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Abstract 

Compound hydrometeorological extremes refer to the simultaneous or sequential 

occurrence of multiple climate drivers and hazards (especially floods and heat waves). These 

compound events often have more severe consequences compared to when these disasters occur 

individually. Therefore, detecting and understanding compound hydrometeorological extremes are 

crucial for formulating effective adaptation and mitigation strategies to address the threats posed 

by climate warming. 

Although research on the detection and attribution of compound hydrometeorological 

extremes has received increasing attention in recent years, certain limitations still exist in previous 

studies. (1) Sparse in-situ tide gauge stations restrict the continuous spatiotemporal assessment of 

compound flood risk; (2) Despite extensive studies on individual phenomena, the potential lagged 

dependence between heat waves and heavy rainfall is often overlooked; (3) Knowledge about 

emerging compound events, particularly humid heat and pluvial flooding, remains poorly 

understood on a global scale. 

To address these limitations, innovative methodologies have been developed for a 

comprehensive assessment of compound hydrometeorological extremes, focusing particularly on 

compound flood hazards and compound heat-flood hazards. (1) A vine copula ensemble machine 

learning, combined with a Bayesian hierarchical model is proposed for predicting compound flood 

risk at ungauged sites. (2) Detection, attribution, and projection methods are employed to address 

the frequently overlooked lagged dependence between heatwaves and heavy rainfall. (3) A 

comprehensive global analysis of emerging compound humid heat and pluvial flood events is 

conducted to improve the understanding of compound hazards using innovative methods for robust 

detection and attribution. 

The key findings include: (1) The vine copula ensemble model outperforms traditional 

methods, showing 29.09% and 19.35% improvements in two datasets. The Bayesian hierarchical 

model effectively predicts storm surges at ungauged stations with about 11% error. Compound 

flooding analysis reveals 14.54% of extreme storm surges in Hong Kong coincided with heavy 

rainfall. (2) In China, 22% of land areas experienced statistically significant consecutive heat wave 



 

 

 

and heavy rainfall events within 7 days. The shorter and hotter heat waves are more likely to be 

followed by heavy rainfall. This phenomenon is associated with atmospheric convection and 

moisture convergence, with projections showing increased frequency and abruptness throughout 

the 21st century. (3) Global, successive heat-pluvial and pluvial-heat occurred more frequently 

than expected by chance, with a 20% per decade increase due to warming. These events are 

associated with vapor pressure deficit anomalies. 

The findings of this dissertation enhance the understanding of compound 

hydrometeorological extremes. The probabilistic and continuous estimation of compound flooding 

advances methodologies in flood risk assessment, emphasizing the importance of addressing 

multi-hazard flood risks in coastal cities. The investigations into consecutive heat wave and heavy 

rainfall events provide insights into mitigating or eliminating the impacts of these back-to-back 

extreme events. The global analysis of compound humid heat and pluvial flooding extremes 

highlights the need for strategies to cope with overlapping vulnerabilities due to compound hot 

and wet extremes, particularly in areas prone to such events. 

Keywords: Climate change; Compound hydrometeorological extremes; Storm surges; Pluvial 

flooding; Extreme heat  
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Chapter 1. Introduction 

This chapter offers an overview of the research context, including a review of existing 

literature on compound hydrometeorological extremes. It also discusses the identification of 

research gaps and the significance of these gaps, outlines the aims and objectives of the research, 

and provides a summary of the overview of the dissertation. 

1.1 Background 

Hydrometeorological extremes, such as floods and heat waves, are primary drivers of 

global and regional natural disasters. These events trigger widespread economic losses, ecological 

damage, food scarcity, and significant mortality (UNDRR & CRED, 2020; WEF, 2020). Global 

warming further exacerbates these phenomena, increasing their severity and frequency. Among 

these, floods are one of the most common natural disasters globally, originating from heavy rainfall, 

runoff, and the rising sea level. These conditions can flood extensive areas, disrupting daily life 

and causing significant damage to infrastructure. Heat waves, by contrast, are characterized by 

extended periods of extreme heat, posing serious risks to human health, agriculture, and the 

availability of water resources. Recently, more special attention has been paid to compound 

hydrometeorological extreme events. These compound events are characterized by simultaneous 

or sequential events involving various climate drivers and hazards (Zscheischler et al., 2018, 2020; 

Raymond, Horton, et al., 2020; De Ruiter et al., 2020; Bevacqua et al., 2021), amplifying impact 

on human health, urban infrastructure, and other socio-economic aspects. The critical 

characteristics of these phenomena highlight the pressing need for enhanced detection, 

comprehensive understanding, and proactive risk assessment and resilience planning. 

Coastal flooding is a notable coastal-specific hazard among hydrometeorological extremes. 

This type of flooding often results from storm surges during tropical cyclones, leading to 

significant damage in low-lying areas. A storm surge is a dangerous phenomenon that occurs when 

there is an abnormal rise in sea level caused primarily by low atmospheric pressure and strong 

winds from tropical and extra-tropical cyclones (Cid et al., 2017; Muis et al., 2016; Tadesse et al., 

2020). This dangerous phenomenon could have devastating impacts on coastal communities 

(Bevacqua et al., 2019; Boumis et al., 2023; Wahl et al., 2015; Zhang & Wang, 2021). In China, 
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storm surge is considered the most severe marine hazard and has caused a direct economic loss of 

over 1,427 billion RMB in the past decade (Bulletin of China marine disaster, 2023; Ji et al., 2021; 

Wang et al., 2021a). Therefore, the spatiotemporal characteristics of storm surges serve as an 

important basis for disaster risk management in coastal areas (Martzikos et al., 2021). 

Storm surge and other driving factors, such as rising sea levels and increased runoff from 

heavy rainfall, could coincide to cause flooding in a particular area. Such flood events triggered 

by the simultaneous occurrence of multiple sources of flooding are referred to as compound 

flooding (Bevacqua et al., 2019; Fang et al., 2021; Wahl et al., 2015). The interactions between 

different factors increase the complexity and severity of the flood event. As a result, compound 

flood events are often more severe and damaging than individual flooding factor acting alone. 

Recent compound flood events have resulted in damages and losses of human life in many 

countries around the world, such as Typhoon Lekima in 2019, Cyclone Amphan in 2020, 

Hurricane Ida in 2021, Hurricane Ian in 2022, and Typhoon Doksuri in 2023. Low-lying coastal 

cities are highly vulnerable to compound flooding due to their proximity to both sea and river 

systems (Gao et al., 2023; Moftakhari et al., 2017). During a tropical storm or hurricane, heavy 

rainfall may lead to inland flooding while strong winds cause storm surges along the coast. When 

these storm surges coincide with high tides or are exacerbated by rising sea levels, coastal areas 

may experience even greater inundation. Runoff from heavy rainfall can further contribute to 

flooding in depressed areas, and this combination can overwhelm the local drainage and flood 

defense systems, leading to more extensive and damaging floods (Lai et al., 2023; Toyoda et al., 

2023). It is estimated that approximately 23% of the world's population resides within 100 

kilometers of coastlines and at elevations under 100 meters above sea level (Small and Nicholls, 

2003). The high density of population and infrastructure in coastal regions increases the 

vulnerability of these areas to compound flood events. Furthermore, compound flood risk is 

projected to increase with future sea level rise in a warming climate (Kulp and Strauss, 2019). In 

order to effectively respond to compound flooding in coastal areas, it is essential to assess and 

understand the associated risk (Feng et al., 2023; Matos et al., 2023), particularly through a 

spatially seamless and temporally continuous assessment of compound flood risk. 

Another hydrometeorological extreme phenomenon that requires attention in the context 

of global climate change is extreme heat, including heat waves and humid heat. Heat waves are 
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characterized by prolonged periods of abnormally high temperatures. Humid heat, or heat stress, 

is caused by a combination of high temperatures and elevated humidity levels. This combination 

more accurately represents the physiological triggers of heatstroke and dehydration, and therefore 

is more likely to reflect dangerous conditions (Mora et al., 2017; Raymond et al., 2021). Heat-

related extreme weather poses great challenges to public health, agriculture and the overall 

sustainability of ecosystems. And as temperatures are projected to rise, the frequency and severity 

of these events are expected to increase, necessitating adaptation strategies to mitigate their effects. 

The study of compound hydrometeorological extremes can be further extended between 

compound heat and flood hazards. Due to the interaction and interdependence between 

temperature and precipitation, there may be a lagged connection between heat waves and heavy 

rainfall (Chen et al., 2021; Liu et al., 2019; Zhang & Villarini, 2020). This interaction can form a 

consecutive heat wave and heavy rainfall event, in which two extreme weather phenomena occur 

in back-to-back sequences. There is growing evidence that the sequential occurrence of heavy 

rainfall after the end of heat waves is likely to cause flash flooding, which can cause extensive 

damage to water quality, fundamental infrastructures, crop yields, and human livelihood. For 

instance, a heat wave was followed by heavy rainfall and flooding in 2019 in Australia, thereby 

leading to severe economic losses and environmental issues (Cowan et al., 2019; Zhang & Villarini, 

2020). Similar abrupt alternations from preceding severe heat waves to thunderstorms and flash 

floods also occurred around the world, causing widespread socioeconomic losses (BBC News, 

2020; Cappucci, 2019; ITV News, 2020). Therefore, exploring the probability of occurrence and 

evolution characteristics of compound heat wave and heavy rainfall events is crucial for revealing 

how these weather systems interact with each other and for improving the predictive skill of 

compound extremes under a warming climate. This is particularly important in China that is 

expected to experience more intense heat waves and heavy rainfall events throughout the 21st 

century (Deng et al., 2020; Sun et al., 2017; Wu et al., 2019). 

In addition to heavy rainfall following heat waves, further consideration needs to be given 

to the emerging twinned hazards from both sides: successive heat-pluvial events and pluvial-heat 

events. These compound events could pose more considerable challenges to society. On the one 

hand, the combined impact of two extreme events can result in more extensive damage compared 

to when each event occurs separately (Kawase et al., 2020; Mukherjee & Mishra, 2021; De Ruiter 
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et al., 2020; Zscheischler et al., 2020). On the other hand, in such compound events, the lack of 

preparation and recovery time can further amplify adverse effects. For successive heat-pluvial 

events, a sequence of heat extremes followed by pluvial flooding occurred in the United States in 

September 2017 (Cappucci, 2019), in the United Kingdom in August 2020 (ITV Weather, 2020) 

and in South Korea in July 2020 (Min et al., 2022), leading in each case to severe infrastructure 

damages, livestock deaths, and flood-related morbidity/mortality. The considerable source of 

concern is that people are generally not well prepared for high-intensity rainfall during prolonged 

hot weather; when it does occur, it can be so rapid that people have little time to adjust and safely 

evacuate (De Ruiter et al., 2020; Matthews et al., 2019; Raymond, Horton, et al., 2020). As an 

example of a successive pluvial-heat event, Japan experienced heavy rainfall and subsequent 

extreme heat in July 2018, causing more than 300 fatalities and large economic losses (Kawase et 

al., 2020; Wang et al., 2019). The landfalls of tropical cyclones Irma and Ida in Florida and 

Louisiana, respectively, led to notable health impacts on residents who in the storms' aftermath 

were without air conditioning to combat the typical high heat stress values of late summer 

(Chatlani & Madden, 2021; Skarha et al., 2021). In such cases, the subsequent extreme heat adds 

to impacts in affected areas because the damage to infrastructure such as roads and power grids 

makes it more difficult to avoid heat exposure, and to obtain treatment in the case of heat illness 

(Issa et al., 2018). These recent examples highlight the importance of investigating the temporally 

compounding characteristics of heat-pluvial and pluvial-heat extremes more broadly. 

1.2 Literature review on compound flood hazards 

Storm surges, particularly during tropical cyclones, are a key factor in coastal flooding, 

often leading to the breaching of flood defenses by extreme water levels. Predicting these surges 

is crucial for accurate coastal flood analysis, as they significantly contribute to the risk and impact 

of such events. The in-situ tide gauge records provide critical observation-based storm surge 

information to support coastal flood risk assessments. However, these measurements often cover 

a relatively short time span, which is not suitable for trend detection and extreme value analysis 

(Tadesse & Wahl, 2021). To overcome this issue, two types of approaches have been proposed to 

estimate the storm surges based on spare data: physical and statistical methods. Physical methods 

refer to hydrodynamic models driven by process-based shallow-water equations and atmospheric 

forcing that induce surge and wave, are relatively accurate but computationally expensive 
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(Bloemendaal et al., 2019; Howard et al., 2010; Muis et al., 2020; Shimura et al., 2022). Physical 

models provide valuable insights into the processes, but they require significant computational 

resources and may be limited by the accuracy of underlying physics and assumptions (Fernández-

Montblanc et al., 2019; Ramos-Valle et al., 2020). In contrast, statistical methods can be used to 

quantify the relationship between storm surges and explanatory variables, such as wind speed, 

atmospheric pressure, and sea surface temperature (Cid et al., 2018; Tadesse et al., 2020). This 

allows for the development of data-driven models that can simulate storm surges efficiently by 

making the best use of available data. 

It is important to provide a temporally-continuous estimate of storm surges for better 

understanding of the long-term trend and variability of coastal flood events. Physical models used 

for storm surge simulation are often based on single events (Wang & Liu, 2021). This is because 

physical models require detailed information about storm surge characteristics, such as wind speed, 

atmospheric pressure, and precipitation, which are often difficult to obtain for historical events 

(Arns et al., 2020; Zijl et al., 2013). To overcome these limitations, machine learning approaches 

have been widely used to reconstruct long-term storm surge records, such as the data-driven model 

developed by Tadesse et al. (2020) for global storm surge reconstruction, with a focus on providing 

long-term and temporally seamless reconstructions of storm surges. However, these models do not 

provide a spatially and temporally continuous estimate of storm surges (Cid et al., 2018; Tadesse 

& Wahl, 2021), which is necessary to gain a better understanding of the spatiotemporal patterns 

of storm surges and to support disaster risk management and adaptation in coastal zones (Beck et 

al., 2020; Martzikos et al., 2021; Shimura et al., 2022). Therefore, there is an urgent need to 

develop new approaches which can provide continuous estimates of the spatiotemporal distribution 

of storm surges. 

Spatial extrapolation of storm surges at ungauged stations along the coastline is also useful 

for decision-making in coastal flood risk management and adaptation, which can estimate the 

spatially-continuous distribution of storm surge heights with coverage for entire coastal areas 

(Calafat & Marcos, 2020). In previous studies, a variety of methods were proposed for probabilistic 

storm surge prediction that took into account uncertainties to estimate the storm surges at ungauged 

sites. For example, Beck et al. (2020) proposed a copula-based hierarchical Bayesian spatial model 

and then Calafat & Marcos (2020) performed a probabilistic analysis using the Bayesian 
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hierarchical model to estimate the spatially-continuous storm surges in Europe. While previous 

studies have conducted probabilistic prediction of storm surges, there is still a lack of spatially-

temporally-continuous probabilistic prediction of storm surges for providing a comprehensive 

understanding of the spatiotemporal variability of storm surge events. This is particularly 

important in China due to its extensive coastline and high population density in coastal areas, 

making it vulnerable to coastal flooding caused by storm surges. 

In addition to coastal flood hazards induced by storm surges, an increasing number of 

studies are now examining the simultaneous occurrence of coastal and pluvial flooding. Pluvial 

flooding, resulting from heavy rainfall, leads to water overflow on the ground surface when the 

intensity of the rain surpasses the drainage system's capacity. This type of flooding typically results 

in water accumulation in urban regions, particularly in low-lying coastal areas with inadequate 

drainage systems. Pluvial flooding, when combined with coastal flooding, can lead to a 

phenomenon known as compound flooding in coastal regions (Sun et al., 2024; Xu et al., 2023). 

This is a significant issue as it can cause more severe damage than either type of flooding alone. 

Growing studies have been conducted to understand the dynamics and impacts of compound 

flooding. For instance, a study by Wahl et al. (2015) highlighted the increased risk of compound 

flooding in low-lying coastal cities due to climate change. Similarly, a study by Bevacqua et al. 

(2019) in emphasized the need for considering compound flooding in flood risk assessments, as 

ignoring the interaction between pluvial and coastal flooding can significantly underestimate the 

flood risk. 

Compound flooding occurs when heavy rainfall (pluvial flooding) coincides with high sea 

levels (coastal flooding), leading to a complex and amplified flood risk. In this area, the synergy 

of various factors, with storm surges as a notable component, is pivotal in fully understanding the 

full spectrum of coastal flood risks. Ground-level observations using tidal gauge stations are 

essential in this process, as they provide highly accurate and direct measurements of local 

conditions. These tidal gauge stations are particularly beneficial for monitoring storm surges and 

sea-level rise (Cid et al., 2018; Tadesse & Wahl, 2021). In contrast, higher resolution and better 

spatial-temporal continuity products are increasingly utilized to identify precipitation 

characteristics, enhancing understanding of rainfall patterns over a larger area (Beck et al., 2019; 

Sun et al., 2018). However, this reliance on tidal gauge stations for storm surges and sea level rise 
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introduces a significant limitation: a predominantly point-based approach in previous studies 

(Tadesse et al., 2020; Wahl et al., 2015). This method restricts the comprehensive understanding 

of the broader spatial and temporal dynamics of compound flood risk along the whole coastline. 

One key limitation is the lack of information at ungauged sites (Beck et al., 2020; Calafat and 

Marcos, 2020), which may lead to gaps in data and potentially overlook critical areas of risk. In 

the context of a warming climate and an accelerating water cycle, it becomes imperative to 

integrate spatially seamless and temporally continuous data for storm surges, sea level, and 

precipitation into compound flood risk assessments in coastal areas. This integrated approach is 

necessary to effectively manage the complex nature of compound flooding under a warming 

climate. 

Compound flood risk assessment can be broadly categorized into numerical and statistical 

modeling methods (Sun et al., 2024; Xu et al., 2023). Numerical models such as Delft3D (Deltares, 

2013), SCHISM (Zhang et al., 2016) and ADCIRC (Luettich et al., 1992) are useful for evaluating 

flood risk at ungauged sites by simulating water body movements and generating detailed data on 

flood levels and extents (Santiago-Collazo et al., 2019). These models account for various flood 

types (fluvial, pluvial, and coastal flooding) and employ different coupling techniques to simulate 

interactions between flood sources (Gallien et al., 2018; Zhang and Najafi, 2020). However, their 

limitations include high computational demands and the necessity for extensive, detailed input 

data, which are challenging to acquire at ungauged sites. Conversely, statistical models provide a 

viable alternative when physical modeling is impractical due to data or computational constraints. 

They analyze relationships and interactions among flood drivers (Jane et al., 2020; Zheng et al., 

2014), using data to estimate compound flood likelihood and severity at gauged sites (Lai et al., 

2023). Common methods in statistical modeling include the threshold excess method, conditional 

method, correlation coefficient method, copula function, etc. (Coles et al., 1999). Despite their 

utility, the effectiveness of these models is hindered at ungauged sites due to data scarcity, which 

may lead to inaccurate compound flood risk assessment. 

1.3 Literature review on compound heat and flood hazards 

Having reviewed the literature on compound flood hazards in the previous section, I now 

extend our literature review on compound heat and flood hazards, a critical area where both 
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thermal and aqueous extremes intersect and interact. Heat waves and heavy rainfall are regarded 

as two of the most frequent and widespread severe hydrometeorological hazards. Heat waves are 

characterized by a period of abnormally high temperatures lasting three or more days, and heavy 

rainfall is a primary cause of flooding. Different from concurrent heat waves and droughts, heat 

waves and heavy rainfall are usually considered as isolated events, given that the two contrasting 

weather extremes seldom co-occur in the same place (Mukherjee & Mishra, 2021; Ridder et al., 

2020). There are a number of studies have been conducted to investigate heat waves and heavy 

rainfall events that occur in isolation (Day et al., 2018; Donat et al., 2016; Perkins-Kirkpatrick & 

Lewis, 2020). Nonetheless, there may be a lagged connection between heat waves and heavy 

rainfall in consideration of the interaction and mutual dependence between temperature and 

precipitation (Chen et al., 2021; Liu et al., 2019; Zhang & Villarini, 2020), but little effort has been 

made to examine the compound occurrence of heat waves and heavy rainfall events as well as 

physical mechanisms and characteristics. 

There are a number of generally accepted hypotheses and evidence that show the potential 

of the compound occurrence of heat waves and heavy rainfall. For instance, it is projected that 

precipitation intensity will increase as the climate warms, which is primarily described by the 

Clausius-Clapeyron (C-C) relation, indicating that the atmospheric moisture-holding capacity will 

increase approximately 7% as per degree temperature rise (Trenberth et al., 2003). Despite the C-

C rate scaling is not applicable to all regions around the world and lower or super C-C rates are 

observed elsewhere (Held & Soden, 2006; Lenderink et al., 2017; Lepore et al., 2015; Utsumi et 

al., 2011), the rising temperatures should increase the atmospheric water-holding capacity to some 

extent, which may result in more condensed moisture favorable for the occurrence of heavy rainfall 

(Molnar et al., 2015; Wang et al., 2017). Heat waves are often characterized by prolonged high 

temperature and high humidity in the lower atmosphere. The heat forcing combined with moist 

accumulation may contribute to atmospheric instability and trigger convection for precipitable 

water at the local scale (Berg et al., 2013; Fowler et al., 2021; Randall et al., 1992). As a result, 

water vapor convergence may be enhanced, leading to the occurrence of sudden heavy rain after 

the end of a heat wave. These hydrological processes and atmospheric dynamics could potentially 

lead to a consecutive heat wave and heavy rainfall (CHWHR) event. At a relatively large scale, 

there may be a lagged connection between heat waves and heavy rainfall as a result of the 

thermodynamic effects, circulation shift and land-sea-atmospheric feedbacks (Chen et al., 2020a; 
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Deng et al., 2020; Fischer et al., 2007; Giorgi et al., 2011; Randall et al., 1992; Shang et al., 2020). 

The termination of a heat wave could be associated with a shift from a large-scale atmospheric 

blocking to circulation anomalies as well as monsoon oscillation, accompanied with thunderstorms, 

tropical cyclones or atmospheric rivers (Boschat et al., 2015; Raghavendra et al., 2019), potentially 

leading to the sudden occurrence of heavy rainfall after the end of a heat wave. 

 Recent studies have increasingly focused on extreme humid heat and pluvial flooding, 

which have devastating impacts on humans, ecosystems, and society (You et al., 2023; Mora et al., 

2017; Raymond, Matthews, et al., 2020; Tellman et al., 2021). Previous studies have typically 

considered one hazard (humid heat or pluvial flooding) and its impacts at a time. In recent years, 

a number of studies have investigated the spatiotemporal compounding of multiple extremes, 

defined as "compound events" (Bevacqua et al., 2021; Raymond, Horton, et al., 2020; Zscheischler 

et al., 2018, 2020). Compared to the well-established compound events that occur simultaneously 

such as concurrent droughts and heat waves (Mukherjee & Mishra, 2021; Ridder et al., 2020), 

temporally compounding events that occur in close succession have yet to be well-understood, 

especially in the case of consecutive hot and wet extremes where the transition may be associated 

with convection and therefore difficult to forecast. This difficulty bears on the challenge of 

quantifying the causal link between extreme heat and nearby pluvial flooding, which seldom occur 

at precisely the same location and involve a range of atmosphere-ocean-land interactions at various 

scales.  

 A rapid transition from hot to wet conditions may occur because of large-scale processes 

related to the water cycle, atmospheric dynamics, and their feedbacks; in the subtropics and mid-

latitudes, for example, this can include the movement of features such as areas of enhanced 

monsoon convection or the jet stream meandering (Shang et al., 2020; Shimpo et al., 2019; Swain 

et al., 2016; Wang et al., 2019). There may also be direct linkages: high temperatures are a key 

factor contributing to atmospheric instability, potentially leading to or enhancing localized 

precipitation events that terminate previous heat events through strong evaporational cooling (Berg 

et al., 2013; Fowler et al., 2021; Wang et al., 2017). The other side of the coin is the occurrence of 

pluvials followed by heat events, which may be associated with tropical cyclone-released diabatic 

heating effects or region-scale thermal advection (Chen et al., 2021; Emanuel, 2003; Hart et al., 

2007; Parker et al., 2013; Sukhovey & Camara, 1995). Another important physical mechanism is 
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that the elevated moisture fluxing into the atmosphere during a pluvial event can increase 

atmospheric latent heat content, which may result in higher near-surface wet-bulb temperatures 

favourable for the occurrence of humid heat (Liu et al., 2017, 2019; Matthews et al., 2022; Speizer 

et al., 2022). 

Compared to well-understood underlying dependent drivers (e.g., concurrent drought and 

heat waves), quantifying the relationship between temporally compounding hot and wet extremes 

remains challenging. Recent work has, however, made progress. For example, analysis in the 

central United States found that a high percentage of floods are preceded by a heat stress event 

(Zhang & Villarini, 2020). Elsewhere, assessments of consecutive heat wave and heavy rainfall 

events in China found an increased probability of hotter and shorter heat waves followed by heavy 

rainfall compared to heat waves not followed by heavy rainfall (You & Wang, 2021). Consecutive 

heat and pluvial events have also been investigated in previous studies, again focused on China 

(Chen et al., 2021; Liao et al., 2021). Globally, an increasing percentage of floods are likely to be 

accompanied by hot extremes, using observed dry bulb temperature for the identification of heat 

extremes and hydrological models for the simulation of flood hazards (Gu et al., 2022). Compared 

to dry heat, however, humid heat measures (that include the effects of both temperature and 

humidity) better capture the physiological drivers of heat stress and therefore are more likely to 

reflect dangerous conditions (Mora et al., 2017; Raymond et al., 2021). More importantly, the use 

of coarse-resolution general circulation models (GCMs) (∼100–300 km) and conceptual 

hydrological models may lead to considerable uncertainty in projecting spatially resolved flood 

risks caused by heavy precipitation (Duethmann et al., 2020; Grimaldi et al., 2019; Zhang et al., 

2021). Consequently, there is a need for thorough assessments of the spatiotemporal detections of 

temporally compounding heat and pluvial events, as well as attribution of the underlying factors. 

1.4 Research gap and significance 

Despite considerable efforts that have been made to identify and attribute compound 

hydrometeorological extremes, most previous studies are still subject to some key limitations. 

These research gaps hinder a comprehensive understanding of compound hydrometeorological 

extreme events. 
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(1) Lack of in-situ tide gauge stations and records. In-situ tide gauge stations provide 

records of sea water levels, which is one of the important bases for understanding compound flood 

risks. However, there are practical constraints on the number and distribution of these stations, 

leading to sparse spatial coverage. In addition, the data collected from different stations may cover 

different time periods, resulting in discontinuities in the data over time. Therefore, innovative 

research methods are needed to address the continuous spatiotemporal distribution of storm surges 

and sea level rise, which could contribute to a better understanding of the spatiotemporal dynamics 

of compound flooding and enhance coastal disaster risk management capabilities. 

(2) Lack of associated research on compound heatwaves and heavy rainfall events. 

Despite the well-understood mechanisms of heat waves and heavy rainfall, current knowledge on 

the abrupt transitions from deadly heat waves to devastating downpours remains unclear as they 

are usually treated as isolated events in previous studies. Furthermore, physical mechanisms and 

characteristics associated with the occurrence of compound heatwaves and heavy rainfall events 

remain unclear, hampering our understanding of spatiotemporal patterns and evolutionary 

processes of this type of compound hazards. In addition, little is known about the projected future 

changes of compound heatwaves and heavy rainfall events and associated compound risks in a 

warming climate. 

(3) Limited understanding of emerging compound events globally. Knowledge about 

emerging compound events, such as those involving humid heat and pluvial flooding, remains 

inadequately understood globally. This shortfall is exacerbated by the reliance on robust detection 

and reliable attribution methodologies, which are crucial for validating results concerning complex 

compound events under conditions of autocorrelation and multiple testing. This gap in both 

knowledge and methodology poses a significant challenge, constraining our capacity to accurately 

forecast and mitigate the impacts of such events on a global scale. Additionally, the lack of in-

depth insights into the physical mechanisms and attributes of these compound events further 

hampers our capacity to understand their spatiotemporal behaviors and evolutionary trends 

effectively. 

Addressing these gaps is vital for advancing our comprehension and response to compound 

hydrometeorological extremes, highlighting the urgent need for targeted research in these areas. 
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1.5 Research aims and objectives 

The overarching aim of the dissertation is to provide incremental knowledge and 

understanding of the challenges on compound hydrometeorological extremes, with a specific focus 

on compound flood hazards and compound heat-flood hazards. To achieve this aim, the 

dissertation is divided by several specific objectives, outlined as follows:  

(1) Developing a data-driven probabilistic framework for storm surge prediction. 

This dissertation aims to construct a probabilistic model using vine copula and ensemble machine 

learning, coupled with the Bayesian Hierarchical Model (BHM) approach. The objective is to 

provide a robust framework for accurately estimating continuous storm surge extremes. This 

model framework will offer decision-makers continuous probabilistic forecasts, aiding in effective 

mitigation and strategic planning for infrastructure in a changing climate. 

 (2) Providing a comprehensive assessment of compound flood risk. By integrating 

ensemble machine learning with copula statistical methods, this dissertation seeks to conduct a 

thorough spatial-temporal analysis of compound flood risk. This approach is designed to inform 

urban planning and the development of climate change mitigation strategies, highlighting the need 

to address multi-hazard flood risks in coastal urban areas. 

 (3) Investigating a new type of temporally compounding events, referred to as 

CHWHR. The dissertation will investigate CHWHR events, focusing on their occurrence, driving 

mechanisms, and future projections. It aims to provide a systematic assessment of CHWHR events 

in the context of a changing climate and analyze the lagged interplay between heat waves and 

heavy rainfall. This research will deepen our understanding of CHWHR as a new type of 

compound extreme and offer crucial insights for implementing effective adaptation and mitigation 

measures. 

 (4) Global analysis of temporally humid heat and pluvial flood events. This objective 

involves a global analysis of the frequency changes in temporally compounding humid heat and 

pluvial flood events, and the factors influencing these events. Reliable statistical tests are proposed 

to ensure the validity of the results for complex compound events. The goal is to acquire a 

comprehensive understanding of these compound events, detect occurrences, analyze the 

decomposition of warming or moistening effects, and identify key influencing factors. 
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1.6 Dissertation overview 

As shown in Figure 1.1, this dissertation is structured to address the intricacies and 

challenges associated with compound hydrometeorological hazards in a warming climate, with a 

particular focus on two critical aspects: (1) compound flood hazards, and (2) compound heat and 

flood hazards. This dissertation is organized as follows. Chapter 2 lays the foundation by offering 

a detailed description of the data acquisition and the research methods used for performing 

spatiotemporal continuous prediction and characterizing different compound extremes. Chapter 3 

presents a probabilistic, data-driven framework for the spatiotemporal prediction of continuous 

storm surge extremes and subsequently focused compound flood risk assessment in Hong Kong. 

The flood risk assessment is conducted at a local scale in Hong Kong due to its detailed tide gauge 

data and it is highly susceptible to the combination of rising sea levels, dense urban layout, and 

intense rainfall, making it an ideal case study for compound coastal flood risk assessment. Chapter 

4 presents the detection, attribution and projection of consecutive heat wave and heavy rainfall 

events across China. This study is assessed on a regional scale in China due to the availability of 

detailed, long-term observation-based gridded precipitation and temperature datasets for historical 

detection, CORDEX fine-resolution data under different warming scenarios for future projections, 

and the country's diverse climate zones. In Chapter 5, the scope widens to a global scale, presenting 

in-depth analyses of successive heat-pluvial and pluvial-heat events. These compound events are 

analyzed at a global scale because I find some media coverage of these occurrences outside China, 

but the global picture remains largely unknown. This global perspective allows for the 

identification of broader patterns and trends, providing a comprehensive understanding of these 

phenomena. Concluding the dissertation, Chapter 6 synthesizes the findings and suggests future 

directions in compound hydrometeorological studies. 
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Figure 1.1 The framework of the dissertation. 
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Chapter 2. Data and methodology 

This chapter presents both the data description and the research methodology used for 

analyzing compound hydrometeorological extremes, along with the associated proposed 

techniques for identifying and evaluating their compounding features. Firstly, this chapter provides 

a description of the innovative ensemble machine learning and Bayesian Hierarchical Model 

(BHM) framework I have developed, essential for the spatiotemporal prediction of continuous 

storm surge extremes and comprehensive analysis of compound flooding. Definitions and methods 

for identifying heat waves and heavy rainfall events are outlined, aiding in understanding their 

lagged dependencies. Furthermore, this chapter defines and characterizes humid heat, pluvial 

flooding, and their compound events. Finally, the chapter presents the moving-blocks bootstrap 

resampling-based significance test that I have proposed, designed specifically for the detection of 

compound events. It also describes the innovative application of field significance tests that I have 

introduced in the realm of compound event attribution. 

2.1 Data descriptions 

In this dissertation, I have employed a diverse range of datasets, broadly categorized into 

three groups: observational data, reanalysis products, and model simulations. 

For observational data, this includes daily gridded information on temperature and 

precipitation, along with tidal gauge station data. The temperature and precipitation data, which is 

gridded daily at a spatial resolution of 0.5˚ × 0.5˚, was sourced from the China Meteorological 

Data Service Center. This data is an interpolation from 2,472 station observations covering the 

period from January 1, 1961, to the present (Zhao et al., 2014). Regarding tidal gauge station data, 

hourly sea level data from 16 tide gauges along the coast of China was derived from the Global 

Extreme Sea Level Analysis (GESLA) tide gauge dataset (Haigh et al., 2021). For the Hong Kong 

region data was downloaded from six open-access tidal gauge stations operated by the Hong Kong 

Observatory (Hong Kong Observatory, https://www.hko.gov.hk/en/cis/climat.htm). These stations 

provide daily mean sea level measurements and four distinct tidal phases.  

The reanalysis products include the 5th generation ECMWF (The European Centre for 

Medium Range Weather Forecasts) global reanalysis (ERA5) (Hersbach et al., 2020) 
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(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels) and reanalysis 

data from the National Centers for Environmental Prediction (NCEP, 

https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html). The choice to use these reanalysis 

datasets is due to their inclusion of four essential variables (daily mean temperature, precipitation, 

specific humidity, and air pressure at 2m from the surface) with global coverage at the daily 

timescale, which allows for a comprehensive and uniform analysis across different regions and 

time periods. Large-scale atmospheric variables from ERA5, like convective available potential 

energy (CAPE), convective inhibition (CIN), and vertically integrated moisture divergence 

(VIMD), were used to explore the physical processes behind compound events. Additionally, daily 

atmospheric variables like sea-level pressure (SLP), sea-surface temperature (SST), precipitation 

(Prep), and wind speeds at 10 meters (WindU and WindV), were also sourced from the ERA5 

Reanalysis dataset. I also employed the precipitation dataset from MSWEP (Multi-Source 

Weighted-Ensemble Precipitation, Version 3), which can be downloaded at 

https://www.gloh2o.org/mswep/. The MSWEP dataset is acclaimed for its accuracy and wide-

ranging applicability, providing precipitation data at a finely detailed spatial resolution of 0.1° 

(Beck et al., 2019). 

Finally, the model simulations involved high-resolution CORDEX-CORE regional climate 

models to project future changes in the likelihood of compound events in China (https://esgf-

data.dkrz.de/search/cordex-dkrz). An ensemble of three model runs, including MOHC-

HadGEM2-ES, MPI-M-MPI-ESM-LR and NCC-NorESM1-M from CORDEX-CORE were 

selected under the Representative Concentration Pathway (RCP) 8.5 that represented a high-

emission scenario. 
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2.2 Modeling framework for spatiotemporal prediction of continuous storm surge extremes 

 

Figure 2.1 The proposed modeling framework designed to improve the estimation of storm surge 

extremes (SSE) along China’s coastline. 
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2.2.1 Temporally-continuous storm surge extremes reconstruction 

As shown in Figure 2.1, I first extracted and processed the predictand and predictors to 

achieve temporally-continuous storm surge extremes (SSE) reconstruction, and then conducted 

model training and validation using three individual models including Random Forest (RF), 

Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM). Lastly, I used 

vine copula to combine the outputs of the three different models. 

For predictand processing, I used the daily maximum surge extracted from sea level data. 

This was achieved through a classical harmonic analysis, which involved the following four steps. 

First, the hourly sea level time series from tide gauges were detrended by removing the annual 

mean sea level. Second, the astronomical tide was obtained through harmonic analysis with 67 

tidal constituents on a year-by-year basis using the T_Tide package (Pawlowicz et al., 2002). Third, 

non-tidal residuals were obtained by subtracting the astronomical tide from the detrended sea level 

time series, and the non-tidal residuals were considered as storm surges in this study. Lastly, the 

daily maximum surge was calculated from the hourly time series of non-tidal residuals. 

For predictors processing, I used five key predictors, namely SLP, SST, WindU, WindV, 

and Prep, and the five predictors were used to model the SSE. These atmospheric variables were 

chosen based on their relevance and influence on storm surge, which were commonly used for 

modeling the SSE (Cid et al., 2018; Tadesse et al., 2020). I first determined the optimal area 

surrounding the tide gauges where predictor information was used to train and validate the 

statistical models. A geographic grid centered on each tide gauge location is selected, termed a 

'box'. This 'box' comprises a 3 × 3 grid, where each cell represents a specific area dimension 

(0.25º×0.25º), encompassing the tide gauge at the center. This configuration allows for the 

effective incorporation of data that reflects the immediate meteorological conditions influencing 

storm surges while balancing computational efficiency. To include the delay effect of predictors 

on the daily maximum surge, I used the time-lagging predictors as far back as 24 hours. After that, 

I standardized the predictor matrix to account for the different units used by each predictor. To 

reduce the dimensionality of the model, Principal Component Analysis was applied to the predictor 

and only the principal components that explain 95% of the variance were retained (Hotelling, 

1933). 
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For statistical modeling, I employed three state-of-the-art machine learning methods, 

namely RF, CNN and LSTM, to train and validate the pre-processed predictor matrix, which 

captured the complex non-linear relationship between predictors (atmospheric variables) and the 

predictand (daily maximum surge). RF is a widely used data-driven method and has shown a 

promising performance in accurately modeling the SSE. CNN is a type of deep learning neural 

network and can be used to learn complex spatiotemporal patterns from the input data (e.g., SSE, 

SLP, SST, etc.) and their variations over time. LSTM, on the other hand, is a type of recurrent 

neural network (RNN) architecture that can make predictions on sequential data. In the context of 

storm surge modeling, LSTM is more useful as it can capture temporal dependencies and long-

term patterns in atmospheric variables that affect surge levels. For model validation, I utilized the 

10-fold cross-validation technique to train and validate the model by dividing the dataset into 10 

equally-sized subsets, and each subset was used once for validation while the remaining 9 subsets 

were used for training. The model performance was assessed using Pearson's correlation (corr) and 

Root Mean Squared Error (RMSE):  

 𝑐𝑜𝑟𝑟 =
∑  𝑛

𝑖=1 (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

√∑  𝑛
𝑖=1 (𝑥𝑖 − 𝑥̅)2√∑  𝑛

𝑖=1 (𝑦𝑖 − 𝑦̅)2
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RMSE = √ 
∑   𝑛

 𝑖=1 (𝑦𝑖 − 𝑥𝑖)2

𝑛
 2-2 

where 𝑥𝑖 and 𝑦𝑖  denote the observed and predicted SSE, respectively. Similarly, 𝑥̅ and 𝑦̅ represent 

the mean values of the observed and predicted SSE, respectively. 

To overcome the limitations of individual models and address the uncertainty of storm 

surge prediction, I developed a vine copula ensemble approach that combined the outputs of three 

different models (RF, CNN, LSTM). The approach involves four steps: (1) selecting the optimal 

marginal distribution for each model output from a set of 13 probability distributions using the 

Kolmogorov–Smirnov (K–S) test and maximum likelihood estimation; (2) using vine copula to 

link the marginal distributions of different model outputs together to construct the conditional 

quantile functions of the ensembled SSE; (3) fitting vine copula by considering seven types of 

bivariate copulas as pair-copula family candidates, including elliptical copulas (Gaussian and 

Student t), Archimedean copulas (Clayton, Gumbel, Frank, and Joe), and the two-parameters 
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hybrid Archimedean copula BB1, to construct the vine copula; (4) fitting vine copula with two 

different structures. For C-vine copulas, an example of the conditional distribution of the SSE is 

expressed as follows:  

 

𝐹(𝑦 ∣ 𝑥𝑅𝐹, 𝑥𝐶𝑁𝑁 ,𝑥𝐿𝑆𝑇𝑀) =
∂𝐶𝑦,𝐿𝑆𝑇𝑀∣ 𝑅𝐹,𝐶𝑁𝑁(𝐹(𝑦 ∣ 𝑥𝑅𝐹, 𝑥𝐶𝑁𝑁),𝐹(𝑥𝐿𝑆𝑇𝑀 ∣ 𝑥𝑅𝐹, 𝑥𝐶𝑁𝑁))

∂𝐹(𝑥𝐿𝑆𝑇𝑀 ∣ 𝑥𝑅𝐹, 𝑥𝐶𝑁𝑁)

=

∂𝐶𝑦,𝐿𝑆𝑇𝑀∣𝑅𝐹,𝐶𝑁𝑁 (
∂𝐶𝑦,𝐶𝑁𝑁∣ 𝑅𝐹(𝐹(𝑦 ∣ 𝑥𝑅𝐹), 𝐹(𝑥𝐶𝑁𝑁 ∣ 𝑥𝑅𝐹))

∂𝐹(𝑥𝐶𝑁𝑁 ∣ 𝑥𝑅𝐹) ,
∂𝐶𝐿𝑆𝑇𝑀,𝐶𝑁𝑁| 𝑅𝐹(𝐹(𝑥𝐿𝑆𝑇𝑀 ∣ 𝑥𝑅𝐹), 𝐹(𝑥𝐶𝑁𝑁 ∣ 𝑥𝑅𝐹))

∂𝐹(𝑥𝐶𝑁𝑁 ∣ 𝑥𝑅𝐹) )

∂ (
∂𝐶LSTM,CNN| RF(𝐹(𝑥𝐿𝑆𝑇𝑀 ∣ 𝑥𝑅𝐹),𝐹(𝑥𝐶𝑁𝑁 ∣ 𝑥𝑅𝐹))

∂𝐹(𝑥𝐶𝑁𝑁 ∣ 𝑥𝑅𝐹)
)

= ℎ {
ℎ[ℎ(𝑢𝑦 , 𝑢𝑅𝐹 , 𝜃𝑅𝐹 𝑦), ℎ(𝑢𝐶𝑁𝑁 , 𝑢𝑅𝐹 , 𝜃𝑅𝐹 𝐶𝑁𝑁),𝜃𝐶𝑁𝑁 𝑦∣𝑅𝐹],

ℎ[ℎ(𝑢𝐿𝑆𝑇𝑀 , 𝑢𝑅𝐹, 𝜃𝑅𝐹 𝐿𝑆𝑇𝑀), ℎ(𝑢𝐶𝑁𝑁 , 𝑢𝑅𝐹, 𝜃𝑅𝐹 𝐶𝑁𝑁),𝜃𝐶𝑁𝑁 𝐿𝑆𝑇𝑀∣𝑅𝐹], 𝜃𝐿𝑆𝑇𝑀  𝑦∣𝑅𝐹 𝐶𝑁𝑁

}
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For D-vine copulas 

𝐹(𝑦 ∣ 𝑥𝑅𝐹, 𝑥𝐶𝑁𝑁 ,𝑥𝐿𝑆𝑇𝑀) =
∂𝐶𝑦,𝑅𝐹∣𝐶𝑁𝑁,𝐿𝑆𝑇𝑀(𝐹(𝑦 ∣ 𝑥𝐶𝑁𝑁 , 𝑥𝐿𝑆𝑇𝑀), 𝐹(𝑥𝑅𝐹 ∣ 𝑥𝐶𝑁𝑁 , 𝑥𝐿𝑆𝑇𝑀))

∂𝐹(𝑥𝑅𝐹 ∣ 𝑥𝐶𝑁𝑁 , 𝑥𝐿𝑆𝑇𝑀)

=

∂𝐶𝑦,𝑅𝐹∣𝐶𝑁𝑁,𝐿𝑆𝑇𝑀 (
∂𝐶𝑦,𝐶𝑁𝑁∣𝐿𝑆𝑇𝑀(𝐹(𝑦 ∣ 𝑥𝐿𝑆𝑇𝑀), 𝐹(𝑥𝐶𝑁𝑁 ∣ 𝑥𝐿𝑆𝑇𝑀))

∂𝐹(𝑥𝐶𝑁𝑁 ∣ 𝑥𝐿𝑆𝑇𝑀)
,
∂𝐶𝑅𝐹,𝐿𝑆𝑇𝑀∣𝐶𝑁𝑁(𝐹(𝑥𝑅𝐹 ∣ 𝑥𝐶𝑁𝑁), 𝐹(𝑥𝐿𝑆𝑇𝑀 ∣ 𝑥𝐶𝑁𝑁))

∂𝐹(𝑥𝐿𝑆𝑇𝑀 ∣ 𝑥𝐶𝑁𝑁)
)

∂ (
∂𝐶𝑅𝐹,𝐿𝑆𝑇𝑀∣𝐶𝑁𝑁(𝐹(𝑥𝑅𝐹 ∣ 𝑥𝐶𝑁𝑁), 𝐹(𝑥𝐿𝑆𝑇𝑀 ∣ 𝑥𝐶𝑁𝑁))

∂𝐹(𝑥𝐿𝑆𝑇𝑀 ∣ 𝑥𝐶𝑁𝑁)
)

= ℎ {
ℎ[ℎ(𝑢𝑦 , 𝑢𝐿𝑆𝑇𝑀 , 𝜃𝐿𝑆𝑇𝑀 𝑦), ℎ(𝑢𝐶𝑁𝑁 , 𝑢𝐿𝑆𝑇𝑀 , 𝜃𝐶𝑁𝑁 𝐿𝑆𝑇𝑀), 𝜃𝐶𝑁𝑁𝑦∣𝐿𝑆𝑇𝑀],

ℎ[ℎ(𝑢𝑅𝐹, 𝑢𝐶𝑁𝑁 , 𝜃𝑅𝐹 𝐶𝑁𝑁), ℎ(𝑢𝐿𝑆𝑇𝑀 , 𝑢𝐶𝑁𝑁 , 𝜃𝐶𝑁𝑁 𝐿𝑆𝑇𝑀), 𝜃𝑅𝐹 𝐿𝑆𝑇𝑀∣𝐶𝑁𝑁], 𝜃𝑅𝐹 𝑦∣𝐶𝑁𝑁 𝐿𝑆𝑇𝑀

}
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where the ensembled SSE is denoted by 𝑦. The RF-, CNN- and LSTM-predicted SSE is denoted 

by 𝑥𝑅𝐹, 𝑥𝐶𝑁𝑁, and 𝑥𝐿𝑆𝑇𝑀, respectively. 𝜃𝑦, 𝜃𝑅𝐹 , 𝜃𝐶𝑁𝑁  and 𝜃𝐿𝑆𝑇𝑀  represent the corresponding marginal 

cumulative probability. For more details on vine copula, please see Alipour et al., 2022 and Zhang 

et al., 2022. 

2.2.2 Spatially-continuous storm surge extremes mapping 

I used a Bayesian hierarchical model (BHM) for probabilistic modeling of annual 

maximum storm surge extremes (SSE) at the 16 tide gauges along China’s coastline and predicting 

SSE at ungauged locations. The BHM consists of a prior layer, a process layer, and a data layer. 
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In the prior layer, I specify the prior distribution for the annual maximum surge at each 

location. Based on previous studies, I assume that the annual maximum surge follows a generalized 

extreme value (GEV) distribution. The GEV distribution is a three-parameter distribution that can 

model extreme values of a random variable, and it is a suitable prior distribution for modeling 

extreme storm surges. For a random variable x, the GEV probability density function is defined as: 

𝐹(𝑥) = {
(1 + 𝜉 (

𝑥 − 𝜇

𝜎
))

−1/𝜉

   if 𝜉 ≠ 0

𝑒−(𝑥−𝜇)/𝜎    if 𝜉 = 0

 2-5 

where 𝜇 is the location parameter, representing the location of the distribution on the x-axis. 𝜎 is 

the scale parameter, representing the spread or variability of the distribution. 𝜉  is the shape 

parameter, which governs the tail behavior of the distribution. I assume that the location parameter 

of the GEV distribution varies in both time and space, and the scale and shape parameters vary 

only in space over the entire study domain, following the previous study (Calafat & Marcos, 2020).  

In the process layer, I modeled the spatial and temporal processes that underlie the observed 

data, sharing information between locations. I assume that the observed data follows a max-stable 

process, which means that the maximum of a set of random variables is also a random variable 

that follows a GEV distribution (Calafat & Marcos, 2020; Reich & Shaby, 2012). I modeled the 

max-stable process using a spatial process that captures residual dependence among the annual 

maxima, indicating that multiple locations may be affected by the same event. The spatial process 

introduces random effects in the location and scale parameters of the GEV distribution, which 

allows us to make predictions of the annual maxima at ungauged locations. 

In the data layer, I specified the likelihood function for the observed data. I assume that the 

annual maximum surge at each location and year follows a GEV distribution with location and 

scale parameters that are influenced by the spatial process. The likelihood function allows us to 

estimate the parameters of the GEV distribution and the spatial process based on the observed data.  

Following previous studies, the likelihood function for the observed data is expressed as: 
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𝑌𝑡 (s𝑖) ∣ 𝜃𝑡(s𝑖), 𝜇𝑡(s𝑖), 𝜎(s𝑖), 𝜉, 𝛼 ∼
 ind 

GEV (𝜇𝑡
∗(s𝑖), 𝜎𝑡

∗(s𝑖), 𝛼𝜉) 2-6 

where 𝑌𝑡(𝐬𝑖) represents the annual maximum surge for year 𝑡 and at location 𝑠. 𝜃 represents the 

spatial process that captures residual dependence among the annual maxima surges. In the GEV 

distribution, 𝜇 is the time-varying location parameter, 𝜎 is the spatially-varying scale parameter 

and 𝜉 is the shape parameter. And 𝛼 is a parameter that controls the relative contribution of small-

scale errors. The parameter 𝛼 ranges from 0 to 1, with smaller values having more weights on the 

large-scale patterns captured by the spatial process and larger values allowing for more small-scale 

variabilities in the residuals. 

The location parameter was assumed to vary smoothly with time and is modeled as a 

spatiotemporal integrated random walk. The initial states of the location parameter and its trend 

were modeled using Gaussian processes with specified covariance functions. The logarithm of the 

scale parameter is modeled as a spatial process using a Gaussian process with a specified 

covariance function. The scale parameter is restricted to be positive values. 

Model parameters were estimated by maximizing their joint posterior distribution given 

the observed data. This was done by Bayesian inference through Markov Chain Monte Carlo 

(MCMC) sampling. Specifically, I run the Hamiltonian Monte Carlo (HMC) algorithm with four 

MCMC chains of 2,000 iterations each, with a warm-up period of 1,000 iterations. Once the 

posterior distributions of model parameters were obtained, I used them to predict the surge at 

ungauged locations and to create a spatially-continuous map of storm surges for the entire study 

region. This was done by simulating from the posterior predictive distribution, which considered 

the uncertainty in model parameters. 

2.2.3 Probabilistic prediction of spatially-temporally-continuous storm surge extremes 

To achieve probabilistic prediction of spatially-temporally-continuous storm surge 

extremes (SSE), I integrated the methods introduced above (Figure 2.1). First, I used the 

temporally-continuous SSE reconstruction approach to convert the short-term tide gauge records 

that contained missing values into the long-term SSE data records on a daily basis for each gauge. 

This approach enables the temporally-continuous estimates of the SSE at any given time. Next, I 
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employed the spatially-continuous SSE mapping methods to interpolate the temporally-continuous 

but spatially-sparse gauges (which comprise only 16 tide gauges) into spatially-continuous SSE at 

ungauged locations, with a spatial resolution of 0.25°×0.25°. By combining these two approaches, 

I can produce reliable and accurate probabilistic predictions of spatially-temporally-continuous 

SSE along China’s coastline. 

2.3 Compound flooding identification and analysis 

2.3.1 Harmonic analysis  

Harmonic analysis, a mathematical discipline within the domain of signal processing and 

time series analysis, is employed in this study to decompose sea level data into its constituent 

waves (Pawlowicz et al., 2002). Harmonic analysis represents functions or signals as combinations 

of basic waves, extending and applying principles from Fourier series and transforms. Specifically, 

in the context of extracting storm surge values, this method was utilized to identify the periodic 

components present in the sea level data and to extract daily maximum storm surges (Figure 2.2). 

Initially, the sea level time series obtained from tide gauges underwent a detrending process. 

This was achieved using the following equation for detrending: 

𝑋𝑡
’ = 𝑋𝑡– 𝑋̅𝑎𝑛𝑛𝑢𝑎𝑙 

where 𝑋𝑡
’  represents the detrended sea level at time 𝑡, 𝑋𝑡 is the original sea level at time 𝑡, 

and 𝑋̅𝑎𝑛𝑛𝑢𝑎𝑙 is the calculated annual mean sea level. This equation ensures that any long-term 

increase or decrease in sea level, potentially due to climatic changes or other non-periodic factors, 

is not considered in the analysis of short-term events like storm surges. Following the detrending, 

the astronomical tide was extracted using harmonic analysis techniques. This involves fitting a 

model to the data, comprising sinusoidal components characterized by specific frequencies, 

amplitudes, and phases. Typically, frequencies were selected to align with known tidal constituents. 

In this study, 67 such constituents were considered. The harmonic model formula is expressed as: 

𝑆(𝑡)  =  ∑𝐴𝑛 𝑐𝑜𝑠 (2𝜋𝑓𝑛  𝑡 +  𝜑𝑛)  2-7 
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where 𝑆(𝑡) represents the sea level at time 𝑡, 𝐴𝑛 stands for the amplitude of the 𝑛th harmonic (𝑛 

is 67 in this study), 𝑓𝑛  denotes the frequency of the 𝑛th harmonic, 𝜑𝑛  represents the phase of the 

𝑛th harmonic and the sum is taken over all harmonics.  

Once the harmonic model is established, it facilitates the prediction of sea levels at any 

given time. The daily maximum storm surge value was then derived by subtracting the predicted 

tide, as determined by the harmonic model, from the observed sea level. This computation yielded 

the non-tidal residual, which serves as an indicator of daily maximum storm surge heights. 

Figure 2.2 Illustration of extracting daily maximum storm surges from tidal gauge data using a 

harmonic analysis. 'Original data' refers to the observed sea level, while 'Detrended data' indicates 

the original data minus the annual trend. 'Tide' denotes the astronomical tide, and 'Surge' signifies 

the storm surge, each extracted using harmonic analysis techniques. 

2.3.2 Identification and characterization of compound flooding 

The simultaneous occurrence of multiple coastal flood drivers, such as extreme storm surge, 

sea level rise, and heavy rainfall, is uncommon but can result in catastrophic impacts. This study 

focuses on analyzing compound flood events caused by the concurrent occurrence of these factors. 

The methodology involves the Peaks Over Threshold approach to identify each type of extreme 

event. Extreme storm surge events are characterized as days where the maximum storm surges 

exceed the 95th percentile of historical data. Similarly, sea level rise events were identified as days 

where the daily mean sea level surpasses its 95th percentile during the 1979–2022 period. For heavy 

rainfall, I define events as days where rainfall exceeds the 95th percentile of precipitation on wet 
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days, calculated based on daily rainfall time series on days with rainfall of at least 1 mm. 

Compound flooding is thus defined by the concurrent manifestation of extreme storm surges, sea 

level rise, and heavy rainfall within a single day.  

2.3.3 Mann-Kendall test 

The Mann-Kendall test, a non-parametric approach, was used for analyzing trends among 

extreme storm surges, sea level rise, and heavy rainfall (Kendall, 1975; Mann, 1945). This method 

is advantageous for datasets that may not follow a normal distribution and is robust against the 

influence of outliers. The Mann-Kendall test assesses the relative magnitudes of data points, rather 

than their actual values, making it well-suited for datasets exhibiting non-linear trends or 

influenced by external, non-controlled factors. The test involves calculating the Kendall tau 

statistic, a measure of correlation, defined as: 

𝜏 =
2

𝑛(𝑛 − 1)
∑  

𝑛−1

𝑖=1

∑  

𝑛

𝑗=𝑖+1

𝑠𝑔𝑛 (𝑥𝑗 − 𝑥𝑖) 2-8 

where 𝑛 is the number of data points, 𝑥𝑖 and 𝑥𝑗 are data values in time series, and 𝑠𝑔𝑛 is the sign 

function. A positive 𝜏  value indicates an increasing trend, while a negative value implies a 

decreasing trend. I determined the significance of observed trends at a 95% confidence level, 

enabling us to evaluate the likelihood of these trends occurring by chance. This method conforms 

to established practices in trend analysis, providing a reliable foundation for interpreting temporal 

changes. 

2.3.4 Copula functions and return periods calculations 

The copulas were used to model and analyze the dependencies between multiple variables 

among extreme storm surges, sea level rise, and heavy rainfall. Copulas are mathematical tools 

that link the individual distributions of single-dimensional variables to form a composite 

multivariate distribution. Copulas allow the combination of diverse marginal cumulative 

distribution functions (CDFs) to create multivariate CDFs, offering versatile modeling capabilities. 

This is formally expressed by Sklar's Theorem (Sklar, 1959), which states that for any multivariate 

CDFs 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) with margins F1, …, Fn, there exists a copula C such that: 
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𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛)) 2-9 

where 𝐹 represents the joint CDF of the multivariate distribution, 𝐹1 , 𝐹2, … , 𝐹𝑛 are the marginal 

CDFs of the individual variables, and 𝐶 is the copula function that binds these margins together. 

The corresponding multivariate density is: 

𝑓(𝑥1, . . . , 𝑥𝑛) = 𝑓1(𝑥1) ⋅ … ⋅ 𝑓𝑛(𝑥𝑛) ⋅ 𝑐(𝑢1, … , 𝑢𝑛) 2-10 

A generic bivariate copula function can be expressed as: 

𝐶𝜃(𝑢, 𝑣) = Φ𝜃(Φ−1(𝑢), Φ−1(𝑣)) 2-11 

where 𝐶𝜃(𝑢, 𝑣) represents the copula function for two variables 𝑢 and 𝑣, which are the cumulative 

probabilities under their respective marginal distributions. Φ and Φ−1  denote the CDF and inverse 

CDF of a standard distribution, respectively. 𝜃  is the parameter that models the dependency 

structure between 𝑢 and 𝑣. This formulation demonstrates how a parametric copula can be utilized 

to model the joint distribution of two variables, accounting for their dependency structure. 

For the construction of copula models, an array of several widely used probability 

distributions was utilized to approximate the theoretical CDF for extreme storm surges, sea level 

rise, and heavy rainfall. These distributions include exponential, gamma, generalized extreme 

value, generalized Pareto, logistic, log-logistic, lognormal, normal, three-parameter log-logistic, 

Gumbel, and Weibull. The optimal CDF was selected based on the minimum values obtained from 

the Akaike information criterion (AIC), defined as: 

AIC = 2𝑘 − 2𝑙 2-12 

where k represents the count of parameters in the probability distributions, and l denotes the 

maximum log-likelihood value for the optimal parameter set, as determined by the maximum 

likelihood estimation. Several commonly used copula families, including Clayton, Frank, 

Gaussian, Joe, Student-t, Gumbel, and BB1, were considered potential candidates for constructing 

the copula models. The optimal copula model was determined based on the criterion of the lowest 
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AIC with the Kolmogorov–Smirnov (K–S) statistic. The equations of joint CDFs of these copula 

models are shown in Table 2-1 (Nelsen et al., 2006). 

 

Table 2-1 The frequently utilized copula models. 

 Copula Joint cumulative distribution function (CDF) in copula models 

Clayton 𝐶(𝑢, 𝑣) = (𝑢−𝜃 + 𝑣−𝜃 − 1,0)−1/𝜃 

Frank 𝐶(𝑢, 𝑣) = −
1

𝜃
𝑙𝑛 [1 +

(𝑒𝑥𝑝( − 𝜃𝑢) − 1)(𝑒𝑥𝑝( − 𝜃𝑣) − 1)

𝑒𝑥𝑝( − 𝜃) − 1
] 

Gaussian 𝐶(𝑢, 𝑣) = ∫ ∫
1

2𝜋√1 − 𝜃2
𝑒𝑥𝑝 (

2𝜃𝑥𝑦 − 𝑥2 − 𝑦2

2(1 − 𝜃2)
)

𝜙−1(𝑣)

−∞

𝜙−1(𝑢)

−∞

𝑑𝑠𝑑𝑤 

Joe 𝐶(𝑢, 𝑣) = 1 − [(1 − 𝑢)𝜃 + (1 − 𝑣)𝜃 − (1 − 𝑢)𝜃(1 − 𝑣)𝜃]
1/𝜃

 

Student-t 𝐶(𝑢, 𝑣) = ∫ ∫
𝛤((𝜃2+2)/2)

𝛤(𝜃2/2)𝜋𝜃2√1−𝜃1
2

(1 +
𝑥2 −2𝜃1𝑥𝑦+𝑦2

𝜃2
)

𝑡𝜃2
−1(𝑣)

−∞

𝑡𝜃2
−1(𝑢)

−∞

(𝜃2+2)/2

𝑑𝑠𝑑𝑤  

Gumbel 𝐶(𝑢, 𝑣) = 𝑒𝑥𝑝 {−[(− 𝑙𝑛( 𝑢))𝜃 + (− 𝑙𝑛( 𝑣))𝜃]
1/𝜃

} 

BB1 𝐶(𝑢, 𝑣) = {1 + [(𝑢−𝜃1 − 1)𝜃2 + (𝑣−𝜃1 − 1)𝜃2]
1/𝜃2

}
−1/𝜃1

 

 

 Utilizing the best-fitting marginal distributions, I computed return levels for the return 

period of '2 years', '5 years', '10 years', '20 years', '50 years', and '100 years', under two distinct 

scenarios: univariate and trivariate analysis. The univariate analysis pertains to situations where 
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only a single flood driver exceeds its 95th percentile. In contrast, the trivariate analysis focuses on 

compound flood scenarios when storm surges, sea level rise, and heavy rainfall concurrently 

surpass their 95th percentiles. The return period concept is fundamentally the inverse of the 

exceedance probability, which is derived by calculating the area above the target value in the 

probability density function. By examining these return periods, I gain insights into the likelihood 

and intensity of flood events driven by various flood drivers. The formula for the return period 

calculation can be represented as: 

𝑇 =
1

1 − 𝑃𝑟(𝑋 < 𝑥)
=

1

1 − 𝐹𝑋(𝑥)
 2-13 

where 𝑃𝑟 stands for 'Probability' and 𝑃𝑟(𝑋 < 𝑥) refers to the probability that the variable 𝑋 will 

take a value less than a specific threshold 𝑥 . 𝐹𝑋  is the cumulative distribution function of the 

random variable evaluated at 𝑥. 

2.4 Detection and attribution of heat wave, heavy rainfall and CHWHR events 

2.4.1 Identification and characterization of extremes events 

In Chapter 4, a heat wave event is defined when its daily maximum temperature exceeds the 

90th percentile of daily maximum temperature (CTX90pct) for at least three consecutive days 

during the extended summer season (May–September). This percentile is determined for each 

location and each calendar day with a moving window, which is based on ranking historical 15-

day samples surrounding the calendar day (7-day before and after) during the 30-year baseline 

period (1961–1990). Thus, a total of 450 samples were used to calculate the 90th percentile value. 

The percentile-based threshold has been proved reasonable and commonly used in previous studies 

(Perkins & Alexander, 2013; Perkins-Kirkpatrick & Lewis, 2020; Sun et al., 2017). 

A heavy rainfall event is detected when daily rainfall is higher than the 95th percentile of 

precipitation in wet days. This percentile is calculated for each location based on the days with 

rainfall amount larger than 1 mm/day in the 1961–1990 period. The definition used to identify 

heavy rainfall events is recommended by the Expert Team on Climate Change Detection and 

Indices (ETCCDI, http://etccdi.pacificclimate.org/) at the World Meteorological Organization, 
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which is widely recognized and consistent with previous studies (Casanueva et al., 2016; Zhai et 

al., 2005). 

The consecutive heat waves and heavy rainfall (CHWHR) events refer to the phenomenon of 

heat waves being followed by heavy rainfall within a prescribed temporal interval. It should be 

noted that I only consider the sequential occurrence of heavy rainfall after the end of a heat wave 

as a CHWHR event and did not consider the occurrence of heavy rainfall during heat waves. 

Considering the time lag that may exist between heat wave and heavy rainfall events, I selected 

potential impact-related intervals of 1 day, 3 days and 7 days that represented a relatively short 

time span for identifying the CHWHR events. Heat wave and heavy rainfall events are identified 

separately when the corresponding index exceeds the predefined thresholds. A heat wave event is 

defined when its daily maximum temperature exceeds the 90th percentile of daily maximum 

temperature for at least three consecutive days during the extended summer season (May–

September). This percentile is calculated for each location and each calendar day, using a 15-day 

moving window surrounding the calendar day during the 30-year baseline period (1961–1990). 

And a heavy rainfall event is detected when daily rainfall is higher than the 95th percentile of 

precipitation in wet days. The percentile-based thresholds used to identify heat waves and heavy 

rainfall events have been proved reasonable and consistent with previous studies (Casanueva et al., 

2016; Perkins & Alexander, 2013; Perkins-Kirkpatrick & Lewis, 2020; Sun et al., 2017; Zhai et 

al., 2005). 

The CHWHR events are characterized by two indices: (1) heat wave duration (HWD), which 

is defined as the length of longest heat wave events; and (2) heat wave magnitude (HWM), which 

is calculated based on the average temperature anomaly relative to the calendar day 90th percentile 

during heat wave events, following the work of Perkins-Kirkpatrick & Lewis (2020). 

𝐻𝑊𝑀𝑔𝑑 =
∑ (𝑇𝑚𝑎𝑥,𝑔𝑑 −  𝑇𝑡ℎ𝑟𝑒,𝑔𝑑)

𝑁𝑔𝑑

1

𝑁𝑔𝑑
 

2-14 

where 𝐻𝑊𝑀𝑔𝑑  represents heat wave intensity (℃) at the grid 𝑔𝑑; 𝑇𝑚𝑎𝑥,𝑔𝑑  is the daily maximum 

temperature; 𝑇𝑡ℎ𝑟𝑒,𝑔𝑑  is the daily varying 90th percentile value (thresholds); 𝑁𝑔𝑑 is the number of 

heat wave days. 
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2.4.2 Event coincidence analysis 

The probability of occurrence of CHWHR events and the associated significance test (at the 

significance level of 0.05) as well as sensitivity assessment has been conducted using the event 

coincidence analysis (ECA) framework which are widely adopted to quantify simultaneous or 

lagged coincidences between event time series (Donges et al., 2016; Siegmund et al., 2017; He & 

Sheffield, 2020). ECA identifies the statistically significant relationship of CHWHR events based 

on the Poisson process, with an assumption that the lagged occurrence between heat wave and 

heavy rainfall is randomly distributed (Donges et al., 2016; Siegmund et al., 2017). The probability 

of occurrence of CHWHR events can be calculated as follows: 

𝑃𝑔 = 100 ×
1

𝑁𝐻𝑊,𝑔𝑑
∑ Θ

𝑁𝐻𝑊,𝑔𝑑

𝑗 =1

× ( ∑ 1[0,∆𝑇]((𝑡𝑖
𝐻𝑊,𝑔𝑑

− 1), (𝑡𝑖
𝐻𝑅,𝑔𝑑

)

𝑁𝐻𝑅,𝑔𝑑

𝑖=0

))       2-15 

where 𝑃𝑔 represents the probability of occurrence of CHWHR events (%), which represents the 

fraction of heat waves followed by heavy rainfall within the following days; 𝑁𝐻𝑊 is the total 

number of heat wave events at the grid 𝑔𝑑; Θ is the Heaviside function, providing values between 

0 (no heat wave events followed by heavy rainfall) and 1 (all heat wave events followed by heavy 

rainfall). 1[0,∆𝑇] is the indicator function of the interval [0, ∆𝑇], representing the event timing (time 

windows). For ∆𝑇=0, the inner term becomes the term “𝛿((𝑡𝑖
𝐻𝑊,𝑔𝑑 − 1), (𝑡𝑖

𝐻𝑅,𝑔𝑑))”. δ represents 

the Kronecker delta, which will collapse to a value of 1 if both arguments are equal and zero 

otherwise. 𝑡𝑖
𝐻𝑊,𝑔𝑑

 and 𝑡𝑖
𝐻𝑅,𝑔𝑑

 are heat wave and heavy rainfall event series, respectively, with a 

value of 1 (0) corresponding to time sequences with (without) an event. 

To carry out sensitivity analysis, different time lags (∆𝑇) have been applied to calculate the 

number of lagged coincidences between heat waves and heavy rainfall within a prescribed 

temporal interval. In addition to the occurrence of heat waves followed by heavy rainfall within 1-

day, different settings of time windows (∆𝑇=3 and 7) were also taken into account to address the 

potential time lags between heat waves and heavy rainfall events within the following 3 and 7 days.  
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2.5 Detection and attribution of heat, pluvial and successive heat and pluvial events 

2.5.1 Definitions of extreme events 

 In Chapter 5, I utilized measures of humid heat, which represent the combined effects of 

high temperatures and high humidity to indicate heat stress. In the following context, I will simply 

refer to this concept as 'heat'. Specifically, I adopted the wet-bulb temperature (TW) index as a 

proxy for humid heat events. As shown in Figure 2.3, daily TW is calculated using the well-

accepted formula with the inputs of near-surface temperature, specific humidity and surface 

pressure (Buzan et al., 2015; Davies-Jones, 2008; Raymond, Matthews, et al., 2020). A heat event 

is defined when its daily TW exceeds the 90th percentile of daily TW for at least three consecutive 

days during the boreal summer season (May–September). This percentile is determined for each 

location and each calendar day with a moving window, which is based on ranking historical 15-

day samples surrounding the calendar day (7-day before and after) during the entire research period 

(You & Wang, 2021).  

 

Figure 2.3 A schematic of identifying heat and pluvial event time series. 

 For the detection of the pluvial event, as shown in Figure 2.3, the weighted average of 

precipitation (WAP) index is adopted to identify pluvial events due to the lack of global 
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observation for pluvial flooding (Lu, 2009). The index considers both the immediate contribution 

of today's precipitation and the gradual attenuation contribution from the earlier days, through the 

weighted average of precipitation with the weight decreasing with the number of the days. WAP 

has been proved reasonable and commonly used in previous studies (Chen et al., 2021; Liao et al., 

2021). In this analysis, similar to the identification of heat events, a pluvial event is detected when 

daily WAP exceeds the threshold (the 90th percentile of the WAP during the reference period) for 

at least three consecutive days. 

 The weighted average of precipitation (WAP) is defined as: 

𝑊𝐴𝑃 =  ∑ 𝑤𝑛𝑃𝑛

𝑁

𝑛=0

 2-16 

𝑤𝑛 = (1 − 𝑎)𝑎𝑛 2-17 

where 𝑁 is the number of the day prior to the present day; 𝑃 is daily precipitation; 𝑤𝑛  is the weight 

of the days; 𝑎 is the contribution parameter (between 0 and 1). Following the previous studies, I 

defined 𝑎=0.9, and using alternative choices does not affect the main results of the study (Lu, 2009; 

Chen et al., 2021; Liao et al., 2021).  

Successive heat and pluvial events are characterized by frequency, defined as the average 

number of annual successive events and the total number of successive events during the study 

period. Successive heat-pluvial and pluvial-heat events are heat events followed by pluvial events 

within a 7-day interval, and likewise for pluvial-heat events (Figure 2.3). A 7-day temporal interval 

(time lag between heat and pluvial events) is adopted in the main section for analysis considering 

the trade-off between sample numbers and related social impacts, which can represent a relatively 

short time span for disasters recovery and preparedness. Furthermore, to test the sensitivity of 

different choices of prescribed settings, I also considered the other potential impact-related 

temporal intervals and plausible definitions of successive events by employing more extreme 

percentiles and thresholds. To handle the occurrence of multiple heat events and pluvial events 

within a week, two successive heat or pluvial events should be clustered into a single event if they 

are separated by two days or less. 
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2.5.2 Moving-blocks bootstrap-resampling-based significance test  

As the sequential occurrence of heat and pluvial events at a given location can be relatively 

rare and largely a matter of chance, traditional methods that estimate compound-event frequency 

based on event coincidence may struggle to identify causal relationships leading to successive 

extremes (Chen et al., 2021). To address this issue, I used a bootstrap resampling-based 

significance test to investigate the dependence of two time series, which can test whether the 

observations are significantly different from what would be expected due to chance alone. In 

practice, to consider autocorrelation when randomly sampling time series, the moving-blocks 

bootstrapping is utilized to perform the significance test (Vogel & Shallcross, 1996; Wilks, 1997) 

using a block size of three days. A sensitivity test using alternative block sizes (such as 5 or 10) 

did not change the significance of my findings. I implemented the moving-blocks bootstrap-

resampling-based significance test for each grid cell in the following steps: (1) Identify the heat 

and pluvial event series from 1956 to 2015. The event series are constructed by assigning a label 

of '1' (indicating occurrence) to the end day of each event in one series and to the start day of each 

event in another series; (2) Generate 1,000 resampled event series using the moving-blocks 

bootstrap, where each resampled series has the same length as the original series. By randomly 

permuting the event series, rather than the original daily time series, all relevant statistical 

attributes can be preserved; (3) Compute the occurrence frequencies of heat-pluvial and pluvial-

heat events for each pair of resampled series using a pre-determined method; (4) Compute the 

empirical distribution of consecutive occurrence frequencies using the 1,000 resampled series; (5) 

Compute the 95% confidence intervals of the empirical distribution of consecutive occurrence 

frequencies. (6) Compute the occurrence frequency of heat-pluvial and pluvial-heat events for the 

original series based on ERA5 and NCEP datasets. (7) Determine whether the occurrence 

frequency of heat-pluvial and pluvial-heat events for the original series falls within the 95% 

confidence interval of the empirical distribution of consecutive occurrence frequencies; (8) If the 

occurrence frequency of heat-pluvial and pluvial-heat events for the original series is outside the 

95% confidence interval, then it is statistically significant at the 0.05 level.  
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2.5.3 Decomposition of warming/moistening effects  

To investigate the specific impacts of warming and moistening on the changes observed in 

temporally compounding heat and pluvial events between the recent (1989‒2023) and past (1956‒

1989) 34-year periods, I conducted a decomposition analysis. The goal is to assess the relative 

significance of warming and moistening effects in shaping the trends of consecutive heat and 

pluvial events. The methodology involves constructing four distinct time series realizations: (1) 

with warming and moistening (based on original observational data); (2) without warming and 

moistening (by removing trends of wet-bulb temperature and weighted average of precipitation); 

(3) warming alone (by removing the trend of weighted average of precipitation) and (4) moistening 

alone (by removing the trend of wet-bulb temperature).  

2.5.4 Investigation of VPD anomalies and field significance test  

I investigated the potential impact of atmospheric humidity, measured by vapor pressure 

deficit (VPD) (Massmann et al., 2019; Yuan et al., 2019), on the abrupt alternation between heat 

and pluvial events. High VPD values are indicative of dry conditions and can exacerbate heat 

events, while low VPD values are associated with high humidity and may signal a transition from 

a heat event to a pluvial event. Therefore, VPD anomalies may serve as a key link between heat 

and pluvial events, making it a relevant diagnostic for my study. For successive pluvial-heat events, 

I analyzed the differences in VPD anomalies between heat events followed by pluvial events (i.e., 

heat-pluvial) and those not followed by pluvial events (i.e., heat-without-pluvial), specifically 

focusing on VPD conditions one day after the end of heat events. Similarly, for pluvial-heat events, 

I examined the differences in 1-day VPD anomalies between pluvial events followed by heat 

events (i.e., pluvial-heat) and those not followed by heat events (i.e., pluvial-without-heat). 

To determine whether the observed differences in VPD are statistically significant and not 

solely due to chance, I conducted field significance tests to address the issue of multiple hypotheses 

(Wilks, 2006, 2016). Three different types of field significance test to resolve the multiple testing 

issue are considered in the study, including the Walker's test, false discovery rate (FDR) and 

moving block bootstrapping-based multivariate test.  

(1) Walker's test 
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In the analysis, the global null hypothesis (𝐻0) refers to there is no statistically significant 

differences in VPD exist between heat-pluvial and heat-without-pluvial events. According to the 

Walker's criterion which adopts a higher standard for statistical significance, only individual local 

tests (i.e., grid points) with p-values no larger than 𝛼Walker  should be regarded as significant. 

𝛼Walker = 1 − (1 − 𝛼0)1/𝐾 2-18 

where 𝛼Walker  is p-value by Walker's criterion, 𝛼0 is the local significance level which is defined 

as 0.05 in the study. 𝐾 is the total number of individual local tests (i.e., grid points).  

(2) False discovery rate (FDR) 

I also used a relatively recent approach—control of the false discovery rate (FDR) to carry 

out the field significance test. FDR represents the expected proportion of rejected local null 

hypotheses that are actually true. Specifically, the false discovery rate (FDR) was controlled during 

these tests to minimize the likelihood of identifying false positive results (type I errors) when 

multiple tests are performed simultaneously. The FDR represents the proportion of rejected null 

hypotheses that are true. By controlling the FDR, I can increase confidence in the significance of 

the findings (Benjamini & Hochberg, 1995; Ventura et al., 2004; Wilks, 2006).  

Practically, the analysis involves testing the global null hypothesis (𝐻0), which assumes no 

statistically significant differences in VPD between heat-pluvial and heat-without-pluvial events. 

To address the multi-hypothesis issue, I performed field significance tests by controlling FDR rates 

at a certain level 𝑞. This involves rejecting local null hypotheses whose p-values are no greater 

than a threshold 𝑝FDR. 

𝑝FDR = max
𝑗=1,….K

[𝑝(𝑗): 𝑝(𝑗) ≤ 𝛼0 (
𝑗

𝑁
)]  2-19 

where 𝑁  is the total number of local tests (i.e., grid points) and 𝛼0  is the desired level of 

significance (0.05). To determine the largest K satisfying the equation, the p-values be arranged in 

ascending order; any local tests with p-values smaller than or equal to the largest p-value are 

deemed to be field-significant (Wilks, 2006).  
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(3) Moving block bootstrapping-based multivariate test  

To address the autocorrelation effects in the data, I also have conducted field significance 

test using the procedure of moving blocks bootstrap resampling. For a two-tailed test, for the upper 

tail, global hypothesis 𝐻0 should be rejected if 

∑ 𝐼(𝑑𝑖
∗ ≥ 𝑑)𝑛𝐵

𝑖=1

𝑛𝐵 + 1
≤

𝛼0

2
 2-20 

For the lower tail, 𝐻0 can be rejected if 

∑ 𝐼(𝑑𝑖
∗ ≤ 𝑑)𝑛𝐵

𝑖=1

𝑛𝐵 + 1
≤

𝛼0

2
 2-21 

where 𝐼(∙)is the indicator function, which takes a value of 1 if the statement inside the parentheses 

is true, and 0 otherwise. 𝑛𝐵 is bootstrap realizations of d*. 𝛼0 is the desired level of significance 

(0.05). 
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Chapter 3. Compound flood risk assessment 

In this chapter, storm surges and compound flood events in coastal areas are discussed, 

with the aim of presenting extensive spatial-temporal maps and a comprehensive compound flood 

risk assessment. The first is to improve compound flood risk assessment by overcoming the 

limitations of spare tide gauge stations. In this section, a new method for predicting storm surges 

is proposed. By employing vine conjugate ensemble machine learning and Bayesian hierarchical 

modelling, probabilistic prediction of spatially-temporally-continuous storm surges along China’s 

coastline is achieved. An extended framework is then introduced, incorporating storm surge sea 

level rise, and heavy rainfall for compound flood risk assessment in coastal areas of Hong Kong. 

These findings can assist urban planning and the development of adaptation strategies to enhance 

the protection of coastal infrastructure against compound flood hazards. 

3.1 Spatiotemporal prediction of continuous storm surge extremes along China’s coastline 

Coastal flooding induced by storm surges poses a serious threat to coastal communities, 

causing significant damage to buildings and endangering lives. Due to limited data from tide gauge 

stations, however, there is a lack of understanding of the severity and behavior of these storm 

surges over time and space. To address this knowledge gap, I develop a novel framework to 

achieve a spatially and temporally continuous estimation of storm surges in China. 

3.1.1 Temporally-continuous storm surge extremes reconstruction 

3.1.1.1 Validation of daily maxima prediction 

I first validate the daily maxima of storm surge predicted by four data-driven models, 

including Random Forest (RF), Convolutional Neural Network (CNN), Long Short-Term Memory 

(LSTM), and vine copula ensemble, using a 10-fold cross-validation approach. The performance 

of these models was evaluated using Pearson’s correlation and RMSE values between predicted 

and observed values across 16 gauges in China from 1979 to 2020. It is important to note that I 

initially conducted 1000 simulations of vine copula, but for comparison purposes, I focus solely 

on the mean predicted values as a representation of the overall performance of the vine copula 

ensemble model. The 10-fold validation results, as shown in Figure 3.1, demonstrate that the vine 
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copula ensemble model slightly outperforms the other models in predicting storm surge extremes 

(SSE). Specifically, the vine copula ensemble model has the highest mean Pearson’s correlation 

value (0.62), followed by the LSTM (0.61) and RF (0.60) models, while the CNN model has the 

lowest mean correlation value (0.59). Similarly, the vine copula ensemble model has the lowest 

mean RMSE value (11.42 cm), followed by the LSTM (11.55 cm) and RF (11.68 cm) models, 

while the CNN model has the highest mean RMSE value (11.94 cm). The vine copula model, 

despite only marginal improvements in mean Pearson's correlation and RMSE, compensates by 

offering superior probabilistic estimation. This is evident in its exceptional performance in high 

reliability and sharpness metrics, as shown in Figure 3.3. The advantages of the vine copula method, 

including flexibility, capturing variability and quantifying uncertainty, underscore its value as a 

tool for storm surge predictions, surpassing the limitations associated with relying on a single 

model. 

 

 

Figure 3.1 Validation of four data-driven models used to predict daily maximum storm surges 

across 16 gauges in China from 1979 to 2020, based on a 10-fold cross-validation approach. The 

data-driven models include Random Forest (RF), Convolutional Neural Network (CNN), Long 
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Short-Term Memory (LSTM), and vine copula ensemble. A: Pearson’s correlation. B: root mean 

squared error (RMSE).  

Figure 3.2 presents the varying performance of the vine copula ensemble model in 

predicting daily maxima of storm surges across tide gauge stations. In general, the vine copula 

ensemble model performs better in the northern part of the study area, with higher mean 

correlations and lower RMSE values compared to the southern part. The highest performance is 

observed for Xiamen, with a mean Pearson's correlation coefficient of 0.78 and an RMSE of 11.99 

cm. The correlations for tide gauge stations range from 0.41 (Dongfang) to 0.78 (Xiamen), 

indicating that the vine copula ensemble model generally performs well in predicting daily maxima 

of storm surges. Higher correlations are observed at the stations of Xiamen (0.78), Shanwei (0.73), 

Macau (0.72), and Hong Kong (0.71). On the other hand, the RMSE values derived for tide gauge 

stations range from 7.14 cm (Kaohsiung) to 21.79 cm (Lusi), reflecting varying levels of predictive 

accuracy. Stations with the lowest RMSE values, including Kaohsiung (7.14 cm), Keelung (7.41 

cm), and Haikou (9.72 cm), indicate that the vine copula ensemble model is able to provide more 

accurate predictions for these locations. 
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Figure 3.2 Validation of the vine copula ensemble model used to predict daily maximum storm 

surge across 16 gauges in China, based on a 10-fold cross-validation approach. A: Pearson’s 

correlation. B: root mean squared error (RMSE).  

To further assess the performance of the vine copula ensemble model in predicting daily 

maximum storm surges, I compare observed and predicted time series for 16 tide gauge stations 

along China’s coastline. I choose the tide gauge in Hong Kong as an illustrative example, 

considering the availability of a long-term record of quality-assurance tide gauge data. As shown 

in Figure 3.3, the vine copula ensemble model demonstrated a good performance at the tide gauge 

in Hong Kong, with a mean Pearson's correlation coefficient of 0.71 and an RMSE of 9.82 cm. 

The vine copula ensemble model enables a probabilistic estimation, effectively capturing 

extremely high storm surges. Figure 3.3c shows the reliability and sharpness metrics of the vine 

copula ensemble model for 16 gauges. The reliability metric, which represents the percentage of 

observations falling within the predicted confidence intervals, was found to be high for all sites 

(about 95%). In terms of sharpness that measures the average width of predicted confidence 

intervals, the range varied from 27 cm to 73 cm, with a mean of 44 cm, demonstrating the 

flexibility of the vine copula ensemble model. 
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Figure 3.3 Comparison of the observed and predicted daily maximum storm surge extremes (SSE) 

using the vine copula ensemble model. A: Time series plot of the observed SSE and predicted SSE 

at the tide gauge in Hong Kong. The time series are cut to the last three years for better illustration. 

B: Scatter plot of the observed SSE and predicted SSE at the tide gauge in Hong Kong. C: 

Reliability and sharpness metrics used to measure the performance of probabilistic predictions. 

The scatter plot shows the tide gauges colored by reliability percentage and sized by the sharpness 

in centimeters, with one specific point labeled as "Hong Kong". The reliability metric indicates 
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the percentage of observations that fall within the confidence intervals predicted by the vine copula 

ensemble model, while the sharpness metric measures the average width of these intervals.  

3.1.1.2 Comparison with existing storm surge reconstruction and reanalysis products  

I evaluate the performance of the proposed vine copula ensemble model and compared its 

accuracy with two widely used storm surge datasets: Global Storm Surge Reconstruction (GSSR) 

and Global Tide and Surge Reanalysis (GTSR). The GSSR database was derived from data-driven 

models using random forest with the optimal results (Tadesse & Wahl, 2021), while the GTSR 

dataset was produced through hydrodynamic modeling with the Delft3D Flexible Mesh Suite 

(Muis et al., 2016). The GSSR database included five different atmospheric reanalysis products, 

and I select the dataset with the best validation performance, marked as "best reconstruction," for 

comparison with the proposed vine copula ensemble model across 16 tide gauges. To compare the 

GTSR dataset, I identify the grid points nearest to each tide gauge in China and then extracted the 

daily maximum surge values at those specific grid points. I select a common period from 1979 to 

2014 for 16 tide gauges, which allowed for a comparable evaluation of daily SSE predicted by the 

vine copula ensemble model against observations.  

As shown in Figure 3.4, the vine copula ensemble model demonstrates superior 

performance in temporally-continuous storm surge reconstruction compared to both GSSR and 

GTSR. The mean Pearson's correlation coefficients are 0.62, 0.48, and 0.56 for the vine copula 

ensemble model, GSSR, and GTSR, respectively. The vine copula ensemble model outperforms 

the GSSR by 29.09% and the GTSR by 19.35%. For each tide gauge, the vine copula ensemble 

model achieves higher Pearson's correlation coefficients for all 16 tide gauges compared to GSSR. 

This advantage is particularly noticeable at locations of Zhapo and Xiamen, where the vine copula 

ensemble model attains correlation coefficients of 0.74 (Zhapo) and 0.78 (Xiamen), as opposed to 

0.60 (Zhapo) and 0.65 (Xiamen) derived by GSSR. Compared to GTSR, the vine copula ensemble 

model has a slightly better performance, with higher Pearson's correlation coefficients for 10 out 

of 16 locations. 
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Figure 3.4 Comparison of Pearson's correlation coefficients between observed and predicted daily 

maximum storm surges. The validation performance of the vine copula ensemble model is 

compared against Global Storm Surge Reconstruction (GSSR) and Global Tide and Surge 

Reanalysis (GTSR) products for the period of 1979–2014. 

Regarding RMSE (Figure 3.5), the mean values for the vine copula ensemble model, GSSR, 

and GTSR are 11.43 cm, 14.29 cm, and 15.76 cm, respectively, indicating a percentage 

improvement of approximately 19.98% compared to GSSR and 27.52% compared to GTSR. The 

vine copula ensemble model surpasses both GSSR and GTSR methods for most of the locations. 

Specifically, the vine copula ensemble model yields lower RMSE values for 12 out of the 16 

locations when compared to GSSR, and for 11 out of the 16 locations when compared to GTSR. 

This indicates that the vine copula ensemble model leverages the strengths of RF, CNN, and LSTM 

models, which can provide more accurate reconstruction of temporally-continuous storm surges 

along China's coastline. 
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Figure 3.5 Comparison of RMSEs (cm) between observed and predicted daily maximum storm 

surges derived from the vine copula ensemble model as well as the Global Storm Surge 

Reconstruction (GSSR) and Global Tide and Surge Reanalysis (GTSR) datasets for the period of 

1979–2014. 

3.1.2 Validation of spatially-continuous storm surge extremes mapping 

I validate the performance of the BHM for estimating GEV parameters at each tide gauge. 

Given the challenge of unknown true values for GEV parameters, I use a systematic approach 

involving two key steps. First, I use a full tide gauge dataset to derive probabilistic estimates for 

GEV parameters based on the BHM (reference values). Second, I successively exclude one tide 

gauge at a time and utilized the remaining tide gauges to estimate GEV parameters based on the 

BHM (predicted values). Lastly, I compare two predictions for each tide gauge using the relative 

error (%) metric. This metric calculates the percentage difference between the reference and 

predicted values. As shown in Figure 3.6, the average relative error for the location, scale and 

shape parameters across tide gauges is approximately 14.25%, 8.75% and 4.4%, respectively, 

suggesting that the GEV parameters estimated by the BHM is relatively accurate. The location 
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parameter represents the center or mean of the GEV distribution. The results indicate that the 

estimated location values deviate from the “true” values by approximately 14.25% on average, 

which can be considered acceptable estimates. The scale parameter governs the spread or 

variability of the GEV distribution. The lower average relative error for this parameter implies that 

the estimation of scale values is generally more accurate. The shape parameter is crucial in 

determining the tail behavior of the GEV distribution, and the lowest relative error for this 

parameter indicates that the estimation of the shape parameter is most precise among the three 

types of GEV parameters.  

 

Figure 3.6 Validation of GEV parameters estimated using Bayesian hierarchical model (BHM) 

across tide gauges. Relative error (%) represents a measure of the quality of parameter estimation, 

indicating how closely the reference values derived from the full tide gauge dataset align with 

predicted values using the leave-one cross-validation method.  

I further examine the BHM's predictive skill for annual maximum storm surge heights 

using the leave-one cross-validation method. I calculate the relative errors to assess the accuracy 

of storm surge height estimates compared to observations. As shown in Figure 3.7a, the storm 

surge height estimates exhibit relative errors spanning from 3% to 19%, with an average value of 

12%. This indicates that, on average, the accuracy of estimating annual maximum storm surge 

heights at ungauged locations is within 12% of observed values. To address the model uncertainty 

in interpolating annual maxima at ungauged locations, I calculate the fraction of observed annual 

maximum storm surge heights that fall within one standard deviation of predicted annual 
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maximum storm surge heights. The fraction, representing the percentage of observed values 

captured by one standard deviation of predicted annual maximum storm surge heights, ranges from 

59.6% to 82% across the 16 tide gauges (Figure 3.7b). From these 16 tide gauges, I have 

determined that, on average, about 68.8% of the annual maximum values fall within one standard 

deviation. This suggests that the estimates of model uncertainty are reasonably accurate and 

consistent with the theoretical expectation of capturing around 68.3% of the values within one 

standard deviation. This further demonstrates that the predicted intervals effectively capture the 

observed values of annual maxima at most tide gauges. 

 

 

Figure 3.7 Assessment of predictive skill and uncertainty of Bayesian hierarchical model (BHM) 

for annual maximum storm surge heights. A: Relative error (%) between observed extreme values 

and BHM estimates. B: Fraction of true values of annual maximum storm surge heights that lie 

within one standard deviation of BHM estimates (%). 

3.1.3 Probabilistic prediction of spatially-temporally-continuous storm surge extremes 

I use the vine copula ensemble model to implement the temporally-continuous storm surge 

extremes (SSE) reconstruction throughout the entire study period (1979–2020) for all tide gauges, 
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irrespective of observation limitations. Coupled with the spatially-continuous estimation method 

using the BHM, I can predict the spatially-temporally-continuous extreme storm surges without 

any spatial or temporal gaps at a 0.25-degree resolution. 

The vine copula ensemble model is able to produce a posterior distribution of SSE at 

ungauged locations, with the mean, lower and upper bounds of the predicted storm surge heights. 

The lower bound is the value at the 2.5th percentile of the distribution and the upper bound is the 

value at the 97.5th percentile of the distribution. As depicted in Figure 3.8, the posterior mean of 

predicted SSE provides an estimation of the most likely or anticipated extreme storm surge height. 

Throughout various geographical locations, storm surge heights were estimated with a range from 

0.54 to 1.29 m, with a mean of about 0.73 m during the 1979–2020 period.  
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Figure 3.8 Annual maxima of storm surge heights at ungauged locations based on the mean of 

posterior distribution. The map represents the multi-year mean of posterior distributions for annual 

maxima of storm surge height, covering the period from 1979 to 2020. 

To address the uncertainty inherent in SSE predictions, I also estimate the lower and upper 

bounds of the predicted storm surge heights. The lower bound, estimated as the value at the 2.5th 

percentile of the distribution, indicates a 2.5% likelihood that the actual storm surge height might 

fall below this value (Figure 3.9a). For multiple years during 1979–2020, the average SSE value 

exhibits a lower bound of extreme storm surge heights ranging from approximately 0.07 to 0.59 

m, with a mean of about 0.23 m. Conversely, the upper bound, estimated as the value at the 97.5th 

percentile of the distribution, represents the worst-case scenario (Figure 3.9b). The predicted storm 

surge heights, ranging from approximately 1.04 to 3.48 m (with a mean of about 1.49 m), signify 

a severe situation for coastal regions, with the potential of high-impact consequences. 
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Figure 3.9 Annual maxima of storm surge heights estimated at ungauged locations based on the 

lower bound (A) and upper bound (B) of posterior distributions. The lower bound is the value at 

the 2.5th percentile of the distribution and the upper bound is the value at the 97.5th percentile of 

the distribution. The map represents the multi-year mean during 1979–2020. 

The findings reveal a significant spatial variability of the SSE (Figure 3.8 and Figure 3.9). 

Specifically, I identify two hotspots with higher storm surge heights, including the central part 

(~30°N, including most areas in Shanghai) and the Northeast part of the study area (~35°N, 

encompassing most areas in Liaoning province). The increased vulnerability of hotspots to higher 

storm surge heights can be attributed to the coastal orientation, exposing them to prevailing winds 

and storm systems originating from distant locations (Liang & Julius, 2017). Furthermore, the 

bathymetry of the region, characterized by gradually sloping seabeds, plays a crucial role in 

amplifying storm surge as it approaches the coast (Weaver & Slinn, 2010). Geographical features 

like bays and river mouths may also act as funneling mechanisms, thereby resulting in amplified 

storm surge heights along the coastline (Talke et al., 2021). 

To better understand the occurrence and intensity of these extreme events, the distribution 

and return periods of extreme storm surge heights were further estimated. The Generalized 
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Extreme Value (GEV) distribution was chosen for its accommodation to different types of tail 

behavior through shape parameters. Compared to alternative distributions like the Generalized 

Pareto Distribution (GPD) and the Log-Normal distribution, the GEV distribution offers greater 

flexibility in modeling the tails of extreme data, which is crucial for accurately capturing the 

potential range of storm surge events. Specifically, I evaluate the return periods of 20, 50, and 100 

years for storm surge heights, as depicted in Figure 3.10. For the 20-year recurrence interval 

(Figure 3.10a), the storm surge heights range from a low of 0.8 m to a high of 2.28 m, with an 

estimated average value of 1.09 m). While considering the 50-year recurrence interval (Figure 

3.10b), there is a slight increase to 1.11 m in the minimum storm surge height and the maximum 

storm surge height increases to 2.92 m. The mean of storm surge heights significantly rises as high 

as 1.44 m. As I examine the 100-year recurrence interval (Figure 3.10c), the minimum storm surge 

height escalates further to 1.62 m and the maximum surge reaches a height of 4.87 m. The average 

storm surge height also shows a marked increase of up to 1.97 m. While comparing the maximum 

values of storm surges, the anticipated intensity for the 100-year recurrence interval significantly 

exceeds those of the 20- and 50-year intervals.  

 

Figure 3.10 Annual maxima of storm surge heights with different return periods: 20-year (A), 50-

year (B), and 100-year (C). Return periods are estimated by the Generalized Extreme Value (GEV) 

approach. 
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3.2 Spatially seamless and temporally continuous assessment on compound flood risk in 

Hong Kong 

As depicted in Figure 3.11, in Hong Kong, there are only six tidal gauge stations with 

records spanning 25 to 69 years up to 2022, albeit with some missing values. This sparse and 

incomplete data complicates the analysis of sea level rise and storm surge patterns at sites without 

gauges. To address this, this study used the developed modeling framework that combines 

ensemble machine learning with Bayesian hierarchical models to examine compound coastal flood 

risk in Hong Kong (Chapter 2.2). First, I achieve the spatial-temporal continuity (10 km, daily) of 

extreme storm surges and sea level rise data at ungauged sites along the coastline of Hong Kong 

during 1970–2022. This was accomplished by using the same modeling framework as in the 

previous section, and more information can be found in Chapter 2.2. Afterwards, these spatial-

temporal continuous extreme storm surges and sea level rise data are combined with the widely 

used precipitation data for a comprehensive analysis of compound coastal flood risk, resulting 

from the combined effect of extreme storm surges, sea level rise, and heavy rainfall. Finally, I 

provide a spatially coherent and temporally continuous assessment of compound coastal flood risk, 

enhancing the understanding of Hong Kong's compound coastal flood hazards. 

 

Figure 3.11 Tidal gauge stations in Hong Kong.  
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Hong Kong, located on China's southeast coast, is a densely populated city with 7.4 million 

residents spread over 1,110 km² and features a coastline that extends beyond 1,000 km. This 

coastal city, facing an average of 6 typhoons annually (Hong Kong Observatory, 2012), is 

particularly vulnerable to compound flooding caused by storm surges, sea level rise, and intense 

rainfall under a warming climate (He et al., 2016; Wong et al., 2011). This vulnerability is 

heightened by Hong Kong's geographical features and urbanization. Hong Kong's susceptibility to 

weather-related threats stems from its low-lying coastal areas and rising sea levels, which have 

increased by 31 mm per decade since 1954 (Hong Kong Observatory, 2023). Key areas like 

Victoria Harbour, with an average depth under 12 meters, are especially prone to storm surges. 

Urbanization further exacerbates coastal flood risks. As one of the world's most densely populated 

cities, Hong Kong's urban landscape, typified by areas like Kowloon with over 90% urbanization, 

significantly impedes natural water absorption, increasing runoff. The city's existing infrastructure, 

particularly its antiquated drainage systems, struggles to cope with the changing patterns and 

intensities of floods (Qiang et al., 2021). The record-breaking rainfall of 158 mm in an hour in 

2023 challenged the systems' capabilities in managing extreme weather events. Therefore, Hong 

Kong's unique combination of rising sea levels, dense urban layout, and intense rainfall, rooted in 

its distinct geographical location, makes it an ideal case study for compound flood risk assessment. 

3.2.1 Validation and prediction of storm surge heights 

Figure 3.12 shows the scatterplot of predicted and observed daily maximum storm surges in 

six gauges across Hong Kong using the Random Forest (RF), Convolutional Neural Network 

(CNN), Long Short-Term Memory (LSTM), respectively. Overall, these results indicate that the 

prediction models perform well in estimating daily maximum storm surge. Among the stations, 

Shek Pik demonstrated the highest correlation coefficients across all three models, with values of 

0.84, 0.80, and 0.80 for RF, CNN, and LSTM, respectively. Quarry Bay also exhibited significant 

correlations, with coefficients of 0.82, 0.74, and 0.74 for RF, CNN, and LSTM, respectively. Tsim 

Bei Tsui, Tai Miu Wan, Tai Po Kau, and Waglan Island displayed correlations ranging from 0.80 

to 0.82 for RF, 0.71 to 0.80 for CNN, and 0.67 to 0.74 for LSTM. 
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Figure 3.12 Scatterplot of predicted and observed daily maximum storm surges in six gauges. The 

models include Random Forest (RF), Convolutional Neural Network (CNN) and Long Short-Term 

Memory (LSTM). 
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Among the models, the vine copula ensemble method demonstrates the strongest correlation 
coefficients for all sites, with values ranging from 0.82 to 0.86, as shown in  

Figure 3.13. In terms of RMSE values, the vine copula ensemble method achieved the lowest 

errors for all sites, with values ranging from 7.08 cm to 9.64 cm. The results suggest that the vine 

copula ensemble method merges the advantages of the RF, CNN, and LSTM models to achieve 

the highest accuracy in predicting storm surge extremes. Overall, the use of vine copula ensemble 

method in combination with other individual methods can help to address the limitations of 

individual models and provide a more accurate and robust prediction of complex events, such as 

storm surge extremes. 

 

Figure 3.13 Comparison of model performance for four models across six gauges. The models 

include Random Forest (RF), Convolutional Neural Network (CNN), Long Short-Term Memory 

(LSTM), and vine copula ensemble. A: Pearson’s correlation. B: Root Mean Squared Error 

(RMSE). C and D are the maps of Pearson’s correlation and RMSE between predicted and 

observed daily maximum storm surges across six gauges using the vine copula ensemble method, 

respectively.  

Figure 3.14 presents the average results of a Bayesian Hierarchical Model (BHM) used to 

predict storm surge heights over a multiyear period, from 1979 to 2022. The model generates a 

posterior distribution, which represents the probabilities of different outcomes for the storm surge 

height given the available data. The results are aggregated in terms of the mean, lower bound (2.5th 
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percentile), and upper bound (97.5th percentile) of the predicted storm surge heights. As shown in 

Figure 3.14a, the mean storm surge height provides an estimate of the most probable or expected 

storm surge. Across the geographical locations included in the dataset, storm surge heights ranged 

from approximately 0.64 to 1.06 m, with an overall average of about 0.87 m during 1979-2022. 

This mean storm surge height represents the most probable or expected storm surge height based 

on the model. Higher storm surge heights are observed in the northern parts of Hong Kong. 

The northern parts of Hong Kong were estimated to be more exposed to higher storm surge 

heights based on predictions from ungauged stations. This is likely due to the coastal orientation, 

facing the prevailing winds and storm systems that come from the south or southeast. Additionally, 

the bathymetry of the area, including gradually sloping seabeds, can contribute to the build-up of 

storm surges as they approach the coast. Geographical features such as bays or river mouths may 

also act as funneling mechanisms, concentrating storm surges and leading to increased heights 

along the northern coastline. 

To account for the uncertainty inherent in such predictions, I also calculate the lower and 

upper bounds of the predicted storm surge heights (Figure 3.14, panels B and C),). The lower 

bound is the value at the 2.5th percentile of the distribution, suggesting a 2.5% chance that the 

actual storm surge height could be below this value. These values ranged from approximately 0.20 

to 0.51 m, with an overall average of about 0.42 m. Similarly, the upper bound is the value at the 

97.5th percentile of the distribution, indicating a 2.5% chance that the actual storm surge height 

could be above this value. The predicted storm surge height values ranging from approximately 

1.11 to 1.93 m, with an overall average of about 1.60 m, indicate a significant and potentially 

dangerous situation for coastal areas. 
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Figure 3.14 The seamless mappings of storm surge heights in Hong Kong. Panel A displays the 

posterior mean distribution of extreme storm surge heights, spanning the years 1979 to 2022. 

Panel B and C depict the range of uncertainty in storm surge forecasts, with the lower limit 

represented by the 2.5th percentile and the upper limit by the 97.5th percentile of the distribution. 

Building on the above foundation, I have successfully produced and compiled an extensive 

dataset of daily and spatially-continuous storm surge information along the entire Hong Kong 

coastline, covering a period from 1979 to 2022 (Figure 3.15). After applying the Mann-Kendall 

test to analyze the data, I find that there is a statistically significant increase in the average annual 

maximum storm surge levels in Hong Kong, quantified as a rise of 3 mm per year at a significance 

level of 0.05. The Mann-Kendall test confirms a consistent and significant upward trend in extreme 

storm surges over the years. This finding underscores the growing impact of extreme storm surges 

on the region. 
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Figure 3.15 Daily time series of storm surge from 1979 to 2022. 

3.2.2 Validation and prediction of mean sea level heights 

Similar to the methodology for storm surge prediction, I implement an ensemble machine 

learning framework. This framework was specifically designed for the probabilistic prediction of 

spatially and temporally continuous mean sea levels in coastal regions of Hong Kong. Through 

this advanced modeling approach, I am able to capture both the spatial variability along the 

coastline and temporal changes of sea level rise over the years. With this robust framework, I 

compiled an extensive dataset of daily, spatially-continuous mean sea level readings along the 

entire coastline. This dataset spans a significant period, from 1979 to 2022, providing a 

comprehensive view of sea level trends in the region. The resulting insights contribute significantly 

to the understanding of sea level dynamics and their implications for coastal management and 

future planning in Hong Kong. 

Leveraging an ensemble machine learning framework enhances the accuracy and reliability 

of estimating or predicting the mean sea level at ungauged stations in the coastal regions. Figure 

3.16presents the performance of models across different gauges. Quarry Bay stands out with a 

notably high correlation coefficient of 0.82, followed by Tsim Bei Tsui at 0.73. A closely clustered 

correlation is observed among Shek Pik, Tai Miu Wan, Tai Po Kau, and Waglan Island, with their 
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coefficients ranging narrowly from 0.79 to 0.81. Model accuracy through Root Mean Square Error 

(RMSE) values was evaluated, also shown in Figure 3.16. Shek Pik leads with the most precise 

mean sea level predictions, reflected in the lowest RMSE of 9.4 cm. Additionally, Quarry Bay, 

Tsim Bei Tsui, Tai Miu Wan, Tai Po Kau, and Waglan Island demonstrate RMSE values varying 

from 9.5 cm to 11.9 cm.  

Figure 3.16 Pearson’s correlation between predicted and observed daily mean sea level across six 

gauges using the vine ensemble machine learning framework.  

Understanding sea level at ungauged sites is essential for assessing the potential impacts of 

climate change, particularly for low-lying areas that are vulnerable to sea level rise. The results 

can provide spatially-temporally continuous mean sea level mappings at coastal locations where 

no direct observational data (gauges) are available (Figure 3.17). Generally, the climatological 

mean sea level in Hong Kong, aggregated across all ungauged sites along the coastline, was 

recorded at 1.46 meters over the period from 1979 to 2022. This measurement reflects the average 

sea level height during this extensive time frame, encompassing various unmonitored coastal 

locations and offering a comprehensive overview of sea level in the region. 
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Figure 3.17 Continuous spatial-temporal mappings of mean sea level. This map showcases the 

multi-year mean spanning from 1979 to 2022. 

Building upon the comprehensive daily time series data of mean sea level from 1979 to 2022 

(Figure 3.18), the analysis provides a deeper understanding of sea level changes in Hong Kong. 

Utilizing the Mann-Kendall test, I have identified a consistent and significant upward trend in 

mean sea level. The findings reveal a statistically significant increase in the average mean sea level 

in Hong Kong, quantified as a rise of 25 mm per decade, at a significance level of 0.05. This 

pronounced increase, corroborated by the trend observed over the years, aligns with broader 

patterns of sea level rise in the region and reflects the ongoing impacts of climate change. The data 

not only underscores the reality of rising sea levels but also emphasizes the urgent need for 

adaptive and mitigation strategies to protect coastal communities and ecosystems in Hong Kong 

against the consequences of sea level rise. 
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Figure 3.18 Daily time series of mean sea level from 1979 to 2022. 

3.2.3 Extreme rainfall event analysis  

I utilize the MSWEP dataset (Beck et al., 2019), a comprehensive 0.1° daily precipitation 

product spanning from 1979 to 2022. Recognized for its high accuracy and widespread use, this 

dataset was used to investigate precipitation patterns along the coastline of Hong Kong. I employ 

the Mann-Kendall test to evaluate the trend in annual maximum daily rainfall intensities. The 

analysis reveals a significant increase in the daily heavy rainfall intensities, particularly in the 

southwestern and northeastern coastline of Hong Kong (Figure 3.19). These findings are important 

because they indicate that these areas of Hong Kong are experiencing more intense rainfalls than 

ever before. This could have implications for managing flood risks and making preparations for 

days with intense rainfall in Hong Kong. 

I also investigate the thresholds for heavy and extreme rainfall in Hong Kong. The heavy 

rainfall threshold, indicated by the 95th percentile, is a crucial indicator for defining heavy rainfall 
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events. The analysis shows that the average heavy rainfall threshold across the dataset was 37.68 

mm (  

Figure 3.20a). The extreme rainfall threshold, marked by the 99th percentile, is significant for 

identifying exceptionally intense rainfall events. The average threshold for extreme rainfall was 

found to be 80.05 mm (  

Figure 3.20b). The thresholds for heavy and extreme rainfall exhibit spatial variation, with the 

central coastal regions displaying higher thresholds. This indicates a higher precipitation in these 

areas. These findings provide an in-depth quantitative foundation for understanding the intensity 

and variability of heavy and extreme rainfall in Hong Kong. It also has significant implications for 

urban planning, especially in designing flood risk management and emergency response strategies 

in the face of increasingly volatile weather patterns. 
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Figure 3.19 Extreme annual trend of maximum 1-day precipitation (R1day) during 1979-2022 

using Mann-Kendall test.  

 

Figure 3.20 Heavy rainfall thresholds from 1979 to 2022.  
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3.2.4 Compound flood risk analysis 

Upon achieving the comprehensive collection of daily spatially-continuous data on storm 

surge, sea level rise, and heavy rainfall in Hong Kong, I further explored the interactions among 

these drivers in the context of compound flooding. As shown in Figure 3.21, The interaction among 

storm surges, rising sea levels and heavy rainfall is of special important. Sea level rise can 

exacerbate the effects of storm surges, leading to higher and more damaging coastal floods. When 

coupled with heavy rainfall, especially during extreme weather events, the risk of severe flooding 

can be amplified. This is critical in Hong Kong, which is exceptionally prone to these challenges. 

The city's geographical characteristics, with a substantial portion of its densely populated urban 

areas and critical infrastructure situated in low-lying coastal zones, heightens its vulnerability. 

 

Figure 3.21 The schematic diagram for illustrating the interaction among storm surge, sea level 

rise, and heavy rain contributing to compound flooding. 
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To investigate compound flooding in Hong Kong, three primary drivers were identified: 

extreme storm surge, sea level rise, and heavy rainfall. These drivers are defined based on 

statistical thresholds. An extreme storm surge, termed "extreme_surge," is characterized by daily 

maximum storm surges surpassing the 95th percentile. Sea level rise, referred to as "extreme_msl," 

is defined by daily mean sea levels exceeding their 95th percentile. Heavy rainfall, denoted as 

"heavy_rain," is identified as daily rainfall amounts crossing the 95th percentile on wet days. As 

shown in Table 1, I reveal significant dependence between these flood drivers. During the time 

period from 1979 to 2022 in Hong Kong, I find the concurrence of heavy rainfall events with 

extreme storm surges. Results show that heavy rainfall events were accompanied by extreme storm 

surges in approximately 14.54% of occurrences, as indicated by the average conditional 

probability P(extreme_surge | heavy_rain) (Table 3-1, Figure 3.22a). In contrast, the inverse 

relationship, characterized by the presence of heavy rainfall during periods of extreme storm 

surges, manifested less frequently, with a mean probability of 9.58% (P(heavy_rain | 

extreme_surge)) (Figure 3.22b).Additionally, the likelihood of encountering sea level rise 

conditions concurrent with heavy rainfall was quantified at 13.69% (P(extreme_msl | heavy_rain)) 

(Figure 3.22). Conversely, the incidence of heavy rainfall during episodes of extreme mean sea 

level was calculated to be 9.00% (P(heavy_rain | extreme_msl)) (Figure 3.22d).  

In the context of compound flooding involving all three identified drivers, the average 

probability of simultaneous extreme storm surge and extreme mean sea level conditions during 

heavy rainfall was estimated to be 10.66% (Table 3-1, Figure 3.22e). Similarly, the co-occurrence 

probabilities of heavy rainfall with extreme mean sea level during extreme storm surges, and of 

heavy rainfall with extreme storm surges during extreme mean sea level events, were both 

determined to be 7.03% (Figure 3.22f). These findings underscore the interdependencies among 

the different drivers of compound flooding in Hong Kong, which is essential for informing flood 

risk assessment and management strategies in the region. 

  



 

65 

 

Table 3-1 The average conditional probabilities for compound flooding involving two or three 

drivers: extreme storm surge, sea level rise, and heavy rainfall in Hong Kong. 

Compound flooding by two or three drivers Average 

conditional 

probability 

Two drivers: extreme storm 

surge and heavy rainfall 

P(extreme_surge | heavy_rain) 14.54% 

P(heavy_rain | extreme_surge)  9.58% 

Two drivers: sea level rise 

and heavy rainfall 

P(extreme_msl | heavy_rain)  13.69% 

P(heavy_rain | extreme_msl)  9.00% 

Three drivers: extreme 

storm surge, sea level rise 

and heavy rainfall 

P([extreme_surge & extreme_msl] | heavy_rain) 10.66% 

P([heavy_rain & extreme_msl] | extreme_surge) 7.03% 

P([heavy_rain & extreme_surge)]| extreme_ msl) 7.03% 
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Figure 3.22 The conditional probability of compound flooding due to different combinations of 

extreme storm surge, sea level rise and heavy rainfall. 

I use copulas to model and analyze the dependencies between multiple variables among storm 

surge, sea level rise, and heavy rainfall. This approach is particularly effective in understanding 
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the complex, non-linear relationships that exist among these factors. As shown in 

 

Figure 3.23 (panels A, B, and C), the three-parameter log-logistic distribution closely aligns 

the cumulative probabilities with the empirical probabilities observed in the cases of extreme storm 

surge, sea level rise, and heavy rainfall. 
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 Subsequently, the cumulative probabilities were used to develop bivariate copulas for 

extreme storm surge, sea level rise, and heavy rainfall. 

 

Figure 3.23 (panels D, E, and F) show the contours of bivariate CDFs derived from the chosen 

copulas. Positive dependencies observed in bivariate events suggest the likelihood of compound 

flooding in coastal areas of Hong Kong. Notably, the Survival Clayton copula emerged as the most 

fitting model to describe the interdependency between heavy rainfall and extreme storm surges. In 

contrast, the Gumbel copula was found to be suitable for capturing the relationship between heavy 

rainfall and sea level rise, whereas the Student-t copula represented the best dependence between 

extreme storm surges and sea level rise. 
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Figure 3.23 The use of copulas in examining the interrelationships among several factors including 

extreme storm surges, sea level rise, and heavy rainfall which collectively contribute to compound 

flooding in Hong Kong. Panels A, B, and C display the best-fitting marginal distributions for 

extreme storm surge, sea level rise, and heavy rainfall, respectively. Panels D, E, and F depict the 

bivariate copulas representing the interactions between these coastal flood drivers. 

Using above the best-fitting marginal distributions, I conduct univariate analysis (only one 

flood driver exceeds its 95th percentile) and trivariate analysis (compound flood scenarios where 

storm surge, sea level rise, and heavy rainfall all surpass their respective 95th percentiles 

simultaneously). As shown in Figure 3.24, I compare return levels for heavy rainfall, extreme 

storm surges, and sea level rise across various return periods in both univariate and trivariate 

settings. In the case of heavy rainfall, under univariate conditions, return levels gradually increase 

from 49.25 mm for a 2-year period to 126.36 mm for a 100-year period. However, in trivariate 

scenarios, these levels escalate markedly, starting at 59.20 mm for 2 years and soaring to 261.16 

mm for a 100-year return period, emphasizing the increased risk of extreme precipitation in 

compound flood situations. Similarly, for storm surges, the return levels in univariate analysis 

range from 0.41 m for a 2-year return period to 1.18 m for a 100-year return period. In trivariate 

scenarios, these figures rise, spanning from 0.49 m for a 2-year return period to 1.40 m for a 100-
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year return period, showing a heightened risk of extreme storm surges during compound flood 

events. As for sea level rise, for univariate conditions, return levels vary from 1.68 m for a 2-year 

return period to 2.55 m for a 100-year return period. Conversely, trivariate analysis reveals slightly 

increased levels, from 1.74 m for a 2-year return period to 2.15 m for a 100-year return period, 

reflecting the intricate interactions in compound flood events. 
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Figure 3.24 Comparison of return levels in univariate and trivariate flood scenarios. Panels A, B, 

and C display the return period of heavy rainfall, extreme storm surges and sea level rise, 

respectively.  
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3.3 Discussions and summary of the chapter  

This chapter presented a novel approach to understanding and managing the escalating 

risks of coastal hazards, particularly storm surges and compound flooding, in China's coastal 

regions. Initially, the chapter focused on the development of a novel probabilistic framework for 

predicting storm surges. This part highlighted the validation of methodologies, specifically the 

vine copula ensemble approach and Bayesian Hierarchical Models, were employed to address the 

challenges of sparse data in estimating storm surge extremes. By leveraging data from adjacent 

tidal gauge stations, the BHM method surpasses the constraints of site-specific analyses, allowing 

for predictions in areas without direct data and thus expanding the understanding of flood risks in 

unmonitored coastal regions. This method provides a spatially consistent and time-continuous 

analysis, enhancing our understanding of compound flood hazards. The approaches developed here 

can be extended to other coastal areas for assessing compound flood risks, especially in regions 

with limited tidal gauge stations. 

While the improvement in the vine copula ensemble model may be small in terms of mean 

correlation values of storm surge reconstruction, it offers several advantages over the RF, CNN, 

and LSTM models alone. The vine copula offers flexibility in selecting copula families, enhancing 

flexibility to diverse data distributions when evaluating the alignment of the RF, CNN, and LSTM 

models with observed data. The increased flexibility enhances the model's capability to capture 

the variability in storm surge reconstruction. Moreover, the comprehensive evaluation and 

integration of the RF, CNN, and LSTM models provides a more accurate quantification of 

uncertainty associated with storm surge predictions compared to relying on a single model. 

Addressing uncertainties is particularly critical for reliable predictions of storm surge due to the 

significant impact of moderate-to-large storm surge ranges on total water. Taking into 

consideration uncertainties helps to account for the potential variability in storm surge ranges and 

provide more reliable predictions of the actual water levels that coastal areas may experience. This 

capability allows decision-makers to accurately assess the risk associated with storm surges and 

make informed decisions on the implementation of sound mitigation measures. 
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The proposed BHM framework enables the spatially-continuous storm surge estimation, 

improving the traditional site-by-site analysis. One of its notable strengths lies in the ability to 

effectively address the limitation of data sparsity, which is the most common challenge to coastal 

storm surge hazard assessment and risk management. Unlike the traditional site-specific analysis 

that relies solely on data from individual tide gauges, the BHM effectively leverages information 

from nearby tide gauges, capturing the spatial dependencies inherent in storm surge events. This 

allows for storm surge predictions at ungauged locations, providing valuable insights even in the 

areas without direct observations. The BHM exhibits a remarkable accuracy in the estimation of 

GEV parameters and can reliably predict annual maximum storm surge heights at ungauged 

locations. Rigorous leave-one cross-validation method was used in this study to validate the 

predictive capability of BHM. This validation process systematically examines the BHM's ability 

to generalize to ungauged locations by excluding one gauge at a time and using the remaining data 

to estimate parameters and then predict storm surge heights. The consistent and accurate 

performance of the BHM across multiple cross-validation experiments reinforces confidence in its 

ability to make reliable predictions even in areas where observational data is sparse or unavailable. 

Moreover, the BHM can be used to provide a comprehensive and reliable assessment of 

uncertainties, enabling decision makers to have a deeper understanding of the variability and risk 

associated with storm surge events. For example, the BHM can generate the posterior distribution 

of estimated storm surge heights, including mean, lower- and upper-bound values, to capture the 

probabilities of different storm surge heights. The probabilistic prediction generated from the 

BHM approach offers valuable insights for establishing risk thresholds in decision-making 

processes, leading to better preparedness and protection against storm surge. Rather than relying 

solely on a single deterministic prediction, decision-makers can utilize the range of probabilistic 

predictions to determine risk thresholds with specific criteria. For example, by incorporating 

probabilistic prediction, decision-makers can use the 90th percentile event as a reference point for 

making evacuation decisions, managing port operations, and determining the deployment of flood 

gates. By setting risk thresholds based on specific criteria and incorporating probabilistic 

prediction, the potential impacts of storm surge events can be more accurately assessed. 

In addition to the BHM approach, there are several methods exist in previous studies for 

spatial interpolation and extreme value estimation, including Kriging (Krige, 1951), Inverse 

Distance Weighting (IDW) (Shepard, 1968), and Geographically Weighted Regression (GWR) 
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(Fotheringham et al., 2002). While Kriging is widely used for geostatistical interpolation, it often 

requires a large amount of data to accurately model the spatial correlation structure, therefore fall 

short in estimation accuracy in data-sparse regions than BHM. Similarly, IDW may have less 

reliable estimates in complex spatial patterns due to its lack of explicit spatial correlation 

representation. GWR extends traditional regression models by allowing the relationships between 

variables to vary over space. While GWR can capture local variations, it is deterministic and does 

not inherently provide probabilistic estimates, which are crucial for risk assessment and decision-

making under uncertainty. In contrast, the BHM framework excels by offering a probabilistic 

approach that not only accounts for spatial correlations but also provides a comprehensive 

assessment of uncertainties. This probabilistic insight is particularly valuable for establishing risk 

thresholds and making informed decisions in coastal storm surge hazard management. 

The chapter reveals the severity of storm surge along China's coastline throughout the 

period from 1979 to 2020. The estimated posterior mean of storm surge heights up to 1.29 m, 

which represents more severe and potentially hazardous surge conditions. Such heights can lead 

to more extensive flooding, damage to coastal structures, and pose risk to human life and property. 

The regions with higher vulnerability to storm surges, including Shanghai and Liaoning provinces, 

need to implement targeted risk mitigation strategies to enhance coastal resilience. The estimation 

of return periods further emphasizes the importance of planning for rare, yet extremely severe 

storm surge events. With a 100-year return period storm surge height reaching as high as 4.87 m, 

China’s coastal regions need to be prepared for such exceptionally intense events that could cause 

catastrophic damages and affect a large number of population. When high storm surge coincides 

with extreme precipitation and high tides under a warming climate, it can even lead to a 

compounded effect, causing deadly coastal flooding (Bevacqua et al., 2020; Fang et al., 2021; 

Jafarzadegan et al., 2023). To mitigate the risk associated with storm surges, urgent measures are 

needed for coastal communities and authorities. For example, implementing nature-based coastal 

protection solutions, such as preserving or restoring coastal vegetation like mangrove forests, can 

significantly reduce the height of storm surges by over 2 meters (De Dominicis et al., 2023). 

The chapter on the analysis of compound flooding also reveals a statistically significant 

increase in extreme storm surge levels and mean sea levels, highlighting the growing impact of 

climate change on Hong Kong's coastal areas. The use of copulas demonstrated key 
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interdependencies among extreme weather phenomena, providing critical insights for managing 

the increasing risks of compound flooding in coastal urban environments. Moreover, the findings 

emphasize the significant threat posed by the simultaneous occurrence of extreme storm surges, 

sea level rise, and heavy rainfall. Notably, the trivariate analysis underscores the increased severity 

and risk in scenarios where all three flood drivers exceed their 95th percentiles simultaneously. The 

rise in return levels for heavy rainfall and storm surges in these compound flood scenarios, 

compared to the univariate cases, points to a heightened risk of extreme weather events and their 

catastrophic impact on coastal urban areas. 

Throughout the chapter, the importance of continuous and spatially detailed data for 

accurate hazard prediction and risk assessment was emphasized. The findings from both studies 

were not only academically significant but also vital for practical applications, providing essential 

insights for urban planners and policymakers in developing effective mitigation and adaptation 

strategies for coastal cities. These can serve as a vital resource for policymakers and urban planners, 

particularly in designing and implementing effective flood defense mechanisms and urban 

infrastructure resilient to compound flood events. The elevated return levels for rainfall and storm 

surges under trivariate conditions suggest the need for more robust flood defense systems that can 

withstand the compounded effects of these extreme events. This is crucial in preventing the 

catastrophic consequences that can result from such compound flood events. 
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Chapter 4. Identification and mechanisms of consecutive heat wave 

and heavy rainfall events 

In addition to compound flood risk in coastal areas, this chapter then considers the threats 

posed by compound heat and flood hazards in inland areas. In this chapter, the consecutive heat 

wave and heavy rainfall (CHWHR) events are systematically assessed and analyzed. This type of 

temporally compound heat and flood events is newly identified, and the lagged connections 

between heatwaves and heavy rainfall in a changing climate have been further discussed, thereby 

adding to the evidence base for compound extreme events. Coincidence detection, attribution 

analysis, as well as climate projection methods are employed to investigate the probability of 

occurrence, underlying mechanisms, and future changes of CHWHR events in China. These 

findings provide insights for policymakers and stakeholders to better implement adaptation and 

mitigation solutions that can help reduce the negative impacts of these back-to-back extremes. 

4.1 Probability of occurrence of historical CHWHR events 

Figure 4.1 presents the probability of occurrence of historical CHWHR events within a 

prescribed temporal interval in China during 1981−2005, which represents the fraction of heat 

waves followed by heavy rainfall within 1 day, 3 days and 7 days. In general, 14% of land areas 

experience the CHWHR events (at the significance level of 0.05) within 1 day over China, which 

represents the worst-case scenario in which heavy rainfall occurs immediately 1 day after the end 

of heat waves, with an average 9% probability of occurrence of CHWHR events detected among 

all heat wave events (Figure 4.1a and b). When increasing the time interval to 3 days, the 

probability of occurrence is two times higher than those with a time interval of 1 day, with the 

probability of approximately 20% (Figure 4.1 c and d). In terms of the frequency of CHWHR 

events within 7 days (Figure 4.1e and f), the probability of occurrence increases to 26%, indicating 

that for every four heat wave events, there is one heavy rainfall event that occurs within 7 days 

after the end of a heat wave. Furthermore, I highlight that the observed high probability of 

occurrence of CHWHR events cannot be a pure coincidence by an additional random experiment, 

which is manifested in the cumulative distribution function subplots in Figure 4.1b, d and f.  
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In order to further check the significance and robustness of the detected probability of 

occurrence, I assess whether the CHWHR events occur more often than expected by chance by a 

random coincidence experiment simulated by 1,000 times of bootstrap iteration. Specifically, the 

grid-level frequencies of heat wave and heavy rainfall events were pooled and randomly sampled 

respectively over 1981−2005 using observational data. The probability of occurrence of CHWHR 

events was then calculated using the event coincidence analysis (ECA) framework. This random 

coincidence experiment was performed 1,000 times to model the probability of occurrence 

expected by chance. I then compare the observed probability of occurrence and that expected from 

the random coincidence experiment alone. As shown in Figure 4.1f, the probability of occurrence 

of CHWHR events in observation (red line) is much higher than that expected due to random 

coincidence (i.e., expected by chance) (grey line and hatched curve). For heat wave events being 

followed by heavy rainfall events within 7 days, the averaged probability of occurrence is 26% (in 

observation) vs 10% (expected by chance, 95% confidence interval: 5% ~ 16%), indicating that 

the above detected signals are much higher than those expected due to random coincidence. 

The probability of occurrence of CHWHR events shows spatial hotspots and regional 

variability across different climate regions in China (Figure 4.1). There is a relatively high 

probability of occurrence of CHWHR events within 1 day during 1981−2005 (approximately 31%) 

located in Central and Southwest China, indicating that for every three heat wave events, one of 

which is followed by heavy rainfall (CHWHR events) with a 1-day lag. When longer time intervals 

are considered, there are significantly increasing trends in the probability of occurrence of 

CHWHR events within 3 days and 7 days.  

The findings are consistent with observational evidence from previous studies of heat waves 

and heavy rainfall patterns (Deng et al., 2020; Sun et al., 2017; Tao & Ding, 1981; Chang et al., 

2012). For instance, the hotspots detected over Central and Southwest China (around the Qinghai-

Tibet Plateau) are related to the relatively high summer temperature and an abrupt increase in 

precipitation may be due to the sudden change of summer rain-bearing synoptic systems and 

orographic effects. These patterns are consistent with previous findings of the increasing 

magnitude and frequency of heat waves (Deng et al., 2020; Sun et al., 2017) as well as heavy 

rainfall and severe storms over the plateau and its surroundings in Central and Southwest China 

(Tao & Ding, 1981). The frequent occurrence of CHWHR events in Southwest China, especially 
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in mountainous areas, can be explained by a combination of climatic and geographical factors 

(Houze, 2012; Li et al., 2012; Wang et al., 2013). The orographic effects prominent in these regions 

significantly influence atmospheric convection and moisture convergence. Mountains aid in the 

elevation of moist air masses, which can result in increased precipitation. This process often leads 

to heavy rainfall following heat waves. The scattered patterns found in part of Northeast China 

may be associated with the combined effects of mid-latitude anticyclones and the western Pacific 

subtropical high (WPSH). The former relates to blocking weather patterns and typically leads to 

the occurrence of heat waves (Li et al., 2019; Petoukhov et al., 2013). The WPSH could cause the 

northward jump of subtropical high in summer, during which the monsoon may reach the northeast 

(Chang et al., 2012), transporting a great amount of moisture and thus setting a prerequisite for the 

occurrence of heavy rainfall after the end of heat waves. 
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Figure 4.1 The spatial distribution (left column) and corresponding cumulative distribution 

function (CDF) (right column) of the probability of occurrence of consecutive heat wave and heavy 

rainfall (CHWHR) events within the prescribed temporal intervals (1 day, 3 days and 7 days), 

indicating the fraction of heat wave events being followed by heavy rainfall within 1 day (a, b), 3 

days (c, d) and 7 days (e, f). The CDF plots in the right column show observed probability of 
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occurrence CHWHR events (red) versus those expected by chance (grey), and its 95% confidence 

interval of random variability simulated by 1,000 times of bootstrap iteration (grey and hatched). 

Only statistically significant areas at the 0.05 level are hatched on maps and are considered in the 

CDF. The datasets used here are observational data for the period 1981−2005. 

4.2 Comparison between heat waves followed by and not followed by heavy rainfall 

I examine the differences between characteristics of heat waves followed by heavy rainfall 

(i.e., CHWHR events) and those not followed by heavy rainfall within 1 day. There is a statistically 

significant difference in heat wave duration (HWD) and heat wave magnitude (HWM) between 

the abovementioned two types of events. In general, the shorter and hotter heat waves are more 

likely to be followed by heavy rainfall compared with those not followed by heavy rainfall (Figure 

4.2). For the regions where the CHWHR events occurred during 1981−2005, a great proportion of 

regions (approximately 95% of total land areas) experienced the longest heat waves lasting less 

than 10 days (Figure 4.2a). For the areas without the occurrence of CHWHR events, however, heat 

waves tend to last for a relatively long time. Specifically, approximately 70% of land areas 

experienced longer heat waves for non-CHWHR events, with the duration of more than 10 days 

(Figure 4.2c). These findings are also manifested in the CDF of HWD (Figure 4.2e), as a clear 

shift to the left of the distribution of CHWHR events (red line) compared to those of heat waves 

not followed by heavy rainfall (green line). On the other hand, the HWM of CHWHR events, 

representing heat wave intensity, is generally higher than those heat waves not followed by heavy 

rainfall, with the largest anomalies located in northern China (Figure 4.2b and d). Unlike the HWD 

of CHWHR events which becomes shorter significantly, the HWM of CHWHR events is not 

always higher than those not followed by heavy rainfall over China, especially for mild heat waves. 

In this study, I focus on the statistically significant areas with relatively high intensity (exceed 

average anomalies of 3 °C) in Figure 4.2b and f, which indicate increased excess heat accumulated 

during the CHWHR events. In other words, the higher HWM of CHWHR events is observed with 

the upper tail of the CDF shifted to the right, which demonstrates that the hotter heat waves are 

more likely to be followed by heavy rainfall (CHWHR events) compared with those not followed 

by heavy rainfall. 
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Figure 4.2 Comparison of heat wave duration (HWD, day) (left column) and heat wave magnitude 

(HWM, degree Celsius) (right column) between heat waves followed by and not followed by heavy 

rainfall: (a) HWD for those followed by heavy rainfall (i.e., CHWHR events); (b) HWM for those 

followed by heavy rainfall; (c) HWD for those not followed by heavy rainfall; (d) HWM for those 
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not followed by heavy rainfall; (e) CDF of the HWD for heat waves followed by (red) and not 

followed by heavy rainfall (green); (f) CDF of HWM for heat waves followed by (red) and not 

followed by heavy rainfall (green). Hatched areas are statistically significant at the 0.05 level, 

representing the regions where the differences of HWD or HWM between heat waves followed by 

and not followed by heavy rainfall are significant. 

4.3 Physical mechanisms behind CHWHR events 

To further investigate synoptic preconditions when heavy precipitation occurs after heat 

waves in close succession, I evaluate atmospheric variables of convective available potential 

energy (CAPE), the convective inhibition (CIN) and vertically integrated moisture divergence 

(VIMD) anomalies between heat waves followed by and not followed by heavy rainfall, with a 

focus on the conditions 1 day prior to the date of the occurrence of heavy rainfall following heat 

waves (Figure 4.3). As a crucial indicator of atmospheric instability, the CAPE appears to be 

relatively high in the northern and western parts of China (Figure 4.3a), which could potentially 

promote the development of convection and stormy weather (Wallace, 1975; Brooks et al., 1994; 

Seeley & Romps, 2015). CIN is another measurement of the amount of energy required for stormy 

weather and if CIN is too high, moist convection is unlikely to occur even though CAPE is high 

(Chen et al., 2020b). This is manifested in the red box located in central China (Figure 4.3b and 

3d) where heavy rainfall does not occur after heat waves since the higher CAPE is witnessed but 

the CIN is larger. The high CAPE combined with the low CIN provides favorable conditions for 

stormy weather, and thus can lead to the sequential occurrence of heavy rainfall after the end of 

heat waves. I find that statistically significant differences (with the significance level of 0.05, as 

shown by hatched areas in Figure 4.3) in both CAPE and CIN exist between heat waves followed 

by heavy rainfall (CHWHR events) and those not followed by heavy rainfall, indicating that CAPE 

and CIN play an important role in the sequential occurrence of heavy rainfall within 1 day after 

the end of heat waves in China. With regard to the VIMD, the negative value of VIMD derived 

from ERA5 indicates that moisture is converging, and for better visualization, I transform the 

VIMD value from negative to positive. The larger values, as shown in the color bars of Figure 4.3 

e and f, suggest that more moisture is converging, which is conducive to the occurrence of heavy 

rainfall when the rainfall is preceded by a heat wave event. As shown in Figure 4.3e and f, there 

is a statistically significant difference in the VIMD anomalies between heat waves followed by 
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and not followed by heavy rainfall, with increasing VIMD-derived water vapor convergence 

during the CHWHR events over China (Zhou & Yu, 2005). Based on previous studies assessing 

the importance of CAPE, CIN and VIMD on heavy precipitation, the findings highlight that the 

large-scale climate drivers of CAPE, CIN and VIMD anomalies play an important role in the 

successive occurrence of heat waves and heavy rainfall in China (CHWHR events). 
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Figure 4.3 Distributions of three convection-related atmospheric variables: the convective 

available potential energy (CAPE, J/kg) (top row), convective inhibition (CIN, J/kg) (middle row), 

and the vertically integrated moisture divergence (VIMD, kg/m2) (bottom row). (a, c, e) represent 

heat waves followed by heavy rainfall and (b, d, f) represent heat waves not followed by heavy 

rainfall. Hatched areas are statistically significant at the 0.05 level. 
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4.4 Projection of future changes of CHWHR events 

Figure 4.4 presents the distributions of the risk ratios of CHWHR events relative to the 

historical period within the prescribed time intervals of 1 day, 3 days and 7 days using CORDEX-

CORE models . The risk ratio is defined as the ratio of frequencies of CHWHR events over a future 

25-year period (2075–2099) to those in the historical 25-year period (1981–2005). In general, there 

is an increasing trend in the frequency of occurrence of CHWHR events by the end of the 21st 

century, with the risk ratio increasing significantly by a factor of 1–5 over most regions of China. 

Figure 4.4a, b and c indicate that the land areas of increased CHWHR frequencies (i.e., risk ratios 

higher than 1) decrease when the time intervals extend from 1 day to 3 days and then to 7 days, 

with a decreasing land proportion of 15%, 37% and 31%, respectively (growing blue areas in 

Figure 4.4). This indicates that in the future, more CHWHR events will occur with the most rapid 

transition (from heat wave to heavy rainfall within only 1 day), which is largely attributed to a 

warming climate under the high-emission scenario. This projected trend is also observed by the 

corresponding cumulative probability of risk ratios of CHWHR events, as shown in Figure 4.4d, 

indicating that more heat waves are expected to be followed by heavy rainfall for the future period 

2075–2099 relative to 1981–2005, especially for the worst-case scenario when heavy rainfall 

occurs abruptly one day after the end of heat waves. 
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Figure 4.4 Projected future changes in the risk ratios of CHWHR events relative to the historical 

period: (a) heat wave events being followed by heavy rainfall within 1 day; (b) within 3 days; (c) 

within 7 days; (d) density plot of grid cell distributions in the risk ratios of CHWHR events within 

1, 3 and 7 days. Hatched areas are statistically significant for all three models. 

4.5 Verification, sensitivity analysis and discussions of CHWHR events 

4.5.1 Historical reproduction of CHWHR events 

To project future changes in the risk ratios of CHWHR events relative to the historical period 

based on the CORDEX-CORE models, historical CHWHR events were reproduced using three 

CORDEX-CORE models including MOHC-HadGEM2-ES, MPI-M-MPI-ESM-LR and NCC-

NorESM1-M. Those three available CORDEX CORE models were also used to address model 

structural uncertainty and then were validated by comparing model outputs against observations. 
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Only the results of all three models that show good agreement were chosen for calculating the 

ensemble mean of the future changes in the risk ratios of CHWHR events. I use the same 

predefined thresholds for both the past and future periods to make it comparable when projecting 

the future changes of the frequency of CHWHR events. Generally, there is good agreement 

between model simulation and observation in terms of the probability of occurrence of CHWHR 

events (Figure 4.5), indicating the skill of CORDEX-CORE models for capturing the 

characteristics of CHWHR events.  

 

Figure 4.5 The probability of occurrence of consecutive heat wave and heavy rainfall (CHWHR) 

events within 1 day (left column), 3 days (middle column), and 7 days (right column) for the period 

1981−2005, using three CORDEX-CORE models: MOHC-HadGEM2-ES model (top row), MPI-

M-MPI-ESM-LR model (middle row), and NCC-NorESM1-M model (bottom row). Hatched areas 

are statistically significant at the 0.05 level.  
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4.5.2 Verification of findings using different datasets and thresholds 

I verify the probability of occurrence of CHWHR events during the historical period based 

on the integration of daily maximum temperature and precipitation using different datasets from 

the ERA5 reanalysis product and three CORDEX-CORE models including MOHC-HadGEM2-

ES, MPI-M-MPI-ESM-LR and NCC-NorESM1-M. As shown in Figure 4.5 and Figure 4.6, the 

spatial patterns are similar among observations, the reanalysis product, and models for the 

historical period 1981−2005, indicating that the findings are robust and consistent regardless of 

data sources. It should be noted that the small hotspots in central China are underestimated in 

ERA5, and regional models compared to observations. In addition, the probability of occurrence 

and the associated significance level of CHWHR events are sensitive to the definition of extreme 

events by percentile-based thresholds (He & Sheffield, 2020).  

 

Figure 4.6 The probability of occurrence of consecutive heat wave and heavy rainfall (CHWHR) 

events within 1 day (left column), 3 days (middle column), and 7 days (right column) for the period 

1981−2005, derived from the ERA5 reanalysis product (top row) and observational data (bottom 

row). Hatched areas are statistically significant at the 0.05 level. 

To perform sensitivity analysis of percentile-based thresholds, I also define the extreme 

rainfall events as the top 1% of all rainfall events (above the 99th percentile threshold). As expected, 
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the higher threshold can largely reduce the number of CHWHR events, and thus the average 

probability of occurrence of CHWHR events decreases to only 4%, 8% and 10% within 1, 3 and 

7 days, respectively (Figure 4.7). 

 

Figure 4.7 The probability of occurrence of consecutive heat wave and extreme rainfall (higher 

than the 99th percentile of precipitation) within 1 day (left column), 3 days (middle column), and 

7 days (right column) using observational data for the period 1981–2005. Hatched areas are 

statistically significant at the 0.05 level. 

4.5.3 Sensitivity analysis of HW-HR-HW events  

It may be possible that the identification of CHWHR events is affected by the consecutive 

occurrence of heat wave, heavy rainfall and another heat wave event (HW-HR-HW). Specifically, 

the CHWHR event may not be essentially the same as the long-duration heat waves but interrupted 

by a day or two of rain that briefly drops the temperatures. In this case, I have investigated the 

possibility of these sequential events and as shown in Figure 4.8, the frequency of HW-HR-HW 

events is extremely low and it is most likely to be a random coincidence, indicating that a day of 

heavy rain occurs during two successive heat waves makes a negligible difference. To further 

address the interference effect of heavy rain on the key findings, I have categorized the 

abovementioned consecutive two heat wave events separated by 1 day (HW-HW) into one and 

have re-examined the differences between characteristics of heat waves followed by heavy rainfall 

and those not followed by heavy rainfall. As shown in Figure 4.9, the patterns are very similar to 

Figure 4.2 in the paper, although the duration of heat wave is slightly higher than those in Figure 

4.2e due to the clustering of two successive and connected heat wave events. This indicates that 

the findings that shorter and hotter heat waves are more likely to be followed by heavy rainfall are 
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robust and are not sensitive to the occurrence of a day or two of heavy rain that briefly drops the 

temperatures. 

 

Figure 4.8 The frequencies (event numbers) among all heat waves (HW) (a), consecutive two heat 

wave events separated by 1 day (HW-HW) (b), consecutive heat wave and heavy rainfall (HW-

HR) (c) and consecutive heat wave, heavy rainfall and another heat wave (HW-HR-HW) (d) within 

1 day using observational data in China during 1981−2005. 
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Figure 4.9 Sensitivity analysis results. Comparison of heat wave duration (HWD, day) (left column) 

and heat wave magnitude (HWM, degree Celsius) (right column) between heat waves followed by 

and not followed by heavy rainfall: (a) HWD for those followed by heavy rainfall (i.e., CHWHR 

events); (b) HWM for those followed by heavy rainfall; (c) HWD for those not followed by heavy 

rainfall; (d) HWM for those not followed by heavy rainfall; (e) cumulative distribution function 
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(CDF) of the HWD for heat waves followed by (red) and not followed by heavy rainfall (green); 

(f) CDF of HWM for heat waves followed by (red) and not followed by heavy rainfall (green). 

4.5.4 Verification of latent correlation between HWD and HWM 

Considering the possibility that the shorter heat waves could tend to be hotter simply 

because of accumulation over fewer days, I conduct correlation analysis to examine whether there 

is a latent correlation between heat wave duration (HWD) and heat wave magnitude (HWM). As 

shown in Figure 4.10, I find the R2 value is 0.01, indicating no latent relationship between HWD 

and HWM, which further confirms the robustness of the findings. Hotter heat waves are associated 

with larger sensible heat flux, while the shorter-duration heat wave may be tied to abrupt water 

vapor convergence that can stop the persistence of oppressive heat waves. The larger heat forcing 

combined with abrupt moist accumulation, caused by the shorter and hotter heat waves, may 

contribute to atmospheric instability and trigger convection for precipitable water. These may help 

explain why the shorter and hotter heat waves are more likely to be followed by heavy rainfall 

compared with those not followed by heavy rainfall. 

 

Figure 4.10 Scatter plot of heat wave duration (HWD) and heat wave magnitude (HWM). 
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4.5.5 Analysis of trends of CHWHR events in recent decades 

In the section mentioned above, my research encompasses an analysis spanning from 1981 

to 2005 to study historical climate patterns, and from 2075 to 2099 to predict future scenarios 

under high-emission conditions. This comparison is aimed at understanding the impacts of climate 

change. Additionally, I have broadened the scope to include an investigation into the recent trends 

regarding the probability of occurrence of CHWHR events from 1981 to 2022. As shown in Figure 

4.11, there has been a statistically significant rise in the probability of these events CHWHR 

occurring, as demonstrated by a linear trend with a slope of 5.04% per decade during 1981–2022. 

This trend indicates a significant and ongoing increase in the frequency of CHWHR events within 

the study period. 

 

Figure 4.11 Annual time series of the probability of occurrence of CHWHR events. Black line is 

the probability of occurrence (%) based on observation data. A 10-year moving window was used 

to smooth the data. Blue dashed line is the 21-year average. dRatio is the difference between the 

averages during 1981–2001 and 2002–2022. Red line represents the linear trend. Slope is the linear 

trend using the Sen-slope method (unit, decade). 
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4.6 Discussions and summary of the chapter  

Previous studies have examined heat waves and heavy rainfall events separately, yet their 

compound characteristics and future projections have not been investigated systematically. This 

chapter presents new evidence on a temporally compounding extreme in China, namely the 

consecutive heat wave and heavy rainfall (CHWHR). By coincidence detection and attribution 

analysis as well as climate projection, I reveal the probability of occurrence, underlying 

mechanisms, and future changes of CHWHR events. Although this chapter is focused on China, 

the proposed framework can also be applied to examine the occurrence of CHWHR events 

elsewhere around the world where reliable datasets with long-term records of temperature and 

precipitation are available.  

The findings indicate that approximately for every four heat wave events, there is one 

subsequent heavy rainfall (CHWHR event) within 7 days during 1981–2005. Furthermore, I find 

that the shorter and hotter heat waves are more likely to be followed by heavy rainfall compared 

with those not followed by. Such a new phenomenon is associated with three potential factors 

including CAPE, CIN, and VIMD that play vital roles in providing the favorable prerequisite for 

heavy rains and severe storms after heat waves, thereby resulting in the abrupt transition from heat 

waves to heavy downpours (or floods). In addition, CHWHR events are projected to occur more 

frequently and abruptly in China by the end of this century, increasing the risk of consecutive heat 

waves and floods as the climate warms.  

I verify that the findings are robust and consistent regardless of data sources, through the use 

of different datasets from the ERA5 reanalysis product and three CORDEX-CORE models 

including MOHC-HadGEM2-ES, MPI-M-MPI-ESM-LR and NCC-NorESM1-M. The spatial 

patterns of the probability of occurrence of CHWHR events are generally consistent for the 

historical period 1981−2005, despite some small hotspots in observations are not well captured by 

ERA5 and regional models. I have also investigated the possibility that a heat wave event may be 

temporally interrupted by a day or two of heavy rain and subsequently followed by another heat 

wave, which may interfere with the identification and significance of CHWHR events. Sensitivity 

analysis shows that the frequency of consecutive heat wave, heavy rainfall and another heat wave 

events turns out to be extremely low and the findings that shorter and hotter heat waves are more 



 

95 

 

likely to be followed by heavy rainfall are not sensitive to the occurrence of a day or two of heavy 

rain that briefly drops the temperatures. 

This chapter offers practical implications for policymakers and stakeholders adopting to 

mitigate the double threat of the abrupt transition from lethal heat waves to catastrophic downpours. 

This is especially important for the early warning and forecasting of compound extremes and flash 

floods (Boschat et al., 2015; Lau & Kim, 2012; Wasko, 2021), so that the society will be able to 

quickly respond to and prepare for the potential risk of a subsequent heavy rainfall hazard when a 

short-duration but high-intensity heat wave is witnessed. 
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Chapter 5. Identification and mechanisms of successive heat-pluvial 

and pluvial-heat events 

Compared with the previous section on nationwide CHWHR events, this part of the 

research extends the scope to the global scale, refining methodologies and further discussing the 

compound heat and flood hazards. To better characterize compound events, a more comprehensive 

indicator, humid heat, is used instead of traditional methods of measuring heat waves, allowing 

for an accurate assessment of human discomfort and health risks. A pluvial flood index is 

employed for a more complete description of the flood potential than heavy rainfall alone. To 

develop an in-depth understanding of the abrupt shift from humid heat and pluvial flood events 

and vice versa, this chapter presents a comprehensive global analysis of changes in the frequency 

of temporally compounding humid heat and pluvial flood events and underlying factors that may 

affect these events. In this chapter, the successive heat-pluvial events refer to temporally 

compounding humid heat extremes followed by pluvial flooding, and extreme flooding followed 

by humid heat are termed successive pluvial-heat events. The findings of this chapter highlight the 

importance of addressing overlapping vulnerabilities due to compound humid heat and pluvial 

flooding extremes. 

5.1 Global climatology of heat-pluvial and pluvial-heat events  

Using two independent reanalysis datasets (ERA5 and NCEP), I quantify the global 

frequency of successive heat-pluvial and pluvial-heat events during 1956–2023. As shown in 

Figure 5.1, successive heat-pluvial events have occurred for almost all global land (with desert and 

polar regions excluded). The total number of successive heat-pluvial events observed in the two 

datasets is about 13 on average during 1956–2023 for each grid cell. Successive pluvial-heat events 

occur slightly less frequently, with an average of approximately 12 over the whole study period. 

Furthermore, I confirm the significance of the probability of successive events being greater than 

that expected by chance through the utilization of a moving-blocks bootstrap resampling-based 

significance test. (Figure 5.1c and Figure 5.1d). The test shows that the number of detected events 

based on both ERA5 and NCEP datasets exceed the 95% confidence interval estimates from 

moving-blocks bootstrap resampling that occur by chance, corresponding to the frequency of heat-

pluvial and pluvial-heat of 11.80 and 9.73, respectively. This indicates that, on average globally, 
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successive heat-pluvial events occur about 11-23% more often than would be expected by chance, 

likely a signature of correlated heat and precipitation via local thermodynamics (i.e. convection) 

or colliding contrasting air masses (i.e. weather fronts) (Liao et al., 2021; Shang et al., 2020). 

 

Figure 5.1 Frequency of successive heat-pluvial and pluvial-heat events within 7 days during 

1956–2023. a, b Spatial maps showing the total number of successive heat-pluvial and pluvial-

heat events, respectively. Grid cells that are statistically significant at the 0.05 level according to 

the moving-blocks bootstrap-resampling-based test are depicted as grey circles. The dataset used 

here is ERA5. c, d Significance test of the global-mean consecutive occurrence frequencies using 

moving-blocks bootstrap resampling based on ERA5 dataset for the heat-pluvial events (c) and 

pluvial heat events (d), respectively. The histogram represents the empirical distribution of global-

mean successive events frequency using the 1,000 resampled series based on the moving-blocks 

bootstrap resampling. The 95% confidence interval is indicated by a vertical dashed line. The red 

dot and blue dot represent the number of successive events detected based on ERA5 and NCEP 

datasets, respectively. Looking at the spatial distribution of the number of events, both successive 

heat-pluvial and pluvial-heat exhibit clear regional differences globally, as illustrated in Figure 

5.1a-b. To better identify the hotspots, I apply a 5×5 degree rolling average to smoothly plot the 
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maps. I find such temporally compounding extremes occur most often in West Australia, East 

North America, Sub-Saharan Africa, and North Asia (Figure 5.2), where they are statistically 

significant at the 0.05 level according to the moving-blocks bootstrap-resampling-based test 

(Figure 5.1a). Compared to the successive heat-pluvial events, the pluvial-heat events occur less 

frequently, but some hotspots maintain consistency — such as West Australia (Figure 5.1b). The 

spatial patterns remain similar even when events are defined using a more extreme percentile, 

despite having reduced peaks (Figure 5.3). 

 

Figure 5.2 Rolling average of frequency of successive heat-pluvial and pluvial-heat events within 

7 days during 1956–2023. A 5×5 degree rolling average was applied to smoothly plot the maps to 

better identify the hotspots.  
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Figure 5.3 Frequency of successive heat-pluvial and pluvial-heat events within 7 days during 

1956–2023 when employing the 95th percentiles to define heat and pluvial extremes. a, b Maps 

showing the total number of successive heat-pluvial and successive pluvial-heat events, 

respectively. The dataset used here is ERA5. c, d Same as a, b but for NCEP dataset. 
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5.2 Spatiotemporal changes in successive events and warming effect 

I investigate the spatiotemporal changes in the frequency of temporally compounding heat 

and pluvial events from 1956 to 2023, by comparing the first (1956–1989) and second (1990–2023) 

34-year periods, as shown in Figure 5.4a and Figure 5.5. In most regions, a higher frequency of 

successive heat-pluvial events is observed in the later (1990–2023) period compared to the earlier 

period (1956–1989). A rising trend in event frequency is identified in most parts of South America, 

Sub-Saharan Africa, South Asia, and North Australia, with 20 or more events during the latest 34-

year period.  

 

Figure 5.4 Spatiotemporal changes and decomposition in the frequency of successive heat-pluvial 

events within 7 days. a Spatial change in successive heat-pluvial events between the two 34-year 

periods (recent, 1990–2023 minus past, 1956–1989). b Annual time series of the normalized 

frequency ratio of successive heat-pluvial events. Black line is the annual normalized frequency 

ratio based on ERA5. A 10-year moving window was used to smooth the data. Blue dashed line is 
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the 34-year average. dRatio is the difference between the averages during 1956–1989 and 1990–

2023. Red line represents the linear trend. Slope is the linear trend using the Sen-slope method 

(unit, decade). c The relationship between the changes in successive events and changes in 

individual extremes. Color circles show bin-averaged ratios of heat-pluvial events corresponding 

to ratios of individual extremes. d Decomposition of the frequency of heat-pluvial events due to 

warming/moistening effects. It shows the probability density function of the global mean changes 

in the frequency of heat-pluvial events between the two 34-year periods, based on raw 

observational data (black), data with moistening signal removed (red), data with warming signal 

removed (blue) and data with both warming and moistening signals removed (green). In general, 

the spatial patterns and temporal trends of ERA5 and NCEP are in good agreement (Figure 5.5 and 

Figure 5.6). However, there are some noticeable discrepancies over the eastern United States and 

sub-Saharan Africa, which may be attributed to data uncertainty and complex relationship between 

heat and convection, or potentially related to statistical effects from sequential events. The overall 

frequency of temporally compounding heat and pluvial events has seen a statistically significant 

(Mann–Kendall test, p < 0.05) increase for both event subcategories, with an increase of about 20% 

per decade (Figure 5.4b and Figure 5.6). 

 

Figure 5.5 Spatial change in the frequency of successive events within 7 days between the two 34-

year periods (recent, 1990–2023 minus past, 1956–1989). a, b Spatial changes in successive heat-
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pluvial and pluvial-heat events, respectively. The dataset used for a and b is ERA5. c, d Same as 

a, b but for NCEP dataset. 

 

Figure 5.6 Annual change in the frequency of successive events within 7 days based on two 

different datasets during 1956–2023. A 10-year moving window was used to smooth the data. a, b 

Time series of the normalized frequency ratio in successive heat-pluvial and pluvial-heat events, 

respectively. The dataset used for a and b is ERA5. c, d Same as a, b but for NCEP dataset. 

To explore further how the increases in individual extremes contribute to successive heat 

and pluvial events, I analyze the relationship between the changes in compound events and changes 

in individual extremes at the grid level between the two 34-year periods (Figure 5.4c, Figure 5.7 

and Figure 5.8). In general, the upward trend in heat-pluvial event frequency is an expected 

consequence of these upward trends in univariate hazard frequencies. Specifically, as the 

frequency of individual heat events increases, there is a simultaneous rise in the occurrence of 

compound heat-pluvial events across more areas. However, the frequency of individual pluvial 

events does not exhibit a corresponding increase in these areas (Figure 5.9). This suggests that the 

increase in successive heat-pluvial events is primarily affected by changes in heat events, and is 
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consistent with the findings for successive pluvial-heat events, as well as with other work 

suggesting that increases in heat dominate the trends in many compound events involving 

temperature and another variables (Gu et al., 2022; Liu et al., 2022; Yin et al., 2022). 

 

Figure 5.7 Relationship between the changes in successive heat-pluvial events and changes in 

individual extremes. Grid-based scatterplots between the ratio of heat-pluvial and heat (a), and 

between heat-pluvial and pluvial events (b). Colored circles in (c) show bin-averaged ratios of 

heat-pluvial events corresponding to ratios of individual extremes. The ratio is calculated as 

dividing number of events during the recent 34-year periods (1990–2023) by those in the past three 

decades (1956–1989). 
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Figure 5.8 Same with Figure 5.7 but for successive pluvial-heat events. 
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Figure 5.9 Frequency and change of individual events. a and b show the spatial pattern of the 

frequency of heat (left column) and pluvial (right column) during 1956–2023. c and d are the 

change of the heat and pluvial frequency over 1990–2023 relative to 1956–1989. 

To explain the increased trend of successive heat and pluvial events, I conduct a 

decomposition analysis to disentangle the relative importance of the effects of warming and 

moistening on the trends of successive heat and pluvial events (Figure 5.4d and Figure 5.10). I find 

that the observed trends in heat-pluvial or pluvial-heat events can be reproduced by considering 

the influence of warming, specifically the change of wet-bulb temperature. In other words, the 

changes in these events can primarily be explained by the effect of warming alone (Figure 5.4d). 

The effect of warming is especially prominent in South America, South Asia, and North Australia, 

which are co-located with hotspots in Figure 5.4a, while moistening without warming has little 

effect (Figure 5.10 and Figure 5.11). In other words, once the warming effect has been removed 

there is no 'residual' increase in successive events. Therefore, it is the increased heat extremes 

under a warming climate that have made successive heat-pluvial and pluvial-heat events occur 

more frequently in recent decades.  
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Figure 5.10 Driver of the trends of successive heat-pluvial events. The changes in the frequency 

of heat-pluvial events between the two 34-year periods, based on raw observational data (a), data 

with moistening signal removed (b), data with warming signal removed (c) and data with both 

warming and moistening signals removed (d). e shows the probability density function of the 

global mean frequency of successive events in a, b, c, and d. 
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Figure 5.11 Same with Figure 5.10 but for successive pluvial-heat events. 
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5.3 Possible factor affecting the transitions between heat and pluvial events 

 In this section, I further examine the influence of VPD on transitions between heat and 

pluvial events. To address the issue of multiple hypothesis testing resulting from spatial 

dependence, I have conducted a field significance test to determine whether the differences in VPD 

between heat-pluvial and heat-without-pluvial events are statistically significant or not. I find 

significant differences in VPD exist between heat-pluvial and heat-without-pluvial events for 

about 85% of grid cells at the p=0.05 level (Figure 5.12), as well as a similar number for the 

comparison between pluvial-heat and heat-without-pluvial events using FDR test (Figure 5.13). 

Importantly, I reveal that small and negative VPD anomalies are linked to the transition from heat 

to pluvial (Figure 5.12a and Figure 5.12c), while high positive VPD anomalies accompany the 

transition from pluvial to heat (Figure 5.12b and Figure 5.12c). I find reduced VPD anomalies are 

associated with an increased probability of subsequent pluvial events. This is because lower VPD 

values, indicating higher humidity, create conditions that are more conducive to precipitation. Low 

VPD can alleviate some of the effects of extreme temperatures on plant health (Grossiord et al., 

2020; Novick et al., 2016), and the high moisture content can supply the fuel for pluvial events, 

especially of a convective nature. On the contrary, increased VPD anomalies imply high 

atmospheric aridity, related to the termination of pluvial events and the abrupt onset of heat events. 

This finding echoes the observational evidence that high VPD enhances atmospheric demand for 

water, depleting soil moisture and simultaneously heating the atmospheric boundary layer (Teuling 

et al., 2013; Zhou et al., 2019). 
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Figure 5.12 The behavior of VPD anomalies in the transition between heat and pluvial events. a 

represents VPD anomalies between heat events followed by pluvial events (heat-pluvial) and heat 

events not followed by pluvial events (heat-without-pluvial). b represents VPD anomalies between 

pluvial events followed by heat events (pluvial-heat) and pluvial events not followed by heat 

events (pluvial-without-heat). Grid points that meet local statistical significance at the 0.05 level 

are shown as grey circles, while the ones that meet the FDR criterion by having a sufficiently small 

p-value are marked by grey points. c is the probability density function of the map a (green line) 

and b (red line) for the VPD anomalies causing the transition between heat and pluvial events. d 

is the FDR for testing field significance of VPD anomalies (Pa) between heat-pluvial and heat-

without-pluvial events. 
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Figure 5.13 Result of the false discovery rate (FDR) for checking the field significance of VPD 

anomalies (Pa) between pluvial events followed by heat events (i.e., pluvial-heat) and pluvial 

events not followed by heat events (i.e., pluvial-without-heat).  
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5.4 Verification, sensitivity analysis and discussions of heat-pluvial and pluvial-heat events 

5.4.1 Sensitivity analysis of data sources, time intervals and thresholds 

To ensure the consistency and robustness of the analysis, I conduct multiple sensitivity 

analyses related to data sources, time intervals and thresholds, and alternative event definition. I 

verify the above‐mentioned conclusions using alternative ERA5 and NCEP datasets with daily 

temporal resolution and global coverage. To avoid physical inconsistency among different data 

products, I use all essential variables from the same source for event identification rather than 

combining variables from alternative sources.  

To perform the sensitivity test of thresholds, I also define the heat (pluvial) events as the 

top 5% of all TW (weighted average of precipitation) values (above the 95th percentile threshold). 

As expected, the use of a more extreme percentile largely reduces the number of successive heat-

pluvial and pluvial-heat events, and thus the global average number of successive heat-pluvial 

events during 1956–2023 decreases to 2.8 and 2.3, respectively. Despite the considerable 

difference in the frequency of events, the significant increases in the frequency of heat-pluvial and 

pluvial-heat events are consistent in all three datasets (Figure 5.14). 

 

Figure 5.14 Spatial change between the two 34-year periods (recent, 1986–2023 minus past, 1956–

1989) in the frequency of successive events within 7 days. Same as Figure 5.5 but a more extreme 

percentile is used for event definition (95th). In the main section of this study, a 7-day time interval 
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(time lag between heat and pluvial events) is adopted as an example for the identification of 

successive heat and pluvial events, which represents a relatively short time span for disaster 

preparedness and recovery. To test the sensitivity of different choices of prescribed settings, I also 

consider other potential impact-related time intervals between heat and pluvial events (5 days, 3 

days, and 1 day). Although the frequency of successive heat-pluvial and pluvial-heat events is very 

sensitive to the choice of extreme thresholds and time lags (Figure 5.15, Figure 5.16, Figure 5.17, 

and Figure 5.18), the main results of increased trends in successive heat-pluvial and pluvial-heat 

events are robust. Disagreement between datasets has the largest effect on the results for eastern 

United States and sub-Saharan Africa regions.  

 

Figure 5.15 ERA5-based frequency of successive heat-pluvial and successive pluvial-heat events 

during 1956–2023 with the time lag of 5-day, 3-day, and 1-day, respectively. The dataset used here 

is ERA5.  
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Figure 5.16 NCEP-based frequency of successive heat-pluvial and successive pluvial-heat events 

during 1956–2023 with the time lag of 5-day, 3-day, and 1-day, respectively. The dataset used here 

is NCEP.
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Figure 5.17 ERA5-based spatial change between the two 34-year periods (recent, 1990–2023 

minus past, 1956–1989) in the frequency of successive events with the time lag of 5-day, 3-day 

and 1-day, respectively. The dataset used here is ERA5.  
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Figure 5.18 NCEP-based spatial change between the two 34-year periods (recent, 1990–2023 

minus past, 1956–1989) in the frequency of successive events with the time lag of 5-day, 3-day 

and 1-day, respectively. The dataset used here is NCEP. 

5.4.2 Field significance test using two alternative methods 

The study aimed to determine whether there were significant differences in VPD between 

heat-pluvial and heat-without-pluvial events. To do this, I use field significance tests, which 

confirmed that the observed differences are not due to random chance or measurement error, but 

rather reflected real differences between the two types of events. To ensure the reliability of the 

analysis, I also use two alternative methods: Walker's test and moving block bootstrapping-based 

multivariate test, both of which provide consistent results (Figure 5.19, Figure 5.20 and Figure 

5.21).  

When assessing field significance using Walker's test, the grey points in Figure 5.13 locate 

the same 1293 grid elements with p-values smaller enough to meet Walker's criterion. In other 

words, among 1516 local tests, there are 85.29% grid points have passed the field significance test, 
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which indicates that statistically field significant differences in VPD exist between heat-pluvial 

and heat-without-pluvial at the field significance level of 0.05. For moving block bootstrapping-

based multivariate test, as shown in Figure 5.19, it can be observed that the field statistic 𝑑𝑖
∗ 

obtained from the ERA5 dataset is significantly lower than the values obtained from 1000 moving 

blocks bootstrap realizations. This indicates strong statistical significance of the field. In terms of 

VPD anomalies between pluvial events followed by heat events (pluvial-heat) and pluvial events 

not followed by heat events (pluvial-without-heat), the results are also significant. Combining 

Figure 5.20 and Figure 5.21, I also show that statistically field significant differences in VPD exist 

between pluvial-heat and pluvial-without-heat at the field significance level of 0.05. 

 

Figure 5.19 Result of moving block bootstrapping for testing field significance of VPD anomalies 

(Pa) between heat events followed by pluvial events (i.e., heat-pluvial) and heat events not 

followed by pluvial events (i.e., heat-without-pluvial).The histogram represents the distribution of 

results from 1000 moving blocks bootstrap realizations of the field statistic 𝑑𝑖
∗ and the purple 

triangle represents the test statistic 𝑑 from the observed data.
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Figure 5.20 Result of Walker's test to check the field significance of VPD anomalies (Pa) between 

pluvial events followed by heat events (i.e., pluvial-heat) and pluvial events not followed by heat 

events (i.e., pluvial-without-heat).Grid points that satisfy local statistical significance at the 𝛼0 =

0.05 level are shown as grey circles, while the ones that meet Walker's criterion by having a 

sufficiently small p-value are marked by grey points. 

 

Figure 5.21 Result of moving block bootstrapping for testing field significance of VPD anomalies 

(Pa) between pluvial events followed by heat events (i.e., pluvial-heat) and pluvial events not 

followed by heat events (i.e., pluvial-without-heat).The histogram represents the distribution of 

results from 1000 moving blocks bootstrap realizations of the field statistic 𝑑𝑖
∗ and the purple 

triangle represents the test statistic 𝑑 from the observed data.  



 

118 

 

5.5 Discussions and summary of the chapter  

Humid heat and pluvial flooding are serious weather extremes by themselves, but when 

occurring sequentially at the same location, they can cause more severe consequences than an 

isolated extreme event. While extreme heat or pluvial flooding alone has attracted considerable 

attention over the past decades (Fischer et al., 2021; Martin, 2018; Sun et al., 2021; Wang et al., 

2021b), the global climatology of successive heat and pluvial events remains unclear.  

In this chapter, I perform a comprehensive global assessment of heat-pluvial and pluvial-

heat events. The order of these events matters: when heat precedes, the soil becomes parched, 

hindering water absorption and resulting in flash floods during subsequent rainfall. Conversely, 

when heavy rainfall occurs first, it damages infrastructure, making it challenging to cope with 

subsequent heat waves. Through analyzing both event sequences, the chapter helps gain a deeper 

understanding of the risks associated with each sequence. Based on two datasets, I reveal the 

baseline frequencies and spatiotemporal changes of successive extremes. The findings demonstrate 

the increased risk of rapid transition between heat and pluvial events in a warmer climate in recent 

decades. Hotspots are centered in West Australia, East North America, Sub-Saharan Africa, and 

North Asia. I find that more frequent heat extremes due to a warming climate have resulted in a 

higher incidence of heat-pluvial and pluvial-heat events. Furthermore, the findings demonstrate 

that notable VPD anomalies are typically observed in the transitions between heat and pluvial 

events. 

Extreme temporally compound events are often rare, and their occurrence can be 

coincidental due to chance. This chapter highlights the value of using bootstrap resampling-based 

significance tests, a method that has been overlooked in previous studies (Chen et al., 2021; Zhang 

& Villarini, 2020). Specifically, it is crucial to consider autocorrelation when randomly sampling 

time series of precipitation and temperature. This consideration is particularly significant when 

defining events based on a sequence of consecutive hot or wet days. The moving-blocks 

bootstrapping method used in this chapter accounts for the uncertainty in temporally correlated 

event coincidence by generating a set of surrogate time series that have the same statistical 

properties, including temporal covariance structure or temporal correlation, as the original time 

series (Vogel & Shallcross, 1996). 
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The chapter indicates that VPD plays a vital role in temporally compounding heat and 

pluvial events, which are often ignored in previous compound events. Importantly, I highlight the 

asymmetric impacts of VPD on the rapid transitions between heat and pluvial extremes, which 

could provide a reference and insight into early warning and anticipation of emerging temporally 

compounding hydrological hazards. The physical mechanisms underlying compound heat and 

pluvial events are complex. While detecting and presenting a global assessment of two emerging 

compound extremes is the priority and focus on this chapter, identifying the process-based 

evolution and underlying mechanisms of the rapid transition from extreme heat to pluvial or vice 

versa from a physical standpoint is an important and challenging task. Future studies should be 

undertaken to further investigate these mechanisms and help advance our understanding of 

compound hazards.  
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Chapter 6. Conclusion and future work 

This chapter synthesizes research findings and suggests future directions in compound 

hydrometeorological studies. 

6.1 Research conclusions 

In this dissertation, a variety of approaches have been developed to improve the detection 

and attribution of emerging compound hydrometeorological risks. Specifically, a novel vine 

copula ensemble machine learning approach, combining the advantages of state-of-the-art machine 

learning methods, has been developed to reconstruct temporally-continuous coastal flooding 

induced by storm surges and sea level rise. Bayesian hierarchical models have been proposed for 

probabilistic modeling to estimate storm surges and sea level rise in regions without tidal gauge 

stations. Statistical methods for multi-hazard analysis of compound flood risks in coastal areas 

have been developed. A framework for detection, attribution, and projection analysis has been 

used to investigate consecutive heat waves and heavy rainfall. This marks the first attempt to 

investigate a newly identified category of temporally compound events. Lastly, my work leads to 

a comprehensive global analysis of compound humid heat and pluvial flooding, utilizing the 

moving-blocks bootstrap test and innovative field significance tests I introduce for enhanced 

accuracy in the detection and attribution of compound hydrometeorological events.  

The research presented in this thesis offers a multi-scale analysis of compound 

hydrometeorological risks, integrating insights from local, regional, and global perspectives to 

provide a comprehensive understanding of these emerging hazards in a warming climate. In 

Chapter 3, the probabilistic modeling approach developed in this chapter enhances 

hydrometeorological prediction in data-sparse regions, provides insights into the joint impact of 

multiple drivers on flood risk. By focusing on Hong Kong's coastal flood risks, the understanding 

compound flood events at a local scale is underscore. The scope is then broadened to a regional 

scale in Chapter 4. The findings emphasize the growing risk of shorter, intense heat waves 

followed by heavy rainfall. Examination of CHWHR events across China allows for the 

identification of key spatial character, and further enhance our understanding on temporal 

dynamics of compound extremes in different climate zones. Finally, Chapter 5 expands the 
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analysis to a global scale, investigating the two-direction shifts between hot and wet extremes. 

Both heat-pluvial and pluvial-heat events are included in the scope, and this global perspective 

reveals broader patterns and trends, demonstrating the global nature of these risks. The 

identification of statistically significant correlations between these events and global warming 

further provides critical insights for global climate risk assessments. Together, these chapters 

demonstrate that the scale of analysis, from local to global, significantly influences the detection, 

attribution, and mitigation of compound hydrometeorological risks. 

The dissertation yields the following findings and contributions: 

(1) I propose a vine copula ensemble model for accurate continuous storm surge and sea 

level reconstruction. This model fills a crucial gap left by tide gauge measurements, which often 

lack long-time records for trend detection and extreme value analysis. It not only outperforms 

individual machine learning models but also offers enhanced flexibility in selecting modeling 

structures, resulting in improved alignment with observed data and better capture of variability in 

storm surges and sea level reconstruction. Furthermore, the integration of machine learning models 

enhances the accuracy of uncertainty quantification compared to relying on a single model. This 

is vital for reliable storm surges and sea level predictions, aiding decision-makers in implementing 

effective mitigation measures to manage risks in coastal areas. 

(2) I introduce a Bayesian Hierarchical Modeling (BHM) framework that enhances 

spatially-continuous storm surge and sea level estimation, overcoming data sparsity limitations. 

By leveraging information from nearby tide gauges, the BHM provides predictions in ungauged 

areas, ensuring comprehensive insights where observations are lacking. Its consistent and accurate 

performance, validated across multiple experiments, underscores its reliability in data-sparse 

regions. Furthermore, the BHM enables a thorough assessment of uncertainties, empowering 

decision-makers with deeper insights into storm surge and sea level variability and risk. Its 

probabilistic predictions aid in establishing risk thresholds, facilitating better preparedness and 

protection against storm surges and sea level rise. By establishing risk thresholds and integrating 

probabilistic predictions, decision-makers can accurately evaluate and mitigate coastal flood risks. 

(3) I conduct a comprehensive analysis of compound flood risk assessment, focusing on 

the concurrent occurrence of storm surge, heavy rainfall, and sea level rise. By examining the 
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complex links between these factors, I reveal their joint impact on escalating coastal flood risk in 

Hong Kong. Specifically, I identify significant increases and positive dependences among extreme 

storm surges, sea level rise, and heavy rainfall, indicating a risk of compound flooding. 

Furthermore, I demonstrate the heightened risk and severity in compound flood events, revealing 

significant increases in return levels for both heavy rainfall and extreme storm surges when these 

factors coincide. These findings underscore the urgent need to address multi-hazard flood risk, 

particularly in densely populated and infrastructure-rich coastal urban cities. 

(4) I present new evidence on the compounding effect of consecutive heat waves and heavy 

rainfall. Through coincidence detection, attribution analysis, and climate projection, I reveal the 

probability of occurrence, underlying mechanisms, and future trends of these events. Importantly, 

my findings emphasize a higher likelihood of hotter and shorter heat waves followed by heavy 

rainfall, which can be associated with atmospheric convection and moisture convergence. 

Furthermore, climate projections indicate that these events will occur with greater frequency and 

suddenness in the future, exacerbating the compounded risk. These findings underscore the 

imperative of proactive measures to mitigate the dual risks posed by these extremes. Specifically, 

my work highlights the importance of early warning systems and preparedness strategies to address 

potential hazards, particularly flash flooding, when a short-duration but high-intensity heat wave 

is witnessed. 

(5) I offer the first and most comprehensive assessment of the rapid shifts between hot and 

wet extremes, investigating both combinations of temporally compounding hazards: humid heat 

preceding pluvial flooding (heat-pluvial) and pluvial flooding followed by humid heat (pluvial-

heat). I have identified growing threats from compound heat-pluvial and pluvial-heat events in a 

warmer world. These successive extremes occur more frequently within warm seasons, with a 

statistically significant increase in frequency attributed to global warming. Furthermore, I have 

explored the influence of vapor pressure deficit (VPD), revealing correlations between heat-pluvial 

(pluvial-heat) events and VPD anomalies. These findings are statistically significant, underscored 

by robust methodologies like moving-blocks bootstrap resampling and field significance tests. My 

contributions shed light on the escalating risks posed by compound hot and wet extremes, offering 

vital insights for understanding and addressing the challenges of emerging compound 

hydrometeorological risks. 
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6.2 Future work 

In this dissertation, the proposed vine copula ensemble models employ a one-way coupling 

method, integrating outputs from deep learning models such as Long Short-Term Memory, 

Random Forest, and Convolutional Neural Network as inputs. While this approach offers 

advantages, it poses limitations concerning potential inefficiencies in information transfer and 

integration between models. Future research could benefit from adopting a more integrated 

approach, combining various models into a bidirectionally cohesive framework. This can ensure a 

streamlined exchange of compound hydrometeorological extreme information, overcoming the 

constraints of the one-way coupling method and enhancing the predictive accuracy of compound 

hydrometeorological hazards.  

Regarding the Bayesian hierarchical models utilized in this dissertation, while they 

improve upon the traditional single-point modeling approach, their current limitation lies in 

considering only nearby locations and the continental shelf's characteristics as covariates. Future 

enhancements can focus on integrating a broader array of climatic variables into these models. 

These variables could include temperature, precipitation, wind speed, humidity, atmospheric 

pressure, and so on. Additionally, it's vital to broaden the use of these models in areas often 

impacted by hydroclimate-related hazards, particularly in locations with limited observational data, 

such as regions lacking adequate in-situ stations. 

In studying consecutive heat wave and heavy rainfall events, efforts have been made to 

explore large-scale atmospheric variables including convective available potential energy, 

convective inhibition, and vertically integrated moisture divergence on these phenomena. It's been 

observed that shorter duration, yet more intense, heat waves are often followed by heavy rainfall. 

This finding is pivotal for the development of early warning systems and proactive strategies to 

address such events. Based on the above findings, future work can focus on creating real-time 

early warning systems for compound events forecast. These systems would be adept at rapidly 

processing real-time hydroclimatic data, enabling them to issue timely alerts for the likelihood of 

consecutive heat wave and heavy rainfall events. 

In my research on temporally compounding events involving humid heat and pluvial 

flooding, the significant role of vapor pressure deficit in driving rapid transitions between these 
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extremes has been highlighted. However, despite this important finding, comprehensively 

understanding the physical mechanisms at play in these compound humid heat and pluvial flood 

events remains a complex challenge. Future research may be directed towards a more thorough 

investigation of the underlying physical mechanisms driving these sequential events. This includes 

delving into drivers like teleconnections and land-atmosphere coupling by developing advanced 

process-based climate simulation models and causal inference approaches. Such in-depth 

exploration is vital for advancing our knowledge of these complex phenomena and enhancing our 

ability to predict, manage, and mitigate their impacts.  

Finally, future work can conduct in-depth assessments of the socio-economic impacts of 

compound hydrometeorological events through real-world case studies. While traditional risk 

assessments have primarily concentrated on the frequency, duration, intensity, and impact of 

individual hazards, the emergence of compound events underscores the necessity to consider 

multivariate hazards and adopt impact-based methodologies. An interdisciplinary approach, 

integrating insights from climatology, hydrology, economics, and social sciences, is crucial to 

unravel the complex interactions between these events and their socio-economic consequences. 

Such a comprehensive understanding of the socio-economic impacts of compound extremes can 

significantly enhance the development of mitigation and adaptation strategies, thereby effectively 

addressing the emerging risks associated with compound hydrometeorological extremes in a 

warming climate. 
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