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Abstract

The distribution grids evolve from the passive network with having the goal of

supplying reliably and efficiently the end users, gradually to active networks with

integrating distributed energy resources (DERs). With the extensive use of operational

technologies (OT) and information and communication technologies (ICT) networks,

the transition to cyber-physical distribution systems enables the complete

observability enhancement of measurements and smartization of control components.

Under this background, an effective distribution network reconfiguration (DNR)

scheme plays a key role in smart energy management of today’s active distribution

networks (ADNs) for substantial cost reductions and operational flexibility

enhancements subject to system observability and privacy concerns of different

stakeholders.

Firstly, we propose a disjunctive convex hull relaxation (DCHR) to tackle with the

classical DNR problem. This classic DNR problem is a mixed integer second order

conic programming (MISOCP) problem which is non-convex and nonlinear. However,

our proposed DCHR approach can perfectly addresses this problem and it is proven to

be a tighter relaxation than the existing relaxation techniques for DNR problems, such

as the Big-M and McCormick linearization methods.

Secondly, the system observability enabled by distribution-level PMUs becomes

increasingly crucial for cyber-physical security enhancement. We formulate this
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system observability as a disjunctive relaxed connected dominating set problem for

reconfigurable ADNs with the least defense cost in theory. For the benefits of system

observability, an observability defense-constrained DNR model has been proposed.

Thirdly, the topology switch for the loss minimization may expose the private load

change information of an agent, e.g., transition from a light load to a heavy load, in

interconnected ADNs managed by multiple agents. To address this issue, this paper

proposes a differentially private distribution network reconfigu-ration (DP-DNR)

mechanism based on a consensus alternating direction method of multipliers

(C-ADMM) algorithm. This can tackle privacy leakage challenges on the agent’s and

customer’s levels. To suppress private load change leakage as an agent’s concern, this

DP-DNR mechanism provides a mixture output of realistically optimal topology

switch status and corresponding obfuscated-but-feasible load flows, part of which

may have reverse load flow directions. On the customer’s level, the C-ADMM-based

decentralized DP-DNR approach can seek the optimal topology switch without

customer’s load datasets of agents, whilst exchanged communication signals in

C-ADMM algorithm are also synthetic based on the proposed DP-DNR mechanism.

Lastly, a distribution-level topology optimization contributes to the flexibility

enhancement of a look-ahead rolling economic dispatch of wind-thermal-bundled

power system (WTBPS), which offsets the insufficient ramping margins of retrofitted

coal-fired units. Since WTBPS connects to high voltage distribution networks

(HVDNs), graph characterization of typical HVDNs is summarized, and then the

simplified voltage-constrained load transfer strategy via topological structures can be
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developed. This proposed look-ahead economic dispatch model is cast as a MISOCP

problem. For this established MISOCP-based model, it is highly desirable to combine

the Multi-cut Benders Decomposition (MBD) and Generalized Benders

Decomposition (GBD) as the devised Multi-cut GBD (MGBD) to tackle this

MISOCP problem, which can enhance overall computational efficiency and be

suitable for online rolling economic dispatch.
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Chapter 1

Introduction

1.1 Backgrounds

The distribution grids evolves from the passive network with having the goal of

supplying reliably and efficiently the end users, gradually to active networks with

integrating distributed energy resources (DERs), demand-side response (DSR),

battery energy storage systems (BESS), microgrids (MGs) and electric vehicles (EVs).

This new electricity generation mix is causing a dramatic revolution of active

distribution systems [1]. Nowadays, active distribution networks (DNs) are

increasingly dependent on operational technologies (OT) and information and

communication technologies (ICT) networks for real-time monitoring and control of

physical facilities [2, 3]. Distribution systems including power networks and

associated information devices are tightly coupled with ICT and OT systems together

with applied intelligent network components, e.g., reliably wireless/wired

communication, sophisticated control devices. This gradually transits active

distribution systems to an interdependent and complex cyber-physical distribution

systems integrated with big data, block chain, cloud computing, edge computing and

IoT systems [4, 5].
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Fig. 1.1 Share of renewables in the world’s energy mix in 2050 [6].

Fig. 1.2 Diagram of distribution system evolutions
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Fig. 1.3 Cyber-physical systems on the decarbonization of energy [2].

From the distribution system operator (DSO) point of view, a high penetration of

active resources and an extensive use of intelligent devices will closely interact with

system operational actions, which plays a key role in smart energy management of

today’s DNs for substantial cost reductions [5]. Under this background, the evolution

toward cyber-physical distribution systems enables the complete observability

enhancement of measurements and smartization of control components via optic fiber

communications systems. Plus, circuit breakers (CBs) or reclosers, instead of usual

sectionalizers, are deployed for remote control and frequent operational switching in

recent years. Thus, it is clear that real-time topology reconfiguration via distribution

network reconfiguration (DNR) can be realizable and adaptive to system operational

requirements [7]. In terms of DNR problems in cyber-physical environment, the

real-time topology optimization follows the dynamic balance between supply and

demand on multiple facets of security levels, i.e., physical level, cyber level and

privacy level. As an alternative, DNR can achieve operational flexibility enhancement

for economic dispatch tasks.



4

Cyber-Physical 
Distribution 

Systems 

Privacy Level

Communication system

Sensitive data Sensitive data

 Physical Level

 Cyber Level

 Privacy Level

Multiple Facets 
of Security-levels

 Flexibility Level

Security
+ 

Observability
+

 Privacy
+

Flexibility 
 

Benefits

Fig. 1.4 Three concerned levels of cyber-physical distribution systems and

associated benefits

1.2 Research Motivations

Distribution network reconfiguration (DNR) is a classical optimal operation

problem of DNs over decades. It is a specific topology optimization about choosing

the optimal switch status of sectionalizing switches (normally closed), tie-switches

(normally open), and/or controllable power flows by soft open points (SOPs) [8]. In

contrast to passive DNs, two objectives are achievable from performing DNR actions:

(i) maintaining real-time load balancing and loss reduction for DNs with the growing

penetration of DERs; and (ii) coordinating real-time transactive dispatch tasks

between supply and demand at the market level of DNs. At present, these two

objectives can be realizable due to the upgraded applications of high-speed switching

devices. Therefore, this DNR research is the fundamental for the transition to active

DNs involved with various requirements for the quick solvability, cyber-physical

system security, privacy-preserving ability and dispatch flexibility enhancement.
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1.2.1 Primary Approaches for Topology Optimization of ADNs

To address the quick solvability of DNR problems, heuristic methods and convex

relaxations are two primary effective solving approaches for ADNs.

In terms of heuristic methods, there is a rich set of optimization approaches in the

power systems literature that tries to circumvent these problems. In fact, the

non-linearity of AC power flow complicate solving a DNR problem. To handle this

problem, researchers used DC power flow, a DistFlow model [10] that is a

second-order mathematical programming model, and full AC power flow [11].

However, the DC power flow model is inaccurate while the DistFlow and the full AC

power flow models are accurate but very time-consuming for a large system.

Black-box heuristic methods, which push power flow calculations outside the

optimization solver, have become very popular, owing to their broad applicability [12].

In summary, heuristic methods perform well in small systems but might converge

slowly, especially in large-scale systems [13]. And the results obtained by heuristic

methods for different runs might not be the same, which prevents them from being

widely used in power system applications.

Regarding convex relaxations, efficacious convex relaxation approaches in existing

studies for DNR are effective for fast solving. It mainly adopted the Big-M method

[14], or McCormick linearization method [15], [16] to slack power flow constraints

by switch status indicators, or construct relaxation constraints with variables

automatically satisfied for a disconnected line [17]. However, these convex relaxation

methods suffer from loosened relaxation bounds, which renders a large amount of
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computational time. Moreover, a DNR problem is cast as a combinatorial explosion in

the number of total possible solutions as the number of branches increases, if the

open/closed status of each branch is regarded as a binary variable. For instance, the

number of total possible solutions is 2136 for a DN has 136 circuit breakers. This

induces that a DNR problem becomes high-dimensional, thus spending significant

amounts of computational time [18]. To reduce the computational time caused by

high-dimension binary variables, it is essential to exploit the DNR model

characterization that can be used to accelerate this entire computation. On top of that,

with a high penetration of DERs into DNs, the fluctuated power injections intricately

trigger a complicated DNR decision-making process due to bi-directional power flows

[19], [20]. This suggests that today’s active DNs increases the difficulty level of quick

solvability. In the light of loosened relaxation bounds, high-dimensional space of

binary variables and integrations of enrichable DERs, there is a research gap to

explore the efficient and tight relaxation approach for DNR problems in large-scale

active DNs.

Based on the convex hull (CH) of DistFlow equations [21], a disjunctive convex

hull relaxation (DCHR) [22] can be further constructed to deal with these on/off

constraints caused by switch status indicators. In this thesis, we are stimulated to

study the DCHR approach for the classic DNR problem, which can be designed to

tighten the voltage drop equation and quadratic equality of DistFlow equations with

continuous parent-child relationship variables in spanning tree constraints.
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1.2.2 Cyber-Physical Security Enhancement for Topology Optimization of ADNs

Apart from the fast computation methods for DNR problems, we have to consider

the cyber-physical security enhancement for topology optimization of ADNs. The

deployment of cyber-physical systems with ADNs has led to an increase in efficiency,

observability, and flexibility to facilitate the real-time operation of ADNs. However,

some security threats from the inter dependency of the cyber and physical components

of CPDS cannot be sufficiently tackled only with the simplest protection measures

such as data encryption [23], [24]. Protecting DNs against cyber–physical threats

typically is simply to eliminate the threat of false data injection attacks (FDIAs) on

state estimation [25]–[28], where the data integrity of state estimation is greatly

relevant to limited security resources, e.g., distribution-level phasor measurement

units (D-PMUs) [29] and communication networks.

Against these possible cyber-physical threats, the defense level of cyber-physical

distribution system security for the real-time DNR has not been widely concerned to

date. In existing studies, K. C. Sou [30], [31] constructs a minimum cost placement of

PMUs such that no FDIA is possible. However, this work is a D-PMU planning issue

with the corresponding minimal encrypted device investment for a fixed grid topology,

which model is not suitable to solve operational issues. For the operational issues

regarding D-PMUs, the measurements of D-PMUs can be employed to address

physical DNR problems in DNs [32], [33]. However, since any measurements of

D-PMUs can be attackable, corrupted measurements and/or load data on state

estimation [34] can render improper DNR actions, then probably inducing physical
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security issues that cannot be observed. To migrate this issue, we are focused on the

full system observability of DNs that is crucial to understand the physical system

states [35].

With the full system observability of ADNs, the various grid operations depending

on the physical system’s behaviors, e.g., generator redispatch, fault location, can be

under monitoring and control. For example, the DSOs can observe the voltage

excursion and overloading power flows as soon as early, and then can remove these

insecurity problems in time [36]. Accordingly, the effective cyber-physical system

security defense, e.g., the full system observability guarantees, cannot be neglected

[37]. At present, few studies deal with this defense issue at the lowest expense of

different topology schemes from the perspective of full system observability.

1.2.3 Privacy-Preserving Enhancement for Topology Optimization of ADNs

Even though cyber-physical security of ADNs can be guaranteed,

privacy-preserving data sharing should be also crucial for distribution-level agents,

especially for those with conflicting interests. At the operation level, DSOs maintain

load balancing and loss reduction via the ADNs reconfiguration by the optimal status

of sectionalizing switches and tie-switches [9]. This is very common for

interconnected ADNs, which are energized by two or more substations to coordinate

the use of both resources to meet the load demands, and also helps to reduce new

utility investments and operating costs effectively [38]. In this chapter, the

interconnected ADNs are supposed to be managed by different agents who are also
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stakeholders, e.g., load aggregators. And their network connections are tie-lines

across different agents.

For interconnected multi-agent ADNs, tie-line load flow information and topology

switch status are generally shared with different agents for interconnected operational

and/or marketing purposes, which energy data-sharing may evoke privacy-related

complications, i.e., inference of sensitive information [39]. In the future energy data

asset market, the energy data-sharing mechanisms has drawn extensive attention [40],

especially for the auction market with fair commercial competition [41]. Under this

background, we specifically focus on the privacy-related information leakage issue of

loads caused by the DNR operation on two load levels, i.e., agent’s and customer’s

levels. For agent’s privacy concerns, sharing tie-line load flow information may suffer

from leaking the private load change information of an agent, i.e., transition from a

light load to a heavy load. This information can be acknowledged by other agents who

are stakeholders with conflicting interests, e.g., bidding for grid services in energy

market [41]. On the customer’s load privacy level, all customer’s load datasets from

smart meters are obliged to be uploaded to the distribution dispatch center, which is

used for centralized DNR operations by the DSO. This may possibly expose the

sensitive load consumption of individual customers to adversaries, i.e., further

inferring commercial behaviors [42] or performing cyber-physical attacks [43], [44].

To cope with agent’s privacy leakage challenge, homomorphic encryption [45], or

differential privacy [46] can be constructed to preserve these sensitive datasets, e.g.,

tie-line load flows. Homomorphic encryption protects exchanged data via encryption
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and decryption operation by a trusted third party who should own a large amount of

available computational resources in [45] and [47]. However, finding an authorized

and high-performance computing third party for this job is also very costly for

real-time DNR operations. Therefore, we concentrate on a differential privacy

mechanism to increase the data privacy and it can be used to share sensitive data

without a trusted third party. Regarding differential privacy mechanism in power

systems, it can quantify and bound privacy risks through the randomization of

sensitive datasets, e.g., leveraging a carefully calibrated noise to solve the

private-preserving optimal power flow (OPF) problems in ADNs [48] and

transmission systems [49], or obfuscating power grid parameters for network privacy

preservation [50]. Recently, the program perturbation strategy [51], [52] is created to

ensure the feasibility of privacy-preserving optimal solutions with the high probability

via a stochastic chance-constrained optimization reformulation. This is superior to the

bi-level optimization based on the output/objective perturbation strategy used in [49].

Nevertheless, this program perturbation strategy fails to output a mixture of the

realistically optimal topology solution and obfuscated-but-feasible load flow solutions

in the query answers. To explore this mixture query, it is essential to construct a

tailored differentially private DNR (DP-DNR) mechanism to provide the optimal

topology solution for the entire interconnected ADNs, whilst the sensitive information

of agent’s load changes can be preserved via obfuscated-but- feasible load flow

solutions.
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Regarding the customer’s privacy, since this privacy leakage may be caused by

uploading sensitive load datasets to the distribution dispatch center, a decentralized

framework is well suited for the DSO to deal with this DNR problem [53] and the

resilience enhancement of ADNs in recent years [54], [55], [56], [57]. This also

contributes to relieving the communication burden and preserving the privacy of

customers’ load datasets. In terms of decentralized frameworks, the alternating

direction method of multipliers (ADMM) approach and its variants [58], are typical

decentralized solutions for such privacy-preserving concerns [59]. Recently, it can be

used in mixed-integer quadratic programming (MIQP) problems with good

performance as reported in [56], [57], [60]. To be specific, the DNR problem can be

approximated as a MIQP problem. Thus, the consensus ADMM (C-ADMM)

approach can be adopted to deal with this DNR problem by breaking the complex

computational DNR tasks into much smaller ones. Each smaller computational task is

performed by an individual agent who only communicates and works collectively

with the DSO by exchanging their tie-switch states and tie-line load flows. However,

the explicit communication exchanging signals of realistic tie-line load flows are also

potentially risky to leak the sensitive information of agent’s load changes. In this

study, we consider integrating the proposed DP-DNR mechanism into the C-ADMM

approach. Namely, the communication signals of tie-line load flows between

neighbors and the DSO is differentially private subject to the realistic tie-switch status.

In this regard, a decentralized DNR approach can be very satisfactory for the agent’s

and customer’s privacy-preserving desires.
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1.2.4 Operational Flexibility Enhancement by Topology Optimization of HVDNs

On top of that, growing penetration of renewable energy in power generation areas

provides a green solution to the decarbonization of power systems [61]-[64]. To

accommodate more renewable energy integration, the wind-thermal-bundled power

system (WTBPS) is a suitable option to increase power system flexibility [65]. To

explore an efficient economic dispatch of WTBPS, distribution-level topology

optimization [66] and energy storage [67] can be used to increase the flexibility of

WTBPS in which this generation system instantly accommodates the rapid growth of

wind farms.

Since WTBPS can mitigate the uncertainty and variability of renewable resources,

the transition of optimal generation dispatch is underway to multi-energy generation

systems. Previous work has investigated the economic dispatch methods in bulk

AC/DC hybrid WTBPS [68], combined generation system of multiple renewable

energy resources and energy storage [69], multi-fuel [70], and integrated electricity

and natural gas system [71]. Also, multi-energy generation systems can involve

flexible demand-side resources such as energy hubs [72], electric vehicles [73], and

controllable loads [74] into economic dispatch problems, which further eases the

pressure on the power system. In view of these economic dispatch methods, they have

not considered retrofitting flexibility measures on coal-fired power plants and d via

HVDNs into economic dispatch problems.
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On the one hand, retrofitted coal-fired plants are worldwide concerned, since

coal-fired plants are not phased out, especially in middle-income countries [75].

Without retrofits, coal power plants can run at the minimum level of 50%, and the

ramp rate for an inflexible unit is 0.6–2% per minute of rated power [76]. After

retrofits, retrofitted power plants can enable sufficient flexibility [73], [77], the most

beneficial advances of which are the reduction of minimum load levels to 15%-30%

of rated capacities and the increase of ramp rate to 2–6% per minute of rated power.

For example, the ramp rates of retrofitted power plants are generally raised to 2–6%

in China, 2–6% in Poland, and 3-6% in Germany. The minimal load of coal-fired

plant Bexbach has been reduced by 11%, and coal-fired plant Wes Weiler has

increased the ramp rate by 10MW/min in Germany [77]. As reported in [78], ramping

limits in practical applications should be a function of the unit’s generating output.

Thus, ramp rates are dynamic at different output power levels. Existing pieces of

literature regarding dynamic ramp rates mainly fit into two categories, i.e., piecewise

linear functions and stepwise linear representations [78]. Piecewise linear function

models capture the dynamic ramp rates between two consecutive periods as a function

of the output level [79]; whereas stepwise linear function models select fixed ramp

rates. Similar to a piecewise method, the dynamic ramping model in [80] by

incorporating a status transition modeling approach is further improved. Retrofitted

coal-fired units with molten-salt thermal energy storage [73], as a type of flexibility

improvement, enable faster ramp rates to relieve the peak regulation stress.
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On the other hand, storage energy response [81] or distribution-side load transfer

actions [82] will be an alternative to offset the insufficient ramping margins of

coal-fired units in WTBPS. Reference [83] adopts an adjustable heat storage strategy

from solar power stations to shift excess wind power in combined wind-thermal

generation systems. However, compared with solar power resources, the operation

cost of stored energy is too expensive to be widely used in WTBPS. Load resources in

distribution networks have instinctive flexibility, which has great potential to install

with WTBPS in order to maximally avoid wind curtailment. As the desirable load

provider, the distribution-level topology actions have been performed via

reconfigurable HVDNs integrated with renewable resources under

stability-constrained conditions [84]. HVDNs are sub-transmissions on 110kV voltage

level [82] constructed in meshed topology (closed loop) but operated in radial

structures (open loop), which network can be found in China [82], Spain [84] and

Finland [85]. The HVDNs are composed of specific topological units, which can

reduce the computational complexity of distribution-level topology optimization from

conventional network reconfiguration. The proposed distribution-level topology

optimization model in [82] adopts simplified DistFlow to embody voltage security

constraints. However, this increases computational complexity and decreases the

efficiency of many power flow variables. To this end, we aim to enhance this effective

distribution-level topology optimization model with more simplified yet effective

voltage security constraints.
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1.3 Primary Contributions

Severe issues in facets of physical-oriented, cyber-oriented, and privacy-oriented

security can be emerged in the topology reconfiguration of smart DNs, which should

be considered for real-time operational actions. This thesis aims to enhance different

facets of security using the advanced topology optimization, and then explores a

distribution-level topology optimization for flexibility enhancement in economic

dispatch of wind-thermal-bundled power system.

1) To avoid worldwide climate change effects, decarbonization initiatives transit

the conventional DNs to be smart DNs mixed with a high penetration of DERs. This

paper theoretically reformulates the DNR model with enrichable DERs using the

disjunctive convex hull approach. Continuous parent-child relationship variables in

spanning tree constraints can be regarded as disjunctive variables to represent

disjunctive convex hull of DistFlow equations. And this disjunctive convex hull

relaxation (DCHR) is proven as a tighter relaxation than the existing relaxation

techniques for DNR problems, such as the Big-M and McCormick linearization

methods. Case studies also demonstrate that the DCHR’s computing performance is

superior to the prior relaxation methods.

2) The system observability enabled by D-PMUs becomes increasingly crucial for

cyber-physical security enhancement. We formulate this system observability as a

disjunctive relaxed connected dominating set problem for reconfigurable distribution

networks with the least defense cost in theory. For the benefits of system observability,

an observability defense-constrained DNR model has been proposed. This DNR
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model is then converted to a mixed integer second-order conic programming problem,

which can be solved with commercial solvers easily.

3) The topology switch for the loss minimization may expose the private

information of light and heavy loads for interconnected DNs owned by different

stakeholders with conflicting interests. For agent’s privacy concerns, we propose the

DP-DNR mechanism in this chapter. This DP-DNR mechanism provides a mixture

output of realistically optimal tie-switch status and corresponding

obfuscated-but-feasible load flows, part of which may have reverse load flow

directions. This privacy-preserving mechanism is used to mitigate agent’s privacy

concerns against private load change leakage from DNR operations, which has not

been concerned yet. On the customer’s privacy-preserving level, the C-ADMM-based

decentralized DP-DNR approach can seek the optimal DNR solution without

customer’s load datasets of agents. The exchanged communication signals are also

synthetic based on the proposed DP-DNR mechanism, which perfectly protects the

realistic communication messages between agents and the DSO. Thus, this proposed

decentralized reconfiguration approach is applicable for interconnected multi-agent

ADNs against the agent’s and customer’s privacy leakage, which has not been studied

to date.

4) A distribution-level topology optimization contributes to the flexibility

enhancement of a look-ahead rolling economic dispatch of WTBPS, which offsets the

insufficient ramping margins of retrofitted coal-fired units. Since WTBPS connects to

high voltage distribution networks (HVDNs), graph characterization of typical
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HVDNs is summarized, and then the simplified voltage-constrained load transfer

strategy via topological structures can be developed. Moreover, this proposed

look-ahead economic dispatch model is cast as a mixed-integer second-order cone

programming (MISOCP) problem. For this established MISOCP-based model, it is

highly desirable to combine the Multi-cut Benders Decomposition (MBD) [86] and

Generalized Benders Decomposition (GBD) [87] as the devised Multi-cut GBD

(MGBD) to tackle this MISOCP problem, which can enhance overall computational

efficiency and be suitable for online rolling economic dispatch.

Table 1.1 Highlights of contributions in this thesis

Items
Key characteristics of

research problems
Weakness of existing

references
Contributions

Computational
challenges of

DNR
(Chapter 3)

 Mixed-integer
second-order conic
optimization problem

 Computationally
challenging, especially
for the large-scale
networks

 Big-M method [14]
 McCormick linearization

method [15], [16]
 Loosened relaxation

techniques

DCHR with
provably
tightened
relaxation

Cyber-physical
security of DNR

(Chapter 4)

 System observability cost
can be optimized w.t.r.
reconfiguration

 Conventional DNR model
 System observability

cannot be guaranteed[37]
 RCDS formulation

[30] ,[31]

Observability
defense-constrain
ed DNR

Privacy-preservi
ng DNR

(Chapter 5)

 Topology switch for the
loss minimization may
expose the private
information of light and
heavy loads

 Conventional DNR model
 Private information for

agents cannot be
guaranteed [39],[40]

DP-DNR
mechanism

Flexibility
enhancement of

economic
dispatch

(Chapter 6)

 Look-ahead rolling
economic dispatch of
WTBPS

 Dispatchable load
resources

 Mixed-integer

 Conventional ramping
model of thermal power
units [80]

 Conventional dispatch
model of
thermal-wind-bundled

Decentralized
MGBD-based
approach for
rolling economic
dispatch of
WTBPS
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second-order conic
optimization problem

 Computationally
challenging, especially
for the large-scale
networks

generation system [104]
 Centralized optimization,

e.g., GBD [87]

1.4 Thesis Layout

The rest of this thesis consists of seven Chapters. Chapter 2 reviews the

fundamentals of DistFlow equations and its convex relaxation formulations. Chapter 3

firstly proposes the disjunctive convex hull approach to deal with the reconfiguration

of DNs. This approach is theoretically tighter than the McCormick linearization

method and the Big-M method, and it is especially suitable for smart DNs with

directional power flows. Chapter 4 develops the observability defense-constrained

topology optimization of DNs, which perfectly enables an observable DNR solution

just with the cyber–physical security enhancement. Chapter 5 presents a differentially

private topology optimization of ADNs, which provides a pair of realistic optimal

topology variables and obfuscated-but-feasible power flow variables simultaneously.

This is applicable for shared data access with agent’s and customer’s privacy

protection. Chapter 6 deals with distribution-level topology optimization for

flexibility enhancement in economic dispatch of wind-thermal-bundled power system.

This distribution-level topology optimization offsets the insufficient ramping margins

of retrofitted coal-fired units. Finally, the conclusions and future work of the thesis

are drawn in Chapter 7.
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Fig. 1.5 Illustration of overall organizational structure of the thesis.
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Chapter 2

Fundamentals of DistFlow Equations and its

Convex Relaxation Formulations

In view of distribution networks (DNs) highly penetrated by enrichable distributed

energy resources (DERs) and inverter-based resources (IBRs), a fast power flow

calculation method is essential not only for the load balancing and loss reduction at

the voltage security-constrained level, but also for real-time transactive dispatch tasks

between supply and demand at the market level of DNs.

This chapter lays the theoretical foundation of DistFlow equations and its convex

relaxation formulations. Initially, DistFlow equations can be derived from the branch

flow model, and then a linearized DistFlow equations can be obtained if the

non-convex terms are negligible. Subsequently, the SOCP and SDP form of DistFlow

equations are formulated according to SOCP and SDP convex relaxation techniques.

Additionally, the polyhedral approximation formulation is included for linearizing the

SOC constraints in SOCP-based reactive power optimization model. The results of

case studies prove the effectiveness of the variations of DistFlow equations.

2.1 Branch Flow Model

The steady-state network power flow status can be described by branch flow model

(BFM) proposed in [10]. A arbitrary branch l:= (m, n) in single-phase radial DNs (i.e.,

networks with a tree topology) is illustrated in Fig. 2.1. For this branch l, d
nP and d

nQ
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are fixed active and reactive power demands with d d d
n n nS P jQ  ; l

mnz refers to the

impedance with 2 2 2( ) ( ) ( )l l l
mn mn mnz r x  ; g

nP and g
nQ are active and reactive power

generation at node n with g g g
n n nS P jQ  , respectively; l

mnP and l
mnQ are active and

reactive power flows with l l l
mn mn mnS P jQ  , respectively.

g g
n nP jQ

l l
nk nkP jQ

d d
n nP jQ

mU


nU


l l l
mnS P jQ 

Fig. 2.1 Typical connection of a branch in DNs.

In practice, we have one assumption that the shunt elements in DNs are assumed

zero, namely bmn/2=0. This assumption is reasonable for realistic DNs due to short

distances of branches. Under this assumption, we can express the apparent power flow

for this branch l as *( )l l
mn m mnS U I  , where

mU refers to the voltage phasor at node m

and *( )l
mnI refers to the conjugate of current phasor between nodes m and n.

However, if this branch is modeled by a series admittance ymn with shunt elements, i.e.

bmn/2≠0, then a shunt admittance bmn/2 is included on each end of line (m, n) in the π

model. Accordingly, the apparent power flow should be rearranged

as
2

*( )
2

l lmn m
mn m mn

b U
S j U I   . Moreover, the voltage drop equation can be written as

l l
n m mn mnU U z I    , where l

mnz denotes the impedance of branch l. Therefore, when
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formulating distribution power flow equations in phasor form, we can achieve the

BFM-based power flow equality, yielding
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n m mn mn

l l
mn m mn

l g l l l d
mn n mn mn nk n

k n

U U z I

S U I

S S z I S S

l m n




   
 







 

   






 
 

   

  (2.1)

where ( )n refers to the set of branches that connect the node n.

As observed in (2.1), distribution power flow equations are non-convex due to

non-convex terms *( )l
m mnU I . And 2

( )

| |l g l l l d
mn n mn mn nk n

k n

S S z I S S


     is a nonlinear

equation caused by 2| |l
mnI . In other words, BFM-based power flow equality is not

suitable for tractable computation, and thus we need to reformulate this BFM-based

power flow equality.

2.2 DistFlow Equations

Due to this voltage drop equation in phasor form, we solve this equation with

squares on both sides as 2 2| | | |l l
n m mn mnU U z I  

 
. After multiplying both sides by

complex conjugate, the right hand side (RHS) of this voltage drop equation can be

rearranged as

2 *

2 2 *

2 2 2 * *

2 2 2 *

2 2 2
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=| | +| | 2Re( ( ) )

| | +| | | | 2Re( )

| | +| | | | 2Re( )
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l l l l l l
m mn mn m mn mn m mn mn

l l l l
m mn mn m mn mn

l l l l
m mn mn m mn mn

l l l l
m mn mn mn mn

l l l
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U z I U z I U z I

U z I U z I

U z I U z I

U z I z S

U z I r P

     

  

    

   

   

  





2l l l
mn mn mnx Q 

(2.2)



23

where l
mnr and l

mnx indicate the resistance and reactance of branch l. | |mU and

| |l
mnI denote the voltage magnitude of voltage phasor

mU and current modulus of

current phasor l
mnI , respectively. Note that for any vector x, Re(x) refers to the real

part of x.

It should be noted that (2.1) is actually a phase angle free equation, since all

variables | |mU , | |l
mnI , l

mnP and l
mnQ are real-valued numbers. In mathematics, we call

this equation as the angle relaxation. Indeed, we can consider the real-valued

( | |mU , | |l
mnI , l

mnP , l
mnQ )-space as a projection of complex-valued (

mU , l
mnI , l

mnS )-space.

This implies that each variable | |l
mnI or | |mU is relaxed from a point in the complex

plane to a circle with a radius equal to the distance of the point from the origin. The

intuitive explanation for this angle relaxation can be taken = | | i
m mU U e  as shown in

Fig. 2.2. Suppose that
mU on the complex coordinate space is a point. Then, a circle

with a radius equal to | |mU is the set of solutions for any real-valued variable | |mU .

By 2 2| | = | |m mU U , a point is clearly relaxed to a circle.

Real number

Imaginary number

| | i
j jU U e 

Fig. 2.2 Illustration of angle relaxation for (2.1).
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Similarly, we take the modulus with squares on both side of *( )l l
mn m mnS U I  ,

yielding

* 2 2 2 2 2 2| ( ) | =| | | | | | ( ) ( )l l l l l
m mn mn m mn mn mnU I S U I P Q    (2.3)

As mentioned above, if a shunt admittance bmn/2 is included, then

2
2 * 2| | | ( ) |

2
l lmn m
mn m mn

b U
S j U I   is a complicated quadratic equation that cannot be

converted to this SOC form. In summary, it can be seen that (2.1) and (2.2) are two

angle free equations after applying angle relaxation. According to the reference

direction of power flow shown in Fig. 2.1, the left-hand (right-hand) side gathers total

active and reactive power injected (withdrawn) in (from) node n. We can express the

corresponding DistFlow equations with respect to unknown variables

( | |mU , | |l
mnI , l

mnP , l
mnQ ) based on nodal power flow balance equations and (2.1)-(2.2). In

this study, the radial DNs are considered as a connected undirected tree ( , )   ,

where  |1,  2,  ,|...  is the set of nodes and  is the set of branches in the

dimension 1( )1   . The branch l:= (m, n), l  is between nodes (m, n)

where ,  m n and we assume that the point of common connection (PCC) node is

0. Therefore, DistFlow equations [10] are expressed as

( )

, ,l g l l d
mn n mn

l
mn nk n

k n

P r l m nP P P


        (2.4)

( )

, ,l g l l d
mn n mn

l
mn nk n

k n

Q x l m nQ Q Q


        (2.5)

22 , ,( ) | |l l l l l
n m mn mn mn mn m mnn

lv lv r P x Q z m n          (2.6)

2 2( , ,) ( )l l
m

l
mn m n mn l m nv P Q         (2.7)

where 2| |l l
mn mnI , 2| |m mv U and 2| |n nv U .
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In this set of DistFlow equations, (2.4)-(2.5) are nodal active power and reactive

power balancing conditions. (2.6) describes forward voltage drop on each branch

obtained by (2.2) and (2.7) is derived from (2.3) which defines apparent power flow

injection at the head node m of each branch. The squared voltage magnitude

2
0 0| |v U at the PCC is a constant. In this regard, we can define a vector of variables

as x:=( v , l , lP , lQ ) for l  ,the key feature of which is that x does not involve

angles of voltage and current phasors. Most importantly, (2.4)-(2.7) in BFM are linear,

and non-convexity only appears in branch flow equality (2.7). This BFM-based power

flow equation is much different from bus injection model in which power balancing

conditions render non-convex quadratic equalities.

It should be also noted that:

 Uniqueness of solutions for DistFlow equations

There are 42 2 4    equations in 1 3 44     real

variables. It is clear that the number of variables is equal to the number of equations,

which means that this DistFlow equations would have a unique solution or multiple

solution. It is shown in [88], [89] that this set of equations have generally multiple

solutions, but for radial distribution networks with | | 1U  p.u. and small l
mnr and

l
mnx , the solution of (2.4)-(2.7) is unique and same to the one produced by the

traditional bus injection model in rectangle coordinate. It should be noted that for a

connected mesh network (   ), this set of (2.4)-(2.7) equations have

2 2 4    equations in which the number of variables

is 1 3 14     . Therefore, the solution is generally nonunique. Some of
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these solutions may be spurious, i.e., they do not correspond to a solution of the

original branch flow equations.

 Application to general networks (loop networks)

The DistFlow equations can be extended to be used for general networks that may

contain cycles by introducing a cycle condition. We define the angle difference across

for branch l as

( ) : ( )l l
mn m mn mnx U z I     (2.8)

For convenience, we let ( ) : ( ( ), : ( , ), )mnx x l m ln     . Thus, the DistFlow

equations are extended to general networks as:

(2.4) (2.7), , . . ( )s t x A       (2.9)

where A is a  by  branch-node incidence matrix in tree graph with Aml=1

if l m n  for some n, Aml=-1 if l n m  for some m, and 0 otherwise. This

branch-node incidence matrix A will be discussed later. We refer to the condition

( )x A   on x in (2.9) as the cycle condition, which can be enforced by

introducing  as additional variables. For general networks (2.4)-(2.7) can thus be

interpreted as a relaxation of (2.9) where the cycle condition is ignored. When a

network is radial, the cycle condition is vacuous and (2.9) reduces to (2.4)-(2.7).

 Compact matrix-vector form

For brevity, l refers to a vector of branches if sending end nodes m, n are omitted;

otherwise, l denotes an arbitrary branch l: =(m,n), l  is between nodes (m, n)

where ,m n . In this study, we assume that the root node is 0. vm and vn are the

squared voltage profiles at node m and n. It should be noted that Al  v = vm−vn holds
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where A is a  by  branch-node incidence matrix in tree graph  and Al

refers to the l-th row. Expressing with A ・ v is generally formulated in the

matrix-vector form. To avoid heavy notations, the following steady-state network

power flow equality (2.10)-(2.13) can be derived by the real-valued DistFlow

equations for l  in the compact matrix vector form.

T l g d l
r-P + P A P D  (2.10)

lg d T l
x-Q + Q = A Q - D  (2.11)

0l z
l l

r xA D Dv - 2D P - 2 Q +  (2.12)

2 2| | | |l l l  vD P Q (2.13)

where Pl and Ql refer to the vectors of sending-end active and reactive power flows

with the moduli equal to |Pl| and |Ql|. Pg, Qg and Pd, Qd indicate the vectors of given

nodal active and reactive power injections and active and reactive loads at nodes. Qcr

is the vector of nodal reactive power compensation. l is the vector of squared

current on branches. Dr and Dx indicate the diagonal matrices whose diagonal

elements are the resistance vector and the reactance vector, respectively. Dz is the

diagonal matrix whose diagonal elements are |zl|=|rl|2+|xl|2. Dv is the diagonal matrix

whose diagonal elements are squared voltage profiles of the sending nodes for all

branches.

Let us illustrate more about branch-node incidence matrix A. For instance, the

topology of a radial DN is displayed in Fig. 2.3, where | | 10 , | | 9 and

| | | | +1  . The line feeding node n is indexed as line n-th, e.g. the second branch is

brn#2 where the ending node is 2.
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Fig. 2.3 Topology of a radial DN.

For (2.12) and (2.13), we present the branch-node incidence matrix A as

#1:

#2 :

#3:

#4 :

#5 :

#6 :

#

8

: 0 1 2 3 4

1 1

1 1

1 1

1 1

1 1

1

1

7 :
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#
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9 1 1:
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brn
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e
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d
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o

 
  
 
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 
 

 
 
 

 
  

A = (2.14)

As for (2.12), we substitute the given voltage magnitude of PCC at node 0 for the

first brn #1. We can further simplify A as below:

-1
-1

-1
-1

-1
-1

-1
-1

-1

1
1

1
1

1
1

1
1

1 Reduced branch-bus 
incidence matrix

buses

lines

0A=[a A]

A=
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where A refers to the reduced branch-node incidence matrix. Thus, (2.13) can be

further rearranged as

0 02 2l l l
r x zv D P D Q D a v    A  (2.15)

According to Ohm’s law, when each node is injected by the current in one unit, we

can obtain

1
| | 0 | | |1 | 01 0 11 0 a a  

       AA A 

where 1
0a   A can be defined as the branch-branch incidence matrix and a0 is a

scalar. Given this branch-branch incidence matrix, we can obtain the current for any

branches by the measured current from the PCC. For example, the branch-branch

incidence matrix 1
0a   A can be equal to

1

1 1

1 1

1 1 1

1 1 1

1 1

#

1

:

: 1 2 3 4 5 6

1 1 1

1 1 1 1

#1:

#2 :

#3:

#

1

7

#4 :

#5

#

1 1

6

1

9

:

:

7 :

#

8

8

9 :

b

brn

brn

brn

brn

br

r

n

brn

brn

brn

brn

n

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(2.16)

where a0=1.

2.3 Linearized DistFlow Equations

The compact matrix-vector form of DistFlow equations can be simplified if

dropping terms related to losses and quadratic equations are negligible. We can

express the real-valued LDF equations for  l  in the compact matrix-vector
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notation using the LDF method

g d T l-P + P A P (2.17)

Tg d l-Q + Q A Q (2.18)

2 2 0   l l
r xAv D P D Q (2.19)

where lP and lQ refer to the vector of sending-end active and reactive power

flows; v denotes the vector of squared voltage profiles.

Equivalently, we rearrange this set of LDF equations as

( )l g dP A -P + P (2.20)

( )l g dQ A -Q + Q (2.21)

2 ( ) 2 ( ) 0   g d g d
r xAv D A -P + P D A -Q + Q (2.22)

It should also be noted that there are several characteristics for this set of LDF

equations

(i) All equations are linear and are only with respect to a vector of

variables x :=( v , lP , lQ ), which is smaller than the size of x in DistFlow equations.

(ii) Voltage drop and line power flows are approximately linearly related to

power injections.

(iii) LDF gives an over-estimator for squared voltage magnitudes.

Proof: According to (2.22), we can formulate

0 02 2 l a v    l l
r x zAv D P D Q D  (2.23)

Rearranging (2.23) as

1 1
0 0( ) [ 2 2 ] ( ) la v      l l

r x zv A D P D Q A D   (2.24)

Then, due to 1( ) 0l zA D  and 1
0 0( ) [ 2 2 ] 0a v   l l

r xA D P + D Q , we can
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obtain this inequality as

1
0 0( ) [ 2 ]a v    l l

r xv A D P + 2D Q (2.25)

The RHS of (2.25) is equal to 1
0 0( ) [ 2 2 ]a v    l l

r xv A D P + D Q , which can be

achieved by LDF. Thus, we prove that v v .

(iv) LDF gives an under-estimator for line flows.

Proof: According to (2.22), we can directly derive the following inequality

( ) ( )l  l g d g d l
rP A -P + P + D A -P + P P (2.26)

( ) ( )l  l g d g d l
xQ A -Q + Q + D A -Q + Q Q (2.27)

Thus, we prove that l lP P and l lQ Q .

(v) Approximation accuracy by LDF depends on loading conditions. The

approximation error of this LDF can be acceptable if

 Voltage magnitudes close to unity, namely | | 1  v with | | 0  ;

 Voltage angle differences across lines close to zero, i.e., - 0nm n m   

 Ignoring line resistances and shunt elements.

In industrial applications, DNs generally have relatively flat voltage profiles

maintaining by automatic voltage control (AVC) system. Due to flat voltage profiles,

the small approximation error of LDF can only be about ±1% [90]. Note that the

squared voltage profile | |iv can be approximated from first-order Taylor series

expansion around the normal voltage profile 0| | 1U  .
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2.4 Convex Relaxation Formulation of DistFlow Equations

2.4.1 Second-order Conic Programming Formulation

In the sake of realizing minimum power losses, we discuss the reactive power

optimization problem for the fixed typology of DNs. The two convex relaxations of

DistFlow equations are discussed in the section. Before incorporating convex

relaxations, we at first discuss the conventional reactive power optimization model for

DNs:

0
, , ,
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 



  


 
 
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



 
 

  (2.28)

where 0
lS refers to the complex power on the first branch between the PCC and a PQ

bus; 0Re( )lS and 0Im( )lS refer to the real part and imaginary part of 0
lS , respectively.

Other symbols are illustrated in Section 1.

Recall that the conventional reactive power optimization model (2.28) is

non-convex, we can further modify this conventional model based on DistFlow

equations for the preparation of convex relaxations:
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(2.29)

where 0
lP refers to the active power injection of the first branch between the PCC

and a PQ bus.

For (2.29), all constraints are linear only except for 2 2( ) ( )l l
m mn m

l
mn nv P Q   . Here,

we equivalently slack this quadratic equalities to a pair of two inequalities below:

2 2( , ,) ( )l l
m

l
mn m n mn l m nv P Q         (2.30)

2 2( , ,) ( )l l
m

l
mn m n mn l m nv P Q         (2.31)

After dropping (2.31), we can relax the non-convex quadratic equalities as an

inequality below:

2 2( , ,) ( )l l
m

l
mn m n mn l m nv P Q         (2.32)

We can arrange this inequality by multiplying 4 on the both sides of (2.32)

2 2 ,(2 ) (2 2 ,) 2l l
mn m

l l
mn mn m mnP Q v v l m n           (2.33)

After adding 22( ( ))l
mn mv on both sides of (2.33), (2.33) can be rearranged as

2 2 2 2( ,2 ) (2 ) ( ) ( ) ,l l
mn mn m m m

l l
mn n lP Q v v m n          (2.34)

Therefore, this inequality (2.34) is converted to a standard SOC form by
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




  (2.35)

Note that (2.32) also refers to a rotated SOC inequality. The standard SOCP-based

formulation of DistFlow equations is

( )

, ,l g l l d
mn n mn

l
mn nk n

k n

P r l m nP P P


        (2.36)

( )

, ,l g l l d
mn n mn

l
mn nk n

k n

Q x l m nQ Q Q


        (2.37)

22 , ,( ) | |l l l l l
n m mn mn mn mn m mnn

lv lv r P x Q z m n          (2.38)
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mn l m
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Q v

v

n     





  (2.39)

According to SOCP-based DistFlow equations, we define the vector of

optimization variables xl for the minimization of real power loss. This is also called

reactive power optimization problem for the fixed typology of DNs. The set of

optimization variables involves a set of state variables ,  ,  ,  
Tl l l

PQP Q v   and a

vector of controllable variables ,
Tcr

PCCv Q   . Here, vPQ refers to squared voltage

profiles at PQ nodes and vPCC is the adjustable squared voltage profile at PCC node;

and Qcr is a vector of the reactive power compensation sources. In addition, as

observed in (2.39), two auxiliary variables can be incorporated to represent:

l l
mn

l
m mn

m

l

v

m v

w 


 

 


(2.40)

Consequently, the vector of optimization variables xl can be defined as

,  ,  , ,[ ,:  , ] Tl l l cr l lP Q v Q w mlx  (2.41)
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The constraints are composed of Distflow equations and reactive power injection

constraint of the first branch between the PCC and a PQ bus, reactive power capacity

compensation constraints for all reactive power compensation sources as well as

voltage security constraints for all nodes.

cr cr crQ Q Q  (2.42)

v v v  (2.43)

where crQ and crQ indicate the lower and upper limits of reactive power

compensation sources. v and v denote the lower and upper squared voltage profile

limits of PQ nodes.

The objective function of this minimization of real power loss can be converted to

the minimal real power injection at PCC node. Thus, the reactive power optimization

model is formulated as
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l m





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








   
   

 

(2.44)

where 0
lP is the active power injection at the root node 0.

Exactness of SOCP convex relaxation
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However, is the optimal solution of (2.44) the same as the one solved by (2.1)? If

and only if the convex relaxation techniques are exact, the obtained solution is the

same as the optimal solution of original non-convex nonlinear optimization. This

section we discuss whether SOCP relaxations for reactive power optimization

problems are exact or not. Looking from case studies in previous subsections, it seems

that all optimal solutions are satisfied with SOC equality. This suggests that the SOC

relaxation is exact. Now, let us give the exactness of SOCP convex relaxation and its

associated proof by contradiction [88], [89].

Theorem: The SOCP-based reactive power optimization formulation (2.44) is

convex. Moreover, it is exact, i.e., an optimal solution of (2.44) is also optimal for the

original reactive power optimization problem (2.1).

Proof: For this SOCP-based model (2.44), we rewrite the objective function min l
injP

as min l
mm
l

n
l

nr

 


. To prove that the relaxation is exact, it suffices to show that any

optimal solution of (2.1) has equality in 2 2( ) ( )l l
m mn m

l
mn nv P Q   . Assume for the

sake of contradiction that : ( , , , , )l l l cr
ij ij

lx P Q v Q 
★ ★ ★ ★ ★ ★

is optimal but has strict

inequality, i.e.,

2 2( ) ( ) ,ll
mn

l
m mn mnv P lQ     

★ ★ ★ ★ (2.45)

Now for some 0  , consider another point : ( , , , , )l l l cr
ij ij

lx P Q v Q     , which is

defined by
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(2.46)

where the negative indices mean excluding elements from a vector.

When 2 2( ) ( )l l
m mn n mn

l
m v P Q    holds for certain 0  , it can be verified that lx

can satisfy
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2 2 2 2
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(2.47)

For
( )

dll g l l
mn kmnn mn n n

k n

P P r P P


      , we can

find
( )

/ 2 + + / 2l l g l l l l d l
mn mn n mn mn mn nk n mn

k n

P r P r r P P r


  


    
★ ★ ★

holds and for

( )

dl
n mn

l g l l
m n mn nk n

k n

Q Q x Q Q


    , this point lx still holds under this over-satisfaction

of load. Please note that this over-satisfaction of load is needed because we have

increased the loads d
nP and d

nQ on buses and to obtain the alternative feasible

solution lx .

This means that lx satisfies all constraints (2.1) and hence is a feasible point.

Since l l
mn mn   

★ , the lx has a strictly smaller objective value
n

l
mn

l

l
mr


 


than lx
★ .

This contradicts the optimality of lx
★ . This theorem indicates that the optimal solution

satisfies SOC with equality and yield lower loss cost, if the objective function is
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strictly increasing in the power injections. Once there is an inverse power flow in DNs,

i.e. DGs to generate power to grids, this relaxation may be inexact. So this exact

SOCP relaxation condition holds under a load oversatisaction assumption (i.e., for a

node n, 0d d
n nP P  ) and radial networks, while the objective is to minimize losses

or minimize the total cost with respect to power injections.

■

2.4.2 Semi-Definite Programming Formulation

We firstly recall the general mathematic conversion between inequality constraints

and semi-definite formulation. For example, we can find the following two

formulations are equivalent:

2 2 2

3 2

0 0 1

( , ) : = 0 1 0, rank( ) 1 ( , ) :

1 0

x y x

x y x x y x y

y x x x y

      
             
           

X X  (2.4

8)

Similarly, we can apply this equivalent conversion for the quadratic constraints in

DistFlow equations. The alternative formulation of non-convex quadratic equalities

(1.7) can be expressed in SDP form. We establish

* *

*
( ) =

l
m m mn

m l

l
mnl l

mn mnmn

U v S
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  
      

   
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 
 that satisfies *det( ) l l

m m
l
m n mnn v S S lX   . If Xl is

semi-definite as 0lX  and rank(Xl)=1, then * 0l l
m m

l
mn n mnv S S     .

The non-convex quadratic equalities (1.7) is converted to

*
= 0

l
l m mn

l l
mnmn

v S
X

S

 
 
 


 

 (2.49)

rank( )=1lX (2.50)
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However, rank( )=1lX is a non-convex constraint, and thus the standard SDP-based

formulation omits this constraint. Therefore, the standard SDP-based formulation of

DistFlow equations [89] is
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, ,l g l l d
mn n mn
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mn nk n

k n

P r l m nP P P
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For the 2×2 complex-valued matrix Xl , we can decompose it as a linear matrix

inequality (LMI) constraint
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(2.55)

According to SDP-based DistFlow equations, we define the vector of optimization

variables xl for the minimization of real power loss. By applying LMI constraint, the

complex-valued matrix Xl is rearranged to a constraint with respect to

variables ,  ,  l l l
mn mn mnP Q  , and  mv . Therefore, the vector of optimization variables xl can

be defined as

 : ] [ , , Tll l l crx P , Q v, Q (2.56)

Consequently, the complete reactive power optimization model is formulated as
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Note that there is another formulation of this model with respect to complex-valued

vector ,  ,  ,[  : ]l Tl crS v Qlx   . In this vein, we formulate this complex-valued reactive

power optimization model below:
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(2.58)

where *
0 0Tr( )l lS S refers to the trace of *

0 0
l lS S .

2.5 Polyhedral Approximation Formulation

It is evident that the quadratic equality of DistFlow equations can be relaxed in a

SOC formulation according to Subsection 2.4.1. In this subsection, we investigate
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how can a SOC cone can be approximated into a set of linearizations. Mathematically,

the second-order cone is also called a Lorentz cone or an ice-cream cone. The general

mathematical definition is cast as

2: {( , ) || || }n nL x t x t     (2.59)

For instance, if n=2, then the geometry of a Lorentz cone L2 is displayed in Fig. 2.4.

Fig. 2.4 Geometry of a Lorentz cone L2.

The feasible region of a second-order cone can be well-approximated by a

polyhedral cone, as presented in Fig. 2.5. This polyhedral approximation makes a

SOC constraint become a series of linear constraints. The approximation accuracy

depends on the number of outer polyhedral linearizations.

Fig. 2.5 Approximation of a Lorentz cone as a polyhedral cone.

Definition. Let  be a feasible region of a SOCP, i.e.

2: { : ,|| || }x Ax b Ax b cx d     and let 2: { : ,|| || ( )(1 )}x Ax b Ax b cx d       . A



42

polyhedral cone P is an ε-approximation of  if ⊆ P ⊆  .

Next, we seek to find an ε-approximation of  . Recall that a 3-dimensional

Lorentz cone 2 2{( , ) :|| || }L x t x t     . Given 3
1 2( , , )x x x t     , how can

determine this any point lies in L2. Assume w.l.o.g. 1t  , 0x  . Ideally, rotating the

point 1 2( , ,1)x x  to '
1( ,0,1)x is shown in Fig. 2.6. It is clear that 2x L iff '

1 1x  . If

this angle is arbitrarily small, then we can check whether the rotated point ' 2
1x L for

an appropriate small  , since the component '
2x is very close to 0.

x2

x1

cut at t=1

1 2( , ) x x

'
1( ,0)x

Fig. 2.6 ε-approximation of a Lorentz cone L2.

This polyhedral approximation method is proposed by Ben-Tal and Nemirovski

[91]. For 2 2
1 2x x t  can be approximated by a system of linear homogeneous

equalities and inequalities in terms of 1 2 ,x x t, , and 2( 1)v  variables j j , for

0,1,2,...j v where v is a parameter of the polyhedral ( )v relaxed

approximation such that

1

1
( ) 1

cos( )
2v

v 


  (2.60)

This gives 7( ) 3 10v   when 11v  ; the relaxed approximation in

2 2
1 2(1 )t x x   will have 2 7(1 ( )) 1 6 10v     . The system of linear
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homogeneous equations is given by the following polyhedron T.
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(2.61)

where (ξ0, η0) rotates (x1, x2) so that x1, x2 ≥ 0, and we have two additional variables ξj ,

ηj for each iteration j=1,…,ν.

The polyhedral approximation given by (2.61) can be reduced by using the linear

equality constraints in 1 1
1 1

cos( ) sin( )
2 2

j j j
j j

    
   , j=1,…,v to solve for

j , 1,...,j v in terms of 0 , 1j  , j=1,…,v and then substitute j out of the system

(2.61) by this linear equality constraint. The resulting system will only have linear

inequality constraints in terms of the variables 0
1 2 3, , ,x x x  and the ( 1)v  variables

for j for j=0,…,v.

The system of linear homogeneous equalities and inequalities (2.61) is known as

the polyhedral approximation for a Lorentz cone L2. Inspired by this idea, we can

extend this polyhedral approximation for an arbitrary Lorentz cone Ln. Assume w.l.o.g

2kn  for some k  . We show that we can give an extended formulation for

 0,1 0, 0,1 0, 2( , ) || ( , , ) ||: , ,n n
n nL x x x x tt       (2.62)

We split all the original variables into pairs 0,2 j 1 0,2j( , )x x for [ / 2]j n and

associate to each pair to a new "1st level" variable 1, jx such that
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j0,2 j 1 0, 1,2j 2| )|( , ||x xx  , where 1, jx is a new introduced variable for a pair 0,2 j 1 0,2j( , )x x .

Then, introducing "2nd" level variables 2, jx is subject to j1,2 j 1 1, 2,2j 2| )|( , ||x xx  in a

similar way. We therefore construct a binary tree, where each i-th level variable has as

children two (i-1)-th level variables. The same structure is preserved up to the level

log2(n), which has a single node  2log nx t . At each level of the tree, we have an

ε-approximation of the L2 cones with the construction from the previous section. This

gives in total a 2log ( )((1 ) 1)n  -approximation for Ln.

For explanation, let us exemplify this idea by

 0,1 0,2 0,3 0
4

,4 0,1 0,2 0,3 0,4 2
4 ( , ): , , , ,|| ( ||,, )L x x x x x x x x tt     (2.63)

The approximation process can be summarized in Fig. 2.7.

x0,1 x0,2 x0,3 x0,4

2 2 1/2
0 1 0 2 1,1( ) ， ，x x x 2 2 1/2

0 3 0 4 1,2( ) ， ，x x x

2 2 1/2
1 1 1 2( ) ， ，x x t

x1,2x1,1

x2,1 =t

1st level

2nd level

Fig. 2.7 ε-approximation flowchart of a Lorentz cone L2.

Consider the following SOCP problem by the polyhedral approximation method.

1 2 3

1 2 3

2 2
3 1 2

1 2 3

min 3

. . 2 3

0 , , 1

x x x

s t x x x

x x x

x x x

 
  

 

 

(2.64)

This SOCP-based model can obtain the exact optimum. The minimum objective

value is 3.8787 and the optimal vector x=(0.6213, 0.6213, 0.8787)T is achieved. The
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SOC constraint satisfies with equality as observed by the gap error 3.1666×10-7.

Subsequently, we linearize this SOC constraint with respect to 1 2 3,x x x,

and 2(3 1)=8 variables 0 1 2 3 0 1 2 3,       , , , , , , . The system of polyhedral

approximation constraints is expressed below

0 0
1

0 0
2

1 0 0
2 2

2 1 1
3 3

3 2 2
4 4

cos( ) sin( ) 0
2 2

cos( ) sin( ) 0
2 2

cos( ) sin( ) 0
2 2

x

x

 

 
   
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   
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
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
   



  

   



0 0 1
2 2

0 0 1
2 2

1 1 2
3 3

1 1 2
3 3

2 2 3
4 4

2 2 3
4 4

sin( ) cos( ) 0
2 2

sin( ) cos( ) 0
2 2

sin( ) cos( ) 0
2 2

sin( ) cos( ) 0
2 2

sin( ) cos( ) 0
2 2

sin( ) cos( ) 0
2 2

   

   

   

   

   

   

   

   

   


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
   



  


3
3

3 3
4

tan( )
2

x
 

 




(2.65)

The vector of optimization variables is x=[
1 2 3,x x x, , 0 1 2 3 0 1 2 3,       , , , , , , ]T,

the total of which is 3+2(3+1)=11. By solving this linear programming model, the

minimum objective value is 3.8787 and the optimal vector x=(0.6213, 0.6213,

0.8787)T is achieved. The SOC constraint satisfies inequality by the gap error -0.0301.

Improving the approximation accuracy is just to set a larger linearization segments,

e.g. n=10. Thus, a more accurate solution with a gap error equal to -1.8167×10-6 can

be provided.
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2.6 Case Study

2.6.1 Simple 6-node DN

The following simple 6-node DN is used to exemplify this SOCP-based

formulation of DistFlow equations. The network topology is shown in Fig. 2.8. The

node 1 is the PCC bus, while nodes 2-6 are PQ buses. In other words,

 ={1,2,3,4,5,6} and  ={1,2,3,4,5}, where branch labels are displayed in

yellow-filled square boxes. The impedance of each branch, the load demand of each

node and the reactive power compensation capacity of installed capacitors are labeled

in this figure. The voltage allowance band of each node is set to 0.97–1.07 p.u. For

this fixed topology, we focus on the reactive power optimization on the active

branches for the minimization of real power loss.

1 2

5

6

43
0.041+j0.052 0.049+j0.055 0.066+j0.070

-0.5-j0.05

-0.1-j0.01

-0.3-j0.03

-0.2-j0.02

-0.3-j0.03

j0.2

1 2 3

4
5

Fig. 2.8 Topology of a radial DN.

According to this SOCP-based reactive power optimization model (2.18), the

operational constraints are composed of 4×5=20 Distflow equations and 1 reactive

power capacity compensation constraint as well as 6 voltage security constraints. To

validate the effectiveness of optimal solutions, we have provided the Matlab function
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in our designed MATDNR Toolbox v1.0 [92] to run this SOCP-based reactive power

optimization model (2.18) with commercial solvers MOSEK [93], Baron [94] and

SDP-based reactive power optimization model (2.57) by the commercial solver

SeduMi [95]. Please note that no overlapping variables are allowed for all SOC

constraints, and thus more new variables are included for the solver MOSEK. More

information can be found at the handbook of MOSEK online. We also employ the

reactive power optimization solver based on conventional power flow equations in

polar coordinates (Varopt) [96], and the solving algorithm is interior point algorithm.

To compare the accuracy of the polyhedral method, we solve this reactive power

optimization model with polyhedral approximations with 32 segments of

linearizations by commercial SOCP solvers MOSEK and Baron. The solution can be

found in Table 2.1. The nodal voltage profiles by SOCP-based and polyhedral

approximation formulations of reactive power optimization models can be presented

in a tree-shaped Fig. 2.9, where x-axis refers to branches. For instance, node (1,2)

refers to branch 1, node (2,3) refers to branch 2, node (3,4) refers to branch 3 in this

figure.

Table 2.1 Optimal solutions of the 6-node DN.

Models Solvers

Minimal
injected real

power at
PCC node

(p.u.)

Real Power
Loss (p.u.)

Algorithm
Iterations

Computational
Time (seconds)

SOCP
MOSEK 1.501 0.101453 10 0.2030

Baron 1.501 0.101453 10 0.1895
Varopt 1.501 0.101453 7 0.0469

SDP SeduMi 1.501 0.101453 16 0.6406
Polyhedral MOSEK 1.5005 0.1005 16 0.3280
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Baron 1.5005 0.1005 14 0.3195

1 1.5 2 2.5 3 3.5 4
branch

0.96

0.98

1

1.02

1.04

1.06 Polyhedral
SOCP

Fig. 2.9 Tree-shaped voltage profile of this simple 6-node DN.

Observing Table 2.1 tells us that the commercial solvers MOSEK, Baron and

SeduMi can be effective to solve the SOCP-based/semi-definite-based reactive power

optimization model, since the optimal solutions including power loss and voltage

profiles are the same with ones by Varopt that is based on the conventional nonlinear

power flow equations. Moreover, the optimal solution is converged at the equality of

SOC constraints. This means that this optimal solution is feasible for power flow

equations and thus convex relaxations are exact. For the polyhedral model, the

optimal solution is extremely close to the exact ones, where the maximum error of

voltage profiles is less than 0.01%, as observed in Fig. 2.9.

2.6.2 Large-scale DNs

We validate the computational performance of this SOCP-based formulation of

reactive power optimization model with different scalability of systems. i.e., IEEE
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16-node, 33-node, 123-node and 1060-node DNs with DERs that are used for tests.

The switch-off circuit breakers for these benchmark systems are shown in Table 2.2,

while other circuit breakers are switched on.

Table 2.2 Switch-off circuit breakers for these benchmark systems

DNs
switch-off circuit breakers

start node end node

16-node
6 12
11 15
8 17

33-node

9 8
32 31
28 29
15 14
8 21

123-node
76 72

105 101

1060-node

80 102
17 111
54 117
45 143
73 134
97 76
28 56

The computational performance in terms of CPU time in seconds and algorithm

iterations are given in Table 2.3. The nodal voltage profiles by SOCP-based and

polyhedral approximation formulations of reactive power optimization models can be

presented in a tree-shaped is presented in Fig. 2.10 (a) –(d).

Table 2.3 Optimal solutions of different scalability of DNs

DNs Models Solvers
Minimal injected

real power at PCC
node (p.u.)

Real
Power

Loss (p.u.)

Algorithm
Iterations

Computat
ional
Time

(seconds)
16

node
SOCP

MOSEK 2.972 0.042 17 0.219
Baron 2.972 0.042 15 0.201
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Varopt 2.972 0.042 8 0.078
SDP SeduMi 2.972 0.042 21 0.542

Polyhe
dral

MOSEK 2.967 0.042 19 0.235

33
node

SOCP
MOSEK 3.830 0.115 14 0.201

Baron 3.830 0.115 11 0.183
Varopt 3.830 0.115 7 0.065

SDP SeduMi 3.830 0.115 24 0.635
Polyhe

dral
MOSEK 3.811 0.113 22 0.275

123
node

SOCP
MOSEK 3.667 0.1776 28 0.221

Baron 3.667 0.1776 21 0.218
Varopt 3.667 0.1776 9 0.318

SDP SeduMi 3.667 0.1776 38 0.321
Polyhe

dral
MOSEK 3.658 0.1772 39 0.346

1060
node

SOCP
MOSEK 4.508 0.163 26 0.203

Baron 4.508 0.163 24 0.201
Varopt 4.508 0.163 12 0.098

SDP SeduMi 4.508 0.163 31 0.368
Polyhe

dral
MOSEK 4.461 0.162 44 0.344
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Fig. 2.10 Tree-shaped voltage profiles of different DNs: (a) 16-node; (b) 33-node;
(c) 123-node and (d) 1060-node.

Table 2.2 shows that the above-mentioned solvers can be effective to solve the

reactive power optimization problem formulated in the SOCP-based and SDP-based

DistFlow form. Fig.2.10 (a)-(d) display that the nodal voltage profiles by SOCP-based

and polyhedral approximation formulations are very close. The maximum errors of

IEEE 16-node, 33-node, 123-node and 1060-node DNs are 0.286%, 0.510%, 1.005%

and 4.211%, respectively. This demonstrates that DistFlow equations have

advantageous properties that can be reformulated in the SOCP and SDP form, and the

polyhedral approximation formulation of SOC constraints can be also accurate and

effective for quick convergence.

2.7 Summary

This chapter summarizes the fundamentals of DistFlow equations. As demonstrated

in case studies, DistFlow equations have advantageous properties that can be

reformulated in the SOCP and SDP form. The polyhedral approximation formulation
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of SOC constraints can be also accurate and effective for quick convergence. This

DistFlow equations and its convex relaxation formulations lays the theoretical

foundation for the following DNR problems with convex optimization solvers.
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Chapter 3

Topology Optimization of Active Distribution

Network based on Disjunctive Convex Hull

Approach for Operational Security Enhancement

Distribution network reconfiguration (DNR) is a classical optimal operation

problem over decades. It aims to maintain load balancing and loss reduction at the

voltage security-constrained operation level, and to coordinate real-time transactive

dispatch tasks between supply and demand at the market level of DNs. However, the

computing performance of existing methods in terms of running time and iterations is

not satisfactory for a large-scale network. This chapter investigates the convex hull

(CH) of DistFlow equations for the superior numerical performance.

This chapter proposes the disjunctive convex hull relaxation (DCHR) approach,

which can be further used to deal with these on/off constraints caused by switch status

indicators. In this chapter, we are stimulated to study the DCHR approach for the

classic DNR problem, which can be designed to tighten the voltage drop equation and

quadratic equality of DistFlow equations with continuous parent-child relationship

variables in spanning tree constraints. The results of case studies prove the

effectiveness of the proposed DCHR for DNR problems.
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3.1 Radiality Constraints

In this thesis, we suppose that each branch of DNs has a sectionalizing switch or tie

switch. Each bus in DNs is connected by a branch with a switch, and one tie switch

can form a loop with other sectionalizing switches. The DNR problem can be deemed

as a combinatorial issue about choosing optimal switch status of sectionalizing

switches (normally closed) and tie-switches (normally open). The DNR provides an

optimal network structure to realize minimum power losses and achieve better load

balancing; or to be used for post-outage restoration and planned maintenance, etc. In

this section, we discuss the relaxation techniques for DNR problems based on

DistFlow equations.

3.1.1 Virtual Commodity Flow Constraints

In the traditional DNs, DNR is not a frequent operation. However, with the

application of high-speed switching devices in DNs, the DNR is developing toward

real-time reconfiguration for maintaining the optimal operation condition of DNs. The

ability to switch between different topologies enables a class of radial grids subject to

single commodity flow (SCF) constraints. Let ul be the binary state vector of circuit

breakers, which is zero if the switch is open and one if closed, namely

ul  0,1 , lu  .

One of the most popular radiality model ensures connectivity of loads to DERs via

the power flow equations, and connects DERs to the substation via flows of a virtual

commodity [97]. The tightness of a linear programming relaxation for this model has
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also been recently. In this section, we advance upon the commodity flow approach

and propose a more succinct model with fewer variables and constraints. We consider

a virtual single commodity flowing on the network graph and set a demand of one

unit on all non-substation buses. This is to say, all load nodes to have nonzero power

injection (no transfer nodes in DNs). Consequently, all demands supplied by

substation and all nodes have a path to substation ensuring connectivity. Virtual

commodity flow constraints can be expressed with respect to the branch-bus

incidence matrix A, by forcing the virtual flows in fl to be zero for open lines:

1T f A (3.1)

,l l lN u f N lu      (3.2)

1 | | 1T lu   (3.3)

where fl refers to the vector of virtual flows on each branch.

In this set of virtual commodity flow constraints, the virtual flow variable fl does

not relate to the actual line flows and is introduced only to enforce connectivity.

Given that flows are allowed only on active lines, enforcing flow balance (KCL) on a

node with only one unit flow injection, which results in 1T f A . Moreover,

l l lN u f N u     can be used to maintain radiality of DNs by linking fl and ul.

Lastly, 1 | | 1T lu   guarantees that the network reconfiguration solution will be an

acyclic network. It should be worthwhile to note that when there are no transfer nodes

in DNs, 1 | | 1T lu   and power flow equations can be effective to maintain

radiality of DNs; otherwise, virtual commodity flow constraints should be considered.
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3.1.2 Spanning Tree Constraints

The spanning tree (ST) constraints are used to formulate a linear program of the

minimum spanning tree problem [98]. For a DNR problem, we can encode every

branch as a directed arc with respect to an acyclic network rooted at node, which ST

constraints can be applied for network reconfiguration. To enforce a radial typology, a

pair of variables  l
mn and l

nm for branch l is ranged in [0, 1], indicating the

parent-child relationship between nodes m and n for the radiality of networks. For

instance,  1l
mn  and 0l

nm  means that n is the parent node of m, otherwise

 0l
mn  and 1l

nm  implies that m is the parent node of n.

l l l
mn nm u   (3.4)

0,l
mn if m S   (3.5)

:( , )

1, \l
mn

n m n E

m N S


   (3.6)

[0,1]l
mn  (3.7)

where S is the set of source nodes.

Flowing on the branch with nodes (m,n) can only in one direction, which explicitly

is set to a combination of variables  l
mn and l

nm . The parent-child relationship

variables l are continuous, i.e., l n  . After applying this set of ST

constraints, l can be proved to get converged as 0 or 1. Reference [14] proves that

any feasible l
mn must be zeros and ones, and for each source node, it describes the

edges of an unweighted, directed tree graph with a source node.

Please note that if only ST constraints are considered in the DNR model, then ST

constraints are inadequate to represent the radiality. Take the following Fig. 3.1 as an
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example from reference [99] where we suppose that node 1 is a point of common

coupling (PCC) node.

1

6

7
95

2

3

4 8

PCC bus

Fig. 3.1 An example of inadequate ST constraints.

By ST constraints, we give the following l values for this figure in Table. 3.1.

Table 3.1 Values of parent-child relationship variable βl.

Connected Branches l
mn l

nm Parent-child
relationshipNode m Node n

6 1 1 0 1-parent, 6-child
7 6 1 0 6-parent, 7-child
3 2 0 1 3-parent, 2-child
4 3 0 1 4-parent, 3-child
5 4 0 1 5-parent, 4-child
5 2 1 0 2-parent, 5-child
9 5 1 0 5-parent, 9-child
8 4 1 0 4-parent, 8-child

It can be inferred from Table. 3.1 that all l values satisfy ST constraints

(2.25)-(2.28). Unfortunately, there is a cycle topology that is not a radial network. For

a DNR problem, power flow equations are hard constraints in this DNR model.

Clearly, this disconnected network in Fig. 3.1 leads to an infeasible power flow
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solution. In other words, the above-mentioned example cannot satisfy the nodal power

flow balance at node 7 under assumed power flow directions in Fig. 3.1.

But from our perspective, the power flow equations are necessary but insufficient

conditions for the connectivity constraint in DNR model. As displayed in Fig. 3.2, we

can show this counter-example based on Fig. 3.1.

1

6

7
95

2

3

4 8

PCC bus
G

Fig. 3.2 An example of inadequate ST and power flow constraints.

In this case, we can find that ST and power flow equations constraints cannot

guarantee a radial topology when there is a DG source at node 2 in this distribution

system. It may result in an unconnected graph containing loops with nodes 2, 5, 4 and

3. This illustrates that power flow equations cannot entirely guarantee the connective

topology. Thus, it is suggested in [98] that single-commodity flow constraints (SCF)

and ST constraints can guarantee the radial topology.



59

3.2 Conventional DNR Models

By the angle relaxation, DistFlow equations can be cast as a second-order conic

programming (SOCP) or a semi-definite programming (SDP) formulation for

DistFlow equations. By these convex relaxations, the DNR model can be modeled as

a mixed-integer second-order conic programming (MISOCP) or a mixed integer

semi-definite programming (MISDP) problem in the following. These convex models

exploit the optimal distribution topology with reduced computational complexity. In

this subsection, we only discuss SOCP-based model of DNR problems with Big-M

relaxation method.

3.2.1 MISOCP-based DNR Model with Big-M Relaxation Method

For the sake of the minimal power loss in reconfigurable DNs, the set of

optimization variables involves a set of operational variables ,  ,  ,  
Tl l l

PQP Q v   and

a vector of controllable variables 0, , , ,  ,
Tcr l l l l

mn nmv Q f u    . Here, 0v refers to the

squared voltage profile at the root node 0. Accordingly, once controllable variables

are provided, operational variables can be automatically determined just by power

flow equations. For this DNR optimization problem, we combine operational and

controllable variables together as : [ , , , , , , , , ,  , ]l l l l cr l l l l l l T
mn nmx P Q v Q w m f u   for all

branches of DNs, where ( , , , , , , , , ,  )l l l cr l l l l l
mn nmP Q v Q w m f     and lu  .

With DistFlow equations, the big-M method is utilized to relax equality

2 02( ) | |l l l l l
n m mn mn mn m

l
mn mn nv v r P x Q z     as two inequalities with a large-enough

positive scalar M. The optimization variables are expressed as
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: , , , , , , , , ,  , ,  
Tl l l l cr l l l l l l

mn nmx P Q v Q w m f u l       . Thus, the entire network

reconfiguration model with the loss minimization is cast as
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where 0
lP is the active power injection at the root node S.

3.2.2 MISOCP-based DNR Model using McCormick Linearization Method

In the previous subsection, the SOCP-based model of DNR problems can be

formulated with Big-M relaxation method. However, we can further strengthen this

bound relaxation using McCormick Linearization Method [100]. Let
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( )l l
n my v v u  . Then, the McCormick linearization method is utilized to relax

equality 2 02( ) | |l l l l l
n m mn mn mn m

l
mn mn nv v r P x Q z     as

2| 02( ) |l l l l l
mn mn mn

l l
mmn nmnr P x Q zy     (3.9)

( )() l l lu y vv uv v    (3.10)

( ( 1) ( ( 1)) )l l
n m n

l
mv v v v v vu uvv y         (3.11)

The optimization variables are expressed

as : , , , , , ,
Tl l   

l l l cr l l l l l l l
mn nmx P ,Q v,Q w ,m , y , f β , β u  . Thus, the entire

network reconfiguration model with the loss minimization is simply reformulated as
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3.2.3 Quadratic DNR Model with Big-M and McCormick Linearization Methods

With LDF-based equations, the Big-M method is utilized to relax equality

( 02 )l l l l
n m mn mn mn mnv v r P x Q    as two inequalities with a large-enough positive

scalar M. Therefore, a linearized DNR model with Big-M relaxation method is

developed and firstly proposed in [14]. The optimization variables are expressed as

: ,  
T

l   
l l l cr l l l l

mn nmx P ,Q ,v,Q , f , β , β ,u  . Since network loss is omitted in this

LDF-based equations, we rewrite the objective function in the DNR model as
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2 2(( ) ( ) )l l l
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l

r P Q

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

where voltage profiles are all assumed as one unit. Due to this

quadratic objective function, the entire linearized DNR model with the loss

minimization is reformulated as a mixed integer quadratic programming problem.
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3.2.4 Polyhedral Approximation of DNR Model using Big-M Relaxation Method

For SOC constraints in the DNR model, the polyhedral approximation can be used

to simplify the SOC constraints to be a family of linear constraints. We can express

2
( ) ,2 2 , ,l l l

mn
T

m
l

nP w l m nQ m      as a polyhedral cone, which is

visualized in Fig. 3.3. The error of approximation can be regarded as the distance

between the exact optimal point and the approximate optimal point .
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Fig. 3.3 Polyhedral cone for SOC constraint.

Moreover, the Big-M method is utilized to relax equality

2 02( ) | |l l l l l
n m mn mn mn m

l
mn mn nv v r P x Q z     as two inequalities with a large-enough

positive scalar M. Therefore, a polyhedral approximation DNR model with Big-M

relaxation method is established [17]. The optimization variables are expressed as

: ,  
T

l    l l l cr l l l l l l l
mn nm,x , ς,η,ωP ,Q ,v,Q ,w ,m S , f , β ,uκ , β,  , where , , ,   

are variables in the polyhedral approximation of SOC constraints. Thus, the entire

DNR model with the polyhedral approximation of SOC constraints for the loss

minimization is reformulated as
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where  is the parameter of the polyhedral ( )  relaxed approximation in (2.60).

3.3 Disjunctive Convex Hull Approach for DNR Formulation

As stated the above, convex relaxation approaches in the conventional DNR models

include Big-M method and McCormick linearization method. These two existing

convex relaxation approaches are used to slack power flow constraints by switch

status indicators, or construct relaxation constraints with variables automatically

satisfied for a disconnected line. Since these convex relaxation methods suffer from

loosened relaxation bounds, there is a research gap to explore the efficient and tight

relaxation approach for DNR problems.

For the sake of the minimal power loss in reconfigurable DNs, the set of

optimization variables involves a set of operation variables xl := [Pl, Ql, l , v, Qcr]T,

xl∈ n , the continuous parent-child relationship variable βl∈ 2 in spanning tree

constraints, and binary state vector of circuit breakers ul∈{0, 1}, ul∈  , where ul is

zero if the switch is open and one if closed. The DNR model is to seek the loss

minimization over DistFlow equations. In reconfigurable DNs, if a branch l := (m, n)

is unconnected, 2) =02( | |l l l
m

l
m

l l
n m mn n nm mn mn nv v r P x Q z     in (1.6) can hold for

== 0l l
mn mnP Q , 0l  and v v v  , but 2) =02( | |l l l

m
l
m

l l
n m mn n nm mn mn nv v r P x Q z     may

not stand with this solution due to Al·v≠0 . Suppose that no additional active/reactive

power injections from reactive compensation or distributed energy resources (DERs)

are available to this branch l, and as long as Al·v =vm−vn>0 holds, then it is inferred

that m should be the parent node of n.
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According to [14], continuous parent-child relationship variables βl are proved to

get converged as binary solutions from real-valued continuous numbers. Inspired by

this characteristic, we can ideally link disjunctive parent-child relationship variables βl

with “on/off” equality (1.6) and (1.7) via the disjunctive convex hull relxations

(DCHR) approach. In other words, if an arbitrary branch l := (m, n) with

active/reactive power flow directions depending on parent-child relationship variables

of DNs, then vm −vn > 0 is consistent with β l
nm=1 and β l

mn=0, or vm − vn < 0 is consistent

with β l
mn=1 and β l

nm=0. Mathematically, we have

Theorem: Let Ωl be the feasible set of the DNR problem with respect to

optimization variables (xl, βl, ul). For an arbitrary branch l := (m, n) for ( , )m n  ,

if the signs of P l
mn and Q l

mn simultaneously depend on the combination of β l
nm and β l

mn,

then Ωl can be expressed as:

2 2

(2.4) (2.7)

(3.4) (3.7)

( ) ( ) 0

( ) 0

( ) 0

nl l
m n nm

l
m n nm

l
m n mn

v v

v v

v v u

  





 
 

 
        
     
     

l l lx , β ,u   (3.15)

where ∨ denotes the logic operator for disjunction.

Proof: Suppose that there exists a directional branch power flow from parent node n

to child node m such that vm−vn > 0 for β l
mn=1 and β l

nm=0. Due to ℓ l
mn > 0, then we have

−|z l
mn|2ℓ

l
mn < 0. And directional branch power flow from n to node m means that P l

mn<0

and Q l
mn <0. Subsequently, it is derived that vm−vn= 2RmnP l

mn +2XmnQ l
mn −|z l

mn |2ℓ l
mn < 0

where Rmn and Xmn refer to the resistance and reactance of branch l. This induces vm −

vn < 0, which contradicts vm − vn>0 as the initial assumption. Similarly, this theorem
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can be also proven for which vm − vn < 0 is consistent with β l
mn=1 and β l

nm=0. If l
mnu =0,

then 0l l
nm mn   by (3.15) and vm−vn can be free. ■

With this theorem’s framework, it is found that no additional disjunctive variables

are incorporated for tighter relaxations, but it can guarantee a more rapid convergence

than using Big-M and McCormick linearization method. Indeed, if there exists a DN

without any reactive compensation or DERs injection, the enforced disjunctive

constraint naturally holds for each branch since the voltage profile at the root node is

the only highest. For a branch l:= (m, n) with additional reactive compensation or

DERs injection at the ending node n, this theorem may not hold due to vm − vn < 0 and

β l
mn = 1, β l

nm = 0. It is known that this l is a connected branch with parent node m and

child node n, but ( ) 0l
m n mnv v u   , ( ) =0l

m n mnv v   and ( ) 0l
m n nmv v    disobeys

this Theorem. Therefore, if a branch has a bi-directional power flow caused by

reactive compensation or DERs injection, any enforced disjunctive constraints

between parent-child relationship variables and voltage drops in (3.15) should be

relaxed. Otherwise, additional disjunctive variables should be incorporated to replace

parent-child relationship variables in (3.15). Excluding branches with the possibility

of bi-directional power flows, a disjunctive CH based on parent-child relationship

variables can be utilized to construct tighter convex relaxations of (1.6) and (1.7) and

disjunctive constraints in (3.15) for the rest of the branches. Please also note that the

simple way is to estimate which is the farthest load node from the center of each

reactive compensation and DERs injection node via calculating their capacity

accommodation. Thus, we can easily find these possible branches and relax their
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corresponding disjunctive constraints between parent-child relationship variables and

voltage drops in (1.6).

For (1.6), we define Ω1, mn and Ω1, nm as the disjunctive convex sets for (3.15)

integrated with β l
mn = 1 and β l

nm = 1 for branch l := (m, n), respectively. Subsequently,

Ω1, mn can be written as a union of two convex sets Ω0 1,
mn and Ω1 1,

nm corresponding to β l
nm =

1 and β l
mn = 0. This is similar to Ω1, nm under β l

nm=1 and β l
nm=0.

0 1 0 1
1, 1, 1, 1, 1, 1,Conv( ) Conv( )mn mn mn mn nm nm        ， (3.16)

0 0
1, 1,, { | , , , 0}n l l l

mn nm mn mn mnP Q      lx v v v  (3.17)

1 1
1, 1,, { | (1.6), ,0 }

ln l
mn nm mn       lx v v v   (3.18)

In this vein, we sketch the geometry closure of Ω1,mn and Ω1,nm with a continuous

variation of β l
nm, β l

mn ∈ [0, 1] on (vm−vn, 2RmnP l
mn +2XmnQ l

mn −|z l
mn|2ℓ

l
mn, βl)-space in Fig.

3.4 (a). The geometry closure of Ω1, mn and Ω1, nm are disjunctive polyhedral sets with

vertexes V1−V4 and V1, V5−V7 in blue and green CHs, respectively. Note that the

former vertical coordinate axis is upward β l
nm while the latter vertical axis is downward

β l
mn. Clearly, the hyperplane ψ1 with vertexes V1, V2 and V4 is at the bottom of the blue

polyhedral hull, whereas hyperplane ψ2 with vertexes V4, V5 and V7 is at the top of

the green polyhedral hull. With this definition of bi-directional vertical axis, ψ1 and ψ2

are bottom hyperplanes of blue and green polyhedral CHs, respectively. As a result,

with the hyperplanes ψ1 and ψ2, we explicitly express two constraints in (3.19) that are

obtained from the coordinates of vertexes V1, V2, V4, V5 and V7, which are { v v ,

v v , 1}, {0, 0, 1}, {0, 0, 0}, { v v , v v , 1} and {0, 0, 1}. In terms of top

hyperplane, both disjunctive CH Ω1,mn and Ω1,nm have the same upper bound.
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Subsequently, the third constraint in (3.19) using l l l
mn mn nmu    can represent the

top hyperplane with vertexes V1, V2, V3 or V5, V6, V7. These linear constraints from

equations of the above-mentioned hyperplane:

2

2

2

1 1
(2 2 | | ) -1

1 1
(2 2 | | ) -1

1 1
(2 2 | | )+ 1

l l
nm

l l
mn

l l
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v v v v

v v v v

u
v v v v






         


         


      

 

l l l
r x

l l l
r x

l l l
r x

A v D P D Q z

A v D P D Q z

A v D P D Q z







(3.19)

As a DCHR formation via ul = β l
mn+β l

nm, the disjunctive CH Ω1 = Conv(Ω1, nm∪Ω1, mn)

of (1.6) and the enforced disjunctive constraint in (3.15) yields

2| | | |
1 {( ) | (3.19) and (3.21) (3.23)}n      l l lx , β ,u   (3.20)

where corresponding perspective linear cuts are imposed to improve bounds of v and

ℓl by

(1 )( ) ( )l l
nm m n nmv v v v v v       (3.21)

( ) (1 )( )l l
mn m n mnv v v v v v       (3.22)

, 0 , 0
l ll l l l l l l

mn nm                (3.23)

(a) (b)
Fig. 3.4 (a) Disjunctive closure of Ω1; (b) disjunctive closure of Ω2.
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For (1.7) of the branch l := (m, n), the possible CH of both (1.7) and the enforced

disjunctive constraint in (3.15) can be expressed as the union of two points (xl,ul)=(0,

0, 0, v , 0, 0) and (0, 0, 0, v , 0, 0) and a continuous second-order conic (SOC) set,

where this SOC set is drawn from a continuous SOC relaxation of the quadratic

equality (1.7), yielding

2|| (2 ,2 , ) || , ,l l l T l
mn mn m mn m mnP Q v v m n       (3.24)

With the above-mentioned theorem, we visualize the geometry closure of this

SOC-representable set by (3.24) as a disjunctive CH on (2P l
mn , 2Q l

mn , βl)-space as

shown in Fig. 3.4 (b). In this figure, the intersection between the second-order cone

and a valid cutting plane by either vm −vn = 2P l
mn + 2Q l

mn−|z l
mn|2ℓ

l
mn ⩾ 0 or vm − vn ⩽ 0

contributes to forming a nearly half second-order cone. Evidently, this disjunctive

closure is tighter than a full second-order cone. Let Ω2 be a DCHR formation with

respect to β l
mn and β l

nm, which is expressed as

2| | | |
2 ={( ) | (3.24) and (3.26)-(3.27)}n    l l lx , β ,u   (3.25)

where corresponding perspective linear cuts are given as

0 2 2 ( )l v v     l l l
r x z nmD P D Q D β (3.26)

( ) 2 2 0lv v     l l l
mn r x zβ D P D Q D  (3.27)

By the observation of Ω1 and Ω2, this DCHR approach is tighter than the

McCormick linearization method and the Big-M method for any branch l under

Theorem, which corresponding proof can be provided here.

Proof: For McCormick linearization method, we suppose =  l ly u A v and then

2 2 0l   l l l
r x zy D P D Q D  automatically holds also for connected and/or
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unconnected branches subject to ( ) ( 1) ( ) ( 1)v v v v           l l lA v u y A v u .

It is clear that, due to the large-enough positive scalar number ( )M v v  ,

McCormick linearization method has tighter relaxation bounds of (1.6) than Big-M

method.

For an arbitrary branch l, the lower bound of (1.6) by McCormick linearization

method is denoted as 1
lowerL , yielding

1 = + ( ) ( 1) 2 2lower lL v v      l l l
r x zA v u D P D Q D  (3.28)

However, in terms of DCHR, the lower bound of (1.6) for branch l denoted as

2
lowerL is derived from the intersection set of first two inequality in (3.29), which is

given by

2 = 2 2lower lL    l l
r x zA v D P D Q D  (3.29)

Hence, we can achieve the difference in algebra between 1
lowerL and 2

lowerL by

1 2 = ( ) ( 1)lower lowerL L v v   lu .Since {0,1}lu  , this clearly renders 1 2 0lower lowerL L  .

Similarly, we can also achieve the upper bound of (1.6) by two methods are equal.

Moreover, this McCormick linearization method for (1.7) adopts a Lorentz cone L

defined from (3.24). Let 1 be the feasible set of this Lorentz cone L, whereas

DCHR has the feasible region

2 1 1 1={ ( 0)} { ( 0)} { ( 0)}m n m n m nv v v v v v               (3.30)

This implies that 2 is smaller than 1 since m nv v only holds for either

0m nv v  or 0m nv v  or 0m nv v  . In light of tighter bounds in (1.6) and

(3.10), we have proved that DCHR has tighter relaxation bounds than the McCormick

linearization method and Big-M method. ■



73

With tighter bounds, this DCHR approach can also converge at the optimal point

with achieving SOC equality for a load oversatisaction assumption and radial

networks as proved in Subsection 2.4. Making use of the above, the loss minimization

of DNR is a nonconvex mixed-integer quadratically constrained programming

(MIQCP) problem. Now we have enabled this MIQCP-based DNR model to a

tractable MISOCP-based DNR reformulation with the set of optimization variables

: , ,  
Tl l   l l l cr l l l l l l

mn nmx P ,Q , v,Q ,w ,m , f ,β , β ,u  subject to system operational

constraints below. Leveraging Ω1 and Ω2 to represent (1.6) and (1.7), we have
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(3.31)

where 0
lP is the active power injection at the root node 0.
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3.4 Case Study

3.4.1 Simple 6-node DN

The following simple 6-node DN is used to exemplify this polyhedral

approximation of DNR model using Big-M relaxation method. The network is shown

in Fig. 3.5. The node 1 is the PCC bus, while nodes 2-6 are PQ buses. In other words,

 ={1,2,3,4,5,6} and  ={1,2,3,4,5}, where branch labels are displayed in

yellow-filled square boxes. The impedance of each branch, the load demand of each

node and the reactive power compensation capacity of installed capacitors are labeled

in this figure. The voltage allowance band of each node is set to 0.97–1.07 p.u. The

switch-off circuit breakers are marked with “ ” and the rest are switch-on marked by

“ ”. For a fixed topology, we focus on reactive power optimization on the active

branches for the minimization of real power loss.

1 2
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6

43
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Fig. 3.5 Topology of a radial DN.

According to this DCHR-based DNR model (3.31), the size of [ , , , , ]l l l crP Q v Q is

6·4+1=25; [ , , , ]l l l lw m    has the size 6·4=24 and [ , ,  ]l l l
mn nmf   has the size

3·6=18.The remaining ul is a vector of 12 23 34 25 36 56[ , , , , , ]lu u u u u u u . Thus, the total
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number of variables is 25+24+18+6=73. The SCF constraints and spanning tree

constraints are the same as the MISOCP-based DNR model with Big-M relaxation

method. The tree-shaped voltage profiles before and after DNR operations are

presented in Fig. 3.6. The output solutions are shown in Table 3.2 and Table 3.3 after

running the above codes.

1 1.5 2 2.5 3 3.5 4
branch

0.96

0.98

1

1.02

1.04

1.06

1.08
before DNR
after DNR

Fig. 3.6 Tree-shaped voltage profiles of simple 6-node DN.

Table 3.2 Optimal DNR objective of the 6-node DN.

Solvers
Minimal injected
real power at PCC

node (p.u.)

Real Power
Loss (p.u.)

Algorithm
Iterations

Computational
Time (seconds)

MOSEK 1.504 0.1035 7 0.031
Baron 1.504 0.1035 6 0.030

Table 3.3 Optimal DNR solutions of the 6-node DN.

Solvers
Circuit breakers

Swicth-on status of Branch No. Swicth-off status of Branch No.
MOSEK 5 1, 2 ,3, 4, 6

Baron 5 1, 2 ,3, 4, 6
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3.4.2 Large-scale DNs

To validate the effectiveness of DCHR, we show the voltage profiles before and

after DNR operations by this proposed DCHR approach. The tree-shaped voltage

profiles are presented in Fig. 3.7 (a)-(d) for different DNs: (a) 16-node; (b) 33-node;

(c) 123-node and (d) 1060-node. The voltage profiles before and after DNR

operations are enhanced to reduce the power loss, where this phenomena can be

observed by the blue lines as compared to grey dashed lines in Fig. 3.7 (a)-(d). This

demonstrates that this proposed DCHR approach can successfully solve this DNR

problem with voltage profile enhancements.
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Fig. 3.7 Tree-shaped voltage profiles of different DNs: (a) 16-node; (b) 33-node; (c)
123-node and (d) 1060-node.

To compare the relaxation tightness of DCHR, we employ the DNR models using

four methods: (i) the Big-M method for (1.6) and continuous SOC relaxation for (1.7)

(M1) [14], (ii) the McCormick linearization method for (1.6) and continuous SOC

relaxation for (1.7) (M2) [15], and (iii) the polyhedral approximation method with 32

segments of linearizations (M3) [17], and (iv) the proposed DCHR approach (M4).

These comparable M1-M4 are implemented for the low and the high penetrations of

reactive power capacitors and DERs for cases I and II, respectively. The

computational performance in terms of CPU time in seconds and algorithm iterations

are given in Table 3.3 for M1-M4. The convergence performance of duality gaps is

presented in Fig. 3.8 by M1-M4.

Table 3.3 Computational Performance Among M1-M4.

Cases Syst.
CPU Time (s) Iterations

Convex Relaxations Approx. Convex Relaxations Approx.
M1 M2 M4 M3 M1 M2 M4 M3

I

16-node 0.281 0.250 0.234 0.297 202 172 113 99
33-node 2.906 1.985 1.187 1.781 3452 2259 949 1290

123-node 1.613 1.488 1.171 1.875 237 329 135 275
1060-node 329.437 56.922 18.187 20.328 116663 16114 3764 4510

II

16-node 0.309 0.297 0.228 0.275 175 151 133 109
33-node 3.703 2.141 1.432 1.890 2021 1432 635 1136

123-node 1.703 1.641 1.218 1.918 237 329 179 152
1060-node 686.813 97.969 39.094 46.938 127315 13929 5567 5936



79

 1 2.0  3.0
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M1
M2
M3
M4

Iterations/one hundred

D
ua

li
ty

 g
ap

 (
%

)

 1 2.0  3.0  4.0
Iterations/one thousand

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 M1
M2
M3
M4

D
ua

li
ty

 g
ap

 (
%

)

(a) (b)

M1
M2
M3
M4

 1 2.0  3.0  4.0
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Iterations/one hundred

D
ua

li
ty

 g
ap

 (
%

)

D
ua

li
ty

 g
ap

 (
%

)

1  2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
M1
M2
M3
M4

Iterations/one thousand

(c) (d)
Fig. 3.8 Convergence performance: (a) 16-node; (b) 33-node; (c) 123-node; (d)

1060-node.

Table 3.3 shows that M4 significantly outperforms M1 and M2 with the less

CPU running time and M4’s solutions are more accurate than M3 in theory for all

systems of two cases. Regarding the number of iterations, it suggests that the

relaxation bounds of DNR models by M4 is more effective than M1-M3 as justified

with the less running time. Since a large-enough positive scalar in M1 leads to loosing

bounds, it is tricky for M1 to find the optimal configuration scheme quickly. Between

M2 and M4, M4 can induce fast convergence with achieving SOC equality than M2,

since SOC constraints in M4 are coupled with parent-child relationship variables.

Additionally, M4 is superior for case I than case II, due to a larger number of
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branches that may have bi-directional power flows in case II. These conclusions are

also justified by the fast convergence in two test systems in Fig 3.8 (a)-(d).

Moreover, we examine the relaxation bounds by M1, M2 and M4 to showcase

the limitations of M1 and M2. For an arbitrary branch l, the bounds by M1 and by M4

are denoted as (3.28) and (3.29), respectively. For brevity, the number of

integer-relaxed SOCP models solved in the B&B iterations can suggest this DNR

model’s boundary tightness. Thus, we display this number of SOCP-relaxations to

represent the relaxation bounds during iterations in Fig. 3.9(a)-(d).

0 1 1.5 2

40

80

120

160

 

 

Iterations/one hundred
0.5

N
um

be
r 

of
 r

el
ax

at
io

ns M1
M2
M4

1 2 30

1000

2000

3000

 

 

Iterations/one thousand

N
um

be
r 

of
 r

el
ax

at
io

ns M1
M2
M4

(a) (b)

1 2 30

100

200

300

 

 

M1
M2
M4

Iterations/one hundred

N
um

be
r 

of
 r

el
ax

at
io

ns

4 8 10
0

2

6

10
x 10 4

 

 

M1
M2
M4

Iterations/one thousand

N
um

be
r 

of
 r

el
ax

at
io

ns

(c) (d)
Fig. 3.9 Lower bounds of M1, M2 and M4: (a) 16-node; (b) 33-node; (c) 123-node;

(d) 1060-node.
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Clearly, the relaxation bounds by M1, M2 and M4 are significantly different, in

which M4 has the tightest relaxation bounds as indicated in Fig. 3.9(a)-(d). This is

because of the least numbers of relaxations in the B&B iterations. In theory, M4 has a

tighter feasibility space for this DNR optimization due to 2 1
lower lowerL L in (3.28) and

(3.29) and a tighter Lorentz cone L by (3.30). Based on these two aspects, M4 has

tighter relaxation bounds than the M1 and M2.

3.5 Summary

This chapter proposes a DCHR approach to tackle the disjunctive nature of DNR

problems. With continuous parent-child relationship variables as disjunctive variables,

this DCHR approach is theoretically tighter than the McCormick linearization method

and the Big-M method, and it is especially suitable for DNs with directional power

flows. As demonstrated in case studies, the computing performance in terms of

running time and iterations using a DCHR approach yields superior numerical

performance than prior relaxation methods.
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Chapter 4

Observability Defense-Constrained Topology

Optimization of Active Distribution Networks for

Cyber–Physical System Security Enhancement

The system observability is crucial for a sufficient level of controllability on ADNs,

which provides the ability to understand the physical system states. This has proved to

be extremely powerful, especially with the various grid operations that depend on the

physical system’s behavior, e.g., generator redispatch, fault location. Indeed, a huge

number of feeders and nodes with limited metering points such as D-PMU units are

essential to achieve this merit of observability. With D-PMU units, the full system

observability for system-wide security operation in ADNs can be available with a

good level of service continuity.

This chapter is focused on the defense level of cyber–physical security in the DNR

model. Motivated by the minimum cost PMU placement model in a relaxed connected

dominating set (RCDS) form [31], this chapter proposes a disjunctive RCDS

formulation for reconfigurable DNs with the least defense cost in theory. Then, an

observability defense-constrained DNR model can be cast as a mixed integer

second-order conic programming problem (MISOCP). This observability

defense-constrained DNR formulation will be elaborated and verified in case studies.
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4.1 System Observability for Cyber–Physical Security Enhancement

D-PMUs are advanced grid measurements for security and economic operation,

which measurement data are uploaded to dispatch centers via wireless/wired

communication layers. From the perspective of cybersecurity, it is crucial to monitor

the cyber interactions in cyber-physical DN entities against cyber attacks [35], where

the relationship for physical DNs, cyber-physical DNs and cyber DNs is displayed in

Fig. 4.1. If the some parts of DNs cannot be observed, then cyber attacks for these

unobserved areas may not be easily detected. As such, we propose the term

"observability defense" that can be used to describe the defense cost against

cyber–physical threats subject to the full observability of DNs.

Cyber-Physical 
DN Entity

Physical DN Cyber DN

Outgoing SignalsMeasurements

Actuation Incoming Signals

Fig. 4.1 Cyber-physical interactions in DNs

The observability defense cost is on the D-PMU measurement protection, which is

very essential to prevent false data injection attacks (FDIAs) as common

cyber–physical threats. If any measurements of D-PMUs are attackable by adversaries,

corrupted measurements and/or load data can render improper DNR actions, then

probably inducing physical security issues that cannot be observed. Accordingly, the

effective cyber-physical system security defense, e.g., the full system observability

guarantees, cannot be neglected. At present, the existing cyber-physical defense
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strategies focus on the full protection of D-PMU data for the entire DNs. However, a

small number of D-PMU devices can actually cover the full observability of DNs,

since some nodes have zero power injection. In other words, this observability

defense strategy varies as the DNs change, which can be beneficial for reducing the

defense cost. From this perspective, we study the defense issue of system

observability in the DNR model.

Given that deployed D-PMUs and zero injection nodes are available in ADNs,

power flow and nodal voltage phasor can be observable just based on a proper use

combination of them. In terms of FDIAs during DNR operations, both zero injection

nodes without having generation or loads and substation measurements cannot be

attacked due to physical property and private communication networks [33]. Thus,

load-side smart meters and unprotected D-PMU measurements may be attackable as

displayed in Fig. 4.2. In this chapter, we only consider defensible D-PMUs and zero

injection nodes as limited security resources for DNR operations. This system

observability defense against FDIAs can be converted to seek a minimum number of

protected D-PMUs for less channel resources and decryption service subject to the

topological observability condition [34].
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Fig. 4.2 Illustration of the system observability defense.

4.2 RCDS Formulation For Fixed ADNs

To begin with, we introduce the RCDS problem for fixed ADNs. Generally, ADNs

are considered as a connected undirected tree ( , )   , where : [1,2, , ]  

is the set of nodes and  is the set of branches in the dimension  ×1. Suppose that

an arbitrary branch  : , ,l i j l  is between nodes  ,i j . For any RCDS solution

  under a fixed radial topology, we denote [ ]: { ( , ) }l i j    ∣    as the

set of edges connected to  , where [ ]  is called a induced subgraph of  .

Following [31], this RCDS model is to seek a minimum node subset  via

evaluating a minimum cardinality  , such that subgraph ( , [ ])   is connected,

yielding

min F



 

 (4.1a)

s.t. ( , [ ]) connected   (4.1b)

The minimum RCDS solution  for (4.1a)-(4.1b) is also called the perfect
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protection set in [30] and [31]. Mathematically, we can explain the constraint (4.1b)

that (i) every node in  either belongs to  or is adjacent to a node in  ; and

(ii) any node in  can reach any other node in  by a path that stays entirely

within  or a “relaxed path” that there exists one node not in  along this path.

4.3 Disjunctive RCDS Formulation For Reconfigurable ADNs

From an operational perspective, ADNs are generally reconfigurable. Thereby, the

RCDS solution  is dependent on a binary state vector of circuit breakers lu for

the graph  .Here, lu is zero if the switch is open and one if closed, which

( ) 0l u denotes the spanning tree constraints for radiality and ( ) 0lh u  denotes

system-wide operational constraints. The subgraph induced by RCDS is then

modified as  [ ]: ( , )u ul i j    ∣    , where :u l ∣    0,l l  u u  .

Due to the disjunctive nature of DNR problems [9], we propose a disjunctive RCDS

formulation for reconfigurable u in theory based on the existing RCDS model:

min
l

F
 


u， 




(4.2a)

s.t. ( , [ ]) connectedu   (4.2b)

( ) and ( ) 00l lh u u  (4.2c)

It is evident that the minimum RCDS solution  for (4.2a)-(4.2c) is

characterized by lu . The following Fig. 4.3(a) and (b) are two corresponding radial

topologies for a 6-node network, where the root node 0 connects the substation.

Suppose all nodes have loads and the D-PMUs at all nodes other than the root node 0

are eligible for defense.
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(a) (b)

Fig. 4.3. (a) Topology u with two leaves; (b) topology u with five leaves.

By the observation, it is easily found that Fig. 4.2 (b) only employs one D-PMU at

node 1, whereas Fig. 4.2 (a) must deploy two D-PMUs at nodes 2 and 4, respectively.

The topology distinction is obvious since Fig. 4.2 (b) has four leaves but Fig. 4.2 (a)

has one leaf, where a leaf refers to a terminal node with degree one for these two

rooted trees.

This indicates that the topology determined by the optimal RCDS solution t* is

equivalent to deal with a maximum leaf spanning tree problem (MLSTP) subject to

( ) 0 lu in (4.2c). Without loss of generosity, if all non-leaf nodes have deployed

D-PMU units, then the maximum leaf numbers determined by  and by the

optimal MLSTP solution  are equivalent, which can be proved below:

Proof: There exists an optimal MLSTP solution  representing a spanning tree 

with n vertices and n-1 edges. Suppose that  has s leaves such that 1s  and

s m , where m is the number of leaves from the topology by the optimal RCDS

solution t* if all non-leaf nodes have deployed D-PMU units.. By the Handshake

Lemma for all vertex v, the degree sum can be expressed as

1 1 1

deg deg deg
n n n

v v n s v n m

v v s v m
      

      . This further induces
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1 1

deg deg
n n

v n s v n m

v v
     

  since s<m. Recall that the total degree of non-leaf nodes

represents the total number of edges that have these non-leaf nodes as endpoints. Thus,

we have
1

deg 2( ( 1)) 2 2
n

v n s

v n n s s
  

      and

1

deg 2( ( 1)) 2 2
n

v n m

v n n m m
  

      . By substitution, it is clear that 2s-2>2m-2

can hold, i.e., s>m stands, which contradicts the assumption s<m. This demonstrates

that s should be equal to m. ■

It is assumed that P represents all nodes of D-PMUs other than the root node 0

and P   . Then, the decision vector is encoded by binary variables as z for

D-PMUs in the dimension 1 , i.e., {0,1}, P
iz i   ; otherwise, 0iz 

for Pi  .With P  and the physical property of MLSTP, we can observe the

minimum cardinality  has the maximum leaf spanning tree if ( ) 0lh u in (4.2c)

is relaxed. This is essential for strengthening the lower bound of
P

i
i

z




P

g
i

i
z z


 


(4.3)

where gz refers to the lower bound by solving (4.2a)-(4.2c) with relaxed )( 0lh u  .

Since P  , then gz  1 holds, which indicates (4.3) should be tighter than

1
P i

i
z


 


in [30].

4.4 Linear Formulation of Disjunctive RCDS Constraint

Let I and k be the sets of zero injection nodes for non-leaf nodes and leaf

nodes ( , kI    ), respectively. And y be the auxiliary binary-based decision

variable vector for zero injection nodes in the dimension 1 .
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Namely,  0,1 , I
i iy    and 1ky  and kk  ; otherwise, 0iy  for

Ii  . We denote  ( ) : 1 or : 1, u
i jI i y j y l       y ∣   for all zero

injection nodes and associated dominated nodes, where an associated dominated node

for node i refer to a dominated non-zero injection node on a branch l := (i,j) whose the

other side node j is a zero injection node with 1iy  . And

 ( ) : 1 or : 1, u
i jP i z j z l       z ∣   for all D-PMU nodes and

associated dominated nodes, where an associated dominated node for node i indicates

a dominated node on a branch l := (i,j) whose the other side node j is a D-PMU node

with 1jz  .

In order to understand ( )P z and ( )I y , the decision vector is encoded by binary

variables as z for D-PMUs in the dimension |  |×1. The vector y is the auxiliary

binary-based decision variable vector for zero injection nodes in the dimension

| |×1. Mathematically, we express as

0, , {0,1}P P
i jz i z j       (4.4)

0, , 1, , {0,1}I k I
i k jy i y k y j           (4.5)

For the graph  , it is clear that ( ) ( )P z I y   should hold, where

( ) { | | 1 or : 1, ( , ) }i kP z i z k z i k         (4.6)

( ) { | | 1 or : 1, ( , ) }i jI y i y j y i j         (4.7)

These two sets can be illustrated for node i in Fig. 4.4 (a) and (b).
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node i

D-PMU

zi = 1
node i

i∈P(z) and zk = 1 and

node knode k

i∈P(z) 

D-PMU

(a) Illustration of set P(z)

node i

yi = 1

node i

i∈I(y) and yj = 1 and

node jnode j

i∈I(y) 

zero injection 
node

Loads Loads zero injection 
node

(b) Illustration of set I(y)

Fig. 4.4 Illustration of sets P(z) and I(y)

For Fig. 4.4(a), ( )i P z holds according to (4.6) if a D-PMU unit is active at node

i (i.e., 1iz  ) or a D-PMU unit is active at adjacent node k (i.e., 1kz  ). For Fig. 4.4(b),

if node i has zero injection with 1iy  , or adjacent node j as zero injection

with 1jy  , then ( )i I y according to (4.7).

Clearly, ( ) ( )P I z y  should hold for arbitrary reconfiguration of ADNs;

otherwise this topological observability condition does not stand [30]. This is becuase

power flows of arbitrary node can be observed directly by a D-MPU unit or when an

adjacent node is a zero injection bus. We illustrate this point from a 6-node system in

Fig. 4.5 where node 1 has D-PMU unit and node 2 is a zero injection bus with y2=1.
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root node 0

1

2
3

4

5
D-PMU

zero injection node

Fig. 4.5 Illustration of ( ) ( )P z I y  

In this example, it is clear that ( ) {0,1,2,4,5}P z  and ( ) {1,2,3}I y  , and then

( ) ( ) {0,1,2,3,4,5}P z I y    . Under this condition ( ) ( )P z I y   , we

incorporate an auxiliary binary variable 1l
ijw  for the branch l := (i,j) if the adjacent

node j is dominated by the zero injection node i; otherwise 0l
ijw  . Following [31],

we ex
press the connectivity constraints to formulate (4.2b):

 
:( , )

1,
u

l l P
i k ij ij

jk i k
z z w u i


      


 (4.8a)

  ,l l I
ij ij j

i
w u y j


   


 (4.8b)

where (4.8a) represents the connectivity constraint of the graph  such that

( ) ( )P I z y  ; and (4.8b) states that among all active branches adjacent to an

arbitrary zero injection node i, there is at most one adjacent branch whose other side

node j can be dominated by node i.

Since (4.8a) and (4.8b) are established on reconfigurable ADNs marked by u

and also have nonlinear terms l
ijw l

iju , we equivalently relax them as a set of linear

constraints with the auxiliary variables l l l
ij ij ijm w u  and l

k k ike z u  using

McCormick linearization method [100], where l
ijm ,  0,1ke  :

, , ,l l l l l
ij ij ij ij k k k ikm w m u e z e u    (4.9a)

1, 1l l l l
ij ij ij k k ikm w u e z u      (4.9b)
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Therefore, the linear formulation of disjunctive RCDS constraint consists of:

:( , )
1,

,

, , ,

1, 1

P

l P
i k ij

k i k j

l I
ij j

i

g
i

i

l l l l l
ij ij ij ij k k k ik

l l l l
ij ij ij k k ik

z e m i

m y j

z z

m w m u e z e u

m w u e z u

 





      

   


  

    





     


 









(4.10)

4.5 Observability Defense-Constrained DNR Formulation

For the sake of the minimal power loss in reconfigurable ADNs, the set of

optimization variables involves a set of operation variables

: ,
Tl cr

c c   
l l l l lx P ,Q , ,v,Q ,β x  , where lP and lQ refer to the vectors of

sending-end active and reactive power flows; l is the vector of squared current on

branches; v is the vector of squared voltage profiles; crQ is the vector of nodal

reactive power compensation; and lβ denotes the continuous parent-child

relationship variable. For the proposed defense-constrained DNR model, a binary

variable vector : , , , , , ,
T

d d   
l l l l lx u z y w m e x  , is also included. Now, we express

this DNR problem using the DCHR approach in the Chapter 3. By assuming that

ADNs have sufficient D-PMUs, we can enable this defense-constrained DNR model

as a MISOCP problem subject to system operational constraints ( ) 0lh u  denoted by

(4.11b)-(4.11l) and the disjunctive RCDS constraint denoted by (4.11m)-(4.11q) and

spanning tree constraints for radiality ( ) 0l u by (4.11r)-(4.11s).

It should be noted that the defense cost of zero injection nodes is zero. Hence, the

minimum defense cost is with respect to D-PMUs. Since the number of D-PMUs is
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proportional to the consumption of decryption service and shared channel resources,

this number of D-PMUs equivalently represents the minimum defense cost function.

From the perspective of cyber-physical security, the minimum power loss Ploss can be

subject to the distribution topology with the minimum cost of observability defense.

To scale the physical units, we define c1 and c2 as coefficients with units $ and $/p.u.

for defense cost i
i

z




and power loss Ploss, respectively. In this study, we select c1 =

c2 = 1, since Ploss per unit is generally less than 1 and i
i

z




for positive integers

starting from 1. Then, the weighted sum (4.11a) can be used to achieve the minimum

i
i

z




in priority, and then obtain the minimal power loss Ploss. With the observability

defense constraint (4.10) and achievable zg, the DNR model can be formulated as a

MISOCP problem:

loss
,

min
l l
c d

i
i

P z
  

 
x x  

(4.11a)

s.t. g d T l l
r   P P A P D  (4.11b)

g cr d T l l
x    Q Q Q A Q D  (4.11c)

21 1
(2 2 | | ) -1l l

jiv v v v
       

 
l l l

r xA v D P D Q z β (4.11d)

21 1
(2 2 | | ) -1l l

ijv v v v
       

 
l l l

r xA v D P D Q z β (4.11e)

21 1
(2 2 | | )+ 1l l

ijv v v v
      

 
l l l

r xA v D P D Q z u (4.11f)

(1 )( ) ( ), ( ) (1 )( )l l l l
ji ji ij ijv v v v v v v v           β A v β β A v β (4.11g)

, 0 , 0
l ll l l l l l l

ij ji        β β       (4.11h)
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20 2 2 | | ( )l l l l
jiv v     l

r xD P D Q z β (4.11i)

2( ) 2 2 | | 0l l l l
ijv v     l

r xβ D P D Q z  (4.11j)

2 2
, ,l l l l l l l

v B B       P Q D u P Q u (4.11k)

, 0 ,
l cr

crr

l

c
     v v v Q Q Q  (4.11l)

:( , )
1,l P

i k ij
k i k j

z e m i
 

    
 

 (4.11m)

,l I
ij j

i
m y j


  


 (4.11n)

P

g
i

i
z z


 


(4.11o)

, , ,l l l l l
ij ij ij ij k k k ikm w m u e z e u    (4.11p)

1, 1l l l l
ij ij ij k k ikm w u e z u      (4.11q)

, 0, if 0l l l l
ij ji ij iju i      (4.11r)

:( , )
1, 0, 0 1,l l

ij ij
j i j

i l 


       


   (4.11s)

where lossP is the active power loss of ADNs and the root node is 0. M is the big

positive number. gP , gQ and dP , dQ indicate the vectors of given nodal active and

reactive power injections and active and reactive loads at nodes. A is a

 by  branch-node incidence matrix. rD , xD and zD indicate the diagonal matrices

whose diagonal elements are the resistance vector, the reactance vector and the

squared impedance modulus vector, respectively. vD is the diagonal matrix whose

diagonal elements are squared voltage profiles v of the sending nodes for all branches.

B refers to the rated branch capacity.
cr

Q , crQ , v , v ,
l
 represents the boundaries of

crQ , v and l , respectively.
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4.6 Case Study

The IEEE 16-node, 33-node, 123-node, and 1060-node distribution systems with a

few DERs are used for tests. We have highlighted our RCDs solutions for the IEEE

33-node and 123-node DNs. With given zero injection nodes {3, 11, 18, 20, 24} for

the IEEE 33-node system, the corresponding minimum RCDS solution  ={1, 2, 7,

10, 14, 16, 25, 28, 31} is displayed in Fig. 4.6, where solid and dashed lines refer to

switch-on and switch-off status, respectively.

Fig.4.6. Minimal RCDS solution  of IEEE 33-node system

In terms of the IEEE 123-node ADN, the zero injection nodes are given as {3, 8, 14,

15,18, 21, 23, 25, 26 ,27, 44, 40, 54, 57, 61, 67, 72, 78, 81, 89, 91, 93, 97, 101, 105,

108, 110, 115, 116, 117, 119, 120, 121, 122} and the minimum RCDS solution

 ={5, 8, 13, 14, 15, 19, 21, 25, 29, 31, 35, 38, 42, 47, 50, 52, 54, 55, 58, 60, 63, 65,

68, 70, 72, 74, 76, 78, 82, 84, 87, 89, 94, 95, 97, 99, 103, 106, 108, 110, 113, 123} as

presented in Fig. 4.7.
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Fig. 4.7 Minimal RCDS solution t* of IEEE 123-node system.

In Fig. 4.6, the color-coded solid edges of [ ]u   indicate that the graph

( , [ ]u    ) is connected. Similarly to Fig. 4.6, Fig. 4.7 presents the optimal

locations of defensed D-PMU units, which means every branch flow can be

observable under defensed D-PMUs at dominated node set  . These simulation

results of two test systems demonstrate that our proposed observability

defense-constrained DNR approach is effective for the power loss minimization

subject to the full observability of ADNs.

To compare the total cost, we employ the DNR models with the low and the high

penetrations of D-PMUs, respectively. Table 4.1 shows the power loss cost of the

conventional DNR model without D-PMUs (p.u.), the observability defense cost and
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the corresponding power loss cost (p.u.), and CPU time (in seconds) for two

penetration rates of D-PMUs.

Table 4.1 Optimal observability defense-constrained DNR solutions

DNs
DNR
Loss

Cost of Low D-PMUs Cost of High D-PMUs

zg Defens
e

Loss Time zg Defense Loss Time

16-node 0.0302 5 6 0.0323 0.521 5 5 0.0318 0.500
33-node 0.0542 9 11 0.0594 2.368 9 9 0.0586 1.719

123-node 0.0995
3
5

41 0.1029 175.542 35 35 0.0995 151.024

1060-node 0.1404
4
5

59 0.1823 225.032 45 45 0.1409 179.078

For these exhibited cases, our proposed observability defense-constrained DNR

solution with the low and the high penetrations of D-PMUs successfully achieves the

complete system observability status in four test systems. The distinction between

them is the different total cost. The defense cost and power loss cost for the high

penetration of D-PMUs is much lower than the one for the low penetration of

D-PMUs. This is because more D-PMUs locations lead to a larger feasible space for

the DNR optimization. For this reason, the defense cost is equal to zg for test systems

with the high penetration of D-PMUs. This demonstrates that the proposed DNR

model seeks the minimum defense cost in priority and then pursues the minimal

power loss cost. This is also why the minimal power loss cost is generally larger than

the power loss cost of pure DNR model. In contrast, if the feasible space is minor,

then the optimal cost would be larger for test systems with the low penetration of

D-PMUs. Additionally, the proposed DNR model involves the tighter bound in (4.3),
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which induces the desirable computational efficiency in terms of CPU time for two

case studies.

4.7 Summary

This chapter proposes a disjunctive RCDS formulation for reconfigurable networks

with the least defense cost in theory. With this formulation, an observability

defense-constrained DNR model can be constructed as a MISOCP problem. As

demonstrated in case studies, this observability defense-constrained DNR model

perfectly enables an observable DNR solution just with the minimal defense cost and

active power loss for cyber–physical system security enhancement.
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Chapter 5

A Consensus ADMM-based Differentially Private

Topology Optimization Approach for Privacy

Preservation Enhancement of Multi-Agent Active

Distribution Networks

The topology switch for the loss minimization may expose the private load change

information of an agent, e.g., transition from a light load to a heavy load, in

interconnected ADNs managed by multiple agents. To address this issue, this paper

proposes a DP-DNR mechanism based on the C-ADMM algorithm. This can tackle

privacy leakage challenges on the agent’s and customer’s levels. To suppress private

load change leakage as an agent’s concern, this DP-DNR mechanism provides a

mixture output of realistically optimal topology switch status and corresponding

obfuscated-but-feasible load flows, part of which may have reverse load flow

directions. On the customer’s level, the C-ADMM-based decentralized DP-DNR

approach can seek the optimal topology switch without customer’s load datasets of

agents, whilst exchanged communication signals in C-ADMM algorithm are also

synthetic based on the proposed DP-DNR mechanism.

5.1 Differential Privacy Theory

Differential privacy protects statistical or real-time data by adding desirable amount
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of noise along with maintaining a healthy trade-off between privacy and accuracy.

This process can be illustrated in Fig. 5.1. The protection of complete data from

database can be achieved by DP; otherwise unprotected data can be analyzed or

inferred by doing analyst query attacks.

Fig. 5.1 Data output with DP preservation and without DP preservation.

Accoding to DP theory, DP guarantees for optimization datasets are achieved

through randomization. Thus, when answering optimization queries, the DP-based

mechnism is to make adjacent optimization datasets statistically similar. Suppose 𝑥෤(d)

be a randomized counterpart of optimization map x(d), and two datasets d', d are

adjacent with the Euclidean distance 'd d    bounded by some prescribed

parameter α ≥ 0. By [51], we have the formal definition of DP:

Definition 5.1 (Differential privacy). A random optimization map 𝑥෤ : →  is (ε,

δ)−differentially private if ∀𝑥ො∈ and ∀d, d'∈ satisfying 'd d    for some

α > 0, it holds that

 ˆPr[ ( ) ] Pr ( ') exp )ˆ (x d x x d x      (5.1)

where probability Pr is taken over randomness of 𝑥෤.
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According to this definition, the probabilities of observing the same optimization

result on adjacent datasets are similar up to parameters ε > 0, termed privacy loss, and

δ > 0, termed probability of failure. Accordingly, 𝑥෤ (d) and 𝑥෤ (d') are statistically

similar if parameters ε and δ take smaller values. In other words, smaller parameters ε

and δ can have the stronger privacy preservation.

Definition 5.2 (Output perturbation). For dataset universe  ⊂ k, the output

perturbation is x(d) + ζመ with perturbation ζመ, where ∆1 is the worst-case 1−sensitivity

of the map to adjacent datasets.

Definition 5.3 (Input perturbation). For dataset universe  ⊂ k, the input

perturbation is twofold: data perturbation d d    with perturbation  , where ∆1 is

the worst-case 1−sensitivity of an identity query to adjacent datasets, is followed by

the map x( d ).

Proposition 5.1 The output and input perturbation strategies are (ε, 0)-differentially

private. Both strategies directly extend to (ε, δ)-differential privacy by choosing the

Laplace distribution of random perturbations calibrated to2−sensitivities.

5.2 Non-Private DNR Formulation

The DNs are considered as a connected undirected tree ( , )   , where  is

the set of nodes and  is the set of branches and the set of root nodes is S. Suppose

that an arbitrary branch : ( , ),l m n l   is between nodes ( , )m n and the root

node is assumed as 0. The simplified DNR model is based on the linearized DistFlow

equations, which is cast as a mixed-integer quadratic programming (MIQP) problem.
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The set of optimization variables involves a set of operational variables

: , , ,
Tl l l cr l   x P Q Q β , switch status indicator variables | |l u  . In this vein,

| |l P  and | |l Q  refer to the vectors of sending-end active and reactive power

flows. crncr Q  is the vector of nodal reactive power compensation and crn is the

number of capacitors. 2| |l β  are continuous parent-child relationship variables.

lβ are constructed with spanning tree constraints. For convenience, we express the

MIQP-based DNR model in following form:

,
min

l l

Tl l
r

l l
r



 


    
    
     

x u

DP P

DQ Q

 

 

0

0 
(5.3a)

s.t. cr

l
T g d

n l

T g d
crcr

 



                   

0 0

0

P
A P P

Q
A A Q Q

Q

  

 

(5.3b)

2 2 (1 ) 2 2 (1 )l l l lM v M      l l
r x r xDP Q A QD u D D uP (5.3c)

, ,l l cr crM M      l l cru P Q u v v Q, v Q Q (5.3d)

, 0,  if l l l l
mn nm mn mnu m S      (5.3e)

:( , )

1, \l
mn

n m n

m S


  


 (5.3f)

0 1,l
mn l    (5.3g)

where (5.3a) states the quadratic active power loss of DNs under the assumption of
flat voltage profiles for all nodes. M refers to the big positive number and 

denotes the branch capacity. ,g gP Q and ,d dP Q indicate the vectors of given

nodal active and reactive power injections and active and reactive loads at nodes. A

is a | | by | | branch-node incidence matrix and crA is a diagonal matrix

whose i -th diagonal element is equal to 1 if node i has the reactive compensation

capacitors; otherwise it is zero. rD and xD indicate the diagonal matrices whose

diagonal elements are the resistance and reactance vectors, respectively.  refers to

the rated branch capacity. , ,cr cr vQ Q and v represent the boundaries of crQ and v,
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respectively.

Therefore, we can summarize , , , , ,v cr vc A G d G b , crb ,K and h from (5.3e)-(5.3g). To

avoid heavy notions, we express the general mathematical formulation of a

non-private DNR model in the MIQP form with respect to operational variables lx

including active/reactive power flow variables and reactive power compensation

variables, continuous parent-child relationship variables l and switch status

indicator variables lu . We summarize this MIQP-based non-private DNR model

below.

Non-Private DNR: 0
,

min ( ) ( )
l l

TF
 

 l l

x u
x c x

 
(5.4a)

, ,
s.t. : (

,

),

l l
v vl

l l l l
u u

l l l l
cr cr

       
                

 
  

G bx x
Ax d K h

G bx u u u

G xbx x x


  

 
(5.4b)

where  refers to the non-empty feasibility space and f denotes the approximate

system power loss with a fixed diagonal matrix c . The inequality in (5.4b) represents

the voltage security constraints, physical ranges of reactive power compensation

capacitors and topology-linked branch capacity constraints, which are marked by the

subscripts v, cr and u for G and b . The first and second equality denotes the

system-wide load balance of DNs and radiality constraints.

5.3 Differentially Private DNR Formulation

5.3.1 Privacy Leakage Problem of Non-private DNR Model

Suppose that the realistic tie-switch status 𝒖𝑙𝑡 and corresponding tie-line load

flows 𝒙𝑙𝑡 for an arbitrary tie-line 𝑙𝑡 have to be shared with neighbor agents by a joint

DSO. As stated, there exist agent’s and customer’s privacy concerns. As conflicting
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interests, different agents as stakeholders may bid for grid services such as demand

response, which is dependent on operational topology as well as load flows of

tie-lines. For agent’s privacy concerns, sharing raw data of tie-lines between agents

may cause privacy challenges, i.e., the private load change information may be

exposed. On the customer’s privacy-preserving level, since a joint DSO performs the

DNR operation for the loss minimization of the entire interconnected ADNs, all load

datasets from different agents are obliged to upload to the distribution dispatch center.

This may increase the possibility of exposing sensitive load consumption of

customers managed by an agent to adversaries who can further infer commercial

behaviors or perform cyber-physical attacks.

We illustrate these two categories of privacy concerns in one example. For the

agent’s concerns, as shown in Fig. 5.2(a), four agents A-D with three normally-open

tie-switches where each agent manages a specific ADN with one substation. If agent

A has an heavily loading event while others have light loads displayed in the top layer

of Fig. 5.2(a), an optimal DNR decision with the minimal power loss objective can be

made to close on all tie-switches between agent A and others as shown in the middle

layer. As observed, some heavy loads in agent A are transferred to neighborhood

ADNs after switching off sectionalizing breakers, thus eliminating its overloading

problem. However, these optimal DNR actions inadvertently exposes the substantial

load increase of agent A, which can be easily inferred from this DNR actions and

tie-line load flows. In energy market, suppose other agents such as B, C and D are

malicious bidders against agent A, and it is inferred that some heavy loads in agent A
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have been transferred to other agents. Then, agents B, C and D can bid high prices for

grid services, while agent A cannot win the contracts at the low price. Because they

know that agent A has insufficient loads to respond this request. As such, a synthetic

DNR solution with realistic tie-switch status can be against this load change

information of agent A leaked by realistic DNR operations. As indicated in the third

DP-DNR layer, as long as tie-line load flows and directions are obfuscated, the

private load change information of agent A can be preserved. Moreover, for the

customer’s concerns, Fig. 5.2(b) exhibits that all agents’ load datasets have to upload

to the DSO who performs centralized DNR decisions. In contrast to centralized

decisions, the decentralized mode can also seek optimal DNR decisions, but only with

a few exchanged communication messages of boundary variables. Thus, the

customer’s privacy can be preserved.
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Fig. 5.2. (a) An exposure event of agent’s privacy; (b) leakage of customer’s privacy

by centralized DNR model.

5.3.2 Privacy-Preserving Criteria For DP-DNR Mechanism

The well-known Laplace mechanism can be used to make queries over

 differentially private via an effective DP-DNR mechanism  for ( , )l lx u . This

DP-DNR mechanism  should output obfuscated-but-feasible tie-line load flows

𝒙𝑙𝑡 from lx and realistically optimal topology variables 𝒖𝑙 . To do this, we aim to

realize the following framework of this DP-DNR mechanism  :

 1
,

min
l l

Tl lF
 


x u

x cx
 

(5.5)
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s.t. optimality of topology variables 𝒖𝑙 (5.6)

feasibility of operational variables for 𝒙𝑙𝑡 (5.7)

where the objective function (5.6) represents the system loss of the entire

interconnected ADNs. Constraint (5.7) enforces  to output realistically optimal

topology solutions 𝒖𝑙∗ equal to the ones by the non-private DNR model. Constraint

(5.8) denotes the operational constraints involving random perturbations, which can

enable  to provide obfuscated-but-feasible tie-line load flows *
tlx .

According to this framework, this DP-DNR mechanism  can be an

ε-differential private algorithm based on the following Theorem:

Theorem 5.1 (DP-DNR Mechanism): Suppose random perturbations obey Laplace

distribution , : ( / )tl Lap     ξ   , for an arbitrary tie-line tl  . And  ˆ ,l lx u ∈

 is the optimal solution of non-private DNR model. Then, the DP-DNR mechanism

 can output a mixture of obfuscated-but-feasible operational variable solution

*
tlx and realistically optimal topology solution 𝒖𝑙∗ , such that ˆ t t t tl l l l 

 x x α ξ for this

tie-line tl . This can be an ε-differential private algorithm. The proof is as follows:

Proof: According to the definition of Laplace mechanism, let the query output

answers be
*
tl x , and we alternatively rewrite this theorem in the definition of

ε-differential privacy.

 [ ( ) ] e
     d d      (5.8)

for any two ρ-neighborhood load datasets d and d′ and output solutions  .
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For convenience, we define 1 , , nlll     ξ ,   1 , ,t nl ll    α ，

  1 , ,t nl ll xx   x , where n refers to the total number of tie-lines. Thus, the query

output  tl for all tie-lines tl  , 1,..., ,t n  with the vectors of lξ , can be

written as

* *

ˆ ,t t t t tl l l l l  x x α ξ  1,t n  (5.9)

Therefore, the ratio of probabilities on two ρ-indistinguishable load datasets d and

d′ can be bounded by
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 
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(5.10)

where (i) comes from the definition of the probability density function of the Laplace

distribution. In (ii) step, it is followed by the inequailty of norms, i.e., a b a b  

for any real-valued numbers a and b. For the (iii) step,  
2

ˆ ˆ( )t tl l x d x d denotes the

l2-sensitivity on ρ-indistinguishable input datasets ˆ ( )lx d and ˆ ( )l x d subject to
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 
2

ˆ ( ) ˆl l    x d x d . Accordingly, it is clear that (5.8) holds based on (5.10),

which proves this Theorem. ■

Please note that lα represents a vector of recourse variables by the DP-DNR

mechanism  . For tie-lines,  ,tl l l α α α and 0bl α for other internal

branches {lb} in each agent, where  bl    holds. Therefore, we can express

l l lx α ξ to represent the load flows of an arbitrary line l  . The recourse function

of lα is to scale the random perpetuation lξ in the program of DP-DNR

mechanism, which will be discussed in the later context. Regarding synthetic

solutions, we further propose two privacy-preserving criteria for shared tie-line load

flow data, i.e., load flow quantity and direction obfuscations.

(1) Load flow quantity obfuscation

To obfuscate tlx with quantities, we incorporate a virtual power injection variable

vector , g g  , at boundary nodes of tie-lines, which aims to balance the random

perturbations in tie-line load flows. Let gm and gn represent the virtual power

injections at boundary nodes m and n for an arbitrary tie-line lt = {m, n}. In Fig. 5.3(a)

and (b), this tie-line is switch-on and the realistically optimal power flow direction is

supposed to be m→n, i.e., ˆ 0tl
nx d ＞ , and the obfuscated load flow directions are

displayed with a blue arrow (m→n or n→m). The power flow equality at boundary

nodes m and n is then formulated:

,l
m m m A x d g l

n n n A x d g (5.11)

 , ,t t t tl l l l
m n    ，g α ξ g α ξ g g g (5.12)
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t t tl l ll l  u α α u α (5.13)

where Am and An refer to the m-th and n-th row of matrix A, respectively. And g

and g are the lower and upper boundaries of g. By constraint (5.13), the recourse

variable tlα is enforced to a zero if this tie-line lt is switch-off by 0tl u ;

otherwise, tlα can be in the range of  ,l lα α . For a switch-on tie-line lt, tlα is

incorporated to scale the random perpetuation tlξ in constraints (5.12).

Fig. 5.3. (a) Realistic flow m→n; (b) reversed flow n→m.

Indeed, if 1tl


u holds for tie-line lt, then non-zero virtual injections gm and gn

through constraints (5.11)-(5.13) can obfuscate the tie-line load flow tl


x . In

Fig.5.3(a), it maybe smaller than the realistically optimal load flow ˆ tlx if

*

0 t tl l
nα ξ d＜ ＜ with the direction m→n, or larger than ˆ tlx if

*

0t tl lα ξ ＜ with the

direction m → n. Reversing the flow direction n → m is just when
*
t tl l

nα ξ d＞ in

Fig.5.3(b), which will be discussed in the load flow direction obfuscation. Even

though this is achievable for load flow quantity obfuscation, it may enable a DP-DNR

mechanism  to converge at a topology solution other than the realistic

*lu .Therefore, we propose the load flow quantity obfuscation criteria for tlx which

can enable  to maintain the optimality of topology solution at *lu .
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Criteria 1(Quantity Obfuscation of Tie-lines): With virtual power injection g at

boundary nodes of tie-lines, the proposed DP-DNR mechanism  with the

modified objective function F1

   1

Tl l l l l lF   x α ξ c x α ξ (5.14)

should converge at * *( )l lx u, , if there *

0tl α for then switch-on tie-line lt is true.

For the switch-on tie-line lt,
*
tlα can be achieved as a non-zero number, which

existence proof is as follows:

Proof: Suppose *( )ˆ l l x u,  is the optimal solution of non-private DNR model. It is

clear that the following constraints can stand

*

ˆ
,t t

l
l l
v v tl

l
 

 
 

x
G b

u
  (5.15)

Since ˆ t t t tl l l l 
 x x α ξ holds according to Theorem 2, we can find

,

*
,

t

t t t t t

l
l l l l l
v v v tl

l


  
  

  

x
G α ξ b G

u
  (5.16)

Where ,tl
v

G is a real number on the lt-th entry of the row vector tl
vG .

When this DP-DNR model converges at * *( )l lx u, , this inequality can be achieved

at the equality according to the Karush–Kuhn–Tucker (KKT) conditions at the linear

programming relaxation stage. Thus, with sampled 0tl ξ , we have

,

*

ˆ
,

t

t t t t t

l
l l l l l

v v v tl
l

  
  

  

x
ξ G α b G

u
  (5.17)
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If
*

ˆ t

t t

l
l l
v vl

 
 
  

x
G b

u
＜ holds, then

*

ˆ
0

t

t t

l
l l
v v l

 
  

  

x
b G

u
can be achieved. This means

0tl


α by (5.17). Otherwise, 0tl


α if and only if
*

ˆ t

t t

l
l l
v vl

 
 
  

x
G b

u
= . But as voltage

security constraints are soft constraints, 0tl


α can be avoided as long as the range

of voltage profiles can be minored for a little bit. This proof also demonstrates that

tl


α cannot change the optimality of topology variables at tl


u .

■

With a proper tl


α , we elaborate how the virtual power injection vector g in this

proposed DP-DNR mechanism  maintains the optimality of topology solutions

*lu . With an intuitive understanding, we discuss this criteria from the physical

perspective. Fig.5.3(a) shows the realistically optimal load flow direction m→n.

If gn injects
*

0t tl lα ξ ＞ and gm ejects
*

0t tl lα ξ ＜ , then ˆt t t tl l l l 
 x α ξ x . This means the

minimization of F1, denoted as *
1F , is equal to the minimal *

0F over  . Conversely,

if
*

0t tl l
ng = α ξ ＜ and

*

0t tl l
m g = α ξ ＞ , then ˆt t t tl l l l 

 x α ξ x clearly holds. This

implies * *
1 0F F still holds. In a vein, this virtual power injection vector g does not

increase or decrease the minimal value of objective function *
1F . So the optimality of

topology solution *lu will not be influenced by this virtual power injection vector g.

The convex formulation of  can be cast as a stochastic optimization problem

with a sampled vector lξ for tie-lines as blow:

1
, , ,

min
l l l

F
 x α g u 

(5.18)
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I

, ,
s.t. : ( , , , )

(5.11) (5.13), ,

l l
v vl

l l l l l
u u

l
r

l l l
cr c

       
                

  

  G bx x
Ax d K h

G bx α g u u

b

u

G x x x x



 
 (5.19)

where the superscript symbol ∼ of A and d represent the matrices and vectors

excluding boundary nodes, and I refers to the non-empty feasibility space of this

model.

(2) Load flow direction obfuscation

Obfuscating tlx with reversed directions can avoid the exposure event of private

load change information as previously exemplified in Fig.5.3(a). Thus, the load flow

direction obfuscation can be realized with the proper selection of lα . For instance, as

displayed in Fig.5.3(b), the obfuscated load flow tl


x equals to ˆ 0t t tl l l
x α ξ ＜ if

t t
n

l l
α ξ d＞ and ˆ t

n
l x d . Consequently, the obfuscated load flow direction is reversed

to n→m. Now, we express the criteria of tie-line load flow direction obfuscation,

yielding

Criteria 2(Direction Obfuscation of Tie-lines): Suppose i represents the set of

tie-lines connected to the i-th agent where i  and  is the set of agents. The

i-th agent connects at least two switch-on tie-lines with the same load flow direction.

If this agent has such a direction obfuscation request, then at least one load flow

direction of tl


x should be reversed to the realistic directions. For other agents who

have less than one switch-on tie-line or do not have such requests, it is unnecessary

for the load flow direction obfuscation. Mathematically, we have
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 1 t

t i

l
i i i

l
f M f M 


  u 


(5.20)

   1 1t

t i

l
i i i

l
f M f M


  x 


(5.21)

where M is a big positive scalar. ϑ is the given constant and we select ϑ=1.5 in this

chapter. And τi is a given parameter such that τi=1 if the i-th agent with heavy loads

have a request of tie-line load flows direction obfuscations; otherwise τi=0.

This criteria can be elaborated here. Constraint (5.20) can explore the i-th agent

who has at least two switch-on tie-lines, if an auxiliary binary variable fi=1. Otherwise,

fi=0 refers to other agents with less than one switch-on tie-line. Then, for this i-th

agent, we consider reversing one of tie-line load flows, when running into all optimal

tie-lines’ loads flow towards the same direction. Enforcing 0t

t i

l

l 
 x

 for this i-th

agent can lead to t t
n

l l
α ξ d＞ as indicated in Fig.5.3 (b). Hence, 0t

t i

l

l 
 x

 can be

coupled with fi=1. Instead, fi=0 induces that 0t

t i

l

l 
 x

 can be automatically

relaxed, which forms the constraint (5.21). We exemplify two cases in Fig.5.4(a) and

(b). In Fig.5.4 (a), there is only one switch-on tie-line for the i-th agent, i.e.,

1t

i

l

t
 u

 and fi=0 by constraint (5.20), which relaxes constraint (5.21) for free. In

Fig.5.4 (b), this i-th agent may need the load flow direction obfuscation since there

exist two switch-on tie-lines. According to constraint (5.20), we achieve

2t

t i

l

l 
 u

 and fi=1, and then 0t

t i

l

l 
 x

 gets automatically activated by

constraint (5.21) for the load flow direction obfuscation.
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Fig. 5.4. (a) One active tie-line; (b) two active tie-lines.

In light of the above, this proposed DP-DNR mechanism  can involve two

privacy-preserving criteria, i.e., load flow quantity obfuscation and load flow

direction obfuscation subject to the optimality of topology variables at *lu .

Accordingly, with sampled lξ for tie-lines, the convex formulation of DP-DNR

model with the objective function F1 can be cast as

1
, , , ,

i: m n
l l l

F
 

        
x α g f u

DP - DNR
 

(5.22)

II

, ,
s.t. : ( , , , , )

(5.11) (5.13), (5.20) (5.21), ,

l l
v vl

l l l l
u

cr

l
u

l l l l
cr

       
                

   

  G bx x
Ax d K h

G bx α f g u u u

G x x xb x



 


(5.23)

where II refers to the non-empty feasibility space of this DP-DNR model.

5.4 Consensus ADMM Algorithm

In this section, we reformulate this DP-DNR model (5.22)-(5.23) as a global

consensus problem. We suppose the block variables , , ,
Tl l l

i i ii i   x α u fX for the i-th

agent and i  , in which , ,, ,, , ,t
Tl l l l

i i b i bi i bb    x α u fX and voltage profile variables

vi,b are two vectors of boundary nodes of tie-line lt who connects to the i-th agent. The
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consensus variables for tie-line lt can be composed of , , ,
Tl l l

z z zx z   x α u fZ and

squared voltage profiles Wv. Accordingly, , 0i b x X Z can hold for either 0tl u

or 1tl u . Please note that g can be achieved by sampled lξ and variables lα , and

thus it would be not regarded as consensus variables. And vi,b − Wv = 0 can hold only

if 1tl u ; otherwise it should be relaxed when 0tl u .

Since the DP-DNR model can be represented by the block variables Xi and

associated separable objective function F1,i(Xi) for the i-th agent, the augmented

lagrangian function  can be expressed in the scaled form:

  2 2

, , ,2 21
/ 2 / 2

n

i i i b x i b i b
i

F  


     X X Z μ V


 (5.24)

where n is the number of agents, and ,i bμ is the i-th agent’s dual variables for

the equality , 0i b x X Z . And λ is a given positive scalar. And ,i bV is an

incorporated variable for , , ,( )tl
i b i b i bv  V W γu v and ,i bγ is the associated dual

variable. This equality can be further equivalent to

   , , , , ,1 1t tl l
i b v i b i b i b v i bM M       v W γ u V v W γ u  (5.25)

Subsequently, we define  , ,: , , , (5.26)}tl
i i b v i b  V W v u ∣   for the i-th agent. As the

augmented Lagrangian function  is separable over the n agents, each of the

primal updates for the , )( ,i i bX V can be performed independently.

This yields the decomposable ADMM steps:

 
 

 
II , ,

2 21 1
, , , ,2 2

,

, argmin / 2 / 2 , 1,2 ,
k

i i i b i v

k k k k
i b i b i i i b x i i bF i n   

 
      

X V W

X V X X Z μ V 
 

(5.26)



117

 
1

,1 1
1

,

, Π
k k
i b ik k

x v k k
i b i


 



  
      

X μ
Z W

v γ (5.27)

 1 1 1 1 1 1 1
, , , , , , ,,k k k k k k k k k

i b i b i b x i b i b x u i b v
           μ μ X Z γ γ Z V W (5.28)

where  is the Cartesian product of sets , 1, 2,...,i i n and Π stands for the

projection over  . For the consensus binary variables
1

,
k
x u

Z in the vector 1k
x

Z , Π

simply rounds each entry to 0 or 1 whichever is closer by [60], and i  for the

consensus continuous variables. Intuitively, the relationship between consensus

variables  ,x vZ W and optimization variables  , , , ,, , ,i b j b i b j bX X V V from two

adjacent agents i and j are explained in Fig.5.5.

Fig. 5.5. Relationship between consensus variables and optimization variables.

Note that the optimal
1

, 0k
i b

 V can be achieved by (5.26) no matter if 0tl u or

1tl u . This is because if 0tl u , then
1

, 0k
i b

 V holds as minimizing
2

, 2i bV equals

to zero. Alternatively, if 1tl u ， then , , ,
k k

i b i b v i b  V v W stands which enables

(5.26) as a standard form of the augmented Lagrangian function  in the first step

of C-ADMM algorithm. Of course, if 0tl u , then 1k
v

W can be free in (5.27) 1
,
k
i b 

can be kept unchanged by (5.28). Moreover, by this C-ADMM iterations, (5.26) and
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(5.28) are performed by each individual agent simultaneously and (5.26) is calculated

by the proximal operator by the DSO. The convergence of C-ADMM is characterized

in terms of the primal residual and the dual residual with predefined thresholds [60].

Next, we will exhibit the algorithmic pseudo-code for this proposed

C-ADMM-based DP-DNR mechanism  with a random perpetuation vector lξ .

As stated previously, the output of  can be a mixture of obfuscated-but-feasible

tie-line load flows tl


x and realistically optimal topology solution *lu of the entire

ADNs. The maximum iteration number is set to kmax, and then we can summarize this

algorithm as below.

Algorithm 1 C-ADMM-based DP-DNR Mechanism 

1: Initialization with input , , , , , , , ,v cr v cr uc A G G b b b K h over n agents and

input parameters , ,Δ , , , l
   g α ;

2: Sample a random perturbation vector lξ , i.i.d. l
 ξ ;

3: while maxk k do

4: Each agent distributively updates  1 1
, ,,k k

i b i b
  X V  ,k k

x vZ W by (5.26) and sends

 1 1
, ,,k k

i b i b
 X V to the DSO;

5: DSO updates    1 1 1 1
,, ,k k k k

x v i i b
   Z W X V by (5.27) and sends  1 1,k k

x v
 Z W

to all agents;

6: Each agent distributively updates  1 1
, ,,k k

i b i b
  μ γ  , ,,k k

i b i bμ by (5.29) and

   1k k
i v i v

 W W ;

7: if convergence condition is satisfied then

8: return optimal solution  * *, lX u for the entire ADNs;

9: else
10: 1k k 
11: end if
12: end while

13: Release both obfuscated-but-feasible
*
tlx and realistically optimal topology
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variables
*
tlu for tl  .

5.5 Case Study

To validate this C-ADMM-based DP-DNR mechanism  , we have conducted

simulation experiments on the IEEE RBTS-Bus 4 system with 68 nodes [101] and a

modified real large-scale European distribution networks with 906 nodes [102]. The

C-ADMM-based DP-DNR mechanism is calculated with MOSEK package [103].

5.5.1 IEEE RBTS-Bus 4 System

To validate this DP-DNR mechanism  about privacy preservation, we have

conducted simulation experiments on the IEEE RBTS-Bus 4 system with 68 load

points, 7 feeders and 6 distributed generators (DGs). This interconnected ADNs are

managed by agents 1, 2 and 3 with 4 tie-lines {8, 10}, {28, 29}, {47, 45}, {28, 67}.

We assume 1, 0.01p.u., 1      for agent 1 and 0  for agents 2 and 3, and

20l  . The sampled vector lξ is [0.3252, −0.7549, 1.3703, −1.7115]T. We display

the heat map of load distribution and associated optimal DNR solution with load flow

arrows in Fig. 5.6(a). We further present the total loads of each agent before and after

this optimal DNR operation as presented in Fig. 5.6(b) in the pie chart form, where

the total loads is the algebra sum between the power flows from substations and

tie-lines. The realistic and obfuscated tie-line load flows and voltage profiles are

shown in Tab. 5.1. In this table, f and t refers to “from node” and “to node” in the

column of nodes, and this is consistent with the columns of Pl, Ql, vf and vt,

respectively.
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(a)

(b)

Fig. 5.6. (a) Obfuscated DP-DNR solutions for IEEE RBTS-Bus 4 System; (b) agent’s

load changes between different DNR models.

Table 5.1 Realistic and Synthetic Output under One Sampled Vector lξ

No. Nodes Obfuscated Values [p.u.] Realistic Values [p.u.]
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f t lP
lQ fv tv lP

lQ fv tv

1 47 45 -0.217 -0.134 1.026 1.031 0.615 0.165 1.014 1.011

2 10 8 0.336 0.223 1.027 1.007 0.095 0.225 1.014 1.013

3 28 29 -0.118 -0.089 1.021 1.026 0.205 0.090 1.020 1.018

4 28 67 0 0 1.026 1.032 0 0 1.020 1.032

Loss [p.u.] 0.0506 0.0506

Fig. 5.6(a) exhibits some of load nodes in agent 1 are transferred to neighborhood

agents 2 and 3, where the topology switch-off status is highlighted in red dashed lines.

This is also the same optimal topology solution by solving the non-private DNR

model. By observation, the tie-lines {47, 45} and {28, 29} have reversed the load

flow directions. And the tie-line {8, 10} provides the obfuscated-but-feasible load

flow in the realistic direction. The algebra sums of tie-line real and reactive flows for

agent 1 equal to zero, as shown in the Pl and Ql columns of Tab.5.1. This protects the

load privacy of agent 1 and corresponding boundary voltage profiles are slightly

obfuscated due to the feasibility of power flow equations.

As shown in Fig. 5.6(b), the proportions of three agent’s loads have varied

significantly by the DNR operation from the observation of the first two pie charts.

However, as indicated in the third diagram of Fig. 5.6(b), this load proportions

maintains quite similarly to the original load proportions in the first pie chart. It is

concluded that no effective inference can be made about the loading levels of agent 1

if there is no internal topology information available. In summary, this DP-DNR

solution not only guarantees the DSO’s operational concerns with lossy

interconnected ADNs, but also avoids exposing agent’s load privacy in terms of

tie-line load flow quantities and directions.
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Moreover, we compare the feasibility and optimality of tie-line load flow

obfuscations with the proposed DP-DNR mechanism  and the Laplace

mechanism with the output perturbation (OP) strategy [50] and program perturbation

(PP) strategy [49], respectively. We run 1000 random perturbations lξ for

simulations as shown in Tab. 5.2. The first column refers to the number of tie-lines.

The second column denotes the mean of active load flows of tie-lines, and the third

column indicates the constraint violation percentage of the non-private DNR model.

For the last column, we examine the optimality loss of output topology variables by

the PP-based Laplace mechanism and  .

Table 5.2 Syntneic Tie-line Load Flows under 1000 Samples

No.

Nodes Mean of lP Const. Violation (%) Optimality Loss (%)

f t OP [50]  OP [50]  PP [49] 

1 47 45 0.615 0.244 1.651 0.0 86.251 0.0

2 10 8 0.095 0.103 1.625 0.0 98.124 0.0

3 28 29 0.090 0.154 1.647 0.0 97.632 0.0

4 28 67 0 0 1.664 0.0 95.121 0.0

As shown in Tab.5.2, the OP-based Laplace mechanism returns private solutions

with a large number of violated constraints due to imbalances of load flows at

boundary nodes; whereas the proposed DP-DNR mechanism  provides the formal

guarantee for the individual constraint satisfaction. To compare the PP-based Laplace

mechanism and  , it is obvious that the PP-based Laplace mechanism cannot

guarantee the realistic topology output, causing the large percentage of optimality loss.

This hinders the practical applicability from the perspective of DSOs. This
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comparison verifies that  can achieve the optimality of topology variables ul and

the feasibility of operational variables xl with a satisfactory operational and

privacy-preserving performance.

5.5.2 Large-scale Practical European Distribution Networks

For the scalability analysis, the large-scale practical European distribution networks

are adopted from reference [102], which operates at 0.416 kV and includes 906 nodes.

To structure the interconnected ADNs, we have added 10 DGs and 9 points of

common coupling (PCC) in this distribution networks, and then the number of

tie-lines is 8. The parameter τ = 1 for agents 2 and 5, and τ = 0 for other agents. We

visualize the heat map of load distribution and associated optimal DNR solution with

different agents in Fig. 5.7. To be a clear exhibition, we display the realistic load

flows of tie-lines and associated boundary voltage profiles and the mean of these

obfuscated values under 1000 samples of random perturbations lξ in Tab.5.3. In this

table, f and t refers to “from agent” and “to agent” in the column of agents, and this is

applied for Pl, Ql, vf and vt, respectively.

Fig. 5.7 exhibits some of load nodes in agent 5 are switched to neighborhood agents

by observing the switch-off branches marked in red dashed lines. The tie-line

numbers marked in yellow box {1, 2, 3, 5, 6, 7} provide the obfuscated-but-feasible

load flow in the realistic direction, whilst only the tie-line numbers {4, 8} have

reversed the load flow directions, as reported in Tab. 5.3. Since agent 2 has the heavy

loads as seen in Fig. 5.7, partial heavy loads can be transferred to agents 1 and 3 after
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this optimal DNR operation. Agents 1 and 3 inject the power via tie-line numbers 5

and 2, but agent 1 still supplies several loads in agent 5 via tie-line number 6. Since

the agent 5 is heavily loaded, neighborhood agents 1, 4, 6 and 7 provide the power to

supply loads in this area. To avoid agent’s heavy load information leakage, the sums

of all connected tie-lines for agents 2 and 5 are zero in Tab.5.3. For agent 5, some of

connected tie-lines 4 and 8 have reversed load flow directions by applying this

DP-DNR mechanism  . Overall, this DP-DNR mechanism  performance for

agents 2 and 5.

Fig. 5.7. Obfuscated DNR solutions for practical European distribution networks.

Table 5.3 Realistic and Synthetic Solutions under 1000 Samples

No.

Agents Mean of Obfuscated Values Realistic Values

f t lP
lQ fv tv lP

lQ fv tv
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1 8 9 0.091 0.022 1.021 1.013 0.078 0.011 1.016 1.008

2 2 3 -0.117 -0.125 1.001 1.013 -0.342 -0.094 1.005 1.018

3 5 4 -0.109 -0.056 1.021 1.017 -0.381 -0.264 1.024 1.021

4 5 7 0.168 0.018 1.013 1.016 -0.203 -0.216 1.012 1.014

5 2 1 -0.016 -0.035 1.029 1.034 -0.198 -0.064 1.026 1.031

6 2 5 0.085 0.048 1.016 1.014 0.034 0.011 1.013 1.011

7 6 8 0.335 0.160 1.026 1.014 0.213 0.089 1.026 1.015

8 5 6 0.192 0.122 1.067 1.061 -0.013 -0.001 1.065 1.062

Loss [p.u.] 0.2036 0.2036

We compare the load proportion of each agent before and after this DNR operation

as highlighted by blue and red radar forms in Fig. 5.8. With 1000 samples of random

perturbations lξ , this figure depicts the possible range of this agent’s loads by  in

the pink-colored range. It is found that there is no load variations for agents 2 and 5

because of the load flow direction obfuscation criteria, while the possible ranges of

other agent’s loads are all similar to the original load distribution before the DNR

operation. Accordingly, this figure validates the privacy-preserving effectiveness of

our proposed  by the similar load proportion map.

Fig. 5.8. Agent’s load changes between different DNR models under 1000 samples.



126

Moreover, this C-ADMM algorithm, we suppose that the parameter λ is set to 100.

The initial dual variables ,i bμ and ,i bγ are zeros vectors and a good warm start Zx and

Wv is predefined for the iteration k = 1. With a sampled lξ , the convergence

condition of primal residual and the dual residual norms should be less than

10−4 | | . The convergence performances of this C-ADMM algorithm for residuals

of primal variables, dual variables and consensus variables are illustrated in Fig.

5.9(a), (b) and (c). It can be observed that norms of primal residual, dual and

consensus residuals converge to stationary values at 180 iterations.
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Fig. 5.9. Convergence performance of C-ADMM algorithm: (a) norms of primal

residuals; (b) norms of dual residuals; (c) norms of consensus residuals

We discuss the privacy-preserving performance for our proposed C-ADMM-based

DP-DNR mechanism  as compared to the C-ADMM-based non-private DNR

approach. To exemplify this privacy-preserving performance, we can observe the

different convergence performances of the active load flow tlP as boundary

continuous variables tlx of the DP-DNR and non-private DNR models per twenty

iterations in Fig. 5.10(a) and (b) where each color-coded line represents the tie-line’s

active load flow. It is clear that the C-ADMM algorithm can exchange

privacy-preserving information ˆt t t tl l l l 
 x x α ξ based on Theorem 2 in Fig 5.10 (a),

instead of realistic boundary continuous variables ˆ tlx from each agent as shown in

Fig 5.10(b). Hence, this ability of C-ADMM-based DP-DNR mechanism justifies the

formation of protecting the boundary continuous variables tl


x .
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Fig. 5.10. Convergence performance of C-ADMM algorithm: (a) tl


x by DP-DNR; (b)

ˆ tlx by non-private DNR

5.6 Summary

This chapter proposes a DP-DNR mechanism based on a C-ADMM approach for

interconnected multi-agent ADNs. This query mechanism provides a mixture output

of both realistically optimal tie-switch status and corresponding obfuscated-

but-feasible tie-line load flows, part of which may have reverse directions. Moreover,

the C-ADMM-based DP-DNR mechanism can seek the optimal topology switch

without realistic communication signals and customer’s load data from other agents,

which maximally protects the agent’s and customer’s privacy. In the future

energy-sharing market with mutual trust, this well-designed C-ADMM-based

DP-DNR management will be much applicable for privacy-preserving grid operation

of multi-agent ADNs, especially for agents with conflicting interests.
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Chapter 6

Distribution-Level Topology Optimization in

Economic Dispatch of Wind-Thermal-Bundled

Power System for Operational Flexibility

Enhancement

With a wind-thermal-bundled power system (WTBPS) under high wind

penetration levels, the sharp power fluctuations of tie-lines for interconnected grids

trigger a significant challenge of security-constrained power system operation.

Smoothing power fluctuations with economic dispatch is widely concerned against

this challenge.

This chapter proposes a distribution-level topology optimization contributing to

the flexibility enhancement of a look-ahead rolling economic dispatch of WTBPS.

The contributions of this paper are three-fold: 1) This study derives a new family of

tightened ramping constraints of retrofitted coal-fired units. The proposed tightened

constraints can be formulated in the linear or second-order conic (SOC) forms. The

SOC constraints can be more accurate than the linear constraints due to minor

inner-approximated errors between tightened and untightened ramping margins. 2)

We construct the SOC constraints with minimal inner-approximated errors and the

distribution-level topology optimization model to offset the insufficient ramping

margins of retrofitted coal-fired units. A rolling economic dispatch model including
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LTS-based strategy is then reformulated as a mixed-integer second-order cone

programming (MISOCP) problem for a long look-ahead period, which has not been

studied to date. 3) For this established MISOCP-based model, it is highly desirable to

combine the Multi-cut Benders Decomposition (MBD) and Generalized Benders

Decomposition (GBD) as the devised Multi-cut GBD (MGBD) to tackle this

MISOCP problem, which can enhance overall computational efficiency and be

suitable for online rolling economic dispatch.

6.1 Modeling of WTBPS and Associated Constraints

For the rapid growth of wind farms only with a fixed capacity of coal-fired plants,

there are two ways to avoid suffering from wind curtailment. i) The one option is to

upgrade coal-fired units, e.g. retrofitted coal-fired units have faster ramp rates. Herein,

they can be used to rapidly track changes with unexpected ramp down of wind power.

ii) Various alternatives such as distribution-side load transfer and energy storage can

be used to increase the flexibility of wind-thermal-bundled transmission system

further. In this paper, we discuss the flexible load transfer strategy (LTS) via

reconfigurable topology of high voltage distribution networks (HVDNs) as a more

realistic manner. In the near term, compared to total costs of energy storage,

incorporating the flexible LTS and improving the flexibility of existing generators

may be the most cost-effective means to accommodate more wind power generation.

In this study, integrating wind-thermal-bundled transmission system with retrofitted

coal-fired units and LTS-based HVDNs together forms a more flexible WTBPS.
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There are quite a few coastal cities in the world suitable for constructing this WTBPS

for other countries, where these places accommodate abundant dispatchable loads,

and also are equipped with long-distance transporting coals by sea as well as off-shore

wind resources. Towards this flexible control objective, we concentrate on its

look-ahead economic dispatch problem in a rolling window, considering the dynamic

ramping of retrofitted coal-fired units and the LTS via HVDNs.

6.1.1 Static Modeling of WTBPS

The 110kV dispatchable load resources from substations in HVDNs are generally

in the range of 0 and 480 MW or even larger, accounting for nearly 5%-30% capacity

of WTBPS. This flexibility indicates the better quick-response capacity than that of

any coal-fired units. Consequently, integrating HVDNs to a wind-thermal generation

system with connected AC/DC tie-lines to other grids forms a WTBPS, which

produces more steady output power. Due to this flexibility, multiple independent

agents of WTBPS can integrate with the same large-scale HVDNs, each of which

connects tie-lines to other grids, as displayed in Fig. 6.1.

For the u-th agent of WTBPS, wind power W,
t

uP is bundled with several retrofitted

coal-fired units of total output power
G

G, , G , ,max
1

N
t t

u i u i u
i

P r P


  , where

, G , G , ,max/t t
i u i u i ur P P and NG is the total number of retrofitted coal-fired units in the u-th

agent of WTBPS. Meanwhile, G,
t

uP can simultaneously coordinate with dispatchable

loads D,
t

uP with reconfigurable HVDNs. For every st T , constraint (6.1) can be

cast at bus hi subject to transmission power  T, base base

1
(1 %) (1 %)

2
,uP P P    on

tie-lines.
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W, G, D, T,
t t t t

u u u uP P P P   ,
base T, base(1 %) (1 %)t

uP P P     (6.1)

Other Grids 

Bus

HVDNs

BWTGS

220kV stations

110kV substations

CONTROL Tie-Lines

Bus
BusAgent 

Agent 

Agent 

hi
hi

hi

Retrofitted Coal-
fired Plants

Wind Farms

Switch-on status
Switch-off status

Fig. 6.1 An illustration of WTBPS consisting of the HVDNs layer (bottom), a
wind-thermal-bundled layer (medium) and a control layer (top). In the bottom
HVDNs layer, load flows are indicated with arrows. The vertical dashed lines connect
the nodes in the bottom and medium layers, and to nodes in the top layer, which
aggregate at bus ih by different agents. Also, bus ih in each agent is a starting node of
tie-lines to connect other grids.

6.1.2 Operational Constraints of Retrofitted Coal-fired Units

Retrofitting flexibility measures consist of upgrading the control system, reducing

the wall thickness of key components, auxiliary firing with dried lignite ignition

burner in booster operation, and so forth [77]. These measures to increase flexibility

have been widely employed in coal-fired plants in recent years. Table 6.1 shows the

main differences between conventional coal-fired plants without retrofits and

retrofitted coal-fired plants. Note that the ramp rate is equal to the ramping margin per

minute dividing the corresponding rated capacity. In this chapter, we also declare that

the ramp rate is on a minute level, whereas operational, untightened and tightened

ramping (ramp-up/down) margins or boundaries or constraints between t-1 and t are
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on a dispatch period ΔT level.

As clearly shown in Table 6.1, conventional coal-fired plants without retrofits are

inherently less flexible than retrofitted coal-fired plants in the minimum load level,

ramp rate utilization, and hot and cold start-up time. As merits, the minimum load

level of retrofitted coal-fired plants can be reduced to 15–35% of the rated power, and

the ramp rate can be enhanced to 2–6% per minute of rated power, any of which

contributes to a flexible rolling dispatch of WTBPS. The ramping limit is a linear

function of the unit’s generating output [78].

Table 6.1. Differences between conventional and retrofitted coal-fired plants

Items
Conventional power plants

(without retrofits)
Retrofitted coal-fired

power plants
Minimum load level (%) 50-60 15-35

Ramp rate (min/%) 0.6–2 2–6
Hot start-up time (h) 3-5 1.5-4
Cold start-up time (h) 5-8 5-6

However, experimentally measuring ramping limits with respect to each output

power point is very tough in practice. In this regard, we adopt the upper envelope to

approximate the ramping limits per minute so as to capture the dynamic ramp rates

with respect to different output power points. Fig. 6.2 displays the historical ramp

rates (%/min) of the retrofitted coal-fired plant rated in 600 MW capacity in northern

China. The x-axis refers to the percentage of the output power of this coal-fired unit,

while the y-axis denotes the operational ramp rates between two consecutive periods

(%/min). Before retrofits, the ramp rate of this 600MW coal-fired plant is the

designed 1.1%/min, and the minimum load level is 60% of the rated capacity.
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Fig.6.2. Historical ramp rates for the retrofitted coal-fired unit.

Fig. 6.2 shows 2, 500 samples of operational ramp rates with respect to different

output power points, where the minimum load level is reduced to 30% and the ramp

rate is improved to 2%. For these sampled points, a linear function in the red line

segment is the upper envelope as the dynamic ramp rates. It is observed that the

operational ramp rate is fixed to 2% when the output power exceeds 60%. Between

30% and 60%, the ramping limit is an approximated linear function of the unit’s

generating output. Therefore, the appropriate dynamic ramp rates ,
t
i uv (%/min) at

time t can be reasonably treated as a linear function of output generation power,

which yields

, ,

,

,

,

,

t t
i u i ut

i u t
i u

a r b r d
v

c r d

    


(6.2)

where parameter c is determined by the enhanced ramp rate of retrofitted coal-fired

units, while parameters a, b, and d are estimated from historical ramping data,

minimum load level and d=(c+b)/a; and ,
t

i ur refers to the percentage of
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G , G , ,max/t
i u i uP P .

Three kinds of models can be used to describe dynamic ramp rates: approximated

linear model by Eq. (6.2), piecewise linear model by approximated thresholds [78],

and stepwise linear model by given thresholds [78]. For their main differences, the

first kind of ramp-rate expressions is a continuous function, whereas the rest two are a

discrete function of thresholds. Since retrofitted coal-fired units can output more

stable and accurate power in minutes, our proposed linear model of dynamic ramp

rates can capture available operational ramp rates. However, the other two models of

dynamic ramp rates cannot provide fast-tracking ability because of their fixed

thresholds. For example, to distinguish between proposed and piecewise linear models,

Fig. 6.3(a) reveals the ramp rate ,
t
i uv in a solid blue line using Eq. (6.2) with

parameters a=0.055, b=0.013, c=0.02, and d=0.6 and using the piecewise linear model

[78] in the dashed green line for a retrofitted coal-fired unit, respectively. The

minimum load level is set to 30% of G , ,maxi uP . The piecewise linear model is denoted

as three fixed thresholds indicated by green line segments in Fig. 6.3(a), which

depend on the slopes of segments and the interval ranges between two consecutive

periods.
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Fig. 6.3. (a) Proposed and piecewise linear models of dynamic ramp rates per minute,
and (b) percentage of maximum active power variations for fifteen minutes using the
proposed and piecewise linear models of dynamic ramp rates.

Fig. 6.3(b) presents the maximum active power variations of a retrofitted coal-fired

unit under a dispatchable period ΔT=15 minutes by the proposed and piecewise linear

models of dynamic ramp rates, where x-axis refers to 1
,
t
i uy  and y-axis indicates the

percentage of maximum active power variations ,
t
i uy at time t. In this figure, ,

t
i uy

can be sketched out by blue curves and several green line segments, which correspond

to the proposed and piecewise linear models shown in Fig. 6.3(a), respectively. The

maximum active power variations in blue line segments surround the area enclosed by

green line segments, showing that its area is smaller than the blue one, especially

when ,
t

i ur  60%. In other words, Eq. (6.2) is a more adaptable solution to the

tremendous wind power fluctuation challenges, especially during peak shaving stages.

Moreover, the gaps between these two areas in Fig. 6.3(b) clearly indicate that using

the piecewise linear model can result in suboptimal dispatch solutions. Thus, it can be

concluded that the piecewise linear model cannot be used to output ramp-up/down

margins of retrofitted coal-fired units during a dispatch period ΔT =15 min accurately.

Without loss of generality, ,
t

i ur can be analytically deduced as (6.3a)-(6.3d) for

upper boundaries as ramp-up margins and (6.4a)-(6.4d) for lower boundaries as

ramp-down margins under a dispatchable period ΔT in the ( 1
,
t

i ur  , ,
t

i ur )-space. Therefore,

the operational ramping constraints are expressed as:

1 1
, , ,( 1)t t t

i u i u i ur r c T if r d       (6.3a)
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1 1 1
, , , ,( / )( 1) /t t T t

i u i u i u i ur r b a a b a if r         (6.3b)

, 1t
i ur  (6.3c)

1 1 1
, , , ,( / )( 1) / ( )t t t

i u i u i u i ur r b a a b a c T if r d              (6.3d)

1 1
, , , ,( 1)t t t

i u i u i u i ur r c T if r        (6.4a)

1 1 1
, , ,( / )(1 ) /t t T t

i u i u i ur r b a a b a if r d        (6.4b)

, 0.3t
i ur  (6.4c)

,1 1
, , , , ,( ( 1) / )(1 ) /i uTt t t

i u i u i u i u i ur r c b a a b a if d r            (6.4d)

where , 1

/

( 1)i u T

d b a b

a a
  


 


, , ( 1)i u d c T     , and ( ) /d c b a  ,

,i u round   1
,( ( ( )) )ln / / ln 1 1t

i uc a br a   , and ,i u =round(( 1
,
t

i ur   d)/c+1), in

which round(·) refers to a function of round towards negative infinity.

An intuitive explanation for ramping margins is given under different dispatch

periods ΔT scaled in 60 minutes, 30 minutes, 15 minutes, and 5 minutes in

2-dimensional Fig. 6.4 with the above-mentioned parameters. This figure shows that a

longer dispatch period ΔT has larger ramp-up/down margins than a shorter dispatch

period. For instance, when ΔT =15min and 1
, 60%t

i ur   , the ramp-up band lies in [60%,

88%], while the ramp-down range varies from 60% to 37%; whereas when ΔT=60min,

the ramp-up and ramp-down bands can reach 100% and 30% for any 1
,
t

i ur  . This also

uncovers that conventional ramping constraints, namely generation level changes

between two consecutive dispatch periods below fixed ramping margins, are

approximate if ΔT <60min and are redundant when ΔT =60 min.

Since some retrofitted coal-fired plants have more than 2% ramp rate, we depict

ramp-up/down boundaries under ΔT =15min with the fixed parameters a=0.055 and

d=0.6 and different sets of parameters c and b a d c   in Fig. 6.5. Fig. 6.5
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suggests that larger parameter c results in larger ramp-up/down margins under ΔT

=15min for the better quick-response capacity of coal-fired plants.

With the loss of generality, we depict (6.3a)-(6.4d) for boundaries as shown in Fig.

6.6, where all line segments CD , AB ,and DE refer to three linear constraints

(6.3a)-(6.3c); FG , HI and IJ refer to another three linear constraints (6.4a)-(6.4c),

and two green curves BC and HG indicate nonlinear constraints indicated in (6.3d)

and (6.4d).
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Fig. 6.4. Two-dimensonal ramping boundaries under different dispatch periods.
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Fig. 6.5 Ramping boundaries under ΔT=15 minutes with different sets of parameters c
and b.

We can prove these two nonlinear constraints as a convex function and a concave

function, respectively.

Proof: For (6.3d) and (6.4d), it is assumed that the BC and HG functions are

continuous and η and ω are continuous variables. In terms of (6.3d), let

1( ) ( / )( 1) / ( )f x x b a a b a c T         where 1
,
t

i ux r  , we can deduce the

following equations:

1 1

1 1

1 1 2

2 2

' ( 1) ( / )[( 1) ]' '

[( 1) ]' ( 1) ln( 1) '

[( 1) ]'' ( 1) ln( 1)(ln( 1) ( ') '')

' / [( )ln( 1)], '' / [( ) ln( 1)]

f a x b a a c

a a a

a a a a

a ax b a a ax b a

 

 

 





 

 

 

 

 

       


    


      
       

(6.5)

Based on the above, the resultant second derivative of f(x) can be given by

1 1'' 2[( 1) ]' ( / )[( 1) ]'' ''f a x b a a c          (6.6)

Notably, ' 0  , '' 0  hold for ( / , )x b a d  . With (6.5), we obtain

1[( 1) ]' 0a    , 1[( 1) ]'' 0a   (6.7)
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From Eq.(6.6), we calculate 1 1[( 1) ]' [( 1) ]''h a a        , where ε = x - b/a >0.

1 2( 1) ln( 1){ ' ln( 1)( ') '')}h a a a           (6.8)

We substitute 2'' ln( 1)( ')c a   from Eq. (6.5) into Eq. (6.8), and obtain

1'( 1) ln( 1){1 ln( 1) '(1 )}h a a a c         (6.9)

It is clear that Δh<0 due to ' 0  , {1 ln( 1) '(1 )}a c    >0. Consider Δh<0 and

[(a+1)η-1]'<0, thus causing f''=Δh+[(a+1)η-1]' – c·η''<0. This proves that f(x) is a

convex function for ( / , )x b a d  .

For (6.4d), let ( ) ( ( 1) / )(1 ) /Tg x x c b a a b a         where 1
,
t
i ux y  , and we

similarly yield the following equations:

2

' (1 ) (1 ') ( ( 1) / )[(1 ) ]'

[(1 ) ]' (1 ) ln(1 ) '

[(1 ) ]'' (1 ) ln(1 ) ( '' ln(1 ) ( ') )

' 1/ , '' 0

T T

T T

T T

g a c x c b a a

a a a

a a a a

c

 

 

 

 



 
 

   

   

   

          


     


        
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(6.10)

Based on the above, we further achieve the second derivative of g(x)

'' '(1 ) ln(1 )(1 ') ( ( 1) / )[(1 ) ]''

[(1 ) ]'

T T

T

g a a c x c b a a

a

 



     

 

           

 
(6.11)

Notably, ' 0  , '' 0  hold for ( , ( 1))x d d c T      . Regarding

( 1)c x d    , d=(b+c)/a, and ln(1-a)<0, we obtain g''>0. This proves that g(x) is a

concave function for ( , ( 1))x d d c T      . ■
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Fig. 6.6. General ramping boundaries of retrofitted coal-fired units.

Moreover, the spinning reserve requirement of WTBPS should be considered

before performing an economic dispatch. The spinning reserve capacity provided by

retrofitted coal-fired units should not exceed the system spinning reserve capacity:

G
spin

, , ,max
=1

(1 )
N

t
i u Gi u u

i

r P P  (6.12)

where spin
uP refers to system spinning reserve capacity for the u-th agent of WTBPS

and u=1,2,…,Nu. Considering wind turbines have no contribution to the spinning

reserve, spin
uP is assumed to be 10% of the transmission power minus the wind

power rated capacity [101].

6.1.3 Distribution-Level Topology Optimization for HVDNs

The load switch-over operations imposed on HVDNs can help mitigate wind

curtailment and moderate generation costs for WTBPS for a look-ahead rolling

economic dispatch task. Direct supply connection (DSC) and serial supply connection
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(SSC) are typical grid-scale structures for 110kV HVDNs as shown in Fig. 6.7, where

t
cP and t

dP are active loads at 110kV substations C and D, respectively;
A1
tP and

A2
tP refer to the total active dis-patchable loads in 220kV stations A1 and A2,

respectively.

Substation C Substation D

Station A1 Station A2iS jS kS

,c cP Q ,d dP Q

Station A2

Station A1 Substation C
iS

jS ,c cP Q

DSC

SSC

Fig. 6.7. Two typical HVDNs of DSC and SSC.

Thanks to simple topological units of HVDNs just with one or two buses, the

well-known simplified DistFlow equations with negligible power loss can achieve

acceptable accuracy. As reference [90] reported, nonlinear terms are negligible

compared to linear terms, typically on the order of 1% error introduced. Distribution

systems generally have relatively flat voltage profiles due to voltage automatic control

devices with a small approximation error at about ±1%. In this regard, we develop

simplified power balance equalities as linear matrix equalities [82] for which the

complexity of HVDN reconfiguration acting as non-convex and nonlinear problems

[102] can be greatly reduced.
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As indicated in Fig. 6.8, the general form of (6.13a) and (6.13b) can be

reformulated as S, T s= ,t t t t
j j j j N t T    P L S b， , where S,

t
jP denotes total active

power on transformers in the j-th station and t
jL and t

jb refer to vectors of load

coefficients at time t whose j-th element indicates the j-th station. Specifically, when

the connected bus for the u-th agent of WTBPS belongs to 220kV station j, then

D, S,
t t

u jP P holds at time t; for other stations, S,
t

jP should satisfy (6.13a). In addition,

branch capacity constraints (6.14b) for cables and overhead lines in HVDNs are also

considered in LTS model.

A1 1 1c

cA2 2 2

0
+

0

t t tt

tt t t

P S SP

PP S S

      
        

            

t tL b 0 (6.13a)

A1

3 3

dc d d
4 4

c c dA2 c
5 5

0

0

t t

tt t t t
t t

t t tt t
t t

S S
PP P P P

S S
P P PP P

S S

   
        

           
           

      

t tL b (6.13b)

S, s, N, T0 (t
j j jP n S j N    )， (6.14a)

S, L,0 t
j j TP S j N   ， (6.14b)

where s, jn refers to the number of transformers in the j-th station; N, jS denotes the

single transformer rated capacity in the j-th station; L, jS indicates the branch

capacity which branch connects to the j-th station.

Moreover, the approximate voltage drop for a branch section {m,k} can be

summarized based on simplified DistFlow equations. According to

2 2
m kv v 2( )t t

mk mk mk mkR P X Q  in simplified DistFlow equations, we rewrite this

equation:

2
2 2

2 2

( )
( ) / 2 ( )

2

( ) ( )

2 2

t t m n
mk mk mk mk m n n m n

t
tmk

n mk

v v
R P X Q v v v v v

v v
v v v v


     

 
      

(6.15)
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where mkR and mkX refer to resistance, reactance of branch (m,k), and t
mkP and

t
mkQ denote active and reactive power flow on branch (m,k), v is the maximum

voltage profile, and v refers to the allowable voltage drop, e.g. 0.1v  p.u. for

DNs [82].

Let allowable squared voltage drop be
2( )

2

v
V v v


    , and since DSC has a

fixed directional power flow, we can construct linear voltage security constraints with

the allowable ranges of voltage profiles:

1
A1-C A1-C A2-C A2-C

2

t
t t t t

c c c c t

S
R P X Q R P X Q V

S

 
      

 
(6.16)

The power flow between substations C and D in SSC depends on the circuit

switching status of circuit breakers among 3
tS , 4

tS and 5
tS . Given that this

bi-directional power flow for different circuit switching variables among 3
tS , 4

tS

and 5
tS , we can establish two linear equivalent voltage security constraints:

3

1 C-D d C-D d C-D d C-D d
4

2 C-D c C-D c C-D c C-D c
5

0

0

t

t t t t
t

t t t t
t

S
R P X Q R P X Q V

S
R P X Q R P X Q V

S




 
                        

(6.17)

Where 1 A1-C A1-C C-D d C-D d= +t t t t
c cR P X Q R P X Q   , 2 A2-D d A2-D d= t tR P X Q  C-D c C-D c+ t tR P X Q ;

other symbols in (6.16) and (6.17) can be found in Nomenclature.

It can be perceived that rearranging voltage profile expressions from simplified

DistFlow equations leads to a more compact matrix form (6.16) and (6.17). Compared

to [82], (6.16) and (6.17) have the same accuracy in the optimal circuit switch scheme

yet with a small number of power flow variables. Additionally, frequent circuit

switching will reduce the remaining useful life of circuit breakers. Thus, limiting the

switching times of each circuit breaker over a rolling window is of importance [103].
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Accordingly, this constraint is bounded by

1 2 2 1 2 1

1 1

( ) (( ) ( ) 2 )
Ts Ts

t t t t t t
j j j j j j w

t t

N N

S S S S S S N  

 

       (6.18)

where N
Ts refers to the number of time-horizons in a rolling window and wN

denotes the number of allowable switching actions.

Consider the property of binary number operations 2( )t t
j jS S , and let

1+t t t
j j jz S S  that satisfy  0,1t

jz  . By using piecewise McCormick envelopes [100],

we exactly replace 1+t t t
j j jz S S  with

1 1+ 1, ,t t t t t t t
j j j j j j jz S S z S z S     (6.19)

Due to 1+t t t
j j jz S S  , constraint (6.18) can be subsequently rearranged as

1

1

( 2 )
Ts

t

N
t t t
j j jS S z 



    (6.20)

As stated in Subsection 6.1.1, the maximum amount of dis-patchable loads only

accounts for nearly 5%-30% capacity of WTBPS, which directly indicates retrofitted

coal-fired units play a major role and load transfer operations only play a secondary

role in tracking wind power of WTBPS. Thus, the substantial switching times of

circuit breakers cannot be realistic for economic dispatch problems.

Alternatively, the radial operation requirement for HVDNs is essential to mesh

topological units. Radial structures of DSC and SSC can be held from the observation

of Fig. 6.7:

DSC:
1 2 1t tS S  SSC:

3 4 5 2.t t tS S S   (6.21)

Hereby, a more simplified LTS model (6.13)-(6.21) can be constructed for the

following rolling economic dispatch model in Subsection 6.3.
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6.2 Tightened Ramping Constraints

6.2.1 Linear Ramping Constraints

As displayed in Fig. 6.7(a), to simplify convex constraints (6.3d) and (6.4d), we

replace arcs BC and HG by connecting a line between B and C and a line from H

to G. Clearly, BC and HG are strictly tighter than arcs BC and HG , which

ramping area is a decagon whose vertexes are ABCDEFGHIJ. We approximate

convex and concave constraints in (6.3d) and (6.4d) as (6.22), forming the linear

ramp-up/down constraints of retrofitted coal-fired units.

,upper upper
1

,lower lower

1
0

1

t
i u
t

i u

rA B

rA B

     
         

(6.22)

where upperA , upperB , lowerA and lowerB are obtained constants calculating from linear

equations BC and HG , given as:

1
1

upperupper 11

1 11

lowerlower

1( 1) ( 1)
( ( 1) )

( 1) 1( 1) 1
,

(1 (1 ) ) (1 (1 ) )1 (1 )
( 1)( 1)

T
T

TT

T TT

Ta T a
B d c b aA

aa

a d c aa
B dA

a T aa T

 
 

  

    

               
 

             
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Fig. 6.8. (a) Ramping boundaries of a retrofitted coal-fired unit; (b) quadratic

functions for f(x) and g(x).

Fig. 6.8(a) compares the ramping boundaries using the piecewise and proposed

linear models, and tightened ramp-up/down margins by linear ramping constraints

(6.22) under ΔT=15 minutes, respectively. As suggested in Fig. 6.8(a), the tightened

ramping boundaries in pink line are very close to ramping boundaries using the

proposed linear model in blue line, and also are more accurate than ramping

boundaries using the piecewise linear model in green line, especially during peak

shaving stages.

Let us derive the maximum inner-approximated errors Ue and Le between

linear and untightened ramp-up/down margins. We can write the maximum error of

the linear retrofitted ramp-up constraint (6.22) as

upper upper( ) ( )upperf x f x A x B    (6.24)

where upperA , upperB can be found in (6.23).



148

Herein, dΔfupper(x)/dx=0, yielding

upper' 0c A    (6.25)

Substituting ' / [( ) ln( 1)]a ax b a     from Eq. (6.26), we can obtain the

optimal x* as

*

upper ln( 1)

c b
x

A a a
 


(6.26)

Consequently, the maximum error between tightened and untightened ramp-up

margins can be calculated in

*

* * *
upper upper

1 *
upper upper

upper

( ) ( )

( )( 1) (1 ) ( )
ln( 1) ln( 1)

upperf x f x A x B

c b c
a A c T B

A a a a
 

   

         
 

(6.27)

where  
upper

* ( ln / ln 1 1)( )
ln( 1)

a

A
o

a
r und a    


.

Moreover, the maximum error of the linear ramp-down constraint (6.22) can be

summarized as

lower lower( ) ( )lowerf x A x B g x    (6.28)

where lowerA , lowerB can be found in (6.23).

According to dΔflower (x)/dx=0 and c(ω-1)=(x-d), we express

lower

ln(1 )
(1 ) 0T a

A a
a

   
   (6.29)

As a result, we can obtain the optimal x* as

lower

*

ln( )
ln(1 )

( 1)
ln(1 )

aA
a

x c T d
a


    


(6.30)

The maximum error between linear and untightened ramp-down margins can be

calculated in
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* * *
lower lower( ) ( )lowerf x A x B g x    (6.31)

where lo* werln / ln(1 ))
ln(1 )

(round
aA

T a
a


 

     



.

6.2.2 SOC Ramping Constraints

As mentioned above, we simplify convex constraints (6.3d) and (6.4d) as linear

constraints; However, it may induce approximations, which confine actual

ramp-up/down margins of retrofitted coal-fired units. We consider drawing a

tightened quadratic curve to replace arcs BC and HG . For convenience, we define

1
,
t

i ux r  and then ramp-up/down margin functions f(x) and g(x) for arcs BC and

HG are

1( ) ( / )( 1) + / ( )

( ) ( ( 1) / )(1 ) /T

f x x b a a b a c T

g x x c b a a b a











 

       


      
(6.32)

where ( )f x and ( )g x are defined as Lipschitz continuous functions. Let

( )Uf x = 2
,upper ,upper ,upperf f fa x b x c    and ( )Lg x = 2

,lowerfa x  ,lower ,lowerf fb x c 

represent the quadratic functions to approximate f(x) and g(x), where ,upperfa , ,upperfb ,

,upperfc and ,lowerfa , ,lowerfb , ,lowerfc are quadratic coefficients of ( )Uf x and

( )Lg x , respectively.

As displayed in Fig. 6.8(b), let us prove the quadratic constraint ( )Uf x in red

dashed lines as arc BCD in dashed lines has the minimal inner-approximated error

that can be used to approximate ( )f x . We assume that our initial point is an arbitrary

U on the vertical line of point D subject to U Dx x and U D Uv v h  . With this

specified point U and fixed points B and C, we can determine a specific quadratic

function to represent arc BCU . Consequently, we have
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2
B B ,upper ,upper B
2
C C ,upper ,upper C
2
U U ,upper ,upper D U

1

1

1

f f

f f

f f

x x a a y

x x b b y

x x c c y h

       
                
            

(6.33)

where Γ is the coefficient matrix of ( )Uf x , and xB, xC, xD and xU refer to

x-coordinates of points B, C, D and U and yB, yC, yD and yU refer to y-coordinates of

points B, C, D and U, respectively.

Since Γ is invertible, the quadratic coefficients ,lowerfa , ,lowerfb and ,lowerfc can

be expressed as,

,upper B B C B
-1 -1 -1 2 2

,upper C C B C U
2 2

,upper D U D C B B C

0
1

+ 0
| |

f

f

f

a y y x x

b y y x x h

c y h y x x x x

        
                                          

(6.34)

where | | is the moduli of  and  is only with respect to the x-coordinates of

points B, C, and U. By (6.34), we express ( )Uf x as

,upper B
2 2 -1 C B

,upper C C B U

,upper D C B

2 2
B

-1
C U

D

1

( )= 1 1 ( )
| |

1 1

f

U f

f

T

T

a y
x x

f x x x b x x y x x h

c y x x

y x x

y x h x

y

     
                              

     
               

            

(6.35)

where C B
C B C B1

| |

Tx x
x x x x

       
.

Observing Eq. (6.35), [x2 x 1]·Γ-1·[yB yC yD]T is the quadratic function for arc BCD .

If hU=0, arc BCD overlaps arc BCD . Moreover, for any Cx x  , we

rearrange 2 1
TT x x     as

2 2C B
C B C B1 = ( ( ) )

| |

TT x x
x x x x x x x x

        
(6.36)

where C Bx x and |Γ|<0.
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It is clear that 2
C B C B( )x x x x x x   is a quadratic function where the parabola

opens upward. The minimization achieves at x*=(xB+xC)/2, but x>xC>x*, so the

minimization must be at xC. The minimal value of Eq. (6.36) yields

C B

| |

x x



2
C C B C( ( )x x x x  C B ) 0x x  . Therefore, 2 1 0

TT x x     is proven.

With 2 1 0
TT x x     , if hU  0 means that point U is higher than point D, then

we can perceive that fU(x) can be a monotonically increasing function with respect to

hU for any fixed x from (6.35). If and only if hU=0, then the minimization of f(x)-fU(x)

can be achieved, which indicates that the quadratic constraints BCD has the

minimal inner-approximated error for arc BC . It should be noted that fU(xA) can be

higher than 1(0.3 / )( 1) /Tb a a b a    where xA=0.3. This indicates arc BCD can

envelop point A. Analogously, the quadratic constraint fL(x) can be justified as arc

IHG , which can envelop the point F.

The maximum inner-approximated errors Us and Ls between arcs BCD and

BC and between arcs IHG and HG can be obtained by establishing df(x)/dx =

dfU(x)/dx and dg(x)/dx = dgL(x)/dx, respectively. The solutions yield:

*
,upper + ,upper*

+

2
( ) ln( 1) f f

a c
a x b

a x b a


 

  
(6.37a)

*

1
*

, ,

ln(1 )
2 (1 )

x d
T

c
f lower f lower

a
a x b a

a

 
  



 
    (6.37b)

where *x and *x denotes the x-coordinates of the maximum inner-approximated

errors for arcs BCD and IHG .

Eq. (6.37a) is a quadratic equation and Eq. (6.37b) is a transcendental equation. Eq.

(6.37b) can be dealt with Newton method [104]. With achieved roots *x and *x ,
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the maximum inner-approximated errors Us and Ls between quadratic and

untightened ramp-up/down margins can be calculated in

* *( ) ( )U Us f x f x    , * *( ) ( )L Ls g x g x    (6.38)

Based on the above, the quadratic ramping constraints with minimal

inner-approximated errors are given as

1 2 1
,upper , ,upper , ,upper ,( )t t t

f i u f i u f i ua r b r c r      (6.39a)

1 2 1
,lower , ,lower , ,lower ,( )t t t

f i u f i u f i ua r b r c r      (6.39b)

where af,upper, bf,upper, cf,upper, af,lower, bf,lower, and cf,lower can be obtained by arcs BCD

and IHG .

To convert this quadratic constraint (6.39a) and (6.39b) in the rotated SOC form,

we have

2
,upper2

upper upper upper , ,upper
,upper

1
upper ,upper , ,upper ,upper

2 1/ 2 || || , +
4

1
1/

2

ft
i u f

f

t
f i u f f

b
m J m r c

a

J a r b a


     


     

(6.40a)

2
,lower2

lower lower lower , ,lower
,lower

1
lower ,lower , ,lower ,lower

2 1/ 2 || || , +
4

1
+ 1/

2

ft
i u f

f

t
f i u f f

b
m J m r c

a

J a r b a


    


 

(6.40b)

Making use of the above, we can summarize that linear and SOC operational

constraints of retrofitted coal-fired units can be characterized by (6.3a)-(6.3c),

(6.4a)-(6.4c), (6.12), (6.27)-(6.28) and (6.3a)-(6.3c), (6.4a)-(4c), (6.12),

(6.40a)-(6.40b), respectively.
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6.3 Distribution-Level Topology Optimization for Flexibility

Enhancement in Look-ahead Rolling Economic Dispatch Approach

6.3.1 Rolling Economic Dispatch Model

With the day-ahead unit commitment scheme and forecasted wind power data, we

can establish the economic dispatch model over a rolling window, during which

WTBPS maintains steady transmission power within specified bands. Each dispatch

involves several look-ahead hours. In general, the wind power forecast for 4–6 hours

has relatively low forecast errors [73]. In this study, the look-ahead period is thus set

as 5 hours including the current hour and the remaining look-ahead hours in the

intra-day stage. This rolling economic dispatch aims to reach the minimum thermal

production cost and switch-over operational cost subject to operational constraints of

WTBPS. Specifically, the thermal production cost for a horizon of length NTs is

produced by retrofitted coal-fired units; whereas switch-over operational cost is

associated with optimal load transfer solutions via HVDNs. In summary, we depict

the following look-ahead rolling economic dispatch framework and associated rolling

process:

Minimize thermal production 
cost

 Minimize switch-over 
operational cost

Day-ahead unit 
commitment 

Wind power 
predictor

Tightened operational 
constraints of units

LTS 
Constraints

Load data from 
HVDNs

Optimal dispatch 
of retrofitted coal-

fired units

Optimal switch 
solution 

Rolling economic dispatch 

(a)
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24 h time

Ts=5h

ΔT=15 min0 h

t = 0

t = 2

...

...

...

...

t = 96 ...

0 1 2 20... 21 96

...... Rolling period

Other period

(b)

Fig. 6.9. (a) Look-ahead rolling economic dispatch framework; (b) rolling process.

Since different t
iy have similar production cost coefficients, we approximately

express the coal-fired generation cost Fo1 as

,s

,

2
o1 2 , , G , ,max 1 , , G , ,max 0 ,

1 1 1

min [ ( ) ]
T G uu

t
i u

N NN
t t

i u i u i u i u i u i u i u
r t u i

F c r P c r P c
   

   


(6.41)

where c2i,u, c1i,u and c0i,u refer to production cost coefficients for the i-th retrofitted

coal-fired unit in the u-th agent of WTBPS; NG,u and Nu indicate the total number of

retrofitted coal-fired units in the u-th agent and the total number of agents,

respectively.

Moreover, addressing the operational cost minimization issue in an LTS task is to

seek the smallest number of total circuit switching operation times and the minimum

amount of dispatchable loads during a rolling window. This chapter adopts circuit

switching service cost ,H uc to multiply switching operation times plus purchasing

costs of dispatchable loads as 2
, ,( )t

D u D uc P . As a result,

Fo2=
s

1 1

T u
N N

t u 


s
2 1 2

D, D, H,
1

( ) ( )
N

t t t
u u u j j

j

c P c S S 



     
  

 . After applying 1t t t
j j jz S S  to Fo2, Fo2

can be rearranged as
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s s
2 1 2

o2 D, D, H,
1 1 1

( ) ( )
T u

N N N
t t t

u u u j j
t u j

F c P c S S 

  

      
  

  (6.42)

In light of all these facts, we consider that two objectives are assumed to have equal

priorities and weighting coefficients are selected as 1 2 1/ 2   . Thus, a look-ahead

rolling economic dispatch model is the minimization of Fo subject to the power

balance of tie-lines (6.1), operational limits of retrofitted coal-fired units (6.3a)-(6.3c),

(6.4a)-(6.4c) and (6.12), and linear ramping constraints of retrofitted coal-fired units

(6.22)-(6.23) or SOC ramping constraints of retrofitted coal-fired units (6.41a) and

(6.41b), plus simplified voltage-constrained LTS via HVDNs (6.13)-(6.21).

P1: Rolling economic dispatch model with linear ramping constraints

, , T,
o 1 o1 2 o2

, , , ,

s

min

s.t. (6.1), (6.3 )-(6.3 ),(6.4 )-(6.4 ), (6.12)-(6.23),

t t t t t
i u D u u i jr P P S z

F F F

a c a c t T

 
 

 

 
  (6.43)

P2: Rolling economic dispatch model with SOC ramping constraints

, , T, upper lower upper lower
o 1 o1 2 o2

, , , , , , , ,

s

min

s.t. (6.1), (6.3 )-(6.3 ), (6.4 )-(6.4 ),(6.5)-(6.14), (6.25a), (6.25b)

t t t t t
i u D u u i jr P P m m J J S z

F F F

a c a c t T

 
 

 

 
  (6.44)

Since this proposed rolling economic dispatch model (6.43) or (6.44) has different

groups of variables, we can express (6.43) or (6.44) in a more compact model form.

To avoid heavy notion, one group of continuous variables is defined

as 1, s: {( ) , }, t T  t t
u D,u

t
u T,uy , Pr P  and 1 1,:{ } uY y , u=1,2,…, Nu for (6.43)

and 2, upper lower upper lower s: {( , , , , ) }, m m J J t T  ，t t
u D

t
T u,uu ,y r ,P P and 2 2,:{ } uY y , u=1,

2,…,Nu for (6.44) for all retrofitted coal-fired units in the u-th agent of WTBPS. The

other category of discrete variables refers to
s: {( ) }t T  ttSX ,z ， . Without loss

of generality, we further modify (6.43) and (6.44) in more general forms as

(6.35a)-(6.45e) and (6.46a)-(6.46f), respectively.
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Compact P1 subject to linear constraints:

1 1
1

T
1 1 1 1 2,

min ( ( ) ) ( ( ) )y y T T x x T
q l q lD D D D 

 
  

X Y
Y Y Y X X X

 
(6.45a)

1. . +s t   l l lA X B Y b (6.45b)

1 l lE Y h (6.45c)

 l leF X r (6.45d)

=l lsG X r (6.45e)

where
,s

1 1

T 2
1 1 1 2 , , G , ,max 1 , , G , ,max

1 1 1

( ) [ ( ) ]
T G uu

N NN
y y T t t
q l i u i u i u i u i u i u

t u i

D D c r P c r P
  

  Y Y Y and
1

y
qD , x

qD ,

1

y
lD and x

lD in (6.45a) are constant matrices summarizing from (6.41) and (6.42).

Constraint (6.45b) refers to constraint (6.1) which Al, Bl and bl are constant vectors

drawn from constraint (6.1). Constraint (6.45c) includes constraints (6.3a)-(6.3c),

(6.4a)-(6.4c) and (6.12), (6.22)-(6.23) where El and hl can be deduced as constant

matrices. Constraint (6.45d) and (6.45e) encompass inequalities and equalities for

LTS-based network operational constraints (6.13)-(6.21) for the LTS-based HVDNs

with deduced constant matrices Fl , rle, Gl ,and rls.

According to minor inner-approximated errors for rotated SOC constraints (6.40a)

and (6.40b), this compact P2 is more accurate than P1, expressed as

Compact P2 subject to SOC constraints:

2 2
2

T
1 2 2 2 2,

min ( ( ) ) ( ( ) )y y T T x x T
q l q lD D D D 

 
  

X Y
Y Y Y X X X

 
(6.46a)

2. . + ls t b  l lA X B Y (6.46b)

2 l lE Y h (6.46c)

 l leF X r (6.46d)

=l lsG X r (6.46e)
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2 2 2
T T r r rY Q Y l Y g (6.46f)

where
,s

2 2

T 2
2 2 2 2 , , G , ,max 1 , , G , ,max

1 1 1

( ) [ ( ) ]
T G uu

N NN
y y T t t
q l i u i u i u i u i u i u

t u i

D D c r P c r P
  

  Y Y Y , and
2

y
qD

and
2

y
lD in (6.46a) are constant matrices. Quadratic constraints in constraint (6.46f)

can automatically convert to standard rotated SOC constraints with the auxiliary

variables (Jupper, mupper, Jlower, mlower). The constant matrices Qr, lr and gr are symbols of

af,upper, bf,upper, cf,upper, af,lower, bf,lower and cf, lower.

6.3.2 Multi-cut Generalized Benders Decomposition

As observed in compact P1 and P2, this look-ahead economic dispatch model is a

MISOCP problem. This MISOCP-based optimization problem is established on

large-scale HVDNs and multiple agents of WTBPS, which contains a substantial

number of continuous and integer variables during the look-ahead period. Running

this large-scale optimization model mixed with the LTS-based network operation

model is inevitably time-consuming. Fortunately, the compact P1 and P2 can be

decomposed into a relaxed master problem (MP) with respect to X and many

sub-problems with respect to Y1 or Y2, which perfectly suits GBD decomposition

framework.

Given discrete variables X̂ from MP, we can develop the sub-problem on

continuous variables 1 1,:{ } uY y and 2 2,:{ } uY y , u=1, 2,…, Nu. By observation on the

block matrices Bl,u and El,u of constraints (6.45b) and (6.45c) for P1 and constraints

(6.46b) and (6.46c) for P2, we can find that the structure of compact P1 and P2 has a

special ′′block-angular′′ form on variables y1,u and y2,u in the sub-problem (SPu) for

the u-th agent of WTBPS. In other words, any agent of WTBPS does not interfere

with other agents of variables. In general, yu refers to y1,u for P1 or y2,u for P2.
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1

2 ˆ

Agent 1

Agent 2

Agent
uu NN

       
       
          
       
       
              u uu

l,1 l,1 l,1

l,2 l,2 l,2

l, l,NN l,N

B y b A

B y b A
X

B y b A

   
(6.47)

We summarize this special ′′block-angular′′ decomposable structure in (6.47) with

three characteristics as convexity, linear separability and linear independence.

i) Convexity: P2 is all convex on continuous variables yu with given the discrete

variables X̂ ;

ii) Linear separability: constraints (6.45b)-(6.45e) and (6.46b)-(6.46e) are all

linear on discrete variables X with given the continuous variables ˆuy ;

iii) Linear independence: with given discrete variables X̂ , different groups of

continuous variables yu are linearly independent. Under these three characteristics, it

is highly desirable to utilize the GBD method with multiple cuts as MGBD. MGBD

can decompose the sub-problem of GBD into multiple independent smaller

optimization models by (6.47), which sub-problems engender multiple feasibility cuts

and optimality cuts at each iteration. Recall that classical GBD only generates one

feasibility cut for each iteration, whereas the number of feasibility cuts and optimality

cuts is equal to Nu in each iteration in MGBD. Thus, MGBD enables faster

convergence of the large-scale MP model and then save more running time, as

compared to the single-cut GBD method.

Following MGBD approach, we formulate the sub-problem (SPu) for the u-th agent

of WTBPS for P2 at the k-th iteration as a SOCP-based model with given discrete

variables 1ˆ k X :

2 2
2,

1 1 1
1 2, 2, 2, 2

ˆ ˆ ˆmin ( ( ) ) (( ) ( ) )T y y T k T x k x T k
q l q lD D D D    


  

u
u u u

y
y y y X X X


(6.48a)

1
2,

ˆs.t. k   l,u u l,u l,uB y b A X (6.48b)
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2, l,u u l,uE y h (6.48c)

2, 2, 2,
T  T

u r,u u r,u u r,uy Q y l y g (6.48d)

where { }l l,uA A , { }r r,ul l , { }l l,uB B , { }l l,ub b , { }l l,uE E , { }l l,uh h ,

{ }r r,uQ Q and { }r r,ug g for u=1, 2,…, Nu.

If this SPu problem is optimal with 2,ˆ k
uy , the upper bound

is

2 2

1 1 1
1 1 2, 2, 2, 2

1

ˆ ˆ ˆˆ ˆ ˆmin{ , (( ) ( ) ) (( ) ( ) )}
uN

T y y T k T x k x T k
k k q l q l

u

UB UB D D D D    




    k k k
u u uy y y X X X

; otherwise it is infeasible, we turn to solve an l1-minimization feasibility check

problem with the relaxed variable 0u  where for u=1, 2,…, Nu as follows:

,
min

u
u


uy 

(6.49a)

1
2,

ˆs.t. k
u     l,u u l,u l,uB y b A X (6.49b)

2, u  l,u u l,uE y h (6.49c)

2, 2, 2, u  T T
u r,u u r,u u r,uy Q y l y g (6.49d)

On the one hand, if the SPu problem is feasible at k-th iteration as indicated in

(6.48a)-(6.48d), we substitute the obtained continuous variables 2,ˆ k
uy and Lagrange

multiplier vectors
,1

ˆk
uλ ,

,2
ˆk
uλ , and

,3
ˆk
uλ for constraints (6.48a)-(6.48d), which enforces

the optimality cut as:

2 2

,1 ,1 2, ,2 2,

,3 2, 2, 2, 1 2, 2, 2,
1

ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) (( ) ) (( ) ( ) )
u

T T T

N
T T T y y T

q l u
u

D D q


      

    

k k k k k
u l,u u l,u u l,u u l,u u l,u

k k k T k k k k
u u r,u u r,u u r,u u u u

λ A X λ B y b λ E y h

λ y Q y l y g y y y
(6.50)

where qu is an auxiliary variable from the SPu for the MP.

On the other hand, provided that the SPu problem is infeasible at the k-th iteration,

by solving l1-minimization feasibility check problem as indicated in (6.49a)-(6.49e),
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and then we substitute continuous variables ˆ f,k
uy and Lagrange multiplier vectors ,1ˆk

uγ ,

,2ˆk
uγ ,and ,3ˆk

uγ for constraints (6.49b)-(6.49d) to form the feasibility cut:

,1 , ,1 2, 2 2,

3 2, 2, 2,

ˆ ˆ ˆ ˆ ˆ( ) +( ) ( )+( ) ( )+

ˆ ˆ ˆ ˆ( ) (( ) ) 0

T T T
l u

T T

A    

  

k k f,k k f,k
u u l,u u l,u u, l,u u l,u

k f,k f,k T f,k
u, u r,u u r,u u r,u

γ X γ B y b γ E y h

γ y Q y l y g
(6.51)

After imposing the optimality cuts (6.50) and the feasibility cuts (6.51) for u=1,

2,…, Nu, we establish the relaxed MP model at k-th iteration for all agents:

2
,

1

min ( ( ) )
u

u

N
T x x T

u q l
q

u

q D D




 
X

X X X


(6.52a)

s.t. l leF r X , =l lsG r X , and (6.50)-(6.51) (6.52b)

The lower bound is obtained as
2

1

(( ) ( ) )
uN

k T x k x T k k
k q l u

u

LB D D q


   X X X , where

Xk and k
uq are optimal solutions from (6.52a)-(6.52b). Until || ||k kLB UB is less

than the given tolerance, this MGBD algorithm can be converged.

This MGBD can generally be solved by servers at the dispatch center, while SPu

can be individually and simultaneously tackled by each agent. Traditionally, the

centralized rolling economic dispatch enforces each agent to upload sensitive local

data to the dispatch center, such as power outputs, power capacities, utilization levels,

without privacy protection [105]. However, with this MGBD computation framework,

agents can only share the dispatchable loads and Lagrange multiplier vectors with the

dispatch center, which preserves the privacy of sensitive information. In summary, the

entire computation procedure on multiple paralleled CPU cores is implemented in Fig.

6.10.
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Fig. 6.10. Computation procedure of MGBD for P1 and P2.

6.4 Case Studies

A real modified HVDN system with 220kV and 110kV voltage levels in central

China as shown in Fig. 6.11 [82]. Four agents A1-A4 of WTBPS are integrated in four

different 220kV stations, namely stations TH, ZJS, HTC and SQZ, with tie-lines

PT1-PT4. This integrated practical system is used for case studies to validate the

proposed look-ahead rolling economic dispatch approach.

Assume that four agents have the same installed capacities of wind power and

coal-fired power generation. In each agent, there are five retrofitted coal-fired units

satisfying 5·PG,max=Pbase=1500 MVA, ΔT =15min, Ts=5h, NTs=20, spin
uP =37.5 MVA,

δ%=5% and Pwind=1200MVA. The c2i,u, c1i,u, and c0i,u for all agents are set to 0.00049
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($/MW2h), 18.23 ($/MWh) and 35.54 ($). The ,D uc and ,H uc are set to 4.17

($/MWh) and 10 ($/p.u.) respectively for all agents. This HVDN system has 17 units

of 220kV stations labeled with long rectangle boxes and rated capacities in light

yellow color and 57 units of 110kV substations marked with black-filled circles. The

status of switch breakers is shown in Fig. 6.11 for the initial period. The number of

allowable switch actions during a rolling window is set to 6 times [103]. Load data for

each substation and wind power data for four agents are forecasted for Ts=5h ahead.

The voltage profiles of all nodes are bounded in [0.95, 1.05] p.u., and the thermal

capacities of branches are less than 0.126 p.u., and other network parameters can be

found in [82], where the base power is set to 1000 MW. And given tolerance for

MGBD is set to 310  in this study. In addition, conventional coal-fired units

without retrofits and retrofitted coal-fired units with dynamic ramping are compared.

These three categories of coal-fired plants with installed wind power capacity Pwind

participate in the following simulation experiments, as shown in Table 6.2.
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Fig. 6.11. A real modified HVDNs in central China.

Table 6.2. Comparative coal-fired plants

Types of coal-fired plants
Minimum

load level (%)
Ramp rate (min/%)

Conventional coal-fired units
with normal ramp rate

60 1.1%

Retrofitted coal-fired units
with piecewise linear model
of dynamic ramp rates [78]

30

,

,

,

,

,

0.35%, [0.3,0.4]

1.0%, [0.4,0.5]
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where

a=0.055, b=0.013, c=0.02, d=0.6.

In this study, we adopt the following comparative rolling economic dispatch (ED)

models for agent A1 in Table 6.3. We mainly divide two categories of factors for

economic dispatch models: dispatchable loads and ramp rate. For dispatchable loads,

reference [77] adopts a load-shedding variable in the look-ahead rolling economic

dispatch model instead of a network-based model, namely unrestricted dispatchable

loads. The second column refers to unrestricted dispatchable loads. In contrast, the

LTS-based HVDN operation model only outputs discrete dispatchable loads which

are indicated in the third column. For ramp rates, we consider conventional and

retrofitted coal-fired units into ED models where types of coal-fired units are

introduced in Table II. The fourth and fifth columns refer to conventional coal-fired

units with the normal ramp rate and retrofitted coal-fired units with the piecewise

linear model of dynamic ramp rates, respectively. The sixth and seventh columns

denote linear- and SOC-based tightened ramping constraints of retrofitted coal-fired

units. Parameters of the normal ramp rate and dynamic ramp rates are taken from

Table 6.2.
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Table 6.3 Comparative rolling economic dispatch models for agent A1

ED
models

Dispatchable loads Normal
ramp rate

Dynamic ramp rates
unrestricted HVDNs piecewise linear SOC

ED1 √ √
ED2 √ √
ED3 √ √
ED4 √ √
ED5 √ √
ED6 √ √
ED7 √ √
ED8 √ √

6.4.1 Maximum Inner-Approximated Errors of Tightened Ramping Constraints

We present accuracy discussions for maximum inner-approximated errors between

the untightened and linear and SOC ramping constraints. Fig. 6.13(a)-(c) present the

maximum inner-approximated errors between the untightened and linear ramping

constraints, i.e. ΔeU and ΔeL, and between the untightened and SOC ramping

constraints, i.e. ΔsU and ΔsL, with respect to different ranges of experimental

parameters a, b, c. In this experiment, we define the following sets of parameters a, b

and c where d=(b+c)/a.

 In Fig. 6.12(a), parameters a and b vary from 0.0467 to 0.06 and 0.001 to 0.015,

and parameter c is fixed to 0.02.

 In Fig. 6.12(b), parameters a and c vary from 0.0467 to 0.06 and 0.020 to 0.025,

and parameter b is fixed to 0.013.

 In Fig. 6.12(c), parameters b and c vary from 0.011 to 0.015 and 0.020 to 0.025,

and parameter a is fixed to 0.055.
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Fig. 6.12 Maximum inner-approximated errors using linear and SOC ramping

constraints with different sets of parameters

From Fig. 6.12(a)-(c), it should be noted that the maximum inner-approximated

errors ΔeU, ΔeL, ΔsU and ΔsL are quantified below 3.21%, 2.45%, 2.84%, and 1.36%

with different sets of parameters. Following ΔeU>ΔsU and ΔeL>ΔsL, this suggests that

the SOC ramping constraints are more accurate than corresponding linear ramping

constraints. For SOC ramping constraints, the maximum inner-approximated errors

are specified with 2.84%·Pbase/5=8.52 MW and 1.36%·Pbase/5=4.08 MW for

ramp-up/down margins under ΔT =15min, respectively.

6.4.2 Boundaries of Wind Power Fluctuations

The allowable ramping margin of wind power turbines (WPTs) can be quantified

with three kinds of ramping constraints using normal ramp rate, the piecewise, and

proposed linear models of dynamic ramp rates from Table 6.2. The corresponding

allowable ramping margins caused by three kinds of ramping constraints are drawn in
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black, pink and blue lines in Fig. 6.13. The ramping boundary of this installed wind

power capacity is depicted in green lines, and three forecasted sets of wind power data

are also included in Fig. 6.13.
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Fig. 6.13 Different allowable ramping margins of WPTs.

Fig. 6.13 suggests that the allowable ramping margin of WPTs can be enlarged as

long as coal-fired plants are retrofitted, as justified by ramping areas with boundaries

in black lines, blue lines, and pink lines. Moreover, the theoretical ramping area in

green lines is determined by installed wind power capacities. For WTBPS, feasible

wind power fluctuations of WPTs have boundaries with blue, pink or black lines

between adjacent periods. This is the reason why only the set of forecasted wind

power 2 is completely located in the allowable ramping margin of WPTs, whereas the

other two sets 1 and 3 of wind power data cannot be completely accommodated by

WTBPS. In this case, wind curtailment or load transfer is inevitable for these two sets.

Fig. 6.13 depicts the untightened and tightened allowable ramping margins of

WPTs under ΔT =15min. The blue line indicates the untightened boundary by the
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proposed operational ramping constraints. The red and black lines refer to tightened

ramping boundary of WPTs caused by linear and SOC ramping constraints. It is

shown that one point of forecasted wind power dataset 2 remarked in the blue-filled

square box lies on the SOC ramping constraint. The linear constraints lead to

purchasing dispatchable loads via a few switch-over operations of HVDNs if linear

ramping constraints are involved. Instead, adopting tightened SOC ramping

constraints can accommodate this problem.

6.4.3 Linear Versus SOC Ramping Constraints

After the feasibility-check procedure for wind power data using tightened ramping

margin of WPTs from Fig. 6.14(a), we can carry out the simulation experiments to

validate the dispatch solution accuracy for ED1and ED2. To clearly distinguish

between ED1 and ED2, we compare the optimal generation power solutions of ED1

and ED2 over the rolling window from 8:30 to 13:30, subject to linear and SOC

ramping constraints as shown in Fig. 6.14(b).

0% 20% 40% 60% 80% 100%

0%

70%

140%

210%

Percentage of wind power at time  t-1 (%)

P
er

ce
n

ta
ge

 o
f 

w
in

d
 p

ow
er

 a
t 

ti
m

e 
 t

 (
%

)

 

 

exact boundary
linear constraint
SOC constraint
set of forcasted wind power 2

32% 33% 34%
70.5%

72.5%

(a)



169

400 600 800 1000 1200 1400

500

1000

1500

2000

Active power at time  t-1 / MW

A
ct

iv
e 

p
ow

er
 a

t 
ti

m
e 

 t  
/ M

W

 

 

linear constraints
SOC constraints
exact boundary
solution of ED2
solution of ED1960 980 1000

620

640

660

680

(b)

Fig. 6.14. (a) Untightened and tightened ramping margins of WPTs under ΔT =15min;

(b) Optimal rolling ED solutions between ED1 and ED2.

Remarkable differences can be inferred from Fig. 6.15(b) between optimal solutions

of ED1and ED2. The optimal solutions of ED2 is more accurate than the ones

obtained by ED1 shown in the embedded graph, since the optimal solution of ED2 is

closer to the untightened ramping margin in blue line. With acceptable errors

indicated by maximum error analysis in Fig. 6.15(a)-(c), the optimal rolling economic

dispatch solution of ED2 can be deemed as accurate, regardless of how wind power

changes during these periods. Thus, SOC constraints in ED2 can replace nonlinear

untightened constraints with acceptable errors for optimal economic dispatch

solutions.

6.4.4 Normal, Piecewise Versus SOC Ramping Constraints

To exemplify the quick-response, we compare the optimal generation power

solutions and optimal dispatchable loads over the rolling window from 8:30 to 13:30

by ED3, ED4 and ED5, as shown in Fig. 6.15(a) and (b). Note that optimal ED
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solutions of ED3, ED4 and ED5 are compared under the typical load demands and the

mean of wind power data in 100 random scenarios in Fig. 6.15(a), and optimal

dispatchable loads are collected under 100 random wind power scenarios in Fig.

6.15(b). Table 6.4 contains the average objective costs of ED3, ED4 and ED5 in 100

wind power scenarios. The second column refers to the generation cost Fo1; and the

third column indicates the operational cost Fo2; and the last column Fo is the total cost

of this rolling economic dispatch.
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(b)

Fig. 6.15. (a) optimal ED solutions under typical load demands and mean of wind

power data; (b) optimal dispatchable loads in 100 wind power scenarios.

Fig. 6.15(a) reveals that ED4 and ED5 can quickly react to wind power fluctuations

with multiple output power below 600MW, while ED3 is incapable of

accommodating these wind power variations. This suggests that retrofitted coal-fired

units are more flexible than conventional coal-fired plants. To compare ED4 and ED5,

ED5 is superior to ED4 since ED5 can seek many optimal output solutions that are

smaller than 600MW whereas ED4 cannot do so. Moreover, Fig. 6.15(b) presents that

ED5 seeks the least dispatchable loads from HVDNs than the quantities obtained by

ED3 and ED4 in each dispatch period. These results also validate ED5’s superiority in

the quick-response to unexpected wind power fluctuations, as also reflected in the

smallest total cost Fo1, Fo2, and Fo for ED5 in Table 6.4.

Table 6.4. Average costs of 100 wind power scenarios

ED Models Fo1 (×105$) Fo2 (×105$) Fo (×105$)
ED3 10.40 82.420 46.41
ED4 8.67 5.400 7.01
ED5 8.49 3.031 5.75

6.4.5 Unrestricted Versus LTS-based HVDNs

Fig. 6.16(a) and (b) show the rolling ED differences between ED6 and ED7 with the

wind power data extracted from the sets of forecasted wind power 2 and 3,

respectively. Fig. 6.16(a) shows that ED7 and ED8 have the same solution since there

are no circuit switching actions. When wind power fluctuates sharply between

adjacent intervals, ED6 and ED7 may have different schemes of purchasing

dispatchable loads from HVDNs. Fig. 6.16(b) interprets that the switched load 213.27



172

MW is essential at 09:30, since the wind power varies by 614.72 MW, which is larger

than the maximum ramp-down margin 251.67 MW of retrofitted coal-fired units at

that time. Otherwise, it has to conduct load transfer operations. For ED6 and ED7,

ED7 purchases more dispatchable loads from the LTS-based network than that solved

by ED6, such as 09:30, 11:15, and 11:30. This is caused by the continuous circuit

switching variable instead of the network-constrained discrete circuit switching

variable.
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Fig. 6.16. Optimal ED solutions between ED6 and ED7: (a) set of forecasted wind

power 2; (b) set of forecasted wind power 3; and (c) legends for (a) and (b).

6.4.6 Centralized Versus Decentralized MBGD Methods

We conduct simulation experiments to validate the computational efficiency

between the centralized MILP- and MISOCP-based methods and the proposed

decentralized MGBD-based method for ED7 and ED8 in case studies. Four methods

are compared: Centralized MILP programming solver for ED8 (M1); Centralized

MISOCP programming solver for ED7 (M2); Centralized MISOCP programming

solver embedded in a GBD framework for ED7 (M3); Decentralized MISOCP

programming solver embedded an MGBD framework for ED7(M4).

These four methods are implemented by using CPLEX tools and MOSEK in the

MATLAB environment with an AMD Ryzen 75800X 8-core CPU 3.80GHz processor.

Three kinds of stochastic wind power scenarios for four agents are generated where

the maximum power fluctuation accounting for wind power rated capacity between

two consecutive periods is set to ΔP =0.3, 0.5, and 0.8. Note that all forecasted wind

power data satisfy tightened ramping margin of WPTs under ΔT =15min and load

transfer boundaries.

Table 6.5. Computing performance of four methods

Cases Methods Iterations
Entire CPU

Time (s)
CPU Time (s)

TMP TSP
I

ΔP =0.3
M1 / 5.34 / /
M2 / 12.11 / /
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Nu=4 M3 4 12.89 9.85 3.04
M4 2 6.05 4.43 1.62

I
ΔP =0.5

Nu=4

M1 / 4.11 / /
M2 / 11.29 / /
M3 5 13.12 10.05 3.07
M4 2 5.85 4.23 1.62

I
ΔP =0.8

Nu=4

M1 / 5.44 / /
M2 / 12.89 / /
M3 7 12.42 10.06 2.36
M4 3 5.96 4.11 1.85

II
ΔP =0.3

Nu=8

M1 / 5.34 / /
M2 / 15.11 / /
M3 8 18.42 14.22 4.20
M4 4 7.56 5.54 2.02

II
ΔP =0.5

Nu=8

M1 / 5.41 / /
M2 / 16.36 / /
M3 9 20.08 15.75 4.33
M4 5 7.47 5.12 2.35

II
ΔP =0.8

Nu=8

M1 / 5.02 / /
M2 / 16.81 / /
M3 15 21.73 15.24 6.49
M4 5 7.51 5.40 2.11

Table 6.5 displays the numerical results for case studies in different wind power

scenarios. For case II, we consider involving eight agents of WTBPS connecting to

220kV stations FZ, RD, XEC, and SY. The number of constraints and variables is

twice as many as case I. The first column indicates case numbers with different ranges

of wind power fluctuations. The second column denotes four methods. The third

column shows the total number of iterations required to reach the optimum only for

GBD and MGBD approaches. The fourth column presents the entire CPU time (in

seconds) required to solve the overall problem. The fifth column includes the sum of

CPU running time (in seconds) of the master problem (TMP) and sub-problems (TSP)

in M3 and M4, respectively.

For M1 and M2, M1 converges more rapidly than M2, with a smaller amount of

CPU time for the two cases. With the larger system sizes as indicated in case II, M1

outperforms M2 with superior advantages in CPU time. This outperformance of M1
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stems from the MILP-based ED8, whereas M2 is applied to address the

MISOCP-based ED7 with a more accurate solution than the MILP-based ED8.

Compared to M3, M4 shows a remarkably smaller amount of CPU time and a less

number of iterations in two cases. And the CPU processing time for M3 substantially

increases with larger system sizes. However, the effectiveness of the proposed M4 can

be ensured within less than 8 seconds of CPU processing time, which saves more than

65% of computation time compared with M3.

Based on the above, M4 outperforms M2-M3 in the least CPU time and

outperforms M1 in the accuracy of the solution. Provided that M4 is performed on

multiple distributed computing servers, it can be certainly expected that the

computing performance of M4 can bring better computational efficiency to this

decomposition–coordination computing framework, especially for a large-scale

optimization problem.

6.5 Summary

The chapter proposes a look-ahead rolling economic dispatch approach of WTBPS

considering the variable ramp rate of retrofitted coal-fired units and flexible

voltage-constrained LTS via HVDNs. The SOC ramping constraints are validated

with acceptable inner-approximated error (at most 2.84%) when T =15 min.

Results from the case studies demonstrate that this proposed rolling economic

dispatch approach is applicable for multiple WTBPS agents to accommodate wind

power fluctuations with the minimization of production cost, purchasing cost, and

switch-over operation cost. Moreover, the proposed MGBD-based decentralized

method enables many subproblems to be solved in parallel, which facilitates this
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large-scale rolling economic dispatch model to be quickly solved, saves around 65%

computational time and releases more computational resources. Therefore, the

computing performance for the proposed MGBD-based method is proved to be

satisfactory with higher efficiency.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

DNs can adaptively maintain load balancing and loss reduction at the voltage

security-constrained operation level, and to coordinate real-time transactive dispatch

tasks between supply and demand at the market level of DNs.

On system-wide operation level, with the proliferation of diverse power entities

(e.g. renewable generation, electric vehicles and storage) into smart DNs, adaptive

reconfiguration of the electrical topology of DNs may run into physical security issues,

i.e., over-voltage and under-voltage excursions. Moreover, on cyber-physical system

security level, massive D-PMU devices are connected into smart DNs for the full

system observability in recent years. The cyber-physical nature of DNs facilitates the

exchange of crafted D-PMU signals amongst actuating and monitoring power entities

in DNs. This renders that an effective defense of observability plays a crucial role in

the cyber-physical security of DNs against cyber-attacks. Additionally, to keep a

fairly transactive energy market, DSOs have to share sensitive power flow datasets

with different participants, which may leak the sensitively private data including

nodal load and generation data of residential customers. Obfuscating sensitive

datasets up to some quantity but preserve their statistic values is essential for

customer’s privacy guarantees.
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Thereby, in order to proactively mitigate these problems, this thesis proposes

several advanced topology optimization methods to achieve a DNR solution for

cyber-physical security, privacy-preserving and dispatch flexibility enhancement. The

primary conclusions and contributions of this thesis are summarized as follows:

(1) The proposed DCHR approach can tackle the disjunctive nature of DNR

problems. With continuous parent-child relationship variables as disjunctive variables,

this DCHR approach is theoretically tighter than the McCormick linearization method

and the Big-M method, and it is especially suitable for DNs with directional power

flows. As demonstrated in case studies, the computing performance in terms of

running time and iterations using a DCHR approach yields superior numerical

performance than prior relaxation methods.

(2) The proposed disjunctive RCDS formulation can be applicable for

reconfigurable networks with the least defense cost in theory. With this formulation,

an observability defense-constrained DNR model can be constructed as a MISOCP

problem, which perfectly enables an observable DNR solution just with the minimal

defense cost and active power loss for cyber–physical security enhancement.

(3) For multi-agent ADNs, we proposes a DP-DNR mechanism based on a

C-ADMM approach for interconnected multi-agent ADNs. This query mechanism

provides a mixture output of both realistically optimal tie-switch status and

corresponding obfuscated- but-feasible tie-line load flows, part of which may have

reverse directions. Moreover, the C-ADMM-based DP-DNR mechanism can seek the

optimal topology switch without realistic communication signals and customer’s load

data from other agents, which maximally protects the agent’s and customer’s privacy.
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In the future energy-sharing market with mutual trust, this well-designed

C-ADMM-based DP-DNR management will be much applicable for

privacy-preserving grid operation of multi-agent ADNs, especially for agents with

conflicting interests.

(4) The proposed distribution-level topology optimization contributes to the

flexibility enhancement of a look-ahead rolling economic dispatch of WTBPS, which

offsets the insufficient ramping margins of retrofitted coal-fired units. The proposed

SOC ramping constraints of retrofitted coal-fired units are validated with acceptable

inner-approximated error (at most 2.84%) when T =15 min. Results from the case

studies demonstrate that this proposed rolling economic dispatch approach is

applicable for multiple WTBPS agents to accommodate wind power fluctuations with

the minimization of production cost, purchasing cost, and switch-over operation cost.

Moreover, the proposed MGBD-based decentralized method enables many

subproblems to be solved in parallel, which facilitates this large-scale rolling

economic dispatch model to be quickly solved, saves around 65% computational time

and releases more computational resources. Therefore, the computing performance for

the proposed MGBD-based method is proved to be satisfactory with higher efficiency.

7.2 Future Work

This thesis proposes several advanced topology optimization methods to achieve a

DNR solution for cyber-physical security, privacy-preserving and dispatch flexibility

enhancement. To enrich the current work, the following topics should be investigated



180

in the future.

1) Under the digital transformation of the energy industry, power electronic-based

circuit breakers are gradually upgraded with high-speed switching properties. Thanks

to smart (remotely controlled) circuit breakers, the real-time topology optimization

technology can be a promising load transition event via network reconfiguration,

which can be used to relieve stress on a primary energy sources when demand for

electric is greater than the primary power source can supply. At the operation level,

DSOs perform the topology optimization strategy for load balancing and/or loss

reduction by the means of choosing optimal status of sectionalizing switches and

tie-switches in energy-intensive ADNs on different voltage levels, i.e., HVDNs,

medium-voltage DNs (MVDNs) and low-voltage DNs (LVDNs). This also facilitates

interacting with transmission system operators with the provision of grid services at

the transmission-distribution interface. In other words, doing this topology

optimization task on multi-voltage level ADNs actually responds to multiple

operational requests by DSOs, e.g., quick load balance, system loss minimization

and/or virtual power plants, as a load transition event towards operational requests for

system-level operational flexibility enhancement. Therefore, it is necessary to develop

the tailored topology optimization model via the coordinated maneuvers of circuit

breakers in multi-voltage level ADNs on different time-scales in the future.

2) In terms of reconfigurable topologies, multi-voltage level ADNs, i.e., HVDNs,

MVDNs and LVDNs. According to IEEE guidelines, LVDNs are low-voltage

networks whose voltages are up to 380V, and MVDNs contain networks with
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voltages from 10kV up to 35kV, and HVDNs are operated on 110kV as developed in

Finland, China, and Spain, etc. Different categories of ADNs have different graph

characterizations. As reported, LVDNs or MVDNs generally have single-meshed

network structures with depth but non-width properties. In contrast to LVDNs or

MVDNs, HVDNs are sub-transmissions constructed in multi-meshed topology

(closed loop) but operated in radial structures (open loop), where network structures

normally develop wide but non-deep around each station. It is clear that the physical

properties of graph characterizations between HVDNs, LVDNs and MVDNs can be

significant distinct, i.e, topology structures of HVDNs are more simplified than

general DNs. In the future, we wonder how physical network properties of certain

ADNs can be utilized to reduce the computational complexity of topology

optimization. This is very crucial for a fast computation, as the general DNR

formulation may not be helpful for efficient solvability, especially for large-scale

networks, e.g., the DNR computational time of 1060-node DNs benchmark spends

more than 600 seconds. To address this issue, we will concentrate on graph

characterizations for multi-voltage level DNs with specific graphs on multi-voltage

level ADNs.



182

References

[1] E. Ghiani, F. Pilo and G. Celli, “Definition of smart distribution networks,”

Operation of Distributed Energy Resources in Smart Distribution Networks,

Academic Press, pp.1-23, 2018.

[2] O. Inderwildi, C. Zhang, X. Wang, and M. Kraft, “The impact of intelligent

cyber-physical systems on the decarbonization of energy,” Energy &

Environmental Science, vol. 13, no. 3, pp. 744-771, 2020.

[3] S. Grijalva and M. Costley, “Decentralized Energy Management Architecture for

Service-Oriented Cyber-Physical Electric Grids”, Advanced Computational

Electricity Systems (ACES), 2016.

[4] C. Liu, J.C. Bedoya, N. Sahani, et al., “Cyber–Physical System Security of

Distribution Systems,” Foundations and Trends® in Electric Energy Systems, vol.

4, no. 4, pp. 346-410, 2021.

[5] H. Song, G.A. Fink and S. Jeschke, Security and privacy in cyber-physical

systems: foundations, principles, and applications, John Wiley & Sons, 2017.

[6] M. Z. Jacobson et al., “100% Clean and Renewable Wind, Water, and Sunlight

All-Sector Energy Roadmaps for 139 Countries of the World,” Joule, vol. 1, no. 1,

pp. 108-121, 2017.

[7] N. Liu, C. Li and L. Chen, “Hybrid data-driven and model-based distribution

network reconfiguration with lossless model reduction,” IEEE Trans. on Industr.

Inform., vol. 18, no. 5, pp. 2943-2954, 2022.

[8] X. Jiang, Y. Zhou, W. Ming, P. Yang and J. Wu, “An Overview of Soft Open

Points in Electricity Distribution Networks,” IEEE Trans. on Smart Grid, vol. 13,

no. 3, pp. 1899-1910, May 2022.

[9] C. Lei, S. Bu, J. Zhong, Q. Chen and Q. Wang, "Distribution Network

Reconfiguration: A Disjunctive Convex Hull Approach," IEEE Trans. on Power

Syst., 2023.



183

[10]M. E. Baran and F. F. Wu, “Network reconfiguration in distribution systems for

loss reduction and load balancing,” IEEE Trans. Power Deli, vol. 4, no. 2, 1989.

[11]H.D. Chiang and R. Jean-Jumeau, “Optimal network reconfigurations in

distribution systems: a new formulation and a solution methodology,” IEEE

Trans. Power Deli., vol. 5, no. 4, 1990.

[12]S. Toune, H. Fudo, T. Genji, Y. Fukuyama, and Y. Nakanishi, “Comparative

study of modern heuristic algorithms to service restoration in distribution

systems,” IEEE Trans. Power Syst., vol. 17, no. 1, 2002.

[13]S. Mishra, D. Das, and S. Paul, “A comprehensive review on power distribution

network reconfiguration,” Energy Syst., vol. 8, no. 2, pp. 227–284, 2017

[14]J. A. Taylor and F. S. Hover, “Convex models of distribution system

reconfiguration,” IEEE Trans. on Power Syst., vol. 27, no. 3, pp. 1407– 1413,

2012.

[15]M. K. Singh, V. Kekatos, S. Taheri, K. P. Schneider, and C.-C. Liu, “Enforcing

radiality constraints for der-aided power distribution grid reconfiguration,” arXiv

preprint arXiv:1910.03020, 2019.

[16]M. Lavorato, J. F. Franco, M. J. Rider, and R. Romero, “Imposing radiality

constraints in distribution system optimization problems,” IEEE Trans. Power

Syst., vol. 27, no. 1, pp. 172–180, Feb. 2012

[17]R. A. Jabr, R. Singh, and B. C. Pal, “Minimum loss network reconfiguration

using mixed-integer convex programming,” IEEE Trans. on Power Syst., vol. 27,

no. 2, pp. 1106–1115, 2012.

[18]J.-P. Chiou, C.-F. Chang, and C.-T. Su “Variable scaling hybrid differential

evolution for solving network reconfiguration of distribution systems,” IEEE

Trans. Power Syst., vol. 20, no. 2, pp. 668–674, May 2005.

[19]A. Asrari, T. Wu, and S. Lotfifard, “The impacts of distributed energy sources on

distribution network reconfiguration,” IEEE Trans. Power Electron., vol. 31, no.

2, pp. 606–613, Jun. 2016

[20]J. F. Franco, M. J. Rider, M. Lavorato, and R. Romero, “A mixed integer LP



184

model for the reconfiguration of radial electric distribution systems considering

distributed generation,” Elect. Power Syst. Res., vol. 97, pp. 51–60, Apr. 2013.

[21]Q. Li and V. Vittal, “Convex hull of the quadratic branch ac power flow

equations and its application in radial distribution networks,” IEEE Trans. on

Power Syst., vol. 33, no. 1, pp. 839–850, 2017.

[22]S. Wang, J. Liu, R. Bo, and Y. Chen, “Approximating input-output curve of

pumped storage hydro plant: A disjunctive convex hull method,” IEEE Trans. on

Power Syst., 2022.

[23]A. Cardenas, “Cyber-physical systems security knowledge area,” The Cyber

Security Body of Knowledge (cybok). Boca Raton, FL, USA: CRC, 2021.

[24]H. Sandberg, “Cyber-Physical Security,” in Encyclopedia of Systems and Control.

Berlin, Germany: Springer, 2020.

[25]O. Kosut, L. Jia, R. J. Thomas, and L. Tong, “Malicious data attacks on smart

grid state estimation: Attack strategies and countermeasures,” in Proc. IEEE 1st

Int. Conf. Smart Grid Commun., 2010, pp. 220–225.

[26]Z. Guo, D. Shi, K. H. Johansson, and L. Shi, “Worst-case innovation-based

integrity attacks with side information on remote state estimation,” IEEE Trans.

Control Netw. Syst., vol. 6, no. 1, pp. 48–59, Mar. 2019.

[27]Q. Dai, L. Shi, and Y. Ni, “Risk assessment for cyberattack in active distribution

systems considering the role of feeder automation,” IEEE Trans. Power Syst., vol.

34, no. 4, pp. 3230–3240, Jul. 2019.

[28]S. A. Desilva, J. Kim, E. Cotilla-Sanchez, and T. Hagan, “On PMU data integrity

under GPS spoofing attacks: A sparse error correction framework,” IEEE Trans.

Power Syst., vol. 36, no. 6, pp. 5317–5332, Nov. 2021

[29]S. Bu, L. G. Meegahapola, D. P. Wadduwage and A. M. Foley, “Stability and

Dynamics of Active Distribution Networks (ADNs) With D-PMU Technology: A

Review,” IEEE Trans. on Power Syst., vol. 38, no. 3, pp. 2791-2804, May 2023.



185

[30]K. C. Sou, “Protection placement for power system state estimation measurement

data integrity,” IEEE Trans. Control. Netw. Syst., vol. 7, no. 2, pp. 638–647,

2019.

[31]K. C. Sou and J. Lu, “Relaxed connected dominating set problem for power

systemcyber–physical security,” IEEE Trans. Control. Netw. Syst., vol. 9, no. 4,

pp. 1780–1792, 2022.

[32]A. Akrami, M. Doostizadeh, and F. Aminifar, “Optimal reconfiguration of

distribution network using µ pmu measurements: A data-driven stochastic robust

optimization,” IEEE Trans. on Smart Grid, vol. 11, no. 1, pp. 420–428, 2020.

[33]G. S. Dua, B. Tyagi, and V. Kumar, “Deploying micro-pmus with channel limit

in reconfigurable distribution systems,” IEEE Syst. J., vol. 16, no. 1, pp. 832–843,

2022

[34]J. Zhao, G. Zhang, and R. A. Jabr, “Robust detection of cyber attacks on state

estimators using phasor measurements,” IEEE Trans. on Power Syst., vol. 32, no.

3, pp. 2468–2470, 2016.

[35]N. Jacobs, S. Hossain-McKenzie, A. Summers, C. B. Jones, B. Wright and A.

Chavez, “Cyber-physical observability for the electric grid,” 2020 IEEE Texas

Power and Energy Conference (TPEC), 2020.

[36]B. Zargar, A. Angioni, F. Ponci and A. Monti, “Multiarea Parallel Data-Driven

Three-Phase Distribution System State Estimation Using Synchrophasor

Measurements,” IEEE Trans. Instrum. Meas., vol. 69, no. 9, pp. 6186-6202,

Sept. 2020.

[37]C. Lei, S. Bu and Q. Wang, "Observability Defense-Constrained Distribution

Network Reconfiguration for Cyber-Physical Security Enhancement," IEEE

Trans. on Power Syst., 2023 (Early Access).

[38]J. Xiao, T. Zhang, G. Zu, F. Li, and C. Wang, “Tsc-based method to enhance asset

utilization of interconnected distribution systems,” IEEE Trans. on Smart Grid,

vol. 9, no. 3, pp. 1718–1727, 2018.

[39]C. Véliz and P. Grunewald, “Protecting data privacy is key to a smart energy



186

future,” Nature Energy, vol. 3, no. 9, pp. 702–704, 2018.

[40]J. Wang, F. Gao, Y. Zhou, Q. Guo, C.-W. Tan, J. Song, and Y. Wang, “Data

sharing in energy systems,” Adv. Appl. Energy, vol. 10, pp. 1–18, 2023.

[41]Y. Chen, C. Zhao, S. H. Low, and A. Wierman, “An energy sharing mechanism

considering network constraints and market power limitation,” IEEE Trans. on

Smart Grid, vol. 14, no. 2, pp. 1027–1041, 2023.

[42]M. B. Gough, S. F. Santos, T. AlSkaif, M. S. Javadi, R. Castro, and J. P. Catalo,

“Preserving privacy of smart meter data in a smart grid environment,” IEEE

Trans. on Industr. Inform., vol. 18, no. 1, pp. 707– 718, 2022.

[43]M. U. Hassan, M. H. Rehmani, and J. Chen, “Differential privacy techniques for

cyber physical systems: a survey,” IEEE Commun. Surv. Tut., vol. 22, no. 1, pp.

746–789, 2020.

[44]R. Kaviani and K. W. Hedman, “An enhanced energy management system

including a real-time load-redistribution threat analysis tool and cyber-physical

sced,” IEEE Trans. on Power Syst., vol. 37, no. 5, pp. 3346–3358, 2022.

[45]T. Wu, C. Zhao, and Y.-J. A. Zhang, “Privacy-preserving distributed optimal

power flow with partially homomorphic encryption,” IEEE Trans. on Smart Grid,

vol. 12, no. 5, pp. 4506–4521, 2021.

[46]C. Dwork, A. Roth et al., “The algorithmic foundations of differential privacy,”

Foundations and Trends in Theoretical Computer Science, vol. 9, no. 3–4, pp.

211–407, 2014.

[47]Q. Hu, S. Bu, W. Su, and V. Terzija, “A privacy-preserving energy management

system based on homomorphic cryptosystem for iot-enabled active distribution

network,” J. Modern Power Syst. Clean Energy, 2023.

[48]V. Dvorkin, F. Fioretto, P. Van Hentenryck, P. Pinson, and J. Kazempour,

“Differentially private optimal power flow for distribution grids,” IEEE Trans. on

Power Syst., vol. 36, no. 3, pp. 2186–2196, 2021.

[49]T. W. Mak, F. Fioretto, L. Shi, and P. Van Hentenryck, “Privacy-preserving power

system obfuscation: A bilevel optimization approach,” IEEE Trans. on Power



187

Syst., vol. 35, no. 2, pp. 1627–1637, 2020.

[50]F. Fioretto, T. W. Mak, and P. Van Hentenryck, “Differential privacy for power

grid obfuscation,” IEEE Trans. on Smart Grid, vol. 11, no. 2, pp. 1356–1366,

2020.

[51]V. Dvorkin, F. Fioretto, P. Van Hentenryck, J. Kazempour, and P. Pinson,

“Differentially private convex optimization with feasibility guarantees,” arXiv

preprint arXiv:2006.12338, 2020.

[52]V. Dvorkin, F. Fioretto, P. Van Hentenryck, P. Pinson, and J. Kazempour,

“Privacy-preserving convex optimization: When differential privacy meets

stochastic programming,” arXiv preprint arXiv:2209.14152, 2022.

[53]F. Ding and K. A. Loparo, “Hierarchical decentralized network recon-figuration

for smart distribution systems—part i: Problem formulation and algorithm

development,” IEEE Trans. on Power Syst., vol. 30, no. 2, pp. 734–743, 2015.

[54]A. S. Kahnamouei and S. Lotfifard, “Enhancing resilience of distribution

networks by coordinating microgrids and demand response programs in service

restoration,” IEEE Syst. J., vol. 16, no. 2, pp. 3048–3059, 2021.

[55]W. Li, Y. Li, C. Chen, Y. Tan, Y. Cao, M. Zhang, Y. Peng, and S. Chen, “A full

decentralized multi-agent service restoration for distribution network with dgs,”

IEEE Trans. on Smart Grid, vol. 11, no. 2, pp. 1100–1111, 2020.

[56]R. R. Nejad and W. Sun, “Enhancing active distribution systems re-silience by

fully distributed self-healing strategy,” IEEE Trans. on Smart Grid, vol. 13, no. 2,

pp. 1023–1034, 2022.

[57]S. Konar, A. K. Srivastava, and A. Dubey, “Distributed optimization for

autonomous restoration in der-rich distribution system,” IEEE Trans. on Power

Deli., 2023.

[58]S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed

optimization and statistical learning via the alternating direction method of

multipliers,” Foundations and Trends® in Machine learning, vol. 3, no. 1, pp.

1–122, 2011.



188

[59]C. Zhang, M. Ahmad, and Y. Wang, “Admm based privacy-preserving

decentralized optimization,” IEEE Trans. Inf. Forensics Secur., vol. 14, no. 3, pp.

565–580, 2019.

[60]R. Takapoui, N. Moehle, S. Boyd, and A. Bemporad, “A simple effective heuristic

for embedded mixed-integer quadratic programming,” Int. J. Control, vol. 93, no.

1, pp. 2–12, 2020.

[61]Q. Yang, et al, “Prospective contributions of biomass pyrolysis to China’s 2050

carbon reduction and renewable energy goals,” Nat Commun., vol.12, pp. 1-12,

2021.

[62]G. He, J. Lin, F. Sifuentes, X. Liu, N. Abhyankar, and A. Phadke, “Rapid cost

decrease of renewables and storage accelerates the decarbonization of China’s

power system,” Nat Commun., vol.11, pp. 1-9, 2020.

[63]S. Mallapaty, “How China could be carbon neutral by mid-century”, Nature, vol.

586, pp. 482-483, 2020.

[64]C. Figueres, et al, “Emissions are still rising: ramp up the cuts”, Nature, vol. 564,

pp. 27-30, 2018.

[65]Impram S, Nese S V, and Oral B, “Challenges of renewable energy penetration

on power system flexibility: A survey,” Energy Strategy Reviews, vol. 31,

pp.1-12, 2020.

[66]C. Lei, S. Bu, Q. Wang, Q. Chen, L. Yang, and Y. Chi, "Look-ahead Rolling

Economic Dispatch Approach for Wind-Thermal-Bundled Power System

Considering Dynamic Ramping and Flexible Load Transfer Strategy," IEEE

Trans. on Power Syst., 2023 (Early Access).

[67]D. J. Olsen and D. S. Kirschen, "Profitable emissions-reducing energy storage,"

IEEE Trans. on Power Syst., vol. 35, no. 2, pp. 1509-1519, Mar. 2020.

[68]M. Zhou, J. Y. Zhai, G. Y. Li, and J. W. Ren, "Distributed dispatch approach for

bulk AC/DC hybrid systems with high wind power penetration," IEEE Trans. on

Power Syst., vol. 33, no. 3, pp. 3325-3336, 2017.



189

[69]Z. Chen, J. Zhu, H. Dong, W. Wu, and H. Zhu, “Optimal dispatch of WT/PV/ES

combined generation system based on cyber-physical-social Integration,” IEEE

Trans. on Smart Grid, vol. 13, no. 1, pp. 342-354, Jan. 2022.

[70]V. P.Sakthivel and P. D. Sathya, “Single and multi-area multi-fuel economic

dispatch using a fuzzified squirrel search algorithm,” Protection and Control of

Modern Power Systems, vol. 6, no. 2, pp. 147-159, 2021.

[71]Z. Zhang, C. Wang, S. Chen, Y. Zhao, X. Dong, and X. Han, “Multi-time scale

co-optimized dispatch for integrated electricity and natural gas system

considering bidirectional interactions and renewable uncertainties,” IEEE Trans.

Ind. Appl, 2022 (Early Access).

[72]C. Z. Shao, Y. Ding, P. Siano, and Y. H. Song, “Optimal scheduling of the

integrated electricity and natural gas systems considering the integrated demand

response of energy hubs, ” IEEE Syst. J., vol. 15, no. 3, pp. 4545-4553, 2020.

[73]Y. Wang, S. Lou, Y. Wu, and S. Wang, “Flexible operation of retrofitted

coal-fired power plants to reduce wind curtailment considering thermal energy

storage,” IEEE Trans. on Power Syst., vol. 35, no. 2, pp. 1178-1187, Mar. 2020.

[74]Z. Zhang, J. Shi, W. Yang, Z. Song, Z. Chen, and D. Lin, “Deep reinforcement

learning based bi-layer optimal scheduling for microgrid considering flexible load

control, ” CSEE J. Power Energy Syst., 2021 (Early Access).

[75]United Nations Economic Commission For Europe. Opportunities for coupling

wind and coal based generation in the electricity sector. Available Online:

https://unece.org/fileadmin/DAM/energy/se/pdfs/CES/ge12_WS/CEP-12_2016_I

NF.3v2.pdf.

[76]C. Na, et al, “Economic decision-making for coal power flexibility retrofitting

and compensation in China,” Sustainability, vol.10, no.348, 2018.

[77]F. Ess, F. Peter, and Dr. F. Klummp, “Flexibility in thermal power plants-with a

focus on existing coal-fired power plants,” Agora Energiewende, Berlin,

Germany, Tech. Rep. 115/04-S-2017/EN, Jun. 2017.



190

[78]T. Li and M. Shahidehpour, “Dynamic ramping in unit commitment,” IEEE

Trans. Power Syst., vol. 22, no. 3, pp. 1379–1381, Aug. 2007.

[79]C. M. Correa-Posada, G. Morales-España, P. Dueñas, and P. Sánchez-Martín,

“Dynamic Ramping Model Including Intraperiod Ramp-Rate Changes in Unit

Commitment,” IEEE Trans. on Sustain. Energy, vol. 8, no. 1, pp. 43-50, Jan.

2017.

[80]Z. Jin, K. Pan, L. Fan and T. Ding, “Data-driven look-ahead unit commitment

considering forbidden zones and dynamic ramp rate,” IEEE Trans. Ind. Inf, vol.

15, no. 6, pp. 3267-3276, June 2019.

[81]X. Li et al., “Wind-Thermal-CSP bundling model with an adjustable heat storage

strategy for CSP stations, ” IEEE Access, vol. 9, pp. 25984-25992, 2021.

[82]C. Lei, S. Bu, Q. Wang, N. Zhou, L. Yang, and X. Xiong, “Load transfer

optimization considering hot-spot and top-oil temperature limits of

transformers, ” IEEE Trans. on Power Deli., vol. 37, no. 3, pp. 2194-2208, June

2022.

[83] “IEEE Draft Guide for Overhead AC Transmission Line Design, ” IEEE

P1863/D10, pp. 1-96, 25 July 2019.

[84]"Distributed Generation in Europe – Physical Infrastructure and Distributed

Generation Connection," KEMA, Inc., pp. 26, 2011.

[85]Mikko Laaja, "General planning principles of high voltage distribution networks

including wind power," Master of Science Thesis, Department of Computing and

Electrical Engineering, Tampere University of Technology, Finland, 2012.

[Online]. Available: https://trepo.tuni.fi/handle/123456789/21124.

[86]A. M. Geoffrion, “Generalized benders decomposition,” J. Optim. Theory Appl.,

vol. 10, no. 4: pp. 237-260, 1972.

[87]F. Q. You, I. E. Grossmann, “Multicut benders decomposition algorithm for

process supply chain planning under uncertainty,” Ann. Oper. Res., vol. 210, pp.

191–211, 2013.



191

[88]M. Farivar and S. Low, “Branch flow model: Relaxations and convexification –

Part I, ” IEEE Trans. Power Syst., Vol. 28, No. 3, Aug. 2013.

[89]S. H. Low, “Convex relaxation of optimal power flow part I: Formulations and

equivalence,” IEEE Trans. Control Netw. Syst., vol. 1, no. 1, pp. 15–27, Mar.

2014.

[90]H. Zhu and H. J. Liu, “Fast Local Voltage Control Under Limited Reactive Power:

Optimality and Stability Analysis,” IEEE Trans. Power Syst., vol. 31, no. 5, pp.

3794-3803, Sept. 2016.

[91]Ben-Tal and A. Nemirovski, “On polyhedral approximations of the second-order

cone,” Math. Oper. Res., vol. 26, no. 2, pp. 193–205, May 2001

[92]C. Lei. MATDNR Toolbox v1.0. [Online]. Available:

https://github.com/honolulufishing/MATDNR/releases /tag/Matlab.

[93]MOSEK Aps Website. [Online]. Available: https://www.mosek.com.

[94]N.V. Sahinidis, “BARON: A general purpose global optimization software

package,” J Glob Opti., no.8, pp. 201–205, 1996.

[95]J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over

symmetric cones,” Optimization Methods and Software, no. 11, vol. 1–4, pp.

625–653, 1999.

[96]W. Yan, J. Yu, D. C. Yu and K. Bhattarai, “A new optimal reactive power flow

model in rectangular form and its solution by predictor corrector primal dual

interior point method,” IEEE Trans. Power Syst, vol. 21, no. 1, pp. 61-67, Feb.

2006.

[97]M. K. Singh, V. Kekatos, S. Taheri, K. P. Schneider, and C.-C. Liu, “Enforcing

radiality constraints for DER-aided power distribution grid reconfiguration,”

arXiv preprint arXiv:1910.03020, 2019.

[98]Y. Wang, Y. Xu, J. Li, J. He and X. Wang, “On the Radiality Constraints for

Distribution System Restoration and Reconfiguration Problems,” IEEE Trans.

Power Syst., vol. 35, no. 4, pp. 3294-3296, July 2020.

[99]H. Ahmadi and J. R. Martí, “Mathematical representation of radiality constraint in



192

distribution system reconfiguration problem,” Int. J. Electr. Power Energy Syst.,

vol. 64, pp. 293-299, 2015.

[100] G. McCormick, “Computability of global solutions to factorable nonconvex

programs: Part I convex underestimating problems,” Math. Program., vol. 10, pp.

146–175, 1976.

[101] R. Billinton, S. Kumar, N. Chowdhury, K. Chu, K. Debnath, L. Goel, E.

Khan, P. Kos, G. Nourbakhsh, and J. Oteng-Adjei, “A reliability test system for

educational purposes-basic data,” IEEE Trans. on Power Syst., vol. 4, no. 3, pp.

1238–1244, 1989.

[102] K. P. Schneider, B. Mather, B. C. Pal, C.-W. Ten, G. J. Shirek, H. Zhu, J. C.

Fuller, J. L. R. Pereira, L. F. Ochoa, L. R. de Araujo et al., “Analytic

considerations and design basis for the ieee distribution test feeders,” IEEE Trans.

on Power Syst., vol. 33, no. 3, pp. 3181–3188, 2017.

[103] M. ApS, “Mosek optimization toolbox for matlab,” User’s Guide and

Reference Manual, Version, vol. 4, p. 1, 2022.

[104] J. Dong, K. Xie , C. Singh, and B. Hu, “Optimal capacity and type planning

of generating units in a bundled wind–thermal generation system,” Applied

Energy, pp. 200-210, 2016.

[105] X. Zhang, Y. Liu, H. Gao, L. Wang, and J. Liu, “A bi-level corrective Line

switching model for urban power grid congestion mitigation,” IEEE Trans. on

Power Syst., vol. 35, no. 4, pp. 2959-2970, July 2020.

[106] J. Wang, et al. “Cooperative overload control strategy of power

grid-transformer considering dynamic security margin of transformer in

emergencies,” Int. J. Electr. Power Energy Syst., vol. 140, pp. 108098, 2022.

[107] N. I. Muskhelishvili, Singular Integral Equations, Netherlands: Groningen,

1953.

[108] B. Fan and X. Wang, "Distributed privacy-preserving active power sharing

and frequency regulation in microgrids," IEEE Trans. on Smart Grid, vol. 12, no.

4, pp. 3665-3668, July 2021.



193

[109] IBM CPLEX® Optimizer Website. [Online]. Available: https://www.ibm.

com/analytics/cplex-optimizer.



194




