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Abstract

Optical imaging has its unique values in biomedicine, as light is non-radiative and highly sen-
sitive when interacting with biological tissues, offering structural and functional information
with high spatial resolution. The biological tissues are, however, optically turbid with hetero-
geneous refractive index, causing multiple light scattering that prevents high-resolution opti-
cal focusing and imaging at depths in tissue. Over the past decades, many optical technologies
have been developed that can overcome, reduce, or bypass strong light scattering for deep-
tissue imaging. For example, wavefront shaping has been developed to overcome strong optical
scattering and focus light through complex media, making it possible for high-resolution imag-
ing within or through thick tissue. Photoacoustic imaging transforms the strongly scattered
light into weakly scattered sound for detection, thus allowing a larger penetration depth with
tunable spatial resolution. Fiber-optic endoscopic imaging can bypass optical scattering for
in-situ microscopic observation with minimal invasion, especially when wavefront shaping is
implemented with a multimode fiber (MMF) or fiber bundle. With photoacoustic imaging and
the light control of MMF as the two primary technologies here, this thesis presents a compre-
hensive study aimed at pushing the boundaries of deep-tissue optical imaging and promoting

light delivery related applications in complex media.

The research work of the thesis can be divided into three major parts. The first part (Chapter
2) is to explore deep-tissue optical-resolution photoacoustic microscopy (OR-PAM), which is
based on image transformation on blurry yet “seeing-deeper” images of an acoustic-resolution
microscopy (AR-PAM) through deep learning. The trained network successfully transformed
AR-PAM images into high-resolution counterparts, with the lateral resolution improved from
54.0 pm to 5.1 pm. Further, it significantly improved a mouse deep-brain image and retained
high imaging resolution at tissue depths beyond one optical transport mean free path, which
marks a big leap towards deep-tissue OR-PAM. The second part (Chapters 3 and 4) delves into
the control of light delivery through MMF for deep-tissue applications based on wavefront
optimization or retrieval of transmission matrix (TM). To be specific, by adopting a natural
gradient ascent-based wavefront shaping strategy, coupled with a novel fitness function based
on cosine similarity, we achieved high-quality pattern projection through a 15-meter-long un-
stable MMF. Apart from focusing, we also propose an alternating projection-based phase opti-
mization method for suppressing scattered light in an arbitrary target region with a fast frame

rate. In addition, we also study TM reconstruction from output intensity measurement by
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developing a modified nonconvex optimization method, which demonstrates optimum effi-
ciency with reduced running time or sampling ratio. The ability to retrieve a large-scale TM of
MMF in a reference-less setup opens new avenues for deep-tissue optical imaging and manip-
ulation, etc. In the last part (Chapter 5), we investigate MMF-based fluorescence imaging and
especially explore the online calibration of MMF. We have confirmed the performance of point-
scanning-imaging on the samples of microspheres and mouse brain slice via MMF calibration
in the transmission mode. Besides that, a fluorescence -based intensity TM was proposed for
reflection-mode calibration of MMF, which is feasible in principle but needs further experi-
mental validation. These studies serve a common goal of advancing the field of deep-tissue
optical imaging and focusing. Although the part of PA imaging seems to be less relevant to
MMF-based focusing and imaging, the wavefront control methods we have developed may also

be applied to enhance the focusing quality and AR-PAM imaging in deep tissues physically.

In summary, the thesis presents several computational and optimization methods that address
key challenges faced by deep-tissue optical imaging and focusing, such as the limited resolution
of AR-PAM and precise light control through complex media etc. Our research is valuable to
deep-tissue PA imaging and MMF-based endoscopy, promising light delivery-related biomedi-
cal applications such as deep-tissue phototherapy and optogenetics. Through the above works,
we have demonstrated that the integration of computational approaches with optical imaging
technologies can unlock new potentials towards seeing deeper with greater clarity into bio-

logical tissues and even living bodies.
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Chapter 1

Introduction

1.1 Light propagation in complex media

Light is an excellent carrier for delivering energy and information since it propagates in a
nearly lossless manner in transparent media such as air and glass fiber, which has promoted
widely used technologies such as photolithography, fiber-optic communications and so on
nowadays. However, light will be strongly scattered when it comes to complex media like
smoke, fog, turbid liquids, biological tissues, or multimode fiber (MMF), which disrupt the dis-
tribution of energy or information it has carried. Light scattering in complex environments has
been almost universal in nature and largely unavoidable, affecting applications from remote

sensing through atmosphere to deep-tissue optical imaging.

Biological tissues are opaque to light due to its heterogeneous spatial distribution of refractive
index, causing light to diffuse rapidly and preventing us from seeing deep within tissues. Op-
tical scattering is prominent in light extinction when travelling in tissues, compared to other
factors like absorption, as the scattering coefficient s is much larger than the absorption co-
efficient , in most tissues. Since light scattering may come with a change in the direction of
photons, multiple scattering can gradually lead to a randomization of photon propagation di-
rection. The mean free path (MFP) describes the average distance a photon can travel between
two scattering events, given as MFP = 1/, MFP for visible light is typically ~100 pm in
tissues (Figure 1.1a) and it varies with tissue types. The scattering coefficient is reduced when
considering an anisotropy factor g € (0.8,1) describing the probability of forward scattering

such that, u! = p;(1 — g). Note that u! = u,(1 — g) still holds for most tissue. The transport
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Figure 1.1: Ilustration of light propagation in different complex media. (a) Typical distances

for MFP and TMFP in biological tissues [1]. (b) llustration of light propagation and diffusion

in tissues [1]. (c) The refractive index distribution of a step-index MMF, the light propagation

properties and the supported optical modes within it. (d) Schematic of light scrambling when
passing through an MMF. Obj: objective.

mean free path (TMFP) is defined as TMFP = 1/ .. The larger the g, the longer the TMFP will
be due to increased forward scattering. TMFP is typically ~1 mm for most biological tissues,
beyond which light becomes totally diffusive with the random walk of photons, as shown in

Figure 1.1b.

Another important complex medium in this thesis is MMF. Similar to biological tissue, it also
scrambles incident light into a seemly random speckle pattern (Figure 1.1d), but the principle
behind that is different. As seen in Figure 1.1c, an MMF is a cylindrical waveguide, composed
of a core and cladding on the periphery with different refractive indices (n; and n,), as well as
a coating layer on the outside. The fiber core diameter is usually 50-200 pm, with a limited nu-
merical aperture (NA). For step-index MMF, it is defined as NA = |/n? — n3. An MMF supports
the propagation of light with different incident angles (within the NA), while only these un-
der certain reflection angles can form stable optical fields within the fiber, namely the modes,
for output correspondingly. The number of modes an MMF can support is determined by the
optical wavelength A, the core radius a, and the NA. By defining the V-number as V = Z;T”NA,
it can be calculated as M = 471—‘/22. An MMF usually supports hundreds to thousands of modes
that have different propagation velocities, causing a distortion by mode mixing and coupling,
known as modal dispersion. The inherent modal dispersion prevents direct spatially- resolving

imaging application of MMF.
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1.2 Optical wavefront shaping techniques

Optical wavefront shaping (WFS) was first proposed by I. M. Vellekoop and A. P. Mosk in 2007
[8], which demonstrated focusing light through a highly scattered medium (thickness of ~20
times TMFP) and has revolutionized the field of imaging through complex media. In essence,
what WEFS does is to apply a pre-compensated wavefront by a spatial light modulator (SLM) for
controlling the multiply scattered light within or through a scattering medium or the multiple

modes in an MMF to produce constructive interference. This process can be described as

N
EXN =Y TumE), (1.1)
n=1

where T, is the element of a transmission matrix (TM) of the complex medium relating the n-
th of input mode E'™ to the m-th output mode E°*. Under phase-only modulation, the optimal
input phase shall be " = exp(—j/t,y,),n=1,2--- N for achieving a focus in the mth output
mode. The theoretically achieved enhancement 7, often referred as peak-to-background-ratio

(PBR) [9], that is, the intensity of the focus over that of the background, is determined by
n=aN—-1)+1. (1.2)

Here, N is the number of modulation units, and o € [0, 1] is the enhancement efficient related
to the modulation type: for phase-only modulation o = /4, for binary amplitude modula-
tion & = 1/2m, and for complex amplitude modulation, & = 1 [9]. There have been two main
feedback-based WFS techniques, iterative WFS and TM method, both entailing the output mea-

surements as the feedback for determining the optimal wavefront.

1.2.1 Iterative wavefront optimization

As shown in Figure 1.2a, the essential spirit of iterative WFS is updating the wavefront on a
SLM towards optimal modulation for controlling light transmission through a complex medium
based on the feedback signals related to the localized intensity of the output. If there is no WFS,
under all-zero or random phase pre-compensation, the MMF would output a speckle pattern
(Figure 1.2b); with WFS, the MMF would produce a sharp focus or other desired pattern (Figure
1.2c), with the PBR gradually approaching the theoretical value of 452 under 24 x 24 phase-

only modulation (Figure 1.2d).
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Figure 1.2: Illustration of iterative wavefront optimization for focusing light through MMF

with simulated results. (a) Schematic setup. SLM: spatial light modulator. (b) Output light

intensity without phase modulation. (c) Output focus with optimal phase input. (d) Curves
of focusing PBR versus iteration number.

Iterative WES requires feedback to indicate the result of focusing, which usually adopts a moni-
toring camera behind the medium in an invasive manner. Noninvasive schemes would resort to
an internal ”guide-star” to provide the feedback, such as photoacoustic signal [10], two-photon
fluorescence signal [11], etc. The optimization speed of iterative WFS is usually slow (on the
scale of minutes), mainly throttled by the refreshing rate of SLM (e.g., 60-200 Hz for liquid-
crystal SLM), the acquisition speed of camera, the data processing and transfer speed among
multiple hardware, as well as the optimization algorithm. Early phase optimization algorithms
included stepwise sequential algorithm, continuous sequential algorithm, and partitioning al-
gorithm [12]. Later, intelligent optimization algorithms such as genetic algorithm (GA) [13]
and natural gradient strategy [14, 15] have been adopted for focusing through complex media

that show faster searching speed and stronger anti-noise capability.

1.2.2 Transmission matrix

The measurement of the TM of a complex medium offers the knowledge of spatial light trans-
formation from the input to the output, which was pioneered by S. M. Popoff et al in 2010
[16]. The TM allows focusing at any desired position behind the medium and has gained wide
applications such as optical imaging, manipulation, and data communication in complex en-
vironments. For TM measurement, a series of complete input bases are pre-loaded on a SLM,

which can be based on Hadamard matrix [16], discrete Fourier transform (DFT) matrix [17]
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Schematic setup of on-axis TM measurement. (b) Speckle intensity produced by a flat refer-

ence phase (top-right inset). (c) Map of focusing PBR achieved by on-axis TM. (d) Schematic

setup of off-axis TM measurement. (d) Spectral filtering of the -1st order for off-axis TM mea-
surement. (f) Map of focusing PBR with an off-axis TM.

or focal spots [18, 19]. It usually requires full-field interferometric measurements to acquire a
TM, such as on-axis holography with an internal reference [16] or off-axis holography with an

external reference [18, 20].

In on-axis holography, as shown in Figure 1.3a, the internal reference part and the modulation
part co-propagate through a complex medium, producing interferograms for the measurement
of TM. If we apply a phase shift 8 on the reference, the interferometric intensity on the mth

output mode I,[fl reads

15 = lsn+ Y ePTuEY P = |sul” + | Y eP TuEP | + 2Re{5e® Y TnES},  (13)
n n n

where s, is the mth mode of the reference speckle, m = 1,--- ,M, M is the number of output
modes, and Re {-} takes the real-valued part. With the four-phase-shifting method, in which
holographic measurements are taken when =0, ©n/2, m, 3m/2, we have the complex-
amplitude output field E" (mixed with the reference speckle conjugate §,,), given by
@-rg) I ()

4 * 4

m

= EmZTmnE,;n = »STmEOUt m=1,--- M. (1.4)
n
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Figure 1.4: Illustration of solving the "dark spot” problem faced by on-axis TM using the

complementary TM measured with multiple internal references. The reference speckle, PBR

map and PR map by on-axis TM measured with (a) flat reference phase, (b) spiral phase (+1)

and (c) spiral phase (-1). (d) The PBR map and PR map by the complementary TM, which is

constructed by the above three TMs. Note 1 denotes focusing PBR and u denotes focusing
uniformity in each PBR map.

Let the diagonal matrix composed of the reference speckle fields be S,.f = diag (51,52, - - 5u),
the observed output field reads EQ% = S, x Eqy where Eqy= [EOU ESU .. ESHY] T is the ideal

out =
output field vector. As such, the observed TM is given by Tops = Eggi X Ei:l] =S, X T where T
is the ideal TM. The measurement of on-axis TM is influenced by the reference speckle, not only
in the form of coupling with it. In fact, the TM cannot be accurately measured in the positions
where the intensities of the reference speckle are too weak to form effective interference with
the signal light [21, 22]. As an experimental proof, Figure 1.3 (b-c) show a good correspondence
between the dark areas of a reference speckle and those of the map of PBR (denoted by the red

circles) when focusing through an MMF with an on-axis TM.

In off-axis holography, as shown in Figure 1.3d, an external reference beam is employed for
interference with the speckle beam output by the complex medium, in which phase-shifting or
spatial filtering method can be used to obtain the complex amplitude of the output field. Off-
axis holography with spatial filtering only requires N measurements, in contrast to the four-
phase-shifting method. Figure 1.3e shows the frequency spectrum of an off-axis interferogram
where the -1st order (down-left) is selected for spectral filtering. Compared to on-axis TM,

off-axis TM does not suffer from the "dark spot” problem and produce more homogeneous
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foci across the output plane (Figure 1.3f). However, off-axis TM measurement necessitates
an external reference beam and very stable environment for interferometry, which could be

challenging in some scenarios.

Apart from the above two TM measurement methods, recent efforts also resort to retrieving
the complex-valued TM directly from the output intensity measurements using advanced phase
retrieval algorithms [23-25]. The TM retrieval method waives the need of an external reference
beam, and the result can approach the golden standard off-axis holography. However, it usually

entails more measurements and a large amount of computation.

The ”dark spot” problem of on-axis TM can be mitigated by measuring a complementary TM
with multiple internal references [21, 22]. The idea behind it is the reference speckle fields
produced by distinct references can be complementary and form a homogeneous reference
field virtually. We have confirmed that experimentally by using three internal references, flat
phase, spiral phases with topological charge of +1 and -1, with results given in Figure 1.4.
Mathematically, suppose we have three on-axis TMs ”'T, r’ = 1,2, 3, then the phase difference

" A@ between the r'th TM and the 1st TM (as the reference TM) at the mth output mode is

N
nAQ = argZITfnn”Tmn, (1.5)

where (-)* denotes the phase conjugate. The three TMs are combined after correcting the phase

differences to form a complementary TM,

3
Trun = Z "y exp(—j AQ). (1.6)

ri=1

We experimentally confirm the complementary TM guarantees more homogeneous focusing
results than these achieved by on-axis TM with a single reference. As shown in Figure 1.4d.
both the focusing PBR and power ratio (PR) are improved, almost without obvious dark spots,
which is important for the quality of MMF-based point-scanning imaging. Also note that the
maps of PR were not calculated by high-dynamic-range (HDR) imaging, which were lower

than the actual values and used for relative comparison only.



8 Chapter 1. Introduction

1.2.3 Relationship with adaptive optics

Adaptive optics (AO) refers to a more general category of techniques for aberration correction
in the imaging path of an optical telescope or microscope [2, 26], where the distortions mainly
come from turbulent atmosphere or biological specimen, respectively. As illustrated in Figure
1.5, in an AO microscopy, a fast deformable mirror (DM) is usually employed that locates at
the input pupil of an objective lens, for rapidly compensating the incident wavefront so that a
corrected focus can be formed through the specimen. In the meanwhile, the DM also eliminates

the aberrations in the detection path, allowing for high-resolution imaging at tissue depths.

Although sharing similar principles, there are some key differences between WFS and AO in
the context of biophotonics. AO mainly works in the realm of ray optics, aiming to correct
weak aberrations caused by the optical system and the refractive index mismatch of specimen,
for improved imaging quality over a large field of view (FOV). But for WFS, it overcomes
the strong multiple scattering induced by a much thicker sample via producing constructive
interference at desired spots in the FOV. That said, AO and WEFS also share a cross-over regime

for deep-tissue optical imaging at the depths ranging from a scattering MFP to a 1 TMFP [9].

1.3 Deep-tissue optical imaging approaches

Optical imaging holds many advantages in biomedical application, such as high spatial res-
olution, non-radiative safety, high sensitivity, and high molecular specificity etc. However,
as light scattering increases exponentially with the penetration depth, it seriously degrades
the focusing of light and fundamentally limits high-resolution imaging capability at depths
in tissue. Conventional optical imaging techniques, such as wild-field microscopy confocal
microscopy, primarily utilize ballistic photons that are un-scattered to ensure imaging resolu-
tion, thus limited to shallow imaging depth (usually tens to hundreds of micrometers). There
is an inherent tradeoff between imaging depth and spatial resolution achieved by optical mi-

croscopy, as illustrated in Figure 1.6a.

Deep-tissue optical imaging approaches have been developed for preclinical or clinical appli-
cations, such as near-infrared-II (NIR-II) imaging, diffuse optical imaging, photoacoustic to-
mography etc. NIR-II imaging operates in the second near-infrared window (1000-1700 nm)

and detects fluorescence signals from deep tissues labelled by photoluminescent contrast agent
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Figure 1.5: Schematic diagram for the principle of (a-b) AO that corrects aberration for thin-
tissue microscopy [2], and (c-d) WFS to form a focus within a thick sample through construc-
tive interference among wavelets travelling along different optical paths [3].

like carbon nanotubes. NIR-II imaging greatly reduces light scattering and autofluorescence,
which is ideal for non-invasive inspection of deep tissues with high resolution and contrast,
with application to cancer theranostics and brain imaging etc. Diffuse optical imaging detects
the diffused photons that are scattered by tissues for modelling the light propagation through
tissues and monitoring the molecular structures and component contents (e.g., hemoglobin, fat,
water) within the tissues. Diffuse optical imaging is advantageous in label-free tissue function
imaging and clinical diagnosis by selecting different wavelengths (e.g., NIR) for illumination
and imaging modalities such as tomography or 2D imaging, with an imaging depth of 5~10
cm. Photoacoustic tomography is hybrid in optical absorption and ultrasound detection. By se-
lecting different acousto-optic alignment, imaging methods and ultrasound transducer types,
it achieves multi-scalable spatial resolution and imaging depth, gaining much attention for
structural and functional imaging applications. Herein, several relevant deep-tissue optical
imaging methods to the study of the thesis will be deeply discussed, including photoacoustic
imaging, fluorescence imaging and fiber-optic endomicroscopic imaging, which are all valuable

to biomedicine.
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Figure 1.6: Schematic illustrations of representative deep-tissue optical imaging approaches.

(a) Imaging depth versus spatial resolution for various optical imaging modalities, reproduced

from [4] with fiber-optic endoscopy (FOE) being supplemented. (b) Representative embodi-

ments of confocal laser endomicroscopy (CLE) [5]. (c) Principle of photoacoustic imaging.

(d) Typical photoacoustic imaging embodiments. (e-f) Two-photon fluorescence microscopy

with (e) direct adaptive optics (AO) using a wavefront sensor and (f) indirect AO based on
pupil segmentation [6].

1.3.1 Photoacoustic imaging

Figure 1.6c shows the principle of photoacoustic (PA) imaging which is based on PA effect.
When shining a pulsed laser into a tissue sample, light is absorbed and converted into heat,
producing ultrasonic waves due to thermoelastic expansion, which are detected by an ultra-
sonic transducer for the reconstruction of an image that depicts the tissu’s optical absorption
coefficient distribution. Thanks to optical absorption and ultrasound detection, PA imaging

combines the advantages of optical rich contrast and ultrasonic penetration depth. PA imaging
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Table 1.1: Comparison of various embodiments of PA imaging, adapted from Ref.[7].

OR-PAM AR-PAM PACT
Lateral resolution  Optical (0.2~10 pm) Acoustic (15~50 um)  Acoustic (~0.5
mm)
Axial resolution Acoustic (~30 pm) Acoustic (15~30 pm)  Acoustic (~0.5
mm)
Imaging depth Optical quasi-ballistic Optical quasi- Optical diffusive
regime (~1 mm) diffusive regime regime (=10 mm)
(1-10 mm)
Imaging mode Raster scanning Raster scanning Parallel (1D or 2D

array-based)

is intrinsically capable of structural and functional imaging of blood vessels since it is sensitive
to hemoglobin, which is abundant in blood vessels and shows dominant optical absorption at
typical visible and near-infrared spectrum. PA imaging is also naturally capable of volumetric
imaging and tomography thanks to the detection of A-line PA signals from targets of different

depths, thus is sometimes referred as PA tomography (PAT).

PA imaging is scalable in spatial resolution, imaging depth, and imaging contrast, by select-
ing different laser sources, ultrasonic transducer types, acousto-optic alignment, and scan-
ning methods. Generally, PA imaging can be categorized as optical-resolution photoacoustic
microscopy (OR-PAM), acoustic-resolution photoacoustic microscopy (AR-PAM), and photoa-
coustic computed tomography (PACT), with decreased spatial resolution yet increased imaging
depth in turn, as shown in Figure 1.6d. Both OR- and AR-PAM adopt raster-scanning across the
sample to produce signals, in which OR-PAM works in a quasi-ballistic range while AR-PAM
usually works in an optical diffusive regime. Specifically, the size of focus spot in OR-PAM

dictates the lateral resolution R 1, 0r). given by

R(lat,OR) - 0-510/NA07 (1.7)

where A, is the optical wavelength and NA, is the effective NA of optical focusing [27]. In com-
parison, the lateral resolution of AR-PAM is determined by the acoustic focus of the ultrasonic
transducer instead, given by

R(lat,AR) =0.7124/NA,, (1.8)

where A4 is the acoustic wavelength and NA4 represents the NA of the ultrasonic transducer
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[27]. For PACT, it utilizes a transducer array (1D or 2D) to simultaneously detect PA signals
emitted from tissue at multiple positions, achieving faster imaging speeds and larger penetra-
tion depth but lower spatial resolutions. The main specificities and imaging mode of the above

PA imaging embodiments are summarized in Table 1.1.

1.3.2 Fluorescence imaging

Optical imaging with the contrast mechanism of fluorescence has been commonly utilized in
biomedicine as it achieves single molecular specificity and high sensitivity, thus allowing mon-
itoring molecular dynamics and signals in complex biological environments. However, due to
strong optical scattering, fluorescence imaging is usually limited to thin samples or superficial
depths. In the past decades, the major workhorse for deep-tissue fluorescence imaging is the
development of two- or multi-photon microscopy (MPM), which are based on the nonlinear
effect of two- or multi-photon excitation [28]. MPM has several advantages that contribute
to enhanced deep-tissue imaging capability. First, MPM usually employs near-infrared laser
(700-1300 nm) for excitation, which has a longer penetration depth as it encounters less optical
scattering in tissue. Second, thanks to the nonlinear excitation where the emission light is pro-
portional to the square or cube of the intensity of excitation light, the fluorescence emission
is confined in the focus, increasing the signal-to-background ratio (SNR), contrast, and axial

resolution for imaging in deep tissue.

That said, the imaging depth of MPM could still be insufficient for maintaining high-resolution
imaging beyond the tissue depth of, say 500 pm in a mouse brain cortex [29]. In the past two
decades, AO has been introduced for active wavefront control to further correct the tissue-
induced aberrations for improving the imaging quality of deep-tissue fluorescence microscopy.
Basically, there have been direct AO and indirect AO. For direct AO, as shown in Figure 1.6e,
usually a Shack-Hartmann wavefront sensor is adopted for direct wavefront sensing by mea-
suring the local slope of the wavefront. The detected information can be used for the DM to
rapidly apply the wavefront modulation to the excitation light. Direct AO is only applicable
to imaging at superficial depth as the wavefront sensor requires enough ballistic photons for
direct wavefront measurement. By contrast, indirect AO is more practicable as it does not

involve a wavefront sensor. It includes pupil-segmentation based method (Figure 1.6f) and
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metric-based method. Indirect AO requires wavefront reconstruction which limits its correc-
tion speed, but on the other hand, it can be applied to opaque tissues with a simpler hardware

implementation [6].

1.3.3 Fiber-optic endoscopic imaging

Conventional deep-tissue optical imaging methods inherently encounter the tradeoff between
the imaging depth and the imaging quality. One feasible way to overcome it is to introduce
light sources inside tissue and make observation in situ, thus bypassing the challenge of optical
scattering. As such, fiber-optic endoscope (FOE) has been developed that allows imaging at
arbitrary depth with optical resolution (Figure 1.6a). FOE, in other words, confocal laser endo-
microscopy (CLE) [30, 31], mainly includes probe-based CLE (pCLE) and endoscope-based CLE
(eCLE), as shown in Figure 1.6b. Generally speaking, pCLE scans and couples light into individ-
ual optical fiber of an optical fiber bundle for laser-scanning imaging, with a micro-objective
lens attached at the end for improved imaging resolution. pCLE allows flexible endoscopy into
body tissues such as gastrointestinal tract. eCLE usually integrates a scanning mirror at the
distal tip of a conventional endoscope, which is typically a single-mode fiber (SMF), to per-
form raster scanning for diffraction-limit imaging. eCLE is excellent in imaging quality and
robustness, which has been actively developed to achieve PA imaging [32] or optical coherence
tomography [33], used for optical biopsy in situ. However, due to the usage of the distal lens
or scanning device, the diameters of both CLE probes are still relatively large, ranging from
millimeters to centimeters, which may cause serve trauma when imaging onto tissues without

natural tract.

In the past decade, thanks to the invention of WFS technique, the field has seen exciting de-
velopment of single MMF-based endomicroscopy [34-36], which is ultra-minimally invasive
since the size of fiber probe is typically 50 200 pm. Assisted by WFS, it is feasible to con-
trol light propagation through MMF for selective excitation of the optical modes with similar
group velocities to produce diffraction-limited focus, allowing for MMF laser-scanning imag-
ing. Combined with different signal detection modules, many kinds of optical microscopy
have been realized through a single MMF, including fluorescence [37], photoacoustic [38], re-
flectance [20], and nonlinear [39] imaging, etc. Ultrafine MMF-based endomicroscopy gains
special interests for imaging at sensitive tissue regions such as deep brain, and it has been

recently reported to observe neuronal activity, connectivity, and blood flow dynamics in vivo
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throughout the whole mouse brain [40]. But still, MMF-based endomicroscopy faces chal-
lenges like limited imaging performance in FOV and resolution and especially the sensitivity
to external disturbance, which limits it to the realm of rigid endoscope. More comprehensive
reviews on the methods, applications, and challenges of MMF-based endomicroscopy can be

referred to refs.[35, 36].

1.4 Thesis structure

The research in this thesis centers around deep-tissue optical imaging and focusing, utilizing
PA imaging and MMF-based endoscopy as two primary tools, with a particular emphasis on de-
veloping computational methods. Specifically, these studies are divided into three major parts:
Part I explores deep-penetrating PAM with high resolution by a data-driven method; Part II
achieves deep-tissue patterned optical delivery through MMF based on wavefront optimization
or TM reconstruction; Part III further investigates MMF-based fluorescence endomicroscopy
using transmission- or reflection-mode calibration schemes. Towards this end, several projects
have been conducted during my PhD study to address the major research gaps, as summarized

in the following outline.

In Chapter 2 (Part I), to extend OR-PAM towards deep-tissue imaging, we propose a deep
learning-based imaging method that instantly transforms the blurry images acquired with an
AR-PAM to match the OR-PAM results, while maintaining the imaging depth of AR-PAM.
Using an integrated OR- and AR-PAM system, we have trained an improved generative adver-
sarial network (GAN) to learn the imaging transformation relation between AR- and OR-PAM
images. The trained GAN can improve the mouse cerebrovascular image that it hasn’t seen

before and retain the high-resolution results at tissue depths beyond one TMFP.

In Chapter 3 (Part II), in the scope of controlling light delivery through MMF for deep-issue
applications, both focusing and suppressing light in a patterned region at the output of MMF
have been studied, i.e., patterned light delivery. To achieve long-distance pattern projection
with high fidelity through an MMF in an unstable environment, we have adopted a natural
gradient ascent-based strategy guided with a new fitness function. It offers faster convergence
and stronger robustness over existing iterative WFS schemes, showing promise for energy

delivery-related biomedical applications such as phototherapy. Besides that, we also propose
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an alternating projection-based phase optimization method for fast and arbitrary glare suppres-
sion through an MMF, attractive for deep-tissue super-resolution imaging and optical trapping

that involves a customizable speckle field.

In Chapter 4 (Part II), to reconstruct the TM of an MMF from merely output intensity measure-
ments, which waives the need of an external reference beam and avoids the “dark spot” prob-
lem induced by internal reference, we develop a two-step reweighted amplitude flow (RAF 2-1)
algorithm for TM retrieval with optimum efficiency. Compared with existing representative
TM retrieval methods, it requires less running time or sampling ratio to reach the theoretical
focusing efficiency with the retrieved TM. Experimentally, RAF 2-1 can approach the golden
standard off-axis holography method under a sampling ratio of 8, which facilitates deep-tissue

optical imaging-related applications with the use of an MMF.

In Chapter 5 (Part III), to promote MMF-based fluorescence endomicroscopy, especially by an
online calibration of MMF, we conduct a pilot study with both transmission-mode (Scheme
1) and reflection-mode (Scheme 2) TM calibration. In Scheme 1, we have validated the per-
formance of point scanning fluorescence imaging with samples of microspheres and mouse
brain slice. In Scheme 2, we have proposed a fluorescence-based intensity TM based on the
unmixing of the epi-detected fluorescence speckle. In principle, it offers a feasible solution for
the re-calibration of MMF in the absence of distal access during fluorescence imaging, while

further experimental validation is needed.

In Chapter 6, we briefly summarize all the research work in Chapters 2-5 and point out the
major contributions of the thesis. We also discuss several aspects of our imaging technologies
and the future directions from an overall perspective, with the aim towards more practica-
ble deep-tissue optical imaging and focusing with the use of PA imaging, MMF imaging and

computational optics.

The research encapsulated in this thesis is depicted in Figure 1.7. Faced with the contradiction
between imaging resolution and penetration depth mainly due to the strong light scattering,
our studies aim to achieve high-resolution PA imaging and MMF-based endoscopy within deep
tissues. Specifically, computational methods have been developed for either postprocessing
scattering-degraded AR-PAM images (Part I) or controlling light delivery through MMF for
endoscopic applications (Part I and III). All the studies serve the common goal of advancing
deep-tissue, high-resolution optical imaging and focusing. The studies in Part IT on light control

of MMF have laid a good foundation for MMF-based fluorescence imaging in Part III. Although
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Figure 1.7: Research framework of the thesis showing the research topic, challenge, imaging
technologies, computational approaches, research contents and potential research values.

Part I, which is about PA imaging, seems less relevant to the other parts, the wavefront modula-
tion methods introduced in Part II can also be applied to enhance focusing quality and AR-PAM
imaging physically in deep tissues [41]. Besides, the idea of MMF-based fluorescence imaging
in Part III can also be translated to realize endoscopic PAM with high resolution [38, 42]. Re-
garding biomedical applications, our research may open new avenues for deep-tissue optical

imaging, phototherapy, optical manipulation and more.
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High-Resolution Deep-Penetrating
Photoacoustic Microscopy through

Deep Learning

This chapter is reproduced with some adaptations according to a published journal paper:
Shengfu Cheng, Yingying Zhou, Jiangbo Chen, Huanhao Li, Lidai Wang, and Puxiang Lai, "High-
resolution photoacoustic microscopy with deep penetration through learning”, Photoacoustics 25:100314

(2022).

In Part I of this thesis, we investigate the possibility of achieving a deep-tissue OR-PAM. OR-
PAM, renowned for its superior spatial resolution and has garnered significant attention re-
cently. However, its application remains limited to shallow depths due to strong multiple light
scattering in biological tissues. In Chapter 2, we propose to achieve a performance of deep-
penetrating OR-PAM by harnessing deep learning on blurry mouse vascular images acquired
in vivo using an AR-PAM setup. Our trained GAN improved AR-PAM’ s lateral resolution from
54.0 um to 5.1 um, approaching that of a typical OR-PAM (4.7 pm). We evaluated the network’s
feasibility with living mouse ear data, which generated superior microvasculature images to
blind deconvolution. We also generalized the network by testing on in-vivo mouse brain data.
Furthermore, our deep-learning method could maintain high resolution at tissue depths be-
yond one optical transport mean free path in the phantom experiment. Although there is
room for improvement, the proposed deep learning image transformation method may open

new avenues for expanding the scope of OR-PAM for deep-tissue imaging in biomedicine.

17



Chapter 2. High-Resolution Deep-Penetrating Photoacoustic Microscopy through Deep
18 Learning

2.1 Introduction

PA microscopy offers high-resolution imaging of rich optical-absorption contrasts in vivo and
provide structural, functional, and molecular information of biological tissues [7, 43]. OR-
PAM uses tightly focused laser beam for excitation and thus has diffraction-limited resolution
to resolve single capillaries and monitor microvascular level biological processes. OR-PAM has
gained intense attention in the past decade [44-47] and has seen many preclinical and clinical
applications in neuroscience [48], tumor angiogenesis [49], histology [50, 51], dermatology

[52], and many others [53-55].

Limited by strong scattering in biological tissue, the penetration depth of OR-PAM is within
one optical TMFP (~1 mm for biological tissues). It would be impactful if OR-PAM can see
deeper into tissue. One attempt is to explore whether OR-PAM performance can be inferred or
constructed through computation based on deep-penetrating, albeit low-resolution, PA signals.
AR-PAM does not focus light tightly and thus can extend to several millimeters to centimeters
deep [7, 56]. AR-PAM also waives the necessity for a costly single-mode laser to produce
high-quality focused beam. Thus, lower cost multimode pulse laser like laser diode or light-
emitting diode can be used as the light source [57-59]. Imagine that if a relationship can be
built or learned between superficial AR-PAM and OR-PAM data sets, and the validity of the
relationship remains for deeper tissue regions or different organs, then deep-penetrating OR-

PAM could be achieved through learning the acoustic-resolution PA signals at that depth.

Here, we propose a deep learning method to transform low-resolution AR-PAM images into
high-resolution ones that are comparable to the corresponding OR-PAM results. This allows
us to combine the advantages of deep penetration of AR-PAM and high resolution of OR-PAM.
Apart from that, OR-PAM imaging with lower cost could also be achieved based on the usage
of AR-PAM apparatus, as there will be less restrictions on the laser source. The idea of op-
timizing low-resolution PA imaging by a high-resolution one is also found elsewhere. As an
example, Shi et altransform low-resolution mid-infrared (MIR) PA signals into the difference
of two adjacent ultraviolet PA signals for detection and high-resolution MIR PAM imaging
[60]. Herein, we utilize a deep learning image transformation method. In the past few years,
there have been a number of deep learning applications aimed at enhancing the performance
of PA imaging [61, 62], such as increasing the contrast [63] or penetration depth [64] under
low fluence illumination, improving the lateral resolution for out-of-focus region in AR-PAM

[65], and enhancing OR-PAM images acquired under low laser dosage or sampling rate [66, 67].
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Besides, deep learning has seen applications in PACT that mainly involve image enhancement
from suboptimal reconstruction [68, 69] and artifact removal [70, 71]. Several related deep
learning applications include single image super-resolution [72-75], microscopic image en-
hancement [76-78]and microscopic imaging transformation [79, 80]. It has been shown that
conventional convolutional neural network (CNN) trained with pixel-wise loss tends to out-
put over-smoothed results [75]. In contrast, the GAN model with residual blocks, trained with

perceptual loss, performs particularly well (with better details) for these problems.

In this study, we adopt Wasserstein GAN with gradient penalty (WGAN-GP) [81] as the train-
ing network to transform low-resolution AR-PAM images to match high-resolution OR-PAM
images obtained at the same depth. In the following sections, we first describe the integrated
OR- and AR-PAM system for data acquisition and the WGAN-GP model used for PAM imag-
ing transformation. The trained network was first validated with in vivo mouse ear vascular
images and the performance was compared with that of a typical blind deconvolution method.
We further apply the network to in vivo mouse brain AR-PAM data to verify its validity for
different tissue regions. After that, the performance of the network on deep-tissue imaging is
evaluated with a hair phantom. We show that, with the proposed PAM imaging transforma-
tion, deep-penetrating OR-PAM imaging could be achieved at depths that are way beyond the
depth limit of traditional OR-PAM. Whilst it can be further improved, the proposed method
provides new insights to expand the scope of OR-PAM towards deep-tissue imaging and wide

applications in biomedicine.

2.2 Methods

2.2.1 Integrated OR- and AR-PAM system

An integrated OR- and AR-PAM system was built in this study to acquire PA data, as shown
in Figure 2.1. The laser source is a 532 nm wavelength pulsed laser whose pulse width is 7 ns
(VPFL-G-20, Spectra-Physics). The laser output is directly delivered into the PAM probe [47]
by a 2-m SMF (P1-460B-FC-2, Thorlabs Inc) for OR-PAM imaging, or by a 1-m multi-mode fiber
(MMF, M105L01-50-1, Thorlabs Inc) to support AR-PAM imaging. In the experiment, the pulse
energy for the OR- and AR-PAM was ~80 nJ and ~2000 nJ, respectively. The fiber coupling
efficiencies of the SMF and the MMF were measured to be ~60% and ~90%, respectively. Noted

that the optical/acoustic beam combiner in the probe reflects the optical beam to the sample
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and, in the meanwhile, transmits the produced ultrasound wave to the piezoelectric transducer
(V214-BC-RM, Olympus-NDT). The central frequency and bandwidth of the ultrasound trans-
ducer used in the experiments are 50 MHz and 40 MHz, respectively. The optical-resolution
and acoustic-resolution settings are switched by using different fibers only; usually after the
entire scanning of OR-PAM for an image is finished, we switch the single mode fiber to a multi-
mode fiber manually for AR-PAM imaging. This has endowed our integrated PAM system with
the ability to yield automatically co-registered OR and AR imaging data sets [82]. The switch is
controlled by the combination of a half-wave plate (HWP, GCL-060633, Daheng Optics) and a
polarizing beam splitter (PBS, PBS051, Thorlabs Inc). When most light is reflected by the PBS to
the MMEF, light becomes diffusive in the sample so that the imaging resolution is determined
acoustically by the acoustic lens (#45-697, Edmund optics), which collimates the PA waves.
When most light transmits through the PBS to the SMF, light is tightly converged onto tissue
sample, producing an optical focus coaxially and confocally aligned with the acoustic focus to
optimize the detection sensitivity. The detected PA signals by the ultrasound transducer are
amplified (ZFL-500LN+, Mini-circuits) and then transferred to the data acquisition card (DAQ,
ATS9371, Alazar Tech), which is connected to the computer. Two-axis linear stage (L-509.10SD,
Physik Instrument) is used to mount the scanning probe, which creates two-dimensional raster
scanning to obtain volumetric A-line data. In our system, the lateral resolution of OR-, AR-

PAM modules are about 4.5 pm and 50 pm, respectively.

2.2.2 Sample preparation

Several 6-week healthy ICR mice were anesthetized with isoflurane. Before imaging, the sam-
ple (e.g., mouse ear) was applied with ultrasound gel (Aquasonic 100) and fixed on a glass
platform, beneath the water tank. The PAM probe was put above the target and immersed in
the water tank to ensure acoustic coupling. All procedures involving animal experiments were
approved by the Animal Ethical Committee of the City University of Hong Kong. An area of
5 x 5mm? of the mouse ear was imaged by OR-PAM at a step size of 2.5 um, and then the same
FOV was scanned by AR-PAM at the same step size with OR-PAM. 14 pairs of AR- and OR-
PAM vascular images of different mouse ears were acquired. Apart from ears, PAM imaging
of mouse brain vasculature was also conducted. The skin hairs of mouse brain were removed
by using hair removal cream (Veet, Hong Kong) before the experiment. Then the scalp was
disinfected and cut with surgical scissors. The exposed cerebral vessels were scanned at a step

size of 2.5 pm within a FOV of 5 x 5mm? , using AR-PAM only.
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Figure 2.1: Schematic of the integrated OR- and AR-PAM system, with the optical (green)

and ultrasonic (gray) beam path in the probe for OR- and AR-PAM illustrated separately.

Note that the SMF and MMF are not connected to the probe at the same time but separately

instead. AL, Acoustic lens; Amp, amplifier; DAQ, data acquisition; FC, fiber coupler; HWP,

half-wave plate; MMF, multi-mode fiber; PBS, polarization beam splitter; SMF, single-mode
fiber; UT, ultrasound transducer; WT, water tank.

To evaluate the imaging transformation performance at different depths, chicken breast tissues
were sliced into different thicknesses to cover a few human hairs for AR-PAM imaging, which
was used to mimic optical targets imaged at different tissue depths. We acquired AR-PAM
images over a FOV of 5 x 5mm? of human hairs that were not covered or covered with tissues
of thickness of 700, 1300, and 1700 pum, respectively. The pulse energy for AR-PAM in the
phantom experiment was increased with increasingly thick chicken breast slices covered above

the hair pattern.

2.2.3 Image pre-processing and data augmentation

The acquired PAM images in this study are maximum amplitude projections (MAP) of volu-
metric acquisitions, that is, 3D A-line data that are typically sized of (2000,2000,512) in which
2000 is the image size along each direction and 512 is the number of samples for one A-line.
The A-line data needs to be processed before conducting MAP, which is based on the actual
condition of raster scanning. Usually, we need to flip the A-line data of even columns, and
sometimes to translate upwards or downwards the A-lines at some positions to avoid image
dither or ghosting caused by motor sweeping dislocations. It is almost inevitable for the ac-

quired PAM images to contain noise, such as isolated bright spots that compress the image
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grayscale level or stain noises especially in OR-PAM images. Thus, all PAM images were first
normalized to 0-1 before applying a 5 x 5 median filter to remove the extremely bright spots
and mitigate the stain noises. After that, considering the training of deep neural network re-
quires a large data set but the collected data was limited from experiment, data augmentation
[83-85] was conducted using a Python library Albumentations [86]. There were mainly ge-
ometry and grayscale image transformation operations to teach the deep networks the desired
invariance properties [85]. For geometry transformation, we conducted flipping along dif-
ferent directions (horizontal, vertical, and diagonal), random affine transformation (including
translation, scaling and +15° rotation), random cropping and padding, as well as elastic defor-
mation, to mimic different spatial distributions of blood vessels. Also, 10% synthetic AR-PAM
images were further blurred using a random kernel or Gaussian filter. For grayscale transfor-
mations, we had random gamma (gamma value ranging from 0.6 and 1.4) adjustment to tune
the image grayscale range. 10% synthetic AR-PAM images were further adjusted on random
brightness and contrast, for modeling the illumination intensity discrepancies in the imaging
system. These techniques aimed to artificially increase the data distribution of available PAM
images for training, with the hope for the networks to learn the robustness against deforma-
tion and gray value variations [85] and to gain better generalization ability. In this study, 14
pairs of PAM vascular images of the mouse ear were acquired experimentally. Among them,
11 pairs were used to synthesize 528 image pairs that constitute the training set. The remaining

three PAM image pairs were used for network tests, without any image augmentation.

Since the acquired PAM images are of large size that our network cannot process directly,
an entire PAM image is thus cut into small image patches, which also greatly increases the
amount of training data. Noted that regular image patch extraction (and stitching) is enough
for network evaluation on a test PAM image, while different strategy that combines accurate
image patch alignment was adopted for generating the training set. This is mainly because the
pixel-wise loss would be used to guide the neural network to learn a statistical PAM imaging
transformation. As illustrated in Figure 2.2, a template-matching algorithm based on image
intensity correlation is employed, implemented in MATLAB. The image patches of size 390 X
390 are first extracted successively from an entire OR-PAM image with an overlap of 64 pixels
in both horizontal and vertical directions, which work as the templates to find the highest-
correlation matched patches in the corresponding AR-PAM image. This is done by calculating
the 2D cross-correlation matrix between the OR patch and the entire AR image, in which the

maximum value indicates the most likely matched AR patch. The cropped patches in AR-PAM
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Figure 2.2: The process of image patch extraction and alignment via correlation template

matching. The OR patches were extracted successively, with each used as a template to find

the highest correlated AR patch. The paired image patches were filtered with the criteria for
vessel density and location before being applied with sub-pixel alignment.

image will be filtered based on two criteria before forming pairs with their OR templates: if the
vessel density is not enough (less than half of the mean) or the location differs greatly (more
than 10 pixels in any direction), the cropped AR-OR patch would be abandoned. Note that the
matched image patches are still not accurately aligned at the sub-pixel level. Thus, additional
local shift (shift amount is determined by the traversal search) between the extracted image
patches is applied by bilinear interpolation. Eventually, the precisely registered images are
cropped with three pixels on each side to avoid registration artifacts, forming the input-label
pairs of size 384 x 384 for network training. Also noted that the image patch size 384 is the sum
of two powers of 2 (i.e., 256 4 128), which may also suit the graphics processing unit (GPU)

allocation and speed up training,.

2.2.4 GAN model and network training

To achieve PAM imaging transformation, we adopted a GAN-based framework for a deep neu-
ral network in this study. GAN was initially introduced by Goodfellow et al. in 2014 and
has been proven a powerful generative model for super-resolution [73, 75] and many other
imaging-related applications [79, 80]. There are two sub-networks in a GAN, namely the Gen-

erator and the Discriminator, being trained simultaneously. The Generator takes an AR image
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as the input and produces a resolution-enhanced image, which is then passed onto the Dis-
criminator to determine its similarity to the ground truth OR image. There is an adversarial
training between the Generator G and the Discriminator D: G tries to fool D by generating an
image that closely resembles its OR label, while D tries to distinguish the generated fake data
from the real one. Conventionally a GAN is trained to minimize the cross-entropy error (also
referred to as the Jensen—-Shannon divergence) between the generated and real data distribu-
tion. However, it has been observed a GAN inclines to be unstable and difficult to converge
during such training, mainly owing to the vanishing gradient problem of the Generator and
model collapse [81, 87-89]. To cure the problem, Wasserstein GAN was proposed [88, 89]; it
uses Wasserstein distance to replace the Jensen-Shannon divergence as the objective to be op-
timized. The min-max game between the two sub-networks G and D within a GAN that adopts

Wasserstein distance can be formulated By

minmax By poy [D(x)] — Eonppe [D(G(2))], (2.1)
where D is subject to 1-Lipschitz function , Pordenotes the real OR image distribution, and the
generated data distribution is implicitly defined by G(z) with z following AR image distribution

Par. Hereby, Wasserstein GAN was used for our PAM imaging transformation.

The WGAN model used for the imaging transformation from AR- to OR-PAM is illustrated
in Figure 2.3. The Generator network follows the U-Net architecture [85] that is composed
of an encoder and a decoder path. The network can process an input AR image in a multi-
scale fashion, enabling the network to learn the imaging transformation at various scales. The
encoder path comprises four residual convolutional blocks [74, 90] that are connected by a
down-sampling block. Each convolutional block is composed of two 1 x 1 convolutional and a
3 x 3 convolution, with a Leaky Rectified Linear Unit (LReLU) layer (slope 0.2) following every
convolutional layer. The down-sampling block consists of a convolutional layer with a kernel
of size 4 and stride 2, an LReLU layer and a Group Normalization (GN) layer [91]. After four
down-sampling blocks, a 3 x 3 convolutional layer is bridged to the decoder path, in which the
feature maps are up-sampled. The decoder, similar to the encoder, is also composed of four
convolutional blocks (but no residual structure) that are connected by the up-sampling block.
The up-sampling is performed with transposed convolution (also referred to deconvolution)
layer, which forms the block together with an LReLU layer and a GN layer. Finally, a convolu-

tional layer following the last convolutional block output a clearly resolved image of the same
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Figure 2.3: The architecture of the WGAN model used for PAM imaging transformation.

size and channel as the input. The Discriminator is a typical CNN used for image classification,
except for the removal of sigmoid activation in the output layer. Starting with a convolutional
layer (with LReLU activation), seven convolutional blocks are followed, in which a feature map
decreases its spatial size while increasing the number of channels. Each convolutional block
consists of a convolutional layer with a kernel size of 3 and stride of either 2 or 1, a Instance
Normalization (IN) layer [92] and a LReLU layer (slope 0.2). Note that the down-sampling of
size and the increasing of channel is conducted alternately in the convolutional blocks through
the control of kernel stride and number. The output of the last convolutional block is applied
with adaptive average pooling and outputs a feature map f size 1 x 1. With two full-connected
layers followed, the final output of the Discriminator is the scalar denoting the Wasserstein

distances of input from OR image data distribution.

The behavior of optimization-based imaging transformation is principally driven by the choice
of the objective/loss function. For the Generator, the primary objective is to minimize the

pixel-wise loss, which is represented by the mean absolute error (MAE) between the network

IOR

output image G(I*R) and the ground truth OR image I°®, given by
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LMAE

, (2.2)

LSS Gy (1

i=1j=1

MxM

where M is the image patch size. Besides, MAE in the frequency domain (FMAE) calculated
from the magnitude of the 2D Fourier transform of G(I*?) and IR is also employed, which

provides the optimizer information about the vessel orientation [66], given by

M

L?”AMM;;m (10| =73 (9] (23)
The perceptual loss of the Generator is defined as a weighted sum of the above two items, with
the weighting factor of 1 for LEMAE and a small weighting factor of 10~* for the FMAE loss since
it may contribute to training instability [93]. In addition to perceptual loss, the adversarial loss
returned by the critic network D is crucial to achieving PAM imaging transformation, which
provides an adaptive loss term and may help the Generator jump out of local minima. We
define the Generator loss as the weighted combination of perceptual loss and adversarial loss

(with coefficient ), given by

Lo = LG +107 X LEMF 4y x (~Eoupu [D(G(2))]) (2.4)

In an attempt to enforce the Lipschitz constraint, in this study we adopt an improved Wasser-
stein GAN, that is, WGAN-GP [81], in which the gradient norm of the Discriminator’s output
with respect to its input is constrained to 1. In this case, the Discriminator loss with gradient

penalty is given by

Lp = Ecopp [D(G(2))] — Exnpon [D(0)] + 2 X B, [(IV:D(3) |, — 1)7] (2.5)

where IP; denotes the random sampling distribution and A is the penalty coefficient.

The training of our WGAN-GP model was implemented in Pytorch (v1.8.0) on Microsoft Win-
dows 10 operating system, using a graphics workstation based on an Intel Xeon CPU, a NVIDIA
3070 GPU, and 64 GB RAM. There were 16,849 aligned pairs of PAM image patches in the
training set. A small weight initialization method was adopted for the GAN, in which the ini-

tialization parameters of all convolution and deconvolution layers of the GAN, calculated by
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MSRA initialization (also known as Kaiming initialization [94]), were multiplied by 0.1. Both
two sub-networks were optimized using AdamW [95], i.e., Adam optimizer with decoupled
weight decay regularization of B; = 0.5 and 3, = 0.9, and were trained with the same initial
learning rate of 10~*. For the loss function of the GAN model, the weight y of adversarial
loss term in the Generator loss was set to 1073 and 10 for the gradient penalty coefficient in
the Discriminator loss. It should be noted that to seek an adversarial equilibrium between the
two sub-networks for GAN training, we can tune their learning rate or adjust the optimization
times for the Generator or the Discriminator within each iteration. The total training epochs
were 12 and the batch size was set as 2 for the GAN to be trained with mini-batch gradient

descent, which took about 0.804 seconds for each iteration.

2.2.5 Blind deconvolution for AR-PAM image deblurring

Compared with high-resolution OR-PAM vascular images, images acquired with AR-PAM in
situ have lower spatial resolution and are visually blurry. From the perspective of image decon-
volution, it is reasonable to treat the OR-PAM image as the object itself while the corresponding
AR-PAM image as the result of a convolution of the object and the system point spread function
(PSF). As it is infeasible to model the PSF of such a conceptual PAM imaging system, we turn to
use statistical blind deconvolution to iteratively recover the object and improve the estimation
of PSF with an initial guess from a blurry AR-PAM image. This functions as the baseline, for a
beneficial comparison with the deep learning enabled PAM imaging transformation regarding

the performance of deblurring or resolution improvement.

Note that blind image deconvolution, as a highly ill-posed inverse problem, requires estimating
both the blur kernel and object from a degraded image. Currently, most blind deconvolution
methods fall into the variational Bayesian inference framework [96], with main differences
coming from the form of the likelihood, the choice of priors on the object, and the blur kernel
and the optimization methods to find the solutions [97]. Here, we used a general blind de-
convolution method that adopts expectation-maximization optimization, to find the maximum
posterior solution with flat priors. Besides that, a fractional-order total variation image prior
was also tried [98], as the total variation is a popular regularization technique in image decon-
volution. The blind deconvolution was implemented with 30 iterations for each input blurry

image using MATLAB.
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2.3 Results

2.3.1 Network feasibility: evaluation with in-vivo mouse ear photoacoustic

images

The feasibility of the WGAN-GP network was evaluated with the PAM image pairs of living
mouse ear vasculature that were not included in network training. The results are shown in
Figure 2.4. Visually, the improvement of resolution is obvious with the network transfor-
mation, and quite a few small vessels that have been hidden in the AR-PAM image are now
resolved by the network. To better evaluate the improvement, three regions of interest (ROIs)
indicated by a white dashed box in AR-PAM, network output, and OR-PAM images are chosen
and compared. Taking a close look at them, clearly resolved blood vascular details are pre-
sented in the network output, which matches well with the ground truth (OR-PAM image) in
the same region. Moreover, the signal intensity profiles along the cyan dashed lines within
each ROI are compared. As seen, the AR-PAM imaging tends to generate overly smoothed
signal intensity profiles due to its low resolution, while the network is capable of distinguish-
ing vessels hierarchically. The sharp signal intensity profiles inside each ROI of the network
output shares good consistency with those of the ground truth OR-PAM image, verifying the
feasibility and reliability of our PAM imaging transformation. To explore the deblurring effect
of the AR-to-OR network deeply, we here give specific analyses with three examples. The first
example is that a blurred vascular plexus denoted by the blue arrow has been clearly resolved
by the network, which matches well with the ground truth. Next, the green arrow shows a
single capillary that is missed in the AR-PAM image and barely discernible in the network
output but is clearly shown in the OR-PAM image. Another example described by the purple
arrow is the network find a limitation in resolving some closely spaced parallel blood vessels.
It suggests that given extremely blurry pixels, the network may fail to reconstruct the full fea-
ture of the target. That said, this is also the point to indicate the feasibility and capability of the
network of enhancing AR images while maintaining fidelity without generating fake features.
Our findings reveal that the deblurring performance of the network is highly dependent on the
quality, such as signal-to-noise ratio, of the given AR-PAM image. It is the case that most of
the blurry blood vessels could be clearly resolved by the network, which possess good fidelities

and meanwhile, some subtle distinctions from the ground truth OP-PAM images.
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Figure 2.4: An experimentally obtained AR-PAM vascular image of mouse ear (a) is fed to
the trained WGAN-GP model for imaging transformation. The resultant network output (b)
is comparable to the ground truth OR-PAM image (c) of the same sample. Three ROIs marked
with the white dashed boxes in (a1-a3) AR-PAM image, (b1-b3) transformed results, and (c1-
c3) the ground truth OR-PAM image respectively, are enlarged and compared. Comparison
of the cross-sectional profiles along the white dashed lines inside (a1, b1, c1), (a2, b2, c2), and
(a3, b3, c3) are also provided in (d), (e) and (f) respectively. The blue arrow in (a-c) represents
a vascular plexus that is originally blurred in AR-PAM but is now clearly resolved by the
network; the green arrow shows a single capillary which is missed in the AR-PAM image
and barely discernible in the network output, while clearly shown in the OR-PAM image; the
purple arrow indicates a failure for the network to resolve some closely spaced parallel blood
vessels that show up in the ground truth image.

2.3.2 Network performance: comparison and characterization

The performance of the network transformation is characterized by two aspects. First, the

deblurring performance on mouse ear AR-PAM images of the network is compared with that

using a blind deconvolution method, as shown in Figure 2.5. Apart from perceptual quality, two

representative metrics including peak signal-to-noise ratio (PSNR) and structural similarity

index measure (SSIM) [99] are also provided for comparison. PSNR is defined via the mean

squared error (MSE) between an image to be evaluated and its ground truth OR image and the

logarithmic form is given by:

MAXor
PSNR — 2010g10 —
VMSE
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Table 2.1: Quantitative comparison between deep learning and blind deconvolution in evalu-
ating image enhancement, in which the metrics are represented in the form of mean + stan-
dard deviation.

Method PSNR SSIM PCC

AR-PAM 16.77+2.61 dB 0.54+0.06 0.76+0.08
Blind Deconvolution 18.05+1.71 dB 0.27+0.07 0.76+0.09
Network output 20.02+1.51 dB 0.61+0.05 0.78+0.08

in which MAXor denotes the maximum of OR image. SSIM evaluates an image quality per-

ceptually, which also incorporate luminance and contrast information, defined as:

(2‘Ll,lLoR + Cl)(zccov + 02)
(W + b )07+ 0B 63

SSIM(I,1°%) = (2.7)
where 1(06?) and por(03z) are the mean (variance) of an image to be evaluated and its OR
label, respectively; o, denotes the covariance between the two images; cy, ¢, are the constants
to stabilize the division, respectively. In Figure 2.5, two ROIs marked in a white dotted box
are enlarged and compared. For ROI 1 in the first ear vasculature image (Figure 2.5a), the
single capillaries are resolved well for both blind deconvolution and network output, while
the latter resembles better to the OR-PAM result. In ROI 2, the vessel bifurcation contains
different types of vessels that the deconvolution method fails to produce rich vessel details,
but the network output can distinguish vessels hierarchically. In the second case (Figure 2.5b),
we show that the WGAN-GP model can easily separate the large arteries and the small veins
attached, as shown in both two ROIs, while the deconvolution method can merely distinguish
them partially. It is worth noting that neither deconvolution nor the network could match
the ground truth in every detail because some subtle capillaries were missed in the original
AR-PAM image, as mentioned earlier. Also, note that compared with the AR-PAM image that
appears overly smooth, the network output gets sharp with latent capillary artifacts generated
sometimes (see d2 and e2 in Figure 2.5), which might undermine the tricky metric like SSIM. In
short, the network significantly outperforms blind deconvolution in deblurring blood vessels
that the clearly resolved images are perceptually comparable to the experimentally acquired

OR-PAM images.

Apart from qualitative analyses, enhancements on mouse ear data are compared and quantified

by calculating metrics, including PSNR, SSIM, and PCC (Pearson correlation coefficient). PCC
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Figure 2.5: Qualitative deblurring performance of deep learning in comparison with that
using blind deconvolution. Two examples of mouse ear vascular images are presented, shown
in the entire OR-PAM images (a) and (f). For each example, two ROIs marked with white
dashed box are enlarged and compared. In the first example (a), (b1-e1) are for ROI 1 and
(b2-e2) for ROI 2; in the second example (f), (g1-j1) are for ROI 1 and (g2-j2) for ROI 2; all
correspond to AR-PAM, blind deconvolution, GAN output, and ground truth, respectively.
Cross-sectional profiles along the white dashed lines inside (b1- e1), (b2-e3), (g1-j1) and (g2-j2)
are provided for comparison. Metrics like PSNR and SSIM with respect to the entire OR-PAM
image are also provided for reference.

is expressed by:
GCOV

PCC(I,I°}) = —
- O0OR

(2.8)
where 0., denotes the covariance between an image to be evaluated and its OR label, ¢ and
oor are the standard deviation of the image and its OR label, respectively. The comparison
was performed between test image patches, with the results given in Table 2.1 The network
produces overall better results than the blind deconvolution method in improving all three
metrics. The small variance in all the metrics for the network outputs also indicates the ro-
bust performance of our AR-to-OR network. To be specific, the mean PSNR improves from
~16.77 to ~20.02 dB, while SSIM (improved by 13% averagely) and PCC (averagely by 3%)

only see modest improvement. Noted that the blood vessel image is overall sharpened by the
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Figure 2.6: Demonstration of lateral resolution enhancement of AR-PAM by deep learning.

Lateral resolution of (a) AR-PAM, (b) network output, and (c) OR-PAM was measured to be

~54.0 pm, ~5.1 pm, and ~4.7 pm, respectively, using the edge response of a sharp blade. ESF,

edge spread function; LSF, line spread function. The color insets are the blade images of AR-
PAM, network output, and OR-PAM, respectively.

network, some blurred capillary discrepancies also become sharper. As metrics like SSIM and
PCC are very sensitive to these artifacts, only modest improvements are found in these met-
rics, although the image resolution improvement is significant, as can be seen from Figure 2.5.
Regarding the deconvolution method, it improves PSNR slightly for the test set, while failing to
improve the other metrics, even degrading SSIM. It should be mentioned that the results were
obtained using flat prior, a general image prior in the blind deconvolution method. Even worse
results were found with the popular total variation regularization [98]. All these suggest that
the enhancement of AR-PAM images towards high-resolution OR-PAM images is challenging
with blind deconvolution. In contrast, deep learning enabled PAM imaging transformation
may help solve this tricky inverse problem, with perceptual satisfactory deblurred results and

improved metrics.

To further characterize the spatial resolution improvement after the network transformation,
the edge response of a sharp blade was measured with the OR- and AR-PAM settings. As
illustrated in Figure 2.6, the normalized experimental PA data were fitted by edge spread func-
tion (ESF, black dashed line); whose derivative gave the line spread function (LSF, in red line).
The full width at half maximum (FWHM) of LSF was used to represent the system’s lateral
resolution. We can see that in the network output, the edge response curve in situ has be-
come much steeper, which means that the blurred edge in AR-PAM imaging is now clearly
resolved. The lateral resolution has been accordingly improved from ~54.0 pm in AR-PAM to
~5.1 pm, which is quite comparable to that of the ground truth (OR-PAM), ~4.7 pm. Although
the measurements might vary slightly at different locations of the blade edge, this exemplifies

the significant resolution enhancement via our network transformation.
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2.3.3 Network generalization: application for in-vivo mouse brain photoa-

coustic imaging

Thus far, the feasibility and effect of the proposed network to achieve OR-PAM resolution
based on AR-PAM images have been demonstrated, where both training and test data sets
were obtained from in-vivo mouse ears. To validate the generalization of the network, in-vivo
mouse cerebrovascular images were acquired and fed into the network; only AR-PAM images
were available in this group of experiments, following a realistic application scenario without
labeling. Figure 2.7 shows the original AR-PAM and network output images of mouse brain
vasculature. It can be observed that the network output has sharper vascular patterns and
enhanced vascular signals. Two ROIs indicated by white dashed boxes in both AR-PAM image
and network output are enlarged and compared. Significantly improved image quality was
achieved by our network, free from noticeable artifacts. The vascular signal intensity profiles
for the same region along the horizontal direction are also used to assess the transformation
performance. We can see that the network output follows basic trends of vascular signals
in the AR-PAM image but yields many refiner details and can clearly distinguish different
vascular signals. This is consistent with the fact that enhanced intensities and sharper cerebral
vessels were produced. Even without a ground truth OR-PAM image, the above comparisons
could, to some degree, verify the reliability of our approach and the significant improvement it
achieves. More importantly, it is worth mentioning that even the given mouse brain data has
quite different vascular structures from the ear and some cerebral vessels are within at deeper
tissues, the trained network can still cope with them, which verifies the universal applicability

of the proposed method to the brain vasculature.

2.3.4 Network application: preliminary extension for deep-tissue OR-PAM

Thus far, the feasibility and effect of the proposed network to achieve OR-PAM resolution
based on AR-PAM images have been demonstrated, where both training and test data sets
were obtained from in-vivo mouse ears. To validate the generalization of the network, in-vivo
mouse cerebrovascular images were acquired and fed into the network; only AR-PAM images
were available in this group of experiments, following a realistic application scenario without
labeling. Figure 2.7 shows the original AR-PAM and network output images of mouse brain
vasculature. It can be observed that the network output has sharper vascular patterns and

enhanced vascular signals. Two ROIs indicated by white dashed boxes in both AR-PAM image
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Figure 2.7: Application of the network on in-vivo mouse brain AR-PAM images. (a) is the

network input (AR-PAM image) and (b) is the network output. Two ROIs in both network

input (al, a2) and output (b1, b2) are enlarged and shown. Comparison of signal intensity

profiles along the horizontal dashed line in (c) the first ROI and (d) the second ROI are also
given.

and network output are enlarged and compared. Significantly improved image quality was
achieved by our network, free from noticeable artifacts. The vascular signal intensity profiles
for the same region along the horizontal direction are also used to assess the transformation
performance. We can see that the network output follows basic trends of vascular signals
in the AR-PAM image but yields many refiner details and can clearly distinguish different
vascular signals. This is consistent with the fact that enhanced intensities and sharper cerebral
vessels were produced. Even without a ground truth OR-PAM image, the above comparisons
could, to some degree, verify the reliability of our approach and the significant improvement it
achieves. More importantly, it is worth mentioning that even the given mouse brain data has
quite different vascular structures from the ear and some cerebral vessels are within at deeper
tissues, the trained network can still cope with them, which verifies the universal applicability

of the proposed method to the brain vasculature.

To further explore the application of the proposed network for deep-tissue PA imaging, we
prepared a hair phantom by covering human hairs with chicken breast slices of different thick-
nesses. As the thickness of the tissue sample can be adjusted gradually, it is possible to find out

the maximum imaging depth that our network transformation could handle in the experiment.
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Figure 2.8 shows the evaluation results of our network based on AR-PAM images of hair pat-
tern that were not covered or covered with tissue slice of a thickness of 700, 1300, and 1700 pm.
Note that there was slight position shift of the hairs beneath when changing the tissue slices of
various thicknesses, which, however, does not affect the evaluation of image enhancement at
different depths. Since ground truth OR-PAM images were no longer available in these tissue
depths, we thus used contrast-to-noise ratio (CNR) and hair edge 10-90% rise distance [100],
to indicate the imaging SNR and resolution performance under different penetration depths.

The logarithmic CNR using the decibel scale is given by:

Hobject — Hbackground

CNR =201
o810 O-background

(2.9)

where Uopject and Upackground denote the mean intensity of hair object and background noise
respectively, and Obackground the standard deviation of background noise. Practically, the white
dashed boxes in both the AR-PAM images (Figure 2.8 al-a4) and network outputs (Figure 2.8
b1-b4) were selected as the ROIs to measure the object signal, while the bigger yellow dashed
boxes were denoted as the backgrounds. Note that altogether 10 different areas of object and
background were used for average CNR calculation at each penetration depth, but only one
ROI is marked in Figure 2.8 for conciseness. Regarding the measured hair edge sharpness
under different imaging depths, the 10-90% rise distance of hair edge at the positions marked
by the cyan dashed lines were used. Again, multiple such positions were selected to obtain an

averaged metric at each depth.

From Figure 2.8 (a-b), we can see that for AR-PAM images, overall both hair signal and the
contrast decrease with increasing penetration depth, due to the weak and diffusive optical
excitation in situ under increasingly strong scattering. Note that the signals in some target
areas at the thickness of 1700 um case might be a bit stronger, mainly due to the increased laser
pulse energy and the possible existence of microporous structure in the chicken tissue slices.
Nevertheless, the overall image signal in 1700 pm is weaker than that at 1300 um, in which the
hair signal incompleteness caused by strong optical scattering was more serious. The network
outputs follow a similar trend, but enjoys enhanced contrast, especially for penetration depths
of 1300 and 1700 pm that have been sufficiently beyond the diffusion limit. Quantitatively, as
shown in Figure 2.8 (c-d), the CNR drops from ~34.9 dB to ~10.6 dB and the measured 10-
90% rise distance increases from ~57 pm to ~95 pm for AR-PAM images in the range of 1700

pm tissue depth. With deep learning, the CNR declines only to ~17.1 dB. More strikingly, the
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Figure 2.8: Preliminary demo for deep-penetrating OR-PAM imaging using a hair phantom
covered with chicken tissues of different thicknesses. (al-a4) Experimentally acquired AR-
PAM images. (b1-b4) Network output results corresponding to tissue thicknesses of 0 (no
tissue covered), 700, 1300, and 1700 pm. The white and green dashed boxes in (al-a4) and
(b1-b4) denote the ROIs for object and background, respectively, and the cyan lines indicate
the positions for measuring the hair edge 10-90% rise distance. (c) CNR and (d) measured hair
width versus different penetration depths (tissue thicknesses) for both AR-PAM images and
the network output results.

measured 10-90% rise distances merely see a slight increase from ~46 pm to ~60 pm, suggesting

a greatly improved lateral resolution for tissue depth up to 1700 pm. To sum up, this hair

phantom experiment reveals potentials for deep-tissue OR-PAM with our approach, which

can remarkably enhance imaging resolution and SNR.

2.4 Discussion

To achieve high-resolution PAM imaging in deep tissue, we adopt the WGAN-GP model to

transform blurry images acquired with an AR-PAM to match the corresponding OR-PAM re-

sults, thanks to an integrated PAM setup. The network was first trained with aligned AR- and

OR-PAM data sets experimentally obtained from in-vivo mouse ears. Then, the feasibility of

the network was validated with the same type of data but was not used in the network training,
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yielding superior lateral resolution comparable to the ground truth OR-PAM images. It should
be emphasized that the successful applications to in-vivo mouse brain AR-PAM imaging verify
the universal applicability of the developed network, as it was trained with data solely from
the mouse ear. With an AR-PAM setting boost by the network transformation capability, our
method could thus be extended to deep-tissue phantoms where experimental OR-PAM is not
possible. Apart from the benefit for deep penetration, it may also initiate other potentials: an
inexpensive multimode pulsed laser source can be adopted to reduce the system cost, as the
beam quality requirement in AR-PAM is way less demanding; a larger scanning step size may
also be adopted for AR-PAM imaging which could significantly reduce the time of raster scan-
ning. All these, in combination, empower conceivable all-round boost of penetration depth,
cost control, as well as imaging speed to OR-PAM. In particular, the image transformation
network could be easily integrated with a regular AR-PAM setting for image enhancement.
Our method is in principle more generic than a similar work of PAM super-resolution where
deep learning is used for single-molecule localization PAM reconstruction with much fewer
frames [101]. Essentially, the method can recover the high-frequency components of blurry
AR-PAM images, producing more clearly resolved vascular patterns thanks to the end-to-end,

pixel-level image processing of the network.

That said, a few more aspects need to be discussed herein. First, the OR-PAM imaging is limited
to superficial tissues (depth within several hundred micrometers) in our setup as a laser of 532
nm wavelength is used. Although using a near-infrared laser may promise a larger penetration
depth, the lateral resolution of OR-APM is worse than ours, which is less desired as the target
resolution to be learnt by AR-PAM. Second, when applying the image transformation network
to deep tissue regions where the ground truth OR-PAM is not available, the results of network
output can be ensured by comparing the changes of signal profiles on a target region, which
should be consistent and get enhanced reasonably, as done in Figure 2.7 (c-d). Besides that, we
can also use two label-free metrics including CNR and 0-90% rise distances (edge sharpness)
for evaluation, as done in Figure 2.8 (c-d). Third, since the training dataset included those
obtained under artificial geometry and grayscale transformation, the trained model can rea-
sonably lean the robustness against variations in imaging conditions like laser dosage change,
mechanical drift or other noises. However, we did not conduct specific tests for quantitative
analysis because the data acquired from different samples (mouse ear, brain, hair phantom)

might encounter small differences of conditions but all showed enhanced results.

There are mainly two limitations of our approach. The first is related to the artifacts, which



Chapter 2. High-Resolution Deep-Penetrating Photoacoustic Microscopy through Deep
38 Learning

might be generated by the network due to several reasons. It should be noted that not all
the blood vessels inside the paired AR- and OR-PAM images are consistent due to the rel-
atively large discrepancy of object-resolving capability. Some physically existing local cap-
illaries might be missing in AR-PAM, with only blurry and dispersive pixels instead. Such
inconsistency could be an obstacle for the network to conduct pixel-to-pixel transformation in
the training phase. In the network test phase, the image enhancement performance of the net-
work is highly dependent on the SNR of the AR-PAM input. The network could significantly
enhance the blood vessel image of in-vivo mouse brain (with scalp removed) and moderately
improve the thick-tissue hair phantom results. It makes sense that inaccurate predictions may
be produced where the input pixels are extremely blurry. Hence, there may be some subtle dis-
tinctions between the network output and the ground truth OR-PAM image, mainly because
of the latent capillary missing and artifacts. These subtle distinctions lead to limited improve-
ments of metrics like SSIM (averagely by 13%) and PCC (averagely by 3%) that are sensitive to
the perfect pixel-by-pixel match between the network output and ground truth. The artifacts
can be distinguished visually if there are additional or missing capillaries in the network out-
put, compared to the OR-PAM result. Besides, the artifacts also exist if the signal profiles of

the same tissues are inconsistent with those of OR-PAM.

To minimize the latent artifacts and improve the metrics, we adopted data preprocessing and
network training methods carefully. Accurate registration in the process of image patch ex-
traction is of crucial importance, in which the sub-pixel alignments between the AR and OR
image pairs allow the network to optimally learn a pixel-to-pixel transformation. Besides, the
design and training of the network also play an important role. Different from conventional
CNN where the optimization is solely driven by a pixel-wise loss that tends to produce overly
smoothed results, the WGAN-GP model we used benefits from the adversarial training where
the adaptive adversarial loss is crucial to guide the Generator network to generate images re-
sembling OR labels. Further improvement could be made by acquiring more PAM image data
used for training, to equip the network with stronger and more general imaging transforma-
tion ability. Lastly, it should also be emphasized that the aim of the network is not to perfectly
transform AR-PAM images in all details, but to approximate the resolution of OR-PAM as pos-

sible as it can.

The other limitation is our transformation method still finds a distance to ideal deep-tissue OR-
PAM imaging. As mentioned earlier, the quality of the network output is highly dependent
on that of the input AR-PAM data; the low SNR and spatial resolution of AR-PAM imaging at
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depths in tissue pose a physical limit for our image-based postprocessing method. Neverthe-
less, with the recent developments towards faster and more efficient photoacoustically guided
wavefront shaping [10, 102, 103], we believe ideal OR-PAM imaging at depths in the tissue will

be possible soon.

Recently, a similar research was reported [104], where simulated rather than experimentally
acquired AR-PAM data generated by blurring the corresponding OR-PAM images were used
and did not experimentally demonstrate its ability of deep-penetration imaging. In addition,
its conventional network model is also different from the WGAN-GP model in our study. Also
note that the proposed PAM imaging transformation method in this work should be distin-
guished from single image super resolution and blind deconvolution, although they are closely
related. For image super resolution, the aim is to reconstruct the baseline resolution when
given an input solely down-sampled from the baseline image; but for our network, it is to
approximate the resolution of OR-PAM from another poorer imaging modality. For the blind
deconvolution method, it has been shown earlier that it failed to recover high-quality images,
whether in flat priors or fractional-order priors. The deblurring performance is inclined to
be suboptimal, as it is often difficult to determine the PSF of the conceptual imaging system
from ground truth OR to AR images. What’s more, the computation cost of deconvolution is
demanding due to the multiple iterations it requires for parameter updates. In our example, it
took about one and half minutes to produce a deblurred image with 30 iterations on average. In
comparison, the trained network could rapidly output a high-resolution image from the blurry

input within seconds.

2.5 Conclusion

In this study, a WGAN-GP neural network is designed and trained based on co-registered
AR-to-OR PAM images experimentally acquired from in-vivo mouse ears. The feasibility and
reliability of the proposed network to improve imaging resolution are demonstrated in vivo.
The network outputs have also been compared with those obtained with a blind deconvolution
method, showing perceptually better image deblurring results and improved evaluation met-
rics. Moreover, the transformation capability can be extended to other types (e.g., the brain
vessel) or deep tissues (e.g., chicken breast slice of 1700 pm thickness) that are not readily ac-
cessible by OR-PAM. Note that the proposed method has its limitations, such as the existence

of artifacts in the network output and the performance dependence on the input data quality
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(AR-PAM images). As an extension to the imaging depth of OR-PAM via computation, the
proposed method potentially provides new insights to expand the scope of OR-PAM towards

deep-tissue imaging and wide applications in biomedicine.



Chapter 3

Patterned Light Delivery through
Multimode Fiber based on

Wavefront Optimization

This chapter is reproduced with some adaptations according to two published journal papers:

(1) Shengfu Cheng, Tianting Zhong, Chi Man Woo, Qi Zhao, Hui Hui, and Puxiang Lai, "Long-
distance pattern projection through an unfixed multimode fiber with natural evolution strategy-
based wavefront shaping”, Optics Express 30(18):32565-32576 (2022).

(2) Shengfu Cheng, Tianting Zhong, Chi Man Woo, and Puxiang Lai, "Alternating projection-based
phase optimization for arbitrary glare suppression through multimode fiber”, Optics and Lasers

in Engineering 161:107368 (2023).

In this chapter (Part II of the thesis), the focus shifts to the control of light delivery through
MMF for deep-tissue high-resolution applications, including focusing or suppressing light into
an arbitrary pattern, which are both based on computational WFS. By adopting a natural gra-
dient ascent-based wavefront optimization strategy, we first achieve high-quality pattern pro-
jection through complex media. This approach, coupled with a novel fitness function based
on cosine similarity, enables long-distance projection of arbitrary patterns through a 15-meter
MMF, showcasing enhanced performance in focusing contrast and pattern fidelity in unstable
environments. This advancement holds promise for deep-tissue applications requiring pre-

cise energy delivery, such as phototherapy and optogenetics. Apart from focusing application,

41
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WES can also be applied to glare suppression that reduces speckle background through com-
plex media. For glare suppression in a target region, current methods are either slow or not
sufficiently generic. Here, an alternating projection method that fully exploits the knowledge
of TM is proposed for fast and arbitrary glare suppression. Parallelly, multiple phase masks
corresponding to various target regions can be computationally optimized without iterative
hardware feedback. Further, we experimentally demonstrate effective glare suppression for
target regions of various shapes and sizes at the distal end of an MMF with fast frame rate.
This method may enable MMF-based imaging, sensing, and speckle optical tweezer in com-

plex environments.

3.1 Introduction

The control of light propagation through complex media, such as an MMF, has been desired
with profound implications for deep-tissue biomedical applications. The inherent challenge lies
in the medium’s propensity to light, transforming a coherent beam into seemly random speckle
pattern, thereby obscuring the potential for precise light delivery. However, advancements in
WES techniques [8, 105, 106] have opened new avenues for controlling light in such media,
enabling both the focusing of light into any desired pattern and the suppression of unwanted
scattered light in a target region. This chapter synthesizes findings from two of our published
research articles about light control through an MMF, highlighting the dual capabilities of

focusing light and suppressing glare based on wavefront optimization.

The first study delves into the realm of focusing light through MMFs. Compared with typical
single-spot focusing, focusing light into an arbitrary pattern is often favored in energy delivery-
related biomedical applications, yet more demanding to achieve satisfactory pattern fidelity
and focusing contrast, especially in noisy and instable environments. There have been TM
[18, 107, 108] and iterative [109-113] methods to overcome the above obstacles. Compared
to TM, which needs additional optimization of the SLM hologram to mitigate the interference
effect in multi-spot focusing, iterative methods are more straightforward and robust. Existing
works for patterned projection through fixed complex media are mostly based on intelligent
optimization algorithms such as GA [109-112] or improved ant colony algorithm (IACO) [114].
Hence, they rely more or less on random variations of the population, which might be easily

affected by external interference and hence limited by the optimization speed and efficiency.
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Conversely, the second study addresses the challenge of suppressing scattered light, namely
glare suppression. It originates from the the reflection-geometry scenarios [115, 116] where
glare from backscattered light degrades the SNR, such as in LiDAR detection and deep-tissue
optical imaging. Traditional methods for glare suppression, including coherence gating [117]
and time-of-flight differentiation [116], are limited by technical challenges and temporal res-
olution. It should be noted that suppressing the scattered light intensity in a transmission ge-
ometry is also valuable for imaging and sensing applications, such as speckle optical tweezer
[118] or blind structured illumination microscopy [119]. Existing progress on glare suppression
through complex media employed GA [115] or Hadamard encoding algorithm [120], which
could be time-consuming because of their nature of feedback-based iterative optimization and
the use of a slow SLM. There is also an aperture-target TM method by constructing the low-
transmittance eigenchannel [121], which requires complex amplitude modulation and might
not be generic enough, as a new aperture-target TM for decomposition is required for each

target region.

In this chapter, we first suggest using a natural evolution strategy (NES) for the wavefront
optimization in projecting a pattern through MMF. NES is a based on natural gradient ascent for
parameter optimization [122], and has demonstrated excellent anti-interference ability, which
is essential for iterative WFS [14, 123] in perturbed environment. Specifically, we adopted the
separate NES (SNES), coupled with a novel fitness function, vector cosine similarity (VecCos),
for enabling the projection of arbitrary patterns through a 15-meter-long, unfixed MMFs with
enhanced contrast and speed. As for glare suppression, employing a TM-based alternating
projection (AlterProjTM) algorithm is proposed here for phase optimization that achieves rapid
and effective suppression of scattered light in targeted regions. With the knowledge of TM,
multiple phase masks that correspond to different target regions can be optimized in parallel,
which is further accelerated by GPU execution. It shows by simulation that a suppression factor
of ~ 107 was achieved with only 30 iterations even for a large target region that contains
over a hundred speckles, under phase-only modulation. Experimentally, light is effectively
suppressed in target regions of various shapes and sizes at the distal end of an MMF by using

a DMD at a frame rate of ~50 frame per second (fps).
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3.2 Methods

3.2.1 Principle of SNES

In the scheme of SNES, samples are drawn from the standard multivariate Gaussian distribu-
tion s; ~ .4 (0, I) with a diagonal covariance matrix. The distribution parameters 6 = (1, 0)
where it € RY and 6 € RY denote the vectors of the mean and standard deviation respectively,
map a population of N, samples into the search distribution (i.e., input wavefronts) such that
Zx =0 -Sk+(k=1, --- Np). Suppose we have zx ~ 7(z|0), which is evaluated by a fitness

function f, the expected fitness of the search distribution is

J(6) = /f 7(2/6)d (3.1)

To maximize J (0) with gradient ascent, the plain gradient regarding the parameters is derived

Vel (0) = Vg / F(2)7(2)0)dz = B [f(2)V log 7(2]0)] (3.2)

According to Ref. [122], plain gradient ascent tends to be unstable with either oscillation or
premature convergence. Natural gradient is thus put forward by multiplying the plain gradient

with the inverse of Fisher information matrix F = Eg [Ve log 7 (2|6)Vglogr (z|6)"

VoJ(8) =F 'V4J(6). (3.3)

Note the natural gradient can be computed in a discrete manner by estimation from the search

distribution zx (k =1, ---N,). The search distribution is updated by natural gradient ascent

0« 0+1VeJ(0)=6+nF 'Vyi(6). (3.4)

where 1) is the learning rate of parameter 0. The above derivations show the general principle
of NES that employs global search and natural gradient ascent. With regards to its variant
SNES, several crucial modifications have been adopted to improve the performance and ro-
bustness [122]. These include fitness shaping that replaces the rank-based fitness with a set of

ordered utility values wi(k =1, --- N,), the introduction of a local “natural” coordinate system
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Figure 3.1: Illustration and simulated results of pattern projection through an MMF with

iterative wavefront optimization. (a) Schematic of focusing light into a desired pattern at the

distal end of MMF. (b) Diagram of the principle of SNES. (c) Simulated progression of PCC

as a function of iteration number for different optimization algorithms for the projection of
"PolyU” pattern, under different relative persistence times.

that simplifies the Fisher matrix to an identity matrix and so on. Figure 3.1 (a-b) illustrates the

use of SNES for pattern projection by updating the search parameters (l and .

3.2.2 Principle of AlterProjTM

We get inspiration from the problem of phase retrieval solved by using the Gerchberg-Saxton
(GS) algorithm [124, 125]. The basic idea of GS algorithm is to retrieve the phase of an object
from the intensity measurement of its diffraction pattern (i.e., the Fourier transform of the
object) via alternating projection between the object plane and the Fourier plane. Here, we
propose to optimize the phase mask for the suppression of light intensity at a target output
region by alternating projection between the phase and speckle field of an MMF, with the TM

as the propagation operator.

Figure 3.2 (a-b) depicts the principle of alternating projection-based phase optimization for
glare suppression. The algorithm starts with an initial speckle pattern produced under zero-
phase modulation. At the k-th iteration, the inverse TM transforms the estimated speckle field
I (u,v) into the phase field A (x,y),



Chapter 3. Patterned Light Delivery through Multimode Fiber based on Wavefront

46 Optimization
() phase field Speckle field ER HIO 1
: 7=0.003
! ‘
I ¢ MMF —
i p q i cvos
e " 5{5
1
DMD ' Obj Obj
' A(x,y) ' I(u, v)
®) A (xy) = O T L(w,v) = [, )]eiPke
X, =e " u,v) = u,v)le .
kXY ™ k k
L | OUTPUT (e)1 (f),
"""""" e
Phase mask Speckle pattern —=| 5 e
[ = o o .08 —io 15 e HIO
P £ 8
g 7}
Phase-only ERTS Speckle-domain | 506 G1o”
constraint constraint kS L § [ —
— 04 o
e ic] s
o 3,02
K k+1 02 @10
TM-1{} INPUT % 10 2 ) 0 10 20 30
A (x,y) = A, (x, y)]eifkx) I, (u,v) Iterations Iterations

Figure 3.2: Principle and simulated results of speckle suppression at a target region of MMF

output plane. (a) Illustration of alternating projection between the phase and speckle field

of an MMF. (b) Schematic of the proposed AlterProjTM for phase optimization. Simulated

results of glare suppression in a target region of 30x30, using AlterProjTM with (c) ER and (d)

HIO constraints. (e) Normalized curves of the total intensity in the target regions. (f) Curves
of suppression factor as a function of iteration number.

Ar(x,y) = |Ak (e, ) [ %) = TM™! {Ti (u,v) ) (3.5)

where 6 (x,y) is the phase of the resultant input wavefront. Here, the Tikhonov inversion
[107] is adopted, which helps mitigate the measurement noise of TM and allows more accurate
modelling of the back-propagation of light. The phase-only constraint sets the amplitudes of

the input wavefront all to be one, such that

Al (x,y) = e/, (3.6)

The new phase field A} (x,y) then propagates back to the speckle domain I (u, v),

L (u,v) = ’I;C (u,v)| lPy) — TM{A}(x,y)}. (3.7)

where @] (u, v) is the phase of the resultant speckle field. Similarly, a constraint is applied on
the speckle domain to force an intensity reduction in the target region. The updated speckle
field Iy (4, v) continues the above processes iteratively, with the goal of estimating a solution

that conforms to both constraints simultaneously.
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One natural choice of the speckle-domain constraint is setting the values of the points within

the target region (represented by T') to be 0, given by

Leor ()= SUVET (38)
L (u,v),(u,v)¢T

This constraint is consistent with the error-reduction (ER) algorithm [124, 126], a variant of GS
algorithm. However, it has been observed that the ER algorithm tends to reach a plateau after
the first few iterations. A modification is the hybrid input-output (HIO) algorithm [125, 126].
The alternating projection streaming can be regarded as an input-output system, with the pro-
duced speckle field as the output and the updated one as the system input for the next iteration,
as illustrated in Figure 3.2. For the pixels within the target region, HIO applies negative feed-
back upon the previous input It (#,v) using the iteration output I (u,v) to generate the next

input, such as

, (3.9)

L1 (u, v) = L (Lt,v) - ')/)I;(( 7V), (u,v) eT

u
L (u,v), (u,v) ¢ T

where 7 is the feedback coefficient. The output in the target region is driven to a value of zero
due to a decrease in the input. HIO is supposed to have faster convergence as it could avoid a

stagnation problem occurred in the ER algorithm.

The convergence property of the proposed alternating projection method for glare suppression
is proved below. The mean absolute error of light intensities in the target area for k-th iteration

is described by

1
Ejx

7:M—% Z }I[H,I(M,V)—IIQ(M,VM (3.10)

(u,v)eT

where Mr denotes the side length of the square target region. In the phase field, both A and
A}, satisfy the phase-only constraint by definition. According to the principle of alternating
projection, at any point (x,y), A, is the nearest value to Ay, . Hence, in all points (x,y), we

have

| TM { A1 (x,y) = Apy (x,3) | < |TM {Air (x,y) — Aj(x,) }

= ‘Ik+1(uaV) —I;Q(u,v)‘ :

(3.11)
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Therefore, with Eq. (3.10), and Eq. (3.11), we have

| TM {Ak1 — A1 |, S M7 -Eng, (3.12)
where ||-||; denotes the 1-norm for vector. In the speckle field, both ;1 and [, satisfy the

speckle-domain constraint by definition. Similarly, at any point (u,v), [y 42is the nearest value

to I, ;. Hence, in all points (u,v), we have

Tiea2 (u,v) = Dy g (u,v) | < | Bgr (u,v) — Iy (u,v) |

(3.13)
= |TM {A1(x,y) —Af 1 (x,0) }] -
Therefore, with Eq. (3.10), and Eq. (3.13), we have
M7 -Eppir < ||TM {Ar1 — Al |- (3.14)
Combining Eq. (3.12), and Eq. (3.14), eventually we have
Eppr1 < Epg. (3.15)

This means the absolute errors of light intensities in the target region declines iteratively, which

shows a good convergence property of our alternating projection method for glare suppression.

3.3 Numerical simulations

3.3.1 Pattern projection under noise and perturbation

We first numerically test the performance of SNES for pattern projection through a complex
medium under noisy and disturbed conditions to mimic the real experiment. Considering that
there are shot noise, dark electricity noise of camera and read-out noise etc., we apply a mul-

tiplicative noise to the output light intensity I € RY during the simulation, described by

Lise =14+ al-€. (3.16)



3.3. Numerical simulations 49

Here, € is a vector with the same size as I, which is randomly drawn from a uniform distribution
U (—0.5,0.5), and a > 0 denotes the noise level. In real conditions, the complex medium may
be unstable, and its TM may fluctuate over time. According to the model in Ref. [12], a small
perturbation & drawn from a complex Gaussian distribution .4 (0, ) can be added to each of

the TM elements t,,,, for simulation,

lnn = (tmn +S) (3.17)

1
V1+062
Note that 0 is relative to the standard deviation of the TM, which denotes the perturbation level.
If we let T), be the persistence time of the complex medium when its TM remains unchanged
and T; be the duration of one iteration, the perturbation level can be predictedby 6 =1/+/7T),/T;

[29], where T, /T; is denoted as relative persistence time.

For pattern projection through complex media, the correlation between the input and output
intensity distributions, i.e., PCC, is an important metric to evaluate pattern fidelity. Also, the
focusing contrast, that is, the ratio between the mean light intensities in the target region and
that of the non-target region, is a key metric of pattern projection. previous research usually
adopted PCC as the fitness function to evaluate the performance [110, 113, 114]. We found that
using PCC as the feedback is not ideal for increasing the focusing contrast. In this work, we

propose to replace it with VecCos as the fitness function, given by

Y (1,1
VN @2/ @)

VecCos = (3.18)

In simulation, we controlled the noise level to be 60% and set the relative persistence time
of the medium, 7, /T;, to be 60 and 30, which reasonably mimicked empirical observations.
We compared the performance of SNES with other algorithms in projecting a binary pattern of
"PolyU”. The detailed parameters are reasonably set for fair comparison, with details referred to
[15]. Each of the algorithms was repeated 30 times for averaging and a new TM was simulated
each time, and they all used PCC as the fitness function for guiding the wavefront optimization.
Figure 3.1c shows the progression curves of PCC between the simulated outputs and the target
pattern for various algorithms, including GA, particle swarm optimization (PSO), IACO [114]
and SNES. The common parameters for all the algorithms are controlled to be the same: the

population size of each generation is 18; the number of modulation units is 64 x 64; and the
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number of iterations is 2000 to ensure convergence. All the algorithms are tuned to their
best states for a fair comparison. It can be seen that SNES evolves fastest and reaches the
highest PCC (larger than 0.8) under both conditions, and it is least affected by the variations in
perturbation levels. For IACO, it evolves slowest initially, but exhibits strong immunity to noise
and perturbation and grows gradually, achieving PCCs that are slightly smaller than those of
SNES at the end. The other two algorithms, GA and PSO, however, are more susceptible to
the measurement noise and furthermore the perturbation to the medium. These results prove
that SNES has superior features such as fast convergence and robust immunity to noise and

perturbation.

3.3.2 Comparison and analysis of suppression performance

We also investigated AlterProjTM for glare suppression via numerical simulation. As a proof-
of-principle study, AlterProjTM optimized with the two speckle-domain constraints, ER and
HIO, was explored for the comparison of suppression performance. Herein, the number of
modulation units N was set to be 64 x 64, and the feedback coefficient y of HIO was empiri-
cally set as 0.8 to ensure quick and stable convergence. To evaluate the suppression effect, a

suppression factor 7, is defined

Ns = 1 (L) lier/p (|L]) [igr;, (3.19)

Where U (-) denotes the mean operation, T represents the target region, and I; is the speckle
field at the position index i. Figure 3.2(c-f) shows the simulated glare suppression results
with an iteration number of 30 for achieving an acceptable suppression result at a short time
cost. The ROI was a square of 30 x 30 pixels in the middle of the speckle field, marked with
white dashed boxes. The light intensities within the ROI are suppressed for those optimized
with both ER (Figure 3.2, n; = 0.042) and HIO (Figure 3.2, n; = 0.003). The normalized total
intensity of the ROI declines progressively during the first 30 iterations for both ER and HIO,
and HIO can already converge to approximate zero, as seen in Figure 3.2e. The progression
curves of suppression factor as a function of iteration number are shown in Figure 3.2f, which

also reveals that HIO declines faster and achieves superior suppression effect than ER.

Numerical comparisons were also made between the AlterProjTM and the state-of-the-art GA

to test their performances of glare suppression in square regions of various side length L. Still,
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Figure 3.3: Theoretical comparison and performance analysis of the proposed AlterProjTM

for glare suppression. Curves of suppression factor 7, as a function of iteration number in

square ROIs of different side lengths, when using (a) GA, and AlterProjTM with (b) ER and (c)

HIO constraints, respectively. Note that the subplots inside (b) and (c) show the zoomed-in

results within the first 30 iterations. (d) Suppression factor 7, as a function of the modulation

unit number for square ROIs of different side lengths, using AletrProjTM with (d) ER and (f)
HIO constraint after 1000 iterations.

for each L the result of each algorithm was averaged over 30 repetitions The parameters of
AlterProjTM remained unchanged, and those of GA were set as follows: the initial and final
mutation rates were 0.01 and 0.001, respectively; the decay factor was 250; the population
size was 30; and the iteration number was 1200. Figure 3.3 (a-c) shows that AlterProjTM
with 30 iterations can approach or surpass GA with 1200 iterations in terms of suppression
factor. Specifically, it took an average of 12.03 s for GA, while only 0.54 s for ER and 0.46 s
for HIO, when running on GPU in a regular PC. Figure 3.3a reveals the suppression effect of
GA enhances (1 declined from ~0.1 to ~0.01) as the side length of the ROI decreases from 100
to 20, which is reasonable as the number of phase control segments remains unchanged. For
AlterProjTM with ER constraint (Figure Figure 3.3b), it converges prematurely after several
hundred iterations for different ROIs, with relatively poor performance (1, > 0.01) in intensity
suppression. Also, it seems that there is no obvious rule between the ROI sizes and the achieved

suppression factors. By contrast, when using the HIO constraint (Figure 3.3c), the suppression
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ability of AlterProj can be fully exerted, achieving hierarchical suppression results for ROIs of
increasing sizes that are all considerably superior to those of GA and ER. In particular, the
optimization can achieve a suppression factor at a level of 103 theoretically with merely 30

iterations, with no obvious differences among different ROIs.

Further analyses on the suppression performance of AlterProjTM in ROIs of various sizes,
under a series of numbers of modulation units are briefly given below. For AlterProj optimized
with ER constraint, simply setting the signal values within ROI to be 0 can easily cause the
algorithm to be stuck in local minima and converge prematurely. Thus, the suppression ability
of the method is not fully exerted by using the constraint of ER. According to Figure 3.3d, for
a certain ROI, the suppression result is not always enhanced with increasing N especially for
ROI with small sizes, mainly due to the premature convergence of ER. When it comes to HIO
constraint, due to its suppression mechanism of negative feedback, there is no such issue of
premature convergence, so the suppression ability of our method is fully exerted. As shown
in Figure 3.3e, under a fixed N, the suppression factor usually gets worse as the ROI size
increases, showing a good inversely proportional relationship. That said, the over-saturation”
phenomenon still exists to some extent. For example, N = 32 x 32 is optimal for ROIs with
smaller sizes, including the cases of L = 20, and 40. The reason for this may be partly attributed
to the choice of feedback coefficient 7, as the optimal value of y varies slightly with different
ROI sizes and different N. ¥ = 0.8 is adopted herein as it is suitable for most cases, while it
may not be optimal for intensity suppression in small ROIs when the modulation capability is

relatively strong.

3.4 Experimental results

The experimental configuration for controlling light delivery through an MMF is illustrated
in Figure 3.4. The laser from a 532 nm continuous-wave laser (EXLSR-532-300-CDRH, Spec-
tra Physics, USA) was first divided into two beams by a polarizing beam splitter (PBS) after
passing through a half-wave (A /2) plate. One beam was used as the reference beam, which
was expanded by a 4f lens system (L5 and L6), with its polarization state being adjusted by a
A /2 plate. The other beam was expanded by a 40x objective lens (Obj1) and collimated by a
convex lens (L1) subsequently. After turning to be circularly polarized light by a quarter-wave

plate (A /4), the beam was reflected by a DMD (V-7001, VIALUX, Germany) and relayed into
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Figure 3.4: Experimental setup for glare suppression through an MMF. The complex TM of
the MMF is measured via off-axis holography, and a DMD is used for phase-only modulation.
CMOS, complementary metal-oxide-semiconductor camera; DMD, digital mirror device; FC,
fiber collimator; L, lens; M, mirror; MMF, multimode fiber; NPBS, non-polarizing beam split-
ter; Obj, objective; PBS, polarizing beam splitter; A /2, half-wave plate; A /4, quarter-wave
plate.

another 4f system (L2, iris, and L3). After spectral filtering, the beam encoded with the de-
sired phase distribution [127, 128] was coupled into an MMF (0.22 NA, 105 pm core, SUH105,
Xinrui, China). The beam after propagating through the MMF was magnified by a 40x ob-
jective (Obj2) and collimated by a tube lens L4. A A /4 plate was used to recover the linearly
polarized components of the disordered beam. The speckle and the reference light paths were
combined by a non-polarized beam splitter for interference before being captured by a CMOS
camera (BFS-U3-04S2M, FLIR, USA). Note a shutter was adopted in the path of external refer-
ence beam, which controlled whether the reference beam is needed (for TM measurement) or

not (for iterative WES).

3.4.1 Long-distance pattern projection through unstable MMF

We have conducted the experiment of long-distance pattern projection through an MMF, which
was 15-meter-long and loosely placed in an optical table. As such, the MMF was considered
as a dynamically changing medium since weak air flow and platform vibrations could cause a
drift of position or deformation to it. The speckle decorrelation time (the time it took for the
correlation between the captured speckle patterns with the initial one first dropped below 1 /e,
using the same input wavefront) was characterized to be ~ 35s, showing a quick decorrelation

status. In the experiment, we have compared SNES with other wavefront control algorithms,



Chapter 3. Patterned Light Delivery through Multimode Fiber based on Wavefront
54 Optimization

Target pattern PSO GA IACO SNES-PCC SNES-VecCos
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Figure 3.5: Results of pattern projection through a 15-meter-long unfixed MMF, using dif-

ferent optimization methods for comparison. Projection results for the target pattern of (a)

6 x 6 focus array, (b) pentagram, and (c) simplified Bagua are shown on the first, second, and

third row, respectively, with the corresponding contrast value noted in each realization. Note

that for each realization, the intensities of experimentally acquired images are individually

normalized and have the same color bar for comparison of contrast. The scale bar shown in
the last images of (a-c) is 10 pm.

using PCC as the fitness function. Besides that, SNES was also tested by being optimized with

the proposed VecCos, namely SNES-VecCos, which was expected to enhance the performance.

Figure 3.5 shows the experimental results of pattern projection through the long unstable MMF
for different samples, including a 6 x 6 focus array, a pentagram, and a simplified Bagua pattern.
In the experiment, wavefront optimization of various methods all ran for 1,000 iterations in the
meanwhile for the above output results. Qualitatively, the performances of different methods
are in good agreement with those observed in simulations (Figure 3.1 c-d). The pattern fidelity
achieved by IACO and SNES were comparable and considerably better than those obtained by
GA and PSO. It is also obvious that SNES-VecCos achieved the highest contrast in all cases.
Particularly for the Bagua pattern, the contrast yielded by SNES-VecCos was ~60% higher
than those achieved by SNES-PCC and IACO. Note that since the number of output modes to
be controlled varied case by case, the optimal contrast of projected patterns that can be attained
was naturally at different levels. Nevertheless, the high-quality results of pattern projection
through the long unstable MMF confirmed the superior performance of the proposed SNES-

VecCos method through experiments.
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Figure 3.6: Normalized speckle patterns showing glare suppression in ROIs of various sizes at
the distal end of the MMF, using different algorithms for comparison. The first row and second
row correspond to square regions of 40 x 40 pixels and 100 x 100 pixels respectively, with (a,
e) for the initial speckle pattern under zero phase modulation, (b, f) for those optimized with
GA after 1200 iterations, (c, g) for those optimized with ER after 30 iterations, and (d, h) for
those optimized with HIO after 30 iterations. The scale bar shown in (a-h) is 10 pm.

3.4.2 Arbitrary speckle suppression though MMF

In the experiment of glare suppression, the 15 m MMF was replaced with a 1 m one and was
fixed in the platform. Similar to the previous simulations, GA and the proposed AlterProjTM
optimized with ER and HIO were all conducted for performance comparison, with the same
parameter settings except that GA ran for 1,200 iterations while AlterProjTM merely ran for 30
iterations. The TM of the MMF was measured via off-axis holography first before being used
for phase optimization with different algorithms that were implemented by GPU. It should be
noted that no hardware feedback was involved, and the operations for GA and AlterProjTM
were both based on the same TM for fair comparison. One obvious advantage of our method is
that multiple phase masks that correspond to different ROIs can be optimized in parallel. For
example, it only took ~2.3 s to optimize 120 frames of phase masks simultaneously, equivalent
to ~22.5 ms/frame. In the experiment, a maximum frame rate of ~50 Hz was achieved for

real-time glare suppression through MMF.

Figure 3.6 shows the normalized speckle images before and after phase optimization by dif-
ferent methods, for ROIs of 40 x 40 pixels (first row) and 100 x 100 pixels (second row) re-
spectively. Compared to the simulated results in Figure 3.3, where GA achieved 1, = 0.025

after 1200 iterations and ER achieved 1, = 0.028 after 30 iterations, the suppression factors
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realized in experiment were almost one order-of-magnitude worse in both cases. For HIO, the
suppression effect (ny; = 0.15) was undoubtedly better than GA and ER, although still almost
two order-of-magnitude worse than the simulated one (1, = 0.0024). When it comes to the
case of 100 x 100 ROI that contains ~625 speckles, the performance of glare suppression was
slightly worse for GA (1, = 0.32) and HIO (1, = 0.17), but slightly better for ER (1, = 0.21).
In summary, the obtained experimental results agreed reasonably with the simulated ones in
Figure 3.3. Although the case of ER seems to be counterintuitive that the 100 x 100 region
yielded a slightly better suppression factor than the 40 x 40 region. It could be understandable
as ER was prone to premature convergence and the optimization was not yet fully converged
with 30 iterations. Apart from the results shown in Figure 3.6, fast and effective glare suppres-
sion in arbitrary regions of different shapes and sizes at the distal end of MMF was demon-
strated experimentally (Media 1) using AlterProjTM with HIO constraint. The technique could
be promising for speckle optical tweezer [118] or super-resolution imaging [119] inside deep

tissues through an MMF, where a customizable speckle field is required.

3.5 Discussion

The first part of our discussion revolved around the implementation and comparison of various
wavefront optimization methods for projecting patterns through a long and unstable MMF.
Among these, SNES optimized with VecCos emerged as the most efficient, demonstrating rapid
evolution and strong robustness. This superiority is attributed to its principle of parameter
optimization via natural gradient ascent, which, unlike other algorithms that more or less rely
on random variations, ensures robustness against medium disturbance. The scheme of SNES-
VecCos significantly enhances the contrast of projected patterns, making it a promising tool
for biomedical applications requiring high-precision optical delivery such as phototherapy or
optogenetics. However, the time consumption for wavefront optimization poses a limitation,
suggesting the need for further system improvements to accommodate real-time applications
in dynamic biological tissues. For instance, faster feedback on pattern formation, more efficient
data transfer, processing, and control through a customized field-programmable gate array

framework may be employed.

In the second part, we present an alternating projection-based phase optimization method uti-

lizing the TM for effective glare suppression at arbitrary regions through MMF. In practice, this
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method requires only a few iterations for phase optimization, offering a quick and parallel op-
timization process. It extends the capability of WFS to achieve arbitrary intensity suppression
and the formation of focal patterns, by modifying the speckle-domain constraint. However,
the study also has some limitations such as the complexity of measuring a complex TM and dis-
crepancies between experimental and simulated suppression results. The reasons may include:
the inaccuracy of the TM measurement for MMF which could be affected by the quality of the
reference beam and the noise during image acquisition; the inaccuracy of phase modulation

through a DMD and 4f system, the small perturbation to MMF and so on.

Notably, it seems the proposed AlterProjTM showed an insensitivity to the size of ROI to be
suppressed, which can be observed from Figure 3.6 and Media 1. Several reasons may account
for that. The first is only 30 iterations were adopted in the experiment for phase optimization
with both ER and HIO constraints, at which the optimizations did not fully converge, so the
differences among different ROIs were not obvious. Then, for ER, it suffers from premature
convergence accompanying with the problem of “oversaturation” which means under a certain
input size, it is not always the case that a larger ROI would have a worse suppression effect.
Finally, the weakened suppression performance of AlterProj in the experiment made it less
apparent for the distinctions among different ROIs. It is emphasized that under appropriate
speckle-domain constraint (HIO) and sufficient convergence, AlterProjTM has confirmed an
inversely proportional relationship between the ROI size (i.e.,, number of speckles included)

and the suppression effect achieved.

3.6 Conclusion

In conclusion, this chapter has thoroughly studied controlling light delivery through an MMF
based on wavefront optimization, including focusing light and suppressing light in an arbitrary
patterned region at the output of MMF. For the first part of pattern projection, SNES optimized
with VecCos is proposed in this study with the best performance to control light focusing into
an arbitrary pattern in a noisy and perturbed environment. As such, a pattern can be effectively
generated at the distal end of the MMF within 1000 iterations with high fidelity and focusing
contrast. And for the second part of suppressing scattered light, a TM-based phase optimization
method is proposed for fast and effective glare suppression through MMF, with speckle-domain
constraint of both ER and HIO being compared. The simulations and experiments collectively

indicate that AlterProjTM with HIO constraint is superior in terms of fast convergence and
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strong suppression. For example, a suppression factor of 0.17 was realized by HIO in a large
target region containing ~625 speckles at the distal end of an MMF. The dual capability of
precise light delivery through MMF may promise innovative deep-tissue optical applications,
including optogenetic, phototherapy and imaging or sensing with speckles, where controlled

light delivery can significantly impact outcomes.



Chapter 4

Optimum Transmission Matrix
Retrieval of a Multimode Fiber by

Nonconvex Optimization

This chapter is reproduced with some adaptations according to two published journal papers:
Shengfu Cheng, Xuyu Zhang, Tianting Zhong, Huanhao Li, Haoran Li, Lei Gong, Honglin Liu,
and Puxiang Lai, "Nonconvex optimization for optimum retrieval of the transmission matrix of a

multimode fiber”, Advanced Photonics Nexus 2(6):066005 (2023).

Continuing Part I for studying the light control of MMF, we delve into the reconstruction of the
TM of MMF in a reference-less setup, which waives the need of an external reference beam and
also avoids the ”dark-spot” problem suffered by internal reference method. Although efforts
to directly retrieve a complex-valued TM from intensity measurements using phase retrieval
algorithms have been taken, they are still faced with limitations such as slow or suboptimum
recovery, particularly in noisy conditions. In Chapter 3, we propose a modified non-convex op-
timization approach to tackle the TM retrieval problem. Numerical evaluations demonstrated
that our method achieves optimum focusing efficiency with reduced running time or sam-
pling ratio. Comparative tests across different signal-to-noise levels confirmed its improved
robustness. In the experiment, our algorithm’s superior focusing performance was validated
cohesively through single- and multi-spot focusing. Notably, at a sampling ratio of 8, it re-
alized 93.6% efficiency compared to the gold standard holography method. Parallel operation

and GPU acceleration enable our nonconvex approach to efficiently retrieve an 8685 x 1024
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TM (sampling ratio=8) with 42.3 seconds averagely on a regular computer. Leveraging the
recovered TM, we also achieved high-fidelity image transmission through an MMF. With op-
timum efficiency and fast execution for TM retrieval, our method will facilitate deep-tissue

applications such as optical imaging, manipulation, and treatment.

4.1 Introduction

Different from ordinary ballistic optics, light propagation in complex media is highly disor-
dered [129, 130] due to the multiple scattering occurring in media like biological tissues or mode
dispersion in an MMF. Finding an order out of such disorders has been long pursued. Over the
past decade, enormous progresses have been made via wavefront shaping [8, 15, 131-134] and
especially the TM method [16, 23, 106, 127, 135] in controlling light to focus and image through
complex media. The TM of a disordered medium describes the complex output responses for
an arbitrary point-source input, which is regarded as the transfer function of the medium un-
der the shift-invariance assumption [135]. The measurement of TM offers a versatile tool to
control light delivery in spite of scattering [106, 133], as well as recovering object information
from acquired speckle patterns [136, 137]. The TM method has spurred a wide range of MMF-
based applications, such as focusing [18, 108], glare suppression [121, 138], endoscopic imaging

[139-141], manipulation [142], optogenetics [143], and communication [136, 144, 145].

TM measurement of a scattering medium was first introduced by Popoff et al. [16, 106] using
coaxial holography with internal reference. Since then, various forms of TM measurement
have been developed. Typically, the TM is measured by recording the complex output fields
under a sequence of input modulations. The modulation basis is usually orthogonal, which
can be of diverse forms, including Hadamard matrix [16, 106], DFT matrix [146], point source
[20, 147], and random phase [23]. Regardless of the form, the measured TM relates all input
modes to each output mode by linear superposition. Depending on the type of input modula-
tion and output measurement, the TM could be complex-valued [16, 20], real-valued [148, 149]
or even binary [150]. Among them, complex TM is used most as it supports both amplitude and
phase modulation of light, which, however, usually entails holographic setup. Off-axis holog-
raphy based on either phase-shifting [151] or spatial filtering [152] can acquire the complex TM
accurately. Nevertheless, effective off-axis interferometry with an additional reference beam
and high system stability it demands could be unpracticable in some scenarios. As an example,

the coherence length of pulse laser could be too short to be used for interferometry-based TM
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measurement. With coaxial holography, the above issues might be alleviated, but the dark spot

problem with the measured TM caused by speckle reference field [22] is still unsatisfying.

Recent efforts have sought to accurately retrieve the complex TM from intensity-only mea-
surements by using advanced phase retrieval algorithms [23, 24, 146, 153-158], which started
with a Bayesian inference approach (i.e., prVBEM) [23]. This was followed by prSAMP [153]
and prVAMP [22]. Although robust to noise, a prior knowledge of noise statistics is a must for
these approaches. Semidefinite programming (SDP) that uses convex relation has also been
introduced for solving the TM retrieval problem [155], but it usually requires NInN (N is the
input size) measurements and tends to be computationally inefficient. Additionally, works
based on extended Kalman filter (EKM) [156] or generalized Gerchberg-Saxton (GGS) algo-
rithm [24] claim retrieving TM with 4N measurements could be enough. That said, EKM is
computationally burdened and hard for parallelization. GGS is efficient in computation, but
its performance is still suboptimum in real practice. Most recently, the area also sees the birth
of a smoothed Gerchberg-Saxton algorithm [158] and a nonlinear optimization method [146]

for TM retrieval.

To overcome the aforementioned limitations, in this study a state-of-the-art nonconvex op-
timization approach is adopted and modified for TM retrieval with optimum performance.
Compared with existing TM retrieval algorithms, the proposed nonconvex method can achieve
optimal efficiency numerically with less running time or sampling rate. In the experiment, by
focus-scanning across the FOV of an MMF with the acquired TM, the performance of the pro-
posed method is validated to approach the golden standard, i.e., off-axis holography with a
sampling rate of 8. Moreover, with the assistance of parallel operation and GPU acceleration,
multiple rows of TM can be recovered rapidly. Our method for TM retrieval is featured with
optimum efficiency and fast implementation in a reference-less and robust setting, which may
gain special attention for many deep-tissue imaging and focusing applications with the usage

of MMF.
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4.2 Methods

4.2.1 Formulation of the TM retrieval problem

The theoretical model of retrieving a TM under a sequence of input modulations is formulated
as follows. Suppose the number of discrete modulation units (i.e., input size) and speckle field
pixels (i.e., output size) is N and M , respectively. Given P calibration patterns such that the
probe matrix X € CV** and the amplitude measurements Y € RY*” the TM A € CM*VN that

needs to be estimated shall follow

Y = |AX], (4.1)

where |-| takes the absolute value for the elements inside. By taking the conjugate transpose

of both sides of Eq. (4.1), we have

Y7 = |XPAM| (4.2)

where ()H is the element-wise conjugate transpose operator. Column-wisely, Y7 = [y}, ..., y;,.
where y; € RY constitutes the measurements associated with the i output mode, and A# =
[a1,...,a;,...,ay] where a; € CV denotes the conjugate transpose of the i’* row of TM, i =
1,...,M. In this case, the TM retrieval problem is decomposed into M independent sub-

problems given as

y,-:‘XHa,- ,izl,...,M. (4.3)

Due to the operation of taking absolute values in Eq. (4.3), the above problem of estimating

one row of TM is nonlinear and falls in the category of phase retrieval.

Phase retrieval problem has been studied intensively in mathematics as it is commonly en-
countered in practice, with representative algorithms including alternating projection [159]
(e.g., Gerchberg-Saxton and Fineup), SDP [160] (e.g., PhaseLift, PhaseMax, PhaseCut), approxi-
mate message passing (e.g., GAMP [161], VAMP [162]), and nonconvex optimization [163-167]

etc. Among these methods, nonconvex approaches are proven to be superior and have been

~>¥ul,
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developed rapidly in the past years. There are mainly two categories of nonconvex approaches,
the intensity-flow [164, 168] and amplitude-flow models [165-167], with the latter being bet-
ter in both empirical success rate and convergence property. In particular, the amplitude-flow
models have been proven to converge linearly to the true solution under O(n) Gaussian mea-

surements for a signal with dimension [167].

4.2.2 The modified RAF algorithm

Herein, the cutting-edge reweighted amplitude flow (RAF) algorithm [167] is adopted for the

TM retrieval problem. Solving Eq. (4.3) can be recast as an optimization problem

min L(a;) = H |XHa,‘ —yi (4.4)

a;,cCN HZ’

where ||-||, denotes the L2 norm of a vector, and L(a;) is an amplitude-based least square
error (LSE) loss function. While most nonconvex algorithms contain two stages, i.e., spectral
initialization and gradient descent, RAF applies reweighting techniques in both stages that
accelerates the signal recovery significantly. Considering Eq. (4.4), the signal, i.e., one row of
TM a (the row index i is omitted for genericity) is first estimated with the weighted maximum
correlation initialization. A subset of the row vectors in the probe matrix (X? = [X{" e ;X;’ ])
that correspond to the |S| (subset S C {1,...,P}) largest entries in the measurements y =
{y j} |<j<p aT€ selected, which are called direction vectors, as they are more correlated to the

true signal. The signal can be estimated by maximizing its correlation to the direction vectors

{X7 |j € S} such that

Hal\ 1 ‘S] Z‘ ‘ HaH 1 (!S\ ZXJ ) (4.5)

jeSs jes

By weighting more to the selected XI;I vectors corresponding to larger y; values with the
weights y?‘,‘v’ j €S (exponent a = 0.5, by default), the solution &° of Eq. (4.5) is the unit-norm

principle eigenvector of the Hermitian matrix

Zijj — |X dlag(y] 7y2’ ya)'XHv (46)



Chapter 4. Optimum Transmission Matrix Retrieval of a Multimode Fiber by Nonconvex

64 Optimization
o yLIES . . o 0 )
where §7 = . &’ isthen scaled to obtain the signal initial guess a” = =1 /P-
0, otherwise '
a0,

The initialized signal a° is further refined by reweighted “gradient-like” iterations. The gradient

of the LSE loss in Eq. (4.4) with respect to a is

1 XHa
VL(a) = — - X [ Xa— 4.7
@ =5 XXy 1t ). (@)

where o denotes element-wise multiplication. Let # be the iteration index, then the gradient
descent is described by
atl=a — . VL(a), (4.8)

where U 