 2.2.1). The stabilized terminal velocity 

Vave is obtained with the simulation domain having around 104 elements (Figure 4-2) or 

2  104 elements (Figure 4-3). Figure 4-4 illustrates the relative errors for the cases 

without and with head, respectively, in terms of the number of elements used in the FSI 

simulations. It is noted that the simulation results have converged (i.e., the deviation is 

within 5%) when the number of elements is more than 104, indicating that the FSI 

simulation is convergent and stable. 
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Figure 4-2. Examples of convergence analyses of the FSI simulation with common parameters L = 200 

μm, E = 10 MPa, η = 10 Pa·s, µ = 0.1 Pa·s, y0a = 20 μm, and f = 1000 Hz: the pressure distribution of a 

uniform flagellum without head at the end of the fifth actuation period (t = 0.005 s) with RH = 0, λ = 0, 

Wy0 = 12 µm, Wz = 40 µm, and Fa = 2.7 µN. 

 

 

Figure 4-3. Examples of convergence analyses of the FSI simulation with common parameters L = 200 

μm, E = 10 MPa, η = 10 Pa·s, µ = 0.1 Pa·s, y0a = 20 μm, and f = 1000 Hz: the pressure distribution of a 

tapered flagellum with head at the end of the fifth actuation period (t = 0.005 s) with RH = 20 μm, λ = 

0.9, Wy0 = 20 µm, Wz = 20 µm, and Fa = 4 µN. 

 

 



 
 

96 
 

Figure 4-4. Examples of convergence analyses of the FSI simulation with common parameters L = 200 

μm, E = 10 MPa, η = 10 Pa·s, µ = 0.1 Pa·s, y0a = 20 μm, and f = 1000 Hz: convergence analyses in terms 

of the number of elements for the cases with (red solid line) and without (blue dotted line) head. 

 

4.3 Correction to the RFT 

The correction of RFT for the case of non-circular cross-section has been developed 

in Ref. [226]. Here we briefly introduce the concept and then simplify it to a more 

convenient form, i.e., the CRFT. As we have mentioned before, in an LRN regime, the 

Navier-Stokes equations of fluid reduce to the linear Stokes equations [26] given by 

Eqs. (2.1a, b) in Chapter 2. Considering a slender body of unit length, let 

( ) ( ) ( ) T
,s S s S s⊥ =  S  be the distribution of Stokeslets [256], where the superscript T 

denotes transpose and 0 ≤ s ≤ 1 is the arclength along the body centerline. Applying the 

linear superposition method (for Eqs. (2.1a, b) are linear) to solve the fluid field and 

pressure distribution, the total fluid force Ff acting on a flagellum of unit length can be 

obtained as: 

( )
1

0
8 π df s s= − F S .  (4.1) 

Let P(s) and κ(s) be the coordinates and the half-width of the body at the position s 

along the body centerline, where κ(s) also indicates how slender the body is. If κ is 

sufficiently small and the cross-section is circular, one can obtain the classical 

expression of S in terms of the fluid field u(s) based on the SBT [21]: 
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( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )  ( )
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 
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
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⊥

−

−

−
= − +

+ − + − −      

 + + + − + −  
    



I x x
S u V y

S x

xS S P P S
P P

,  (4.2) 

where ( )ˆ sx  and ( )ˆ sy  are orthogonal unit vectors that are tangential and normal to the 

body centerline, respectively, I the identity matrix, Psδ = P(s) – P(s + δ) the distance 

vector, and V(s) the local translational velocity of the body.  

To deal with arbitrary flagellum cross-sections or 2D problems (i.e., with rectangular 

cross-sections), we follow the method proposed in [226] to introduce a dimensionless 

coefficient tensor K to the expression of the fluid velocity field. Based on the SBT for 

circular flagellum cross-section, the relative fluid velocity field can be expressed as: 

=U C S , where U(s) = u(s) – V(s) represents the relative velocity of the fluid with 

respect to the flagellum part at point s. For non-circular ones, it is assumed that the 

relative fluid velocity for the non-circular case is: ( )= +U C K S , where C is the 

resistive tensor, and the Stokeslets S is still based on the expression for a slender body 

with a circular cross-section. Note that the revised expression of U can still meet the 

zero-divergence condition for fluid velocity (i.e., Eq. (2.1b) as long as K is a symmetric 

tensor with zero divergence.  

In Ref. [226], K depends only on the shape of the cross-section, which can be 

directly estimated for some special shapes without performing FSI simulations. 

Nevertheless, in most cases, FSI simulations are required to determine K because the 

dynamics of a solid body (e.g., the wiggling profile of a flagellum), which affects U 

and K, cannot be determined a priori, as reported by Borker et al. [227]. Hence, we 
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assume that K = [Kij] (i, j = 1, 2 for 2D problems) is the only correction tensor to 

determine and that it must be determined based on the comparison between the FSI 

simulation and the SBT model. In the following, we reduce the corrected SBT to the 

corrected RFT by neglecting interactions between different parts of a flagellum. This is 

generally an acceptable simplification in the study of micro-swimmers [21] considering 

the limited accuracy in experimental observation. In RFT, the fluid forces Ff acting on 

a slender body are assumed to be proportional to the local velocities of the body. We 

shall then include K in the coefficients of proportionality to establish the CRFT. 

For shorthand, we recast Eq. (4.2) as: 

( ) ( ) ( ) ( ) s s s s= +   S κ U S ,  (4.3) 

where ( ) ( ) ( ) ( )ˆ ˆ2 4lns s s s= −      κ I x x , and ψ[S(s)] is the functional of Stokeslets 

S(s) and ψ(0) = 0. Taking the correction term K S  into account, Eq. (4.3) is rewritten 

as: 

( ) ( ) ( ) ( ) ( ) s s s s s= + +   S κ U K S S .  (4.4) 

The approximation of Eq. (4.4) can be made based on the scenario of a straight 

flagellum of a uniform cross-section. In this scenario, U and κ are constants, and the 

direction vectors x̂  and ŷ  are independent of position s, i.e., ( ) ˆs s=P x , and ˆs = −P x , 

which greatly simplifies the solution. An iterative procedure can then be adopted. In 

this case, Eq. (4.4) can be simplified as: 
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( ) ( ) ( )
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( ) ( ) ( )1
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4ln
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s s S s

s s s S s s s

s s







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−

−
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+ − + − −      

 + − + +  
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

I xxS U K S y

S x

S S
I xx

. (4.5) 

Denoted by ( )U s  and ( )U s⊥  the components of U(s) tangential and normal to the local 

centerline of a flagellum, respectively, the corresponding fluid forces in the RFT are 

formulated as: 

,    f fF c U F c U⊥ ⊥ ⊥= = .  (4.6a, b) 

When the body moves tangentially to its centerline, resulting in the Stokeslet vector 

( ) ( ) ˆs S s=S x , and the relative velocity ˆU=U x , then Eq. (4.5) is recast as (note we 

have assumed that K22 = −K11 due to the property of zero divergence of the tensor K): 

( ) ( ) ( ) ( ) ( )12111 ln 4 4 1 d
2ln 2 2

s

s

U S s S sKS s S s s s



 

−

−

 + −  = + + − − +  
   

 . (4.7) 

The zeroth iterative of Eq. (4.7) is expressed as: 

( ) ( )0

4ln
U

S s


= . (4.8) 

Replacing ( )S s  on the right side of Eq. (4.7) with the right-hand side of Eq. (4.8) 

reaches the first iterative of the tangential Stokeslet, expressed as: 

( ) ( ) ( )1 21111 ln 4 4 1
4ln 2ln 2
U KS s s s

 

  = + + − −  
  

. (4.9) 

Replacing ( )S s  on the right side of Eq. (4.7) with the right-hand side of Eq. (4.9) 

reaches the second iterative of the tangential Stokeslet, expressed as: 
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 + + 
    



. (4.10) 

The second-order approximation is normally accurate enough for the RFT [21]. Then 

the total tangential fluid force of the slender body of unit length can be obtained based 

on Eq. (4.1) and is expressed as: 
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The tangential coefficient of resistive force c  in the CRFT can be obtained from Eq. 

(4.11) by setting K11 = K, which is expressed as: 
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( ) ( ) ( )

2 2
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 
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. (4.12) 

It is found that the influence of δ on the integral is negligible (~10-8), which justifies 

RFT. To compare this expression with the classical one, we can construct the identical 

equation with non-zero constants b1, b2, and b3, which is expressed as: 

( )
( )
( )

3 2 2
1 1 2 1 2 2 31 2

2 3 2 4 3 2 2
3 3 3 3 1 1 2 3 3 1 3 1 2 3

21 1 b b b b b b bb b
b b b b b b b b b b b b b b

− + −
+ + = +

− + − − + −
. (4.13) 

If b3 = ln(1/κ) is much larger than b1 and b2, we can only keep the first term of the right 

side of Eq. (4.13), and accordingly, Eq. (4.12) will be simplified to 

( ) ( ) ( )

1
2

4

1 3 1π2π ln 2 1 ln 1
12ln 1 2 4 ln 1f

KF U O 
 

−      = − + + − − +     
      

. (4.14) 

When K = 0, Eq. (4.14) reduces to the classical RFT expression (cf. Eq. (19) in Ref. 

[21] or Eq. (3.21) in Chapter 3). However, in our work, ln(1/κ) is around 3, and K is 

uncertain. Therefore, the approximation of Eq. (4.14) does not work; instead, Eq. (4.11) 

should be used. 

When the body moves perpendicularly to its centerline, resulting in the Stokeslet 

vector ( ) ( ) ˆs S s⊥=S y , and the relative velocity ˆU⊥=U y , then Eq. (4.5) is recast as: 

( ) ( ) ( ) ( ) ( )12
22

1 ln 4 4 1 d
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s

s

S s S s
S s U S s K s s
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− ⊥ ⊥
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 .(4.15) 

The zeroth iterative of Eq. (4.15) is expressed as: 
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( ) ( )0

2ln
US s


⊥

⊥ = . (4.16) 

Replacing ( )S s⊥  on the right side of Eq. (4.15) with the right-hand side of Eq. (4.16) 

renders the first iterative of the normal Stokeslet, expressed as: 

( ) ( ) ( )1 2
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 
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. (4.17) 

Replacing ( )S s⊥  on the right side of Eq. (4.15) with the right-hand side of Eq. (4.17) 

reaches the second iterative of the normal Stokeslet, expressed as: 
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. (4.18) 

Then the total fluid force normal to the slender body of unit length can be expressed 

based on Eq. (4.1), which is expressed as: 
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.(4.19) 

The normal coefficient of resistive force c⊥  can be obtained from Eq. (4.19) by setting 

K22 = –K due to the zero divergence of K, which is expressed as: 

( ) ( ) ( )

2 2

2 3

1 π1 ln 2 1ln 21 2 2 122 24π
ln 1 ln 1 ln 1

KK

c 
  

⊥

  − + + − − +  
  = + +

 
 
 

. (4.20) 

Similarly, Eq. (4.19) can also be simplified under the condition of sufficiently large 

ln(1/κ), which is expressed as: 

( ) ( ) ( )

1
2

4

1 1 1π4π ln 2 1 ln 1
12ln 1 2 2 ln 1f

KF U O 
 

−

⊥ ⊥

      = − + − − − +     
      

. (4.21) 

When K = 0, Eq. (4.21) reduces the classical RFT expression (cf. Eq. (20) in Ref. [21] 

or Eq. (3.20) in Chapter 3). However, we use Eq. (4.19) in our work because ln(1/κ) is 
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not large, and K is uncertain. The proposed CRFT is then applicable to formulate the 

governing equations of an AFMS based on the bar-joint model. 

 

4.4 The governing equations of the flagellum for the bar-joint model 

Figure 4-5 demonstrates the bar-joint model of the AFMS. The flagellum is 

simplified into rigid bars with a constant length of 2l. They are indexed (denoted by i) 

from 1 to N and connected with linear torsion springs [43]. The ith spring joint connects 

the bars i and (i + 1) and the first (i = 1) bar is assumed to be rigidly connected to the 

head. The motion of the ith bar and the head (i = 0) can be represented by the vector of 

time-dependent variables Xi(t) = (xi, yi, θi)T, where xi and yi are coordinates of the 

midpoint of the ith bar (or the center of the head), and θi the angle of rotation with 

respect to the x-axis (anticlockwise rotation is taken as positive). Correspondingly, the 

velocity vector of the head (i = 0) and bars (i > 0) can be represented by 

T

, ,i i iix y 
 =  
 

X , where the overhead dot denotes the time derivative. A point P in the 

ith bar with the distance s from the joint (i – 1) has the coordinate Pi(s) expressed as: 

( ) ( ) ( ) T
cos , sini i i i is x s l y s l = + − + −  P . (4.22) 

Note that the coordinates of the head center P0 = (x0, y0)T is independent of s, which is 

employed to track the trajectory of the micro-swimmer. Differentiating the right-hand 

side of Eq. (4.22) with respect to time yields the translational velocity Vi(s): 

( ) ( ) ( )
( )

1 0 sin
0 1 cos

i

i
ii Vi i

i

i

x
s l

s s y
s l







 
 

− −   
= =    −   

 
 

V T X , (4.23) 
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where TVi(s) is the transformation matrix of velocity for the points in the ith bar. 

To simplify the derivation, we first assume that the swimmer suspends in a static 

fluid field, i.e., u = 0. Hence, the relative velocity U = –V, and the total fluid forces on 

a rigid slender body, i.e., Eqs. (4.6a, b), are recast to fF c V= −  and fF c V⊥ ⊥ ⊥= − . 

Based on the RFT, the resistive coefficients c  and c⊥  are assumed to be constant even 

if the body is flexible and curved, i.e., the tangential and vertical components of local 

fluid forces ff(s) at position s can be formulated as: ( ) ( )ff s c V s= −  and 

( ) ( )ff s c V s⊥ ⊥ ⊥= − . Consequently, the tensor of resistive coefficients Ci for the ith bar 

based on the CRFT can be expressed as: 

0
0

i
i

i

c
c⊥

− 
=  − 

C . (4.24) 

Note that Ci varies with i because the bar width may vary when considering a tapered 

flagellum. The fluid forces fflui(s) at position s of the ith bar is then expressed as: 

( ) ( ) 

( )

( )

1
flu

1

i Ri i Ri i

iRi i Ri Vi

ii

s s

s

s

−

−

=   

=

=

f T C T V

T C T T X

a X

, (4.25) 

where 
cos sin
sin cos

i i
Ri

i i

 

 

 
=  − 

T  is the transformation matrix of rotation and the 2  3 

resistive matrix ai(s) depends on the position s of the ith bar. We introduce the unit 

vectors e1 = (1, 0, 0)T, e2 = (0, 1, 0) T, and e3 = (0, 0, 1) T to facilitate derivations and the 

resultant fluid force vector Fflui for the ith bar. The latter is given by 
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I a P a e e X

Α X

, (4.26) 

where the operators  and  indicate cross and outer products of two vectors, 

respectively, the 3  3 tensor Ai is the fluid resistive matrix of the ith bar, and the 

augmented identity matrix 
T1 0 0

0 1 0a
 

=  
 

I  is employed to extend the number of rows 

from 2 to 3 (note that the third component of Ffuli is the resultant torque about the origin 

of the coordinate system due to fluid forces). We assume that the hydrodynamic 

resultant forces and torque on the circular head Fflu0 can be expressed as: 

0

0flu0 00

0 0
0

0 0
0 0

H

H

H H HR

xc
c y

c y c x c


 
 − 
  = − =  
  − −   
 

F A X , (4.27) 

where cH and cHR are coefficients of resistance and are dependent on the head geometry 

and fluid viscosity [257]. Note that for a 2D FSI simulation, a circular head is a cylinder 

instead of a sphere. In this case, cH should be proportional to the thickness of Wz with a 

coefficient of resistance related to the Reynolds number, expressed as [258]: 

( )
4π

1 2 ln Re 8
z

H
Wc 

=
−  − , (4.28) 

where Γ ≈ 0.577 is the Euler’s constant, and the Reynolds number of the head Re = 

2ρ0URH/μ. For the micro-swimmer herein, considering the fluid density ~ 103 kg/m3, 
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and the characteristic velocity U ~ 10-3 m/s, Re can be estimated to be 2RH/μ. The 

rotational drag coefficient of the head cHR is determined by [256]: 

24πHR H zc R W= . (4.29) 

Then the equilibrium equations for the whole micro-swimmer can be given by 

00 0
1

n

ii
i=

+ + =A X A X F 0 , (4.30) 

or in the matrix form: 

 
0

0 0+ =
 
 
 
 

X
A A F 0

X
, (4.31) 

where A0 and A are the resistive matrices of the head and bars (detailed expressions 

can be seen in Eqs. (B.4) and (B.7) in Appendix B), and F0 = [Fextx, Fexty, ext + x0Fextx 

– y0Fextx]T is the vector of the external actuation, containing horizontal and vertical 

forces (arising from the acoustic actuation) and a torque (about the origin, arising from 

the magnetic power) on the head. 

At the ith joint, the velocities determined from the two connected bars should be 

equal, i.e., Vi(2l) = Vi+1(0), which after substituting Eq. (4.23), gives rise to the 

kinematic constraints: 

( ) ( ) ( )1

1

2 0
i

Vi V i

i

l +

+

 
  − =

   
 

X
T T 0

X
, (4.32) 

where i runs from 1 to (N – 1). Since the first bar and the head are assumed to be rigidly 

connected, one can obtain the below ODEs in terms of the constraint: 
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( ) ( )

( )

0 11 3 3

11 3 3
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a H

a V H

R

R

= − + 

= − +   

=

X I V e e X

I T e e X

B X

. (4.33) 

For shorthand, Eqs. (4.32) and (4.33) can be combined as below (2N + 1) equations in 

terms of the constraints: 

0V
 

    =   − 
 

0 T X
0

I B X
, (4.34) 

where I is a 3  3 identity matrix, TV the matrix of kinematic constraints of neighboring 

bars (see Eq. (B.8)), and B the kinematic constraints between the first bar and the head 

(see Eq. (B.11)). 

The polymeric (viscoelastic) flagellum is described based on the discrete beam 

theory [223] in which the inherent damping in most polymers is nonnegligible based 

on our results in Chapter 3. The material of the micro-swimmer is considered to be a 

kind of isotropic polymer described by the Kelvin-Voigt viscoelastic model [237]. The 

moment induced by the torsion spring at the ith joint Mi is expressed in a forward 

difference formula as: 

11 1 1

2 2 2 2
i ii i i i i i

i
I I I IM E

l l
   


++ + ++ − + −

= + , (4.35) 

where Ii denotes the second moment of area of the ith bar, in which an average value of 

I between two neighboring bars is adopted to indicate the second moment of area at the 

ith joint in case the flagellum is non-uniform. For the moment equilibrium, as 

demonstrated in Figure 4-6, torques are taken about the origin. The reaction forces at 

the ith joint FRx and FRy can be determined by the balance of forces over the first i bars 
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and the head. The moment equilibrium of the structure before the ith joint leads to the 

below equations: 

( ) ( )

( ) ( ) ( ) ( )

flu 3 flu0 0 3
1

2T TT T
0 flu0 flu 30

1

0

2 d

i

i j
j

i l

i a a j
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l s s

=

=

= + + +

   −  + +  
   





F e F F e

P F I F I f e
, (4.36) 

where i runs from 1 to (N – 1). Substituting Eqs. (4.24), (4.25), (4.30) and (4.35) into 

(4.36) gives rise to the moment equilibrium of the structure, which are expressed as the 

below (N – 1) equations: 

 
0

0 E

 
  =
 
 

X
D D F

X
, (4.37) 

where D and D0 are the matrix of moment balance related to the bars and head, 

respectively, which are expressed in Eqs. (B.13) and (B.17), and FE is a list of torques, 

which is expressed in Eq. (B.19) in Appendix B. 

Finally, combining Eqs. (4.31), (4.34), and (4.37), the governing ODEs of the bar-

joint model based on the CRFT can be expressed as: 

0 0

0

0

V

E

−   
    
    =
    −
    

  

A A F
0 T 0X

I B 0X
D D F

. (4.38) 

The EOM (Eq. (4.38)) is a set of (3N + 3) ODEs, where the detailed expressions can be 

seen in Appendix B. For the swimmer suspends in a non-static fluid circumstance, i.e., 

u = 0, there will be some revisions in Eq. (4.38), and the corresponding detailed 

expressions can also be seen in Appendix B. The non-dimensionalization of Eq. (4.38) 
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can be taken by choosing the half-length of a bar l, the frequency of the acoustic 

actuation f, and the fluid viscosity μ as the reference variables based on the Buckingham 

π theorem [259]. The detailed dimensionless quantities are in Appendix C. Eq. (4.38) 

can be solved by using the built-in ODE solver ode15s in MATLAB [246]. 

 

 

Figure 4-5. The schematic of the bar-joint model of the AFMS, where the global coordinate system is 

established with the origin at the centroid of the head and the x- and y-axes being the longitudinal and 

transverse axes of the flagellum at the initial state, respectively. 

 

 

Figure 4-6. The diagram of force analysis for the bar-joint model. 
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     4.5 Convergence analyses of the bar-joint model 

Here we show an example of the convergence analysis of the bar-joint model. For 

the convenience of comparisons, all the geometric and material parameters have the 

same values as those in the 1D classical continuum model in Figure 3-30 in Chapter 3, 

in which the cross-section of the tapered flagellum is circular with the largest diameter 

Wy0 = 25 μm and the tapering index λ = 0.9. Hence, for the bar-joint model, if we take 

the diameter at position Pi(0) of a continuum flagellum as the diameter of the ith bar, 

i.e., Wyi, of a bar-joint flagellum, then Wyi can be derived given by 

( )
0

2 1
1   ,   1,2,...,yi y

l i
W W i N

L


− 
= − = 

 
. (4.39) 

The head is assumed to be a sphere with a radius of RH = 25 μm, and the effect of the 

spherical head on locomotion is accounted for by the coefficient of resistance cH given 

below as mentioned in Chapter 3: 

6πH Hc R= . (4.40) 

Other parameters in the bar-joint model are: K = 0 (i.e., for the circular cross-section, 

the CRFT reduces to the RFT), cHR = 0 for eliminating the resistive effect of head 

rotation, u = 0, Fextx = 0, Fexty = Facosωt, τext = 0, f = 4600 Hz, L = 180 μm, E = 10 MPa, 

η = 1730 Pa·s, µ = 1 Pa·s, and Fa = 344 µN to make y0a = 20 μm. 

For the bar-joint model of the AFMS with a head (RH = 25 μm), the number of bars 

N varies from 2 to 60, and Vave is the position change of the head in the fifth period 

times f. The result of Vave increases with N and levels off (with fluctuations) when N > 

20, as illustrated in Figure 4-7. Thus, we set N = 20 in the following sections of this 
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thesis. Note that the analytical result in Chapter 3 is ~350 μm/s when y0a = 20 μm. The 

converged result of the bar-joint model is ~260 μm/s, 25% smaller than the analytical 

result in Chapter 3. Such a deviation is in accordance with the expectation (see 

discussions in Refs. [17, 23]) because the 1D analytical model cannot involve the effect 

of rigid-body rotation which greatly affects locomotion. Other factors, such as the 

ignorance of inextensibility and large deflection, also contribute substitutionally to the 

error of the 1D analytical model. 

 

 

Figure 4-7. The convergence analysis of the bai-joint model in terms of the number of bars with 

parameters identical to results of Figure 3-30 in Chapter 3, i.e., the terminal velocity is around 350 μm/s 

when the amplitude is 20 μm. 

 

4.6 Determination of K 

The correction factor K is determined by comparing the terminal average velocities 

Vave obtained from the FSI simulations and the CRFT-based bar-joint model. As an 

example, Figure 4-8 shows the results of the CRFT-based bar-joint model when K 
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sweeps from 0.1 to 100 for the case of a uniform flagellum without a head. In solving 

the bar-joint model, we also set y0a = 20 μm and N = 20 to determine Vave (blue dotted 

curve in Figure 4-8), and the deviations (red curve in Figure 4-8) from the simulation 

result (383.4 m/s) has a sharp minimum at  K = 3.2, which is less than 1%. Note that 

it only takes several seconds to solve our CRFT model for a certain value of K but may 

take several minutes to reach K for the minimum error. 

In principle, adjusting K can lead to an excellent agreement between simulation and 

CRFT results. In the following estimate of K for different cases, we set the criterion of 

acceptable deviation in Vave to be 5% to balance the computational efficiency and 

accuracy and demonstrate several relations between K and the flagellum slenderness α 

(α = Wy/L) in Figure 4-9, Figure 4-10 and Figure 4-11. In order to ensure that the 

flagellum is still a slender body, we set α in the range of 0.05 – 0.07 [17]. Figure 4-9 

and Figure 4-10 show that K varies almost linearly with α, and the slope depends on the 

thickness Wz, for both the uniform flagellum without a head and the sperm-like micro-

swimmer with a rigid-cylindrical head, respectively. The detailed expressions of K in 

terms of  obtained through linear regression are listed in Table 4-1. 

In Table 4-1, one can note that the existence of a head can change the slope of the 

linear K -  relation from a negative value to a positive one. Besides, as observed in 

Figure 4-10, the variation of RH can hardly influence the K -  curve. In addition, K 

doubles when the depth Wz increases from 20 to 40 µm , as shown in Figure 4-9 and 

Figure 4-10, and also doubles when L increases from 200 to 400 µm, as shown in Figure 

4-11. These results suggest that, roughly speaking, K is linearly dependent on the 

volume of the flagellum. In Figure 4-11, α is sampled from 0.05 to 0.1, and the fitting 
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equation obtained in the α range of 0.05 to 0.07 is used. In the 0.07 to 0.1 range, the 

difference between the fitting equation and the actual results of K is still below 3%.  

When a tapered flagellum is discretized into a bar-joint model, these bars have 

uniform dimensions. In this case, the fitting equations of K for a uniform flagellum may 

be directly employed. For example, consider the micro-swimmer with L = 200 µm and 

RH = Wz = Wy0 = 20 µm, assume that the width of the ith bar, i.e., Wyi, follows the 

tapering equation Eq. (4.39) and that the slenderness of the ith bar, i.e., αi, equals Wyi/L, 

the correction factor of the ith bar, i.e., Ki, can then be estimated according to the fitting 

curve of K in Figure 4-11. In this way, we can directly obtain the terminal average 

velocity Vave based on the CRFT model without implementing the FSI simulation. We 

herein designate this method as the direct-K method. Straightforward though this 

method is, its outcomes can deviate from those of the FSI simulation, and the 

corresponding error in terms of the tapering index λ is illustrated in the blue dotted line 

in Figure 4-12. For the classical RFT model, i.e., Ki = 0 for each bar, the error exceeds 

90%. For the direct-K method, it is noted that the error is around 12% for λ > 0.2, which 

indicates that if we directly apply the fitting expression of K arising from the case of a 

uniform flagellum to the case of a tapered one, the error can decrease by about 80% 

from the results of RFT. However, the deviation is still considerable.  

More accurate results for a tapered flagellum can be achieved by assuming that all 

bars have identical K, i.e., Ki = K. In this way, we treat a tapered flagellum to be an 

equivalent uniform one with an effective K, and thus this method is regarded as the 

effective-K method. The red circles in Figure 4-12 represent the effective K at different 

λ, and the red solid line is the corresponding linear fitting: K = –1.29λ + 6.43. It is noted 

that in Figure 4-12 for λ ≤ 0.1, the magnitude of the effective K is nearly identical to 
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that of the case of λ = 0, and the error of the effective-K method is close to 0, indicating 

that the effect of tapering on hydrodynamics only works when λ > 0.1.  

Note that the above results of K are obtained with the specific material and actuation 

parameters. We find that y0a and η hardly affect the determination of K, while f, E and 

μ can have considerable influence. For example, for the micro-swimmer as shown in 

Figure 4-3 in Chapter 4.2, we varied f, E and μ to check their influence on K. It is noted 

that the combined term β = μf/E is an important non-dimensional parameter in the 

governing equations of flagellum’s hydrodynamics. For example, β enters into the 

elasto-hydrodynamic penetration length [38]: ( ) ( )4 2πEI c f⊥ , proportional to 4 1  , 

and the sperm number [116]: ( ) ( )4 2πL c f EI⊥ , proportional to 4  . Hence, we plot 

the relations between K and β in Figure 4-13 with the corresponding fitting equations 

listed in Table 4-1. It is noted that when β is between 5 and 20, the variations of K in 

terms of f, E and μ collapse to the same curve. When β > 20, the effects of E and μ are 

still the same and tend to level off; nevertheless, the effect of head excitation frequency 

f tends to lean upwards.  The difference in K increases with the increase in f and μ (or 

decrease in E) when β > 20 because raising f can considerably enhance Vave (which 

leads to a larger K) as it can induce the change of the flagellum’s wiggling profile (e.g., 

bringing about smaller wavelength). Instead, increasing μ or reducing E only leads to 

larger resistive forces under the same wiggling profile, which results in a small 

enhancement in Vave. 
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Figure 4-8. Estimate of K for uniform flagella with parameters η = 10 Pa·s, µ = 0.1 Pa·s, and y0a = 20 

μm (other paramours are provided in Table 4-1.): example of the error (red solid line) Vave obtained from 

the CRFT model (blue dashed line) based on the simulation result (Vave = 383.4 μm/s) when K varies. 

 

 

Figure 4-9. Estimate of K for uniform flagella with parameters η = 10 Pa·s, µ = 0.1 Pa·s, and y0a = 20 

μm (other paramours are provided in Table 4-1.): relations between K and α for a flagellum without head. 
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Figure 4-10. Estimate of K for uniform flagella with parameters η = 10 Pa·s, µ = 0.1 Pa·s, and y0a = 20 

μm (other paramours are provided in Table 4-1.): relations between K and α for an AFMS with head. 

 

 

Figure 4-11. Estimate of K for uniform flagella with parameters η = 10 Pa·s, µ = 0.1 Pa·s, and y0a = 20 

μm (other paramours are provided in Table 4-1.): relations between K and α for AFMSs with different 

flagellum length. 
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Figure 4-12. Estimate of K for tapered flagella with parameters η = 10 Pa·s, µ = 0.1 Pa·s, and y0a = 20 

μm (other paramours are provided in Table 4-1.): relations between K and λ and between the error and λ, 

respectively, where the fitting curve of K (red solid line) is obtained by the effective-K method, and the 

error of Vave (blue dotted line) is obtained by the direct-K method. 
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Figure 4-13. Estimate of K for tapered flagella with parameters η = 10 Pa·s, µ = 0.1 Pa·s, and y0a = 20 

μm (other paramours are provided in Table 4-1.): the relation between K and β obtained by varying f (red 

cross), E (blue circle), or μ (blue star), respectively. 

 

Table 4-1. The fitting expressions of K in terms of α, λ or β under different combinations of parameters.  

L 
(μm) 

RH 
(μm) 

Wz 
(μm) 

Wy0 
(μm) 

λ f 
(Hz) 

E 
(MPa) 

μ 
(μm) Expression of K Fig. 

200 0 20 10~14 0 1000 10 0.1 K = –104α + 6.08  4-9 
200 0 40 10~14 0 1000 10 0.1 K = –204α + 15.32 4-9 
200 10 20 10~14 0 1000 10 0.1 K = 7α – 0.72 4-10 
200 10 40 10~14 0 1000 10 0.1 K = 90α + 3.32 4-10 
200 20 20 10~14 0 1000 10 0.1 K = 72α – 0.5 4-10 
200 20 40 10~14 0 1000 10 0.1 K = 86α + 3.84 4-10 
400 20 20 20~40 0 1000 10 0.1 K = 39.27α + 3.854 4-11 
200 20 20 20 0.1~0.9 1000 10 0.1 K = –1.29λ + 6.43 4-12 

200 20 20 20 0.9 500~7000 10 0.1 K = (0.036β2 + 2.40β 
       + 24.5)/(β + 0.12) 4-13 

200 20 20 20 0.9 1000 3~70 0.1 K = (0.087β2 – 2.07β 
       + 106)/(β + 7.78) 4-13 

200 20 20 20 0.9 1000 10 0.05~0.7 K = (0.016β2 + 1.40β 
       + 41.4)/(β + 0.89) 4-13 

 

     4.7 Examples of verification between the CRFT model and FSI simulations 

In order to explicate the validity of the method for correcting RFT, we compare three 

head trajectories (or the trajectories of the right end of the flagellum for the case without 

head) calculated by FSI simulations and CRFT. All the figures in this chapter exhibit 

the trajectories and their errors from FSI simulations and the CRFT models for the 

acoustic-actuation period from 20 to 25. The corresponding geometries of AFMSs at 

four instances which equally divide the last period in the FSI simulation (outline) and 

the CRFT model (centerline) are given as the insets. 

Figure 4-14, Figure 4-16 and Figure 4-18 show the trajectories of FSI simulations 

and CRFT models for the case of a uniform flagellum without a head, a uniform 

flagellum with a head, and a tapered flagellum with a head, respectively. To 
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approximate the trajectories based on the CRFT model, the corresponding values of K 

are determined to be 3.2, 6.3, and 5.2, respectively, based on the fitting equations 

suggested in the last chapter. It is noted that each of the trajectories obtained based on 

the CRFT model has an offset from the FSI-simulated one, reflecting the slight 

difference in the propulsive forces. This is due to the determination of K, in which we 

allowed a 5% tolerance in the motility difference. The distance between the positions 

of the AFMS head obtained from the FSI simulation and those from the CRFT solution, 

after dividing by the flagellum length L, is defined as the position error of the CRFT 

solution, which are shown in Figure 4-15, Figure 4-17 and Figure 4-19 (from 20 to 25 

periods) and their insets (for first 40 periods). One may note that in Figure 4-15 and 

Figure 4-19, there are some small spikes, whereas in Figure 4-17 the errors are simply 

oscillating. Several extreme error points in Figure 4-15, Figure 4-17 and Figure 4-19 

are indicated in Figure 4-14, Figure 4-16 and Figure 4-18, respectively, where the 

corresponding differences between the two solutions are indicated by dashed lines. It is 

noted that the spikes of errors are due to the oscillatory motions, resembling the 

interference of waves. 

The insets in Figure 4-15, Figure 4-17 and Figure 4-19 show that the position errors 

in 40 periods are well below 4%. Because of the small motility difference (i.e., the 

tolerance in determining K), the trajectory deviations are caused; nevertheless, these 

deviations are well-bounded and remain small when normalized by the length of the 

flagellum. Such small errors indicate that the CRFT-based bar-joint model, as described 

in Chapter 4.4, renders an excellent approximation to numerical simulations. It should 

be noted that such position errors can be further reduced if we set a more stringent 

requirement for accuracy in determining K. 
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Figure 4-14. Verifications of the CRFT model: the head trajectories obtained from the FSI simulations 

(red lines) and CRFT-based bar-joint models (blue lines) for the cases of a uniform flagellum without 

the head, and marked points indicate that the trajectory errors reach their extreme values, where the 

corresponding distances between the pairs of trajectory points are indicated by the dashed lines. To have 

a clearer comparison, only the periods from 20 to 25 are shown. 
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Figure 4-15. Verifications of the CRFT model: the trajectory errors obtained from the FSI simulations 

and CRFT-based bar-joint models for the cases of a uniform flagellum without the head, and the 

corresponding trajectory errors which are the distances between two head positions at the same time 

scaled by the length of the flagellum, respectively. The marked points indicate that the trajectory errors 

reach their extreme values, where the corresponding distances between the pairs of trajectory points are 

indicated by the dashed lines in Figure 4-14. To have a clearer comparison, only the periods from 20 to 

25 are shown. The inset shows the trajectory errors for a long time (40 periods). 

 

 

Figure 4-16. Verifications of the CRFT model: the head trajectories obtained from the FSI simulations 

(red lines) and CRFT-based bar-joint models (blue lines) for the cases of a uniform flagellum with the 

head, and marked points indicate that the trajectory errors reach their extreme values, where the 

corresponding distances between the pairs of trajectory points are indicated by the dashed lines. To have 

a clearer comparison, only the periods from 20 to 25 are shown. 
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Figure 4-17. Verifications of the CRFT model: the trajectory errors obtained from the FSI simulations 

and CRFT-based bar-joint models for the cases of a uniform flagellum with the head, and the 

corresponding trajectory errors which are the distances between two head positions at the same time 

scaled by the length of the flagellum, respectively. The marked points indicate that the trajectory errors 

reach their extreme values, where the corresponding distances between the pairs of trajectory points are 

indicated by the dashed lines in Figure 4-16. To have a clearer comparison, only the periods from 20 to 

25 are shown. The inset shows the trajectory errors for a long time (40 periods). 
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Figure 4-18. Verifications of the CRFT model: the head trajectories obtained from the FSI simulations 

(red lines) and CRFT-based bar-joint models (blue lines) for the cases of a tapered flagellum with the 

head, and marked points indicate that the trajectory errors reach their extreme values, where the 

corresponding distances between the pairs of trajectory points are indicated by the dashed lines. To have 

a clearer comparison, only the periods from 20 to 25 are shown. 

 

 

Figure 4-19. Verifications of the CRFT model: the trajectory errors obtained from the FSI simulations 

and CRFT-based bar-joint models for the cases of a tapered flagellum with the head, and the 

corresponding trajectory errors which are the distances between two head positions at the same time 

scaled by the length of the flagellum, respectively. The marked points indicate that the trajectory errors 

reach their extreme values, where the corresponding distances between the pairs of trajectory points are 

indicated by the dashed lines in Figure 4-18. To have a clearer comparison, only the periods from 20 to 

25 are shown. The inset shows the trajectory errors for a long time (40 periods). 

 

4.8 Steering strategies based on the CRFT-based bar-joint model 

We expect that the proposed 2D CRFT-based bar-joint model can ultimately be 

employed for the path planning and navigation control of AFMSs because of the 
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excellent agreement between the FSI and the simplified model. Here, as the final 

demonstration, we employ CRFT to study the turning strategy for an AFMS, which is 

essential and inevitable in practical applications. It is noted that FSI simulation for 

turning is unconverted in our trials due to excessively distorted elements; hence, we 

only provide the results of the CRFT model. 

In the following demonstration, the AFMS is identical to the one shown in Figure 4-

18. We expect that the external force Fext (Fext = [Fextx, Fexty]T) can be applied to the 

head of an AFMS through applying acoustic waves. According to the results in Chapter 

3.2, under an acoustic plane wave rendering a 2D fluid displacement field Aacou with 

the amplitude Aacou, the oscillation amplitude of the head (RH = 20 μm) of the AFMS 

Aamp is approximately 1.67Aacou if the sound wavelength is far greater than the 

dimensions of the head. In this case, the oscillatory velocity in the fluid is nonzero, i.e., 

u = ∂Aacou/∂t.  

One may note from the trajectories in Figure 4-18 that an AFMS tends to move along 

the direction perpendicular to Fext which induces head oscillations, which is also the 

case in the experiments of acoustic actuation [252]. Hence, steering an acoustically 

propelled AFMS might be achieved by rotating Fext and we can design such a turning 

method using only acoustic power based on the CRFT model. Considering an acoustic 

plane wave that can gradually change the direction of propagation, hence changing the 

direction of Fext on the head of an AFMS. As shown in Figure 4-20, we let the angle of 

the acoustic wavevector rotate from 90° to 60° (counterclockwise from the positive 

direction of the x-axis) in 10 periods. After the change, the angle of the micro-swimmer 

is around 5°. Maintaining Fext at 60° for 100 periods, the angle of the AFMS gradually 

drifts to be close to 60°. Further turning Fext to 150° in 10 periods leads the angle of the 
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micro-swimmer to move along the straight line of 60°. The detailed trajectory of the 

AFMS is shown in Figure 4-21.  

The above example shows that using only acoustic power to control AFMSs is 

possible in theory, although the orientation relation between an AFMS and acoustic 

wavevector is nontrivial, depending on the parameters of the actuation and the swimmer 

[260]. If the direction of wavevectors can be accurately adjusted, these waves can 

induce head oscillation and flagellum wiggling for propulsion and steering. In these 

attempts, our AFMS model can provide the formalism for trajectory prediction and 

manipulation, which will lay the foundation for controlling micro-swimmers to carry 

out precision therapies for cancers and other diseases requiring non-invasive and 

localized treatments. 

If a torque can be applied to the head of an AFMS, turning will be easier and more 

controllable. This can be achieved by introducing magnetic particles (MPs) into the 

head [202], resulting in a magnetized head along an easy axis (m), and applying an 

external magnetic field (b) unparallel with the head’s easy axis, resulting in a torque 

τext = m  b on the head, as sketched in the inset in Figure 4-23. Note that the acoustic 

power is still used for propulsion but not for steering. The external magnetic field used 

in hyperthermia-based therapy is usually around 10 mT [261], and the volumetric 

magnetic susceptibility is in the order of 105 for ferromagnetic MPs [262], accordingly, 

the magnetic-induced torque by single MP of 1 m is around 4  10-12 N·m. With 5 

MPs in the head, the total magnetic torque on the head is 2  10-11 N·m, which is 

assumed in the following calculation. For such a magneto-acoustic method, we design 

the variations of Fextx, Fexty and τext, as shown in Figure 4-22, which results in the 

trajectory of the AFMS as shown in Figure 4-23. Hence, the proposed magneto-acoustic 

maneuver is feasible based on the existing technologies and our theoretical analysis of 
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magneto-acoustic steering can be employed for targeted therapies that require accurate 

and rapid navigation. 

 

 

Figure 4-20. Application of the CRFT model where the AFMS is steered by acoustic waves: the rotation 

angle with respect to the x-axis in terms of actuation period for the acoustic waves (blue dashed line) and 

the AFMS (red solid line); the time t is in terms of the number of acoustic periods. 
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Figure 4-21. Application of the CRFT model where the AFMS is steered by acoustic waves: the 

trajectory and orientations of the AFMS within 150 periods; the insets sketch the acoustic steering 

strategy, and the time t is in terms of the number of acoustic periods. 

 

 



 
 

129 
 

Figure 4-22. Application of the CRFT model where the AFMS is steered by a magneto-acoustic strategy: 

the applied acoustic forces for propulsion in terms of actuation period along x (blue dashed line) and y 

(red solid line) directions (Note: the actuation forces along y (x) direction linearly decreases (increases) 

between the 60th period and the 70th period to assist turning), and from the 30th and 60th periods, a 

magnetic torque is applied. 

 

 

Figure 4-23. Application of the CRFT model where the AFMS is steered by a magneto-acoustic strategy: 

the trajectory and orientations of the AFMS within 100 periods; the insets sketch the remote magneto-

acoustic steering strategy. 
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4.9 Summary 

In this chapter, we have described a CRFT-based 2D bar-joint model for modeling 

AFMSs propelled by acoustic actuation. The main purpose of this work is to allow a 

simplified AFMS model to be correctable, verifiable, and in the future, applicable for 

practical applications. The CRFT is inspired by the derivation of the RFT for the non-

circular flagellum and only introduced the single correction factor K. However, K 

depends on not only geometrical parameters but also other factors influencing a 

flagellum’s wiggling profiles, such as material properties and actuation frequency. The 

physical meaning of K is the difference of fluid velocities between the case of a simple 

cylinder flagellum (3D case) and the case of an AFMS with a cuboid flagellum (2D 

case) and a rigid head. Hence, although the CRFT is derived from the non-circular SBT, 

K should be determined after some knowledge of the motility of an AFMS is obtained. 

In the exercises, we determined K by comparing the terminal average velocities 

obtained from the CRFT-based bar-joint models propelled by acoustic waves and those 

from the FSI simulations. After correction, it is shown that the difference in the detailed 

trajectory can be well below 4%. In our work, K is very weakly dependent on the head 

radius RH and linearly dependent on the slenderness  and the tapering factor . Hence, 

it is not difficult to determine these dependencies and then employ CRFT to optimize 

the geometry of an AFMS for maximizing the motility. With CRFT, the controlled 

navigation of AFMSs can also have a high level of robustness. For this point, we have 

demonstrated the possible strategies for turning an AFMS using acoustic or magneto-

acoustic fields, which indicates that the current CRFT model includes enough 

information to deal with a turning activity. Note that the accuracy of our CRFT model 

depends on the accuracy of the FEM simulation. The results of FEM simulation need 

to be verified by experiments, which will be demonstrated in the next chapter.   
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Chapter 5. Experimental verification 

5.1 Fabrication 

The main purpose of this chapter is to verify our CRFT models by comparing 

terminal velocities of AFMSs observed in experiments to those predicted by theoretical 

calculation. Firstly, we will describe the fabrication of AFMSs. A commercial ultra-

violet (UV) curable resin (Phrozen Water Washable Resin, Model Gray, Phrozen, 

Taiwan) [7, 8] was employed to fabricate AFMSs based on the technique of digital light 

processing (DLP) due to its high dimensional precision and low fabrication cost. As 

shown in Figure 5-1, a commercial 3D printer (Sonic Mini 8K, Phrozen, Taiwan) was 

employed for photolithography with horizontal and vertical resolutions of 22 μm and 

20 μm, respectively. Note that DLP printers can achieve higher precisions, such as those 

based on two-photon polymerization [263], and it may be needed in the future precision 

controls of AFMSs. In this work, to verify our theory, a low-cost DLP printer has suited 

the need. 

A plate connected to a vertical guide and a lead screw is used as the base of printing, 

and at the bottom is a vessel containing a liquid photosensitive resin. During a layer-

by-layer photocuring process at a UV wavelength of 405 nm, the plate is immersed in 

the resin solution. After printing, the plate can be detached from the guide and lead 

screw, and the product would generally be removed by a metal scraper. However, in 

this work, an AFMS to be printed is around 1 – 2 mm long and less than 0.5 mm thick, 

which is too small to be manually chipped. Therefore, we used a salt brick as the base 

of printing, as demonstrated in Figure 5-2, and dissolved the salt brick in water to 

release printed products.  
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Figure 5-3 exhibits a rectangular sample (used for materials characterization) 

adhering to the salt brick after photocuring. Immersing the salt brick in water for some 

time, the sample can be shed. If the AFMSs are too small to be seen with the naked eye, 

it will be difficult to transfer them to an experimental platform to observe their motion. 

Hence, Kaynak et al. [7] fabricated AFMSs in situ. Owing to the limitation of our 

laboratory equipment, transferring AFMSs from the printing stage to a testing channel 

is necessary (this will also be the case in future applications). Hence, we have to print 

AFMSs with a length over 1 mm to make them visible to human eyes and then 

transferable to an AFMS testing channel. Figure 5-4 and Figure 5-5 exhibit the photos 

of the AFMSs tested in this work, taken by using an optical microscope. They are 

designated as L1 (i.e., Figure 5-4 with 1 mm long) and L2 (i.e., Figure 5-5 with 2 mm 

long), respectively. The thicknesses of L1 and L2 are homogeneous (0.3 mm for L1 and 

0.5 mm for L2), which indicates that the cross-sections of these AFMSs are rectangular. 

Note that such a large dimension may lead to invalidity of the RFT if using water as the 

testing fluid, because the Reynolds number may be not sufficiently low. Hence, we used 

an aqueous solution for testing AFMSs, which is sodium polyacrylate (50% 

concentration, Macklin, China) with a viscosity of 0.1 Pa.s at room temperature. This 

ensures the Reynolds number in the range of 0.009 – 0.09, satisfying the LRN condition. 

We also examined the PEG resin employed by Kaynak et al. [7] (the name of PEG can 

be seen in Chapter 3.1). However, the printed swimmer is transparent and difficult to 

observe (in contrast, the commercial resin is gray and can be seen easily). Thus, the 

PEG resin was not used to fabricate the AFMS in this work. However, the viscoelastic 

properties of the cured PEG resin were also characterized. The corresponding FSI 

simulations can be compared with the experiments [7] in terms of terminal velocities. 
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Figure 5-1. Fabrication of AFMSs and samples: the 3D printer for photolithography with photosensitive 

resin inside its vat, and the building plate is immersed in the resin. 
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Figure 5-2. Fabrication of AFMSs and samples: the modified building plate before photolithography, 

which is a rectangular cavity adhered with a salt brick. 

 

 

Figure 5-3. Fabrication of AFMSs and samples: after photolithography, the material sample adheres to 

the salt brick. 
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Figure 5-4. Dimensions of AFMSs and the material sample: the dimensions of AFMS L1, which is 

around 1 mm long and 0.3 mm thick. 
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Figure 5-5. Dimensions of AFMSs and the material sample: the dimensions of AFMS L2, which is 

around 2 mm long and 0.5 mm thick. 

 

5.2 Materials characterization 

Because the polymer we adopted is a frequency-dependent viscoelastic material, 

frequency-sweeps in dynamic mechanical analysis (DMA, Thermal Analysis System 

DMA 1, Mettler-Toledo, Switzerland) were conducted. As we have mentioned in 

previous chapters, the Kelvin–Voigt model is employed to describe the response of the 

polymer under a periodic loading with an excitation frequency f. Thus, the relation 

between the stress σ and strain ε is expressed as [237]: 

2π
EE

f t


  


= +


, (5.1) 

where E and γ are the storage modulus and the loss factor (i.e., the material damping in 

Chapter 3) [239] (one may note that Eq. (5.1) is equivalent to Eq. (3.8)). In DMA, a 

sample, as shown in Figure 5-6, was periodically loaded in the cantilever mode. The 

force and displacement amplitudes and their phase shift are then analyzed to determine 

E and γ [264]. 

The upper limit of the frequency sweep using the DMA is 100 Hz, but the actuation 

frequency for AFMS is much higher. Hence, the principle of time-temperature 

superposition (TTS) is employed, which states that a physical property G (representing 

E and γ) measured under temperature T and frequency f  is equivalent to that measured 

under temperature T0 and frequency aTf, expressed as [251]: 

( ) ( )0, ,TG f T G f T= , (5.2) 

where aT is the shift factor. WLF equation is employed to determine aT [265]: 
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where C1 and C2 are positive constants dependent on the material and the reference 

temperature T0. Using TTS, E and γ measured at different temperatures and frequencies 

can collapse onto a master curve. Here, DMA tests were performed for both cured 

Phrozen and PEG resins. The reference temperature in the WLF equation (Eq. (5.3)) 

was preset to be room temperature (i.e., T0 = 25 ℃). The constants C1 and C2 in Eq. 

(5.3) were determined to let all data points collapse to a master curve with minimized 

deviations. 

 

 

Figure 5-6. Dimensions of AFMSs and the material sample: the dimensions of the sample for material 

characterization. 

 

5.3 Experimental setup 

Figure 5-7 shows an experimental platform of the acoustically actuated AFMS. A 

polydimethylsiloxane (PDMS) plate with a through slot was fabricated using the 

standard soft lithography and bonded onto a glass slide to form a swimming channel. 

A piezoelectric transducer (PZT5 60  3  0.6 mm3, Shaoxing Shenlei Ultrasonic 
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Equipment, China) with a resonant frequency of 28 kHz was then attached adjacent to 

the PDMS channel, where acoustic waves will generate and propagate from the 

piezoelectric transducer to the fluid inside the channel. Because the sound impedance 

of the PDMS matches that of the aqueous solution inside the channel, a sound field of 

traveling waves will prevail if the wall of the PDMS chamber is sufficiently thick [266]. 

The total thickness of the wall of the chamber is designed to be 10 mm (50  20 mm 

for the outer contour and 35  10 mm for the channel), which is much thicker than the 

channel height of 2 mm and can eliminate the possible reflection of waves from PDMS 

boundaries. 

A waveform generator (DG2052, RIGOL, China) was connected to an amplifier 

(ATA-2032, AIGTEK, China) to introduce a harmonic waveform to the acoustic 

transducer and the peak-to-peak voltage (Vpp) is determined by the combination of the 

generator and amplifier. A stereomicroscope (SZM-6, Weiscope, China) with a high-

speed camera (E3ISPM09000KPB 186fps, Sony, Japan) was used to observe and 

record the motion of an AFMS. The amplitudes of actuation and swimming velocities 

of AFMSs can be achieved in terms of different actuation frequencies and voltages. 
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Figure 5-7. Experimental platform and devices. The inset in the upper right corner shows the flexibility 

of the PDMS channel; the inset in the lower right corner illustrates how to actuate the micro-swimmer 

by an acoustic transducer. 

 

5.4 Results of materials characterization 

Note that the storage modulus E cannot be accurately determined by DMA owing to 

the inaccuracy in the measurement of displacement (note that DMA is accurate in 

determining the phase shift between stress and strain response), we employed the 

impulse excitation technique (IET) to determine E at room temperature by probing the 

natural frequency of the primary flexural vibration mode [267]. 

For the Phrozen resin, the temperature range was from -10 ℃ to 35 ℃ with an 

interval of 5 ℃ (i.e., 10 sets of data). For each temperature, the loading frequency was 

from 0.1 Hz to 100 Hz. We determined C1 = 40 and C2 = 290, and the resulting master 

curves of storage modulus and loss factor in terms of the equivalent frequency (log base) 

are illustrated in Figure 5-8 and Figure 5-9, respectively. The IET test (equivalent to 

the lowest frequency) for E is 100 MPa, which roughly conforms to the expectation 

shown in Figure 5-8. For the PEG resin, the temperature range was from 5 ℃ to 25 ℃ 

with an interval of 5 ℃. For each temperature, the loading frequency was also from 0.1 

Hz to 100 Hz. We obtained C1 = 10 and C2 = 60, and the resulting master curves of 

storage modulus and loss factor in terms of the equivalent frequency are exhibited in 

Figure 5-10 and Figure 5-11, respectively. The IET test (equivalent to the lowest 

frequency) for E is around 20 MPa, which conforms to the expectation shown in Figure 

5-10. It is noted that the results of  do not fit well onto a master curve, and this implies 

that the TTS assumption does not work well for the PEG resin. Thus, we choose the 

commercial Phrozen resin as the material of the AFMS for further experiments.  
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Figure 5-8. Results of material characterization by TTS test: Young’s modulus in terms of the actuation 

frequency for the commercial photopolymer. Different colors indicate different ranges of test 

temperature, where the actuation frequency ranges are the same for all the tests, which are from 0.1 Hz 

to 100 Hz. 

 

 

Figure 5-9. Results of material characterization by TTS test: loss factor in terms of the actuation 

frequency for the commercial photopolymer. Different colors indicate different ranges of test 
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temperature, where the actuation frequency ranges are the same for all the tests, which are from 0.1 Hz 

to 100 Hz. 

 

 

Figure 5-10. Results of material characterization by TTS test: Young’s modulus in terms of the actuation 

frequency for PEG material. Different colors indicate different ranges of test temperature, where the 

actuation frequency ranges are the same for all the tests, which are from 0.1 Hz to 100 Hz. 
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Figure 5-11. Results of material characterization by TTS test: loss factor in terms of the actuation 

frequency for PEG material. Different colors indicate different ranges of test temperature, where the 

actuation frequency ranges are the same for all the tests, which are from 0.1 Hz to 100 Hz. 

 

5.5 Comparisons between theoretical and experimental results 

Directional motions of the AFMSs of the two lengths (i.e., L1 and L2) actuated by 

sound waves have been observed. The acoustic frequencies were set at 100 and 500 Hz 

and the Vpps are from 50 to 250 V with an interval of 50 V. Figure 5-12 demonstrates 

the way to estimate the amplitude of the head oscillation, wherein we take L1 at 100 

Hz as an example. Note that the camera on the microscope ran at 100 fps and the AFMS 

oscillated at 100 Hz. It means that in each frame the camera captured an overlapped 

image of the AFMS at different positions within one period of oscillation. Hence, the 

half-width of the blurred head of the AFMS image minus the half-width of the head 

renders the amplitude of head oscillation, as shown in Figure 5-12. The resonant 

frequency of the piezoelectric transducer is 28000 Hz, and the largest frequency we 

used herein is just 500 Hz. Therefore, the resonance of the transducer does not influence 

the intensity of the acoustic field. Hence, as shown in Figure 5-13, the measured 

oscillation amplitude of the AFMS is proportional to the input voltage. The difference 

in the amplitude between L1 and L2 at the same frequency and voltage is 

indistinguishable. 

The terminal velocity averaged within one second Vave can be achieved by measuring 

the distance of swimming captured by the camera. Figure 5-14 exhibits the movement 

of L1 actuated at 100 Hz and 200 Vpp. The FSI simulation and the CRFT model can 

be implemented based on the same actuation conditions and the material parameters 

characterized above. The corresponding instants of motion in the same time series of 
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the FSI simulation and the CRFT model are shown in Figure 5-15 and Figure 5-16, 

respectively, where colors on the AFMS in Figure 5-15 indicate total displacements, 

and dotted lines in Figure 5-16 indicate the centerline of the flagellum. Note that red 

and blue colors in Figure 5-15 represent the largest and smallest displacements, 

respectively The head is in greenish blue in the second picture of Figure 5-15 because 

the flagellum happens to swing towards the head at that moment; for other cases, the 

head is in red, which means the flagellum swing away from the head. The comparison 

among the CRFT model, simulation and experimental results suggests that the FSI 

simulation and the CRFT model are reliable. 

Figure 5-17, Figure 5-18, Figure 5-19 and Figure 5-20 illustrate the results of 

terminal velocities obtained from experiments, FSI simulations and the CRFT model, 

respectively. Figure 5-17 and Figure 5-18 are for L1, Figure 5-19 and Figure 5-20 for 

L2. Among these results, the largest Reynolds number is 0.09 for L2 at 250 Vpp and 

100 Hz, which indicates that the swimming problem of the AFMS herein is in the LRN 

regime, and the theoretical methods based on the RFT should be effective. As shown 

in Figure 5-17, Figure 5-18, Figure 5-19 and Figure 5-20, as expected, the results of the 

CRFT model conform well to the simulation results. For the experimental ones, it is 

noted that all the deviations between the experimental results and the simulations are 

less than 30% for Vpp larger than 160 V and 50% for Vpp less than 160 V. The larger 

deviation for smaller Vpp might be due to the tendency to enlarge the amplitude of head 

oscillation in experiments. Because the resolution of the image for recording the head 

amplitude based on a normal video camera is low, when the amplitude is not large, it is 

difficult to distinguish the overlapped image of the AFMS. For the same reason, a larger 

actuation frequency may also cause a larger deviation. In addition, deviations for L1 

are overall less than those for L2. The smaller deviation for L1 might arise from the 
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fact that a smaller swimmer can achieve a lower Reynolds number and higher 

effectiveness of the RFT. One may note that both the length of the AFMS and the 

actuation frequency for Figure 5-20 are large, it could be understood that the deviation 

in Figure 5-20 is the largest within the four cases. 

Several causes of deviations must be stressed. First, the extrapolated viscoelastic 

parameters of the AFMS material based on the TTS introduced errors; second, the head 

oscillation amplitude determined based on a normal video camera has limited accuracy, 

as shown in Figure 5-12, the images from our camera were blurred because of the low 

shutter speed, it is possible to obtain an inaccurate head’s oscillation amplitude; and as 

what we have mentioned in Chapter 3, the swimmer velocity is proportional to the 

square of amplitude, as shown in Figure 3-30, thus, the error can also be magnified; 

third, the experimental AFMS has a finite depth, but the numerical model is 2D (i.e., 

infinite depth).  These issues all contributed to the 30 - 50% errors in the prediction of 

the motilities of the AFMSs, and thus, we think that such a level of deviation is 

reasonable and acceptable. 

 For the PEG material, we only implemented its FSI simulation to gain Vave under the 

same conditions as those in the literature [7] except that we do not know the fluid 

viscosity. As listed in Table 5-1, we tested some viscosities to achieve Vave for 

comparison and chose the one where the error is the smallest. In this case, the fluid 

viscosity is 20 Pa.s. However, the accuracy of this method of viscosity estimation needs 

to be further verified. 
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Figure 5-12. Estimate of actuation amplitudes of AFMSs: an example of extracting the amplitude of an 

AFMS (dimension L1), where the actuation frequency is 100 Hz, and the measured amplitudes are 0.11 

mm for 100 Vpp and 0.17 mm for 200 Vpp, respectively. 
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Figure 5-13. Estimate of actuation amplitudes of AFMSs: amplitudes of AFMSs under 5 actuation 

voltages. 

 

 

Figure 5-14. An example of how to estimate the terminal velocity of an AFMS, where the dimension is 

L1, actuated under 100 Hz and 200 Vpp: screenshots captured by a high-speed camera within one second. 

 

 

Figure 5-15. An example of how to estimate the terminal velocity of an AFMS, where the dimension is 

L1, actuated under 100 Hz and 200 Vpp: results of corresponding FSI simulation within one second, 

where colors on the swimmer indicate displacements. 
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Figure 5-16. An example of how to estimate the terminal velocity of an AFMS, where the dimension is 

L1, actuated under 100 Hz and 200 Vpp: results of corresponding CRFT model within one second, where 

dotted lines indicate the centerline of the flagellum. 

 

 

Figure 5-17. Results of terminal velocities obtained from experiments, FSI simulations and the CRFT 

model, respectively, with parameters of dimension L1 under 100 Hz, K = 94 for the CRFT model. 
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Figure 5-18. Results of terminal velocities obtained from experiments, FSI simulations and the CRFT 

model, respectively, with parameters of dimension L1 under 500 Hz, K = 86 for the CRFT model. 

 

 

Figure 5-19. Results of terminal velocities obtained from experiments, FSI simulations and the CRFT 

model, respectively, with parameters of dimension L2 under 100 Hz, K = 160 for the CRFT model. 

 

 

Figure 5-20. Results of terminal velocities obtained from experiments, FSI simulations and the CRFT 

model, respectively, with parameters of dimension L2 under 500 Hz, K = 177 for the CRFT model. 
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Table 5-1. Results of terminal velocities of AFMSs made of PEG material, which are estimated by FSI 

simulations and compared with the experimental results in the literature [7]. 

Amplitude 
(μm) 

Velocity by simulation 
(μm/s) 

Velocity in the Ref. [7] 
(μm/s) 

12 234.26 220 
19 595.48 380 
26 1106.6 620 
33 1763.6 930 
40 2613.8 1200 

 

5.6 Summary 

In this chapter, we established a testing platform to experimentally verify the 

theoretical calculations of the AFMSs actuated by acoustic waves according to the 

CRFT-based bar-joint model proposed in this thesis. We demonstrated the printed 

AFMSs using a DLP printer and characterized the viscoelastic properties of the UV-

cured resins. After that, we described the setup of the experimental platform for 

observing the motion of an acoustically actuated AFMS. Swimming velocities obtained 

from experiments, FSI simulations and CRFT models were presented and compared. 

The deviations are within 50%, corroborating that our theoretical treatment of the 

acoustic actuation for a head-flagellum structure in the previous chapters is sensible. 
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Chapter 6. Conclusions and suggestions for future work 

6.1 Conclusions 

The current research first brings to light the motility and steerability of AFMSs 

propelled by acoustic waves. The AFMS we considered in this thesis is composed of a 

rigid head and a flexible flagellum with a length of hundreds of microns. Actuated by 

acoustic waves, the head oscillates with an amplitude larger than fluid particles (due to 

the acoustic radiation), which beats the flagellum to achieve propulsion. The 1D EOM 

for the flagellum, treated as an Euler-Bernoulli viscoelastic beam, was derived based 

on the RFT to predict its linear locomotion. After that, to consider the steering 

performance under magneto-acoustic actuation, we developed a 2D bar-joint model 

based on the CRFT to predict the locomotion. A testing platform was established to 

experimentally verify our theoretical calculations. Several conclusions were obtained 

as follows: 

1) The oscillating amplitude of the head depends linearly on the sound pressure and is 

inversely proportional to the actuation frequency. It is noted that the high motility of 

an AMFS is due to resonance and that a moderate material damping can broaden the 

SFB at a low sperm number and promote the motility at the non-resonant region. 

Besides, it is preferred to design and fabricate an AFMS with a non-uniform 

flagellum with a tapered cross-section. 

2) The RFT deals with cylindrical cross-sections, therefore deviated from the micro-

swimmers with rectangular cross-sections prepared through lairized printing. We 

developed a correction to the theory, i.e., the CRFT, and a CRFT-based bar-joint 

model that can reduce the deviations to below 5% in comparison with FSI 

simulations. The demonstration of AFMSs turning using acoustic or magneto-

acoustic fields indicates that the possible means to steer AFMSs. 
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3) Deviations between the experiments and CRFT model in the prediction of the 

motilities of the AFMSs are less than 50%, corroborating that our theoretical 

treatment of the acoustic actuation for an AFMS in the previous chapters is sensible. 

 

6.2 Suggestions for future work 

A further study on steering characteristics of the AFMSs under a complex acoustic 

field will be conducive to the control of trajectories. Note that the current empirical 

method for the determination of K in the CRFT model is tedious and ungeneralizable 

to the scenarios beyond the parametric space studied in this thesis, as it requires FSI 

simulations. An analytical expression of K as a function of geometric, materials, and 

actuation parameters of an AFMS (i.e., without simulation) is desired, which will be 

our effort in future work. In addition, the effectiveness of the CRFT model for steering 

has not been examined in experiments (we have only examined the straight-line motion). 

It is necessary to fabricate AFMSs embedded with magnetic nanoparticles to determine 

their motility and magneto-acoustic turning performance to verify our model. As the 

final remark, we stress that this work only analyzed the propulsion caused by 

oscillations of the head of an AFMS. The effect of acoustic streaming on the tip of a 

flagellum, as discussed in [13, 16], was not analyzed. Such a tip force field may also 

induce the wiggling of a flagellum. In our model, it may also be simplified to be the 

external force, F0, acting on the tip. The detailed expression of such tip-induced 

propulsion is worth exploring in future work. 

Although our experiments for the straight-line propulsion of an AFMS have been 

demonstrated in this thesis, there exists a huge gap between laboratory studies and 

practical applications. The study of the strategies for precise and robust manipulation 

of artificial micro-swimmers is still in its infancy, which should be the pivotal factor 
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for enabling their applications. Our studies in Chapter 4 theoretically realized the 

steering of an AFMS under external actuation. Further investigations could focus on 

the trajectory planning for the demanded application. For example, how to make the 

swimmer stagnate to implement some targeted missions (e.g., drug release or 

thermotherapy), how to preciously control its trajectory to pass through a complex 

biological duct, etc. The strategy we proposed, which is to propel by acoustic waves 

and turn by a magnetic field, may be a feasible scheme to realize steering. To enhance 

their practical engineering applications, it is necessary to further explore more complex 

fluid environments and consider the mechanical properties of the AFMSs. For instance, 

the influence of dynamic flow and uneven boundaries on the actuation of the micro-

swimmers, as well as the nonuniform stiffness of the micro-swimmer need to be studied. 

In addition, the functionality of the acoustically actuated micro-swimmers needs to be 

further improved to achieve specific biomedical applications.  

The next studies should focus on the experimental implementation of swimmer 

navigation using an experimental platform shown in Figure 6-1. It comprises a PDMS 

channel, acoustic transducers, electromagnetic coils, a needle hydrophone, an inverted 

microscope, a high-speed camera, and an optical thermometer. The PDMS channel, for 

simulating a crooked or branched biological duct, can be fabricated through a 

replication process (cf., Ref. [268]). An organic fluid with a viscosity of 0.01~0.1 Pa.s 

(cf. the gastric fluid [235]) can be employed, which leads to a low Re (10-3~10-2) for a 

100-μm flagellum with a speed of 1 mm/s. The motion of the micro-simmer in the fluid 

can be recorded using the inverted microscope and the high-speed camera. For acoustic 

steering, as suggested in Chapter 4, only stationary acoustic transducers are required. 

For a rotating acoustic field, contactless ultrasound transducers (cf. [269]) placed on a 

rotary stage must be employed. The induced sound pressure can be recorded using the 
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hydrophone. In addition, an induction-heating coil may be employed to demonstrate the 

heating performance of micro-swimmers loaded with magnetic nanoparticles, 

simulating thermotherapy. 

The visualization and precious steering of AFMSs in vivo may be further considered 

when it comes to a medical application. It is not straightforward to overcome these 

interdisciplinary challenges. Scientists in various fields should cooperate to achieve the 

leap from laboratory trials to practical applications. 

 

 

Figure 6-1. Experimental platform for validating and demonstrating steering strategies (the micro-

swimmer and fluid channel are exaggerated for clarity). 
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Appendices 

A. Analytical solutions of massless elastic flagellum for 1D propulsion 

For a massless elastic flagellum, i.e. ρs = 0 and η = 0, we will have H = 0 and γ = 0 

based on Eq. (3.23). Then, a dimensionless diffusion equation with boundary conditions 

is formulated as: 
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We prescribe that the diameter of the cross-section of the flagellum varies according 

to the linear function Eq. (3.53). The substitution of Eq. (3.53) into Eq. (A.1) gives the 

expression of J as: 

( ) 40J J h= ,   (A.2) 

where ( ) ( ) ( )4 40 π 0 64sJ d L=  and 1h X= − . If λ = 0, Eq. (A.1) will be reduced to 

a simple diffusion equation as mentioned before [35, 38]. If λ ≠ 0, we can consider Z as 

a constant ( ) ( )
1
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df E c X x⊥  , then we can substitute the independent variable X with 

h to transform the governing equation into a Cauchy–Euler equation of order 4, 

expressed as:   
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The general solution can be expressed as: 

( ) PDE
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where i denotes the imaginary unit, and the eigenvalues rPDEn denote the four roots of 

the characteristic polynomial which is given by 
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According to the convention that we use only the real part of the complex number as a 

representation of the physical quantity, we will reach the four coefficients Gn based on 

the four boundary conditions in (A.3), formulated as: 
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Note that we need to recall 1h X= −  to restore Eq. (A.4) with respect to X. 

Ultimately, we should substitute the real part of Eq. (A.4) into Eq. (3.31) to reach the 

non-dimensional terminal velocity. 

 

B. Expressions of the EOM for the bar-joint model for steering  

The EOM (Eq. (4.38)) is a set of (3N + 3) ODEs, in which the velocity vectors are: 
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and the velocity vector of the head: 

T
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The 3  3n resistive matrix of the flagellum is expressed as: 

 1 2 ... ...i n=A A A A A ,   (B.4) 
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and the 9 components of Ai are respectively expressed as: 
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The resistive matrix of a head, as given in Eq. (4.27), is expressed as: 
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The matrix of kinematic constraints of neighboring bars is expressed in the form of: 
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The 3  3N matrix B, obtained from the kinematic constraint between the first bar and 

the head, is expressed as: 

 0 ...=B B 0 0 0 0 ,   (B.11) 

where 
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The matrix of torque balance related to the joints D is expressed in the form as: 
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where i runs from 1 to (N – 1), and j from 1 to (i + 1). The expression of row vector Dij 

is dependent on the relation between i and j: when j < i, Dij is expressed as: 
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when j = i, Dij is expressed as: 
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when j = i + 1, Dij is expressed as: 
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The matrix of torque balance related to the head is expressed as: 
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where the row vector D0i is expressed as: 
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The vector of velocity-independent torques is expressed as: 
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where the ith component FEi is expressed as: 
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When a micro-swimmer suspends in a non-static fluid circumstance, e.g., in a plane 

acoustic field with the velocity of the fluid at the location of the ith bar ui = (uix, uiy, 0)T 

(it is u0 at the head), then for the relative velocity U = u – V, the equations of local fluid 

forces will be recast as ( ) ( ) ( )ff s c u s c V s= −  and ( ) ( ) ( )ff s c u s c V s⊥ ⊥ ⊥ ⊥ ⊥= − . 

Eventually, the governing equations Eq. (4.38) will maintain the form except that the 

right-hand side non-homogenous terms must be revised to: 
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C. Non-dimensional terms of the bar-joint model for steering based on the 

Buckingham π theorem  

The Buckingham π theorem [259] is employed for non-dimensionalization. We 

assume that the set of ODEs of the bar-joint model (i.e., Eq. (4.38)) can be written as: 

( ), , , , , , , , , , , , , , , 0H HR Hg l f x u t s I E c c c R F   = ,   (C.1) 

where x represents xi and yi, u represents uix and uiy, c represents c  and c⊥ , and F and 

τ indicate all the forces and torques. If the 3 fundamental dimensions are denoted by: 

M = dimensions of mass, 

L = dimensions of length, 

T = dimensions of time, 

then, the 16 physical variables and their dimensions can be expressed as: 

[l] = L, [f] = T-1, [μ] = ML-1T-1, [x] = L, [u] = LT-1, [t] = T, [s] = L, [I] = L4, [E] = ML-

1T-2, [η] = ML-1T-1, [c] = ML-1T-1, [cH] = MT-1, [cHR] = ML2T-1, [RH] = L, [F] = MLT-2, 

[τ] = ML2T-2.   (C.2) 
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We take the half-length of each bar l, the frequency of acoustic actuation f, and the fluid 

viscosity μ as reference variables, then there will be 13 dimensionless Π products: 

( )1 2 3 4 5 6 7 8 9 10 11 12 13, , , , , , , , , , , , 0f              = ,   (C.3) 

where 

( )1 1 , , ,f l f x = , ( )2 2 , , ,f l f u = , ( )3 3 , , ,f l f t = , ( )4 4 , , ,f l f s = , 

( )5 5 , , ,f l f I = , ( )6 6 , , ,f l f E = , ( )7 7 , , ,f l f   = , ( )8 8 , , ,f l f c = , 

( )9 9 , , , Hf l f c = , ( )10 10 , , , HRf l f c = , ( )11 11 , , , Hf l f R = , 

( )12 12 , , ,f l f F = , ( )13 13 , , ,f l f   = .   (C.4) 

We assume Π1 = lafbμcx, i.e., Π1 = (L)a(T-1)b(ML-1T-1)c(L); for M: c + 0 = 0; for L: a 

– c + 1 = 0; for T: -b – c + 0 = 0. Then a = -1, b = 0, c = 0, thus, Π1 = l-1f0μ0x = x/l. 

We assume Π2 = lafbμcu, i.e., Π2 = (L)a(T-1)b(ML-1T-1)c(LT-1); for M: c + 0 = 0; for L: 

a – c + 1 = 0; for T: -b – c – 1 = 0. Then a = -1, b = -1, c = 0, thus, Π2 = l-1f-1μ0u = u/(lf). 

We assume Π3 = lafbμct, i.e., Π4 = (L)a(T-1)b(ML-1T-1)c(T); for M: c + 0 = 0; for L: a 

– c + 0 = 0; for T: -b – c + 1 = 0. Then a = 0, b = 1, c = 0, thus, Π3 = l0f1μ0t = ft. 

We assume Π4 = lafbμcs, i.e., Π8 = (L)a(T-1)b(ML-1T-1)c(L); for M: c + 0 = 0; for L: a 

– c + 1 = 0; for T: -b – c + 0 = 0. Then a = -1, b = 0, c = 0, thus, Π4 = l-1f0μ0s = s/l. 

We assume Π5 = lafbμcI, i.e., Π5 = (L)a(T-1)b(ML-1T-1)c(L4); for M: c + 0 = 0; for L: a 

– c + 4 = 0; for T: -b – c + 0 = 0. Then a = -4, b = 0, c = 0, thus, Π5 = l-4f0μ0I = I/l4. 

We assume Π6 = lafbμcE, i.e., Π7 = (L)a(T-1)b(ML-1T-1)c(ML-1T-2); for M: c + 1 = 0; 

for L: a – c – 1 = 0; for T: -b – c – 2 = 0. Then a = 0, b = -1, c = -1, thus, Π6 = l0f-1μ-1E 

= E/(fμ). 
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We assume Π7 = lafbμcη, i.e., Π9 = (L)a(T-1)b(ML-1T-1)c(ML-1T-1); for M: c + 1 = 0; 

for L: a – c – 1 = 0; for T: -b – c – 1 = 0. Then a = 0, b = 0, c = -1, thus, Π7 = l0f0μ-1η = 

η/μ. 

We assume Π8 = lafbμcc, i.e., Π6 = (L)a(T-1)b(ML-1T-1)c(ML-1T-1); for M: c + 1 = 0; 

for L: a – c – 1 = 0; for T: -b – c – 1 = 0. Then a = 0, b = 0, c = -1, thus, Π8 = l0f0μ-1c = 

c/μ. 

We assume Π9 = lafbμccH, i.e., Π13 = (L)a(T-1)b(ML-1T-1)c(MT-1); for M: c + 1 = 0; for 

L: a – c + 0 = 0; for T: -b – c – 1 = 0. Then a = -1, b = 0, c = -1, thus, Π9 = l-1f0μ-1cH = 

cH/(lμ). 

We assume Π10 = lafbμccHR, i.e., Π14 = (L)a(T-1)b(ML-1T-1)c(ML2T-1); for M: c + 1 = 

0; for L: a – c + 2 = 0; for T: -b – c – 1 = 0. Then a = -3, b = 0, c = -1, thus, Π10 = l-3f0μ-

1cHR = cHR/(l3μ). 

We assume Π11 = lafbμcRH, i.e., Π1 = (L)a(T-1)b(ML-1T-1)c(L); for M: c + 0 = 0; for L: 

a – c + 1 = 0; for T: -b – c + 0 = 0. Then a = -1, b = 0, c = 0, thus, Π11 = l-1f0μ0RH = RH/l. 

We assume Π12 = lafbμcF, i.e., Π12 = (L)a(T-1)b(ML-1T-1)c(MLT-2); for M: c + 1 = 0; 

for L: a – c + 1 = 0; for T: -b – c – 2 = 0. Then a = -2, b = -1, c = -1, thus, Π12 = l-2f-1μ-

1F = F/(l2fμ). 

We assume Π13 = lafbμcτ, i.e., Π13 = (L)a(T-1)b(ML-1T-1)c(ML2T-2); for M: c + 1 = 0; 

for L: a – c + 2 = 0; for T: -b – c – 2 = 0. Then a = -3, b = -1, c = -1, thus, Π13 = l-2f-1μ-

1τ = τ/(l3fμ). 

Based on the above procedure, the following non-dimensional terms are introduced: 
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The dimensionless governing equations of Eq. (4.38) can then be reached, where the 

three variables l, f, and μ become unity, and other physical quantities can be directly 

replaced according to Eq. (C.5). 
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