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Abstract

The maritime transportation sector is increasingly relying on optimization and an-

alytics to maximize the potential of the extensive data generated in the industry.

This thesis leverages real-world data to optimize ship maintenance planning, port

state control officer (PSCO) routing, and container ship bunkering decisions by

using advanced prescriptive analytics methodologies.

The first study introduces a smart predict-then-optimize (SPO) framework,

using an ensemble of SPO trees (SPOTs) for ship maintenance planning. This

method significantly enhances the traditional predict-then-optimize (PO) approach

by integrating operational, repair, and risk costs into the machine learning (ML)

model. It effectively reduces total operating expenses of ship inspections by ap-

proximately 1% over the PO-based scheme and at least 3% over non-ML-based

schemes. The SPO-based plans also contribute to more efficient port operations

by reducing the necessity for intensive PSC inspections, thus alleviating port con-

gestion.

The second study explores the PSCO routing problem in the face of uncertain

ship conditions. By embedding this optimization problem into theMLmodel train-

ing process through a decision-focused learning framework, this study addresses

the limitations of the traditional two-stage framework that separates prediction
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and optimization. A compact model using undominated inspection templates and

a surrogate decision loss function based on noise-contrastive estimation enhances

solution efficiency and decision accuracy, underscoring the importance of inte-

grating decision making directly into the learning process.

The third study optimizes container ship bunkering decisions under uncertain

fuel prices. It employs a two-channel long short-term memory model to cap-

ture spatiotemporal correlations amongmulti-port fuel prices, significantly outper-

forming traditional predictive models. Two prescriptive analytics frameworks are

compared: a two-stage contextual deterministic programming model and a mul-

tistage contextual stochastic programming model. The suitability of these frame-

works varies based on the variance of inter-port fuel prices and the number of ports

on each shipping service, offering crucial insights for maritime operators.

This thesis collectively demonstrates the efficacy of integratingMLwithmath-

ematical optimization to address critical operational challenges in maritime trans-

portation, leading to substantial economic benefits and operational efficiencies.

The approaches applied in this thesis pave the way for innovative practices in mar-

itime logistics, emphasizing the transformative potential of data-driven decision

making in complex operational contexts.

Keywords: maritime transportation; port state control; routing; container ship-

ping; prescriptive analytics; data-driven optimization; machine learning; stochas-

tic programming.

iii



Publications and Working Papers

Arising from the Thesis

• Tian, X., Yan, R., Wang, S., Liu, Y., 2023. Tutorial on prescriptive analytics

for logistics: What to predict and how to predict. Electronic Research Archive

31(4), 2265–2285.

• Tian, X., Yan, R., Liu, Y.,Wang, S., 2023. A smart predict-then-optimizemethod

for targeted and cost-effective maritime transportation. Transportation Research

Part B: Methodological 172(2), 32–52.

• Tian, X., Yan, R., Wang, S., Laporte, G., 2023. Prescriptive analytics for a mar-

itime routing problem. Ocean & Coastal Management 242(1), 106695.

• Tian, X., Wang, S., Liu, Y., Yang, Y. Data-driven optimization for container

ship bunkering management under fuel price uncertainty. Under major revision

at Transportation Research Part B.

Others

• Tian, X., Wang, S., Laporte, G., Yang, Y., 2024. Determinism versus uncer-

tainty: Examining the worst-case expected performance of data-driven policies.

iv



European Journal of Operational Research 318(1), 242–252.

• Tian, X., Shangguan, Y., Pang, K.W., Guo, Y., Lyu, M., Wang, S., Huang, G.Q.

Carbon emission allocation policy making in liner shipping: A novel approach

toward equitable and efficient maritime sustainability. Ocean & Coastal Man-

agement, in press.

• Wang, T., Meng, Q., Tian, X., 2024. Dynamic container slot allocation for a

liner shipping service. Transportation Research Part B: Methodological 174,

102874.

• Shangguan, Y., Tian, X., Pang, A., Ruan, Q., Jin, Y., Wang, S, 2024. Navigating

the green shipping: Stochastic hydrogen hub deployment in inland waterways.

Transportation Research Part D: Transport and Environment 129, 104126.

• Yan, R., Tian, X., Wang, S., Peng, C., 2024. Development of computer vision

informed container crane operator alarm methods. Transportmetrica A: Trans-

port Science 20(2), 2145862.

• Wang, H., Yi, W., Tian, X., Zhen, L., 2023. Prescriptive analytics for intelligent

transportation systems with uncertain demand. ASCE Journal of Transportation

Engineering, Part A: Systems 149(12), 04023118.

• Tian, X., Wang, S., Zhen, L., Shen, M.Z.J. k-Tree: Crossing sharp boundaries

to find neighbors. Submitted.

• Tian, X., Wang, S., Laporte, G., Yang, Y. Contextual stochastic optimization:

machine learning-driven estimation of conditional distributions. Submitted.

v



• Tian, X., Wang, S., Laporte, G. Multioutput shrunken regression tree. Submit-

ted.

vi



Acknowledgements

As I organize my thesis, revisiting previously published or under-review studies,

I often discover new issues—such as imprecise mathematical formatting and un-

clear statements—that I may not have recognized a year or two ago. These expe-

riences mark tangible traces of my PhD journey, making me profoundly grateful

for the support that has made them possible.

First, I would like to express my deepest gratitude to my supervisor, Prof.

Shuaian (Hans) Wang. Hans is the most intelligent and hard-working individual

I have encountered. His passion for absorbing and transferring knowledge has

provided me with many innovative and unexpected perspectives. I will forever

cherish the exciting moments when he shared his creative ideas for my research,

including the k-Tree universe and a series of insights on deficiencies in prescrip-

tive analytics frameworks. Hans’s patience and care for his students have been a

constant source of encouragement, especially when I faced challenges. I am in-

credibly fortunate to have been supervised by him during my PhD studies. His

expertise and kindness have made this journey smoother and faster than I antici-

pated. I hope to continue learning from Hans and aspire to emulate his creativity,

rigor, and lifelong dedication to research.

Additionally, I am thankful to Prof. Tingsong Wang for recommending me for

vii



the PhD program and for his guidance during my master’s studies. I extend my

appreciation to all of my co-authors, particularly Prof. Gilbert Laporte from HEC

Montréal and Dr. Ran Yan from Nanyang Technological University, for their ef-

forts and valuable advice. I am also grateful to all of the faculty and administrative

members at LMS for fostering a supportive learning and research environment.

My thanks go as well to my friends, both those far away and those I met at PolyU,

who have brightened my spare time.

Last but not least, many thanks go to my parents for their endless support.

Although they may not be able to understand the specifics of my research, they

try to comprehend my challenges and provide understanding and support. Their

unconditional love and absence of pressure have allowedme the freedom to pursue

my passions.

viii



List of Abbreviations

(in the order of appearance)

Abbreviations in Chapter 2

• port state control (PSC)

• port state control officer (PSCO)

• machine learning (ML)

• International Maritime Organization (IMO)

• predict-then-optimize (PO)

• smart predict-then-optimize (SPO)

• smart predict-then-optimize tree (SPOT)

• smart predict-then-optimize forest (SPOF)

• random forest (RF)

• ship risk profile (SRP)

• tree augmented naive (TAN)

• support vector machine (SVM)

• Bayesian network (BN)

• Memorandum of Understanding (MoU)

• weighted sample average approximation (w-SAA)

ix



• classification and regression tree (CART)

• area under the receiver operating characteristic curve (ROC AUC)

• random inspection scheme (RIS)

• no inspection scheme (NIS)

• overall inspection scheme (OIS)

• predict-then-optimize scheme (POS)

• smart predict-then-optimize scheme (SPOS)

Abbreviations in Chapter 3

• International Maritime Organization (IMO)

• port state control (PSC)

• port state control officer (PSCO)

• Kwai-Tsing Container Terminal (KTCT)

• River Trade Terminal (RTT)

• machine learning (ML)

• noise-contrastive estimation (NCE)

• mean squared error (MSE)

• artificial neural network (ANN)

• maximum a posteriori (MAP)

• Memorandum of Understanding (MoU)

Abbreviations in Chapter 4

• high-sulfur fuel oil (HSFO)

• metric tonne (MT)

x



• International Maritime Organization (IMO)

• very low-sulfur fuel oil (VLSFO)

• machine learning (ML)

• two-channel long short-term memory (TC-LSTM)

• Monte Carlo (MC)

• sample average approximation (SAA)

• centistoke (CST)

• liquefied natural gas (LNG)

• recurrent neural network (RNN)

• predict-then-optimize (PTO)

• estimate-then-optimize (ETO)

• Two-stage contextual Deterministic framework with Point predictions (TDP)

• Multistage contextual Stochastic frameworkwithDistributional estimates (MSD)

• spatial-temporal (ST)

• intra-sequence temporal (IST)

• inter-sequence spatial (ISS)

• fully connected (FC)

• root mean square error (RMSE)

• mean absolute error (MAE)

• mean absolute percentage error (MAPE)

xi



Contents

Certificate of Originality i

Abstract iii

Publications and Working Papers vi

Acknowledgements viii

List of Abbreviations xi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Prescriptive Analytics for Ship Maintenance Optimization 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Ship maintenance planning problem . . . . . . . . . . . . 14

2.3.2 Introduction of CART and RF . . . . . . . . . . . . . . . 18

xii



CONTENTS

2.3.3 Measuring the detention contribution of the deficiency items

under each deficiency code . . . . . . . . . . . . . . . . . 19

2.4 The PO Framework . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 The SPO Framework . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 SPO loss . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.2 Construction of SPOT . . . . . . . . . . . . . . . . . . . 25

2.5.3 Construction of SPOF . . . . . . . . . . . . . . . . . . . 29

2.6 Computational Experiments . . . . . . . . . . . . . . . . . . . . 29

2.6.1 Data description . . . . . . . . . . . . . . . . . . . . . . 30

2.6.2 Measuring each deficiency code’s risk cost . . . . . . . . 31

2.6.3 Comparison of ship maintenance schemes . . . . . . . . . 34

2.6.4 Sensitivity analysis of risk costs . . . . . . . . . . . . . . 40

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Prescriptive Analytics for a Maritime Routing Problem 44

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 PSCO Routing Problem . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 PSCO routing model M1 . . . . . . . . . . . . . . . . . . 52

3.3.2 PSCO routing model M2 . . . . . . . . . . . . . . . . . . 55

3.3.3 Comparison of M1 and M2 . . . . . . . . . . . . . . . . . 63

3.4 The Two-Stage Framework . . . . . . . . . . . . . . . . . . . . . 66

3.5 The Decision-Focused Learning Framework . . . . . . . . . . . . 68

3.5.1 The decision loss . . . . . . . . . . . . . . . . . . . . . . 68

3.5.2 Contrastive losses . . . . . . . . . . . . . . . . . . . . . . 70

xiii



CONTENTS

3.5.3 Gradient-descent decision-focused learningwith noise sam-

ples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6 Computational Experiments . . . . . . . . . . . . . . . . . . . . 76

3.6.1 Data description . . . . . . . . . . . . . . . . . . . . . . 77

3.6.2 Comparison of the two-stage framework and the decision-

focused learning framework . . . . . . . . . . . . . . . . 79

3.6.3 The influence of psolve . . . . . . . . . . . . . . . . . . . 84

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 Prescriptive Analytics for Container Ship Bunkering Optimization 90

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Prescriptive Analytics Frameworks . . . . . . . . . . . . . . . . . 103

4.4.1 The TDP framework . . . . . . . . . . . . . . . . . . . . 103

4.4.2 The MSD framework . . . . . . . . . . . . . . . . . . . . 106

4.5 Predictive Methods . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.5.1 Prediction problem definition . . . . . . . . . . . . . . . 111

4.5.2 Correlated ship fuel price prediction: TC-LSTM . . . . . 115

4.5.3 Distributional estimates in deep learning: MC dropout . . 122

4.6 Computational Experiments . . . . . . . . . . . . . . . . . . . . 124

4.6.1 Experiments using real-world data . . . . . . . . . . . . . 125

4.6.2 Experiments using synthetic data . . . . . . . . . . . . . . 136

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

xiv



CONTENTS

5 Conclusions and Future Research Directions 142

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . 144

References 161

xv



List of Figures

1.1 A general workflow of business analytics (He et al., 2022) . . . . 3

2.1 Detention contributions of the deficiency items under 16 deficiency

codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Risk costs of 16 deficiency codes when λ = 100 . . . . . . . . . . 34

2.3 Average total operational costs of five ship maintenance schemes

for the test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Cost savings of average single-code operational costs for 16 defi-

ciency codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Cost savings of the average total operational costs under different

values of λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Cost savings of the average total operational costs under different

values of reputation cost . . . . . . . . . . . . . . . . . . . . . . 41

3.1 The number of added noise samples in each epoch for experiments

using the MAP-variant loss under different instance sizes . . . . . 83

3.2 The average regret of the 30 experiments using models adopting

the MAP-variant loss with different psolve and different instance sizes 86

xvi



LIST OF FIGURES

3.3 The average training time of the 30 experiments using models

adopting the MAP-variant loss with different psolve and different

instance sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1 VLSFO prices of four ports . . . . . . . . . . . . . . . . . . . . . 93

4.2 An illustrative example of the multistage ship bunkering problem . 108

4.3 An illustrative example of nonanticipativity constraints . . . . . . 110

4.4 The reconstruction of time series data . . . . . . . . . . . . . . . 115

4.5 The structure and training process of the TC-LSTM . . . . . . . . 117

4.6 The structure of the ST cell . . . . . . . . . . . . . . . . . . . . . 117

4.7 The structure of the ST fusion . . . . . . . . . . . . . . . . . . . 117

4.8 Fuel prices of the 13 global bunkering ports . . . . . . . . . . . . 126

xvii



List of Tables

2.1 Description of deficiency codes in the Tokyo MoU . . . . . . . . 30

2.2 The average single-code costs of five ship maintenance schemes

for the test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 The category of deficiency codes and their characteristics . . . . . 39

3.1 Travel time (hour) teiej between two area parts (ei, ej) . . . . . . . 63

3.2 The ranges of input integer parameters for models M1 and M2 . . 64

3.3 Computational results for models M1 and M2 . . . . . . . . . . . 65

3.4 The computational results of 30 experiments using models with

different loss functions under different instance sizes . . . . . . . 80

4.1 Descriptive information on fuel prices of the 13 global bunkering

ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.2 Tuning results of hyperparameters . . . . . . . . . . . . . . . . . 129

4.3 Prediction performance of TC-LSTM and LSTM . . . . . . . . . 129

4.4 Decision performance of shipping routes with four ports of call . . 132

4.5 Decision performance of shipping routes with six ports of call . . 132

4.6 Decision performance of shipping routes with eight ports of call . 133

4.7 Decision performance of shipping routes with ten ports of call . . 133

xviii



LIST OF TABLES

4.8 Descriptive statistics of synthetic data when η = 100 . . . . . . . 137

4.9 Descriptive statistics of synthetic data when η = 1, 000 . . . . . . 138

4.10 Descriptive statistics of synthetic data when η = 10, 000 . . . . . 139

4.11 Decision performance using synthetic data . . . . . . . . . . . . . 139

xix



Chapter 1

Introduction

1.1 Background

Maritime transportation is a backbone of global trade, accounting for over 80%

of the world’s trade by volume due to its cost efficiency and large capacity (Ng,

2015; Sun and Zheng, 2016). The complexity of the maritime transportation net-

work, consisting of interconnected routes and ports, supports extensive activities

such as cargo handling, logistics operations, and ship maintenance. However, this

sector is characterized by significant uncertainties including unpredictable sea and

ship conditions, variable shipping demand, and fluctuating fuel prices. These un-

certainties challenge traditional deterministic models used in maritime logistics,

which often fail to capture the uncertain nature of maritime operations, leading to

suboptimal decision making and inefficiencies.

Ports act as critical nodes within the shipping network where operational de-

lays and inefficiencies can significantly affect the global supply chain. Factors like

uncertain ship arrival times, variable cargo volumes, and limited port facilities con-
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CHAPTER 1. INTRODUCTION

tribute to operational uncertainties. For example, delays in one port can propagate

through the network, causing further delays and increased costs. Furthermore, the

volatile nature of fuel prices adds a layer of economic uncertainty, influencing op-

erational strategies such as ship routing, sailing speed, and bunkering decisions,

which in turn impacts fuel consumption and greenhouse gas emissions.

Like many other industries, maritime transportation is more and more driven

by optimization and analytics to make the best out of the wealth of data gener-

ated through modern technologies (Fagerholt et al., 2023). Figure 1.1 depicts the

workflow of business analytics (He et al., 2022). The workflow is motivated by the

business problem, which consists of the collection, preprocessing, and interpreta-

tion of the data, the selection and refinement of predictive analytics methods, and

the modeling for decision making in prescriptive analytics. The integration of pre-

scriptive analytics into maritime transportation offers a transformative potential to

tackle uncertain optimization problems effectively. By combining advanced data

analytics, machine learning, and optimization techniques, prescriptive analytics

provides actionable insights that enable shipping companies and port authorities

to make more informed decisions.

This thesis aims to explore the implementation of prescriptive analytics across

three critical areas within maritime transportation: designing cost-effective and

targeted ship maintenance plans for ship operators, enhancing ship inspection rout-

ing to maximize inspection benefits, and managing ship bunkering plans to miti-

gate the effects of fuel price volatility. Each of these areas represents a vital aspect

of maritime operations where prescriptive analytics can bring substantial benefits,

driving the industry towards more intelligent practices.
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CHAPTER 1. INTRODUCTION

Figure 1.1: A general workflow of business analytics (He et al., 2022)

1.2 Thesis Outline

This thesis comprises three studies that demonstrate the application of prescriptive

analytics in different aspects of maritime transportation. The studies are structured

as follows:

• Study 1: Prescriptive Analytics for Ship Maintenance Optimization1

Chapter 2 uses port state control inspection data to design cost-effective and

targeted ship maintenance plans for ship operators. This study designs a smart

predict-then-optimize framework that innovatively incorporates the operational,

repair, and risk costs into the training process of the machine learning model.

By optimizing maintenance schedules based on decision-oriented predictions,

this approach aims to minimize operational costs, reduce detention rates, and

enhance the efficiency of inspections.
1This study has been published: Tian, X., Yan, R., Liu, Y., Wang, S., 2023. A smart predict-

then-optimize method for targeted and cost-effective maritime transportation. Transportation Re-
search Part B: Methodological 172, 32–52.
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• Study 2: Prescriptive Analytics for a Maritime Routing Problem2

Chapter 3 explores the optimization of port state control officer routing—a key

problem in operational logistics for port authorities. Traditional methods often

do not consider the impacts of ship deficiency prediction outcomes on inspector

routing efficiency. This study designs a decision-focused learning framework

that embeds the optimization problem directly into the machine learning train-

ing process. Consequently, this study improves the prescriptive accuracy for

inspector routing decisions and ultimately reduces unnecessary inspections and

port congestion.

• Study 3: Prescriptive Analytics for Container Ship Bunkering Optimiza-

tion

Chapter 4 tackles the optimization of container ship bunkering decisions in the

face of uncertain fuel prices. Given the volatility of fuel prices and their signif-

icant impact on operational costs, this study uses two prescriptive frameworks

to model and optimize these decisions. The study assesses a two-stage contex-

tual deterministic programming model and a multistage contextual stochastic

programming model, examining their effectiveness in various scenarios. This

comparison aims to identify the most effective strategy to minimize fuel costs

and ensure economic efficiency in maritime operations.

At last, Chapter 5 concludes the thesis and discusses several future research

directions.

2This study has been published: Tian, X., Yan, R., Wang, S., Laporte, G., 2023. Prescriptive
analytics for a maritime routing problem. Ocean & Coastal Management 242(1), 106695.
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Chapter 2

Prescriptive Analytics for Ship

Maintenance Optimization

2.1 Introduction

Since 1982, port authorities have used port state control (PSC) to inspect foreign

visiting ships as the last line of defense against substandard ships. A ship con-

dition found to be non-compliant with the relevant convention(s) during a PSC

inspection is deemed a deficiency.1 When PSC officers (PSCOs) identify critical

deficiencies, the port state may detain the ship and may require the ship to rectify

these deficiencies before departing. Most studies of PSC have used machine learn-

ing (ML) methods and PSC data to design inspection schemes for port authorities,

examining how to implement PSC inspections more efficiently, and discussing

the effects of PSC inspections (Yan and Wang, 2019). However, to the best of our
1See https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/

IndexofIMOResolutions/AssemblyDocuments/A.1119(30).pdf.
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knowledge, no studies have been conducted to examine how ship operators can

benefit from using ML technologies to analyze PSC record data.

For ship operators, ship detention is the most negative outcome of a PSC in-

spection, as it indicates that the ship is in poor condition and is at risk of incidents

and accidents. Furthermore, ship detention delays shipping schedules (Yan et al.,

2021b) and maritime transportation delays are costly. Additionally, by undermin-

ing the reputation of the ship’s flag state, recognized organization, and company,

ship detention leads to higher inspection rates of their ships in the future (Yan et al.,

2021b). Hence, given the impact of ship detention on safety, cost, and reputation,

being able to identify high-risk ships that have a greater number of deficiencies and

conduct targeted ship maintenance before formal PSC inspections is of profound

value to ship operators. Furthermore, targeted ship maintenance is not only bene-

ficial to ship operators but can improve overall ship conditions, thereby reducing

the resources needed for formal PSC inspections (Xu and Lee, 2016). Reducing

the number of detained ships will also alleviate port congestion and improve the

efficiency of port operations (Wang et al., 2018). In the long run, targeted ship

maintenance will improve maritime safety, the marine environment, and the liv-

ing and working conditions of the ships’ crew, thus achieving the objective of PSC.

Therefore, there is a need for studies using PSC data to design ship maintenance

schemes that focus on ship operators’ decisions about which deficiency codes need

to be inspected before formal PSC inspections.

When carrying out ship maintenance before formal PSC inspections, ship op-

erators are concerned with ship deficiencies, which are commonly assumed to be

the primary cause of ship detentions (Wu et al., 2022). When ship operators have

limited ship maintenance resources, they are likely to prioritize high-risk deficien-
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cies that may warrant detentions. However, to the best of our knowledge, there are

no guidelines for detainable deficiencies except for the general descriptions given

in International Maritime Organization (IMO) Resolution A.1119(30).2 Hence,

before developing a framework for designing ship maintenance schemes, we first

conduct a preliminary analysis to examine the contribution of each deficiency code

to the detention outcome—the detention contribution of the deficiency items un-

der each code. We then transform this detention contribution into the risk cost of

having deficiency items under each code.

Eruguz et al. (2017) classify the different maintenance strategies as correc-

tive (failure-based), preventive (schedule-based), and predictive (condition-based)

maintenance. Our focus on how to design maintenance schemes before formal

PSC inspections using ML models and PSC data falls into the third category. Tra-

ditionally, the predict-then-optimize (PO) framework is used for the third category,

and it consists of two stages: 1) predicting the probability of having deficiency

items under each code using ML models and 2) deciding whether to inspect each

deficiency code by solving the downstream optimization model built from the pre-

dictions. In the PO framework, the prediction model focuses on minimizing the

prediction error and ignores the impact of the prediction on the downstream deci-

sion. In contrast, this study focuses on the ship operators’ objective of obtaining

near-optimal ship maintenance decisions while paying less attention to prediction

error. We thus train ML models using a loss function that minimizes the decision

error by measuring the sub-optimality of the decisions generated by the predic-

tions.
2See https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/

IndexofIMOResolutions/AssemblyDocuments/A.1119(30).pdf.
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To integrate the prediction task with the optimization task, Elmachtoub and

Grigas (2021) propose a smart predict-then-optimize (SPO) loss function for a

broad class of decision-making problems. However, they find that training ML

models using SPO loss is likely to be impossible because of the nonconvex and

discontinuous characteristics of the SPO loss function. The convex surrogate loss

function that they propose, referred to as the SPO+ loss, does not guarantee op-

timal decisions but only provides an approximation for computational feasibility.

In a subsequent study, Elmachtoub et al. (2020) propose an algorithm for train-

ing decision trees using SPO loss, called SPO trees (SPOTs). In our study, we

build on this tractable framework proposed by Elmachtoub et al. (2020) and con-

struct tailored SPOTs by exploiting certain structural properties of the optimization

problem analyzed in this study. To improve decision performance, we also train

an ensemble of SPOTs referred to as an SPO forest (SPOF).

Our contributions can be summarized as follows. First, our study innovatively

uses PSC data to design ship maintenance plans for ship operators. When simu-

lating ship operators’ decision-making process, we consider the impacts of ship

detention on them and identify three types of operational costs associated with

each deficiency code: inspection cost, repair cost, and risk cost. The ship mainte-

nance plans consider all of the three costs and the occurrence probability of having

deficiency items under each code. Second, the risk cost of each deficiency code

is determined by the detention contribution of the deficiency items under each

code, obtained from a random forest (RF) model of ship detention prediction. De-

ficiency codes with higher detainable risks are assigned higher risk costs. Third,

rather than using the PO framework, we adopt an SPO framework using an en-

semble of SPOTs, which minimizes the SPO loss by leveraging the optimization
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problem’s properties. By comparing our proposed method to other ship mainte-

nance schemes, we demonstrate its superiority.

The remainder of this chapter is organized as follows. Section 2.2 reviews the

related research. Section 2.3 introduces the preliminary concepts, including the

ship maintenance planning problem, the basic introduction about ML models that

we use in this study, and the method for determining the detention contribution

of the deficiency items under each code. Section 2.4 depicts the traditional PO

framework, and based on this framework, Section 2.5 shows the improved SPO

framework. Section 2.6 describes the computational experiments used to compare

different types of ship maintenance schemes. Section 2.7 concludes the study.

2.2 Literature Review

Most studies of PSC have focused on improving the inspection efficiency of port

authorities, as current ship risk profile (SRP) schemes do not efficiently identify

substandard ships. As a PSC inspection can result in the identification of defi-

ciencies and detention, many studies have sought to improve inspection efficiency

by developing methods for identifying ships with more deficiencies or higher de-

tention probabilities. For example, to assist the port state in identifying high-risk

ships with more deficiencies, Wang et al. (2019) develop a tree augmented naive

(TAN) Bayes classifier to predict the number of deficiencies of each ship. Chung

et al. (2020) and Yan et al. (2021c) use the Apriori algorithm to determine the type

and sequence of deficiency codes that should be inspected. In recent years, ship

deficiency prediction models have been used to inform the allocation of scarce in-

spection resources. That is known as the PSCO scheduling problem and has been
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studied by Yan et al. (2020) and Yan et al. (2021a). In their research frameworks,

Yan et al. (2020) first compare the results of three RF models with different loss

functions that predicted ship deficiency numbers under four deficiency categories

and then establish optimization models for efficiently matching officers’ expertise

with ship deficiency conditions. Subsequently, Yan et al. (2021a) improve pre-

diction performance by integrating shipping domain knowledge into an XGBoost

model, and the downstream PSCO scheduling models were modified to be more

consistent with practice.

Xu et al. (2007a) are the first to develop a support vector machine (SVM)

model to predict ship detention using both generic and historic factors. A subse-

quent study by Xu et al. (2007b) enhances the prediction performance by introduc-

ing new features extracted fromweb mining technology into the SVMmodel. Gao

et al. (2008) further integrate the SVM model with the k-nearest neighbor model

and bag-of-words model to predict ship detention. Yang et al. (2018a) propose a

data-driven Bayesian network (BN) model based on TAN learning to predict the

ship detention probability of bulk carriers under the Paris Memorandum of Under-

standing (MoU). To determine the optimal inspection policy for a port, Yang et al.

(2018a) incorporate the results of the ship detention prediction model into a game

model that considers both port authorities and ship operators. In a recent study,

Wu et al. (2022) use an SVMmodel to predict ship detention, where input features

are selected using an analytic hierarchy process and a grey relational analysis to

improve prediction accuracy. Yan et al. (2021b) use a balanced RF model to pre-

dict ship detention to address the issues caused by the low-probability detention

outcome.

As mentioned above, some recent studies of PSC have integrated prediction

10



CHAPTER 2. PRESCRIPTIVE ANALYTICS FOR SHIP MAINTENANCE OPTIMIZATION

and optimization (Yan et al., 2020, 2021a). As we also combine prediction and

optimization by training SPOTs, we briefly review the research on training deci-

sion trees for personalizing decisions from a finite set of possible options. Kallus

(2017) trains trees with a loss function to maximize the effectiveness of the pre-

dictions rather than minimize the prediction error. Bertsimas et al. (2019) study a

similar treatment recommendation problem but adopt a weighted loss function to

combine prediction and decision error. Elmachtoub et al. (2020) consider a more

general class of decision-making problems that could involve a large number of

decisions represented by a general feasible region. To train decision trees under

SPO loss, they propose a tractable methodology called SPOTs. They claim that

SPOTs could benefit from the interpretability of decision trees, allowing for an

interpretable segmentation of a set of contextual features with different optimal

solutions to the optimization problem of interest. In a recent study, Kallus and

Mao (2022) also study how to fit the forest policies in contextual stochastic op-

timization problems to directly minimize the optimization costs. There are two

major differences between Elmachtoub et al. (2020) and Kallus and Mao (2022).

The first one is the different splitting rules for the nodes in a tree. Elmachtoub et al.

(2020) split the nodes greedily, searching all possible values of all the chosen fea-

tures to find the optimal split. Kallus and Mao (2022) term this method the oracle

splitting criterion. However, this method may lead to the problem of burdensome

re-optimization for every candidate split when applied to large-scale problems.

Therefore, Kallus and Mao (2022) propose a computationally efficient node split-

ting method by leveraging a second-order perturbation analysis of stochastic opti-

mization for large-scale optimization problems and datasets. It is possible that an

increase in training efficiency is at the cost of a decrease in decision quality be-
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cause Kallus and Mao (2022) use approximate rather than optimal splitting meth-

ods. Therefore, we apply oracle splitting rules that do not consume large com-

putational resources for our problem because of its moderate size and structural

properties, and we generate high-quality local-optimal splits. The second differ-

ence lies in the methods of prescriptive analytics. In our work, the PO and SPO

frameworks still first predict the uncertain parameters in the optimization prob-

lem and then derive the final decisions. However, Kallus and Mao (2022) do not

utilize the point predictions of the uncertain parameters; instead, they predict the

distributions of the uncertain parameters. Their method resembles the weighted

sample average approximation (w-SAA) method in Bertsimas and Kallus (2020),

which is mainly suitable for nonlinear optimization objectives (Wang et al., 2022).

However, the forest construction algorithms of Bertsimas and Kallus (2020) and

Kallus and Mao (2022) are different, where Bertsimas and Kallus (2020) use pre-

diction loss and Kallus and Mao (2022) use decision loss. A detailed comparison

between Bertsimas and Kallus (2020) and Kallus and Mao (2022) can be found in

Kallus and Mao (2022).

Our research study contributes to both the literature on PSC and the liter-

ature on maintenance and service logistics management. According to Eruguz

et al. (2017), our research problem pertains to the subdomains of maintenance

strategy selection and maintenance planning. The maintenance strategy selection

subdomain focuses on selecting the best maintenance strategy for a system, part,

or component to find the optimal balance between the benefits of maintenance

and related costs (Eruguz et al., 2017; Goossens and Basten, 2015). The main-

tenance planning subdomain focuses on maintenance-related tasks, such as in-

spections, replacements, repairs, and overhauls (Eruguz et al., 2017; Giorgio et
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al., 2015). As there is no related study using PSC data to design maintenance

schemes, our study is a specific application of maintenance and service logistics

management research, mainly tailored to PSC inspections. Furthermore, as indi-

cated by the “small amount of failure-related data” characteristic of the maritime

sector (Eruguz et al., 2017), scholars face a contradiction where successful pre-

ventive maintenance entails preventing the collection of the historical data which

we think we need in order to decide what preventive maintenance we ought to be

doing (Moubray, 1997). However, with open-source PSC data, the conditions of

all inspected ships can be reviewed and shared for academic research. More lit-

erature surveys about other subdomains on the topic of maintenance and service

logistics in the maritime sector can be also found in Eruguz et al. (2017).

In summary, to the best of our knowledge, there are no existing studies that

evaluate the value of PSC data to ship operators, who are directly affected by the

lack of attention to operations management in global supply chains (Yang and Qu,

2016). As PSC inspection data are public, ship operators can apply prescriptive an-

alytics methods to these data to improve their decision performance in ship main-

tenance planning. Identifying detainable deficiencies during ship maintenance

would eliminate the adverse impacts of ship detention on ship operators and im-

prove the efficiency of port operations. Therefore, in this study, we address three

research gaps. First, the detention contribution of the deficiency items under each

deficiency code is innovatively studied to provide useful inputs for the design of

ship maintenance plans. Second, a new optimization objective function that mini-

mizes the operational costs of conducting ship maintenance is proposed, which is

different from that of previous PSC-related studies. Third, we innovatively apply

the SPO framework in providing inspection suggestions for ship operators, which
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is different from the ML methods used in previous PSC-related studies.

2.3 Preliminaries

In this section, we present the ship maintenance planning problem mathematically

in Section 2.3.1. Then, Section 2.3.2 describes basic information about classifi-

cation and regression tree (CART) and RF. At last, Section 2.3.3 introduces how

to use the structure of decision trees to measure the detention contribution of the

deficiency items under each code, serving as a basis for determining the risk costs

associated with the deficiency items under each code.

2.3.1 Ship maintenance planning problem

We denote the total number of ship deficiency codes as K and an individual ship

deficiency code as k (k = 1, ..., K). A customized ship maintenance plan for

an individual ship consists of k recommended decisions, which are denoted as a

column vectorW = [w1, ..., wk, ..., wK ]
⊤, where wk is a binary decision variable

that equals 1 if an inspection is recommended for k, and 0 otherwise. To simulate

ship operators’ decision-making process, we innovatively propose three types of

operational costs: inspection cost (denoted by c1), repair cost (denoted by c2), and

risk cost (denoted by ck3).

• The inspection cost c1 includes manpower and material expenses associated

with inspecting items required by a deficiency code. If a ship operator de-

cides to inspect the deficiency items under a deficiency code, it incurs an

inspection cost.
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• The repair cost c2 includes the manpower and material expenses if the de-

ficiency items under a code are identified. Considering that identified defi-

ciencies of a ship in a PSC inspection may lead to detention and thus cause

huge reputational and economical losses (which will be considered in the

risk cost in the following) to a ship operator, we assume that a ship operator

conducts repair work if deficiency items are found under each deficiency

code. For simplicity, we assume that all deficiency codes have the same

inspection cost c1 and repair cost c2.

• The risk cost ck3 represents the loss to a ship operator when a PSCO finds

specific deficiency items under code k during a formal PSC inspection. The

risk cost of a deficiency code contains two components: indirect and di-

rect costs. Indirect costs refer to the reputational damage to a ship operator

from the discovery of deficiency items under code because these identified

deficiency items are recorded in the public PSC system. Direct costs re-

fer to the economic costs caused by a delay in the shipping schedule if a

ship is detained because of the identified deficiency items. Therefore, we

assume that the direct economic costs are related to the detention contribu-

tion of the deficiency items under each deficiency code. Recall that there

are no specific descriptions of detainable deficiencies except for the general

guidelines. In addition, according to the “List of Tokyo MoU Deficiency

Codes,”3 all the deficiency items considered are extracted from important

international regulations and conventions that are proposed to monitor ship

conditions from different perspectives. The deficiency items under differ-
3Available at https://www.tokyo-mou.org/doc/Tokyo%20MOU%20deficiency%

20codes%20(December%202019).pdf
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ent codes are guaranteed to be of different nature and are exclusive to each

other. As deficiencies under different codes are classified independently,

and having any deficiency would definitely increase the detention proba-

bility of a ship, their contributions to the detention decision can thus be re-

garded as independent as well. Therefore, we assume that each deficiency

code has a distinct and independent risk cost, derived from the PSC inspec-

tion records using the feature importance method, which will be introduced

in Section 2.3.3. Furthermore, although PSCOs can fail to detect all defi-

ciencies because of their negligence and lack of experience or their personal

preference based on domain knowledge, it is difficult to obtain accurate data

on this issue because we do not know the ground truth of the inspected ships’

deficiency conditions. Actually, such real-life conditions are nearly impos-

sible to obtain because the determination of a deficiency by a PSCO can be

highly subjective. We can only use the deficiencies identified and recorded

on each ship as the ground truth. Therefore, to fully consider the possible

risks that potential deficiencies may bring to ship operators and to reduce the

influence of PSCOs’ subjectivity, we assume that all items under each code

will be inspected and all deficiencies will be identified if a ship is chosen

for inspection.

Let us consider the decision for a particular deficiency code k as an example.

Here, given that we do not have the ground-truth data for intertwined decisions, we

assume dependence among the decisions for all of the codes. We let Sk = {1, 0}

denote the feasible region for the decision of whether to inspect code k or not. The
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decision-making problem can be defined as

min
wk∈Sk

zk = min
wk∈Sk

E
[
(c1 + c2p̃k)wk + (c2 + ck3)p̃k(1− wk)

]
= min

wk∈Sk

[
c2wk + (1− wk)

(
c2 + ck3

)]
E [p̃k] + c1wk,

(2.1)

where p̃k is the uncertain probability that a ship has deficiency items under code k.

In Optimization Problem (2.1), c1 + c2p̃k represents the uncertain costs that a ship

operator needs to pay if he/she decides to inspect k, and (c2 + ck3)p̃k otherwise.

After observing Optimization Problem (2.1), we find that the underlying decision

problem always has a unique solution except when E [p̃k] = c1/c
k
3 that leads to

two solutions 0 and 1 with identical objective function values c1(1 + c2/c
k
3). We

then let

W∗
k = argmin

wk∈Sk

{[
c2wk + (1− wk)

(
c2 + ck3

)]
E [p̃k] + c1wk

}
(2.2)

denote the set of optimal solutions for code k, and let w∗
k denote an arbitrary indi-

vidual member of the setW∗
k.

To derive the optimal decision for k, we need to obtain the following knowl-

edge: the expected value of p̃k, c1, c2, and ck3. As mentioned above, costs c1 and

c2 are assumed to be identical for all deficiency codes and the risk cost ck3 can

be determined based on the detention contribution of the deficiency items under

each code, elaborated in Section 3.3. Now, only the expected value of p̃k is un-

known when solving Optimization Problem (2.1). To solve it, the classic approach

is a two-stage PO framework, where the first stage uses an ML model that mini-

mizes the prediction error to predict the expected value of p̃k and the second stage
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solves an optimization problem that integrates the predicted expected value of p̃k

with c1, c2, and ck3. However, this sequential PO framework cannot guarantee that

practitioners can obtain near-optimal decisions because the predicting (first) stage

focuses on minimizing the prediction error rather than on minimizing the decision

error. Our study therefore uses an SPO framework that modifies the loss function

used in the ML prediction model to minimize the excess operational costs that re-

sult from a (potential) sub-optimal decision under the prediction model over the

optimal decision under perfect information. These two frameworks will be intro-

duced in detail in Section 2.4 and Section 2.5, respectively.

2.3.2 Introduction of CART and RF

Wemainly use RF and its variant SPOF in this study. RF is an ensemble of CARTs.

For one single CART, all of the training examples (data points with input features

and output target values) are first stored in the root node. The root node is then split

into daughter nodes containing the subsets of all training examples to reduce node

impurity (Breiman, 2001). The splitting rule for classification is to maximize the

decrease in the Gini index at each split. A split generally depends on a selected

feature and one of its values. Constructing a CART requires splitting the nodes

to build a binary decision tree recursively and binarily (Yan et al., 2021b). This

process stops when all of the nodes contain training examples of the same output

value. However, this may lead to an overfitting decision tree. Therefore, we need

to set stopping criteria to prevent trees from becoming too complicated. We use

two stopping criteria widely considered to control tree dimension: the maximum

depth of a tree (denoted by max_depth) and the minimum number of training ex-
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amples per leaf (denoted by min_samples_leaf) (Breiman, 2001). The training

process terminates when no node can be further split or one of the stopping criteria

is met. For a detailed explanation of CART construction, refer to Breiman (2001)

and Yan et al. (2021b).

Ensemble models are used to improve the performance of decision trees. RF is

a typical ensemble model that consists of multiple CARTs as weak learners. Com-

pared with a traditional CART, there are two components of randomization in an

RF model. The first is that each tree is grown from a bootstrap sample of the origi-

nal dataset. The second is that a random subset of all the features is chosen to split

each node in a tree (Breiman, 2001). Therefore, an RF has two more hyperparam-

eters to ensure the randomness in the RF construction process relative to the two

hyperparameters used in constructing a single decision tree: the number of CARTs

in the RF (denoted by n_estimators) and the number of features considered in

each split (denoted by max_features) (Breiman, 2001).

2.3.3 Measuring the detention contribution of the deficiency

items under each deficiency code

As mentioned above, we assume that the identified deficiency items under each

code have a positive and independent effect on a ship’s detention. To assist ship op-

erators in allocating their limited ship maintenance resources to deficiency codes

with higher risks, we determine the risk cost of having deficiency items under

each code by relating the risk cost to the detention contribution of the deficiency

items under each code. Before we introduce the PO and SPO frameworks for

solving Optimization Problem (2.1), we first illustrate how to determine the de-
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tention contribution of deficiency items under code k, which provides the criteria

for determining the risk cost ck3.

We adopt the Gini index measure, which is a common feature importance

method (Tjoa and Guan, 2021), to capture the detention contribution of the de-

ficiency items under each code, obtained by training an RF model to predict the

detention outcome using a given dataset {(yi, di)}ni=1, where n is the number of

samples. In this dataset, yi = [y1,i, · · · , yk,i, · · · , yK,i]
⊤, where yk,i takes a value of

1 if ship i has deficiency items under code k (k ∈ {1, ..., K} and 0 otherwise, and

di ∈ {1, 0} denotes a class label that takes the value of 1 if ship i is detained and

0 otherwise. Therefore, this preliminary prediction is a classification task whose

feature importance can indicate the detention contribution of the deficiency items

under each code. In general, any feature in the node that can lead to a large de-

crease in the Gini index is considered important. Accordingly, the Gini importance

of a feature (whether there are deficiency items under code k) in this task is first

determined by summing all of the Gini index decreases at the nodes where the fea-

ture k is used for splitting in the RF and then normalized by the number of input

features, namely the total number of deficiency codes.

We now show how to compute the feature importance of code k. The Gini

index for node v is defined as

Gini (v) =
∑

d∈{0,1}

RCF (v, d) (1− RCF (v, d)) , (2.3)

where RCF(v, d) denotes the relative class frequency for class d in node v and is
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calculated as follows:

RCF(v, d) =
g(v, d)∑

d′∈{0,1} g(v, d
′)
, (2.4)

where g(v, d) measures the number of training examples belonging to class d that

fall into the same node v.

We then let vL and vR denote the left and right daughter nodes of node v. The

Gini indexes for nodes vL and vR are denoted as Gini (vL) and Gini (vR), respec-

tively. Then, the Gini index decrease resulting from splitting node v into nodes vL

and vR, denoted by Γ(v), is calculated as follows:

Γ (v) = Gini(v)−
[
NL

N
Gini (vL) +

NR

N
Gini (vR)

]
, (2.5)

where N , NL, and NR represent the numbers of data examples falling into nodes

N , NL, and NR, respectively.

To determine the feature importance of k using an RF model, we denote Vk

as the set that contains nodes in the forest in which feature k is used for splitting.

The feature importance of k is denoted by FI (k) and is calculated as follows:

FI (k) =
∑
v∈Vk

Γ (v) . (2.6)

Finally, the normalized feature importance of code k, denoted by NFI (k), is as

follows:

NFI (k) =
FI (k)∑

k′∈{1,...,K} FI (k′)
. (2.7)
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2.4 The PO Framework

Suppose that we have obtained the three types of operational costs c1, c2, and ck3.

To derive w∗
k where the expected value of p̃k is unknown, we need to obtain the

predicted probability of having deficiency items under code k (i.e., the predicted

expected value of p̃k), which is denoted by p̂k. As mentioned above, there are two

frameworks for designing ship maintenance plans that combine p̂k with c1, c2, and

ck3. In this section, we focus on designing ship maintenance plans using the PO

framework.

In the PO framework,obtaining p̂k is achieved by training an independent RF

model for code k, denoted as fk, using a given dataset {(xi, yk,i)}ni=1. In this

dataset, xi ∈ Rq denotes a vector of q ship-related features for ship i and yk,i

denotes a class label indicating whether ship i has deficiency items under code

k. Note that yk,i used as input in Section 2.3.3 now is used as output in this task.

Then, we use the following metric to evaluate the prediction accuracy:

lkBrier :=
n∑

i=1

(p̂k,i − yk,i)
2 . (2.8)

This metric is termed Brier score (Brier, 1950), a strictly proper score function that

measures the accuracy of probabilistic predictions.

This study uses the relative class frequency method to obtain the estimated p̂k

of a ship, detailed below. Denote the feature vector of a ship to be predicted as

x, the trees in the ensemble for obtaining p̂k of the ship as t1, ..., tMk
, where Mk

denotes the number of trees. The relative class frequency of yk = 1 in the leaf
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node where x falls of an individual decision tree t (t ∈ {t1, ..., tMk
}) is denoted as

RCFk (t, x, yk = 1) =
gk (t, x, yk = 1)∑
y
′
k∈{0,1}

gk
(
t, x, y′

k

) , (2.9)

where gk (t, x, yk) measures the number of training examples in class yk that fall

into the same leaf node as x in decision tree t. Then, p̂k can be obtained as follows:

p̂k =

∑Mk

m=1 RCFk (tm, x, yk = 1)

Mk

. (2.10)

While training the CARTs in the RF for obtaining p̂k, we still adopt the splitting

rule that maximizes the Gini index reduction at each split. After the training of fk

is completed, for a new feature vector x0, p̂k,0 can be computed by averaging the

relative class frequencies of the leaves where x0 falls into. With p̂k,0, c1, c2, and

ck3, w∗
k,0 (p̂k,0) can be derived by solving Optimization Problem (2.1).

2.5 The SPO Framework

As the evaluation metric in the PO framework only measures the prediction error,

this section introduces the SPO framework. Section 2.5.1 demonstrates SPO loss.

Section 2.5.2 introduces a simplified method to train decision trees using SPO

loss. Section 2.5.3 describes the general method for constructing an ensemble of

SPOTs.
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2.5.1 SPO loss

By definition, SPO loss is measured not by the prediction error, but by the quality

of the decisions that are derived from the predictions. In our problem, the decision

error should be measured by the extra operational costs resulting from a (potential)

sub-optimal decision under the prediction over the optimal decision made under

perfect information. Mathematically, we denote by p̂
′

k the predicted probability

of having deficiency items under code k obtained from an ML model using SPO

loss. We then denote by ck
(
w∗

k

(
p̂
′

k

)
, yk

)
the actual incurred costs that the ship

operator needs to pay if the (potential) sub-optimal decision is w∗
k

(
p̂
′

k

)
when the

true label is yk. For our ship maintenance planning problem, ck
(
w∗

k

(
p̂
′

k

)
, yk

)
can

be categorized into the following four forms:

ck

(
w∗

k

(
p̂
′

k

)
, yk

)
=



c1, if w∗
k

(
p̂
′

k

)
= 1, yk = 0;

0, if w∗
k

(
p̂
′

k

)
= 0, yk = 0;

c1 + c2, if w∗
k

(
p̂
′

k

)
= 1, yk = 1;

c2 + ck3, if w∗
k

(
p̂
′

k

)
= 0, yk = 1.

(2.11)

In the first two forms, if a ship is free from deficiency items under code k (yk =

0), and the prescribed optimal decision is to not inspect deficiency items under

code k (w∗
k

(
p̂
′

k

)
= 0), the ship operator does not incur any cost. However, if

w∗
k

(
p̂
′

k

)
= 1 and yk = 0, a ship operator only has to pay c1 for an inspection. In

the third and fourth forms, if a ship has deficiency items under code k (yk = 1),

and the prescribed optimal decision is to inspect the deficiency items under code k

(w∗
k

(
p̂
′

k

)
= 1), the ship operator has to pay for the corresponding c1+c2. However,

if w∗
k

(
p̂
′

k

)
= 0 and yk = 1, the deficiency items under code k may be discovered
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during a PSC inspection, which leads to a penalty of c2 + ck3 to the ship operator.

In summary, we define ck = [c1k, c
2
k]

⊤ as a cost vector where c1k = c1 + c2yk and

ck2 = (c2 + ck3)yk, and ⊤ represents the transpose of a column vector. We then

define w∗
k

(
p̂
′

k

)
=

[
w∗

k

(
p̂
′

k

)
, 1− w∗

k

(
p̂
′

k

)]
as a prescribed decision column vector

derived from the prediction p̂
′

k. Note that W∗
k

(
p̂
′

k

)
=

{
w∗

k

(
p̂
′

k

)}
may contain

more than one optimal solution associated with p̂′

k. Hence, the SPO loss is defined

with respect to the worst-case decision from a predicted p̂′

k as follows:

lkSPO

(
p̂
′

k, yk

)
= max

w∗
k(p̂

′
k)∈W∗

k(p̂
′
k)

{
ck

(
w∗

k

(
p̂
′

k

)
, yk

)}
− z∗k

= max
w∗

k(p̂
′
k)∈W∗

k(p̂
′
k)

{
w∗

k

(
p̂
′

k

)
ck
}
− z∗k,

(2.12)

where w∗
k

(
p̂
′

k

)
ck represents the cost incurred from a prescribed optimal decision

w∗
k

(
p̂
′

k

)
and z∗k represents the perfect optimal cost if yk is known (Elmachtoub and

Grigas, 2021).

According to Elmachtoub and Grigas (2021), training ML models under the

SPO loss (2.12) is likely to be impossible, as this loss function is nonconvex and

discontinuous in terms of the predicted probabilities and the associated operational

costs. In this study, inspired by the framework proposed by Elmachtoub et al.

(2020), training decision trees under the SPO loss lkSPO
(
p̂
′

k, yk
)
can be greatly sim-

plified by Theorem 2.1, which is discussed in the following section.

2.5.2 Construction of SPOT

We now describe a tractable method to train decision trees under SPO loss based

on Theorem 2.1, which states that letting p̂′

k be equal to the relative class frequency
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of yk = 1 to a node minimizes the SPO loss in the node.

Theorem 2.1 Consider any node e and any code k. Let Rk,e denote the set of ex-

amples falling into the node e for code k, ȳk,e = RCFk (t, x, yk = 1) = gk(t,x,yk=1)∑
y
′
k
∈{0,1}

gk(t,x,y′k)
=

(|Rk,e|)−1 ∑
i′∈Rk,e

yk,i′ denote the relative class frequency of yk = 1 within node

e, and c̄k,e =
[
c1 + c2ȳk,e,

(
c2 + ck3

)
ȳk,e

]⊤ denote the average cost vector within

node e. If Optimization Problem (2.1) corresponding to ȳk,e has a unique mini-

mizer, then ȳk,e minimizes the within-node SPO loss.

Proof. We show that the within-node SPO loss associated with prediction ȳk,e is a

lower bound of that associated with any other prediction p̂′′

k,e. The following holds

for any p̂′′

k,e:

1

|Rk,e|
∑

i′∈Rk,e

lkSPO

(
ȳk,e, yk,i′

)
− 1

|Rk,e|
∑

i′∈Rk,e

lkSPO

(
p̂
′′
k,e, yk,i′

)
=

1

|Rk,e|
∑

i′∈Rk,e

max
w∗

k,e(ȳk,e)∈W
∗
k,e(ȳk,e)

{
w∗
k,e (ȳk,e) ck,i′

}
− 1

|Rk,e|
∑

i′∈Rk,e

max
w∗

k,e(p̂
′′
k,e)∈W

∗
k,e(p̂

′′
k,e)

{
w∗
k,e

(
p̂
′′
k,e

)
ck,i′

}
=

1

|Rk,e|
∑

i′∈Rk,e

w∗
k,e (ȳk,e) ck,i′ −

1

|Rk,e|
∑

i′∈Rk,e

max
w∗

k,e(p̂
′′
k,e)∈W

∗
k,e(p̂

′′
k,e)

{
w∗
k,e

(
p̂
′′
k,e

)
ck,i′

}
(BecauseW∗

k,e (ȳk,e) = {w∗
k,e (ȳk,e)} is a singleton.)

≤
w∗
k,e (ȳk,e)

|Rk,e|
∑

i′∈Rk,e

ck,i′ − max
w∗

k,e(p̂
′′
k,e)∈W

∗
k,e(p̂

′′
k,e)

 1

|Rk,e|
∑

i′∈Rk,e

w∗
k,e

(
p̂
′′
k,e

)
ck,i′


=w∗

k,e (ȳk,e) c̄k,e − max
w∗

k,e(p̂
′′
k,e)∈W

∗
k,e(p̂

′′
k,e)

{
w∗
k,e

(
p̂
′′
k,e

)
c̄k,e

}
≤0 (by the definition of w∗

k,e (ȳk,e)).

(2.13)
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We show above that ȳk,e achieves a minimumwithin-node SPO loss, thereby prov-

ing the theorem. □

Recall that ȳk,e leads to two optimal solutions when it equals c1/ck3. Empiri-

cally, to guarantee the uniqueness of the optimal solution given ȳk,e, we can add a

small noise term to every cost vector in the training set (Elmachtoub et al., 2020).

Therefore, we assume thatW∗
k,e (ȳk,e) is a singleton for any c̄k,e below.

Under the SPO framework and with the utilization of Theorem 2.1, assume

that the objective of any decision tree training algorithm is to partition the training

examples intoLk leaves for code k, and then the training examples in theLk leaves

are represented as Rk,1, ...,Rk,l, ...,Rk,Lk
:= R1:Lk

, whose predictions minimize

the following loss function:

min
R1:Lk

∈Tk

1

n

Lk∑
e=1

∑
i∈Rk,e

(
w∗

k,e (ȳk,e) c̄k,e − z∗k (yk,i)
)
, (2.14)

where Tk denotes the set of all possible tree structures given the dataset for code k

(Elmachtoub et al., 2020). We next use the same procedure as in CARTs to find a

reliable and quick sub-optimal solution to Optimization Problem (2.14); that is, we

use the recursive partitioning method to find the decision tree that minimizes the

decision error in the training set. Define xi,j as the jth input feature component

corresponding to the ith training sample. Beginning with the entire training set

at the root node, consider a decision tree split (jk, sk) that represents a splitting

feature component jk and a splitting point sk to partition the training examples
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into a left child node l and a right child node r for code k:

Rk,l (jk, sk) = {i ∈ {1, ..., n}|xi,j ≤ sk} andRk,r (jk, sk) = {i ∈ {1, ..., n}|xi,j > sk},

(2.15)

if feature jk is numeric, and

Rk,l (jk, sk) = {i ∈ {1, ..., n}|xi,j = sk} andRk,r (jk, sk) = {i ∈ {1, ..., n}|xi,j ̸= sk},

(2.16)

if feature jk is categorical. The first split of the decision tree is chosen by finding

the pair (jk, sk) that minimizes the following optimization problem:

min
jk,sk

1

n

 ∑
i∈Rk,l

(
w∗

k,l (ȳk,l) ck,i − z∗k (yk,i)
)
+

∑
i∈Rk,r

(
w∗

k,r (ȳk,r) ck,i − z∗k (yk,i)
) ,

(2.17)

where ȳk,l and ȳk,r represent the relative class frequencies of yk = 1within the left

child node l and the right child node r, respectively.

Optimization Problem (2.14) can be solved by finding the split that has the

minimum objective function value among every possible split (jk, sk). From The-

orem 2.1, the objective value of a split can be computed as follows: 1) splitting

the training examples according to a possible criteria, 2) determining the rela-

tive class frequencies of yk = 1 in two child nodes l and r, and the associated

w∗
k,l (ȳk,l) andw∗

k,r (ȳk,r), 3) deriving the corresponding incurred costw∗
k,l (ȳk,l) ck,i

or w∗
k,r (ȳk,r) ck,i for each sample i in the two daughter nodes, and 4) summing the

SPO losses of each node and dividing the sum by the total number of samples in

the two daughter nodes. After the first split is chosen, the greedy split selection

approach is then recursively applied to the resulting nodes. During the training
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process, two stopping criteria widely considered in an RF are also applied to con-

trol the dimension of an SPOT, namely the maximum depth of a tree (max_depth)

and the minimum number of training examples per leaf (min_samples_leaf)

(Breiman, 2001). The training process terminates when no node can be further

split or one of the stopping criteria is met.

2.5.3 Construction of SPOF

To improve the performance of SPOTs, we further consider training an ensemble

of SPOTs, denoted as SPOF. The procedure for constructing an SPOF is similar

to constructing a classic RF and uses the same two components of randomization.

The first component is that each SPOT is grown from a bootstrap sample of the

training dataset. The second is that a random subset of all of the features is chosen

to split each node in an SPOT. After the training procedure is completed, given

a new feature vector x0, the relative class frequencies of yk = 1 in the leaves

that x0 falls into in the forest are averaged, and the optimal decision on whether

to inspect code k is determined based on the three types of operational costs. At

last, the SPOF is subject to two more hyperparameters similar to an RF, namely

the number of SPOTs contained in the SPOF (n_estimators) and the number of

features considered in each split (max_features) (Breiman, 2001).

2.6 Computational Experiments

Section 2.6.1 describes the dataset that we use and the settings for eachMLmodel.

In Section 2.6.2, we evaluate the detention contribution of the deficiency items

under each code. We then show how to determine the three types of operational
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costs, especially the risk cost. In Section 2.6.3, we compare the average total

operational costs and the single-code costs of five ship maintenance schemes. In

Section 2.6.4, we conduct a sensitivity analysis of risk costs.

2.6.1 Data description

The dataset for this study contains 3,026 records of PSC initial inspections during

January 2015 to December 2019 period at the Hong Kong Port and the corre-

sponding ship-related factors. Hong Kong Port is a member of the Tokyo MoU

that governs the Asia-Pacific region. There are 17 deficiency codes required by

the Tokyo MoU,4 as shown in Table 2.1. We focus on the first 16 deficiency codes

that describe specific inspection items and areas. The PSC inspection records are

retrieved from the Asia Pacific Computerized Information System5 provided by

Tokyo MoU, and the ship-related factors are obtained from the World Shipping

Register database.6

Table 2.1: Description of deficiency codes in the Tokyo MoU
Code Meaning Code Meaning

D1 Certificates and documentation D10 Safety of navigation
D2 Structural condition D11 Life saving appliances
D3 Water/Weathertight condition D12 Dangerous goods
D4 Emergency system D13 Propulsion and auxiliary machinery
D5 Radio communication D14 Pollution prevention
D6 Cargo operations including equipment D15 International Safety Management (ISM)
D7 Fire safety D18 Labour conditions
D8 Alarms D99 Other
D9 Working and living conditions

Before trainingMLmodels, we randomly divide the whole dataset into a train-
4Available at https://www.tokyo-mou.org/doc/ANN20-f.pdf.
5See https://apcis.tmou.org/public/.
6See https://world-ships.com/.
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ing set (8%, 2420 records) and a test set (20%, 606 records). We primarily use the

RF or SPOF in this study, and we fix n estimators in each ML model to be 200.

A tuple of three hyperparameters needs to be tuned for these models: max depth,

max features, and min samples leaf. We use a grid search with 5-fold cross vali-

dation on the training set to tune these hyperparameters in each ML model. The

proposed models are constructed using the training set and their performance is

validated by using the test set.

2.6.2 Measuring each deficiency code’s risk cost

The preliminary analysis results show that the dataset is highly imbalanced, as

it only contains 100 records showing detention (78 detentions in the training set

and 22 detentions in the test set). Thus, instead of using accuracy to evaluate the

performance of the developed RF model, we adopt the area under the receiver

operating characteristic curve (ROC AUC) as our main metric for evaluating the

prediction performance. We follow Yan et al. (2021b) to determine the search

ranges for the three hyperparameters. The ROCAUC score for the predictor on the

test set is 0.97, which verifies that it performs 94% better than random guessing.

Then, we output the normalized detention contribution of the deficiency items

under each code based on the feature importance method, as shown in Figure 2.1.

Figure 2.1 shows that the five deficiency codes with the highest risk are D10,

D15, D7, D1, and D3, and the deficiency items under these codes are more likely

to lead to detentions. Accordingly, it is reasonable to assign higher risk costs to

them. In contrast, the five deficiency codes with the lowest risk are D12, D8, D18,

D6, and D13; accordingly, their risk costs are lower. As we cannot obtain accu-
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Figure 2.1: Detention contributions of the deficiency items under 16 deficiency
codes

rate values for the three types of operational costs, we measure these costs in units.

Following Knapp (2007), who estimated that the average inspection cost is USD

506 when there are no deficiencies and USD 759 when deficiencies (which may

involve more procedures and repair work) are found in a PSC inspection at the

port, we approximate the inspection and repair costs at two units and three units,

respectively (because 506 : 759 ≈ 2 : 3). As repair work requires more human

and material resources than inspection, it is reasonable to assign a higher value to

repair costs than inspection costs. Asmentioned in Sections 2.1 and 2.3.1, risk cost

is divided into reputation cost and detention cost. Reputation cost refers to the rep-

utational damage to a ship operator brought about by the recording of deficiency

items in the public PSC information system. The recorded deficiency items indi-

cate that the ship operator cannot guarantee the navigation safety of its ships and

can thus lead to higher rates ship inspections in the future because the detention

and deficiency history of all ships in an operator’s fleet affects the ship operator’s
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performance.7 As the effect of detention on reputation is long-lasting and cannot

be easily erased once the deficiency items are recorded in the system, we first es-

timate reputation cost, denoted as cr, to be five units in benchmark experiments,

which is greater than the inspection cost and the repair cost, respectively. We will

conduct sensitivity analysis in Section 2.6.4 to analyze the impact of reputation

cost. Next, the detention cost of the deficiency items under each deficiency code

is approximated as its detention contribution multiplied by an adjustable factor λ.

This adjustable factor converts the normalized detention contribution into deten-

tion cost and can be adjusted according to the ship operators’ preference. If a ship

operator is risk-averse, it would consider improving the risk costs by increasing the

value of λ. Conversely, if a ship operator is risk-neutral or risk-appetitive, it would

consider decreasing the risk costs by decreasing the value of λ. We will conduct

sensitivity analysis in Section 2.6.4 to analyze the impact of λ. Mathematically,

the parameters c1, c2, and ck3 for k are as follows:

c1 = 2 (units),

c2 = 3 (units),

ck3 = cr + NFI(k)× λ (units).

(2.18)

In our benchmark experiments, we set cr = 5 and λ = 100, which means

that if the deficiency items under a code causes detention, its detention cost is 100

units. Therefore, the detention cost is 50 times greater than the inspection cost,

33.33 times greater than the repair cost, and 20 times greater than the reputation

cost. Based on the detention contributions shown above, the risk costs of having
7See https://www.tokyo-mou.org/inspections_detentions/NIR.php
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deficiency items under each code when λ = 100 are shown in Figure 2.2.

Figure 2.2: Risk costs of 16 deficiency codes when λ = 100

2.6.3 Comparison of ship maintenance schemes

Considering the three types of operational costs, we make ship maintenance de-

cisions for ships in the test set. We compare five different types of ship mainte-

nance schemes. The first scheme is the random inspection scheme (RIS), where

each deficiency code has a 50% chance of being inspected. The second scheme

is the no inspection scheme (NIS), where ship operators do not perform any ship

maintenance. The third scheme is the overall inspection scheme (OIS), where

ship operators inspect all deficiency codes. The fourth scheme is the PO scheme

(POS). The fifth scheme is the SPO scheme (SPOS). In the benchmark experi-

ments, we set λ = 100. For RF and SPOF models, we set n_estimators = 200

and set the search range for max_features as {2, 3, 4, 5, 6, 7}, for max_depth as

{2, 3, 4, 5, 6, 7, 8, 9, 10}, and for min_samples leaf as {1, 2, 3, 4, 5, 6, 7}. We then
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use the optimal hyperparameters to construct each ML model on the whole train-

ing set and compute the single-code actual costs incurred by the decision w∗
k

(
p̂
′

k

)
for a ship in the test set. The total incurred operational costs for a ship would be∑

k∈{1,...,K} ck
(
w∗

k

(
p̂
′

k, yk
))
. The average total incurred operational costs of five

ship maintenance schemes for the test set are shown in Figure 2.3.

Figure 2.3: Average total operational costs of five ship maintenance schemes for
the test set

As Figure 2.3 shows, the SPOS outperforms the other four ship maintenance

schemes in terms of the average total operational costs. The SPOS reduces the

average total operational costs by 43.22% on average compared with ship mainte-

nance schemes that do not apply artificial intelligence methods, such as the RIS,

NIS, and OIS. Compared to the POS, the SPOS reduces the average total opera-

tional costs by 10.44%, which demonstrates the superiority of SPO loss function

that considers decision error. Next, we list the average single-code costs of the

five ship maintenance schemes for the test set in Table 2.2; the proportions indi-

cate the percentage of ships in the test set with deficiency items under each code
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and gaps 1 to 4 are the cost savings of the SPOS over the RIS, NIS, OIS, and POS,

respectively.

The findings from Table 2.2 are as follows. First, the SPOS outperforms the

other four ship maintenance schemes on all of the deficiency codes. This result

indicates that the average total operational costs of maintaining all of the codes

using the SPOS must be lower than the average total costs of randomly adopting

the other four schemes to maintain these codes. Second, after analyzing the cost

savings of the SPOS over the other four maintenance schemes on all 16 deficiency

codes, we find some obvious differences between the deficiency codes related to

their proportions and respective risk costs. We further illustrate the values of gaps

1 to 4 of each deficiency code in Figure 2.4. Note that the purpose of this line

chart is not to reflect the development trend of values from gaps 1 to 4, but to

highlight the differences and facilitate comparison. The fluctuations in these lines

are also used to classify deficiency codes in the following analysis. Moreover, the

smoothness of the lines, as indicated by the standard deviation shown in Table 2.2,

is also one of the criteria for classification. Therefore, based on the deficiency

codes’ proportions, risk costs, gap values, and standard deviations, we roughly

classify the deficiency codes into three categories, illustrated using the different

lines in Figure 2.4. Table 2.3 summarizes the codes in each category and their

main characteristics.

Category I contains deficiency codes that have a high average proportion and

average risk cost and includes D3, D7, D10, and D11. The cost savings from

adopting the SPOS are relatively modest for these deficiency codes, especially as

indicated by the values of gap 3 and gap 4. This is because cost-conscious and

risk-averse ship operators will increase their efforts to inspect these risky defi-
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Figure 2.4: Cost savings of average single-code operational costs for 16 deficiency
codes

ciency codes and minimize risk costs. Category II contains D1, D4, D5, D9, and

D14, which have a medium average proportion and average risk cost. Further-

more, as shown by their smooth lines in Figure 4, the standard deviations of the

four gaps of these codes are within 0.1. This result indicates that for these defi-

ciency codes, the SPOS has a relatively stable advantage over the other four ship

maintenance schemes. Category III contains D2, D6, D8, D12, D13, D15, and

D18, which have a low average proportion and average risk cost. As shown by the

values of gap 1 to gap 4, the SPOS can generate significant cost savings for the

third category of deficiency codes over the other four schemes. When managing

these deficiency codes, ship operators must consider that the NIS may introduce

certain risks, while the OIS and the RIS may result in a waste of ship maintenance

resources. Although ship operators can use the ML method to predict the proba-

bilities of having deficiency items under these deficiency codes, the POS assigns
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Table 2.2: The average single-code costs of five ship maintenance schemes for the test set
Deficiency Proportion Risk cost Average single-code cost (units) Gap 1 Gap 2 Gap 3 Gap 4 Standard deviation

code (units) RIS NIS OIS POS SPOS of 4 gaps

D1 16.72% 11.2292 2.5211 2.5124 2.5297 2.1785 1.8262 27.56% 27.31% 27.81% 16.17% 0.06
D2 3.44% 6.9408 1.2349 0.3609 2.1089 0.3609 0.2520 79.59% 30.17% 88.05% 30.17% 0.31
D3 23.46% 12.8669 3.3350 3.9275 2.7426 2.6652 2.5188 24.47% 35.87% 8.16% 5.49% 0.14
D4 20.22% 12.3581 2.7570 2.9398 2.5743 2.3800 2.1055 23.63% 28.38% 18.21% 11.53% 0.07
D5 16.69% 15.4587 2.6466 2.8328 2.4604 2.3385 1.9129 27.72% 32.47% 22.25% 18.20% 0.06
D6 1.02% 6.4558 1.0617 0.0936 2.0297 0.0937 0.0639 93.98% 31.75% 96.85% 31.80% 0.37
D7 47.32% 19.7231 7.4520 11.3991 3.5050 3.5050 3.5050 52.97% 69.25% 0.00% 0.00% 0.36
D8 4.86% 5.8288 1.3123 0.4662 2.1584 0.4663 0.3078 76.55% 33.98% 85.74% 33.99% 0.27
D9 28.42% 8.6506 3.2242 3.5375 2.9109 2.8160 2.5246 21.70% 28.63% 13.27% 10.35% 0.08
D10 38.60% 21.4016 6.2904 9.4224 3.1584 3.1584 3.1518 49.90% 66.55% 0.21% 0.21% 0.34
D11 32.49% 10.9028 3.9984 4.9325 3.0644 3.1248 2.9447 26.35% 40.30% 3.90% 5.76% 0.17
D12 0.33% 5.0001 1.0091 0.0132 2.0050 0.0132 0.0083 99.18% 37.13% 99.59% 37.12% 0.36
D13 8.96% 6.8662 1.6157 0.9443 2.2871 0.9447 0.6572 59.32% 30.40% 71.27% 30.43% 0.21
D14 16.56% 10.1052 2.4484 2.3572 2.5396 2.2037 1.8305 25.24% 22.34% 27.92% 16.94% 0.05
D15 6.11% 20.9482 1.8894 1.5807 2.1980 1.2077 1.0640 43.69% 32.69% 51.59% 11.90% 0.17
D18 4.49% 5.2638 1.2230 0.3273 2.1188 0.3271 0.2085 82.95% 36.29% 90.16% 36.26% 0.29
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Table 2.3: The category of deficiency codes and their characteristics
Category Deficiency codes Characteristics

I D3, D7, D10, D11

High average proportion (35.47%)
High average risk cost (16.22 units)
“Medium-high-low-low” shape of gap values
High average standard deviation (0.25)

II D1, D4, D5, D9, D14

Medium average proportion (19.72%)
Medium average risk cost (11.56 units)
Smooth shape of gap values
Low average standard deviation (0.06)

III D2, D6, D8, D12, D13, D15, D18

Low average proportion (4.17%)
Low average risk cost (8.19 units)
“High-medium-high-medium” shape of gap values
High average standard deviation (0.28)

low predicted probabilities to them because of their low probabilities of occur-

rence; in this way, the POS prescribes decisions similar to those prescribed by

the OIS. Therefore, the superiority of the SPOS is demonstrated by the fact that

the minimum cost savings associated with the deficiency codes in category III are

greater than 30% compared with the other four schemes.

In summary, the SPOS helps ship operators reduce operational costs in ship

maintenance for all deficiency codes. Considering the different cost savings brought

about by the SPOS for different deficiency codes, we strongly recommend that

ship operators invest more monetary and human resources in developing intelli-

gent SPO alarm systems for the deficiency codes in categories II and III because

they can always be overlooked due to their medium proportions and risk costs. In-

stalling intelligent alarm systems for these two categories will help ship operators

identify these infrequent deficiencies in advance and save on maintenance costs.

For the codes in category I, due to their proportions and risk costs, intelligent alarm

systems combined with regular maintenance is the best way to prevent detentions.

39



CHAPTER 2. PRESCRIPTIVE ANALYTICS FOR SHIP MAINTENANCE OPTIMIZATION

2.6.4 Sensitivity analysis of risk costs

We now adjust the values of cr and λ, respectively, to conduct sensitivity analysis

on risk costs. For reputation cost cr, the candidate value is from set {3, 5, 8, 10}.

For parameter λ, the candidate value is from set {50, 100, 150, 200, 250}. Fig-

ures 2.5 and 2.6 show the cost savings of the average total operational costs under

different values of cr and λ, respectively. The following observations and conclu-

sions can be drawn. First, the results confirm that the SPOS consistently outper-

forms the other four schemes. Second, with the increase of and λ, respectively,

both gaps 1 and 2 show an upward trend. Intuitively, we see that as the risk costs

increase, ship operators pay more for inaction, which is similar to the RIS and

NIS. In contrast, both gaps 3 and 4 show a downward trend with the increase of

reputation cost and , respectively, which means that the cost savings gained from

the SPOS over the OIS and POS decrease as risk costs escalate. If the risk costs

approach infinity, both the POS and SPOS would resemble the OIS; that is, the

best strategy would be to inspect all deficiency codes. Furthermore, as the cost

associated with ship maintenance and repair operations is around 10% of the to-

tal operating expenses of a ship and it can increase up to 20–30% for old ships,8

the SPOS can save approximately 1% more of the total operating expenses than

the POS and at least 3% more than the schemes that do not use ML methods. To

conclude, the above results verify the superiority of SPOS in reducing the overall

operational costs over other schemes.
8See https://www.seaplace.es/maintenance-cost-how-can-owners-reduce-it/.
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Figure 2.5: Cost savings of the average total operational costs under different val-
ues of λ

Figure 2.6: Cost savings of the average total operational costs under different val-
ues of reputation cost
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2.7 Conclusions

Due to the development of machine learning technologies and the availability

of PSC data, many studies have been conducted to improve the efficiency of

PSC inspections for port authorities. In contrast, this study designs ship main-

tenance plans for ship operators with the aim at minimizing the overall opera-

tional costs. The targeted and cost-effective ship maintenance plans would also

improve the efficiency of port operations by reducing the resources needed for

formal PSC inspections and relieving port congestion. When simulating ship oper-

ators’ decision-making process, we consider the impacts of ship detention on ship

operators and innovatively examine three types of operational costs separately:

inspection cost, repair cost, and risk cost. In particular, the risk cost of having de-

ficiency items under each code is determined by its detention contribution. Instead

of using a PO framework, we propose an SPO framework that adopts an SPO loss

function that minimizes the decision error. Computational experiments demon-

strate that when the detention cost is 50 times greater than the inspection cost,

the average total operational costs derived from the proposed SPO-based scheme

are on average 43.22% lower than those derived from ship maintenance schemes

that do not use artificial intelligence algorithms and are also 10.44% lower than

those derived from the PO-based scheme. Analyses of the average single-code cost

savings under the SPO-based scheme indicate that the SPO-based scheme is sig-

nificantly superior to the other ship maintenance schemes. Furthermore, through a

sensitivity analysis of risk costs, we find that the SPO-based scheme can reduce the

total operating expenses of a ship by approximately 1% compared to the PO-based

scheme and at least 3% compared to the schemes that do not use ML methods. Fi-
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nally, the superiority of the SPO framework is further verified by analyzing the

trade-off between maintenance cost and detention probability of the SPO-based

scheme and the PO-based scheme.
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Chapter 3

Prescriptive Analytics for a

Maritime Routing Problem

3.1 Introduction

The International Maritime Organization (IMO) has implemented resolutions on

ship maintenance and operations to enhance maritime safety, allowing port au-

thorities to inspect foreign visiting ships through port state control (PSC) to en-

sure compliance with international regulations. However, with fewer than 5% of

ships inspected due to high costs and limited port state control officers (PSCOs)

Yan et al. (2021b), effectively selecting substandard ships for inspection is essen-

tial. Existing research, such as Yan et al. (2020, 2021a), has primarily focused

on ship selection without considering PSCO routing. Given varied berthing lo-

cations and arrival and departure times of arriving ships, and PSCO constraints

such as lunch breaks and working hours, the number of ships that can be inspected

strongly depends on the routing selected by the PSCOs (see Example 3.1). There-
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fore, this study innovatively uses PSC inspection data for the PSCO routing prob-

lem to maximize the number of deficiencies identified while considering various

practical constraints.

Example 3.1 Assume that a PSCO at the Hong Kong port spends two hours in-

specting a ship and one hour traveling from the Kwai-Tsing Container Terminal

(KTCT) to the River Trade Terminal (RTT). Hence, in six hours, a PSCO can in-

spect either one ship at the KTCT and another at the RTT, or three ships at a

single terminal (i.e., KTCT or RTT). Assume that we know in advance that two

foreign visiting ships at the RTT have six and eight deficiencies, respectively, and

three foreign visiting ships at the KTCT have nine, four, and two deficiencies, re-

spectively. Then, if routing is not considered, the optimal inspection scheme is to

inspect the two ships at the RTT that have a combined 14 deficiencies, and the ship

at the KTCT that has nine deficiencies, resulting in a total of 23 detected deficien-

cies. However, if the traveling time from the RTT to the KTCT is considered, the

proposed inspection scheme set forth above is infeasible when the PSCO only has

six working hours available. Thus, considering the PSCO traveling time, the mod-

ified optimal inspection scheme should inspect all three of the ships at the KTCT,

resulting in a total of 15 detected deficiencies.

Most port authorities’ ship selection schemes still rely on the sumof theweighted

points of risk factors, such as ship age and type, that determines ships’ selection

scores based on expert knowledge. However, the subjective value of these scores

can be biased, thus compromising their effectiveness. To overcome the shortcom-

ings of the current ship selection schemes, maritime researchers have applied a

two-stage prescriptive analytics framework to solve ship selection problems. Pre-
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scriptive analytics utilizes a combination of predictive and optimization techniques

to generate informed recommendations based on accessible auxiliary data. In the

context of ship selection for PSC inspections, most of the previous studies first

use machine learning (ML) models to predict the number of deficiencies or the

probability of detention for foreign visiting ships, and the predictions are used

to guide ship selection for inspection through mathematical optimization models

(Yang et al., 2018a,b; Yan et al., 2020, 2021a) and Yan et al. (2021b). However,

it is important to note that predictive models only aim to minimize the prediction

error, while the impact of prediction results on the downstream decisions is to-

tally ignored (see Example 3.2), leading to suboptimal decisions. Therefore, to

overcome this drawback, a more appropriate prescriptive analytics framework is

developed to integrate the prediction and optimization tasks, aiming at creating a

decision-focused learning framework to improve the decision quality (Mulamba

et al., 2021).

Example 3.2 Suppose that a port authority needs to choose between ship A and

ship B for inspection. Ship A has five deficiencies and ship B has 10 deficiencies,

but these numbers are unknown prior to the inspection. In an environment of

perfect information, ship B should be inspected. Suppose that we have twomodels:

model I andmodel II. Model I predicts eight deficiencies in ship A and seven in ship

B, and model II predicts two deficiencies in ship A and three in ship B. It follows

that model I outperforms model II in terms of prediction accuracy. However, when

using model I, ship A is selected for inspection, because it is predicted to have more

deficiencies than ship B. In contrast, when using model II, ship B is selected for

inspection, showing that the predictive model with worse performance in terms of
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prediction accuracy leads to a better decision.

In this study, we adopt such a framework that considers the interactions be-

tween ships in both the optimization model and the predictive model. Specifically,

we adopt a prescriptive analytics framework that uses the criterion of minimizing

the decision error measured by the suboptimality of the decisions generated by the

predictions during the training process, rather than minimizing the prediction error

to improve the decision quality. Because the PSCO routing problem applies the

team orienteering problem, which has been proven to be NP-hard (Vansteenwegen

et al., 2009), computational complexity and scalability are two major obstacles to

putting this method into practice (Mulamba et al., 2021). To remove these obsta-

cles, we first exploit the structure of the PSCO routing problem by designing un-

dominated inspection templates (Yan et al., 2021a), allowing the decision-focused

learning framework to efficiently solve the PSCO routing problem. We then adopt

a new family of surrogate loss functions motivated by the noise-contrastive esti-

mation (NCE) literature (Gutmann and Hyvärinen, 2010) for the decision-focused

learning framework (Mulamba et al., 2021). These surrogate loss functions re-

quire building a solution pool with suboptimal solutions, which are regarded as

noise samples. This solution pool can be interpreted as the convex hull of the

feasible solutions, and its use avoids frequent reoptimizations when training the

predictive model (Mulamba et al., 2021).

Our scientific contributions can be summarized as follows. First, our study

innovatively uses PSC inspection data for the PSCO routing problem. Second, we

compare two prescriptive analytics frameworks, which are the two-stage frame-

work and the decision-focused learning framework. Specifically, the decision-
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focused learning framework considers the PSCO routing problem in the ship defi-

ciency prediction model. To overcome the obstacles of computational complexity

and scalability for the decision-focused learning framework, we first transform the

original PSCO routing model and then adopt a family of surrogate loss functions.

Third, through computational experiments using real PSC inspection records, we

compare the performance of the two-stage framework with that of the decision-

focused learning framework to answer the following questions: 1) Does a good

prediction lead to a good decision? 2) Does the decision-focused learning frame-

work outperform the two-stage framework for the PSCO routing problem? 3) How

can we achieve a balance between solution quality and solution efficiency in the

decision-focused learning framework?

The remainder of this chapter is organized as follows. Section 3.2 reviews

the related literature. Section 3.3 first formulates the PSCO routing problem, and

then uses a route generation method to transform the original combinatorial model

into a more compact model. Third, we compare the two models and discuss the

results of our comparison. Section 3.4 describes the traditional two-stage frame-

work. Based on this framework, Section 3.5 describes a decision-focused learning

framework that uses a new family of noise-contrastive loss functions. Section 3.6

describes the results of our computational experiments that compare the traditional

two-stage framework with the decision-focused learning framework and conducts

a sensitivity analysis. Section 3.7 concludes the study.
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3.2 Literature Review

Because current ship risk profile schemes do not efficiently identify substandard

ships, most PSC studies have aimed at improving inspection efficiency by us-

ing ML technologies to identify ships with more deficiencies or higher detention

probabilities. For example, Wang et al. (2019) developed a tree augmented naive

Bayes classifier to identify high-risk ships with more deficiencies. Chung et al.

(2020) and Yan et al. (2021c) used the Apriori algorithm to determine the type

and sequence of ship items that should be inspected. In recent years, maritime re-

searchers have begun to adopt ship deficiency prediction models to allocate scarce

inspection resources. This issue, which is known as the PSCO scheduling prob-

lem, was studied by Yan et al. (2020) and Yan et al. (2021a). Yan et al. (2020) first

compared the results of three random forest models with different loss functions to

predict the number of ship deficiencies under four deficiency categories and then

developed optimization models to efficiently match officers’ expertise with ship

deficiency conditions. Subsequently, Yan et al. (2021a) improved the prediction

performance by integrating shipping domain knowledge into an XGBoost model,

and then modified the downstream PSCO scheduling models to be more consistent

with practice. In their study, the authors considered practical constraints concern-

ing ship berthing time windows and PSCO lunch break requirements but did not

consider either the berthing locations of foreign visiting ships or the time it took

PSCOs to travel between two locations. Therefore, their optimization model did

not fully capture the PSCO routing problem. Accordingly, our study represents an

advance in the field. For other PSC-related studies, please refer to the literature

review in Chapter 2.
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As mentioned above, some PSC studies have used both prediction and opti-

mization methods to make ship selection decisions (Yan et al., 2020, 2021a, 2023)

by considering structural characteristics of the downstream optimization problem

when training their predictive models. Tian et al. (2023a) is the first study to use

PSC data to design ship maintenance schemes for ship operators. Recently, an

emerging stream of literature has combined prediction and optimization in devel-

oping prescriptive analytics frameworks for many domains, such as human re-

source planning Berk et al. (2019), charging infrastructure planning Brandt et al.

(2021), vehicle routing (Soeffker et al., 2022), and queuing (Notz et al., 2023).

Detailed reviews of prescriptive analytics frameworks are available in He et al.

(2022), Qi and Shen (2022), and Tian et al. (2023b).

The predictions involved in the decision-focused learning framework have

been most trained by gradient-descent predictive models in the computer science

field. The main obstacle to plugging the optimization problem into the training

process of gradient-descent predictive models is that the discrete and discontinu-

ous solution space prevents the algorithm from easily differentiating the decision

loss over the predicted values, and so it is infeasible to pass back the gradients

to inform the predictive model with respect to how it should adjust its weights to

improve the decision quality of the solutions it prescribes (Ferber et al., 2020). To

overcome this problem, Wilder et al. (2019) added a quadratic regularization term

to the objective function of the relaxed form of the combinatorial problem, but this

method can only be applied to combinatorial problems with a totally unimodular

matrix. Ferber et al. (2020) strengthened this method by employing a cutting-plane

solution approach, which tightened the continuous relaxation by adding constraints

to eliminate fractional solutions. Instead of computing the real decision loss by di-
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rectly solving the combinatorial problem during the training process, some studies,

including Elmachtoub and Grigas (2021) and Mandi et al. (2020), have designed a

class of surrogate loss functions based on subgradient. One issue common to these

approaches is that they need to repeatedly solve the (possibly relaxed) optimiza-

tion problem, imposing a huge burden on computational efficiency. In contrast,

Mulamba et al. (2021) used a noise-contrastive approach by viewing suboptimal

solutions as noise examples and caching them, thus replacing optimization calls

with a look-up table in the solution cache.

In summary, to the best of our knowledge, no studies have used PSC inspec-

tion records to support PSCO routing. Because PSC inspection data are public,

port authorities can apply prescriptive analytics methods to improve decision per-

formance in ship selection and PSCO routing. Identifying ships with more de-

ficiencies and routing PSCOs to maximize the number of identified deficiencies

while satisfying the required constraints would eliminate the adverse impacts of

substandard ships on maritime transportation and improve the efficiency of port

operations. Therefore, we bridge the following research gaps. First, we innova-

tively use PSC data to inform the decisions of PSCO routing while considering

multiple practical constraints, including the berthing locations and berthing time

windows of foreign visiting ships, and the lunch breaks of PSCOs. Because the

PSCO routing problem is NP-hard, we recast this problem into a more compact

combinatorial problem by generating undominated inspection templates. Second,

we use a traditional two-stage framework to investigate this problem and apply

the decision-focused framework to plug the transformed PSCO routing problem

into the training process of the predictive model. This approach enables us to con-

sider the impact of the predictions on downstream decisions. Our study is the first
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PSC-related study to fully combine prediction and combinatorial optimization.

3.3 PSCO Routing Problem

Section 3.3.1 mathematically presents the PSCO routing problem. Section 3.3.2

transforms the original PSCO routing problem into a more compact formulation

by generating undominated inspection templates. Finally, Section 3.3.3 conducts

several groups of computational experiments to compare the solution efficiency

of the two proposed models.

3.3.1 PSCO routing model M1

The PSCO routing model stems from the PSCO scheduling problem, which in-

volves selecting the set of ships to be inspected and assigning these ships to PSCOs

with the goal of maximizing the number of deficiencies identified among the in-

spected ships (Yan et al., 2021a). Based on the PSCO scheduling problem, the

proposed PSCO routing problem considers not only the matching of ships and

PSCOs, but also the inspection sequence of the ships assigned to each PSCO. To

solve this problem, human resources, time resources, the ships’ predicted defi-

ciency numbers, and the ships’ berthing locations and time windows are consid-

ered simultaneously.

Denote the number of foreign visiting ships that need to be inspected on a given

working day by N and the ships by i = 1, ..., N . Each ship i is characterized by

a vector of features ai, an arrival time Oi, a departure time Ci, a fixed berthing

location Pi, and the duration required for an inspection t
′
i. The arrival and de-

parture times constitute the berthing time window [Oi, Ci] of ship i during which
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the ship is available for inspection. Following Yan et al. (2021a), we assume that

for all of the inspected ships, a typical PSC inspection lasts two hours, that is,

t
′
i = 2 (i = 1, ..., N). Denote the number of available PSCOs on duty for a work-

ing day byM and the PSCOs bym = 1, ...,M . The PSCOs generally work from

8:00 to 11:00 and from 14:00 to 17:00. They depart from the office to perform

inspections, and the office is denoted by the index i = 0. The fact that the PSCOs

can leave the office to perform inspections at any time between 8:00 and 17:00

implies that the time window during which their office can be visited as a starting

location is denoted by [O0, C0] = [8, 17]. Between 11:00 and 14:00, the PSCOs

spend one hour having a lunch break and another two hours working. The lunch

break index is denoted by i = N +1 and the duration required for the lunch break

is denoted by t′N+1 = 1. Similarly, the time window during which the PSCOs can

have lunch at location N + 1 is denoted by [ON+1, CN+1] = [11, 14]. When the

PSCOs finish their assigned work or when the working day is over, the PSCOs

return to the office. Commonly, the PSCOs both start and finish their work at the

office. However, for modeling convenience, we denote the office location by two

indices. Different from the index i = 0 when the office is regarded as the starting

location for the PSCOs’ daily work, the office is denoted by i = N + 2 when it

is regarded as the ending location. Similarly, because the PSCOs can return to the

office at any time between 8:00 and 17:00 in a working day, the time window dur-

ing which the ending location can be visited is denoted by [ON+2, CN+2] = [8, 17].

Therefore, there are N + 3 location indices to be considered in this problem, in-

cludingN berthing locations of foreign visiting ships, the location of start of work

(i = 0), the location of end of work (i = N + 2), and the location of lunch break

(i = N + 1). Furthermore, the duration spent at the starting and ending locations
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is denoted by t
′
i = 0 (i = 0, N + 2). Therefore, each location i (i = 1, ..., N) is

characterized with a time window [Oi, Ci] and a duration t
′
i. Finally, we denote

the travel time from location i to location j by tij (i, j = 0, ..., N + 2).

Before solving the PSCO routing problem, information concerning each ship’s

berthing time window and berthing location, and the PSCO’s travel time between

different locations is known to the port authority; the deficiency conditions of the

foreign visiting ships are not known. We denote the set of uncertain numbers of

ship deficiencies by d̃ := {d̃i|i = 1, ..., N}. The sets of decision variables are

denoted by x := {xijm|i, j = 0, ..., N + 2;m = 1, ...,M}, where xijm = 1 if a

visit to location i is followed by a visit to location j by PSCOm and 0 otherwise;

y := {yim|i = 1, ..., N ;m = 1, ...,M}, where yim = 1 if ship i is assigned to

be inspected by PSCO m and 0 otherwise; and s := {sim|i = 0, ..., N + 2;m =

1, ...,M}, where sim represents the start time of the visit to location i by PSCO

m. We then use P to denote a large constant. The PSCO routing problem is as

follows:

maxE
[
z(d̃, y)

]
= maxE

[
M∑

m=1

N∑
i=1

d̃iyim

]
(3.1)

subject to
M∑

m=1

N+2∑
j=1

x0jm =
M∑

m=1

N+1∑
i=0

xi,N+2,m = M (3.2)

N+1∑
i=0

xikm =
N+2∑
j=1

xkjm = ykm k = 1, ..., N + 1;m = 1, ...,M (3.3)

sim + tij + t
′

i − sjm ≤ P (1− xijm) i, j = 0, ..., n+ 2;m = 1, ...,M (3.4)

M∑
m=1

yim = 1 i = 1, ..., N (3.5)
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yim = 1 i = 0, N + 1, N + 2;m = 1, ...,M (3.6)

Oi − P (1− yim) ≤ sim i = 0, ..., N + 2;m = 1, ...,M (3.7)

sim + t
′

i ≤ Ci + P (1− yim) i = 0, ..., N + 2;m = 1, ...,M (3.8)

xijm, yim ∈ {0, 1} i, j = 0, ..., N + 2;m = 1, ....,M (3.9)

sim ≥ 0 i, j = 0, ..., N + 2;m = 1, ...,M. (3.10)

Objective function (3.1) maximizes the expected total number of deficiencies iden-

tified among all foreign visiting ships to be inspected. Constraint (3.2) guarantees

that all PSCOs start work at location 0 and end work at location N + 2. Con-

straints (3.3) and (3.4) guarantee each PSCO’s connectivity and timeline. Con-

straints (3.5) mean that each ship is inspected no more than once. Constraints (3.6)

ensure that all PSCOs must visit locations 0,N+2, andN+1 to start and end their

work and have their lunch breaks. Constraints (3.7) and (3.8) restrict the visit to

each ship’s time window and the lunch break to a specific period; that is, a ship can

only be inspected during its berthing time window and the PSCOs can only have

lunch break during the specified time window. Constraints (3.9)–(3.10) define the

domains for decision variables.

3.3.2 PSCO routing model M2

Observing the structure of model M1, we note that it is a practical application of

the team orienteering problem with time windows (Vansteenwegen et al., 2009).

The team orienteering problemwith time windows is a highly constrained problem

that is difficult to solve. Golden et al. (1987) proved that the orienteering problem
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is NP-hard. Therefore, it is reasonable to believe that model M1 is unlikely to be

solved to optimality using a polynomial-time algorithm. To improve the solution

efficiency of the PSCO routing problem M1, we adopt a route generation method

to transform model M1 into a more compact model M2.

Recall that the total daily working time of a PSCO is eight hours, and the

duration of an inspection is two hours. This implies that a PSCO can inspect zero,

one, two, or three ships in one day, considering both the duration of the lunch break

and the time spent travelling between different locations. Therefore, the PSCO

routing problem can be reformulated as the problem of selecting and assigning the

sets of ships that can be inspected to all available PSCOs. Define the number of

ships inspected by a PSCO during a working day as L, where L ∈ {0, 1, 2, 3}.

Given that L ships are selected from N visiting foreign ships, the total number of

combinations is CL
N = N !/ (L! (N − L)!). Denote a combination of L ships by

the set S, where |S| = L. We then define set S as an inspection template when it

is feasible for one PSCO to inspect all the ships in the set in a single working day.

Then, the PSCO routing problem is modified to first select the set of inspection

templates that maximize the number of deficiencies identified, while ensuring that

each ship is inspected no more than once by a PSCO, and then to route the PSCOs

based on the selected inspection templates. The method of selecting the inspection

templates is illustrated in Algorithm 3.1, which follows Yan et al. (2021a). The

method of routing the available PSCOs is illustrated in Algorithm 3.3.

We first illustrate the basic idea of Algorithm 3.1 as follows. Although we

can obtain CL
N combinations (sets of templates), not every combination is feasible

considering the hard constraints on the visiting time windows and the travel time

between two locations. To examine whether it is feasible for a single PSCO to
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inspect all of the ships in S, we first need to verify whether there exists a feasible

route that satisfies all of the constraints. For a feasible route, a PSCO needs to visit

L + 3 locations (including the office as a starting location, the berthing locations

of L ships, the lunch break location, and the office as an ending location) to finish

all inspection work during a day. To this end, we define α as a location, and each

location is labeled with a duration time tα, an earliest start time λα, and a latest

end time λ̄α. If a PSCO visits a location where ship i is berthed for an inspection,

then tα = 2, λα = Oi, and λ̄α = Ci; if a PSCO visits the office when starting

work (i = 0) or finishing work (i = N + 2), then tα = 0, λα = 8, and λ̄α = 17;

if a PSCO visits the lunch break location, then tα = 1, λα = 11, and λ̄α = 13.

Considering that the starting and ending location, which is the office, is indifferent

in each set, there are (L+ 1)! candidate routes for the PSCOs to complete their

tasks (note that not all of the candidate routes are feasible, because we do not

consider the travel time between two locations and the different time windows of

foreign visiting ships). For a particular route, we define the locations visited by

a PSCO as (α1, ..., αL+3), where αl (l = 1, ..., L + 3) is the lth location to visit;

tαl
, λαl

, and λ̄αl
are the visiting duration, the earliest visiting time, and the latest

visiting time, respectively, for location αl. To ensure that L + 3 locations can

be visited in the defined sequence of a route within the specified working time

limit, we define the decision variable ζl as the start time of visiting location αl.

Then, L + 3 locations can be visited in the above sequence by one PSCO if and

only if there is a set of solutions ζl (l = 1, ..., L + 3), that satisfies the following

constraints:

ζl ≥ λαl
l = 1, ..., L+ 3 (3.11)
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ζl + tαl
≤ λ̄αl

l = 1, ..., L+ 3 (3.12)

ζl+1 ≥ ζl + tαl
+ t

′

l,l+1 l = 1, ..., L+ 3, (3.13)

where t′l,l+1 denotes the travel time from location αl to αl+1.

Proposition 3.1 For a candidate route, whether Constraints (3.11)– (3.13) have

a feasible solution is guaranteed by the following conditions: for location α1, let

its start time ζ1 = λα1 = 8; for location αl (l = 2, ..., L + 3), let its start time

ζl = max{ζl−1+tαl−1,l
, λαl
}; if ζl ≤ λ̄αl

−tαl
(l = 1, ..., L+3), then the candidate

route is feasible, otherwise it is infeasible.

Property 3.1 For two inspection templates S and S′ , if S ⊆ S′ , then inspection

template S is dominated by inspection template S′ . If inspection template S′ does

not contain any other inspection template, it is considered an undominated inspec-

tion template because inspecting it can always identify no fewer deficiencies than

inspecting any other inspection template contained within it.

Therefore, the overall procedure to generate the set of all undominated inspec-

tion templates, denoted by H, is shown in Algorithm 3.1. After obtaining the set

of undominated inspection templates H and parameters ηhi (i = 1, ..., N ;h ∈ H),

we further introduce a binary decision variable y′

h, which equals 1 if an undomi-

nated inspection template h ∈ H is assigned to one PSCO, and a binary decision

variable ui (i = 1, ..., N), which equals 1 if and only if ship i is inspected by one

PSCO. Then, model M2 is as follows:

maxE
[
z(d̃, u)

]
= maxE

[
N∑
i=1

d̃iui

]
(3.14)
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subject to ∑
h∈H

y
′

h ≤M (3.15)

ui ≤
∑
h∈H

ηhi y
′

h i = 1, ..., N (3.16)

y
′

h ∈ {0, 1} h ∈ H (3.17)

ui ∈ {0, 1} i = 1, ..., N, (3.18)

where u = [u1, ..., uN ]
⊤. Objective function (3.14) maximizes the expected total

number of deficiencies identified. Constraint (3.15) provides that the maximum

number of adopted inspection templates cannot exceed the number of available

PSCOs. Constraints (3.16) indicate the relationship between ui and y
′

h. Con-

straints (3.17)–(3.18) represent the domains for decision variables.

We note that M2 is more compact than M1, but solving M2 can only yield the

selection of the optimal inspection templates, and does not provide information

on how to route the PSCOs. Next, we describe how to route the available PSCOs

based on these selected inspection templates. Because there may be several fea-

sible routes to finish the tasks in a selected inspection template, to determine the

optimal route, we first define an optimal route as the one with the earliest return

time to the office. Given an optimal inspection template S∗ containing |S∗| ships,

adopting this inspection template requires visiting |S∗|+ 3 locations and generat-

ing (|S∗|+1)! candidate routes for the PSCOs to complete their tasks. The above-

defined earliest return time to the office is denoted by ζ|S∗|+3. Algorithm 3.2 is

introduced to find the optimal route for a selected inspection template.

After obtaining the optimal routes for all of the selected inspection templates,
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Algorithm 3.1 Generate undominated inspection templates
Input: Set of locations {0, ..., N + 2}; duration spent at each location ti (i ∈
{0, ..., N + 2}); time window of each location [Oi, Ci] (i ∈ {0, ..., N + 2}).

Output: The set of undominated inspection templates H, binary variable pa-
rameter ηhi indicating whether ship i is contained in inspection template h
(i ∈ {0, ..., N + 2};h ∈ H).

1: Initialize H = ∅.
2: for L = 0, 1, 2, 3 do
3: Formulate all of the possible combinations that select L ships from all of

the visiting ships, denoted by Q.
4: for each combination q ∈ Q do
5: Initialize feasibility = False.
6: Define set V that contains all of the candidate routes of starting work,

inspecting the ships in q, having lunch break, and ending work.
7: for each candidate route v ∈ V do
8: Test the feasibility of v using Proposition 3.1.
9: if v is feasible then
10: H← H ∪ {q}.
11: For locations i included in q, set ηqi = 1; otherwise, ηqi = 0.
12: Update feasibility = True.
13: Break.
14: end if
15: end for
16: if feasibility = True then
17: Continue.
18: end if
19: end for
20: end for
21: Delete dominated inspection templates in H using Property 3.1.
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Algorithm 3.2 Find the optimal route for an inspection template.
Input: A selected inspection template S∗; set of locations {0, ..., N+2}; duration

spent at each location ti (i = 0, ..., N + 2); time window of each location
[Oi, Ci] (i = 0, ..., N + 2).

Output: Optimal_route.
1: Define V as a set that contains all of the candidate routes of starting work,

inspecting the ships in S∗, having lunch break, and ending work. Denote a
candidate route as pj (pj ∈ V; j ∈ {1, ..., (|S∗| + 1)!}) and the earliest return
time to the office for pj as ζj .

2: Initialize Optimal_route = ∅, Earlist_finish_time =∞.
3: for j = 1, ..., (|S∗|+ 1)! do
4: Test the feasibility of a candidate route pj using Proposition 3.1.
5: if pj is feasible and ζj ≤ Earlist_finish_time then
6: Earlist_finish_time← ζj .
7: Optimal_route← pj .
8: end if
9: end for

we cannot directly assign the determined optimal routes to available PSCOs, be-

cause model M2 cannot guarantee that each ship is inspected no more than once,

since two inspection templates may contain the same ship. Hence, to avoid du-

plicate inspections for a ship while adopting optimal routes for the selected in-

spection templates, we further require that a selected ship be inspected only once.

Therefore, we introduce a set S containing the ships that have already been in-

spected. The overall procedure of PSCO routing after solving M2 is shown in

Algorithm 3.3.

Finally, by observing Constraint (3.15), we note that it is possible that in an

optimal solution, some PSCOs are not assigned to any inspection task. In other

words, not all PSCOs have ships to inspect according to an optimal solution. To

ensure temporal fairness in work assignments, we recommend that the port state

shuffle the index of PSCOs each working day so that each PSCO has a prioritized

opportunity to be assigned inspection work.
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Algorithm 3.3 PSCO routing after solving M2.
Input: Set of undominated inspection templatesH, optimal solutions y′

h (h ∈ H).
Output: Scheduling results.
1: Define H′

= {h|h ∈ H, y
′

h = 1, } as the set of selected inspection templates.
2: Denote S = ∅ as the set of inspected ships.
3: Initialize i = 0.
4: for h ∈ H′ do
5: if i = 0 then
6: Determine the optimal route p for the inspection template h by apply-

ing Algorithm 3.2.
7: Assign p to PSCO 1.
8: i← i+ 1.
9: Initialize h′ ← h.
10: else
11: Update S by merging the last inspection template: S ← S ∪ {h′}.
12: Delete S from the current inspection template h: h← h \ S .
13: Determine the optimal route p for inspection template h by applying

Algorithm 3.2.
14: Assign p to PSCO i+ 1.
15: h′ ← h.
16: end if
17: end for
18: form = |H′ |+ 1, ...,M do
19: Not assign any route to PSCOm.
20: end for
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3.3.3 Comparison of M1 and M2

To facilitate the introduction of the decision-focused learning framework proposed

for the PSCO routing problem, which requires high computational efficiency, we

first conduct a basic computational experiment to compare the solution efficiency

of M1 and M2. To obtain the travel time tij between each pair of locations (i, j),

we divide the port area of concern into five parts, with each location belonging to

one part. We then introduce ei (i = 0, ..., N +2) as the part index of each location

i and an auxiliary index t′eiej indicating the travel time between a pair of area parts

(ei, ej). We further assume that the location of the office and the lunch break is

in part 1, indexed by e0, eN+1, eN+2 = 1, and the berthing locations of foreign

visiting ships are randomly set to parts 2 to 5. Then, the travel time tij can be

obtained by mapping (ei, ej) with t
′
eiej

. For example, assuming that ships 1 and 2

berth at parts e1 = 2 and e2 = 4, respectively, and the travel time between parts

2 and 4, t′24, is one hour, we can thus obtain that the travel time between ships 1

and 2, t12, is one hour. The travel times, t
′
eiej

, between two area parts (ei, ej) are

shown in Table 3.1. Furthermore, we randomly set the values of the time window

[Oi, Ci], part indexes ei, and number of deficiencies di for ship i following the

ranges shown in Table 3.2.

Table 3.1: Travel time (hour) teiej between two area parts (ei, ej)

teiej/(ei, ej) 1 2 3 4 5

1 0 0.2 0.4 0.3 0.2
2 0.2 0 0.1 0.3 0.2
3 0.4 0.1 0 0.4 0.2
4 0.3 0.3 0.4 0 0.3
5 0.2 0.2 0.2 0.3 0
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Table 3.2: The ranges of input integer parameters for models M1 and M2
Parameter Oi Ci pi di

Range 8 ∼ 11 13 ∼ 17 2 ∼ 5 0 ∼ 10

To compare the solution efficiency of modelsM1 andM2with different groups

of input parameters and under different instance sizes, we design four groups of

instances. One group is denoted by (M,N), where M represents the number of

available PSCOs with values of 2, 4, 6, and 8, and N represents the number of

foreign visiting ships with values of 10, 15, 20, and 25, respectively. For each

instance, we rerun the experiments with 10 groups of randomly generated input

parameters. The programs are coded in Python and the models are solved by

Gurobi. Because the PSCO routing problem is NP-hard, it may be impractical

to solve large-scale instances. To save computational efforts, we limit the solution

time of each model to 200 seconds. That is, given a model M1 or M2, Gurobi

stops when a specified time limit is reached. Next, the current best solution found

by Gurobi is retrieved as the near-optimal solution. The computational results for

models M1 and M2 are shown in Table 3.3.

As we can see from Table 3.3, for model M1, the average solution time in-

creases greatly as the instance size increases. For instance size (8,25), nearly all

of the models cannot be solved to optimality within 200 seconds. Furthermore,

the standard deviations of problems with different groups of parameters in the

same instance size show that their solution time may vary greatly due to the dif-

ference parameters involved in the model. For example, assigning visiting ships

with longer time windows can increase the computing time required to solve M1,

because doing so can increase the search space of the optimal solutions. Com-
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Table 3.3: Computational results for models M1 and M2
Instance (2,10) (4,15) (6,20) (8,25)

M1 Model solution time (s) Average (Avg.) 2.22 92.16 164.55 200.93
Standard deviation (Std.) 3.94 93.48 75.81 0.08

Number of groups where the optimal solution 0 4 8 10is not found within 200s

M2

Time spent on Algorithm 3.1 (s) Avg. 0.29 1.11 2.68 5.61
Std. 0.04 0.16 0.30 0.19

Model solution time (s) Avg. 0.02 0.08 0.27 0.52
Std. 0.02 0.05 0.11 0.13

Time spent on Algorithm 3.3 (s) Avg. 0.00 0.01 0.01 0.01
Std. 0.00 0.00 0.00 0.00

Overall CPU time (s) Avg. 0.32 1.20 2.95 6.14
Std. 0.04 0.11 0.20 0.09

Average objective function value gap 0.00% 0.00% 0.00% 0.09%of M2 to M1

pared with the average solution time of M1 under different instance sizes, solving

M2 takes a much shorter time. For M2, the time spent on Procedure B.1 to find

undominated inspection templates is the determinant of the overall CPU time, fol-

lowed by the solution time for M2. However, solving M2 under different instance

sizes never costs more than one second and the solution time for M2 does not fluc-

tuate very much in different groups of input parameters under the same instance

size. Finally, by observing the average gap of the objective functions between M2

and M1, the solution qualities of M1 and M2 only show a slight difference under

instance size (8,25). Although the solution qualities of M1 and M2 are nearly the

same, because M2 is much more computationally efficient than M1, the rest of

the analysis in the study will use M2 as the target optimization problem, which is

plugged into the ML algorithm in the following sections.
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3.4 The Two-Stage Framework

Before the port state authority routes the PSCOs, the number of deficiencies of

foreign visiting ships is unknown. Fortunately, the authority has access to a his-

torical dataset D = {(ai, di)}Ri=1 with an R number of PSC inspection records,

where ai ∈ Rq denotes a vector of q features for ship i, and di is an integer indi-

cating the ship’s number of deficiencies. One traditional and straightforward way

to solve the PSCO routing problem is to first train an ML model f(ω, a) with a as

the input and ω as the weights (parameters) to predict the value of d, denoted by

d̂. This ML model is trained to minimize a specified loss function using dataset

D, such as the mean squared error (MSE) loss function LMSE for a regression task

defined as follows:

LMSE =
1

R

R∑
i=1

(
d̂i − di

)2

. (3.19)

Given the loss function LMSE, ML model f is trained by solving the following

optimization problem to obtain the optimal ω∗:

ω∗ = argmin
ω

LMSE = argmin
ω

1

R

R∑
i=1

(
d̂i − di

)2

. (3.20)

Then, when presented with a new example with feature vector a0, model f with

the optimal ω∗ can be applied to predict the number of deficiencies of the new

example d̂0 = f(ω∗, a0). Finally, the predicted values of all of the foreign visit-

ing ships that may be inspected are put into the PSCO routing problem to derive

the routing results. This framework is generally termed either the predict-then-

optimize framework or the two-stage framework. As described in Section 3.2,
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gradient-descent ML algorithms are most commonly used in the decision-focused

learning framework. To facilitate our comparison of the two-stage framework and

the decision-focused learning framework, we specify that the ML algorithm used

in our study is the artificial neural network (ANN) (Yegnanarayana, 2009) because

of its high popularity and good performance.

An ANN generally has three layers: an input layer, a hidden layer, and an

output layer (Yegnanarayana, 2009). The outputs of the input and hidden layers

act as the input to the ANN’s direct downstream layer. Training an ANN refers

to adjusting its weights (i.e., ω as mentioned above) that connect the neurons of

consecutive layers, with the goal of minimizing the loss. Backpropagation is the

most widely used training algorithm for ANNs. It is a way of computing the gra-

dients of the loss on the weights by recursively applying chain rules such that the

current prediction loss in the output layer can be reversely passed to the preceding

layers, and the weights can be adjusted to minimize the loss. Backpropagation

computes gradients in an efficient manner, making it feasible to use the gradient-

descent method to train multilayer ANNs. The hyperparameters considered in an

ANN mainly include learning rate, epochs (number of iterations), and batch size,

which together deal with the problems of underfitting and overfitting. The learn-

ing rate controls the speed of weight update by determining the step size at each

iteration when moving toward a minimum loss value. Epochs refer to the number

of times the whole training dataset is trained. The batch size refers to the number

of examples in a mini-batch, and a mini-batch is a strict and non-empty subset of

the whole training set. Examples in a mini-batch are passed to the network at one

time to update the weights. Therefore, the total number of batches in an epoch

is equal to the ratio of the size of the whole training set to the batch size. For a
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more detailed introduction to ANN, please refer to Yegnanarayana (2009). Algo-

rithm 3.4 depicts the two-stage framework including a standard gradient-descent

learning procedure.

Algorithm 3.4 Two-stage framework.
Input: Training data D = {(ai, di)}Ri=1, learning rate α, epochs, batch size.
1: for each epoch do
2: for each batch do
3: for each sample a do
4: Predict the number of deficiencies of a, denoted by d̂.
5: end for
6: Calculate the accumulated MSELMSE for the set of samples in a batch.

7: Updateω ← ω−αdLMSE

dd̂
dd̂
dω

, where d̂ denotes the vector of predicted
values in a batch.

8: end for
9: end for

3.5 The Decision-Focused Learning Framework

This section introduces the decision-focused learning framework. Section 3.5.1

defines the regret loss. Section 3.5.2 introduces a new family of noise-contrastive

loss functions. Section 3.5.2 describes the gradient-descent decision-focused learn-

ing framework using the noise-contrastive losses proposed in Section 3.5.2. We

mainly follow the decision-focused learning framework proposed by Mulamba et

al. (2021)

3.5.1 The decision loss

One possible disadvantage of the two-stage framework is that it does not con-

sider the impact of the predictions on the downstream optimization problem, which
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consequently generates sub-optimal decisions. Therefore, a more appropriate ap-

proach is to integrate the prediction and the decision procedures when training the

ML model, which requires using a decision-focused loss to take decision errors

into account. For the PSCO routing problem under the decision-focused learning

framework, another ML model, denoted by f
′ (
ω

′
, ai

)
, is trained to generate the

prediction d̂′
i for ship i that can provide optimal decisions with respect to the real

value of di. To measure the accuracy of the prescribed decisions, instead of using

the loss function (16), we adopt the decision regret loss denoted by Lregret. Unlike

the traditional loss function, which is computed by summing the prediction error

of each data example, the regret loss is computed based on the instance level, that

is, summing the decision error of T = ⌊R/N⌋ instances (recall that there are R

PSC inspection records and an instance contains N foreign visiting ships). Be-

cause we plug model M2 into the decision-focused learning framework and recall

that the objective function of model M2 is z(d, u), finding the optimal parameters

in ω′ over a set of T training instances can be established as

ω
′∗ = argmin

ω′
Lregret = argmin

ω′

1

T

T∑
j=1

[
z(dj, u∗(dj))− z(dj, u∗(d̂

′

j))
]
, (3.21)

where d̂′
j is theN -dimensional vector of the predicted numbers of deficiencies for

jth instance and u∗(d̂′
j) denotes the corresponding optimal solution. By observing

Formula (3.21), we find that the regret loss is the sum of the difference between

the objective function values derived from 1) the perfect solution u∗(dj) under

the real deficiency number vector dj and 2) the optimal solution u∗(d̂
′
j) under the

predicted deficiency number vector d̂′
j . As mentioned above, we use an ANN as

our predictive model. However, we cannot directly use the original regret loss
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Lregret during its training process because model M2 involves integer variables and

Lregret cannot differentiate over the argmin on d̂
′
j . Therefore, our goal is to find

a differentiable and efficient-to-compute loss function for the decision-focused

learning framework, which is introduced in the next section.

3.5.2 Contrastive losses

We note that model M2 cannot be easily embedded in the ANN training algorithm

as it cannot be easily differentiated due to its structure and discontinuity. Inspired

by the contrastive losses proposed by Mulamba et al. (2021), we design the fol-

lowing decision-focused learning framework for the PSCO routing problem. Con-

trastive losses are proposed based on the fact that probabilistic models can define

a parametric probability distribution over feasible solutions for an optimization

problem, and maximum likelihood estimation can be used to find the distribution

parameters, making the observed perfect solution appear with the greatest proba-

bility. The exponential distribution is ubiquitous in ML research among popular

probabilistic models, as it has the required form of the optimal solution to maxi-

mum entropy problem (Berger et al., 1996). This study thus proposes an exponen-

tial distribution to fit model M2.

Let U denote the state space of the feasible solutions of an optimization prob-

lem maxu∈U z(d, u), where u ∈ U is a feasible solution. Then, we define the fol-

lowing exponential distribution over U under the prediction d̂, which represents

the probability of deriving solution u under the prediction d̂:

P(u|d̂) = 1

Z
exp(z(d̂, u)), (3.22)
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where Z normalizes the distribution over the solution space U and is expressed as

Z =
∑
u′∈U

exp(z(d̂, u′)). (3.23)

If u∗(d̂) is the maximizer of maxu∈U z(d, u) (i.e., u∗(d̂) = u∗(d)), it can maximize

Formula (3.22) among all u ∈ U . This implies that if we can learn the parameters

inω′ that canmaximize the likelihood ofP(u∗(d)|d̂), we can obtain the true perfect

solution u∗(d) with the highest probability under the prediction d̂. Consequently,

for all training instances, our goal is to learn the parameters inω′ that canmaximize

the probability that the true perfect solutions are prescribed.

However, obtaining an accurate Z is almost impossible for most integer pro-

gramming problems because it is necessary to find all of the possible solutions

belonging to U . Therefore, we apply NCE (Mikolov et al., 2013) to obtain an es-

timation of Z, which requires establishing a solution pool with a limited number

of noise samples that are feasible solutions to the optimization problem. In Sec-

tion 3.5.3, we describe the method of establishing the solution pool. Below, we

introduce four forms of loss functions based on NCE following Mulamba et al.

(2021).

NCE-basic loss. We first define noise samples as solutions to the optimization

problem that are feasible but different from the perfect solution u∗(d) and that

belong to the subset U ′ , where U ′ ⊂ U \u∗(d). These noise samples constitute the

solution pool that can be used to approximate Z. Therefore, U ′ is the solution pool

that we need. Next, our goal is to learn the parameters in ω
′ by maximizing the

product of the ratios between the probability of the perfect solution u∗(d) under the

prediction d̂ and the probability of any noise sample u′ in U under the prediction
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d̂ for all instances, which is expressed as

ω
′∗ = argmax

ω′
log

T∏
j=1

∏
u′∈U ′

P(u∗j(dj)|d̂j)
P(u′ |d̂j)

= argmax
ω′

log
T∏

j=1

∏
u′∈U ′

exp(z(d̂j, u∗j(dj)))
exp(z(d̂j, u′))

= argmax
ω′

T∑
j=1

∑
u′∈U ′

[
z(d̂j, u∗j(dj))− z(d̂j, u

′
)
]
.

(3.24)

To minimize the decision loss, the above equation can be transformed into the

following NCE-basic loss function:

LNCE =
T∑

j=1

∑
u′∈U ′

[
z(d̂j, u

′
)− z(d̂j, u∗j(dj))

]
. (3.25)

This NCE-basic loss function can be easily embedded in the training process for

ML algorithms, as both u′ (noise samples) and u∗j(dj) can be computed before the

training process if we can formulate a solution pool U ′, and they can be regarded

as constants.

MAP-basic loss. Furthermore, instead of considering all of the noise samples

in u′ when estimating the regret loss, we consider a special form of NCE called

maximum a posteriori (MAP) estimation (Goodfellow, 2015). MAP estimation

only considers the noise sample that has the highest probability of achieving the

optimal objective function value for each instance under the corresponding predic-

tion. Specifically, we define u̇∗j = argmaxu′∈U ′ z(d̂j, u
′
). Similarly, learning the

parameter ω′ by maximizing the product of the ratios between the probability of

deriving the perfect solution u∗j(dj) and that of deriving the noise sample u̇∗j given
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the prediction can be expressed as

ω
′∗ = argmax

ω′
log

T∏
j=1

P(u∗j(dj)|d̂j)
P(u̇∗j |d̂j)

= argmax
ω′

log
T∏

j=1

exp(z(d̂j, u∗j(dj)))
exp(z(d̂j, u̇∗j))

= argmax
ω′

T∑
j=1

[
z(d̂j, u∗j(dj))− z(d̂j, u̇∗j)

]
.

(3.26)

Accordingly, the above equation can be transformed into the followingMAP-basic

loss function:

LMAP =
T∑

j=1

[
z(d̂j, u̇∗j)− z(d̂j, u∗j(dj))

]
. (3.27)

NCE-variant loss and MAP-variant loss. We note that the objective func-

tion of model M2 is a linear function. Therefore, the original Formulas (3.25)

and (3.27) can be rewritten in the following linear form:

LNCE =
T∑

j=1

∑
u′∈U ′

(d̂j)⊤
(
u′ − u∗j(dj)

)
. (3.28)

LMAP =
T∑

j=1

(d̂j)⊤
(
u̇∗j − u∗j(dj)

)
. (3.29)

By observing Formulas (3.28) and (3.29), we find that if d̂j = 0, LNCE and LMAP

equal zeros, which are the minimum loss. To avoid this case, we introduce variants

of Formulas (3.25) and (3.27) by replacing d̂j with d̂j−dj . This modification can

be regarded as adding a regularization term to keep d̂j close to dj . Therefore, we
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can obtain the NCE-variant loss and MAP-variant loss as follows:

LNCE-v =
T∑

j=1

∑
u′∈U ′

(d̂j − dj)⊤
(
u′ − u∗j(dj)

)
. (3.30)

LMAP-v =
T∑

j=1

(d̂j − dj)⊤
(
u̇∗j − u∗j(dj)

)
. (3.31)

By observing Formulas (3.30) and (3.31), we find that the NCE-variant loss and

MAP-variant loss cannot be minimized by predicting dj to be 0. These two losses

can only be minimized by letting d̂j be close to dj . In this way, the prescribed

solution under d̂j can approach the perfect solution u∗j(dj), which is the ultimate

goal of decision-focused learning.

3.5.3 Gradient-descent decision-focused learningwith noise sam-

ples

Following the above introduction of the four types of contrastive losses, the main

problem to be solved now is how to formulate the solution pool of noise samples

U ′. We note that any feasible solution in U is a noise sample in U ′. However,

finding all of the feasible solutions in U is time-consuming and nearly impossible,

especially for large-scale combinatorial problems. Therefore, we first initialize U ′

by solving models using the real values of d before the training process, and then

expand it while obtaining a new solution by solving model M2 using the predicted

d̂ during the training process. Algorithm 3.5 shows the procedure of the gradient-

descent decision-focused learning framework with noise samples.

There are three main differences between the proposed Algorithm 3.4 and Al-
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Algorithm 3.5 Decision-focused learning framework
Input: Auxiliary parameters in model M2; training data D′

= {(Aj, dj)}Tj=1, a
fixed parameter psolve, learning rate α′, epochs, batch size; hereAj denotes the
feature matrix of the jth instance.

1: Initialize ω′, U ′ = {u∗(dj)|(Aj, dj) ∈ D
′}.

2: for each epoch do
3: for each batch do
4: for each instance A do
5: Predict the numbers of deficiencies of the samples in instance A,

denoted by d̂.
6: end for
7: if a random number between 0 and 1 is smaller than psolve then
8: Obtain u∗(d̂) by solving model M2 with d̂.
9: U ′ ← U ′ ∪ u∗(d̂).
10: end if
11: Calculate the accumulated surrogate decision losses Lregret for the set

of instances in a batch.

12: Update ω′ ← ω′ − α′dLregret

dD̂
dD̂
dω′ , where D̂ denotes the matrix of pre-

dicted values in a batch.
13: end for
14: end for
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gorithm 3.5. First, the data records used to train the ML model in Algorithm 3.5

are averagely divided into T instances, with each instance represented by a feature

matrix A and a vector of deficiency numbers d. Instantiating this training dataset

is to compute the regret loss at the instance level and formulate the solution pool

using these training instances. Second, in addition to initializing the parameters in

ω
′ , Algorithm 3.5 initializes the solution pool U ′ by solving all of the training in-

stances beforehand. An initialized solution pool can be expanded by adding a new

solution u(d̂) after obtaining the predicted d̂ and solving the optimization model

M2 using d̂. Furthermore, the solution pool can be regarded as an inner approxi-

mation of U , because the noise samples in U ′ can represent the convex hull of U if

it contains all potentially optimal solutions. Whenmore new solutions are added to

the solution pool, we expect to obtain a tighter inner approximation for U . Third,

we introduce a parameter psolve to represent the probability of calling a solver to

obtain the current prescribed solution in Algorithm 3.5. If a random number be-

tween 0 and 1 is smaller than psolve, the algorithm needs to call the solver and add

the solution to the solution pool if it is not in the solution pool. This parameter

may have an influence on the trade-off between efficiency and accuracy. That is,

a larger psolve leads to more intensive calls to the solver so that computational time

is increased but decision error may be decreased.

3.6 Computational Experiments

This section presents the results of our computational experiments. In Section 3.6.1,

we describe our dataset and the settings for each ML model. In Section 3.6.2, we

compare the performance of the two-stage framework and the decision-focused
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learning framework and present several interesting findings. In Section 3.6.3, we

conduct a sensitivity analysis on psolve.

3.6.1 Data description

This study uses a dataset with 3,026 PSC initial inspection records from January

2015 to December 2019 at the Hong Kong Port and the corresponding ship-related

factors of the inspected ships. Hong Kong Port is a member of the Tokyo Mem-

orandum of Understanding (MoU), which governs the Asia-Pacific region. The

PSC inspection records are retrieved from the Asia Pacific Computerized Infor-

mation System provided by the Tokyo MoU, and the ship-related factors are ob-

tained from the World Shipping Register database . The main work of this study

is to route the PSCOs to maximize the number of deficiencies identified on the

foreign visiting ships selected for inspection. This is achieved by training ML

models whose input is the ships’ auxiliary features and whose output is the pre-

dicted number of deficiencies. This study considers 14 auxiliary features that are

closely related to ship condition, according to Yan et al. (2020, 2021b), namely,

ship age, gross tonnage, length, depth, beam, type, flag performance, recognized

organization performance, company performance in the Tokyo MoU, last PSC in-

spection date in the Tokyo MoU, the number of ship deficiencies identified in the

last inspection in the Tokyo MoU, the number of detentions in all historical PSC

inspections, flag change times, and whether a ship has had a casualty in the last

five years. We follow the data processing method used by Yan et al. (2020) and

Yan et al. (2021b) for these features.

Because the regret loss is computed at the instance level, we need to instantiate
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the original dataset by dividing the original dataset into same-sized instances. We

note that due to the limited size of the dataset, if we divide the original dataset

into instances with different sizes, we can obtain different numbers of instances.

For example, for instances in sizes (2,10) and (4,15), we can obtain a maximum

of 302 (⌊3026/10⌋ = 302) and 201 (⌊3026/15⌋ = 201 ) instances, respectively.

To maintain identical numbers of training and test instances under different sizes

in the following experiments, we generate more instances by adopting a bootstrap

sampling method, which is a statistical procedure that resamples a single dataset

with replacement to generate more simulated examples. Using this method, we

generate 300 instances under each instance size and divide them into a training

instance set (80%, 240 instances) and a test instance set (20%, 60 instances). The

predictive model used in this study is an ANN with a hidden layer of 100 neurons

and ReLU (short for rectified linear unit) as the activation function implemented

by PyTorch. A tuple of the following three hyperparameters needs to be tuned for

these models: learning rate, epoch, and batch size. We use a grid search with five-

fold cross validation on the training set to tune these hyperparameters in each ML

model. All of the ANN models are trained using ADMM (short for alternating

direction method of multipliers), which is an algorithm that solves convex opti-

mization problems by breaking them into smaller pieces, each of which is easier

to handle (Kingma and Ba, 2015). The proposed models are constructed using the

training instance set, and their performance is validated using the test instance set.
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3.6.2 Comparison of the two-stage framework and the decision-

focused learning framework

Recall that model M2 has higher solution efficiency than model M1, and thus the

following experiments use model M2 as the target optimization problem. Follow-

ing the parameter settings for model M2 in Section 3.3.3, we compare the perfor-

mance of the two-stage framework and the decision-focused learning framework

using different contrastive losses under four instance sizes, namely, (2,10), (4,15),

(6,20), and (8,25). For the ANN models, we set the search range for the learn-

ing rate at {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7}, the search

range for the epochs at {5, 10, 15, 20, 25}, and the search range for the batch size

at {1, 2, 4, 8, 16, 32}.

We then use the best hyperparameters to construct the ML models with dif-

ferent loss functions and different instance sizes on the whole training instance

set and compute the regret loss based on the decision and the MSE based on the

prediction on the test instance set. We rerun the models under the same instance

size 30 times with different groups of randomly generated parameters for M2 in

the same ranges as those introduced in Section 3.3.3. We then calculate the av-

erage regret loss and the average MSE of each model. Furthermore, we design a

vote mechanism to compare the regret loss and the MSE of models with different

loss functions and under the same instance size of 30 groups of experiments. For

the five experiments under the same instance size and using the same group of

randomly generated parameters for M2 but with different loss functions, the ex-

periment with the lowest regret loss or the lowest MSE obtains one point. If there

is a tie among several experiments, all of the experiments with the lowest score
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can obtain one point. The final results are shown in Table 3.4.

Table 3.4: The computational results of 30 experiments using models with differ-
ent loss functions under different instance sizes
Instance Method Loss function Metric Vote

size Average regret Average MSE Lowest regret Lowest MSE

(2,10)

NCE_basic 5.224 20.400 1/30 0/30
Decision-focused NCE_variant 4.958 23.668 0/30 0/30

learning MAP_basic 5.879 35.668 2/30 0/30
MAP_variant 3.447 53.228 23/30 0/30

Two-stage MSE 3.814 13.370 4/30 30/30

(4,15)

NCE_basic 6.79 23.38 2/30 0/30
Decision-focused NCE_variant 6.01 27.27 1/30 0/30

learning MAP_basic 5.63 34.52 0/30 0/30
MAP_variant 2.88 77.97 23/30 0/30

Two-stage MSE 3.15 13.56 6/30 30/30

(6,20)

NCE_basic 5.84 16.98 5/30 0/30
Decision-focused NCE_variant 3.86 25.32 8/30 0/30

learning MAP_basic 7.22 28.24 0/30 0/30
MAP_variant 2.80 26.09 12/30 0/30

Two-stage MSE 2.15 13.21 15/30 30/30

(8,25)

NCE_basic 5.71 25.42 9/30 0/30
Decision-focused NCE_variant 4.70 30.39 10/30 0/30

learning MAP_basic 12.50 61.12 2/30 0/30
MAP_variant 1.82 27.10 14/30 0/30

Two-stage MSE 1.25 15.83 8/30 30/30

From the above results, we draw the following findings, which is consistent

with recent studies (Hu et al., 2022).

A good prediction may not lead to a good decision. A better prediction is

indicated by a lower MSE. This metric shows that the two-stage framework sig-

nificantly outperforms the decision-focused learning framework with respect to

prediction performance, as the two-stage framework can always obtain the lowest

MSE loss under each of the four instances. However, when we compare the regret

loss, which indicates the decision error, the decision-focused learning framework
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is superior. The ratios of the total votes of the decision-focused learning frame-

work to the total votes of two-stage framework under these four instance sizes

are 26:4, 26:6, 25:15, and 35:8. Among the four types of contrastive losses in

the decision-focused learning framework, except for (6,20), the MAP-variant loss

obtains the highest votes under the other three instance sizes, thus validating its

superiority. This result is explained by the format of the MAP-variant loss shown

in Formula (3.31). For example, compared with the NCE-variant loss, the MAP-

variant loss does not consider unimportant noise samples when computing the loss,

thus helping the ML algorithm focus on the tightest inner approximation. In addi-

tion, unlike the MAP-basic loss, the MAP-variant loss tries to keep its predictions

close to the real values.

The quality of the decision-focused learning framework may depend on the

size of the optimization problem and on the size of the training dataset. Another

obvious tendency shown in Table 3.4 is that the superiority of the MAP-variant

loss declines as the instance size increases. This is indicated by the decreasing

number of least-regret votes for the MAP-variant loss function when the instance

size increases from (2,10) and (4,15) to (6,20) and (8,25). Furthermore, the aver-

age regret values of the two-stage framework under the instance sizes (6,20) and

(8,25) are lower than those of the decision-focused learning framework. This result

indicates that the decision-focused learning framework may not always perform

better than the traditional two-stage framework. This finding was also obtained by

Hu et al. (2022), and further explanations are provided below for the optimization

problem and the dataset that we use in this study.

When the instance size increases, it is much more difficult to obtain an accu-

rate convex hull of the solution pool. It is easy to imagine that if the solution pool
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contains the whole set of feasible solutions, the size of the solution pool increases

exponentially when the instance size increases. Assume that there are approxi-

mately 50 and 600 feasible undominated inspection templates to select under the

instance sizes (2,10) and (8,25), respectively. Choosing two and eight inspec-

tion templates to constitute a feasible routing scheme generates C2
50 = 1225 and

C8
600 = 3.96 × 1017 feasible outcomes, respectively. That is, the full size of the

solution pool under the instance size (2,10) is only 1,225, but the full size of the

solution pool under the instance size (8,25) reaches an extremely large number.

Therefore, it becomes exponentially difficult to obtain an accurate and tight in-

ner approximation under the instance size (8,25). To visually represent this point,

we count the mean (represented by points) and standard deviation (represented by

bands) of the number of noise samples added to the solution pool in each epoch for

the 30 experiments using the MAP-variant loss function under different instance

sizes, and the results are presented in Figure 3.1.

As shown in Figure 3.1, the solution pool under a larger instance size can take

inmore new noise samples generated during the training process. Furthermore, the

structure of the solution pool under a larger instance size can be more complex and

unstable, as shown by a larger standard deviation. For example, for instance sizes

(2,10) and (4,15), the number of added noise samples quickly converges to 0 after

epoch 2, indicating that the solution pool stops expanding. However, for instance

sizes (6,20) and (8,25), although the number of added noise samples decreases as

the training process proceeds, the size of the solution pool continues to grow until

epoch 5, indicating that the current solution pool is not tight enough. Therefore,

the size of the optimization problem plays a vital role in the prescribed decision

quality of the decision-focused learning framework, which is mainly influenced
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Figure 3.1: The number of added noise samples in each epoch for experiments
using the MAP-variant loss under different instance sizes
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by the size and structure of the solution pool.

Furthermore, due to the limited size of the dataset, we use bootstrap sampling

to generate more records. This method may create a “same-ships-but-different-

decisions” situation because it is difficult for the auxiliary parameters (i.e., berthing

locations, berthing time windows) of two “same” ships (with the same feature val-

ues and the same number of deficiencies) to be the same, which can lead to differ-

ent decisions. This does not influence the training process of the two-stage frame-

work, but introduces difficulty and noise to the training process in the decision-

focused learning framework. When the instance size increases, a ship is more

likely to be resampled, and the prescribed quality of the decision-focused learning

framework is adversely affected.

3.6.3 The influence of psolve

In Algorithm 3.5, parameter psolve is used to control the frequency of calling the

solver to solve model M2 to expand the solution pool. A larger psolve represents a

greater possibility of calling the solver, increasing the possibility of adding a new

solution to the solution pool. However, calling a solver does not necessarily result

in new information that can tighten the convex hull of the inner approximation, as

the newly derived solution may have existed in the solution pool; however, this

approach definitely increases the training time of Algorithm 3.5. To investigate

the influence of psolve on the trade-off between efficiency and accuracy, we change

the value of psolve from 0.2 to 1 with a step size of 0.2, and train the models using

the MAP-variant loss under different instance sizes with each value of psolve. We

rerun models 30 times with different groups of randomly generated parameters
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for M2. Then, we obtain the average regret and average training time of the 30

experiments for each model. The final results are shown in Figures 3.2 and 3.3.

Figure 3.2 shows that the average regret may have a downward trend when

psolve increases, especially under instance sizes (6,20) and (8,25). However, it

does not show an obvious linear relationship, indicating that not all of the solu-

tions obtained by calling the solver are new to the solution pool. Furthermore,

Figure 3.2 shows that the downward trend under instance sizes (6,20) and (8,25)

is more significant than under instance sizes (2,10) and (4,15). As explained in

Section 3.6.2, this result is due to the difficulty of finding a good inner approx-

imation for large-sized optimization problems. In contrast, under instance sizes

(2,10) and (4,15), the initial solution pool already functions well as a good inner

approximation. Accordingly, increasing the value of psolve does not have a signif-

icant effect on decreasing regret for models under these instance sizes.

Figure 3.3 shows that the average training time has a strict upward trend when

psolve increases. As the model solving time shown in Section 3.3.3 does not ex-

hibit a linear relationship as the instance size increases, the slope of the fitted line

connecting the scatters becomes steeper as the instance size increases. Therefore,

these results indicate that for models under instance sizes (2,10) and (4,15), calling

the solver to add new solutions to the solution pool by sampling seems to result in

little improvement in decision quality, as the initial solution can function well as a

good inner approximation. Therefore, to reduce the training time of ML models,

we recommend setting a small value for under instance sizes (2,10) and (4,15).

However, for models under instance sizes (6,20) and (8,25), because the initial

solution pool may not function as a good inner approximation, we recommend

setting a moderate value for psolve between 0.4 and 0.8, thus achieving a balance
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Figure 3.2: The average regret of the 30 experiments using models adopting the
MAP-variant loss with different psolve and different instance sizes
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Figure 3.3: The average training time of the 30 experiments usingmodels adopting
the MAP-variant loss with different psolve and different instance sizes
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between efficiency and accuracy.

3.7 Conclusions

With the development of ML technologies and the availability of PSC data, this

study investigates the PSCO routing problemwith the aim of maximizing the num-

ber of deficiencies that can be identified from inspected ships considering practi-

cal constraints. Because ship condition is not known to port authorities when they

route PSCOs, the traditional solution to this problem involves a two-stage frame-

work that first predicts the number of deficiencies of each foreign visiting ship and

then uses that prediction to solve the PSCO routing problem. However, the loss

function used in this framework does not consider the issue of the decision error.

Therefore, we adopt a decision-focused learning framework to solve the PSCO

routing problem by plugging the optimization problem directly into the training

process of the ML model. Under this framework, the PSCO routing problem must

be solved tens of thousands of times. Given that the original PSCO routing prob-

lem is NP-hard, computational complexity and scalability are two major obstacles

to putting this decision-focused learning framework into practice. To overcome

these two issues, we first transform the original PSCO routing problem to be more

compact by designing undominated inspection templates and then use a family

of surrogate loss functions based on NCE. Our computational experiments result

in several interesting findings. First, a good prediction may not lead to a good

decision, which is seen from the fact that under some instance sizes, the decision-

learning framework is superior to the two-stage frameworkwith respect to decision

quality. Second, the quality of the decision-focused learning framework may de-
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pend on the size of the optimization problem and on the size of the dataset. This

quality decreases as the instance size increases, because it is difficult for MLmod-

els to learn the structural properties of large-scale optimization problems. Third,

the adopted decision-focused learning framework with a solution pool containing

noise samples can guarantee a balance between training efficiency and decision

quality; thus, it does not require frequent reoptimizations during the training pro-

cess.
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Chapter 4

Prescriptive Analytics for Container

Ship Bunkering Optimization

4.1 Introduction

Liner shipping, a crucial component of global trade, transports containerized goods

from origin to destination ports in accordance with a fixed-schedule shipping ser-

vice (Meng et al., 2014; Wang et al., 2018; Wang and Meng, 2021; Zhang et al,

2022). To sustain these services, container ships need to procure and replenish

bunker fuel at some ports of call. As fuel costs account for 20% to 61% of ship

operating costs, shipping companies persistently strive to reduce their fleet’s fuel

costs (Wang et al., 2015; Meng et al., 2016, 2017). According to data from the

Shipping Intelligence Network,1 the average global price of high-sulfur fuel oil

(HSFO) was $452 per metric tonne (MT) from 2012 to 2017. In the same period,

the “Fourth Greenhouse Gas Study 2020” of the International Maritime Organi-
1See https://sin.clarksons.net/, last accessed date: April 25, 2023.
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zation (IMO) reports that the annual usage of HSFO in international shipping was

174 million MTs.2 Multiplying these two figures, we arrive at an average annual

expenditure of $78.65 billion on HSFO for maritime transportation. This under-

scores the substantial influence of fuel costs on shipping operations management.

Moreover, with the goal of reducing shipping emissions, the IMO has mandated

that from 2020, the global sulfur content in marine fuel cannot exceed 0.5%, re-

quiring ships to use very low-sulfur fuel oil (VLSFO). Historical data indicate that

the average price of VLSFO is approximately 40% higher than that of traditional

HSFO.3 Thus, ships’ fuel costs increase significantly when they use VLSFO. Con-

sequently, the primary operational goal of shipping companies in the green ship-

ping era is cost reduction while adhering to emission reduction requirements. To

reduce fuel costs, shipping companies need to monitor fuel price changes in real

time and adjust ship bunkering strategies, i.e., where to bunker and how much to

bunker, accordingly. However, considerable uncertainties influencing fuel prices

create substantial challenges in ship bunkering management for shipping compa-

nies.

The price of fuel is an external cost factor faced by every shipping company.

Fluctuations in fuel prices are influenced by multiple factors, such as crude oil

prices, political stability, and weather, and may lead to distinct variations in ship

operating costs (Wang et al., 2018). Fuel prices vary significantly across different

ports worldwide, with such variances possibly depending on geographical prox-

imity. For instance, Figure 4.1 shows variations in VLSFO prices at the ports of

Rotterdam, Singapore, Shanghai, and Hong Kong between November 22, 2019
2See https://maritimecyprus.com/wp-content/uploads/2021/03/

4th-IMO-GHG-Study-2020.pdf, last accessed date: April 30, 2023.
3See https://shipandbunker.com/prices.
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and February 10, 2023. Due to the long distance between the port of Rotterdam

and the other three ports (Singapore, Shanghai, and Hong Kong), the fuel price

difference (or inter-port fuel price variance) between the port of Rotterdam and

the other three ports is large. Historically, the fuel prices at the port of Rotter-

dam have been the lowest among the four ports. In contrast, the ports of Shanghai,

Singapore, and Hong Kong are geographically close, resulting in smaller price dif-

ferences and more significant ranking fluctuations in their historical fuel prices.

Consequently, for a container ship following the route Rotterdam → Singapore

→ Shanghai → Hong Kong → Rotterdam, fueling up in Rotterdam could gen-

erally reduce total fuel costs. However, for a ship following the route Singapore

→ Shanghai → Hong Kong → Singapore, the bunkering decision becomes more

challenging due to a more volatile ranking of the fuel prices of the three ports led

by the smaller inter-port fuel price variance.

Furthermore, over the past two years or more, VLSFO prices at specific ports

have fluctuated dramatically between $200/MT and $1,200/MT, indicating a high

level of uncertainty. While fuel prices at different ports generally follow the same

trend of ups and downs, and can be considered correlated random variables, op-

erational ship bunkering decisions do not rely on a contemporaneous compari-

son of fuel prices at specific ports of call. Instead, they involve anticipating the

prices at each port when the ship is scheduled to dock, complicating the bunkering

decision-making process. Therefore, it is of great practical importance to study

how to formulate the optimal ship bunkering strategy under highly uncertain fu-

ture conditions.

Tomodel and solve optimization problems involving uncertainty, various frame-

works have been developed. In general, traditional methods, such as stochastic
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Figure 4.1: VLSFO prices of four ports

programming (Birge and Louveaux, 2011) and robust programming (Ben et al.,

2009; Bertsimas et al., 2011), predefine information on distributions for uncertain

parameters. However, it is difficult for decision makers to know the ground-truth

distributions of uncertain parameters (Qi and Shen, 2022). In light of this limita-

tion, alternative frameworks that take data as a primitive could offer more accu-

rate and actionable solutions for optimization problems with uncertainty. Specifi-

cally, due to the development of Internet technologies and various machine learn-

ing (ML) techniques, prescriptive analytics frameworks that integrate ML and

optimization have emerged (Bertsimas and Kallus, 2020; Bertsimas and Koduri,

2021; Tian et al., 2023a). These frameworks can provide a more realistic ap-

proach to modeling uncertainty by predicting uncertain parameters using diverse

data sources rather than making assumptions about the underlying distributions.

As a result, decision makers can benefit from optimization strategies that are more
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reliable and effective in the presence of uncertainty than earlier strategies, ulti-

mately leading to improved solution performance. Thus, this study applies pre-

scriptive analytics frameworks to explore the value of real ship fuel price data for

ship bunkering management.

The remainder of this chapter is organized as follows. Section 4.2 reviews

related literature and summarizes our contributions. Section 4.3 mathematically

formulates the ship bunkering management problem in liner shipping. Section 4.4

presents two prescriptive analytics optimization models for the problem. Sec-

tion 4.5 describes the predictivemodels, including the two-channel long short-term

memory (TC-LSTM) for predicting multi-port fuel prices and the MC dropout

technique for estimating distributions in deep learning. Section 4.6 uses both real-

world and synthetic data to compare the prediction performance of the TC-LSTM

and the traditional LSTM, as well as the decision performance of the two prescrip-

tive analytics frameworks. Section 4.7 concludes the study.

4.2 Literature Review

In this section, we introduce the literature on ship bunkering management, ship

fuel price prediction, and prescriptive analytics for business analytics, and discuss

the corresponding research gaps.

Ship bunkering management. Ship bunkering management has been widely

studied in the literature. As our study primarily investigates the impact of un-

certain fuel prices on ship bunkering strategies, we categorize the literature into

two streams based on whether the studies have considered uncertain fuel prices.

Yao et al. (2012) highlight bunkering port selection and bunkering amount deter-
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mination as two key components of ship bunkering management and propose a

planning-level model to determine the optimal bunkering strategy. Wang et al.

(2019) build upon this work by proposing a detailed model and using linearization

techniques to handle nonlinear terms. To address the issue that the actual sail-

ing speed may deviate from the planned speed, Wang and Meng (2015) propose

a robust optimization model that optimizes the sailing speed and bunkering strat-

egy of container ships under the worst-case fuel consumption scenarios. De et al.

(2020) study sustainable ship routing and bunkering management, whereas De et

al. (2021b) analyze ship bunkering strategies that address environmental concerns

related to fuel consumption and carbon emissions. Notably, none of the above

studies has considered the impact of uncertain ship fuel prices.

The second stream of the literature utilizes stochastic programming approaches

to investigate the impact of uncertain fuel prices on ship bunkering management.

For example, Wang and Teo (2013) construct a scenario decision tree to account

for the uncertainty of ship fuel prices and study integrated hedging and network

planning for liner shipping’s bunkering management. By using a scenario tree

to represent stochastic fuel prices, Sheng et al. (2014) investigate dynamic vessel

speed optimization and bunkering port selection for liner shipping. Meng et al.

(2015) analyze a liner shipping company’s ability to hedge against the uncertainty

of fuel prices by purchasing fuel from both the contract and spot markets. They de-

velop and solve a mean-variance minimization stochastic programming model us-

ing an approximationmethod that integrates random variable sampling techniques,

scenario tree generation, and quadratic programming approximation. Ghosh et al.

(2015) and Sheng et al. (2015) propose dynamic programming models to opti-

mize ship bunkering management with service contracts and speed optimization,
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respectively. These studies use Monte Carlo (MC) simulation and sample average

approximation (SAA) methods to solve the problems. Zhen et al. (2017) propose

a dynamic programming model for optimal ship bunkering policies, assuming that

uncertain fuel prices at each port follow known distributions. Wang et al. (2018)

jointly optimize the sailing speeds on shipping voyages and the bunkering strategy

at each port of call in the presence of correlations among fuel prices at these ports.

Gu et al. (2019) develop a stochastic programming model for tactical and opera-

tional decisions in ship bunkering management, including routing and speed opti-

mization, subject to the latest regulations for reducing shipping emissions. Their

model represents the uncertainty of fuel prices using scenarios. De et al. (2021a)

study a practical problemwith speed optimization and ship bunkeringmanagement

under different fuel price scenarios, and propose an approximation algorithm.

As highlighted in the current body of research on ship bunkering management,

the uncertainty of fuel prices has been a focal point, with many studies employing

stochastic programming methods. However, these approaches have notable limi-

tations. First, a common practice in existing studies is to make assumptions about

the distribution of fuel prices. In reality, the exact distribution of fuel prices is of-

ten unknown and can be challenging to predict accurately. Assumed distributions

might not truly capture the real-world dynamics of fuel price changes, potentially

leading to decision-making strategies that are less effective in practical scenarios.

The discrepancy between assumed and actual fuel price distributions can result in

significant deviations in optimal decision making. Second, much of the existing

literature on ship bunkering decisions is framed at a static level, largely discon-

nected from the decision time. This approach tends to overlook the dynamic na-

ture of fuel price fluctuations across multiple decision periods, which is a pivotal
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aspect of operational-level decision making in bunkering. Unlike static decisions,

operational-level decisions need to account for not only the current state of fuel

prices but also their potential changes over time. This temporal dimension is vital

for accurately capturing the volatility of fuel prices and is indispensable for opti-

mizing bunkering decisions in the operational context under uncertain conditions.

Ship fuel price prediction. Stefanakos and Schinas (2014) conduct a ship

fuel price forecast analysis using weekly HSFO 380 centistoke (CST) prices from

major fuel supply ports, such as Rotterdam, Fujairah, Singapore, and Houston.

They use a vector autoregressive moving average model and find that the error in

medium-term predictions of the next 52 weeks was within 20%. Stefanakos and

Schinas (2015) use a fuzzy time series model to analyze the prices ofmultiple types

of fuel in the same ports, including HSFO 180 CST, marine diesel oil, and marine

gas oil. Choi (2017) uses system dynamics to analyze HSFO 380 CST prices

based on the annual fuel data of the port of Singapore. They identify the variables

that affect fuel prices, including crude oil production and consumption, the West

Texas Intermediate crude oil price, global gross domestic product, exchange rates,

cargo demand, vessel supply, demand/supply ratio, and freight rates. Recently,

deep learning methods have become increasingly popular for time series predic-

tion. Kim et al. (2022) show that liquefied natural gas (LNG) prices are influenced

by various factors, and that recurrent neural network (RNN) models, such as the

LSTM model, can forecast short-term LNG bunker prices and effectively manage

ship operating costs. Furthermore, as marine fuel is a byproduct of the refining

process of crude oil, the main factor affecting fuel oil prices is the price of crude

oil. Studies that have focused on predicting crude oil prices include Orojo et al.

(2019), Gupta and Nigam (2020), and Chiroma et al. (2015).
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Research has focused on predicting crude oil or ship fuel prices using weekly

prices and employing various prediction methods. However, studies have usually

predicted fuel prices for each port separately, without considering the spatiotem-

poral correlation between fuel prices at multiple ports or the impact of the predic-

tion target on bunkering operations. Given that the main objective of predicting

ship fuel prices is to support ship bunkering operations, it is crucial to predict and

compare oil prices at multiple ports at different future time points, according to

the ship’s schedule. Although current models can account for the temporal depen-

dencies of time series, predicting fuel prices for individual ports separately fails

to consider the spatial dependencies of fuel prices among different ports. This

limitation necessitates a more comprehensive approach to addressing both tempo-

ral and spatial correlations in fuel prices across multiple ports, thereby providing

more accurate and actionable insights than current ship bunkering management

studies.

Prescriptive analytics for business analytics. Driven by the business prob-

lem, the workflow of business analytics involves collecting, preprocessing, and

interpreting data, selecting and refining predictive analytics methods, and mod-

eling for decision making in prescriptive analytics. Numerous business analytics

scenarios involve the application of big data techniques (Yang et al., 2017; Adler

et al., 2022). The goal of business analytics is to make informed decisions, with

a focus on prescriptive analytics to provide recommendations for action (Bertsi-

mas and Kallus, 2020). In prescriptive analytics, the predict-then-optimize (PTO)

framework is widely used. This approach involves generating point predictions

of uncertain parameters and using them to make decisions through downstream

optimization problems. However, point predictions may not be suitable for op-
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timization problems with nonlinearity (Qi and Shen, 2022; Tian et al., 2023b).

To address this issue, it may be preferable to estimate the marginal distributions

of uncertain parameters and solve the resulting contextual stochastic optimization

problem (Muñoz et al., 2022); this approach is termed the estimate-then-optimize

(ETO) framework (Qi and Shen, 2022). One of its strengths lies in its ability to

reveal all information necessary for solving the stochastic problem when a perfect

estimate of the underlying conditional distribution can be obtained (Qi and Shen,

2022).

In terms of methods for estimating the conditional distribution, Bertsimas and

Kallus (2020) introduced nonparametric ML models, such as k-nearest neighbors

and decision tree methods, to derive weights from the features, and then optimize

the decision based on a re-weighting of the data. This approach has been termed

weighted SAA by Notz and Pibernik (2022). However, local learning methods

such as kNN and decision trees may discard data that are not closely related to the

observation, requiring a sufficient amount of data to ensure accurate results (Bert-

simas andKoduri, 2021). As an alternative, Wang andYan (2022) propose a global

method based on quantile regression to estimate the marginal distribution of a uni-

variate parameter, by taking all data into account. Despite these developments,

the literature on prescriptive analytics discussing how to predict the distribution

of time series data using deep learning methods is limited. Our study fills this gap.

Detailed reviews of prescriptive analytics can be found in Qi and Shen (2022) and

Tian et al. (2023b).

The main contributions of this study are threefold. First, the study contributes

to the literature on ship bunkering management. We harness real-world data for

predicting uncertain fuel prices, diverging from the common practice in existing
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literature which relies heavily on stochastic programming methods and necessi-

tates assumptions about fuel price distributions. Our approach utilizes ML mod-

els without presupposing any specific price distribution. We introduce two pre-

scriptive analytics frameworks: the Two-stage contextual Deterministic frame-

work with Point predictions (TDP) and Multistage contextual Stochastic frame-

work with Distributional estimates (MSD). These frameworks, tested with both

real-world and synthetic data, reveal the impact of inter-port fuel price variances

and the number of ports on their decision performance. For both frameworks, our

models uniquely capture the dynamic nature of fuel prices over time, connecting

each bunkering decision to its specific decision time, which is the moment of the

ship’s arrival at each port. To consider dynamic and operational decisions, we pre-

dict fuel prices for downstream ports at different future time periods, integrating

temporal aspects into each decision.

Second, the study contributes to the literature on ship fuel price prediction.

We develop a TC-LSTM model for predicting multi-port fuel prices, considering

intra-dependencies within individual ports and inter-dependencies across multiple

ports. This model outperforms the traditional LSTMmodel in prediction accuracy.

This study is pioneering in the realm of ship fuel price prediction by simultaneously

accounting for the temporal and spatial correlations in fuel prices across multiple

ports, leading to more precise predictions for shipping companies.

Finally, the study contributes to the literature on prescriptive analytics. The

TDP andMSD frameworks contribute to the literature by relating to PTO and ETO

frameworks, respectively. Notably, we apply theMC dropout technique in the TC-

LSTM model within the MSD framework to derive distributional estimates. This

research is the first in the prescriptive analytics field to utilize deep learning mod-
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els for estimating the conditional distribution of correlated uncertain parameters,

indicating a new direction for future studies related to the ETO framework using

deep learning. Additionally, this study is the first to apply prescriptive analytics

frameworks in the context of ship bunkering management, enhancing the practi-

cality and relevance of these frameworks in real-world scenarios.

4.3 Problem Description

Consider a liner shipping service with a set of ports of call N = {1, ..., N}, each

indexed by i. The service route forms a loop, represented as 1→ 2→ ...→ N →

1′, where 1′ signifies the return to port of call 1 in the subsequent round trip. This

notation aids in distinguishing between consecutive visits to the same port. We

define a shipping leg as the voyage between two adjacent ports, uniquely identified

by the starting port index i ∈ N . Given this one-to-one correspondence between

ports and shipping legs, the same indexing system is applied to both. For each time

period t = 1, 2, ..., the vector of fuel prices at all ports of call is xt := (x1
t , ..., x

N
t ),

with xi
t representing the fuel price at port i during period t. It is assumed that a

container ship, upon arrival at port i during period ti (where ti ≥ 1), has a known

fuel inventory Ri. The historical fuel prices at all N ports from period 1 to ti are

recorded as Xti := [x1, ..., xti ] ∈ RN×ti . Lastly, the maximum fuel capacity of a

container ship is denoted by V .

In addressing the problem at hand, we establish the following assumptions.

First, given the fixed shipping schedules of liner shipping services (Song and

Dong, 2013; Bell et al., 2013; Meng et al., 2014) and our focus on the impact of

fluctuating fuel prices, we exclude extreme uncertainties like unpredictable sail-
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ing conditions and port congestion. Consequently, the sum of travel time for each

shipping leg i and the dwell time at port i−1 is assumed deterministic, denoted by

τ i, where τ i = ti− ti−1. Second, while acknowledging that ships use diesel oil for

auxiliary power, our analysis concentrates solely on the fuel consumption of main

engines, a significant component of bunker costs. Third, following the approach in

Zhen et al. (2017), we treat the fuel consumption for each shipping leg i, denoted by

Gi, as a deterministic value. This assumption allows us to concentrate on the im-

plications of uncertain fuel prices on operational bunkering decisions. Fourth, for

a given liner shipping service, the initial fuel inventory R1 is a known parameter,

with a requirement that R1 = R1′ to ensure service sustainability. However, for

more extended time horizons or complex routes, this assumption can be relaxed to

only necessitate that the container ship reaches the final port of call, without com-

promising the applicability of subsequent models and methods. Fifth, we assume

the maximum tank capacity of a container ship V to exceed the fuel consumption

for each shipping leg Gi.

In the context of a specific liner shipping service, upon the container ship’s

arrival at port of call i, where i < N , the ship operator can ascertain the current

port’s fuel price. However, the future fuel prices at downstream ports of call j (j ∈

{i+1, ..., N}), corresponding to the periods tj when the ship is scheduled to visit

these ports, remain uncertain. These unknown prices are represented by x̃j
tj
(j ∈

{i + 1, ..., N}). We denote the vector of these uncertain future fuel prices as

x̃Ni+1 := (x̃i+1
ti+1 , ..., x̃

N
tN ). The uncertain nature of future fuel prices significantly

influences the bunkering decisions at the current port. The central aim of this

study is to develop a strategy that minimizes the total bunkering costs for the entire

voyage, taking into account the service requirements and the variability in fuel
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prices. The decision variable in this scenario is zi(Xti , R
i), abbreviated as zi,

which signifies the amount of fuel to be purchased at port i. This decision is based

on the observed fuel prices Xti and the existing fuel inventory Ri.

4.4 Prescriptive Analytics Frameworks

This section delineates two prescriptive analytics models devised to address the

challenge ofmanaging ship bunkering in the context of uncertain future fuel prices.

In Section 4.4.1, we explore the implementation of two-stage contextual deter-

ministic models. These models use point predictions of future fuel prices. Sub-

sequently, Section 4.4.2 delves into multistage contextual stochastic optimization

models. Unlike the TDP framework, these models employ distributional estimates

of future fuel prices. Each framework offers a unique lens through which the ship

bunkering management problem can be analyzed and solved, reflecting the differ-

ent features of their prescriptive strategies.

4.4.1 The TDP framework

The TDP framework, as detailed in this section, leverages historical fuel price

data to forecast future prices at downstream ports of call. This forecasting is ac-

complished through point predictions, with the methodology elaborated in Sec-

tion 4.5.2. Concretely, upon the arrival of a container ship at port i (i < N),4 and

equipped with the historical fuel prices Xti , the framework approximates the un-
4Upon the ship’s arrival at the final port of call (i.e., when i = N ), the requirement to ensure

a return to the first port of call simplifies to verifying if the remaining fuel inventory suffices to
meet the fuel consumption needs of the last shipping leg. This verification bypasses the need for
employing optimization techniques typically used at other ports of call.
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certain future fuel prices for downstream ports, x̃Ni+1 := (x̃i+1
ti+1 , ..., x̃

N
tN ), via point

predictions. These predictions are generated using ML models, resulting in the

estimated fuel price vector x̂Ni+1 := (x̂i+1
ti+1|ti , ..., x̂

N
tN |ti).

Incorporating point predictions is fundamental to the two-stage contextual de-

terministic framework. As detailed in Adulyasak et al. (2015), within this frame-

work, the fuel prices for the upcoming segments of the journey at downstream

ports of call are effectively rendered “known” (via predictions) subsequent to the

finalization of the bunkering decision at the current stage. This methodology ef-

fectively converts a potentially stochastic challenge into a deterministic one at

each stage of the journey, thereby streamlining the decision-making process. By

applying these point predictions of future fuel prices, the two-stage contextual de-

terministic model can be formulated for each port of call i (i < N) as follows:

[Model-TDP]

min
z,RN

i+1

zixi
ti +

N∑
j=i+1

zjx̂j
tj |ti (4.1)

subject to

zl ≥ Gl −Rl ∀l ∈ {i, ..., N} (4.2)

zl ≤ V −Rl ∀l ∈ {i, ..., N} (4.3)

Rl+1 = Rl + zl −Gl ∀l ∈ {i, ..., N − 1} (4.4)

R1′ = RN + zN −GN (4.5)

R1′ = R1 (4.6)

zl ≥ 0 ∀l ∈ {i, ..., N} (4.7)
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Rl ≥ 0 ∀l ∈ {i+ 1, ..., N}. (4.8)

In our model, we define z := (zi, zNi+1), where zNi+1 := (zi+1, ..., zN) and RN
i+1 :=

(Ri+1, ..., RN). It is crucial to note that for downstream ports j (j = i+1, ..., N),

zj andRj , as components of zNi+1 andRN
i+1 respectively, are considered temporary

dummy decision variables. This is because the container ship has not yet reached

these ports, and consequently, the bunkering decisions and the fuel inventory lev-

els for these ports remain undetermined. Objective function (4.1) aims tominimize

the total fuel costs for the remaining voyage. This calculation incorporates the ob-

served fuel price xi
ti at the current port and the predicted fuel prices x̃

j
tj
for down-

stream ports j = i+1, ..., N . Constraints (4.2) and (4.3) ensure that the bunkering

amount at each port of call for the remainder of the voyage adheres to service re-

quirements and does not exceed the tank’s capacity limit. Constraints (4.4) and

(4.5) describe the state transition relationships of the fuel inventory between adja-

cent ports, reflecting the consumption and replenishment of fuel. Constraint (4.6)

is pivotal in guaranteeing the sustainability of services across voyages.

It is important to emphasize that for each optimization model evaluated at a

given port of call i > 1, the remaining fuel amount Ri must be calculated in ad-

vance. This computation is based on the remaining fuel amount at the previous port

Ri−1, the amount of fuel replenished at that port zi−1, and the fuel consumption

Gi−1 for the preceding shipping leg i−1. These factors are considered known pa-

rameters, aligning with practical considerations in liner shipping operations. The

temporary dummy decision variables for downstream ports zj (j = i+ 1, ..., N),

when the container ship is at port i, should be iteratively updated as the shipping

service progresses. The ultimate decision regarding the amount of fuel to bunker at
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each port will be based on the actual observed fuel prices upon the ship’s arrival at

those ports. Furthermore, enhancing the decision-making quality necessitates the

re-prediction of future fuel prices for downstream ports (i.e., ports i + 2, ..., N )

when the ship arrives at port i + 1. This re-prediction should utilize updated

datasets, reflecting the continuous updating of fuel price data during the voyage.

Consequently, the two-stage contextual deterministic model must be re-solved at

each port, considering both the observed fuel price at the current port and the newly

predicted prices for downstream ports. The total fuel costs for the entire round trip

are as follows:
N∑
i=1

xi
tiz

i∗, (4.9)

where zi∗ denotes the final determined bunkering amount when the container ship

visits port i during period ti. This cumulative cost represents the sum of the product

of the fuel price and the decided bunkering amount at each port, capturing the

essence of optimizing fuel costs across the voyage.

4.4.2 The MSD framework

In the previously discussed Model-TDP, we employed point predictions to esti-

mate uncertain fuel prices at downstream ports. This approach, while easy-to-

implement, overlooks the inherent uncertainty associated with these predictions.

Notably, the reliance on the two-stage deterministic framework presumes that fuel

prices at downstream ports for future calling periods are simultaneously realized

uponmaking the current decision. This assumption often diverges from real-world

scenarios. In practical terms, the ship bunkering management problem is inher-

ently a multistage decision-making process. The fuel price at each port of call
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is only revealed subsequent to the decision making at the preceding stage. This

sequential unfolding of information implies that even with “perfect” point predic-

tions of fuel prices, deriving optimal solutions can be challenging within a multi-

stage context. To demonstrate this, we provide an intuitive example below.

Example 4.1 Consider a shipping route with four ports, as depicted in Figure 4.2.

The container ship on this route has a maximum fuel capacity of 200 MTs. As-

sume that ports 1, 2, and 3 are in close proximity, resulting in no fuel consump-

tion for leg 1 (port 1 to port 2) and leg 2 (port 2 to port 3). At port 1, the

ship’s fuel inventory is empty (0 MTs), and the observed fuel price is $400/MT.

To reach port 4, the ship must bunker at least 100 MTs of fuel at one of the first

three ports. We consider two equally probable scenarios for future fuel prices

at ports 2 and 3: Scenario 1, Pr
(
(x̃2

t2 , x̃
3
t3) = (300, 800)

)
= 1/2, and Sce-

nario 2, Pr
(
(x̃2

t2 , x̃
3
t3) = (800, 300)

)
= 1/2. A “perfect” point prediction gives

(x̂2
t2 , x̂

3
t3) = (550, 550), equal to the expected values of the ground-truth distribu-

tion. Under Model-TDP, this prediction suggests that the optimal strategy is to

bunker 100 MTs of fuel at port 1. However, when considering the ground-truth

distribution and the multistage nature of decision making, the optimal approach

would be not to refuel at port 1. Instead, if the real distribution is predicted, the

ship should bunker at port 2 under Scenario 1, or at port 3 under Scenario 2, upon

reaching port 2.

The insights gleaned from Example 4.1 underscore the necessity of predict-

ing the distribution of future fuel prices, prompting the development of multistage

contextual stochastic optimization models. The methodology for these predictions

is elaborated in Section 4.5.3. Given the historical fuel prices Xti for i < N , we
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Figure 4.2: An illustrative example of the multistage ship bunkering problem

posit that the empirical marginal distribution of the uncertain future fuel prices

x̃Ni+1 :=
(
x̃i+1
ti+1 , ..., x̃

N
tN

)
can be represented by a set of scenarios, denoted as S . For

each scenario s ∈ S , the vector of estimated fuel prices for downstream ports is

expressed as x̂Ni+1,s := (x̂i+1
ti+1|ti,s, ..., x̂

N
tN |ti,s). Each scenario s is assigned an equal

probability, λs = 1/|S|. In line with this stochastic framework, dummy decision

variables zj and Rj for downstream ports j = i + 1, ..., N at port i are tailored

to each scenario s ∈ S . These variables are denoted as zjs and Rj
s, respectively,

for each scenario. This approach allows for a nuanced consideration of differ-

ent potential future states and their corresponding impacts on the decision-making

process at each stage of the journey.

In the context of distributional estimates for fuel prices, it is important to note

that while scenarios are independent, the (dummy) bunkering decisions for down-

stream ports across different scenarios are interdependent. This is due to the mul-

tistage nature of the problem, where the decision to bunker at a port is based solely

on the information available up to that point, rather than on future developments.

Consequently, if different scenarios share identical predicted prices for a given

future period tj (j = i + 1, ..., N ), the (dummy) bunkering decisions during pe-

riod tj at port j should be consistent across these scenarios, not independent and
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varied. To enforce this consistency, nonanticipativity constraints are introduced,

as outlined in (Adulyasak et al., 2015). These constraints ensure that bunkering

decisions align across different scenarios, preventing decisions based on future in-

formation not yet revealed. A scenario tree can effectively represent the full set

of predicted scenarios for downstream fuel prices. In this tree, let H t
s denote the

index of the scenario node at period t for scenario s, and let żj
Htj

s

represent the

decision variable zjs at node H tj

s . The nonanticipativity constraints can then be

formulated as

zls = żl
Htl

s
∀l ∈ {i+ 1, ..., N}, s ∈ S. (4.10)

For an applied understanding of these constraints, consider Example 4.2.

Example 4.2 Imagine a shipping route encompassing four ports, as illustrated

in Figure 4.3. Upon reaching port 1, the ship observes a fuel price of $400/MT.

Using an ML model, eight scenarios are predicted for future fuel prices at ports

2, 3, and 4. These scenarios are organized into a scenario tree, with each node

indexed near the respective price label. Nonanticipativity constraints, as shown

on the right-hand side of Figure 4.3, ensure decision consistency. For instance,

scenarios 1 and 2, which converge at the same node index (1) at period t2, neces-

sitate identical decisions for period t2 (i.e., z11 = z22), linked through the auxiliary

decision variable ż21 .

Considering the aforementioned estimated marginal distribution of future fuel

prices at downstream ports, the multistage contextual stochastic ship bunkering

problem can be formulated as follows:
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Figure 4.3: An illustrative example of nonanticipativity constraints

[Model-MSD]

min
z′,R′

zixi
ti +

∑
s∈S

λs

N∑
j=i+1

zjs x̂
j
tj |ti,s (4.11)

subject to

zi ≥ Gi −Ri (4.12)

zls ≥ Gl −Rl
s ∀l ∈ {i+ 1, ..., N}, s ∈ S (4.13)

zi ≤ V −Ri (4.14)

zls ≤ V −Rl
s ∀l ∈ {i+ 1, ..., N}, s ∈ S (4.15)

Ri+1
s = Ri + zi −Gi ∀s ∈ S (4.16)

Rl+1
s = Rl

s + zls −Gl if i < N − 1, ∀l ∈ {i+ 1, ..., N − 1}, s ∈ S (4.17)

R1′ = RN
s + zNs −GN ∀s ∈ S (4.18)

R1′ = R1 (4.19)

zi ≥ 0 (4.20)

zls ≥ 0 ∀l ∈ {i+ 1, ..., N}, s ∈ S (4.21)
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Rl
s ≥ 0 ∀l ∈ {i+ 1, ..., N}, s ∈ S (4.22)

and Constraints (4.10). Here, z′ := (zi, zi+1
1 , ..., zi+1

|S| , ..., z
N
1 , ..., zN|S|) and R′ :=

(Ri+1
1 , ..., Ri+1

|S| , ..., R
N
1 , ..., R

N
|S|). Constraints (4.12)–(4.22) represent the scenario-

based counterparts for Constraints (4.2)–(4.7).

4.5 Predictive Methods

In this section, we delve into the development of predictive models, crucial for in-

formed decisionmaking in the ship bunkeringmanagement problem. Section 4.5.1

lays the groundwork by defining the specific prediction problem at hand. In Sec-

tion 4.5.2, we introduce the TC-LSTM model, designed to capture both spatial

and temporal dependencies in fuel price time series across various ports. In Sec-

tion 4.5.3, we utilize the MC dropout framework to estimate the conditional distri-

bution of multi-port fuel prices, offering a probabilistic perspective that aligns with

the multistage contextual stochastic nature of the bunkering decision problem.

4.5.1 Prediction problem definition

In the context of our study, the prediction problem emerges when a container ship

docks at port i during period ti. At this juncture, we gather historical data Xti :=

[x1, ..., xti ] ∈ RN×ti , encompassing consecutive periods up to the current one. This

dataset comprises fuel price vectors xt := (x1
t , ..., x

N
t ) for each period t = 1, ..., ti

across all N ports.

The primary objective here is to generate accurate predictions for future fuel

prices at downstream ports j (j = i+1, ..., N) for their respective periods tj . These
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predictions can be in the form of point estimates, denoted as (x̂i+1
ti+1|ti , ..., x̂

N
tN |ti),

which provide specific predicted values for fuel prices. Alternatively, we may

consider distributional estimates, represented as (x̂i+1
ti+1|ti,s, ..., x̂

N
tN |ti,s) for each sce-

nario s ∈ S . The latter approach aims to capture the range of possible future

outcomes, reflecting the inherent uncertainty in fuel price fluctuations.

To streamline the notation and generalize the prediction task, we define N ′ as

the number of correlated time series under consideration. In the context of our

specific problem, N ′ corresponds to the number of downstream ports, which is

N − i. Each of these time series comprises T available historical values, where

in our case, T is equivalent to ti, the current period when the ship is at port i. We

denote the entire historical dataset as X′
T := [ẋ′1, ..., ẋ′T ] ∈ RN ′×T . Here, each

vector ẋ′t := (ẋ1
t , ..., ẋ

N ′
t ) for t = 1, ..., T represents the historical values across all

N ′ time series for a given historical period t. Specifically, ẋn
t (n = 1, ..., N ′; t =

1, ..., T ) denotes the historical value of the n-th time series during the period t.

Given the historical dataset X′
T , our objective is to predict the values for the

next τ periods for all relevant time series. Directly using the entire dataset X′
T as

input for a prediction model poses significant challenges. These challenges stem

from the high dimensionality and potential redundancy in the data, which can lead

to computational inefficiency and difficulties in capturing the most relevant trends

and patterns. To address these issues, we focus on a subset of the data, selecting the

previous d values of each time series up to and including period T . This selection

is represented as [ẋ′T−d+1, ..., ẋ′T ]⊤ ∈ Rd×N ′ . This approach not only reduces the

complexity of the input data but also allows for capturing the most recent and

therefore potentially most relevant trends and dependencies. The parameter d,

representing the number of periods considered, is a hyperparameter that can be
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tuned to balance the trade-off between capturing sufficient historical context and

maintaining model manageability.

To transform the historical dataset X′
T into a format suitable for ML model

training, we adopt a sliding window approach. Starting from period 1, the first in-

put for training is selected as [ẋ′1, ..., ẋ′d]⊤ ∈ Rd×N ′ , capturing the initial d periods

of the time series. Correspondingly, the first output, representing the next τ peri-

ods, is [ẋ′d+1, ..., ẋ′d+τ ]
⊤ ∈ Rτ×N ′ . To generate subsequent input-output pairs, we

define an interval e, which determines how the window slides over the time series.

The second input-output pair, for instance, is extracted starting from period 1+ e,

and is denoted by ([ẋ′1+e, ..., ẋ′d+e]
⊤, [ẋ′d+1+e, ..., ẋ′d+τ+e]

⊤).

Given the dataset X′
T , this sliding window process yields a total of T ′ = ⌊1 +

(T −(d+τ))/e⌋ input-output pairs. This calculation assumes that (T −(d+τ))/e

is an integer. In cases where this division does not yield an integer (as detailed in

Case 2 in Example 4.3), we adjust the starting point by omitting the first (T − (d+

τ)) mod e periods of values. The resulting set of training input-output pairs is

denoted as {(ẍt, ÿt)}T
′

t=1. Each input ẍt is a matrix [ẋ′1+e(t−1), ..., ẋ′e(t−1)+d]
⊤, and

each output ÿt is [ẋ′e(t−1)+d+1, ..., ẋ′e(t−1)+d+τ ]
⊤.

To optimize the data utilization and maintain continuity in the input-output

pairs for training, it is practical to set τ = e ≤ d. This requirement is based on the

following considerations:

1. If the interval e is set larger than the number of periods d considered for

each input, the sliding window skips over certain historical periods. This

skipping results in the loss of potentially valuable information, as detailed

in Case 3 in Example 4.3. To prevent such information gaps, we ensure that

e ≤ d.
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2. Setting e greater than τ leads to a situation where the data fetching pace

outstrips the rate at which new data is generated. In other words, the model

would be required to predict further into the future than the data available,

which is impractical and violates the constraints of real-time data availabil-

ity, as explained in Case 4 in Example 4.3.

3. Conversely, if e is set smaller than τ , it implies that the sliding window

moves too slowly. In such a scenario, part of the predicted target data may

already be realized. This situation diminishes the practical utility of the

predictions. This issue is elaborated in Case 5 in Example 4.3.

Example 4.3 (Cases of the Reconstruction of Time Series Data) Figure 4.4 de-

picts five cases. In Case 1, we can obtain four training input–output pairs {(ẍt, ÿt)}4t=1

and use ẍ5 to obtain the point prediction (or distributional estimates) of the sub-

sequent two periods. In Case 2, as
(
T − (d + τ)

)
/e = 7/2 is not an integer, we

cut the values of the first period to constitute four training input–output pairs. In

Case 3, as
(
T − (d+ τ)

)
/e = 7/2 is not an integer, we first cut values of the first

period. Then, since e > d, ẋ′3, ẋ′5, ẋ′7, and ẋ′9 are never treated as inputs, leading

to information ignorance. In Case 4, as e > τ , although we train the model using

{(ẍt, ÿt)}3t=1, the prediction input ẍ4 requires values from period 12 that are to be

predicted and not available, violating reality. In Case 5, as e < τ , although we

train the model using {(ẍt, ÿt)}3t=1, it is unable to predict the values of periods 11,

12, and 13 using ẍ4.

114



CHAPTER 4. PRESCRIPTIVE ANALYTICS FOR CONTAINER SHIP BUNKERING
OPTIMIZATION

Figure 4.4: The reconstruction of time series data

4.5.2 Correlated ship fuel price prediction: TC-LSTM

Deep RNNs have achieved breakthroughs in processing sequential data, leading

to various models based on these networks for time series analysis (Medsker and

Jain, 2001). The most well-known model is the LSTM model (Hochreiter and

Schmidhuber, 1997), which captures the temporal patterns of sequences by retain-

ing the history of a sequence in its hidden units. LSTM models have shown good

performance in single time series forecasting over traditional time series prediction

methods (Siami-Namini et al., 2018). However, basic LSTM models are inade-

quate for predicting correlated time series, as they only model intra-sequence tem-

poral dependencies and ignore inter-sequence spatial dependencies among multi-

ple time series (Wan et al., 2020). Although intra-sequence temporal dependencies

reveal the changing patterns in a single series, inter-sequence spatial dependencies

provide reasonable explanations for the abnormal changes in the series caused by
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other time series (Wan et al., 2020). Therefore, it is critical to explicitly model both

intra-sequence temporal dependencies and inter-sequence spatial dependencies to

make accurate correlated time series predictions. To avoid a redundant introduc-

tion of the LSTM, refer to Hochreiter and Schmidhuber (1997) and Siami-Namini

et al. (2018).

In this study, we not only consider the intra-dependencies of each port’s fuel

prices but also address the inter-dependencies of fuel prices at different down-

stream ports. To achieve this, we use a TC-LSTM model that can simultaneously

capture the spatial and temporal dependencies of correlated time series following

Wan et al. (2020).

The TC-LSTM has two main parts: (1) a spatial-temporal (ST) cell, and (2) an

ST fusion, the whole structure of which is shown in Figure 4.5, which shows how

to train the model using {(ẍt, ÿt)}T
′

t=1. Specifically, the ST cell contains an intra-

sequence temporal (IST) channel, which captures the changing patterns within

each time series, and an inter-sequence spatial (ISS) channel, which captures the

influence of other time series; the two channels are shown in Figure 4.6. The

information from both channels is fused to generate the final prediction, aggre-

gating both intra- and inter-sequence information, as shown in in Figure 4.7. The

following introduction follows the notation convention in Section 4.5.1.

The ST cell

The IST channel. In Figure 4.6, the blue line illustrates the functioning of the

IST channel for the t-th input–ouput pair, which takes ẍt, Hintra
t−1 , and Cintra

t−1 (t ∈

{2, ..., T ′}) as inputs. Here, Hintra
t−1 is the hidden layer output matrix of the IST

channel from the previous pair, and Cintra
t−1 is the cell state of the IST channel from
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Figure 4.5: The structure and training process of the TC-LSTM

Figure 4.6: The structure of the ST cell

Figure 4.7: The structure of the ST fusion
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the previous pair, all with dimension Rµ×N ′ , where µ is the number of dimensions

(neurons) in the embedding representations. The IST channel architecture com-

prises the cell state Cintra
t , shown by the horizontal line running through the top of

the chain, and three types of gates that control the information flow into and out

of the cell state. These gates are the forget, input, and output gates, each of which

is composed of a sigmoid neural net layer.

The forget gate determines the information to discard from the cell state of the

last pair, controlled by a sigmoid layer concatenating the previous output Hintra
t−1

and the current input feature Xintra
t = ẍt, producing a value between 0 and 1 for

each component in Cintra
t−1 . This value is stored in Fintrat ∈ Rµ×N ′ and calculated as

follows:

Fintrat = σ
(
Wf

(
Hintra

t−1 ,Xintra
t

)
+ bf

)
, (4.23)

where σ denotes the sigmoid function, and Wf ∈ Rµ×(d+µ) and bf ∈ Rµ×N ′

denote the weight matrix and the bias matrix of the forget gate layer, respectively.

The input gate, controlling which cell state values to update, is managed by

a sigmoid layer producing an output matrix Iintrat ∈ Rµ×N ′ through the following

equation:

Iintrat = σ
(
Wi

(
Hintra

t−1 ,Xintra
t

)
+ bi

)
, (4.24)

where Wi ∈ Rµ×(d+µ) and bi ∈ Rµ×N ′ denote the weight matrix and the bias

matrix of the input gate layer, respectively. Then, this layer’s output is element-

wise multiplied with a candidate matrix C̃intra
t ∈ Rµ×N ′ , computed as follows:

C̃intra
t = ReLU

(
Wc

(
Hintra

t−1 ,Xintra
t

)
+ bc

)
, (4.25)
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where Wc ∈ Rµ×(d+µ) and bc ∈ Rµ×N ′ denote the weight matrix and the bias

matrix of the rectified linear unit (ReLU) layer, respectively.

In the IST channel, the forget gate Fintrat determines which parts of the previous

cell state Cintra
t−1 to forget, whereas the input gate Iintrat ⊗ C̃intra

t decides which parts

of the new input to keep, where ⊗ represents the element-wise product of the

matrices. By combining these two, we can update the old cell state to the new cell

state, as follows:

Cintra
t = Fintrat ⊗ Cintra

t−1 + Iintrat ⊗ C̃intra
t . (4.26)

Moving to the output of the IST channel, we use the updated cell state Cintra
t as

the basis for the output. We first pass the concatenation ofHintra
t−1 and Xintra

t through

a sigmoid layer to obtain Ointra
t , which determines which parts of the cell state to

output. The equation is as follows:

Ointra
t = σ

(
Wo

(
Hintra

t−1 ,Xintra
t

)
+ bo

)
, (4.27)

where Wo ∈ Rµ×(d+µ) and bo ∈ Rµ×N ′ denote the weight matrix and the bias

matrix of the output gate layer, respectively.

Finally, the updated cell state Cintra
t passes through a ReLU layer and is mul-

tiplied with Ointra
t to obtain the output of the IST channel, denoted by Hintra

t as

follows:

Hintra
t = Ointra

t ⊗ ReLU
(
Cintra

t

)
. (4.28)

The ISS channel. Similarly, the ISS channel comprises the cell state and three

gates, depicted by the yellow line in Figure 4.6. The main difference between the

IST channel and the ISS channel is that the input feature matrix ẍt of the ISS
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channel is first multiplied by a spatial relation matrix D ∈ RN ′×N ′ , which embeds

mutual influence among correlated time series (Wan et al., 2020). In this study,

elements in the spatial relation matrixD are initialized (the initialization process is

introduced in Section 4.6.1) and then fine-tuned during the training process. The

overall functioning process of the ISS channel is shownmathematically as follows:

Xinter
t = ẍtD, (4.29)

Fintert = σ
(
W′

f

(
Hinter

t−1 ,Xinter
t

)
+ b′

f

)
, (4.30)

Iintert = σ
(
W′

i

(
Hinter

t−1 ,Xinter
t

)
+ b′

i

)
, (4.31)

C̃inter
t = ReLU

(
W′

c

(
Hinter

t−1 ,Xinter
t

)
+ b′

c

)
, (4.32)

Cinter
t = Fintert ⊗ Cinter

t−1 + Iintert ⊗ C̃inter
t , (4.33)

Ointer
t = σ

(
W′

o

(
Hinter

t−1 ,Xinter
t

)
+ b′

o

)
, (4.34)

Hinter
t = Ointer

t ⊗ ReLU
(
Cinter

t

)
. (4.35)

The ST fusion

As shown in Figure 4.7, the role of the fusion module is to aggregate the outputs

of the two channels. We first sum the outputs of the two channels as follows:

x̂fuset = δintra ⊗Hintra
t + δinter ⊗Hinter

t , (4.36)

where δintra ∈ Rρ×N ′ and δinter ∈ Rρ×N ′ are the learnable matrices that balance the

temporal and spatial dependencies, and ρ is the number of dimensions (neurons)
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in the embedding representation of the fusion layer. Then, x̂fuset ∈ Rρ×N ′ passes

through a fully connected (FC) layer with a Tanh activation function to generate

the final prediction as follows:

ˆ̈yt = Tanh
(
W′

fcx̂fuset + b′

fc

)
, (4.37)

where ˆ̈yt ∈ Rτ×N ′ ,W′

fc ∈ Rτ×ρ, and b′

fc ∈ Rτ×N ′ .

Hyperparameters and prediction loss

The TC-LSTM is trained by back propagation, which is a method for comput-

ing loss gradients with respect to the weights by recursively applying the chain

rule (Werbos, 1990). This allows the loss from the output layer to be propagated

back to the preceding layers, enabling weight adjustments that minimize this loss.

Backpropagation computes gradients efficiently, making it feasible to use gradi-

ent descent for training multilayer neural networks. The key hyperparameters in a

neural network include the learning rate, epochs (number of iterations), and batch

size, which collectively address the issues of underfitting and overfitting (Jain et

al., 1996). The learning rate determines the step size at each iteration when up-

dating the weights, controlling the speed at which weights are adjusted. Epochs

refer to the number of times the entire training dataset is used for training. The

batch size represents the number of examples in a mini-batch, which is a strict

and nonempty subset of the entire training set. Examples in a mini-batch are pro-

cessed by the network simultaneously to update the weights. Consequently, the

total number of batches in an epoch is equal to the ratio of the training set size to

the batch size.
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The prediction loss of this task is the MSE between ÿt and the predicted values

ˆ̈yt, shown as follows:

Lt(ω) = ∥ÿt − ˆ̈yt∥22, (4.38)

where ω denotes all parameters in the TC-LSTM.

4.5.3 Distributional estimates in deep learning: MC dropout

In Model-MSD, we aim to predict the distribution of future fuel prices, consid-

ering the uncertainty of point predictions. In deep learning, Bayesian neural net-

works (BNNs) have attracted considerable attention as a principled framework for

estimating uncertainty (Mackay, 1992; Neal, 2012). BNNs assign a prior to the

network parameters and focus on determining the posterior distribution of the pa-

rameters instead of a point prediction (Zhu and Laptev, 2017). However, due to

the complex nonlinearity and nonconjugacy of deep learning models, exact poste-

rior inference is often infeasible, and traditional approximate Bayesian inference

algorithms struggle to scale with large neural networks.

Recent advances in BNNs primarily employ variational inference, which op-

timizes the variational lower bound (Graves, 2011). Despite their potential, these

algorithms require modifications to the neural network’s loss function and training

algorithm, which can be nontrivial. Practitioners often prefer solutions that leave

the neural network architecture unchanged and can be applied to pre-trained mod-

els. Moreover, many inference algorithms introduce additional model parameters,

sometimes doubling the quantity, which poses scaling challenges due to the large

number of parameters used in practice (Zhu and Laptev, 2017).

Given these challenges, there is a growing preference for approaches that do
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not require altering the neural network architecture and can be applied to pre-

trained models. This consideration has led to the adoption of MC dropout (Gal

and Ghahramani, 2016), a technique that maintains the existing network structure

while providing a practical means for uncertainty estimation, irrespective of the

underlying distributional assumptions.

MC dropout is grounded in the concept of drawing parallels between using

dropout in deep learning models and an approximation to the probabilistic deep

Gaussian process model (Damianou and Lawrence, 2013). However, it is im-

portant to emphasize that the primary purpose of this equivalence is to provide a

Bayesian interpretation of dropout, rather than to restrict the application to Gaus-

sian distributions alone. This Bayesian viewpoint enables a broader consideration

of model uncertainty, encompassing various types of distributions, including those

that are non-Gaussian.

At its core, by implementing stochastic dropouts after each hidden layer, the

model outputs are effectively random samples from this distribution (Gal and

Ghahramani, 2016). This approach allows for the generation of distributional es-

timates, which is particularly beneficial for predictions involving inherent uncer-

tainties, such as in the case of fuel oil prices. The outputs, thus, offer a mea-

sure of uncertainty, which is invaluable for forecasting tasks characterized by un-

predictability. For a comprehensive understanding of the theoretical foundations

of the MC dropout framework, including its ties to dropout, Gaussian processes,

and variational inference, Gal and Ghahramani (2016) provides an in-depth explo-

ration.

In the context of predicting future values of N ′ time series over T periods

using the MC dropout framework, let us consider the scenario where we have a
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well-trained TC-LSTM model and historical input-output pairs {(ẍt, ÿt)}T
′

t=1. The

input matrix for the next prediction is denoted as ẍT ′+1 = [ẋ′T−d+1, ..., ẋ′T ]⊤. Let

φ represent the dropout probability, and |S| be the number of scenarios for which

we aim to predict the unknown future values ˜̈yT ′+1 = [˜̇x′T+1, ...,
˜̇x′T+τ ]

⊤. The MC

dropout algorithm, as outlined in Algorithm 4.1, is employed to estimate the dis-

tribution of these future values. The procedure is as follows:

Algorithm 4.1MC Dropout
Input: Input observation ẍT ′+1, trained prediction network, dropout probability

φ, number of output scenarios |S|.
Output: Predicted scenarios ˆ̈ysT ′+1 (s = 1, ..., |S|).
1: for s = 1, ..., |S| do
2: Apply dropout to the TC-LSTM model with a rate of φ using the input

observation ẍT ′+1.
3: Generate the predicted output ˆ̈ysT ′+1 for scenario s.
4: end for

This algorithm involves iteratively applying the dropout technique to the TC-

LSTMmodel for each scenario, using a dropout rate of φ. By doing so, the model

generates a set of scenario-specific predictions ˆ̈ysT ′+1 for s = 1, ..., |S|, which col-

lectively represent the distributional estimate of the future time series values.

4.6 Computational Experiments

In this section, we carry out extensive computational experiments to validate the

predictive superiority of the TC-LSTM model and compare the decision perfor-

mance of the TDP and MSD frameworks. To this end, we employ two groups of

data: one from the real world, as presented in Section 4.6.1, and the other synthet-

ically generated, as detailed in Section 4.6.2. These experiments were conducted

on a personal laptop equipped with a 12th Gen Intel Core i7-12700H processor,
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operating at 2.30 GHz, and supported by 16.0 GB of RAM. The experimental

codebase for this study was developed in Python, utilizing the Gurobi solver for

solving optimization models.

4.6.1 Experiments using real-world data

Data description

The real-world dataset comprises a time series of fuel prices from 13 gloabl bunker-

ing ports collected from Shipping Intelligence Network website.5 The 13 ports

are Rotterdam, Singapore, Fujairah, Houston, Gibraltar, Shanghai, Philadelphia,

Hong Kong, Panama, Hamburg, Los Angeles, Santos, and Busan. Considering

that since 2020, ships are required to utilize VLSFO globally, we mainly collect

the weekly VLSFO prices of these 13 ports from November 22, 2019 to Febru-

ary 10, 2023. We plot the fuel price time series for the 13 ports over the period

from November 22, 2019 to February 10, 2023 in Figure 4.8, and presents the

descriptive statistics during the specified period in Table 4.1. It can be observed

that fuel prices exhibit complex temporal patterns and fluctuations. They show

differences across ports, which highlights the importance of considering the spa-

tial aspect in modeling and predicting fuel prices. The mean fuel price ranges

from $522.73/MT in Rotterdam to $613.40/MT in Los Angeles. The standard de-

viation of fuel prices also varies across ports, indicating the varying volatility of

fuel prices. The minimum and maximum fuel prices range from $179.00/MT to

$1,215.25/MT, reflecting the significant fluctuations in fuel prices over time.
5Available at https://sin.clarksons.net/, last accessed date: April 25, 2023.
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Figure 4.8: Fuel prices of the 13 global bunkering ports

Table 4.1: Descriptive information on fuel prices of the 13 global bunkering ports
Port Mean Price Standard Minimum Price Maximum Price

($/MT) Deviation ($/MT) ($/MT)

Rotterdam 522.73 181.49 179.00 980.00
Singapore 573.82 203.90 219.75 1,137.75
Fujairah 577.15 206.78 202.75 1,130.75
Houston 541.28 188.54 180.25 960.50
Gibraltar 562.17 195.05 204.75 1,045.50
Shanghai 589.65 208.38 216.25 1,175.75

Philadelphia 577.01 198.53 213.00 992.50
Hong Kong 576.83 210.73 214.75 1,189.25
Panama 574.23 197.72 204.50 1,036.00
Hamburg 533.78 187.31 185.25 987.75

Los Angeles 613.40 222.66 225.50 1,215.25
Santos 568.95 204.43 192.25 1,112.50
Busan 595.27 210.54 217.25 1,173.50
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Prediction performance

In this study, we delve into the historical fuel price data of 13 global ports to assess

and compare the predictive capabilities of different models. Compared with tradi-

tional statistical models, the ability of the LSTM to predict a single time series has

been demonstrated in many studies (Wan et al., 2020; Siami-Namini et al., 2018).

Therefore, we mainly compare the predictive capabilities of the LSTM and the

TC-LSTM constructed in this study for multi-port fuel prices. This comparative

analysis involves predicting the weekly fuel prices for these 13 ports for the up-

coming τ weeks. For the purpose of this study, we consider various time horizons

for τ , specifically τ ∈ {4, 8, 12, 16, 20}. Consequently, the output from the pre-

dictive model for each horizon is a vector of dimensions τ ×13. Correspondingly,

the input to the model is a matrix of d× 13, where d, serving as a hyperparameter,

is selected from {τ, τ+4, τ+8, τ+12} for each τ value in the set {4, 8, 12, 16, 20}.

To ensure a robust and comprehensive evaluation, the experimental setup includes

a detailed split of training, validation, and test data, along with a thorough search

and tuning of hyperparameters.

The specifics of this experimental framework, including the tuning results for

all hyperparameters, are thoroughly detailed below. Considering that we have 169

weeks of data, we require the length of the sliding time window, e, to be 1. It is

important to note that there is no contradiction between the setting here and the

introduction of e in Section 4.5.1. Section 4.5.1 outlines the general guidelines for

selecting the length of the sliding time window in practice, ensuring the optimal

use of data and consecutive input–output pairs. For our simulation experiment,

however, we purposefully choose e = 1. This decision is driven by the goal
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to maximize data usage within the confines of our 169-week dataset. By setting

e = 1, we are able to generate as many input-output pairs as possible, specifically

169− τ − d+1 pairs. This maximizes the utilization of available data, providing

a rich dataset for training, validation, and testing. When splitting the dataset into

training, validation, and test groups, the ratio is set as follows: 70% for training,

20% for validation, and 10% for testing. We apply max–min normalization to

scale the data into the range of [−1, 1]. During the evaluation stage, we revert the

predicted values back to their original scale. In addition to the hyperparameters

mentioned earlier, we need to consider other hyperparameters, such as the number

of neurons in the ST cell and the ST fusion layer, µ and ρ, respectively, the learn-

ing rate, and the batch size. Following the literature (Siami-Namini et al., 2018;

Wan et al., 2020), the search range for these hyperparameters is as follows: for the

number of neurons in the ST cell and the ST fusion layer, µ and ρ, respectively, the

range is {32, 64, 128}; for the learning rate, the range is {0.1, 0.01, 0.001, 0.0001};

and for the batch size, the range is {32, 64, 128}. Furthermore, we restrict the max-

imum number of training epochs to 50. We utilize the validation set to identify the

hyperparameter combination that minimizes the prediction error for the validation

set. Subsequently, we merge the training and validation sets and employ the opti-

mal hyperparameter configuration to predict data in the test set, yielding various

error metrics. In addition, elements in the spatial relation matrix D are initialized

using the reciprocal of the distance (the shortest sailing nautical miles) between

two ports,6 with diagonal elements set to 1. Subsequently, D is tuned during the

training process. For each τ , the optimal parameter tuning results can be found in

Table 4.2, and the prediction metrics under these optimal parameter tuning results
6Available at http://ports.com/.
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for the test set are presented in Table 4.3.

Table 4.2: Tuning results of hyperparameters

τ d
Learning rate Batch size µ ρ

TC-LSTM LSTM TC-LSTM LSTM TC-LSTM LSTM TC-LSTM LSTM

4 4 0.01 0.01 128 128 32 128 32 –
8 8 0.01 0.01 128 128 128 32 64 –
12 12 0.01 0.01 32 128 128 128 64 –
16 16 0.01 0.01 128 64 64 128 128 –
20 20 0.01 0.01 64 64 32 64 128 –

Table 4.3: Prediction performance of TC-LSTM and LSTM

τ
Test RMSE Test MAE Test MAPE

TC-LSTM LSTM TC-LSTM LSTM TC-LSTM LSTM

4 16.172 16.662 12.649 12.940 1.874 1.914
8 30.125 31.096 23.317 24.162 3.463 3.621
12 32.431 37.488 22.931 30.236 3.349 4.577
16 29.203 42.039 20.154 34.649 2.978 5.332
20 65.648 70.074 49.188 58.237 7.356 9.089

1 RMSE: root mean square error; MAE: mean absolute error; MAPE: mean absolute percentage error.

In terms of prediction accuracy, the TC-LSTMmodel consistently outperforms

the LSTMmodel across all τ values. Specifically, the TC-LSTM achieves the best

performance for τ = 4, τ = 8, τ = 12, τ = 16, and τ = 20, with improvements

of 2.94%, 3.12%, 13.49%, 30.53%, and 6.32% in RMSE, respectively. Moreover,

the TC-LSTMmodel also surpasses the LSTMmodel in terms ofMAE andMAPE

for all τ values. These results indicate that the proposed TC-LSTMmodel is more

effective than the LSTMmodel in capturing the temporal and spatial dependencies

of multi-port fuel prices, thus leading to improved prediction accuracy.
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The superior performance of the TC-LSTMmodel can be attributed to its abil-

ity to consider both temporal and spatial dependencies in the fuel price time series

data. By incorporating this information, the model can better capture the complex

dynamics of fuel prices across different ports and periods, resulting in more ac-

curate predictions. This advantage is particularly pronounced for long prediction

horizons, as evidenced by the significant improvements in RMSE for large val-

ues of τ . These improvements suggest that the TC-LSTM model is better than

the LSTM model at handling the increased uncertainty and complexity associated

with predicting fuel prices further into the future. By leveraging the accurate fuel

price predictions provided by the TC-LSTM model, decision makers can make

more informed and cost-effective decisions related to liner shipping services than

with alternative models.

Decision performance

Here, we compare the decision performance of two prescriptive analytics frame-

works for ship bunkering management: the TDP and MSD frameworks. We con-

sider 13 real global ports and examine various instance scales by selecting four,

six, eight, and ten ports randomly from the initial 13 to form shipping routes. In

each instance scale, we assess ten routes, yielding ten cases for each number of

ports. We simulate the ship bunkering decision-making process for a container

ship navigating the entire shipping route in each case. To streamline our com-

putational experiments and focus on the impact of fuel prices on ship bunkering

decisions, we assume a one-week interval between two ports of call in all cases.

Crucially, for decision-making purposes, the prediction target is modified to a vec-

tor representing the requisite future fuel prices at corresponding calling periods.
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For instance, in a scenario with four ports of call, while the ship is at the first

port, we predict fuel prices for the second, third, and fourth ports for the upcoming

one, two, and three weeks, respectively. The bunkering decision at the first port is

thenmade based on these predictions using the optimizationmodel. This process is

repeated at each subsequent port, with the predictive model updated and retrained

using the latest weekly data.

For each case, the last set of input–output pairs serves as the test set, with a

validation set size of 20 sets and the remainder as the training set. When generating

the distributional estimates, we apply a dropout rate of 0.1, a scenario number of

200, and the hyperparameters shown in Table 4.2. The selection of the dropout

rate and the number of scenarios is guided by decision error observations during

validation, where the search ranges for these parameters are {0.05, 0.1, 0.2, 0.3}

for the dropout rate and {50, 100, 200, 300} for the scenario number. Furthermore,

regarding other parameters needed in the optimization models, we assume that

the maximum tank capacity of the container ship is 1,500 MTs, the initial fuel

inventory is a random value in U(200, 400), and the fuel consumption during each

shipping leg is a random value inU(300, 500). The comparison benchmark (lower

bound) is the perfect-foresight framework using real fuel prices from the test set.

In addition, we utilize the mean values of historical fuel prices of each port to

derive bunkering decisions, which is a common industry practice referred to as the

mean-value framework. The overall decision performance, specifically the total

bunkering cost, of all frameworks under consideration is displayed in Tables 4.4–

4.7.

In the presented tables, we detail the decision performance across shipping

routes with varying numbers of ports of call: four, six, eight, and ten. The per-
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Table 4.4: Decision performance of shipping routes with four ports of call
Port number Case Costperf Costmean CostTDP CostMSD Gap1 Gap2 Gap3

(×106 $) (×106 $) (×106 $) (×106 $)

4

1 1.197 1.215 1.215 1.200 1.457% 1.457% 0.223%
2 1.199 1.221 1.216 1.201 1.797% 1.397% 0.142%
3 1.194 1.212 1.194 1.200 1.533% 0.000% 0.534%
4 1.186 1.210 1.210 1.203 1.968% 1.968% 1.372%
5 1.194 1.216 1.194 1.201 1.817% 0.000% 0.618%
6 1.186 1.207 1.186 1.203 1.751% 0.000% 1.381%
7 1.177 1.224 1.177 1.188 3.997% 0.000% 0.956%
8 1.180 1.230 1.180 1.189 4.247% 0.000% 0.784%
9 1.177 1.216 1.180 1.181 3.378% 0.272% 0.393%
10 1.172 1.213 1.173 1.182 3.484% 0.077% 0.780%

Average 1.186 1.216 1.192 1.195 2.543% 0.517% 0.718%
Variance / / / / 0.0001 0.0001 0.0000

1 Costperf: the total bunkering cost of the perfect-foresight framework; Costmean: the total bunker-
ing cost of the mean-value framework; CostTDP: the total bunkering cost of the TDP frame-
work; CostMSD: the total bunkering cost of the MSD framework; Gap1=Costmean−Costperf

Costperf ×100%;

Gap2=CostTDP−Costperf
Costperf × 100%; Gap3=CostMSD−Costperf

Costperf × 100%.

Table 4.5: Decision performance of shipping routes with six ports of call
Port number Case Costperf Costmean CostTDP CostMSD Gap1 Gap2 Gap3

(×106 $) (×106 $) (×106 $) (×106 $)

6

1 1.608 1.682 1.608 1.610 4.610% 0.000% 0.160%
2 1.607 1.686 1.607 1.610 4.920% 0.000% 0.200%
3 1.608 1.687 1.619 1.609 4.950% 0.680% 0.080%
4 1.608 1.689 1.619 1.609 5.020% 0.650% 0.050%
5 1.607 1.691 1.607 1.615 5.230% 0.000% 0.480%
6 1.608 1.689 1.608 1.615 4.980% 0.000% 0.410%
7 1.601 1.678 1.601 1.604 4.780% 0.000% 0.130%
8 1.601 1.682 1.601 1.604 5.090% 0.000% 0.170%
9 1.601 1.680 1.601 1.603 4.890% 0.000% 0.080%
10 1.603 1.688 1.603 1.603 5.340% 0.000% 0.000%

Average 1.605 1.685 1.607 1.608 4.980% 0.130% 0.180%
Variance / / / / 0.0000 0.0000 0.0000

formance evaluation is based on the total bunkering costs incurred by four distinct

strategies: the perfect-foresight framework (Costperf), the mean-value framework

(Costmean), the TDP framework (CostTDP), and the MSD framework (CostMSD).
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Table 4.6: Decision performance of shipping routes with eight ports of call
Port number Case Costperf Costmean CostTDP CostMSD Gap1 Gap2 Gap3

(×106 $) (×106 $) (×106 $) (×106 $)

8

1 2.208 2.342 2.214 2.234 6.03% 0.24% 1.15%
2 2.202 2.337 2.210 2.238 6.14% 0.36% 1.64%
3 2.204 2.334 2.209 2.241 5.91% 0.24% 1.71%
4 2.200 2.346 2.205 2.250 6.66% 0.24% 2.26%
5 2.202 2.337 2.207 2.255 6.13% 0.24% 2.40%
6 2.200 2.344 2.205 2.258 6.56% 0.24% 2.63%
7 2.213 2.341 2.221 2.238 5.76% 0.36% 1.15%
8 2.205 2.346 2.218 2.244 6.39% 0.59% 1.75%
9 2.214 2.350 2.223 2.248 6.16% 0.40% 1.54%
10 2.207 2.357 2.216 2.253 6.81% 0.42% 2.10%

Average 2.205 2.343 2.213 2.246 6.25% 0.33% 1.83%
Variance / / / / 0.0000 0.0000 0.0000

Table 4.7: Decision performance of shipping routes with ten ports of call
Port number Case Costperf Costmean CostTDP CostMSD Gap1 Gap2 Gap3

(×106 $) (×106 $) (×106 $) (×106 $)

10

1 2.489 2.627 2.490 2.540 5.55% 0.07% 2.07%
2 2.487 2.627 2.490 2.540 5.65% 0.15% 2.15%
3 2.488 2.634 2.489 2.549 5.88% 0.07% 2.47%
4 2.486 2.637 2.487 2.549 6.10% 0.07% 2.54%
5 2.487 2.640 2.488 2.559 6.15% 0.07% 2.90%
6 2.486 2.643 2.487 2.559 6.32% 0.07% 2.94%
7 2.497 2.639 2.504 2.548 5.69% 0.28% 2.06%
8 2.493 2.639 2.504 2.548 5.87% 0.44% 2.22%
9 2.497 2.648 2.499 2.555 6.04% 0.07% 2.31%
10 2.494 2.650 2.504 2.555 6.26% 0.39% 2.46%

Average 2.490 2.638 2.494 2.550 5.95% 0.17% 2.41%
Variance / / / / 0.0000 0.0000 0.0000

Performance gaps, namely Gap1, Gap2, and Gap3, are quantified as the cost dif-

ferences between the mean-value, TDP, and MSD frameworks in comparison to

the perfect-foresight benchmark, respectively.

A discernible trend emerges from the data: as the number of ports increases,

the performance gap between the perfect-foresight framework and the alternative

strategies tends to widen. This trend reflects the increasing complexity and un-
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certainties associated with more extensive routes. However, it is noteworthy that

the TDP framework consistently outperforms the mean-value approach, often ap-

proaching the performance level of the perfect-foresight framework. The MSD

framework, meanwhile, occupies a middle ground in terms of performance.

Interestingly, despite the theoretical advantages discussed in Section 4.4.2, the

MSD framework does not consistently outperform the TDP framework. It sur-

passes the TDP in six specific instances: three in routes with four ports and an-

other three in routes with six ports. This outcome, deviating from theoretical ex-

pectations, suggests that the MSD framework’s effectiveness may be influenced

by factors such as the variance in fuel prices between different ports and the total

number of ports in a given route, analyzed below.

As demonstrated in the ship bunkering problem, decision making is more in-

fluenced by the relative fuel prices across ports (i.e., their rankings) rather than

their absolute values. A larger variance means that even if the point predictions

are not perfectly accurate in terms of absolute values, they can still effectively

discern the relative rankings of prices across ports. This relative accuracy is cru-

cial because, when these predictions align closely with the actual price rankings,

the resulting decisions approximate those made with complete information. This

phenomenon is particularly evident in scenarios with four and six ports, where the

TC-LSTM model’s accuracy in predicting relative rankings is substantiated. In

75% of cases with four and six ports, Gap 2 is 0%, indicating that decisions based

on point predictions match those with perfect foresight.

However, when the variance in fuel prices across ports is smaller, predict-

ing the exact ranking becomes more challenging, leading to increased decision-

making uncertainty. In such cases, even minor perturbations might alter the rela-
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tive rankings in point predictions. This is where distributional estimates become

beneficial, as they provide a broader perspective on potential price variations.

Nonetheless, the empirical evaluation of the MSD framework reveals a bias

toward specific point realizations. While theory suggests that distributional esti-

mates should yield richer insights for multistage contextual stochastic problems,

their practical application, especially when compared against empirical point val-

ues, does not always reflect this. These broader estimates might lead to skewed

decisions if they inaccurately represent the actual fuel price rankings.

In terms of the impact of the number of ports of call, with an increasing num-

ber of ports, we expect more significant shifts in fuel price rankings and larger

inter-port fuel price variances. This situation escalates the risk of distributional

estimates obscuring decision making, thereby enhancing the appeal of the TDP

framework, especially for routes with eight or ten ports.

In summary, while theoretical perspectives highlight the value of distributional

estimates in providing a nuanced understanding of uncertainties, empirical eval-

uations can reveal a different reality. This discrepancy is pivotal in assessing the

effectiveness of various prescriptive analytics frameworks. To further investigate

this aspect, we conduct additional experiments using synthetically generated data.

These experiments aim to explore how the variance in inter-port fuel prices and

the number of ports affect decision outcomes, as detailed in Section 4.6.2.
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4.6.2 Experiments using synthetic data

Data description

We create the synthetic dataset using historical fuel price data from the port of

Shanghai (SH) as a basis. We select 12 additional domestic ports in China and

generate their historical fuel price data by considering the distances between these

ports and the port of Shanghai. Here, in addition to Shanghai, the 12 other domestic

ports that we include are Dalian, Tianjin, Guangzhou, Jiangmen, Dandong, Fos-

han, Ningbo, Nanjing, Shenzhen, Xiamen, Qingdao, and Hangzhou. Specifically,

the correlation of fuel prices between the port of Shanghai and port j is assumed

to be coSH,j = exp
(
− distance(SH, j)/η

)
, where η controls the value of the cor-

relation. For each week t and port j, the weekly fuel price for port j is drawn from

a normal distribution with a mean, denoted byXSH
t , using the weekly fuel price of

the port of Shanghai, and a standard deviation calculated by
√
XSH

t × (1− coSH,j).

We conduct three groups of experiments by setting η = 100, 1000, and 10000, re-

spectively; a larger η represents a lower variance of inter-port fuel prices. The

descriptive statistics of synthetic fuel prices for the 13 domestic ports in China

when η = 100, 1,000, and 10,000 are shown in Tables 4.8– 4.10. As the value of η

increases, the inter-port fuel price variance decreases, which is consistent with our

expectation that a larger η represents a lower inter-port fuel price variance due to

the reduced impact of distance. When η = 100, the inter-port fuel price variance

is relatively high, indicating that the fuel prices of the 13 domestic ports in China

are diverse. However, as η increases to 1,000 and 10,000, the inter-port fuel price

variance decreases, leading to a reduced difference in fuel prices among ports. The

remaining parameters and hyperparameters follow the settings in Section 4.6.1.
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Table 4.8: Descriptive statistics of synthetic data when η = 100

Port Mean Price Standard Deviation Minimum Price Maximum Price
($/MT) ($/MT) ($/MT)

Shanghai 589.65 207.77 216.25 1,175.75
Dalian 590.33 208.78 210.05 1,184.18
Tianjin 589.08 208.10 214.68 1,176.64

Guangzhou 589.40 207.79 212.73 1,174.49
Jiangmen 589.92 209.60 209.96 1,164.61
Dandong 589.99 209.18 213.33 1,173.24
Foshan 589.52 208.08 212.72 1,165.22
Ningbo 589.85 208.16 212.32 1,176.61
Nanjing 589.52 208.19 216.66 1,172.63
Shenzhen 589.64 208.64 214.38 1,169.69
Xiamen 589.97 209.00 209.78 1,188.73
Qingdao 589.40 207.82 216.64 1,174.07
Hangzhou 589.29 208.78 215.72 1,185.04

Decision performance

Using synthetic data, we examine various instance scales, selecting four, six, eight,

ten, and 12 ports randomly from the initial 13 domestic ports to form shipping

routes. In each instance scale, we assess 10 cases with different routes for each

number of ports. The overall decision performance, specifically the total bunker-

ing cost, of the three frameworks (i.e., Costmean, CostTDP, and CostMSD) of interest

is displayed in Table 4.11. Here, we only show the “votes” of each framework;

that is, for each case, the framework that costs the least earns a point. We omit the

results of the perfect-foresight framework, given that these results are always con-

sidered the ground-truth results, and calculate the average gaps of the mean-value,

TDP, and MSD frameworks compared with the perfect-foresight framework for

each number of port and η.

As shown in Table 4.11, we can draw some interesting observations regarding
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Table 4.9: Descriptive statistics of synthetic data when η = 1, 000

Port Mean Price Standard Deviation Minimum Price Maximum Price
($/MT) ($/MT) ($/MT)

Shanghai 589.65 207.77 216.25 1,175.75
Dalian 589.60 207.88 215.91 1,172.12
Tianjin 589.73 207.63 217.46 1,175.43

Guangzhou 589.73 207.71 217.98 1,177.02
Jiangmen 589.49 207.62 214.27 1,168.19
Dandong 589.95 207.96 215.55 1,175.85
Foshan 589.23 207.86 218.13 1,173.69
Ningbo 589.62 207.69 216.78 1,176.21
Nanjing 589.63 207.84 215.84 1,176.86
Shenzhen 589.72 207.85 216.14 1,176.51
Xiamen 589.60 207.79 216.00 1,179.42
Qingdao 589.51 207.68 215.89 1,178.15
Hangzhou 589.71 207.80 216.64 1,176.51

the impact of varying η values and port numbers on the performance of the three

frameworks. When η = 100, the TDP framework dominates; it wins in all cases

except when the number of ports is set to four, where the MSD framework slightly

outperforms it. In this high-variance scenario, the TDP framework effectively

captures the main trends in fuel prices, namely the true relative rankings among

multi-port fuel prices, allowing it to make more accurate bunkering decisions than

the other frameworks. Nevertheless, the MSD framework manages to achieve the

lowest average gap in some cases when the number of ports is low, indicating that

it can be useful in certain situations.

As the value of η increases to 1,000, the MSD framework becomes more com-

petitive, consistently outperforming the point prediction framework in terms of

votes when the number of ports is set to four and six. In this scenario, the low

inter-port fuel price variance makes it more difficult for the TDP framework to

accurately predict the true ranking among multi-port fuel prices, leading to less
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Table 4.10: Descriptive statistics of synthetic data when η = 10, 000

Port Mean Price Standard Deviation Minimum Price Maximum Price
($/MT) ($/MT) ($/MT)

Shanghai 589.65 207.77 216.25 1,175.75
Dalian 589.70 207.79 216.27 1,175.42
Tianjin 589.65 207.74 216.11 1,178.43

Guangzhou 589.65 207.75 216.77 1,174.27
Jiangmen 589.68 207.71 216.24 1,174.49
Dandong 589.65 207.83 215.75 1,175.49
Foshan 589.69 207.85 216.41 1,177.60
Ningbo 589.68 207.78 216.20 1,176.13
Nanjing 589.63 207.76 216.51 1,175.57
Shenzhen 589.71 207.80 217.06 1,176.09
Xiamen 589.60 207.69 216.30 1,175.32
Qingdao 589.66 207.78 216.39 1,176.36
Hangzhou 589.63 207.81 216.12 1,176.49

Table 4.11: Decision performance using synthetic data

η Port number Votes Average Gaps

Costmean CostTDP CostMSD Gap 1 Gap 2 Gap 3

100

4 0 4 6 1.893% 0.939% 0.343%
6 0 7 3 3.990% 0.945% 0.987%
8 0 10 0 4.126% 0.616% 0.723%
10 0 10 0 3.199% 1.465% 2.933%
12 0 10 0 2.825% 1.578% 3.549%

1,000

4 0 0 10 0.198% 0.197% 0.021%
6 0 0 10 3.838% 1.080% 0.832%
8 0 10 0 4.109% 0.608% 0.782%
10 0 10 0 3.488% 1.631% 2.965%
12 0 10 0 2.901% 1.336% 3.715%

10,000

4 0 0 10 1.789% 1.789% 0.135%
6 0 0 10 3.565% 0.430% 0.211%
8 0 9 1 4.048% 0.520% 0.623%
10 0 10 0 3.177% 1.345% 2.848%
12 0 10 0 2.920% 1.467% 3.790%
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optimal decisions, whereas the MSD framework takes advantage of its ability to

capture uncertainty.

Furthermore, we notice that as the number of ports increases to 10 and 12, the

gap between the MSD framework and the perfect-foresight framework increases.

This suggests that the MSD framework might face challenges in handling a large

number of ports, even when the variance of inter-port fuel prices is low. This

is because, as mentioned above, when there are more ports of call, distributional

estimates introduce more noise to to the decision-making process than the TDP

framework.

Finally, when η = 10, 000, the MSD framework excels, winning in all cases

where the number of ports is set to four or six. The low inter-port fuel price vari-

ance, combined with the low number of ports, highlights the strength of the MSD

framework in capturing uncertainty and making better decisions as a result. In

these cases, the average gap achieved by the MSD framework is the lowest among

the three frameworks, further emphasizing its superior performance.

In summary, the MSD framework tends to excel when both the inter-port fuel

price variance is low and the number of ports is small, effectively leveraging its

ability to account for uncertainty. On the other hand, the TDP framework is more

advantageous in high-variance scenarios, where the stability and predictability of

relative fuel price rankings are higher. This analysis underscores the nuanced na-

ture of decision making in ship bunkering management and the context-dependent

suitability of different predictive analytics frameworks.
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4.7 Conclusions

This study investigates the ship bunkering management problem in liner shipping

in the presence of uncertain fuel prices. We construct a TC-LSTM model to pre-

dict multi-port time series fuel prices, considering both intra-dependencies within

each time series and inter-dependencies among multi-port fuel prices. This leads

to more accurate fuel price predictions for shipping companies than LSTM. In

addition, we develop two prescriptive analytics optimization models for the ship

bunkering management problem considering uncertain fuel prices: the TDP and

MSD frameworks. TheMCdropout technique is employed in theMSD framework

to derive distributional estimates for the TC-LSTM model. Finally, we compare

the performance of the proposed models using real-world and synthetic data. Our

results show that the TC-LSTM model performs better than the traditional LSTM

model in predicting multi-port fuel prices. Moreover, the decision performance

of the two prescriptive analytics frameworks depends on the inter-port fuel price

variance and the number of ports of call on the shipping route. The results obtained

in our study provide valuable insights to liner shipping companies seeking to nav-

igate uncertain fuel prices and improve their bunkering management decisions.

By adopting suitable prescriptive analytics frameworks, companies can minimize

bunkering costs and contribute to enhancing the sustainability of the shipping in-

dustry.
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Chapter 5

Conclusions and Future Research

Directions

5.1 Conclusions

This thesis has demonstrated the innovative application of prescriptive analytics

across various challenges in maritime transportation. Through three focused stud-

ies, we have explored the data-driven optimization of ship maintenance, maritime

routing, and bunkering decisions, each considering unique operational complexi-

ties and leveraging advanced machine learning (ML) techniques.

Chapter 2 illustrated a novel approach to ship maintenance optimization using

a smart predict-then-optimize (SPO) framework. By integrating operational, re-

pair, and risk costs into the training process of the ML model, the study achieved

substantial cost reductions. Computational experiments confirmed that the pro-

posed SPO-based scheme reduced the total operational costs by an average of

43.22% compared to traditional methods and by 10.44% compared to predict-then-
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optimize-based schemes. This framework not onlyminimizes the operational costs

but also enhances port efficiency by reducing the need for extensive port state con-

trol (PSC) inspections, thereby alleviating port congestion.

Chapter 3 addressed the optimization of PSC officer (PSCO) routing with a

decision-focused learning approach. By embedding the optimization problem di-

rectly into the ML training process, this study surpassed the traditional two-stage

framework in decision quality under certain situations. The use of undominated

inspection templates and surrogate loss functions based on noise-contrastive es-

timation improved the scalability and computational feasibility of the approach,

offering a more efficient and effective method for ship inspector routing that re-

duces unnecessary inspections and port congestion.

Chapter 4 tackled the challenge of optimizing bunkering decisions under un-

certain fuel prices. The development of the two-channel long short-term memory

(TC-LSTM) model provided superior multi-port fuel price predictions, which in-

formed two advanced prescriptive analytics models: the two-stage contextual de-

terministic framework with point predictions (TDP) and the multistage contextual

stochastic framework with distributional estimates (MSD). The study’s findings

highlighted the dependency of decision performance on fuel price variance and

the number of port calls on each shipping service, offering critical insights for

shipping companies aiming to minimize fuel costs and enhance operational sus-

tainability.

Collectively, these studies underscore the transformative potential of integrat-

ing ML with optimization in maritime transportation. The methodologies devel-

oped not only foster economic efficiency but also contribute to sustainable industry

practices by optimizing resource use and decision accuracy. As maritime opera-
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tions continue to face dynamic challenges and evolving economic conditions, the

insights from this thesis provide a valuable foundation for future innovations in

the sector.

5.2 Future Research Directions

The first study proposes ship maintenance plans for ship operators, paving the way

for future research. First, because of the varied expertise of PSCOs, PSC inspec-

tions at different ports have regional characteristics. For example, there may be

subjective differences between the PSCOs regarding the criteria for recording a de-

ficiency. In the future, PSC data at multiple ports can be used to generate a more

robust ship maintenance plan. Second, future studies could design ship mainte-

nance plans that consider more practical constraints, including but not limited to

operational costs, ship maintenance time slot requirements, and the skills of main-

tenance crews for the deficiency conditions. On the one hand, when formulating

the ship maintenance problem, we can further consider the repair decision of ship

operators when they make trade-offs between the repair cost and risk cost for an

identified deficiency. This consideration may transform the original one-stage op-

timization problem into a two-stage optimization problemwhere the solution com-

plexity increases. Under this challenge, model transformation techniques would

be needed when the optimization problem is plugged into the training process of

ML models under the SPO framework. On the other hand, ship operators can ob-

tain more accurate values of the three types of operational costs considering the

requirements of different ship operators and ship types by consulting industrial ex-

perts. Third, instead of making inspection decisions separately for each deficiency
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code, we can further plug the RF model used to predict ship detention probability

into the training process of the SPO forest (SPOF). In doing so, we can model the

risk cost as a comprehensive value influenced by the overall ship condition to con-

sider the nonlinear relationship between having deficiencies under each code and

the final detention outcome. And this comprehensive risk cost would influence

the inspection decision backwardly in a coupled manner, and thus further influ-

ence the training process of the SPOF. Meanwhile, it is not hard to imagine that

this methodology would no doubt need huge computational resources because the

studied problem is transformed into a multi-output prescriptive problem with cor-

related optimization targets, and we need to call the detention probability predictor

millions of times for all possible inspection schemes and all possible node split-

ting rules when training the SPOF. Therefore, we may further consider adopting

an approximate splitting rule when constructing the prescriptive trees and reducing

the size of inspection scheme pool by heuristics. Third, the SPO framework pro-

posed in this study can be modified for the design of inspection plans for PSCOs in

formal PSC inspections by considering the corresponding optimization objectives

of PSC authorities. Finally, the SPO framework can be applied to other ML al-

gorithms by taking advantage of their structural features. Their decision-making

performance of these alternative ML algorithms for ship maintenance planning

should be compared.

The second study proposes routing decisions for PSCOs under different pre-

scriptive analytics frameworks, having the following limitations. Theoretically,

regarding the adopted decision-focused learning framework, the proposed decision

loss functions are all surrogate loss functions that approximate the ground-truth

decision losses. To use the ground-truth decision losses, the proposed decision-
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focused learning framework could be applied to other ML models by taking ad-

vantage of their structural features, such as random forest and k-nearest neigh-

bor. The decision-making performance of these alternative ML algorithms for the

PSCO routing problem should be analyzed and compared with the results obtained

using artificial neural networks in our study. Practically, our formulation of the

PSCO routing problem does not consider more complex real-world constraints,

which may result in deviations from actual situations. For instance, foreign vis-

iting ships might change their berthing locations while PSCOs conduct their in-

spections, making the PSCO problem into a dynamic routing problem. Moreover,

the inspection time for each ship may vary depending on individual ship condi-

tions. Future research could tackle these practical limitations and explore more

advanced and realistic models to better represent the complexities of the PSCO

routing problem.

The third study optimizes data-driven container ship bunkering decisions, hav-

ing the following future research directions. First, building upon our foundational

work with the TC-LSTM model, there exists an opportunity to incorporate other

external factors that might influence fuel prices. Beyond our model, there is room

to investigate other deep learning algorithms for potential complementary insights.

Although the MC dropout technique is effective for our needs, exploring other

methods for predicting distributional outcomes in deep learning can offer a broader

toolkit for industry professionals. Second, while our current ship bunkering man-

agement model offers an operational-level approach, the dynamic nature of liner

shipping allows for the continual integration of new constraints and objectives.

Aspects like ship routing, emissions, and service quality are areas where future

studies could expand, enhancing the decision-making landscape further. Third,
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our exploration of the TDP and MSD frameworks opens the door for potential

hybrid models that capitalize on the strengths of both. For instance, considering

a mixed approach, where fuel price distributions are predicted for initial stages

and point estimations for subsequent stages, might provide an enriched decision-

making framework. Such endeavors would not replace our findings but would

rather stand on the shoulders of our work, aiming to achieve even more nuanced

results.
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