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Abstract

This MPhil thesis extends, in two main ways, a previous framework on the pre-

dictions of right censored survival outcomes under nonparametric transformation

models. The first extension is regarding censoring scheme complexity. Specif-

ically, we extend from right censoring to double censoring, which contains both

left and right censoring. The previous work relied on proposing a weakly infor-

mative prior for the transformation function to mitigate model unidentifiability,

and we heavily modify this prior so that nonparametric transformation models can

be implemented under both random and fixed double censoring. By comparing

our predictions results to two leading methods, we demonstrate that the proposed

approach is computationally effective under double censoring and successfully uti-

lizes a robust and flexible nonparametric transformation model. The second exten-

sion is regarding model complexity. Specifically, we extend from nonparametric

transformation models, which contain two unidentified infinite-dimensional pa-

rameters to a certain model with more than two such parameters. For this more

sophisticated model, we attempt to adjust priors to control posterior Markov Chain

Monte Carlo (MCMC) mixing. Numerical illustrations show that carefully cho-

sen priors can indeedmitigate poor mixing under the more complex model. Subse-

quently, we consider how weak a prior can be to still allow for well-mixed MCMC

ii



iii

chains. Driven by this question, we explore the concept of informativeness further

and speculate to quantify it through a mathematical definition. This definition may

contribute to a criterion for identifying priors that are sufficiently informative, as

to potentially help address poor mixing generally for models with more than two

unidentified infinite-dimensional parameters.
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Chapter 1

Introduction

1.1 Motivation

ThisMPhil thesis is motivated by Part II, Chapter three of Dr. Chong Zhong’s PhD

thesis (Zhong, 2023), which succeeded in predicting right censored survival out-

come under nonparametric transformation models (referred to as “Chapter three”

below for simplicity). Given the effectiveness of his methods, we are inspired to

consider two points of further development. The first line of thought is whether

we may extend his methodology to predict doubly censored survival outcomes, a

more general and complex censoring scheme; and the second is to examine root

causes behind the successful implementation of his methodology.

Why: The first reason for conducting our work is that nonparametric transfor-

mation models are more flexible and robust than parametric and semiparametric

models, yet there has not been any success in extant literature to implement such

models under the double censoring scheme (refer to Section 1, Chapter 2 for spe-

cific discussions). The second reason is although it was demonstrated in Chapter

1



CHAPTER 1. INTRODUCTION 2

three that weakly informative priors can facilitate computations, any further ex-

ploration of how and when weakly informative priors may be of help was to be

desired.

Challenges: The first critical challenge revolves around the fact that double

censoring consists of both right and left censoring, which means when attempt-

ing to apply nonparametric transformation models to doubly censored data, one

must devise ways to analyze left censored data while maintaining integrity of the

original method. Consequently, one major contribution in Chapter three that lends

viability to his methodology, the Quantile-knot I-splines prior, needs to be recon-

structed as it cannot account for changes in observed data whenmore than one type

of censoring is present. Extra precaution was given with the elicitation and any

modification of this prior, since it is the prior for the transformation function, the

most integral part of any transformation model, and can have the greatest impact

on posterior inference.

The other apparent challenge is the ambiguous concept of weakly informa-

tive priors. The class of informative priors refers to prior distributions that are

constructed by incorporating prior knowledge from experience, expert opinion, or

similar studies (Reich and Ghosh, 2019). In mathematical expressions, let p(θ|m)

be a prior distribution of amodelmwith the parameter θ, then such a prior distribu-

tion may be called ”informative” if θ is biased towards particular values. Weakly

informative priors, as a subclass of informative priors, can therefore be considered

as prior distributions with mild prior knowledge. However, it is worth noting that

although definitions such as ”(the prior) is set up so that the information it does

provide is intentionally weaker than whatever actual prior knowledge is available”

(Gelman, 2006) has been offered, no exact definition in mathematical terminolo-
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gies has been provided for the class of weakly informative priors. In other words,

it remains unclear at what point the influence of weakly informative priors, ex-

erted by pre-existing information or beliefs, becomes insignificant on posterior

distributions.

1.2 Our work in this thesis

The first objective of this thesis is to implement nonparametric transformation

models to analyze doubly censored data under the Bayesian framework. It should

be noted that we consider two censoring schemes within double censoring which

are both important. Random censoring is commonly discussed in survival analysis,

as it is theoretically interesting and convenient. On the other hand, fixed censoring

may be more challenging to analyze and compute, as less information is available.

Fixed censoring, as the name implies, is a censoring scheme when all time-to-

events are censored at one identical time; and in the context of double censoring,

it means that all left censored observations will have one same numerical value,

and all right censored observations another.

The second objective of this thesis revolves around the poor mixing issue, a

serious problem in Bayesian computation caused by unidentifiability. It is well

known that the posterior of an unidentified model can have multiple modes, which

are difficult to be fully explored throughMCMC sampling (Brooks et al., 2011). If

the MCMC cannot satisfactorily explore the multi-modal posterior, poorly-mixed

chains occurs. A direct consequence of poor mixing is an erroneous approxima-

tion of the posterior prediction distributions (PPD), yielding unreliable predictions.

Regarding multi-modal posterior, researchers either developed feasible samplers
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for the multimodal posterior (Neal (1996); Kou et al. (2006); Pompe et al. (2020);

Jacob et al. (2022); among others), or conducted post-process on posterior samples

to obtain the posterior of identified parameters through general samplers (McCul-

loch and Rossi (1994); Gelfand and Sahu (1999); Burgette et al. (2021); among

others). We consider an alternative approach where the posterior will not be di-

rectly modified but rather indirectly influenced through careful prior elicitation. A

certain class of priors that we believe could mitigate poor mixing is suggested and

applied to an extension of nonparametric transformation models. Subsequently,

we attempt to define such priors more clearly in mathematical expressions.

1.3 Organization of thesis

In the next Chapter, we will discuss more specifically the background, application,

and performance of a certain class of nonparametric transformation models in the

context of doubly censored survival analysis. Methodologically, we go into the

details of developing a novel type of weakly informative priors, which is equipped

to analyze doubly censored time-to-events under two distinct yet similarly crucial

censoring schemes.

We propose an extension of nonparametric transformation models in Chap-

ter 3 to include more than two unidentified infinite-dimensional parameters. A

feasible approach to mitigate poor mixing under this new class of models is dis-

cussed and illustrated. As a theoretical exploration, we go more in depth on the

concept of weakly informative priors and attempt to offer a mathematical defini-

tion that quantifies the degree of informativeness needed to ensure discernibility.

It has been suggested in literature that priors with a sufficient level of informa-
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tiveness can mitigate poor mixing (Branscum et al., 2008), and although weakly

informative priors could contain the necessary informativeness, the term is simply

too broad and lacks mathematical rigor. Therefore, major benefit could be reaped

from enumerating informativeness levels and constructing thresholds for weakly

informative priors to be weaker than informative priors yet still powerful enough.

In Chapter 4 of this MPhil thesis, we summary our work so far on utilizing

the Bayesian framework to analyze doubly censored survival data, most notably,

actualizing nonparametric transformation models and contributing a concrete def-

inition of moderately weak informative priors. Future directions of research fol-

lowing our work in Chapters 2 and 3 are also discussed in length.



Chapter 2

Extension to double censoring

2.1 Background

Survival analysis, a long-explored area of research related to medicine, social sci-

ences, and statistics, primarily concerns how long it will take for particular events

of interest to take place (time-to-event). However, such seemingly simplistic goals

are often muddled by the inability to directly observe events of interest. In situ-

ations where some (or even all) of the events cannot be observed, the missing of

key information leads to the collected data being censored. The most frequently

encountered type of censoring in practice is right censoring, where subjects of in-

terest are no longer followed after a certain time point, making events that occur

afterward impossible to observe. Similarly, another common type of censoring is

left censoring, where events occur before subjects of interest are followed. There-

fore, it becomes apparent that a more complex and more challenging censoring

scheme could arise from the combination of the two types of censoring mentioned

above. This more complicated type of censoring is called ”double censoring”,

6



CHAPTER 2. EXTENSION TO DOUBLE CENSORING 7

which refers to when collected observations can be divided into three groups: ex-

act observations of events, left censored observations, and right censored obser-

vations. Concisely, double censoring occurs when the event of interest, for each

subject in the data, can only be observed within a certain time frame. It thus fol-

lows logically that for such doubly censored data, useful information can be highly

limited, since, for unobserved events, it is only known whether the time-to-events

are smaller than some left censoring endpoints or greater than some right censoring

endpoints. Thus, it is quite obvious that making accurate estimations and predic-

tions regarding doubly censored data will be extremely difficult. Additionally, to

avoid any confusion, it should be noted that double censoring has also been used

in literature to describe another type of censoring scheme in survival analysis. Un-

der this second definition, the elapsed time between two related events, which they

themselves may be either right or interval censored, becomes the event of interest

(Sun, 2006). We will focus solely on the first definition of double censoring in this

thesis.

In real life, doubly censored data often arise in biomedical and health science

fields such as pharmacology and epidemiology. One such example results from a

randomized AIDs clinical trial was conducted in 1997. The study aimed to com-

pare HIV-infected children’s responses to three different treatments. One major

endpoint in the study was the plasma HIV-1 RNA level, and researchers relied on

its values to accurately measure the treatment efficacy. Plasma HIV-1 RNA level,

given by the NucliSens assay, is highly unreliable below 400 or above 75,000 per

mililiter of plasma; therefore, it can be treated as a doubly censored variable only

observable between 400 and 75,000.

Survival analysis, as a whole, has been fairly well explored with quite an abun-
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dance of extant literature. However, as previous research largely focused on the

most common types of censoring, especially right censoring, there still exist sig-

nificant gaps in certain sub-fields. In particular, in the case of double censoring,

current statistical methods are still underdeveloped and often inefficient. The con-

cept of double censoring was first introduced by Gehan in 1965, where he studied

and extended the two-sample Wilcoxon test to doubly censored data. According

to Gehan (1965), ”doubly censored data” refer to group(s) of observations where

each observation has a probability to be either right censored, left censored, or

uncensored. A few researchers adopted this definition and continued to either ex-

pand upon Gehan’s initial work or explore other intriguing directions. For exam-

ple, Mantel (1967) and Hughes (2000) also considered the problem of two-sample

comparison and further modified Gehan’s proposed test. Others, such as Turn-

bull (1974), proposed a ”self-consistent” procedure to obtain the nonparametric

maximum likelihood estimator (NPMLE) in 1974 and focused on estimating the

survival function of doubly censored data. Similarly, Chang (1990) studied the

weak convergence of the NPMLE, Gu and Zhang (1993) studied the asymptotic

properties of the NPMLE, Mykland and Ren (1996) and Zhang and Jamshidian

(2004) developed algorithms algorithms to compute the NPMLE. One common

feature of the above mentioned earlier research on double censored data is that

they do not consider the situation where covariates are involved, which may add

to the degree of complexity even further.

When there exist covariates within the doubly censored data, new techniques

are often needed to correctly estimate the properties and parameters. An effective

way to analyze doubly censored data with covariates is to apply transformation

models. Transformation models help explain the relationship between a function
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of the time-to-event and the covariates in the data. Themost commonly used trans-

formation models in survival analysis are the semiparametric models, particularly

the popular proportional hazards model, the proportional odds model, and the ac-

celerated failure times model. The popularity of these models is largely attributed

to their superior flexibility over the simpler andmore restricted parametric models.

Such research prominence is also evident in the context of double censoring. For

example, Cai and Cheng (2004) extended a class of semiparametric transformation

models to study the effects of covariates on failure time. Similarly, Li et al. (2018)

and Choi and Huang (2021) considered the nonparametric maximum likelihood

estimation of such semiparametric transformation models. Yet more flexible is

another class of models, the nonparametric transformation models, which given

their robustness to model misspecifications, can perform especially well in practi-

cal settings. However, two major challenges are encountered when attempting to

apply such nonparametric transformation models, namely infinite-dimensional pa-

rameters and model unidentifiability. Specifically, model unindentifiability refers

to when different sets of parameters in the model can generate an identical likeli-

hood. Existing approaches to solve model unidentifiability are mainly divided into

two schools of thought: making the model identifiable by imposing constraints

(Chen (2002); Ye and Duan (1997); Chiappori et al. (2015); among others) or

circumventing unidentifiability by making strong a priori assumptions (Ding and

Nan (2011); Zeng and Lin (2007); Zhou and Hanson (2018); among others). It

should be noted that nonparametric transformation models have not yet been uti-

lized to analyze doubly censored data. The reluctance can be understood since

previously mentioned approaches to tackle model unidentifiability either sacrifies

computational feasibility or consistency. Therefore, an important issue to be ad-
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dressed is how to solve the problem of model unidentifiability effectively, so that

nonparametric transformation models can be applied on doubly censored data.

The remainder of this chapter is organized as follows. We introduce our data

structure andmodel in Section 2. Our proposed innovative priors will be explained

in detail in Section 3. Posterior inference and estimation will be explored in Sec-

tion 4. Simulation results will be presented in Section 5. We also apply our method

to real data in Section 6. A discussion will be given in Section 7.

2.2 Data, model, and assumptions

2.2.1 Data structure

Here we describe the typical data structure of doubly censored data in survival

analysis. Consider a study that involves n independent subjects. For subject i, let

Ti denote the time-to-event and Zi be the p-dimensional vector of time-invariant

covariates. The time-to-event Ti can only be observed between Li and Ri, and if

not observed, it is either left censored at Li or right censored at Ri.

Define δi1 = I(Ti ≤ Li), δi2 = I(Li < Ti ≤ Ri), δi3 = I(Ri < Ti),

where I(·) is the indicator function. Then it follows δi1 + δi2 + δi3 = 1. The

observed data are of the form {(T̃i, Li, Ri, Zi, δi1, δi2, δi3); i = 1, . . . , n}, where

T̃i = max{Li,min(Ri, Ti)} is the observed time-to-event for subject i.

Here we assume that Li = 0 if δi3 = 1 and Ri = ∞ if δi1 = 1, since such

information is generally not available, for better data organization. Furthermore,

Ti and (Li, Ri) are assumed to be conditionally independent given Zi (noninfor-

mative censoring) as common practice.
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2.2.2 Nonparametric transformation models

We consider a class of linear transformationmodels, which relate the time-to-event

to the relative risk in a multiplicative way.

H(T ) = ξ exp(βTZ), (2.1)

where H(·) is a strictly increasing transformation function that is positive on R+,

β is the p-dimensional vector of regression coefficients coupling Z, and ξ is the

model error with distribution function Fξ. The above transformation model is con-

sidered a nonparametric transformation model when the functional forms of both

H(·) and Fξ are unknown. As mentioned earlier, when model (2.1) is nonparamet-

ric, model unidentifiability will be encountered, which means that different sets of

(H, β, Fξ) can generate an identical likelihood function. Mathematically, suppose

model (2.1) holds for a special triplet solution (H0, β0, ξ0), then model (2.1) also

holds on the set C{(H, β, ξ)} = {(c1Hc2
0 , c2β0, c1ξ

c2
0 )} for any pair of positive

constants (c1, c2) ∈ R2
+. Consequently, the joint posterior has uncountable many

modes on C{(H, β, ξ)}. For the rest of this chapter, model (2.1) will be treated as

a nonparametric transformation model and referred to as the NTM.

The NTM is obtained by applying an exponential transformation on a class of

linear transformation models with additive relative risk.

h(T ) = βTZ + ε, (2.2)

where h(·) = log(H(·)) and ε = log(ξ). This transformation is necessary since

the transformation function h(·) in model (2.2) is sign-varying onR+, which leads
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to insoluble problems regarding prior elicitation and posterior sampling. After the

transformation, H(·) is strictly positive on R+, thus allowing the NTM to avoid

the above problems.

2.2.3 Assumptions

We will now state some generate assumptions for doubly censored data and the

NTM.

(A1) The transformation function H(·) is differentiable.

(A2) The model error ξ is continuous.

(A3) The covariate Z is independent of ξ.

(A1) is required due to the H ′(·) in the likelihood function. (A2) is mild. (A3) is

general for transformation models.

2.3 Likelihood and priors

2.3.1 Likelihood function

Given observed data {(T̃i, Li, Ri, Zi, δi1, δi2, δi3); i = 1, . . . , n}, we can construct

the likelihood function as

L
(
H, fξ, Sξ, β | T̃ , Z, δ1, δ2, δ3

)

=
n∏

i=1

[
Fξ
{
H
(
T̃i

)
e−β

TZi

}]δi1

×
[
fξ
{
H
(
T̃i

)
e−β

TZi

}
H ′
(
T̃i

)
e−β

TZi

]δi2

×
[
Sξ
{
H
(
T̃i

)
e−β

TZi

}]δi3
,

(2.3)
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where Sξ = 1− Fξ is the tail distribution of ξ.

2.3.2 Pseudo-Quantile I-splines prior

Regarding the transformation function of the NTM and its derivative, we rely on

a type of I-spline priors to capture the relevant information. To construct such

priors, we first take τ = max(T̃ ) to be the largest observed time-to-event in the

collected data, then D = (0, τ ] is the interval that contains all observed time-to-

events. Note that H(·) is differentiable on D, thus we can model H(·) and H ′(·)

by

H(t) =
K∑

j=1

αjBj(t), H
′(t) =

K∑

j=1

αjB
′
j(t), (2.4)

where {αj}Kj=1 are positive coefficients, {Bj}Kj=1 are I-spline basis functions on

D, and {B′
j}Kj=1 are the corresponding derivatives.

The number of I-spline basis functionsK = N+r, whereN is the total number

of interior knots and r is the order of smoothness with (r − 1)th order derivative

existing. Also, the intercept H(0) = 0 is set.

Then it becomes our primary task to specify the exact number of interior knots

and pinpoint their locations, and one logical way to approach this task is to base

the selection of interior knots on empirical quantiles of the collected data. In doing

so, we can effectively utilize any useful knowledge inherent to the distribution of

the real and observed time-to-events.

Let F̂X(t) = n−1
∑n

i=1 I(Xi ≤ t) be the empirical CDF of some X and

Q̂X(p) = inf{t : p ≤ F̂X(t)} be the corresponding empirical quantile function,

where X can be equivalently replaced by T , T̃ , and other similar random vari-

ables. Note that since the real time-to-events T cannot always be observed, F̂T (·)
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and Q̂T (·) can only be constructed based on a part of the collected data where

δi2 = 1 (i.e., when real time-to-events are observed). We first consider knot se-

lection via empirical functions under the random censoring setting, which is very

often the assumed setting in related literature.

Random Censoring Knot Selection

Define T̃L = {T̃i ∈ T̃ : δi3 = 0} and T̃R = {T̃i ∈ T̃ : δi1 = 0}. Let NI be the

initial number of knots. The interior knots selection procedure can be described

as follows.

Step 1: Choose NI empirical quantiles of real time-to-events as interior knots,

where each knot tj = Q̂T{j/(NI − 1)} and j = 0, . . . , NI − 1, such that 0 < t0 <

· · · < tNI − 1 ≤ τ .

Step 2: For j = 0, . . . , NI − 1, if | F̂T (tj) − F̂T̃L
(tj) |≥ 0.05, interpolate a new

knot t∗j = Q̂T̃L
(j/(NI − 1)).

Step 3: For j = 0, . . . , NI − 1, if | F̂T (tj) − F̂T̃R
(tj) |≥ 0.05, then interpolate

another new knot t∗∗j = Q̂T̃R
(j/(NI − 1)).

Step 4: Sort all the chosen and interpolated knots {t0, . . . , tj, t∗j , t∗∗j , . . . , tNI−1}

from smallest to largest in numerical value and output the sorted series as the fi-

nally selected interior knots.

It is worth noting that only real time-to-events can provide information about

H ′, therefore the initial interval knots are chosen by equally spaced empirical quan-

tiles of T . To mitigate the lack of information when the percentage of left or right

censored observations is high, extra interior knots are generated as needed.

The problem of interior knot selection becomes much more complex and diffi-

cult under fixed censoring. In such circumstance, the empirical distributions of ob-

served time-to-events would heavily gravitate toward the fixed censoring points,
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making interpolation of additional interior knots infeasible. Therefore, in cases

of high censoring, attempts have to be made to extract some information from

the unobserved time-to-events. Thus, we propose a novel method for effective

interior knots selection that synthesizes pseudo data to mimic the distribution of

unobserved time-to-events. This innovative method then leads to a new type of

prior for the transformation function, which we name to be the ”Pseudo-Quantile

I-splines prior” (PQI prior).

Fixed Censoring Knot Selection

Fixed censoring occurs when Li1 = L for i1 = 1, . . . , n1 and Ri2 = R for

i2 = 1, . . . , n2, where n1 and n2 are the numbers of left censored and right cen-

sored observations, respectively. In this scenario, define n3 = n − n1 − n2,

δi1 = I(Ti ≤ L), δi2 = I(L < Ti ≤ R), and δi2 = I(Ti > R).

The specification procedure can be described as follows.

For k = 1, . . . , K (steps 1-3),

Step 1 (pseudo left censored data generation):

Generate pseudo observations (TLk1
, . . . , TLki1

, . . . , TLkn1
) from some distribution

(e.g. weibull, gamma) such that all TLki1
< L.

Step 2 (pseudo right censored data generation):

Generate pseudo observations (TRk1
, . . . , TRki2

, . . . , TRkn2
) from the same distri-

bution such that all TRki2
> R.

Step 3 (pseudo quantile computation):

Let Tk = (TLk1
, . . . , TLkn1

)∪(T1, . . . , Tn3)∪(TRk1
, . . . , TRkn2

). Compute F̂Tk(t) =

n−1
∑n

i=1 I(Tki ≤ t) and Q̂Tk(p) = inf{t : p ≤ F̂Tk(t)}.

Step 4 (quantile averaging):

Compute Q̂T (p) = K−1
∑K

k=1 Q̂Tk . ChooseN averaged empirical quantiles of the
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combined time-to-events as interior knots, where each knot tj = Q̂T (j/(N − 1))

and j = 0, . . . , N − 1. Output this series {t0, . . . , tj, . . . , tN−1} as the finally

selected interior knots.

To ensure the pseudo data can accurately reflect any valuable knowledge hid-

den in the unobserved time-to-events, data are generated iteratively to improve

their representativeness. They are also combined with the real time-to-events that

are observed for completeness. The averaged empirical quantiles should closely

imitate the true quantiles of the real time-to-events (observed and unobserved),

thus the selected interior knots should provide reliable and sufficient information.

Any pre-existing knowledge about the potential distribution of the real time-to-

events could help facilitate the selection process and refine the results.

2.3.3 DPM prior

To characterize model error in the NTM, we choose the common DPM models as

priors for fξ and Sξ. Taking the truncated stick-breaking approach, such priors can

be constructed as

fξ(·) =
L∑

l=1

plfw(ψl, νl), Sξ(·) = 1−
L∑

l=1

plFw(ψl, νl), (2.5)

where fw(ψ, ν) and Fw(ψ, ν) are the PDF and the CDF of theWeibull distribution,

respectively. We select the Weibull distributions as a common choice to allow for

a nonincreasing hazard rate.

The stick-breaking weights pl and the hyperparameters (ψl, νl) are generated



CHAPTER 2. EXTENSION TO DOUBLE CENSORING 17

as follows

pl = qk

L−1∏

k=1

(1− qk), qk ∼ Beta(1, c), (ψl, νl) ∼ Gamma(1, 1). (2.6)

2.4 Posterior inference

2.4.1 Posterior prediction and nonparametric estimation

Given the prior settings, the nonparametric parts of (2.1), specifically, the func-

tionalsH andSξ can be represented by elements in (α, p,ψ, ν), whereα = {αj}Kj=1,

p = {pl}Ll=1, ψ = {ψl}Ll=1, and ν = {νl}Ll=1. Let Θ = (β,α, p,ψ, ν) contain

all such unknown parameters; the estimators of (H, β, Sξ) can then be obtained

through the posterior distribution of Θ.

First set the priors for parameters in Θ as (recall ((2.6)))

αj ∼ exp(η), p(β) ∝ 1,

pL = 1−
L−1∑

l=1

pl,

G0(ψl, νl) = Gamma(1, 1)× Gamma(1, 1),

(2.7)

where p(·) is a prior density and G0 is the base measure for the DPM prior. The

posterior density of Θ can then be represented as

π(Θ | T̃ , Z, δ1, δ2, δ3) ∝ L(Θ | T̃ , Z, δ1, δ2, δ3)p(β)p(α)p(p)
L∏

l=1

G0(ψl, νl).

(2.8)

In the above prior setting, the hyperparameter η can be dependent on other hyper-
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parameters or fixed to some constant based on existing knowledge. It is, however,

recommended that the mass parameter of the Beta distribution be fixed as c = 1

and the base measure G0 also be fixed as above.

It should be noted that the prior choice for β is the improper uniform prior.

Such choice simplifies the posterior form and acceleratesMCMC sampling. Under

mild conditions, the posterior in ((2.8)) is still guaranteed to be proper. The NUTS

(No-U-Turn Sampler) from Stan (Carpenter et al., 2017) is implemented to achieve

posterior sampling. After sufficient sampling procedures, the posterior predictive

survival probability of any future time-to-event T0 can be obtained given some

vector of covariates Z0.

For such prediction of a future time-to-event, denote the corresponding con-

ditional posterior predictive survival probability as ST0|Z0(t). Mathematically,

ST0|Z0(t) can be calculated through

ST0|Z0(t) =

∫
ST0|Z0(t | Θ)π(Θ | T̃ , Z, δ1, δ2, δ3)dΘ

=

∫
Sξ{H(t) exp(−βTZ0)}, (2.9)

where ST0|Z0(t | Θ) is the conditional posterior predictive survival probability

given Θ, and ST0|Z0(t | Θ) can uniquely determine ST0|Z0(t) if the posterior π(Θ |

T̃ , Z, δ1, δ2, δ3) is proper.

Note that the integral in ((2.9)) can be approximated by averaging over drawn

posterior samples. Denote the drawn samples of β, H , and Sξ by β(p), H(p), and

S(p)
ξ , p = 1, . . . , N , respectively. Then the estimations of the conditional survival
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probability and conditional cumulative hazard can be given as

ŜT0|Z0(t) = N−1
N∑

p=1

S(p)
ξ {H(p)(t) exp(β(p)TZ)},

Λ̂T0|Z0(t) = − log(ŜT0|Z0(t)).

(2.10)

2.4.2 Posterior projection and parametric estimation

Recall that the joint posterior in ((2.8)) can be obtained from the prior settings in

((2.6)) and ((2.7)), thus making the set of parameters (H, β, Sξ) jointly estimable.

However, it is still important to marginally estimate each parameter, especially

the parametric component β and the relative risk exp(−β̂TZ). However, as the

marginal posterior of β lacks interpretability, it is more meaningful to obtain the

marginal posterior of an identified equivalence of β. Through the process of nor-

malization, we denote by β∗ the identified unit vector β/‖β‖2 with ‖β∗‖2 = 1,

and we now focus on obtaining a Bayes estimator of β∗.

Note that the parameter space of β∗ is the same as the Stiefel manifold St(1, p)

in Rp, thus we utilize a posterior projection technique to estimate β∗. Hypotheti-

cally, consider some set A, the metric projection operator mA : Rp → A of such

set is

mA(x) = {x∗ ∈ A : ||x− x∗||2 = inf
v∈A

||x− v||2}.

Thus, the metric projection of the vector β ∈ Rp into St(1, p) is uniquely deter-

mined by mSt(1,p)(β) = β/||β||2 (Absil and Malick, 2012), and the estimation of

β∗ is given by the mean or median of the projected posterior.
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2.5 Simulations

In this section, we present the results of our simulation studies. These studies were

conducted to assess the performance of our proposed methods under both random

and fixed censoring schemes. We compare the proposed method with competitors

the R package spBayesSurv (Zhou and Hanson, 2018), a Bayesian approach that

can be applied to doubly censored data; the algorithm developed by Li et al. (2018),

a frequentist method specifically works on doubly censored data.

Simulated survival times are generated following model (2.1). Under each

case within both censoring schemes, we generate 100Monte Carlo replicates, each

with sample size n = 200. The vector of regression coefficients is set as β =

(β1, β2, β3)T = (
√
3/3,

√
3/3,

√
3/3)T such that ||β|| = 1. For covariates Z =

(z1, z2, z3), set z1 ∼ Bin(1, 0.5), z2 ∼ N(0, 1), and z3 ∼ N(0, 1).

Under the random censoring scheme, the performance of our method is as-

sessed under four different cases, where the true model is either the PH model, the

PO model, the AFT model, or none of these three models.

Case 1: Non-PH/PO/AFT:

ε ∼ 0.5N(−0.5, 0.52) + 0.5N(1.5, 12),

h(t) = log((0.8t+ t1/2 + 0.825)(0.5φ1,0.3(t) + 0.5φ3,0.3(t)− c1)),

Li ∼ U(0, 1), Ri ∼ U(8/3, 4).

4.0% left censored, 64.2% observed, 31.8% right censored.
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Case 2: PH model:

ε ∼ EV(0, 1),

h(t) = log((0.8t+ t1/2 + 0.825)(0.5φ0.5,0.2(t) + 0.5φ2.5,0.3(t)− c2)),

Li ∼ U(0, 1), Ri ∼ U(8/3, 4).

26.2% left censored, 50.1% observed, 23.7% right censored.

Case 3: PO model:

ε ∼ Logistic(0, 1),

h(t) = log((0.8t+ t1/2 + 0.825)(0.5φ0.5,0.2(t) + 0.5φ2.5,0.3(t)− c3)),

Li ∼ U(0, 1), Ri ∼ U(4/3, 2).

31.8% left censored, 37.5% observed, 30.7% right censored.

Case 4: AFT model:

ε ∼ N(0, 1),

h(t) = log(t),

Li ∼ U(0, 1), Ri ∼ U(4/3, 2).

21.7% left censored, 34.7% observed, 43.6% right censored.

Similarly, under the fixed censoring scheme, the performance of our method

is assessed under the same four different cases. The differences between the two

censoring schemes are marked by the simulated left and right censoring times.
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Case 1: Non-PH/PO/AFT:

ε ∼ 0.5N(−0.5, 0.52) + 0.5N(1.5, 12),

h(t) = log((0.8t+ t1/2 + 0.825)(0.5φ1,0.3(t) + 0.5φ3,0.3(t)− c1)),

Li = 1, Ri = 6.

23.3% left censored, 55.5% observed, 21.2% right censored.

Case 2: PH model:

ε ∼ EV(0, 1),

h(t) = log((0.8t+ t1/2 + 0.825)(0.5φ0.5,0.2(t) + 0.5φ2.5,0.3(t)− c2)),

Li = 0.5, Ri = 2.

34.5% left censored, 38.5% observed, 27.0% right censored.

Case 3: PO model:

ε ∼ Logistic(0, 1),

h(t) = log((0.8t+ t1/2 + 0.825)(0.5φ0.5,0.2(t) + 0.5φ2.5,0.3(t)− c3)),

Li = 0.5, Ri = 3.

29.0% left censored, 46.3% observed, 24.7% right censored.
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Case 4: AFT model:

ε ∼ N(0, 1),

h(t) = log(t),

Li = 0.5, Ri = 2.

22.6% left censored, 39.4% observed, 38.0% right censored.

The comparison results to spBayesSurv and Li2018 under the different cen-

soring schemes and cases are shown in the tables below. As presented, we focus

on six statistics, namely, the mean, the average, the average of posterior standard

error (PSD), the square root of the mean squared error (RMSE), the standard error

(SDE), and the coverage probability of the 95% credible interval (CP).

Table 2.1: Simulation Results of Random Censoring under Case 1
Proposed method spBayesSurv Li2018 (r=3.5)
β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.605 0.557 0.537 0.430 0.420 0.411 0.618 0.583 0.562
Bias 0.028 -0.020 -0.041 -0.147 -0.157 -0.166 -0.041 -0.006 0.015
PSD 0.086 0.065 0.065 0.180 0.094 0.094 0.187 0.092 0.092
RMSE 0.098 0.072 0.079 0.233 0.189 0.195 0.181 0.090 0.091
SDE 0.095 0.075 0.069 0.181 0.105 0.103 0.177 0.090 0.091
CP 0.88 0.94 0.89 0.84 0.56 0.55 0.95 0.97 0.94
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Table 2.2: Simulation Results of Random Censoring under Case 2
Proposed method spBayesSurv Li2018 (r=0)
β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.588 0.569 0.552 0.685 0.695 0.668 0.573 0.596 0.577
Bias 0.011 -0.008 -0.026 0.108 0.118 0.091 0.005 -0.018 0.001
PSD 0.118 0.084 0.082 0.240 0.134 0.132 0.183 0.100 0.099
RMSE 0.101 0.081 0.099 0.268 0.197 0.164 0.155 0.112 0.104
SDE 0.101 0.081 0.099 0.246 0.159 0.138 0.155 0.111 0.105
CP 0.96 0.93 0.87 0.92 0.86 0.90 0.99 0.93 0.90

Table 2.3: Simulation Results of Random Censoring under Case 3
Proposed method spBayesSurv Li2018 (r=1)
β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.576 0.552 0.559 0.493 0.524 0.538 0.484 0.511 0.513
Bias -0.001 -0.025 -0.018 -0.084 -0.053 -0.039 0.093 0.066 0.064
PSD 0.182 0.123 0.122 0.304 0.161 0.159 0.234 0.117 0.115
RMSE 0.158 0.118 0.115 0.296 0.164 0.175 0.240 0.118 0.129
SDE 0.159 0.116 0.114 0.285 0.156 0.172 0.222 0.099 0.113
CP 0.97 0.96 0.95 0.98 0.95 0.92 0.95 0.95 0.89

Table 2.4: Simulation Results of Random Censoring under Case 4
Proposed method spBayesSurv Li2018 (r=0)
β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.621 0.545 0.543 0.402 0.394 0.394 0.650 0.655 0.654
Bias 0.044 -0.032 -0.035 -0.176 -0.183 -0.183 -0.072 -0.078 -0.077
PSD 0.105 0.080 0.079 0.156 0.087 0.086 0.211 0.114 0.113
RMSE 0.112 0.088 0.081 0.235 0.203 0.202 0.206 0.139 0.130
SDE 0.104 0.082 0.073 0.156 0.088 0.087 0.193 0.115 0.106
CP 0.92 0.93 0.94 0.77 0.47 0.51 0.94 0.90 0.90

Table 2.5: Simulation Results of Fixed Censoring under Case 1
Proposed method spBayesSurv Li2018 (r=1.5)
β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.596 0.560 0.555 0.378 0.408 0.413 0.621 0.585 0.582
Bias 0.018 -0.017 -0.022 -0.199 -0.168 -0.164 -0.044 -0.007 -0.005
PSD 0.112 0.079 0.079 0.300 0.154 0.156 0.217 0.101 0.100
RMSE 0.109 0.079 0.080 0.417 0.233 0.230 0.213 0.103 0.087
SDE 0.108 0.078 0.077 0.369 0.162 0.162 0.209 0.103 0.087
CP 0.96 0.97 0.95 0.80 0.75 0.79 0.96 0.97 0.98
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Table 2.6: Simulation Results of Fixed Censoring under Case 2
Proposed method spBayesSurv Li2018 (r=0)
β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.583 0.559 0.560 0.601 0.602 0.597 0.583 0.569 0.570
Bias 0.006 -0.018 -0.018 0.024 0.024 0.019 -0.005 0.008 0.007
PSD 0.127 0.091 0.089 0.234 0.133 0.132 0.176 0.098 0.095
RMSE 0.128 0.095 0.096 0.258 0.138 0.145 0.187 0.094 0.101
SDE 0.129 0.094 0.095 0.254 0.137 0.144 0.188 0.094 0.101
CP 0.90 0.93 0.94 0.92 0.92 0.93 0.95 0.95 0.94

Table 2.7: Simulation Results of Fixed Censoring under Case 3
Proposed method spBayesSurv Li2018 (r=1.5)
β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.589 0.525 0.544 0.414 0.438 0.442 0.533 0.527 0.534
Bias 0.012 -0.053 -0.033 -0.163 -0.139 -0.135 0.044 0.051 0.043
PSD 0.216 0.150 0.146 0.312 0.165 0.164 0.247 0.120 0.118
RMSE 0.185 0.148 0.159 0.335 0.226 0.212 0.221 0.128 0.135
SDE 0.186 0.148 0.159 0.294 0.179 0.164 0.217 0.118 0.128
CP 0.93 0.93 0.95 0.95 0.82 0.88 0.95 0.92 0.92

Table 2.8: Simulation Results of Fixed Censoring under Case 4
Proposed method spBayesSurv Li2018 (r=5)
β1 β2 β3 β1 β2 β3 β1 β2 β3

Mean 0.633 0.544 0.529 0.295 0.288 0.290 0.662 0.618 0.612
Bias 0.055 -0.034 -0.048 -0.282 -0.290 -0.287 -0.084 -0.041 -0.034
PSD 0.108 0.084 0.084 0.123 0.069 0.070 0.222 0.111 0.111
RMSE 0.118 0.085 0.096 0.305 0.297 0.296 0.219 0.110 0.112
SDE 0.105 0.079 0.083 0.117 0.064 0.071 0.203 0.103 0.107
CP 0.89 0.91 0.92 0.41 0.01 0.04 0.95 0.95 0.96
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Under the random censoring scheme, our method generally performs the best

in case 1 while significantly outperforming spBayesSurv. This can be expected

since spBayesSurv is specifically designed to handle estimation under cases 2

through 4, yet our results in these cases are still comparable to spBayesSurv, in-

dicating that the proposed method can be applied in a broader spectrum of situa-

tions while maintaining sufficient power. The simulation results of spBayesSurv

and Li2018 under the fixed censoring scheme are not supposed to carry too much

weight, as these methods did not take such censoring scheme into consideration,

but our results are quite promising regardless, which lends credence to the claim

that our method can be applied to analyze fixed doubly censored time-to-events.

It is also worth noting that the proposed method is more flexible than Li2018 as

Li2018 takes a semiparametric approach which assumes the form of the hazard

function, making their results sensitive to the selection of an r value.

2.6 Real Data

In this section, we apply our proposed method in a practical scenario by examining

data from the randomized AIDs clinical trial conducted in 1997 (recall from the

introduction section). As stated previously, one major objective of this study was

to examine treatment effects across different treatment groups through the plasma

HIV-1 RNA level, which correspond to doubly censored time-to-events. We la-

bel the treatment group which receives a combination of 3 drugs as the ”trt = 1”

group and the treatment group which receives a combination of only 2 drugs as the

”trt = 0” group. A remark should be made that this dataset was actually conducted

under a fixed censoring scenario due to limitations ofmeasuring techniques, result-
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ing in the fact that all baseline log(RNA) levels could only be observed between

−2.60 and 5.88. This lends further reason to our focus on an dataset that can be ar-

gued to be out-dated. We acknowledge that this dataset may not be practically rele-

vant in contemporary times, yet it nonetheless holds methodological value given it

contains fixed double censored observations. In addition, the dataset is still being

analyzed in recent literature (e.g., Li et al. (2018),Choi and Huang (2021)) while

newer datasets have not yet surfaced.

Belowwe present the analysis results of the proposedmethod alongwith the re-

sults from spBayesSurv and Li2018 methods, mainly for demonstration purposes.

A visual aid is also provided for better distinction of treatments effects between

the two treatment groups.

Table 2.9: Results of AIDS Study Analysis
Proposed method
trt baseRNA

Est 1.057 0.254
SD 0.323 0.003

95% CI (0.504, 1.770) (-0.032, 0.564)
spBayes PH spBayes PO

trt baseRNA trt baseRNA
Est 1.058 0.245 1.437 0.382
SD 0.258 0.194 0.330 0.264

95% CI (0.571, 1.583) (-0.138, 0.623) (0.803, 2.097) (-0.141, 0.893)
Li2018 PH r=0 Li2018 PO r=1

trt baseRNA trt baseRNA
Est 0.982 0.067 1.291 0.145
SD 0.272 0.180 0.308 0.261

95% CI (0.449, 1.516) (-0.285, 0.419) (0.688, 1.894) (-0.365, 0.656)
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Figure 2.1: Predicted survival functions for the two treatment groups

2.7 Discussion

In this chapter, we have proposed an innovative approach to analyze doubly cen-

sored time-to-event data and demonstrated its superior accuracy and flexibility

over alternative methods. Namely, we bring up a new type of weakly informative

prior, the pseudo-quantile I-splines priors, that allows for nonparametric estima-

tion and prediction of doubly censored time-to-event data under both random and

fixed censoring schemes. We illustrate the effectiveness of this innovative prior

by comparing simulation results in several scenarios with two leading methods

with respect to our context. For fixed censoring specifically, in addition to out-

performing these methods considerably in some cases and displaying comparable

results otherwise, our results are quite close to the assigned true values. This lends
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credibility to the statement that our method is not just the first to target estima-

tion and prediction of doubly censored time-to-events under fixed censoring, but

also a valid method that deserves practical considerations. Subsequently, more

attention should be brought to fixed censoring as a whole, since professionals who

encounter such type of data can now be enabled with our proposed method or any

future modification of it. We understand the complexity of fixed censoring and the

intricacy around when only minimal information can be drawn from a substantial

portion of observations. Despite these challenges, we believe our approach of

pseudo data substitution has its merit, as the generated data may eventually mimic

the true distribution of observations with minimally available information.



Chapter 3

Extension in model

3.1 Background

Our choice of an weakly informative prior in the last chapter was motivated by

its potential to mitigate unidentifiability, as demonstrated many times in litera-

ture with unidentified parametric models (McCulloch and Rossi (1994); Gutiérrez

et al. (2014); McElreath (2020); Cole (2020); among others). In this chapter, we

further explore the poor mixing problem induced by unidentifiability as well as

prior informativeness. As stated previously, the PPD of some future observation

can, in theory, be estimated despite model unidentifiability. However, in practice,

such estimations are not always reliable, as unidentified infinite-dimensional pa-

rameters can cause sampled MCMC chains to mix poorly, which may ultimately

result in non-convergent sampled chains of the PPD (Vehtari et al., 2021). Given

that model unidentifiability can interfere with posterior predictions through poor

mixing has been established, it remains imperative to differentiate models with one

unidentified infinite-dimensional parameter andmodels with multiple such param-

30
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eters. Extant research has found that, for models with only a single unidentified

infinite-dimensional parameter, poorly-mixed MCMC chains do not necessarily

generate non-convergent sampled PPDs. Hence, poor mixing may not be a critical

concern for this class of models such as Bayesian mixture models (Celeux et al.

(2000); Geweke (2007)) and Bayesian neural networks (Izmailov et al. (2021);

Papamarkou et al. (2022)), as accurate predictions can still be achieved. On the

contrary, strong evidence (Sparapani et al. (2021); Kim and Rockova (2023)) sug-

gests that poor mixing can dampen prediction accuracy significantly for models

with multiple unidentified infinite-dimensional parameters (of which nonparamet-

ric transformation models belong). Consequently, how to address poor mixing

under such models with more than one unidentified infinite-dimensional parame-

ters is a vital question to improving posterior prediction precision, yet currently it

stands unsolved.

As illustrated in the two previous chapters, we have proposed and demon-

strated the viability of utilizing weakly informative priors to assist MCMC sam-

pling and ensure reliable posterior predictions. However, it should be noted that

the NTM (2.1) only contains two unidentified infinite-dimensional parameters,

and it is unclear whether our approach would still work under models with more

than two such parameters. Therefore, we extend nonparametric transformation

models under right censoring to a more complex model to examine whether the is-

sue of poor mixing can be similarly mitigated. In addition, we hope to uncover the

underlying mechanism behind weakly informative priors’ effectiveness in com-

bating poor mixing. Our goal is to ultimately offer some guidelines on how to

appropriately elicit priors for models with multiple infinite-dimensional parame-

ters.
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The philosophy behind establishing this kind of a criterion arises from a well-

known standard to judge whether MCMC chains are sufficiently mixed (Vehtari

et al., 2021). In essence, when the ratio of between-chain variance over within-

chain variance for MCMC chains can be small enough, poor mixing will not be a

hindrance. Based on this realization, we speculate that as long as the within-chain

MCMC variance is sufficiently large, poor mixing can be effectively mitigated.

Another crucial insight is that as more data become available, the posterior vari-

ances of unidentified parameters can never vanish (Amewou-Atisso et al., 2003).

This understanding allows us to draw from the Bayes formula that, for unidentified

parameters, prior variances will dominate posterior variances.

Consequently, we propose to further categorize the class of weakly informative

priors by their variance and distinguish a new class ofmoderately weak informative

priors that can help with poor mixing. It should be noted that our approach is

based entirely upon prior manipulation and is distinctly different from bypassing

poor mixing by adjusting posterior samples (Yao et al., 2022).

In the next section, we apply moderately weak informative priors to an exten-

sion of nonparametric transformation models and present numerical illustrations

of their effectiveness. Conceptual explorations and proposed definitions are elab-

orated in Section 3.
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3.2 Extension: nonparametric additive model

Consider the following nonparametric additive model (NAM) with transformed

survival outcomes.

h(T ) =
p∑

j=1

gj(Xj) + ε, (3.1)

where h is a monotone and smooth function and gj are unknown smooth regres-

sion functions. Obviously, the infinite dimensional parameters (h, g1, . . . , gp, fε)

in NAM (3.1) are unidentified. The conditions to identify NAM (3.1) are compli-

cated, referred to Chiappori et al. (2015) and references therein. To address the

prediction under NAM (3.1), we similarly transfer it to its equivalent inference

model

H(T ) = ξ exp

(
p∑

j=1

gj(Xj)

)
. (3.2)

We model the nonnegative H by the Quantile-knot I-splines prior (Zhong, 2023)

and model fξ by DPM model (2.5). For the regression functions gj , we model it

through the following Karhunen-Loeve expansion

gj(t) =
M∑

m=1

wjmφm(t), (3.3)

where {φm}Mm=1 are the orthornomal basis functions and wjm ∈ R are the co-

efficients. We set M = 10 and {φm}Mm=1 as the Fourier basis functions in the

following example.
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As a numerical illustration, we consider the following data-generating model

log(T ) = X1 + sin(X2) + ε, ε ∼ N(0, 1), (3.4)

where X1, X2 ∼ U(0, 1) are all continuous variables.

We empirically assign wjm ∼ N(0, 1) as the moderately weak informative

priors for gj and adopt the same setting of moderately weak informative priors for

(H, fξ) in the previous chapter. Through the trace plot of posterior likelihood in

Figure 3.1(a), we find the MCMC chains are well-mixed. The prediction check in

Figure 3.1(b) shows that the prediction performance is satisfactory.
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Figure 3.1: (a) MCMC trace plot of posterior likelihood; (b) prediction check plot: true (x axis),

prediction (y axis).

3.3 Adequate informativeness andmoderately weak

informative priors

Consider a nonparametric model M with two unidentified infinite-dimensional

parameters θ1(t) and θ2(t), and assume that M becomes identified once either

θ1(t) or θ2(t) is specified. Write the corresponding weakly informative priors of

the two parameters as π(θ1) and π(θ2), and let Θ̃ denote the collection of all hy-
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perparameters of these two priors. Now assume there exists some function gθj(t)

such that

V{θj(t)|D} = gθj(t)(Θ̃) +O(n−1), j = 1, 2, (3.5)

where V is the variance operator and V{θj(t)|D} is the posterior variance. Let

V{θSj (t)|D} be the within-chain MCMC variance under a sampler S , then we say

priors π(θ1) and π(θ2) are moderately weak informative priors if V{θSj (t)|D} ≥

gθj(t)(Θ̃), where gθj(t)(Θ̃) is defined as the adequate informativeness level.

Here we attempt to apply the definitions to nonparametric transformationmod-

els and establish a criterion. Suppose one draws M > 1 parallel MCMC chains.

For m = 1, . . . ,M , let V(H(m)(sj)|D) be the within-chain variance of the mth

MCMC chain of H(sj). Suppose π(α) = exp(η) and π(ψ) = exp(ζ).

We say the priors for (H, fξ) are moderately weak informative priors and have

adequate informativeness to achieve MCMC mixing if, for knot sj0 ,

M−1
M∑

m=1

V
{
H(m)(sj0)|D

}
≥ gj0(η, ζ), (3.6)

where

sj0 = max
{
Q̂T (q/NI), Q̂T̃ (q/NI)

}
, q = min

q=0,...,NI−1

{
1− q

NI
< e−1

}
.

It is worth recognizing that the above definitions are not meant to be airtight.

Rather, they serve as mere recommendations for prior elicitation. This is not to

say that such guidelines, if followed, could not help save redundant time and ef-

fort, but to express that there is nonetheless room left to improve upon what we

have proposed here. It would not be unfair to say that our work is still at a pre-
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liminary stage, given that more theoretical support is needed to further justify our

definitions. We do believe further explorations in theory and proof are worthy of

a separate work and may be beyond our capabilities at the moment. To echo one

examiner of the thesis, here we attempt to outline a potential route of theoretical

proofs under the Bayesian paradigm.

Route of theoretical proofs: Recall that we use the notation Θ̃ to specify

all hyperparameters outside the two priors elicitated for the two nonparametric

parameters. In our conception, we conjecture that the adequate informativeness

level may be expressed as a function of hyperparameters Θ̃ in (3.5). Specifically,

under NTM (2.1), the hyperparameters Θ̃ is presented by (η, ζ, ρ), where η is the

hyperparameter of the exponential prior for the I-spline coefficients, ζ , and ρ are

the hyperparameters of the exponential priors for (ψ, ν) in the Weibull kernel.

In NTM (2.1), we consider V{H(t)|D}, the marginal posterior variance of H

with respect to every t. Our thought is that, based on the total variance formula,

one can decompose V{H(t)|D} as the sum of two parts,

Part 1 The expectation of local variance Eψ,νV{H(t)|D,ψ, ν}.

Part 2 The variance of local expectation Vψ,νE{H(t)|D,ψ, ν}.

Note that once (ψ, ν) is specified, H(t) is identified. In this sense, the first

term of (expected) local variance will vanish in the semiparametric rate of n−1 (the

square of n−1/2), given the Bernstein-von Mises result holds locally. Therefore,

the first step of proof is to establish the Bernstein-von Mises theorem given the

model error fξ specified. This step obtains the O(n−1) residual term in (3.5).

Suppose we have shown the Bernstein-von Mises theorem locally in the first

step. In the next step, we are in a position to formulate the second part, the variance
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of local expectation. Based on the Bernstein-von Mises theorem, we immediately

have that

E{H(t)|D,ψ, ν} = H0(t)|ψ, ν,

where H0(t) is the “ground truth” of H(t) given ψ and ν specified. Therefore,

the second part of V{H(t)|D} is indeed the variance of “true” values of H0(t).

This variance can be accomplished by formulating the association betweenH0(t)

and (ψ,ν). One possible way is to formulate Vψ{H0(t)|ψ}|ν first and repeatedly

employ the total variance formula. Finally, by integrating out (ψ, ν), we obtain

the form of gH(t)(Θ̃) in (3.5).



Chapter 4

Conclusion

This chapter serves to summarize the research conducted in previous chapters and

highlight our main contributions. Potential extensions and directions to be ex-

plored in the future will also be discussed in detail.

Our first major contribution lies in the successful application of nonparametric

transformation models in doubly censored survival analysis. Methodologically,

we have managed to construct a weakly informative prior, the Pseudo-Quantile

I-splines prior, which enables computations under the Bayesian framework to nul-

lify unidentifiability with such nonparamteric transformation models. In particu-

lar, the proposed prior is also capable of handling fixed censoring, a rarely studied

yet important censoring scheme. Additionally, although the prior is formed for the

double censoring scheme specifically, it can be trivially extended to simpler cen-

soring schemes, and perhaps with more careful modifications, to other complex

ones.

The next major contribution revolves around poor mixing for MCMC and un-

reliable Bayesian predictions under models with multiple unidentified infinite-

38
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dimensional parameters. Conceptually, we propose a definition of adequate in-

formativeness level to quantify the degree of impact, in terms of variance, that a

certain prior can have on the corresponding posterior distribution. The introduc-

tion of this definition further breaks down the entirety of informative priors into

more nuanced categories, andwe name the newly formed class asmoderately weak

informative priors. In terms of applications, we extend nonparametric transforma-

tion models to include more than unidentified infinite-dimensional parameters and

demonstrate the capability of moderately weak informative priors to mitigate poor

mixing under such models.

We hope that our work in chapter 2 can inspire interest from more fellow re-

searchers to continue developingmore effective estimation and prediction tools for

doubly censored time-to-event data, especially under fixed censoring. It should be

noted that the proposed method is only applicable with time-independent covari-

ates, and more complicated analysis is required to understand how our framework

functions when time-dependent covariates are involved, as an entirely different

approach may be necessary. To suggest some other potential research directions,

we hope the proposed method can be generalized to interval censoring. This will

not be an effortless task due to the absence of exactly observed time-to-events,

although this may not cause as much of an issue for fixed interval censoring, since

contextual information can likely be obtained given all events occur within one

specific time interval. One final thought comes down to prediction in a hypotheti-

cal situation where all time-to-events are fixed doubly censored, leaving only two

distinct values in the entire dataset. It is certainly up to debate how much practical

worth can arise from solving this problem, but there is little doubt that it remains

intriguing theoretically, and we aspire for a meaningful solution in the future.
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Regarding poor mixing and informativeness, as we have suggested in chapter

3, there are many intriguing research problems left to be solved within the pre-

liminary framework we have established. Although we have not yet the time to

venture deeper into these problems ourselves, here we dare to compose some of

the questions we believe are crucial for a more comprehensive perspective.

One natural line of inquiry is whether a stricter threshold can be obtained as

the adequate informativeness level, such that priors which contain at least this

amount of information (if not strictly more) can guarantee the nonoccurence of

poor mixing. It is entirely possible that such a tighter bound could exist, but in

case the current criterion can be refined, it may nevertheless be worthwhile to in-

vestigate the resulting empirical differences in performance, as to determine the

practicality and necessity of a more restricted definition. Another idea that is per-

haps more abstract comes down to if the presently defined moderately weak infor-

mative priors can be conceptually distinguished from weakly informative priors in

other ways, and as a follow-up, it may even be meaningful to further differentiate

within this class of moderately weak informative priors. Subsequently, a mathe-

matical distinction between informative priors and moderately weak informative

priors should be considered. Although this may not be immediately relevant re-

garding poor mixing, it could provide valuable insight into the characteristics of

moderately weak informative priors.

Computationally, we are curious to discover if poor mixing becomes an ob-

stacle when moderately weak informative priors and weakly informative priors,

informative priors, or noninformative priors are elicited simultaneously, meaning

when one or some, but not all, of the unidentified parameters have moderately

weak informative priors. The results findings may shed additional light on the
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power of moderately weak informative priors and their interaction effects with

other types of priors. We expect sufficiently accurate posterior predictions in situ-

ations where moderately weak informative priors are combined with weakly infor-

mative or informative priors, but the difference in accuracy may still be significant

enough when compared to only applying moderately weak informative priors.

Theoretically, it remains to be proved the mathematical rigor of our proposed

definitions. Although we acknowledge that any concrete proof is beyond the scope

of this work, we have proposed a Bayesian framework regarding how we envision

a set of proofs may be obtained. We suspect the same set of proofs can be extended

trivially across different models with multiple unidentified infinite-dimensional

parameters, and it may be beneficial to focus on one particular type of model ini-

tially. It may be a good starting point to consider the NTM and NAM we have

proposed, as the proof should follow logically from two infinite-dimensional pa-

rameters to more than two.

It is to our regret that we do not have time, at this moment, to further pursue

research regarding the issue of poor mixing under models with multiple unidenti-

fied infinite-dimensional parameters, and we hope our future work could attempt

to answer the many questions posed here. In the meantime, we welcome and en-

courage keen researchers to extend the work in this thesis and formulate yet more

problems.
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