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ABSTRACT 

For navigation tasks, particularly within autonomous driving systems, accurate and 

robust localization is the critical aspect. While global navigation satellite systems 

(GNSS) are a widespread choice for localization, it has exhibited drawbacks such 

as susceptibility to issues like multipath and non-line-of-sight reception. Vision-

based localization offers an alternative by relying on visual cues, circumventing the 

use of GNSS signals. In this study, we proposed a visual localization method aided 

by a prior 3D LiDAR map. Our approach involves reconstructing image features 

into multiple sets of 3D points using a localized bundle adjustment-based visual 

odometry system. Subsequently, these reconstructed 3D points are aligned with the 

prior 3D point cloud map, enabling the tracking of the user's global pose. The 

proposed visual localization methodology boasts several advantages. Firstly, the 

aided prior maps contribute to improving the robustness in the face of variations in 

ambient lighting and appearance. Additionally, it capitalizes on the prior 3D map 

to confer viewpoint invariance. The key idea of point cloud registration for the 

proposed approach determines geometric matching to establish the accurate 

position and orientation of a camera within its surroundings. This is achieved by 

contrasting the geometric features present in the camera's image with those stored 

in a reference map. The method identifies and aligns the geometric points between 

the camera image and the prior 3D point cloud map. Notably, our method is also 

conducive to the utilization of cost-effective and lightweight camera sensors by 

end-users. The experiment results show the proposed methods are accurate and 

frame rates without the need for supplementary information. 
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1. INTRODUCTION 

1.1  Research Background 

The industry and academics have become interested in autonomous driving systems 

topic as the development of robotics has grown rapidly in recent decades. For many 

navigation and localization tasks, accurate positioning is an essential factor, 

specifically for autonomous driving systems. Localization entails the machine's 

acquisition of its own motion state, whereas navigation involves the machine's 

perception of the environment and independent traversal to the intended destination 

[1]. Once localized, the robot gains the ability to autonomously chart its movement 

trajectory. To achieve consistent navigation, it is imperative to establish a 

foundation of robust and dependable localization. The primary challenge lies in 

ensuring enduring stability and precise localization under challenging 

environmental circumstances and during instances of extreme motion. Global 

Navigation Satellite Systems (GNSS) is the traditional methods to provide the 

position of a robot. While GNSS have enjoyed widespread usage for many years, 

they still exhibit certain limitations. GNSS systems offer precision within a few 

meters but lack orientation information. Notably, their positioning accuracy faces 

restrictions within urban canyons, with a tolerance of approximately 100 meters due 

to the influence of non-line-of-sight (NLOS) and multipath effects [2], which are 

caused by the signal occlusion and reflection. However, the error is unacceptable 

for vehicle navigation. The major limitation derives from various factors prevailing 

in densely built areas, encompassing structures like buildings, obstacles, and the 

high demand for navigation services [3].  



 16 

Therefore, Simultaneous Localization and Mapping (SLAM) is one of the efficient 

alternative techniques which estimate the vehicle's post at the same time build the 

map of the surrounding environment. Camera and Light Detection and Ranging 

(LiDAR) is the most common sensor of SLAM which are the visual SLAM and 

LiDAR SLAM, respectively. 

LiDAR is a popular sensor for mapping as it provides the accurate 3D points (point 

clouds) of the surrounding environment. The LiDAR-based navigation solution is 

mainly executed by the point cloud registration methods, such as the representative 

iterative closest point (ICP) [4] and Normal Distribution Transform (NDT) 

approach [5]. The emergence of the point cloud map matching-based localization 

method [6] has garnered considerable attention owing to its impressive accuracy 

and robustness. The fundamental concept involves aligning real-time point clouds 

obtained from LiDAR scans with prior point cloud maps, enabling the estimation 

of vehicle positions within the map [7]. Akai et al. [8] introduce a road marking 

detection approach employing LiDAR reflective intensity data to construct a pre-

built map, which is then matched using the NDT approach. However, this method 

necessitates a substantial number of distinctive landmarks for successful system 

operation.  

LiDAR sensors provide the larger Field of View (FOV) of the information of a 3D 

map. However, the unaffordable cost of LiDAR sensors leads to the LIDAR sensors 

being difficult to popularize. Autonomous driving vehicles adhering to Society of 

Automotive Engineers (SAE) Level 3 [9] or higher standards remain a niche sector 
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due to the costliness of LiDAR technology. Although Toyota showcased a potential 

SAE Level 4 service during the Tokyo 2020 Olympic Village operations, it has not 

yet gained widespread traction in the market. This service employed LiDAR 

sensors, which incur higher costs compared to cameras. Integrating LiDAR into 

consumer-oriented autonomous driving vehicles escalates operational expenses, 

making it financially impractical for companies. By contrast, visual SLAM, which 

uses a camera as the main sensor, provide a more lightweight and cheaper approach 

[10].Consequently, the adoption of monocular camera-based localization as a 

substitute for LiDAR-based localization presents an attractive avenue.  Monocular 

cameras are widely accessible on low-cost and compact platforms. While 

monocular cameras do not directly provide range information, they furnish 

abundant visual data that can be used to establish correspondences with reference 

images. Therefore, there exists promise in investigating an efficient and robust 

camera-based localization solution within the framework of a prior point cloud map. 

1.2  Objectives 

The core concept explored in this study around geometric matching for visual 

localization, a process facilitated by the utilization of a monocular camera and a 

prior map. This paper introduces an economical camera-based localization solution 

which complemented by a prior 3D point cloud map established through LiDAR 

data. However, the point cloud data presents distortion, a pivotal aspect in 

constructing accurate prior 3D point cloud maps. The essence of correcting this 

distortion lies in estimating the LiDAR's trajectory during its scanning phase. This 
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research employs ground-truth data to furnish actual positions, inclusive of angular 

velocity and acceleration data for LiDAR. Moreover, motion information is gleaned 

from LiDAR data. The actual location is determined via linear interpolation based 

on temporal variations and positional shifts.  

Firstly, the system reconstructs the localized environment by the visual data which 

provides the sparse and representative 3D feature points, known as the local points 

map (LPM). The visual information provides a robust initial estimation 

concurrently. Subsequently, armed with the initial pose estimate and the generated 

local points map, the iterative closest point (ICP)-based [4] method is adopted. This 

ICP process aligns the LPM with the prior 3D point cloud map, yielding the 

system's pose within the map. However, a scale issue occurs between the 3D points 

of the LPM and the prior map due to the motion estimation based on monocular 

camera. To address this, the paper presents a 7-DoF transformation alignment 

achieved through non-linear least squares minimization using the g2o [11] 

framework and the Levenberg-Marquardt algorithm [12].  

1.3  Overview 

This research provides a method to localize the user positioning in a 3D LiDAR 

map with only the monocular camera. Therefore, this research first reviews the 

difficulties and existing solution of the methodology of SLAM, Scene 

representations, and LiDAR distortion via literature reviews (Section 2). Then, this 

paper states the methodology of this research about mapping and localization 

(Section 3). After that, states the experiment results with finding and practical issues 
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related to the finding of the proposed research method performance (Section 4). 

Finally, summarizes all the chapters and discusses possible future research (Section 

5). 
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2. LITERATURE REVIEW 

2.1. Simultaneous Localization and Mapping (SLAM) 

SLAM is the approach when the robot localizes in an unknown environment and 

simultaneously constructs a map of its surroundings [13]. The sensor on the robot 

is used for relative observations of several unknown landmarks as the robot is 

moving in the environment, which is shown in Figure 1. The process of SLAM is a 

recursive estimation process which considered a probability problem[14]. The 

problem can be written as a probability distribution: 

                                              P(𝐱𝐤, 𝐦 |𝐙𝟎:𝐤, 𝐮𝟎:𝐤, 𝐱𝟎) ,                                          (1) 

k : Time instant 

𝐱𝐤 : Vector of vehicle location and orientation 

𝐮𝐤 : Control vector of state 𝐱𝐤 between time k-1 to k 

𝐙𝐤,𝐢 : Observation of the ith landmark taken at time k 

𝐦 : Set of landmarks 

𝐙𝟎:𝐤 : Set of observation form time 0 to k 

𝐮𝟎:𝐤 : Set of control vector form time 0 to k 
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Figure 1. Process of SLAM: Estimated map and trajectory (yellow) and ground 

truth (white) 

SLAM mainly include data processing, mapping analysis and loop closure detection 

[15]. Data processing mainly uses the data from the sensor to estimate the pose of 

the robot. Mapping analysis uses the robot's pose to generate or optimize the map 

and the trajectory. Loop closure detection considers whether the robot's position is 

passed position or not. Therefore, the process of data processing can further 

optimize the robot's pose. The standard architecture of SLAM is illustrated in Figure 

2.  

 

Figure 2. The standard architecture of SLAM[16] 

Different sensors, such as camera, LiDAR and sonar, can be used for SLAM (Figure 

3). Most autonomous driving systems use LiDAR SLAM or Visual SLAM which 

mainly use LiDAR or camera sensors to provide data. 
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Figure 3. Stereo camera, LiDAR, SONAR 

 

2.1.1. LiDAR SLAM 

In LiDAR SLAM, the primary data source comprises LiDAR sensors that supply 

point cloud data. The robot's pose estimation is achieved through consecutive scans. 

During the mapping process, the LiDAR data is employed for scan-matching, which 

calculates motion estimation and the creation of a comprehensive 3D map [17]. The 

commonly adopted method involves utilizing the Iterative Closest Point (ICP) 

algorithm for registering and aligning 3D point clouds [18], [19]. Nevertheless, this 

process often incurs higher computational costs due to the search for point 

correspondences which is coupled with a sensitivity to minimization. To address 

this, KD-tree structures are employed to expedite the search for the nearest point 

[17]. Graph-based optimization techniques are further employed to mitigate local 

errors by representing robot trajectories and maps [20]. Additionally, feature-based 

methods are applied for loop closure, enhancing the global consistency of the map 

[21], [22]. This approach proves particularly adept at generating highly accurate 3D 

maps, capitalizing on the precise range information furnished by the LiDAR sensor. 
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2.1.2. Visual SLAM 

Due to the costliness of LiDAR sensors, their application is limited, particularly on 

low-cost and compact platforms. Consequently, Visual SLAM emerges as a viable 

alternative for these platforms. Visual SLAM constitutes a methodology for 

localizing through visuals, utilizing images as the primary information source [10]. 

Among the prevalent techniques, the most widely adopted involves matching image 

features to estimate the robot's motion and constructing a feature map. 

In the early stages, most visual SLAM methods relied on filtering frameworks such 

as the particle filter or Extended Kalman filter (EKF) to formulate probability 

models [18]. Chiuso et al. [19] proposed a method using monocular images to 

reconstruct the 3D feature points map by Structure from Motion (SFM) in real-time. 

Mono-SLAM [20] and OpenVINS [21] devised a similar approach, employing an 

Extended Kalman filter (EKF) while incorporating a local loop closure process for 

estimating feature positions and camera poses. However, EKF is susceptible to 

linearization challenges stemming from inconsistencies. In response, researchers 

have proposed enhancements in parameterization. For instance, Eade and 

Drummond [22] employed a local filter to build sub-maps. For global optimization 

in SFM, Bundle Adjustment (BA) [23] is a widely employed technique. This 

principle forms the foundation of parallel tracking and mapping (PTAM) [22] , 

which leverages keyframe BA for simultaneous tracking and mapping. Strasdat et 

al. [24] conducted a comparative analysis of these approaches, revealing that 



 24 

keyframe BA achieves an optimal balance between accuracy and computational 

efficiency. 

The camera is the main sensor of Visual SLAM such as RGB-D camera, monocular 

camera and stereo camera. Monocular Cameras are cheaper and more common on 

robots and different SLAM technology. However, the monocular camera has the 

biggest challenge of 3D mapping which has the inherent scale ambiguity. The scale 

problem is the main error effect as the scale drifts over time and cannot be observed 

[25]. The benefits of the monocular camera are can seamlessly switch between 

environments of different scales, such as an indoor environment and a large outdoor 

environment. The stereo camera and RGB-D camera is the camera sensor which 

can provide the scale information of each image pixel. The stereo camera uses two 

different-angle cameras to provide different views of images (called the multiple 

view geometry) which can estimate the depth of each pixel which is shown in Figure 

4. The RGB-D camera includes a monocular camera, IR transmitters and IR 

receivers which use infrared to provide depth Information. However, the range of 

detection is limited. The monocular camera provides more flexibility in range 

detection.  
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Figure 4.Geometry of stereo camera 

To estimate the scale of the monocular camera, Knorr et al. [26] proposed a method 

to determine the scale by using the front cameras to track the user's faces and the 

back camera to track the reconstruction features. However, this method is difficult 

to use in autonomous driving systems as the driver environment is different from 

the road environment. Another method which focuses on autonomous driving 

systems is to assume the local planarity and the height of the camera between the 

ground is known [27]–[29]. Therefore, this method simplifies the process of scale 

estimation. Strasdat et al. [30] proposed the monocular SLAM method based on the 

keypoint featured which uses the Lie group and Lie algebra of similarity 

transformations to estimate the motion and map structure. 

2.1.3. Visual Localization within Prior Point Cloud Map  

Recently, researchers have introduced an integrated approach that combines 

LiDAR-SLAM and Visual-SLAM. This innovative method addresses the 

limitations of purely visual approaches, which lack direct range information due to 
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the passive nature of cameras. By merging Visual-SLAM with a prior LiDAR map, 

this approach reduces the challenge of visual-based localization by incorporating 

accurate range measurements. 

The structure-based method is the prevalent technique for visual localization, it 

relies on the 3D reconstruction point cloud maps to estimate the position [31]–[33]. 

This technique involves comparing local features such as the SIFT and ORB 

descriptor [34]. However, the features extracted from the image are susceptible to 

variations in illumination and seasonal changes, making them unsuitable for precise 

vehicle positioning in dynamic environments [32]. Moreover, the use of monocular 

cameras introduces scale-related issues that restrict their applications. 

On the other hand, several researchers have proposed SLAM approaches integrated 

with machine learning methods [35]–[37], including end-to-end learning 

architectures, to mitigate these challenges [38], [39]. Nevertheless, these end-to-

end approaches have demonstrated less stability compared to geometric and 

probabilistic methods. Another method is the image retrieval-based method that 

directly searches for relevant images from the map, extracting all information 

within regions of subtle gradients [40]. Consequently, they outperform structure-

based methods in handling texture, motion blur, and image defocus. However, the 

real-time performance of such methods demands substantial computing power 

(such as GPUs). 

Despite various methodologies primarily focusing on optical feature matching 

within the environment, fewer approaches emphasize the utilization of a 3D point 
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cloud map extract geometric information for alignment with camera images. For 

instance, Wolcott et al. [41] propose a technique that employs a prior 3D point cloud 

map to generate synthetic 2D images through rendering and then matches them with 

real-time images using maximum normalized mutual information. Similarly, 

Pascoe et al. [42] present an approach that minimizes normalized information 

distance by using real-time camera images and rendered images from a combined 

LiDAR and camera map. These methods predominantly operate in a 2D space and 

involve GPU-based image rendering. In contrast, Caselitz et al. [42] introduced a 

method that eliminates the need for GPU-based image rendering. Instead, it directly 

aligns 3D geometries for improved accuracy and efficiency. 

2.2. Scene representations 

The scene used in SLAM is reconstructed by the sensor which is essential for 

mapping, localization, visualization or planning. Different purposes of SLAM use 

different types of maps.  The most common types of maps: (a) voxel maps[43] ; (b) 

point cloud maps[44]; (c) feature point maps[45]. 

2.2.1. Voxel maps 

The voxel maps divide the environment into several 3D volume cell which is voxels. 

The voxel is similar to a 2D pixel, but it provides occupancy, colour, or other 

attributes of the environment's 3D structure [46]. Truncated Signed Distance 

Function (TSDF) is popularly used in the direct SLAM method which focuses on 

generating a detailed and accurate 3D map [47], [48]. Those researchers proposed 



 28 

a method which can systematically regularize noise and model continuous surfaces. 

Occupancy maps are popularly used in the navigation task which is mainly used for 

basic navigation and obstacle avoidance. Occupancy maps are used to represent the 

probability of each cell being occupied by an obstacle or object. GMapping [49] 

and FastSLAM [50] proposed the method for each grid of cells which includes the 

information of occupancy maps and the trajectory of the robot. Hornung et al. [51] 

proposed a method to decrease the memory requirement of saving cells information 

when using occupancy maps. To capture the continuous distance information to 

obstacles, Euclidean Signed Distance Function (ESDF) is used to present the 

occupied obstacles and the distances information [52]. Lau et al. [53] proposed the 

method to use ESDF with occupancy maps which make use of the sensor data to 

provide a piece of local information. This method has better performance than 

ESDF construction strategies [52].  

 

Figure 5.OctoMap generated by occupancy maps [51].  

2.2.2. Point cloud maps 

A point cloud can be generated by the LiDAR and RGB-D camera and combine 

different point clouds to provide a map. The point cloud in the point cloud map is 
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individual. Moosmann and Stille [54] proposed a method which uses LiDAR to 

generate the point cloud map for estimating the vehicle trajectory.  Most of the 

SLAM with point cloud map use Unscented Kalman Filters [55], Rao-

blackwellized Particle Filter [56], Extended Kalgnman Filters [57], or Sparse 

Extended Information Filters [58] to process the scan-matching. However, those 

methods are difficult to match when a larger number of landmarks. Holz et al. [59] 

proposed a scan-matching method to match point cloud data with the point cloud 

map which is a fast and accurate method. 

 

Figure 6. Point cloud map of Hong Kong environment (UrbanNav dataset [60]) 

2.2.3. Feature point maps 

A feature point map can be generated by the feature point from the camera image 

and the camera poses. In the map, it includes the feature point with the relative pixel 

locations and the index of camera pose. Therefore, this map is popular with the 
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feature point-based SLAM methods as the map provides a fast approach for re-

localization and bundle adjustment. Klein and Murray [61] proposed a method of 

camera tracking system based on a feature point map which is PTAM. Mur-Artal 

et al. [45] proposed a method of combining the direct and feature-based methods 

based on a feature point map which is ORB-SLAM. Qin et al. [62] proposed a 

method of combining the Visual system and inertial systems in real-time which 

estimates the results with a feature point map which is VINS-Mono. 

 

Figure 7. Feature point map of sequence 00 in KITTI odometry dataset [63] 

constructed by ORB-SLAM 3 [45] 

2.3. LiDAR distortion 

LiDAR is a highly potential sensor for environmental perception, especially for 

positioning and mapping. LiDAR directly provides precise distance measurements 
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with 3D information and a long detection range. LiDAR is unaffected by visual 

feature limitations, including scenarios with low light conditions. This technology 

excels in generating precise maps and identifying obstacles within the environment. 

The LiDAR scanning procedure typically covers a 360° range by capturing data 

from various angles, resulting in what is referred to as a point cloud. 

Nevertheless, LiDAR encounters a distortion issue when its movement coincides 

with the initiation of the scanning process, as depicted in Figure 8. If the map is 

used LiDAR for mapping, it is impact the map's accuracy [64]. Then, the 

localisation difficulty is increase when using the map basic on LiDAR data [65]. It 

is independent of the number of LiDAR [66].  

 

Figure 8. Illustration of the LiDAR distortion phenomenon 

The distortion observed in LiDAR point clouds is commonly classified into two 

distinct categories which are ego-motion distortion and object-motion distortion. 

This research primarily concentrates on addressing ego-motion distortion. 

Within the SLAM-based approaches, LOAM [64] and NDT-LOAM [67] stands as 

an exemplar, adeptly achieving efficient and precise scan matching for odometry 
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and mapping. Another technique employs to correct the point cloud is the iterative 

closest point (ICP) and Normal Distribution Transform (NDT) methodology, which 

aligns consecutive scans to refine point positions [68]. However, this approach is 

susceptible to the influence of moving objects in the environment, such as vehicles 

[69]. To rectify this issue, certain correction methods leverage information from 

IMU or odometry measurements to adjust point positions. Nonetheless, it is crucial 

to note that IMU or odometry data introduce the challenge of cumulative error 

accumulation [70]. Therefore, Byun et al. [71] use GNSS/INS unit to provide highly 

accurate information about the vehicle position. To correct the distortion problem, 

which is shown in Figure 9, the corrected position can be calculated as Equ.2.  

                                                      𝐩t+∆t
i = 𝐑(𝐩t

i − 𝐓) ,                                        (2) 

i : One revolution of LiDAR 

𝐩t : Start position of the revolution 

𝐩t+∆t : End position of the revolution 

𝐑 : Rotation between 𝐩t and 𝐩t+∆t 

𝐓 : Translation between 𝐩t and 𝐩t+∆t 

 

Figure 9. One revolution of LiDAR with vehicle 



 33 

2.4. Summary 

To conclude, this paper proposed a method of visual SLAM which estimates the 

part of visual localization within a prior point cloud map. This method estimates 

the vehicle post by matching the features point map and point cloud map. The point 

cloud map is developed by the corrected point cloud which is corrected by the 

ground truth data of the GNSS/INS unit.  The feature point map is developed by the 

monocular camera. For the scale issues of monocular cameras, this paper estimates 

the alignment by matching geometric between the features point map and point 

cloud map. The details of methodologies are introduced in Chapter 3. 
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3. METHODOLOGY 

The proposed framework of this paper shows in Figure 10. This paper proposes a 

method that incorporates a dependable initialization process facilitated by a prior 

3D point cloud map. It is an economical camera-based localization solution which 

inspiration from the methodology outlined by Caselitz et al [72]. This paper focuses 

on urban scenarios to unravel scientific challenges which aim to utilize a monocular 

camera for localization within a prior 3D point cloud map. 

Initially, the approach involves utilizing visual features to reconstruct the local 

environment, employing sparse yet meaningful 3D feature points to form what is 

referred to as a local points map (LPM). The relative motion estimation provided 

by the visual odometers generates a reliable initial estimation concurrently. 

Subsequently, building upon the initial pose estimation and the generated local 

points map, the approach employs the ICP-based point cloud registration method 

[4] to align the LPM with the prior 3D point cloud map. This process effectively 

determines the system's pose within the map. 
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Figure 10. System flow chart 

3.1. Prior 3D point cloud map 

LiDAR (3D point cloud data) and ground truth information (GNSS position data) 

are used to generate the 3D prior point cloud map. The prior point cloud combined 

with several point cloud messages accompanied by a camera pose. However, in the 

LiDAR sensor scanning procedure, the LiDAR data grapples with a distortion issue. 

Conventionally, LiDAR scans one revolution (360°) from points situated around its 

centre. When a vehicle equipped with a LiDAR sensor is stationary, the coordinates 

of the LiDAR's origin remain constant. As a result, the initiation and termination 

points of LiDAR scanning align. If the vehicle is in motion while the LiDAR sensor 

is operating, distortion occurs due to the extended scanning period resulting from 

the motion displacement of the LiDAR's origin. Figure 11 elucidates the reason for 

LiDAR distortion.  
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Figure 11. LiDAR distortions arising from vehicle motion 

The ground truth data from GNSS can be used to correct the distortion issue of point 

cloud data from LiDAR. The ground truth data includes Latitude, Longitude, and 

Height (LLH) positions, along with quaternions. LLH values establish the Local 

East-North-Up (ENU) coordinate system for localized processing, while 

quaternions facilitate the determination of rotations between various coordinate 

systems.  

                                          𝐃 = {𝑡𝐷𝑛
, 𝐩𝐃𝐧

, 𝒒𝑫𝒏
, 𝑛 = 1, … , 𝑘},                                            (3) 

                                                𝐆 = {

𝑡𝐺1
⋯ 𝑡𝐺𝑚

𝐩𝐆𝟏
⋯ 𝐩𝐆𝐦

𝐪𝐆𝟏
⋯ 𝐪𝐆𝐦

},                                                         (4) 

                                                𝐏 = {𝑡𝑃𝑛
, 𝐩𝐏𝐧

, 𝐪𝐏𝐧
, 𝑛 = 1, … , 𝑘},                                           (5) 

D : A set of point cloud data afflicted by distortion within a single frame 

G : A set of ground truth data (Time, LLH position and quaternions) 
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P : A set of corrected point cloud data in one frame 

t : Message time  

𝐩 : Coordinated in the ENU coordinate system (LLH position) 

𝐪 : Quaternion 

Interpolation is used to determine the precise position of each point cloud data. For 

the ENU position, linear interpolation is used. For the quaternion, spherical linear 

interpolation is used. 

                                                             
𝑡𝐷𝑛−𝑡𝐺𝑖

𝑡𝐺𝑗
−𝑡𝐺𝑖

=
𝐩𝐏𝐧−𝐩𝐆𝐢

𝐩𝐆𝐣
−𝐩𝐆𝐢

 ,                                                           (6) 

                                                  𝐪𝐏𝐧
=

sin (1−𝑟)𝜃

sin (𝜃)
𝐪𝐆𝐢

+
sin (𝑟𝜃)

sin (𝜃)
𝐪𝐆𝐣

,                                             (7) 

i,j : The near ground truth message time with 𝑡𝐷𝑛
 

r : Interpolation coefficient 

𝜃 : Angle between 𝑞𝐺𝑖
 and 𝑞𝐺𝑗

 

 

Figure 12. Sequence of selected data points 
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Figure 13. Spherical linear interpolation 

3.2. Feature Matching  

This procedure employs the ORB algorithm, which integrates the Oriented Features 

from the Accelerated and Segments Test (FAST) algorithm and the Rotated Binary 

Robust Independent Elementary Features (BRIEF) algorithm [73] . The oriented 

FAST algorithm is employed for the task of feature extraction.  

To extract the feature points, the FAST algorithm compares pixel intensities with 

those of the pixel's surroundings. However, this approach lacks orientation and 

multi-scale consideration. To address this, the ORB algorithm incorporates an 

image pyramid along with a Harris corner detector, enabling the detection of key 

points across various scales. To ascertain orientation, the algorithm assumes that 

corner intensity is displaced from the centre, and orientation is deduced via image 

moment calculations [73].  

To enhance the original BRIEF algorithm [74] , the ORB algorithm proposed the 

Rotated BRIEF algorithm which accounts for feature point rotation. It is a crucial 

factor in image matching.  The descriptors for each key point detected through the 
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oriented FAST algorithm calculates by the binary feature vectors.  For smoothing 

image patches, a 7x7 Gaussian kernel is employed, and the feature vector ( 𝐟𝐧(𝐁)) 

for each patch is defined by n binary tests. 

                                             𝜏(𝐵; 𝑥, 𝑦) = {
1,  𝐵(𝑥)𝑙 <  𝐵(𝑦)𝑙

0,  𝐵(𝑥)𝑙 ≥  𝐵(𝑦)𝑙  
,                                         (8) 

                                        𝐟𝒏(𝑩) = ∑ 2𝑖−1𝜏(𝐵; x𝑖 , 𝑦𝑖)1<𝑖<𝑛 ,                                            (9) 

𝜏 : Binary test 

n : Vector length 

𝐵(𝑥)𝑙 : Intensity of pixel x in patch B 

Nevertheless, the BRIEF algorithm does not account for the orientation of the 

feature point. To overcome this constraint, the Rotated BRIEF algorithm was 

developed. This enhanced version integrates orientation information by 

incorporating sine and cosine values that are multiplied with a set of feature points, 

which are then rotated based on the key point's orientation.  

                                              𝐒 = (
𝑢1 … 𝑢𝑛

𝑣1 … 𝑣𝑛
),                                                              (10) 

                                             𝐑𝜽 = [
𝑐𝑜𝑠 θ −𝑠𝑖𝑛 θ
𝑠𝑖𝑛 θ 𝑐𝑜𝑠 θ

],                                                      (11) 

                                             𝐒𝜽 = 𝐑𝜽𝐒,                                                                            (12) 

                                            𝐠𝒏(𝒑, 𝜽) ∶= 𝐟𝒏(𝒑)|(x𝑖 , 𝑦𝑖) ∈ 𝐒𝜽,                                        (13) 

𝜃 : Key point orientation from oriented FAST algorithm 

𝐒 : Feature set of n binary tests at location (u𝑖 , 𝑣𝑖) 
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R𝜃 : Corresponding rotation matrix 

𝐒𝜽 : A set of feature points rotated according to the key point orientation 

The descriptors of key points in two consecutive images are matched using the 

Brute-Force Matcher with Hamming distance metric when the feature descriptors 

are computed. This metric estimates the closest distance between descriptors. A 

cross-check is implemented to enhance accuracy. 

                                                  𝐷(𝑏1, 𝑏2) =  𝑏1⨁𝑏2,                                                          (14) 

D : Hamming distance 

b1, b2 : Feature descriptors of two different image 

 

3.3. Local Points Map Reconstruction 

This module proceeds to convert the feature points from the feature-matching 

process into corresponding 3D map points and keyframe poses when the matched 

2D feature points are acquired. This collection of localized data is referred to as a 

local point map, and it serves as the foundation for solving the local Bundle 

Adjustment problem. 

The initial step involves calculating the fundamental matrix (F) and the 

homography matrix (H) using an eight-point algorithm. In order to enhance the 

stability and precision of the solution, the module normalizes the coordinates of the 

input point set. 

                                                         𝐩𝟏
𝐓𝐅𝐩𝟐 = 0,                                                            (15) 
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𝐩𝟏, 𝐩𝟐 : A pair of matching feature points in two Frames  

F : Fundamental matrix 

Given n sets of linear equations provided by n pairs of matching points, the 

following equations is obtained: 

𝐖𝐟 = [
𝑢1

′𝑢1

⋮
𝑢𝑛

′𝑢𝑛

𝑢1
′𝑣1

⋮
𝑢𝑛

′𝑣𝑛

𝑢1
′

⋮
𝑢𝑛

′

𝑣1
′𝑢1

⋮
𝑣𝑛

′𝑢𝑛

𝑣1
′𝑣1

⋮
𝑣𝑛

′𝑣𝑛

𝑣1
′

⋮
𝑣𝑛

′

𝑢1

⋮
𝑢𝑛

𝑣1

⋮
𝑣𝑛

1
⋮
1

] 𝐟 = 0             (16) 

𝐖 : Matrix of n pairs of matching points (N x 9) 

As the 𝐖 matrix has the least squares problem, it recovers rotation and translation 

by singular value decomposition (SVD) to solve the least squares problem. 

The least squares solution is obtained: 

                                                       {
min

𝐟
‖𝐖𝐟‖2

 s. t. ‖𝐟‖ = 1
                                              (17) 

Singular value decomposition (𝐖 = 𝐔𝐃𝐕𝑻) is performed on 𝐖 matrix .The entries 

of 𝐅 matrix are the components of the column of 𝐕  corresponding to the least 

singular vector. As the fundamental matrix has the constraint of rank 2, the 𝐅 matrix 

must be singular.  

The least squares problem is obtained: 

                                                   {
min

𝐟
‖𝐅 − �̅�‖2

 s. t. def(𝐅) = 0
                                               (18) 

Therefore, the fundamental matrix is obtained: 
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                                                       𝐅 = 𝐇′𝐓�̅�𝐇                                                         (19) 

𝐇 : Transformation matrix of 𝐩𝟏 and 𝐩𝟐. 

𝐇′ : Transformation matrix of 𝐩𝟏̅̅ ̅ and 𝐩𝟐̅̅ ̅. 

Subsequently, the module evaluates the results of random sample consensus 

(RANSAC) using the concept of reprojection error. It assumes that reprojecting 

points from the current frame onto the reference frame generates a straight line (𝑙2). 

                                                         𝑙2 = 𝑭−1 [
𝑢2

𝑣2

1
],                                                       (20) 

[
𝑢2

𝑣2

1
] : Coordinate of the current frame 

However, it exists a projection error in which the point did not lie precisely on this 

line. The projection error estimate by the cumulatively RANSAC score in 

conjunction with the current matrix. 

Simultaneously, the module computes the homography matrix (H) following a 

similar procedure as the fundamental matrix (F). Then, the score ratio between these 

two matrices is computed to determine which model to select.  

The chosen matrix can recover the rotation (𝐑) and translation matrix (𝐭) of camera 

motion which is the essential matrix. The essential matrix (𝐄) is obtained:  

                                              𝐄 = [𝐑|𝐭] = {

𝐑𝟏=𝐔𝐖𝐕𝐓

𝐑𝟐=𝐔𝐖𝐓𝐕𝐓

𝐭𝟏=𝐄𝐑𝐓

𝐭𝟐=−𝐄𝐑𝐓

                                           (21) 
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𝐔 : Gene coefficient vectors from SVD 

𝐖 : Rotation matrix obtained by rotating 90° along the Z axis 

𝐕𝐓: Expression level vectors from SVD 

Finally, the module employs a triangulation algorithm with SVD to calculate the 

3D point based on the recovered essential matrix. The 3D coordinates calculate by 

the SVD of A matrix. The 3D point is obtained: 

                                            𝐴𝑥 = [

𝑣1𝑃12 − 𝑃11

𝑃10 − 𝑢1𝑃11

𝑣2𝑃22 − 𝑃21

𝑃20 − 𝑢2𝑃21

] 𝑥 = [

0
0
0
0

]                                        (22) 

𝑢1, 𝑣1, 𝑢2, 𝑣2: Feature point of the first frame and second frame, respectively 

𝑃1, 𝑃2: Projection matrix of the first frame and second frame, respectively 

 

3.4. Localization in Prior Map 

3.4.1. Correspondences 

In this process, the variables are described using both 3D Euclidean spaces and the 

Lie group SE(3). 

                                                 𝐊 = {𝐤𝒊 ∈ ℝ3, 𝑖 = 1, … , 𝑛},                                          (23) 

                                                 𝐏 = {𝐩𝒋 ∈ ℝ3, 𝑗 = 1, … , 𝑚},                                           (24) 

                                             𝐓 = {𝐓𝒊 ∈ SE(3), 𝑖 = 1, … , 𝑡},                                            (25) 

                                             𝐅 = {𝐅𝒊 ∈ SE(3), 𝑖 = 1, … , 𝑓},                                            (26) 
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𝐊 : A set of reconstruction 3D points 

𝐏 : A set of 3D points in the prior 3D point cloud map 

𝐓 : A set of transformations between 𝐊 and 𝐏 

𝐅 : A set of keyframe poses 

This approach uses the ICP algorithm in conjunction with KD-tree for conducting 

nearest neighbour searches to establish correspondences between the reconstructed 

local points and the points within the 3D prior point cloud map. This approach 

employs the ICP algorithm in conjunction with KD-tree for conducting nearest 

neighbour searches. The process involves utilizing both the local points map and 

the prior point cloud map to identify corresponding points. These correspondences 

are iteratively refined through the estimation of transformations between the two 

point clouds. 

The prior point cloud map is constructed into a KD-tree structure, which is 

subsequently employed to locate the nearest neighbour of each point within a 

predefined search radius. This approach facilitates the establishment of accurate 

point correspondences. 

               𝐊𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛||𝐏 𝑘 −  𝐊𝑖||, 𝑓𝑜𝑟 𝑖 = 1, . . . , 𝑀, 𝑘 = 1, … , 𝑁,                        (27) 

𝐊𝑗 : Closest neighbour point of 𝐏 𝑘 in K 

N : Number of points in P 

M : Number of points in K 

The set of correspondences of prior point cloud map and reconstructed 3D point 

cloud consists of pairs (i, j), where each pair represents the correspondence between 

point i in the prior point cloud map and point j in the reconstructed 3D point cloud. 
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                                                 𝐂 =  { (𝑖, 𝑗)| 𝑖 ∈ 𝐑, 𝑗 ∈ 𝐏},                                               (28) 

3.4.2. Alignment 

To estimate the alignment, this process calculates by a set of correspondences. The 

alignment process involves estimating the alignment between the locally 

reconstructed point map and the prior 3D point cloud map This paper solves a non-

linear least squares minimization problem with the assistance of the g2o 

optimization framework [11] to determine the transformation between the local 

point  clouds and the prior point clouds.  

Firstly, this paper estimates the transformation between the two 3D point clouds by 

g2o. This paper uses Sim3 transformation combines both rigid-body transformation 

and scaling which shows in equation 29. Also, it uses exponential map 

parametrization which maps a point from a Lie algebra to an element of the Lie 

group [75] which is used to parametrize rotations and other transformations to 

ensure they remain within the valid parameter space [11]. It shows in equation 31. 

                             𝐓 = [s𝐑 | 𝐭] ∈ 𝑠𝑖𝑚(3), 𝐑 ∈ SO(3), 𝐭 ∈ ℝ3, s ∈ ℝ,                    (29) 

𝐓 : Transformation matrix (4x4) 

𝐫 : Rotation matrix (3x3) 

𝐭 : Translation vector (3x1) 

s : Scaling factor (scalar) 
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The element of sim(3) is obtained: 

                                            𝑠𝑖𝑚(3) ∈  [
𝑢
𝜔
𝜆

]  ∈ ℝ7, 𝑠 = 𝑒𝜎                                      (30) 

The exponential map of Sim (3) (Lie group) and sim(3) (Lie algebra) is obtained: 

                                  𝑒𝑥𝑝
𝑆𝑖𝑚(3) [

𝑢

𝜔

𝜆
] =  [s𝐑 | 𝐭] = [𝑒𝜎𝑒𝑥𝑝

𝑆𝑜(3) | 𝐖𝜆] ,                                (31) 

                          𝐖 =
1−exp(−𝜆)

𝜆
𝐈 + (α ∙ (β − γ) + γ) 𝐰𝒙 + (α ∙ (ρ − υ) + υ)𝐰𝒙

𝟐,            (32) 

                                                                   α =
𝜆2

𝜆2+(𝜔𝑇𝜔)
,                                                      (33) 

                                                                   β =
exp(−𝜆)−1+𝜆

𝜆2 ,                                                 (34) 

                                                        γ =
1−cos(𝜔𝑇𝜔)

(𝜔𝑇𝜔)2 − 𝜆 (
1−(

sin(𝜔𝑇𝜔)

𝜔𝑇𝜔
)

(𝜔𝑇𝜔)2
),                             (35) 

                                                                   ρ =
1−𝜆+0.5𝜆2−exp(−𝜆)

𝜆2 ,                                        (36) 

                                                    υ =
1−(

sin(𝜔𝑇𝜔)

𝜔𝑇𝜔
)

𝜔𝑇𝜔2 −  𝜆(
0.5−

1−cos(𝜔𝑇𝜔)

(𝜔𝑇𝜔)2

(𝜔𝑇𝜔)2 ),                                (37) 

𝐖 : Different power series of translation component  

𝐰𝒙 : Skew-symmetric matrix and the axis of rotation w 

 

Second, this paper optimization the process to optimal values of T that aiming to 

minimize the aggregate of squared errors between the transformed points within the 

prior 3D point cloud map and their corresponding counterparts within the 

reconstructed local point map. The cost function of the optimization problem can 

be written as, 

                                        𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑤𝑖 ∗ ‖𝐓 ∗ 𝐏𝑖 − 𝐑𝑖‖2,                                         (38) 
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𝑤𝑖 : Weight assigned to each correspondence 

Then, it utilizes Levenberg-Marquardt algorithm [12] iteratively update the 

variables based on the constraints and the associated cost functions to estimate the 

transformation matrix (T) until the sum of squared errors reaches its minimum.  In 

each iteration, the algorithm calculates the Jacobian matrix (J) of the objective 

function in relation to the parameters of T, utilizing this information to determine 

the necessary update to the transformation matrix T: 

                             𝐓𝑘 = 𝐓𝑘−1 + (𝐉𝑇𝐉 + 𝜆𝐈)−1𝐉𝑇𝐫, 𝑓𝑜𝑟 𝑘 = 1 … . 𝑁 ,                           (39) 

𝐉 : Jacobian matrix of the error function with respect to T 

𝐫 : Residual vector 

𝜆 : Damping parameter 

𝐈 : Identity matrix 

𝑁 : Number of iteratively 

By minimizing the cost function, the optimal values for the relative transformation 

between the two point clouds are deduced. Subsequently, amalgamating all the 

similarity transformations during the iterative process generates the estimation of 

the reference frame's pose within the map. Finally, the global pose of the vehicle is 

estimated. 
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4. EXPERIMENT 

The experimentation encompasses two distinct datasets to assess the system's 

performance across varying environments. Throughout this evaluation, we compare 

the effectiveness of the following pipelines: 

1) Assessing the precision of our proposed approach by using the 3D local points 

from ORB-SLAM method.  

ORB-SLAM [45]: Employing the ORB approach to extract features and descriptors 

followed by the calculation of 3D local points.  

2) Employing diverse datasets to assess our proposed method of evaluation 

involved comparing the estimated camera trajectory and the ground truth trajectory 

against the existing map.  

KITTI odometry dataset [63]: Presents outdoor data from rural regions captured by 

a vehicle.  

UrbanNav dataset [60]: Offers outdoor data from urban settings captured via a 

vehicle.  

4.1. Experiment Setup 

4.1.1. KITTI odometry dataset 

This paper uses the KITTI odometry dataset which data was collected around 

Karlsruhe, Germany to evaluate the performance of the proposed method. In this 
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study, the construction of the 3D point cloud map was achieved utilizing the OXTS 

RT3003 inertial and GPS navigation system (100 Hz), the Velodyne HDL-64E 

rotating 3D laser scanner, and the PointGray Flea2 grayscale cameras. These 

components facilitated the acquisition of ground truth, 3D LiDAR data, and camera 

images, respectively. The complete experimental setup is depicted in Figure 14. 

 

Figure 14. Experiment setup of KITTI odometry dataset [63] 

4.1.2. UrbanNav dataset 

The performance evaluation of the proposed method was conducted using the 

UrbanNav dataset, which encompasses data collected within Hong Kong, 

representative of a typical urban canyon environment. The construction of the 3D 

point cloud map in this study was facilitated by employing the NovAtel SPAN-CPT 

+ Inertial Explorer (IE) (1 Hz), HDL 32E Velodyne (10 Hz), and ZED2 Stereo (15 
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Hz) systems. These systems provided ground truth, 3D LiDAR data, and camera 

images, respectively. During the data collection process, raw GPS measurements 

were gathered using a commercial-grade u-blox F9P GNSS receiver (1 Hz). A 

comprehensive depiction of the experimental setup is illustrated in Figure 15.  

 

Figure 15. Experiment setup of UrbanNav dataset 

Image data for this study was acquired utilizing the ZED2 Stereo camera, which 

was affixed to the vehicle. The calibration of the cameras was executed through the 

MATLAB method. To ensure coherence, all the gathered data underwent collection 

and synchronization via a robot operating system (ROS) [76]. 

4.2. Experimental Evaluation  

4.2.1. Prior 3D point cloud map 

The approach employed in this paper involves utilizing the prior 3D point cloud 

map for alignment with the 3D feature points. It's important to note that the LiDAR 

data introduces a distortion issue. This phenomenon is illustrated in Figure 16, 

which illustrates the prior 3D point cloud map exhibiting distortion, as observed in 

the UrbanNav dataset.  
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Figure 16. Illustrates the prior 3D point cloud map exhibiting distortion, as 

observed in the UrbanNav dataset 

Figure 17 and Figure 18 shows the point cloud when the vehicle is at the starting 

location. The original point cloud is displayed as white. The corrected point cloud 

is displayed as brown. It shows that those points are matched with each other due 

to without vehicle's angular or longitudinal movements. Figure 18 shows the point 

cloud with the timestamp. The start point of the LiDAR scan is displayed as blue. 

The last point of the LiDAR scan is displayed as red. 
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Figure 17. Overall view: Original point cloud (white) and corrected point cloud 

(brown). 

 

Figure 18. Overall view with timestamp: Start point of the LiDAR scan in one 

revolution (blue) and the last point of the LiDAR scan in one revolution (red). 

Figure 19 and Figure 20 shows the vehicle is turning which has the movement of 

angular and longitudinal. Figure 19 shows the point cloud with the timestamp. It 

shows the start point and the last point of the LiDAR scan in one revolution match. 



 53 

Actually, the start point and the last point of the LiDAR scan in one revolution did 

not match as the vehicle is turning. In Figure 20, it divided the point cloud map 

including the original and corrected point cloud into 4 sections (Q1 to Q4). In Q1, 

it shows that the original and corrected point cloud match. However, the original 

and corrected point cloud significant differences from Q2 to Q4.  The original point 

cloud in Q2 and Q3 seems to be closer than the corrected point cloud as the vehicle 

driving direction. For the same reason, the original point cloud in Q4 seems to be 

further away, than the corrected point cloud. The circles around the vehicle show 

that the difference between the original and corrected point cloud is increasing. 

Figure 21 shows the close-up view of Q3 and Q4 of the scenario in Figure 20. It 

shows the difference between the original corrected point cloud with the same 

direction of vehicle speed. 

 

Figure 19. The original point cloud with the timestamp: Start point of the LiDAR scan 

in one revolution (blue) and the last point of the LiDAR scan in one revolution (red) 
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Figure 20. The original and point cloud corrected: Original point cloud (white) 

and corrected point cloud (red).  

 

Figure 21. Close-up view of Figure 20. 

4.2.2. Initialization  

Camera data serves as the input source of images for this method. During the 

initialization phase, the ORB algorithm is employed to extract and describe the 
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identified feature points within the input data. Subsequently, the feature points 

detected in each image are utilized for matching with the preceding image. The 

outcomes of feature point matching in two consecutive images are demonstrated in 

Figure 22. 

 

Figure 22. Feature point matching in two consecutive images 

4.2.3. Reconstruct 

During the reconstruction phase, pairs of feature points are employed to reconstruct 

3D points within each frame. These reconstructed feature points are subsequently 

aggregated to create 3D map points and keyframe poses, resulting in the formation 

of a local point map. An instance of the local point map in a single frame is depicted 

in Figure 23, while the amalgamation of multiple frames is illustrated in Figure 24 

using RViz [77].  
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Figure 23 Illustration of a local point map within a single frame displayed in RViz 

 

 

Figure 24. Illustration of the combination of multiple frames displayed in RViz 

4.2.4. Point Cloud Registration 

The evaluation of the proposed method encompassed two distinct datasets featuring 

different environments. In the first assessment, the KITTI odometry dataset was 

utilized to gauge the accuracy of our approach. Secondly, the UrbanNav dataset was 
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employed for evaluation under urban conditions, involving a comparison between 

the estimated camera trajectory and the ground truth trajectory with the prior point 

cloud map. 

4.2.4.1. Evaluate the accuracy 

The evaluation of our proposed method's accuracy was conducted using the KITTI 

odometry dataset. This dataset offers a comprehensive set of LiDAR data, stereo 

images, and ground truth data. For our evaluation, we exclusively utilized the 

imagery from the left camera.  

In this experiment, we chose the raw dataset which is sequence 00. The group truth 

data of the KITTI odometry dataset are provided by KITTI Vision Benchmark Suite. 

We assume the group truth data is the correct pose of the camera. Therefore, we can 

compute the 6-DoF camera position error. 

We use ORB-SLAM to provide the 3D point from the left-side camera image. 

Figure 25 shows the trajectory of the group truth data of the KITTI odometry dataset, 

the visual odometry of ORB-SLAM and our method. It shows that the trajectory of 

the patterns of ORB-SLAM is similar to other results, but the scale issue is severe 

gradually and the drift happened. Figure 26 shows the localization result of our 

proposed method compared with the group truth data of the KITTI odometry dataset. 

Although some parts did not match with the group truth data, it shows that most of 

the drift is corrected. 
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Figure 25. The trajectory is derived from the KITTI ground truth data, the ORB-

SLAM and our proposed method 

 

Figure 26. The trajectory error is calculated by comparing the KITTI ground truth 

data with our method 

The experiments were repeated 6 times to mitigate randomness. Table 1 presents 

the absolute trajectory error (ATE) for each dataset. The outcomes encompass the 

trajectory error between our method and the KITTI ground truth trajectory, as well 
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as between the ORB-SLAM trajectory and the KITTI ground truth trajectory. The 

results highlight the superior performance of our method compared to the visual-

only approach. 

ATE(Average) Our method ORB-SLAM 

Rotation 

(Degree) 

RMSE 117.6 127.8 

SD 10.5 13.7 

Translation 

(m) 

RMSE 20.9 309.8 

SD  16.6 181.3 

Transformation RMSE 21.0 309.8 

SD 16.5 181.3 

Table 1. The results comprise the average ATE across 6 runs 

4.2.4.2. Evaluate in Urban conditions 

We conducted our experimentation using data obtained by our UrbanNav dataset 

team. This data was gathered within the vicinity of Kowloon Tong, Hong Kong. 

The ground truth data was computed based on the information from the NovAtel 

SPAN-CPT + IE system, operating at 1 Hz. For our evaluation, we solely employed 

the imagery captured by the left camera of the ZED 2 camera. 

The ground truth data serves as our reference for the camera's accurate pose. This 

allows us to compute the 6-DoF (Degrees of Freedom) camera position error. In 

this specific experiment, we selected a straight road within the urban environment 

for assessment. The outcomes include trajectories from ORB-SLAM data and our 
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method, which are compared against the trajectory derived from the ground truth 

data, as visualized in Figure 27. Additionally, Figure 28 illustrates the trajectory 

error specifically in the translation aspect.  

 

Figure 27. The trajectory outcomes of both ORB-SLAM and our method are 

compared against the ground truth data. These multiple trajectories are depicted in a 

line chart using the XZ axis. 
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Figure 28. The trajectory results of both ORB-SLAM and our method are 

contrasted with the ground truth data. These multiple trajectories are visualized in 

a line chart, with the X-axis denoting time, the Y-axis representing position, and 

the Z-axis indicating time. 

On the X-axis, both methods exhibit similar patterns, with our method closely 

aligning with the ground truth data. However, on the Y-axis and Z-axis, our method 

showcases more drift than the ORB-SLAM trajectory, particularly within the initial 

15 seconds, attributed to the complexity of scenes during that period. In Figure 29, 

the absolute trajectory error (ATE) of both our trajectory and the ORB-SLAM 

trajectory is displayed, while Figure 30 presents a box plot of the absolute trajectory 

error. Notably, although our method initially displays more pronounced drift during 

the initial 6 seconds, it subsequently rectifies the camera pose, leading to an 

improved interquartile range compared to the ORB-SLAM method. This suggests 

that our method is effective in mitigating accumulated errors over time. 
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Figure 29. A line chart depicting the Absolute Trajectory Error (ATE) of both our 

trajectory and the ORB-SLAM trajectory  

 

Figure 30. A box plot illustrating the Absolute Trajectory Error (ATE) of both our 

trajectory and the ORB-SLAM trajectory. 
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5. CONCLUSION 

This paper proposed the method of using vision-based localization with prior 3D 

LiDAR maps to track the camera pose. We combined the benefits of LiDAR and 

the camera to estimate the transformation of the local point map and prior 3D map. 

It continues to track the 6-DoF camera pose. To evaluate the performance of the 

system, we use open-source data. It demonstrated the accuracy of this system 

through real-world experiments, which produced notable outcomes. However, the 

challenge of the urban environment still occurs. Our future work will improve our 

method in more dynamic and challenging scenarios. 
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