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Abstract

In this thesis, we present approximation and reformulation techniques for prob-

lem with distributionally robust chance-constrained linear matrix inequality

(DRCCLMI), aiming at overcoming the computational challenges posed by

multidimensional integration and nonconvexity of feasible sets. DRCCLMI

seek a robust solution which guarantees that the chance constraints are fulfilled

for a wide range of possible distribution within an ambiguity set. Specifically,

we consider a data-driven ambiguity set which includes all the potential distri-

butions sharing the same moment information. We first propose an inner ap-

proximation for DRCCLMI in a general form to deal with common constraint

structures encountered in real-world scenarios. The key method we use for ap-

proximation is the Conditional Value-at-Risk (CVaR) approach, which enables

us to approximate DRCCLMI in a way that ensures a certain level of solution

quality while maintaining the robustness of the original constraint. Second,

we derive an inner approximation and exact reformulations for a special case

of DRCCLMI with and without support information, respectively. Specifi-

cally, this special case refers to the situation where a block matrix structure is

inherent in the linear matrix inequality. Notably, our approximation and re-

formulation techniques facilitate the transformation of the original DRCCLMI

into a more tractable semidefinite programming (SDP) problem, simplifying

the computational process and improving the accuracy and efficiency of the so-

lution. The practicality and effectiveness of these techniques are demonstrated

through numerical studies on two real-world applications: truss topology de-

sign problem and calibration problem.
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Chapter 1

Introduction

A Linear Matrix Inequality (LMI) is a mathematical constraint in the form

of an inequality that involves a linear or affine function, maps from a finite-

dimensional vector space to a set of Hermitian or symmetric matrices (Scherer

and Weiland 2000). LMI has been emerging as a powerful tool for control,

systems, and other research fields in engineering and applied mathematics (S.

Boyd et al. 1994). For example, Masubuchi et al. (1998) propose a unique

approach for linear controller synthesis, where multiple LMI constraints rep-

resent control specifications. Zhong et al. (2003) study the uncertain linear

time-invariant systems by using robust fault detection filters in LMI format.

There are several reasons why LMI plays such an important and widespread

role. First, LMI provides a unified language into which different types of

constraints appearing in optimization problems can easily be expressed (El

Ghaoui and Niculescu 2000). These constraints encompass linear, quadratic,

semidefinite, and spectral constraints. Second, LMI copes well with the high-

dimensional problem, which is typical of many modern engineering problems

(Wang et al. 2017). Third, convex constraints in LMI can attract full benefits

from the convex optimization theory (Scherer and Weiland 2000). Finally,

with the invention of interior point approach (Nesterov and Nemirovskii 1994),

the Ellipsoid algorithm, and other sound numerical algorithms, solving LMI

efficaciously even in large-scale cases is feasible.

Dealing with uncertainties in real-world systems prompts an important
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CHAPTER 1. INTRODUCTION 3

question, while LMI is suitable for deterministic systems. An effective answer

in this context arises as chance-constrained programming. It first comes into

being in Charnes and Cooper (1959), and further development occurs in Miller

and Wagner (1965). It can be used to guarantee constraint satisfaction in a

probabilistic sense when the exact values of random variables are unknown

or may change in the future. Chance-constrained programming is important

especially in areas like robust control and risk management, where model es-

tablishment needs stability under different situations (Calafiore and Campi

2006; Jiang and Guan 2016). Applying chance constraints, not only uncer-

tainties can be effectively managed but also systems can be designed to fulfill

certain operational requirements. Thus, by incorporating chance constraints,

we can design a system of constraints to ensure stability and reliability in un-

predictable environments.

Although the integration of chance constraints with LMI is a major ad-

vance, it assumes a crucial assumption. Under the assumption, the probabil-

ity distributions are known (Shapiro, Dentcheva, et al. 2021). Nevertheless,

collecting all of the information is not practicable, particularly in practical

senarios, where we have only partial information due to lack of historical data.

Hence, we need a data driven solution to manage the uncertainty. In this case,

the idea of Distributionally Robust Optimization (DRO) plays an important

role. DRO doesn’t only consider one probability distribution, it takes multiple

distributions inside the ambiguity set into consideration. This is especially

beneficial for system models when we don’t know the exact probability dis-

tribution in advance while constructing models. In this scenario, historical

information is particularly valuable because it gives us empirical data from

which we could construct the ambiguity set. Once we put these kinds of infor-

mation in our problem formulation, we can benefit a lot in terms of capturing

uncertainty and improving robustness.

In recent years, numerous disciplines, including transportation (e.g., Yang

et al. 2023), supply chain management (e.g., Zhong et al. 2023), and en-

ergy systems (e.g., Zhao et al. 2019), have embraced DRO techniques. The

mathematical structure of uncertain variables in these applications constitutes
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an inherent property, and has tremendous influence on the outcomes of op-

timization problems. Admitting the point of view of DRO can yield more

intelligent and efficient decisions, with less conservatism and thereby narrow-

ing the robustness-applicability gap.

In spite of its attractive qualities, DRO does not come without challenges.

One of the main challenges is in the computational complexity to solve DRO

problems, especially when it comes to large-scale systems, or when ambiguity

sets are complex (Shapiro, Dentcheva, et al. 2021). It comes from the require-

ment to optimize over a number of possible distributions, which can each lead

to very different optimization outcomes. Furthermore, even the selection and

construction of an acceptable ambiguity set alone poses a challenge (Moha-

jerin Esfahani and Kuhn 2018). It requires a fine balance that avoids being

too conservative (and hence, providing overly cautious solutions), while in the

meantime being too optimistic (and hence, ignoring robustness requirements).

Crossing DRO, Chance-Constrained Programming, and LMIs, our research

forges a path in the pursuit of a unified system that intermingles these three

powerful mathematical constructs, referred to as Distributionally Robust Chance-

constrained Linear Matrix Inequality (DRCCLMI) herein. To join these three

mathematical tools together, we face the daunting task of dealing with compli-

cated, practical optimization challenges plagued by distributional uncertainties

and probabilistic constraints simultaneously, without sacrificing computational

tractability.

Several benefits accrue from such integration. First, DRO is protective,

guarding against unfavorable outcomes by preconditioning on a panorama of

plausible distributions that are contained within the specified ambiguity set.

This robustness is especially critical when one knows but a little about their

underlying data distribution. Second, the chance-constrained optimization

framework can be directly incorporated into probabilistic constraints, making

the optimization model considerably more robust and, hence, realistic. Lastly,

LMIs furnish a mathematical framework that is highly expressive, thus per-

mitting the modelling of a broad collection of applied problems.

Our contributions are as follows:



CHAPTER 1. INTRODUCTION 5

1. By utilizing the Conditional Value-at-Risk (CVaR) constraints and piece-

wise linear decision rule, we are able to develop an inner approximation

for general DRCCLMI.

2. By using CVaR constraints, we also develop an inner approximation and

exact reformulations for DRCCLMI with a block matrix structure in

the linear matrix inequalities for both ambiguity sets with and without

support information. This exact reformulations allows for more accurate

and efficient solutions.

3. To verify the performance of our proposed reformulations and approxi-

mations, we conducted experiments on two industrial application prob-

lems: truss topology design problem and calibration problem. The re-

sults of the numerical study demonstrate that our proposed method per-

forms well.

The remaining chapters are organized as follows. Chapter 2 introduces

the original DRCCLMI of interest and an overview of CVaR constraints to

approximate robust chance constraints. By using CVaR, we derive a conser-

vative approximation for the general DRCCLMI problems in Chapter 3, and

also an approximation and exact reformulations for a special block matrix case

of DRCCLMI in Chapter 4. Chapter 5 presents numerical experiments based

on applications to truss topology design problem and calibration problem. Fi-

nally, Chapter 6 summarizes our contributions.



Chapter 2

Problem Formulation

2.1 DRCCLMI

Given a realization of a random variable ξ ∈ Rm, the following semi-definite

program seeks an x ∈ X ⊆ Rn such that the total cost (c⊤x) is minimized

and a LMI is satisfied:

min
x∈X

c⊤x (2.1a)

s.t. A0 (x) +
m

∑
i=1

ξiAi (x) ⪰ 0. (2.1b)

Here, c ∈ Rn, X is a convex set, and Ai(x) ∈ Sd×d (∀i = 1, . . . , m) are

affine in x. Note that Problem (2.1) is a convex program, and the above

LMI (2.1b) generalizes linear and second-order cone (SOC) constraints. To

hedge against potential risks due to the uncertainty characterized by a joint

probability distribution P, we consider a risk tolerance parameter ϵ ∈ (0, 1)

and solve the following chance-constrained program (CCP):

min
x∈X

c⊤x (2.2a)

s.t. P

{
A0 (x) +

m

∑
i=1

ξiAi (x) ⪰ 0

}
≥ 1 − ϵ, (2.2b)

which ensures that the LMI (2.1b) can be satisfied at a high probability 1− ϵ.

The distribution P is often unknown due to limited information to accu-

6
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rately estimate it, though some historical data can be available. Thus, we use

the data to statistically estimate the moment information of P and construct

the following data-driven distributional ambiguity set D that includes all the

potential probability distributions sharing the same moment information:

D (S , µ, Σ) =

P

∣∣∣∣∣∣∣∣∣
P (ξ ∈ S) = 1

EP [ξ] = µ

EP

[
(ξ − µ) (ξ − µ)⊤

]
⪯ Σ

 . (2.3)

Specifically, any distribution in D specifies the support S , mean µ, and upper

bound Σ ≻ 0 for the covariance matrix of random variable ξ. Throughout

this thesis, we consider the support set S to be {ξ ∈ Rm : ∥ξ∥ ≤ t}. By

hedging against the worst-case probability distribution in D, we consider a

distributionally robust counterpart of the chance constraint (2.2b), leading to

the following problem with a DRCCLMI:

min
x∈X

c⊤x (2.4a)

s.t. inf
P∈D

P

{
A0 (x) +

m

∑
i=1

ξiAi (x) ⪰ 0

}
≥ 1 − ϵ, (2.4b)

Solving Problem (2.4) leads to a robust solution ensuring that the chance

constraint (2.2b) is fulfilled for a wide range of possible distribution P within

the ambiguity set D.

Nevertheless, solving Problem (2.4) can be computationally challenging.

First, the feasible region of Problem (2.4) is nonconvex in general, even if X

is a convex set and A0(x) + ∑m
i=1 ξiAi(x) is an affine mapping in x. Second,

computing P{A0(x) + ∑m
i=1 ξiAi(x) ⪰ 0} is difficult due to the computational

complexity of the high-dimensional integration (Nemirovski and Shapiro 2007;

Shapiro, Dentcheva, et al. 2021). Third, the stochastic dependence among the

random variables and the presence of the ambiguity set further complicate

the solution process (Cheung et al. 2012). Therefore, we aim to develop re-

formulations and approximations to help solve Problem (2.4) efficiently with

high-quality solutions.
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2.2 CVaR Risk Measure

To address the above challenges, we approximate constraint (2.4b) using a

CVaR constraint. Specifically, given a measurable loss function L : Rm → R,

the corresponding CVaR (Rockafellar and Uryasev 2000) at level ϵ associated

with P is specified as

P−CVaRϵ (L (ξ)) = inf
β∈R

{
β +

1
ϵ

EP

[
(L (ξ)− β)+

]}
,

which is a risk assessment measure calculates the conditional expectation of the

loss beyond the (1 − ϵ)-quantile, i.e., expected tail loss. We further consider

the following distributionally robust chance constraint (DRCC)

inf
P∈D

P {L (ξ) ≤ 0} ≥ 1 − ϵ.

Here, DRCC ensures the probability of L(ξ) ≤ 0 in the worst case to be at

least 1 − ϵ. It is well known that for any loss function L(ξ),

P (L (ξ) ≤ P−CVaRϵ (L (ξ))) ≥ 1 − ϵ.

This implies that P−CVaRϵ(L(ξ)) ≤ 0 is already sufficient to indicate that

P(L(ξ) ≤ 0) ≥ 1 − ϵ. Since this holds for any distribution P, we can derive

that the following distributionally robust CVaR constraint (2.5)

sup
P∈D

P−CVaRϵ (L (ξ)) ≤ 0 (2.5)

constitutes a conservative approximation for DRCC.

Moreover, a notable refinement arises when considering the nature of the

loss function L(ξ), as shown in the following proposition. Here, we emphasize

that Proposition 1 holds under the assumption that no support information S

is defined in the ambiguity set D.

PROPOSITION 1. Assume that no support information S is defined within

the ambiguity set D. Let L : Rm → R be a continuous function that is either
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1. concave in ξ, or

2. quadratic in ξ

Then, we have

sup
P∈D

P−CVaRϵ (L(ξ)) ≤ 0 ⇐⇒ inf
P∈D

P (L (ξ) ≤ 0) ≥ 1 − ϵ. (2.6)

Proof. Firstly, we aim to prove:

inf
P∈D

P (L (ξ) ≤ 0) ≥ 1 − ϵ ⇐⇒ WC − VaRϵ (L (ξ)) ≤ 0, (2.7)

where the WC − VaRϵ is the worst-case Value-at-Risk (VaR) of L(ξ). Accord-

ing to the definition, the WC − VaRϵ is equivalent to

WC − VaRϵ (L(ξ)) = inf
γ∈R

{
γ : inf

P∈D
P (L (ξ) ≤ γ) ≥ 1 − ϵ

}
. (2.8)

Observe that if the left hand side of the equivalence (2.7) holds, then we can

conclude that γ = 0 is a feasible solution to (2.8). This means WC − VaRϵ(L(ξ)) ≤

0 holds. Next, we prove that the converse implication holds. In the previous

work of Pagnoncelli et al. (2009), they conclude that the mapping function from

γ to P(L(ξ) ≤ γ) is upper semicontinuous for any fixed distribution P ∈ D.

Here, we can also derive that the mapping function from γ to inf
P∈D

P(L(ξ) ≤ γ)

is upper semicontinuous. Observe that if WC − VaRϵ(L(ξ)) ≤ 0 holds, there

exists a sequence {γn}n∈N which converges to 0 and is a feasible solution to

(2.8) as well. This means

inf
P∈D

P (L (ξ) ≤ 0) ≥ lim
n→∞

sup inf
P∈D

P (L (ξ) ≤ γn) ≥ 1 − ϵ.

Thus, the left hand side of (2.7) holds as well.

Then, we need to prove that

sup
P∈D

P−CVaRϵ (L(ξ)) = WC − VaRϵ (L(ξ)) .
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Observe that (2.8) can be equivalently expressed as

WC − VaRϵ (L(ξ)) = inf
γ∈R

{
γ : sup

P∈D
P (L (ξ) > γ) ≤ ϵ

}
.

Next, we simplify sup
P∈D

P(L(ξ) > γ) ≤ ϵ according to Lemma 2 in Appendix

II. Then, equation (2.8) can be reformulated as

WC − VaRϵ (L(ξ)) = inf
γ,τ,s,q,Q

γ (2.9a)

s.t. 1
ϵ

(
s + 2µ⊤q + ⟨Σ + µµ⊤, Q⟩

)
≤ τ, (2.9b)

s + 2ξ⊤q + ξ⊤Qξ ≥ 0, ∀ξ ∈ Rm, (2.9c)

−τ + s + 2ξ⊤q + ξ⊤Qξ + γ − L (ξ) ≥ 0,

∀ξ ∈ Rm, (2.9d)

γ ∈ R, τ ∈ R, τ ≥ 0, s ∈ R, (2.9e)

q ∈ Rm, Q ∈ Rm×m, Q ⪰ 0. (2.9f)

Here, we define β = γ − τ, which enables us to eliminate variable γ. Problem

(2.9) is equivalent to

WC − VaRϵ (L (ξ)) = inf
β,τ,s,q,Q

β + τ

s.t. 1
ϵ

(
s + 2µ⊤q + ⟨Σ + µµ⊤, Q⟩

)
≤ τ,

s + 2ξ⊤q + ξ⊤Qξ ≥ 0, ∀ξ ∈ Rm,

β + s + 2ξ⊤q + ξ⊤Qξ − L (ξ) ≥ 0, ∀ξ ∈ Rm,

β ∈ R, τ ∈ R, s ∈ R,

q ∈ Rm, Q ∈ Rm×m, Q ⪰ 0.

Note that at optimality τ = 1
ϵ (s + 2µ⊤q + ⟨Σ + µµ⊤, Q⟩), which gives us the

final expression of WC − VaRϵ(L(ξ))

WC − VaRϵ (L (ξ)) = inf
β,s,q,Q

β +
1
ϵ

(
s + 2µ⊤q + ⟨Σ + µµ⊤, Q⟩

)
(2.11a)

s.t. s + 2ξ⊤q + ξ⊤Qξ ≥ 0, ∀ξ ∈ Rm, (2.11b)
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β + s + 2ξ⊤q + ξ⊤Qξ − L (ξ) ≥ 0,

∀ξ ∈ Rm, (2.11c)

β ∈ R, s ∈ R, q ∈ Rm, (2.11d)

Q ∈ Rm×m, Q ⪰ 0. (2.11e)

Note that by Lemma 1 we have

sup
P∈D

P−CVaRϵ (L(ξ)) = inf
β∈R

{
β +

1
ϵ

sup
P∈D

EP

[
(L (ξ)− β)+

]}
(2.12a)

= inf β +
1
ϵ

(
s + 2µ⊤q + ⟨Σ + µµ⊤, Q⟩

)
(2.12b)

s.t. s + 2ξ⊤q + ξ⊤Qξ ≥ 0, ∀ξ ∈ Rm, (2.12c)

s + 2ξ⊤q + ξ⊤Qξ ≥ L (ξ)− β,

∀ξ ∈ Rm, (2.12d)

β ∈ R, s ∈ R, q ∈ Rm, (2.12e)

Q ∈ Rm×m, Q ⪰ 0, (2.12f)

which is just the same as (2.11). This completes the proof.

The above techniques enable us to derive conservative approximations or

exact reformulations for DRCC based on the property of the loss function

L(ξ). Note that other alternative approaches can also be used for approxi-

mating DRCC. For example, Jiang and Xie (2023) approximate DRCC using

ALSO-X# method, where a data-driven q−Wasserstein ambiguity set and an

uncertain constraint system specified by multiple linear constraints are con-

sidered. Building upon the above theoretical framework, our research aims

at developing computationally efficient approximations and reformulations for

DRCCLMI. This is achieved by transforming Problem (2.4) into tractable SDP

Problems by using the above techniques.



Chapter 3

General Case

3.1 Inner Approximation Using CVaR

In this chapter, we consider a general formulation of Linear Matrix Inequality

A0(x) + ∑m
i=1 ξiAi(x) ⪰ 0. We apply the CVaR approximation method intro-

duced in Chapter 2 to derive an inner approximation for DRCCLMI (2.4b).

PROPOSITION 2. The following formulation provides an inner approximation

for Problem (2.4)

min
x,λ,β,s,q,Q

c⊤x (3.1a)

s.t. β +
1
ϵ

(
s + 2µ⊤q + ⟨Σ + µµ⊤, Q⟩

)
≤ 0, (3.1b)

s + 2ξ⊤q + ξ⊤Qξ ≥ 0, ∀ξ ∈ S , (3.1c)

s + 2ξ⊤q + ξ⊤Qξ + β + λ (ξ) ≥ 0, ∀ξ ∈ S , (3.1d)

A0 (x) +
m

∑
i=1

ξiAi (x)− λ (ξ) Id ⪰ 0, ∀ξ ∈ S , (3.1e)

β ∈ R, s ∈ R, q ∈ Rm, Q ∈ Rm×m, Q ⪰ 0, (3.1f)

where λ(ξ) is a function mapping from Rm to R.

Proof. Given the definition of positive semidefinite (PSD), the linear matrix

12
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inequality A0(x) + ∑m
i=1 ξiAi(x) ⪰ 0 can equivalently be expressed as

z̄⊤
(

A0 (x) +
m

∑
i=1

ξiAi (x)

)
z̄ ≥ 0, ∀z̄ ∈ Rd,

⇐⇒
(

z̄
∥z̄∥

)⊤
(

A0 (x) +
m

∑
i=1

ξiAi (x)

)(
z̄

∥z̄∥

)
≥ 0, ∀z̄ ∈ Rd. (3.2)

If we let z = z̄
∥z̄∥ , then we have z ∈ Rd and ∥z∥ = 1. Constraint (3.2) can be

represented by:

z⊤
(

A0 (x) +
m

∑
i=1

ξiAi (x)

)
z ≥ 0, ∀z ∈ Rd, ∥z∥ = 1,

⇐⇒ min
z∈Rd,∥z∥=1

z⊤
(

A0 (x) +
m

∑
i=1

ξiAi (x)

)
z ≥ 0.

Starting from constraint (2.4b), if we replace A0(x) + ∑m
i=1 ξiAi(x) ⪰ 0 by

min
∥z∥=1

z⊤(A0(x) + ∑m
i=1 ξiAi(x))z ≥ 0, then we have:

inf
P∈D

P

{
A0 (x) +

m

∑
i=1

ξiAi (x) ⪰ 0

}
≥ 1 − ϵ,

⇐⇒ inf
P∈D

P

{
min
∥z∥=1

z⊤
(

A0 (x) +
m

∑
i=1

ξiAi (x)

)
z ≥ 0

}
≥ 1 − ϵ,

⇐⇒ inf
P∈D

P

{
max
∥z∥=1

−z⊤
(

A0 (x) +
m

∑
i=1

ξiAi (x)

)
z ≤ 0

}
≥ 1 − ϵ. (3.3)

The second equivalence is reasonable because minimizing a function and max-

imizing its negative yield the same result under identical constraints. Observe

that max
∥z∥=1

−z⊤(A0(x) + ∑m
i=1 ξiAi(x))z in constraint (3.3) is neither concave

nor quadratic in ξ. If we consider it as the loss function L(ξ), then the fol-

lowing distributionally robust CVaR constraint (3.4) provides a conservative

approximation for constraint (3.3):

sup
P∈D

P−CVaRϵ

(
max
∥z∥=1

−z⊤
(

A0 (x) +
m

∑
i=1

ξiAi (x)

)
z

)
≤ 0. (3.4)

According to the definition of CVaR, constraint (3.4) can be further expressed
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as:

sup
P∈D

inf
β∈R

β +
1
ϵ

EP

(max
∥z∥=1

−z⊤
(

A0 (x) +
m

∑
i=1

ξiAi (x)

)
z − β

)+


≤ 0, (3.5)

⇐= inf
β∈R

β +
1
ϵ

sup
P∈D

EP

(max
∥z∥=1

−z⊤
(

A0 (x) +
m

∑
i=1

ξiAi (x)

)
z − β

)+


≤ 0. (3.6)

Note that ⇐= implies an inner approximation after the interchange of the

supremum and infimum. This is based on the max–min inequality (Boyd

and Vandenberghe 2004). By applying Lemma 1, the subordinate problem

sup
P∈D

EP((max
∥z∥=1

−z⊤(A0(x) + ∑m
i=1 ξiAi(x))z − β)+) in constraint (3.6) can

be expressed as:

inf
β,s,q,Q

s + 2µ⊤q + ⟨Σ + µµ⊤, Q⟩

s.t. s + 2ξ⊤q + ξ⊤Qξ ≥ max
∥z∥=1

−z⊤
(

A0 (x) +
m

∑
i=1

ξiAi (x)

)
z − β,

∀ξ ∈ S ,

s + 2ξ⊤q + ξ⊤Qξ ≥ 0, ∀ξ ∈ S ,

β ∈ R, s ∈ R, q ∈ Rm, Q ∈ Rm×m, Q ⪰ 0.

Combining the above problem into constraint (3.6), the following constraints

provide a conservative approximation for constraint (2.4b):

β +
1
ϵ

(
s + 2µ⊤q + ⟨Σ + µµ⊤, Q⟩

)
≤ 0, (3.7a)

s + 2ξ⊤q + ξ⊤Qξ + β + min
∥z∥=1

z⊤
(

A0 (x) +
m

∑
i=1

ξiAi (x)

)
z ≥ 0,

∀ξ ∈ S , (3.7b)

s + 2ξ⊤q + ξ⊤Qξ ≥ 0, ∀ξ ∈ S , (3.7c)

β ∈ R, s ∈ R, q ∈ Rm, Q ∈ Rm×m, Q ⪰ 0. (3.7d)

Since min
∥z∥=1

z⊤(A0(x)+∑m
i=1 ξiAi(x))z is nothing but the minimum eigenvalue

of matrix A0(x)+∑m
i=1 ξiAi(x), constraint (3.7b) can be equivalently rewritten
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as:

s + 2ξ⊤q + ξ⊤Qξ + β + λmin

(
A0 (x) +

m

∑
i=1

ξiAi (x)

)
≥ 0, ∀ξ ∈ S . (3.8)

Here, λmin(·) represents the minimum eigenvalue of a matrix. Note that

λmin(A0(x) + ∑m
i=1 ξiAi(x)) is related to the realisation of ξ. Next, we de-

fine a function λ(ξ) : Rm → R to characterise the relationship between ξ and

the minimum eigenvalue. Specifically, constraint (3.8) can be equivalently re-

formulated as:

s + 2ξ⊤q + ξ⊤Qξ + β + λ (ξ) ≥ 0, ∀ξ ∈ S ,

A0 (x) +
m

∑
i=1

ξiAi (x)− λ (ξ) Id ⪰ 0, ∀ξ ∈ S .

This completes the proof.

3.2 Inner Approximation Using Recourse Functions

A prevalent method to address the intractability of λ(ξ) in Proposition 2 is

to specifically define this wait-and-see decisions in (3.1d) and (3.1e) to some

specific function with respect to the random variable ξ. For example, Lin-

ear Decision Rules (LDR) and Quadratic Decision Rules (QDR) restrict the

function to be linear and quadratic in ξ, respectively, see, e.g., Ben-Tal et

al. (2004) and Zhen et al. (2022). In this subsection, we derive a conserva-

tive approximation for problem (3.1) through Piecewise Linear Decision Rule

(PLDR).

Here, we partition the original support set S in problem (3.1) into K subsets

S1, . . . ,SK. Specifically, the way we construct the subset partitions is corre-

sponding to Voronoi regions (Fan and Hanasusanto 2024). We set ξ′k, . . . , ξ′K

to be K constructor points, which are randomly chosen from the sample points

{ξ̂ i}k∈[N]. If we start from the k-th constructor point {ξ′k}k∈[K], the Voronoi

region of subset Sk is expressed as all the points in support set S who has the

closest Euclidean distance to constructor ξ′k compared to the other constructor
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points. We define the k-th subset as follows:

Sk = {ξ ∈ S : ∥ξ − ξ′k∥ ≤ ∥ξ − ξ′i∥ , ∀i ∈ [K] : i ̸= k}

= {ξ ∈ S : 2
(
ξ′i − ξ′k

)⊤
ξ ≤ ξ′⊤i ξ′i − ξ′⊤k ξ′k , ∀i ∈ [K] : i ̸= k}.(3.9)

Furthermore, we adopt PLDR in each partition separately. Specifically, the

PLDR for partition k is given by a⊤
k ξ + bk, where ak ∈ Rm and bk ∈ R. Thus,

we express λ(ξ) for the k-th partition as

λk (ξ) = a⊤
k ξ + bk, ∀ξ ∈ Sk, k ∈ [K].

Next, we derive an inner approximation for Problem (3.1) through PLDR.

PROPOSITION 3. By adopting PLDR within each partition, the following

formulation provides an inner approximation for Problem (3.1):

min
x,β,s,q,Q,a,b

c⊤x (3.10a)

s.t. β +
1
ϵ

(
s + 2µ⊤q + ⟨Σ + µµ⊤, Q⟩

)
≤ 0, (3.10b)

s + 2ξ⊤q + ξ⊤Qξ ≥ 0, ∀ξ ∈ S , (3.10c)

s + 2ξ⊤q + ξ⊤Qξ + β + a⊤
j ξ + bj ≥ 0,

∀ξ ∈ Sj, j ∈ [K], (3.10d)

A0 (x) +
m

∑
i=1

ξiAi (x)−
(

a⊤
j ξ + bj

)
Id ⪰ 0,

∀ξ ∈ Sj, j ∈ [K], (3.10e)

β ∈ R, s ∈ R, q ∈ Rm, Q ∈ Rm×m, Q ⪰ 0, (3.10f)

aj ∈ Rm, bj ∈ R, j ∈ [K], (3.10g)

where the set Sj of partition j is defined in (3.9).
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3.3 Inner Approximation for LMI with Ellipsoidal Sup-

port

According to the definition of subset Sk in (3.9), all the constraints are linear

except ξ ∈ S , i.e., ∥ξ∥ ≤ t. We further need to derive approximations for

constraint (3.10e) with this kind of nonlinear constraints embedded, i.e., we

consider the following LMI with ellipsoidal support

A0 (x) +
m

∑
i=1

ξiAi (x) ⪰ 0, ∀ξ ∈ Rm : ∥ξ∥ ≤ t. (3.11)

Here, we introduce two types of conservative approximation method.

3.3.1 Inner Approximation for Ellipsoidal Support

The first approximation method is directly derived from Theorem 2.1 proposed

by Ben-Tal et al. (1998).

PROPOSITION 4. The following semidefinite program

max c⊤x (3.12)

s.t. S + Q ⪯ 2A0 (x) , (3.13)

S tA1 (x) tA2 (x) . . . tAm (x)

tA1 (x) Q

tA2 (x) Q
... . . . ...

tAm (x) Q


⪰ 0, (3.14)

in variable x, S, Q is an approximation for constraint (3.11).
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3.3.2 Polyhedral Approximation for Ellipsoidal Uncertainty

In this subsection, we consider the polyhedral approximation for the ellipsoidal

support ∥ξ∥ ≤ t. Our goal is to approximate this conic quadratic constraint

√
ξ2

1 + ξ2
2 + . . . + ξ2

m ≤ t

of dimension m by a system of conic quadratic constraints of dimension 3 each.

Firstly, we provide a polyhedral approximation for

L2 =

{
(y1, y2, y3)

∣∣∣∣√y2
1 + y2

2 ≤ y3

}
. (3.15)

We consider a polyhedral approximation for the set (3.15) using the following

constraints:

θ0 ≥ |y1| ,

η0 ≥ |y2| ,

cos
(τπ

2v

)
θ0 + sin

(τπ

2v

)
η0 ≤ y3, ∀τ ∈ {0} ∩

{
2v−1

}
.

Then, we can approximate constraint (3.11) by

A0 (x) +
m

∑
i=1

ξiAi (x) ⪰ 0, ∀ξ ∈ U . (3.16)

Here, U is defined as a set consisting of the intersection of N non-empty

polyhedral uncertainty sets. Specifically,

U = {ξ : C1ξ ≤ c1} ∩ {ξ : C2ξ ≤ c2} ∩ . . . ∩ {ξ : CNξ ≤ cN} , (3.17)

where C1, . . . , CN ∈ Rp×m and c1, . . . , cN ∈ Rp are given parameters. Specif-

ically, the way we define U is based on the polyhedral approximation for a

system of L2 cone. Next, the following proposition gives an inner approxima-

tion for (3.16).

PROPOSITION 5. The following constraints provide a conservative approxi-
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mation for constraint (3.16)

N

∑
k=1

c⊤k vk ≤ 0,

A0 (x)−
N

∑
k=1

p

∑
j=1

ckjV
(j)
k ⪰ 0,

N

∑
k=1

C⊤
kivk = 0, i = 1, . . . , m,

Ai (x) +
N

∑
k=1

p

∑
j=1

CkijV
(j)
k = 0, i = 1, . . . , m,

vk ≥ 0, k ∈ [N],

V(j)
k ⪰ 0, k ∈ [N], j = 1, . . . , p.

where vk ∈ Rp, k ∈ [N] and V(j)
k ∈ Rd×d, k ∈ [N], j = 1, . . . , p. Here the

support U is defined in (3.17).

Proof. Given the definition of PSD, if A0(x)+∑m
i=1 ξiAi(x) is positive semidef-

inite, then the trace of its product with any PSD matrix is positive. Thus, we

can derive:

∀ξ ∈ U : A0 (x) +
m

∑
i=1

ξiAi (x) ⪰ 0,

⇐⇒ ∀G ⪰ 0, ∀ξ ∈ U : ⟨A0 (x) +
m

∑
i=1

ξiAi (x) , G⟩ ≥ 0,

⇐⇒ ∀G ⪰ 0, ∀ξ ∈ U : ⟨A0 (x) , G⟩+
m

∑
i=1

ξi⟨Ai (x) , G⟩ ≥ 0,

⇐⇒ ∀G ⪰ 0 : ⟨A0 (x) , G⟩+ min
ξ∈U

{
m

∑
i=1

ξi⟨Ai (x) , G⟩
}

≥ 0.

We now assign dual variables λk ∈ Rp, λk ≥ 0, k ∈ [N] to the kth polyhedral
set in U , respectively. If we dualize over ξ, then we have

∀G ⪰ 0 :

⟨A0 (x) , G⟩+ max
λ≥0

{
−

N

∑
k=1

c⊤k λk

∣∣∣∣∣ N

∑
k=1

C⊤
ki λk = −⟨Ai (x) , G⟩, i = 1, . . . , m

}
≥ 0,
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⇐⇒ ∃λk ≥ 0, k ∈ [N], ∀G ⪰ 0 :


⟨A0 (x) , G⟩ ≥

N

∑
k=1

c⊤k λk,

N

∑
k=1

C⊤
ki λk = −⟨Ai (x) , G⟩, i = 1, . . . , m.

(3.18)

Here, we restrict λ using linear decision rule:

λkj (G) = vkj + ⟨V(j)
k , G⟩, k ∈ [N], j = 1, . . . , p,

where vk ∈ Rp, k ∈ [N] and V(j)
k ∈ Rd×d, k ∈ [N], j = 1, . . . , p. Thus,

constraint (3.18) can be equivalently expressed as:

∀G ⪰ 0 :



⟨A0 (x) , G⟩ ≥
N

∑
k=1

c⊤k vk +
N

∑
k=1

p

∑
j=1

ckj⟨V
(j)
k , G⟩,

N

∑
k=1

C⊤
kivk +

N

∑
k=1

p

∑
j=1

Ckij⟨V
(j)
k , G⟩ = −⟨Ai (x) , G⟩, i = 1, . . . , m,

vkj + ⟨V(j)
k , G⟩ ≥ 0, k ∈ [N], j = 1, . . . , p,

⇐⇒



min
G⪰0

⟨A0 (x)−
N

∑
k=1

p

∑
j=1

ckjV
(j)
k , G⟩ ≥

N

∑
k=1

c⊤k vk,

N

∑
k=1

C⊤
kivk + ⟨Ai (x) , G⟩+

N

∑
k=1

p

∑
j=1

Ckij⟨V
(j)
k , G⟩ = 0, ∀G ⪰ 0, i = 1, . . . , m,

vkj + min
G⪰0

⟨V(j)
k , G⟩ ≥ 0, k ∈ [N], j = 1, . . . , p,

⇐⇒



N

∑
k=1

c⊤k vk ≤ 0,

A0 (x)−
N

∑
k=1

p

∑
j=1

ckjV
(j)
k ⪰ 0,

N

∑
k=1

C⊤
kivk = 0, i = 1, . . . , m,

Ai (x) +
N

∑
k=1

p

∑
j=1

CkijV
(j)
k = 0, i = 1, . . . , m,

vk ≥ 0, k ∈ [N],

V(j)
k ⪰ 0, k ∈ [N], j = 1, . . . , p.



Chapter 4

Special Case

4.1 Special Case without Support Information

In the previous chapter, we conduct a detailed exploration of the problem in

its general DRCCLMI form. Next, we can gain further insights by studying

specific cases where the DRCCLMI is more structured.

We turn our attention to a special case where the inner d × d symmetric

linear matrix, A0 (x) + ∑m
i=1 ξiAi (x), in equation (2.4b) exhibits a specific

block structure. In particular, we decompose this matrix into a form : A0 (x)+

∑m
i=1 ξiAi (x) =

a11 (ξ, x) a12 (ξ, x)⊤

a12 (ξ, x) A22 (x)

. Here, a11 is the element located at

the first row and the first column, a12 is a (d − 1)-dimensional column vector,

and A22 (x) is a (d − 1)× (d − 1) symmetric submatrix. Further, a11 and a12

are affine with respect to ξ and x. In particular, we consider the following

special case with DRCCLMI (4.1b):

min
x∈X

c⊤x (4.1a)

s.t. inf
P∈D

P


a11 (ξ, x) a12 (ξ, x)⊤

a12 (ξ, x) A22 (x)

 ⪰ 0

 ≥ 1 − ϵ, (4.1b)

21
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where the uncertain set D is of the form:

D (µ, Σ) =

P

∣∣∣∣∣∣ EP [ξ] = µ

EP

[
(ξ − µ) (ξ − µ)⊤

]
⪯ Σ

 . (4.2)

By using Proposition 6, we derive an exact reformulation for this special case.

PROPOSITION 6. If the (d − 1) × (d − 1) symmetric submatrix A22 (x) is

positive definite (PD), then the following problem provides an exact reformu-

lation of Problem (4.1)

min
x,β,s,q,Q

c⊤x (4.3a)

s.t. β +
1
ϵ

(
s + 2µ⊤q + ⟨Σ + µµ⊤, Q⟩

)
≤ 0, (4.3b)

s + 2ξ⊤q + ξ⊤Qξ + β − a12 (ξ, x)⊤ A22 (x)
−1a12 (ξ, x)

+a11 (ξ, x) ≥ 0, ∀ξ ∈ Rm,(4.3c)

s + 2ξ⊤q + ξ⊤Qξ ≥ 0, ∀ξ ∈ Rm, (4.3d)

β ∈ R, s ∈ R, q ∈ Rm, Q ∈ Rm×m, Q ⪰ 0. (4.3e)

Proof. Given the definition of PSD, we have the following equivalence holds:a11 (ξ, x) a12 (ξ, x)⊤

a12 (ξ, x) A22 (x)

 ⪰ 0,

⇔
[
1 z⊤

] a11 (ξ, x) a12 (ξ, x)⊤

a12 (ξ, x) A22 (x)

 [1 z⊤
]⊤

≥ 0, ∀z ∈ Rd−1

⇔ min
z∈Rd−1

[
1 z⊤

] a11 (ξ, x) a12 (ξ, x)⊤

a12 (ξ, x) A22 (x)

 [1 z⊤
]⊤

≥ 0.

To prove the first equivalence, we study two possible scenarios for any (z0 ∈ R,

z⊤ ∈ Rd−1)⊤ ∈ Rd: (1) if z0 = 0, then
(
z0, z⊤

)
A (ξ, x)

(
z0, z⊤

)⊤
= z⊤A22 (x) z >

0, because A22 (x) is positive definite; (2) if z0 ̸= 0, then we have(
z0, z⊤

)
A (ξ, x)

(
z0, z⊤

)⊤
= z2

0

(
1, z⊤

z0

)
A (ξ, x)

(
1, z⊤

z0

)⊤
> 0. Therefore, ⇒

holds and vice versa. Using the above equivalence, we can reformulate con-
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straint (4.1b) as follows:

inf
P∈D

P

 min
z∈Rd−1

[
1 z⊤

] a11 (ξ, x) a12 (ξ, x)⊤

a12 (ξ, x) A22 (x)

 [1 z⊤
]⊤

≥ 0


≥ 1 − ϵ, (4.4)

⇐⇒ inf
P∈D

P

{
min

z∈Rd−1
a11 (ξ, x) + 2a12 (ξ, x)⊤ z + z⊤A22 (x) z ≥ 0

}
≥ 1 − ϵ. (4.5)

Observe that min
z∈Rd−1

a11 (ξ, x) + 2a12 (ξ, x)⊤ z + z⊤A22 (x) z is quadratic in z.

By taking the first derivative of z, we can get z∗ = −A22 (x)
−1 a12 (ξ, x). Then

the following constraint can be obtained by substituting z∗ into constraint

(4.5):

inf
P∈D

P
{

a12 (ξ, x)⊤ A22 (x)
−1 a12 (ξ, x)− a11 (ξ, x) ≤ 0

}
≥ 1 − ϵ.(4.6)

Note that a12 (ξ, x)⊤ A22 (x)
−1 a12 (ξ, x)− a11 (ξ, x) in constraint (4.6) is quadratic

in ξ. If we consider it as the loss function L (ξ), then the following distribu-

tionally robust CVaR constraint provides an exact reformulation for constraint

(4.6) accroding to Proposition 1:

sup
P∈D

P−CVaRϵ

(
a12 (ξ, x)⊤ A22 (x)

−1 a12 (ξ, x)− a11 (ξ, x)
)
≤ 0. (4.7)

According to the definition of CVaR, constraint (4.7) can be further expressed

as:

sup
P∈D

inf
β∈R

{
β +

1
ϵ

EP

((
a12 (ξ, x)⊤ A22 (x)

−1 a12 (ξ, x)− a11 (ξ, x)− β
)+)}

≤ 0,

⇐⇒ inf
β∈R

{
β +

1
ϵ

sup
P∈D

EP

((
a12 (ξ, x)⊤ A22 (x)

−1 a12 (ξ, x)− a11 (ξ, x)− β
)+)}

≤ 0. (4.8)

Here, the equivalence is due to the saddle point theorem (Shapiro and Kley-

wegt 2002). By applying Corollary 1, sup
P∈D

EP((a12(ξ, x)⊤A22 (x)
−1 a12(ξ, x)−
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a11(ξ, x)− β)+) in constraint (4.8) can equivalently be transformed into the

following problem:

inf
s,q,Q

s + 2µ⊤q + ⟨Σ + µµ⊤, Q⟩

s.t. s + 2ξ⊤q + ξ⊤Qξ ≥ a12 (ξ, x)⊤ A22 (x)
−1 a12 (ξ, x)− a11 (ξ, x)− β,

∀ξ ∈ Rm,

s + 2ξ⊤q + ξ⊤Qξ ≥ 0, ∀ξ ∈ Rm,

s ∈ R, q ∈ Rm, Q ∈ Rm×m, Q ⪰ 0.

Combining the above problem into constraint (4.8), we can get the desired

result. This completes the proof.

EXAMPLE 1. We consider the case where the column vector a12 is equivalent

to ξ, and a11 is affine in x, i.e., A0 (x) + ∑m
i=1 ξiAi (x) =

a11 (x) ξ⊤

ξ A22 (x)

.

Specifically, we consider the following problem with a special block matrix case

of DRCCLMI:

min
x∈X

c⊤x (4.9a)

s.t. inf
P∈D

P


a11 (x) ξ⊤

ξ A22 (x)

 ⪰ 0

 ≥ 1 − ϵ, (4.9b)

where D taking the form of (4.2). We can reformulate the above Problem (4.9)

into a tractable SDP problem as shown in Proposition 7.

PROPOSITION 7. If A22 (x) is PD, then Problem (4.9) can be exactly refor-

mulated by:

min
x,β,s,q,Q,B

c⊤x (4.10a)

s.t. β +
1
ϵ

(
s + 2µ⊤q + ⟨Σ + µµ⊤, Q⟩

)
≤ 0, (4.10b)s + β + a11 (x) q⊤

q Q − B

 ⪰ 0, (4.10c)
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q Q

 ⪰ 0, (4.10d)

B I

I A22 (x)

 ⪰ 0, (4.10e)

β ∈ R, s ∈ R, q ∈ Rm, B ∈ Sd−1, Q ∈ Rm×m, Q ⪰ 0.(4.10f)

Proof. Observe that Problem (4.9) is a special case of Problem (4.1). If we

plug in a12 (ξ, x) = ξ and a11 (ξ, x) = a11 (x) in Proposition 6, then Problem

(4.9) is equivalent to

min
x,β,s,q,Q

c⊤x (4.11a)

s.t. β +
1
ϵ

(
s + 2µ⊤q + ⟨Σ + µµ⊤, Q⟩

)
≤ 0, (4.11b)

s + 2ξ⊤q + ξ⊤Qξ + β − ξ⊤A22 (x)
−1 ξ + a11 (x) ≥ 0,

∀ξ ∈ Rm, (4.11c)

s + 2ξ⊤q + ξ⊤Qξ ≥ 0, ∀ξ ∈ Rm, (4.11d)

β ∈ R, s ∈ R, q ∈ Rm, Q ∈ Rm×m, Q ⪰ 0. (4.11e)

Observe that constraint (4.11d) can be equivalently represented as:

[
1 ξ⊤

] s q⊤

q Q

 [1 ξ⊤
]⊤

≥ 0, ∀ξ ∈ Rm,

⇐⇒

s q⊤

q Q

 ⪰ 0.

Moreover, constraint (4.11c) can be equivalently reformulated as:

[
1 ξ⊤

] s + β + a11 (x) q⊤

q Q − A22 (x)
−1

 [1 ξ⊤
]⊤

≥ 0, ∀ξ ∈ Rm,

⇐⇒

s + β + a11 (x) q⊤

q Q − A22 (x)
−1

 ⪰ 0. (4.12)

Now we introduce a new variable B ∈ Sd−1, and let B ⪰ A22 (x)
−1. Thus
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constraint (4.12) can be represented by the following constraint:

s + β + a11 (x) q⊤

q Q − B

 ⪰ 0. (4.13)

Furthermore, according to Schur’s complement, B ⪰ A22 (x)
−1 can be repre-

sented as

B I

I A22 (x)

 ⪰ 0, which completes the proof.

4.2 Special Case with Support Information

In this section, we still consider the following special case problem with DRC-

CLMI:

min
x∈X

c⊤x (4.14a)

s.t. inf
P∈D

P


a11 (ξ, x) a12 (ξ, x)⊤

a12 (ξ, x) A22 (x)

 ⪰ 0

 ≥ 1 − ϵ, (4.14b)

but the uncertainty set is taking the form of (2.3), i.e., a support set S is

included within the ambiguity set D.

By using Proposition 8, we derive an inner approximation for the above

problem.

PROPOSITION 8. If the (d − 1) × (d − 1) symmetric submatrix A22 (x) is

PD, then the following formulation provides an inner approximation for Prob-

lem (4.14)

min
x,m,s′,q′,Q′

c⊤x (4.15a)

s.t. s′ + 2µ⊤q′ + ⟨Σ + µµ⊤, Q′⟩ ≤ mϵ, (4.15b)

s′ + 2ξ⊤q′ + ξ⊤Q′ξ ≥ 0 ∀ξ ∈ S , (4.15c)

−m + s′ + 2ξ⊤q′ + ξ⊤Q′ξ + a11 (ξ, x)

−a12 (ξ, x)⊤ A22 (x)
−1 a12 (ξ, x) ≥ 0, ∀ξ ∈ S(4.15d)

m ∈ R, m ≥ 0, s′ ∈ R, (4.15e)
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q′ ∈ Rm, Q′ ∈ Rm×m, Q′ ⪰ 0. (4.15f)

Proof. Starting from constraint (4.6), the key idea here is to replace this con-

straint with

inf
P∈D

P
{

a12 (ξ, x)⊤ A22 (x)
−1 a12 (ξ, x)− a11 (ξ, x) < 0

}
≥ 1 − ϵ. (4.16)

This is stricter than constraint (4.6) and more relaxed than

inf
P∈D

P
{

a12 (ξ, x)⊤ A22 (x)
−1 a12 (ξ, x)− a11 (ξ, x) ≤ η

}
≥ 1 − ϵ,

for any η < 0. Observe that (4.16) is equivalent to:

sup
P∈D

EP

[
1
{

a12 (ξ, x)⊤ A22 (x)
−1 a12 (ξ, x)− a11 (ξ, x) ≥ 0

}]
≤ ϵ, (4.17)

where 1(·) is the indicator function. By duality theory, the left hand side
problem of constraint (4.17) can be rewritten by

max
P∈D

∫
S

1
{

a12 (ξ, x)⊤ A22 (x)
−1 a12 (ξ, x)− a11 (ξ, x) ≥ 0

}
dP (ξ) (4.18a)

s.t.
∫
S

dP (ξ) = 1, (4.18b)∫
S

ξdP (ξ) = µ, (4.18c)∫
S
(ξ − µ) (ξ − µ)⊤ dP (ξ) ⪯ Σ. (4.18d)

Considering s ∈ R, q ∈ Rm, Q ∈ Rm×m and Q ⪰ 0 as the Lagrangian mul-

tipliers of constraints (4.18b), (4.18c), and (4.18d), respectively, we formulate

the following problem as the Lagrangian dual problem of (4.18):

min
s,q,Q

s + 2µ⊤q + ⟨Σ + µµ⊤, Q⟩

s.t. −1
{

a12 (ξ, x)⊤ A22 (x)
−1 a12 (ξ, x)− a11 (ξ, x) ≥ 0

}
+s + 2ξ⊤q + ξ⊤Qξ ≥ 0, ∀ξ ∈ S ,

s ∈ R, q ∈ Rm, Q ∈ Rm×m, Q ⪰ 0.

Combining the above problem, constraint (4.17) can be equivalently repre-
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sented as

s + 2µ⊤q + ⟨Σ + µµ⊤, Q⟩ ≤ ϵ, (4.19a)

s + 2ξ⊤q + ξ⊤Qξ ≥ 0, ∀ξ ∈ S , (4.19b)

−1 + s + 2ξ⊤q + ξ⊤Qξ ≥ 0,

∀ξ ∈ S ∩
{

ξ ∈ Rm|a12 (ξ, x)⊤ A22 (x)
−1 a12 (ξ, x)− a11 (ξ, x) ≥ 0

}
.(4.19c)

Studying more closely the third constraint (4.19c), we can reformulate it as

min
ξ∈S

sup
λ≥0

−1 + s + 2ξ⊤q + ξ⊤Qξ +

λ
(

a11 (ξ, x)− a12 (ξ, x)⊤ A22 (x)
−1 a12 (ξ, x)

)
≥ 0.

Then the above constraint can be approximated by the following constraint

sup
λ≥0

min
ξ∈S

−1 + s + 2ξ⊤q + ξ⊤Qξ +

λ
(

a11 (ξ, x)− a12 (ξ, x)⊤ A22 (x)
−1 a12 (ξ, x)

)
≥ 0.

Since S is compact, this can be further reformulated as

sup
λ>0

min
ξ∈S

−1 + s + 2ξ⊤q + ξ⊤Qξ +

λ
(

a11 (ξ, x)− a12 (ξ, x)⊤ A22 (x)
−1 a12 (ξ, x)

)
≥ 0,

If we let m := (1/λ), s′ := (1/λ) s, q′ := (1/λ)q, Q′ := (1/λ)Q, then

constraints (4.19a), (4.19b) and (4.19c) can therefore be approximated as

s′ + 2µ⊤q′ + ⟨Σ + µµ⊤, Q′⟩ ≤ mϵ, (4.23a)

s′ + 2ξ⊤q′ + ξ⊤Q′ξ ≥ 0, ∀ξ ∈ S , (4.23b)

−m + s′ + 2ξ⊤q′ + ξ⊤Q′ξ + a11 (ξ, x)−

a12 (ξ, x)⊤ A22 (x)
−1 a12 (ξ, x) ≥ 0, ∀ξ ∈ S . (4.23c)

This completes the proof.
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EXAMPLE 2. We consider the case where A0 (x) +∑m
i=1 ξiAi (x) in constraint

(2.4b) is equal to

a11 (x) ξ⊤

ξ A22 (x)

, where A22 (x) is symmetric matrix.

Specifically, we consider the following problem with a special block matrix

case of DRCCLMI:

min
x∈X

c⊤x (4.24a)

s.t. inf
P∈D

P


a11 (x) ξ⊤

ξ A22 (x)

 ⪰ 0

 ≥ 1 − ϵ, (4.24b)

where D is taking the form of (2.3). The above Problem (4.24) can be approx-

imated by a tractable SDP problem as shown in Proposition 9.

PROPOSITION 9. If A22 (x) is positive definite, and the support information
is taking the form of S = {ξ ∈ Rm : ∥ξ∥ ≤ t}, then Problem (4.24) can be
approximated by

min
x,m,δ,γ,s′,q′,B,Q′

c⊤x (4.25a)

s.t. s′ + 2µ⊤q′ + ⟨Σ + µµ⊤, Q′⟩ ≤ mϵ, (4.25b)Q′ + δI q′

q′⊤ s′ − t2δ

 ⪰ 0, (4.25c)

Q′ − B + γI q′

q′⊤ −m + s′ + a11 (x)− t2γ

 ⪰ 0, (4.25d)

B I

I A22 (x)

 ⪰ 0, (4.25e)

m, δ, γ ∈ R, m, δ, γ ≥ 0, (4.25f)

s′ ∈ R, q′ ∈ Rm, B ∈ Sd−1, Q′ ∈ Rm×m, Q′ ⪰ 0. (4.25g)

Proof. According to Proposition 8, if we plug in a12 (ξ, x) = ξ and a11 (ξ, x) =

a11 (x), then we have the following approximation

min
x,m,s′,q′,Q′

c⊤x

s.t. s′ + 2µ⊤q′ + ⟨Σ + µµ⊤, Q′⟩ ≤ mϵ,
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s′ + 2ξ⊤q′ + ξ⊤Q′ξ ≥ 0 ∀ξ ∈ S ,

−m + s′ + 2ξ⊤q′ + ξ⊤Q′ξ + a11 (x)− ξ⊤A22 (x)
−1 ξ ≥ 0 ∀ξ ∈ S ,

m ∈ R, s′ ∈ R, q′ ∈ Rm, Q′ ∈ Rm×mQ′ ⪰ 0, m ≥ 0.

Since we consider the support information taking the form of S = {ξ ∈ Rm :

∥ξ∥ ≤ t}, by duality theory, the above problem can be reformulated as

min
x,m,δ,γ,s′,q′,Q′

c⊤x

s.t. s′ + 2µ⊤q′ + ⟨Σ + µµ⊤, Q′⟩ ≤ mϵ,Q′ + δI q′

q′⊤ s′ − t2δ

 ⪰ 0,

Q′ − A22 (x)
−1 + γI q′

q′⊤ −m + s′ + a11 (x)− t2γ

 ⪰ 0,

Q′ ⪰ 0, m ≥ 0.

As shown in the proof of Proposition 7, we can introduce a new variable

B ∈ Sd−1, and let B ⪰ A22 (x)
−1 here. According to Schur’s complement, B ⪰

A22 (x)
−1 can be further represented as

B I

I A22 (x)

 ⪰ 0, which completes

the proof.



Chapter 5

Numerical Experiments

We consider the application of our method in two real-world problems: truss

topology design problem and calibration problem. Numerical experiments eval-

uate the efficiency and accuracy of the proposed approximation and reformula-

tion method. Both of these problem formulations are modeled using the CVX

2.2 MATLAB package. We conduct experiments on a computer with an Intel

Core i7-4600U 3.40GHz processor and 16.0GB of random access memory using

MOSEK solver.

5.1 Truss Topology Design Problem

5.1.1 Formulation

We conduct experiments on a truss topology design (TTD) problem. A truss

consists of bars connected at the nodes. The configuration of a truss structure

has a large impact on its load carrying capacity, and a proper configuration

design can achieve high stiffness with a simple structure while satisfying other

requirements. However, as the application scenarios of truss structure become

more and more complicated and the construction scale keeps expanding, the

difficulty of truss configuration design increases gradually.

The purpose of this problem is to design a truss of a certain weight that

31
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can best carry a given load. This problem can be formulated by:

min
τ,t

τ :

 2τ hT

h ∑m
i=1 tibibT

i

 ⪰ 0, t ≥ 0,
m

∑
i=1

ti = 1

 , (5.1)

where m is the number of bars; n is freedom degrees of all the nodes and τ is

the rigidity of the truss. Variable ti ∈ R is the weight of the bar i; parameter

bi ∈ Rn is the given geometry of all the nodes; and parameter h ∈ Rn is a

given load placed on the nodes.

In reality, a truss is required to withstand not only a given load h, but also

some random loads. This kind of random loads affect the nodes used when the

truss structure is subjected to different external forces. This has to be taken

into account when we design the truss; otherwise, the truss will probably be

destroyed by the occasional loads. A way to design a truss that can withstand

random loads is to reformulate the original problem. Specifically, we assume

that the distribution of occasional loads is within an ambiguity set D with

mean µ and covariance Σ. According to Karimi et al. (2021), an equivalent

reformulation of Problem (5.1) is:

min
ρ,t

ρ (5.2a)

s.t.

A(t)︷ ︸︸ ︷ 2τ̂ h⊤

h ∑l
i=1 tibib⊤

i

 ⪰ 0, (5.2b)

inf
P∈D

P


 2τ̂ρ ξ⊤

ξ ∑l
i=1 tibib⊤

i


︸ ︷︷ ︸

A0(t,ρ)+∑n
l=1 ξ lAl(t)

⪰ 0


≥ 1 − ϵ, (5.2c)

m

∑
i=1

ti = 1, t ≥ 0. (5.2d)
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5.1.2 Numerical Setting and Results

We consider that the distribution of ξ = (ξ1, . . . , ξn) can be captured by an

ambiguity set D with mean µ = 1 and covariance Σ = In, which means that

ξ1, . . . , ξn are iid distributed. The total number of bars m is set to be 54. The

satisfactory parameter is set to 1 − ϵ = 95%.

We report the numerical results in Table 5.1 and 5.2. “Obj” shows the aver-

age optimal value and “Time” shows the average computation time. “General”

represents that we derive the conservative approximation for this TTD prob-

lem and use the proposed method in Chapter 3. “Special” represents that

we derive exact reformulation and use SDP-solver to get the optimal solu-

tion. “Cheung” represents our benchmark approximation approach proposed

by Cheung et al. (2012), which is under the setting that ξ follows a given

distribution (Gaussian distribution in our experiment). In other words, they

derive an inner approximation for CCLMI, instead of DRCCLMI.

5.1.2.1 Numerical Results without Support Information

We firstly conduct the following experiment to show the performance of our

reformulation method in Section 4.1, which assumes that the random variable

is without support information. We consider the approximation method of

Cheung et al. (2012) as benchmark. The dimension of ξ is considered to be

n = 5, 10, 15, 20.

Table 5.1: Numerial Results (without Support Information)

ξ Dimension
Special Cheung General

Obj Time(sec) Obj Time(sec) Obj Time(sec)
5 2.45349 0.68 4.33643 0.75 - 7.48
10 2.0698 0.88 8.25792 1.37 - 9.76
15 1.65983 0.97 9.84256 2.21 - 12.33
20 0.99008 1.34 12.1399 2.76 - 14.67

Based on the numerical results provided in Table 5.1, we can draw the

following conclusions:



CHAPTER 5. NUMERICAL EXPERIMENTS 34

1. Objective Value Performance: Our “Special” method, which uses ex-

act reformulation, consistently yields the best objective values across

all dimensions of ξ. This superiority is notable even when compared

to Cheung’s approximation, which is tailored for a specific distribution

(namely, the normal distribution). When employing the “General” case’s

inner approximation for this problem, the objective value performance

deteriorates significantly, reaching infinity across all dimensions.

2. Solution Time Performance: In terms of average CPU time (“Time(sec)”),

our “Special” method’s solution speed is fairly comparable to that of

Cheung’s approach. The differences in time are marginal, even as the

dimensionality of ξ increases. On the other hand, the “General” case

tends to take a substantially longer time, especially as we move to higher

dimensions.

5.1.2.2 Numerical Results with Support Information

Next, we conduct experiments where the support information is defined. Here,

we employ the technique mentioned in Section 4.2 to reformulate this problem.

We consider the sample average (SA) to be the benchmark method. The

dimension of ξ is considered to be n = 5, 10, 15, 20. We also consider support

information ∥ξ∥ ≤ t. Specifically, t is considered to be 3, 10, 20, 50, 100.

Based on the numerical results provided in Table 5.2, we observe that:

1. Objective Value: The “Special” method consistently produces the lowest

objective values across all dimensions and ∥ξ∥ values, indicating superior

optimization performance. The SA method yields higher objective val-

ues, which increase significantly as ∥ξ∥ increases. The General method

is not applicable (indicated by “-”) for any of the dimensions and norms

considered.

2. Computation Time: The “Special” method requires significantly more

computation time, especially for higher dimensions and larger ∥ξ∥. This

suggests a trade-off between optimization quality and efficiency. The
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computation time for the SA method increases with larger ∥ξ∥ but re-

mains lower than that of the Special method for the same ∥ξ∥ values.

Table 5.2: Numerial Results (with Support Information)

ξ Dimension ∥ξ∥ SA Special General

Obj Time
(sec) Obj Time

(sec) Obj Time
(sec)

5

3 0.2339 1.93 0.1764 5.14 - 3.23
10 2.8575 4.03 0.5204 6.93 - 2.91
20 12.0096 4.44 1.0827 9.14 - 8.05
50 75.7125 16.11 1.0827 25.66 - 23.91
100 309.7470 40.80 1.0827 47.18 - 50.55

10

3 0.3189 3.32 0.2568 6.27 - 5.37
10 4.2019 6.87 0.6553 6.33 - 5.93
20 17.7470 7.56 1.4239 15.04 - 6.13
50 112.0273 27.28 1.4239 35.92 - 7.56
100 458.3884 69.01 1.4239 56.73 - 9.86

15

3 0.4709 6.17 0.3424 11.07 - 8.93
10 6.1642 12.85 0.9136 10.48 - 9.88
20 26.0242 14.15 1.7202 20.16 - 12.27
50 164.2595 51.26 1.7202 40.10 - 13.16
100 672.1144 129.78 1.7202 66.39 - 15.28

20

3 0.8428 9.61 0.7185 13.21 - 9.86
10 10.7077 20.02 1.6128 17.38 - 11.28
20 45.1195 22.06 2.1384 30.42 - 15.77
50 284.6424 79.94 2.1384 51.29 - 18.94
100 1164.6121 202.40 2.1384 69.70 - 19.23

In summary, our exact reformulation (“Special”) stands out as an effective ap-

proach both with respect to solution quality and efficiency, even when bench-

marked against Cheung’s approximation, which is designed for a specific dis-

tribution. The “General” case’s inner approximation seems to be less suitable

for this problem, with poorer objective value outcomes.
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5.2 Calibration Problem

5.2.1 Formulation

We conduct experiments on a calibration problem using the approximation

method proposed in Chapter 3 for the general case. Mathematically, the prob-

lem takes the following form (Ben-Tal and Nemirovski 2009):

ρ∗ = max
n

∑
l=1

ρl

s.t. inf
P∈D

P

{
−A0 ≤

n

∑
l=1

ρlξ lAl ≤ A0

}
≥ p,

where ξ is a random vector of n-dimension; ρ ∈ Rn is a decision variable and

Al ∈ Sd×d, l = 0, . . . , n are given parameters such that for a given ϑ∗ > 0,

Arrow (ϑ∗A0, A1, . . . , An)

:=


ϑ∗A0 A1 . . . An

A1 ϑ∗A0
... . . .

An ϑ∗A0

 ≥ 0.

5.2.2 Numerical Setting and Results

We assume that the probability distribution of ξ = (ξ1, . . . , ξn) is captured

by an ambiguity set D with mean µ = 0, covariance Σ = In and support

information ∥ξ∥ ≤ t. Specifically, t is considered to be 3, 5, 10, 15, 20, ∞. Here,

we set the dimension of ξ to be 20, the partition number of the support set to

be 20 and the satisfactory parameter to be 1 − ϵ = 95%.

The experimental results presented in Table 5.3 offer insightful analysis into

the performance of different approximation approaches for the specific calibra-

tion problem. The the sample average (SA) approach is one of our benchmark.

This method provides an inner approximation, where ξ is generated based on

the information from the ambiguity set D and incorporated into constraints.

The “Ellipsoid” represents the results of the inner approximation method for
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Table 5.3: Numerial Results of Calibration Problem

t
Ellipsoid Polyhedral SA

Obj Time
(min) Obj Time

(min) Obj Time
(sec)

3 3.3045 10.4 1.7256 54.8 9.4724 33.4
5 2.1169 9.6 1.3269 50.1 4.6356 56.6
10 1.5531 10.9 0.6302 52.4 2.9732 162.3
15 0.9709 11.2 0.3025 59.3 2.7984 301.9
20 0.9682 12.5 0.2977 60.6 2.7704 492.6
∞ 0.2342 13.9 0.0216 72.9 \ \

ellipsoidal support (proposed in Section 3.3). The “Polyhedral” represents

the experiment for the polyhedral approximation method (proposed in Section

3.3.2).

Based on Table 5.3, the experimental results for the calibration problem in-

dicate varying performance among the three inner approximation methods. In

terms of objective values, all of the three methods show a decreasing trend as

t increases. The “SA” method serves as a useful benchmark for inner approxi-

mation. The “Ellipsoid” method does not perform as well as “SA” but is better

than Polyhedral. Regarding computational time, the “Ellipsoid” method is the

most efficient, maintaining low times ranging from 9.6 to 12.5 minutes. There-

fore, for scenarios where computational time is crucial, the “Ellipsoid” method

provides a faster alternative with moderate accuracy. The “SA” method, serv-

ing as an effective benchmark, offers balanced performance but becomes less

practical for larger t due to its increasing computational time.



Chapter 6

Conclusion

This thesis presents the approximation and reformulation methods for DRC-

CLMI that can be used to overcome the limitations of the multi-dimension of

integration and non-convex problem space. It mainly focuses on expressing

chance constraints in terms of convex optimization problems which is impor-

tant in a variety of engineering and optimization applications.

The essence of the proposed approach is deriving an inner approximation

formulation for general DRCCLMI using the CVaR method. This method

is especially suitable for addressing the uncertainty and risk related to the

distributional robustness, thus greatly increasing the practicality and stability

of the solution. However, with the help of the CVaR method it is much easier

to tackle the problem because it is translated into a form that does not have

the non-convex feasible set.

Furthermore, this thesis focuses on analyzing a particular type of DRC-

CLMI characterized by a block matrix in its linear matrix inequalities. In

such cases, we obtain an inner approximation and exact reformulations of the

problems to get closer solutions and be more focused on solving those partic-

ular problems. This part of our study is particularly relevant as it leads to

efficient solutions to real problems having a block matrix structure.

Overall, our methods together help in converting the original DRCCLMI

into a semidefinite programming (SDP) problem. This conversion is critical

since it maps a hard problem to one that can be solved using current opti-

38
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mization methodologies and tools. The SDP framework can provide a clear

approach to the computation process; It also helps improve the accuracy and

efficiency of the solutions.

We apply our methods to two real-world applications: the truss topology

design problem and the calibration problem. These applications are selected to

cover the diversity and stability of applying the proposed methods to different

real-world problems. Our methods help to enhance further the TTD problem,

the key concern in the field of structural engineering, to find one of the best

solutions. In the same manner, in the calibration problem, which is crucial

in numerous analytical and quantitative fields, our methods prove efficient in

obtaining accurate and stable solutions.
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Chapter 8

Appendices

8.1 Appendix I: Notation

Non-bold symbols scalar values, e.g., s and π

Bold symbols vectors, e.g., x = (x1, . . . , xm)
⊤ and q

Bold capital symbols matrices, e.g., A and Σ

EP [·] expectation over distribution P

∥·∥ Euclidean norm
1(·) indicator function
(t)+ max {t, 0}
A • B = ∑i,j AijBij inner product of two conformal matrices A and B
A ⪰ 0 matrix A is positive semi-definite
Im identity matrix of size m
0m a zero vector of size m
0r×c a zero matrix of size r × c
Sd×d symmetric matrix of size d × d

Table 8.1: Notation

8.2 Appendix II: Reformulations for Worst-Case Expec-

tation and Probability Problems

LEMMA 1. Let f : Rm → R be a measurable function, and define the worst-

case expectation θwc as

θwc = sup
P∈D

EP

(
( f (ξ))+

)
,

44
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where D is defined as (2.3). Then,

θwc = inf
s,q,Q

s + 2µ⊤q + ⟨Σ + µµ⊤, Q⟩

s.t. s + 2ξ⊤q + ξ⊤Qξ ≥ f (ξ) , ∀ξ ∈ S ,

s + 2ξ⊤q + ξ⊤Qξ ≥ 0, ∀ξ ∈ S ,

s ∈ R, q ∈ Rm, Q ∈ Rm×m, Q ⪰ 0.

Proof. This proof adheres to the same proof logic as Lemma A.1 in Zymler

et al. (2013). First of all, the worst-case expectation sup
P∈D

EP(( f (ξ))+) can

equivalently be expressed as:

sup
P∈D

∫
S

max {0, f (ξ)}dP (ξ) (8.1a)

s.t.
∫
S

dP (ξ) = 1, (8.1b)∫
S

ξdP (ξ) = µ, (8.1c)∫
S
(ξ − µ) (ξ − µ)⊤ dP (ξ) ⪯ Σ. (8.1d)

We now assign dual variables s ∈ R, q ∈ Rm, Q ∈ Rm×m and Q ⪰ 0 to

constraints (8.1b), (8.1c), and (8.1d), respectively, and introduce the following

dual problem (see, e.g., Delage and Ye 2010):

inf
s,q,Q

s + 2µ⊤q + ⟨Σ + µµ⊤, Q⟩ (8.2a)

s.t. s + 2ξ⊤q + ξ⊤Qξ ≥ max {0, f (ξ)} , ∀ξ ∈ S , (8.2b)

s ∈ R, q ∈ Rm, Q ∈ Rm×m, Q ⪰ 0. (8.2c)

Furthermore, constraint (8.2b) can be expanded in terms of two constraints

(8.3a) and (8.3b):

s + 2ξ⊤q + ξ⊤Qξ ≥ f (ξ) , ∀ξ ∈ S , (8.3a)

s + 2ξ⊤q + ξ⊤Qξ ≥ 0, ∀ξ ∈ S . (8.3b)

This completes the proof.
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COROLLARY 1. If the support S defined in the ambiguity set D in (2.3) is

unconstrained, then the worst-case expectation θwc in Lemma 1 further reduces

to

θwc = inf
s,q,Q

s + 2µ⊤q + ⟨Σ + µµ⊤, Q⟩

s.t. s + 2ξ⊤q + ξ⊤Qξ ≥ f (ξ) , ∀ξ ∈ Rm,

s + 2ξ⊤q + ξ⊤Qξ ≥ 0, ∀ξ ∈ Rm,

s ∈ R, q ∈ Rm, Q ∈ Rm×m, Q ⪰ 0.

LEMMA 2. Assume that no support information S is defined in the ambiguity

set D. Let L : Rm → R be a continuous loss function that is either concave

or quadratic in ξ, the following worst-case probability constraint

sup
P∈D

P (L (ξ) > γ) ≤ ϵ,

can be equivalently expressed as:

1
ϵ

(
s + 2µ⊤q + ⟨Σ + µµ⊤, Q⟩

)
≤ τ,

s + 2ξ⊤q + ξ⊤Qξ ≥ 0, ∀ξ ∈ Rm,

−τ + s + 2ξ⊤q + ξ⊤Qξ + γ − L (ξ) ≥ 0, ∀ξ ∈ Rm,

τ ∈ R, τ ≥ 0, s ∈ R, q ∈ Rm, Q ∈ Rm×m, Q ⪰ 0.

Proof. The worst-case probability problem sup
P∈D

P(L(ξ) > γ) can be equiva-

lently expressed as:

max
P∈D

∫
1 {L (ξ) > γ}dP (ξ) (8.4a)

s.t.
∫

dP (ξ) = 1, (8.4b)∫
ξdP (ξ) = µ, (8.4c)∫
(ξ − µ) (ξ − µ)⊤ dP (ξ) ⪯ Σ, (8.4d)

where 1 is the indicator function that gives one if the statement is verified and
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zero otherwise. Considering s′ ∈ R, q′ ∈ Rm, Q′ ∈ Rm×m and Q′ ⪰ 0 as the

Lagrangian multipliers of constraints (8.4b), (8.4c) and (8.4d). We formulate

its Lagrangian dual problem:

min
s′,q′,Q′

s′ + 2µ⊤q′ + ⟨Σ + µµ⊤, Q′⟩ (8.5a)

s.t. −1 {L (ξ) > γ}+ s′ + 2ξ⊤q′ + ξ⊤Q′ξ ≥ 0, ∀ξ ∈ Rm, (8.5b)

s′ ∈ R, q′ ∈ Rm, Q′ ∈ Rm×m, Q′ ⪰ 0. (8.5c)

Thus, the worst-case probability constraint sup
P∈D

P(L(ξ) > γ) ≤ ϵ can be

equivalently represented as the following constraints:

s′ + 2µ⊤q′ + ⟨Σ + µµ⊤, Q′⟩ ≤ ϵ, (8.6a)

s′ + 2ξ⊤q′ + ξ⊤Q′ξ ≥ 0, ∀ξ ∈ Rm, (8.6b)

−1 + s′ + 2ξ⊤q′ + ξ⊤Q′ξ ≥ 0, ∀ξ ∈ Rm : L (ξ) > γ, (8.6c)

s′ ∈ R, q′ ∈ Rm, Q′ ∈ Rm×m, Q′ ⪰ 0. (8.6d)

Studying more closely the third constraint (8.6c), we can reformulate it as:

min
ξ∈Rm

sup
λ≥0

−1 + s′ + 2ξ⊤q′ + ξ⊤Q′ξ + λ (γ − L (ξ)) ≥ 0.

By Sion’s minimax theorem, this is further equivalent to

sup
λ≥0

min
ξ∈Rm

−1 + s′ + 2ξ⊤q′ + ξ⊤Q′ξ + λ (γ − L (ξ)) ≥ 0.

Here, if we consider λ = 0, then we can derive that s′ + 2µ⊤q′ + ⟨Σ +

µµ⊤, Q′⟩ ≥ 1 for any feasible ξ. However, since ϵ ≤ 1, this is in conflict with

constraint (8.6a). Thus, λ should be greater than zero. By a simple replace-

ment of variables τ := (1/λ), s := (1/λ) s′, q := (1/λ)q′, Q := (1/λ)Q′,

constraints (8.6a), (8.6b), (8.6c) and (8.6d) can therefore be restated as

s + 2µ⊤q + ⟨Σ + µµ⊤, Q⟩ ≤ τϵ,

s + 2ξ⊤q + ξ⊤Qξ ≥ 0, ∀ξ ∈ Rm,



CHAPTER 8. APPENDICES 48

−τ + s + 2ξ⊤q + ξ⊤Qξ + γ − L (ξ) ≥ 0, ∀ξ ∈ Rm,

τ ∈ R, τ ≥ 0, s ∈ R, q ∈ Rm, Q ∈ Rm×m, Q ⪰ 0.

This completes the proof.




