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Abstract

Ring signatures, in comparison to most digital signature schemes, have garnered

significant attention due to their strong anonymity alongside unforgeability. The

compelling attributes of ring signatures have garnered substantial scholarly interest

in the field of security and privacy. Consistent with this trend, ring signatures are

widely applied across a broad spectrum of privacy-preserving scenarios.

Therefore, this thesis is dedicated to the study of ring signature constructions and

applications, encompassing Discrete Logarithm (DL)-based and lattice-based ring

signatures.

DL-based Ring Signature Construction and Application

Currently, various ⌃-based standard signature schemes serve a wide range of privacy-

preserving scenarios. However, these schemes are prone to leakage of the signer’s

identity information due to a lack of consideration for user anonymity. To address

this issue, the ring signature is considered a desirable alternative, as it allows any ring

member to generate a signature on a message without revealing the signer’s identity.

But to our best knowledge, in the aforementioned privacy-preserving scheme, replac-

ing the original standard signature with existing (non-standardized) ring signatures

would result in the inability to maintain the original properties. Thus, proposing a

general mechanism to convert a standardized ⌃-based signature to a ring signature

is far-reaching.
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The first contribution of this thesis is that we propose a general construction for con-

verting ⌃-based signatures into ring signatures. To achieve this, we initially introduce

a ⌃-based general model, providing a generic transformation to convert existing ⌃-

based signatures into a ⌃-protocol form. Subsequently, we incorporate our redesigned

one-out-of-many relation within our general model and proceed to devise a general

ring signature leveraging on the Fiat-Shamir heuristic. Furthermore, to enhance the

e�ciency, we employ the Bulletproofs folding technique, enabling the attainment of

the logarithmic size ring signature. To showcase the broad range of uses for our gen-

eral construction, we provide four prominent signatures as case studies. Ultimately,

we conduct a security analysis and experimental evaluation of our proposed ring sig-

nature. The signing and verifying times are 0.38 - 0.83 times and 0.23 - 0.65 times

compared to existing ring signatures, respectively. Our general ring signature exhibits

the lowest storage overhead compared to others.

Lattice-based Ring Signature Construction and Application

Ring signatures have been extensively researched for Cloud-assisted Electronic Medi-

cal Records (EMRs) sharing, aiming to address the challenge of “medical information

silos” while safeguarding the privacy of patients’ personal information and the security

of EMRs. However, most existing EMRs sharing systems that utilize ring signatures

are vulnerable to quantum attacks, posing a severe challenge. To alleviate this is-

sue, some studies have been conducted on lattice-based ring signatures. Nevertheless,

there still exist two challenges. Firstly, current schemes fail to verify if multiple EMRs

come from the same signer, undermining e-health reliability. Additionally, adversaries

can exploit weaknesses in the network security of signers’ secret keys to forge signa-

tures. Therefore, it is essential to design a lattice-based ring signature for the EMRs

sharing system to tackle the mentioned challenges.

The second contribution is that we propose an e�cient lattice-based linkable ring

signature (LLRS) for EMRs sharing to ensure patient privacy through anonymity,

EMRs security through unforgeability, and checking the linkability for multiple sig-
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natures. We then present an enhancement scheme, called FS-LLRS, to additionally

o↵er forward security, ensuring the security of previous ring signatures even if the

current key leaked. To achieve this, we introduce a binary tree to divide time and

leverage the ExtBasis algorithm to update the secret keys periodically. Ultimately,

we conduct a rigorous security analysis and compare our primitives with prior arts.

In computational cost, the best performance of our LLRS and FS-LLRS schemes are

just 0.17 and 0.34 times compared to others, respectively. Our LLRS scheme only

incurs 0.08 times the communication overhead of others.
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Chapter 1

Introduction

In recent decades, ring signatures have been extensively researched and widely applied

in privacy-preserving systems to safeguard data security and user privacy. Ring sig-

nature, a cryptographic primitive, was first proposed by Rivest et al. (ASIACRYPT

2001) [60], and ensures the anonymity of the signer within a dynamically formed

ring. The signing process does not reveal the signatory’s identity, and each involved

individual holds a key pair, comprising a secret key (aka. signing key) and a public

key (aka. verification key). In 2004, Abe et al. [1] presented a novel approach for

constructing a generic ring signature, enabling the use of any hash-and-sign signature

or ⌃-protocol based signature scheme. The superior anonymity and unforgeability of

ring signatures have sparked extensive research in the contents of privacy-preserving

fields.

This thesis is dedicated to researching the constructions and applications of ring

signatures, focusing on two aspects: ring signatures based on DL hardness and ring

signatures based on lattice hardness.

1



Chapter 1. Introduction

1.1 DL-based Ring Signature Construction and Ap-

plication

Digital signatures [32] are a vital component of modern cryptography [41, 11]. They

have been serving as an essential tool in ensuring computer security [30, 6, 27] and

the authenticity, integrity, and unforgeability of transmitted data. Signatures possess

diverse properties, prominently utilized in vehicular networks [72, 59], government

announcements [54], electronic medical record sharing [21], financial sector [43], the

blockchain-based system [62, 70], and other aspects. Nowadays, various ⌃-based stan-

dard signatures are in the spotlight due to their structural conciseness, e.g., Schnorr

signatures [57, 61] and ECDSA signatures [39], etc.

Recently, numerous privacy-preserving systems leveraging ⌃-based standard signa-

tures have been proposed [55, 47, 26, 28, 37, 58] to guarantee data security. However,

they ignored user anonymity, which is crucial in privacy-preserving systems. For ex-

ample, in the e-health [44], guaranteeing the users’ anonymity can protect the privacy

of their private medical records. As for e-voting [51], preserving users’ anonymity can

establish a credible and fair election process. Thus, missing anonymity will leak

the users’ private information and compromise the equitability of privacy-preserving

systems.

To tackle this concern, scholars have conducted a large number of studies and found

that ring signature [60, 24, 9] seems to be a feasible choice due to its strong anonymity

and unforgeability [20, 75]. In line with this trend, numerous ring signatures have

been proposed [33, 12, 29]. Unfortunately, replacing an original standard signature

in privacy-preserving systems with a newly selected ring signature to provide user

anonymity can be cumbersome, and may result in the loss of advantages that the

original signature o↵ered, i.e. lower time and storage overhead. More importantly, it

should be noted that a large number of ring signatures have not yet been standardized
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1.1. DL-based Ring Signature Construction and Application

(as we will discuss later), which means that multiple parties would need to agree on

the same scheme and implementation.

Hence, it becomes imperative to propose a general construction that allows for the

conversion from existing (standardized) signatures to ring signatures. Through this

technique, scholars can directly enhance the security level of their privacy-preserving

systems by converting a signature they currently use into a ring signature. As far as

we know, no established method has been proposed to achieve this transformation

until now.

1.1.1 Related Works

Recently, there has been an increasing scholarly focus on ring signatures. In 2015,

Groth et al. [33] introduced one-out-of-many proofs, utilizing the binary Kronecker’s

delta vector to present the O(log n) ring signature scheme with O(n log n) exponen-

tiation costs. Subsequently, Bootle et al. [12] conducted optimizations on Groth et

al.’s scheme [33] and introduced an accountable ring signature that exhibits similar

performance to the aforementioned scheme. In 2021, Yuen et al. [74] presented a

O(log n) ring signature with O(n) exponentiation cost, which is regarded as the op-

timal scheme till now. The scheme of Feng et al. [29] can be seen as a case study of

Yuen et al. [74].

Despite the availability of various constructions for ring signatures, there does not

exist a standardized framework established by institutions. Since ring signatures are

not being standardized, both parties are still required to negotiate and communi-

cate regarding certain realistic details. It leads to less generic implementations and

presents bottlenecks in the pursuit of enhancing the security of privacy-preserving

schemes.

Moreover, it is worth noting that existing schemes adopt a range of signatures based

on ⌃-protocols, e.g. ECDSA signature [39], Schnorr signature [57, 61], EdDSA signa-
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Chapter 1. Introduction

ture [40] and SM2 signature [5], which unfortunately fail to provide user anonymity.

If scholars aim to enhance the security of their systems, e.g. anonymity, they are

required to choose an existing ring signature and integrate it into their privacy-

preserving system. However, this process can be complex, and the chosen ring signa-

ture may not be suitable for their specific requirements.

Building on the above, the challenge addressed in Chapter 3 is to develop a general

construction approach that enables the conversion from existing standardized ⌃-based

signatures to ring signatures. Additionally, we o↵er four classical case studies to

construct standard ring signatures by our method to show its applications.

1.2 Lattice-based Ring Signature Construction and

Application

Cloud-assisted Electronic Medical Records (EMRs) sharing systems have become in-

creasingly popular as a convenient and e↵ective method for medical institutions to

share patients’ medical information [22, 65]. Meanwhile, it also brings the users’

privacy and the EMRs security issues, i.e., the disclosure of patients’ private infor-

mation and the malicious forgery of EMRs [67, 69, 42, 19]. With regard to these

concerns, a cryptographic technique, ring signature [60, 24, 9, 23], has garnered ex-

tensive attention for its strong anonymity and unforgeability. Using the ring signature

in the medical data sharing process can safeguard patients’ privacy and ensure the

unforgeability of medical data.

However, most existing ring signatures utilized in medical data sharing systems

[50, 44, 34] are based on classical assumptions. Unfortunately, the emergence of

quantum computer [66, 36] has led to the proliferation of quantum algorithms [25, 2],

posing a serious risk to classical cryptography. In particular, the Shor algorithm

[63, 64] can e�ciently compute mathematical and discrete logarithmic decomposi-
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tions in polynomial time and attackers can employ Grover’s algorithm [35] to extract

user keys. In this way, these existing schemes are susceptible to quantum attacks,

significantly impacting the security of medical data sharing systems.

To tackle this, lattice-based cryptography [53] is considered a more suitable and e�-

cient technique to provide quantum safety compared to other post-quantum crypto-

graphic primitives. Accordingly, scholars have increasingly focused on studying the

lattice-based ring signatures [8, 4, 68, 38, 20], o↵ering anonymity, unforgeability, and

resistance to quantum attacks. Some of them [8, 4, 68] additionally provide linkability.

However, limited research has been conducted on using lattice-based ring signatures

to EMRs sharing systems, due to several issues such as e�ciency. Among the above

schemes, only the lattice-based ring signature (but without linkability) [20] proposed

by Chen et al. is e�cient and they adopt it to e-health system to guarantee users’

privacy and quantum-resistant security of medical data.

Nevertheless, there are still two critical issues requiring solutions, i.e., if medical data

is improperly stored or exposed to cyberattacks, it can result in chaos within these

data stores or compromise their security. The linkability of ring signatures [48] can

be used for the verification of whether multiple EMRs originate from the same user,

preventing service unreliability caused by storage confusion. The forward security

of ring signatures [49] can regularly update the secret key, ensuring that even if the

current key is leaked, previously generated signatures remain secure. In 2018, Boyen

et al. [14] firstly introduced a ring signature with both linkability and forward security,

however, it is not immune to quantum attacks.

Hence, two questions arise naturally:

1) Can we propose an e�cient lattice-based ring signature with linkability and use it

in the EMRs sharing system?

2) Can we propose a lattice-based ring signature with both linkability and forward

security and use it in the EMRs sharing system?
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Chapter 1. Introduction

In Chapter 4, we answer the above two questions a�rmatively by constructing an ef-

ficient lattice-based linkable ring signature (LLRS) and an enhanced version, lattice-

based linkable ring signature with forward security (FS-LLRS). Then, these tech-

niques are used to design a cloud-assisted EMRs sharing system, ensuring secure and

e�cient e-health services.

1.2.1 Related Works

Ring signature, first introduced by Rivest et al. [60], enables any signer to select

a set of public keys, forming a ring to sign the message on behalf of the ring, while

concealing their true identities. Abe et al. [1] presented a new approach for construct-

ing ring signature using a three-move type protocol in 2004. Since then, numerous

scholars focused on ring signature research and its application in privacy-preserving

systems. As e-health developed, scholars have focused on the EMRs security and

patient privacy, leading to gradual applications of ring signatures. We compared our

scheme with prior arts in Table 1.1.

In 2021, Lu et al. [50] formalized an attribute-based ring signature and used it for

Electronic Health Records (EHR). Lai et al. [44] introduced a health data shar-

ing system based on blockchain and ring signature in the following year, providing

traceability but reducing anonymity. In 2023, Grover et al. [34] proposed a cloud-

based distributed EHR sharing system using ring signature, lacking functionalities,

i.e. linkability. Most recently, Bao et al. [7] presented an EHR sharing system that

incorporated both linkability and traceability. Among these schemes, this scheme is

the only one to o↵er such functionalities. However, they adopted the group signature

technique, which compromised user anonymity. In 2018, Boyen et al. [14] introduced

a ring signature with both linkability and forward security. Li et al. [46] provides

a forward secure dualring signature in 2023. Nevertheless, it is notable that none of

these solutions are resistant to quantum attacks.
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Table 1.1: Comparison with Existing Ring Signature Schemes.

Schemes Linkability
Quantum

Resistance

Forward

Security

Identity

based

Lu et al. [50] # # # #

Lai et al. [44] # # # #

Grover et al. [34] # # # #

Bao et al. [7] ! # # #

Li et al. [46] # # ! #

Boyen et al. [14] ! # ! #

Baum et al. [8] ! ! # #

Jia et al. [38] # ! # !

Alberto et al. [4] ! ! # #

Tang et al. [68] ! ! # !

Chen et al. [20] # ! # #

Our LLRS Scheme ! ! # #

Our FS-LLRS Scheme ! ! ! !

Notes. All schemes satisfy anonymity and unforgeability.

Limited research [20] has been conducted on introducing lattice-based ring signatures

to e-health systems. Accordingly, we compare several lattice-based ring signatures

that can be utilized to protect medical privacy. As shown in Table 1.1, the schemes

of Baum et al. [8], Alberto et al. [4], and Tang et al. [68] o↵er linkability, while the

schemes of Jia et al. [38] and Tang et al. [68] are identity-based.

In Chapter 4, our e�cient LLRS scheme provides both linkability and resistance

to quantum attacks. Our enhanced FS-LLRS scheme provides additional forward

security while retaining the properties of the LLRS scheme. Further, in our FS-

LLRS scheme, we use the identity tag ⌧i for the public key generation, to achieve

identity-based property.
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1.3 Thesis Outline

The rest Chapters of this thesis are structured as follows.

• Chapter 2 introduces the notations, definitions, and cryptographic fundamental

knowledge for the following content.

• Chapter 3 presents the general construction for converting ⌃-protocols based

signatures to ring signatures.

• Chapter 4 presents the lattice-based linkable ring signature with forward secu-

rity construction and uses it for cloud-assisted electronic medical records sharing

system.

• Chapter 5 concludes our contributions and provides some ideas for future work

stemming from this thesis.
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Chapter 2

Preliminary

To begin with, we provide the notations and some fundamental knowledge of this

thesis.

2.1 DL-based Ring Signature

2.1.1 Notations

Let G be the cyclic group order q, Zq denotes the integers group modulo q, and Z⇤

q

represents non-zero elements in Zq. Set uppercase letter A 2 G and lowercase letter

a 2 Zq. The vectors can be presented as bold letters a or A. The Pa means
Q

P
ai
i .

The a � b denotes as (a1 · b1, · · · , an · bn). The x
$ S means randomly sample the

notation x from finite set S.

9
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2.1.2 Discrete Logarithm Assumption

Definition 1 (Discrete Logarithm). For all probabilistic polynomial time (PPT)

adversaries A such that

Pr

2

4a = g
b

������

g, a G;

b A(G, g, a);

3

5  negl, (2.1)

where the negl denotes as negligible.

2.1.3 ⌃-Protocol

⌃-protocol is a three-phase (commitment, challenge, and response) interactive pro-

tocol, utilized by a prover P to persuade the verifier V of the truth of a statement

without disclosing its witness.

Specifically, the ⌃-protocol is between P and V , and there also exists a setup algorithm

S . The tuple (S ,P ,V) is defined for a ⌃-protocol with relation R, and (s, P ) ✓ R,

where s is a witness, P is a statement. The ⌃ protocol satisfies three properties, i.e.

the completeness, soundness, and Honest Verifier Zero-Knowledge (HVZK).

Definition 2 (Perfect Completeness). [33, 18] The tuple (S ,P ,V) is called the

⌃-protocol, with the perfect completeness, for all adversaries A

Pr

2

6666666664

V(pp, P, µ, c, f) = 1

���������������

pp S (�);

(s, P ) A(pp);

µ P(pp, s, P );

c {0, 1}�;

f  P(c);

3

7777777775

= 1, (2.2)

where (pp, s, P ) 2 R.

Definition 3 (n-special Soundness). [33, 18] The tuple (S ,P ,V) is n-special

soundness if there exists an extractor E , which has the ability to calculate the witness

s by giving n accepting transcripts. Thus, for all adversaries A

10



2.1. DL-based Ring Signature

Pr

2

6666664
(pp, s, P ) 2 R

������������

pp S (�);

(P, µ, c1, f1, · · · , cn, fn) A(pp);

V(pp, P, µ, ci, fi) = 1, 8 i 2 [1, n];

s E(pp, P, µ, c1, f1, · · · , cn, fn);

3

7777775
⇡ 1� negl, (2.3)

where the negl denotes as negligible, and we say that is n-special soundness.

Definition 4 (Honest Verifier Zero-Knowledge (HVZK)). [33, 18] The tuple

(S ,P ,V) is HVZK if there exists a simulator S, for all adversaries A

������������

Pr

2

6666664
A(µ, f) = 1

������������

pp S (�);

(s, P, c) A(pp);

µ P(pp, s, P );

f  P(c);

3

7777775
�Pr

2

6664
A(µ, f) = 1

���������

pp S (�);

(s, P, c) A(pp);

(µ, f) S(pp, P, c);

3

7775

���������

 negl,

(2.4)

where A outputs (s, P, c) such that (pp, s, P ) 2 R and c 2 {0, 1}�. If negl is negligible,

we say that is HVZK.

2.1.4 Commitment Scheme

The commitment, which incorporates the properties of hiding and binding, enables

the sender to generate a commitment R = com(k) in the commit phase. In the open

phase, the receiver can check the validity of the opening and whether the commitment

R is constructed from a real value k.

Taking the Pedersen commitment as an example, in a general scenario, the group

G and the generator G are obtained by setup phase. In commit phase, the sender

calculates the commitment R = com(k) = G
k. In open phase, the receiver can

perform validity verification. For signature, the public key Pi can be treated as a

commitment concerning the secret key si.

11
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Definition 5 (Hiding). [33, 18] The commitment (S , com) is hiding if that com-

mitment com exposes nothing about the real message value µ, and the commitment

com is statistically independent. Hence, for all adversaries A

Pr

2

6666666664

A(c) = b

���������������

pp S (�);

(µ0, µ1) A(pp);

b {0, 1};

r  Rpp;

c compp(µb);

3

7777777775

⇡ 1

2
, (2.5)

where the adversary A outputs the message µ0, µ1 2 Mpp. If the probability of this

equation is equal to 1
2 , we say that is hiding.

Definition 6 (Binding). [33, 18] For all e�cient adversaries A, if the commitment

(S , com) is opened only for one single value, such that

Pr

2

4compp(µ0) = compp(µ1), µ0 6= µ1;

������

pp S (�);

(µ0, µ1) A(pp);

3

5 ⇡ 0 (2.6)

where the adversary A outputs µ0, µ1 2 Mpp. If the probability of this equation is

equal to 0, we say that is binding.

2.1.5 Bulletproofs Folding

Bulletproofs [15] is a spatially e�cient and concise protocol, without a trusted setup

phase. The core compression idea is dichotomy and recursion. We use it to fold our

response value, serving as a stepping stone towards our objective.

In our scheme, the central folding process is the relation Pf . In particular, n must be

a power of 2. We set n0 = n
2 , and then we divide f and P into two vectors respectively,

i.e. fL, fR and PL, PR. Then, we compute LB = PL
fR and RB = PR

fL . The process

of compressing the size of folding value f is calculated as f 0 = x · fR + x
�1 · fL, where

x is sampled randomly. In each round, the prover P and verifier V computes a new

12
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vector P0 = Px�1

R � Px
L to replace the original P. The verification can be denoted as

com(f 0) = g(com(k), c, e, com(s)) · LB
x2 ·RB

x�2
. We can minimize the response size

by folding logarithmic number rounds.

2.1.6 One-out-of-Many Proofs

One-out-of-many proofs is a notable approach to constructing a ring signature. In this

way, the prover P utilizes one-out-of-many proofs to prove that it possesses the secret

key sl with the public key Pl in the set P = (P1, · · · , Pl, · · · , Pn). To be more specific,

the signer’s public key Pl is a commitment to (0; sl), i.e., Pl = com(0; sl). Kronecker’s

delta vector is represented as �l = (�l,0, · · · , �l,l, · · · , �l,n�1), with �l,i = 1 when i = l ,

and �l,i = 0 when i 6= l. In this case, the ring signature can be transformed to prove it

having �l. Thus, it is possible to address the problem of Pl leakage. By representing

�l as binary, the signature size can be thereby reduced.

2.2 Lattice-based Ring Signature

2.2.1 Notations

For any N 2 N, let [N ] := {1, 2, · · · , N}. Let (a||b) denote the concatenation of a

and b. We denote a
$ S as randomly sampling a from the set S. For any PPT

algorithm A, we denote a A(b) as running A on input b and assigning a the result.

We write vectors in Zn
q in bolded lowercase letters, e.g., a = (a1, · · · , an) 2 Zn

q . We

write matrices in Zn⇥m
q in bolded uppercase letters, e.g., B = (b1, · · · ,bm) 2 Zn⇥m

q

and each bi 2 Zn
q .

13
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2.2.2 Lattice

Definition 7. [3, 10] Given a matrix B = {b1, · · · ,bn} ⇢ Rm consists of n linearly

independent vectors, we define the m-dimensional lattice ⇤ with its basis B below.

⇤ = {x1 · b1 + · · ·+ xn · bn |xi 2 Z}. (2.7)

Definition 8. [56] Given three integers n,m, q, and a matrix B 2 Zn⇥m
q , we define

the q-ary lattice and its shifted cosets as:

⇤q(B) := {z 2 Zm
q |9s 2 Zn

q ,B
>s = z mod q}. (2.8)

⇤?

q (B) := {z 2 Zm
q |Bz = 0 mod q}. (2.9)

⇤u
q (B) := {z 2 Zm

q |Bz = u mod q}. (2.10)

2.2.3 Lattice Basis Algorithms

Definition 9. Given a positive integer �, a vector v 2 Zm and any vector s 2 Zm,

we define D�,v = ⇢�,v(s)/⇢�,v(⇤) for 8s 2 ⇤ is the discrete Gaussian distribution over

⇤: ⇢�,v(s) = exp(�⇡ ks�vk2

�2 ), where v is a center and ⇢�,v(⇤) =
P

s2⇤ ⇢�,v(s).

Lemma 1. [52] Given three integers n,m, q, the TrapGen(n,m, q) algorithm returns

full rank B 2 Zn⇥m
q and its trapdoor TB 2 Zm⇥m

q , s.t. keTBk = O(
p
n log q), where B

is statistically close to being uniform.

Lemma 2. [31] For two integers m,n, s.t.m � 2ndlog qe, a matrix M 2 Zn⇥m
q and

its trapdoor TM 2 Zm⇥m
q , a vector v 2 Zn

q , and a Gaussian parameter � > keTMk ·

!(
p
log(m)), this SamplePre(M,TM,v, �) algorithm outputs a vector e 2 Zm

q where

statistically distributed in D⇤v
q (M),�.
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2.2. Lattice-based Ring Signature

Lemma 3. [17] Given four integers n, k, q � 2, and m � 2n log q, a set S ⇢ [k],

a matrix A 2 Zn⇥km
q , a basis TS of ⇤?

q (AS), a vector v 2 Zn
q , and u � keTSk ·

p
km · !(

p
log km), the GenSamplePre(A,TS, S,v, u) algorithm returns a vector e =

[e1, e2, · · · , ek] 2 Zkm.

Lemma 4. [17] Given two matrices A 2 Zn⇥m
q , B 2 Zn⇥m0

q , and a basis TA 2 Zm⇥m
q

of ⇤?

q (A), the ExtBasis(C,TA) algorithm returns a basis TC of ⇤?

q (C) ✓ Zm⇥m00
q , s.t.

kT̃Ak = kT̃Ck, C = A||B, and m
00 = m+m

0.

2.2.4 Short Integer Solution (SIS) Assumption

Definition 10. Given uniformly random vectors b1, · · · ,bm 2 Zn
q and forming the

matrix B 2 Zn⇥m
q , the Short Integer Solution (SIS) is to find a non-zero integer vector

x 2 Zm with kxk  � s.t. fB(x) := Bx = 0 2 Zn
q , where � < q.
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Chapter 3

DL-based Ring Signature

Construction and Application

In this Chapter, we present a general construction for transforming ⌃-based signatures

into ring signatures. In order to showcase the broad applicability of our general

construction, we also construct four prominent ring signatures as case studies by

using our transformation method.

3.1 Overview

In this Section, we elaborate on our motivations and contributions.

3.1.1 Motivations

Although several signatures based on ⌃-protocols have been proposed, there is no

general model to summarize these protocols till now, resulting in the analysis of

these signatures being di�cult and their extensions generality reduced. Moreover,

the current ring signatures are not standardized by large formal organizations, which
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3.1. Overview

increases the problem of adaptability in ring signature scenarios. Further, there is no

established general construction to realize the transformation from ⌃-based signatures

to ring signatures to date.

To solve the aforementioned bottlenecks in privacy-preserving systems, we are mainly

engaged in proposing a generic ring signature construction that provides a conversion

method from ⌃-based signatures to ring signatures without reducing the security level.

We further adopt the Bulletproofs folding technique to improve the e�ciency of our

proposed ring signature from O(n) to O(log n). Our major goal is to present a generic

construction with better performance rather than construct much more e�cient ring

signatures.

Di↵erence from DualRing Construction. Yuen et al. [74] presented a gen-

eral construction of ring signature in 2021, namely DualRing, which is also possible

for several ⌃-protocols. Our scheme is di↵erent from them, whether in motivation,

construction, or technique.

Firstly, our motivation is di↵erent from them. As mentioned above, we are engaged in

proposing a standard generic ring signature construction that provides a conversion

method from ⌃-protocol based signatures to ring signatures. Whereas, Yuen et al.

[74] dedicated to proposing an entirely novel, non-standard generic ring signature

construction.

After that, for our construction, a signature comprises one challenge c and n responses

f . In contrast, the DualRing signature with two rings structure, includes n challenges

c and one response f .

Finally, we point out the di↵erences in the technology used for optimizing e�ciency.

In our proposed general construction, the relation
Qn

i=1 pki
fi is utilized to realize the

folding, where pki is the public key and fi is the response value. While e�ciency

optimization in the DualRing requires it to fulfill the equation
Qn

i=1 pki
ci , where pki

is a public key, and ci is the challenge.
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More importantly, our scheme’s performance is better than the DualRing scheme.

3.1.2 Contributions

Our primary objective is to propose a generic construction that transforms ⌃-protocol-

based signatures into ring signatures. Meanwhile, the proposed scheme needs to

ensure both e�ciency and security. Specifically, we demand the ring signature size

to be logarithmic to the ring size, while also maintaining the security proof does not

introduce extra assumptions than the original security assumptions of the signature

schemes.

We present our five-fold contributions as:

• We propose a general model to generalize existing signature constructions, which

can encompass widely used standardized signatures such as ECDSA, EdDSA,

SM2, and Schnorr signatures. With this model, we can propose a generic trans-

formation from existing signatures to the ⌃-based signatures.

• Building on the aforementioned general ⌃-protocol model, we additionally in-

clude a novel redesigned one-out-of-many relation that avoids revealing the

signer’s index. With the assistance of the one-out-of-many proofs and the Fiat-

Shamir transformation, we propose a generalized construction that transforms

the existing signatures into ring signatures.

• To further enhance the e�ciency of our general ring signature, we adopt the

Bulletproofs folding technique to our ring signatures, which reduces the size of

the ring signatures from O(n) to O(log n), where n is the size of the ring.

• To demonstrate the high universality of our general ring signature scheme, four

case studies are given, which include the transformation of ECDSA, EdDSA,

SM2, and Schnorr signatures, to the ring signatures.
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• A formal security analysis is conducted to show the security of our construction.

Furthermore, we implement our scheme and perform a comparison with other

ring signatures in computation and communication overhead. The performance

evaluation indicates that our construction only incurs a slight overhead in the

transformation process when the ring size is relatively small (n  16), which is

acceptable on a common device implementation. Moreover, compared to other

existing schemes, our scheme’s signing and verifying times are 0.38 - 0.83 times

and 0.23 - 0.65 times, respectively. Additionally, the communication cost of our

scheme is 2 log n, outperforming existing ring signature schemes.

3.1.3 Overview of Performance Results

We comparatively evaluate the signature size overhead of our O(log n)-size general

ring signature with the logarithmic size schemes of Groth et al. [33], Bootle et al. [12]

and Yuen et al. [74]. Our ring signature size is 2 log n+2, which is significantly lower

than the schemes of Groth et al. [33] and Bootle et al. [12], and slightly lower than

Yuen et al.’s scheme [74]. Moreover, our experiments and comparative evaluations

are performed for the time overheads, as detailed follow.

3.2 Technique Overview

In a ring signature, a signer has the ability to sign a message on behalf of the ring.

With all public keys in the group, anyone can verify whether the signature is valid

without knowing the identity of the real signer. This can be formalized into proving

a one-out-of-many relation: a signer processes a secret key corresponding to a public

key in the group.

Assume that there are n users in a group and each user i has secret-public keys

(si, Pi), the relation Pi = G
si which can be regarded as a Pedersen commitment of
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si with the generator G. In the one-out-of-many relation, a signer l needs to prove

two constraints: 1) it has a secret key sl corresponding to a public key Pl; and 2)

its public key Pl is in the public keys set P = (P1, · · · , Pl, · · · , Pn). In summary,

proving that the secret key sl indeed exists can be accomplished by existing signature

schemes, and proving that public key Pl is inside the public list can be achieved by

an additional one-out-of-many proof.

The first constraint can be proved with existing signature schemes with some transfor-

mation. By regarding the secret sl as a vector v = (v1, · · · , vl, · · · , vn) = (0, · · · , 0, sl, 0,

· · · , 0), we have the relation
Q

Pi
vi = Pl = G

sl . Note that vi = si when i = l

and vi = 0 otherwise. For the public key Pl corresponding to the secret key sl, a

straightforward intuition is to regard the relation of secret key sl and public key Pl

as the Pedersen vector commitment between v and P, and use a ⌃-protocol to prove

com(v) =
Q

Pi
vi = Pl. This requires us to convert the existing signature scheme into

⌃-protocol to facilitate subsequent constructions. Unfortunately, existing signatures

use many special constructions. For example, in ECDSA and SM2 signatures take

the point’s x-coordinate during the signing process. In order to cover these special

cases, we need to propose a more general model of the ⌃-protocol-based signature

schemes.

Regarding the second problem, there exists some technical di�culties. In the above

constraint, Pl is regarded as the Pedersen vector commitment of the secret v on P,

which needs to be public to the verifier. Accordingly, the verifier knows the index

(ID) information of the signer l (the message is signed by a signer with Pl). To tackle

this challenge, we redesign the relationship between the public key and secret key as

Pi = G
si�1

, ensuring the security of this variant is the same as the original one since

it can be reduced to the original relation. We assume that a ring signature has n

users, and we have the equation
Qn

i=1 Pi
vi = P1

0 · · ·Pl
sl · · ·Pn

0 = G
sl�1

·sl = G. As

com(v) becomes G instead of Pl, the verifier cannot know the identity information of

signer l.
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With the approach described above, we can obtain a ring signature without introduc-

ing additional security assumptions. Since we only use assumptions of commitments

in proving the second constraint, which is the same as the security assumption of

the public-secret key relation in the original signature, a new ring signature does not

incur additional assumptions. However, the signature size of that is linear to the ring

size, which is impractical for real-world applications.

To further improve the e�ciency, we employ the idea of folding from Bulletproofs

to compress the ring signature size to logarithmic to ring size. Since Bulletproofs

is based on the same security assumption as the commitment, further improvement

does not sacrifice the security of the original scheme.

3.3 Syntax and Security Models

3.3.1 Syntax

For our ring signature primitive, we formalize its syntax, including four algorithms,

' = (RingSetup,RingKeyGen, RingSign,RingVerify).

- RingSetup(�): Given the security parameter �, this algorithm returns the system

public parameters pp.

- RingKeyGen(pp): Given the public parameters pp, this PPT algorithm returns

the public-secret key (Pl, sl) of signer l.

- RingSign(pp,P, sl, µ): Given the public parameters pp, a secret key sl of user l,

a public keys set P (constitutes the ring), and a message µ, this PPT algorithm

returns a signature �.

- RingVerify(pp,P, µ, �): Given the public parameters pp, a public keys set P, a

message µ, and a signature �, this deterministic algorithm returns the ‘accept’
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or the ‘reject’.

3.3.2 Security Models

The security models of our proposed ring signature primitive encompass anonymity

and unforgeability. The formal definitions interacted with challenge C and adversary

A are provided below.

Anonymity

This game is designed as follows:

• Setup. C executes RingSetup algorithm to procure the system public parame-

ters pp and delivers pp to A.

• Queries. A performs a polynomial bounded n queries adaptively:

– Random Oracle OH : We set a hash function H in OH and maintain the list

LH as empty initially. If the input has been queried before, C checks the

list LH and returns the corresponding result. For a new query, C calculates

the results and records the related information. Finally, C returns it to A.

– Registration Oracle ORO: A queries the public key Pi for index i 2 [1, n].

Then, C invokes RingKeyGen algorithm to get public-secret key (Pi, si) and

outputs the public key Pi to A.

– Corruption Oracle OCO: A queries the secret key si for index i 2 [1, n]. C

calculates its secret key si and then outputs it to A.

– Signing Oracle OSO: A queries the signature �i for user i 2 [1, n]. Then,

C outputs �i to A by invoking RingSign algorithm.
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• Challenge. A chooses a message µ, a public keys set P, and send them to C.

Then, C randomly selects a ' 2 [1, n] to generate the signature �' and sends it

to A.

• Guess. A outputs a guess '⇤ 2 [1, n]. If '⇤ = ', A wins.

The advantage for A in attacking the anonymity game is defined as

Adv
Anony
A

(�) := |Pr['⇤ = ']� 1

n
|. (3.1)

Definition 11 (Anonymity). For any PPT adversary A, if the advantage AdvAnony
A

(�)

is negligible, we say that our scheme fulfills the requirement for anonymity.

Unforgeability

This game is designed as follows:

• Setup. A randomly picks a target index i
⇤ 2 [1, n]. C executes RingSetup

algorithm to procure the system public parameters pp and delivers it to A.

• Queries. A performs a polynomial bounded n queries adaptively:

– Random Oracle OH : We set a hash function H in OH and maintain the list

LH as empty initially. If the input has been queried before, C checks the list

LH and returns the corresponding result. For a new query, C calculates the

results and records the related information. Finally, C returns the result

to A.

– Registration Oracle ORO: A queries the public key Pi of a user i 2 [1, n].

Then, C invokes RingKeyGen algorithm to get public-secret key (Pi, si) and

outputs the public key Pi to A.

– Corruption Oracle OCO: A quires the secret key si for a user i 2 [1, n]. C

returns si to A if i 6= i
⇤. Otherwise, the query is aborted and C returns ?.

23



Chapter 3. DL-based Ring Signature Construction and Application

– Signing Oracle OSO: A queries the signature �i for user i 2 [1, n]. If

Pi /2 P, C returns ?. Otherwise, it returns �i to A by invoking RingSign

algorithm (i 6= i
⇤) or simulator S (i = i

⇤).

• Forge. A outputs a public keys set P⇤ including Pi⇤ , message µ
⇤, and �i⇤ .

Then, C invokes RingVerify algorithm to verify �i⇤ . If the requirements listed

below are fulfilled, we say that A wins.

– The message µ
⇤ of forgery signature �i⇤ has not queried in OSO.

– Inputs �i⇤ in RingVerify algorithm and it returns ‘accept’.

– A does not possess any secret key related to the public keys in P⇤.

The advantage for A in attacking unforgeability game is defined as

Adv
Forge
A

(�) := negl(�). (3.2)

Definition 12 (Unforgeability). For any PPT adversary A, if the advantage AdvForge
A

(�)

is negligible, we say that our ring signature scheme satisfies the requirement of unforgeability.

3.4 From One-out-of-Many Proofs to Ring Signa-

ture

In this Section, we demonstrate how to transform existing signatures into ring sig-

natures. Firstly, we present a general model from existing signatures to ⌃-protocol.

Subsequently, we convert this model into a ring signature with the help of one-out-of-

many proofs and Fiat–Shamir heuristic. To further improve e�ciency, we employ the

Bulletproofs folding technique. Ultimately, we formally propose a logarithmic size

ring signature in general.
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Note that our general model and generic ring signature are not applicable to RSA-

based schemes, and are compatible with the ⌃-protocol-based schemes that have one

response computation, such as Schnorr, ECDSA signature, etc.

3.4.1 General Model of Signature Schemes

Existing signature schemes consists of four algorithms, SigSetup, SigKeyGen, SigSign,

and SigVerify. The SigSetup algorithm sets some initialization system parameters and

SigKeyGen algorithm generates the public-secret key of the user. We require modeling

the SigSign and SigVerify algorithms so that all existing signature algorithms can be

transformed into a ⌃-protocol form to facilitate the construction of subsequent ring

signature schemes.

The relation R in ⌃-protocol can e↵ectively represent the relationship between a

witness s and a statement P . Thus, in the general case, we denote an e↵ective

relation as (s, P ) 2 R.

In the existing ⌃-protocol based signatures, a prover P owns a witness s and a

statement P , and verifier V only owns a statement P . In real situations, the response

f has various expressions in di↵erent signatures. For this, we define g(·) to represent

the detailed calculation method of the response f , and model the SigSign and SigVerify

algorithms as the interactive process as follows.

- P randomly samples k
$ Z⇤

q.

- P calculates the commitment R com(k), then sends R to V .

- V randomly samples a challenge c
$ Z⇤

q and returns it to P .

- P generates a response f  g(s, k, c) and sends f to V .

- V checks f upon received it, and outputs ‘accept’ or ‘reject’.
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Through the Fiat–Shamir transformation technique, we can transform the above pro-

tocol into a signature. As we intend to cover all existing signature schemes based on

the ⌃-protocol, we hereby need to construct a generalized protocol. For example, in

the ECDSA signature, we have to take x coordinate of the commitment point R as

one of the input values of the response f . However, in the above interactive process,

there is no space for this operation.

Thus, we are required to modify the computation of the response f to propose a

general model. Following the interactive process of the existing signatures, we model

the signature generation and verification process as a general case of the form based

on the ⌃-protocol. More importantly, it is crucial to generalize the computation of

the response value f , as the expression for f varies considerably. By our proposed

method, we are able to obtain the ⌃-protocol for a variety of signature schemes by

setting di↵erent values of t0, a, t1, t2, t00, a
0
, t

0

1, t
0

2 in the general model, where a, a
0 are

predefined values. Consequently, the calculation equation of f can be generalized.

The general model is depicted in Figure 3.1.

Remark that our general model of ⌃-protocol form requires that it must satisfy the ho-

momorphism property of commitment over s and k, i.e. the equation com(g(k, c, e, s)) =

g(com(k), c, e, com(s)) holds. Specifically, the function g varies in di↵erent signatures,

and we set the parameters t0, a, t1, t2, t00, a
0
, t

0

1, t
0

2 in the original model.

For special constructions in signatures, we generalize them to a function F (·), which is

able to transform the commitment R to obtain the part information e F (R), such

as a hash function, taking the point’s x-coordinate, or a mapping function, etc. The

computation method of the function F (·) is publicly available and we require it to

satisfy the properties of one-wayness and uniqueness, i.e. we can easily compute the

output value of the function from its input, but it is di�cult to extrapolate the input

value from the output value; the same input will always produce the same output.
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Chapter 3. DL-based Ring Signature Construction and Application

3.4.2 General Model with One-out-of-Many Proofs Relation

Till now, we have converted an existing signature into a general model, and then we

continue to transform it into a ring signature with the assistance of one-out-of-many

proofs.

Firstly, we review the role of the one-out-of-many proofs. By utilizing that, the prover

P is able to certify that it knows the opening of some public key Pl in the public keys

set P = {P1, · · · , Pn}, which proves that P owns the secret key sl related to the public

key Pl. For the ring setting, we extend the secret key sl of the user l to a vector v

with the vl term set to sl and the rest of the terms set to 0. Thus, we have the secret

keys s = (0, · · · , sl, · · · , 0) and the public key list P = {P1, · · · , Pl, · · · , Pn} in a ring

signature.

In our scheme, we need to add one-out-of-many relation to the general model to

transform it into a ring signature, while avoiding revealing the information about the

signer l. In particular, the prover P randomly generates sl as its secret key. Then,

the prover P computes the commitment value Pl = com(sl) on the secret key sl and

regards that commitment Pl as its public key. For the ring setting, we extend the

secret key sl of the user l to a vector v with the vl term set to sl and the rest of the

terms set to 0. Thus, we have the secret keys s = (0, · · · , sl, · · · , 0) and the public

key list P = {P1, · · · , Pl, · · · , Pn} in a ring signature.

The straightforward method directly transfers the relation of sl and Pl to the vec-

tor v and P, regarding as the Pedersen vector commitment of the vector v on

P. However, that method would reveal the signer’s index value l, which leads to

the privacy of the scheme being compromised. Therefore, we devise a relation to
Qn

i=1 Pi
vi = P1

0 · · ·Pl
sl · · ·Pn

0 = G
sl�1

·sl = G. In this way, we successfully hide the

signer’s identity information. Based on the above relation, we can transform the ⌃-

based general model to a ring signature. Concretely, the relation of our secret-public

keys is Pi = G
si�1

. The secret keys s = (0, · · · , 0, sl, 0, · · · , 0) and the public keys P
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3.4. From One-out-of-Many Proofs to Ring Signature

satisfy the relation Ps = G, without revealing any information about l.

We show the interactive process of the general model adding our redesigned relation

of one-out-of-many proofs as in Figure 3.2. Note that a, a0 are the predefined value,

and parameters t0, t00, t2, t
0

2 cannot be zero simultaneously. Besides, taking the vector

to its inverse means pointwise inversion.

Theorem 1. In our scheme, sl and sl
�1 can be transformed to each other and deduced

from each other.

By the Fiat-Shamir transformation and Theorem 1, we obtain a general ring signature

scheme, consisting of four algorithms, namely RingSetup, RingKeyGen, RingSign and

RingVerify, as shown in Algorithms 1, 2, 3, 4, respectively.

Algorithm 1 RingSetup(�)
1: Chooses the parameters q, n;

2: Chooses the generator G;

3: Defines a hash function H : {0, 1}⇤;

4: Chooses the parameters t0, a, t1, t2, t00, a
0
, t

0

1, t
0

2;

5: return pp.

Algorithm 2 RingKeyGen(pp)

1: Samples an arbitrary number sl
$ Z⇤

q;

2: Computes Pl = com(sl�1);

3: return (Pl, sl).

3.4.3 General Ring Signature with Folding from Bulletproofs

Further, we can improve the e�ciency of our proposed general ring signature by the

folding idea from the Bulletproofs [15], to achieve a logarithmic ring signature scheme.
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Algorithm 3 RingSign(pp,P, µ, sl, a, a
0)

1: Computes t0, t1, t2, t00, t
0

1, t
0

2;

2: for all i 2 [n] do

3: Randomly chooses ki
$ Z⇤

q;

4: end for

5: Computes R = com(k) = Pk;

6: Computes e F (R);

7: Sets c H(µkRkP);

8: for all i 2 [n], i 6= l do

9: Sets fi  g(k, c, e) = t0+a·ki+t2·c
t00+a0·ki+t02·c

;

10: end for

11: for i 2 [n], i = l do

12: Computes fl  g(k, c, e, s) = t0+a·kl+t1·sl+t2·c
t00+a0·kl+t01·sl+t02·c

;

13: end for

14: return � = (R, f).

Algorithm 4 RingVerify(pp,P, µ, a, a
0
, �)

1: Computes t0, t1, t2, t00, t
0

1, t
0

2;

2: Computes e F (R);

3: Computes c H(µkRkP);

4: if t
0

0 = 0 and t
0

2 = 0 then

5: Checks Pf�1
·t0 · (1 ·R)f

�1
·a · (1 ·G)f

�1
·t1 ·Pc·f�1

·t2 ?
= R

a0 ·Gt01 ;

6: else if then

7: Checks Pf ·t00 · (1 ·R)f ·a
0 · (1 ·G)f ·t

0
1 ·Pc·f ·t02

?
= P1·t0 ·Ra ·Gt1 ·Pc·1·t2 ;

8: end if

9: return ‘accept’ or ‘reject’.

31
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Note that, the response f is compressed using our folding methodology in our ring sig-

nature. We set that n0 = n
2 and the prover P computes (divides) the f = {f1, · · · , fn}

as:

fL = (f1, · · · , fn0), fR = (fn0+1, · · · , fn). (3.3)

Similar with the above, the prover P computes (divides) the P = {P1, · · · , Pn} as:

PL = (P1, · · · , Pn0), PR = (Pn0+1, · · · , Pn). (3.4)

We then introduce the value LB and RB as:

LB = PL
fR and RB = PR

fL . (3.5)

Then, the verifier V randomly samples x
$ Z⇤

q.

For the folding of the response value f , the calculation process is as follows:

P0 = PR
x�1 �PL

x and f 0 = fR · x+ fL · x�1
. (3.6)

The relation of the verification is com(f 0)
?
= g(com(k), c, e, com(s)) · LB

x2 · RB
x�2

.

The verifier V checks whether the equation Pf 0
·s·t00 ·(1 ·R)f

0
·s·a0 ·(1 ·G)f

0
·s·t01 ·Pc·f 0

·s·t02
?
=

P1·t0 ·Ra ·Gt1 ·Pc·1·t2 · LB
x2 ·RB

x�2
is hold, where si =

Plogn
j=1 xj

t(i,j).

After one round of folding, we can obtain the folding value f 0. In each subsequent

round of folding, we replace P with P0 and f with f 0. Thus, we achieve the O(log n)

signature size by calling log n times folding.
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3.4.4 Formal Construction of Logarithmic Size General Ring

Signature

Through the above work, i.e. the general model of existing signature schemes, the one-

out-of-many proofs technique, the folding idea from Bulletproofs, and the assistance

of Fiat-Shamir transformation techniques, we now present the formal construction of

our proposed O(log n) ring signature, as described below:

• For the RingBPSetup(�), we follow the existing signature and take a security

parameter � as input, to get a parameter q, a hash function H : {0, 1}⇤, a

function F to replace special construction, a generator G of the group, the

parameters t0, a, t1, t2, t00, a
0
, t

0

1, t
0

2, and then output public parameters pp.

• For the RingBPKeyGen(pp), the prover P randomly samples sl
$ Z⇤

q and com-

putes Pl = G
sl�1

for user l. The public and secret keys satisfy the relation

Pl
sl = G. The output of this algorithm is the public-secret key (Pl, sl) of user l.

• For the RingBPSign(pp,P, µ, sl, a, a
0), it inputs the public parameters pp, a secret

key sl of user l, a public key list P including the public key Pl, a message µ, and

predefined values a, a0. The prover P generates a ring signature for message µ

as follows:

– Computes the parameters t0, t1, t2, t00, t
0

1, t
0

2.

– For all i 2 [n], randomly selects the ki
$ Z⇤

q.

– Computes the commitment R = com(k) = Pk.

– Computes the challenge c H(PkRkµ).

– Computes e F (R).

– Sets the vector 1 = (1, · · · , 1).

– Computes the response value f = g(k, c, e, s) = 1·t0+a·k+t1·s+1·t2·c
1·t00+a0·k+t01·s+1·t02·c

.
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– Sets n0 = n/2 to begin folding.

– Computes the fL = (f1, · · · , fn0).

– Computes the fR = (fn0+1, · · · , fn).

– Computes the PL = (P1, · · · , Pn0).

– Computes the PR = (Pn0+1, · · · , Pn).

– Computes the LB = PL
fR , RB = PR

fL .

– Computes the x H(LBkRB).

– Folding the response value f by f 0 = fR ·x+ fL ·x�1 and P0 = PR
x�1 �PL

x.

– Repeats above folding process log n rounds and each time replaces the P, f

by P0
, f 0.

Finally, The prover P outputs the ring signature � = (R, f
0
,LB,RB).

• For the RingBPVerify(pp,P, µ, a, a
0
, �), it takes the public parameters pp, a

public keys set P, a message µ, predefined values a, a
0, the setting parame-

ters t0, t1, t2, t
0

0, t
0

1, t
0

2 and the signature � = (R, f
0
,LB,RB) as input. The c

and e can be computed by V . The xj for j 2 [log n] can be computed by

xj  H(LBjkRBj). Besides, for all i 2 [n], V computes si =
Plogn

j=1 xj
t(i,j). If

(i � 1)’s j-th is 0, we set t(i, j) = 1; else if, t(i, j) = �1. Then, V checks the

validity of the signature. If t00 and t
0

2 are both equal to 0, the V checks whether

P·f 0�1
·s·t0 ·(1 ·R)f

0�1
·s·a ·(1 ·G)f

0�1
·s·t1 ·Pc·f 0�1

·s·t2 ?
= R

a0 ·Gt01 ·LB
x2 ·RB

x�2
is valid.

Otherwise, the V checks the equation Pf 0
·s·t00 ·(1 ·R)f

0
·s·a0 ·(1 ·G)f

0
·s·t01 ·Pc·f 0

·s·t02
?
=

P1·t0 ·Ra ·Gt1 ·Pc·1·t2 · LB
x2 ·RB

x�2
.

Therefore, the formal construction of our proposed general ring signature for logarith-

mic size is shown in Algorithms 5, 6, 7 and 8, namely as RingBPSetup, RingBPKeyGen,

RingBPSign and RingBPVerify, respectively.
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Algorithm 5 RingBPSetup(�)
1: Chooses the parameters q, n;

2: Chooses the generator G;

3: Defines a hash function H : {0, 1}⇤;

4: Chooses the parameters t0, a, t1, t2, t00, a
0
, t

0

1, t
0

2;

5: return pp.

Algorithm 6 RingBPKeyGen(pp)

1: Samples an arbitrary number sl
$ Z⇤

q;

2: Computes Pl = com(sl�1);

3: return (Pl, sl).

3.5 Case Studies

We perform four case studies to show how to transform a ⌃-protocol based signature

into a ring signature in this Section, including the Schnorr, ECDSA, EdDSA, and

SM2 cases.

3.5.1 Schnorr Case

In SchnorrRingSetup algorithm, we set t0 = 0, a = 1, t1 = c, t2 = 0, t00 = 1, a0 = 0, t01 =

0, t02 = 0. The SchnorrRingKeyGen algorithm is the same as RingKeyGen algorithm.

In SchnorrRingSign algorithm, the response value is computed as f  k + c · s. In

SchnorrRingVerify algorithm, V checks if the formula Pf = G
H(µkRkP) ·R holds.

3.5.2 ECDSA Case

For ECDSA case, we set t0 = 0, a = 0, t1 = e, t2 = 1, t00 = 0, a0 = 1, t01 = 0,

t
0

2 = 0 in ECDSARingSetup algorithm. The ECDSARingKeyGen algorithm follows the

RingKeyGen algorithm. The response value in ECDSARingSign algorithm is computed
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Algorithm 7 RingBPSign(pp,P, µ, sl, a, a
0)

1: Computes t0, t1, t2, t00, t
0

1, t
0

2;

2: for all i 2 [n] do

3: Randomly chooses ki
$ Z⇤

q;

4: end for

5: Computes R = com(k) = Pk;

6: Computes e F (R);

7: Sets c H(µkRkP);

8: for all i 2 [n], i 6= l do

9: Sets fi  g(k, c, e) = t0+a·ki+t2·c
t00+a0·ki+t02·c

;

10: end for

11: for i 2 [n], i = l do

12: Computes fl  g(k, c, e, s) = t0+a·kl+t1·sl+t2·c
t00+a0·kl+t01·sl+t02·c

;

13: end for

14: if n = 1 then

15: Sets f 0 = f ;

16: else if then

17: Sets n0 = n
2 ;

18: Computes fL = (f1, · · · , fn0);

19: Computes fR = (fn0+1, · · · , fn);

20: Computes PL = (P1, · · · , Pn0);

21: Computes PR = (Pn0+1, · · · , Pn);

22: Computes LB = PL
fR and RB = PR

fL ;

23: Computes x H(LBkRB);

24: Computes P0 = PR
x�1 �PL

x;

25: Folding the response value f 0 = fR · x+ fL · x�1;

26: Sets n = n
0, f = f 0 and P = P0;

27: Recursively execution on the if loop;

28: end if

29: return � = (R, f
0
,LB,RB).
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Algorithm 8 RingBPVerify(pp,P, µ, a, a
0
, �)

1: Computes t0, t1, t2, t00, t
0

1, t
0

2;

2: Computes e F (R);

3: Computes c H(µkRkP);

4: for all j 2 [log n] do

5: Computes xj = H(LBjkRBj);

6: end for

7: for all i 2 [n] do

8: Computes si =
Plogn

j=1 xj
t(i,j), where t(i, j) = 1 if (i � 1)’s j-th is 0, else if

t(i, j) = �1;

9: end for

10: if t
0

0 = 0 and t
0

2 = 0 then

11: Checks P·f 0�1
·s·t0 ·(1·R)f

0�1
·s·a ·(1·G)f

0�1
·s·t1 ·Pc·f 0�1

·s·t2 ?
= R

a0 ·Gt01 ·LB
x2 ·RB

x�2
;

12: else if then

13: Checks Pf 0
·s·t00 · (1 · R)f

0
·s·a0 · (1 · G)f

0
·s·t01 · Pc·f 0

·s·t02
?
= P1·t0 · Ra · Gt1 · Pc·1·t2 ·

LB
x2 ·RB

x�2
;

14: end if

15: return ‘accept’ or ‘reject’.
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as f  (c + e · s) · k�1. In ECDSARingVerify algorithm, V checks PH(µkP)·f�1 · (1 ·

G)F (R)·f�1
= R.

3.5.3 EdDSA Case

We transfer EdDSA case by setting t0 = 0, a = 1, t1 = c, t2 = 0, t00 = 1, a0 = 0, t01 = 0,

t
0

2 = 0 in EdDSARingSetup algorithm. The EdDSARingKeyGen algorithm follows the

RingKeyGen algorithm. In EdDSARingSign algorithm, the response f is performed by

f  k+c ·s. In EdDSARingVerify algorithm, V checks the formula Pf = G
H(RkPkµ) ·R.

3.5.4 SM2 Case

For SM2 case, we set t0 = 0, a = 1, t1 = �e, t2 = 0, t
0

0 = 1, a
0 = 0, t

0

1 =

1, t02 = 0 in SM2RingSetup algorithm. The SM2RingKeyGen algorithm is same as

RingKeyGen algorithm. In the SM2RingSign algorithm, the response is calculated by

f  (1 + s)�1 · (k � e · s) and V checks if Pf · (1 · G)f · GH(R)+H(ZAkµ) = R holds in

SM2RingVerify algorithm.

3.6 Security Analysis

Our general ring signature satisfies the correctness, anonymity, and unforgeability.

3.6.1 Correctness

Theorem 2 (Correctness). Our general ring signature is converted from the ⌃-

protocol-based signature to satisfy the correctness (completeness) property.

Proof. In our construction, commitment satisfies the homomorphism property for k,

38



3.6. Security Analysis

s, the relation com(f) = com(g(k, c, e, s)) = g(com(k), c, e, com(s)) holds for f =

g(k, c, e, s). To explain with the most classic Schnorr example, response f = k+ c · s.

Then com(f) = Pf , and com(g(k, c, e, s)) = P(k+c·s) = Pk ·P(c·s). Further derivation

of this formula gives us R · Gc, which is the result of g(com(k), c, e, com(s)). In

summary, com(f) = com(g(k, c, e, s)) = g(com(k), c, e, com(s)) for Schnorr case is

Pf = P(k+c·s) = R ·Gc.

For our O(log n)-size scheme, the verification process follows the Bulletproofs [15]

based on our O(n)-size scheme. V will check if the following equation

com(f 0) = com(f) · LB
x2 ·RB

x�2
= g(com(k), c, e, com(s)) · LB

x2 ·RB
x�2

(3.7)

holds.

For our general construction, we have

f =
1 · t0 + a · k+ t1 · s+ 1 · t2 · c
1 · t00 + a0 · k+ t01 · s+ 1 · t02 · c

, (3.8)

and we denote it as

Pf = P
1·t0+a·k+t1·s+1·t2·c
1·t00+a0·k+t01·s+1·t02·c . (3.9)

Expanding the above equation, we obtain

Pf (1·t
0
0+a0·k+t01·s+1·t02·c) = P(1·t0+a·k+t1·s+1·t2·c). (3.10)

Thus, we can derive the verification formula as

Pf ·t00 · (1 ·R)f ·a
0 · (1 ·G)f ·t

0
1 ·Pc·f ·t02 = P1·t0 ·Ra ·Gt1 ·Pc·1·t2 . (3.11)
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For the situation of both t
0

0 = 0 and t
0

2 = 0, the verification equation is

Pf�1
= P

(
1·t0+a·k+t1·s+1·t2·c
1·t00+a0·k+t01·s+1·t02·c

)�1

. (3.12)

In this way, we have

Pf�1
·(1·t0+a·k+t1·s+1·t2·c) = P(1·t00+a0·k+t01·s+1·t02·c). (3.13)

Expanding the above form, we have the final verification equation

Pf�1
·t0 · (1 ·R)f

�1
·a · (1 ·G)f

�1
·t1 ·Pc·f�1

·t2 = P1·t00 ·Ra0 ·Gt01 ·Pc·1·t02 . (3.14)

Hence, our scheme satisfies the property of completeness (correctness).

3.6.2 Anonymity

Theorem 3 (Anonymity). Our general ring signature based on ⌃-protocol is anony-

mous, with the witness s and the statement P = com(s). We say it is HVZK, if there

is a PPT algorithm S, called the simulator, which has the ability that take the state-

ment P as the input and always outputs accepted transcripts (R, c, e, f) for P with the

same distribution as a real transcript generate between P(s,P) and V(P).

Proof. The anonymity game can be described below, referred to as GameAnony, in-

volving an adversary A and a challenger C :

• Setup: C inputs the security parameter � to execute RingSetup algorithm to

procure public parameters pp, and returns it to A.

• Queries. A performs a polynomial bounded n queries adaptively:
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– Random Oracle OH : We set a hash function H in OH . The list LH :

{µ,P, R, c} is initially empty. Upon received a query on (µ,P, R), C first

looks up in LH . If the input has been queried before, the corresponding

value c is output. Otherwise, C calculates correspond c, adds a tuple

{µ,P, R, c} in LH and returns it to A.

– Registration Oracle ORO: For an index i 2 [1, n], A queries the public

key Pi. Then, C invokes RingKeyGen algorithm to get the key pair (Pi, si).

Finally, C returns public key Pi to A.

– Corruption Oracle OCO: A queries the secret key si for index i. Then, C

responds the answer to A.

– Signing Oracle OSO: The A inputs a public keys list P include a public

key Pi, a secret key ski, and a message µ, C calls the RingSign algorithm,

and returns � to A.

• Challenge: A selects a public keys set P, a message µ, and delivers them to

C to request a signature. C randomly chooses ' 2 [1, n] and then calls the

RingSign algorithm to get the signature �'. Then, C sends �' to A.

• Guess. A returns a guess '⇤ 2 [1, n].

• Analysis: If '⇤ = ', A wins GameAnony. The advantage of A is defined by

Adv
Anony
A

= |Pr['⇤ = ']� 1

n
|, (3.15)

which is negligible.

The anonymity property of our ring signature also can be derived directly from the

HVZK in ⌃-protocol. To generate the accepting transcript without the witness s, we

have to utilize the simulator S. In S, we need to change the order of the parameters

generation, which is di↵erent from the transcripts generated between P(s,P) and

V(P). To be precise, we take statement P as input and perform as:
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1. Randomly chooses f
$ Z⇤

q;

2. Randomly chooses e, c
$ Z⇤

q;

3. Computes the value of R to satisfy the verification equation.

Thus, we can output the transcript (R, c, e, f) by the simulator S. Indeed, the tran-

script has the right distribution. The parameters c and f are independent and R

is calculated by the real relation of the verification, fulfilling the correctness check

requirement. Hence, the transcript obtained from the simulator S is the same as the

real one. Thus, our ring signature is anonymous.

3.6.3 Unforgeability

Theorem 4 (Unforgeability). Our general ring signature based on ⌃-protocol is

unforgeable, providing knowledge soundness if there exists an e�cient deterministic

witness extractor algorithm E , satisfies: For witness s, we have a statement P =

com(s) with relation Ps = G. Given two accepting conversations (k, ca, e, fa) and

(k, cb, e, fb), where ca 6= cb, the algorithm E always outputs the witness s such that

(s,P) 2 R.

Proof. For our generic ring signature, without a secret key, it is not possible to gen-

erate a valid signature. In particular, the unforgeability can be given by the game

shown below, referred to GameForge, including adversary A and challenger C:

• Setup: A randomly picks a target index i
⇤ 2 [1, n]. C runs RingSetup algorithm

to procure the system public parameters pp by input security parameter �, and

returns it to A.

• Oracle Query: A performs a polynomial bounded n queries adaptively:
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– Random Oracle OH : We set a hash function H in OH . The list LH :

{µ,P, R, c} is initially empty. Upon received a query on (µ,P, R), C firstly

looks up in LH . If the input has been queried before, the corresponding

value c is the output. Otherwise, C calculates correspond c, adds a tuple

{µ,P, R, c} in LH and returns it to A.

– Registration Oracle ORO: For an index i 2 [1, n], A queries the public

key Pi. Then, C invokes RingKeyGen algorithm to get the key pair (Pi, si).

Finally, C returns public key Pi to A.

– Corruption Oracle OCO: A quires the secret key si for index i 2 [1, n]. C

returns si to A if i 6= i
⇤. Otherwise, the query is aborted and C returns ?.

– Signing Oracle OSO: A queries the signature �i for user i 2 [1, n]. The

signer’s public key Pi has to include in the public key sets P, otherwise, if

Pi /2 P, C returns ?. If i 6= i
⇤, C returns �i to A by invoking the RingSign

algorithm. If i = i
⇤, the query cannot be aborted. In this case, C also

calls the RingSign algorithm to obtain the signature �i. However, in this

process, the secret key of signer si is missing, so C uses the ability of the

simulator S (has been described above).

• Forge: The adversary A outputs a forgery signature �i⇤ , including the message

µ
⇤, a public keys set P⇤, and the signer’s public key Pi⇤ 2 P⇤. After that, C

invokes RingVerify algorithm to check the signature �i⇤ . We say that A wins the

GameForge game, if:

– The message µ
⇤ of forgery signature �i⇤ has not queried in OSO.

– Inputs �i⇤ to RingVerify algorithm, which returns ‘accept’.

– A does not have any secret key related to public keys set P⇤.

• Analysis: The advantage of A in GameForge game is defined as:

Adv
Forge
A

= |Pr[A wins GameForge]|, (3.16)
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which is negligible.

In addition, our general ring signature is designed based on the ⌃-protocol, which is

knowledge soundness. If the signature is forged by an adversary A, the extractor E

cannot extract the wittiness value through the rewind technique. In particular, we

rewind the prover P two times by the extractor E to get two accepting conversations

(k, ca, e, fa) and (k, cb, e, fb) for P with ca 6= cb. Thus, we have two equations

fa =
1 · t0 + a · k+ t1a · s+ 1 · t2a · ca
1 · t00 + a0 · k+ t01a · s+ 1 · t02a · ca

, (3.17)

and

fb =
1 · t0 + a · k+ t1b · s+ 1 · t2b · cb
1 · t00 + a0 · k+ t01b · s+ 1 · t02b · cb

. (3.18)

Extending the formula, we extract two di↵erent expressions about k as

k =
fa · t00 + fa � s · t01a + fa · t02a · ca � 1 · t0 � t1a · s� t2a · ca

1 · a� fa · a0
, (3.19)

and

k =
fb · t00 + fb � s · t01b + fb · t02b · cb � 1 · t0 � t1b · s� t2b · cb

1 · a� fb · a0
. (3.20)

Through a series of mathematical transformations (e.g., cross-multiplication, elimi-

nation/combination of like terms), we successfully extract the witness value s, as:
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s =

a · t00 · (fa � fb) + a · (fa · t02a · ca � fb · t02b · cb)� 1 · a·

(t2a · ca � t2b · cb)� a
0 · fa � fb · (t02a · ca � t

0

2b · cb)�

a
0 · t0 · (fa � fb) + a

0 · (fb · t2a · ca � fa · t2b · cb)

a · (fb · t01b � fa · t01a)� 1 · a · (t1b � t1a)�

a
0 · fa � fb · (t01b � t

0

1a) + a
0 · (fa · t1b � fb · t1a)

(3.21)

Therefore, our general ring signature satisfies the property of unforgeability.

3.7 Performance Evaluation and Comparison

To evaluate our proposed ring signature, we show the implementation of our four

case studies in Java language based on the JPBC library, and we use the 256-bit

elliptic curve (secp256k1) to evaluate performance. All experiments were conducted

in a system environment featuring an Apple M2 processor and 16.0 GB of memory.

Moreover, we conduct a comparative analysis of our ring signature with others [33,

12, 74] in computation and communication overhead.

Note that our main goal is to propose a generic construction that can convert ex-

isting signatures to ring signatures, enabling scholars to enhance the anonymity of

privacy-preserving systems more concisely and retain the original properties. There-

fore, in the comparative analysis, we focus on evaluating whether the overhead of our

generic construction is acceptable for real-world applications, rather than aiming for

a significant performance improvement.
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3.7.1 Our Experiment Results

We first evaluate the computation and communication cost of our proposed O(n)-size

and O(log n)-size general ring signature.

Computation Overhead

Firstly, we show the running time cost of our four case studies. The time overhead of

the Schnorr ring signature, ECDSA ring signature, EdDSA ring signature, and SM2

ring signature are shown in Figure 3.3(a), 3.3(b), 3.3(c), 3.3(d), respectively. In our

experiments, the time required to generate an original ⌃-based signature is around 6

ms, which is the same as when there is only one ring member in our O(n)-size ring

signature. When we transform it into a ring signature, the security level improves,

and the time costs increase smoothly as the ring size grows.

In Figure 3.3, the time cost increases slightly and does not introduce a large additional

overhead when we convert the ⌃-based signature to our O(n)-size ring signature. For

our O(log n)-size ring signature, as ring size n increases, the time cost grows linearly.

Compared with our O(n)-size ring signature, although the time overhead becomes

larger, the size of the signature is substantially reduced, which is a trade-o↵ between

time overhead and signature size, and it is acceptable.

In detail, when the ring member is 8, the signature and verification time are around

41.56 ms to 47.83 ms, 33.6 ms to 38.84 ms for the linear-size scheme, and 169.12 ms

to 174.38 ms, 83.22 ms to 87.43 ms for the logarithmic-size scheme, respectively.

Communication Overhead

From the perspective of our O(n)-size scheme, the signature only consists of R and

f , where R 2 G, fi 2 Zq. So, the communication cost is 1|G| + n|Zq|. In our

O(log n)-size scheme, the signature is � = (R, f
0
,LB,RB), where R 2 G, f 0 2 Zq,
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LB,RB 2 G. Thus, the communication cost is (1 + 2 log n)|G| + 1|Zq|. The specific

overhead is related to the selection of an elliptic curve. Note that the parameter in

G is represented by 264 bits, and the parameter in Zq is represented by 256 bits.

When we convert a ⌃-based signature to a ring signature, the size is related to the

ring size n. When the ring size n = 64, the size of f in our O(n)-size scheme is

64 ⇥ 256 = 16384 bits, so the overall size is 264 + 16384 = 16648 bits. While when

we perform six (log 64) rounds of Bulletproofs folding on f , the size of f will be

reduced from 64 ⇥ 256 = 16384 bits to 1 ⇥ 256 = 256 bits. However, the folding

processes two list additional values LB and RB, which respectively have a size of

log 64 ⇥ 264 = 1584 bits. Thus, after Bulletproofs folding, the communication costs

are 256 + 264 + 2 ⇥ 1584 = 3688 bits, which is 0.22 times the O(n)-size general

ring signature. Therefore, in our O(log n)-size scheme, the size of the ring signature

grows pretty smoothly as the number of ring members increases. The comprehensive

communication cost analysis of our O(log n)-size general ring signature is shown in

Table 3.1.

3.7.2 Comparison with Prior Arts

For the sake of showing the practicality of our general ring signature construction,

we compare it with other ring signatures. Our O(log n)-size generic ring signature

performance is implementation-acceptable on common devices and has a better com-

putation and communication overhead than other ring signature schemes [33, 12, 74].

Thus, it is a suitable solution for privacy-preserving systems using various ⌃-based

signatures to employ our generic construction, converting existing signatures to ring

signatures to provide user anonymity.
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Computation Overhead

In the following, we perform a comparison analysis with other existing schemes [33,

12, 74] in the context of signing and verifying time overhead, and signature size,

using our Schnorr ring signature as a representative. Note that the performance of

the Feng et al. scheme [29] is consistent with that of Yuen et al. [74] and is thereby

not repeated below.

As shown in Figure 3.4(a), the signing time of schemes [33] and [12] is higher than

others, since their schemes have O(n log n) exponentiation costs. Our O(log n)-size

scheme has a slightly lower signing time overhead than the O(log n)-size scheme of

Yuen et al [74]. Similarly, our O(n)-size scheme has a slightly lower signing time

overhead than the O(n)-size scheme of Yuen et al [74]. In short, in signing time

overhead performance, both our O(log n)-size scheme and O(n)-size scheme have the

best performance.

A comparison of verifying time overhead is illustrated in Figure 3.4(b). As same

as the signing time cost, the verifying time of schemes [33, 12] is higher than other

ring signatures. The overhead of Yuen et al.’s O(log n)-size scheme [74] is slightly

higher than our O(log n)-size scheme. Moreover, Yuen et al.’s O(n)-size scheme [74]

is slightly higher than our O(n)-size scheme. Therefore, our scheme performs best

among other existing schemes [33, 12, 74] in verification time overhead.

In particular, the signing and verifying times of our scheme are 0.38 - 0.83 times and

0.23 - 0.65 times compared to other existing schemes, respectively.

Communication Overhead

Table 3.1 shows the theoretical communication cost analysis. In scheme [33], the ring

signature size is (3 log n+ 1)|Zq|+ (4 log n)|G| and the size of scheme [12] is equal to

(1.5 log n+6)|Zq|+(log n+12)|G|, with n being the number of ring members. In our
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scheme, the size of the ring signature is 1|Zq| + (2 log n + 1)|G|, which is obviously

better than the above mentioned two schemes [33, 12] and is slightly better than the

size 3|Zq|+ (2 log n+ 1)|G| in scheme [74].

The comparison of our O(log n)-size ring signature with others O(log n)-size schemes

[33, 12, 74] is also shown in Figure 3.5. We can observe that when the ring size n  16,

the size of Groth et al.’s [33] is lower than that of Bootle et al.’s [12], whereas the

size of Groth et al.’s [33] grows substantially with increasing ring size. As ring size

increases, the communication costs of Bootle et al.’s [12] increase rate less than the

scheme [33]. More importantly, the communication costs of ours are slightly lower

than Yuen et al’s [74] and are substantially lower than that of scheme [33, 12], which

is the best performance scheme till now.
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(a) Schnorr Case.
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(b) ECDSA Case.
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(c) EdDSA Case.
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Figure 3.3: Time Overhead Associated with Several Algorithms of Our O(n) and

O(log n) Ring Signature Schemes.
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Figure 3.4: Comparison of Computation Overhead between Our O(n) and O(log n)

Schemes and Current State-of-the-Art Ring Signature Primitives [33], [12], [74].
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Chapter 4

Lattice-based Ring Signature

Construction and Application

In this Chapter, we first propose an e�cient lattice-based linkable ring signature

(LLRS) to guarantee patient privacy and EMRs security during data sharing in the

cloud through anonymity and unforgeability. Our scheme also allows checking the

linkability for multiple signatures. We then present an enhancement of our LLRS

protocol, a lattice-based linkable ring signature with forward security, called FS-

LLRS, additionally providing forward security of EMRs. It allows users to periodically

update the secret keys, and thereby ensuring the security of prior ring signatures in

the event of a leakage of the current key.

4.1 Overview

In this Section, we elaborate on our motivations and contributions.
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4.1.1 Motivations

Following the trend of e-health, widely used EMRs sharing solves the bottleneck of

information silos problem. Nevertheless, sensitive EMRs are susceptible to forgery

or attack, and patient’s personal information is vulnerable to leakage, resulting in

critical privacy and security risks. Hence, we are devoted to proposing a secure and

e�cient EMRs sharing scheme.

First and foremost, we desire to propose an e�cient lattice-based linkable ring signa-

ture that safeguards the integrity and unforgeability of EMRs and user anonymity.

In addition, for multiple EMRs, the linkability feature enables the correlation among

them to be verified.

Furthermore, we also need to present an enhancement (FS-LLRS) in order to mit-

igate the risk of secret key disclosure. In this way, we can provide forward-secure

unforgeability and linkability in a quantum setting.

More centrally, we introduce a cloud-assisted EMRs sharing framework that applies

the proposed LLRS and FS-LLRS schemes to assure the security of EMRs data, the

privacy of users, and the reliability of healthcare services.

4.1.2 Contributions

We summarize our five-fold contributions to the work below.

• E�cient LLRS Primitive. We propose an e�cient lattice-based linkable ring

signature in the standard model, called LLRS, permitting verifiers to check

whether multi-signatures are generated by the same user. Our primitive not only

satisfies anonymity, unforgeability, and linkability, but also achieves superior

e�ciency in a quantum setting.

• Novel FS-LLRS Primitive. We introduce a novel lattice-based linkable ring
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signature with forward security construction in the standard model, called FS-

LLRS, which is an enhancement of our proposed LLRS scheme. We formally

define the FS-LLRS primitive and its security models, i.e., anonymity, unforge-

ability with forward security, and linkability. Our solution addresses the vulner-

ability of ring signatures to secret key exposure attacks while enjoying linkability

and quantum safety.

• Cloud-assisted EMRs Sharing Framework.We then propose a secure cloud-

assisted EMRs sharing framework. Combined with our proposed LLRS prim-

itive, we guarantee the unforgeability of EMRs, and the privacy of patients.

When doctors are confronted with several EMRs of the same patient from

clouds, they can check the integrity and correlation of these EMRs through

linkability easily. After that, in conjunction with our FS-LLRS primitive, we

can guarantee the forward security of users’ secret keys, so that even if the cur-

rent secret key has been compromised, the security of previous EMRs can also

be guaranteed.

• Security Analysis. The rigorous security analysis demonstrates that our LLRS

scheme o↵ers anonymity, unforgeability and linkability in the standard model,

which can be reduced to the hardness of the Short Integer Solution (SIS) prob-

lem. Our FS-LLRS scheme additionally provides the unforgeability with for-

ward security in the standard model.

• Performance Evaluation. The comprehensive performance comparison in-

dicates that our LLRS scheme outperforms prior arts [8], [38], [4], [68], [20]

in communication and computation overhead. Notably, our LLRS scheme’s

communication overhead is only about 0.08 times of existing lattice-based ring

signatures. The signing and verifying overheads of our LLRS are just 0.17 -

0.23 times and 0.32 - 0.67 times compared to others, respectively. Besides, our

enhanced FS-LLRS scheme, which has the utmost security level and function-
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ality, outperforms most existing schemes [8], [38], [4], [68], [20] in computation

overhead. Specifically, its signing and verifying overheads are 0.79 - 1.01 times

and 0.34 - 0.71 times compared to the others, respectively.

4.2 Technical Overview

In this Chapter, we address three main challenges as below.

The first challenge is how to enhance the e�ciency in designing a lattice-based linkable

ring signature in the standard model. To reduce the computational cost, we design

the signature generation and verification process with the assistance of the concise

Sigma protocol. We assume that the ring size is N and the signer l 2 [N ] has two

constraints: it has a secret key skl and a public key pkl with the relation pkl · skl = p,

where p is publicly available; its public key pkl is in the public keys set. By regarding

the secret key skl as a set (0, · · · , skl, · · · , 0), we have the relation
PN

i=1 pki ·ski = 0+

· · ·+pkl·skl+· · ·+0 = p in the verification process. To reduce the communication cost,

we redesign the dimension of the parameters. In particular, the signature consists of

n responses and one commitment. Our intuition is to reduce the dimension of the

n responses, thereby reducing the communication overhead. Further, we replace the

Fiat-Shamir heuristic in the traditional scheme with a method that selects the public

matrices depending on each bit of the message to compute the challenge value, to

enable our scheme without the Random Oracle Model (ROM).

The second challenge is how to design a lattice-based ring signature that provides

both linkability and forward security. In existing research, forward security is mainly

studied in the field of encryption [71]. Inspired by [73], [16], and [45], we design a

secret key evolution mechanism for the lattice-based ring signature. Specifically, we

use a l-level binary tree to divide the 2l time period. Cooperating with the user’s

identity tag, we generate a matrix and its basis as the user’s root public key and
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root secret key. For the secret key update, we utilize the ExtBasis algorithm with

the representation of leaf nodes, the user’s root public key, and the public matrices

selected based on time t to derive the user’s secret key at time t. The updated secret

key can be obtained from either the ancestor basis or the root secret key. To achieve

both forward security and linkability, we need to redesign the computation of the link

tag. Concretely, we require the user to retain its root secret key and compute the link

tag using the root secret key and the public matrix. To further reduce the storage

overhead and be applicable to EMRs sharing system, we introduce the identity-based

property by our designed method in our proposed FS-LLRS scheme.

The third challenge is how to design a cloud-assisted EMRs sharing system that

achieves EMRs integrity and unforgeability, protects users’ information privacy, pre-

vents users from exaggerating or downplaying medical conditions, ensures the relia-

bility of medical services, and provides forward security and resistance to quantum

attacks. The detailed framework will be described later.

4.3 Framework Description

4.3.1 System Model

The system model for our cloud-assisted EMRs sharing system is illustrated in Figure

4.1. It involves six entities described below.

• Patients: The patient gets healthcare and signs the EMR.

• Doctors: The doctor provides healthcare services, and signs the EMR, and

finally uploads it to the cloud server.

• Requesters: The requester downloads the EMRs from the cloud server, and

checks their validity and linkability.
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Figure 4.1: System Model of Cloud-assisted EMRs Sharing Framework.

• Key Generation Center (KGC): The KGC generates key pairs for users and

updates them periodically.

• Medical Institutions: This entity signs the EMRs.

• Cloud Server: The cloud server stores EMRs and signatures. It also returns

EMRs and signatures upon request.

4.3.2 Design Goals

We aim to establish a secure and e�cient cloud-assisted EMRs sharing system using

our proposed LLRS and FS-LLRS primitives. Therefore, the following objectives

should be considered.

1. EMRs Integrity and Unforgeability: EMRs must be reliable and secure to ensure

the accuracy of the service.
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2. Users’ Information Privacy: User anonymity must be ensured to protect per-

sonal information privacy.

3. Preventing Users from Exaggerating or Downplaying Medical Conditions: This

prevents misuse for personal gain, such as falsely claiming disability benefits or

misrepresenting mental health for employment purposes.

4. Reliability of Medical Services: It is essential to reconfirm the requested EMRs

belong to the same user to ensure the services’ reliability and prevent misdiag-

nosis.

5. Forward Security: It ensures that even if the current secret key has been com-

promised, the previously generated EMRs still remain secure.

6. Resistance to Quantum Attacks: Our system requires the ability to resist quan-

tum computing attacks in order to achieve a higher level of security.

4.3.3 System Procedure

The basic procedures of our cloud-assisted EMRs sharing framework are illustrated in

Figure 4.1, including five phases as follows. With the help of our proposed LLRS and

FS-LLRS primitives, we have implemented a secure and e�cient cloud-assisted EMRs

sharing system. Since our proposed primitives are based on the lattice assumption,

our system can resist the quantum attack (also meet the sixth goal).

System Initialization

As the Step. 1 in Figure 4.1, the KGC executes the Setup algorithm to initialize the

system by inputting a security parameter � to generate public parameters.
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New User Registration

As the Step. 2 in Figure 4.1, the patients, doctors, and medical institutions can

request their public-secret keys by invoking the KeyExtract algorithm from the KGC.

In this phase, we simply note them as users.

Generate and Upload EMRs

As the Step. 3, 4, 5 in Figure 4.1, EMRs are created during patient-doctor interac-

tions. Each EMR record undergoes a checking process involving multiple signatures

before being uploaded to cloud storage by the doctor, as outlined below.

• EMR is generated during the treatment process, as the Step. 3, 4, 5 in Figure

4.1.

• Doctor, patient, and medical institution generate signatures using the Sign al-

gorithm for the EMR, as the Step. 6 in Figure 4.1.

• The doctor uploads the EMR with its signatures to the cloud server, as the

Step. 7 in Figure 4.1.

The use of ring signatures for EMRs achieves the first two design goals, that is, the

integrity and unforgeability of EMRs and the users’ anonymity.

To meet the third design goal, each EMR is required to be confirmed and signed

by all parties involved (the patient, doctor, and medical institution), before being

uploaded to the cloud for storage. This process prevents users from manipulating or

misrepresenting the extent of their medical conditions.
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Download and Verify EMRs

As the Step. 8 in Figure 4.1, when a patient undergoes follow-up medical treatment

or a researcher conducts a medical study, the EMR requester can download EMRs

from the cloud and validate each EMR as:

• Requester downloads the EMRs with their signatures, as the Step. 8 in Figure

4.1.

• Requester verifies signatures using the Verify algorithm.

• Requester checks if the patient’s signatures are linked by calling the Link algo-

rithm.

The requester downloads multiple EMRs for the same patient and verifies the signa-

tures’ validity. However, valid signatures can only confirm the authenticity of EMRs

without proving whether they belong to the same patient. In the case of a disorga-

nized or damaged network, these EMRs may not be from the same patient. In this

way, the EMR requester needs to further check the linkability, fulfilling the fourth

design goal.

User Key Update

With regard to the forward security, each user calls the KeyUpdate algorithm to

update its secret key when the time period t is updated, thereby fulfilling the fifth

design goal.
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4.4 Our Proposed LLRS Scheme

4.4.1 Formal Definitions

We formalize the syntax of LLRS primitive, consisting of five algorithms, ⇧LLRS =

(LLRS · Setup,LLRS · KeyExtract,LLRS · Sign,LLRS · Verify,LLRS · Link).

• pp LLRS · Setup(�): Given a security parameter �, this algorithm outputs

the public parameters pp.

• (pki, ski)  LLRS · KeyExtract(pp, ⌧i): Given the public parameters pp and

identity tag ⌧i, this PPT algorithm outputs the i-th user’s public-secret keys

(pki, ski).

• �  LLRS ·Sign(pp, µ, skl,Lpk): Given the public parameters pp, a public keys

set Lpk, a secret key skl of user l, and a message µ, this PPT algorithm outputs

the signature � including the link tag tag.

• ‘accept’/‘reject’  LLRS · Verify(pp, µ, �,Lpk): Given the public parameters

pp, a public keys set Lpk, a signature �, and a message µ, this deterministic

algorithm outputs ‘accept’/‘reject’.

• ‘link’/‘unlink’  LLRS · Link(pp, µ1, µ2, �1, �2,Lpk1,Lpk2): Given the public

parameters pp, two public keys sets Lpk1,Lpk2, two signatures �1, �2 including

two link tags tag1, tag2, and two messages µ1, µ2, this deterministic algorithm

outputs ‘link’/‘unlink’.

Definition 13 (Verification Correctness of LLRS). For a valid signature �, the prob-

ability of the LLRS · Verify(pp, µ, �,Lpk) algorithm outputting ‘reject’ is negligible, as
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Pr

2

6664
‘reject’ LLRS·

Verify(pp, µ, �,Lpk)

���������

pp LLRS · Setup(�);

(pki, ski) LLRS · KeyExtract(pp, ⌧i);

�  LLRS · Sign(pp, µ, ski,Lpk);

3

7775
 negl. (4.1)

Definition 14 (Linking Correctness of LLRS). If two valid signatures �1, �2 are gen-

erated by the same user, the probability of the LLRS ·Link(pp, µ1, µ2, �1, �2,Lpk1,Lpk2)

algorithm outputting ‘unlink’ is negligible, as

Pr

2

6666664

‘unlink’ LLRS · Link(pp,

µ1, µ2, �1, �2,Lpk1,Lpk2)

������������

pp LLRS · Setup(�);

(pki, ski) LLRS · KeyExtract(pp, ⌧i);

�1  LLRS · Sign(pp, µ1, ski,Lpk1);

�2  LLRS · Sign(pp, µ2, ski,Lpk2);

3

7777775
 negl.

(4.2)

4.4.2 Security Models

The security models of the LLRS primitive encompass anonymity, unforgeability, and

linkability. The formal definitions interacted with a challenge C and an adversary A

are provided below.

Anonymity of LLRS

This game is designed as:

• Setup. C executes the LLRS·Setup algorithm to generate the public parameters

pp and send it to A.

• Queries. A performs a polynomial bounded number N queries adaptively:
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– Registration Oracle ORO: A queries the public key pki of the user i 2

[1, N ]. Then, C invokes the LLRS · KeyExtract algorithm to get public-

secret keys (pki, ski) and returns the public key pki to A.

– Corruption Oracle OCO: A queries the secret key ski of the user i 2 [1, N ].

C calculates its secret key ski and then sends it to A.

– Signing Oracle OSO: A queries the signature �i for the user i 2 [1, N ].

Then, C returns �i to A by invoking the LLRS · Sign algorithm.

• Challenge. A chooses a message µ⇤, a public keys set L⇤

pk, public keys pk
⇤

0, pk
⇤

1 2

L⇤

pk, and send them to C. Then, C randomly selects a bit b 2 {0, 1} to generate

the signature �
⇤ and sends it to A.

• Guess. A outputs a guess b0 2 {0, 1}. If b = b
0, A wins.

The advantage forA to attack the anonymity game is defined as AdvAnonymityLLRS
A

(�) :=

|Pr[b = b
0]� 1

2 |.

Definition 15 (Anonymity of LLRS). For any PPT adversary A, if the ad-

vantage Adv
AnonymityLLRS
A

(�) is negligible, we say that our LLRS scheme satisfies the

anonymity.

Unforgeability of LLRS

This game is designed as:

• Setup. A randomly picks a target index i
⇤ 2 [1, N ]. C executes the LLRS·Setup

algorithm to generate the public parameters pp and send it to A.

• Queries. A performs a polynomial bounded number N queries adaptively:

– Registration Oracle ORO: A queries the public key pki of the user i 2

[1, N ]. Then, C invokes the LLRS · KeyExtract algorithm to get public-

secret keys (pki, ski) and returns the public key pki to A.
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– Corruption Oracle OCO: A queries the secret key ski for the user i 2 [1, N ].

C sends ski to A if i 6= i
⇤. Otherwise, this query is aborted and C returns

?.

– Signing Oracle OSO: A queries the signature �i for the user i 2 [1, N ].

If pki /2 Lpk, C returns ?. Otherwise, it returns �i to A by invoking the

LLRS · Sign algorithm (i 6= i
⇤) or a simulator S (i = i

⇤).

• Forge. A outputs a public keys set Lpk
⇤ including pki⇤ , and the forgery signa-

ture �i
⇤. If the following requirements are fulfilled, we say that A wins.

– ‘accept’  LLRS · Verify(pp, µ⇤
,Lpk

⇤
, �i

⇤).

– A has not queried (µi
⇤, Lpk

⇤) in OSO.

– A has not queried any secret key corresponding to the public keys in Lpk
⇤.

The advantage forA to attack unforgeability game is defined as AdvUnforgeabilityLLRS
A

(�) :=

[A wins the game].

Definition 16 (Unforgeability of LLRS). For any PPT adversary A, if the ad-

vantage AdvUnforgeabilityLLRS
A

(�) is negligible, we say that our LLRS scheme satisfies the

unforgeability.

Linkability of LLRS

This game is designed as:

• Setup. C executes the LLRS·Setup algorithm to generate the public parameters

pp and send it to A.

• Queries. A performs a polynomial bounded number N queries adaptively:

– Registration Oracle ORO: A queries the public key pki of the user i 2

[1, N ]. Then, C invokes the LLRS · KeyExtract algorithm to get public-

secret keys (pki, ski) and returns the public key pki to A.
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– Corruption Oracle OCO: A queries the secret key ski of the user i 2 [1, N ].

C calculates its secret key ski and then sends it to A.

– Signing Oracle OSO: A queries the signature �i for the user i 2 [1, N ].

Then, C returns �i to A by invoking the LLRS · Sign algorithm.

• Unlink. A outputs two tuples (Lpk
⇤

1, µ
⇤

1, �
⇤

1) and (Lpk
⇤

2, µ
⇤

2, �
⇤

2), where Lpk
⇤

i is

the public keys set including user i⇤’s public key, µ⇤

i is the signed message, �⇤

i is

the signature including link tag tag
⇤

i . If the following requirements are fulfilled,

we say that A wins.

– ‘accept’  LLRS · Verify(pp, µ⇤

1,Lpk
⇤

1, �1
⇤).

– ‘accept”  LLRS · Verify(pp, µ⇤

2,Lpk
⇤

2, �2
⇤).

– ‘unlink’  LLRS · Link(pp, µ⇤

1, µ
⇤

2, �
⇤

1, �
⇤

2,Lpk
⇤

1,Lpk
⇤

2)

– A has not queried (µ1
⇤, Lpk

⇤

1) and (µ2
⇤, Lpk

⇤

2) in OSO.

– A owns at most one secret key corresponding to the public keys in Lpk
⇤.

The advantage for A to attack linkability game is defined as Adv
LinkabilityLLRS
A

(�) :=

[A wins the game].

Definition 17 (Linkability of LLRS). For any PPT adversary A, if the advantage

Adv
LinkabilityLLRS
A

(�) is negligible, we say that our LLRS scheme satisfies the linkability.

4.4.3 The Concrete Construction

• LLRS · Setup(�): Given a security parameter �, this algorithm performs as

follows:

1. Sets a prime q � 2, several integers n, m � 2ndlog qe, the length of a

signed message d, and a vector p 2 Zn
q .

2. Randomly selects d+ 1 vectors c0, · · · , cd 2 Zn
q .
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3. Sets integer k as the length of a user’s identity tag. Note that n
k has to be

an integer.

4. Generates the public matrix A0 2 Zn⇥m
q .

5. Returns the public parameters pp = (n,m, q, d, k,p, c0, · · · , cd,A0).

• LLRS ·KeyExtract(pp, ⌧i): Given the public parameters pp, the identity tag ⌧i

of user i, this algorithm performs as follows:

1. Parses the tag ⌧i as ⌧i[1], · · · , ⌧i[k], where ⌧i[j] denotes the j-th bit of the

tag ⌧i.

2. Randomly selects 2k matrices �(0)
1 ,�(1)

1 , · · · ,�(0)
k ,�(1)

k 2 Zn⇥n
k

q .

3. Computes a secret key Ti = (�⌧1
1 k · · · k�

⌧k
k ) 2 Zn⇥n

q .

4. Computes a public key Bi = A>

0 ·T�1
i 2 Zm⇥n

q .

5. Checks the relation between the public key and secret key as Bi ·Ti = A>

0 .

6. Returns public-secret keys (Bi,Ti) for a user i.

• LLRS·Sign(pp, µ, skl,Lpk): Given the public parameters pp, the signed message

µ
1 2 {0}⇥ {0, 1}d, the secret key skl = Tl of user l and a ring with public keys

set Lpk = {pk1, · · · , pkN}, this algorithm performs as:

1. Parses message µ as µ[0], µ[1], · · · , µ[d], where µ[j] is the j-th bit of the

message µ.

2. Computes cµ =
Pd

j=0(�1)µ[j]cj = (�1)µ[0]c0+(�1)µ[1]c1+· · ·+(�1)µ[d]cd 2

Zn
q .

3. For all i 2 [N ], randomly selects ki 2 Zn
q .

4. Computes r =
PN

i=1 Bi · ki 2 Zm
q .

5. For all i 2 [N ], i = l, computes el = kl +Tl · cµ 2 Zn
q .

1µ is a (d+ 1)-bit message where the first bit is set to 0 and the remaining d bits can be 0 or 1.
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6. For all i 2 [N ], i 6= l, computes ei = ki + 0 · cµ 2 Zn
q .

7. Computes � = p ·Ti 2 Zn
q .

8. Returns a signature � = {r, {ei}i2[N ]} including a link tag tag = �.

• LLRS · Verify(pp, µ, �,Lpk): Given the public parameters pp, the signed mes-

sage µ, the signature � of message µ, and a ring with public keys Lpk =

{pk1, · · · , pkN}, this algorithm performs as:

1. Parses message µ as µ[0], µ[1], · · · , µ[d].

2. Computes cµ =
Pd

i=1(�1)µ[j]cj.

3. Checks
PN

i=1 Bi · ei = r+A>

0 · cµ.

4. Returns ‘accept’ or ‘reject’.

• LLRS · Link(pp, µ1, µ2, �1, �2,Lpk1,Lpk2): Given the public parameters pp, two

messages µ1, µ2, two signatures �1, �2 including two link tags tag1, tag2, and two

ring with public keys Lpk1,Lpk2, this algorithm performs as follows:

1. Checks if ‘accept’  LLRS · Verify(pp, µ1, �1,Lpk1).

2. Checks if ‘accept’  LLRS · Verify(pp, µ2, �2,Lpk2).

3. Checks if two link tags �1 = �2.

4. Returns ‘link’ or ‘unlink’.

4.4.4 Correctness

In the verification, we calculate that
PN

i=1 Bi · ei = r+A>

0 · cµ, which is correct as:

69



Chapter 4. Lattice-based Ring Signature Construction and Application

NX

i=1

Bi · ei =
NX

i=1

Bi · (ki +Ti · cµ) (4.3)

=

NX

i=1

Bi · ki +

NX

i=1

Bi · (Ti · cµ) (4.4)

= r+B1 ·T1 · cµ + · · ·+BN ·TN · cµ (4.5)

= r+ 0 + · · ·+Bl ·Tl · cµ + · · ·+ 0 (4.6)

= r+Bl ·Tl · cµ (4.7)

= r+A>
0 · cµ (4.8)

For linking correctness, the user i signs two messages µ1 and µ2 using the same secret

key Ti to generate two signatures �1 and �2 containing the link tags �1 and �2,

respectively. The link tag of the signed message µ1 is �1 = p · Ti, and the link tag

of the signed message µ2 is �2 = p · Ti. Since �1, �2 are generated with the same

randomly chosen matrix p, if the user signs the messages µ1, µ2 with the same secret

key Ti, then it must be the case that �1 = �2.

4.4.5 Security Analysis

Anonymity

Lemma 5. Let (pk0, pk1,Lpk, µ) be a tuple such that µ is a message to be signed with

the ring Lpk, pk0 and pk1 are both includes in the Lpk. If SISq,n,� is hard, �0  

LLRS · Sign(pp, µ, sk0,Lpk) and �1  LLRS · Sign(pp, µ, sk1,Lpk) are computationally

indistinguishable.

Analysis. In the LLRS · Sign algorithm, the ring signatures �0 and �1 have the

same distribution, which implies that two signatures �0 and �1 are computationally

indistinguishable.

Theorem 5 (Anonymity of LLRS.). The probability of an adversary A to win the
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anonymity game with the polynomial time is negligible. Therefore, the proposed LLRS

scheme satisfies the anonymity in the standard model.

Proof. We assume that there exists an adaptive adversary A who tries to break the

anonymity of the LLRS scheme and a challenger C is able to respond to queries of A.

• Setup. C initially executes LLRS · Setup algorithm to generate the public

parameters pp = (n,m, q, d, k,p 2 Zn
q , {c0, · · · , cd} 2 Zn

q ,A0 2 Zn⇥m
q ).

• Queries. A picks an index i 2 [N ] and performs a polynomial bounded number

N queries adaptively:

– Registration Oracle ORO: For an index i 2 [1, N ], A queries the public key

pki of a user i. Then, C invokes LLRS · KeyExtract algorithm to get the

key pair (pki, ski). Finally, C returns public key pki to A.

– Corruption Oracle OCO: A queries the secret key ski of a user i. Then, C

responds the answer to A.

– Signing Oracle OSO: A inputs a public keys set Lpk, an i-th user’s public

key pki 2 Lpk and a message µ. C then invokes the LLRS · Sign algorithm

and returns a valid signature �i to A.

• Challenge. A selects a message µ
⇤ 2 {0} ⇥ {0, 1}d, a public keys set L⇤

pk,

two public keys pk
⇤

0, pk
⇤

1 2 L⇤

pk to C. Then, A sends (pk⇤

0, pk
⇤

1, µ
⇤
,L⇤

pk) to C to

request a signature. Then, C randomly selects a bit b 2 {0, 1} and queries OSO.

Finally, C outputs the signature �
⇤ to A.

• Guess. A outputs a guess b0 2 {0, 1}. If b0 = b, we say that A wins the game.

Analysis. The signatures have the same distribution, which are computationally

indistinguishable. If A successfully distinguishes signatures with non-negligible prob-

ability, it contradicts Lemma 5. Hence, we claim that the advantage of A to win the

game is negligible and our LLRS scheme is anonymous.
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Unforgeability

Theorem 6 (Unforgeability of LLRS.). The proposed LLRS scheme satisfies the

unforgeability in the standard model under the SISq,2n,� hardness assumption.

Proof. We assume that there exists an adaptive adversary A who tries to break the

unforgeability of the LLRS scheme and a challenger C is able to solve SISq,2n,� prob-

lem.

• Setup. C initially executes the LLRS · Setup algorithm to obtain and send the

public parameters pp = (n,m, q, d, k,p, c0, · · · , cd,A0) to A. Suppose A is also

given a uniformly sampled U 2 Zm⇥n
q , and Û = [A>

0 kU] 2 Zm⇥2n
q as the SIS

matrix. A picks an index i
⇤ 2 [N ].

• Queries. A performs a polynomial bounded number N queries adaptively:

– Registration Oracle ORO: For an index i 2 [1, N ], A queries the public

key pki of a user i. Then, C invokes the LLRS · KeyExtract algorithm

to get the key pair (pki, ski). For i = i
⇤, the pki⇤ can be computed as

pki⇤ = A>

0 · X + U for X 2 Zn⇥n
q . Finally, C keeps the secret key as

confidential and returns public key to A.

– Corruption Oracle OCO: A queries the secret key ski of a user i. If i 6= i
⇤,

C responds the answer to A; otherwise, C aborts the query and returns

failure.

– Signing Oracle OSO: A inputs a public keys set Lpk, an i-th user’s public

key pki and a message µ to query a vaild signature. If pki /2 Lpk, C returns

?. If i 6= i
⇤, C returns the signature �i to A by invoking the LLRS · Sign

algorithm. Otherwise, if i = i
⇤, the query cannot be aborted. In this case,

the secret key is missing, thereby C has to use a simulator S to obtain

signature �i as:
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1. Picks a random matrix cµ 2 Zn
q .

2. Picks random vectors e1, · · · , eN 2 Zn
q .

3. Computes r =
PN

i=1 pki · ei �A>

0 · cµ 2 Zm
q .

Finally, C returns the signature �i to A.

• Forge. A outputs a public keys set L⇤

pk including a user i
⇤’s public key, a

message µ
⇤ and a forgery signature �

⇤

i .

Analysis. By the ability of the extractor algorithm E , we have two transcripts

(e⇤1, r
⇤

1, cµ
⇤

1) and (e⇤2, r
⇤

2, cµ
⇤

2), where r⇤1 = r⇤2 and cµ⇤1 6= cµ⇤2. Hence, we have

NX

i=1

Lpki · e1i �A>

0 · cµ1 =
NX

i=1

Lpk2 · e2i �A>

0 · cµ2. (4.9)

Transferring the above equation, we obtain:

pki⇤ · (e1i⇤ � e2i⇤) = A>

0 · (cµ1 � cµ2)�
NX

i=1,i 6=i⇤

pki · (e1i � e2i). (4.10)

Then, we have:

pki⇤ · (e1i⇤ � e2i⇤) = A>

0 · (cµ1 � cµ2)�
NX

i=1,i 6=i⇤

pki · (e1i � e2i) (4.11)

= A>

0 ·
"
(cµ1 � cµ2)�

NX

i=1,i 6=i⇤

Xi · (e1i � e2i)

#
(4.12)

= Û ·

2

4

0

@cµ1 � cµ2

0

1

A�
NX

i=1,i 6=i⇤

0

@Xi

0

1

A (e1i � e2i)

3

5 (4.13)

Furthermore, by pki⇤ = A>

0 ·X+U, we have:
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NX

i=1

Lpki · (e1i � e2i) = A>

0 ·X · (e1i⇤ � e2i⇤) +U · (e1i⇤ � e2i⇤) (4.14)

= Û ·

0

@X

1

1

A · (e1i⇤ � e2i⇤) (4.15)

Therefore, we can say:

Û ·

2

4

0

@cµ1 � cµ2

0

1

A�
NX

i=1,i 6=i⇤

0

@Xi

0

1

A (e1i � e2i)

3

5 = Û ·

0

@X

1

1

A · (e1i⇤ � e2i⇤). (4.16)

For Û · s = 0, s cannot be zero, and we have:

s =

0

@X

1

1

A · (e1i⇤ � e2i⇤)�

2

4

0

@cµ1 � cµ2

0

1

A�
NX

i=1,i 6=i⇤

0

@Xi

0

1

A (e1i � e2i)

3

5 . (4.17)

The vector s gives a solution to SIS problem. Thus, we prove that our LLRS scheme

satisfies the unforgeability.

Linkability

Theorem 7 (Linkability of LLRS.). The proposed LLRS scheme satisfies linkability

in the standard model if the LLRS scheme satisfies the unforgeability.

Proof. We assume that there exists an adaptive adversary A who tries to break the

linkability of the LLRS scheme and a challenger C is able to respond to queries of A.

• Setup. C initially executes LLRS · Setup algorithm to generate the public

parameters pp = (n,m, q, d, k,p 2 Zn
q , {c0, · · · , cd} 2 Zn

q ,A0 2 Zn⇥m
q ).
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• Queries. A picks an index i 2 [N ] and performs a polynomial bounded number

N queries adaptively:

– Registration Oracle ORO: For an index i 2 [1, N ], A queries the public key

pki of a user i. Then, C invokes the LLRS ·KeyExtract algorithm to get the

key pair (pki, ski). Finally, C returns public key pki to A.

– Corruption Oracle OCO: A queries the secret key ski of a user i. Then, C

responds the answer to A.

– Signing Oracle OSO: A inputs a public keys set Lpk, an i-th user’s public

key pki 2 Lpk and a message µ. C then invokes the LLRS · Sign algorithm

and returns a valid signature �i to A.

• Unlink. A outputs two tuples (Lpk
⇤

1, µ
⇤

1, �
⇤

1) and (Lpk
⇤

2, µ
⇤

2, �
⇤

2), where Lpk
⇤

i is a

public keys set including a user i⇤’s public key, µ⇤

i is a signed message, �⇤

i is a

signature including a link tag �⇤

i .

Analysis. We assume that A generates two ring signatures �⇤

1, �
⇤

2 with non-negligible

probability while holding only one secret key, and both LLRS ·Verify(pp,Lpk
⇤

1, µ
⇤

1, �
⇤

1)

and LLRS ·Verify(pp,Lpk
⇤

2, µ
⇤

2, �
⇤

2) algorithm outputs ‘accept’. Since our LLRS scheme

satisfies the unforgeability, these two signatures can pass the verification algorithm

only if the A honestly generates the signatures �1, �2.

WhenA generates the two signatures, we have two link tags �⇤

1 = p⇤·sk⇤

1, �
⇤

2 = p⇤·sk⇤

2

respectively. Since A only has one secret key, then sk
⇤

1 = sk
⇤

2. Moreover, as the public

matrix p⇤ is the same, we get �⇤

1 = �⇤

2. It shows that the two tuples of A verified

by the LLRS · Link(pp, µ⇤

1, µ
⇤

2, �
⇤

1, �
⇤

2,Lpk
⇤

1,Lpk
⇤

2) algorithm will return ‘link’, which

contradicts the assumption of the linkability game. Therefore, the advantage of A is

negligible and our LLRS scheme is linkable.
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4.5 Our Proposed FS-LLRS Scheme

4.5.1 Formal Definitions

We formalize the syntax of enhanced FS-LLRS primitive, consisting of six algorithms,

⇧FS-LLRS = (FS-LLRS ·Setup,FS-LLRS ·KeyExtract,FS-LLRS ·KeyUpdate,FS-LLRS ·

Sign,FS-LLRS · Verify,FS-LLRS · Link).

• pp  FS-LLRS · Setup(�): Given a security parameter �, this algorithm

returns the public parameters pp.

• (pki, ski)  FS-LLRS · KeyExtract(pp, ⌧i): Given the public parameters pp,

and user’s identity tag ⌧i, this PPT algorithm returns the i-th user’s public-

secret keys (pki, ski).

• ski,t+1  FS-LLRS · KeyUpdate(pp, t, ski,t, ⌧i): Given the public parameters

pp, the current time period t, an identity tag ⌧i, a secret key ski,t, this PPT

algorithm updates the secret key from ski,t to ski,t+1 and then discards the ski,t.

• �  FS-LLRS · Sign(pp, µ, skl,t,L⌧ , t): Given the public parameters pp, the

time period t, a users’ identity tags set L⌧ , a secret key skl of the user l, and a

message µ, this PPT algorithm returns the signature �.

• ‘accept’/‘reject’ FS-LLRS ·Verify(pp, µ, �,L⌧ , t): Given the public parame-

ters pp, the time period t, a users’ identity tags set L⌧ , a signature �, a message

µ, this deterministic algorithm returns ‘accept’/‘reject’.

• ‘link’/‘unlink’  FS-LLRS · Link(pp, µ1, µ2, �1, �2,L⌧ 1,L⌧ 2, t1, t2): Given the

public parameters pp, two users’ identity tags sets L⌧ 1,L⌧ 2, two signatures

�1, �2 generated on time period t1, t2 including two link tags tag1, tag2, and two

messages µ1, µ2, this deterministic algorithm returns ‘link’/‘unlink’.
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Definition 18 (Verification Correctness of FS-LLRS). For a valid signature �, the

probability of the FS-LLRS · Verify(pp, µ, �,L⌧ , t) algorithm outputting ‘reject’ is neg-

ligible, as

Pr

2

6664

‘reject’ 

FS-LLRS · Verify

(pp, µ, �,L⌧ , t)

���������

pp FS-LLRS · Setup(�);

(pki, ski) FS-LLRS · KeyExtract(pp, ⌧i);

�  FS-LLRS · Sign(pp, µ, ski,t,L⌧ , t);

3

7775
 negl. (4.18)

Definition 19 (Linking Correctness of FS-LLRS). If two valid signatures �1, �2 are

generated by the same user, the probability of the FS-LLRS·Link(pp, µ1, µ2,L⌧ 1,L⌧ 2, �1, �2,

t1, t2) algorithm outputting ‘unlink’ is negligible, as

Pr

2

6666664

‘unlink’ 

FS-LLRS · Link

(pp, µ1, µ2,L⌧ 1,

L⌧ 2, �1, �2, t1, t2)

������������

pp FS-LLRS · Setup(�);

(pki, ski) FS-LLRS · KeyExtract(pp, ⌧i);

�1  FS-LLRS · Sign(pp, µ1, ski,t,L⌧ 1, t1);

�2  FS-LLRS · Sign(pp, µ2, ski,t,L⌧ 2, t2);

3

7777775
 negl. (4.19)

4.5.2 Security Models

The security models of the FS-LLRS primitive are threefold: anonymity, unforgeabil-

ity with forward security, and linkability. The formal definitions interacted with a

challenge C and an adversary A are provided below.

Anonymity of FS-LLRS

This game is designed as:

• Setup. C executes the FS-LLRS · Setup algorithm to generate the public pa-

rameters pp and send it to A.
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• Queries. A performs a polynomial bounded number N queries adaptively:

– Registration Oracle ORO: A queries the public key of a user i 2 [1, N ].

Then, C invokes the FS-LLRS · KeyExtract algorithm to get public-secret

keys (pki, ski) and returns the public key pki to A.

– Corruption Oracle OCO: A queries the secret key ski,t of a user i 2 [1, N ]

on time t. C calculates its secret key ski,t and then sends it to A.

– Signing Oracle OSO: A queries the signature �i,t for the user i 2 [1, N ] on

time period t. Then, C returns �i,t to A by invoking the FS-LLRS · Sign

algorithm.

• Challenge. A chooses a time period t
⇤, a message µ

⇤, a public keys set L⇤

⌧ ,

two users’ identity tags ⌧
⇤

0 , ⌧
⇤

1 2 L⇤

⌧ , and sends them to C. Then, C randomly

selects a bit b 2 {0, 1} to generate the signature �
⇤

i,t and sends it to A.

• Guess. A outputs a guess b0 2 {0, 1}. If b = b
0, A wins.

The advantage forA to attack the anonymity game is defined as AdvAnonymityFS-LLRS
A

(�) :=

|Pr[b = b
0]� 1

2 |.

Definition 20 (Anonymity of FS-LLRS). For any PPT adversary A, if the ad-

vantage Adv
AnonymityFS-LLRS
A

(�) is negligible, we say that our FS-LLRS scheme satisfies

the anonymity.

Unforgeability with Forward Security of FS-LLRS

This game is designed as:

• Setup. A randomly picks a target index i
⇤ 2 [1, N ]. C executes the FS-LLRS ·

Setup algorithm to generate the public parameters pp and send it to A.

• Queries. A performs a polynomial bounded number N queries adaptively:
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– Registration Oracle ORO: A queries the public key of a user i 2 [1, N ].

Then, C invokes the FS-LLRS · KeyExtract algorithm to get public-secret

keys (pki, ski) and returns the public key pki to A.

– Corruption Oracle OCO: A queries the secret key ski,t for a user i 2 [1, N ]

on time t. C sends ski,t to A if i 6= i
⇤. Otherwise, this query is aborted, C

returns ?.

– Signing Oracle OSO: A queries the signature �i,t for the user i 2 [1, N ] on

time t. If ⌧i /2 L⌧ , C returns ?. Otherwise, it returns �i,t to A by invoking

the FS-LLRS · Sign algorithm (i 6= i
⇤) or a simulator S (i = i

⇤).

• Forge. A outputs a users’ identity tags set L⌧
⇤ including ⌧i⇤ , a time period t

⇤

and the forgery signature �i,t
⇤. If the following requirements are fulfilled, we

say that A wins.

– ‘accept’  FS-LLRS · Verify(pp, µ⇤
,L⌧

⇤
, �i,t

⇤
, t

⇤).

– A has not queried (µi
⇤, L⌧

⇤) on time t
⇤ in OSO.

– A has not queried any secret key corresponding to the identity tags in L⌧
⇤.

– For all ⌧ ⇤i 2 L⌧
⇤, there is no OCO(⌧ ⇤i , t

0) query with time period t
0  t

⇤.

The advantage forA to attack the unforgeability with forward security game is defined

as AdvFS-UnforgeabilityFS-LLRS
A

(�) := [A wins the game].

Definition 21 (Unforgeability with Forward Security of FS-LLRS). For any

PPT adversary A, if the advantage Adv
FS-UnforgeabilityFS-LLRS
A

(�) is negligible, we say

that our FS-LLRS scheme satisfies the unforgeability with forward security.

Linkability of FS-LLRS

This game is designed as:
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• Setup. C executes the FS-LLRS · Setup algorithm to generate the public pa-

rameters pp and send it to A.

• Queries. A performs a polynomial bounded number N queries adaptively:

– Registration Oracle ORO: A queries the public key of a user i 2 [1, N ].

Then, C invokes the FS-LLRS · KeyExtract algorithm to get public-secret

keys (pki, ski) and returns the public key pki to A.

– Corruption Oracle OCO: A queries the secret key ski,t of a user i 2 [1, N ]

on time t. C calculates its secret key ski,t and then sends it to A.

– Signing Oracle OSO: A queries the signature �i,t for the user i 2 [1, N ] on

time period t. Then, C returns �i,t to A by invoking the FS-LLRS · Sign

algorithm.

• Unlink. A outputs two tuples (L⌧
⇤

1, µ
⇤

1, �
⇤

1,t, t
⇤

1) and (L⌧
⇤

2, µ
⇤

2, �
⇤

2,t, t
⇤

2), where

L⌧
⇤

i is the users’ identity tags set including user i⇤’s identity tag, µ⇤

i is a signed

message, �⇤

i,t is a signature including a link tag tag
⇤

i , and t
⇤

i is the time period.

If the following requirements are fulfilled, we say that A wins.

– ‘accept’  FS-LLRS · Verify(pp, µ⇤

1,L⌧
⇤

1, �1,t
⇤
, t

⇤

1).

– ‘accept’  FS-LLRS · Verify(pp, µ⇤

2,L⌧
⇤

2, �2,t
⇤
, t

⇤

2).

– ‘unlink’  FS-LLRS · Link(pp, µ⇤

1, µ
⇤

2, �
⇤

1,t, �
⇤

2,t,L⌧
⇤

1,L⌧
⇤

2, t
⇤

1, t
⇤

2)

– A has not queried (µ1
⇤, L⌧

⇤

1) and (µ2
⇤, L⌧

⇤

2) in OSO.

– For all ⌧ ⇤i 2 L⌧
⇤, there is no OCO(⌧ ⇤i , t

0) query with time period t
0  t

⇤.

– A owns at most one secret key corresponding to the user identity tag in

L⌧
⇤

i .

The advantage for A to attack linkability game is defined as AdvLinkabilityFS-LLRS
A

(�) :=

[A wins the game].
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Definition 22 (Linkability of FS-LLRS). For any PPT adversary A, if the ad-

vantage Adv
LinkabilityFS-LLRS
A

(�) is negligible, we say that our FS-LLRS scheme satisfies

the linkability.

4.5.3 The Concrete Construction

• FS-LLRS · Setup(�): Given a security parameter �, this algorithm performs

as follows:

1. Sets a prime q � 2, several integers n, m � 2ndlog qe, s, the length of a

signed message d, a sampling parameter �, and a matrix P 2 Zn⇥m
q .

2. Selects l as the depth of a binary tree and the total number of time periods

as T = 2l.

3. Randomly selects 2l matrices B(0)
1 ,B(1)

1 , · · · ,B(0)
l ,B(1)

l 2 Zn⇥m
q .

4. Randomly selects d+ 1 matrices C0, · · · ,Cd 2 Zn⇥m
q .

5. Sets integer k as the length of a user’s identity tag. Note that m
2k has to

be an integer.

6. Randomly selects 2k 0-1 matrices �(0)
1 ,�(1)

1 , · · · ,�(0)
k ,�(1)

k 2 Z
m
2 ⇥

m
2k

q .

7. Generates A0 2 Zn⇥m
2

q as the master public key and its basis TA0 2 Z
m
2 ⇥

m
2

q

as the master secret key, by TrapGen algorithm.

8. Sets gk = [20, 21, · · · , 2( m
2n�1)] 2 Z

m
2n
q .

9. Sets an identity matrix I =

2

6664

1 0
. . .

0 1

3

7775
2 Zn⇥n

q .

10. Computes Gk = I⌦ gk 2 Zn⇥m
2

q .

11. Returns the public parameters pp = (n,m, q, d, �, s, l, T,P,B(0)
1 ,B(1)

1 , · · · ,B(0)
l ,

B(1)
l ,C0, · · · ,Cd,�

(0)
1 ,�(1)

1 , · · · ,�(0)
k ,�(1)

k ,A0,Gk).
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• FS-LLRS · KeyExtract(pp, ⌧i): Given the public parameters pp, the identity

tag ⌧i of a user i, this algorithm performs as follows:

1. Parses the tag ⌧i as ⌧i[1], · · · , ⌧i[k], where ⌧i[j] denotes the j-th bit of the

tag ⌧i.

2. Computes F⌧,i = (�⌧i[1]
1 k · · · k�⌧i[k]

k ) 2 Z
m
2 ⇥

m
2

q .

3. Computes the public key B0,i 2 Zn⇥m
q of a user i as B0,i = [A0||(A0 ·F⌧,i+

Gk)].

4. Computes TB0,i 2 Zm⇥m
q as the basis of ⇤?(B0,i).

5. Returns public-secret keys (B0,i,TB0,i) for a user i.

ROOT

0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 111100010000

000 001 010 011 100 101 110 111

00 01 10 11

0 1

t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14 t=15t=1t=0

l = 2

l = 3

l = 4

l = 1

Time 
Period

Figure 4.2: Binary Tree (l = 4) for Time Period Expression.

• FS-LLRS ·KeyUpdate(pp, t, ski,t, ⌧i): Given the public parameters pp, a time

period t, a user index i, a secret key ski,t, and an identity tag ⌧i used to com-

pute pki = B0,i. The secret key update is achieved by combining the ExtBasis

algorithm and a binary tree. This algorithm performs as follows:

1. By the minimal cover set technique, we can present all nodes in a bi-

nary tree (with depth l). The time period t is represented in binary

as t = (t1t2 · · · ti), where ti 2 {0, 1} and i 2 {1, 2, · · · , l}. Let �(i) :=

(�1�2 · · · �i) 2 Leaf(t), where �i 2 {0, 1}. For a binary tree’s leaf node

t, the minimal cover set Leaf(t) includes the ancestor of all leaves in

{t, · · · , 2l � 1}, while excluding any ancestors of leaves in {0, · · · , t� 1}.
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2. In Figure 4.2, we display a binary tree with depth l = 4, containing a total

of 2l = 16 time periods. The examples of Leaf(t) are as: t = 0 : {root};

t = 1 : {0001, 001, 01, 1}; t = 2 : {001, 01, 1}; t = 3 : {0011, 01, 1};

t = 4 : {01, 1}; t = 5 : {0101, 011, 1}; t = 6 : {011, 1}; t = 7 : {0111, 1};

t = 8 : {1}; t = 9 : {1001, 101, 11}; t = 10 : {101, 11}; t = 11 : {1011, 11};

t = 12 : {11}; t = 13 : {1101, 111}; t = 14 : {111}; t = 15 : {1111}.

3. Let M�(i) := [B0,ikB(�1)
1 kB

(�2)
2 k · · · kB

(�i)
i ] 2 Zn⇥(l+1)m as �(i)’s correspond-

ing matrix. Each node in a binary tree possesses a distinct secret key.

As for Leaf(001) at level 3, its secret key ski,001 is the basis of lattice

⇤?

q (M�(001)). For the initial secret key, we have ski,0 = {TB0,i}. When time

period t = 1, we update the ski,0 to ski,1 = {N0001,N001,N01,N1}, where

N0001,N001,N01,N1 are the corresponding basis for matrices Mi,0001 =

[B0,ikB(0)
1 kB

(0)
2 kB

(0)
3 kB

(1)
4 ], Mi,001 = [B0,ikB(0)

1 kB
(0)
2 kB

(1)
3 ], Mi,01

= [B0,ikB(0)
1 kB

(1)
2 ] and Mi,1 = [B0,ikB(1)

1 ], respectively. Note that the ski,t

includes the basis of all nodes in set Leaf(t).

4. Let N�(i) be the basis of node �(i) in binary tree. Then, it leverages the

ExtBasis algorithm to update its basis via two di↵erent methods as below:

– Through its any ancestor’s basis: Given any ancestor’s basis N�(j) ,

the authority invokes the ExtBasis(M�(i) ,N�(j)) algorithm to calculate

N�(i) as the basis on the time period i, where �(i) = (�1�2 · · · �j�j+1

· · · �i).

– Through the root secret key TB0,i : The authority executes theN�(i)  

ExtBasis(M�(i) ,TB0,i) algorithm to obtain N�(i) directly.

5. For the update from ski,t to ski+1, it firstly determines the minimal cover

set Leaf(t + 1). Following, it computes all the basis of nodes that are in

Leaf(t + 1)\Leaf(t) (shown in Step. 4). Finally, it discards the basis of

nodes that are in Leaf(t)\Leaf(t+ 1).

6. Returns the secret key ski,t+1 and discards former ski,t.
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• FS-LLRS · Sign(pp, µ, skl,t,L⌧ , t): Given the public parameters pp, a signed

message µ 2 {0} ⇥ {0, 1}d, the secret key skl,t = N�(t) of a user l, a ring of

N users with identity tags set L⌧ = {⌧1, · · · , ⌧N}, and the time period t, this

algorithm performs as:

1. Parses the message µ as µ[0], µ[1], · · · , µ[d], where µ[j] is the j-th bit of

the message µ.

2. ComputesCµ =
Pd

j=0(�1)µ[j]Cj = (�1)µ[0]C0+(�1)µ[1]C1+· · ·+(�1)µ[d]Cd

2 Zn⇥m
q .

3. Parses the tag ⌧i as ⌧i[1], · · · , ⌧i[k].

4. Computes B0,i = [A0||(A0 · F⌧,i +Gk)], where F⌧,i = (�⌧i[1]
1 k · · · k�⌧i[k]

k ) 2

Z
m
2 ⇥

m
2

q .

5. Sets Mi,t = [B0,ikB(t1)
1 k · · · kB

(tl)
l ] 2 Zn⇥(l+1)m

q .

6. Sets BR,t = [M1,tk · · · kMN,tkCµ] 2 Zn⇥(N(l+1)+1)m
q .

7. Invokes the GenSamplePre algorithm to generate a signature e GenSamplePre

(BR,t,Ml,t,N�(t) , 0, �) 2 Z(N(l+1)+1)m
q , which distributed according toD⇤?BR,t,�.

8. Computes � = P ·TB0,i 2 Zn⇥m
q .

9. Returns the signature � = {e} including link tag tag = �.

• FS-LLRS · Verify(pp, µ, �t,L⌧ , t): Given the public parameters pp, a signed

message µ, the signature �t of a message µ, and a ring of N users with identity

tags set L⌧ = {⌧1, · · · , ⌧N}, and the time period t, this algorithm performs as

follows:

1. Parses the message µ as µ[0], µ[1], · · · , µ[d].

2. Computes Cµ =
Pd

i=1(�1)µ[j]Cj 2 Zn⇥m
q .

3. Checks if 0  kek  �
p

(N(l + 1) + 1)m.

4. Parses the tag ⌧i as ⌧i[1], · · · , ⌧i[k].
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5. Computes B0,i = [A0||(A0 · F⌧,i +Gk)], where F⌧,i = (�⌧i[1]
1 k · · · k�⌧i[k]

k ) 2

Z
m
2 ⇥

m
2

q .

6. Computes Mi,t = [B0,ikB(t1)
1 k · · · kB

(tl)
l ].

7. Checks if [M1,tk · · · kMN,tkCµ] · e = 0 mod q.

8. Returns ‘accept’ or ‘reject’.

• FS-LLRS · Link(pp, µ1, µ2, �1, �2,L⌧ 1,L⌧ 2, t1, t2): Given the public parameters

pp, two messages µ1, µ2, two signatures �1, �2 including two link tags tag1, tag2,

and two ring of N users with identity tags sets L⌧ 1, L⌧ 2, and the time period

t1, t2, this algorithm performs as follows:

1. Checks if ‘accept’  Verify(pp, µ1, �1,L⌧ 1, t1).

2. Checks if ‘accept’  Verify(pp, µ2, �2,L⌧ 2, t2).

3. Checks if two link tags �1 = �2.

4. Returns ‘link’ or ‘unlink’.

4.5.4 Correctness

In our FS-LLRS scheme, the GenSamplePre algorithm samples a vector e, where kek 

�
p
(N(l + 1) + 1)m from the distribution within the negligible statistical distance of

D⇤?
q BR,t,�. It satisfies the one-wayness equation BR,t ·e = 0 mod q with overwhelming

probability.

For linking correctness, the user i signs two messages µ1 and µ2 using the same secret

key TB0,i without the a↵ect of time to generate two signatures �1 and �2 containing

the link tags �1 = P·TB0,i and �2 = P·TB0,i , respectively. Since �1, �2 are generated

with the same randomly chosen matrix P, if the user signs the messages µ1, µ2 with

the same secret key TB0,i , then it must be the case that �1 = �2.
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4.5.5 Security Analysis

Anonymity

Lemma 6. Let (⌧0, ⌧1,L⌧ , µ, t) be a tuple such that t is the time period, µ is a mes-

sage to be signed with the ring L⌧ , including ⌧0 and ⌧1. For the SISq,(N(l+1)+1)m,�

hardness problem, �0  FS-LLRS · Sign(pp, µ, sk0,t,L⌧ , t) and �1  FS-LLRS ·

Sign(pp, µ, sk1,t,L⌧ , t) are computationally indistinguishable.

Analysis. Through the Lemma 3, the GenSamplePre algorithm samples a vector e 2

Z(N(l+1)+1)m within negligible statical distance of D⇤?
q (BR,t),�, which satisfied BR,t ·e =

0. Inverting the above equation is equivalent to solve the SISq,(N(l+1)+1)m,� hardness

problem.

In the FS-LLRS · Sign algorithm, two ring signatures �0 and �1 have the same distri-

bution, which implies that �0 and �1 are computationally indistinguishable.

Theorem 8 (Anonymity of FS-LLRS.). The probability of an adversary A to win

the anonymity game with the polynomial time is negligible. Therefore, the proposed

FS-LLRS scheme satisfies the anonymity in the standard model.

Proof. We assume that there exists an adaptive adversary A who tries to break the

anonymity of the FS-LLRS scheme and a challenger C is able to respond to queries

of A.

• Setup. C executes the FS-LLRS · Setup algorithm to generate the public

parameters pp = (n,m, q, d, �, s, l, T,P 2 Zn⇥m
q , {B(0)

1 ,B(1)
1 , · · · ,B(0)

l ,B(1)
l } 2

Zn⇥m
q , {C0, · · · ,Cd} 2 Zn⇥m

q , {�(0)
1 ,�(1)

1 , · · · ,�(0)
k ,�(1)

k } 2 Z
m
2 ⇥

m
2k

q ,A0 2 Zn⇥m
2

q ,Gk

2 Zn⇥m
2

q ), and sends it to A.

• Queries. A picks an index i 2 [N ] and performs a polynomial bounded number

N queries adaptively:
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– Registration Oracle ORO: For an index i 2 [1, N ], A queries the public key

pki of a user i. Then, C invokes the FS-LLRS ·KeyExtract algorithm to get

the key pair (pki, ski). Finally, C returns the public key pki to A.

– Corruption Oracle OCO: A queries the secret key ski,t of a user i on period

time t. Then, C responds the answer to A.

– Signing Oracle OSO: A inputs a time period t, a users’ identity tags set

L⌧ , i-th user’s identity tag ⌧i 2 L⌧ and a message µ. C then invokes the

FS-LLRS · Sign algorithm and outputs a signature �i,t to A.

• Challenge. A selects a time period t
⇤, a message µ

⇤ 2 {0} ⇥ {0, 1}d, a

users’ identity tags set L⇤

⌧ , two identity tags ⌧
⇤

0 , ⌧
⇤

1 2 L⇤

⌧ to C. Then, A sends

(⌧ ⇤0 , ⌧
⇤

1 , µ
⇤
,L⇤

⌧ , t
⇤) to C to request a signature. Finally, C randomly selects a bit

b 2 {0, 1} and sends �⇤

i,t to A.

• Guess. A outputs a guess b0 2 {0, 1}. If b0 = b, we say that A wins the game.

Analysis. The signatures have the same distribution within a negligible statistical

distance of D⇤?BR,t,�, which are computationally indistinguishable. If A success-

fully distinguishes signatures with non-negligible probability, it contradicts Lemma

6. Hence, we claim that the advantage of A to win the game is negligible and our

FS-LLRS scheme is anonymous.

Unforgeability with Forward Security

Theorem 9 (Unforgeability with Forward Security of FS-LLRS.). The proposed

FS-LLRS scheme satisfies the unforgeability with forward security in the standard

model under the SISq,N(1+2l)m,� hardness assumption.

Proof. We assume that there exists an adaptive adversary A who tries to break the

unforgeability with forward security of the FS-LLRS scheme and a challenger C is

able to solve the SIS problem.
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• Setup. C generates and sends the public parameters pp to A with the following

parameters generation procedures.

– Initially executes the FS-LLRS · Setup algorithm to obtain the public pa-

rameters, including the integers n,m, q, �, s, the length of message d, a

public matrix P 2 Zn⇥m
q , a binary tree with divided T = 2l time pe-

riod, 2k 0-1 matrices {�(0)
1 ,�(1)

1 , · · · ,�(0)
k ,�(1)

k } 2 Z
m
2 ⇥

m
2k

q , master public

key A0 2 Zn⇥m
2

q , a matrix Gk 2 Zn⇥m
2

q .

– Randomly selects 2l matrices V(0)
1 ,V(1)

1 · · ·V(0)
l ,V(1)

l 2 Zn⇥m
q .

– For i⇤ 2 [N ], setsBi⇤ 2 Zn⇥m
q by ⌧i⇤ and computesMi⇤ = [Bi⇤kV(0)

1 kV
(1)
1 k · · ·

kV(0)
l kV

(1)
l ] 2 Zn⇥(1+2l)m

q .

– Sets M = [M1k · · · kMN ] 2 Zn⇥N(1+2l)m
q as SIS matrix.

– Sets a ring Rv = {v1, · · · , vN}.

– Invokes the TrapGen algorithm to get a matrix S 2 Zn⇥m
q and its short

basis TS 2 Zm⇥m
q .

– For i 2 [l], sets B(0)
i = V(0)

i , B(1)
i = V(1)

i .

– Randomly chooses d+ 1 matrices U0, · · · ,Ud+1 2 ZN(l+1)m⇥m
q .

– Sets m0 = 1 and randomly chooses d uniformly scalars m1, · · ·md 2 Z⇤

q.

– Guesses target attacking time period t
⇤ = (t⇤1, · · · , t⇤l ) 2 {0, · · · , T � 1}.

– For i 2 [l], sets B
(t⇤i )
i = V

(t⇤i )
i

• Queries. A picks an index i 2 [N ] and performs a polynomial bounded number

N queries adaptively:

– Registration Oracle ORO: Constructs a list L and sets it empty initially.

For an index i 2 [1, N ], A queries the public key pki of a user i. If

i = vi⇤ 2 Rv, C sets Bi = Bi⇤ ; otherwise, if i /2 Rv, C invokes the

FS-LLRS · KeyExtract algorithm to generate a matrix Bi 2 Zn⇥m
q and its
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short basis TB0 2 Zm⇥m
q and then stores the (⌧i,Bi,TB0 , i) in L. Finally,

C returns public key pki = Bi to A.

– Corruption Oracle OCO: For a user i 2 [N ] and t = (t1, · · · , tl), the public

key is Bi. If pki /2 Rv or t  t
⇤, C outputs ?. We assume that k < l,

tk 6= t
⇤

k, and then C calculates Ttk by ExtBasis algorithm. The returned

secret key ski,t is obtained through FS-LLRS · KeyUpdate algorithm.

– Signing Oracle OSO: Inputs an identity tag ⌧i, a ring R, a time period

t and a message µ to query a signature (without consideration of link

tag). Firstly, for a ring Rv, C computes BRv,t⇤ = [M⇤

1k · · · kM⇤

N ], where

M⇤

i = [BikB
(t⇤1)
1 k · · · kB

(t⇤l )
l ] for i 2 [N ]. Then, C computesCi = BRv,t⇤Ui+

miS for i 2 {0, · · · , d}. Finally, it samples the vector e in three di↵erent

situations and returns it to A, executing as follows:

1. For the ring R = Rv, C computes the matrix BR,t =[M1k · · · kMN ],

where Mi = [BikB(t1)
1 k · · · kB

(tl)
l ] for i 2 [N ]. Then, C calculates

Uµ =
Pd

i=1(�1)µ[i]Ui and mµ =
Pd

i=1(�1)µ[i]mi 6= 0. Finally, C

constructs the matrix M0 = [BR,tkBR,tUµ + mµS] and finds a short

e 2 ⇤?

q (M
0) by TS.

2. Otherwise, if the tuple (⌧i,Bi,TBi , i) includes in L, C constructs the

matrix M00 = [BR,tk
Pd

i=1(�1)µ[i]Ci]. Then, C samples a vector e as

e GenSamplePre(M00
,Bi,TBi , 0, �).

3. Otherwise, if a user k 2 Rj such that (⌧k,Bk,TBk
, k) contains in list

L, C samples e as e GenSamplePre(M00
,Bk,TBk

, 0, �).

• Forge. A outputs a forgery tuple (⌧ ⇤i , µ
⇤
, �

⇤

i,t, R
⇤
, t

⇤), where �
⇤

i,t is the forgery

signature for the user i⇤. If R⇤ 6= Rt, C returns abort; otherwise, C performs as:

– Computes Uµ⇤ =
Pd

i=1(�1)µ
⇤[i]Ui.

– Computes mµ⇤ =
Pd

i=1(�1)µ
⇤[i]

mi 6= 0.
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– Separates �⇤ as

0

@�
⇤

1

�
⇤

2

1

A.

– Computes e⇤ 2 ZN(l+1)m as e⇤ = �
⇤

1 +Uµ⇤�
⇤

2.

Analysis. Let Cµ⇤ =
Pd

i=1(�1)µ
⇤[i]Ci =

Pd
i=1(�1)µ

⇤[i](BR⇤,t⇤Ui + miS) and we

have Cµ⇤ = BR⇤,t⇤Uµ⇤ . Then, we can express as BR⇤,t⇤e⇤ = BR⇤,t⇤(�⇤

1 + Uµ⇤�
⇤

2) =

[BR⇤,t⇤ |BR⇤,t⇤Uµ⇤ ]

0

@�
⇤

1

�
⇤

2

1

A = [BR⇤,t⇤ |Cµ⇤ ]e⇤ = [BRv,t⇤ |Cµ⇤ ]e⇤ = 0, and M can be ob-

tained from BRv,t⇤ . By employing a method similar with [13], we can find that short

non-zero e⇤ is the solution to the given SIS matrix in high probability. Thus, we prove

that our FS-LLRS scheme satisfies the unforgeability with forward security.

Linkability

Theorem 10 (Linkability of FS-LLRS.). The proposed FS-LLRS scheme satisfies the

linkability in the standard model if the FS-LLRS scheme satisfies the unforgeability

with forward security.

Proof. We assume that there exists an adaptive adversary A who tries to break the

linkability of the FS-LLRS scheme and a challenger C is able to respond to queries of

A.

• Setup. C executes the FS-LLRS · Setup algorithm to generate the public

parameters pp = (n,m, q, d, �, s, l, T,P 2 Zn⇥m
q , {B(0)

1 ,B(1)
1 , · · · ,B(0)

l ,B(1)
l } 2

Zn⇥m
q , {C0, · · · ,Cd} 2 Zn⇥m

q , {�(0)
1 ,�(1)

1 , · · · ,�(0)
k ,�(1)

k } 2 Z
m
2 ⇥

m
2k

q ,A0 2 Zn⇥m
2

q ,Gk

2 Zn⇥m
2

q ), and sends it to A.

• Queries. A picks an index i 2 [N ] and performs a polynomial bounded number

N queries adaptively:
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– Registration Oracle ORO: For an index i 2 [1, N ], A queries the public key

pki of a user i. Then, C invokes the FS-LLRS ·KeyExtract algorithm to get

the key pair (pki, ski). Finally, C returns public key pki to A.

– Corruption Oracle OCO: A queries the secret key ski,t of a user i on time

period t. Then, C responds the answer to A.

– Signing Oracle OSO: A inputs a time period t, a users’ identity tags set

L⌧ , i-th user’s identity tag ⌧i 2 L⌧ and a message µ. C then invokes the

FS-LLRS · Sign algorithm and outputs a signature �i,t to A.

• Unlink. A outputs two tuples (L⌧
⇤

1, µ
⇤

1, �
⇤

1,t, t
⇤

1), (L⌧
⇤

2, µ
⇤

2, �
⇤

2,t, t
⇤

2), where t
⇤

i is

the time period, L⌧
⇤

i is the users’ identity tags set including a user i⇤’s identity

tag, µ⇤

i is a signed message, and �
⇤

i,t is a signature including the link tag �⇤

i .

Analysis. We assume that A generates two ring signatures �
⇤

1,t, �
⇤

2,t with non-

negligible probability while only owns one secret key. Besides, both FS-LLRS ·

Verify(pp,

L⌧
⇤

1, µ
⇤

1, �
⇤

1,t, t
⇤

1) and FS-LLRS · Verify(pp,L⌧
⇤

2, µ
⇤

2, �
⇤

2,t, t
⇤

2) algorithm outputs ‘accept’.

Since our FS-LLRS scheme satisfies the unforgeability with forward security, these two

signatures can pass the FS-LLRS · Verify algorithm only if the A honestly generates

two signatures �⇤

1,t, �
⇤

2,t.

When A generates the two signatures, we have two link tags �⇤

1 = P⇤ · sk⇤

1 and

�⇤

2 = P⇤ ·sk⇤

2, respectively. SinceA only has one secret key, then sk
⇤

1 = sk
⇤

2. Moreover,

since the public matrix P⇤ is the same, we get �⇤

1 = �⇤

2. It shows that the two tuples

of A verified by the FS-LLRS · Link(pp, µ⇤

1, µ
⇤

2, �
⇤

1,t, �
⇤

2,t,L⌧
⇤

1,L⌧
⇤

2, t
⇤

1, t
⇤

2) algorithm will

return ‘link’, which contradicts the assumption of the linkability game. Hence, the

advantage of A is negligible and our FS-LLRS scheme is linkable.
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4.6 Performance Evaluation and Comparison

We perform a comparative evaluation of our LLRS and FS-LLRS scheme with other

lattice-based ring signatures (those can used in e-health system) [8, 38, 4, 68, 20]

in computational and communication overhead. Specifically, we implemented our

scheme in Python language and all simulation experiments were conducted in a system

environment featuring an Apple M2 processor and 16.0 GB of memory. In general,

we evaluate the overhead in di↵erent parameter setting environments shown in Table

4.1.

Table 4.1: Parameters Settings.

Recommendation Choice n m q d l k

Type I 80 960 80 10 3 4

Type II 128 1792 128 10 3 4

Type III 256 2048 256 10 3 4

4.6.1 Communication Overhead Comparison

In this part, we focus on comparing the ring signature size. Specifically, in Figure

4.3(a), 4.3(b), 4.3(c), we show the comparative experimental results with schemes

[8, 38, 4, 68, 20] at parameter settings of n = 80, n = 128 and n = 256, respectively.

It is easy to notice that under the three types of parameter settings, our LLRS scheme

has the lowest cost, while the FS-LLRS scheme has the highest overhead. However,

our FS-LLRS scheme is the first scheme to guarantee both forward security and

linkability in a quantum setting. Hence, the slightly higher communication overhead

is an acceptable trade-o↵ with security.

Specifically, we provide the communication overhead values for each scheme under

di↵erent parameter settings when the ring size is 100. When we select the parameter
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(a) Overhead with n = 80.
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(b) Overhead with n = 128.
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(c) Overhead with n = 256.

Figure 4.3: Comparison of Communication Cost between Our LLRS and FS-LLRS

Schemes, and Current State-of-the-Art Ring Signature Primitives [8], [38], [4], [68],

[20] with Di↵erent Parameters Settings.
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setting of type I (n = 80), the communication overhead of our FS-LLRS scheme, our

LLRS scheme, and others are 278.6KB, 6.5KB, and approximately 70.4KB, respec-

tively. When the parameter setting is type II (n = 128), the communication cost of

our FS-LLRS scheme, our LLRS scheme, and others are 614.0KB, 12.4KB, and ap-

proximately 153.3KB, respectively. When the parameter setting is type III (n = 256),

the communication cost of our FS-LLRS scheme, our LLRS scheme, and others are

802.1KB, 27.0KB, and approximately 200.3KB, respectively.

In Table 4.2, we show the theoretical comparative analysis of user public key, user

secret key, signature size and link tag.

4.6.2 Computational Overhead Comparison

We initially assessed the running time of our LLRS and FS-LLRS schemes to consider

computational overhead. The evaluation involved examining the running time of each

algorithm by setting the ring size to 10 in Figure 4.4(a), 50 in Figure 4.4(b), and 100

in Figure 4.4(c), respectively. For Link algorithm, two verification operations and one

operation to check the link are required. The overhead of each algorithm increases

with the growth of ring size. For the size is stationary, the larger the value of n, the

more overhead the algorithms execute.

Furthermore, we analyze our LLRS and FS-LLRS schemes in comparison with others

[8], [38], [4], [68], [20]. The comparative analysis of the computational overhead for

three types of parameter settings is shown in Figure 4.5, 4.6, and 4.7, respectively. It

is clear that the overhead increases as the value of n grows.

In our analysis, we use n = 128 as an example. The trends for n = 80 and n = 256

closely resemble those for n = 128, di↵ering primarily in time cost. The overhead

of KeyGen algorithm is depicted in Figure 4.6(a), showing that the time cost for a

signing user to generate its secret-public key pair remains constant as the ring size

increases. Figure 4.6(b) and 4.6(c) illustrate that the overhead of Sign and Verify
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algorithms increases as the ring size grows from 1 to 100, respectively. Our LLRS

scheme’s Sign algorithm demonstrates the lowest computational overhead, while the

Sign algorithm of our FS-LLRS scheme exhibits similar overhead to Jia et al. [38] and

still lower than most existing schemes [8], [4], [68], [20]. As for the Verify algorithm,

the cost of our LLRS scheme is marginally lower than our FS-LLRS scheme, and both

of them are lower than others [8], [38], [4], [68], [20].

Additionally, we provide the time cost of the Sign and Verify algorithms when there are

100 ring users. When the parameter setting is the type I in Figure 4.5, the running

times of Sign algorithm for our LLRS and our FS-LLRS scheme are 91.6ms and

426.1ms, respectively, while for other schemes are approximately 415.9ms to 513.75ms.

The running times of the Verify algorithm for our LLRS and our FS-LLRS scheme are

85.5ms and 86.75ms, respectively, while for other schemes are approximately 125.74ms

to 262.5ms.

Under the parameter setting of type II in Figure 4.6, our LLRS and FS-LLRS schemes

have running times of 367.7ms, and 1707.3ms, respectively, while other schemes range

from 1657.9ms to 2151.8ms, for the Sign algorithm. For the Verify algorithm, our

LLRS and FS-LLRS schemes have running times of 342.1ms, and 357.6ms, respec-

tively, while other schemes are approximately 503.2ms to 1050.1ms.

For type III in Figure 4.7, our LLRS and FS-LLRS schemes exhibit running times

of 3606.9ms and 17088.0ms, respectively, for the Sign algorithm, while other schemes

range from 16577.9ms to 21516.7ms. With regard to Verify algorithm, our LLRS and

FS-LLRS schemes demonstrate running times of 3411.3ms and 3493.2ms, respectively,

while other schemes range from 5013.1ms to 10509.4ms.
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Figure 4.5: Comparison of Computation Overhead Associated with Several Algo-

rithms between Our LLRS and FS-LLRS Schemes, and Current State-of-the-Art Ring

Signature Primitives [8], [38], [4], [68], [20] with n = 80.
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Figure 4.6: Comparison of Computation Overhead Associated with Several Algo-

rithms between Our LLRS and FS-LLRS Schemes, and Current State-of-the-Art Ring

Signature Primitives [8], [38], [4], [68], [20] with n = 128.
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Figure 4.7: Comparison of Computation Overhead Associated with Several Algo-

rithms between Our LLRS and FS-LLRS Schemes, and Current State-of-the-Art Ring

Signature Primitives [8], [38], [4], [68], [20] with n = 256.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, our first contribution is to propose a general ring signature construc-

tion that provides a conversion method from ⌃-based signatures to ring signatures

without reducing the security level, shown in Chapter 3. To begin with, we present

a general model for generalizing the existing signature schemes in the form of a ⌃

protocol. Leveraging this general model, we then propose a generic construction that

can transform the existing signatures to ring signatures, utilizing our redesigned one-

out-of-many relation and Fiat-Shamir transformation technique. Further, to enhance

the e�ciency of the ring signature, we implement the Bulletproofs folding technique

on our ring signature to achieve the e�cient logarithmic-size ring signature.

To showcase the practicality of our generic scheme, we conduct four case studies using

our generic construction technique to convert the Schnorr signature, ECDSA signa-

ture, EdDSA signature, and SM2 signature into ring signature schemes, respectively.

Further, we perform security analysis for our construction, showing that it satisfies

correctness, anonymity, and unforgeability. The performance evaluation demonstrates

that our scheme incurs only a minor additional overhead when constructing the orig-
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inal signature into a ring signature. The comparative analysis indicates that our

scheme is superior to most existing schemes in computation overhead and outper-

forms other existing ring signatures in communication overhead.

The second contribution is shown in Chapter 4, where we propose two lattice-based

ring signature schemes for secure cloud-assisted EMRs. We first introduce an e�-

cient lattice-based linkable ring signature (LLRS) to assure patient privacy and EMR

security, and check whether multiple signatures are from the same signer. Then, we

propose the FS-LLRS scheme, an enhancement of LLRS, incorporating periodically

secret key updates for forward-secure unforgeability. In our system, EMRs created

by patients and doctors undergo a signing process by multiple parties using either

LLRS or FS-LLRS schemes. These signed EMRs are then securely stored in the

cloud, ensuring EMRs unforgeability and user anonymity. Requesters can download

the EMRs from the cloud to verify their validity and linkability. Compared to the

existing solutions, our LLRS scheme o↵ers superior e�ciency, while our FS-LLRS

provides enhanced security.

5.2 Future Work

In this thesis, we first propose a general construction based on DL, converting the

⌃-protocol based signatures to ring signatures. The scheme achieves optimal storage

overhead until now and relatively e�cient computational costs. However, our scheme

is based on the Random Oracle Model (ROM). More importantly, it relies on the DL

assumption and is not resistant to quantum attacks, which means the security level is

not ideal. Therefore, in future work, our goal is to improve the proposed general ring

signature from the ROM to the standard model. Furthermore, we aim to propose

a lattice-based general construction to transform ⌃-protocol based signatures into

lattice-based ring signatures.
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5.2. Future Work

For the second work, we present a lattice-based linkable ring signature with forward

security for cloud-assisted EMR sharing. The scheme is multi-functional, meeting

the requirements of anonymity, linkability, and unforgeability with forward security,

while also demonstrating resistance against quantum attacks. However, there is still

space for improvement the e�ciency. Specifically, our scheme outperforms and is on

par with some existing schemes’ computational overhead. Moreover, our FS-LLRS

scheme has higher storage overhead compared to other schemes, due to the additional

implementation of forward security. In future work, we wish to achieve forward

security in lattice-based ring signatures without using the GenSamplePre lattice basis

algorithm and binary tree structure, which will require the design of a completely

novel method for implementing forward security in lattice-based ring signatures.
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