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Abstract

The examination and interpretation of datasets containing a substantial number of

zeros have become increasingly relevant across various disciplines, including ecology

and sociological studies. While there has been extensive research on zero-inflated

count data, models specifically designed for proportion data with a high occurrence

of zeros remain relatively limited. This thesis addresses this gap by focusing on zero-

inflated proportion data and proposing a novel modeling approach to distinguish

between two types of zeros present in the dataset. The primary objective is to de-

velop a regression model that can effectively capture and differentiate these two types

of zeros. The first type of zero, which corresponds to random absence, is modeled

using a binomial sampling approach. This accounts for instances where the propor-

tion value is zero due to random factors or chance. The second type of zero, arising

from unsuitability, is handled using a general classification indicator. This indicator

helps identify situations where the proportion value is zero due to the unsuitability of

certain conditions or factors. To achieve our objective, we propose both parametric

and semi-parametric models, providing flexibility and robustness in capturing the

characteristics of the zero-inflated proportion data. By introducing these innovative

models, we aim to enhance the understanding and analysis of datasets with a high

occurrence of zeros. This research contributes to the development of methodologies

specifically tailored for zero-inflated proportion data, addressing a significant gap in

the existing literature.
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In the first section of our study, we focus on investigating a semi-parametric model.

This model comprises two components: a regression component that incorporates

weighted least squares to account for heterogeneity, and a classification component

that benefits from an optimal decision rule derived from our model. To estimate

the parameters based on the optimal decision rule, we employ the Nadaraya-Watson

estimator. This estimator ensures the accuracy of our classification and contributes

to the overall robustness of the model. The results of our investigation reveal that

environmental features play a crucial role in understanding both types of zeros: those

related to perfection and those resulting from random absence. By utilizing our pro-

posed modeling approach, researchers can gain deeper insights into the factors that

contribute to these different types of zeros, thereby improving their understanding

of the underlying processes. Furthermore, our model demonstrates superior per-

formance in both simulated and real-world scenarios when compared to traditional

methods such as the Tobit model and the zero-inflated beta regression model. By

significantly reducing prediction errors, our model is proven to be a valuable tool for

accurate estimation and prediction in various applications. By presenting these find-

ings, we highlight the effectiveness and practicality of our semi-parametric model,

enabling researchers to make more informed decisions and gain a comprehensive un-

derstanding of the factors influencing both types of zeros and the positive percent

rate.

In the second section, our main objective is to provide a precise interpretation of the

factors that influence the defective rate. Particularly, we focus on the indicator part,

which was left undefined in the first part but has garnered more attention due to its

exploration of the covariates that distinguish the zero part from the non-zero part. In

the original model assumption, the presence of the indicator part creates complexity

in inferring the parameters. Taking inspiration from the smoothed maximum score

estimator, we introduce a parametric model by replacing the indicator part with a
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smoothed kernel estimator. This substitution yields a continuously differentiable loss

function, which greatly facilitates further analysis. Similar to the previous section,

we take into account heterogeneity and utilize the weighted least square method to

estimate both parameters. Subsequently, we establish the consistency and asymp-

totically normal properties for both the regression and indicator estimators. These

properties assure the reliability and validity of our estimators in capturing the under-

lying relationships and distinguishing between the zero and non-zero parts effectively.

Keywords: Semiparametric model; Semiparametric estimation; Weighted least squares;

Parametric inference; Zero-inflated proportion data
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Chapter 1

Literature Review and
Introduction

1.1 Literature Review and Background

Zero-inflated nonnegative data analysis has been extensively studied for many years

due to its widespread applications in biomedical, economic, and ecological domains.

Its applications encompass substance abuse, medical costs, medical care utilization,

single-cell gene expression rates, and relative abundance of microbiomes. In all these

cases, a substantial portion of the data sets comprises zero values combined with pos-

itive continuous values, which cannot be adequatel y explained by simple parametric

distributions. To precisely capture the characteristics of the variables of interest in

different situations, researchers have developed specific models. For instance, in the

microbiome field, some zero observations do not necessarily represent actual zero

values. In other words, there may exist a small ymin value, below which observa-

tions cannot be detected. In such cases, researchers have employed censoring models

to describe the occurrence of zeros. However, in cases like alcohol consumption or

medical costs, zero-valued observations represent clinically significant actual zeros,

prompting researchers to introduce an additional indicator variable for the zero part.

Two classical methods are most commonly used to deal with inflated data, we will
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briefly introduce them and their extensions on high-dimensional data sets.

1.1.1 Zero-Inflated Nonnegative Data Analysis

Tobit Model

The Tobit model, first introduced by Tobin (1958), is a crucial model in economic

analysis, particularly in the study of labor market outcomes and wage determination.

In this model, zero values are considered as “censored” observations, accounting for

the fact that some individuals may have unobserved or unreported wages due to

factors such as unemployment or non-participation in the labor market. Utilizing

the Tobit model, the influential study conducted by Heckman (1979) has significantly

contributed to our understanding of wage determination. While the Tobit model has

been proven to be an invaluable tool in econometrics, it has also been applied to the

statistical modeling of zero-inflated nonnegative data collected in other fields (Liu

et al., 2019).

Denote Y ∗ as the latent real outcome which is continuous and positive. Given

a detection limit ymin, the Tobit model first assumed the actual observation Y =

Y ∗I{Y∗>ymin}. An observation of Y = 0 is then an indicator of left censoring. Given

the covariates X, the Tobit model is defined by modeling log Y ∗|X = X>α+ε, where

ε is a Gaussian noise term, and inference approaches were well developed, including

the maximum likelihood method proposed by Amemiya (1973), the Bayesian method

brought up by Chib (1992) and the maximum entropy method presented by Golan

et al. (1997).

Despite the well-construction of the framework of the Tobit model, it is important

to note that the Tobit model does not account for heteroscedasticity, meaning that

the variance of ε is assumed to be independent of X. This assumption may not

hold in many practical situations, leading to potential issues in model fitting and

inference.
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To address this limitation, the heteroscedastic Tobit model could be regarded as

one promising extension, which allows the variance of ε to depend on the covariates X.

Specifically, the model assumes log Y ∗|X = X>α + ε(X), where ε(X) is a function

that captures the heteroscedasticity in the error term. This extension provides a

more flexible framework for modeling zero-inflated data with varying variances across

different covariate values.

Another extension is the censored quantile regression model, which aims to esti-

mate the conditional quantiles of the response variable rather than just the condi-

tional mean. This approach is particularly useful when the distribution of the errors

is heavy-tailed or when robustness to outliers is desired.

By accounting for heteroscedasticity and leveraging more flexible modeling frame-

works, these extensions of the Tobit model offer improved accuracy and robustness in

analyzing zero-inflated nonnegative data, especially in scenarios where the assump-

tions of the standard Tobit model are violated.

In addition, Jacobson and Zou (2022) proposed penalized Tobit models for high-

dimensional censored regression problems. They employed a convex reparameteriza-

tion of the negative log-likelihood function, as introduced by Olsen (1978), to leverage

convex optimization techniques.In theoretical results, they derived a bound for the

l2 estimation error of the Tobit Lasso estimator, which provides valuable insights

into the behavior of the Tobit Lasso estimator in high dimensions and facilitates the

development of robust and accurate estimation procedures for censored regression

problems with a large number of predictors.

Two Part Model

Unlike the Tobit model, which considered the data set to be left-censored, two-part

model took zero values as true observations as it introduced in Liu et al. (2019),

Manning et al. (1981). In other words, the observations were separated into two
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parts, the zero part and the positive part. Let Y0 be the Bernoulli random variable

such that

logitP(Y0 = 1|X) = X>α.

The let Y+ > 0 be the continuous random variable such that

logY+|X ∼ X>β + e,

where X denoted as the covariates and it is independent with e. Then the observation

data set with a large portion of zero Y could be modeled as Y = Y0Y+.

Analysis of this model could also be specified in two parts:

1. P (Y > 0|X) = p(X) and P (Y = 0|X) = 1− p(X), where p(X) = exp(X>α)
1+exp(X>α)

.

2. For the positive part, E(logY|Y > 0,X) = E(logY+|X) = X>β. We could also

conclude the cumulative distribution function under two-part model as

P (Y ≤ y|X) = 1− p(X) + I(y > 0)p(X)Fe(logy −X>β),

where Fe(v) = P (e ≤ v).

Since the interpretation of zero part is quite different between two part model and

Tobit model, it is not appropriate to decide which is better in general. They were

more like answers for same problem occurred in distinct areas.

Zero-inflated Tobit Model

Since the Tobit model is designed to handle left-censored data, it encounters chal-

lenges when the data consists of a substantial proportion of zeros, resulting in in-

creased variance and a poor fit of the model. To overcome this obstacle, the zero-

inflated Tobit model is proposed to address this issue by adding an additional point

mass at zero (Moulton and Halsey, 1995; Liu et al., 2019). Specifically, the zero-
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inflated Tobit model is given as:

Y =

Y
∗I(Y ∗ > ymin) with probability p(X),

0 with probability 1− p(X),

where I(·) is the indicator function and the parameter ymin refers to the latent min-

imal detection limit. A natural extension of the zero-inflated Tobit model to deal

with the case where the nonzero component of the response Y in within (0, 1) is to

adopt a different link function that extends the domain of Y to the real line, and as

a comparison, in this paper we consider the model logitY∗|X = X>α + ε.

1.1.2 Zero-inflated Proportional Data Analysis

Proportional data is a common type of observation in various fields such as animal

studies, economic studies, environmental studies, and industrial manufacturing. Ac-

cording to Warton and Hui (2011), over a third of publications in ecology analyzed

some form of proportional data. This data type arises in diverse contexts within

these fields. For instance, in ecology, researchers study the proportional cover of

specific plant functional types in vegetation quadrat surveys (Defries et al. (2000)),

the proportion of time animals spend engaged in certain activities (Clayton and Cot-

greave (1994)), and the percentages of biomass allocated to different plant organs

(Poorter et al. (2012)).

Denote the n independent observations as (X∗i , Yi), i = 1, . . . , n where the Yi ∈

[0, 1] is the proportional response and X∗i = (1,X>i ), X> = (x11, . . . , x1,p−1)T is

the (p − 1)-dimensional covariate of observation i. For proportional data without

zero inflation, binomial regression is a standard model which is frequently used in

practice (Quinn and Keough (2002)). Alternatively, we can also apply appropriate

transformations to the proportions and proceed with classical ordinary linear models

(Crawley (2012)). However, in many applications, the proportional responses are also
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characterized by a significant presence of zero values, i.e., some of the Yi’s are exactly

equal to zero, and classical methods that ignore the inflation of zeros are no longer

appropriate. To address the zero inflation in proportional data, a popular approach

is to combine the β-distribution with a point mass (Swearingen et al., 2012), and one

of the most popular methods in fitting zero-inflated proportional data is the zero-

inflated β-regression model introduced by Ospina and Ferrari (2012). Specifically,

Swearingen et al. (2012) assumes that the zero-inflated response Y follows:

Y =

0 with probability p,

Beta(α1, α2) otherwise,

where Beta(α1, α2) is the density of the β-distribution with parameters (α1, α2).

Given the covariate X∗, the zero-inflated β-regression model (Ospina and Ferrari,

2012) formulates logit(u) = X∗>β1, logit(v) = X∗>β2, logit(p) = X∗>β3, where

u = α1

α1+α2
and v = α1α2

(α1+α2)2(α1+α2+1)
refer to the mean and dispersion parameter

of the β-distribution, respectively. Without loss of generality, the β-distribution

can also be replaced by other distributions defined on the (0,1) interval such as

the simplex distribution (Kieschnick and McCullough, 2003) and the generalized

Johnson SB distribution (Queiroz and Lemonte, 2021). Bayesian versions of this

framework have also been studied in Wieczorek and Hawala (2012), Santos and

Bolfarine (2015a) and Liu and Eugenio (2018), among others. In particular, Liu and

Eugenio (2018) compared the performance of the zero-inflated β-regression model

among the frequentist likelihood-based method and Bayesian-based method, and

found that while the two approaches are comparable, the likelihood-based approach

was computationally more efficient, and the Bayesian inferences were less biased

when the sample size was small. Overall, existing methods primarily focused on

modeling the zero-inflated proportions via generalized linear models which rely on the

distributional assumption for the zero-inflated proportional responses. While there
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are many application papers which use the above-mentioned approaches to analyze

data in different areas, new methods for the statistical modeling, especially those

directly addresses prediction of zero-inflated proportional data, have been relatively

sparse.

1.1.3 Latest Research and Applications

There are many applications involving the zero-inflated proportion data such as the

alcohol consumption among California students, the electricity accessibility in Brazil,

and the infant mortality data obtained from the Parana State. We will illustrate

them carefully the numerical study in chapter 2. Besides, a very classical example is

mortality in traffic accidents of n = 200 Brazilian municipal districts of the southeast

region in the year 2002. The response variable (Y) is the proportion of deaths caused

by traffic accidents. The explanatory variables include: lnpop—the natural logarithm

of the municipality’s population size, prop2029—the proportion of residents aged

between 20 and 29 years, and hdie—the human development index of education

for the municipal district. Ospina and Ferrari (2012) and Queiroz and Lemonte

(2021) used zero-inflated beta regression model and zero-or-one inflated generalized

Johnson SB (GSB) regression models accordingly to examine the influence of the

young population proportion on the proportion of traffic accident fatalities, after

accounting for potential confounding factors.

In the analysis of metagenomic data, which is typically represented as composi-

tions (proportions) with an excessive number of zeros and a skewed distribution, it

is crucial to identify disease-associated pathogenic bacteria characterized by differ-

ential abundances across various clinical conditions. To address this challenge, Peng

et al. (2016) introduced a zero-inflated beta regression approach, termed ZIBSeq,

which accounts for the sparse nature of metagenomic data and enables more efficient

modeling of compositional data.
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In health economics for analysis of technical efficiency in hospitals, which is a

measure of how well a hospital utilizes its resources to produce outputs or services.

Since the technical efficiency scores are bounded between 0 and 1 and often exhibit

excessive zeros (fully inefficient hospitals) and ones (fully efficient hospitals), Ocaña-

Riola et al. (2021) propose a multilevel zero-one inflated beta regression model to

investigate the relationship between exogenous health variables and the technical

efficiency of hospitals within the Spanish National Health System.

1.1.4 Technical Tools

Uniform Convergence

Modes of convergence in probability theory, statistics, and related fields play a crucial

role in understanding the behavior of sequences of probability measures, estimators,

and other stochastic processes. Two important modes of convergence are uniform

convergence and weak convergence (convergence in distribution). Uniform conver-

gence is a stronger notion of convergence compared to pointwise convergence. An

estimator is said to converge uniformly to the true parameter if the maximum devi-

ation between the estimator and the true parameter over the entire parameter space

goes to zero as the sample size increases. This property is desirable because it ensures

that the estimator is consistently accurate across the entire range of parameter values,

rather than just converging at specific points. Weak convergence of measures, also

known as convergence in distribution, is an important concept in probability theory

and stochastic processes. It describes the convergence of a sequence of probability

measures in terms of their behavior on continuous bounded functions. The research

area described in Rao (1962) deals with studying the connections and implications

between different modes of convergence for sequences of measures. Specifically, it

focuses on the relationships between weak convergence and uniform convergence of

measures, and how these modes of convergence interact with each other. Under-
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standing the relationships between weak and uniform convergence is crucial because

it allows for translating results and implications from one mode of convergence to

the other. A representative result brought up in Rao (1962) is following theorem:

Lemma 1.1. Let {λn, λ;n = 1, 2, · · · } be a sequence of random measures on X pos-

sessing the ergodic property. Let a be a family of continuous functions on X satisfying

the following two conditions: (i) there exists a continuous function g(x) on X such

that |f(x)| 5 g(x) for each f ∈ Q and x ∈ X;E
∫
g(x)λ(dx, ω) < ∞; and (iii) a is

equicontinuous. Then P [ηn → 0] = 1, where

ηn = sup
fea

∣∣∣∣∫ fdλn −
∫
fdλ

∣∣∣∣ .
A General Upper Bound for Empirical Risk Minimizers

Let us consider independent random variables η1, . . . , ηn observed in a measurable

space Z, with a common distribution P . In the context of bounded regression, for

every i, the variable ηi = (Xi, Yi) is a copy of a pair of random variables (X, Y ),

where X takes values in a measurable space X , and Y is assumed to take values in

the interval [0, 1]. In the classification case, the response variable Y is assumed to

belong to the set 0, 1. The regression function ξ is defined as ξ(x) = E[Y |X = x] for

every x ∈ X .

In regression problems, the goal is to estimate the regression function ξ. One

commonly used method for this purpose is empirical risk minimization (Vapnik,

2006). This method involves considering a set S, which is known to contain η. In

the regression case, S can be the set of all measurable functions from X to [0, 1].

The key element in empirical risk minimization is the introduction of a loss (or

contrast) function γ from S × Z to [0, 1], which is well-adapted to the problem of

estimating η. The expected loss P [γ(t, ·)] achieves a minimum at η when t varies in

S. In other words, the relative expected loss ` defined by `(ξ, t) = P [γ(t, ·)− γ(ξ, ·)]

9



for all t ∈ S is non-negative. In the regression case, a common choice for γ is

γ(t, (x, y)) = (y− t(x))2, since η minimizes E[(Y − t(X))2] over measurable functions

t taking values in [0, 1].

The heuristics of empirical risk minimization (or minimum contrast estimation)

can be described as follows: Substitute the empirical loss γn(t) = Pn[γ(t, ·)] =

1
n

∑n
i=1 γ(t, ηi) for its expectation P [γ(t, ·)], and minimize γn on a subset S of S.

This provides an estimator ŝ of ξ, which is sensible if ξ belongs (or is close enough)

to the model S. This estimation method is widely used and has been extensively

studied in the asymptotic parametric setting, where S is a given parametric model,

ξ belongs to S, and n is large.

The purpose is to provide a general non-asymptotic upper bound for the relative

expected loss between ŝ and η. To achieve this, we introduce the centered empirical

process γ̄n defined by γ̄n(t) = γn(t)− P [γ(t, ·)].

In addition to the relative expected loss function `, another way to measure the

closeness between elements of S is needed, directly connected to the variance of the

increments of γ̄n, which plays an important role in analyzing γ̄n’s fluctuations. Let

d be a pseudo-distance on S × S (which may depend on the unknown distribution

P ) such that VarP [γ(t, ·)− γ(ξ, ·)] ≤ d2(ξ, t) for every t ∈ S.

In applications, it may be more convenient to take d as a more intrinsic distance.

For instance, in regression or classification, d can be chosen (up to a constant) as the

L2(µ) distance, where µ denotes the distribution of X. For regression, [γ(t, (x, y))−

γ(η, (x, y))]2 = [t(x)− ξ(x)]2[2(y − ξ(x))− t(x) + ξ(x)]2. Since EP [Y − ξ(X)|X] = 0

and EP [(Y − ξ(X))2|X] ≤ 1/4, we derive that EP [γ(t, (X, Y )) − γ(ξ, (X, Y ))]2 ≤

2Eµ(t(X)− ξ(X))2.

Our main result will crucially depend on two different modulus of uniform conti-

nuity: the stochastic modulus of uniform continuity of γ̄n over S with respect to d,

and the modulus of uniform continuity of d with respect to `.
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The main tool we shall use is Talagrand’s inequality for empirical processes (Ta-

lagrand, 1996), which will allow us to control the oscillations of the empirical process

γ̄n by the modulus of uniform continuity of γ̄n in expectation. More precisely, we

shall use the following version of Talagrand’s inequality due to Bousquet (2002),

which has the advantage of providing explicit constants and dealing with one-sided

suprema.

Let F be a countable family of measurable functions such that, for some positive

constants z and b, one has, for every f ∈ F , P (f 2) ≤ z and |f |∞ ≤ b. Then, for

every positive y, the following inequality holds for T = sup f ∈ F(Pn − P )(f):

P

[
T − E[T ] ≥

√
2

(z + 4bE[T ])y

n
+

2by

3n

]
≤ e−y.

Unlike McDiarmid’s inequality (McDiarmid, 1989), which has been widely used in

statistical learning theory (Lugosi, 2002), a concentration inequality like Talagrand’s

inequality offers the possibility of controlling the empirical process locally.

By using Talagrand’s inequality, we can control the oscillations of the empirical

process γ̄n by its modulus of uniform continuity in expectation. This is crucial for

our main result, which depends on the moduli of uniform continuity of γ̄n over S

with respect to d, and the modulus of uniform continuity of d with respect to `.

Kernel Estimation

The concept of kernel estimation was initially proposed by Rosenblatt (1956) in

1956 for density estimation. Subsequently, Watson (1964) and Nadaraya (1964) in-

dependently introduced kernel estimation as a novel approach for nonparametric

regression estimation in 1964. Over the following decades, kernel estimation tech-

niques gained widespread recognition and were extensively studied and refined by

researchers across various disciplines, including statistics, econometrics, and signal
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processing. Notable contributions to the advancement of kernel estimation include

the seminal work of Silverman (2018) on kernel density estimation, which provided

a comprehensive treatment of the theory and applications of this technique. Härdle

(1990) on applied nonparametric regression played a pivotal role in popularizing

kernel regression methods and their practical applications. Fan (2018) made signifi-

cant contributions to the field with their work on local polynomial modeling, which

encompasses kernel regression as a special case.

The basic idea behind kernel estimation is to construct an estimate of the density

function by summing up kernel functions centered at each data point. The kernel

function is a symmetric, non-negative function that integrates to one and satisfies

certain smoothness properties.

Mathematically, given a sample of observations X1, X2, · · · , Xn drawn from an

unknown density function f(x), the kernel density estimator is defined as

f̂h(x) =
1

n

n∑
i=1

Kh (x− xi) =
1

nh

n∑
i=1

K

(
x− xi
h

)
,

Where: K(·) is the kernel function h is the bandwidth or smoothing parameter that

controls the trade-off between bias and variance of the estimator. As one of the

widely used kernel estimation methods, the Nadaraya–Watson estimator, is formed

as follows.

Let the data be (yi, Xi) where yi is real-valued and Xi is a p-dimension vector,

and assume that all are continuously distributed with a joint density f(y, x). The

regression function for yi on Xi is

g(x) = E (yi|Xi = x) .

To estimate this nonparametrically with fewer assumptions on g(·), they consider a

neighborhood around the point x. If the random variable Xi has a positive density
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at x, observations could be found within this neighborhood. The key is to estimate

g(x) by averaging the yi values of observations in this neighborhood. However, the

size of the neighborhood must balance two factors: the variation in g(x) within the

neighborhood (bias) and the number of observations included (variance). A smaller

neighborhood reduces bias but increases variance, while a larger neighborhood re-

duces variance but increases bias. Finding the optimal neighborhood size (h) is

crucial for accurate estimation. Based on the discussions, the Nadaraya–Watson

estimator is constructed as

ĝ(x) =

∑n
i=1 Kh (d(Xi − x)) yi∑n
i=1Kh (d(Xi − x))

,

where K(·) is a standard Gaussian kernel function, Kh(u) = K
(
u
h

)
, and d(·) refers

to the distance measure.

Early works on uniform convergence for kernel density estimation are contributed

by research such as Nussbaum (1996), Hardle et al. (1988), and Giné and Guillou

(2002). Newey (1994) introduced kernel-based estimators for partial means and a

general variance estimator in nonparametric regression settings. They established

theoretical results on the consistency and asymptotic normality of the proposed es-

timators under certain regularity conditions. These findings provided a solid foun-

dation for the use and interpretation of these estimators.

Let y denote a random variable and p0(x) = E[y|x]. Partition x = (x1, x2) and

let x̃2 be a variable that is included in z and has the same dimension as x2, and x̄1 be

some fixed value for x1. Let τ (x2) be some weight function that keeps a denominator

bounded away from zero. A partial mean is

β0 = E [τ (x̃2) p0 (x̄1, x̃2)] .

This object is an average over some conditioning variables holding others fixed.

It can be estimated by substituting a kernel estimator for g0 and a sample average for
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the expectation. Let Y = (1, y), so that f(x) = (f1(x) , f2(x))′ where f10(x) is the

density of x and f20(x) = f10(x)E[y|x]. Also, let p̂(x) = f̂2(x)/f̂1(x) = f̂2(x)/r̂(x),

for the kernel density estimator r̂(x) = f̂1(x), and x̄i = (x̄1, x̃2i). Then the estimator

is

β̂ = n−1

n∑
i=1

τ (x̃2i) p̂ (x̄i) .

Assumption 1.1. There are positive integers d and q such that K(u) is differentiable

of order d, the derivatives of order d are Lipschitz, K(u) is zero outside a bounded

set,
∫
K(u)du = 1, and for all j < q,

∫
K(u)

[
⊗j`=1u

]
du = 0.

The last condition requires that the kernel should be a higher-order (bias-reducing)

kernel of order q. This property is utilized to ensure that the limiting distribu-

tions of the estimators are centered around the true values, thereby guaranteeing

their asymptotic unbiased. The next condition imposes smoothness on the functions

f0(x) := E[y|x]g0(x), where g0(x) refers to the density of x.

Assumption 1.2. There is a non-negative integer t and an extension of f0(x) to all

of Rk that is continuously differentiable to order t on Rk

This condition is employed in conjunction with Assumption 1.1 to ensure that

the bias of the estimator is sufficiently small. It mitigates cases where the density

of x and its derivatives exhibit non-zero values at the boundary of the support by

imposing smoothness requirements across the entire domain.

Under these conditions and certain others, partial means will be asymptotically

normal. Let the u argument of K(u) be partitioned conformably with x and g̃0 (x̃2)

denote the true density of x̃2. The asymptotic variance of the partial mean estimator
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will be

V =

[∫ {∫
K (u1, u2) du2

}2

du1

]

×
∫
g0 (x̄1, t)

−1 τ(w)2g̃0(w)2 var (y|x = (x̄1, w)) dw.

Lemma 1.2. Suppose that (i) E [|y|4] < ∞,E [|y|4|x] g0(x), and g0(x) are bounded;

(ii) assumption 1.1 and assumption 1.2 are satisfied for t ≥ q; (iii) τ (x̃2) is bounded

and zero except on a compact set where g0 (x̄1, x̃2) is bounded away from zero; (iv)

τ (x̃2) and f̃0 (x̃2) are continuous a.e., g̃0 (x̃2) is bounded, E[y|x] and E [y2|x] are con-

tinuous, and for some ε > 0,
∫

sup|η|≤ε {1 + E [y4|x = (x̄1 + η, x2)]} g (x̄1 + η, x2) dx2 <

∞; (v)nσ2k−k1 ln(n)2 →∞ and nσk1+2q → 0. Then, for β̂ in 1.1.4,

√
nσk1/2

(
β̂ − β0

)
d−→ N(0, V ).

Newey (1994) also provided rates of uniform convergence in probability for kernel

estimators of derivatives, measured in Sobolev norms.

Proposition 1.1. For a closed set X, Denote ‖f‖j = sup`≤j supx∈x
∥∥∂`f(x)/∂x`

∥∥.

Suppose that E [‖y‖p] < ∞ for p > 2,E [‖y‖p|x] f0(x) is bounded, x is compact,

Assumption 1.1 is satisfied for d ≥ j, and σ = σ(n) such that σ(n) is bounded and

n1−(2/p)σ(n)k/ ln(n)→∞. Then

‖f̂ − E[f̂ ]‖j = Op

(
ln(n)1/2

(
nσk+2j

)−1/2
)
.

These rates quantify the convergence behavior of the estimators for higher-order

derivatives of the target function, offering a more comprehensive characterization of

their performance. It contributed a lot in applications where accurate estimation of

higher-order derivatives is crucial, such as in the study of nonparametric regression

models, density estimation, and nonlinear time series analysis.
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High Dimensional M-estimators

The study of high-dimensional M-estimators has its roots in the work on sparse esti-

mation and variable selection in the early 2000s, with Tibshirani (1996) introducing

the Lasso estimator, an M-estimator with an L1 penalty, to perform variable selection

and estimation simultaneously in high-dimensional linear regression models. Follow-

ing the success of the Lasso, there has been a surge of research on high-dimensional

M-estimation, focusing on developing new regularized M-estimators, studying their

theoretical properties, and developing efficient computational algorithms. Key devel-

opments include: studying the consistency, oracle properties, and asymptotic distri-

butions of high-dimensional M-estimators under various sparsity and regularity con-

ditions (e.g., Bühlmann and Van De Geer (2011); Negahban et al. (2012)); growing

interest in non-convex penalties, such as SCAD and MCP, which can improve esti-

mation accuracy and variable selection performance (e.g., Fan and Li (2001); Zhang

(2010)); extending high-dimensional M-estimation to robust settings with outliers or

heavy-tailed errors (e.g., Sun et al. (2020)); developing efficient algorithms like coor-

dinate descent, proximal gradient methods, and ADMM for solving high-dimensional

M-estimation problems (e.g., Friedman et al. (2008); Beck and Teboulle (2009)); and

applications in fields like genomics, finance, signal processing, and machine learn-

ing with high-dimensional data. The study of high-dimensional M-estimators has

been a fertile area, bridging theory and computation, leading to new insights and

methodologies for analyzing high-dimensional data.

In the high-dimensional statistical regime, where the number of parameters d

grows to infinity as the sample size n increases, estimating a parameter θ0 ∈ Θ ⊂ Rd

could be a critical problem. For simplicity, Θ is assumed to be convex and the

parameter θ0 is defined as the minimizer of an unknown true risk function R : Θ→

R≥ 0, which is estimated by an empirical risk R̂ : Θ → R≥ 0 based on a random
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sample of size n. In general, We considered the estimator of θ0 of the form

θ̂ ∈ argminθ∈Θ R̂(θ) + λn|θ|1,

where λn > 0 is a penalty level chosen concerning n. The `1-norm penalization is

advantageous for two main reasons: one is that according to Bühlmann and Van

De Geer (2011), it avoided overfitting by shrinking coefficients of less important

variables to zero. The other is that it facilitated the use of stochastic subgradient-

based algorithms for optimizing the objective function. In the case of a nonconvex

objective function, parallel computing such as Agarwal and Duchi (2011) and noise

injection techniques introduced in Ge et al. (2015) can be employed to escape local

minima and continue the descent process.

1.2 Motivations and Outline

The essence of these methods are different due to their construction. If we take a

step back to understand how the zeros are generated, we find that they typically arise

from three different scenarios: (i) Unsuitability, where for certain covariates X∗, the

outcome Y is zero with probability 1; (ii) Detection error, which occurs when the

outcome Y is zero with high probability, leading to zero observations due to low

detection rates in random sampling. Take proportional cover data in plant surveys

(Tang et al., 2023) as an example. Zeros due to unsuitability could arise when some

plant species are deem unsuitable under certain types of biotic and abiotic factors.

If a plant species is deemed suitable for a particular area but is not found there, it

could be explained by the low probability of detection during sampling.

Most of the existing methods could explain the ‘zero’ source in the specific prob-

lem. (zero-inflated beta regression model would cover the zero from random sampling

while the Tobit model covers the detection error other than the random sampling.)

We intend to construct a brand new model that could take care of the zero from two
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source so that it could be flexible and robust in different applications.

Let (X∗,Y) be a random observation where X∗ = (1,X), X = (x1, . . . , xp−1)>

is (p − 1)-dimensional covariates and the response Y is a zero-inflated proportion

variable, i.e., Y ∈ [0, 1) and 0 < P(Y = 0|X∗) ≤ 1. The constant 1 is incorporated

into the vector X∗ to represent the intercept term in the model. To account for the

zero-inflated nature of Y , we first of all model (X∗, Y ) via:

E[Y |X∗] = f(X∗)I{D(X∗)≥0}. (1.1)

Here D(X∗) is a discriminant function that accounts for the zero inflation arising

from systematic or structural unsuitability, i.e., cases where P (Y = 0|X∗) = 1.

When the probability P (Y = 0|X∗) < 1, zeros originating from random sampling

are characterized by f(X∗) : Rp 7→ [0, 1], i.e., the conditional mean function of Y .

This separation of the two zero-generating processes enables the model to provide a

more accurate representation of the data-generating mechanism, leading to improved

model fit and more reliable inferences, particularly in scenarios where both sources

of zeros are present in the data. However, the price we have to pay for adopting the

formulation (1.1) is to handle the non-smooth component introduced by the indica-

tor function, which brings challenges to both theoretical analysis and computation.

Based on the conditional expectation formulation (1.1), we first of all introduce the

following population risk function:

L = E

[
1

2σ2(X∗)
(Y − f(X∗)I{D(X∗)≥0})

2

]
, (1.2)

where σ2(X∗) := f(X∗)(1 − f(X∗)) is the variance of a Bernoulli random variable

with success probability f(X∗). Clearly (1.2) is simply the expectation of a weighted

squared loss. The weight σ2(X∗) is introduced to take into account since the variances

of Y |X∗ for different covariates X∗ may be different. The form σ2(X∗) ∝ f(X∗)(1−

f(X∗)) is adopted to mimic the fact that the proportional response Y is usually
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calculated as the rate of “events” obtained from simple random sampling. To address

heterogeneity, we propose using a weighted loss function, which is a modification of

the standard least squares loss that considers the covariance structure of the data. By

incorporating the covariance matrix into the model, we can mitigate the influence of

outliers or noisy data points, leading to more robust and reliable parameter estimates.

Our proposed model offers several advantages over conventional methods like the

Tobit or zero-inflated beta regression models. In the case of the Tobit model, at-

tempting to address heterogeneity by replacing the fixed σ with σ(X∗) would lead to

unsatisfactory results due to the non-concavity of the objective function when making

general assumptions about f(X). Although the zero-inflated beta regression model

with the maximum likelihood method accounts for heterogeneity, it cannot overcome

the global convexity problem or provide an exact prediction for the “zero” part of the

data. Our model shares some similarities with the two-stage method. In two-stage

method, it separates the dataset into the ‘zero’ part and the‘non-zero’ part. Then,

do the regression only with the ‘non-zero’ part and set the ‘non-zero’ part to one, and

do the classification part. When new data comes in, use the classification model to

tell whether it is zero or positive. If it is positive, predict it with a regression model.

The bright side is the two-stage model could obtain an exact ‘zero’ prediction, but

it has a critical limitation since not all ‘zero’ data are due to unsuitability. With

the ‘zero’ comes from random sampling (detection error), it results in inconsistent

estimators in classification. In contrast, our model achieves a balance between the

classification and regression components, allowing for adjustments that mitigate the

impact of misclassification, providing a more robust and reliable estimation frame-

work by explicitly modeling the different mechanisms (unsuitability, detection error)

that lead to excess zeros and incorporating a classification component. As a result,

our proposed model offers a more comprehensive and robust approach to analyzing

zero-inflated proportion data, resulting in improved estimation accuracy and inter-
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pretability compared to existing methods.

Based on the model assumption 1.1 and the loss function we proposed, we could

present the general estimation procedure of f(X∗), D(X∗). First, based on obser-

vations {(X∗i , Yi)}ni=1, denote B1 := {(X∗i , yi)|Yi > 0}ni=1, n1 = card(B), we estimate

the regression part with

f̂(X∗) = arg minf

n1∑
(X∗i ,Yi)∈B1,i=1

(
1

2σ2(X∗i )
[Yi − f(X∗i )]

)2

.

Then, in the second step, we noted that there is no need to derive the precise form

of D(X∗) since the sign of it is enough for prediction.

Proposition 1.2. The Derivation of sign of D(X∗)

Given f(X∗), the optimal decision D(X∗) that minimizes R(f,D) must satisfy:

sign(D(X∗)) = sign(E[−g(Y,X∗; f(X∗))|X]),

where g(Y,X∗; f(X∗)) = f(X∗)2−2Y f(X∗)
σ2(X∗)

.

With proposition 1.2 we take advantage of the Nadaraya–Watson estimator, es-

timating sign(D(X∗)) as

sign(D̂(x)) = sign

[
− (nh)−1

∑n
i Kh(d(x,X∗i ))g(Y,X∗i ; f(X∗))

(nh)−1
∑n

i Kh(d(x,X∗i ))

]
,

where d(x,X∗i ) refers to the distance function and Kh(u) = K
(
u
h

)
is a standard

Gaussian kernel function.

The estimation process we provided here is very general, in the following sec-

tion, we will specify the form of our f(·), σ(·) and the distance d(x,X) in the

Nadaraya–Watson estimator to further derive the properties of our estimators.
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Chapter 2

Semiparametric Model for

Zero-inflated Proportion Data

2.1 Model Construction and Estimation Mecha-

nism

In the first section, we briefly introduced our model constructed to capture two types

of ‘zero’, we then further completed our work by adding some structure assumptions

on the unknown f(X) and D(X). To address the problem, we make the model more

specific by formulating the optimization problem as

L = E

(
1

2σ2(X∗>α)
[Y − f(X∗>α)I{D(X∗)≥0}]

2

)

= E

(
1

2

[
Y

σ(X∗>α)
− T (X∗>α)I{D(X∗)≥0}

])2

,

where T (X∗>α) = f(X∗>α)
σ(X∗>α)

.

Instead of giving the form of f(X∗>α) directly, we focus on the relationship be-

tween f(X∗>α) and σ(X∗>α) first. As we mentioned before, in a product factory,

the defective rate for different products is determined by counts, indicating that the

observations follow the Binomial distribution Bin(m, p) where m represents the sam-

pling number, and p represents the probability of defects. Considering heterogeneity
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issue as we mentioned before, the following weighted loss function was brought up

naturally.

L = E

[
1

2f(X∗>α)(1− f(X∗>α))

(
Y − f(X∗>α)I{D(X∗)≥0}

)2]
.

Inspired by the reparameterization proposed by Olsen (1978), we considered the

form T (X∗>α) ∝ exp{X∗>α}, which results in the global convexity of the loss func-

tion with respect to the regression part. With the relationship between f(·) and σ(·),

and assumption on T (·), we could derive

f(X∗>α) =
(exp{X>α})2

(1 + (exp{X>α})2)
. (2.1)

With 2.1 we obtain, our loss function could be written as

L = E

[(
(1 + (exp{X∗>α})2)Y

exp{X∗>α}

)
− (exp{X∗>α})I{D(X∗)≥0}

]2

= E

[(
(1 + (exp{X∗>α})2)Y

exp{X∗>α}

)2

+ exp{X∗>α}
(

exp{X∗>α} − 2

(
(1 + (exp{X∗>α})2)Y

exp{X∗>α}

))
I{D(X∗)≥0}

]
.

As we illustrated with general construction, denote B1 := {(X∗i , yi)|Yi > 0}ni=1,

n1 = card(B). We first obtain the estimator with

α̂ = arg min
α

n1∑
(X∗>i ,Yi)∈B1,i=1

(1 + (exp{X∗>i α})2)2

2(exp{X∗>i α})2

(
Yi −

(exp{X∗>i α})2

1 + (exp{Xiα})2

)2

,

Then, due to proposition 1.2, we have

sign(D(X∗)) = sign(E[−g(Y,X∗;α)|X∗]). (2.2)
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where g(y,X∗;α) = exp{X∗>α}
(

exp{X∗>α} − 2

(
(1+(exp{X∗>α})2)Y

exp{X∗>α}

))
. So we con-

struct the Nadaraya–Watson estimator as

D̂(x) =
(nh)−1

∑n
i Kh((x−X∗i )

>α̂)g(Y,X∗i ; α̂)

(nh)−1
∑n

i Kh((x−X∗i )
>α̂)

, (2.3)

where K(·) is a standard Gaussian kernel function and Kh(u) = K
(
u
h

)
.

Remarks: Our classification estimation primarily hinges on the observation stated

in 2.2. There exists a close relationship between our regression step and classification

step. To further emphasize and elucidate the intrinsic connection between these two

components, we employ the following distance metric: d(x,X∗i ) = (x−X∗i )
>α̂, where

α̂ represents the estimated coefficient vector obtained from the regression stage.

The distance construction facilitates a seamless transition between the regression

and classification tasks, enhancing the overall interpretability and coherence of the

proposed estimation method.

2.2 Main Theorems

The theoretical analysis of our proposed model comprises three main components.

The first part delves into the properties of the loss function employed. It is well-

established that a globally convex population loss function offers numerous advan-

tages, including the guarantee of a unique solution, efficient optimization conver-

gence, and robust and stable algorithmic behavior. These desirable characteristics

facilitate the optimization process and enhance the reliability of the obtained results.

The second part of our theoretical investigation focuses on establishing the con-

sistency of the estimators derived from the regression stage. In particular, we provide

theoretical guarantees for the consistency of our estimators and further complement

these results by deriving tail bounds on the estimation error of the regression coeffi-

cient vector α̂.
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In the third part, we turn our attention to the kernel estimation component

of our model. After obtaining the estimated regression coefficient vector α̂ from

the regression stage, we analyze the uniform convergence rate of our kernel-based

estimator, which provides theoretical guarantees for the accuracy of our proposed

approach.

By providing a comprehensive theoretical analysis encompassing the loss function

properties, tail bounds, and uniform convergence rates, we establish a solid theoreti-

cal foundation for our model. The theoretical analysis serves as a crucial component

in understanding the strengths and capabilities of our proposed model, facilitating

future research and development in this domain.

Firstly, we brought up the global convexity property of our loss function.

Proposition 2.1. Given D(X∗), denote n1 = card({X∗|D(X∗ ≥ 0)}), then the

empirical loss function

Ln(α) =
1

n

n∑
i=1

(1 + (exp{X∗>i α})2)2

2(exp{X∗>i α})2

(
Yi −

(exp{X∗>i α})2

1 + (exp{X∗>i α})2
I{D(X∗i )≥0}

)2

is strongly convex concerning α in probability as n1 →∞.

The proof of 2.1 is straightforward. Since D(X∗) is given, we separate the loss

into two parts by D(X∗ ≥ 0) and D(X∗ < 0). Then, calculate the empirical Hessian

matrix accordingly, which could be proven to be convex in probability. Details are

given in the last section of Chapter 2.

Now, we proceed to prove the uniform consistency of our estimators. Firstly,

we conclude a preliminary uniform consistency result based on theorem 4.1.1 of

Amemiya (1985), and then, we will further discuss the tail bound of our estimator

α̂.

Definition 2.1. Ergodic Property

An arbitrary sequence of random measures {λn(A, ω) , λ(A, ω);n = 1, 2, · · · } on X
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is said to possess the ergodic property if for each real-valued function g(x) on X, for

which E
∫
|g(x)|λ(dx, ω) <∞

lim
n→∞

∫
g(x)dλn =

∫
g(x)dλ

almost everywhere.

Rao (1962) introduced the definition while exploring the relationships between

weak convergence (convergence in distribution) and uniform convergence (uniform

convergence in total variation) of measures. The work provides conditions under

which weak convergence implies uniform convergence and demonstrates how the

developed theory can be used to establish uniform consistency of empirical processes

and derive uniform convergence rates for estimators.

Assumption 2.1. Assume that X∗ belongs to a compact set X , and there exists a

finite M such that ‖X∗‖2
2 < M .

Assumption 2.2. There exists 0 < V, e <∞ such that ‖α‖2
2 ≤ V , ‖L(X∗, α)‖2

2 ≤ e.

Assumption 2.3. Assume that {(X, Y )|Y > 0} possess the ergodic property, i.e. for

each real-valued function f(x, y) on {(X, Y )|Y > 0}, for which (i) E
∫
|f(x, y)|dλ <

∞; (ii)
∫
f(x, y)dλn =

∫
f(x, y)dλ almost everywhere.

Assumption 2.4. E[X∗X∗>|Y > 0] is positive definite whose eigenvalues are bounded

by 0 < σ2
0 <∞.

Assumption 2.1 and 2.2 impose general conditions on the covariates and param-

eters, respectively. Specifically, these assumptions ensure that the covariates and

parameters are uniformly bounded, which, in turn, guarantees that the loss function

L satisfies the properties of uniform bound and equicontinuity for any available value

of α. These properties are essential for establishing uniform convergence results of

the empirical loss function.
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Assumption 2.3 is a crucial condition that links the convergence in distribution

with the uniform convergence of measures. By satisfying this assumption, we can

construct the uniform convergence of the empirical loss to the population loss under

certain regularity conditions imposed on the loss function.

Assumption 2.4 ensures that the population loss function in the first step is

strongly convex, which guarantees the existence and uniqueness of its minimizer.

Besides, it facilitates the convergence of optimization algorithms and allows for the

establishment of convergence rates.

Lemma 2.1. Suppose assumption 2.1 ∼ 2.4 hold, then given the subset B1 :=

{(X∗i , Yi)|Yi > 0}, denote n1 = card(B1), α̂→p α0 as n1 →∞,

where α̂ = arg minα
∑n1

(X∗i ,Yi)∈B1,i=1
(1+(exp{X∗>i α})2)2

2(exp{X∗>i α})2

(
Yi − (exp{X∗>i α})2

1+(exp{X∗>i α})2

)2

,

α0 = arg minα E

[
(1+(exp{X∗>α})2)2

2(exp{X∗>α})2

(
Y − (exp{X∗>α})2

1+(exp{X∗>α})2

)2∣∣∣∣D0(X∗) > 0

]
.

Proof. With our assumption 2.1 ∼ 2.3, according to the theorem 6.2 of Rao (1962),

we could obtain

lim
n→∞

P(ηn → 0) = 1,

where ηn = supl∈F
∫
|l(x, y)dλn−

∫
l(x, y)dλ|, l = (1+(exp{X∗>α})2)2

2(exp{X∗>α})2

(
Y− (exp{X∗>α})2

1+(exp{X∗>α})2

)2

,

and λn refers to the empirical random measure of (X∗n, Yn) condition on the subset

{Yi > 0} while λ indicates the population measure of (X∗, Y ) condition on the subset

{Y > 0}. Then, according to theorem 4.1.1 of Amemiya (1985), we concluded that

α̂→ α0 in probability.

2.2.1 Tail Bound

We intend to derive the tail bound on P (‖α̂ − α0‖2 > τ) for any given τ > 0. To

establish the tail bound, our first step is to relate ‖α̂−α0‖2 > τ with Ln(α̂)−Ln(α0).
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Denote Bc(α0, τ) as {α : 2V > ‖α − α0‖2 > τ}. Since Ln(α̂) ≤ Ln(α0), then if

inf{α∈Bc(α0,τ)} Ln(α) > Ln(α0) holds, we could conclude that α̂ ∈ B(α0, τ). Based

on this, given τ, we could establish that P (inf{α∈Bc(α0,τ)} Ln(α) > L(α0)) > P (‖α̂ −

α0‖2 > τ). To calculate infα∈Bc(α0,τ) Ln(α) − Ln(α0), we need a uniform bound on

α in Bc(α0, τ). However, the classical Talagrand’s inequality could only be applied

to the set with countable elements. We form a new set F by partitioning G into

countably many balls of radius ε, and subsequently incorporating each ball’s center

into F . Noted that from the covering number property, the covering number of

G(α, ε) := {α : ‖α‖2
2 < V } denoted as N(ε)F satisfied that N(ε)F ≤ (2V

√
d

ε
)d, where

d refers to the dimension of α.

Our proof is organized into two distinct segments, each addressing a specific

aspect of the problem. In the initial segment, we establish a uniform bound for the

quantity infα∈J Ln(α) − Ln(α0), where Ln denotes the empirical loss function, α0

represents the true parameter value, and J is a suitably defined parameter space.

This bound plays a crucial role in quantifying the deviation of the empirical loss from

its population counterpart, laying the foundation for subsequent analysis.

In the second segment, we investigate the relationship between the Euclidean

norms |α̂ − α0|2 and |ᾱ − α0|2, where α̂ is the estimated parameter vector, and ᾱ

denotes the projection of α̂ onto the parameter space J , effectively representing the

point in J closest to α̂. This analysis is essential for bridging the gap between the

empirical risk minimizer α̂ and the true parameter value α0, enabling us to quantify

the estimation error. To clarify the notation used in the upcoming equation, we

define the following:

Definition 2.2. J := {α|α ∈ Bc(α0, τ) ∧ α ∈ F}, where Bc(α0, τ) denotes the

complement of the ball centered at α0 with radius τ , and F is a relevant function

class. This set J represents the collection of parameters α that lie outside the ball

27



B(α0, τ) and belong to the class F .

Definition 2.3.

L1(x, α, y) :=

[
Y (1 + (exp X∗>α)2)

exp{X∗>α}
− exp{X∗>α}

]2

,

which is a specific loss function involving the covariates X∗, the parameter α, and

the response variable Y . The loss function L1(x, α, y) is assumed to be bounded, such

that |L1(x, α, y)| < v, |L1(x, α, Y )2| < S where S, v are some positive constants.

The bound assumption on L1 ensures that the subsequent analysis and theoretical

results are valid and well-defined within the specified parameter space.

I· Evaluating sup{α∈J} L1n(α0)− L1n(α).

Denote L(·) = E[L1n(·)], and then separate L1n(α0)− L1n(α) into three parts:

sup
α∈J
L1n(α0)− L1n(α) = sup

{α∈J}
L1n(α0)− L(α0) + L(α0)− L(α) + L(α)− L1n(α)

≤ (L1n(α0)− L(α0)) + sup
{α∈J}

[(α)− L1n(α)] + sup
{α∈J}

[L(α0)− L1n(α)]

≤ (L1n(α0)− E[L1n(α0)]) + sup
α∈F

[L(α)− L1n(α)] + sup
{α∈J}

(L(α0)− L(α)).

(2.4)

For the first and second part, we denote Zn(Xi, α) = 1
n

{∑n
i=1 L1n(X∗i , α) −

L(X∗i , α)
}

, ‖Zn‖F := supα∈F |Zn(X∗, α)|, and F indicates a compact set we de-

fine above. Then applying the equation (18) in Massart and Élodie Nédélec (2006),

we have

Pr

{
||Zn||F − E ‖Zn‖F ≥

√
2

(v + 4SE ‖Zn‖F)y

n
+

2Sy

3n

}
≤ e−y, (2.5)

for some positive constants S and v.
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In the context of this inequality, the key objective is to derive a bound for the

tail probability of the supremum norm ‖Zn‖F of the empirical process Zn, where F

is a countable function class. To achieve this, it is crucial to obtain an upper bound

for the expected value E‖Zn‖F , which represents the mean or average behavior of

the supremum norm.

Proposition 2.2. Derivation of boundary of the empirical process E ‖Zn‖F .

E max
a∈F
{Zn(Xi, α)} ≤

√
8S2

1 log |F|
n

,

where ‖L1(X∗, α)‖2
2 ≤ S1, and |F| refers to the cardinality of F .

The proposition here is an application of Hoeffding’s lemma, which was originally

introduced by Hoeffding (1994), providing a powerful concentration inequality for

the supremum of an empirical process indexed by a class of functions. Specifically,

it establishes an upper bound on the probability that the supremum of the empirical

process deviates from its expectation by a certain amount, given that the underlying

functions are bounded.

As α ∈ F , which is a countable set, N(ε)F ≤ (2V
√
d

ε
)d could be obtained. Then

we take ε = n−c0 , where 0 < c0, according to proposition 2.2 , it is not hard to derive

E ‖Zn‖F = c1

√
log(n)
n
. Gather the derivation together, we have

Pr

||Zn||F − c1

√
log(n)

n
≥

√√√√
2

(v + 4Sc1

√
log(n)
n

)y

n
+

2Sy

3n

 ≤ e−y.

In other words, with probability e−y, we have

sup
α∈F

[L(α)− L1n(α)] ≤ c2 max

{
2Sy

3n
,

√√√√
2

(v + 4Sc1

√
log(n)
n

)y

n
, c1

√
log(n)

n

}
,
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where c2 is some bounded constant.

Then, for the last part in 2.4, we have

L(α0)− L(α) = −(α− α0)TL′(α0)− (α− α0)TL′′(α0)(α− α0) + op(‖α− α0‖2)

= −(α− α0)TL′′(α0)(α− α0) + op(‖α− α0‖2)

≤ −c3‖α− α0‖2
2

≤ −c3τ
2,

where c3 > 0 indicates the minimal eigenvalue of L′′(α0). It’s important to note that

because L′′(α0) exhibits strong convexity within the subset {(X∗i , Yi)|Yi > 0}, c3 is

guaranteed to be a positive value distinct from zero.

Note that the results we obtained are based on α ∈ F , which is the countable

set. Now, we need to extend it to α ∈ J , which require us to balance the value of τ

and y to ensure

sup
{α∈J}

Ln(α0)− Ln(α) ≤ 2c2
y

n
− c3τ

2 ≤ 0.

This inequality is used in the choose of the order of y and τ in our theorem.

II· Evaluating P (α ∈ B(α0, τ)).

Since

‖α̂− α0‖2 < ‖α̂− ᾱ‖2 + ‖ᾱ− α0‖2,

where ᾱ refers to the nearest center to α̂ with respect to radius ε, α∗0 refers to

the nearest center to α0 with respect to radius ε. we have P (‖α̂ − α0‖2 > τ) <

P (‖ᾱ− α0‖2 > τ − ε), where ε = op(τ) refers to the radius of the balls.

Proposition 2.3. Suppose α̂ ∈ B(ᾱ, ε), α̂ ∈ Bc(α0, τ) ε = op(τ) hold, then L1n(ᾱ) ≤

L1n(α0) with probability one.
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The derivation is straightforward, denote b1 := the ball contained α̂.

Since ‖α̂− α0‖2 < ‖α̂− ᾱ‖2 + ‖ᾱ− α0‖2 < ‖ᾱ− α∗0‖2 + maxα∈b1 ‖α− α̂‖2,

‖α̂− α0‖2 > τ implies ‖ᾱ− α0‖2 > τ − ε.

According to proposition 2.3 the loss function L1n is strongly convex in probabil-

ity, L1n(ᾱ) ≤ L1n(α0) holds in probability.

Then, according to our discussion, as we take ε = n−c0 , τ = n−d1 where 0 < d1 <

c0 < 1/2, then according to (2.2.1), set y = n1−2d1 , we have

P (‖ᾱ− α0‖2 < τ − ε) ≥ P

(
inf
J ∗
L1n(α) > L1n(α0)

)
,

where J ∗ = {α ∈ Bc(α0, (τ − 2ε)) ∧ α ∈ F} which leads to

P (‖α̂− α0‖2 > τ) ≤ P (‖ᾱ− α0‖2 > τ − ε)

< 1− P
(

inf
α∈J ∗

L1n(α) > L1n(α0)

)
= e−y

(2.6)

The right hand side of (2.6) tends to zero. Gather all the discussion, we present our

theorem of our tail bound as follows

Theorem 2.1. Suppose Assumptions 2.2 ∼ 2.4 hold, for any 0 < d1 < 1/2, we have

P (‖α̂− α0‖2 > n−d1) ≤ e−n
(1−2d1) .

2.2.2 Consistency in Classification Part

For the theoretical analysis of classification part, it mainly relies on the Lemma B.1 of

Newey (1994). However due to the construction of our Nadaraya-Watson estimator,

the uniform convergence rate not only depends on the kernel approximation but also

depends on the convergence rate of α̂ to α0. So, we separate the proof into two parts.
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Denote

ĝ∗(x∗, Yi, α̂) =
(nh)−1

∑n
i Kh(d(x∗,X∗i ))g(X∗i ;Yi, α̂)

(nh)−1
∑n

i Kh(d(x∗,X∗i ))
,

g∗(X∗, α) = E[g(X∗, Y, α)|X∗], where

g(X∗, Y, α) = exp{X∗>α}
(

exp{X∗>α} − 2

(
(1 + (exp{X∗>α})2)Y

exp{X∗>α}

))
.

In the first part, we establish a connection between the bound of ĝ∗(X∗, Y, α̂) −

ĝ∗(X∗, Y, α0) and α̂ − α0. This step is crucial as it links the error in the estimated

parameter α̂ to the error in the estimated function ĝ∗.

In the second part, we further analyze the error bound of g∗(X∗, α0)−ĝ∗(X∗, Yi, α0)

by leveraging the properties of the Nadaraya-Watson estimator and kernel approxi-

mation.

Lemma 2.2. Suppose Assumption 2.1 ∼ 2.4 holds, we have

sup
{x∗|‖x∗‖22≤M,}

|ĝ(Y,x∗; α̂0)− g∗(x∗, α0)| = Op

(
max

((
log n

n

)1/3

, n−d1
))

,

where 0 < d1 < 1/2.

Note that, as we mentioned before, we did not need the estimation of D(X∗), we

only need to ensure the estimation of the sign is consistent in probability. Thus, we

present the consistency estimation of our classification result as follows.

Theorem 2.2. If assumption1 ∼ 3 holds, we have

sup
{x∗|‖x∗‖2≤M}

|sgn(ĝ(Y,x∗; α̂0))− sgn(g∗(x∗, α0))| = 0,

with probability tending to one as n→∞.

Proof. According to Lemma 2.2, We could conclude the theorem as long as g(x, y, α)

is bounded away from zero with any X∗ and α.
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Through theorem 2.1, we establish the consistency property of the parameter

α, while theorem 2.2 addresses the consistency of the sign estimation for D(X∗).

Together, these two theorems provide a comprehensive theoretical framework for our

model.

2.3 Proof

2.3.1 Proof of proposition 2.1

Proof. For the original problem, in the case of D(X∗) ≥ 0, the weighted loss function

could be written as

L1 =
1

n1

n1∑
i=1

[
yi(1 + (exp{X∗>i α})2)

exp{X∗>i α}
− exp{X∗>i α}

]2

,

where we denote n1 here to be the number of {X∗|D(X∗ ≥ 0)}. So, we get the

derivative of L1 with respect of αj is

∂L1

∂αj
=

1

n1

n1∑
i=1

Xij
(exp{X∗>i α})4(yi − 1)2 − y2

i

(exp{X∗>i α})2
.

Further, we get the Hessian matrix with respect to α is

∂2L1

∂αj∂αk
=

1

n1

n1∑
i=1

XijXik2(exp{X∗>i α})2(yi − 1)2 + 2y2
i (exp{X∗>i α})−2.

We transform the above equation to matrix form, denote

Ti = X∗i

√
2(exp{X∗>i α})2(yi − 1)2 + 2y2

i (exp{X∗>i α})−2,

for every i ∈ (1, ..., n1), then we have

∂2L1

∂α2
=

1

n1

T>T,
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where T is n1 × p matrix. As long as the full column rank of T is guaranteed

with probability one, we could obtain the positive-definite property of the Hessian

matrix.

For another partD(X∗) < 0, denote n2 here to be the number of {X∗|D(X∗ < 0)},

The loss function is

L2 =
1

2n2

n2∑
i=1

[
yi(1 + (exp{X∗>i α})2)

exp{X∗>i α}

]2

,

so, we obtain the derivative of L with respect of αj is

∂L2

∂αj
=

1

n2

n2∑
i=1

Xijy
2
i

(exp{Xiα})4 − 1

(exp{X∗>i α})2
.

Then, the Hessian matrix with respect to α is

∂2L2

∂αj∂αk
=

1

n2

n2∑
i=1

XijXiky
2
i [2(exp{X∗>i α})2 + 2(exp{X∗>i α})−2],

which is non-negative.

By combining the Hessian matrix for D(X∗) ≥ 0 and D(X∗ < 0) together, we can

ensure that the resulting loss function is positive definite in probability.

Discussions: the weighted loss function serves multiple purposes in our problem.

It addresses the heterogeneity in the data and helps overcome the convexity problem

commonly encountered with the regular least square loss.

If we insist with

R(θ) = E
[
Y − f(X∗>α)I{D(X∗)≥0}

]2
,

then, we could still discuss the convexity of our loss function for the case {D(X∗) ≥ 0}

and {D(X∗) < 0}.
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When D(X∗) ≥ 0, we have

R(θ) = E
[
Y − f(X∗>α)

]2
,

then, we have its second derivative equal to

∂2R

∂α2
= 2X∗>X∗E[f ′(X∗>α)2 − f ′′(X∗>α)(Y − f(X∗>α))].

Since E[Y |X∗] = f(X∗>α0), so we have

∂2R

∂α2
= 2X∗>X∗E[f ′(X∗>α)2 − f ′′(X∗>α)f(X∗>α0)− f(X∗>α0))].

With the variation of α, f ′′(X∗>α)(f(X∗>α0) − f(X∗>α)) < 0 could not be

guaranteed under the condition that X∗>α changes between (−∞,∞) while f(X∗>α)

ranges among (0,1). As a result, the convexity of the regular least squares loss cannot

be ensured, which may lead to stability issues in the algorithm.

2.3.2 Proof of proposition 2.2

Proof. Set T = maxa∈F Ta = maxa∈F {L1(Xi, α)− E(L1(Xi, α))}. 0 ≤ L1(Xi, α) ≤

S1 and 0 < E(L1(Xi, α)) ≤ S1, so that 0 ≤ L1(Xi, α) − E(L1(Xi, α)) ≤ S1, by

Hoeffding’s lemma we get

EeλTa = Eeλ
∑n
i=1{L1(Xi,α)−E(L1(Xi,α))}/n

=
n∏
i=1

Eeλ{L1(Xi,α)−E(L1(Xi,α))}/n ≤
(
eλ

2(S1)2/(8n2)
)n

= eL
2
0λ

2/(8n),

Putting everything together, we get

E max
a∈F
{Zn(Xi, α)} ≤ 1

λ
log
∑
a∈F

eS
2
1λ

2/(8n)

=
1

λ
log
(
|F|eS2

1λ
2/(8n)

)
=

1

λ
log |F|+ S2

1λ

8n
.

(2.7)
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The optimal value of (2.7) is

√
8S2

1 log |F|
n

.

2.3.3 Proof of proposition 2.3

Proof.

Ln(ᾱ)− Ln(α0) = Ln(ᾱ)− Ln(α̂) + Ln(α̂)− Ln(α0)

= (ᾱ− α̂)TL′′n(α̂)(ᾱ− α̂)− (α0 − α̂)TL′′n(α0)(α0 − α̂)

+ op(‖ᾱ− α̂‖2) + op(‖α̂− α0‖2).

From proposition 2.1 and assumption 2.1, it is not hard to conclude that the eigen-

value of L′′n Ln(α) is bounded in [e1, e2] in probability , where e1, e2 are some constants

satisfied e1 > 0 is bounded away from zero and e2 <∞. Then we have

Ln(ᾱ)− Ln(α0) < e2‖ᾱ− α̂‖2 − e1‖α̂− α0‖2 < e2ε
2 − e1τ

2 < 0

2.3.4 Proof of lemma 2.2

Proof. For the consistency estimation of the classification part, denote g∗(X, α) =

E[g(X, Y, α)|X], where g(X, y, α) = exp{X>α}
(

exp{X>α}−2

(
(1+(exp{X>α})2)Y

exp{αTx}

))
.

We intend to take advantage of the Nadaraya-Watson estimator, construct

ĝ∗(x∗, Yi, α̂) =
(nh)−1

∑n
i Kh(d(x∗,X∗i ))g(X∗i ;Yi, α̂)

(nh)−1
∑n

i Kh(d(x∗,X∗i ))
,

where d(x∗,X∗i ) := (x∗ −X∗i )
Tα.

In the algorithm, α̂ is what we obtained and used to estimate the sign of D1(X∗).

Since sup‖x∗‖22≥M |g(x∗, Y, α̂)− g(x∗, Y, α0)| ≤ C(‖α̂− α0‖2), where C refers to some

constant. So, we conclude ‖ĝ∗(x∗, Y, α̂) - ĝ∗(x∗, Y, α0)‖ = Op(‖α̂−α0‖2) = Op(n
−d1).
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Then, we consider m(x∗, α0) = g∗(x∗, α0)f(x∗>α0), where f(X∗>α0) refers to the

density of x∗>α0. Then denote

m̂(x, α0) = (nh)−1
∑n

i Kh(d(x,X∗i ))g(X∗i ;Yi, α0), f̂(x) = (nh)−1
∑n

i Kh(d(x,X∗i )).

Define t := x∗>α0, T := X∗>α0. From Lemma B.1 of Newey (1994), we have

sup
{‖t‖2≤C1}

|f̂(t)− f(t)| = Op

((
log n

nh

)1/2

+ h2

)
,

where C1 refers to some positive constant. Further, we have

Em̂(t) =
1

h
E(E(Y |T )k(

t− T
h

))

=
1

h

∫
R
k(
t− T
h

)g∗(T, α0)f(T )dT

=

∫
R
k(u)m(t− hu, α0)du

=

∫
R/B

k(u)m(t− hu, α0)du+

∫
B

k(u)m(t− hu, α0)du

= m(t)

∫
R/B

k(u)du− hm1(t)

∫
R/B

uk(u)du

+m(t)

∫
B

k(u)du− hm2(t)

∫
R/B

uk(u)du

= m(t) +O(h),

where k(·) refers to the standard normal distribution, B refers to the area cor-

responding to D(X∗) ≥ 0. and m1(·) refer to the derivative of m(·) on D(X∗) ≥ 0

while m2(·) refer to the derivative of m(·) on D(X∗) < 0. So, we conclude

sup
{x∗|‖x∗‖2≤M}

|m̂(x, α0)−m(x, α0)| = Op

((
log n

nh

)1/2

+ h

)
.
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Since m(x, α0) = g∗(x, α0)f(x), imply that

sup
{x∗|‖x∗‖2≤M}

∣∣∣∣m̂(α0, x)

f(x)
− g∗(x∗, α0)

∣∣∣∣ = Op

((
log n

n

)1/3)
.

2.4 Algorithm

2.4.1 Two-stage Estimation Process

Having established the consistency of our estimation procedure, we were able to

devise an efficient algorithm to implement our proposed method as follows:

Algorithm 1 Two-stage Algorithm

Initialization: Based on observations {(X∗i , Yi)}ni=1, denote B1 := {(X∗i , Yi)|Yi >
0}ni=1, n1 = card(B1),. Take the bandwidth of the kernel function h = 0.1.
Solve

α̂ = arg minα
1

n1

n1∑
i=1,i∈b1

(
(1 + (exp{X∗>i α})2)Yi

exp{X∗>i α}

)2

+ exp{X∗>i α}
(

exp{X∗>i α} − 2

(
(1 + (exp{X∗>i α})2)Yi

exp{X∗>i α}

))
.

Classification: The {D̂(X∗i )}ni=1 is estimated by (2.3).
Output: {α̂} and the classifier{D̂(X∗i )}ni=1 .

We denote the estimators obtained in Algorithm 1 as WLSRF. In order to enhance

the accuracy of our subsequent response, we plan to repeat two stages that are

interconnected, unlike the conventional two-stage model. However, it is important

to note that errors may accumulate with each iteration. Although the expected loss

is guaranteed to decrease, there is a possibility that the empirical loss could increase.

Therefore, it becomes necessary to evaluate the loss at every step.

2.4.2 Further Improvement in Algorithm

Theorem 2.3.

L(αt, Dt(X∗)) ≥ L(αt+1, Dt+1(X∗)),
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where (αt, Dt(X∗)) refers to the optimal solution of population loss function in t step

of the Algorithm 2.

Proof. In the t step, we have

αt = arg min
α

E

[
1

2f(X∗>α)(1− f(X∗>α))

(
Y − f(X∗>α)I{Dt−1(X∗)≥0}

)2]
.

Then according to equation (2.2), we have:

St(X
∗) = sign(E[−g(Y,X∗;αt)|X∗]).

Since (2.2) is the optimal condition for minimizing the expected loss function, we

have R(αt, St−1(X∗)) ≥ R(αt, St(X
∗)) and the equation holds if and only if St−1 = St.

Then the estimation of αt+1 was from

αt+1 = arg min
α

E

[
1

2f(X∗>α)(1− f(X∗>α))

(
Y − f(X∗>α)I{Dt(X∗)≥0}

)2]
.

The global convexity of above optimization ensures that

L(αt+1, St(X
∗)) ≥ L(αt, St(X

∗)),

and the equation holds if and only if αt−1 = αt.

We further improve the algorithm as follows:

We denote the estimators obtained in Algorithm 2 as WLSR.

2.5 Numerical Study

2.5.1 Simulation

In the first part of the simulation study, we compared our method (including the

results from the first step and the results from the iteration algorithm) with the

following method:
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Algorithm 2 Improved Algorithm

Folder generalization: Divide the data set to 5 equal folders randomly.
For k in range(0,5),
1. Initialization: Based on {(X∗i , Yi)}ni=1, denote B1 := {(X∗i , Yi)|Yi > 0}ni=1,
n1 = card(B1), b1 refers to the index set of B1. Take the bandwidth of the kernel
function h = 0.1, T = 10.
2. Solve

α1 = arg minα
1

n1

n1∑
i=1,i∈b1

(
(1 + (exp{X∗>i α})2)Yi

exp{X∗>i α}

)2

+ exp{X∗>i α}
(

exp{X∗>i α} − 2

(
(1 + (exp{X∗>i α})2)Yi

exp{X∗>i α}

))
.

3. Classification: The {D1(X∗i )}ni=1 is estimated by (2.3).
REPEAT: t→ t+ 1
Bt+1 := {(X∗i , Yi)|D̂t(X

∗) ≥ 0}ni=1, nt+1 = card(Bt+1),
bt+1 refers to the index set of Bt+1.
Update: αt+1 based on Equation

αt+1 = arg minα
1

nt+1

nt+1∑
i=1,i∈bt+1

(
(1 + (exp{X∗>i α})2)Yi

exp{X∗>i α}

)2

+ exp{X∗>i α}
(

exp{X∗>i α} − 2

(
(1 + (exp{X∗>i α})2)Yi

exp{X∗>i α}

))
.

Update: {Dt+1(X∗i )}ni=1 based on (2.3).
UntiL t = T .
End For.
Evaluation the prediction error of T iterations, select α̂ and D̂(X∗) with
minimum prediction error.
Output: α̂ and D̂(X∗).

• WLSR: weighted least square regression method(our method)

• WLSRF: weighted least square regression method with one-time iteration.

• Two-stage method: use the non-zero data to fit a regression model and set all

non-zero data as one then fit the classification part. The method is introduced

in the case study 1

1 Improving fabric manufacturing efficiency through a hybrid quality rate prediction model
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• Tobit model: transform non-zero Y into log(
√

Y
1−Y ), then fit it as regular Tobit

model.

• MLE model: zero-inflated beta regression model based on the maximum like-

lihood method.

• ZIT model: zero-inflated Tobit model.

The data sets are generated as follows: set X∗ = (1, x1, x2, ..., xp−1) from Gaussian

distribution N(µ,Σ) where µ takes 0 value and Σ is the identity matrix. After ob-

taining the X∗, Y came from Bin(m, p) with probability p and equals to zero with

probability (1 − p) , and p = (exp(X∗>α))2

1+(exp(X∗>α))2
I{X∗>α≥c}. Denote J = Bin(m, p), then

Y = J/m. We set three cut-off points in the simulation, which is c = −1,−2,−3,

and we denote them as cases 1-3. For the training set, we take n = 400, and for

the testing set, we take n1 = 200. The simulation was repeated 100 times for each

setting. The results in tables include the prediction error pr := n−1
1

∑n1

i=1 ‖Yi− Ŷi‖2,

where Yi comes from the testing set, and the standard derivation of the prediction

error.

• Model 1: we set m = 30, p = 6, α0 = (−2, 2,−2.5, 1,−1, 2).

• Model 2, we set m = 30, p = 4, α0 = (−2, 2,−2.5, 1).

• Model 3, we set m = 30, p = 2, α0 = (−2, 2.5).

• Model 4: we set m = 50, p = 6, α0 = (−2, 2,−2.5, 1,−1, 2).

• Model 5, we set m = 50, p = 4, α0 = (−2, 2,−2.5, 1).

• Model 6, we set m = 50, p = 2, α0 = (−2, 2.5).
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• Model 7: we set m = 100, p = 6, α0 = (−2, 2,−2.5, 1,−1, 2).

• Model 8, we set m = 100, p = 4, α0 = (−2, 2,−2.5, 1).

• Model 9, we set m = 100, p = 2, α0 = (−2, 2.5).

The data we present in Tables 2.1- 2.9 mainly simulates situations where the sampling

size (m) is relatively small. In such cases, the occurrence of ‘zero’ comes from random

chance increases, aligning more closely with the model assumption of MLE. As the

sampling size gradually increases, it implies that if the sampling probability is non-

zero, the observed value y is highly likely to be non-zero. The zero case becomes

more aligned with our model assumption. From the final prediction error values, we

can see that our model performs the best in these various scenarios.

In the second part, our focus shifts towards the convergence behavior of our

method, specifically how the prediction error decreases as the value of n increases.

• In the first figure, we take p = 2, n1 = 5000, c = −1, m = 100, α0 = (−1.2, 0.8).

The simulation was repeated 100 times.

• In the second figure, we take p = 4, n1 = 5000, c = −1, m = 100, α0 =

(−0.8, 1, 0.6,−0.4). The simulation was repeated 100 times.

• In the third figure, we take p = 6, n1 = 5000, c = −1, m = 100, α0 =

(0.7, 2.8,−0.7, 2.1,−0.7, 2.1). The simulation was repeated 100 times.

• In the fourth figure, we take p = 8, n1 = 5000, c = −1, m = 100,

α0 = (0.3, 1.2,−0.3, 0.9,−0.3, 0.9,−0.3, 0.9). The simulation was repeated 100

times.

In this simulation, we could show that as n goes up, the prediction errors of each

model decrease.
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Table 2.1: Prediction error under model setting with m = 30, p = 6

Model 1 c = −1 c = −2 c = −3
WLSR 0.0123 (0.0015) 0.0127(0.0015) 0.0127(0.0015)

WLSRF 0.0129(0.0017) 0.0129(0.0016) 0.0128(0.0016)
Two-stage 0.0192(0.0019) 0.0188(0.0020) 0.0182(0.0019)

Tobit model 0.0385(0.0029) 0.0350(0.0028) 0.0347(0.0028)
MLE model 0.0857(0.0035) 0.0977(0.0036) 0.0996(0.0036)
ZIT model 0.0178(0.0017) 0.0172(0.0018) 0.0157(0.0016)

Table 2.2: Prediction error under model setting with m = 30, p = 4

Model 2 c = −1 c = −2 c = −3
WLSR 0.0109(0.0013) 0.0111(0.0014) 0.0111(0.0014)

WLSRF 0.0111(0.0014) 0.0111(0.0014) 0.0111(0.0014)
Two-stage 0.0172(0.0017) 0.0156(0.0017) 0.0150(0.0017)

Tobit model 0.0348(0.0025) 0.0312(0.0025) 0.0309(0.0025)
MLE model 0.0872(0.0033) 0.1007(0.0033) 0.1028(0.0032)
ZIT model 0.0161(0.0014) 0.0141(0.0015) 0.0130(0.0014)

Table 2.3: Prediction error under model setting with m = 30, p = 2

Model 3 c = −1 c = −2 c = −3
WLSR 0.0092(0.0012) 0.0094(0.0012) 0.0094(0.0012)

WLSRF 0.0093(0.0012) 0.0094(0.0012) 0.0094(0.0012)
Two-stage 0.0136(0.0013) 0.0116(0.0011) 0.0114(0.0011)

Tobit model 0.0293(0.0023) 0.0255(0.0022) 0.0252(0.0022)
MLE model 0.0828(0.0036) 0.0978(0.0040) 0.0999( 0.0038)
ZIT model 0.0130(0.0013) 0.0107(0.0010) 0.0102(0.0010)

2.5.2 Applications on Real Datasets

We used three datasets for our analysis: AlcoholUse, Access to electricity in Brazil

dataset, and InfMort.

• The AlcoholUse dataset: This dataset contains information on alcohol con-

sumption among California students between 2008 and 2010, Our analysis of

the AlcoholUse dataset provides insights into alcohol consumption patterns

among public school students in grades 7, 9, and 11. It includes information

on the percentage of students who reported the number of days they con-

43



Table 2.4: Prediction error under model setting with m = 50, p = 6

Model 4 c = −1 c = −2 c = −3
WLSR 0.0034 (0.0005) 0.0109(0.0014) 0.0109(0.0015)

WLSRF 0.0034(0.0005) 0.0110(0.0016) 0.0109(0.0015)
Two-stage 0.0041(0.0005) 0.0170(0.0022) 0.0153(0.0018)

Tobit model 0.0109(0.0016) 0.0309( 0.0027) 0.0306(0.0027)
MLE model 0.0807(0.0034) 0.1055(0.0038) 0.1091(0.0038)
ZIT model 0.0040(0.0005) 0.0161(0.0021) 0.0138(0.0016)

Table 2.5: Prediction error under model setting with m = 50, p = 4

Model 5 c = −1 c = −2 c = −3
WLSR 0.0092(0.0013) 0.0093(0.0013) 0.0092(0.0013)

WLSRF 0.0093(0.0014) 0.0093(0.0014) 0.0092(0.0013)
Two-stage 0.0172(0.0018) 0.0130(0.0018) 0.0119(0.0015)

Tobit model 0.0307(0.0025) 0.0271(0.0024) 0.0267(0.0024)
MLE model 0.0917(0.0034) 0.1097(0.0033) 0.1135(0.0033)
ZIT model 0.0162(0.0016) 0.0124(0.0017) 0.0110(0.0013)

Table 2.6: Prediction error under model setting with m = 50, p = 2

Model 6 c = −1 c = −2 c = −3
WLSR 0.0074(0.0011) 0.0075(0.0011) 0.0075(0.0011)

WLSRF 0.0075(0.0011) 0.0075(0.0011) 0.0075(0.0011)
Two-stage 0.0129(0.0014) 0.0089(0.0010) 0.0089(0.0010)

Tobit model 0.0250(0.0022) 0.0213(0.0021) 0.0210(0.0020)
MLE model 0.0879(0.0038) 0.1073(0.0039) 0.1110( 0.0038)
ZIT model 0.0123(0.0014) 0.0086(0.0010) 0.0081(0.0009)

sumed alcohol in the past 30 days, categorized by gender, grade level, and

MedDays. We exclude students in Community Day Schools or Continuation

Education. Our objective is to understand alcohol use trends among California

students during this period. We assess the effectiveness of our method in pre-

dicting alcohol consumption patterns based on factors like gender, grade level,

and MedDays. Through this analysis, we contribute insights to alcohol use

research and provide evidence for the reliability of our method in predicting

alcohol consumption behaviors among California students.
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Table 2.7: Prediction error under model setting with m = 100, p = 6

Model 7 c = −1 c = −2 c = −3
WLSR 0.0017 (0.0004) 0.0089(0.0014) 0.0087(0.0014)

WLSRF 0.0017 (0.0004) 0.0089(0.0015) 0.0088(0.0014)
Two-stage 0.0026(0.0004) 0.0149(0.0020) 0.0115(0.0015)

Tobit model 0.0076(0.0011) 0.0265(0.0024) 0.0262(0.0023)
MLE model 0.0842(0.0037) 0.1122(0.0046) 0.1202(0.0046)
ZIT model 0.0025(0.0004) 0.0146(0.0020) 0.0110(0.0014)

Table 2.8: Prediction error under model setting with m = 100, p = 4

Model 8 c = −1 c = −2 c = −3
WLSR 0.0073(0.0012) 0.0074(0.0013) 0.0073(0.0013)

WLSRF 0.0074(0.0013) 0.0074(0.0013) 0.0073(0.0013)
Two-stage 0.0169(0.0020) 0.0106(0.0019) 0.0084(0.0012)

Tobit model 0.0261(0.0025) 0.0226(0.0023) 0.0223(0.0023)
MLE model 0.0962(0.0039) 0.1176(0.0041) 0.1255(0.0041)
ZIT model 0.0159(0.0018) 0.0104(0.0018) 0.0082(0.0012)

Table 2.9: Prediction error under model setting with m = 100, p = 2

Model 9 c = −1 c = −2 c = −3
WLSR 0.0052(0.0010) 0.0053(0.0010) 0.0053(0.0010)

WLSRF 0.0052(0.0010) 0.0053(0.0010) 0.0053(0.0010)
Two-stage 0.0116(0.0016) 0.0063(0.0009) 0.0058(0.0008)

Tobit model 0.0205(0.0020) 0.0170(0.0018) 0.0168(0.0018)
MLE model 0.0929(0.0036) 0.1151(0.0040) 0.1227( 0.0042)
ZIT model 0.0111(0.0015) 0.0062(0.0010) 0.0056(0.0008)

• Access to electricity in Brazil dataset: The dataset pertained to electricity

accessibility in Brazil, specifically focusing on cities within the Southeast and

Northeast regions. The data, accessible at http://www.atlasbrasil.org.br/2013

/en/download/, reveals the correlation between the proportion of households

with electricity and various socio-demographic variables of these cities which

are studied in Santos and Bolfarine (2015b). The dataset comprises 500 cities,

with all variables measured during the 2000 national census. According to

the United Nations, as of 2009, 1.5 billion people worldwide lacked access to

electricity. In developing nations, access to energy services can significantly al-
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Figure 2.1: Setting with p = 2 Figure 2.2: Setting with p = 4

Figure 2.3: Setting with p = 6 Figure 2.4: Setting with p = 8

leviate poverty, enhance public health, and stimulate economic growth, among

other benefits. Given this context, our analysis aims to shed light on the re-

lationship between electricity accessibility and socio-demographic factors. The

response variable, the proportion of households in a city with electricity ac-

cess (PROPELEC), was slightly adjusted to enhance the model’s ability to

estimate the probability of this proportion equalling one. Values nearing 1,

specifically those exceeding 0.995, were rounded up to 1. Then we translate

the response variable by 1 − PROPELEC. While the Southeast region is
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among Brazil’s most developed areas, the Northeast region remains one of the

least developed. In our sample, the proportion of households with electricity

access in the Southeast region ranges between 0.14 and 1, and between 0.54

and 1 in the Northeast region. The sample includes 81 cities where the re-

sponse variable equals one. For covariates, we incorporated region (REG = 0

for Southwest, REG = 1 for Northeast), population (POP), per capita income

(INCPC), human development index (HDI), and population density (DENS).

All continuous variables were standardized before model fitting.

• The InfMort dataset: The dataset is based on the real data obtained from

the Parana State in Brazil in 2010, which provided us with valuable informa-

tion on the relationship between infant mortality and socio-economic factors

in the Parana State. We explored indicators such as the FIRJAN city devel-

opment index, illiteracy index, and income disparities to uncover the factors

contributing to infant mortality rates. Our findings highlight the importance

of addressing issues like city development, illiteracy, and income disparities

to reduce infant mortality rates effectively. These results have implications

for policymakers and healthcare professionals working towards improving in-

fant health outcomes in the Parana State and beyond. By incorporating both

datasets into our study, we were able to expand our understanding of alco-

hol use among California students and the factors influencing infant mortality

rates in the Parana State. Our findings contribute to the existing body of

knowledge in these fields and provide valuable insights for future research and

policy-making efforts.

In the following applications, we normalized each covariate to have a better pre-

diction on the response. For the AlcoholUse example, the estimator of the coefficients

is α̂ = (−1.8386, 0.0993,−0.0421, 0.0297), which indicates that with higher grades,
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and shorter MedDays, students are more likely to drink.

In the access to electricity in Brazil example, we have α̂ = (1.6002, 0.0833, 0.0705,

−0.0029,−5.4930,−0.7766). The findings suggest that the larger the population, the

greater the proportion of insufficient power supply. In areas with higher income,

HDI, and population density, the proportion of insufficient power supply is smaller.

Northeast has a more severe shortage of power supply than Southwest.

In the infant mortality dataset, α = (−1.9559, 0.0596,−0.0134,−0.0116,−0.0202,

0.0356,−0.1477,−0.0286,−0.0162) indicated that higher FIRJAN index of city de-

velopment, higher gross national product and higher proportion of covered by family

health program results in lower infant mortality. As it is shown in the table, our

Table 2.10: Prediction Error of Real Applications

Datasets WLSR WLSRF Two stage ZIT
AlcoholUse 1e− 03 1e− 03 1.37e− 03 1.38e− 03
Access to ELEC 0.0122 0.0122 0.0130 0.0131
Infant Mortality 1.5e− 04 2.2e− 04 2e− 04 9.4e− 04

model outperforms the remaining models in terms of prediction accuracy, and it

can provide more valuable insights for industrial production as well as sociological

research.
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Chapter 3

Parametric Model of Zero-inflated
Proportion Data Analysis

3.1 Model Construction

In the previous chapter, we employed a semiparametric model to handle our dataset,

circumventing the discontinuity issue by estimating the sign of D(X∗) using the

Nadaraya-Watson estimator. In this chapter, we address the indicator component

by smoothing it with a continuous function. The key advantage of this approach

is that it enables us to gain deeper insights into the covariates that determine the

conditions under which the ’zero’ value arises. To address the problem, we make the

model more specific by formulating the optimization problem as

L = E

{
(1 + (exp{X∗>α})2)2

2(exp{X∗>α})2

(
Y − (exp{X∗>α})2

1 + (exp{X∗>α})2
I{X∗>β≥0}

)2}
. (3.1)

Here we use a linear classification condition to help us identify the key factors

affecting the unsuitability i.e. zero. One problem of our formulation is the identifi-

cation of β, but it could be easily solved by putting a restriction on the L2 norm of

β0. We will show the assumptions later. Another obvious problem is that the loss

function is not continuously differentiable and does not possess an explicit solution
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for α and β. Inspired by Horowitz (1992) we introduce the kernel smoothing function

to replace the indicator function.

L1 = E

{
(1 + (exp{X∗>α})2)2

2(exp{X∗>α})2

(
Y − (exp{X∗>α})2

1 + (exp{X∗>α})2
Φ

{
X∗>β

h

})2}
. (3.2)

The coordinate descent method is considered to be applied in the optimization

of L̂1. For α, the global convexity is proven when β is known. For β, we could also

obtain the local convexity around the true β0 when α is known.

3.2 Main Theorems

3.2.1 Consistency Property

Note that there is an indicator function in the oracle loss (3.1). Direct analysis of

the 0-1 loss (which is not continuous) is analytically challenging, and one of the

popular treatment in the literature of classification is to replace it by a smooth

surrogate loss; see for example Bartlett et al. (2006) and the references therein. One

of the popular technique, known as the smoothed “maximum score estimator”, is

to approximate the 0-1 by a smoothed loss based on kernel smoothing. (Horowitz,

1992). In the maximum score estimation, one aims to obtain the estimated classifiers

by maximizing SN(b) = 1
N

∑N
n=1[2 ∗ I(yn = 1) − 1]I(b>xn ≥ 0), which is quite

similar to our estimation equation. The difficulty of the score function came from

the indicator function I{X∗β≥0}. Discontinuity of the function L leads to the slow rate

of convergence and complexity of inference for the estimator. Similarly, we solved

this problem with the kernel method replacing the original indicator function with a

sufficiently smooth function K(.). To guarantee the consistency of the estimator, we

put a few assumptions to ensure the identifiability and consistency of the estimators

when the sample size goes to infinity. We remark that our problem is very different

from the classical classification problems, as our loss function (3.1) is confounded
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with both a 0-1 loss and a continuous component.

Assumption 3.1. Assumption for smooth function K(x)

|K(x)| ≤M for some fixed M and all x in (−∞,∞),

limx→−∞K(x) = 0 and limx→∞K(x) = 1,

|K ′(x)| ≤ m for some fixed m and all x in (−∞,∞).

Assumption 3.2. Distribution of (y,x)

The support of Fx is not contained in any proper linear subspace of Rn.

0 < P [Y ≥ 0|x]<1, for almost every x.

Assumption 3.3. Restriction on α, β

To ensure the identifiability of β, we assume that β is drawn from the unit sphere,

i.e. ‖β‖2 = 1. For α, we assume that there exists a constant M, s.t. ‖α‖2 ≤M .

The identifiability of β could be ensured with assumptions above, as discussed

in Manski (1985). Then, we propose to estimate the oracle loss function via the

following smoothed empirical loss function:

L̂1 =
1

n

n∑
i=1

(1 + (exp{X∗>i α})2)2

2(exp{X∗>i α})2

(
Yi −

(exp{X∗>i α})2

1 + (exp{X∗>i α})2
Φ

{
X∗>i β

h

})2

(3.3)

Note that for any given bandwidth h, the loss function (3.3) is differentiable, and

as a result, consistency and asymptotic normality under some specific cases become

feasible.

For the sake of concise expression, the original loss function is written as :

L = min
α,β

E

[
Y 2

2f(X∗)(1− f(X∗))

]
+ E

[
(f(X∗)− 2Y )I{G(X∗)≥0}

2(1− f(X∗))

]
, (3.4)

where f(X∗) = (exp{X∗>α})2
1+(exp{X∗>α})2 and G(X∗) = X∗>β. Since model satisfied equation

1.1, we could guarantee the unique solution of the equation 3.1. Denote the second
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part in 3.4 as R0, then inspired by Horowitz (1992), we replace the indicator function

with the kernel function in the second part as follows:

R1(α, β) = min
α,β

EW,ZWK(
Z

h
), (3.5)

where W = (f(X∗)−2Y )
f(X∗)

and Z = G(X∗), K(·) is kernel function satisfied our general

assumption 3.1, h is the bandwidth.

Since the uniform convergence of the parameters is closely tied to the uniform

convergence of the loss function, and as mentioned in the previous section, Rao

(1962) established a classical theorem connecting the uniform convergence of mea-

sures with weak convergence under certain conditions. We divide our proof into the

following steps. First, we prove the uniform convergence between R0, which refers

to the original loss function with the indicator function, and R1, which refers to the

population loss function that replaces the indicator function with a certain kernel

function. Then, we aim to construct the uniform convergence of the empirical loss

R1n to R1.

The problematic aspect lies in the equicontinuity property since the derivative

involves the term h−1, leading to the result that h−1K(G(X)
h

)G(X∗)→ 0 diverges as

h → 0 for some θ and X∗. To overcome this issue, we introduce a truncated kernel

function as a solution. First, we stated the following lemmas:

Lemma 3.1. R1 → R0 as h→ 0.

Further, we denote R̂1 = 1
n

∑n
i=1WiK(

G(X∗i )

h
), then, if we could prove that R̂1

converges to R1 uniformaly as h → 0, then we completed the proof. We intend to

take advantage of theorem 3.1 proposed by Rao (1962), which requires the bounded

and equicontinuous properties on the function space. The bounded property could

be guaranteed for any X∗ and bound assumption on α and β. We state our general
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ideas formally as follows:

Set the point Ch, s.t. limh→0Ch = 0, and

lim
h→0

1

h
K ′(

Ch
h

) = d,

where K is the first derivation of K while d is a finite constant.

Then, we made the following truncation:

K1(x) =



K(x) x ≤ −Ch

K(−Ch) + (x+ Ch)(
1− 2K(−Ch)

2Ch
) − Ch < x < Ch

K(x) x ≥ Ch,

In this case, we denoted

T1(x) = WK1(
G(X∗)

h
),

then,

T ′1(x) =



[2f(X∗)f ′(X∗)] ·K(
G(X∗)

h
) +G′(X∗) · 1

h
K ′(

G(X∗)

h
) ·W x ≤ −Ch

1− 2K(−Ch)
2Ch

− Ch < x < Ch

[2f(X∗)f ′(X∗)] ·K(
G(X∗)

h
) +G′(X∗) · 1

h
K ′(

G(X∗)

h
) ·W x ≥ Ch.

Under our assumptions, it is easy to verify that T ′1(x) is bounded for any X∗ and

bounded α, β.

Theorem 3.1. (Consistency) Let assumption 1-3 hold, then,

lim
n→∞

sup
α,β
|L̂1 − L| = 0.
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Since the solution (α0, β0) to arg minL is unique, we further obtained (α̂, β̂)
p−→

(α0, β0), as n→∞.

Notations:, the L̂1 is not just the empirical loss function that replace the indicator

part with any kernel function satisfied assumption 3.1, but the modification vision

of the kernel function as we illustrated above.

Having established the consistency property, we proceed to examine the solution

process for this loss function. Within our algorithm, we maintain the approach of

initially fixing one set of parameters and solving for the other, subsequently iterating

this process until converging to the optimal solution that minimizes the loss. During

this iterative procedure, the following two propositions can be leveraged.

Proposition 3.1. Given α, the expectation of the loss function

L̂1 =
1

n

n∑
i=1

{
(1 + (exp{X∗>i α})2)2

2(exp{X∗>i α})2

(
Yi −

(exp{X∗>i α})2

1 + (exp{X∗>i α})2
Φ

{
X∗>i β

h

})2}

is locally convex concerning β in probability.

Proposition 3.2. Given β, loss function

L̂1 =
1

n

n∑
i=1

{
(1 + (exp{X∗>i α})2)2

2(exp{X∗>i α})2

(
Yi −

(exp{X∗>i α})2

1 + (exp{X∗>i α})2
Φ

{
X∗>i β

h

})2}

is global convex concerning α in probability.

Along with proposition 3.1 and 3.2, the iterative algorithm could be applied to

solve our model. Besides, we could further deduce the inference results of (α̂, β̂).
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3.2.2 Inference Results

Denote Ĵ(θ) = ∂L̂1
∂θ
, where θ = (α, β). Then according to the asymptotic distribution

developed based on Taylor expansion of Ĵ(θ), for large n,

Ĵ(θn) = Ĵ(θ0) +Qn(θ̄)(θn − θ0) = 0,

where θ̄ ∈ Θ := {θ lies between θ0 and θn}, θ0 referring to the true value and θn

referring to the optimal solution to empirical loss function. Define a 2p dimensional

diagonal matrix Kn whose first p elements are 1 and the others are
√
h. Then, we

have

√
nK−1

n (θn − θ0) =

( ∂L̂21(θ)

∂α2 |θ=θ̄
√
h
∂L̂21(θ)

∂α∂β
|θ=θ̄√

h
∂L̂21(θ)

∂α∂β
|θ=θ̄ h

∂L̂21(θ)

∂β2 |θ=θ̄

)−1( √
nĴαn (θ0)√
nhĴβn (θ0),

)

where Ĵαn (·) refers to the first derivation of L̂1(·) with respect of α,and Ĵβn (·) refers

to the first derivation of L̂1(·) with respect of β.

To discuss the asymptotic property of θn−θ0, we will separate it into three parts.

First, we will prove the
√
nĴαn (θ0) and

√
nhĴβn (θ0) are asymptotically negligible. The

we will calculate the limitation of
∂L̂21(θ)

∂α2 |θ=θ̄ ,
√
h
∂L̂21(θ)

∂α∂β
|θ=θ̄ , and h

∂L̂21(θ)

∂β2 |θ=θ̄. Since

the uniform convergence is proven in the previous section, it is not hard to derive the

limitations equal to E

[
∂L̂21(θ)

∂α2 |θ=θ0
]
,
√
hE

[
∂L̂21(θ)

∂α∂β
|θ=θ0

]
, E

[
h
∂L̂21(θ)

∂β2 |θ=θ0
]

respectively.

In the last part, we will derive the expectation and variance of
√
nĴαn (θ0) and

√
nhĴβn (θ0).

Assumption 3.4. Assume β0 = (b1, · · · , bp), and b1 is bound away from zero.

The assumption could be achieved as long as β0 6= 0. Then we could exchange

corresponding covariates and move the first non-zero element to b1.
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Assumption 3.5. Assume that the expectation of covariates X∗ is uniformly bounded

by a constant E1 <∞.

Assumption 3.6. There exists a constant c > 0 satisfying that |X∗>β0| ≥ c almost

everywhere.

Theorem 3.2. Let θn → θ0, assume assumptions 3.4 and 3.6 hold, nh2 → 0. Then,

√
n(α̂− α0)⇒ N(0,D−>1 VD−1

1 ),

√
nh(β̂ − β0)⇒ N(0,D−>2 WD−1

2 ),

where

D1 = E

[
E

[
X∗X∗>2(exp{X∗>α})2

(
Y − Φ

{
X∗>β

h

})2

+ 2Y 2(exp{X∗>α})−2

]∣∣∣∣X∗]
,

D2 = −(b1)−1

∫ ∫
z≥0

Aa2X∗X∗>z

{(
1− Φ(z)

)
Φ′′′(z)− Φ′(z)Φ′′(z)

}
dF (hz|X̃∗)dF (X̃∗)

+(b1)−1

∫ ∫
z<0

Aa2X∗X∗>z

{
Φ(z)Φ′′′(z) + Φ′(z)Φ′′(z)

}
dF (hz|X̃∗)dF (X̃∗)

V = E

[
X∗X∗>[H(α0, β0,X

∗)]

]
, and

H(α0, β0,X
∗) = E

[[
(exp{X∗>α0})4

(
Y − Φ

{
X∗>β0
h

})2 − Y 2

(exp{X∗>α0})2

]2∣∣∣∣X∗]

is a bounded function, and

W = b−1
1

∫ ∫
X∗X∗>A2a3I{hz≥0}Φ

′(z)2dF (hz|X̃∗)dF (X̃∗).

are matrices with bounded elements. The notations A = (1+(exp{X∗>α0})2)2

(exp{X∗>α0})2 , a =

(exp{X∗>α0})2
1+(exp{X∗>α0})2 .
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Lemma 3.2. Let θn → θ0, assume assumptions 3.4 and 3.5 hold, then

√
h
∂L̂2

1(θ)

∂α∂β

∣∣∣∣
θ=θ̄

p−→ 0,

as n→∞ and h→ 0.

Lemma 3.3. Let θn → θ0, assume assumptions 3.4 and 3.5 hold, Then,

E[
√
nĴαn (θ)|θ=θ0 ] = 0

as long as nh4 → 0.

Lemma 3.4. Assume assumptions 3.4 and 3.5 hold, Then

∂L̂2
1(θ)

∂α2

∣∣∣∣
θ=θ̄

p−→ D1,

where

D1 = E

[
E

[
X∗X∗>2(exp{X∗>α})2

(
Y − Φ

{
X∗>β

h

})2

+ 2Y 2(exp{X∗>α})−2

]∣∣∣∣X∗]

is constant matrix.

Lemma 3.5. Assume Assumption 3.5 hold, Then

∂L̂2
1(θ)

∂β2

∣∣∣∣
θ=θ̄

p−→ D2,

where

D2 = −(b1)−1

∫ ∫
z≥0

Aa2X∗X∗>z

{(
1− Φ(z)

)
Φ′′′(z)− Φ′(z)Φ′′(z)

}
dF (hz|X̃∗)dF (X̃∗)

+(b1)−1

∫ ∫
z<0

Aa2X∗X∗>z

{
Φ(z)Φ′′′(z) + Φ′(z)Φ′′(z)

}
dF (hz|X̃∗)dF (X̃∗)

is a constant matrix.
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Lemma 3.6. Let θn → θ0, assume assumptions 3.4 and 3.5 hold, Then

E[
√
nhĴβn (θ)|θ=θ0 ] = 0,

as long as nh3 → 0

Lemma 3.7. Let θn → θ0, assume assumptions 3.4 and 3.5 hold, Then covariance

between
√
nhĴβn (θ) and

√
nĴαn (θ) are asymptotically negligible as long as nh2 → 0.

Lemma 3.8. Assume assumptions 3.4 ∼ 3.6 hold,

Var(
√

nĴαn(θ0)) = V ,

where V = E

[
X∗X∗>[H(α0, β0,X

∗)]

]
, and

H(α0, β0,X
∗) = E

[[
(exp{X∗>α0})4

(
Y − Φ

{
X∗>β0
h

})2 − Y 2

(exp{X∗>α0})2

]2∣∣∣∣X∗]

is a bounded function.

Lemma 3.9. Assume assumptions 3.4 ∼ 3.6 hold, then

Var(
√

nhĴβn(θ0)) =W ,

where

W = b−1
1

∫ ∫
X∗X∗>A2a3I{hz≥0}Φ

′(z)2dF (hz|X̃∗)dF (X̃∗).

3.2.3 Proof

Proof of Lemma 3.1

Proof. Denote the density of W and Z as fθ(w, z). Let k(x) be a density of kernel

function. Under standard assumptions in kernel smoothing (assumptions for K(x)
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and smoothness assumptions for fθ(w, z))

EW,Z
1

h2
k
(w −W

h

)
k
(z − Z

h

)
=

∫ ∫
1

h2
k
(w − w′

h

)
k
(z − z′

h

)
fθ(w

′, z′)dw′dz′

=

∫ ∫
k(t1)k(t2)fθ(w + ht1, z + ht2)dt1dt2

= fθ(w, z) +O(h2),

where EW,Z indicates that the expectation is taken over (W,Z). Note that W is

bounded, and without loss of generality we also assume that the Xi’s are bounded

variables. Such an assumption can always be relaxed using truncation techniques.

We thus have

EWI{Z≥0} =

∫ ∫
wI{z≥0}fθ(w, z)dwdz

=

∫ ∫
wI{z≥0}EW,Z

1

h2
k
(w −W

h

)
k
(z − Z

h

)
dwdz +O(h2)

= EW,ZW

(
1− Φ

(
−Z
h

))
+O(h2),

= EW,ZWK

(
Z

h

)
+O(h2), (3.6)

where K(·) is the CDF corresponding to k(·), and the last step holds as K(·) is

symmetric.

Then, we could prove thatR1(α, β) converges toR0(α, β) uniformly as h→ 0.

Proof of Theorem 3.1

Combine assumptions 3.1-3.3 and uniformly convergence results, theorem 4.1.1 of

Amemiya (1985) implies the uniform convergence of θ̂ = (α̂, β̂) to θ = (α, β).
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Denote R̂1 = 1
n

∑n
i=1WiK(

G(X∗i )

h
), where K(·) refers to the truncated kernel

function, we have R̂1n converges to R0 uniformly.

Further, the theorem 4.1.1 brought up by Manski (1985) could be applied to verify

that (α̂, β̂) →p (α, β) with our assumption and uniformly convergence results. then

we completed the proof.

Proof of Proposition 3.1

Proof. We simplify our loss function as L̂1 = 1
n

∑n
i=1

{
Ai

(
Yi − aiΦ

{
X∗>i β

h

})2}
,

where Ai =
(1+(exp{X∗>i α})2)2

(exp{X∗>i α})2 , ai =
(exp{X∗>i α})2

1+(exp{X∗>i α})2 . Then, we have

∂L̂1

∂β
= − 1

n

n∑
i=1

Aiai
X∗i
h

(
Yi − aiΦ

{
X∗>i β

h

})
Φ′
{

X∗>i β

h

}
.

Further, we could derive

∂2L̂1

∂β2

= − 1

n

n∑
i=1

Aiai
X∗iX

∗>
i

h2

{(
Yi − aiΦ

{
X∗>i β

h

})
Φ′′
{

X∗>i β

h

}
− ai

(
Φ′
{

X∗>i β

h

})2}

= − 1

n

n∑
i=1

Aiai
X∗iX

∗>
i

h2

{(
Yi − aiΦ

{
X∗>i β

h

})
Φ′′
{

X∗>i β

h

}}

+
1

n

n∑
i=1

Aia
2
i

X∗iX
∗>
i

h2

(
Φ′
{

X∗>i β

h

})2

. (3.7)

Since the expectation of (3.8) equals to

− 1

n

n∑
i=1

E

{
Aiai

X∗iX
∗>
i

h2

{(
aiI{X∗>i β0≥0} − aiΦ

{
X∗>i β

h

})
Φ′′
{

X∗>i β

h

}}}

the expectation of (3.7) is positive definite and for (3.2.3), we need to discuss it

separately. When X∗>β0 ≥ 0 holds, then in the small ball B(β0, δ), where δ > 0 is the
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radius of the ball that ensures that for every β ∈ B(β0, δ), X∗>β ≥ 0. Then we have(
aI{X∗>β0≥0}−aΦ

{
X∗>β
h

})
> 0 and Φ′′

{
X∗>β
h

}
< 0, then (3.2.3) is positive definite

in probability. Similarly, we could obtain the same conclusion when X∗>β0 < 0.

Proof of Proposition 3.2

Proof. Since

L̂1 =
1

n

n∑
i=1

[
Yi(1 + (exp{X∗>i α})2)

2 exp{X∗>i α}
− 1

2
exp{X∗>i α}Φ

{
X∗>i β

h

}]2

,

so, we get the derivative of L with respect of αj is

∂L̂1

∂αj
=

1

n

n∑
i=1

Xij

(exp{X∗>i α})4

(
Yi − Φ

{
X∗>i β

h

})2

− Y 2
i

(exp{X∗>i α})2
.

Further, we get the Hessian matrix with respect to α is

∂2L̂1

∂αj∂αk
=

1

n

n∑
i=1

XijXik2(exp{X∗>i α})2

(
Yi − Φ

{
X∗>i β

h

})2

+ 2Y 2
i (exp{X∗>i α})−2.

We transform the above equation to matrix form, denote

X̄∗i = X∗i

√
2(exp{X∗>i α})2

(
Yi − Φ

{
X∗>i β

h

})2

+ 2Y 2
i (exp{X∗>i α})−2,

for every i ∈ (1,...,n), then we have

∂2L̂1

∂α2
=

1

n
X̄∗X̄∗>,

where X̄∗ is p × n matrix. As long as the full column rank of X̄∗ is guaranteed

with probability one, we could obtain the positive-definite property of the Hessian
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matrix which indicates the strong convexity of our loss function concerning α given

β.

Lemma 3.10. Refer the property of Bernoulli distribution, for integer k > 0, we have

E(Y k|X∗) = (1−P (X∗, α0, β0))(−P (X∗, α0, β0))k+P (X∗, α0, β0)(1−(P (X∗, α0, β0))k),

where

P (X∗, α0, β0) =
(exp{X∗>α})2

1 + (exp{X∗>α})2
I{X∗>β≥0}.

The lemma 3.10 was used to illustrate the calculations of the terms like E(Y k|X∗)

could be transformed into the function of X∗.

Proof of Lemma 3.2

Proof. Since

∂L̂2
1(θ)

∂α∂β
=

1

n

n∑
i=1

−2X∗i (exp{X∗>i α})2

h
Φ′
(

X∗>i β

h

)(
Yi − Φ

(
X∗>i β

h

))
.

Then, denote z = X∗>β0, p1(·) refers to the density of X̃∗ and p2(·) refers to the

density of z. We derive that

√
hE

[
∂L̂2

1(θ)

∂α∂β θ=θ0

]

=
√
hE

[
−2X∗X∗>(exp{X∗>α0})2

h
Φ′
(

X∗>β0

h

)(
Y − Φ

(
X∗>β0

h

))]

=
−2
√
h

b1

∫
X∗X∗>(exp{X∗>α0})2Φ′(z)

(
(exp{X∗>α0})2

1 + (exp{X∗>α0})2
I{X∗>β0≥0} − Φ(z)

)
dF (hz|X̃∗)dF (X̃∗)

= o(1),

as h→ 0. If θn
p−→ θ0 hold, then

∂L̂21(θ)

∂α∂β
|θ=θ̄

p−→ E
[∂L̂21(θ)

∂α∂β
|θ=θ0

]
= o(1).
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Proof of Lemma 3.3

Proof. According to assumption 3.6, denote z = X∗>β, it is not hard to derive∣∣∣∣I{z≥0} − Φ( z
h
)

∣∣∣∣ = o(h2). For the sake of conciseness, we denote

C(α, β,X∗) : =

[(
(exp{X∗>α0})2

1 + (exp{X∗>α0})2
I{X∗>β0≥0} − Φ

{
X∗>β0

h

})2

−
(

1

(1 + (exp{X∗>α0})2)2
I{X∗>β0≥0}

)]
.

Then,

E[
√
nĴαn (θ0)] =

√
nE

X∗
(exp{X∗α0})4

(
Y − Φ

{
X∗>β0
h

})2

− Y 2

(exp{X∗>α0})2


=
√
nE

[
X∗(exp{X∗>α0})2C(α, β,X∗)

]

=
√
nE

[
X∗(exp{X∗>α0})2

[(
(exp{X∗>α0})2 − 1

1 + (exp{X∗>α0})2
I{X∗>β0≥0} − Φ

{
X∗>β0

h

})

×
(

I{X∗>β0≥0} − Φ

{
X∗>β0

h

})]]

≤
√
nh4E

[
X∗(exp{X∗>α0})2[((exp{X∗>α0})2 − 1

1 + (exp{X∗>α0})2
I{X∗>β0≥0} − Φ

{X∗>β0

h

})]]

= o(1),

as h→ 0.
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Proof of Lemma 3.4

Proof. According to Lemma 3.10, we could derive

E

[
∂2L̂1

∂α2 θ=θ0

]
= E

[
X∗X∗>2(exp{X∗>α})2

(
Y − Φ

{
X∗>β

h

})2

+ 2Y 2(exp{X∗>α})−2

]

= E

[
E

[
X∗X∗>2(exp{X∗>α})2

(
Y − Φ

{
X∗>β

h

})2

+ 2Y 2(exp{X∗>α})−2

]∣∣∣∣X∗]
= E[P1(X∗, α0, β0)]

= D1

If θn
p−→ θ0 hold, then ∂2L̂1

∂α2 |θ=θn
p−→ E

[
∂2L̂1
∂α2 |θ=θ0

]
= D1.
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Proof of Lemma 3.5

Proof. Since

E

[
∂2L̂1

∂β2
θ=θ0

]

= −E

[
Aa

X∗X∗>

h2

{(
Y − aΦ

{
X∗>β0

h

})
Φ′′
{

X∗>β0

h

}}

+Aa2 X∗X∗>

h2

(
Φ′
{

X∗>β0

h

})2]

= −h−2E

[
AaX∗X∗>

{(
Y − aΦ

{
X∗>β0

h

})
Φ′′
{

X∗>β0

h

}}

+Aa2X∗X∗>
(

Φ′
{

X∗>β0

h

})2]

= −h−2E

[
AaX∗X∗>

{(
Y − aΦ

{
X∗>β0

h

})
Φ′′
{

X∗>β0

h

}}]

+E

[
Aa2X∗X∗>

(Φ′
{

X∗>β0
h

}
h

)2]

= −h−2E

[
AaX∗X∗>

{(
Y − aΦ

{
X∗>β0

h

})
Φ′′
{

X∗>β0

h

}}]
+ o(h)

= −h−2E

[
Aa2X∗X∗>

{(
I{X∗>β0≥0} − Φ

{
X∗>β0

h

})
Φ′′
{

X∗>β0

h

}}]
+ o(h)

= −(hb1)−1

∫
Aa2X∗X∗>

{(
I{hz≥0} − Φ(z)

)
Φ′′(z)

}
dF (hz|X̃∗)dF (X̃∗) + o(h)

= −(b1)−1

∫
z≥0

Aa2X∗X∗>z

{(
1− Φ(z)

)
Φ′′′(z)− Φ′(z)Φ′′(z)

}
dF (hz|X̃∗)dF (X̃∗)

+(b1)−1

∫
z<0

Aa2X∗X∗>z

{
Φ(z)Φ′′′(z) + Φ′(z)Φ′′(z)

}
dF (hz|X̃∗)dF (X̃∗) + o(h)

= D2
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where A = (1+(exp{X∗>α0})2)2

(exp{X∗>α0})2 , a = (exp{X∗>α0})2
1+(exp{X∗>α0})2 , and

D2 = −(b1)−1

∫
z≥0

Aa2X∗X∗>z

{(
1− Φ(z)

)
Φ′′′(z)− Φ′(z)Φ′′(z)

}
dF (hz|X̃∗)dF (X̃∗)

+(b1)−1

∫
z<0

Aa2X∗X∗>z

{
Φ(z)Φ′′′(z) + Φ′(z)Φ′′(z)

}
dF (hz|X̃∗)dF (X̃∗)

is a constant matrix. If θn
p−→ θ0 hold, then

∂2L̂1

∂α2

∣∣∣∣
θ=θ̄

p−→ E

[
∂2L̂1

∂α2

∣∣∣∣
θ=θ0

]
.

Proof of Lemma 3.6

Proof.

E[
√
nhĴβn (θ0)]

= −
√
n

h
E

[
X∗
[
(1 + (exp{X∗>α0})2)

(
Y − (exp{X∗>α0})2

1 + (exp{X∗>α0})2
Φ

{
X∗>β0

h

})

×Φ′
{

X∗β0

h

}]]

=

√
nh

b1

∫
X∗
[
(exp{X∗>α0})2

(
I{z≥0} − Φ(z)

)
Φ′(z)

]
dF (hz|X̃∗)dF (X̃∗)

<

√
nh3

b1

∫
X∗
[
(exp{X∗>α0})2Φ′(z)

]
dF (hz|X̃∗)dF (X̃∗)

= o(1),

as h→ 0.

66



Proof of Lemma 3.7

Proof. According to the Lemma 3.3 and Lemma 3.6, we only need to prove

E[n
√
hĴαn (θ0)Ĵβn (θ0)]

p−→ o(1),

as long as nh2 → 0. Since

E[n
√
hĴαn (θ0)Ĵβn (θ0)]

=
n√
h

E

[
X∗X∗>(exp{X∗>α0})2

[(
(exp{X∗>α0})2 − 1

1 + (exp{X∗>α0})2
I{X∗>β0≥0} − Φ

{
X∗>β0

h

})
(

I{X∗>β0≥0} − Φ

{
X∗>β0

h

})]

∗
[
(1 + (exp{X∗>α0})2)

(
Y − (exp{X∗>α0})2

1 + (exp{X∗>α0})2
Φ

{
X∗>β0

h

})
Φ′
{

X∗>β0

h

}]]

=
n
√
h

b1

∫
X∗X∗>(exp{X∗>α0})2

[(
(exp{X∗>α0})2 − 1

1 + (exp{X∗>α0})2
I{z≥0} − Φ{z}

)(
I{z≥0} − Φ{z}

)]
[
(1 + (exp{X∗>α0})2)

(
Y − (exp{X∗>α0})2

1 + (exp{X∗>α0})2
Φ{z}

)
Φ′{z}

]
dF (hz|X̃∗)dF (X̃∗)

=
nh2
√
h

b1

∫
X∗X∗>(exp{X∗>α0})2

[(
(exp{X∗>α0})2 − 1

1 + (exp{X∗>α0})2
I{z≥0} − Φ{z}

)]
[
(1 + (exp{X∗>α0})2)

(
Y − (exp{X∗>α0})2

1 + (exp{X∗>α0})2
Φ{z}

)
Φ′{z}

]
dF (hz|X̃∗)dF (X̃∗)

= o(1),

as h→ 0.

Proof of Lemma 3.8

Proof. Since E[Ĵαn (θ0)] = 0, we derive

Var(Ĵαn(θ0)) = E[(Ĵαn(θ0))2].
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Refer the property of Bernoulli distribution, for integer k > 0, we have E(Y k|X∗) =

(1−f(X∗, α0, β0)I{X∗>β0≥0})(−f(X∗, α0, β0)I{X∗>β0≥0})
k+(f(X∗, α0, β0)I{X∗>β0≥0})((1−

(f(X∗, α0, β0))k)I{X∗>β0≥0}), where f(X∗, α0, β0) = (exp{X∗>α})2
1+(exp{X∗>α})2 I{X∗>β≥0}. Then,

E

[(
∂L̂1

∂α

)2]
=

1

n
E

[
X∗X∗>

[
(exp{X∗>α0})4

(
Y − Φ

{
X∗>β0
h

})2 − Y 2

(exp{X∗>α0})2

]2]

=
1

n
E

[
X∗X∗>

[
(exp{X∗>α0})4

(
Y − Φ

{
X∗>β0
h

})2 − Y 2

(exp{X∗>α0})2

]2]

=
1

n
E

[
X∗X∗>[H(α0, β0,X

∗)]

]

=
1

n
V ,

Where H(α0, β0,X
∗) = E

[[
(exp{X∗>α0})4

(
Y−Φ

{
X∗>β0

h

})2
−Y 2

(exp{X∗>α0})2

]2∣∣∣∣X∗] is a bounded func-

tion.

Proof of Lemma 3.9

Proof. Since E[Ĵβn (θ0)] = 0, we derive

Var(Ĵβn(θ0)) = E[(Ĵβn(θ0))2].
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According to Lemma 3.10, we could derive

E

[(
∂L̂1

∂β

)2]
=

1

n
E

[(
Aa

X∗

h

(
Y − aΦ

{
X∗>β0

h

})
Φ′
{

X∗>β0

h

})2]

=
1

n
E

[
X∗X∗>

A2a2

h2

(
aI{X∗>β0≥0} + a2

(
I{X∗>β0≥0} − Φ

{
X∗>β0

h

})2)

×
(

Φ′
{

X∗>β0

h

})2]

=
1

n
E

[
X∗X∗>

A2a3

h2

(
I{X∗>β0≥0}

)(
Φ′
{

X∗>β0

h

})2]
+ o(h)

=
(nh)−1

b1

∫
X∗X∗>A2a3I{hz≥0}Φ

′(z)2dF (hz|X̃∗)dF (X̃∗) + o(h)

= (nh)−1W + o(h),

where A = (1+(exp{X∗>α0})2)2

(exp{X∗>α0})2 , a = (exp{X∗>α0})2
1+(exp{X∗>α0})2 ,, and

W = b−1
1

∫
X∗X∗>A2a3I{hz≥0}Φ

′(z)2dF (hz|X̃∗)dF (X̃∗).
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Chapter 4

Conclusion and Further Discussion

Explaining zero-inflated proportion data has long posed a statistical challenge for

researchers. Despite many traditional methods, they often fall short of adequately

explaining the underlying sources of zero inflation.

Our proposed semiparametric model effectively addresses this issue by explicitly

accounting for the distinct sources of zero observations, as illustrated in the intro-

duction. Specifically, it differentiates between zeros arising from unsuitability (biotic

and abiotic factors) and those due to random absence or detection errors. This

model provides a clearer understanding of the incidence of absence, as well as the

explanatory contribution of unsuitability versus random chance. The application

to real-world data demonstrates the predictive power of our model, highlighting its

ability to accurately capture the underlying data-generating processes.

Furthermore, the consistency of both the regression and classification components

of our model, coupled with the global convexity of the loss function, ensures the

model’s stability and robustness. This ensures reliable and interpretable parameter

estimates, as well as accurate predictions.

In Chapter 3, we enhanced our model by replacing the unspecified classifica-

tion part with a parametric model. This would allow us to derive more theoretical

inferences and potentially improve the efficiency of parameter estimation.
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Overall, our proposed semiparametric model offers a comprehensive and flexible

approach to analyzing zero-inflated proportion data, addressing the limitations of

traditional methods and providing a deeper understanding of the underlying mech-

anisms driving the excess zeros. Its robustness, interpretability, and potential for

further enhancements make it a valuable contribution to the field of statistical mod-

eling.

Ongoing Research and Further Extension

The extension of our models to high-dimensional data settings is highly significant,

as numerous practical applications involve datasets where the number of parameters

vastly exceeds the number of samples, and the covariates are inherently sparse. Such

scenarios are prevalent in fields like microbial data analysis and industrial production

data processing. To address these high-dimensional challenges, both our semipara-

metric model and the parametric model introduced in Chapter 3 can incorporate

penalty terms for further analysis and regularization.

The semiparametric model could be adapted to high-dimensional extensions due

to its partitioned structure. By considering the two components separately, the first

part reduces to an optimization problem involving a globally convex function com-

bined with a penalty term. This formulation has been extensively studied in the liter-

ature, as detailed in the technical tools section, and the properties of the parameters

after incorporating the lasso penalty have been rigorously analyzed. Consequently,

these established results can be directly applied to the analysis of our first part. For

the classification component, since the first part has already identified the non-zero

parameters, the second part effectively regresses to a low-dimensional data analysis

problem.

However, the parametric model described in Chapter3 presents a more formidable

challenge in the high-dimensional setting. This model simultaneously involves two
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parameters, with the β parameter embedded within the indicator function. Extend-

ing this entire parametric model to high-dimensional data while obtaining meaningful

theoretical guarantees is a highly intricate task that warrants further investigation.

An intriguing extension to our model involves introducing a neural network archi-

tecture for fitting the regression component. Analogously, once we obtain accurate

estimates of the parameters for the regressor f(·), we could leverage this knowledge

to calculate the sign of D(·), as demonstrated in Chapter 2. An interesting avenue

for future exploration lies in evaluating the practical utility of our proposed technical

approach, which separates the regression and classification tasks, and subsequently

utilizes the regression results to inform the classification process. This could be

achieved by conducting comparative analyses between the prediction errors obtained

through our sequential procedure and those obtained by fitting the entire dataset

simultaneously. Such an investigation would shed light on the potential advantages

and limitations of our decoupled methodology, paving the way for further refinements

and optimizations.
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