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Abstract

Designing an effective optimizer for training deep neural networks (DNNs) has

been under the research spotlight for the past decades, and one of the most effective

ways is to design preconditioned optimizers. In this thesis, we focus on developing

effective preconditioned optimizers from the following four aspects: Hessian-based

preconditioned approach, nature gradient based preconditioned approach, precon-

ditioned gradient adaptive stepsize approach, and attention-feature-based precon-

ditioned approach for transformer structures. Accordingly, we present four algo-

rithms: Stochastic Gradient Descent with Partial Hessian (SGD-PH), the Newton-

Kronecker Factorized Approximate Curvature (NKFAC) algorithm, Adaptive learn-

ing rate method with a Rotation transformation (AdamR), and Attention-Feature-

based Optimizer(AFOpt). The details of the works are as follows.

SGD-PH: In this work, we propose a compound optimizer, which is a combina-

tion of a second-order optimizer with a precise partial Hessian matrix for updating

channel-wise parameters and the first-order stochastic gradient descent (SGD) op-

timizer for updating the other parameters. We show that the associated Hessian

matrices of channel-wise parameters are diagonal and can be extracted directly and

precisely from Hessian-free methods. The proposed method, namely SGD with Par-

tial Hessian (SGD-PH), inherits the advantages of both first-order and second-order

optimizers. Compared with first-order optimizers, it adopts a certain amount of

information from the Hessian matrix to assist optimization, while compared with
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the existing second-order optimizers, it keeps the good generalization performance

of first-order optimizers. Experiments on image classification tasks demonstrate the

effectiveness of our proposed optimizer SGD-PH.

NKFAC: This work presents a Newton-Kronecker factorized approximate cur-

vature (NKFAC) algorithm, which incorporates Newton’s iteration method for in-

verting second-order statistics. As the Fisher information matrix between adjacent

iterations changes little, Newton’s iteration can be initialized by the inverse obtained

from the previous step, producing accurate results within a few iterations thanks to

its fast local convergence. This approach reduces the computation time and inherits

the property of second-order optimizers, enabling practical applications. The pro-

posed algorithm is further enhanced with several useful implementations, resulting

in state-of-the-art generalization performance without the need for extensive param-

eter tuning. The efficacy of NKFAC is demonstrated through experiments on various

computer vision tasks.

AdamR: In pursuit of attaining a more favorable regret bound, we propose

to integrate a rotation transformation into the existing adaptive learning rate al-

gorithms. We employ the widely-recognized adaptive learning rate optimization

method AdamW as a base optimizer, and develop a novel optimizer named AdamR.

It consists of three steps in each iteration to compute the modified gradient. Firstly,

the computation of the gradient with a rotation; secondly, the execution of the stan-

dard Adam step; and finally, the reorientation of the gradient back to its original

space. The experimental results on image classification, object detection and seg-

mentation have demonstrated AdamR’s superior performance in accelerating the

training process and improving the generalization capability.

AFOpt: For attention module that acting as the most critical module in trans-

formers, in this work, we consider the gradient descent step in the attention matrix

space and propose a preconditioned optimizer named AFOpt. By converting the
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gradient step into the attention space, more information in the attention module

can be combined into the final descent direction to assist the training process, which

helps the transformer training. Numerical experiments are conducted to verify the

effect of the proposed optimizer.

Overall, we propose four preconditioned optimizers in this thesis. Among them,

SGD-PH adopts the Hessian information of normalization layers to assist in train-

ing DNNs; NKFAC combines Newton’s method and practical implementations into

KFAC to improve the effectiveness and efficiency; AdamR employs an adaptive step-

size method with rotation transformation to achieve lower regret bound; and AFOpt

performs the attention matrix based gradient step to better train transformers. The

improvement of generalization performance in DNN training experiments proves their

effectiveness.

Keywords: Optimizer, Second-order, Preconditioned Method, Newton Method,

Nature Gradient Method, Adaptive Learning Rate, Error Bound, Attention.
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Chapter 1

Introduction

In the development of deep neural networks (DNNs), no proper algorithm can

handle the deep structure well until the proposal of the well-known back-propagation

(BP) algorithm [85, 67]. Based on the chain rule for derivation, the BP algorithm

allows us to acquire the first-order information of DNNs at a reasonable cost. Thus,

the first-order optimization algorithms have occupied the mainstream, among which

the stochastic gradient descent (SGD) algorithm [56, 60] has become one of the most

important baselines of training DNNs. Specifically, SGD uses the negative gradient

direction as the descent direction of a stochastic chosen batch of samples, which, in

traditional convex optimization, is the steepest descent direction.

Considering the fact that the steepest descent direction may not generate the

fastest route that converge to a local minimum in traditional optimization, some other

information and correction have been developed to better optimize the convergence

route. Being the same in DNNs optimization, other information is extracted to assist

optimization, and the most successful and wildest applied optimizer series generated

is the series of adaptive stepsize optimizers e.g., AdaGrad [17], Adam [36], AdamW

[47], Radam [45], AdaDelta [95] and Adabelief [101]. Beginning from AdaGrad, the

design of this series essentially comes from the preconditioned method, which applies

precondition matrix to the gradient to assist optimization. Later on, the element-
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wise version Adam and its weight decay correction AdamW become popular, even

preferred in many areas because of their merit of stable and better performance.

Mentioning preconditioned method, the most intuitive and direct way is to ap-

ply the inversion of Hessian matrix directly onto the gradient, e.g., AdaHessian [88].

However, considering the very high dimension of Hessian, the computation and stor-

age cost is really high. Thus, to utilize the second order information, the other way

is to consider the nature gradient (NG) method, where the Fisher Information Ma-

trix (FIM) is applied as the precondition matrix. One of the successful applications

is KFAC [52], which solves the problem of high dimension via Kronecker product.

After KFAC, another preconditioned optimizer that deserves mentioned is Shampoo

[25], where gradient is corrected with a better online regret bound. In Section 1.1,

we will introduce the preconditioned methods, and briefly describe some representa-

tive preconditioned optimizers to see the applications of preconditioned methods in

DNNs optimization.

There is still one thing that worth mentioning. Although in preconditioned opti-

mizers, matrix inversion is necessary which will add on some unstable computation,

it is still illustrated by experiments that preconditioned methods have better gener-

alization performance and, thus deserve to be researched. Therefore, we can study

how to find better ways of dealing with the inversion in DNNs optimizers.

Neural network optimization develops along with the development of neural net-

works. At the very beginning stage of neural networks development, it was soon

mathematically proved that some early models (e.g., the simple shallow perceptrons)

are limited to approximate the brain work [53], which led to a near stagnation of

neural networks research. After being trainable by the BP algorithm, and thanks to

the increasing computing power, network models developed quickly. After multilayer

perceptrons (MLP), convolution layers show their effectiveness in image processing,

and convolutional neural networks (CNNs) gradually become popular in many tasks,

2



especially in computer vision area (e.g., VGG [75], ResNet[29], DenseNet[31]).

Besides linear and convolutional layers, normalization layers also play important

roles in DNNs. The commonly used normalization layers include batch normaliza-

tion (BN) [33], weight normalization (WN) [70] layer normalization (LN) [4], group

normalization (GN) [86] and instance normalization (IN) [82]. Normalization layers

can boost the performance of neural networks and sometimes are regarded as a kind

of optimization technique. Later on, the attention module is developed and widely

applied with super performance (e.g., [16, 8, 46]). The attention module is a spe-

cially designed nonlinear module, which may contain extra information that can be

extracted by optimizers. In Section 1.2, we will discuss these modules in detail.

The rest of this Chapter is arranged as follows. We first introduce preconditioned

optimizers and some special structures in DNNs in Section 1.1 and Section 1.2,

respectively. In Section 1.3, we conclude the main work and contribution in this

thesis, and in Section 1.4, we briefly introduce the notation system throughout the

thesis.

1.1 Preconditioned Method and Its Application

in Deep Neural Networks Optimization

Preconditioner is an effective technique in numerical optimization. On the one

hand, in traditional linear algebra, a preconditioner is always applied to a given

matrix to lower its conditional number. Thus, the matrix will be more suitable for

the rest of the computation, e.g., solving a linear equation system. On the other

hand, from an optimization standpoint, a preconditioner is usually performed on the

first-order descent direction to assist and accelerate the optimization process.

Here, we describe the sketch of the preconditioned method in optimization. For
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an optimization problem

arg min
W

LpWq, (1.1)

where LpWq is a differentiable loss function and W is the parameter that needs to

be optimized. The first order gradient descent here for the t-th iteration takes

Wt`1
“ Wt

´ ηt∇LpWt
q. (1.2)

If we design an invertible matrix Ht as a preconditioner of the t-th iteration, then

the preconditioned gradient descent takes the form

Wt`1
“ Wt

´ ηtpH
t
q

´1∇LpWt
q. (1.3)

One may notice that Eq. (1.3) contains the well-known Newton’s method, which is

an effective second-order optimization method. If L is continuously differentiable,

then the update equation of Newton’s method at the t-th iteration takes

Wt`1
“ Wt

´ ηtp∇2LpWt
qq

´1∇LpWt
q. (1.4)

When convex and continuous differentiable, Newton’s method has a second-order

convergence rate, such that it is preferred in solving many kinds of statistical prob-

lems.

We can now correspond the above formula in traditional optimization with opti-

mizers in DNN optimization. For a DNN optimization problem in Eq. (1.1), where

L is the loss surface of the network and W refers to the group of the network param-

eters. After randomly splitting batches to deal with the large dataset, for a single

iteration, the stochastic gradient descent is the same form as Eq. (1.2). After that,

the pioneer of adaptive stepsize methods, AdaGrad, takes the form of Eq. (1.3) and

adds a preconditioned matrix on the stochastic gradient. Specifically, for a batch

of samples with number N , in the t-th iteration, the full-matrix AdaGrad use the
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below preconditioner

Ht
“

G˝
t1{2

trpGt
˝

1{2
q
, Gt

˝ “

N
ÿ

i“1

gt
ig

t
i
J
, (1.5)

where gt
i is the vector format gradient for the i-th sample in the t-th iteration. The

design of this preconditioner comes from the aspect of lowering the online regret

bound. AdaGrad also holds a diagonal version, only utilizing diagpG˝
t1{2

q instead of

G˝
t1{2

. This method is efficient for sparse gradient tasks. However, with the learning

rate decreasing, it is not effective in other DNN training. Adam fixed this problem

by combining the diagonal version with momentum. Specifically, by substituting the

current gt by β1g
t ` p1 ´ β1qg

t´1 for some β1 P p0, 1q, and computing

Ht
“ β2diagpG˝

t1{2
q ` p1 ´ β2qHt´1, β2 P p0, 1q (1.6)

with Gt
˝ follows the definition in Eq. (1.5). Here, the preconditioner and the gradient

both cover information brought by more batches, making them more effective.

Next, we turn our attention to Eq.(1.4). Here, the preconditioner Ht “ p∇2LpWtqq

is exactly the second order derivative. However, applying the second-order derivative

directly is not realistic because of the very high dimension of the DNN parameters.

Thus, AdaHessian only extracts the diagonal element of Hessian, i.e.,

Ht
“ Diagp∇2LpWt

qq. (1.7)

By only keeping the diagonal elements, the storage of AdaHessian can be reduced

to an acceptable range. However, since the second time back-propagation is needed,

the computation time increase a lot, which is an unavoidable question.

From another aspect, the nature gradient (NG) method also follows the precon-

ditioner design. In NG methods, the preconditioner Ht refers to

Ht
“ Ft, (1.8)

5



where Ft is the Fisher information matrix (FIM). Later on, Ft is equivalently con-

verted into a left preconditioner and a right preconditioner by Kronecker decompo-

sition, and the update formula finally, in matrix format, becomes

Wt`1 “ Wt ´ ηtL
´1
t`1GtR

´1
t`1, , (1.9)

for some Lt`1 and Rt`1, and Gt is the matrix format gradient in the t-th iteration.

We will introduce the detailed definition and further details needed in Chapter 3.

While converting the classic left preconditioner Ht into a left Lt and a right Rt

preconditioner with the help of Kronecker decomposition is a common technique, we

can also design the preconditioned optimizer in the form of Eq.(1.9) directly. An

existing work is Shampoo, which designs the following left and right preconditioners

directly

Wt`1 “ Wt´ηtL
´1{4
t`1 GtR

´1{4
t`1 , (1.10)

Lt`1 “ Lt ` GtG
J
t , Rt`1 “ Rt ` GJ

t Gt. (1.11)

To sum up, there are several common ways to design preconditioned optimizers.

• Design a left preconditioner Ht corresponding to the second-order information

(e.g., AdaHessian and KFAC).

• Design a left preconditioner Ht to attain a lower regret bound (e.g., AdaGrad).

• Design a pair of left and right preconditioners pLt,Rtq to get better performance

(e.g., Shampoo).

1.2 Special Network Structures for Optimization

1.2.1 Normalization Layers

Normalization layers have been widely applied in many network structures, and

sometimes become default modules in designing networks, e.g. in ResNet50 [29]. One
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of the most commonly used normalization layers is batch normalization (BN), which

is often employed in models for high-level tasks. BN uses the mean and variance of

the features within a mini-batch to standardize the feature in training, and adopt

an exponential moving average across the mini-batches in reference. The BN layer

has some merits. Firstly, adding BN into the model is more friendly for parameter

tuning, and higher learning rates are usually allowed. Secondly, it speeds up the

loss convergence in the training process. Lastly and most importantly, it enhances

the generalization performance of DNNs. Owing to these merits, the training of BN

layers deserves special consideration.

Another important technique is weight normalization (WN). Unlike BN, which

is applied to the features, WN deals with weight parameters and is more suitable for

some tasks, e.g., reinforcement learning or generative models. It decouples the length

from the weight parameter, converting the optimization of the weight parameter into

two parts: the weight direction and the weight length. Decoupling contributes to

accelerating the convergence of the SGDM to some degree. BN and WN share a

common characteristic of reparameterizing the tensor, generating channel-wise 1D

parameters, which opens up the possibility of utilizing it to design optimizers. Specif-

ically, consider the BN layer, for a batch of input X P RN Ĉ Ŵ Ĥ , divide it into C sets

X1, . . . ,XC by channels, where Xi “ tx1
i , ¨ ¨ ¨ , xmi

i u for each channel i P t1, 2, . . . , Cu,

and mi “ NWH is the number of the elements in the corresponding channel. Then

for each channel Xi, the BN layer takes

µXi
“

1

mi

mi
ÿ

j“1

xj
i ; σ2

Xi
“

1

mi

mi
ÿ

j“1

pxj
i ´ µXi

q
2; x̂j

i “
xj
i ´ µXi

b

σ2
Xi

` ϵ
; yji “ γix̂

j
i ` βi, (1.12)

and the final Γ “ pγ1, ¨ ¨ ¨ , γCqT and β “ pβ, ¨ ¨ ¨ , βqT are the 1D parameters we

mentioned. Moreover, for the WN operation, consider a single 2D convolution layer

Y“W ˚X, where W is the kernel with dimension Cout ˆ Cin ˆ k1 ˆ k2 and X is the
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input, then for each output channel iPt1, . . . , Coutu, the WN operation takes

Wi “ γi
Vi

}Vi}2
, where Vi PRCin̂ k1̂ k2 and γi PR, (1.13)

and Γ “ pγ1, . . . , γCoutq is exactly the 1D parameter we need.

Besides WN and BN, there are also many other normalization methods, for ex-

ample, layer normalization (LN) [4], instance normalization (IN) [82] and group nor-

malization (GN) [86], which also generate similar 1D parameters and can be taken

into consideration together.

1.2.2 Attention Module

The attention module has shown its super performances in many tasks in neural

language processing (NLP) and computer vision (CV), and thus deserves further

research. Take CV tasks as an example, the attention module computes the weights

that reflect the similarity between different positions of an image, widely interacting

different positions with each other. Thus, the model can use both global and local

information more efficiently, significantly improving performance. Designing as a

nonlinear module, it has a complex but clear structure. Specifically, we denote X

the input of the module, and WQ, WK and WV to be the linear parameters of

attention module. Then FQ :“ WQX, FK :“ WKX and FV :“ WVX are the

feature generated by the corresponding linear operator, and the attention matrix is

defined by A “ FQ
JFK. Denote Sp¨q the softmax function in the module, then

As :“ SpAq is the feature that passed softmax function, and the whole output of

the attention module is XP :“ FVAs. Given this clear structure, it may be possible

to study whether more information can be applied to its optimization.
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Figure 1.1: Contribution and organization of this thesis.

1.3 Contribution and Organization of Thesis

This thesis consists of four works about designing effective preconditioned opti-

mizers for deep neural network training, and Fig. 1.1 illustrates our main contri-

bution and organization. In this thesis, we mainly focus on the following aspects.

First, we use second-order Hessian as a preconditioner for some channel-wise 1D

parameters in neural networks and design a combined optimizer SGD-PH. Second,

we deal with the inversion in the preconditioned optimizer KFAC and design a more

computational-friendly optimizer NKFAC. Third, aiming at lowering online regret

bound, we design an adaptive learning rate preconditioned optimizer with rotation

transformation, named AdamR. Finally, utilizing the attention feature gradient de-

scent, we design preconditioners to interact the parameters with each other and

propose AFOpt.

The organization of this thesis is as follows.

In Chapter 1, we introduce the background of preconditioned optimizers and
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discuss some unique structures of DNNs that are related to our design.

In Chapter 2, we introduce the optimizer SGD with Partial Hessian (SGD-PH).

Recognizing the unique properties of channel-wise 1D parameters in normalization

layers, we first demonstrate that their associated Hessian matrices are diagonal and

can be extracted directly and precisely from Hessian-free methods. Then we propose

a compound optimizer SGD-PH, which is a combination of a second-order optimizer

with a precise partial Hessian matrix for updating channel-wise parameters and the

first-order stochastic gradient descent (SGD) optimizer for updating the other param-

eters. This approach integrates the benefits of partial Hessian matrices to enhance

optimization while maintaining the generalization performance of first-order optimiz-

ers .We evaluate the performance of SGD-PH through experiments on classification

and person re-identification (reID) benchmarks to show its effectiveness.

In Chapter 3, we deal with the time-consuming inversion process in the Kronecker-

factorized approximate curvature (KFAC) algorithm. We propose the Newton-Kronecker

factorized approximate curvature (NKFAC) algorithm, which incorporates Newton’s

iteration method for inverting the second-order statistics. As the Fisher information

matrix between adjacent iterations changes little, we can initialize Newton’s iteration

with the previous inverse computed. Thus, by the fast local convergence of New-

ton’s iteration, we get accurate results within a few steps, which reduces computation

time. We further enhance NKFAC with practical implementations, resulting in state-

of-the-art generalization performance without tedious hyperparameter tuning. We

demonstrate the efficacy of NKFAC through experiments on various computer vision

tasks.

In Chapter 4, we propose the integration of a rotation transformation into the

existing adaptive learning rate algorithms. We utilize the well-established AdamW

optimizer as a foundation to develop a optimizer named AdamR. Theoretically,

AdamR achieves a lower regret bound compared to other adaptive learning rate
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methods that focus solely on the diagonal elements of the preconditioned matrix.

An important feature of the rotation transformation in AdamR is its ability to pre-

serve the gradient norm, enabling AdamR to seamlessly adopt the hyper-parameters

and retain the advantages of AdamW. We have conducted extensive experiments on

image classification, object detection, and segmentation tasks, where AdamR has

demonstrated superior performance over existing methods.

In Chapter 5, we introduce the Attention-Feature-based Optimizer (AFOpt)

specifically designed to optimize attention modules. AFOpt leverages the attention

feature gradient descent to treat the attention module as a unified entity, promoting

parameter interaction and enhancing training efficacy. Our approach first directly

applies gradient descent to the output features of the attention module, then updates

attention parameters by approximating the impact of the output feature’s gradient

descent. This parameter interaction facilitates the utilization of similarities between

different patches and assists the optimization. We validate the effect of AFOpt

through experiments on object detection and segmentation tasks.

In Chapter 6, we conclude the content of this thesis and discuss the future

work.

1.4 Mathematical Notation System

In this content, we use a to represent a one dimensional (1D) vector and A a

tensor more than one dimension. R represents the field of real numbers and Rn is

the field of real numbers with n dimension. The notations A ľ 0 and A ą 0 for

a matrix A denote that A is symmetric positive semidefinite (PSD) and symmetric

positive definite, respectively. Furthermore, A ľ B or A ´ B ľ 0 means that

A ´ B is PSD. TrpAq represents the trace of the matrix A. For a PSD matrix A,

Aα “ UΣαUJ, where UΣUT is the Singular Value Decomposition (SVD) of A.
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||x||A “
?
xTAx is the Mahalanobis norm of x induced by PSD matrix A , and its

dual norm is ||x||˚
A “

?
xTA´1x. A b B means the Kronecker product of A and

B, while A d B, Adα are the element-wise matrix product and element-wise power

operation, respectively. Diagpxq is a diagonal matrix with diagonal vector x, and

vecp¨q denotes the vectorization function. Other specific notations related to model

and data will be declared in each chapter within consistency.
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Chapter 2

SGD with Partial Hessian for Deep

Neural Networks Optimization

Due to the effectiveness of second-order algorithms in solving classical opti-

mization problems, designing second-order optimizers to train deep neural networks

(DNNs) has attracted much research interest in recent years. However, because

of the very high dimension of intermediate features in DNNs, it is difficult to di-

rectly compute and store the Hessian matrix for network optimization. Most of the

previous second-order methods approximate the Hessian information imprecisely, re-

sulting in unstable performance. In this work, we propose a compound optimizer,

which is a combination of a second-order optimizer with a precise partial Hessian

matrix for updating channel-wise parameters and the first-order stochastic gradi-

ent descent (SGD) optimizer for updating the other parameters. We show that the

associated Hessian matrices of channel-wise parameters are diagonal and can be ex-

tracted directly and precisely from Hessian-free methods. The proposed method,

namely SGD with Partial Hessian (SGD-PH), inherits the advantages of both first-

order and second-order optimizers. Compared with first-order optimizers, it adopts a

certain amount of information from the Hessian matrix to assist optimization, while

compared with the existing second-order optimizers, it keeps the good generalization

performance of first-order optimizers. Experiments on image classification and person
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re-identification tasks demonstrate the effectiveness of our proposed optimizer SGD-

PH. The code is publicly available at https://github.com/myingysun/SGDPH.

2.1 Introduction

Owing to the back-propagation algorithm, the first-order local information (e.g.,

the gradients) of the loss function for deep neural networks (DNNs) can be obtained

easily at a reasonable cost, which greatly assists the successful development of the

first-order optimizers for training DNNs. Among the existing optimizers, the most

widely used algorithms are SGD with momentum (SGDM) [60] and ADAM [36], the

descent directions of which are only decided by the gradients. Because of the advan-

tages including simple implementation, low computational cost and small memory

consumption, first-order optimizers [60, 36, 101] occupy the mainstream in the opti-

mization of DNNs. Live up to expectations, they have been shown the efficiency on

a variety of tasks in computer vision [63, 28], natural language processing [49] and

other machine learning areas (e.g., [54, 74]).

Besides first-order information, the second-order information (e.g., Hessian) is ad-

mittedly considered to help the optimization. Sometimes, second-order algorithms

will be preferred in solving traditional optimization problems due to their faster (lo-

cal) convergence under some assumptions and higher accuracy with fewer iterations.

Hence, the generalizations of the second-order methods into DNNs optimization are

always under the research spotlight over the past few years. However, since the di-

mension of Hessian in DNNs is very high, it is difficult to directly store and compute

the Hessian matrix. Therefore, how to make it practical in deep learning is still an

open question. A lot of works focus on how to approach the second-order information

in DNNs. For example, some earlier works [51, 88, 50] apply the Hessian-free methods

to approximate the Hessian matrix and then embed this information in the optimiza-
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tion process. Limited by the ways of implementation, most of these methods extract

the imprecise second-order information, and the accuracy of these approximations

may be considered to affect the performance of the optimizer. Instead of the Hes-

sian matrix, the natural gradient matrix can also be considered as the second-order

information to be approximated, for example, KFAC [24] and EKFAC [22] methods

approximate the natural gradient layerwisely by using a block-diagonal of the Fisher

matrix. However, these methods are still based on some assumptions about the sta-

tistical properties of the parameter distributions, which may also bring inaccuracies

into the optimization process. Due to such factors, sometimes the performances of

the second-order methods are even worse than the first-order ones, which may also

hinder the practical application of second-order optimizers.

It is worth noting that the existing optimizers treat all the network parame-

ters “the same”, in other words, all the parameters in the network follow the same

updating rule in the training process. However, we notice that the channel-wise

one-dimensional (1D) parameters are commonly introduced in some popular basic

modules of DNNs (e.g., in sundry normalization layers). From the perspective of de-

signing optimizers, we find these channel-wise 1D parameters can be proved to have

an important property, i.e., the Hessian matrix related to any one group of channel-

wised 1D parameters is diagonal (see the derivation in Section 2.3.1). The dimension

of these parameters, which is exactly the number of output channels of this layer,

is usually a very small number (e.g., 64), and for these diagonal Hessian matrices,

we can obtain the diagonals directly and precisely by the Hessian-free approach (see

Section 2.3.2 for details). This conclusion motivates us to treat the parameters “dif-

ferently” and propose a new algorithm to combine the first-order methods with the

second-order ones.

In this chapter, we propose a new type of compound optimizer, named SGD

with Partial Hessian (SGD-PH), which combines the second-order optimizer for
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the channel-wise 1D parameters with the first-order optimizer for other parameters.

Through making use of the special structure we mentioned above, we are allowed

to use Newton-type methods to update parameters for some specific layers, such as

the batch normalization (BN) layer and the convolutional layer with weight normal-

ization (WN). Compared with first-order optimizers, SGD-PH adopts partial but

precise information from the Hessian matrix to help optimization, while compared

with other second-order optimizers, it can keep and even surpass the high general-

ization performance of first-order optimizers in many tasks. Numerical experiments

on different datasets are given to illustrate the effectiveness of our SGD-PH.

2.2 Related Work

When employing second-order methods for DNNs, an essential part is to consider

how to extract the Hessian information efficiently and precisely. In this section,

we list some Hessian-free methods for solving the descent directions. Besides, we

also give a brief introduction of several commonly used normalization methods that

inspire our design.

Hessian-free Approaches: Hessian-free methods are intuitive and efficient in

solving the descent direction when applying the Newton-type methods in DNNs

optimization. Owing to the advantages of saving storage space, they are super suit-

able for deep networks and large-scale tensors. One kind of the Hessian-free method

approximates the diagonal Hessian elements via back-propagation, e.g., the imple-

mentation process in Adahessian [88] and Apollo [50]. Specifically, Adahessian ap-

plies Hutchinson’s method as an inexact approximation with the help of Rademacher

distribution, and Apollo updates the descent direction by the quasi-Newton method

with the help of the weak secant equation, in which the weak secant equation provides

a reasonable diagonal approximation of the next Hessian matrix. Another kind is a
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generalization of the classical iterative methods, including the Gauss-Seidel method,

the (preconditioned) conjugate gradient (CG) method, and the generalized minimal

residual (GMRES) method. These well-known methods can iteratively solve the lin-

ear system without storing the whole Hessian matrix, and have also been embedded

into the neural network training pipeline, e.g. [9, 51].

Normalization Methods: In DNNs, there are many specific layers designed to

be channel-wise, which enables some good properties for designing a partial Hessian

optimizer. The most intuitive examples are the batch normalization (BN)[33] and

weight normalization (WN)[70]. BN is a usually adopted technique in high-level

tasks training. In BN layers, a pair of parameters pγ, βq is introduced to scale

and shift the normalized value by yi “ γx̂i ` β for each channel, such that the

effect of noise will be reduced. By adding BN, the performance of many DNNs

become more robust to the change of hyperparameter values. Differently, WN is

a technique that decouples the length and the direction of the weight parameters,

i.e., in mathematics, let w “ γ v
}v}

. By applying the WN method, we are able

to decouple the weight length γ and the direction tensor v from the weight w.

Without calculating statistics from mini-batches like BN, WN is more suitable for

some specific applications such as deep reinforcement learning or generative models.

Numerous experiments have confirmed that they can both speed up the training

process and improve the final generalization performance. Besides WN and BN, there

are also other feature normalization methods such as layer normalization (LN) [4],

group normalization (GN) [86] and instance normalization (IN) [82]. Although these

normalization layers are simple affine layers, they have a great favorable impact on

training deep neural networks, which makes them become popular basic modules in

DNNs.
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Figure 2.1: Illustration of SGD-PH. Here, Figure (a) represents the case when BN is
adopted in neural networks training, while other normalization methods such as LN,
GN and IN can be represented in the same way. Figure (b) illustrates the case of
decoupling the convolutional layers when there are no normalization layers followed,
where β represents bias, please see Section 2.3.4 for more details.

2.3 Methodology

Instead of using the overall first-order or second-order information, we design the

descent steps with different order information at different layers, which is the reason

we called our method a “partial Hessian” method. Here, based on the widely applied

first-order optimizer SGDM, we add the precise Hessian information when optimizing

the 1D parameters. Moreover, for DNNs that have no normalization layers, we can

decouple the convolutional layers into a convolution operation and a linear weight

normalization operation, which enables our optimizer to be applied. Here we use

Figure 2.1 to illustrate our idea.

2.3.1 Diagonal Hessian Matrix

For an intuitive explanation, we adopt the BN layer as an example to describe the

design of SGD-PH. For a BN layer, the 1D-parameters are formed by different values

of parameters related to different channels. First we recall the operations of a single

BN layer with C input channels. For a batch of input X P RN Ĉ Ŵ Ĥ to this layer,

divide it into C sets X1, . . . ,XC according to the channels, where Xi “ tx1
i , ¨ ¨ ¨ , xmi

i u
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for each channel index i P t1, 2, . . . , Cu and mi “ NWH represents the number of

the elements within the i-th channel. Then for a specific channel Xi, the BN layer

contains the following operations

µXi
“

1

mi

mi
ÿ

j“1

xj
i ; σ2

Xi
“

1

mi

mi
ÿ

j“1

pxj
i ´ µXi

q
2; x̂j

i “
xj
i ´ µXi

b

σ2
Xi

` ϵ
; yji “ γix̂

j
i ` βi. (2.1)

The parameters γi, βi introduced here are usually updated via back-propagation in

the training process. Notice that the BN layer actually normalizes each channel

independently, which means the parameters γi, βi of Xi are irrelevant to γj, βj of Xj

whenever j ‰ i. Thus, denote Γ “ pγ1, ¨ ¨ ¨ , γCqT as the group of parameters γi for

all the C channels, the Hessian with respect to Γ, denoted by HΓ here, is exactly a

diagonal matrix. i.e.,

HΓ :“
B2L
BΓ2

“ Diag

ˆ

B2L
Bγ2

1

, ¨ ¨ ¨ ,
B2L
Bγ2

C

˙

(2.2)

with B2L
Bγ2

i
“

řmi

j“1
B2L

Bpyji q2
px̂j

i q
2 for i “ 1, . . . , C. Then the inverse H´1

Γ , if exists, can be

computed directly by the inverse of each diagonal element. This structure states that

getting the precise diagonal elements of the Hessian with respect to Γ is equivalent

to obtaining the partial Hessian HΓ precisely, which enables us to apply Newton-

type methods easily. The same conclusion also holds for the Hessian of the group

of parameters β “ pβ1, ¨ ¨ ¨ , βCqT . Consequently, we can obtain the exact Hessian

matrices of such one-dimensional parameters directly instead of using any approxi-

mation method.

It is worth mentioning that the property of partial diagonal Hessian does not

hold for nature gradient descent methods (that is, the idea of extracting precise

partial diagonal Hessian cannot be generalized to optimizers like KFAC), since the

Fisher matrices related to 1D parameters are symmetric positive semidefinite matri-

ces ErggJs with g being the gradient vector, which cannot be proved to be diagonal.
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2.3.2 The Hessian-free Approach

As we mentioned in Section 2.2, the Hessian-free method can be regarded as a

necessary way in designing second-order optimizers due to the memory limitations,

and some existing optimizers have adopted Hessian-free methods to approximate

the whole Hessian diagonal. Under this situation, it seems that there is no need to

extract the diagonal of some specific layers. However, regarding the truth that the

whole Hessian is not diagonal, the inexactness brought by approximating the whole

diagonal may influence the optimization process, which may lead to the unsatisfac-

tory performance of the second-order optimizers on some tasks. As a consequence, by

extracting the specific elements, we can avoid the inexactness of the existed diagonal

approximation methods, which helps our optimization.

In our optimizer, we adopt the Hessian-free approach with the help of back-

propagation. To ensure continuity, we still take the BN layer as an example. Under

the diagonal Hessian analysis Eq.(2.2), we set eΓ to be the vector that takes elements

1 related to the 1D vector Γ and takes elements 0 at all other places. Then with the

help of the second time back-propagation, we can get

HeΓ “
BpgTeΓq

BΓ
, (2.3)

where g is the gradient information computed in the first back-propagation process.

Then the vector diagpHΓq is contained in the corresponding positions of the vector

HeΓ. By this Hessian-free approach, we can get the corresponding diagonal matrix

HΓ precisely without computing and storing the whole Hessian matrix. Hence, our

method avoids the inaccuracy brought by the iterative methods or the approximation

methods when computing the Hessian information. The analysis of the group of bias

parameters β in BN layers is the same as Γ. Apart from this, other normalization

methods, including LN, IN and GN, also have analogous parameters, so similar

derivation and conclusion can be obtained.
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Figure 2.2: Illustration of diagonal Hessian computation. Here, the light green boxes
represent the elements that can be any real numbers while the white boxes represent
zeros. The central 3 ˆ 3 matrix (i.e., HSO) in H is diagonal corresponding to the
specific 1D variable. By multiplies with the vector eSO, we can extract the diagonal
elements precisely in the middle of HeSO and compute the element-wise inverse to
get DSO, which is exactly the diagonal of H´1

SO.

Generally, for an arbitrary 1D variable in DNN, we denote eSO the vector takes 1

at positions corresponding to this 1D vector and 0 at all other positions, and denote

the partial diagonal Hessian matrix and the descent direction concerning it by HSO

and DSO, respectively. Figure 2.2 illustrate the idea of our precise diagonal Hessian

computation. Through this operation, we can obtain the precise partial Hessian for

the calculation of descent direction.

Here, although we have formed a preconditioner on BN layer, unlike the existing

work [40] that design a preconditioner to lower condition number and get better linear

convergence rate, we design the partial Hessian trying to enjoy the second-order local

convergence rate, which is different from the existing method.

2.3.3 Techniques in Nonconvex Optimization

Since a nonconvex objective function may not have a positive-definite Hessian,

to apply the Newton method in solving nonconvex stochastic optimization problems,
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several rectification techniques are usually adopted to guarantee the well-definiteness

and the effectiveness of the Newton method.

First, to handle the nonconvexity and noninvertible issues, we use the absolute

value matrix with a positive perturbation as the substitution of the partial Hessian

matrix, i.e.,

H̃SO :“
b

HJ
SOHSO ` ϵI (2.4)

with ϵ ą 0 a small enough positive real number. Moreover, at the t-th iteration,

to minimize the effect of randomness and noise, we apply a momentum step on the

Hessian information H̃SO, i.e., for some α P p0, 1q, the momentum MH is computed

by

MH
t

“ p1 ´ αqMH
t´1

` αH̃t
SO, (2.5)

and the inverse of partial Hessian DSO
t

“ pdiagpMH
t
qq´1 is computed directly by

taking the diagonal element-wise inverse. At each iteration t, we only calculate

the partial Hessian and the momentum related to the current 1D parameter. The

techniques we mentioned above are some generally used techniques that can also be

found in many other papers about second-order optimizers, e.g., [88, 50].

Here, as applied in SGD, we also apply the momentum [60] calculation on the gradient

and the weight decay [39] technique for the final descent direction in our optimizer

to accelerate the convergence. Specifically, the momentum step on the gradient is

MG
t

“ p1 ´ βqMG
t´1

` βGt, (2.6)

where β P p0, 1q is a given constant and G is the gradient of the parameters. Mean-

while, after computing the final descent direction DG (specifically, taking DSOMG

for 1D parameters and MG for the others), for a given weight decay parameter η and

the weight tensor W, the weight decay step is exactly

D̃t
G “ DG

t
` ηWt. (2.7)
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Algorithm 1 SGD with partial Hessian (SGD-PH)

Inputs: Initial weight vector W0, step size τ and τSO, momentum factor α and β,
weight decay parameter η, rectification parameter ϵ.
Outputs: WpT q.

1: for t “ 1, . . . , T do
2: get Gt “ ∇LtpWtq;
3: if Wt is a channel-wised 1D parameter then
4: compute HSO

t and H̃t
SO by Eq.(2.3) and Eq.(2.4), respectively;

5: update MH
t by Eq.(2.5) and compute diagonal element-wise inverse DSO

t;
6: update MG

t by Eq.(2.6);
7: compute DG

t
“ τSODSO

tMG
t;

8: else
9: update MG

t by Eq.(2.6);
10: give DG

t
“ MG

t;
11: end if
12: get D̃t

G by Eq.(2.7);
13: update Wt`1 “ Wt ´ τD̃t

G.
14: end for

With the techniques in this section, we are ready to introduce the structure of our

optimizer SGD with Partial Hessian (SGD-PH) in Algorithm 1.

2.3.4 Generalizations on Convolutional Layers

In the previous sections, we explained how to apply SGD-PH to DNNs with

normalization layers. In this section, we will suggest that our optimizer can also be

applied in training DNNs without normalization layers in the same way of weight

normalization (WN). Here we illustrate the derivation via a single 2D convolution

operation Y “ W ˚ X, where W is the kernel with dimension Cout ˆ Cin ˆ k1 ˆ k2

and X is the input. For each output channel iPt1, . . . , Coutu, the WN operation can

be defined as follows

Wi “ γi
Vi

}Vi}2
, where Vi PRCin̂ k1̂ k2 and γi PR. (2.8)

Overall, we can get V “ pV1, . . . ,VCoutq and Γ “ pγ1, . . . , γCoutq. Thus, the param-

eters to be optimized change from the initial parameter W to the same dimension
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parameter V and a channel-wised 1D parameter Γ. Similar to the parameters in

BN, our proposed optimization algorithm can also be adopted to optimize the pa-

rameter Γ with its second-order information. Moreover, the bias parameter β in the

convolutional layers can also be contained into the second-order part optimization of

SGD-PH (we omit the details since it is trivial). We will demonstrate the efficiency

of SGD-PH in this generalization case later by the experiments in Section 2.4.4.

2.4 Experiments

In this section, we will validate the robustness and effectiveness of our proposed

SGD-PH by comprehensive experiments on image classification tasks. In our experi-

ments, we compare our SGD-PH with first-order optimizers SGDM [60], Adam [36],

AdamW [47], Adabelief [101], together with second-order optimizers Adahessian [88]

and Apollo [50]. In Section 2.4.1, we accomplish our experiments on deep neural

networks VGG11, VGG19 [77], ResNet18 and ResNet50 [29] for datasets CIFAR10

and CIFAR100 [38], and in Section 2.4.2, we compare the performances of different

optimizers on ResNet18 and ResNet50 for dataset Mini-ImageNet [84]. To avoid ran-

domness, these experiments are repeated 4 times and the results of testing accuracies

are reported in the “mean ˘ std” format. Moreover, we report the performance of

SGD-PH for the large-scale dataset ImageNet [68] on ResNet18 in Section 2.4.3. In

Section 2.4.4, we provide an illustration of the generalization of SGD-PH on convo-

lutional layers by the network VGG19. More ablation studies results of SGD-PH can

be found in Section 2.4.6.

Experiments Setup: In SGD-PH, the hyperparameters α and β control the mo-

mentum for the partial Hessian matrix and the gradient, respectively. Following

the experience from SGDM, we set α “ 0.9 and β “ 0.9 in our experiments. The

second-order learning rate τSO in line 8, Algorithm 1 is set to be 0.001. Besides,
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we add a small positive number ϵ “ 0.0001 to the Hessian diagonal to avoid the

diagonal elements being zero. The batch size, learning rate, weight decay, along with

the GPUs we use, will be introduced in each section respectively.

2.4.1 Results on CIFAR10/CIFAR100

CIFAR10 and CIFAR100 are commonly used image classification datasets, in

which CIFAR10 contains 10 classes of color images for classification with 6000 images

per class, and CIFAR100 contains 100 classes images with 600 images per class. Our

experiments here are accomplished on Pytorch 1.7 framework with mainly TITAN

RTX and Geforce RTX 2080Ti GPUs. In our experiments, we train DNNs with

different optimizers for total 200 epochs, using batch size 128 with one single GPU,

and the learning rate is multiplied by 0.1 every 60 epochs.

Compared with Other Optimizers: We compare SGD-PH with four popular

first-order optimizers SGDM, Adam, AdamW and Adabelief, and two second-order

optimizers Adahessian and Apollo, on four representative DNNs, i.e., ResNet18,

ResNet50, VGG11 and VGG19. We tune the learning rate and weight decay for all

these methods, and choose their best results for comparison. Specifically, the learning

rates are set to be 0.1 for SGDM, 0.001 for Adam, AdamW and Adabelief, 0.15 for

Adahessian and 1 for Apollo. the weight decays are set to be 0.0005 for SGDM,

Adam and Adahessian, 0.5 for AdamW and Adabelief, and 0.00025 for Apollo. For

SGD-PH, the learning rate takes 0.01 and the weight decay takes 0.005.

Table 2.1 shows the testing accuracies with these optimizers on CIFAR100 and

CIFAR10. It can be seen from the results that SGD-PH achieves the best results

of all DNN models on CIFAR100. Specifically, SGD-PH surpasses other compared

methods largely. The performance of SGD-PH surpasses SGD from 0.76% „ 2.93%

on CIFAR100, which fully indicates that the precise partial Hessian can help improve
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the final performance. For CIFAR10, we notice that many optimizers(e.g., SGDM,

Adabelief, Apollo and SGD-PH) reach 100% training accuracy with loss near to zero,

so most of them show quite similar generalization performance as in Table 2.1 and

the final stage in Figure 2.3. In the meantime, we also find that the performance

of Adahessian sometimes is not stable, e.g., its performance of VGG on CIFAR100

drops largely. The imprecise Hessian adopted in Adahessian sometimes may have

very bad impacts on the optimization process.

Meanwhile, for more intuitive insight, we present the testing accuracy curves of

different optimizers on CIFAR100/10 during training different networks in Figure 2.3.

From the trajectories, we see that the performance of Adahessian seems not to gain

too much from the learning rate decay at the 120-th epoch. Moreover, affected by the

proportion of 1D variables, the trend of the training curves of SGD-PH are usually

closer to the first-order optimizers. However, due to the absorption of second-order

information, the performance of SGD-PH exists almost always above that of SGDM

after the first learning rate decay at the 60-th epoch. This helps to illustrate that

SGD-PH may aggregate the advantages of first-order and second-order methods.

Time and Memory Cost: To extract the precise partial Hessian information

without approximation, the Hessian free method via the second time back-propagation

is the best approach for SGD-PH. In Adahessian, the same technique has also been

applied, and sadly the time consumption and the storage cost increase exaggeratedly

(e.g., for ResNet18 on CIFAR100, Adahessian has 4.64 times increase in time and

1.30 times increase in storage compared to SGDM), which may result in a bad impact

on its comprehensive applications. By noticing this fact, we have optimized the cal-

culation process in our Hessian-free approach due to our special structure to shorten

the time and storage cost of the second time back-propagation. Although we still

have increments of 2.22 and 1.23 times in time and storage respectively compared to
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Table 2.1: Testing accuracies (%) of different DNNs with different optimizers on CIFAR100/10 datasets.

CIFAR100

Optimizer SGDM Adam AdamW Adabelief Adahessian Apollo SGD-PH

ResNet18 77.20 ˘ .30 72.95 ˘ .20 77.23 ˘ .10 77.43 ˘ .36 76.73 ˘ .23 76.63 ˘ .27 77.96 ˘ .30

ResNet50 77.78 ˘ .43 72.13 ˘ .53 78.10 ˘ .17 79.08 ˘ .23 78.48 ˘ .22 78.68 ˘ .11 79.54 ˘ .27

VGG11 70.80 ˘ .29 68.00 ˘ .21 71.20 ˘ .29 72.43 ˘ .16 67.78 ˘ .34 70.05 ˘ .11 72.75 ˘ .13

VGG19 70.94 ˘ .32 63.90 ˘ 1.62 70.26 ˘ .23 72.37 ˘ .19 69.93 ˘ .84 71.46 ˘ .52 73.87 ˘ .28

CIFAR10

ResNet18 95.10 ˘ .07 92.95 ˘ .25 94.80 ˘ .10 95.12 ˘ .14 94.70 ˘ .15 95.03 ˘ .12 95.04 ˘ .07

ResNet50 94.75 ˘ .30 92.62 ˘ .19 94.72 ˘ .10 95.35 ˘ .05 95.35 ˘ .11 95.27 ˘ .11 95.22 ˘ .07

VGG11 92.17 ˘ .19 90.75 ˘ .15 92.02 ˘ .08 92.45 ˘ .18 91.85 ˘ .16 92.38 ˘ .19 92.60 ˘ .08

VGG19 93.57 ˘ .13 92.19 ˘ .07 93.54 ˘ .28 93.72 ˘ .08 93.68 ˘ .14 93.76 ˘ .07 93.75 ˘ .10

Table 2.2: Testing accuracies (%) of DNNs with different optimizers for ResNet18/50 on Mini-ImageNet dataset.

Optimizer SGDM Adam AdamW Adabelief Adahessian Apollo SGD-PH

ResNet18 67.33 ˘ .17 66.47 ˘ .34 66.90 ˘ .36 67.98 ˘ .29 67.13 ˘ .40 68.06 ˘ .38 70.53 ˘ .32

ResNet50 67.09 ˘ .56 65.70 ˘ .60 68.23 ˘ .30 69.36 ˘ .13 70.25 ˘ .28 70.24 ˘ .28 72.17 ˘ .30
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Figure 2.3: Testing accuracy curves of different optimizers for different DNNs on CIFAR100 and CIFAR10 datasets.
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SGDM due to the properties of back-propagation, we have saved the time and storage

a lot compared to Adahessian that adopting the same technique. However, consid-

ering the time and storage cost of SGD-PH than SGDM, one may benefit more from

SGD-PH when the 1D parameter has a greater impact on the overall model and task

performance.

2.4.2 Results on Mini-ImageNet

Mini-ImageNet is a subset of the well-known dataset ImageNet [68]. In our tests,

we use the train/test sets splits provided by [62, 34, 91]. Mini-ImageNet consists of

100 classes and each class has 500 images for training and 100 images for testing.

The image resolution is 84 ˆ 84, and here we resize the images into 224 ˆ 224 (i.e.,

the standard ImageNet training input size). We train the ResNet18 and ResNet50

with different optimizers for total 100 epochs with batch size 128 on 4 GPUs. Same

as CIFAR100 and CIFAR10 datasets, we repeat each experiment for 4 times to avoid

randomness, and the results are reported in the mean ˘ std format. The learning

rate is multiplied by 0.1 every 30 epochs. For SGD-PH, we set the learning rate to

be 0.05 and the weight decay to be 0.001. For other optimizers, the learning rates

are the same as the settings in CIFAR100/10. The weight decay parameter is set to

be 0.0001 for SGDM, Adam, and Apollo, and 0.1 for AdamW and Adabelief, 0.0005

for Adahessian. Table 2.2 shows the testing accuracies with these optimizers on

Mini-ImageNet, and Fig. 2.4 presents their testing accuracy curves during training.

We can see that SGD-PH outperforms other compared methods by a large margin,

i.e., 2.47% and 1.92% performance gains on ResNet18 and ResNet50, respectively.

Meanwhile, on mini-ImageNet dataset, the second-order optimizers usually perform

better than the first-order optimizers. Both Adahessian and Apollo achieve favorable

generalization performance. Under such cases, SGD-PH can keep the advantages of

second-order optimizers, and even further improve their performance.
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Table 2.3: Testing accuracies (%) of DNNs with different optimizers on ImageNet.
The result of ADAM, AdamW, Adabelief and Adahessian are cited from [45], [10],
[101], and [88], respectively.

Optimizer SGDM Adam AdamW Adabelief Adahessian Apollo SGD-PH

Accuracy 70.49 66.54 67.93 70.08 70.08 70.39 70.59

2.4.3 Results on ImageNet

In this section, we report the results on ImageNet [68] to validate the effectiveness

of SGD-PH. ImageNet is a large image classification dataset that contains 1000

categories with 1.28 million images for training and 50K images for validation. Our

experiments on ImageNet are accomplished on Pytorch 1.7 framework with four

GeForce RTX 2080Ti GPUs. In our experiments, we train the network ResNet18 [29]

for total 100 epochs with batch size 256 on 4 GPUs, and the learning rate is multiplied

by 0.1 every 30 epochs. We test the performance of SGD-PH, SGDM and Apollo,

while we cite the performance of other optimizers from existing papers in Table 2.3

for a more intuitive and complete comparison. We set the initial learning rate to be

0.1 for SGD-PH and SGDM, and 1 for Apollo, and set the weight decay to be 0.0001

for all SGD-PH, SGDM and Apollo. The rest hyperparameters all follow their official

settings.

Table 2.3 shows the testing accuracy of these optimizers on ImageNet. Among the

experiments on ImageNet reported in the existing papers, the first-order optimizer

SGDM usually has a favorable performance, and the generalization ability is often not

inferior to other compared optimizers, which means these optimizers sometimes may

not perform stably on the large scale dataset. Meanwhile, our SGD-PH, under the

same initial learning rate and weight decay with SGDM, can maintain this stability

of performance by 0.1% performance gain compared with SGDM. This is also a

reflection of the fact that our SGD-PH can inherit the advantages of the first-order

optimizers, which states the capability and universality of the newly proposed SGD-
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Table 2.4: Testing accuracies (%) of VGG19 with/without normalization layers on
CIFAR100 dataset.

Optimizer SGDM SGDM+WN SGD-PH+WN SGDM+BN SGD-PH+BN

Accuracy 65.56 ˘ .41 65.98 ˘ .35 67.93 ˘ .35 70.94 ˘ .32 73.87 ˘ .28
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Figure 2.4: Testing accuracy curves of different optimizers on Mini-ImageNet dataset.

PH for training DNNs on large-scale datasets.

2.4.4 Results about Convolutional Layers

For DNNs without normalization layers, we can apply SGD-PH by adopting WN

to embed the 1D parameters. As we introduced in Figure 2.2 (b), we reformulate

the convolution operation as the composition of a linear operator (corresponding to
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Figure 2.5: Testing and training accuracy curves of VGG19 without BN layers.
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the length) with a convolution operator (corresponding to the direction) as is often

applied in WN. Here we use VGG19 [77] as an example to illustrate the generalization

of our optimizer on general DNNs. In these experiments, all the BN layers of the

VGG19 model have been removed. It is well-known that the performance of DNNs

may drop largely without BN. We compare SGD and SGD+WN with SGD-PH+WN.

We tune both the learning rate and weight decay for these three methods and report

their best results. The learning rate is tuned to be 0.01 for them all. The weight

decays are 0.0001 for SGD and SGD+WN, and 0.001 for SGD-PH+WN. The other

training strategies are the same as those introduced in Section 2.4.1. As a more

intuitive comparison, we also report the results of the VGG19 model with BN layers

in Table 2.4 using the same results reported in Section 2.4.1.

Table 2.4 gives the results of these five methods and Figure 2.5 shows the testing

and training accuracy curves during training for the model VGG19 without BN

layers. It is easy to see that the performance drop largely without BN, e.g., from

70.94% to 65.56% for SGDM. In this case, WN can slightly improve the performance

of SGDM, while SGD-PH+WN can largely boost the performance over SGDM+WN

by 2.37%. These results fully demonstrate the effectiveness of our proposed SGD-

PH, that is, whether for a DNN with or without BN layers, SGD-PH can gain the

final performance.

2.4.5 Results on Person ReID Benchmarks

In this section, we further apply SGD-PH to two person ReID benchmarks Mar-

ket1501 [99] and DukeMTMC-ReID [65, 100]. The dataset Market1501 includes

1501 pedestrians and 32668 detected pedestrian rectangles, where 751 pedestrians

with 12936 images of them are in training set and the rest 750 pedestrians with 19732

images are in testing sets, while DukeMTMC-ReID, a subset of DukeMTMC dataset

for person ReID task, contains 702 persons with 16522 images for training, other 702
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persons with 2228 query images and 17661 gallery images for testing. As well-known

and commonly used benchmarks, they have been tackled in many existing work.

Here, we adopt the method produced in [48] as our baseline 1.

Unlike image classification tasks that may benefit more from SGD than other

optimizers, for person ReID tasks, the most popular optimizer is ADAM, which may

be considered to have a more robust performance, and the default optimizer used in

the baseline [48] is also ADAM. Tables 2.5 and 2.6 lists the results of Rank1 and mAP

on the two datasets with ResNet18 and ResNet34 backbones. The experiments are

done on eight GeForce RTX 2080Ti GPUs, repeated for 4 times and reported in the

“mean ˘ std” format. Besides citing the performances of ADAM from [48], we tune

the learning rate and weight decay of SGD by grid search with other settings keep the

same as the baseline, while we keep the same hyperparameters as SGD for SGD-PH.

Specifically, the learning rate and weight decay for SGD and SGD-PH on the two

datasets are 0.03 and 0.003, respectively. For SGD-PH, the second order learning

rate τSO takes 0.005 and 0.01 for Market1501 and DukeMTMC, respectively. The

experiments on Market1501 is not inferior to SGDM (with slightly 0.1% better for

most cases), while on DukeMTMC-ReID it gains 0.3%„ 0.4% for rank1 accuracy and

0.5%„ 0.6% for mAP compared with SGDM. Therefore, we illustrate the adaptability

of our newly-proposed SGD-PH on person ReID tasks.

Table 2.5: Experiment results (%) on Market1501.

Network ResNet18 ResNet34

Indicator Rank1 mAP Rank1 mAP

ADAM 91.7 77.8 92.7 82.7

SGDM 92.5 ˘ .4 81.2 ˘ .3 93.5 ˘ .3 83.9 ˘ .1

SGD-PH 92.6 ˘ .2 81.3 ˘ .1 93.5 ˘ .2 84.0 ˘ .4

1The repository can be downloaded via: https://github.com/michuanhaohao/

reid-strong-baseline.
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Table 2.6: Experiment results (%) on DukeMTMC-ReID.

Network ResNet18 ResNet34

Indicator Rank1 mAP Rank1 mAP

ADAM 82.5 68.8 86.4 73.6

SGDM 84.0 ˘ .8 69.9 ˘ .5 85.4 ˘ .1 71.7 ˘ .1

SGD-PH 84.4 ˘ .4 70.5 ˘ .1 85.7 ˘ .9 72.2 ˘ .8

Table 2.7: Testing accuracies (%) of different LR and WD for ResNet18 on CI-
FAR100.

LR 0.01 0.01 0.01 0.02 0.005

WD 0.01 0.002 0.005 0.005 0.005

Accuracy 77.19 ˘ .45 77.33 ˘ .14 77.96 ˘ .30 77.21 ˘ .20 77.28 ˘ .28

2.4.6 Ablation Studies

In this section, we will report some ablation studies about SGD-PH to state its

robustness and efficiency. We first tune some important hyperparameters, including

the initial learning rate, weight decay, the second-order learning rate and the mo-

mentum of partial Hessian, then we test the performance of SGD-PH under different

input batch size settings. Similarly, we repeat each experiment 4 times and report

the results in the mean ˘ std format.

Learning Rate and Weight Decay: Generally, good settings for learning rate

and weight decay can greatly benefit the final generalization results. In our ex-

periments, we choose the learning rate (LR) and weight decay (WD) from the set

t0.005, 0.01, 0.02u, while the learning rate of the second-order part τSO and the Hes-

sian momentum α are set to be 0.001 and 0.9, respectively. Table 2.7 shows the

results of five combinations of LR and WD. It can be found that the best result is

setting LR to be 0.01 and WD to be 0.005, and we adopt this in the experiments

of Section 2.4.1. Moreover, other settings also achieve acceptable results with fluc-

tuations of no more than 0.77%, which illustrates that SGD-PH is robust to these
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Table 2.8: Testing accuracies (%) of different second-order learning rate τSO for
different DNNs on CIFAR100/10 datasets.

Dataset CIFAR100 CIFAR10

τSO 0.01 0.001 0.0001 0.01 0.001 0.0001

ResNet18 77.33 ˘ .24 77.96 ˘ .30 78.22 ˘ .20 94.99 ˘ .08 94.98 ˘ .07 94.86 ˘ .06

ResNet50 79.61 ˘ .20 79.54 ˘ .27 79.53 ˘ .20 95.27 ˘ .10 95.17 ˘ .10 95.07 ˘ .12

VGG11 70.54 ˘ .23 72.75 ˘ .13 73.21 ˘ .09 92.14 ˘ .13 92.64 ˘ .24 92.58 ˘ .20

VGG19 72.78 ˘ .17 73.87 ˘ .28 73.62 ˘ .21 93.54 ˘ .18 93.77 ˘ .19 93.55 ˘ .20

Table 2.9: Testing accuracies (%) of α for ResNet18 on CIFAR100.

α 0.8 0.9 0.99

Accuracy 77.79 ˘ .35 77.96 ˘ .30 77.81 ˘ .32

hyperparameters.

Second-order Learning Rate: In SGD-PH, an additional important hyperpa-

rameter is imported, i.e., the learning rate of the second-order part τSO. Here we

tune τSO on CIFAR100/10 by traversing through the set t0.01, 0.001, 0.0001u, while

the initial LR and WD are set to be 0.01 and 0.005, respectively. Table 2.8 gives

the testing accuracies of different τSO on CIFAR100/10. We can see from the results

that, on CIFAR100, a smaller τSO (i.e., 0.0001) may achieve better generalization

performances in some shallow neural networks, e.g., VGG11 and ResNet18. However,

for the deeper networks, a small τSO may no longer have such an advantage, on the

contrary, a larger τSO like 0.01 may perform better. Meanwhile, on CIFAR10, the

performances of SGD-PH with different τSO have no significant differences. Thus,

the results in Table 2.8 shows the applicability of our proposed SGD-PH related

to different second-order LR τSO. Furthermore, as a moderate choice, we take the

hyperparameter τSO “ 0.001 in the above sections, and it works well through all of

our experiments.
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Table 2.10: Testing accuracies (%) of different batch size settings for ResNet18 on
CIFAR100.

Batch Size 16 32 64 128 256

Accuracy 78.08 ˘ 0.08 78.32 ˘ .21 78.14 ˘ .35 77.96 ˘ .30 77.56 ˘ .16

Hessian Momentum: Following the experience of tuning the momentum of SGDM,

we list some testing accuracy results of SGD-PH with different Hessian momentum

parameters t0.8, 0.9, 0.99u for ResNet18 on CIFAR100 in Table 2.9. As shown in Ta-

ble 2.9, α “ 0.9 attains the best results (which is the value we adopt in the previous

sections), while other parameters also achieve acceptable results with a maximum

fluctuation of 0.17%. Consequently, SGD-PH performs stably with these commonly

chosen values of momentum.

Batch Size: The input batch size can also affect the performance of optimizers.

Hence, we also pay attention to the impact of different batch size on the performance

of SGD-PH. Here, we provide Table 2.10 about the testing accuracy results of SGD-

PH for ResNet18 on CIFAR100, with the hyperparameters settled by lr“0.01, wd“

0.005, τSO “ 0.001 and α “ 0.9. When the batch size increases from 16 to 256,

there is a certain range of fluctuations in the testing accuracies, with the best result

occurring at batch size 32. Totally, the trend of fluctuation about SGD-PH related to

batch size is similar to other widely used optimizers, which ensures the adaptability

and stability of SGD-PH for different settings in applications.

2.5 Conclusion

In this chapter, we propose SGD-PH, a compound optimizer that combines first-

order optimizer SGDM with partially accurate Hessian information. The design of

SGD-PH is based on the derivation of the Hessian matrices of the channel-wise 1D

parameters, which are proved to be diagonal matrices and can be extracted precisely
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through the Hessian-free method. Besides showing the effectiveness of SGD-PH on

DNNs with the widely used normalization layers, we also give an example applying it

to the reformulated convolutional layer directly, which illustrates that our optimizer

can be applied to any DNNs (even if without normalization layers) with a satisfac-

tory performance achieved. Sufficient ablation studies are accomplished to verify the

robustness and adaptability of our proposed SGD-PH related to different hyperpa-

rameters. However, consistent with other second-order optimizers, our SGD-PH also

needs more computational time and memory compared with first-order optimizers.

This is still one of the key problems faced for designing second-order optimizers.
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Chapter 3

NKFAC: A Fast and Stable KFAC
Optimizer for Deep Neural

Networks

In recent advances in second-order optimizers, computing the inverse of second-

order statistics matrices has become critical. One such example is the Kronecker-

factorized approximate curvature (KFAC) algorithm, where the inverse computa-

tion of the two second-order statistics to approximate the Fisher information matrix

(FIM) is essential. However, the time-consuming nature of this inversion process

often limits the extensive application of KFAC. What’s more, improper choice of

the inversion method or hyper-parameters can lead to instability and fail the entire

optimization process. To address these issues, this chapter proposes the Newton-

Kronecker factorized approximate curvature (NKFAC) algorithm, which incorpo-

rates Newton’s iteration method for inverting second-order statistics. As the FIM

between adjacent iterations changes little, Newton’s iteration can be initialized by

the inverse obtained from the previous step, producing accurate results within a

few iterations thanks to its fast local convergence. This approach reduces compu-

tation time and inherits the property of second-order optimizers, enabling practical

applications. The proposed algorithm is further enhanced with several useful imple-

mentations, resulting in state-of-the-art generalization performance without the need

38



for extensive parameter tuning. The efficacy of NKFAC is demonstrated through

experiments on various computer vision tasks. The code is publicly available at

https://github.com/myingysun/NKFAC.

3.1 Introduction

Benefited from the convenient back-propagation (BP) process, the first-order

gradient-based algorithms [61, 36, 101, 47] have occupied the mainstream of deep

neural networks (DNNs) optimization. Due to the appealing property of fast conver-

gence, second-order optimizers have been continuously developed for training DNNs.

At this stage, the research on second-order optimizers has achieved fruitful results

by different approaches of design (e.g., [51, 88, 50, 26, 52, 80, 18]). They usually

need fewer epochs than first-order optimizers to reach a specified loss or accuracy,

confirming their broad application prospects in training DNNs.

Optimizing deep neural networks (DNNs) in a second-order manner usually re-

quires addressing the challenging problem of approximating the matrix inverse, a

task that is usually time-consuming and sometimes unstable. Two popular ways to

utilize the second-order information are Hessian-based methods, which rely on the

inverse of second-order Hessian matrix, and nature gradient based methods, which

require the inversion of the Fisher information matrix (FIM). However, dealing with

the inversion of these matrices can be complex and resource-intensive. Therefore,

second-order optimizers usually encounter greater challenges than first-order meth-

ods in applications.

In recent decades, natural gradient (NG) methods have received considerable

attention due to their ”Hessian-free” computation, specifically, only first-order infor-

mation (i.e., gradients) is required in their computation. From a design perspective,

the NG descent algorithm is based on minimizing the KL-divergence of two distri-
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butions, with the Fisher Information Matrix (FIM) serving as auxiliary information

to aid in optimization. However, as a statistic that summarizes the information of

stochastic parameters through observations, FIM is shown to be the expected value

of the Hessian under certain regular assumptions [73]. As a result, NG methods are a

specific kind of second-order optimizer, and they generally exhibit fast convergence.

The most popular way for applying the NG method is the Kronecker-factorized

approximate curvature (KFAC) algorithm [52], which decouples the computation of

FIM into a series of matrices of input and matrices of gradient under some assump-

tions. Thus, the computation cost of the inverse can be reduced from a greatly

large FIM to a series of small matrices. Recent works [20, 21, 80, 5, 37, 22] have

improved KFAC with better approximations. However, computing the inverse of the

decoupled matrices of FIM remains an area that requires further study. A recent

work [80] proposed SKFAC, which randomly selects (or averages) samples in spa-

tial dimension for convolutional layers and adopts the Sherman–Morrison formula

to reduce the dimension of inversion and shorten the computation time. However,

besides the loss of information from random sampling and averaging, the moving

average of input and gradient instead of second-order statistics in this method may

also lead to a considerable loss of information. Consequently, although the inversion

time can be significantly reduced, SKFAC’s convergence speed and performance may

drop more severely if the number of samples is reduced. Additionally, since the Sher-

man–Morrison formula cannot reduce the time of matrix inversion when two matrix

dimensions are close, SKFAC cannot speed up the optimization process under such

circumstances.

Besides reducing the computational time to narrow the gap between first-order

and second-order algorithms, the stability of second-order methods is also an is-

sue that requires attention. From one aspect, several commonly used inversion ap-

proaches such as the those relying on eigenvalue decomposition are not stable or
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not well optimized in build-in functions, which may greatly prevent the widespread

application of the corresponding optimizers. From another aspect, the instability of

second-order optimizers can also arise from an improper dampening parameter that

is added to the matrix, which requires careful parameter tuning.

In this chapter, based on the popular KFAC optimizer, we propose KFAC with

Newton’s iteration (in short, NKFAC), which is practical, stable and time-saving

with state-of-the-art generalization results. By combining the property of slow

change of FIM in training and the local fast convergence of Newton’s iteration,

NKFAC narrows the time gap between first-order and second-order methods while

inherits the convergence property of second-order optimizers, and is not inferior to

first-order methods in generalization performance. We verify the effectiveness and

efficiency of NKFAC by extensive experiments on different tasks in computer vision.

3.2 Background and Preliminaries

3.2.1 Matrix Inverse

Efficient computation of matrix inverses is a longstanding and critical research

topic due to the universality and time-consuming nature of inversion. In DNNs

optimization, there are two main techniques used to reduce the computational cost

of matrix inversion. One is the equivalent matrix transformation [80, 2, 37], which

reduces the inversion to a small dimension matrix by rigorous mathematics equations

like the Sherman–Morrison formula. The other one is the application of iteration

methods (e.g., [1, 69, 7, 23]), which combines DNN training with some common

iteration methods (e.g., (quasi-)Newton’s iteration, conjugate gradient (CG) [30]

and GMRES [58]).

Proper inversion methods are critical to the success of training DNNs with second-

order optimizers. Using an improper method can lead to the failure of the entire
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training process. For example, when the input matrix has repeated eigenvalues,

eigenvalue decomposition-based inversion often fails and disrupts the optimization

process. Another concern in the stability of inversion arises from the poor condition

number of the matrix. Some matrices encountered in DNNs training may have poor

condition numbers that cause difficulties with inversion, regardless of the method

used. Numerical operations can mitigate this problem to some extent, for example,

minimizing division in the inversion process to reduce the risk of numerical overflow.

Meanwhile, a proper dampening parameter is usually necessary to improve the con-

dition number. The classic KFAC [52] also stresses the importance of the dampening

parameter for second-order optimizers in detail. In this chapter, we are motivated to

design a stable algorithm with a suitable inversion method and adaptive dampening

parameter.

3.2.2 KFAC Algorithm

Here we introduce the formulation of KFAC [52, 24] from the definition of Fisher

information matrix (FIM). Denote θ “ pvecpW1q, ¨ ¨ ¨ , vecpWlqq the collective tensor

of all the weights Wi for i “ 1, . . . , l in a fully-connected network. For a negative log

probability loss LpY|fpX,θqq“´log rpY|fpX,θqq, where r is the probability density

function (p.d.f.) of the predictive distribution of Y parameterized by fpX,θq, by

denoting ppY|X,θq :“ rpY|fpX,θqq and Dθ the gradient of log p with respect to θ,

the FIM is defined by

F “ E

«

d log ppY|X,θq

dθ

d log ppY|X,θq

dθ

J
ff

“ E
“

DθDθJ
‰

. (3.1)

Therefore, the parameter update equation of NG method is defined by

θt`1 “ θt ´ ηtF
´1
t Dθ. (3.2)

Here, the matrix F is computed only by the first-order derivatives Dθ, thus no

additional back-propagation is needed, which saves plenty of time as a second-order
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optimizer.

With the advantage of being ”Hessian-free” to save computational cost, NG meth-

ods only need to solve the storage problem cost by the highly large dimension of F.

Each block of F, denote by Fi,j (defined in Eq. (3.3)), can be approximated with

the assumption of the statistic independence between inputs X and their gradients

∆, i.e.,

Fi,j :“ErvecpDWiqvecpDWjqs“ErXiX
J
j b∆i∆

J
j s « ErXiX

J
j s b Er∆i∆

J
j s. (3.3)

For convenient, we use the notation Li,j :“Er∆i∆
J
j s and Ri,j :“ErXiX

J
j s. Therefore,

by the block diagonal approximation of the FIM F « DiagpF11, ¨ ¨ ¨ ,Fllq, together

with Eq. (3.2) and the computation rules of Kronecker product, we get that for

the t-th iteration, the update formula of KFAC, converted to the tensor operation

related to the weight W, takes the form

Wt`1 “ Wt ´ τtL
´1
t`1GtR

´1
t`1, (3.4)

where L “ DiagpL11,¨ ¨ ¨,Lllq, R “ DiagpR11,¨ ¨ ¨,Rllq, and G is the gradient of the

weight W in tensor form.

The update equation (3.4) is derived only for fully-connected layers [52]. After

this, with the help of im2col function, a similar equation is derived for convolutional

layers in [24] under some other assumptions, in which two matrix inverses related to

the gradients (L´1) and the inputs (R´1) are also required. Although the periodic

strategy can be adapted to update the inverse [57], the computation time of inverse is

still an important question that deserves consideration to maximize the performance

of the optimizer.

3.2.3 About Other Second-order Optimizers

There are many other recently proposed second-order optimizers, e.g., GGT[2],

Shampoo[26], AdaHessian[88] and M-FAC[18]. Apart from AdaHessian, the other
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three optimizers all require matrix inversion, which suffer from the instability and

time-consuming problems that will be specified in Section 3.3.1 without exception.

Unfortunately, AdaHessian requires the second-time back-propagation, which is the

most time-consuming (over 4 times compared with SGD). Besides, GGT and M-

FAC both import a significant hyper-parameter related to matrix dimension, i.e. the

window size r. This parameter r has a great influence on the computational cost

and storage, and when using the default number r“ 512, M-FAC even cannot train

ResNet50 on CIFAR100 within a 48G storage GPU. Therefore, the design of the

second-order optimizer is still a research hot spot.

3.3 Methodology

3.3.1 Motivation

Apart from reducing the time cost of matrix inversion, the toolbox and built-in

functions of different machine learning frameworks have also been updated to meet

the need for stability as well as time. However, when we tried to reproduce some

second-order optimizers, we found that there were still some unstable built-in func-

tions related to the inversion that may kill the optimization process. For example,

to deal with matrix inversion, many implementations of second-order optimizers first

apply eigenvalue decomposition to the matrix, and then use matrix multiplication to

obtain the corresponding inverse. By this implementation, the maximum and mini-

mum eigenvalues can also be obtained for some parameter tuning use. When using

a previous version of PyTorch, eigenvalue decomposition sometimes failed, halting

the optimization process. Although using the torch.linalg.invpq function in PyTorch

1.9 alleviated this issue, some complex matrix inversion algorithms still suffer from

numerical overflow problems, particularly when the input matrix is ill-conditioned.

Furthermore, parallel processing on GPUs for matrix inversion is not as feasible as
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for other optimized operations (e.g., matrix multiplication).

Moreover, the time cost of computing inverse within a single optimization step for

KFAC is very large. For example, when training ResNet50 on CIFAR100, computing

the inverse takes up over 90% of the time cost of an optimization step. However,

previous research [57] has shown that the Fisher Information Matrix (FIM) changes

slowly. Our experiments have confirmed this property, especially once the training

process stabilizes. Moreover, taking the momentum of second-order statistics into

consideration, the inverse of FIM approximated by these statistics also change little

between iterations. Therefore, if we adopt an iterative approach to solve the inverses

each time, we can use the inverses computed in the previous iteration as good ini-

tialization points for the current computation. This property, to our best knowledge,

has not been well-utilized in previous work.

To have a more intuitive explanation, we draw the changing curves of these two

statistics during the training process for ResNet18 on CIFAR100. Here in the Fig.

3.1, the plot value represents the norm of the difference of the statistics between an

interval of Tstat (takes 20 here) and is divided by the current statistics norm. We take

the average of the results of four experiments to plot the figure. We can see from

Fig. 3.1 that, except for the very beginning stage, all the values are small, which

verifies the slow change of our Fisher information statistics.

Considering the above facts, we are motivated to design an iterative method that

can quickly converge locally to maximize the utilization of the previous inverse, and

keep only well-optimized matrix multiplications in our method to maximize stability.

Here, we consider Newton’s iteration, which is detailed described in Section 3.3.2.

3.3.2 Newton’s Iteration of Matrix Inverse

For a given real matrix A, an iterative method [71, 6] of computing matrix inverse

A´1, which is a generalization of Newton’s iterative method and also known as
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Figure 3.1: Change of Lt and Rt in training ResNet18 on CIFAR100.

Schultz iteration, obtains a sequence tBku that performed simply by

Bk`1 “ 2Bk ´ BkABk. (3.5)

Assume A is an invertible matrix, and B0 is an initialization closed to A´1. Now we

state the following Proposition 1.

Proposition 3.1. [55, Section 2.3] If }B0} ‰ 0 and }I´AB0} ă 1, then the sequence

tBku generated by (3.5) converges to A´1 with an order at least 2.

For the case that }I´AB0} ě 1, we add a stepsize αk in the k-th iteration. Thus,

the Newton’s iteration becomes

Bk`1 “ p1 ` αk`1qBk ´ αk`1BkABk. (3.6)

Note that if αk`1 “ 1, the update iteration is exactly the classic equation (3.5). In

our experiments, we empirically set an adapting stepsize αk`1 “ 1
}ABk}

. Since we

have computed ABk when determining the norm, no additional multiplication is

needed. Here we give some simple examples to test the performance of the above

Newton’s iteration using random generated 1024 ˆ 1024 matrices. We normalize the

matrices to have norm 1 and add perturbations with different norm 0.1, 0.05, 0.01 to
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Algorithm 2 Newton’s Iteration for solving matrix inverse

Inputs: (A, B0, K);
Output: BK .

1: for k “ 1, . . . , K do
2: if }I ´ AB0} ă 1 then
3: Bk “ 2Bk´1 ´ Bk´1ABk´1;
4: else
5: αk “ 1

}ABk´1}
, Bk “ p1 ` αkqBk´1 ´ αkBk´1ABk´1.

6: end if
7: end for

them. Figure 3.2 shows the loss curve of different perturbation cases with respect to

iteration. Ablation study about the stepsize αk`1 under the case }I´AB0} ě 1 can

be found in Section 3.4.

Figure 3.2 also shows that the fast convergence of Newton’s method relies heavily

on the request of a good initialized point. Thus, when applying Newton’s methods to

solve traditional optimization problems, first-order methods are usually adopted for

some iterations as a warm-up to acquire a good initialized point for Newton’s method,

and in principle, a series tBku should be generated to reach a good approximation

of A´1. However, as we explained in Section 3.3.1, the change of the second-order

statistic between iterations is quite small, which states that the inversion result of

the last iteration is exactly a satisfactory initialized point of the current iteration.

This ensures the efficiency of Newton’s method with few iterations.

Although in the recent research, a series of improved iterative methods with the

order of convergence rate from cubic to seventh has been developed (e.g., [78, 41]),

we still adopt the above Newton’s iteration with a substituted stepsize, since it has

just several simple matrix multiplications and is easy to achieve a balance between

computational cost and performance.

The detailed steps of the Newton’s iteration for solving matrix inverse is stated

in Algorithm 2.
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3.3.3 NKFAC

As mentioned in Section 3.2.2, KFAC can be applied on both linear and con-

volutional layers with updating formula Eq.(3.4). Thus, with Newton’s iteration

to update the matrix inverse L´1 and R´1, we combine Algorithm 2 with classic

KFAC, and propose KFAC with Newton iteration (NKFAC). Again, since the FIM

changes slow, we apply periodical strategy to update the second order statistics L,R

and their inverses, i.e., Tstat and Tinv steps, respectively. The periodical strategy

is also adopted in some existing works, e.g., [93, 80]. Moreover, at certain larger

intervals CTinv, we recalculate the exact inverse to prevent the approximation from

getting too far from the exact inverse.

Different from the existing works, we do not reduce the inversion dimension by

random sampling or averaging, so the comprehensiveness of the input information

was preserved to the greatest extent. This also allows us to maximally inherit the fast

convergence properties of the second-order optimizer while accelerating the inversion

process. Meanwhile, Algorithm 2 has only matrix product operations, which, from
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Algorithm 3 Periodical inversion updating strategy at the t-th iteration

Inputs: Tensors Lt,Rt, L̂t, R̂t,Xt,∆t; floats η, α; integers Tstat, Tinv, C,K.
Outputs: pL̂t`1, R̂t`1q.

1: if t%Tstat “ 0 then
2: Lt`1 “ αLt ` p1 ´ αq∆t∆

J
t , Rt`1 “ αRt ` p1 ´ αqXtX

J
t ;

3: else
4: Lt`1 “ Lt, Rt`1 “ Rt;
5: end if %periodical update the statistics

6: if t%pCTinvq “ 0 or t ă 2Tinv then
7: L̂t`1 :“ pLt`1 ` ηλLmaxIq

´1, R̂t`1 :“ pRt`1 ` ηλRmaxIq
´1;

8: else if t%Tinv “ 0 then
9: L̂t`1 :“ Alg.1pLt`1 ` ηλLmaxI, L̂t, Kq, R̂t`1 :“ Alg.1pRt`1 ` ηλRmaxI, R̂t, Kq;
10: else
11: L̂t`1 “ L̂t, R̂t`1 “ R̂t;
12: end if %periodical update the inverse

a numerical perspective, is stable in computation compared with other inversion

methods that may need division. The possibility of numerical overflow is reduced,

which also makes the entire training process more stable.

Before stating the whole structure of NKFAC, from a simple and practical point

of view, we will introduce some useful implementations in Section 3.3.4.

3.3.4 Implementations and AdaNKFAC

Before introducing the implementations of our NKFAC, it is worth mentioning

that these techniques can be implemented in other second-order optimizers to avoid

the tedious tuning process and improve the stability of the algorithms. We also

report some ablation studies of them on classic KFAC and the generalized SKFAC

in Section 3.4.

Gradient Norm Recovery: Parameter tuning is a very important but tedious

part of training DNNs. At this stage, first-order optimizers have been widely used

in DNNs training. In the deep learning tasks, most of the commonly used param-

eters and tuning schedules, including learning rate and weight decay, have been
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finely tuned by many existing works, so their performance are generally satisfactory.

However, for the second-order optimizers, the best parameters and tuning schedules

may vary greatly from the first-order optimizers. Carefully tuning parameters will

cost a lot of time and resources. However, without tuning parameters, second-order

optimizers are easy to fail since they are usually more sensitive to changes in param-

eters. To solve the parameter tuning question of second-order algorithms, we adopt

the gradient norm recovery technique, which can also be found in [93]. Specifically,

the descent direction Ĝ “ L´1GR´1 is recovered by

G̃ “ Ĝ
}G}

}Ĝ}
. (3.7)

After implementing this technique, the finely tuned parameters and tuning schedules

can be adopted with just small changes, even be applied directly. This allows us to

maximize the use of the existing parameter tuning results without much tedious and

repetitive works.

Adaptive Dampening: In computing matrix inverse, the property of the matrix

itself has a great influence on the difficulty of solving the inverse and the stability of

the inversion algorithm. For example, if the matrix is ill-conditioned, most algorithms

may easy to fail numerically, and if the minimum eigenvalue of the matrix is close

to zero, the magnitude of the inverse may become quite large, which may also fail

the whole optimization process. For second-order optimizers, dampening parameters

can greatly influence the training performance. Here, for each matrix L and R, we

adopt the adaptive dampening parameters related to the maximum eigenvalue λLmax

and λRmax respectively, i.e.,

L :“ L ` ηλLmaxI, R :“ R ` ηλRmaxI, (3.8)

where η P p0, 1q is a given hyper-parameter. This technique can also be found in [93]

to improve the property of matrices with different magnitudes. With this technique,
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the matrix to be inverted becomes more stable.

Statistics Momentum: The second-order statistics used to help optimization are

stored in two matrices L and R, which are exactly the approximations of FIM and

also the matrices that need inversion. To sum up all the information of different

batches of input, we add momentum to the second-order statistics, i.e., for each

iteration t ` 1, we compute and store the matrix Lt`1 and Rt`1 by

Lt`1 “ αLt ` p1 ´ αq∆t∆
J
t , Rt`1 “ αRt ` p1 ´ αqXtX

J
t . (3.9)

In application, the hyper-parameter α is usually chosen closed to 1, which leads

to the slow change of FIM. Therefore, we design Algorithm 3, which shows our

periodical inversion updating strategy.

Adaptive Stepsize (AdaNKFAC): Inspired by the success of adaptive stepsize

methods especially in training transformers, we also add the adaptive stepsize and

weight decouple technique into NKFAC and propose AdaNKFAC (stated in Algo-

rithm 5), which can also be regarded as a combination of NKFAC and AdamW[47].

Thus, without tedious parameter-tuning, we easily achieve higher performance com-

pared with classical adaptive stepsize method(e.g., AdamW) as we reported in Sec-

tion 5.4.

Overall, the detailed NKFAC and AdaNKFAC algorithm are stated in Algo-

rithm 4 and Algorithm 5, respectively. For more ablation study experiments

about these implementations, please refer to Section 5.4.

3.4 Experiments

3.4.1 Experimental Setup

Hyper-parameters settings: Due to the fast local convergence of Newton’s method,

together with the numerical performance, we take K“1 in Algorithm 2. Although

the step seems few, it works well through all our experiments. In classification tasks
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Algorithm 4 NKFAC

Inputs: Initialization W0,L0“ϵICout ,R0“ϵICin
, L̂0“0Cout , R̂0“0Cin

; float numbers
τ, η; integer constants Tstat, Tinv, C,K;
Outputs: WT .

1: for t “ 0, 1, . . . , T ´1 do
2: compute the gradient Gt;
3: save Xt“rxtis

n
i“1 and ∆t“rδtis

n
i“1; %by forward and backward propagation, respectively

4: pL̂t`1, R̂t`1q = Alg.2(Lt, Rt, L̂t, R̂t, Xt, ∆t, η, α, Tstat, Tinv, C,K);
5: Ĝt`1 “ L̂t`1GtR̂t`1;
6: G̃t`1 “ Ĝt`1

}Gt}

}Ĝt`1}
;

7: Wt`1 “ Wt ´ τG̃t`1.
8: end for

Algorithm 5 AdaNKFAC

Inputs: W0,L0“ϵICout ,R0“ϵICin
, L̂0“0Cout , R̂0“0Cin

, M0“0Cout̂ Cin
,V0“0Cout̂ Cin

;
float τ, η, β1, β2, ε; integers Tstat, Tinv, C,K;
Outputs: WT .

1: for t “ 0, 1, . . . , T ´1 do
2: compute the gradient Gt;
3: save Xt“rxtis

n
i“1 and ∆t“rδtis

n
i“1;

4: pL̂t`1, R̂t`1q = Alg.2(Lt, Rt, L̂t, R̂t, Xt, ∆t, η, α, Tstat, Tinv, C,K);
5: Ĝt`1 “ L̂t`1GtR̂t`1;
6: G̃t`1 “ Ĝt`1

}Gt}

}Ĝt`1}
;

7: Mt`1 “ β1Mt ` p1 ´ β1qG̃t`1;
8: Vt`1 “ β2Vt ` p1 ´ β2qG̃t`1 d G̃t`1;
9: M̃t`1 “

Mt`1

1´βt
1
, Ṽt`1 “

Vt`1

1´βt
2
;

10: Wt`1 “ Wt ´ τ M̃t?
Ṽt`ε

.

11: end for

that compared with NKFAC and KFAC, we take Tstat “ 20 and Tinv “ 200, which

keeps the same interval parameters as in [80] for a fair comparison. In other tasks,

we adopt Tstat “ 100 and Tinv “ 1000, which not only shows the wide applicability

and satisfactory performance but also states the robustness of our proposed NKFAC.

The integer interval C takes 500, the gradient momentum takes 0.9, the second-order

statistics momentum is set to 0.95, and the dampening parameter η “ 0.01.

Choice of NKFAC and AdaNKFAC: For experiments on transformers, the adap-
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tive momentum methods often obtain more satisfactory results than SGDM, and the

default optimizer of training transformers are often AdamW. To keep satisfactory

results without tedious parameter tuning, we choose AdaNKFAC for these experi-

ments, while for traditional CNNs with default optimizer SGD, we choose NKFAC

as a comparison. Thus, we can gain the performance with the same or just slightly

different hyper-parameters.

Baseline Optimizers: The baseline optimizers occur in this section are KFAC,

SKFAC, and the first-order optimizers SGDM [61], AdamW [47], RAdam [45] and

Adabelief [101]. For SKFAC, a too-small number of random sampling will affect the

performance, so we take the random sampling number to be 8, which is still within

the suggested range in [80]. Meanwhile, since our experiments are accomplished

on Pytorch 1.9 framework, by noticing that the inverse function runs much faster

than computing the inverse with the help of the eigenvalue decomposition function,

we implement the computation of maximum eigenvalue by Newton-Schulz iterations

to save running time in each step. It is worth mentioning that we have tested

the second-order optimizers mentioned in Section 3.2.3, i.e., GGT[2], Shampoo[26],

AdaHessian[88] and M-FAC[18]. However, as we mentioned that second-order opti-

mizers usually need parameter-tuning from scratch, in our experiments, even after

the tedious parameter-tuning, their performance are still not satisfactory and some-

times fail to convergence. Therefore, we do not contain these optimizers in our

comparison in this section.

3.4.2 Results on CIFAR100/10

In this section, our experiments are conducted on CIFAR100/10 [38] datasets

with 4 Geforce RTX 2080Ti GPUs. In our experiments, we train DenseNet121 [32],

ResNet18, ResNet50 [29], and GoogLeNet [79] for total 200 epochs with batch size

128 on one single GPU. We use cosine learning rate schedule, the detailed settings of
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which are reported in Table 3.2. Each experiment is repeated four times to eliminate

randomness. The generalization performance is reported in the ”mean ˘ std” format,

and the time is reported by taking the average.

From the aspect of generalization performance, we see from Table 3.1 that NK-

FAC performs the best on CIFAR100 compared with all the other optimizers. After

careful hyper-parameters tuning, KFAC performs better than the default first-order

SGDM optimizer under most circumstances. With the proposed useful implemen-

tations, our NKFAC inherits this property with even better accuracy and faster

convergence speed than KFAC as shown in Fig. 3.3. SKFAC, however, may suf-

fers from information lose and does not perform as well as NKFAC and KFAC.

For experiments on CIFAR10, we notice from the training process that after 200

epochs, all the optimizers reach nearly 100% training accuracy with the training loss

very close to zero, which means that all the networks are trained well under these

circumstances. Therefore, there may not big difference about the generalization per-

formance of different optimizers on CIFAR10 for the DNNs we tested, as we show in

Table 3.1.

Table 3.3 demonstrates our superior ability to approximate the inverse from a

time perspective. In most of the DNNs we tested, NKFAC outperforms other opti-

mizers. Particularly, when the Sherman-Morrison formula cannot significantly reduce

the dimension of inversion, SKFAC may not be powerful enough, whereas NKFAC

consistently demonstrates its effectiveness. Across all experiments, NKFAC reduces

inversion time from 31% to 86% compared to KFAC, while SKFAC achieves a re-

duction of 3% to 61%. These results demonstrate the time-saving benefit of using

Newton’s iteration in NKFAC.
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Table 3.1: Testing accuracies (%) of different optimizers on CIFAR100/10. * means at least one of the four repeated
experiments fails to converge.

CIFAR100

Optimizer SGDM AdamW RAdam Adabelief KFAC SKFAC NKFAC

DenseNet121 80.26 ˘ .32 78.92 ˘ .17 79.29 ˘ .19 80.21 ˘ .24 79.32 ˘ .05 80.44 ˘ .35 81.13 ˘ .16

ResNet18 78.41 ˘ .25 77.63 ˘ .18 77.54 ˘ .11 78.41 ˘ .29 79.96 ˘ .21 78.91 ˘ .14 80.23 ˘ .24

ResNet50 78.87 ˘ .35 78.85 ˘ .50 79.15 ˘ .24 80.61 ˘ .44 80.77 ˘ .17 81.16 ˘ .16 81.78 ˘ .06

GoogLeNet 80.26 ˘ .15 79.83 ˘ .22 79.90 ˘ .07 80.98 ˘ .15 81.47 ˘ .24 79.68 ˘ .19 81.65 ˘ .10

CIFAR10

DenseNet121 95.73 ˘ .12 95.11 ˘ .14 95.17 ˘ .24 95.68 ˘ .14 95.17 ˘ .11 95.77 ˘ .20 95.72 ˘ .07

ResNet18 95.50 ˘ .07 95.05 ˘ .14 95.04 ˘ .10 95.34 ˘ .10 95.84 ˘ .12 95.82 ˘ .05 95.80 ˘ .10

ResNet50 95.43 ˘ .21 95.20 ˘ .07 95.19 ˘ .15 95.77 ˘ .11 95.93 ˘ .09 96.11 ˘ .16 96.07 ˘ .10

GoogLeNet 95.56 ˘ .09 95.05 ˘ .14 95.17 ˘ .10 95.67 ˘ .11 95.52 ˘ .00˚ 95.57 ˘ .16 96.23 ˘ .06

55



0 50 100 150 200

Epoch

0

1

2

3

Lo
ss

ResNet18 on CIFAR100

SGDM

KFAC

SKFAC

NKFAC

0 50 100 150 200

Epoch

0

1

2

3

Lo
ss

ResNet50 on CIFAR100

SGDM

KFAC

SKFAC

NKFAC

0 50 100 150 200

Epoch

0

1

2

3

Lo
ss

DenseNet121 on CIFAR100

SGDM

KFAC

SKFAC

NKFAC

0 50 100 150 200

Epoch

0

1

2

3

Lo
ss

GoogLeNet on CIFAR100

SGDM

KFAC

SKFAC

NKFAC

50 100 150 200

Epoch

0.65

0.7

0.75

0.8

Ac
cu

ra
cy

(%
)

ResNet18 on CIFAR100

SGDM

KFAC

SKFAC

NKFAC

50 100 150 200

Epoch

0.65

0.7

0.75

0.8

Ac
cu

ra
cy

(%
)

ResNet50 on CIFAR100

SGDM

KFAC

SKFAC

NKFAC

100 120 140 160 180 200

Epoch

0.7

0.72

0.74

0.76

0.78

0.8

0.82

Ac
cu

ra
cy

(%
)

DenseNet121 on CIFAR100

SGDM

KFAC

SKFAC

NKFAC

100 120 140 160 180 200

Epoch

0.7

0.72

0.74

0.76

0.78

0.8

0.82

Ac
cu

ra
cy

(%
)

GoogLeNet on CIFAR100

SGDM

KFAC

SKFAC

NKFAC

0 2000 4000 6000

Time(s)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Lo
ss

ResNet18 on CIFAR100

SGDM

KFAC

SKFAC

NKFAC

0 5000 10000 15000

Time(s)

0.5

1

1.5

2

2.5

Lo
ss

ResNet50 on CIFAR100

SGDM

KFAC

SKFAC

NKFAC

0 0.5 1 1.5 2

Time(s) 104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Lo
ss

DenseNet121 on CIFAR100

SGDM

KFAC

SKFAC

NKFAC

0 0.5 1 1.5 2

Time(s) 104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Lo
ss

GoogLeNet on CIFAR100

SGDM

KFAC

SKFAC

NKFAC

0 2000 4000 6000

Time(s)

0.55

0.6

0.65

0.7

0.75

0.8

Ac
cu

rac
y(s

)

ResNet18 on CIFAR100

SGDM

KFAC

SKFAC

NKFAC

0 5000 10000 15000

Time(s)

0.5

0.6

0.7

0.8

Ac
cu

rac
y(s

)

ResNet50 on CIFAR100

SGDM

KFAC

SKFAC

NKFAC

0 0.5 1 1.5 2

Time(s) 104

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Ac
cu

rac
y(s

)

DenseNet121 on CIFAR100

SGDM

KFAC

SKFAC

NKFAC

0 0.5 1 1.5 2

Time(s) 104

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Ac
cu

rac
y(s

)

GoogLeNet on CIFAR100

SGDM

KFAC

SKFAC

NKFAC

Figure 3.3: Training loss and testing accuracy curves with respect to epoch and time on CIFAR100 for different optimizers,
respectively.
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Table 3.2: Settings of learning rate (LR) and weight decay (WD) for different opti-
mizers on CIFAR100/10.

Optimizer SGDM AdamW RAdam Adabelief KFAC SKFAC NKFAC

LR 0.1 0.001 0.001 0.001 0.0005 0.0005 0.05

WD 0.0005 0.5 0.5 0.5 0.1 0.1 0.001

Table 3.3: Time cost by inversion (s) of optimizers on CIFAR100.

Optimizer KFAC SKFAC NKFAC

DenseNet121 264.68 244.16 35.56

ResNet18 136.41 53.32 54.24

ResNet50 248.84 155.23 74.13

GoogLeNet 102.83 99.32 70.69

From the aspect of convergence, we plot Fig. 3.3 about the training loss and

testing accuracy curves with respect to epoch and total training time for different

optimizer, respectively. When train the same number of epochs, NKFAC always gain

the performance among all the optimizers compared whether according to training

loss or testing accuracy. Meanwhile, considering total training time, NKFAC reduces

the loss quicker and gains the generalization performance at most of the time com-

pared with KFAC, NKFAC under most cases, while compared with the first-order

optimizer SGDM, it is usually better than SGDM in the early stage but surpassed

by SGDM in the later stage. Here, as shown in Fig. 3.3, first-order optimizer still

shows it advantage in less training time.

3.4.3 Results on ImageNet

ImageNet [68] is an image classification dataset that contains 1k categories with

1.28 million images for training and 50k images for validation. Our experiments on

ImageNet are accopmlished on GeForce RTX 2080Ti GPUs. The initial learning rate

and weight decay are reported in Table 3.4.

Results on CNNs: In our testing, we train ResNet18 and ResNet50 networks [29]
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Table 3.4: Settings of learning rate (LR) and weight decay (WD) for different opti-
mizers on ImageNet.

Optimizer SGDM AdamW RAdam Adabelief KFAC SKFAC NKFAC

LR 0.1 0.001 0.001 0.001 0.0005 0.0005 0.05

WD 0.0001 0.1 0.1 0.5 0.02 0.02 0.0002

Table 3.5: Top 1 accuracy (%) for different optimizers on ImageNet with
ResNet18/50.

Optimizer SGDM AdamW RAdam Adabelief KFAC SKFAC NKFAC

ResNet18 70.49 70.01 69.92 70.08 70.51 10.28 71.12

ResNet50 76.31 76.02 76.12 76.22 76.66 29.09 77.07

for a total of 100 epochs across 4 GPUs. The total batch size is set at 256, and the

learning rate is decreased by a factor of 0.1 every 30 epochs. The top-1 accuracy

results of ResNet18/50 are displayed in Table 3.5. While the same parameters prove

effective for KFAC, SKFAC struggles to optimize the network despite the random

sampling number being increased to 8, which could be due to information loss. In

contrast, our NKFAC method successfully inherits most of the valuable information

from KFAC, and with the help of our useful implementations and well-tuned param-

eters for first-order optimizers, it achieves the best performance among all optimizers

with 0.61% and 0.41% higher than the second best one.

Results on Transformers: During our tests, we utilize Geforce RTX A6000 GPUs

and the official MMClassification toolbox [13] 1 to train the Swin-T and Swin-B

transformers. Since the adaptive momentum optimizers are widely used for training

transformers, we apply the adaptive momentum optimizer AdaNKFAC and compare

it with the default optimizer AdamW, which we directly cite the official results of

in Table 3.6 2. For AdaNKFAC, we set the initial learning rate and weight decay

1https://github.com/open-mmlab/mmclassification.

2The results can be found from https://github.com/open-mmlab/mmclassification/tree/

master/configs/swin_transformer.
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Table 3.6: Top 1 accuracy (%) with Swin-T and Swin-B.

Optimizer AdamW AdaNKFAC

Swin-T 81.18 81.63

Swin-B 83.36 83.30

to be 0.002 and 0.025, respectively, with other hyper-parameters keeping the same

as default settings. Our AdaNKFAC inherits the quick convergence property as a

second-order optimizer for both networks and converges faster than AdamW (as seen

in Fig. 3.4 for the training loss and validating accuracy curves). By the final valida-

tion performance in Table 3.6, we see AdaNKFAC gains 0.45% and loses 0.06% on

Swin-T and Swin-B, respectively, compared with the default AdamW. These results

demonstrate the suitability of the second-order algorithm for training transformers.

More experiment results on the training of transformers will be presented in Section

3.4.4.

3.4.4 Results on COCO

In this section, we will show the applicability and robustness of NKFAC on detec-

tion and segmentation tasks on COCO [44], which is a large-scale dataset of detection,

segmentation and captioning tasks. In this section, we accomplish experiments with

Faster-RCNN [64], RetinaNet [43] and Mask-RCNN [28] with backbones ResNet50,

ResNet101 and Swin-T transformer [46] to show the stable and efficient performance

of our NKFAC/AdaNKFAC on these tasks. Our experiments are accomplished un-

der the sketch of the official MMDetection toolbox [12] 3. For the default optimizers,

if the official results are given, we cite the official results directly for comparison 4.

Otherwise, we adopted the official settings in MMDetection toolbox and reproduced

3https://github.com/open-mmlab/mmdetection.

4The results can be found from https://github.com/open-mmlab/mmdetection/tree/master/

configs/faster_rcnn, https://github.com/open-mmlab/mmdetection/tree/master/

configs/mask_rcnn, and https://github.com/open-mmlab/mmdetection/tree/master/

configs/swin.
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the results 5. Our experiments here are accomplished on RTX A6000, Geforce RTX

3090Ti and Quadro RTX 8000 GPUs.

The hyperparameters of NKFAC/AdaNKFAC are the same as the default opti-

mizers in the MMDetection toolbox without any tuning. Specifically, for NKFAC in

Faster-RCNN and Mask-RCNN, the initial learning rate takes 0.02 while the weight

decay takes 0.0001, and for RetinaNet, the learning rate takes 0.01 while the weight

decay takes 0.0001. For AdaNKFAC, the initial learning rate takes 0.0001 while

the weight decay takes 0.2. Our experimental results show that NKFAC performs

much better than the default optimizers in all the experiments regardless of model

and backbone. Table 3.7 and Table 3.8 report the Average Precision (AP) of detec-

tion by Faster-RCNN and RetinaNet, respectively, from which we can see NKFAC

improves the AP by 1.9% „ 3.4% compared to the default SGDM. Meanwhile, in

Table 3.9, we report the detection and segmentation results of Mask-RCNN with

different backbones, while NKFAC gains 0.9% „ 1.9% APb and 0.7% „ 1.9% APm

over the default optimizers. These results can well demonstrate the effectiveness of

our proposed NKFAC.

Further considering the convergence performance, we plot Figure 3.5 to clearly

show the training loss curves of different optimizers on Faster-RCNN with ResNet101

backbone, RetinaNet with Swin-T backbone, Mask-RCNN with ResNet101 and Swin-

T backbone. It can be shown from Figure 3.5 that NKFAC/AdaNKFAC converges

faster than the default optimizer in all the cases. Therefore, we are optimistic about

the application of NKFAC on various tasks.

5For Swin-T 2ˆ of Mask-RCNN, the decay epochs of learning rate are set to be 16 and 22, with
total 24 epochs.
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Table 3.7: Detection results of Faster-RCNN on COCO. * means the default opti-
mizer, and ∆ means the improvement of NKFAC compared with the default one.

Backbone, LR Algorithm AP AP.5 AP.75 APs APm APl

ResNet50, 1ˆ

SGDM* 37.4 58.1 40.4 21.2 41.0 48.1

NKFAC 39.7 60.7 43.0 23.4 43.3 51.5

∆ Ò2.3 Ò 2.6 Ò2.6 Ò2.2 Ò2.3 Ò3.4

SGDM* 39.4 60.1 43.1 22.4 43.7 51.1

NKFAC 41.3 62.0 45.0 24.4 44.7 54.9ResNet101, 1ˆ

∆ Ò1.9 Ò 1.9 Ò1.9 Ò2.0 Ò1.0 Ò3.8

Table 3.8: Detection results of RetinaNet on COCO. * means the default optimizer,
and ∆ means the improvement of NKFAC compared with the default one.

Backbone, LR Algorithm AP AP.5 AP.75 APs APm APl

SGDM* 37.3 57.4 39.6 22.2 40.7 50.6

NKFAC 40.7 61.7 43.3 25.2 43.9 53.9Swin-T, 1ˆ

∆ Ò3.4 Ò 4.3 Ò3.7 Ò3.0 Ò 3.2 Ò 3.3

3.4.5 Ablation Studies

In this section, we report some ablation studies on NKFAC with respect to the

hyper-parameters on CIFAR100[38]. Our experiments are accomplished on 8 Geforce

RTX 2080Ti GPUs on the same server. Besides the parameter we focus on, other

hyper-parameters and are identical to those in Section 3.4.2. Here, we mainly focus

on the dampening parameter η, statistics momentum α, the number of Newton’s

iterations K, and the updating intervals Tstat and Tinv.

Table 3.10 shows the result with different dampening parameters η. As we men-

tioned before, the dampening parameter matters a lot in a second-order optimizer,

and here η “ 0.01 obtains the best result while η “ 0.001 reduces the performance by

1.00%. Table 3.11 shows the result with different second-order statistics momentum

α. Benefiting from the fact that the Fisher information matrix (FIM) changes little

between iterations, NKFAC is stable related to α, and all the momentum parameters

α achieve good results. To prevent a greater change of FIM on larger datasets, we

finally take a moderate choice α “ 0.95.
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Table 3.9: Detection and segmentation results of Mask-RCNN on COCO. * means
the default optimizer, and ∆ means the improvement of NKFAC compared with the
default one.

Backbone, LR Algorithm APb APb
.5 APb

.75 APm APm
.5 APm

.75

SGDM* 38.2 58.8 41.4 34.7 55.7 37.2

NKFAC 40.1 60.9 43.9 36.6 57.9 39.2ResNet50, 1ˆ

∆ Ò1.9 Ò 2.1 Ò2.5 Ò1.9 Ò2.2 Ò2.0

SGDM* 40.0 60.5 44.0 36.1 57.5 38.6

NKFAC 41.8 62.1 45.9 37.8 59.2 40.3ResNet101, 1ˆ

∆ Ò1.8 Ò 1.6 Ò1.9 Ò1.7 Ò1.7 Ò1.7

AdamW* 42.7 65.2 46.8 39.3 62.2 42.2

AdaNKFAC 43.6 65.7 47.5 40.1 62.9 43.4Swin-T, 1ˆ

∆ Ò0.9 Ò0.5 Ò0.7 Ò0.8 Ò0.7 Ò1.2

AdamW* 45.2 67.3 49.4 41.0 64.3 44.0

AdaNKFAC 46.2 68.2 50.5 41.7 65.1 45.0Swin-T, 2ˆ

∆ Ò1.0 Ò0.9 Ò1.1 Ò0.7 Ò0.8 Ò1.0

AdamW* 46.0 68.2 50.3 41.6 65.3 44.7

AdaNKFAC 46.9 68.6 51.5 42.3 65.8 45.6Swin-T, 3ˆ

∆ Ò0.9 Ò0.4 Ò1.2 Ò0.7 Ò0.5 Ò0.9

Table 3.10: Testing accuracy (Acc.) of NKFAC with different dampening parameter
η for ResNet50 on CIFAR100.

η 0.1 0.01 0.001 0.0001

Acc. (%) 81.74 ˘ .27 81.78 ˘ .06 80.78 ˘ .13 79.69 ˘ .05

Table 3.12 reports the testing results with different numbers of Newton’s step

K, where the time shown is the cost of inversion plus adaptive dampening, and is

reported by taking the average. When K takes 2, 3 or 5, the accuracy becomes

better, while more steps result in more time cost. As a balance, we finally take

K “ 1. Meanwhile, we report Table 3.13 about the testing accuracy of different

updating interval of the second-order statistics Tstat and the inversion Tinv. Within

the range listed in the table, NKFAC performs stable and satisfactory, so one can

choose these intervals according to different needs.
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Figure 3.4: Training loss and validating accuracy curves w.r.t epoch for different
optimizers on ImageNet with Swin-T/Swin-B.

Table 3.11: Testing accuracy (Acc.) of NKFAC with different statistics momentum
α for ResNet50 on CIFAR100.

α 0.9 0.95 0.995 0.9995

Acc. (%) 81.82 ˘ .15 81.78 ˘ .06 81.84 ˘ .12 81.95 ˘ .16

3.4.6 Ablation Study on the stepsize of Newton’s iteration

In this section we conduct the ablation study on the stepsize of Newton’s iteration.

Recall that for a given real matrix A, our Algorithm 2 (i.e., the Newton’s method

for solving matrix inverse) obtains a sequence tBku that performed simply by

Bk`1 “ p1 ` αk`1qBk ´ αk`1BkABk, (3.10)

with αk`1 “ 1 when }I ´ AB0} ă 1 and αk`1 “ 1
}ABk}

when }I ´ AB0} ą 1. When

choosing αk`1 in the latter case, the most natural idea is to use the length that drops

the deviation most along this descent direction as the stepsize, specifically, as in the

below Proposition 3.2.
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Figure 3.5: Loss curves w.r.t iteration for different deep neural networks with different
optimizers on COCO.

Proposition 3.2. Denote the descent direction Dk :“ BkpABk ´Iq and the function

fkpαq :“ 1
2
}ApBk ´ αDkq ´ I}2 for each iteration k. Then the optimization problem

α˚
k`1 :“ arg minα fkpαq takes the optimal α˚

k`1 “
xABk´I,ABkpABk´Iqy

}ABkpABk´Iq}2
in iteration k.

However, our experiments show that this α˚
k`1 may not works as good as αk`1 “

1
}ABk}

, which is chosen from our experience. Here we show some of the comparison re-

sults on detection and segmentation tasks in Table 3.14 and Table 3.15. In summary,

the stepsize chosen in Newton’s iteration indeed leave impact on the performance of

NKFAC. Luckily, our stepsize αk`1 “ 1
}ABk}

that chosen in Algorithm 2 performs

good throughout our experiments.
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Table 3.12: Testing accuracy (Acc.) and time cost by computing inversion of NKFAC
with different number of Newton’s step K.

K 1 2 3 5 10

Acc. (%) 81.78 ˘ .06 81.93 ˘ .21 81.91 ˘ .11 81.92 ˘ .18 81.79 ˘ .16

Time (s) 132.00 202.37 268.00 405.62 747.88

Table 3.13: Testing accuracy (Acc.) of NKFAC with different updating intervals
Tstat and Tinv for ResNet50 on CIFAR100.

Tstat 20 50 100 200

Tinv 200 500 1000 2000

Acc. (%) 81.78 ˘ .06 81.74 ˘ .18 81.90 ˘ .26 81.80 ˘ .13

3.4.7 Ablation Study on Implementations

With our experiment results in Section 3.4.2, we are motivated to add our im-

plementations to KFAC and SKFAC, denoted by KFAC* and SKFAC*, respectively.

In this section, we compare the implemented KFAC*, SKFAC* with NKFAC on

CIFAR100[38] and ImageNet[68] datasets.

Here, the learning rate and weight decay of KFAC*, SKFAC* and NKFAC are set

to be the same, specifically, 0.05 and 0.001, respectively. We see NKFAC still shows

its advantage of time cost from Table 3.16 and achieves higher generalization per-

formances than SKFAC*, while stably reducing the inversion cost by 56% and 64%.

KFAC* shows its efficiency benefited from our useful implementations and achieves

the highest accuracy in ResNet50 while NKFAC is still the best in DenseNet121.

Thus, as a balance, NKFAC can be a good choice in applications.

To clearly compare the time cost of inversion and adaptive dampening in each

step, we plot Figure 3.6 to show the time cost proportion of each part in a single

optimization step using the experiment results on CIFAR100. To eliminate random-

ness, the time reported in Figure 3.6 is the cumulative time of the first 50 epochs in

the training process. SKFAC can also shorten the time in computing the adaptive
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Table 3.14: Detection results of Faster-RCNN on COCO. ∆ means the improvement
of αk`1 compared with α˚

k`1.

Backbone, LR Stepsize AP AP.5 AP.75 APs APm APl

ResNet50, 1ˆ

α˚
k`1 38.7 59.5 42.0 22.9 42.3 50.3

αk`1 39.7 60.7 43.0 23.4 43.3 51.5

∆ Ò1.0 Ò1.2 Ò1.0 Ò0.5 Ò1.0 Ò1.2

α˚
k`1 39.1 59.5 42.6 22.6 42.9 51.2

αk`1 41.3 62.0 45.0 24.4 44.7 54.9ResNet101, 1ˆ

∆ Ò2.2 Ò 2.5 Ò2.4 Ò1.8 Ò1.8 Ò3.7

Table 3.15: Detection and segmentation results of Mask-RCNN on COCO. ∆ means
the improvement of αk`1 compared with α˚

k`1.

Backbone, LR Algorithm APb APb
.5 APb

.75 APm APm
.5 APm

.75

α˚
k`1 39.5 60.4 43.1 36.3 57.5 38.9

αk`1 40.1 60.9 43.9 36.6 57.9 39.2ResNet50, 1ˆ

∆ Ò0.6 Ò 0.5 Ò0.8 Ò0.3 Ò0.4 Ò0.3

α˚
k`1 41.4 61.9 45.4 37.4 59.0 40.2

αk`1 41.8 62.1 45.9 37.8 59.2 40.3ResNet101, 1ˆ

∆ Ò0.4 Ò 0.2 Ò0.5 Ò0.4 Ò0.2 Ò0.1

dampening after dimension reduction, as shown in Figure 3.6, while NKFAC shows

the least time in the optimization step for both the DNNs tested.

3.5 Conclusion

In this work, we propose NKFAC, a generalized KFAC optimizer that combining

classic KFAC with Newton’s iteration. With the help of a good initialization ob-

tained from the last iteration and the fast local convergence of Newton’s iteration,

we reduce the computational cost of the second-order statistics inversion while main-

taining satisfactory performance. Meanwhile, since Newton’s iteration contains only

matrix product operations, the probability of numerical problems can be reduced

and the stability of inversion can be improved. Moreover, without random selec-

tion or taking an average to reduce the dimension of the second-order statistics, we
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Table 3.16: Testing accuracies (%) and time cost by computing dampening and
inversion (s) of different optimizers with implementations on CIFAR100.

Accuracy Time Cost

Optimizer KFAC* SKFAC* NKFAC KFAC* SKFAC* NKFAC

DenseNet121 81.04 ˘ .22 80.66 ˘ .13 81.13 ˘ .16 362.14 331.04 132.00

ResNet50 81.89 ˘ .21 81.08 ˘ .18 81.78 ˘ .06 306.88 191.33 134.21

Figure 3.6: Time cost of optimization steps for KFAC*, SKFAC* and NKFAC on
CIFAR100.

preserve the information obtained from the samples to the greatest extent, ensuring

a speedy convergence rate. Last but not the least, through some useful implemen-

tations, the generalization performance of NKFAC achieves SOTA without tedious

hyper-parameter tuning. NKFAC reduces the gap between first-order and second-

order methods in terms of time cost and hyper-parameters tuning, while still keeping

satisfactory convergence performance. Sufficient experiments on image classification,

detection and segmentation tasks have been conducted to confirm the effectiveness

of our proposed NKFAC.
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Chapter 4

AdamR: Adaptive Learning Rate

Optimization Method with a

Rotation Transformation

The advancement of adaptive learning rate methodologies has been instrumental

in the optimization of Deep Neural Networks (DNNs). In pursuit of attaining a more

favorable regret bound, we propose the integration of a rotation transformation into

the existing adaptive learning rate algorithms. We employ the widely-recognized

adaptive learning rate optimization method AdamW as a based optimizer, leading

to the development of a novel optimizer we have named AdamR. It consists of three

steps in each iteration to compute the modified gradient: firstly, the computation

of the gradient with a rotation; secondly, the execution of the standard Adam step;

and finally, the reorientation of the gradient back to its original space. Theoretically,

AdamR exhibits a lower regret bound compared to other adaptive learning rate

methods that focus solely on the diagonal elements of the preconditioned matrix.

An important characteristic of the rotation transformation employed in AdamR is

its preservation of the gradient norm, thereby allowing AdamR to seamlessly inherit

the hyper-parameters and inherent advantages of AdamW. Similar to the optimizer

AdaBK, we also employ the layer-wise block-diagonal constraint and the Kronecker-
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factorized constraint on the rotation transformation to reduce the computation cost

in optimizing DNNs. Meanwhile, to further enhance the efficiency of AdamR, the

computation of these two statistics is conducted sporadically, such as once every

1000 iterations. The experimental results on image classification, object detection

and segmentation have demonstrated AdamR’s superior performance in accelerating

the training process and improving the generalization capability.

4.1 Introduction

Designing a satisfying optimizer for training deep neural networks (DNNs) has

been a research spotlight in the past few decades. In designing optimizers, on the

one hand, it is necessary to maximize the use of data and network information to ob-

tain satisfactory performance. On the other hand, limiting the calculation flops and

memory consumption is also required. Stochastic gradient descent (SGD) [66, 61], as

the fundamental optimization algorithm in deep learning, has achieved remarkable

performance in many area [29, 63, 3, 49, 74]. Adaptive learning rate methods have

been developed to mine more valuable information in DNNs optimization. Aiming

at achieving lower regret bound, Duchi et al . [17] proposed AdaGrad that affili-

ates an adaptive learning rate for each parameter independently, which pioneered

and inspired the adaptive learning rate methods. Specifically, because AdaGrad in-

creases the effective learning rate during training, it usually performs poorly in prac-

tice. The later proposed algorithms (e.g., RMSProp [81], Adam [36], AdamW [47],

RAdam [45], Adabelief [101] and Ranger [45, 98, 91]) implement the series of adap-

tive learning rate methods with better utilization of training information and more

satisfactory performance, making adaptive stepsize methods the most popular kind

of optimizer for many tasks [97, 42, 15, 19, 83, 83, 46]. Besides, as the more general

version of adaptive stepsize methods, full-matrix preconditioned gradient optimizers
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are also under careful research. Although attaining lower regret bound [17] and bet-

ter mining the data information, full-matrix preconditioned gradient methods often

encounter the problem of expensive computation and storage, violating the limitation

we mentioned initially. Therefore, some structure priors of the full-matrix are usually

introduced to solve the problem [2, 94, 26]. However, they outperform the adaptive

learning rate methods little in both the efficiency and generalization performance.

From the aspect of integrating more useful information and attaining a better

regret bound, a very recent work [92] proposed AdaBK, which is derived with the

help of minimizing the regret bound under given constraints. In practice, AdaBK is

embedded in both SGDM and AdamW (named SGDM BK and AdamW BK, respec-

tively) and is observed to have state-of-the-art generalization performance. However,

although AdaBK itself is proved to attain a lower regret bound, no such theoreti-

cal analysis is guaranteed on the proposed SGDM BK and AdamW BK, which, as

stated in [92], seems like a heuristic combination. Moreover, from the view of adap-

tive stepsize methods, AdamW BK actually utilizes the adaptive stepsize computed

by AdamW, which is implemented by the gradient norm recovery technique. There-

fore, AdaBK only contributes to a better descent direction but has an additional

undesirable impact on the length (equivalently, stepsize) of the descent direction,

which requires correction by performing gradient norm recovery. Consequently, it

is not very natural to embed and generate an adaptive stepsize method under the

analysis of AdamW BK.

Back to adaptive learning rate methods, since their effectiveness has been testified

in various applications [97, 42, 15, 19, 83] and their hyper-parameters (e.g ., learning

rate and weight decay) are well-tuned, we aim to introduce the information of full-

matrix preconditioned gradient into them without changing their implementation

way and hyperparameters, while the computation and storage cost are both accept-

able in practice. To achieve this, we propose introducing a rotation transformation
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into the adaptive learning rate methods. Precisely, we first rotate the gradient vec-

tor to a specific space with an orthogonal matrix and then implement the adaptive

learning rate methods (e.g ., Adam) to get the primary preconditioned gradient. Fi-

nally, we rotate it back into the original gradient space as the final preconditioned

gradient. Theoretically, the adaptive learning rate methods with a proper orthogo-

nal matrix are equivalent to the full-matrix preconditioned gradient, which has been

proven to have a lower regret bound in the existing works. In practice, this approach

can fully inherit the advantages of original adaptive learning rate methods and their

well-tuned hyper-parameters. Meanwhile, to make it practical according to com-

putation and storage cost, we learn from AdaBK, adopting the block-diagonal and

Kronecker-factorized constraints for the orthogonal matrix. We apply it to Adam

and name the obtained optimization algorithm AdamR. Extensive experiments on

image classification, object detection and segmentation show the effectiveness of the

proposed AdamR.

Additional notations. In our content, wt and gt are the weight vector and its

gradient of a DNN model in the t-th iteration. gti is the gradient of the i-th sample

in the t-th iteration batch, and gt “ 1
n

řn
i“1 gti, where n is the batch size.

4.2 Preliminaries

Nowadays, a useful and powerful framework to theoretically analyze the optimiza-

tion algorithms in deep learning is the online convex optimization framework [72, 27].

Specifically, one can evaluate the current existing algorithms by analyzing the on-

line regret bound, and obtain a suitable optimization algorithm by minimizing the

bound. The definition of regret is stated in Definition 4.1.

Definition 4.1. [72, 27] For an arbitrarily given sequence of convex loss functions

tf1pwq, f2pwq, . . . , fT pwqu, the regret on the t-th iteration is defined by
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RpT q “

T
ÿ

t“1

pftpwtq ´ ftpw
˚
qq , (4.1)

where w˚ “ arg minw

řT
t“1 ftpwq.

In training DNNs, the popular preconditioned gradient methods adopt the fol-

lowing updating formula

wt`1 “ wt ´ ηH´1
t gt, (4.2)

where H´1
t gt is the preconditioned gradient. The preconditioned gradient update

Eq. (4.2), from the view of stochastic optimization, can also been analyzed by the

online convex optimization framework under some convex assumptions, which means

that one can manually design the preconditioned matrix Ht to achieve a low regret.

Most existing works (e.g., AdaGrad) manually design the sequence of precondition

matrices H1, H2,...,HT , according to experience. To our knowledge, AdaBK [92] is

the first work designing an optimizer by minimizing the upper bound of a guide

function obtained from some specific constraints. By block-diagonal and Kronecker-

factorized constraints, the cost of AdaBK becomes reasonable, and the performance

of the embedded SGDM BK and AdamW BK are both satisfactory compared to

SGDM and AdamW, respectively. Besides, a general regret bound is also given

in [92], of which the (full-matrix) AdaGrad and the proposed AdaBK are both special

cases. Specifically, for a general constraint set Ψ for Ht, if the set Ψ Ď Rdˆd is a

cone (i.e., @x P Ψ, θ ą 0, θx P Ψ holds), the following Theorem4.1 holds.

Theorem 4.1. [92, Theorem 1] For any cone constraint Ψ Ď Rdˆd, define the guide

function FT pSq on Ψ as

FT pSq “

T
ÿ

t“1

p||gt||
˚
Sq

2, (4.3)

and define

ST “ arg min
SPΨ,Sľ0,TrpSqď1

FT pSq, HT “ CTST , (4.4)
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where CT “
a

FT pST q, then the regret of online mirror descent holds that

RpT qďp
D2

2η
`ηqCT “p

D2

2η
`ηq

c

min
SPΨ,Sľ0,TrpSqď1

FT pSq. (4.5)

This theorem reveals that minimizing the guide function FT pSq on cone Ψ is

equivalent to minimizing the regret bound of the preconditioned gradient descent

algorithm simultaneously. Moreover, with Theorem 4.1, one can easily derive the

matrix HT under a given constraint, and the key problem left is how to investigate

proper constraints on HT or ST .

Yong et al . [92] suggest using layer-wise block-diagonal constraint and the Kronecker-

factorized constraint on HT or ST , which leads to AdaBK optimizer. To end up this

section, we cite two key lemmas that will play a role in our proofs later in Section

4.3.3. Denote g “ 1
n

řn
i“1 gi, where gi is the gradient of each simple and n is the

batch size, and gi “ vecpδix
J
i q “ δi b xi, where δi and xi is the output feature

gradient and input feature of sample i, respectively. Assume for a given matrix S,

S “ S1 b S2. Then the following two lemmas hold.

Lemma 4.1. [92, Lemma 3] The following inequality holds

FT pSq ď
1

n
TrpS´1

1 LT qTrpS´1
2 RT q, (4.6)

where LT “
řT

t“1

řn
i“1 δtiδ

J
ti and RT “

řT
t“1

řn
i“1 xtix

J
ti.

Lemma 4.2. [92, Lemma 4] If A ą 0, then

arg min
Sľ0,TrpSqď1

TrpS´1Aq “ A
1
2 {TrpA

1
2 q. (4.7)

4.3 Methodology

4.3.1 Rotation Transformation

As we mentioned in Section 4.2, investigating proper constraints can naturally

lead to a new different optimizer. Although AdaBK has been embedded into AdamW
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and resulted in AdamW BK, more implementations (e.g ., gradient norm recov-

ery) are needed to guarantee its good performance and similar hyper-parameters

as AdamW. Motivated by AdaBK and Theorem 4.1 that inspire us to find proper

constraints on HT or ST , we introduce a rotation transformation into the commonly

used adaptive learning rate methods, which essentially derives an adaptive stepsize

method more naturally that can achieve lower regret bounds and maintain the merits

of adaptive learning rate methods without so many implementations.

In spite of the diagonal constraint, we aim to find a proper constraint that can

inherit the advantages of the existing adaptive learning rate methods. The first and

the most natural one is the diagonal constraint since the original AdaGrad is derived

from the diagonal constraint on the matrix ST , and this constraint is inherited in

the whole series of adaptive learning rate methods, which usually perform well in

practice. Actually, from the view of matrix analysis, the SVD decomposition of a

given matrix will definitely generate a diagonal matrix. Specifically, for a matrix ST

with SVD decomposition ST “ UDUJ, matrix D is indeed diagonal. Ideally, we

hope there is no further constraint on the diagonal elements of D (except D ľ 0).

However, due to the constraint on ST , its singular value will not be free, which is

inconsistent with AdaGrad. To address this, we state the following Lemma 4.3 with

proof.

Lemma 4.3. With FT p¨q defined in Eq. (4.3), it holds that

FT pST q ě min
D“Diagpdq,dľ0,1Tdď1

FT pUDUJ
q, (4.8)

where ST is defined in Eq (4.4), and U is the singular vector matrix of ST .
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Proof.

FT pST q “ min
SPΨ,Sľ0,TrpSqď1

FT pSq

“ min
UDUJPΨ,D“Diagpdq,dľ0,1Jdď1

FT pUDUJ
q

ě min
D“Diagpdq,dľ0,1Tdď1

FT pUDUJ
q.

(4.9)

For a given ST defined in Eq (4.4), Lemma 4.3 can lead to a new preconditioned

gradient algorithm which has lower regret bound with the singular vector matrix of

ST . Thus, the problem has been converted into two individual sub-problems, the first

one is to solve the diagonal matrix D from Eq (4.8), and the second one is to solve

ST from Eq (4.4) and compute its singular vector matrix (orthogonal matrix) U. We

will address these two sub-problems in Section 4.3.2 and Section 4.3.3 separately.

4.3.2 Solving the Diagonal Matrix

To solve the diagonal matrix D, we state the following Lemma 4.4 with proof.

Lemma 4.4. For any orthogonal matrix U, suppose that

CT “

c

min
D“Diagpdq,dľ0,1Jdď1

FT pUDUJq, (4.10)

then we have

DT “ arg min
D“Diagpdq,dľ0,1JdďCT

FT pUDUJ
q

“Diag
``

T
ÿ

t“1

pgt d pgt

˘d 1
2
˘

,

(4.11)

where pgt “ UJgt.

Proof. Suppose

pdT “ arg min
D“Diagpdq,dľ0,1Jdď1

FT pUDUJ
q, (4.12)
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we can know that

dT “ arg min
D“Diagpdq,dľ0,1JdďCT

FT pUDUJ
q

“ CT arg min
D̂“Diagp pdq,d̂ľ0,1Jd̂ď1

FT pUD̂UJ
q

“ CT d̂T .

(4.13)

We see that to get dT , we only need to solve pdT .

Because

FT pUDUJ
q“

T
ÿ

t“1

p||gt||
˚
UDUJq

2
“

T
ÿ

t“1

gJ
tpUDUJ

q
1́gt

“

T
ÿ

t“1

gJ
t UD´1UJgt “

T
ÿ

t“1

pgJ
t D

´1
pgt

“

T
ÿ

t“1

d
ÿ

i“1

pg2ti
di
,

(4.14)

where pgt “ UJgt. we have

pdT “ arg min
dľ0,1Jdď1

T
ÿ

t“1

d
ÿ

i“1

pg2ti
di
, (4.15)

where d ľ 0 means all the coefficients of vector d are non-negative. By introducing

multipliers λ ľ 0 and θ ě 0, we can have the Lagrangian of the above constrained

optimization problem

Lpd, λ, θq “

T
ÿ

t“1

d
ÿ

i“1

pg2ti
di

´ xλ,dy ` θp1Jd ´ 1q. (4.16)

Taking the partial derivatives w.r.t. di, we have

BLpd, λ, θq

Bdi
“ ´

T
ÿ

t“1

pg2ti
d2i

´ λi ` θ “ 0. (4.17)
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Obviously, di ‰ 0, and according to the complementary conditions, we know λi “ 0.

Then, we have

pdT i “ θ´ 1
2 p

T
ÿ

t“1

pg2tiq
1
2 . (4.18)

With the constraint 1Jd ď 1, we can choose a proper θ so that

pdT i “
p
řT

t“1 pg2tiq
1
2

řd
i“1p

řT
t“1 pg2tiq

1
2

(4.19)

meets the constraint. Meanwhile, we can derive that

CT “

g

f

f

e

T
ÿ

t“1

d
ÿ

i“1

pg2ti
pdT i

“

g

f

f

e

d
ÿ

i“1

p

T
ÿ

t“1

pg2tiq
1
2

d
ÿ

i“1

T
ÿ

t“1

pg2ti

p
řT

t“1 pg2tiq
1
2

“

g

f

f

e

d
ÿ

i“1

p

T
ÿ

t“1

pg2tiq
1
2

d
ÿ

i“1

řT
t“1 pg2ti

p
řT

t“1 pg2tiq
1
2

“

d
ÿ

i“1

p

T
ÿ

t“1

pg2tiq
1
2 .

(4.20)

Therefore,

dT i “ CT d̂T i

“

d
ÿ

i“1

p

T
ÿ

t“1

pg2tiq
1
2

p
řT

t“1 pg2tiq
1
2

řd
i“1p

řT
t“1 pg2tiq

1
2

“ p

T
ÿ

t“1

pg2tiq
1
2 ,

(4.21)

and finally we have DT “ Diag
``

řT
t“1 ĝt d ĝt

˘d 1
2
˘

.
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Recall that for AdaGrad [17], the diagonal matrix of adaptive stepsize is given

by HT “ Diag
``

řT
t“1 gt d gt

˘d 1
2
˘

. Thus, as a comparison, it can be seen that if

we fix the orthogonal matrix U, the optimal DT is just the formula of AdaGrad

in a new gradient space, which can be viewed as the original gradient space with

the rotation transformation U. It indicates that we can choose a proper orthogonal

matrix U, and implement the adaptive learning rate methods on the gradient space

after the rotation so that their advantages and hyper-parameters can be inherited.

Moreover, there are more advanced adaptive learning rate methods are proposed after

AdaGrad, such as Adam [36] RAdam [45], Adabelief [101], etc., which always achieve

more satisfactory performance with some useful generalization and implementations.

Therefore, we can also adopt such adaptive learning rate optimizers here on the

gradient space after the rotation.

Compared with AdamW BK that implemented with gradient norm recovery tech-

nique, this rotation with the help of the orthogonal matrix U will not leave an un-

desired impact on the length or stepsize of the descent direction, thus it naturally

inherits the advantages as a generalized adaptive stepsize method. Moreover, the

lower regret bound can also be guaranteed without necessary heuristic steps like

AdamW BK.

4.3.3 Solving the Orthogonal Matrix

With Section 4.3.2 solving the first sub-problem, the other sub-problem left is to

choose a proper orthogonal matrix U. Definitely, through optimizing Eq (4.4), we

can obtain ST and its singular vector matrix U would be a good choice. To achieve

this, we first need to introduce a proper constraint Ψ for Ht. As we mentioned before,

a good optimizer should utilize the training information (e.g., data statistic, param-

eter structure and network) as much as possible while keeping the cost reasonable.

Motivated by this, we consider the constraint Ψ for the matrix Ht that can fully
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utilize the structure of the parameters in DNNs. Here, learned by AdaBK [92], we

adopt the layer-wise block-diagonal constraint and Kronecker-factorized constraint

for the optimization of DNNs. For completeness, we describe the entire process as

follows.

The layer-wise block-diagonal constraint assumes that the matrix ST has a block

diagonal structure and each sub-block matrix is for one layer of a DNN. Thus, with

the layer-wise block-diagonal constraint, the theoretical analysis of regret bound

can be derived within one layer of DNNs. For a fully-connected layer with weight

W P RCoutˆCin and w “ vecpWq, the corresponding gradient G P RCoutˆCin and

g “ vecpGq, the kronecker-factorized constraint assumes that S “ S1 b S2, where

S1 P RCoutˆCout , S1 P RCinˆCin and S P RCinCoutˆCinCout , which can significantly

reduce the free dimension of S. Meanwhile, if S1 ľ 0 and S2 ľ 0, then S ľ 0. And

because S “ S1 bS2 “ pU1D1U
J
1 q b pU2D2U

J
2 q “ pU1 bU2qpD1 bD2qpU1 bU2q

J,

the singular vector matrix of S is U “ U1 b U2. Hence, to obtain U, we need to

optimize the following guide function w.r.t. S1 and S2

min
S1ľ0,S2ľ0,TrpSqď1,TrpSqď1

FT pS1 b S2q. (4.22)

Since it is hard to solve the closed-form solution of Eq. (4.22) directly, we alterna-

tively minimize the upper bound of Eq. (4.22), which is easier to be solved. Thus,

with the help of Lemma 4.1 (the relaxation of the upper bound) and Lemma 4.2 (the

closed form solution), we get the desired solutions

S1,T “ L
1
2
T {TrpL

1
2
T q,S2,T “ R

1
2
T {TrpR

1
2
T q. (4.23)

Furthermore, the singular vector matrices of S1,T and S2,T are the same as LT

and RT . Hence, it is unnecessary to solve S1,T and S2,T , and we can directly use the

SVD decomposition for LT and RT to get the singular vector matrices. Finally, the

desired matrix U can be obtained by

U“U1 b U2,U1DLU
J
1 “LT ,U2DRU

J
2 “RT . (4.24)
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To sum up, the layer-wise block-diagonal constraint utilizes the structure of param-

eters and DNN, while together with the Kronecker-factorized constraint, they keep

the computational and storage cost of solving the matrix U reasonable. Therefore,

we keep these constraints in our algorithm, which have also been researched and

adopted in [26, 24, 92], and solve the matrix U

Overall, after we obtain the rotation transformation U, the final preconditioned

gradient UDUJg can be divided into three steps to compute:

1. Compute the gradient after the rotation U by pg “ UJg “ pUJ
1 b UJ

2 qg “

vecpUJ
1GU2q;

2. Use the adaptive learning rate method to compute g̃ “ Dpg;

3. Rotate back the gradient ḡ “ Ug̃ “ pU1 b U2qg̃ “ vecpU1G̃UJ
2 q, where

g̃ “ vecpG̃q.

These three steps can be implemented very efficiently, which will be described in

Section 4.4 in detail.

4.4 Detailed Implementation

Infrequent Updating. In order to obtain U1 and U2, we need to store two

additional statistics Lt and Rt and compute them by SVD decomposition. However,

it is well known that SVD decomposition has very high complexity and is super

time-consuming in dealing with large dimensional matrices. Therefore, computing

them in each iteration is unendurable since it will cost tremendous computation and

make the proposed optimizer inefficient. Luckily, in the procedure of training DNNs,

it is no need to compute the decomposition in each iteration. Here, as the statistics

tend to be stable, we adopt an infrequent updating strategy to improve computation

efficiency. To be specific, we introduce two hyper-parameters Ts and Tu to control the
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frequency of updating Lt,Rt and compute the corresponding U1,U2, respectively.

Considering the fact that SVD decomposition costs more in computational compared

with updating statistics, we need to set a relatively large Tu (e.g ., 1000). Moreover,

when using multiple GPUs, we employ a cross-GPU synchronization method to cal-

culate more reliable feature statistics Lt and Rt. It is similar to Synchronized BN

(SyncBN) [59, 11] which computes the statistics on each GPU and then synchronized

across all GPUs. With this synchronization operation, the computation of feature

statistics is more reliable when the batch size within a single GPU is small. To sum-

marize, the infrequent updating strategy can improve the efficiency of the proposed

optimizer in practice while keeping satisfactory performance.

Stability of SVD Decomposition. In our optimizer, U1 and U2 are usually

obtained by SVD decomposition. Nevertheless, the existing deep learning frame-

works (e.g ., PyTorch) do not implement SVD on GPU well. We find that there are

many cases where SVD decomposition does not converge, which would make our

proposed method fail to optimize DNNs in some cases. In order to improve the sta-

bility of SVD decomposition, we proposed two tricks. First, instead of using SVD

decomposition for Lt and Rt, we add a dampening term into them ϵI. Theoretically,

such a dampening term does not change the singular vector matrices of Lt and Rt.

Because the condition number of the matrix can be reduced by this dampening term,

it can significantly improve the stability of SVD decomposition. Moreover, Lt and

Rt accumulate the statistics of output feature gradient ∆t and input feature Xt, but

such updating formula will make their norm increase too large with large iterations.

As a consequence, there has the risk of data overflow. To address this, we propose
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the following updating formula

$

’

’

&

’

’

%

Lt “ p1 ´
1

t
qLt´1 `

1

t
∆t∆

J
t ;

Rt “ p1 ´
1

t
qRt´1 `

1

t
XtX

J
t .

(4.25)

It can be proved that Lt and Rt derived from this updating formula multiplying t

are equal to their original definition in Lemma 4.1, and can avoid the amplitude of

Lt and Rt increase by t. Meanwhile, it has no undesired impact on the solution of

U1 and U2. Thus, with these two implementations, the SVD decomposition becomes

more stable and we have never encountered the failure cases caused by SVD in our

experiments.

Convolutional Layer. We have given the updating formula of the FC layer

before. For the Conv layer, the derivation process is similar to the FC layer. We need

to unfold the convolution operation to matrix multiplication first. The convolution

operation can be formulated as matrix multiplication with the im2col operation [89,

96], and then the Conv layer can be viewed as an FC layer with A “ U1pW qX,

where A and X are the output and input features after im2col operation and U1p¨q

is the mode 1 unfold operation of a tensor. e.g ., for a convolution weight W P

RCoutˆCinˆk1ˆk2 , U1pWq P RCoutˆCink1k2 . Then we can compute the statistics with

input feature X and the gradient of the output feature. U1pWq can be considered as

the weight of the FC layer, so the following computation is the same as the FC layer

mentioned before.

Overall Algorithm of AdamR. The overall algorithm of AdamR is summa-

rized in Algorithm 1. For a FC layer, its complexity is T pOp
C3

in`C3
out

Tir
q`Op

pC2
in`C2

outqN
Ts

q`

OpCinCoutpCin ` Coutqqqq, and for a Conv layer, its complexity is T pOp
C3

ink
3
1k

3
2`C3

out
Tir

q `

Op
pC2

ink
2
1k

2
2`C2

outqN
Ts

q ` OpCink1k2CoutpCink1k2 ` Coutqqq, where T is the total number of

iterations. In our implementation, Ts and Tir are set as relatively large numbers,
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Algorithm 6 Adam with a rotation transformation (AdamR)

Input: W0, L0 “ 0Cout
, R0 “ 0Cin

, η, β1, β2, ϵ, ϵ
1

Output: WT

1 for t=1:T do
2 Receive Xt “ rxtis

n
i“1 by forward propagation Receive ∆t “ rδtis

n
i“1 by backward

propagation Compute gradient of weight Gt if t%Ts “ 0 then
3 Lt “ p1 ´ Ts

t
qLt´1 ` Ts

t
∆t∆

J
t ,

Rt “ p1 ´ Ts

t
qRt´1 ` Ts

t
XtX

J
t ;

4 else
5 Lt “ Lt´1,

Rt “ Rt´1

6 end
7 if t%Tu “ 0 then
8 U1,tDLU

J
1,t “ Lt ` ϵICout ,

U2,tDRU
J
2,t “ Rt ` ϵICin

9 else
10 U1,t “ U1,t´1,

U2,t “ U2,t´1;
11 end

12 G̃t “ UJ
1GtU2 Mt “ β1Mt´1 ` p1 ´ β1qG̃t;

Vt “ β2Vt´1 ` p1 ´ β2qG̃t d G̃t
xMt “ Mt

1´βt
1
, pVt “ Vt

1´βt
2

G̃t “
xMt?
pVt`ϵ1

;

Ḡt “ U1G̃tU
J
2 ;

Wt`1 “ Wt ´ ηḠt;

13 end

i.e., 100 and 1000, respectively, so that the algorithm can be efficient in training

DNNs. Meanwhile, similar to AdamW [47], we adopt the weight decouple method

as our weight decay method in AdamR. Therefore, AdamR is based on the adaptive

learning rate method AdamW, while compared with AdamW BK that embedded

AdaBK[92], we do not introduce undesirable length impact while naturally guar-

anteeing the lower regret bound theoretically. Furthermore, AdamR can also be

combined with some parameter-free methods, e.g., [14], in the same way of Adam

with D-adaption, and we omit the details here.
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Table 4.1: Testing accuracies (%) on CIFAR100/CIFAR10. The best results are highlighted in bold fonts, and the numbers
in red color indicate the improvement of AdamR over AdamW.

CIFAR100

Model SGDM AdaGrad AdamW RAdam Ranger Adabelief AdamW BK AdamR

R18 77.20˘.30 71.55˘.25 77.23˘.10 77.05˘.15 76.75˘.11 77.43˘.36 78.66˘ .34 78.77˘.21(Ò1.54)

R50 77.78˘.43 72.20˘.15 78.10˘.17 78.20˘.15 78.13˘.12 79.08˘.23 80.15˘ .19 80.73˘.08(Ò2.63)

V11 70.80˘.29 67.70˘.18 71.20˘.29 71.08˘.24 70.58˘.14 72.43˘.16 73.09˘ .29 73.35˘.15(Ò2.15)

V19 70.94˘.32 63.30˘.58 70.26˘.23 73.01˘.20 73.02˘.04 72.39˘.27 74.27˘ .25 74.45˘.20(Ò4.19)

D121 79.53˘.19 71.27˘.79 78.05˘.26 78.65˘.05 78.28˘.08 79.88˘.08 79.93˘ .23 80.35˘.05(Ò2.30)

CIFAR10

R18 95.10˘.07 92.83˘.12 94.80˘.10 94.70˘.18 94.75˘.18 95.12˘.14 95.22˘ .13 95.12˘.12(Ò0.32)

R50 94.75˘.30 92.55˘.39 94.72˘.10 94.72˘.10 95.27˘.12 95.35˘.05 95.40˘ .07 95.50˘.07(Ò0.78)

V11 92.17˘.19 90.25˘.25 92.02˘.08 92.00˘.18 92.10˘.07 92.45˘.18 92.96˘ .07 93.00˘.20(Ò0.98)

V19 93.61˘.06 91.28˘.14 93.40˘.04 93.57˘.11 93.77˘.12 93.58˘.12 93.94˘ .10 93.85˘.11(Ò0.45)

D121 95.37˘.17 92.95˘.23 94.80˘.07 95.02˘.08 95.45˘.11 95.37˘.04 95.40˘ .04 95.45˘.08(Ò0.65)
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4.5 Experiments

4.5.1 Experiment Setup

We testify the proposed AdamR on various vision tasks, such as image classifica-

tion (on CIFAR100/CIFAR10 [38] and ImageNet [68]), object detection and segmen-

tation (on COCO [44]). We compare AdamR with the representative and state-of-

the-art DNN optimizers including SGDM, AdaGrad [17], AdamW [47], RAdam [45],

Ranger [45, 98, 91] Adabelief [101] and AdamW BK [92]. We tune their learning

rates and weight decays and report their best results. Other hyper-parameters keep

the same as their default settings. For AdamR, we set Ts “ 100 and Tu “ 1000,

ϵ “ 0.01, and to make a fair comparison, the other hyper-parameters are set to be

the same value as AdamW, e.g . learning rate and weight decay. All experiments are

conducted under the Pytorch 1.8.0 framework.

4.5.2 Image Classification

In the image classification task, we compare AdamR with the existing represen-

tative DNN optimizers, including SGDM, AdamW [47], Adagrad [17], RAdam [45],

Ranger [45, 98, 91], Adabelief [101], and AdamW BK [92]. Except for SGDM which

usually acts as the default optimizer in classification with much better performance

than the original Adam, other optimizers are all the adaptive learning rate methods.

We tune the learning rate and weight decay for each optimizer with grid search and

the detailed settings for different optimizers can be found in Table 4.2 and Table 4.3.

This experiment is conducted on NVIDIA GeForce RTX 2080Ti GPU.

Results on CIFAR100/10: We first evaluate the effectiveness of AdamR on

CIFAR100/CIFAR10 [38], which include 50K training images and 10K testing im-

ages from 100 categories and 10 categories, respectively. Various DNN models are

employed, including ResNet18 (R18), ResNet50 (R50) [29], VGG11 (V11), VGG19
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Table 4.2: Settings of learning rate (LR), weight decay (WD) and WD methods for
different optimizers on CIFAR10/100. Here, the WD methods include L2 regulariza-
tion weight decay (L2 in short) and weight decouple (decouple in short).

Optimizer SGDM AdaGrad AdamW RAdam Ranger Adabelief AdamW BK AdamR

LR 0.1 0.01 0.001 0.001 0.001 0.001 0.001 0.001

WD 0.0005 0.0005 0.5 0.5 0.5 0.5 0.5 0.5

WD method L2 L2 decouple decouple decouple decouple decouple decouple

Table 4.3: Settings of learning rate (LR), weight decay (WD) and WD methods (L2

and decouple) for different optimizers on ImageNet.
Optimizer SGDM Adagrad AdamW RAdam Ranger Adabelief AdamW BK AdamR

ResNet18
LR 0.1 0.01 0.001 0.001 0.001 0.001 0.001 0.001

WD 0.0001 0.0001 0.1 0.1 0.01 0.05 0.1 0.1

ResNet50
LR 0.1 0.01 0.001 0.001 0.001 0.001 0.0005 0.001

WD 0.0001 0.0001 0.1 0.05 0.1 0.1 0.3 0.1

WD method L2 L2 decouple decouple decouple decouple decouple decouple

(V19) [76] and DenseNet-121 (D121) [31] 1. All the DNN models are trained for

200 epochs with batch size 128 on one single GPU. The learning rate is multiplied

by 0.1 for every 60 epochs. We repeated each experiment for 4 times and reported

the final result in a “mean˘std” format in Table 4.1. It can be seen that AdamR

achieves significant performance gains over AdamW, which are 1.54% „ 4.19% and

0.32% „ 0.98% on CIFAR100 and CIFAR10, respectively. AdamR also significantly

outperforms other compared optimizers on CIFAR100 and on most DNNs of CI-

FAR10, with only slightly 0.1% lower compared with AdamW BK on R18 and V19.

Figure 4.1 and Figure 4.2 show the training loss to time curves of AdamW and

AdamR on CIFAR100 with ResNet18 and ResNet50 when the learning rates are de-

ducted nearly the same training time. One can see from Figure 4.2 that for R50,

AdamR can accelerate the training of AdamW nearly all the time, while in Figure

4.1 for R18, AdamR can vastly speed up the beginning of the training. For a more

straightforward comparison, Figure 4.3 shows the training loss curves of the epoch

and time of 60 epochs with the initial learning rate kept, in which AdamR largely

1The model can be downloaded in https://github.com/weiaicunzai/pytorch-cifar100.
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Table 4.4: Top 1 accuracy (%) on the validation set of ImageNet. The numbers in
red color indicate the improvement of AdamR over AdamW.

Model SGDM AdaGrad AdamW RAdam Ranger Adabelief AdamW BK AdamR

R18 70.47 62.22 70.01 69.92 69.35 70.08 71.63 71.29(Ò1.28)

R50 76.31 69.38 76.02 76.12 75.95 76.22 76.63 76.68(Ò0.66)

speeds up the training. For generalization performance, AdamR is always better

than AdamW, with a noticeable improvement on R18 and R50. That indicates the

proposed rotation transformation can gain generalization performance and speed up

the initial training process.

Results on ImageNet: We also apply AdamR on the large-scale dataset ImageNet[68]

that contains 1000 categories with 1.28 million images for training and 50K images

for validation. We use ResNet18 and ResNet50 as the backbone models with training

batch size 256 on 4 GPUs, and follow the training settings of the work [10]. Table

4.4 reports the top 1 accuracies on the validation set. One can see that AdamR

outperforms all the other optimizers on R50 while performing the second best on

R18 (0.34% lower than AdamW BK), and it achieves 1.28% and 0.66% gains over

AdamW for R18 and R50. Meanwhile, Figure 4.4 plots the training and validation

accuracy curves, from which we see that the proposed AdamR can largely accelerate

the training of DNNs over AdamW.

4.5.3 Detection and Segmentation

To show that AdamR can work well on more tasks beyond classification tasks,

we evaluate it on COCO [44] for detection and segmentation tasks. The models

are pre-trained on ImageNet1k and fine-tuned on COCO train2017 (118K images),

and then evaluated on COCO val2017 (40K images). We adopt the latest version

of MMDetection toolbox [11] as our detection framework. In our experiments, we

test AdamR by Faster-RCNN [63] and Mask-RCNN [28] with various backbones,

including ResNet50 (R50) and ResNet101 (R101), Swin transformer [46] (e.g ., Swin-
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Figure 4.1: Training loss (left) and testing accuracy (right) curves to time of AdamW
and AdamR on CIFAR100 with ResNet18 when the learning rates are deducted
nearly simultaneously.

T and Swin-S). For R50 and R101 backbone, learning rate and weight decay are set to

0.02 and 0.0001 for SGDM, and 0.0001 and 0.2 for AdamW and AdamR, respectively.

For the Swin transformer backbone, the learning rate and weight decay are set to

0.0001 and 0.02 for AdamW and AdamR. The learning rate schedule is 1X for Faster-

RCNN. Other configurations follow the settings of the official MMDetection toolbox2.

For the default optimizers, we cite their official results directly3. The experiments in

this section are conducted on NVIDIA GeForce RTX 3090 Ti GPUs.

We list the Average Precision (AP) of object detection by Faster-RCNN in Table

4.5. We can see that the models trained by AdamR achieve clear performance gains of

1.3% „ 2.4%. Fig. 4.5 shows the training loss curves of Faster-RCNN with ResNet50

and ResNet101 backbone. AdamR obviously accelerates the training process over

AdamW. Table 4.6 shows the APb of detection and APm of segmentation by Mask-

RCNN. We can see that AdamR gains 1.4% „ 1.8% APb and 1.1% APm for R50

2https://github.com/open-mmlab/mmdetection

3Please refer to https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_
rcnn, https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn and
https://github.com/open-mmlab/mmdetection/tree/master/configs/swin.
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Figure 4.2: Training loss (left) and testing accuracy (right) curves to time of AdamW
and AdamR on CIFAR100 with ResNet50 when the learning rates are deducted
nearly simultaneously.

Table 4.5: Detection results of Faster-RCNN on COCO. ∆ means the gain of AdamR
over AdamW. * indicates the default optimizer.

Backbone Algorithm AP AP.5 AP.75 APs APm APl

R50

SGDM* 37.4 58.1 40.4 21.2 41.0 48.1

AdamW 37.8 58.7 41.0 22.1 41.2 49.2

AdamR 39.1 60.1 42.4 22.2 42.8 51.6

∆ Ò1.3 Ò1.4 Ò1.4 Ò0.1 Ò1.6 Ò2.4

R101

SGDM* 39.4 60.1 43.1 22.4 43.7 51.1

AdamW 40.1 60.6 43.8 22.9 44.1 52.8

AdamR 41.5 61.9 45.3 24.0 45.1 55.6

∆ Ò1.4 Ò1.3 Ò1.5 Ò1.1 Ò1.0 Ò2.8

and R101 backbones over AdamW. For the Swin transformer backbone, AdamR also

achieves 0.6% „ 0.9% APb and 0.4% „ 0.7% APm gains over AdamW. Fig. 4.6 plots

the training loss curves of Faster-RCNN with ResNet50 and ResNet101 backbone.

AdamR speeds up the training process clearly. The results on COCO demonstrate

that the proposed AdamR can be easily adopted into the downstream tasks without

additional hyperparameter tuning over AdamW.
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Figure 4.3: Training loss curves to epoch (left) and time (right) of 60 epochs training
of AdamW and AdamR on CIFAR100 for ResNet50 with the initial learning rates
kept.

4.5.4 Ablation Study

As we mentioned before, AdamR is well-designed to inherit all the well-tuned

hyper-parameters in AdamW naturally. Due to this considerable advantage, com-

bined with the implementations added, we have only one pair of parameters to do

ablations, i.e., the infrequent updating intervals (Ts, Tu). Meanwhile, we leave a re-

mark on the ϵICout and ϵICin
of implemented stability SVD decomposition for clarity.

Infrequent Updating. In AdamR, we apply the infrequent updating intervals

Ts and Tu to balance the computational cost and performance. Here we compare

and report the testing accuracy and the experiment time of AdamR with different

updating intervals for training ResNet 50 on CIFAR100. Apart from parameters

Ts and Tu , the other settings keep the same as the experiments in Section4.5.2.

Each experiment is repeated four times to eliminate randomness, and the results are

reported in a ”mean ˘ std” format. Ideally, a smaller interval (e.g., Ts “ 20) will keep

more accurate statistics. However, we can find from Table 4.7 that the larger interval
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Figure 4.4: Training and validation accuracy curves of AdamW and AdamR on
ImageNet with ResNet18 and ResNet50 backbones.

(i.e., Ts “ 50, 100, 200) also maintains good performance with less computation time,

while the larger Ts “ 500 will cause an obvious performance drop. As a balance, we

choose Ts “ 100 and Tu “ 1000, which perform well throughout the rest experiments.

Stability of SVD Decomposition. As a remark, although in AdamR, we add

the term ϵICout and ϵICin
on the matrices Lt and Rt, respectively, they only change

the eigenvalue of the decomposition while leaving no influence on the orthogonal

matrix (formed by eigenvectors) we computed. Consequently, as small terms that

are added just in case there occurs numerically unstable inbuilt functions, it will not

change our results theoretically. And experimentally, we find the parameter ϵ has

almost no impact on the final results.

4.6 Conclusion

To sum up, in this work, we propose a new adaptive learning rate optimization

algorithm, named AdamR. Compared with traditional adaptive learning rate meth-

ods, it introduces an extra rotation transformation into the gradient. We can show
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Figure 4.5: Training loss curves of ResNet50.
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Figure 4.6: Training loss curves of Mask-RCNN.

that the rotation transformation embeds the information of the full-matrix precon-

ditioned gradient, which usually has a lower regret bound than the adaptive learning

rate methods that consider the diagonal elements of the preconditioned matrix, and it

will not leave an undesired impact on the length (stepsize) of the descent direction. In

order to find proper rotation transformation, we adopt the layer-wise block-diagonal

and Kronecker-factorized constraints for training DNNs under the theorem of lower

regret bound. As a result, we naturally derive a formula to compute the rotation
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Table 4.6: Detection and segmentation results of Mask-RCNN on COCO. ∆ means
the gain of AdamR over AdamW. * indicates the default optimizer.

Backbone Lr schedule Algorithm APb APb
.5 APb

.75 APm APm
.5 APm

.75

R50 1X

SGDM* 38.2 58.8 41.4 34.7 55.7 37.2

AdamW 37.8 58.7 41.0 35.4 56.2 38.0

AdamR 39.6 60.4 43.4 36.5 57.6 38.8

∆ Ò1.8 Ò1.7 Ò2.4 Ò1.1 Ò1.4 Ò0.8

R101 1X

SGDM* 40.0 60.5 44.0 36.1 57.5 38.6

AdamW 40.7 61.1 44.6 37.2 58.4 40.1

AdamR 42.1 62.5 46.0 38.3 59.8 41.1

∆ Ò1.4 Ò1.4 Ò1.4 Ò1.1 Ò1.45 Ò1.0

Swin-T 1X

AdamW* 42.7 65.2 46.8 39.3 62.2 42.2

AdamR 43.3 66.0 47.4 40.0 62.9 42.8

∆ Ò0.6 Ò0.8 Ò0.6 Ò0.7 Ò0.7 Ò0.6

Swin-T 3X

AdamW* 46.0 68.2 50.3 41.6 65.3 44.7

AdamR 46.9 68.9 51.6 42.3 65.8 45.4

∆ Ò0.9 Ò0.7 Ò1.3 Ò0.7 Ò0.5 Ò0.7

Swin-S 3X

AdamW* 48.2 69.8 52.8 43.2 67.0 46.1

AdamR 49.0 70.5 54.1 43.6 67.6 47.0

∆ Ò0.8 Ò0.7 Ò1.3 Ò0.4 Ò0.6 Ò0.9

Table 4.7: Accuracy (%) and time (s) of AdamR with different updating intervals in
training ResNet50 on CIFAR100.

Ts 20 50 100 200 500

Tu 200 500 1000 2000 5000

Acc. 80.04 ˘ .21 80.23 ˘ .19 80.28 ˘ .26 80.24 ˘ .27 79.69 ˘ .25

Time 20470.0 ˘ 105 17948.5 ˘ 93 17084.3 ˘ 63 16635.8 ˘ 83 16393.5 ˘ 74

transformation which only needs two additional statistics, the computational and

storage cost of which can be limited within a proper range. The experimental re-

sults illustrate that AdamR significantly speeds up the beginning training stage and

clearly gains the generalization performance over the based optimizer AdamW.
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Chapter 5

AFopt: Attention Feature Based

Optimizer for Transformers

The attention module is a critical transformer component and significantly en-

hances the model performance across various tasks. This chapter introduces a new

optimizer for optimizing the attention module, named the Attention-Feature-based

Optimizer (AFOpt). By attention feature gradient descent, AFOpt treats the at-

tention module holistically, facilitating interaction among its parameters to improve

training efficacy. Our method begins by applying gradient descent directly to output

features of the attention module. Subsequently, we update the module’s parameters

by approximating the impact of the output feature’s gradient descent. This parame-

ter interaction, inherent to the unique structure of the attention module, may better

utilize the feature information and the similarities of different patches to enhance

the training process. We demonstrate the effect of AFOpt through experiments in

object detection and segmentation tasks.

5.1 Introduction

The deep neural networks (DNNs) structure has been constantly developing and

innovating in recent years. One of the structures that cannot be ignored is the

proposal of transformer [83]. After first verified effective in the NLP field (e.g.,[83,
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35]), transformers such as ViT [16], DETR [8] and Swin [46] were also proposed in the

computer vision field. The most crucial innovation of transformers is the addition

of the attention module. The attention module is a specially designed nonlinear

operation. It comprises linear and softmax layers arranged sequentially, which is

significantly more complex than a single linear or convolutional layer. As a result, it

can extract more useful information, thereby enhancing its effectiveness. Generally,

the attention module is used as a whole and outputs the corresponding feature to the

rest part of the neural networks (NNs) for training, while looking into the module,

it consists of a second-order mapping of the input with a nonlinear softmax function

followed, and another linear mapping of input in parallel, which is different with the

other NNs and deserved to be further discussed.

Focusing on the aspect of training, the default training optimizers of transformers

are usually Adam and AdamW, being nearly the same as those adopted in training

other DNNs. From the optimization stand of view, the current optimizers, for ex-

ample, the stochastic gradient descent [66, 61] and the adaptive stepsize methods (

Adam [36], RMSProp [81], AdamW [47], and Radam [45], etc.), are already effective

for optimizing the parameters in attention modules with the help of back-propagation

(BP) process. However, after witnessing the effectiveness of attention modules, it

is a natural intention to utilize the hidden information behind the unique and clear

attention structure to assist optimization.

Considering the attention module, the parameters compose with each other, cre-

ating a second-order and even more complex operator of input to shape a better

output. Overall, a better output feature is the aim of the whole attention module,

with different parameters working together to reflect the similarities between differ-

ent positions. Introducing some interaction within the attention parameters may

better reflect the similarities and lead to better performance. Meanwhile, Yong [90]

suggests that gradient descent on intermediate features achieves better performance
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and proposes stochastic feature gradient decent (FSGD), in which the feature output

from a single layer is considered the tensor that needs to be applied gradient descent.

[90] also explained that FSGD updates feature in a higher dimensional space, which

is more accurate.

Inspired by [90], in this work, we consider optimizing the attention module as

a whole, making the parameters within attention interact with each other to assist

training, which we call Attention-Feature-based Optimizer (AFOpt). Overall, since

the attention module changes the input into the output feature needed, we can apply

gradient descent to the output feature of the attention module while optimizing the

parameters within attention according to the feature change in each step. Therefore,

the attention feature is optimized in a higher-dimensional space with less noise,

leading to better performance. Further to FSGD [90], although AFOpt and FSGD

both apply the gradient descent on the output feature and update the parameter by

approximating the feature gradient descent with ℓ2 norm, we have a second intention.

Since attention module researches on global similarity, we interact the parameters

with each other to better utilize the similarities and shape the output. Different

parameters within the attention module can be connected by applying attention

feature gradient descent, which may assist the optimization. The update interaction

comes from the specific structure of attention, which can be reflected in the update

formula. Experimentation on detection and segmentation tasks shows the effect of

our proposed method.

5.2 Preliminaries

5.2.1 Attention Module and Notations

Attention module has shown its effectiveness in many areas as we state in Section

5.1. In this section, we introduce the details of attention module in Figure 5.1 and
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state its notations for further use.

WQ

WK

WV

X

X

X
FQ

FK

FV

A As

XP

Softmax

Figure 5.1: Illustration of attention module.

Here, we denote X the input of the module, denote WQ, WK and WV to be

the linear parameters of attention module, while using FQ :“ WQX, FK :“ WKX

and FV :“ WVX to be the feature generated by the corresponding linear operator.

Meanwhile, we denote A the attention matrix, which can be computed directly by

A “ FQ
JFK, denote Sp¨q the softmax function in the module, and As :“ SpAq the

feature generated by A and the softmax function. The whole output of the attention

module is usually the input of the following projection layer, so we denote the whole

output by XP :“ FVAs.

5.2.2 Feature Gradient Descent

We briefly introduce feature gradient descent (FSGD)[90] here because of two

reasons. First, the design of FSGD inspires our work because feature gradient descent

is a practical way to create interaction with different parameters in attention module,

which is exactly our intention. Second, due to the fact that there are usually MLP

modules in transformers, we can combine FSGD into our work to better optimize

parameters in other linear layers.
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The insight of FSGD is to change the update of weights from parameter space

into the feature space, using the gradient of feature (i.e., the descent direction of

feature) to correct the descent direction of weights. Thus, more useful information of

the input data and features can be adopted. Specifically, for a linear variable W and

input X, denote by Ft`1 :“ WtXt ´ η BL
BFt the desired feature after a single gradient

descent step, and FpWq :“ WXt the output feature obtained by the network update.

To minimize the distance between Ft`1 and FpWq, we need to solve the optimization

problem

Wt`1
“ arg min

W
}WtXt

´ η
BL
BFt

´ WXt
}
2
2, (5.1)

which leads to the closed-form solution

Wt`1
“ Wt

´ η
BL

BWt
pXtXtJ

q
´1. (5.2)

The corresponding work [90] also discussed the case of convolution operation, and

we omit the details here.

5.3 Methodology

5.3.1 Motivation

We consider optimizing the attention module holistically to interact the param-

eters with each other. We have two intentions for our design. First, inspired by

[90], we optimize attention feature in the feature space, which may have a higher

dimension and less noise, making the training more accurate. Second, we use this

approximation to derive the interaction of the parameters, which may better utilize

the similarity information of positions.

In practice, we apply gradient descent to the feature matrix generated by the

attention module and generalize an optimization problem using the direct weight

operation to approximate attention gradient descent. The solution is adopted to
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update the weight parameters. The main difficulties lie in solving the generated

optimization problem that contains the nonlinear softmax function and implementing

the computation economically. Later in Section 5.3.2, we will deal with the difficulty

caused by the softmax function in updating WQ and WK, and in Section 5.3.3, we

change the update computation of WV to be economical and practical. In Section

5.3.4, we will implement AFOpt with proper technique.

5.3.2 The update of WQ and WK

Here we update WQ and WK by alternative update. We first deal with the

parameter WK. When we take the attention module as a whole, the output feature

is XP , and the gradient descent based on Xt
P at the t-th iteration takes Xt`1

P “ Xt
P ´

η BL
BXt

P
. Meanwhile, XP , as we state before, is computed by XP “ FVS

`

pWQXqJWKX
˘

.

For convenient we use the notation FQ “ WQX and approximate the attention fea-

ture gradient descent using the weight parameter WK. Thus, the attention feature

based gradient descent problem for WK takes

WK
t`1

“ arg min
WK

}Xt
P ´ η

BL
BXt

P

´ FV
tS

´

FQ
tJ
WKX

t
¯

}
2
2. (5.3)

Solving the above question directly will be costly and impractically, and the difficulty

mainly comes from the softmax function Sp¨q. Therefore, here we approximate the

softmax function using its Taylor expansion approximation. Notice that the first

order expansion of softmax function at a given x0 takes

S px0 ` ∆xq “ S px0q ` ∇S px0q ∆x. (5.4)

Then for the desired optimization problem (5.3), in the current t-th step, the ap-

proximation of softmax function takes

S
´

FQ
tJ
WKX

t
¯

« S
´

FQ
tJ
WK

tXt
¯

(5.5)

` ∇S
´

FQ
tJ
WK

tXt
¯

FQ
tJ `

WK ´ WK
t
˘

Xt.
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After simple merging, the attention feature based gradient is defined to be the solu-

tion of the following optimization problem (5.6) i.e.,

WK
t`1

“arg min
WK

}FV
t∇S

´

FQ
tJ
WK

tXt
¯

FQ
tJ`

WK
t
´WK

˘

Xt
´η

BL
BXt

P

}
2
2. (5.6)

With the help of this approximation, the above problem (5.6) has closed form solu-

tion. Specifically, by first order optimal condition, we derive the solution of problem

(5.6) as

WK
t`1

“ WK
t

´ pLQ
tLQ

tJ
q

´1 BLt

BWK
t pXtXtJ

q
´1, where (5.7)

LQ
t

“ FQ
t
´

∇S
´

FQ
tJ
FK

t
¯¯J

FV
tJ
. (5.8)

Similarly, for WQ, we have

WQ
t`1

“ WQ
t

´ pLK
tLK

tJ
q

´1 BLt

BWQ
t pXtXtJ

q
´1, where (5.9)

LK
t

“ FK
t
´

∇S
´

FQ
tJ
FK

t
¯¯J

FV
tJ
. (5.10)

Till now, we have finished deriving the update of WQ and WK.

5.3.3 The update of WV

For matrix WV, due to the fact that XP “ FVAs “ WVXAs, essentially the

update is the same as linear layer with XtAt
s substitute Xt in FSGD. For a clear

explanation, the attention feature based gradient descent takes

WV
t`1

“ arg min
WV

}Xt
P ´ η

BL
BXt

P

´ WVX
tAt

s}
2
2, (5.11)

which has the closed form solution

WV
t`1

“ WV
t

´ η
BL

BWV
t pXtAt

sA
t
s

J
XtJ

q
´1. (5.12)
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However, in application, the update of WV is not economic to implement with the

above equation. This is because the attention matrix As is required in Eq.(5.12),

which is usually associated with embedding and is not easy to extract. Thus, we

rearrange it using the input of the projection layer follows (i.e., XP ). For convenience,

denote WVV “ WJ
VWV and assume WVV has matrix inverse, then we have

XAsA
J
s X

J
“ W´1

VVW
J
VXPX

J
PWVW

´1
VV. (5.13)

By applying inversion, it holds that

pXAsA
J
s X

J
q

´1
“ WVVpWJ

VXPX
J
PWVq

´1WVV. (5.14)

Eq. (5.14) can be compiled into the update of WV, i.e.,

WV
t`1

“ WV
t

´ η
BL

BWV
tW

t
VVpWt

V
J
Xt

PX
t
P

J
Wt

Vq
´1Wt

VV, (5.15)

which is the final update formula of WV. Eq. (5.15) only requires the input of

project layer XP and the current weight parameter WV, which is easier to obtain.

5.3.4 Implementations

To increase the stability and performance of our proposed optimizer, in this sec-

tion, we introduce some implementations to finish our design. Except for embedding

FSGD, other techniques can be found in many existing optimizers (e.g., [90, 92]),

and we have implemented some of them in the proposed NKFAC in Chapter 3. Here,

we only briefly discuss these techniques.

Embed FSGD. Feature gradient descent is proposed in [90]. By applying gradient

descent on the output feature of convolution and linear layers, FSGD is proved by

some experiments to be effective in traditional CNNs. Because our method only

aims to optimize the attention module, leaving linear layers optimized by default

optimizer, we are motivated to implement FSGD into our AFOpt to enhance the
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generalization performance further. Thus, we apply FSGD to the linear layers other

than attention modules to improve performance. The details of FSGD on linear

layers have been introduced in Section 5.2.2.

Gradient Norm Recovery: The gradient norm recovery is a useful technique to

avoid the tedious parameter tuning process. Specifically, for a revised gradient Ĝ,

we recover its norm by the the previous gradient norm }G}, i.e.,

G̃ “ Ĝ
}G}

}Ĝ}
. (5.16)

Adaptive Dampening: The numerical stability of inversion is a problem that al-

ways needs consideration in designing optimizers. Here, we add the adaptive damp-

ening for all the statistics that need inversion. Specifically, for a statistics S (which,

in practice, refers to XtXtJ
, or LQ

tLQ
t, or others), we compute the maximal eigen-

value λS, and add an adaptive dampening ηλSI on the statistic S to guarantee the

numerical stability, i.e.,

St
“ St

` ηλSI. (5.17)

Statistics Momentum: The statistics momentum is added to gather and summa-

rize all the sample information. This helps in two aspects. On the one hand, gath-

ering information helps ensure the accuracy of statistics calculation; on the other

hand, it can help reverse statistics. Here for all statistics S, we update

St
“ αSt

` p1 ´ αqSt´1, α P p0, 1q. (5.18)

Infrequent Update: Our computation of statistics, especially of the inversion, will

add to the training process’s computational cost and running time. We adopt a

periodical update strategy to reduce the computational cost and control the running

time. Here, we set Ts and Tu as the update interval of statistics and inversion.
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Adaptive Stepsize (Ada AFOpt): Many tasks use AdamW as their default op-

timizer when training DNNs. Besides gradient descent, we can also embed the cor-

rected gradient into AdamW. Meanwhile, noticing a recent work Adan [87], we may

also embed AFOpt into this structure to enjoy the advantages of this framework,

and we omit the details here.

5.3.5 Overall Algorithm

Now we are ready to state the overall AFOpt and Ada AFOpt. For convenience,

we denote the gradient matrix by Gt, and denote

LKK
t

“ pLQ
tLQ

tJ
q, where LQ

t
“ FQ

t
´

∇S
´

FQ
tJ
FK

t
¯¯J

FV
tJ
, (5.19)

LQQ
t

“ pLK
tLK

tJ
q, where LK

t
“ FK

t
´

∇S
´

FQ
tJ
FK

t
¯¯J

FV
tJ
, (5.20)

RVV
t

“ Wt
V

J
Xt

PX
t
P

J
Wt

V, RXX
t

“ XtXtJ
. (5.21)

For the inversion part, for convenience we denote

DKK
t

“ pLKK
t
q

´1,DQQ
t

“ pLQQ
t
q

´1,DVV
t

“ pRVV
t
q

´1,DXX
t

“ pRXX
t
q

´1.

(5.22)

Thus, the updated gradient of the attention module can be represented as

Ĝt
Q “ DQQ

tGQ
tDXX

t, Ĝt
K “ DKK

tGK
tDXX

t, Ĝt
V “ GV

tDVV
t. (5.23)

and the updated gradient of FSGD for linear layers can be represented as

Ĝt
“ GtDXX

t. (5.24)

Combining with the implementations, the sketch of AFOpt and Ada AFOpt are

described in Algorithm 7 and Algorithm 8.

Lastly, it is important to acknowledge that in practical applications, multi-head

self-attention is commonly employed instead of single-head attention. In such cases,

we only need to perform gradient calculation according to the head block for each

WQ and WK. We omit this part here.
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Algorithm 7 AFOpt

Input: W0, LQQ
0

“ 0Cout
,LKK

0
“ 0Cout

, RVV
0

“ 0Cin
,RXX

0
“ 0Cin

, τ
Output: WT

14 for t=1:T do
15 Extract Xt, FQ

t, FK
t, FV

t, Xt
P by forward and backward propagation. Compute

the weight gradient Gt.
16 if t%Ts “ 0 then
17 Compute LKK

t, LQQ
t, RVV

t and RXX
t by Eq.(5.19), Eq.(5.20) and Eq.(5.21);

Apply statistics momentum Eq.(5.18) on LKK
t, LQQ

t, RVV
t and RXX

t;
18 else
19 LKK

t
“ LKK

t´1, LQQ
t

“ LQQ
t´1, RVV

t
“ RVV

t´1 and RXX
t

“ RXX
t´1.

20 end
21 if t%Tu “ 0 then
22 Apply adaptive dampening Eq.(5.17) onto LKK

t, LQQ
t, RVV

t and RXX
t;

Compute the inverse DKK
t, DQQ

t, DVV
t and DXX

t by Eq. (5.22);
23 else
24 DKK

t
“ DKK

t´1, DQQ
t

“ DQQ
t´1, DVV

t
“ DVV

t´1 and DXX
t

“ DXX
t´1;

25 end
26 if attention module and other linear layer then

27 Compute gradient Ĝt by Eq.(5.23) and Eq.(5.24), respectively;
28 else

29 Ĝt “ Gt.
30 end

31 Apply gradient norm recovery by Eq.(5.16) to get G̃t.

Wt`1 “ Wt ´ τG̃t

32 end

5.4 Experiments

5.4.1 Experiment on COCO

In this section, we testify the proposed AFOpt on object detection and seg-

mentation task, with dataset COCO [44]. The model we adopt is pre-trained on

ImageNet1k. We fine-tune the pre-trained model on COCO train2017 (118K im-

ages) and evaluated on COCO val2017 (40K images). Here, we adopt the latest

version of MMDetection toolbox [11] as our detection framework. In our experi-

ments, we test AFOpt (Ada AFOpt) by Mask-RCNN [28] and RetinaNet [43] with

Swin transformer [46], and for a more clear insight, we also give the results of only
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Algorithm 8 Ada AFOpt

Input: W0, LQQ
0

“ 0Cout
,LKK

0
“ 0Cout

, RVV
0

“ 0Cin
,RXX

0
“ 0Cin

, τ , β1, β2, ε
Output: WT

33 for t=1:T do
34 Extract Xt, FQ

t, FK
t, FV

t, Xt
P by forward and backward propagation. Compute

the weight gradient Gt.
35 if t%Ts “ 0 then
36 Compute LKK

t, LQQ
t, RVV

t and RXX
t by Eq.(5.19), Eq.(5.20) and Eq.(5.21);

Apply statistics momentum Eq.(5.18) on LKK
t, LQQ

t, RVV
t and RXX

t;
37 else
38 LKK

t
“ LKK

t´1, LQQ
t

“ LQQ
t´1, RVV

t
“ RVV

t´1 and RXX
t

“ RXX
t´1.

39 end
40 if t%Tu “ 0 then
41 Apply adaptive dampening Eq.(5.17) onto LKK

t, LQQ
t, RVV

t and RXX
t;

Compute the inverse DKK
t, DQQ

t, DVV
t and DXX

t by Eq. (5.22);
42 else
43 DKK

t
“ DKK

t´1, DQQ
t

“ DQQ
t´1, DVV

t
“ DVV

t´1 and DXX
t

“ DXX
t´1;

44 end
45 if attention module and other linear layer then

46 Compute gradient Ĝt by Eq.(5.23) and Eq.(5.24), respectively;
47 else

48 Ĝt “ Gt.
49 end
50 Apply gradient norm recovery by Eq.(5.16).

M t “ β1M
t´1 ` p1 ´ β1qĜt;

V t “ β2V
t´1 ` p1 ´ β2qĜt d Ĝt;

M̂ t “ M t

1´βt
1
, V̂ t “ V t

1´βt
2
;

W t`1 “ W t ´ τ M̂ t
?

V̂ t`ε
.

51 end

FSGD (FAdam1) without further correcting the gradient of attention module. Other

configurations follow the settings of the official MMDetection toolbox2, and we cite

the results of default optimizer AdamW from official results directly3 while repro-

duce the result of SGDM. The experiments in this section are conducted on NVIDIA

1FAdam is proposed in[90]. It combines FSGD with AdamW to share the merits of adaptive stepsize
methods.

2https://github.com/open-mmlab/mmdetection

3Please refer to https://github.com/open-mmlab/mmdetection/tree/master/configs/swin.

105

https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmdetection/tree/master/configs/swin


Table 5.1: Detection results of RetinaNet for different parmeters on COCO. ∆FSGD

and ∆AFOpt means the gain of FSGD and AFOpt over AdamW, respectively. *
indicates the default optimizer.

Backbone Lr schedule Algorithm AP AP.5 AP.75 APs APm APl

Swin-T 1X

SGDM* 37.3 57.4 39.6 22.2 40.7 50.6

FSGD 37.7 58.3 39.8 23.4 41.3 50.4

∆FSGD Ò0.4 Ò0.9 Ò0.2 Ò1.2 Ò0.6 Ó0.2

AFOpt 38.5 59.0 40.8 22.4 41.9 51.5

∆AFOpt Ò1.2 Ò1.6 Ò1.2 Ò0.2 Ò1.2 Ò0.9

RTX A6000 GPUs. For the default parameters of FSGD and AFOpt, we set all the

parameters the same, specifically, we set the infrequent update interval Ts “ 50 and

Tu “ 500, the statistic decay parameter α “ 0.95, while the adaptive dampening

parameter η “ 0.01. Meanwhile, in AFOpt, since we made the assumption WVV

have inverse, we add 0.0001 on the diagonal of WVV to match the assumption.

We list the Average Precision (AP) of object detection by RetinaNet in Table

5.1, and show the APb of detection and APm of segmentation by Mask-RCNN in

Table 5.2. From Table 5.1, we see that most indexes have been greatly improved,

and overall the performance of AFOpt is better than FSGD, not only in the value of

index improvement but also in the overall improvement stability. Figure 5.2 shows

the loss curve with respect to iteration and the mAP index of detection with respect

to epoch. From the loss curves, AFOpt accelerates the convergence compared with

FSGD under this case, and the two optimizers mentioned both converge better than

the baseline SGDM. The increase of mAP shows the same results in this group of

experiment. Meanwhile, in Table 5.2, Ada AFOpt improves all the indexes with at

least 0.5%, while FAdam improves from 0.3%, which may show the improvement

stability of Ada AFOpt. Figure 5.3 shows the mAP index of detection and segmen-

tation with respect to epoch, while Ada AFOpt is much better than the baseline and

slightly better than FAdam under most epochs. Improving Ada AFOpt to get better

generalization performance than FAdam will be our future work.
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Table 5.2: Detection and segmentation results of Mask-RCNN for different param-
eters on COCO. ∆FAdam and ∆Ada AFOpt means the gain of FSGD and AFOpt over
AdamW, respectively. * indicates the default optimizer.

Backbone Lr schedule Algorithm APb APb
.5 APb

.75 APm APm
.5 APm

.75

Swin-T 1X

AdamW* 42.7 65.2 46.8 39.3 62.2 42.2

FAdam 43.4 66.0 47.1 39.7 62.7 42.7

∆FAdam Ò0.7 Ò0.8 Ò0.3 Ò0.4 Ò0.5 Ò0.5

Ada AFOpt 43.4 65.8 47.5 39.8 62.7 42.7

∆Ada AFOpt Ò0.7 Ò0.6 Ò0.7 Ò0.5 Ò0.5 Ò0.5
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Figure 5.2: The loss curve (left) and the mAP index (right) of detection for different
optimizers in training RetinaNet with Swin-T backbone, 1ˆ schedule.

5.4.2 Ablation Study

Adaptive dampening. Since adaptive dampening is strongly related to numer-

ical stability, the dampening parameter is important and deserves further ablation

study. Here we do the ablation study on RetinaNet with Swin backbone. Except

for the dampening parameter η, the other settings remain the same as the experi-

ments in the above section. In Table 5.3, we report the experiment result of different

dampening parameters 0.1, 0.01, 0.001, 0.001, where 0.01 gets the best performance.

Although the result of 0.001 is similar to the baseline, we still got an extensive range

of dampening parameters, which performs better than FSGD and SGDM.

Infrequent Updating. Here, we test different update intervals Ts and Tu to see
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Figure 5.3: The mAP index for detection (left) and for segmentation (right) of
different optimizers in training Mask-Rcnn with Swin-T backbone, 1ˆ schedule.

Table 5.3: Detection results of RetinaNet, Swin-T backbone for different dampening
parameter on COCO.

Backbone Lr schedule Dampening AP AP.5 AP.75 APs APm APl

Swin-T 1X

0.1 38.3 58.7 40.4 22.5 41.9 50.9

0.01 38.5 59.0 40.8 22.4 41.9 51.5

0.001 38.0 58.5 40.5 23.2 41.5 50.5

0.0001 37.4 57.9 39.9 21.6 40.7 50.2

the influence of the update frequency. We test Ts “ 20, 50, 100, 200 with correspond-

ing Tu “ 10Ts, and report the corresponding results in Table 5.4. The experiment

results show that the optimizer is stable to the interval in the given range, and the

results do not vary a lot. Although we choose a small interval Ts “ 50 and Tu “ 500

since intuitively, a small interval may be better because it can gather more infor-

mation, larger interval like Ts “ 200 and Tu “ 2000 can also be adapted to balance

computational cost.

5.4.3 Analysis

By the experimental results, our method still has some areas that need to be

analyzed and improved. First, we have several approximations in our methods,

which may cause some performance deduction. First, for matrix WQ and WK,
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Table 5.4: Detection results of RetinaNet, Swin-T backbone for different updating
interval on COCO.

Backbone Lr schedule Ts, Tu AP AP.5 AP.75 APs APm APl

Swin-T 1X

20,200 38.3 58.8 40.6 22.5 41.7 50.7

50,500 38.5 59.0 40.8 22.4 41.9 51.5

100,1000 38.3 58.6 40.5 22.8 41.7 50.8

200,2000 38.5 58.9 40.9 22.9 42.0 51.2

we approximate the softmax function by first-order Taylor expansion to deal with

the difficulties caused by the nonlinear function. Second, because some positional

embedding information is added onto the attention matrix before passing to the

softmax function and it is difficult for us to acquire the information, the attention

matrix we compute and adopt in the optimizer is not precisely the one passed to the

softmax function when training the model, which may encounter some inaccuracy.

Finally, for matrix WV, since we convert its computation by utilizing the matrix

XP , we assume WVV to be inversible and assume all the samples share a same WV,

which may influence the performance of the optimizer.

There are still some future works. Firstly, given the approximations above,

some better approximations may be considered for a better performance. Secondly,

AdamW is more popular in training transformers, but the results of Ada AFOpt

need to be more satisfactory. As we show in Figure 5.3, Ada AFOpt does not signif-

icantly improve the results during the training process compared to FAdam. Some

more efficient ways to combine AFOpt with adaptive stepsize methods need further

research. Finally, we also hope to validate the results on more tasks beyond computer

vision.

5.5 Conclusion

In this chapter, we propose an attention-feature-based optimizer named AFOpt.

By considering optimizing the attention module as a whole, we make the parameters
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within attention interact with each other to assist in training and better shaping the

output. Specifically, we first apply gradient descent on the output of the attention

module, and then solve the problem of making the descent of parameters within

attention modules close to the result of attention feature descent. On the one hand,

optimization in feature space may be more accurate; on the other hand, update

interactions occur because of the specific structure of attention, which may help the

optimization. Experiments on detection and segmentation tasks show the effect of

our proposed method.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Preconditioned methods have widely applications in DNNs optimization. In this

thesis, we mainly design four preconditioned optimizers from different perspectives,

and conduct experiments on computer vision tasks to prove their advantages and

effectiveness.

Chapter 2 proposes SGD-PH, a combined optimizer that integrates first-order and

second-order information. For some particular layers that contain mainly channel-

wise 1D parameters but greatly enhance the performance (e.g., BN layers), we com-

pute the partially accurate Hessian of the channel-wise 1D parameters and utilize

this second-order derivative as the preconditioner to update them. Besides normal-

ization layers, we also reformulated the convolutional layer by WN, from which the

length vector is a channel-wise 1D parameter and can be optimized by SGD-PH.

Sufficient experiments are accomplished to verify the robustness and adaptability of

our proposed SGD-PH.

In Chapter 3, we mainly consider the unavoidable inversion process in precon-

ditioned method. Here for the well known KFAC method, we combined Newton’s

iteration into computing the inversion, resulted in the optimizer NKFAC. The key

point of this method is that, the fisher information matrix changes slow during
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training, which means the inversion of the last iteration is a good initial point of

the current iteration. Combining with the fast local convergence of Newton’s iter-

ation, our inversion only needs several steps, which will be computational friendly.

Meanwhile, we implement NKFAC with some useful techniques. It is proved by ex-

periments that NKFAC is much stable to inversion and considerably enhance the

generalization performance.

Chapter 4 proposes AdamR, an adaptive learning rate optimizer with a rotation

transformation. This optimizer, similarly as AdaGrad, is a preconditioned optimizer

that designed to have a lower online regret bound. This optimizer consists of three

key steps: gradient computation with rotation, execution of the standard Adam

step, and reorientation of the gradient back to its original space. To reduce compu-

tational cost, we also apply layer-wise block diagonal constraint and the Kronecker

factorized constraint on the rotation transform, converting the preconditioner to be

a left and a right one. AdamR can inherit the hyperparameters and advantages of

adaptive stepsize methods, and experiments on computer vision tasks demonstrate

its effectiveness.

In Chapter 5, we focus on the popular attention module and propose AFOpt.

AFOpt contains both left and right preconditioners. By regarding the attention

module as a whole and approximating attention feature gradient descent, the atten-

tion parameters interact in the update, which may better utilize the feature infor-

mation and similarities of different patches to assist the optimization. We conduct

experiments on detection and segmentation tasks to show the effect of our proposed

method.
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6.2 Future Work

Following the optimizers proposed in this thesis, some further research directions

exist. In future work, we will conduct research on the following possible topics.

• Efficient and effective second-order optimizers. Second-order optimizers usu-

ally need more computational time and memory compared with first-order op-

timizers. In SGD-PH, we also need the second-time back-propagation, which

requires more time. Therefore, how to compute or approximate second-order

Hessian efficiently is still an important topic.

• Inversion approximation in preconditioned optimizers. Inverse computation is

unavoidable in preconditioned methods. In NKFAC, we approximate the exact

inversion by Newton’s method, which is a numerical approximation that can

reduce the computational cost. Better approximating the inverse by numerical

or theoretical means are both topics that deserve to be studied.

• More economic optimizer while lowering the online regret bound. AdamR

successfully lowers the online regret bound but requires more computational

cost. Therefore, designing low regret bound optimizers with less computational

cost is still a topic that can be studied.

• Combination of the preconditioned gradient with adaptive stepsize methods.

In AFOpt, we directly embed the preconditioned gradient into the adaptive

stepsize method. However, the result is not satisfactory enough. Since Adam

and AdamW have been widely used in training transformers, combining the

adaptive stepsize method effectively is a topic that is worth researching.
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