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Abstract

Nowadays, many algorithms have been proposed to solve the nonconvex and nons-

mooth problems that arise in sparse optimization. Most of these algorithms belong

to the first-order type, including the proximal gradient method. First-order meth-

ods have several advantages, such as low computational cost in each iteration, weak

global convergence conditions, and easy implementation. However, their convergence

rate is at most linear, resulting in slow convergence speed when processing large-scale

problems. On the other hand, the classical Newton method, which is a second-order

method, can achieve a locally superlinear convergence rate. However, the classical

Newton method equips with an Armijo line search for minimizing smooth optimiza-

tion problems can only achieve a subsequence convergence, let alone for nonsmooth

sparse optimization. By exploiting the structure of two classes of nonconvex and non-

smooth sparse optimization problems that arise in compressed sensing and machine

learning, this thesis presents an efficient hybrid framework that combines a proximal

gradient method and a Newton-type method, which takes advantages of these two

kinds of optimization algorithms, and simultaneously avoids their disadvantages.

The first part of the thesis designs a hybrid of proximal gradient method and

regularized subspace Newton method (HpgSRN) for solving ℓq(0<q<1)-norm regu-

larized minimization problems with a twice continuously differentiable loss function.

In the iterates of HpgSRN, we first use the proximal gradient method to find a

neighbourhood of a potential stationary point, and then apply a regularized Newton
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method in the subspace, at which the objective is locally smooth, to enhance the con-

vergence speed. We show that this hybrid algorithm finally reduces to a regularized

Newton method of minimizing a locally smooth function. If the reduced objective

function satisfies the Kurdyka- Lojasiewic property and a curve ratio condition holds,

the generated sequence converges to an L-stationary point with an arbitrarily picked

initial point. Moreover, if we additionally assume that the generated sequence con-

verges to a second-order stationary point, and an error bound condition holds there,

we prove a superlinear convergence of the generated sequence, without assuming

either the isolatedness or the local minimality of the limit point. Numerical com-

parison with the proximal gradient method and ZeroFPR, where the later one is an

algorithm using limited-memory BFGS method to minimize the forward-backward

envelope of the objective function, indicates that our proposed HpgSRN not only

converges much faster, but also yields comparable and even better solutions.

The second part of the thesis studies fused zero-norms regularization problems,

which are the zero-norm version of the fused Lasso plus a box constraint. We pro-

pose a polynomial time algorithm to find an element of the proximal mapping of the

fused zero-norms over a box constraint. Based on this, we propose a hybrid of prox-

imal gradient method and inexact projected regularized Newton method for solving

the fused zero-norms regularization problems. We prove that the algorithm finally

reduces to an inexact projected regularized Newton method for seeking a critical

point of a smooth function over a convex constraint. We achieve the convergence

of the whole sequence under a nondegeneracy condition, a curve ratio condition and

assuming that the reduced objective is a Kurdyka- Lojasiewic function. A superlinear

convergence rate of the iterates is established under a locally Hölderian error bound

condition on a second-order stationary point set, without requiring either the isolat-

edness or the local optimality of the limit point. Finally, numerical experiments show

the features of our considered model, and the superiority of our proposed algorithm.
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Chapter 1

Literature Review and
Introduction

Over the past two decades, there has been a growing interest in sparse optimiza-

tion, which is concerned with identifying sparse solutions for loss functions. Sparse

optimization has found applications in various fields, including compressed sensing,

machine learning, signal processing and so on. In the era of big data, the scale of

data and problems is gradually increasing. As a result, researchers are paying more

attention to addressing large-scale optimization problems in the context of sparse

optimization.

Currently, numerous optimization algorithms have been developed to solve prob-

lems in sparse optimization, with many of them falling into the category of first-

order methods. First-order methods tend to have low computational requirements

per iteration and exhibit good global convergence properties. However, their lo-

cal convergence rate is typically at most linear, resulting in slow convergence speed

when dealing with large-scale problems. In contrast, the classical Newton method

can achieve a locally superlinear or even quadratic convergence rate under certain

regularity conditions. However, starting from an arbitrary initial point, the classical

Newton method equipped with Armijo line search for minimizing smooth optimiza-

tion problems only achieves subsequence convergence.
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To effectively tackle the challenges posed by large-scale problems in sparse op-

timization, this thesis explores a hybrid framework that combines first-order and

Newton-type methods. By leveraging the strengths of both approaches, the hybrid

algorithm aims to achieve global performance while maintaining a fast local conver-

gence rate. The primary focus of this thesis lies in designing and analyzing hybrid

algorithms for two specific classes of nonconvex sparse optimization problems. The

first problem involves ℓq(0 < q < 1)-norm regularized problems, while the second

problem pertains to fused ℓ0-norms regularized optimization, which is a ℓ0-norm

variation of the renowned fused Lasso (Tibshirani et al. (2005)), incorporating a box

constraint.

The rest of this chapter will provide a literature review on the topics under

study. In Chapter 2, we will cover some necessary preliminaries. The main contents

of this thesis are in Chapters 3 and 4, where we will present algorithms, convergence

analysis and numerical experiments for the ℓq-norm regularized problem and the

fused ℓ0-norms problem, respectively. These two chapters are based on the following

published work and preprint, respectively:

• Y. Wu, S. Pan and X. Yang. A Regularized Newton Method for ℓq-Norm Com-

posite Optimization Problems. SIAM Journal on Optimization, 33(3):1676–1706,

2023. (Wu et al. (2023b))

• Y. Wu, S. Pan and X. Yang. An Inexact Projected Regularized Newton Method

for Fused Zero-norms Regularization Problems. arXiv:2312.15718, 2023. (Wu

et al. (2023a))
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1.1 ℓq(0<q<1)-Regularization Problems

The formulation of ℓq(0<q<1)-regularization problem is

min
x∈Rn

f(x) + λ∥x∥qq, (1.1)

where f : Rn → R is a continuously differentiable function, λ > 0 is the regularization

parameter and ∥x∥q := (
∑n

i=1 |xi|q)
1/q

denotes the ℓq quasi-norm of x. Here ∥ · ∥q is

not a norm because it does not satisfies the sub-additivity property. When f(·) =

∥A · −b∥2 for some matrix A ∈ Rm×n and vector b ∈ Rm, problem (1.1) reduces to

the familiar ℓq regularized least squares problem studied in the literature (see e.g.,

Chen et al. (2010)).

Problem (1.1) first appears in statistics as the bridge penalty regression (Frank

and Friedman (1993)), and later appears in optimization as a special case of nons-

mooth and nonconvex penalty problems studied by (Luo et al. (1996); Huang and

Yang (2003); Yang and Huang (2001)) for nonlinear optimization problems. In sig-

nal processing, Chartrand (2007) early showed that the ℓq (0 < q < 1) quasi-norm

can substantially reduce the number of measurements required by ℓ1-norm for exact

recovery of signals, and Xu et al. (2012) showed that the ℓ1/2 regularization admits

a significantly stronger sparsity promoting capability than the ℓ1 one in the sense

that it allows to obtain a more sparse solution, and predicts a sparse signal from

less samplings. These apsects motivate the frequent use of the ℓq (0< q < 1) quasi-

norm in compressed sensing. Because for any given x ∈ Rn, ∥x∥qq → ∥x∥0 as q ↓ 0,

where ∥x∥0 denotes the zero-norm (cardinality) of x, problem (1.1) is often used as

a nonconvex surrogate of the zero-norm regularized problem, and is found to have a

wide spectrum of applications in signal and image processing, statistics, and machine

learning (see, e.g., Figueiredo et al. (2007); Saab et al. (2008); Nikolova et al. (2008);

Wang and Yin (2010); Chen et al. (2012); Bian and Chen (2012a); Xu et al. (2012);
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Cao et al. (2013)).

Due to the nonconvexity and non-Lipschitz continuity of the ℓq quasi-norm, prob-

lem (1.1) is a class of difficult nonconvex and nonsmooth optimization problems. In

fact, Ge et al. (2011) showed that finding the global minimum value of the problem

(1.1) is strongly NP-hard, while finding one of its local minimum in polynomial time

is possible. In the past decade, many first-order methods have been developed for

seeking its critical points. For some special q, say q = 1/2 or 2/3, since the proximal

mapping of the ℓq quasi-norm has a closed-form solution (see Xu et al. (2012); Cao

et al. (2013)), the proximal gradient (PG) method becomes a class of popular ones

for solving (1.1) with such q. For a general q ∈ (0, 1), Hu et al. (2017, 2021) also

proposed an exact PG method and an inexact PG method for problem (1.1), respec-

tively. When assuming that the limit point is a local minimizer, a linear convergence

rate was obtained in (Hu et al. (2017, 2021); Xu et al. (2012)). In addition, a class

of PG methods with a nonmonotone line search strategy (called SpaRSA) was pro-

posed (see Wright et al. (2009)). For problem (1.1) with a general q ∈ (0, 1), the

reweighted ℓ1-minimization method is another class of common first-order methods

by solving a sequence of weighted ℓ1-norm regularized minimization problems (see

Candes et al. (2008); Lai and Wang (2011); Lai et al. (2013); Lu (2014b); Chen and

Zhou (2014); Wang et al. (2021a, 2023)). The reweighted ℓ1 minimization combined

with extrapolation technique for ℓq-regularization problems was also considered in

Wang et al. (2022). To overcome the non-Lipschitz difficulty of the ℓq quasi-norm,

Chen et al. (2010), Chen (2012) and Chen et al. (2013) proposed a class of smooth-

ing method by constructing a smooth approximation of the ℓq quasi-norm, and using

the steepest descent method, the sequential quadratic programming and trust region

Newton method to solve the constructed smooth approximation problems, respec-

tively. The second one is also known as smoothing sequential quadratic programming

(Bian and Chen (2012b)). Liu et al. (2019) considered a class of the iterative support
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shrinking algorithms, which are able to address (1.1) with f being the least square

loss function, and obtained the convergence of the whole sequence by virtue of KL

property.

1.2 Structured ℓ0-norms Regularized Problems

Given a matrix B ∈ Rp×n, λ1 > 0, λ2 > 0, l ∈ Rn
− and u ∈ Rn

+, the formulation of

the structured ℓ0-norms regularization problem is:

min
x∈Rn

f(x) + λ1∥Bx∥0 + λ2∥x∥0 s.t. l ≤ x ≤ u, (1.2)

where f : Rn → R is a continuously differentiable function, ∥ · ∥0 denotes the ℓ0-norm

(or cardinality) function. Despite the fact that ∥ · ∥0 is not a formal norm as it does

not satisfy the absolute homogeneity property, we call it ℓ0-norm for simplicity. This

model encourages sparsity of both variable x and its linear transformation Bx.

It is known that one of the formulations for finding a sparse vector while mini-

mizing f is the following ℓ0 regularization problem

min
x∈Rn

f(x) + λ2∥x∥0, (1.3)

where the ℓ0-norm term shrinks some small coefficients to 0 and identifies a set of

influential components. In recent years, many first-order optimization algorithms

have been well developed to solve the ℓ0-norm regularization problems of the form

(1.3), which includes the iterative hard thresholding (Herrity et al. (2006); Blu-

mensath and Davies (2008, 2010); Lu (2014a)), the penalty decomposition (Lu and

Zhang (2013)), the extrapolation proximal iterative hard-thresholding method (Bao

et al. (2016)), mixed integer optimization method (Bertsimas et al. (2016)), the

coordinate-wise support optimality method (Beck and Hallak (2018)), the active set

Barzilar-Borwein algorithm (Cheng et al. (2020)), the smoothing proximal gradient
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method (Bian and Chen (2020)), the accelerated iterative hard thresholding (Wu

and Bian (2020)). There are also several second-order methods proposed to address

problem (1.3) or its special case, such as the PDAS (Ito and Kunisch (2013)), the

PDASC (Jiao et al. (2015)), the SDAR (Huang et al. (2018)) and the NL0R (Zhou

et al. (2021)). Among others, NL0R employs Newton method to solve a series of

stationary equations confined within the subspaces identified by the support of the

solution obtained by the proximal mapping of λ2∥ · ∥0.

However, the ℓ0-norm penalty only takes the sparsity of x into consideration, but

ignores its linear transformation, which sometimes needs to be considered in real-

world applications. For example, in the context of image processing, the variables

often represent the pixels of images, which are correlated with their neighboring ones.

To recover the blurred images, Rudin et al. (1992) took into account the differences

between adjacent variables and used the total variation regularization, which penal-

izes the changes of the neighboring pixels and hence encourages smoothness in the

solution. Moreover, Land and Friedman (1997) studied the phoneme classification

on TIMIT database (Acpistoc-Phonetic Continuous Speech Corpus, NTIS, US Dept

of Commerce), which consists of 4509 32ms speech frames and each speech frame is

represented by 512 samples of 16 KHz rate. This database is collected from 437 male

speakers. Every speaker provided approximately two speech frames of each of five

phonemes, where the phonemes are “sh” as in “she”, “dcl” as in “dark”, “iy” as the

vowel in “she”, “aa” as the vowel in “dark”, and “ao” as the first vowel in “water”.

Since each phoneme is composed of a series of consecutively sampled points, there is a

high chance that each sampled point is close or identical to its neighboring ones. For

this reason, Land and Friedman (1997) considered imposing a fused penalty on the

coefficients vector x, and proposed the following problems with zero-order variable
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fusion and first-order variable fusion respectively to train the classifier:

min
x∈Rn

1

2
∥Ax− b∥2 + λ1∥B̂x∥0, (1.4)

min
x∈Rn

1

2
∥Ax− b∥2 + λ1∥B̂x∥1, (1.5)

where A ∈ Rm×n represents the phoneme data, b ∈ Rm is the label vector, B̂ ∈

R(n−1)×n with B̂ii = 1 and B̂i,i+1 = −1 for all i ∈ {1, . . . , n−1} and B̂ij = 0 otherwise.

If f(·) = 1
2
∥A · −b∥2 and B = B̂, then we call (1.2) a fused ℓ0-norms regularization

problem with a box constraint.

Additionally taking the sparsity of x into consideration, Tibshirani et al. (2005)

proposed the fused Lasso, given by

min
x∈Rn

1

2
∥Ax− b∥2 + λ1∥B̂x∥1 + λ2∥x∥1, (1.6)

and presented its nice statistical properties. Friedman et al. (2007) demonstrated

that the proximal mapping of λ1∥B̂x∥1 +λ2∥x∥1 can be obtained through a process,

which is known as “prox-decomposition” later. Based on the accessibility of this

proximal mapping, various algorithms can efficiently address model (1.6), see (Liu

et al. (2009, 2010); Li et al. (2018); Molinari et al. (2019)). In particular, Li et al.

(2018) proposed a semismooth Newton augmented Lagrangian method (SSNAL) to

solve the dual of (1.6). The numerical results presented in their study indicate that

SSNAL is highly efficient.

It was claimed in Land and Friedman (1997) that both (1.4) and (1.5) perform

well in signal regression, but the zero-order fusion one produces simpler estimated

coefficient vectors. This observation suggests that model (1.2) with f = 1
2
∥A · −b∥2

and B = B̂ may be able to effectively find a simpler solution while performs well as

the fused Lasso does. Compared with regularization problems using ℓ0-norm, those

using ∥Bx∥0 regularization remain less explored in terms of algorithm development.
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According to Land and Friedman (1997), the global solution of (1.4) cannot be solved

exactly. However, one of its approximate critical points can be obtained by numerical

method. In fact, Jewell and Witten (2018) and Jewell et al. (2020) have revealed by

virtue of dynamic programming principle that a point in the proximal mapping of

λ1∥B̂ · ∥0 can be exactly determined within polynomial time, which allows one to use

the well-known PG method to find a critical point of problem (1.4). However, the

highly nonconvex and nonsmooth nature of model (1.2) presents significant challenges

in computing the proximal mapping of g when B = B̂ and in developing effective

optimization algorithms for solving it. As far as we know, no specific algorithms

have yet been designed to solve these challenging problems.

1.3 Newton-type Methods for Composite Opti-

mization Problems

In recent years, many researchers are interested in using second-order methods to

solve the following general nonconvex and nonsmooth composite problem

min
x∈Rn

Ψ(x) := ψ(x) + ϕ(x), (1.7)

where ϕ : Rn → (−∞,∞] is a closed proper function and ψ is a twice continuously

differentiable function on an open subset containing the effective domain of ϕ. The

proximal Newton-type method is able to address (1.7) with convex ϕ and convex or

weakly convex ψ. In particular, the proximal Newton-type method solves in each

iteration the following subproblem

arg min
x∈Rn

{
ψ(xk) + ⟨∇ψ(xk), x−xk⟩+

1

2
⟨x− xk, Gk(x−xk)⟩+ ϕ(x)

}
, (1.8)

where Gk is an approximation to ∇2ψ(xk), to calculate a Newton direction, and then

a backtracking line search determines the step-size. We remark here that (1.8) can
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be addressed by using (accelerated) proximal gradient method (Beck and Teboulle

(2009)). Bertsekas (1982) considered (1.7) with ψ being convex and ϕ being an

indicator function of Rn
+. They proved a local superlinear convergence provided that

Gk = ∇2ψ(xk) and ∇2ψ(xk) is uniformly positive definite. For both ψ and ϕ being

convex, Lee et al. (2014) proposed an inexact proximal Newton-type method and

achieved the local quadratic convergence rate of the iterate sequence under the strong

convexity of ψ; Yue et al. (2019) proposed an inexact regularized proximal Newton

method and established the local linear, superlinear and quadratic convergence rate of

the iterate sequence (by the approximation degree to the Hessian matrix of ψ) under

Luo-Tseng error bound; Mordukhovich et al. (2023) proposed a proximal Newton-

type method and obtained the superlinear convergence rate of the iterate sequence

under the metric p (> 1/2)-subregularity of the subdifferential mapping ∂Ψ. Liu

et al. (2024) proposed an inexact regularized proximal Newton-type method for (1.7)

with ψ being weakly convex and ϕ being convex. They achieved the superlinear

convergence of the iterate sequence under the metric p (> 1/2)-subregularity of a

KKT residual function. The inexact proximal Newton-type method in Lee et al.

(2014) was also extended by Kanzow and Lechner (2021) to solve problem (1.7) with

only a convex ϕ, which essentially belongs to weakly convex optimization. Their

global and local superlinear convergence results require the local strong convexity of

Ψ around any stationary point.

By following a different line, the forward-backward envelope (FBE), which is

proposed in (Patrinos and Bemporad (2013)), has been extensively investigated for

designing second-order methods. For ϕ being convex with a cheap computable proxi-

mal mapping, Stella et al. (2017) combined a PG method and a quasi-Newton method

to minimize the FBE of Ψ and proved the convergence of the whole sequence under

the KL property of Ψ and the superlinear convergence rate under the local strong

convexity of the FBE of Ψ. For (1.7) with ψ being additionally convex and ϕ just
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having a cheap computable proximal mapping, Themelis et al. (2019) proposed a

hybrid of PG and inexact Newton methods by using FBE of Ψ (named FBTN) and

proved that dist(xk,X ∗) converges superlinearly to 0 under an assumption without

requiring the singleton of the solution set X ∗ of (1.7). Themelis et al. (2018) used

the FBE of Ψ to develop a hybrid framework of PG and quasi-Newton methods

(ZeroFPR), and achieved the global convergence of the iterate sequence by virtue of

the KL property of the FBE, and its local superlinear rate under the Dennis-Moré

condition and the strong local minimum of the limit point. The convergence rate

results in Stella et al. (2017) and Themelis et al. (2018) require the isolatedness

of the limit point. Recently, Ahookhosh et al. (2021) utilized the Bregman FBE

of Ψ to develop a more general hybrid framework of PG and second-order meth-

ods, BELLA. They obtained the global convergence of the iterate sequence for the

tame functions ψ and ϕ, and the local superlinear rate of the distance of the iter-

ate sequence to the set of fixed points of the Bregman FBE by assuming that the

second-order directions are the superlinear ones with order 1 and KL property of

exponent θ ∈ (0, 1) of Ψ. Their work greatly improved the results of Stella et al.

(2017); Themelis et al. (2018) by removing the isolatedness restriction on local min-

ima and established that the second-order directions are indeed the superlinear ones

with order 1 under the assumptions that the limit point is a strong local minimum

(also implying the isolatedness) and a Dennis-Moré condition holds. It is unclear

what conditions are sufficient for second-order directions to be superlinear without

the strong local minimum property.

In addition, for the case ϕ(x) = λ∥x∥0, Zhou et al. (2021) developed a sub-

space Newton method by solving the stationary equations restricted in the subspace

identified by the proximal mapping of λ∥x∥0, and established the local quadratic con-

vergence rate of the iterate sequence under the local strong convexity of ψ around

any stationary point. Their subspace Newton method relies on the subspaces iden-
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tified by a PG method. Recently, Bareilles et al. (2023) considered problem (1.7)

where ψ is smooth and ϕ has a cheap computable proximal mapping, and proposed

ManAcc-Newton, a hybrid of PG and Newton methods under the framework of man-

ifolds. Their algorithm alternates between a PG step and a Riemannian update on

an identified manifold, and was proved to have a quadratic convergence rate under

a positive definiteness assumption on the Riemannian Hessian of the objective func-

tion at limit points. For the unified analysis on manifold identification of any PG

methods, we refer the reader to the work (Sun et al. (2019)).
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Chapter 2

Preliminaries

In this chapter, we introduce the notations and some preliminary concepts that will

be used in this thesis.

2.1 Notations

Throughout this thesis, Rn denotes the n-dimensional Euclidean space, equipped

with the standard inner product ⟨·, ·⟩ and its induced norm ∥ ·∥. For any x ∈ Rn and

ϵ > 0, B(x, ϵ) := {z ∈ Rn | ∥z−x∥ ≤ ϵ} denotes the ball centered at x with radius ϵ.

Let B := B(0, 1). For a closed and convex set Ξ ⊆ Rn, we denote by NΞ(x) and TΞ(x)

the normal cone and tangent cone of Ξ at x, respectively. For a closed set Ξ′ ⊆ Rn,

dist(x,Ξ′) := minz∈Ξ′ ∥z − x∥, and projΞ′(x) := {z ∈ Ξ′ | ∥z − x∥ = dist(x,Ξ′)}.

For t ∈ R, t+ := max{t, 0}. Fix any two nonnegative integers j < k, define

[j :k] := {j, j+1, ..., k} and [k] := [1 :k]. For an index set T ⊆ [n], write T c := [n]\T

and |T | is the number of the elements of T . Given any x ∈ Rn, supp(x) := {i ∈

[n] | xi ̸= 0}, sign(x) denotes the vector with [sign(x)]i = sign(xi), where sign(t) = t
|t|

if t ̸= 0 and sign(0) = 0. We define |x|min := mini∈supp(x)|xi| and xT ∈ R|T | is the

vector consisting of those xj’s with j ∈ T , and xj:k := x[j:k]. 1 and I are the

vector of ones and the identity matrix, respectively, whose dimensions are adaptive

to the context. Given a real symmetric matrix H, λmin(H) denotes the smallest
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eigenvalue of H, and ∥H∥2 is the spectral norm of H. For a matrix A ∈ Rm×n

and S ⊆ [m], AS· (resp. A·T ) denotes the matrix consisting of the rows (resp. the

columns) of A whose indices correspond to S (resp. T ). We write the range of A by

Range(A) = {Ax | x ∈ Rn} and the null space of A by Null(A) = {y ∈ Rn | Ay = 0}.

For another matrix C ∈ Rm×p, [A C] ∈ Rm×(n+p) is defined as a matrix composed of

two matrices, A and C, placed side by side. For any D ∈ Rp×n, [A;D] := [A⊤ D⊤]⊤.

For function f , we denote Lf (x) := {z | f(z) ≤ f(x)} as the level set of f . Moreover,

we denote by ω(x0) the set of cluster points of the sequence generated by algorithm

with starting point x0.

2.2 Stationary Point Conditions

We first recall from Rockafellar and Wets (2009) the definitions of several generalized

subdifferentials.

Definition 2.1. (see (Rockafellar and Wets, 2009, Definition 8.3)) Consider a func-

tion h : Rn → (−∞,+∞] and a point x with h(x) finite. The regular (Fréchet)

subdifferential of h at x is defined as

∂̂h(x) :=

{
v ∈ Rn

∣∣ lim inf
x ̸=x′→x

h(x′)− h(x)− ⟨v, x′ − x⟩
∥x′ − x∥

≥ 0

}
;

the basic (limiting or Mordukhovich) subdifferential of h at x is defined as

∂h(x) :=
{
v ∈ Rn | ∃xk −→

h
x and vk ∈ ∂̂h(xk) with vk → v as k →∞

}
,

where xk −→
h
x means that xk → x and h(xk)→ h(x); and the horizon subdifferential

of h at x is defined as

∂∞h(x) :=
{
v ∈ Rn | ∃xk −→

h
x and vk ∈ ∂̂h(xk) with λkvk → v for some λk ↓ 0

}
.
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For every x ∈ domh, the set ∂̂h(x) are closed and convex, but ∂h(x) is generally

nonconvex. The inclusion ∂̂h(x) ⊆ ∂h(x) always hold, and it may be strict when

h is nonconvex. By using (Rockafellar and Wets, 2009, Theorem 10.1), if a proper

function h : Rn → R has a local minimum at x, then 0 ∈ ∂̂h(x), and hence 0 ∈ ∂h(x).

For a proper lower semicontinuous (lsc) function h : Rn → (−∞,∞], its proximal

mapping associated to parameter t > 0 is defined by

proxth(x) := arg min
z∈Rn

{ 1

2t
∥z − x∥2 + h(z)

}
for x ∈ Rn.

Consider the following nonsmooth composite optimization problem

min
x∈Rn

Ψ(x) := ψ(x) + ϕ(x), (2.1)

where ϕ : Rn → R := (−∞,+∞] is proper lower semicontinuous, and ψ(x) is a

continuously differentiable on an open subset of Rn containing the domain of ϕ. For

this class of optimization problems, we define two kinds of stationary points, critical

point and L-type stationary point (Beck and Hallak (2019)).

Definition 2.2. A vector x ∈ Rn is called a critical point of problem (2.1) if 0 ∈

∂Ψ(x), and we denote by critΨ the set of critical points of Ψ. A vector x ∈ Rn is

called an L-type stationary point of problem (2.1) if there exists a constant µ > 0

such that x ∈ proxµ−1ϕ(x−µ−1∇ψ(x)).

If ϕ is assumed to be directional differentiable, we can define the directional

stationary point of Ψ. A vector x is called a directional stationary point if Ψ′(x; d) ≥

0 for ∀d ∈ Tdomϕ(x). From (Li et al. (2020)) we know that if x is a directional

stationary point, it is a critical point. For the reason that the objective function

discussed in this thesis may not be directional differentiable, in what follows we only

focus on critical point and L-stationary point.
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If ϕ is assumed to be convex, then

0 ∈ ∂Ψ(x)⇔ 0 ∈ µ(x− (x− µ−1∇ψ(x))) + ∂ϕ(x)⇔ x = proxµ−1ϕ(x− µ−1∇ψ(x)),

which means that for problem (2.1) the L-stationarity of a point x is equivalent to

its criticality. To extend this equivalence to a broader class of functions, we recall

the definitions of prox-bounded and prox-regularity, where the later one acts as a

surrogate of convexity.

Definition 2.3. (Rockafellar and Wets, 2009, Definition 1.23 & Definition 13.27)

A function h : Rn → R is prox-bounded if there exists µ > 0 such that

inf
z∈Rn

{µ
2
∥z − x∥2 + h(z)

}
> −∞.

A function h : Rn → R is prox-regular at a point x ∈ domh for v ∈ ∂h(x) if h

is locally lower semicontinuous at x, and there exist r ≥ 0 and ε > 0 such that

h(x′) ≥ h(x) + v⊤(x′ − x) − r
2
∥x′ − x∥2 for all ∥x′ − x∥ ≤ ε, whenever v ∈ ∂h(x),

∥v − v∥ < ε, ∥x − x∥ < ε and h(x) < h(x) + ε. If h is prox-regular at x for all

v ∈ ∂h(x), we say that h is prox-regular at x.

The following proposition reveals that under the assumption of the prox-regularity

of ϕ, the set of L-type stationary points for Ψ coincides with that of its critical points.

Proposition 2.1. If x is an L-stationary point of problem (2.1), then 0 ∈ ∂Ψ(x).

If ϕ is prox-regular at x for −∇ψ(x) and prox-bounded, the converse is also true.

Proof. Pick any x from the L-type stationary points of problem (2.1). Then, by

definition there exists µ > 0 such that

x ∈ arg min
x∈Rn

{
∇ψ(x)⊤(x− x) +

µ

2
∥x− x∥2 + ϕ(x)

}
,

whose first-order necessary condition is

0 ∈ ∇ψ(x) + µ(x− x) + ∂ϕ(x) = ∇ψ(x) + ∂ϕ(x) = ∂F (x).
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Therefore, the set of L-type stationary points is contained in that of critical points.

Next we argue that the converse inclusion holds. Pick any x from the critical points

of (3.1). Define ϕ̃(y) := ϕ(y + x) + ⟨∇ψ(x), y + x⟩ for y ∈ Rn. Since ϕ is prox-

regular at x for −∇ψ(x) by, the function ϕ̃ is prox-regular at 0 for 0. Since ϕ̃ is also

prox-bounded, by (Rockafellar and Wets, 2009, Proposition 8.46 (f)) the subgradient

inequalities in the definition of prox-regularity can be taken to be global. That is,

there exists γ0 > 0 such that ϕ̃(y) > ϕ̃(0)− γ0
2
∥y∥2 for all y ̸= 0, which implies that

for all y ̸= 0 and γ > γ0,

ϕ(y + x) +
γ

2
∥y + x− (x− 1

γ
∇ψ(x))∥2 > ϕ(x) +

γ

2
∥x− (x− 1

γ
∇ψ(x))∥2.

Therefore, x is the unique minimizer of ϕ(·) + γ
2
∥ · −(x − 1

γ
∇ψ(x))∥2, which by

Definition 2.2 means that x is an L-type stationary point of (2.1). Therefore, the

inverse inclusion holds, and we obtain the desired result.

2.3 Kurdyka- Lojasiewicz Property

We first present the definition of Kurdyka- Lojasiewicz (KL) Property.

Definition 2.4. For any η > 0, we denote by Υη the set consisting of all continuous

concave φ : [0, η) → R+ that are continuously differentiable on (0, η) with φ(0) = 0

and φ′(s) > 0 for all s ∈ (0, η). A proper function h : Rn→ R is said to have the KL

property at x ∈ dom ∂h if there exist η ∈ (0,∞], ϵ > 0 and a function φ ∈ Υη such

that for all x ∈ B(x, ϵ) ∩
[
h(x) < h < h(x) + η

]
,

φ′(h(x)− h(x))dist(0, ∂h(x)) ≥ 1.

If φ can be chosen as φ(s) = cs1−θ for some constant c > 0, then h is said to have

the KL property of exponent θ at x. If h has the KL property (of exponent θ) at each

point of dom ∂h, then h is called a KL function (of exponent θ).
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Remark 2.1. From (Attouch et al., 2010, Lemma 2.1), a proper lower semicon-

tinuous function h : Rn → R has the KL property (of exponent θ ∈ [0, 1]) at all

noncritical points. Thus, to show that it is a KL function of exponent (of exponent

θ ∈ [0, 1]), it suffices to check its KL property (of exponent θ ∈ [0, 1]) at critical

points.

The KL property can be traced back to Lojasiewicz (1963) and Kurdyka (1998),

where Lojasiewicz (1963) showed that real-analytical functions satisfy the KL prop-

erty with φ(s) = s1−θ and θ ∈ [1
2
, 1), while Kurdyka (1998) extended this result to dif-

ferentiable functions definable in an o-minimal structure (Definition 2.5). Later, the

KL property is extended to nonsmooth functions in the subanalytic and o-minimal

settings, see Bolte et al. (2006, 2007a,b, 2008).

In Lojasiewicz (1984), the author proved that a bounded solution of a gradient

flow for an analytic cost function converges to a well-defined limit point. Later, the

KL property was used in various areas of applied mathematics, including optimiza-

tion, partial differential equations, and other related fields (see Bolte et al. (2006)

and the references therein). Recently, KL property has been a powerful tool in the

convergence analysis of various first-order method including gradient-related method

(Absil et al. (2005)), proximal algorithm (Attouch and Bolte (2009); Attouch et al.

(2010)), proximal alternating linearized minimization algorithm (Bolte et al. (2014)),

subgradient method (Noll (2014)), Douglas-Rachford splitting method (Li and Pong

(2016)), alternating direction method of multipliers (Li and Pong (2015); Guo et al.

(2017); Wang et al. (2019)), and so on. In addition, it is worth mentioning that

various abstract convergence theorems via KL property were studied, see Attouch

et al. (2013); Ochs et al. (2014); Frankel et al. (2015); Bolte and Pauwels (2016);

Ochs (2019); Qian and Pan (2023), which provide guidance for the design of globally

convergent optimization algorithms.
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On the other hand, the KL property of exponent plays a crucial role in analyzing

the convergence rate of the optimization algorithms, see for example, (Attouch et al.,

2010, Theorem 3.4). Generally, an exponent θ ∈ (0, 1/2] corresponds to a linear con-

vergence rate, while θ ∈ (1/2, 1) leads to a sublinear convergence rate. Specifically,

as a regularity condition, the KL property with exponent 1/2 has attracted much

attention. It was discussed in Bolte et al. (2017); Wang et al. (2021b); Pan and

Liu (2018) that for primal lower nice functions, the KL property with exponent 1/2

is usually weaker than the metric subregularity of their subdifferential mapping or

the Luo-Tseng error bound, which are the commonly used regularity conditions to

achieve the liner convergence rate of the first-order methods (see Luo and Tseng

(1992); Wen et al. (2017); Zhou and So (2017)). The calculus of KL exponent has

also been an interesting topic. We refer the interested readers to the recent works

Li and Pong (2018); Wu et al. (2021); Yu et al. (2022); Wang and Wang (2023); Li

et al. (2023).

Next, we aim at discussing in which cases the considered problems in this thesis

satisfy the KL property. The tool we use is the o-minimal structure. Introduced in

Van den Dries (1998), the o-minimal structures can be seen as an axiomatization of

the properties of semi-algebraic sets. Its formal definition is given as follows.

Definition 2.5. Let O = {On}n∈N be such that each On is a collection of subsets in

Rn. We say O is an o-minimal structure if the following axioms are met:

(i) For each n, On is an boolean algebra. That is, ∅ ∈ On and for each A,B ∈ On,

A ∪B,A ∩B and Rn\A belong to On.

(ii) For all A ∈ On, A× R and R× A belong to On+1.

(iii) For all A ∈ On+1, {(x1, ..., xn) ∈ Rn | (x1, ..., xn, xn+1) ∈ A} belongs to On.

(iv) For all i ̸= j in [n], {(x1, ..., xn) ∈ Rn | xi = xj} belongs to On.
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(v) The set {(x1, x2) ∈ R2 | x1 < x2} belongs to O2.

(vi) The elements of O1 are exactly finite union of intervals.

A set A is said to be definable in O, if A belongs to O. A set-valued mapping

F : Rn ⇒ Rm (resp. a real-extended-valued function f : Rn → R) is said to be

definable if its graph is a definable subset of Rn × Rm (resp. Rn × R).

The functions definable in an o-minimal structure cover a wide range of functions,

such as semi-algebraic functions and globally subanalytic functions, see (Van den

Dries and Miller, 1996, Example 2.5). Moreover, we know from (Attouch et al.,

2010, Section 4) that the definable functions have very nice properties, which are

presented in the following lemma.

Proposition 2.2. The following statements are true.

(i) Finite sums of definable functions are definable;

(ii) Compositions of definable functions or mappings are definable;

(iii) Indicator functions of definable sets are definable;

(iv) Generalized inverses of definable mappings are definable.

As mentioned above, Kurdyka (1998) showed that any differentiable function de-

finable in an o-minimal structure satisfies the KL property. This result was extended

to nonsmooth setting as follows in Bolte et al. (2007a).

Theorem 2.1. Any proper lower semicontinuous function h : Rn → R that is defin-

able in an o-minimal structure O has the KL property at each point of dom∂h.

In the following, we prove that the considered problems in this thesis are KL

functions.
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Proposition 2.3. The following assertions are true.

(i) Problem (1.1) with f(x) = 1
2
∥Ax− b∥2 or f(x) =

∑m
i=1 log(1 + exp(−bi(Ax)i))

is a KL function.

(ii) Problem (4.43) with f(x) = 1
2
∥Ax − b∥2 or f(x) =

∑m
i=1 log

(
1 +

(Ax−b)2i
ν

)
for

some ν > 0 is a KL function.

Proof. (i) It holds by (Van den Dries and Miller, 1996, Example 2.5) that the exp

structure is an o-minimal structure, and that ar : R→ R defined by

a 7→
{
ar, a > 0
0, a ≤ 0,

where r ∈ R,

is definable in the exp structure. Since a 7→ |a| is semi-algebraic, and that semi-

algebraic functions are definable in the exp structure (Van den Dries and Miller,

1996, Example 2.5), we obtain from Proposition 2.2 (ii) that λ∥x∥qq is definable in

the exp structure. This along with Proposition 2.2 implies that for any f definable

in exp structure (for example, f is semi-algebraic or globally subanalytic), problem

(1.1) is definable, hence a KL function by applying Theorem 2.1.

We now consider problem (1.1) with f(x) = f1(x) := 1
2
∥Ax − b∥2 and f(x) =

f2(x) :=
∑m

i=1 log(1 + exp(−bi(Ax)i)). It is clear that f1 is semi-algebraic, and hence

F with f = f1 is a KL function. From the definition and Proposition 2.2 (ii) and (iv)

we have that f2 is definable in the exp structure, which implies that F with f = f2

also meets the KL property.

(ii) Notice that Π∗ is a polyhedron, hence a semi-algebraic set and definable in

the exp structure. Then, it follows by Proposition 2.2 (iii) that δΠ∗ is definable in

the exp structure. Therefore, from Proposition 2.2 (i) we conclude that for any f

definable in the exp structure, problem (4.43) is a KL function. Note that both
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f1(x) := 1
2
∥Ax − b∥2 and f2(x) :=

∑m
i=1 log

(
1 +

(Ax−b)2i
ν

)
are definable in the exp

structure, we conclude that (4.43) with f = f1 or f = f2 is a KL function.

2.4 Proximal Gradient Method

In this section, we briefly introduce proximal gradient method for solving the follow-

ing optimization problem,

min
x∈Rn

Ψ(x) := ψ(x) + ϕ(x), (2.2)

where ϕ : Rn → R is a proper lower semicontinuous function whose proximal mapping

is accessible, ψ : Rn → R is a continuous differentiable function and ∇ψ is globally

Lipschitz continuous over domϕ with Lipschitz constant L > 0. We assume that

inf Ψ > −∞.

The proximal gradient method is also known as the forward-backward splitting

method (Combettes and Wajs (2005)). From another point of view, it can also

be interpreted as a majorization-minimization algorithm. In fact, by noting that

∇ψ is assumed as Lipschitz continuous with Lipschitz constant L on domϕ, from

(Bertsekas, 1997, Proposition A.24), there is a quadratic upper bound of ψ given by

ψ(x) ≤ ψ(y) +∇ψ(y)T (x− y) +
γ

2
∥x− y∥2, ∀x, y ∈ domϕ, γ > L.

At current point y = xk, the proximal gradient method obtains the next iterate by

minimizing an upper bound of Ψ. That is,

xk+1 ∈ arg min
x∈Rn

{
ψ(xk) +∇ψ(xk)T (x− xk) +

γ

2
∥x− xk∥2 + ϕ(x)

}
,

⇔ xk+1 ∈ proxγ−1ϕ(xk − γ−1∇ψ(xk)).

The detailed iterates of the proximal gradient method are presented as follows.
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Algorithm 1 (Proximal gradient method for problem (2.2))

Initialization: Choose an arbitrary x0 ∈ domϕ, γ > L. Set k = 0.
While the termination condition is not met, solve the subproblem

xk+1 ∈ proxγ−1ϕ(xk − γ−1∇ψ(xk)), (2.3)

and let k ← k + 1.
end

In large-scale setting, the Lipschitz constant of ∇f is sometimes hard to compute,

for which γ in (2.3) is not available. For this case, one can perform a line search

procedure to select a suitable γ such that Ψ has a descent property, see for example,

Wright et al. (2009) and Gong et al. (2013). The iterates of the line search version

of proximal gradient method are given as follows.

Algorithm 2 (Proximal gradient method with line search for problem (2.2))

Initialization: Choose an arbitrary x0 ∈ domϕ, α > 0 and 0 < µmin ≤ µmax. Set
k = 0.
While the termination condition is not met
Select µk ∈ [µmin, µmax]. Let mk be the smallest nonnegative integer m such that

Ψ(xk+1) ≤ Ψ(xk)− α
2
∥xk−xk+1∥2 with xk+1 ∈ prox(µkτm)−1ϕ(xk−(µkτ

m)−1∇ψ(xk)).

(2.4)
and let k ← k + 1.
end

Remark 2.2. (i) In numerical experiments, µmin and µmax is usually set as 10−20

and 1020, respectively, and µk is usually given by the Barzilai-Borwein method, i.e.,

µk =
(xk − xk−1)⊤(∇f(xk)−∇f(xk−1)

∥xk − xk−1∥2
.

Moreover, α is usually set as a small positive constant.

(ii) We claim that Algorithm 2 is well defined, i.e., the line search procedure must

terminate after a finite number of backtrackings. Recall that ∇ψ is assumed to be Lip-

schitz continuous over domϕ with Lipschitz constant L. Let xk,m ∈ prox(µkτm)−1ϕ(xk−
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(µkτ
m)−1∇ψ(xk)) with µkτ

m ≥ L+α. It follows from the descent lemma (Bertsekas,

1997, Proposition A.24) that

Ψ(xk,m) ≤ ψ(xk) +∇ψ(xk)T (xk,m − xk) +
L

2
∥xk,m − xk∥2 + ϕ(xk,m)

≤ ψ(xk) +∇ψ(xk)T (xk,m − xk) +
µkτ

m

2
∥xk,m − xk∥2 + ϕ(xk,m)− α

2
∥xk,m − xk∥2

≤ ψ(xk) + ϕ(xk)− α

2
∥xk,m − xk∥2 = Ψ(xk)− α

2
∥xk,m − xk∥2,

where the last inequality uses the definition of xk,m. Therefore, when µkτ
m ≥ L+ α,

equation (2.4) holds, from which we deduce that the line search must terminate after

a finite number of searchings, and µkτ
mk < τ(L+ α).

The following theorem presents the global convergence result of Algorithm 2 by

virtue of KL property and (Attouch et al., 2013, Theorem 2.9). Since the analysis

for Algorithm 1 is similar, we only consider that of Algorithm 2 here.

Theorem 2.2. Assume that Ψ is level bounded, and that {xk}k∈N is generated by

Algorithm 2. If Ψ is a KL function, then {xk}k∈N is a Cauchy sequence, and converges

to a critical point of Ψ.

Proof. From (Attouch et al., 2013, Theorem 2.9), it suffices to prove that there exist

α1, α2 > 0 such that

(i) For each k ∈ N, Ψ(xk+1) ≤ Ψ(xk)− α1∥xk+1 − xk∥2;

(ii) For each k ∈ N, dist(0, ∂Ψ(xk+1)) ≤ α2∥xk+1 − xk∥;

(iii) There exists a subsequence {xkj}j∈N and x∗ such that xkj −→
Ψ
x∗ as j →∞.

Property (i) directly holds with α1 = α
2

by equation (2.4) and Remark 2.2. Next

we consider property (ii). Indeed, let µk := µkτ
mk . It follows from the first-

order optimality condition and (Rockafellar and Wets, 2009, Exercise 8.8) that
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0 ∈ ∇ψ(xk) + µk(xk+1 − xk) + ∂ϕ(xk+1), which implies that

∇ψ(xk+1)−∇ψ(xk)− µk(xk+1 − xk) ∈ ∇ψ(xk+1) + ∂ϕ(xk+1) = ∂Ψ(xk+1).

Therefore,

dist(0, ∂Ψ(xk+1)) ≤ ∥∇ψ(xk+1)−∇ψ(xk)− µk(xk+1 − xk)∥

≤ (L+ τ(L+ α)) ∥xk+1 − xk∥,

where the last inequality uses the Lipschitz continuity of ∇ψ and Remark 2.2. Prop-

erty (ii) holds with α2 = L+τ(L+α). Finally, we prove property (iii). From property

(i) we know that {xk}k∈N ⊆ LΨ(x0), which is a compact set since Ψ is level bounded,

then {xk}k∈N has at least one accumulation point. Pick any accumulation point x∗.

By definition, there exists {xkj}j∈N such that limj→∞ xkj = x∗. From the definition

of xkj , it holds that

ψ(xkj−1) + ⟨∇ψ(xkj−1), xkj − xkj−1⟩+
µkj−1

2
∥xkj − xkj−1∥2 + ϕ(xkj)

≤ ψ(xkj−1) + ⟨∇ψ(xkj−1), x∗ − xkj−1⟩+
µkj−1

2
∥x∗ − xkj−1∥2 + ϕ(x∗).

(2.5)

From property (i) and the fact that inf Ψ > −∞, we have limk→∞ ∥xk+1 − xk∥ = 0,

then limj→∞ xkj−1 = x∗. Letting j → ∞ in (2.5) and taking upper limit on both

sides yield that

lim sup
j→∞

ϕ(xkj) ≤ ϕ(x∗),

which together with the lower semicontinuousness of ϕ and the continuity of ψ implies

that xkj −→
Ψ
x∗ as j →∞. The proof is completed.

We note here that the above theorem relies on the global Lipschitz continuity

of ∇ψ. For the case where ∇ψ is only assumed to be locally Lipschitz continuous,

the global convergence result of proximal gradient method is also available, see the

recent papers Bauschke et al. (2017); Bolte et al. (2018); Bello-Cruz et al. (2021);

De Marchi and Themelis (2022); Kanzow and Mehlitz (2022); Jia et al. (2023).
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Chapter 3

A Regularized Newton Method for

ℓq-Regularization Problems

In this chapter, we consider the following problem

min
x∈Rn

F (x) := f(x) + λ∥x∥qq, (3.1)

where f : Rn → R is twice continuously differentiable with cf := infz∈Rn f(z) >−∞.

To simplify the notation, in the rest of this chapter we write g(x) := λ∥x∥qq for

x ∈ Rn.

In this chapter, we propose a hybrid of proximal gradient (PG) and subspace

regularized Newton methods (HpgSRN) for problem (3.1), which takes advantage

of PG and Newton-type methods, and avoids their disadvantages. Though problem

(3.1) is a special case of (1.7), our HpgSRN is quite different from ZeroFPR (Themelis

et al. (2018)) and ManAcc-Newton (Bareilles et al. (2023)) mentioned in Section 1.3;

see the discussions in Remark 3.1 (d) and (e).

To describe the working flow of HpgSRN, for any given S ⊆ {1, 2, . . . , n} we

define

FS(u) := fS(u)+gS(u) with fS(u) :=f(I·Su), gS(u) :=λ
∑
i∈[|S|]

|ui|q for u ∈ R|S|. (3.2)

By Lemma 3.3, for S = supp(x), such FS is twice continuously differentiable at xS.
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The main idea of HpgSRN is to use a PG method to seek a good estimate in some

neighborhood of a potential critical point, and enhance the convergence speed by

using a regularized Newton method in the subspace associated to the support of the

iterate generated by the PG method. Specifically, with the current xk, the PG step

yields xk by computing

xk ∈ arg min
x∈Rn

{
f(xk) + ⟨∇f(xk), x− xk⟩+

µk

2
∥x− xk∥2 + g(x)

}
,

where the step-size µk depends on the (local) Lipschitz constant of∇f near xk. Write

Sk := supp(xk). If the switch condition are not satisfied, let xk+1 := xk and return

to the PG step; otherwise switch to a regularized Newton step where the Newton

direction dk has the form (dkSk
; 0) with

dkSk
:= arg min

dSk
∈R|Sk|

{
FSk

(uk) + ⟨∇FSk
(uk), dSk

⟩+
1

2
⟨GkdSk

, dSk
⟩
}
, (3.3)

where Gk = ∇2FSk
(uk)+ξkI, uk =xkSk

, ξk = b1Λk+b2∥∇FSk
(uk)∥σ with b1 > 1, b2 > 0,

σ ∈ (0, 1
2
] and Λk = [−λmin(∇2FSk

(uk))]+. In Newton method with line search, to

ensure a sufficient descent in objective, the generalized Hessian Gk is required to be

positive definite. Since ∇2FSk
(uk) may not be positive semidefinite, we add b1Λk to

ensure that ∇2FSk
(uk) + b1Λk is at least positive semidefinite. On the other hand,

to ensure that Gk is positive definite, we add b2∥∇FSk
(uk)∥σI. When xk is close

to some critical point, b2∥∇FSk
(uk)∥σ will approach 0, and hence it makes Gk well

approach ∇2FSk
(uk). Under this construction, Gk is positive definite if xk is not a

critical point of F . It is easy to verify that dkSk
is the unique solution of the system

of linear equations

GkdSk
= −∇FSk

(uk).

We perform the Armijo line search along the direction dk to seek an appropriate
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step-size αk, set xk+1 := xk + αkd
k, and then return to the PG step to guarantee

that the iterate sequence has a global convergence property.

From the above statement, the iterate sequence {xk}k∈N of HpgSRN consists of

two parts: the iterates given by the PG step and those generated by the subspace

regularized Newton step. Some switching conditions involving sign(xk) = sign(xk)

decide which step the next iterate xk+1 enters in.

The main contributions of this chapter include three aspects:

(i) We propose a hybrid of the PG and subspace regularized Newton methods

for solving problem (3.1). Different from ZeroFPR and ManAcc-Newton, each

iterate of HpgSRN does not necessarily perform a second-order step until suf-

ficiently many steps are performed and the computation of the regularized

Newton step fully exploits the subspace structure, which substantially reduces

the computation cost. Numerical comparison with ZeroFPR indicates that

HpgSRN not only requires much less computing time (especially for those prob-

lem with n≫ m) but also yields comparable even better sparsity and objective

function values.

(ii) For the proposed HpgSRN, we achieve the global convergence of the iterate se-

quence under the local Lipschitz continuity of ∇2f on Rn (see Assumption 3.1),

the KL property of F , and a curve-ratio condition for the subspace regularized

Newton directions (see Assumption 3.2). Both Assumptions 3.1 and 3.2 are

commonly used in the convergence analysis of Newton-type methods with line

search.

(iii) Under Assumptions 3.1 and 3.2, if the KL property of F is strengthened to be

the KL property of exponent 1/2, we establish the R-linear convergence rate of

the iterate sequence. If in addition a local error bound condition holds at the

limit point, the iterate sequence is shown to converge superlinearly with rate
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1+σ for σ ∈ (0, 1/2]. This not only removes the local optimality of the limit

point as required by ZeroFPR and BELLA (Ahookhosh et al. (2021)), but also

gets rid of its isolatedness as BELLA does.

The rest of this chapter is organized as follows. Section 3.1 gives some preliminar-

ies, including the subdifferential characterization of F and the equivalence between

the KL property of exponent 1/2 of F and that of FS. Section 3.2 presents the

formal iterate steps of HpgSRN and some auxiliary results. Section 3.3 provides the

global and local convergence analysis of HpgSRN. Finally, in section 3.4 we conduct

numerical experiments for HpgSRN on ℓq quasi-norm regularized linear and logistic

regressions on real data and compare its performance with ZeroFPR and the PG

method with a monotone line search (PGls).

3.1 Preliminaries on ℓq- Regularization Problem

In this section, we present some preliminary results of problem (3.1). For the prox-

imal mapping of g, from (Chen et al., 2010, Theorem 2.1) we have the following

lemma.

Lemma 3.1. Fix any µ > 0 and y ∈ Rn, if x ∈ proxµg(x), then it holds that

|x|min ≥
[
µλq(1−q)

] 1
2−q .

Next, we charcterize the generalized subdifferentials of g. Since the results di-

rectly follow by Definition 2.1, the details are omitted here.

Lemma 3.2. Fix any x ∈ Rn. Then, ∂̂g(x) = ∂g(x) = ∂g1(x1)× · · · × ∂gn(xn) with

∂gi(0) = R and ∂gi(xi) = {λqsign(xi)|xi|q−1} if xi ̸= 0.

Recall that f is twice continuously differentiable. By combining Lemma 3.2 and

(Rockafellar and Wets, 2009, Exercise 8.8), ∂F (x) = ∇f(x) + ∂g(x) for all x ∈ Rn.
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Therefore, the set of critical points of (3.1) is {x | −∇f(x) ∈ ∂g(x)}. Since g is

prox-regular at x for −∇f(x) by (Ochs, 2018, Example 2.3), we know by Proposition

2.1 that the set of critical points of problem (3.1) coincides with that of its L-type

stationary points.

Next we state the differential properties of F in a subspace.

Lemma 3.3. For the objective function F of (3.1), the following statements hold.

(i) For any given index set S ⊆ [n] and any given x ∈ Rn\{0} with supp(x) = S,

the function FS is twice continuously differentiable at xS with

∇FS(xS) = I⊤·S∇f(I·SxS) + λqsign(xS) ◦ |xS|q−1, (3.4a)

∇2FS(xS) = I⊤·S∇2f(I·SxS)I·S + λq(q−1)Diag(|xS|q−2), (3.4b)

and the function gS is three times continuously differentiable at xS with

D3gS(xS)(v) = λq(q−1)(q−2)Diag(sign(xS) ◦ |xS|q−3 ◦ v) ∀v ∈ R|S|. (3.5)

(ii) For any given bounded set Ξ ⊆ Rn and any given constant κ > 0, there exist

ĉ1> 0, ĉ2 > 0 and ĉ3> 0 such that for all x ∈ Ξ\{0} with |x|min ≥ κ,

∥∇Fsupp(x)(xsupp(x))∥ ≤ ĉ1, ∥∇2Fsupp(x)(xsupp(x))∥2 ≤ ĉ2,

∥D3gsupp(x)(xsupp(x))(v)∥2 ≤ ĉ3∥v∥, for v ∈ R|supp(x)|.

(iii) For any x ∈ Rn\{0}, dist(0, ∂F (x)) = ∥∇Fsupp(x)(xsupp(x))∥.

Proof. (i) The first part of (i) is immediate since gS is continuously differentiable at

xS. To establish the second part, for any sufficiently small v ∈ R|S|,

∇2gS(xS + v)−∇2gS(xS) = q(q−1)Diag(|xS + v|q−2 − |xS|q−2)

= q(q−1)(q−2)Diag(sign(xS) ◦ |xS|q−3 ◦ v).

This, by the definition of differentiability, implies the expression of D3gS(xS)(v).
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(ii) Notice that gsupp(x) is smooth at those xsupp(x) with x ∈ Ξ and mini∈supp(x)|xi| ≥ κ.

The result follows by using formula (3.4a)-(3.4b) and (3.5) and the boundedness of

Ξ.

(iii) Fix any x ∈ Rn. Write S = supp(x). Fix any x ∈ Rn\{0}. Write S = supp(x).

From Lemma 3.2 and (Rockafellar and Wets, 2009, Exercise 8.8),

∂F (x) = ∇f(x) + ∂g1(x1)× · · · × ∂gn(xn).

Then, we get dist(0, ∂F (x)) = ∥I⊤·S∇f(I·SxS) + λq sign(xS) ◦ |xS|q−1∥. Together with

(3.4a), the result follows.

The following proposition establishes the equivalence between the KL property

of exponent θ ∈ (0, 1) of F and that of FS.

Proposition 3.1. Let θ ∈ (0, 1). For any given x ∈ Rn\{0}, F has the KL property

of exponent θ at x if and only if FS with S = supp(x) has the KL property of exponent

θ at u = xS.

Proof. From Lemma 3.3 (iii), one can verify that if x ∈ Rn\{0}, x ∈ critF if and

only if xS ∈ critFS for S = supp(x). Then, by (Attouch et al., 2010, Lemma 2.1), it

suffices to consider the case that x ∈ critF\{0}.

Necessity. Since F has the KL property of exponent θ at x, there exist η > 0, ε > 0

and c > 0 such that for all x ∈ Γ(ε, η) :=
{
x ∈ Rn | ∥x − x∥ ≤ ε, F (x) < F (x) <

F (x) + η
}

,

dist(0, ∂F (x)) ≥ c[F (x)− F (x)]θ. (3.6)

Since xi ̸= 0 for each i ∈ S, there exists ε′ > 0 such that for all z ∈ B(x, ε′), zi ̸= 0

with each i ∈ S. Set ε̃ := min{ε, ε′}. Pick any u ∈ ΓS(ε̃, η) :=
{
u ∈ R|S| | ∥u − u∥ ≤

ε̃, FS(u) < FS(u) < FS(u) + η
}

. Let x ∈ Rn with xS = u and xSc = 0. Clearly,

supp(x) = S. From Lemma 3.3 (iii), it follows that dist(0, ∂F (x)) = ∥∇FS(u)∥.

32



Also, from FS(u) = F (x) and FS(u) = F (x), we have x ∈ Γ(ε, η). Along with (3.6),

we get

∥∇FS(u)∥ = dist(0, ∂F (x)) ≥ c[F (x)− F (x)]θ = c[FS(u)− FS(u)]θ.

By the arbitrariness of u in ΓS(ε, η), FS has the KL property of exponent θ at u.

Sufficiency. Since FS has the KL property of exponent θ at u, there are ε̃ > 0, η̃ >

0, c > 0 such that for all u ∈ ΓS(ε̃, η̃) :=
{
u ∈ R|S| | ∥u − u∥ ≤ ε̃, FS(u) < FS(u) <

FS(u) + η̃
}

,

dist(0, ∂FS(u)) ≥ c[FS(u)− FS(u)]θ.

Since every entry of u is nonzero, by reducing ε̃ if necessary, for any u with ∥u−u∥ ≤

ε̃, its entries are all nonzero. By Lemma 3.3 (iii), the last inequality can be rewritten

as

∥∇FS(u)∥ ≥ c[FS(u)− FS(u)]θ. (3.7)

By continuity, there exists ε′ > 0 such that for all x ∈ B(x, ε′), supp(x) ⊇ S.

Let δ := max
∥x−x∥≤1

∥∇f(x)∥∞. Set ε := min
{

1
4
, ε̃, ε′,

(
δ+1
λq

) 1
q−1

}
and η := 1

2
min{η̃, 1}.

Let Γ′(ε, η) :=
{
x ∈ Γ(ε, η) | supp(x) = S

}
where Γ(ε, η) is defined as above, and

Γ′′(ε, η) := Γ(ε, η)\Γ′(ε, η). Pick any x ∈ Γ(ε, η). We proceed the proof by two cases.

Case 1: x ∈ Γ′(ε, η). Let u = xS. We have u ∈ ΓS(ε, η) ⊆ ΓS(ε̃, η̃), where the

second inclusion is due to ε < ε̃ and η < η̃. From Lemma 3.3 (iii) and (3.7),

dist(0, ∂F (x)) = ∥∇FS(u)∥ ≥ c[FS(u)− FS(u)]θ = c[F (x)− F (x)]θ.

Case 2: x ∈ Γ′′(ε, η). Recall that supp(x) ⊇ S. By the definition of Γ′′(ε, η), there

exists i /∈ S such that 0 < |xi| ≤ ε. Write S := supp(x). Since FS is continuously

differentiable at xS by Lemma 3.3 (i), for all i ∈ S\S it holds that

dist(0, ∂F (x)) ≥ |[∇FS(x)]i| =
∣∣[∇f(x)]i + λqsign(xi)|xi|q−1

∣∣
≥ λq|xi|q−1 − |[∇f(x)]i| > λqεq−1 − δ ≥ 1,

(3.8)
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where the last inequality follows by the definition of ε. Since F (x) < F (x) < F (x)+η

and 0 < η < 1, we have [F (x)− F (x)]θ < 1. Together with (3.8), we have

dist(0, ∂F (x)) > [F (x)− F (x)]θ.

From the above two cases and the arbitrariness of x in Γ(ε, η), the function F has

the KL property of exponent θ at x. Thus, the proof is completed.

3.2 A Hybrid of PG and Subspace Regularized

Newton Methods

In this section, we describe the iterate steps of HpgSRN, a hybrid of PG and subspace

regularized Newton methods for solving problem (3.1). The detailed iterates of the

algorithm are shown as follows.

Remark 3.1. (a) Algorithm 3 uses µk∥xk−xk∥∞ ≤ ϵ as the stopping rule, which by

Definition 2.2 means that the output xk is an approximate L-type stationary point.

(b) Every iterate of Algorithm 3 executes Step 1, but does not necessarily perform

Step 2, due to the participation of the switch condition (3.10). In fact, we believe

that when the current iterate is far away from the critical point, PG is more cost-

to-effective than the Newton method, and the switch condition is to judge whether

the current iterate is close to some potential critical point. In sparse optimization,

to check whether the signs of xk and xk are equal is an intuitive choice for switch-

ing, while the second criterium in switch condition is for convergence analysis, see

Lemma 3.6 (i). Step 1 in Algorithm 3 aims to ensure the convergence of the whole

iterate sequence, while Step 2 is a subspace regularized Newton step used to enhance

the convergence speed whenever the iterates are stable. When setting ϵ = 0 and Al-

gorithm 3 generates an infinite sequence, we will show in Proposition 3.2 that under

Assumption 3.1, after a finite number of iterates, Algorithm 3 reduces to a regularized

Newton method to minimize FS∗ for some S∗ ⊆ [n].
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Algorithm 3 (a hybrid of PG and subspace regularized Newton methods)

Initialization: Choose τ > 1, α > 0, µmax > µmin > 0, σ ∈ (0, 1
2
], ϱ ∈ (0, 1

2
), β ∈

(0, 1), b1 > 1 and b2 > 0. Choose an initial x0 ∈ Rn and a tolerance ϵ ≥ 0. Let k= 0.

Step 1: proximal gradient step

(1a) Choose an initial step-size µk ∈ [µmin, µmax]. Let mk be the smallest integer m
such that

F (xk) ≤ F (xk)− α

2
∥xk−xk∥2 with xk ∈ prox(µkτm)−1g(x

k−(µkτ
m)−1∇f(xk)).

(3.9)

(1b) Let µk = µkτ
mk . If µk∥xk − xk∥∞ ≤ ϵ, output xk; otherwise go to (1c).

(1c) Let ωk = µk+λq(q−1)|xk|q−2
min . If

sign(xk) = sign(xk) and µk+λq(q−1)|xk|q−2
min≥

1

2
ωk, (3.10)

then go to Step 2; otherwise let xk+1 = xk and k ← k + 1. Go to Step 1.

Step 2: subspace regularized Newton step

(2a) Let Sk = supp(xk) and uk = xkSk
. Seek a subspace Newton direction dkSk

by
solving GkdkSk

= −∇FSk
(uk), where Gk =∇2FSk

(uk)+(b1Λk+b2∥∇FSk
(uk)∥σ)I

with Λk = [−λmin(∇2FSk
(uk))]+. Let dkSc

k
= 0.

(2b) Let tk be the smallest nonnegative integer t such that

FSk
(uk+βtdkSk

) ≤ FSk
(uk) + ϱβt⟨∇FSk

(uk), dkSk
⟩. (3.11)

(2c) Let αk = βtk and xk+1 = xk + αkd
k and k ← k + 1. Go to Step 1.

(c) We claim that Algorithm 3 is well defined, i.e., the line search procedures in (1a)

and (2b) of Algorithm 3 must hold after a finite number of backtrackings.

We first argue that the number of backtrackings in (1a) is finite. For this purpose,

define hµ(z;x) := ⟨∇f(x), z − x⟩ + µ
2
∥z − x∥2 + g(z) for z ∈ Rn. For each m ∈ N,
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pick xk,m ∈ prox(µkτm)−1g

(
xk − (µkτ

m)−1∇f(x)
)
, then it follows that

hµk
(xk,m;xk) ≤ ⟨∇f(xk), xk,m − xk⟩+

µkτ
m

2
∥xk,m − xk∥2 + g(xk,m)

≤ g(xk) = hµk
(xk;xk).

(3.12)

Since hµk
(·;xk) is continuous and coercive, the set

Lk := {z ∈ Rn | hµk
(z;xk) ≤ hµk

(xk;xk)}

is compact. Since ∇f is continuously differentiable, there exists Lk > 0 such that

for any y, w ∈ Lk, ∥∇f(y) − ∇f(w)∥ ≤ Lk∥y − w∥. When µkτ
m ≥ Lk + α, from

xk, xk,m ∈ Lk and the descent lemma (Bertsekas, 1997, Proposition A.24),

F (xk,m) ≤ f(xk) + ⟨∇f(x), xk,m−xk⟩+
Lk

2
∥xk,m−xk∥2 + g(xk,m)

≤ f(xk) + ⟨∇f(xk), xk,m−xk⟩+
µkτ

m

2
∥xk,m−xk∥2 + g(xk,m)− α

2
∥xk,m−xk∥2

≤ f(xk) + g(xk)− α

2
∥xk,m−xk∥2 = F (xk)− α

2
∥xk,m−xk∥2, (3.13)

where the last inequality is due to (3.12). This implies that the line search procedure

stops in the m-th backtracking. The above arguments only use the Lipschitz continuity

of ∇f on the set Lk rather than its global Lipschitz continuity, and the coercivity of

hµk
(·;xk) rather than that of g. For more discussion on line search of PG methods in

a general setting, see also Bello Cruz and Nghia (2016); Salzo (2017) for the convex

f and De Marchi and Themelis (2022); Kanzow and Mehlitz (2022); Jia et al. (2023)

for the nonconvex f .

Next we argue that the line search in (2b) will terminate after a finite number

of backtrackings. We see that when the iteration goes from Step 1 to Step 2, it is

necessary that Sk ̸= ∅. As in this case (3.10) is satisfied, xk ̸= 0 must hold. If not,

by (3.10), xk = 0. So the termination condition in (1b) is satisfied and the algorithm
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stops. By Lemma 3.3 (i), FSk
is continuously differentiable at uk, which along with

Gk ≻ 0 implies that

⟨∇FSk
(uk), dkSk

⟩ = −⟨GkdkSk
, dkSk
⟩ < 0, (3.14)

i.e., dkSk
is a descent direction of FSk

at uk. In addition, FSk
is bounded from below

on R|Sk| because f is bounded from below on Rn. By following the same arguments

as those for (Nocedal and Wright, 2006, Lemma 3.1), the smallest nonnegative inte-

ger tk satisfying (3.11) exists. Therefore, combining the last part, we conclude that

Algorithm 3 is well defined.

From the iterate steps of Algorithm 3, the sequence {xk}k∈N consists of two parts,

i.e., {xk}k∈N = {xk}k∈K1 ∪ {xk}k∈K2, where

K1 :=
{
k ∈ N | xk+1 is generated by Step 1

}
and K2 := N\K1. (3.15)

It is clear now that for k ∈ K2, Sk ̸= ∅, that is, xk has a nonempty support.

(d) Although Algorithm 3 is a hybrid of PG and second-order methods, it is not

a special case of ZeroFPR (Themelis et al. (2018)) and FBTN (Themelis et al.

(2019)) due to the following four aspects. Firstly, each iterate of Algorithm 3 does

not necessarily perform Newton step, while each iterate of ZeroFPR and FBTN must

execute a second-order step. Secondly, Algorithm 3 is using the Armijo line search,

which is different from the ones used in ZeroFPR and FBTN. Let Fγ denote the

forward-backward envelope of F associated to γ > 0, and η > 0 be a constant related

to the (local) Lipschitz constant of ∇f . For (3.1), the line search of ZeroFPR is to

seek the smallest nonnegative integer tk of those t’s such that

Fγ(xk + βtd
k
)− Fγ(xk) ≤ −η∥xk − xk∥2.

Then set xk+1 = xk + βtkd
k
, where d

k
is a Newton-type direction at xk rather than

xk; and the line search of FBTN is to seek the smallest nonnegative integer tk of
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those t’s such that

Fγ

(
(1− βt)xk + βt(xk + dk)

)
− Fγ(xk) ≤ −η∥xk − xk∥2,

and then set xk+1 = (1− βtk)xk + βtk(xk + dk), where dk is a second-order direction

at xk. We observe that the decrease of the successive iterates for ZeroFPR and

FBTN, i.e. Fγ(xk+1)−Fγ(xk), is controlled by −∥xk−xk∥2, while the decrease of the

successive iterates for Step 2 of Algorithm 3, i.e., F (xk+1)− F (xk), is controlled by

the curve ratio αk⟨∇FSk
(uk), dkSk

⟩. Thirdly, the line search procedures of ZeroFPR

and FBTN involve computing the forward-backward envelope of F , which means that

prox-gradient evaluations are needed at each backtracking trial and this is not the

case for (2b) of Algorithm 3.2. Finally, the global convergence analysis of ZeroFPR

requires its second-order direction dk to satisfy

∃ a constant ĉ > 0 such that ∥dk∥ ≤ ĉ∥xk − xk∥ for all k, (3.16)

but now it is unclear whether the regularized Newton direction in (2a) satisfies (3.16)

or not.

(e) Our algorithm is similar to the Newton acceleration framework of the PG method

proposed in (Bareilles et al. (2023)), which first uses the PG method to identify the

underlying manifold substructure of (3.1) and then accelerates it with a Riemannian

Newton method. However, our algorithm is not a special case of this framework due

to the following facts. Firstly, similar to ZeroFPR and FBTN, the framework in

(Bareilles et al. (2023)) executes a Newton step in each iteration. As discussed in

part (d), our algorithm adaptively executes a Newton step by condition (3.10), which

avoids some unnecessary waste in second-order step. Secondly, the Riemannian Hes-

sian was used to yield the Newton directions in (Bareilles et al. (2023)), while a

regularized one is used in our algorithm to yield the Newton directions. Thirdly, a

quadratic convergence rate of the iterate sequence was established in (Bareilles et al.

38



(2023)) by assuming that the Riemannian Hessian is positive definite at the limit

point. However, under weaker conditions we show that the generated sequence is

convergent and has a superlinear convergence rate; see Theorems 3.1 and 3.2, re-

spectively.

To conduct the convergence analysis of Algorithm 3 with ϵ = 0 in the next

section, from now on we assume that xk ̸= xk for all k (if not, Algorithm 3 yields an

L-type stationary point within a finite number of steps), i.e., Algorithm 3 generates

an infinite sequence {xk}k∈N. The following lemma shows that the sequences {xk}k∈N

and {xk}k∈N are bounded, and the sequence {µk}k∈N is upper bounded. The latter

will be used to derive a uniform lower bound for |xk|min; see Lemma 3.6 (i) later.

Lemma 3.4. The following assertions hold for {xk}k∈N, {xk}k∈N and {µk}k∈N.

(i) The sequence {F (xk)}k∈N is nonincreasing and convergent, and consequently,

{xk}k∈N ⊆ LF (x0) :={x ∈ Rn |F (x) ≤ F (x0)} and {xk}k∈N ⊆ LF (x0).

(ii) {xk}k∈N and {xk}k∈N are bounded, the cluster point set of {xk}k∈N, denoted by

ω(x0), is nonempty and compact, and F is constant on ω(x0).

(iii) For all k ∈ N, µk < L̃ := max{µmax + 1, τ(2L̂ + α)}, where L̂ is the Lipschitz

constant of ∇f on the set LF (x0)+τB with τ :=
τ0+
√

τ20+2c̃fµmin

µmin
. Here, τ0 :=

maxx∈LF (x0) ∥∇f(x)∥ and c̃f = F (x0)− cf .

Proof. (i) Fix any k ∈ N. When k ∈ K1, x
k+1 = xk, and by (3.9), F (xk+1) ≤ F (xk).

When k ∈ K2, it follows from (3.11) and (3.14) that

FSk
(uk+1) ≤ FSk

(uk) + ϱβmk⟨∇FSk
(uk), dkSk

⟩ ≤ FSk
(uk),

which along with Sk+1 ⊆ Sk implies that F (xk+1) ≤ F (xk). The two cases show that

{F (xk)}k∈N is nonincreasing, which along with the lower boundedness of F means
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that {F (xk)}k∈N is convergent. The nonincreasing behavior of {F (xk)}k∈N, together

with F (xk) ≤ F (xk) for each k ∈ N, implies that F (xk) ≤ F (xk) ≤ F (x0) for each

k ∈ N, and consequently, {xk}k∈N ⊆ LF (x0) and {xk}k∈N ⊆ LF (x0).

(ii) Since g is coercive and f is lower bounded, the level set LF (x0) is compact. By

part (i), {xk}k∈N and {xk}k∈N are bounded, so the set ω(x0) is nonempty. Using

the same arguments as in (Bolte et al., 2014, Lemma 5 (iii)) yields the compactness

of ω(x0). Pick any x∗ ∈ ω(x0). There exists a subsequence {xkj}j∈N such that

limj→∞ xkj = x∗. By the continuity of F and the convergence of {F (xk)}k∈N, we

have F (x∗) = limj→∞ F (xkj) = F ∗, where F ∗ is the limit of {F (xk)}k∈N. This means

that F is constant on the set ω(x0).

(iii) Define K := {k ∈ N | µk > µk}. If K is empty, the desired result holds because

µk = µk ≤ µmax < L̃ for all k ∈ N, so we assume that K ≠ ∅. Write µ̂k := µk/τ and

x̂k := proxµ̂−1
k g(x

k−µ̂−1
k ∇f(xk)) for each k ∈ K. We first argue that

∥x̂k − xk∥ ≤ τ for each k ∈ K. (3.17)

Since µ̂k < µk, by (3.9) we have F (x̂k) > F (xk) − α
2
∥x̂k−xk∥2, which implies that

x̂k ̸= xk for each k ∈ K. For each k ∈ K, from the definition of x̂k, we have

⟨∇f(xk), x̂k − xk⟩+
µ̂k

2
∥x̂k − xk∥2 + g(x̂k)− g(xk) ≤ 0. (3.18)

By using Cauchy-Schwarz inequality and the nonnegativity of g, it follows that

µ̂k

2
∥x̂k − xk∥2 ≤ ∥∇f(xk)∥∥x̂k − xk∥+ g(xk)− g(x̂k)

≤ ∥∇f(xk)∥∥x̂k − xk∥+ F (xk)− f(xk)

≤ ∥∇f(xk)∥∥x̂k − xk∥+ F (x0)− cf ≤ τ0∥x̂k − xk∥+ c̃f ,

where the third inequality is due to F (xk) ≤ F (x0) and f(xk) ≥ cf , and the last one

is by the definitions of τ0 and c̃f . For each k ∈ K, since µ̂k ≥ µk ≥ µmin, from the
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last inequality,

µmin

2
∥x̂k − xk∥2 − τ0∥x̂k − xk∥ − c̃f ≤ 0.

This, by the definition of τ , implies that inequality (3.17) holds. Now for each k ∈ K,

by the mean-value theorem, there exists zk on the line segment connecting xk and

x̂k such that

F (x̂k)− F (xk) = ⟨∇f(zk), x̂k − xk⟩+ g(x̂k)− g(xk).

Substituting this equality into (3.18) and using F (x̂k)−F (xk) > −α
2
∥xk−x̂k∥2 yields

that

µ̂k − α
2
∥xk − x̂k∥2 < ⟨∇f(ξk)−∇f(xk), x̂k − xk⟩

≤ ∥∇f(xk)−∇f(ξk)∥∥x̂k − xk∥.

From part (i) and (3.17), {xk}k∈K ⊆ LF (x0) and {x̂k}k∈K ⊆ LF (x0)+τB. Hence,

{zk}k∈K ⊆ LF (x0)+τB. From the last inequality, for each k ∈ K,

µ̂k − α
2
∥xk − x̂k∥ < ∥∇f(xk)−∇f(ξk)∥ ≤ L̂∥xk − ξk∥ ≤ L̂∥xk − x̂k∥.

Thus, µ̂k < 2L̂+ α and µk < τ(2L̂+ α) for each k ∈ K. The proof is completed.

For any given γ > 0, s ∈ R, define a real-valued function h : R→ R by

hγ,s(t) :=
γ

2
(t− s)2 + λ|t|q for t ∈ R. (3.19)

It is easy to see that t = 0 is always a local minimizer of hγ,s and that the absolute

value of another possible local minimizer is greater than ν, where ν :=
(
λq(1−q)

γ

) 1
2−q .

In next lemma, we will establish the existence of a uniform lower bound ϖ of h′′γ,s at

its nonzero local minimizer for any γ > 0 and s ∈ R. We will show that the existence

of such ϖ will ultimately lead to the validity of the second condition of (3.10) for
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some k in any large enough interval and hence, together with the validity of the first

condition of (3.10), the infinite cardinality of K2. Indeed, if for all the integers k in

any large enough interval, xk+1 is produced by Step 1, then the sufficient decrease

property in (1a) of Step 1 implies that

F (xk)− F (xk+1) ≥ α

2
∥xk − xk+1∥2 (with xk+1 = xk).

Summing this up for all such integers, it follows from the lower boundedness of F

that
∑
∥xk − xk+1∥2 is bounded. Thus, for some integer k, ∥xk − xk+1∥ should

be sufficiently small. By using an integral mean-value theorem, |xk|q−2
min − |xk|

q−2
min is

bounded by ∥xk−xk∥. Therefore |xk|q−2
min − |xk|

q−2
min should be sufficiently small. If so,

it is true that ϖ
2

+ λq(q − 1)(|xk|q−2
min − |xk|

q−2
min) ≥ 0, which implies that the second

condition of (3.10) holds for some integer k.

Lemma 3.5. For any given 0 < υ < M < ∞, there exists a constant ϖ> 0 such

that for any γ > 0 and s ∈ R with |t(γ, s)| ∈ [υ,M ],

h′′γ,s(t(γ, s)) = γ + λq(q−1)|t(γ, s)|q−2 ≥ ϖ.

Proof. Suppose that the conclusion does not hold. Then, there exist sequences

{γk}k∈N ⊆ R++ and {sk}k∈N ⊆ R with |t(γk, sk)| ∈ [υ,M ] such that h′′γk,sk(t(γk, sk)) ≤
1
k

for all k ∈ N. For each k ∈ N, write tk := t(γk, sk) and ϑk := hγk,sk . Clearly, there

exists k̃ ∈ N such that for all k > k̃, ϑ′′
k(tk) < κυ

10
:= ε, where κ := λq(q−1)(q−2)M q−3.

By the expression of ϑk, for any t with |t| ∈ (0,M ], the following inequality holds:

|ϑ′′′
k (t)| = λq(q−1)(q−2)|t|q−3 ≥ κ. (3.20)

Fix any k > k̃. We proceed the arguments by tk ∈ [υ,M ] and tk ∈ [−M,−υ].

Case 1: tk ∈ [υ,M ]. Since ϑ′′
k(tk) < ε and ϑ′′′

k (t) > κ for t ∈ (0,M ], by the

integral mean-value theorem, ϑ′′
k(tk) > ϑ′′

k(tk− ε
κ
) + ε, which by ϑ′′

k(tk) < ε implies
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that ϑ′′
k(tk− ε

κ
) < 0. Together with ϑ′′

k(tk) > 0 (see (Hu et al., 2017, Lemma 14)),

there exists 0 < δ < ε
κ

such that ϑ′′
k(tk−δ) = 0. Recall that ϑ′′′

k (t)> κ > 0 for all

t ∈ (0,M ]. Then,

ϑ′′
k(t) < 0 for t ∈ (0, tk−δ) and ϑ′′

k(t) > 0 for t ∈ (tk−δ,M ]. (3.21)

Note that ϑ′
k(tk) = 0. This, along with the second inequality in (3.21), implies that

ϑ′
k(tk−δ) < 0. Also, since 0 < ϑ′′

k(t) < ε for all t ∈ (tk−δ, tk), from the integral mean-

value theorem, ϑ′
k(tk−δ) > ϑ′

k(tk)− εδ = −εδ, and then ϑ′
k(tk−δ) ∈ (−εδ, 0). Next

we argue that there exists a point t̃k ∈ (tk−δ−
√

2εδ/κ, tk−δ) such that ϑ′
k(t̃k) = 0,

which along with the first inequality in (3.21) implies that

ϑ′
k(t) > 0 for t ∈ (0, t̃k) and ϑ′

k(t) < 0 for t ∈ (t̃k, tk − δ). (3.22)

Indeed, for any t ∈ (0, tk−δ), using ϑ′′
k(tk−δ) = 0 and inequality (3.20) yields that

−εδ < ϑ′
k(tk−δ) = ϑ′

k(t) +

∫ tk−δ

t

ϑ′′
k(s)ds = ϑ′

k(t) +

∫ tk−δ

t

[
ϑ′′
k(s)− ϑ′′

k(tk−δ)
]
ds

≤ ϑ′
k(t) +

∫ tk−δ

t

κ(s−tk + δ)ds = ϑ′
k(t)− κ

2
(t−tk + δ)2,

which implies that ϑ′
k(t) > 0 for all t ≤ tk−δ−

√
2εδ/κ. Along with ϑ′

k(tk−δ) < 0,

there exists t̃k ∈ (tk−δ−
√

2εδ
κ
, tk−δ) such that ϑ′

k(t̃k) = 0.

From (3.21) we deduce that ϑ′
k is decreasing in (t̃k, tk−δ) and is increasing in

(tk−δ, tk), which means that ϑ′
k(t) ≥ ϑ′

k(tk − δ) > −εδ for all t ∈ (t̃k, tk). Then,

ϑk(tk)− ϑk(t̃k) =

∫ tk

t̃k

ϑ′
k(s)ds > −εδ(tk − t̃k) > −εδ

(
δ+

√
2εδ

κ

)
(3.23)

> −
( ε3
κ2

+
√

2
ε3

κ2

)
> −3

ε3

κ2
= − 3κ

1000
υ3,
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where the third inequality is due to 0 < δ < ε
κ
. On the other hand, we have

ϑk(t̃k)−ϑk(0) =

∫ t̃k

0

∫ s

t̃k

ϑ′′
k(τ)dτds =

∫ t̃k

0

∫ s

t̃k

[ϑ′′
k(τ)− ϑ′′

k(tk−δ)]dτds

≥
∫ t̃k

0

∫ s

t̃k

κ(τ − tk + δ)dτds =

∫ t̃k

0

κ

2
s2 − κ

2
t̃2k + κ(tk−δ)(t̃k−s)ds

=
κ

6
t̃3k −

κ

2
t̃3k +

κt̃2k
2

(tk−δ) ≥
κ

6
t̃3k ≥

κ

6

(
tk−δ−

√
2εδ

κ

)3

≥ κ

6

(
υ− 3ε

κ

)3

,

(3.24)

where the first equality is due to ϑ′
k(t̃k) = 0, the second one is using ϑ′′

k(tk−δ) = 0, the

first inequality is using (3.20) and the last inequality is due to 0 < δ < ε
κ

and tk ≥ υ.

Thus, from (3.23) and (3.24) and ε := κυ
10

, we have ϑk(tk) − ϑk(0) > 465κ
6000

υ3 > 0,

contradicting that tk is a global minimizer of ϑk = hγk,sk . The conclusion then holds.

Case 2: tk ∈ [−M,−υ]. By using the similar arguments to those for Case 1, one

can verify that the conclusion holds. Here, the details are omitted.

To provide a sufficient condition for the switching condition (3.10), we introduce

the following notation that will be used in the subsequent analysis:

Sk := supp(xk) and uk := xk
Sk

for each k ∈ N.

Lemma 3.6. Let {xk}k∈N and {xk}k∈N be generated by Algorithm 3, and write ν :=

[L̃−1λq(1 − q)]
1

2−q , with L̃ being the one in Lemma 3.4 (iii). Then, the following

statements hold.

(i) |xk|min > ν for all k ∈ N, and |xk|min > ν for all k ∈ K2.

(ii) ωk ≥ ϖ for all k ∈ N, where ωk is the one in (1c) of Algorithm 3, and ϖ is

the one in Lemma 3.5 with v = ν and M =
(F (x0)−cf

λ

) 1
q .
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(iii) For each k ∈ N, if |xk|min >
ν
2
and ∥xk−xk∥ ≤ min

{
ν
3
, 2q−3ϖ
2λq(1−q)(2−q)νq−3

}
, then

condition (3.10) holds.

Proof. (i) By using Lemma 3.1 with µ = µ−1
k and y = xk−µ−1

k ∇f(xk) for each k ∈ N

and noting that µmin ≤ µk < L̃ from Lemma 3.4 (iii), we have |xk|min > ν for all k.

To argue that |xk|min > ν for all k ∈ K2, we only need to prove that |xk|min > ν if

xk satisfies condition (3.10). Indeed, the second condition in (3.10) is equivalent to

|xk|q−2
min ≤

µk

2λq(1−q) + 1
2
|xk|q−2

min , which by µk < L̃ and the definition of ν means that

|xk|q−2
min <

L̃

2λq(1−q)
+

1

2
νq−2 = νq−2,

where the equality is using the expression of ν. Thus, |xk|min > ν for all k ∈ K2.

(ii) From (3.9), F (xk) ≤ F (xk) for each k ∈ N. Then,

cf + λ∥xk∥qq ≤ f(xk) + λ∥xk∥qq = F (xk) ≤ F (xk) ≤ F (x0),

which implies that ∥xk∥qq ≤ λ−1(F (x0) − cf ), and then |xki | ≤
(F (x0)−cf

λ

)1/q
for each

i ∈ Sk. In addition, from part (i), |xki | > ν for each i ∈ Sk. For each k, let

yk := xk−µ−1
k ∇f(xk). Then, xki ∈ arg mint∈R hµk,y

k
i
(t) for each i ∈ Sk, where hµk,y

k
i

is defined by (3.19). Now by invoking Lemma 3.5 with υ = ν, M =
(F (x0)−cf

λ

) 1
q and

t(µk, y
k
i ) = xki for all i ∈ Sk, we obtain ωk = µk + λq(q−1)|xk|q−2

min ≥ ϖ.

(iii) Fix any k ∈ N. We first prove that the equality in (3.10) holds. From part

(i), |xk|min > ν, while from the given condition, |xk|min >
ν
2
. If there exists an index

i ∈ [n] such that sign(xki ) ̸= sign(xki ), then ∥xk − xk∥ ≥ |xki − xki | > ν
2
, which is a

contradiction to ∥xk − xk∥ < ν/3. Thus, sign(xk) = sign(xk), and hence Sk = Sk.

For the inequality in (3.10), from part (ii), it suffices to argue that ϖ
2

+ λq(q−

1)(|xk|q−2
min − |xk|

q−2
min) ≥ 0 or |xk|q−2

min − |xk|
q−2
min ≤ ϖ

2λq(1−q)
. Indeed, by invoking the
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integral mean-value theorem,

|xk|q−2
min−|xk|

q−2
min =

∫ |xk|min

|xk|min

(2−q)tq−3dt

≤ (2−q)
(

min{|xk|min, |xk|min}
)q−3∣∣|xk|min−|xk|min

∣∣
< (2−q)(ν/2)q−3

∣∣|xk|min−|xk|min

∣∣ ≤ (2−q)(ν/2)q−3∥xk − xk∥ ≤ ϖ

2λq(1− q)
,

where the second inequality is by |xk|min > ν and |xk|min >
ν
2
, the third one is due

to Sk = Sk, and the last one is using ∥xk − xk∥ < 2q−3ϖ
2λq(1−q)(2−q)νq−3 .

From Lemma 3.6, we obtain the following corollary, stating that K2 contains

infinite indices, so HpgSRN is different from PG method. In the next section, we

will improve this result so that after a finite number of steps, the iterates of Algorithm

3 always enter into Step 2.

Corollary 3.1. There exists k̃ ∈ N such that for any k1, k2 ∈ N with k2 − k1 > k̃,

[k1 : k2] ∩ K2 ̸= ∅, so K2 is an infinite set and Algorithm 3 is different from PG

method.

Proof. Let δ = min{ν
3
, 2q−3ϖ
2λq(1−q)(2−q)νq−3

}
and k̃ = ⌈2(F (x0)−cf )

αδ2
⌉. We argue by contra-

diction that the result holds. If not, there must exist k̂1, k̂2 ∈ N with k̂2 − k̂1 > k̃

such that [k̂1 : k̂2] ∩ K2 = ∅. Clearly, [k̂1 : k̂2] ⊆ K1. By the definition of K1, for

every k − 1 ∈ [k̂1 : k̂2−1], xk is obtained by the PG step, which by Lemma 3.6 (i)

implies that |xk|min > ν and then ∥xk − xk∥ ≥ δ must hold (if not, by Lemma 3.6

(iii), [k̂1+1: k̂2] would contain an index of K2). For every k ∈ [k̂1 : k̂2] ⊂ K1, we also

have xk+1 = xk. By (3.9), for every k ∈ [k̂1 : k̂2], F (xk+1) ≤ F (xk) − α
2
∥xk − xk∥2,

and then

2
(
F (xk̂1+1)− cf )

α
≥

2
(
F (xk̂1+1)− F (xk̂2+1)

)
α

≥
k̂2∑

i=k̂1+1

∥xk − xk∥2 ≥ (k̂2 − k̂1)δ2,
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where the last inequality is due to ∥xk − xk∥ ≥ δ for every k ∈ [k̂1+1: k̂2]. Together

with F (xk̂1+1) ≤ F (x0), we obtain k̂2 − k̂1 ≤ 2(F (x0)−cf )

αδ2
≤ k̃, a contradiction to the

given condition k̂2 − k̂1 > k̃. The proof is then completed.

3.3 Convergence Analysis

In this part, we analyze the convergence rate of the objective function value sequence

{F (xk)}k∈N, and establish the global convergence of the iterate sequence {xk}k∈N and

its superlinear convergence rate. Throughout this section, we write

rk := ∇FSk
(uk) and Hk := ∇2FSk

(uk) for each k ∈ K2.

First, we give several technical lemmas that are used for the subsequent convergence

analysis. The following lemma states that the subsequences {rk}k∈K2 and {dk}k∈K2

are bounded, and the subsequence {rk}k∈K2 is lower bounded by {∥uk − uk∥}k∈K2 .

The latter is crucial to control F (xk+1) − F (xk) by using −∥xk − xk∥2; see Lemma

3.9.

Lemma 3.7. Let {xk}k∈N be generated by Algorithm 3. The following holds.

(i) There exists a constant rmax > 0 such that ∥rk∥ ≤ rmax and ∥dk∥ ≤ b−1
2 r1−σ

max for

all k ∈ K2, where b2 is the one in (2a) of Algorithm 3.

(ii) For each k ∈ K2, ∥rk∥ ≥ ϖ
4
∥uk−uk∥ where ϖ is the same as in Lemma 3.6

(ii).

Proof. (i) Fix any k ∈ K2. By Remark 3.1 (c), we know that Sk ̸= ∅. From Lemma

3.6 (i), |xki | > ν for all i ∈ Sk. By invoking Lemma 3.3 (ii) with κ = ν/2 and

Ξ =
{
z ∈ LF (x0) | |zi| ≥ ν/2 for all i ∈ Sk

}
, there exists rmax > 0 (independent of k)

such that ∥rk∥ ≤ rmax. Together with λmin(Gk) ≥ b2∥rk∥σ, it follows that

∥dk∥ = ∥dkSk
∥ ≤ ∥(Gk)−1∥2∥rk∥ ≤ b−1

2 ∥rk∥1−σ ≤ b−1
2 r1−σ

max . (3.25)
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(ii) Fix any k ∈ K2. Write vk := uk−µ−1
k I⊤·Sk

∇f(I·Sk
uk) = uk−µ−1

k [∇f(xk)]Sk
.

Let hk(u) :=
∑|Sk|

i=1 hµk,v
k
i
(ui) for u ∈ R|Sk|, where hµk,v

k
i

is the function defined in

(3.19) with (γ, s) = (µk, v
k
i ). From (3.10), sign(xk) = sign(xk), and then Sk = Sk.

Therefore, we have uk ∈ arg minu∈R|Sk| hk(u), whose optimality condition is given by

0 = ∇hk(uk) = µk(uk−vk) + λqsign(uk) ◦ |uk|q−1. (3.26)

In addition, by combining Lemma 3.6 (ii) and the inequality in (3.10), it holds that

ϖ/2 ≤ ωk/2 ≤ µk + λq(q−1)|xk|q−2
min = µk + λq(q−1)|uk|q−2

min = h′′µk,v
k
i
(|uk|min). (3.27)

Define the index sets Ik1 :={i ∈ [|Sk|] |uki > 0} and Ik2 := [|Sk|]\Ik1 . For each i ∈ [|Sk|],

write ũki := sign(uki ) min{|uki |, |uki |}. Note that each hµk,v
k
i

is smooth at any t ̸= 0,

and h′′
µk,v

k
i

is nonincreasing at (−∞, 0) and nondecreasing at (0,∞). From (3.27)

and Lemma 3.6 (ii), it follows that h′′
µk,v

k
i
(ũki ) ≥ ϖ/2 for all i ∈ [|Sk|]. Consequently,

there exists ε > 0 such that for each i ∈ Ik1 , h′′
µk,v

k
i
(t) > ϖ

4
when t ∈ (ũki− ε,∞); and

for each i ∈ Ik2 , h′′
µk,v

k
i
(t) > ϖ

4
when t ∈ (−∞, ũki + ε). Define

Ωk :=
{
u ∈ R|Sk| |ui> ũki − ε for i ∈ Ik1 and ui <−ũki + ε for i ∈ Ik2

}
.

Then, hk is twice continuously differentiable on the convex set Ωk with∇2hk(u) ≻ ϖ
4
I

for all u ∈ Ωk, which implies that h̃k(u) := hk(u)− ϖ
8
∥u− vk∥2 is strongly convex on

the set Ωk. From (3.26) and the expression of h̃k, clearly, ∇h̃k(uk) = ϖ
4

(vk−uk). Let

ûk := uk + 4
ϖ
∇h̃k(uk). By the convexity of h̃k on Ωk and uk, uk ∈ Ωk, we have

0 ≤ ⟨∇h̃k(uk)−∇h̃k(uk), uk − uk⟩ =
ϖ

4
⟨(vk − uk)− (ûk − uk), uk − uk⟩,

which implies that ∥uk − uk∥ ≤ ∥vk − ûk∥ = ∥uk−µ−1
k [∇f(xk)]Sk

− ûk∥. Together
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with ϖ
4

(ûk−uk) = ∇h̃k(uk) = (µk−ϖ
4

)(uk−vk) + λqsign(uk) ◦ |uk|q−1, it follows that

∥rk∥ =
∥∥[∇f(xk)]Sk

+ λqsign(uk) ◦ |uk|q−1
∥∥

=
∥∥[∇f(xk)]Sk

− (µk −
ϖ

4
)(uk − vk) +

ϖ

4
(uk−ûk)

∥∥
=
ϖ

4
∥µ−1

k [∇f(xk)]Sk
− uk + ûk∥ ≥ ϖ

4
∥uk − uk∥,

where the third equality is by the definition of vk. The proof is completed.

Assumption 3.1. ∇2f is locally Lipschitz continuous on Rn.

Assumption 3.1 is a common one in the convergence analysis of Newton-type

methods (see, e.g., Yue et al. (2019); Mordukhovich et al. (2023)). It is satisfied for

third differentiable loss functions such as least square function, logistic regression,

student’s t-loss function (Aravkin et al. (2012)), high-order portfolio loss (Zhou and

Palomar (2021)), the nonlinear least square loss
∑m

i=1(bi − ϕi(Ai·x))2 with ϕi being

smooth, and the Log-Cosh dice loss function (Jadon (2020)) etc., while it is violated

for the least absolute deviation and Huber loss as they are not twice continuously

differentiable.

By the Heine-Borel open covering theorem, one can show that under Assumption

3.1 the Hessian∇2f is Lipschitz continuous on any compact subset of Rn. We next use

this fact to prove that {αk}k∈K2 has a uniform lower bound, which will be employed

to establish the sufficient decrease of {F (xk)}k∈N; see Lemma 3.9.

Lemma 3.8. Under Assumption 3.1 there is α > 0 such that for all k ∈ K2, αk ≥ α.

Proof. Let Ξ:= LF (x0) + 1
2
νB. By invoking Assumption 3.1, there exists a constant

L2 > 0 such that

∥∇2f(y)−∇2f(z)∥2 ≤ L2∥(y − z)∥ ∀y, z ∈ Ξ. (3.28)

Fix any integer m ≥ 0 with βm ≤ min
{

1, 1
2
νb2r

σ−1
max

}
, where ν is the same as the one

in Lemma 3.6. Fix any k ∈K2. From dkSc
k

= 0, |xki | > ν for all i ∈ Sk (Lemma 3.6 (i))
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and Lemma 3.7 (i), we have sign(xk+ τβmdk) = sign(xk) and |xk+τβmdk|min >
ν
2

for

all τ ∈ [0, 1]. By Lemma 3.3 (i), FSk
is twice continuously differentiable on an open

set containing the line segment between uk and uk +βmdkSk
. From the mean-value

theorem,

FSk
(uk+βmdkSk)− FSk

(uk)− ⟨rk, βmdkSk
⟩

=
1

2
β2m⟨∇2FSk

(uk+τkβ
mdkSk

)dkSk
, dkSk
⟩ for some τk ∈ [0, 1]. (3.29)

Note that xk+ τβmdk ∈ Ξ for all τ ∈ [0, 1] by Lemma 3.7 (i). By using Lemma 3.3

(ii) with κ = ν/2, there exists a constant ĉ3 > 0 (independent of k) such that

∥∇2gSk
(uk)−∇2gSk

(uk+τkβ
mdkSk

)∥2 ≤
∫ τk

0

∥D3gSk
(uk+tβmdkSk

)(βmdkSk
)∥2dt

≤ τkĉ3β
m∥dkSk

∥.

In addition, since xk, xk + τkβ
mdk ∈ Ξ, using inequality (3.28) with y = xk and

z = xk+τkβ
mdk and noting that supp(xk) = supp(xk+ τkβ

mdk) = Sk, we have

∥I⊤·Sk
∇2f(I·Sk

uk)I·Sk
−I⊤·Sk

∇2f
(
I·Sk

(uk+τkβ
mdkSk

)
)
I·Sk
∥2 ≤ τkL2β

m∥dkSk
∥.

From the last two inequalities with the expression of ∇2FSk
, it follows that

∥∇2FSk
(uk)−∇2FSk

(uk+τkβ
mdkSk

)∥2 ≤ (L2+ĉ3)β
m∥dkSk

∥. (3.30)

Combining (3.29)-(3.30) with (2a) of Algorithm 3 and recalling thatHk = ∇2FSk
(uk),
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we obtain

FSk
(uk)− FSk

(uk+βmdkSk
) + ϱβm⟨rk, dkSk

⟩

= (1−ϱ)βm
〈
(Hk+b1ΛkI+b2∥rk∥σI)dkSk

, dkSk

〉
− 1

2
β2m⟨dkSk

,∇2FSk
(uk+τkβ

mdkSk
)dkSk
⟩

≥ 1

2
b2β

m∥rk∥σ∥dkSk
∥2 +

1

2
β2m

〈(
Hk−∇2FSk

(uk+τkβ
mdkSk

)
)
dkSk

, dkSk

〉
≥ 1

2
b2β

m∥rk∥σ∥dkSk
∥2 − 1

2
(L2+ĉ3)β

3m∥dkSk
∥3

=
1

2
βm∥dkSk

∥3
(
b2
∥rk∥σ

∥dkSk
∥
− c̃3β2m

)
with c̃3 := L2+ĉ3, (3.31)

where the first equality is using rk = −GkdkSk
by (2a) of Algorithm 3, and the first

inequality is due to Hk + b1ΛkI ⪰ 0, ϱ ∈ (0, 1
2
] and Λk ≥ 0. By the definition of dkSk

and Lemma 3.7 (i),

∥dkSk
∥

∥rk∥σ
≤ ∥(G

k)−1∥2∥rk∥
∥rk∥σ

≤ ∥r
k∥1−2σ

b2
≤ r1−2σ

max

b2
. (3.32)

The above arguments demonstrate that whenever βm ≤min
{

1, 1
2
νb2r

σ−1
max ,

b2√
c̃3r

1−2σ
max

}
,

FSk
(uk)− FSk

(uk + βmdkSk
) + ϱβm⟨rk, dkSk

⟩ ≥ 0.

Let α := βmin
{

1, 1
2
νb2r

σ−1
max ,

b2√
c̃3r

1−2σ
max

}
. Then, for all k ∈ K2, αk ≥ α.

3.3.1 Convergence Rate of Objective Value Sequence

We have achieved the convergence of the sequence {F (xk)}k∈N in Lemma 3.4 (i). To

establish its convergence rate, we need two technical lemmas. Among others, Lemma

3.9 states that {F (xk)}k∈N is sufficiently decreasing under Assumption 3.1, while

Lemma 3.10 reveals that under Assumption 3.1 the subsequence {dk}k∈K2 converges

to 0.
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Lemma 3.9. Let {xk}k∈N and {xk}k∈N be the sequences yielded by Algorithm 3.

Then, under Assumption 3.1, the following assertions hold.

(i) There exists γ̂ > 0 such that for all k ∈ N, F (xk+1) ≤ F (xk)− γ̂
2
∥xk − xk∥2.

(ii) limk→∞ ∥xk − xk∥ = 0.

(iii) Every element of ω(x0) is an L-type stationary point of (3.1).

Proof. (i)-(ii) By Lemma 3.4 (i), {xk}k∈N is contained in the compact set LF (x0),

while |xk|min > ν for all k ∈ K2 by Lemma 3.6 (i). Then, by invoking Lemma 3.3

(ii) with Ξ = LF (x0) and κ = ν, there exists ĉ2 > 0 (independent of k) such that

∥Hk∥2 = ∥∇2FSk
(uk)∥2 ≤ ĉ2 for all k ∈ K2. Together with the expression of Gk in

(2a) and Lemma 3.7 (i), for all k ∈ K2,

Gk ⪯ [(1+b1)∥Hk∥2 + b2∥rk∥σ]I ⪯ [(1+b1)ĉ2 + b2r
σ
max]I. (3.33)

From the line search step in (3.11), Lemma 3.7 (ii) and Lemma 3.8, for all k ∈ K2,

F (xk+1)− F (xk) ≤ αkϱ⟨rk, dkSk
⟩ = −αkϱ⟨rk, (Gk)−1rk⟩

≤ − ϱα

(1+b1)ĉ2 + b2rσmax

∥rk∥2 ≤ − ϱαϖ2

16[(1+b1)ĉ2 + b2rσmax]
∥xk − xk∥2, (3.34)

where the last inequality is using sign(xk) = sign(xk) implied by k ∈ K2. In addition,

by (3.9), F (xk+1) ≤ F (xk)−α
2
∥xk−xk∥2 for all k ∈ K1. Along with the last inequality,

part (i) holds with γ̂ = min
{

ϱαϖ2

8[(1+b1)ĉ2+b2rσmax]
, α

}
. From part (i) and the convergence

of {F (xk)}k∈N, we obtain part (ii).

(iii) Pick any x∗ ∈ ω(x0). There exists a subsequence {xkj}j∈N such that xkj → x∗ as

j →∞. From part (ii), limj→∞ xkj = x∗. For each j ∈ N, from (1a) of Algorithm 3

we have xkj ∈ proxµ−1
kj

g(x
kj−µ−1

kj
∇f(xkj)); while by Lemma 3.4 (iii), µkj

∈ [µmin, L̃).

We assume that µkj
→ µ∗ (if necessary taking a subsequence). Define the mapping
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F(µ, x) := proxµ−1g(x−µ−1∇f(x)) for x ∈ Rn and µ ∈ [µmin, L̃). By (Bonnans and

Shapiro, 2013, Proposition 4.4), the mapping F is upper semicontinuous, so it is

outer semicontinuous at (µ∗, x
∗) by (Facchinei and Pang, 2003, p. 138-139). Thus,

x∗ ∈ proxµ−1
∗ g(x

∗−µ−1
∗ ∇f(x∗)), and the result follows.

Lemma 3.10. Let {xk}k∈N and {xk}k∈N be the sequences given by Algorithm 3.

Then, under Assumption 3.1 there exists a constant ĉ2 > 0 such that for all k ∈ K2,

dist(0, ∂F (xk)) ≤ c̃2∥xk−xk∥ with c̃2 = L̂+ L̃+ ĉ2,

where L̃ and L̂ are the ones in Lemma 3.4, and consequently, limK2∋k→∞ ∥rk∥ = 0

and limK2∋k→∞ ∥dk∥ = 0.

Proof. Fix any k ∈ K2. Since xk ∈ proxµ−1
k g

(
xk−µ−1

k ∇f(xk)
)
, by (Rockafellar and

Wets, 2009, Exercise 8.8), we have 0 ∈ ∇f(xk) +µk(xk−xk) +∂g(xk), which implies

that

∇f(xk)−∇f(xk) + µk(xk − xk) ∈ ∂F (xk).

Recall that ∇f is Lipschitz continuous on the compact set LF (x0) with Lipschitz

constant not more than L̂, which is the same as the one appearing in the proof of

Lemma 3.4 (iii). Then, ∥∇f(xk) − ∇f(xk)∥ ≤ L̂∥xk − xk∥. Together with the last

inclusion, using µk < L̃ by Lemma 3.4 (iii) yields that

∥∇FSk
(uk)∥ = dist(0, ∂F (xk)) ≤ (L̂+ L̃)∥xk − xk∥. (3.35)

Let Ξ be a bounded open convex set containing LF (x0). By Lemma 3.4 (i) and the

convexity of Ξ, uk + τ(uk−uk) ∈ Ξ for all τ ∈ [0, 1]. Recall that k ∈ K2. Hence,

xk ̸= 0 and sign(uk) = sign(uk). Together with Lemma 3.6 (i), for all τ ∈ [0, 1], we

have
∣∣uk + τ(uk−uk)

∣∣
min
≥ ν and sign(uk +τ(uk−uk)) = sign(uk). By Lemma 3.3

(ii), there exists a constant ĉ2 > 0 (independent of k) such that for all τ ∈ [0, 1],
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∥∇2FSk
(uk+τ(uk−uk))∥ ≤ ĉ2. Note that dist(0, ∂F (xk)) = ∥rk∥ and

∥rk∥ = ∥rk−∇FSk
(uk) +∇FSk

(uk)∥ ≤ ∥rk−∇FSk
(uk)∥+ ∥∇FSk

(uk)∥

≤
∫ 1

0

∥∇2FSk
(uk+τ(uk−uk))(uk−uk)∥2dτ + ∥∇FSk

(uk)∥

≤ ĉ2∥uk−uk∥+ ∥∇FSk
(uk)∥ ≤

[
(L̂+ L̃) + ĉ2

]
∥xk − xk∥, (3.36)

where the last inequality is due to (3.35). The first part of the conclusions follows.

From (3.36), Lemma 3.9 (ii) and (3.25), we obtain the second part.

To achieve the linear convergence rate of the objective sequence {F (xk)}k∈N, we

first argue that for all sufficiently large k, the support of the iterate xk is stable, and

k ∈ K2. The latter means that after a finite number of iterates, Algorithm 3 reduces

to a regularized Newton method for minimizing the function FS∗ , where S∗ is defined

below in Proposition 3.2 (i).

Proposition 3.2. Let {xk}k∈N and {xk}k∈N be the sequences given by Algorithm 3.

Then, under Assumption 3.1, the following assertions hold.

(i) There exists an index set S∗ ⊆ [n] such that for all sufficiently large k,

supp(xk) = supp(xk) = S∗;

furthermore, every cluster point x∗ of {xk}k∈N satisfies supp(x∗) = S∗.

(ii) There exists k ∈ N such that for all k ≥ k, k ∈ K2.

Proof. (i) First we argue that |xk|min > ν
2

for all sufficiently large k. Indeed, by

Lemma 3.6 (i), if k −1 ∈ K1, i.e., xk = xk−1, we have |xk|min ≥ ν. If k − 1 ∈ K2,

we have |xk−1|min ≥ ν, while by Lemma 3.10, for all sufficiently large k, ∥dk−1∥ < ν
3
,

which along with xk = xk−1+ αkd
k, αk ∈ (0, 1], dkSc

k
= 0 and |xk−1|min ≥ ν implies

that |xk|min >
ν
2
. Next we argue that for all sufficiently large k, supp(xk) = supp(xk).
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Indeed, by Lemma 3.9 (ii), for all sufficiently large k, ∥xk − xk∥ < ν
3
. Hence, for

every i ∈ supp(xk), we have |xki | ≥ |xki | − |xki − xki | > ν
2
− ν

3
> 0, which implies that

supp(xk) ⊆ supp(xk); and for every i ∈ supp(xk), we have |xki | > |xki | − ν
3
> 0, which

implies that supp(xk) ⊆ supp(xk). Thus, supp(xk) = supp(xk) holds for all k large

enough. It remains to show that for all k large enough, supp(xk) = supp(xk+1). For

all sufficiently large k ∈ K1, the conclusion holds since xk+1 = xk and supp(xk) =

supp(xk). For all sufficiently large k ∈ K2, by Lemma 3.10, we have ∥dk∥ < ν
3

and then ∥xk+1− xk∥ < ν
3
, and the conclusion follows by the above arguments. To

sum up, supp(xk+1) = supp(xk) = supp(xk) holds for all sufficiently large k. Since

|xk|min >
ν
2

for all sufficiently large k, following a similar arguments as above we have

every cluster point x∗ of {xk} satisfies supp(x∗) = S∗.

(ii) By the proof of part (i), we have |xk|min >
ν
2

for all sufficiently large k. Together

with Lemmas 3.9 (ii) and 3.6 (iii), the two conditions in (3.10) are satisfied for all k

large enough, so there exists k ∈ N such that for all k ≥ k, k ∈ K2.

Now we are in a position to achieve the Q-linear convergence rate of the objective

value sequence {F (xk)}k∈N under the KL property of the exponent 1/2 of F .

Proposition 3.3. Suppose that Assumption 3.1 holds, and that F is a KL function

of exponent 1/2. Then {F (xk)}k∈N converges to some value F ∗ in a Q-linear rate.

Proof. If there exists some k ∈ N such that F (xk) = F (xk+1), by Lemma 3.9 (i),

we have xk = xk, and the stopping condition in (1b) of Algorithm 3 is satisfied,

so {xk}k∈N converges to an L-type stationary point within a finite number of steps.

Hence, it suffices to consider that F (xk) > F (xk+1) for all k ∈ N. Since F is

assumed to be a KL function of exponent 1/2, by (Bolte et al., 2014, Lemma 6) and

Lemma 3.4 (ii), there exist ε > 0 and η > 0 such that for all x ∈ ω(x0) and all

z ∈ {x ∈ Rn | dist(x, ω(x0)) < ε} ∩ [F (x) < F < F (x) + η],

φ′(F (z)− F (x))dist(0, ∂F (z)) ≥ 1, (3.37)
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where φ(t) = c
√
t for some c > 0. Let x∗ be a cluster point of {xk}k∈N. Clearly,

limk→∞ dist(xk, ω(x0)) = 0. Along with limk→∞ F (xk) = F (x∗), for all sufficiently

large k, xk ∈ {x ∈ Rn | dist(x, ω(x0)) < ε} ∩ [F (x∗) < F < F (x∗) + η], and then

c

2
(F (xk)− F (x∗))−1/2dist(0, ∂F (xk)) ≥ 1.

Let ∆k = F (xk) − F (x∗) for each k. By Proposition 3.2 (ii), when k > k, k ∈

K2. Combining the above inequality with Lemma 3.10 yields that for all k > k (if

necessary by increasing k),

4c−2 ≤
[
(∆k)−1/2dist(0, ∂F (xk))

]2 ≤ c̃22(∆k)−1∥xk − xk∥2

≤ 2c̃22γ̂
−1(∆k)−1[F (xk)− F (xk+1)] = 2c̃22γ̂

−1(∆k)−1(∆k −∆k+1),

where the third inequality is due to Lemma 3.9 (i). The last inequality, along with

0 < ∆k+1 < ∆k implies that ρ = 1 − 2γ̂
(cc̃2)2

∈ (0, 1). Then, for all k ≥ k, we have

∆k+1 ≤ ρ∆k, so that {F (xk)}k∈N converges to F ∗ = F (x∗) in a Q-linear rate.

3.3.2 Convergence Analysis of Iterate Sequence

In order to achieve the convergence of the sequence {xk}k∈N, we also need the fol-

lowing assumption:

Assumption 3.2. It holds that lim inf
K2∋k→∞

−⟨rk,dkSk
⟩

∥rk∥∥dkSk
∥ > 0.

Assumption 3.2 is very common in the global convergence analysis of line search

Newton-type methods (see, e.g., Nocedal and Wright (2006)), which essentially re-

quires that the angle between rk and dkSk
is sufficiently away from π/2 and close to

π. Note that the early global convergence analysis of Newton-type methods aims to

achieve limk→∞ ∥rk∥ = 0 under Assumption 3.2. Here, under this assumption, we

establish the convergence of the whole iterate sequence for the KL function F .
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Theorem 3.1. Suppose Assumptions 3.1 and 3.2 hold. The following assertions

hold.

(i) If F is a KL function, then
∑∞

k=1 ∥xk+1−xk∥ <∞, and consequently, {xk}k∈N

converges to an L-type stationary point of (3.1), say x∗.

(ii) If F is a KL function of exponent 1/2 at x∗, then {xk}k∈N converges R-linearly

to x∗.

Proof. (i) By the proof of Proposition 3.3, it suffices to consider the case where

F (xk) > F (xk+1) for all k. Let x∗ be a cluster point of {xk}k∈N. Following a similar

argument to the proof of Proposition 3.3 and from Definition 2.4, there exists φ ∈ Υη

such that for sufficiently large k,

φ′(F (xk)− F (x∗))dist(0, ∂F (xk)) ≥ 1. (3.38)

By Assumption 3.2, there exists cmin > 0 such that for all sufficiently large k ∈ K2,

−⟨rk, dkSk
⟩ > cmin∥rk∥∥dkSk

∥. (3.39)

By Proposition 3.2, there exists k ∈ N such that for all k ≥ k, k ∈ K2 and Sk = Sk+1.

Together with (3.11) and (3.39), if necessary by increasing k, for all k ≥ k, we have

F (xk)− F (xk+1)

∥rk∥
≥
−ϱαk⟨rk, dkSk

⟩
∥rk∥

≥ ϱcmin∥αkd
k
Sk
∥ = ϱcmin∥xk+1 − xk∥. (3.40)

In addition, from the concavity of φ on [0, η), for all k > k, it holds that

φ(F (xk)−F (x∗))−φ(F (xk+1)−F (x∗)) ≥ φ′(F (xk)−F (x∗))(F (xk)−F (xk+1)). (3.41)

For each k, let ∆̄k := φ(F (xk)−F (x∗)). From (3.38) and (3.40)-(3.41), if possibly

enlarging k, we have for all k ≥ k,

∆̄k − ∆̄k+1 ≥ φ′(F (xk)− F (x∗))(F (xk)− F (xk+1))

≥ F (xk)− F (xk+1)

dist(0, ∂F (xk))
=
F (xk)− F (xk+1)

∥rk∥
≥ ϱcmin∥xk+1 − xk∥.
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Summing this inequality from k to any k > k yields that

k∑
j=k

∥xj+1−xj∥ ≤ 1

ϱcmin

k∑
j=k

(∆̄j−∆̄j+1) =
1

ϱcmin

(∆̄k−∆̄k+1) ≤
1

ϱcmin

∆̄k.

Passing the limit k →∞ to this inequality yields that
∑∞

j=k ∥xj+1−xj∥ <∞. Thus

the sequence {xk} converges. By Lemma 3.9 (iii), the desired result then follows.

(ii) For each k ∈ N, write ∆k := F (xk)−F (x∗). From Proposition 3.2 and the proof

of Proposition 3.3, there exists k such that for all k > k, k ∈ K2 and ∆k+1 ≤ ρ∆k.

From this recursion formula,

F (xk)− F (x∗) ≤ ∆kρ
k−k. (3.42)

By (3.25) and Lemma 3.10, for all k ≥ k, ∥dk∥ ≤ b−1
2 c̃1−σ

2 ∥xk − xk∥1−σ. Together

with part (i), Lemma 3.9 (i) and (3.42), for all k ≥ k it holds that

∥xk − x∗∥ ≤
∞∑
j=k

∥xj − xj+1∥ =
∞∑
j=k

αj∥dj∥ ≤
∞∑
j=k

∥dj∥ ≤ b−1
2 c̃1−σ

2

∞∑
j=k

∥xj − xj∥1−σ

≤ b−1
2 c̃1−σ

2

∞∑
j=k

(2(F (xj)− F (xj+1))

γ̂

) 1−σ
2

≤ b−1
2 c̃1−σ

2

(2∆k

γ̂ρk

) 1−σ
2

∞∑
j=k

ρ
(1−σ)j

2 ≤
(2∆k

γ̂ρk

) 1−σ
2 c̃1−σ

2

b2(1−ρ1/4)
ρk/4.

This means that the sequence {xk}k∈N converges to x∗ in an R-linear rate.

By Proposition 3.1, to check the KL property with exponent 1/2 of F at x∗, it

suffices to verify that of FS∗ at x∗S∗ , and due to the sufficient smoothness of FS∗ at

x∗S∗ , the verification of the latter is easier than that of the former. In fact, by (Zeng

et al., 2016, Lemma 3), the nonsingularity of ∇2FS∗(x∗S∗) implies the KL property of

exponent 1/2 for FS∗ at x∗S∗ .
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By Theorem 3.1, if Assumptions 3.1-3.2 hold and F is a KL function, the sequence

{xk}k∈N is convergent. In the sequel, we denote its limit by x∗. By Proposition 3.2

(i), supp(x∗) = S∗. Write

u∗ := x∗S∗ and U∗ :=
{
u ∈ R|S∗| | ∇FS∗(u) = 0,∇2FS∗(u) ⪰ 0

}
.

To achieve the superlinear convergence rate of {xk}k∈N, we need to bound Λk involved

in the matrix Gk by dist(uk,U∗) as in the following lemma.

Lemma 3.11. Suppose that Assumptions 3.1 and 3.2 hold, and that F is a KL

function. If ∇2FS∗(u∗) ⪰ 0, then there exists cH > 0 such that for all sufficiently

large k, Λk ≤ cHdist(uk,U∗).

Proof. By the proof of Proposition 3.2 (i), we have |x∗|min ≥ ν
2
. Fix any ε < ν

4
. From

Proposition 3.2 and Theorem 3.1 (i), if necessary enlarging k, we have for all k > k,

k ∈ K2, Sk = S∗ and uk ∈ B(u∗, ε/2). By following the proof of Lemma 3.8, there

exists cH > 0 such that for any u′, u′′ ∈ B(u∗, ε),

∥∇2FS∗(u′)−∇2FS∗(u′′)∥2 ≤ cH∥u′ − u′′∥. (3.43)

Fix any k > k. When λmin(∇2FSk
(uk)) > 0, the desired result is trivial, so it suffices

to consider the case λmin(∇2FSk
(uk)) ≤ 0. Pick any ũk ∈ projU∗(uk). Since u∗ ∈ U∗,

one can deduce that ∥ũk − u∗∥ ≤ ∥ũk − uk∥ + ∥uk − u∗∥ ≤ 2∥uk − u∗∥ ≤ ε. If

λmin(∇2FSk
(ũk)) = 0, then by Weyl’s inequality (Bhatia, 2013, Corollary III.2.6) we

have Λk = −λmin(∇2FSk
(uk)) ≤ ∥∇2FSk

(ũk)−∇2FSk
(uk)∥2, which together with (3.43)

implies that Λk ≤ cH∥uk−ũk∥ = cHdist(uk,U∗). Now suppose that λmin(∇2FSk
(ũk)) >

0. Let ϕk(t) := λmin[∇2FSk
(uk+t(ũk−uk))] for t ≥ 0. Clearly, ϕk is continuous on an

open interval containing [0, 1]. Note that ϕk(0) < 0 and ϕk(1) > 0. There necessarily

exists tk ∈ (0, 1) such that ϕk(tk) = 0. Consequently, by Weyl’s inequality,

Λk =
[
λmin(∇2FSk

(uk+tk(ũk−uk)))− λmin(∇2FSk
(uk))

]
≤ ∥∇2FSk

(uk+tk(ũk−uk))−∇2FSk
(uk)∥2 ≤ cH∥ũk−uk∥.
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This shows that the desired result holds. The proof is completed.

Ueda and Yamashita ever obtained a similar result in (Ueda and Yamashita, 2010,

Lemma 5.2) under the condition that U∗ is the set of local minima of FS∗ . Here, we

remove the local optimality of U∗ and provide a simpler proof. Based on this result,

we establish the superlinear convergence rate of {xk}k∈N under a local error bound

condition.

Theorem 3.2. Suppose that Assumptions 3.1 and 3.2 hold, and that F is a KL

function. If ∇2FS∗(u∗) ⪰ 0 and there exist δ > 0 and κ1 > 0 such that for all

u ∈ B(u∗, δ),

κ1dist(u,U∗)≤∥∇FS∗(u)∥, (3.44)

then the sequence {xk}k∈N converges to x∗ in a Q-superlinear rate of order 1+σ.

Proof. By Theorem 3.1 and Proposition 3.2, if necessary enlarging k, wer have for

all k ≥ k, k ∈ K2 and Sk = S∗. By comparing the iterate steps of Algorithm 3 for

k ≥ k with those of E-RNM proposed in (Ueda and Yamashita (2010)), we conclude

that the sequence {uk}k≥k is the same as the one generated by E-RNM of (Ueda and

Yamashita (2010)). By Lemma 3.11, there exists a constant cH > 0 such that for

all k ≥ k (if necessary by increasing k), Λk ≤ cHdist(uk,U∗). Then, by (Ueda and

Yamashita, 2010, Theorem 5.1) dist(uk,U∗) converges to 0 superlinearly with rate

1+σ.

Write X ∗ := {x ∈ Rn |xS∗ ∈ U∗, xSc
∗ = 0}. For all k ≥ k, from Sk = S∗, clearly,

dist(xk,X ∗) = dist(uk,U∗). Consequently, dist(xk,X ∗) converges to 0 superlinearly

with rate 1+σ, i.e., for all k ≥ k (if necessary by enlarging k),

dist(xk+1,X ∗) = O([dist(xk,X ∗)]1+σ). (3.45)

Also, by (Ueda and Yamashita, 2010, Lemma 5.3) there exists a constant c0 > 0 such
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that for all k ≥ k (if necessary by increasing k),

∥dkSk
∥ = ∥dkS∗∥ ≤ c0dist(uk,U∗) = c0dist(xk,X ∗). (3.46)

For each k ≥ k, pick any x̃k ∈ projX ∗(xk). By the definition of X ∗, supp(x̃k) ⊆ S∗;

while from limk→∞ xk = x∗, we have supp(x̃k) ⊇ S∗ for all k ≥ k (if necessary by

increasing k). Then, for all k ≥ k, supp(x̃k) = S∗. In addition, by (3.45) there exists

ρ ∈ (0, 1) such that dist(xk+1,X ∗) ≤ ρdist(xk,X ∗) for all k > k. Together with

(3.46), for all k ≥ k it holds that

∥xk − x∗∥ ≤
∞∑
j=k

∥xj−xj+1∥ ≤
∞∑
j=k

∥djSj
∥ ≤ c0

∞∑
j=k

dist(xj,X ∗)

< c0

( ∞∑
j=k

ρj−k
)

dist(xk,X ∗) =
c0

1− ρ
dist(xk,X ∗).

By combining this inequality and (3.45), it follows that for all k > k,

∥xk − x∗∥ ≤ c0
1− ρ

dist(xk,X ∗) = O([dist(xk−1,X ∗)]1+σ) ≤ O(∥xk−1−x∗∥1+σ).

The desired conclusion then follows. The proof is completed.

Remark 3.2. (a) Note that we do not require the isolatedness of u∗ and its local

optimality. The local error bound condition (3.44) is a little stronger than the met-

ric subregularity of ∇FS∗ at u∗ for the origin because U∗ may be a strict subset of

∇F−1
S∗

(0). For example, let h(t) := 1
2
(t−3.5)2 +5

√
|t|. Elementary calculation yields

that h′(1) = 0 and h′′(1) = −0.25. It is clear that h′ is metrically subregular at t = 1,

while the local error bound condition (3.44) does not hold at t = 1 since t = 1 is not

a local minimum of h.

(b) The proof of the superlinear convergence of E-RNM in (Ueda and Yamashita

(2010)) relies on Assumption 5.1 therein, which requires the local optimality of x∗.

After checking its proof, we found that the local optimality of x∗ was only used to
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achieve (Ueda and Yamashita, 2010, Lemma 5.2). Thus, by following the same

arguments as those for Lemma 3.11, the local optimality of x∗ in their Assumption

5.1 can be removed.

To conclude this section, we take a closer look at Assumption 3.2. The following

lemma shows that if the regularized Newton direction dk from Step 2 satisfies condi-

tion (3.16) for all k ∈ K2, Assumption 3.2 necessarily holds. Together with Example

3.1 later, we conclude that Assumption 3.2 is weaker than condition (3.16) for our

regularized Newton direction dk.

Lemma 3.12. Suppose that Assumption 3.1 holds. If dk yielded by Step 2 of Algo-

rithm 3 satisfies condition (3.16) for all k ∈ K2, then Assumption 3.2 holds.

Proof. By Lemma 3.4, {xk}k∈N is bounded. Let x∗ be an arbitrary accumulation

point of {xk}k∈N. Then, there exists a subsequence {xkj}j∈N with kj ∈ K2 such that

limj→∞ xkj = x∗. By Proposition 3.2, for all sufficiently large j ∈ N, supp(xkj) =

supp(x∗) = S∗. Write s = |S∗|. From the continuity, the sequence {Gkj}j∈N is

convergent and let G∗ = limj→∞Gkj . Clearly, G∗ is an s × s positive semidefinite

matrix. Let λ1 ≥ λ2 ≥ · · · ≥ λs ≥ 0 be the eigenvalues of G∗. For each j ∈ N, let

λ
kj
1 ≥ λ

kj
2 ≥ · · · ≥ λ

kj
s > 0 be the eigenvalues of the s × s positive definite matrix

Gkj . Then, for each i ∈ [s], limj→∞ λ
kj
i = λi.

Case 1: λs > 0. Now the matrix G∗ is positive definite. Also, for all sufficiently

large j ∈ N, λ
kj
s > λs

2
and 0 < λ

kj
1 ≤ 3λ1

2
. Consequently, for all sufficiently large

j ∈ N,

−⟨rkj , dkjSkj
⟩

∥rkj∥∥dkjSkj
∥

=
⟨Gkjd

kj
Skj
, d

kj
Skj
⟩

∥Gkjd
kj
Skj
∥∥dkjSkj

∥
≥
λ
kj
s ∥dkjSkj

∥2

λ
kj
1 ∥d

kj
Skj
∥2
≥ λs

3λ1
> 0. (3.47)

Case 2: λs = 0. Now there exists t ∈ [s] such that λi = 0 for i ∈ [t : s] and λi > 0

for i ∈ [t − 1]. Fix any 0 < ε < min
{

ϖ
8ĉ
, ϖ
4ĉ
√
s−t+1

}
. From limj→∞ λ

kj
i = λi for each
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i ∈ [s] and Gkj ≻ 0 for each j ∈ N, for all sufficiently large j ∈ N,

0 < λ
kj
i < ε for i ∈ [t :s] and

1

2
λi < λ

kj
i <

3

2
λi for i ∈ [t− 1]. (3.48)

We claim that t > 1. If not, t = 1, by Lemma 3.7 (ii), ∥dkj∥ = ∥(Gkj)−1rkj∥ ≥

∥rkj ∥
λ
kj
1

≥ ϖ

4λ
kj
1

∥xkj − xkj∥ ≥ ϖ
4ε
∥xkj − xkj∥, which along with ε ≤ ϖ

8ĉ
implies that

∥dkj∥ > 2ĉ∥xkj − xkj∥, a contradiction to condition (3.16). Now let Gkj have the

eigenvalue decomposition given by Gkj = (V kj)⊤diag(λ
kj
1 , . . . , λ

kj
s )V kj , where V kj is

an s× s orthogonal matrix. For each j ∈ N, since the column vectors v
kj
1 , . . . , v

kj
s of

the matrix V kj are linearly independent, there exist γ
kj
1 , . . . , γ

kj
s ∈ R such that

rkj

∥rkj∥
=

s∑
i=1

γ
kj
i v

kj
i with

s∑
i=1

(γ
kj
i )2 = 1. (3.49)

Together with the definition of d
kj
Skj

, it follows that

d
kj
Skj

∥rkj∥
=
−(Gkj)−1rkj

∥rkj∥
= −

s∑
i=1

γ
kj
i

λ
kj
i

v
kj
i . (3.50)

By combining condition (3.16) and Lemma 3.7 (ii), for each j ∈ N, we have

∥dkjSkj
∥ = ∥dkj∥ ≤ (4ĉ/ϖ)∥rkj∥, (3.51)

which by (3.50) means that
∑s

i=1

(
γ
kj
i /λ

kj
i

)2 ≤ 16ĉ2

ϖ2 . This by (3.48) implies that for

all sufficiently large j ∈ N, γ
kj
i ≤ 4εĉ

ϖ
with i ∈ [t : s]. Together with

∑s
i=1(γ

kj
i )2 = 1,

we obtain that
∑t−1

i=1(γ
kj
i )2 ≥ 1− 16(s−t+1)ε2ĉ2

ϖ2 and then for all sufficiently large j ∈ N,

there exists lj ∈ [t−1] such that (γ
kj
lj

)2 ≥ ϖ2−16(s−t+1)ε2ĉ2

ϖ2(t−1)
. Thus, for all sufficiently

large j ∈ N, it follows from (3.49)-(3.51) that

−⟨rkj , dkjSkj
⟩

∥rkj∥∥dkjSkj
∥
≥ ϖ

4ĉ

s∑
i=1

(γ
kj
i )2

λ
kj
i

≥
ϖ(γ

kj
lj

)2

4ĉλ
kj
lj

≥ ϖ2 − 16(s− t+ 1)ε2ĉ2

6ĉλljϖ(t− 1)
> 0,
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where the third inequality is also using λ
kj
l ≤ 3

2
λl by (3.48), and the last one is by

0 < ε < ϖ
4ĉ
√
s−t+1

. From the last inequality and (3.47), we obtain the conclusion.

The example below shows that the inverse of Lemma 3.12 does not hold.

Example 3.1. Consider the problem mint∈R f(t) + |t| 12 with f defined as follows:

f(t) :=


49
8
t2 − 67

4
t+ 85

8
if t ∈ (−∞, 1),

(t− 2)4 − t 12 if t ∈ [1, 4),
1537
64
t2 − 5132

32
t+ 1085

4
if t ∈ [4,∞).

We use Algorithm 3 with τ = 2, α = 1, µmin = 40, L̃ = 49 and σ = 1
3
, b2 = 1, ϱ =

10−4, β = 1
2
, t0 = 2.1 to seek a critical point of this problem. From the iterates

of Algorithm 3, the generated sequence {tk} satisfies limk→∞ tk = 2. When tk is

sufficiently close to 2, all the iterates are from regularized Newton step and |dk| =∣∣∣∣ 4(tk−2)3

12(tk−2)2+4
1
3 (tk−2)

∣∣∣∣ = O(|tk−2|2), while by Lemmas 3.7 (ii) and 3.10 we have |tk−tk| =

O(|f ′(tk)|) = O(|tk − 2|3). Then, |tk − tk| = o(|dk|) and the condition in (3.16) does

not hold for all sufficiently large k. However, Assumption 3.2 always holds because

− dkf ′(tk)
|dk||f ′(tk)| = 1 for all k.

3.4 Numerical Experiments

In this section we apply HpgSRN to solving the ℓq quasi-norm regularized linear and

logistic regression problems on real data, which respectively take the form of (3.1)

with f = f1 or f2, where f1(x) := 1
2
∥Ax−b∥2 and f2(x) :=

∑m
i=1 log

(
1+exp(−bi(Ax)i)

)
for x ∈ Rn. Here, A ∈ Rm×n is a given matrix and b ∈ Rm is a given vector. Clearly, f

satisfies Assumption 3.1, and from Proposition 2.3 we have that equipped with either

f1 or f2, F is a KL function. All numerical tests are conducted on a desktop running

in MATLAB R2020b and 64-bit Windows System with an Intel(R) Core(TM) i7-
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10700 CPU 2.90GHz and 32.0 GB RAM. The MATLAB code is available at https:

//github.com/yuqiawu/HpgSRN.

3.4.1 Implementation of HpgSRN

In Algorithm 3, we set µ0 = 1 and when k ≥ 1, µk is chosen by the Barzilai-Borwein

(BB) rule (Barzilai and Borwein (1988)), that is,

µk = max
{
µmin,min

{
µmax,

⟨xk−xk−1,∇f(xk)−∇f(xk−1)⟩
∥xk−xk−1∥2

}}
with µmin = 10−20 and µmax = 1020. For each k ∈ K2, we call the MATLAB function

eigs to compute the approximate smallest eigenvalue of ∇2FSk
(uk), which requires

about O(|Sk|2) flops by Stewart (2002). Since |Sk| is usually much smaller than n,

this computation cost is not expensive. In addition, we choose

τ = 10, α = 10−8, σ = 0.5, b1 = 1 + 10−8, b2 = 10−3, ϱ = 10−4, β = 2.

During the testing, we solve the linear system in (2a) via a direct method if |Sk| <

500, otherwise a conjugate gradient method. The direct method for computing the

inverse of the Gk needs about O(|Sk|3) flops, so that HpgSRN is well adapted to high

dimensional problems if |Sk| is small. Our preliminary tests indicate that (3.1) with

q = 1/2 usually has better performance than (3.1) with other q ∈ (0, 1) in terms of the

CPU time and the sparsity. This coincides with the conclusion in (Hu et al. (2017);

Xu et al. (2010)). Inspired by this, we choose q = 1/2 for the subsequent numerical

testing. The parameter λ in (3.1) is specified in the corresponding experiments.

We compare the performance of HpgSRN with that of ZeroFPR (Themelis et al.

(2018)). The code package of ZeroFPR is downloaded from http://github.com/

kul-forbes/ForBES. Consider that the iterate steps of PG method with a monotone

line search (PGls), a monotone version of SpaRSA (Wright et al. (2009)), are the

same as those of step (1a) of Algorithm 3 with the above BB rule for updating µk.
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We also compare the performance of HpgSRN with that of PGls to check the effect

of the additional subspace regularized Newton step on HpgSRN. The parameters of

PGls are chosen to be the same as those involved in Step 1 of HpgSRN except τ = 2.

For the three algorithms, we adopt the same stopping criterion

γ∥xk − proxγ−1g(x
k − γ−1∇f(xk))∥∞ < 10−3 or k ≥ 50000,

where γ = L/0.95 and L is an estimation of the Lipschitz constant of ∇f(·). It is

well known that the Lipschitz constants of ∇f1 and ∇f2 are ∥A∥22 and 0.25∥A∥22,

respectively. We use the following MATLAB code to estimate the spectral norm of

A:

Amap = @(x) A*x; ATmap = @(x) A’*x; AATmap = @(x) Amap(ATmap(x));

eigsopt.issym = 1; L = eigs(AATmap, m, 1, ’LA’, eigsopt).

As in ZeroFPR, we choose x0 = 0 as the starting point. Although x0 = 0 is a local

minimizer of F and hence an L-type stationary point by (Ahookhosh et al., 2021,

Theorem 4.4), it is not a good one in terms of objective value; see the difference

between F (0) and Fval, the objective value of the output, for each example in Tables

3.1 and 3.2. It is worth noting that equipped with such an initial point, Algorithm

3 may stop in the first iteration and in this case, x0 is regarded as an acceptable

solution.

In the next two subsections, we will conduct the experiments on real data and

report the numerical results including the number of iterations (Iter#), the CPU

times in seconds (Time), the objective function values (Fval) and the cardinality of

the outputs (Nnz). For the reason that ℓq quasi-norm is not a soft thresholding, we

simply calculate Nnz of x by MATLAB sentence Nnz = sum(abs(x)>0). In particular,

to check the effect of the regularized Newton steps in HpgSRN, we record its number

of iterations in the form M(N), where M means the total number of iterates and N

means the number of regularized Newton steps.
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3.4.2 ℓq Regularized Linear Regression

We conduct the experiments for the ℓq quasi-norm regularized linear regressions with

(A, b) from LIBSVM datasets (see https://www.csie.ntu.edu.tw). As suggested in

(Huang et al. (2010)), for housing and space ga, we expand their original features

with polynomial basis functions. The second column of Table 3.1 lists the values of

∥A∥22 and F (0). Among others, large ∥A∥22 leads to a difficult implementation of PG

method. In fact, the step length of PG is related to the inverse of Lipschitz constant

of f , generally propotional to ∥A∥22. Therefore, the larger the ∥A∥22, the smaller the

step length, making the problem more difficult to solve. On the other hand, the term

F (0) reflects the quality of the starting point x0. For each dataset, we solve (3.1)

associated to f1 and λ = λc∥A⊤b∥∞ for two different λc’s with the three solvers.

From Table 3.1, we see that for all test examples HpgSRN spends much less time

than ZeroFPR and PGls. For example, for log1p.E2006.train with λc = 10−5,

ZeroFPR and PGls require more than one hour to yield an output, but HpgSRN

returns an output within only 314s. In terms of the objective function value and

sparsity, the outputs of HpgSRN are comparable with those of ZeroFPR and PGls,

and even in some examples, these outputs of HpgSRN are better. For example, for

housing7 with both λc’s the objective function values of HpgSRN are better than

those of ZeroFPR and PGls as well as the sparsity of HpgSRN is much less.

3.4.3 ℓq Regularized Logistic Regression

We conduct the experiments for the ℓq quasi-norm regularized logistic regressions

with (A, b) from LIBSVM datasets. For each data, we solve (3.1) associated to f2

and λ = λc max1≤j≤n ∥A·j∥1 for two different λc’s with the three solvers. Table 3.2

records their numerical results. We see that in terms of CPU time, HpgSRN is still

the best one among the three solvers; in terms of the quality of the other outputs,
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Table 3.1: Numerical comparisons on ℓq regularized linear regressions with LIBSVM
datasets

Data
(m,n)

∥A∥22
F (0)

λc Index HpgSRN ZeroFPR PGls

space ga9
(3107, 5505)

4.01e3
5.77e3

10−3

Iter# 17(5) 43 180
Time 0.45 0.98 0.93
Fval 36.47 37.24 37.15
Nnz 7 7 6

10−4

Iter# 230(64) 476 3058
Time 2.26 9.03 16.48
Fval 20.93 20.31 21.57
Nnz 15 19 15

housing7
(506, 77520)

3.28e5
1.50e5

10−3

Iter# 639(157) 4164 25133
Time 14.45 2.13e2 4.08e2
Fval 2.25e3 2.57e3 2.56e3
Nnz 27 49 57

10−4

Iter# 1765(485) 18807 50000
Time 49.26 9.81e2 8.59e2
Fval 8.89e2 9.27e2 9.17e2
Nnz 82 123 135

E2006.test
(3308, 72812)

4.79e4
2.46e4

10−4

Iter# 3(0) 3 3
Time 0.03 0.25 0.03
Fval 2.45e2 2.45e2 2.45e2
Nnz 1 1 1

10−5

Iter# 3(0) 4 4
Time 0.05 0.25 0.04
Fval 2.40e2 2.40e2 2.40e2
Nnz 1 1 1

E2006.train
(16087, 150348)

1.91e5
1.03e5

10−4

Iter# 3(0) 3 3
Time 0.09 1.06 0.09
Fval 1.22e3 1.22e3 1.22e3
Nnz 1 1 1

10−5

Iter# 4(0) 4 4
Time 0.11 1.05 0.11
Fval 1.20e3 1.20e3 1.20e3
Nnz 1 1 1

log1p.E2006.test
(3308, 1771946)

1.46e7
2.46e4

10−4

Iter# 372(88) 827 1416
Time 33.54 2.87e2 1.16e2
Fval 2.35e2 2.43e2 2.37e2
Nnz 5 4 6

10−5

Iter# 755(166) 6708 22305
Time 1.01e2 2.28e3 2.30e3
Fval 1.54e2 1.53e2 1.49e2
Nnz 385 460 389

log1p.E2006.train
(16087, 4265669)

5.86e7
1.03e5

10−4

Iter# 286(58) 855 1621
Time 77.95 8.57e2 3.85e2
Fval 1.16e3 1.16e3 1.16e3
Nnz 7 5 4

10−5

Iter# 944(195) 5610 33112
Time 3.14e2 5.26e3 8.83e3
Fval 1.02e3 1.02e3 1.01e3
Nnz 141 184 155

HpgSRN has a comparable performance with ZeroFPR and PGls.

To sum up, HpgSRN requires the least CPU time for all the test examples com-
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Table 3.2: Numerical comparisons on ℓq regularized logistic regressions with LIBSVM
datasets

Data
(m,n)

∥A∥22
F (0)

λc Index HpgSRN ZeroFPR PGls

colon-cancer
(62, 2000)

1.94e4
42.98

10−2

Iter# 48(6) 730 94
Time 0.04 0.74 0.06
Fval 7.97 10.58 7.77
Nnz 10 9 9

10−3

Iter# 94(9) 1853 175
Time 0.07 2.07 0.11
Fval 1.03 1.07 1.07
Nnz 11 12 12

rcv1
(20242, 47236)

4.48e2
1.40e4

10−2

Iter# 65(10) 448 1193
Time 1.00 6.35 11.24
Fval 4.23e3 4.35e3 4.24e3
Nnz 165 167 164

10−3

Iter# 365(96) 2081 5536
Time 7.78 29.27 88.65
Fval 1.28e3 1.53e3 1.27e3
Nnz 704 741 717

news20
(19996, 1355191)

1.73e3
1.39e4

10−2

Iter# 44(6) 170 981
Time 2.65 36.61 53.14
Fval 9.73e3 1.04e4 9.53e3
Nnz 51 42 50

10−3

Iter# 410(99) 1528 18538
Time 41.45 3.44e2 1.43e3
Fval 4.31e3 4.71e3 4.25e3
Nnz 385 371 401

pared to ZeroFPR and PGls, and for those large scale examples, HpgSRN is at least

ten times faster than ZeroFPR and PGls. The outputs of the objective function value

and the sparsity yielded by HpgSRN have a comparable even better quality. This

indicates that the introduction of Newton steps improves greatly the performance of

the PG method. We also observe that for most of examples, the iterates generated

by the regularized Newton step account for about 10%–35% of the total iterates.
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Chapter 4

An Inexact Regularized Projected

Newton Method for Fused
ℓ0-norms Regularized Problems

Given a matrix B ∈ Rp×n, λ1 > 0, λ2 > 0, lb ∈ Rn
− and ub ∈ Rn

+, in this chapter

we consider the following structured ℓ0-norms regularization problem with a box

constraint:

min
x∈Rn

F (x) := f(x) + λ1∥Bx∥0 + λ2∥x∥0 s.t. lb ≤ x ≤ ub, (4.1)

where f : Rn → R is a twice continuously differentiable function, ∥ · ∥0 denotes the

ℓ0-norm (or cardinality) function. This model encourages sparsity of both variable

x and its linear transformation Bx. Throughout this chapter, we define

g(·) := λ1∥B · ∥0 + λ2∥ · ∥0 + δΩ(·) and Ω := {x ∈ Rn | lb ≤ x ≤ ub},

where δΩ(·) denotes the indicator function of Ω.

In this chapter, we aim to design a hybrid of PG and inexact projected regularized

Newton methods (PGiPN) to solve the structured ℓ0-norms regularization problem

(4.1), whose main idea is similar to that of HpgSRN in Chapter 3. In particular, let

xk ∈ Ω be the current iterate. Our method first runs a PG step with line search at

71



xk to produce xk with

xk ∈ proxµ−1
k g(x

k − µ−1
k ∇f(xk)), (4.2)

where µk > 0 is a constant such that F gains a sufficient decrease from xk to xk, and

then judges whether the iterate enters Newton step or not in terms of some switch

condition, which takes the following forms of structured stable supports:

supp(xk) = supp(xk) and supp(Bxk) = supp(Bxk). (4.3)

If this switch condition does not hold, we set xk+1 = xk and return to the PG step.

Otherwise, due to the nature of ℓ0-norm, the restriction of λ1∥Bx∥0 + λ2∥x∥0 on

the supports supp(Bxk) and supp(xk), i.e., λ1∥(Bx)supp(Bxk)∥0 + λ2∥xsupp(xk)∥0, is a

constant near xk and does not provide any useful information at all and thus, unlike

dealing with the ℓq regularization problem in Chapter 3, we introduce the following

multifunction Π : Rn ⇒ Rn:

Π(z) := {x ∈ Ω | supp(x) ⊆ supp(z), supp(Bx) ⊆ supp(Bz)}

=
{
x ∈ Ω | x[supp(z)]c = 0, (Bx)[supp(Bz)]c = 0

}
, (4.4)

and consider the associated subproblem

min
x∈Rn

f(x) + δΠk
(x) with Πk := Π(xk). (4.5)

It is noted that the set Π(xk) contains all the points whose supports are a subset of

the support of xk as well as the supports of their linear transformation are a subset of

the support of the linear transformation of xk. It is clear that Π is closed-valued. For

z1, z2 satisfying supp(z1) = supp(z2) and supp(Bz1) = supp(Bz2), we have Π(z1) =

Π(z2). Since for zk → z, supp(z) ⊂ supp(zk) and supp(Bz) ⊂ supp(Bzk), the

multifunction Π is not closed.

We will show that a critical point of (4.5) is one for problem (4.1). Thus, instead

of a subspace regularized Newton step in Chapter 3, following the projected Newton
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method in (Bertsekas (1982)) and the proximal Newton method in (Lee et al. (2014);

Yue et al. (2019); Mordukhovich et al. (2023); Liu et al. (2024)), our projected

regularized Newton step minimizes the following second-order approximation of (4.5)

on Πk:

arg min
x∈Rn

{
Θk(x) := f(xk) + ⟨∇f(xk), x−xk⟩+ 1

2
⟨x− xk, Gk(x−xk)⟩+ δΠk

(x)
}
, (4.6)

where Gk is an approximation to the Hessian ∇2f(xk), satisfying the following posi-

tive definiteness condition:

Gk ⪰ b2∥µk(xk−xk)∥σI, (4.7)

where b2 > 0, σ ∈ (0, 1
2
) and µk is the one in (4.2). The detailed construction of

Gk is presented in (4.30)-(4.32). To cater for the practical computation, our Newton

step seeks an inexact solution yk of (4.6) satisfying


Θk(y)−Θk(xk) ≤ 0, (4.8)

dist(0, ∂Θk(y)) ≤ min{µ−1
k , 1}

2
min

{
∥µk(xk−xk)∥, ∥µk(xk− xk)∥1+ς

}
(4.9)

with ς ∈ (σ, 1]. Setting the direction dk := yk − xk, a step size αk ∈ (0, 1] is found

in the direction dk via backtrackings, and set xk+1 := xk + αkd
k. To ensure the

global convergence, the next iterate still returns to the PG step. The details of the

algorithm are given in Section 4.2.

The main contributions of this chapter are as follows:

(i) Based on dynamic programming principle, we develop a polynomial-time al-

gorithm with complexity (O(n3+o(1))) for seeking a point xk in the proximal

mapping (4.2) of g when B = B̂, with B̂ being the one in (1.4). This general-

izes the corresponding result in (Jewell et al. (2020)) for finding xk in (4.2) from
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g(·) = λ1∥B̂ · ∥0 to g(·) = λ1∥B̂ · ∥0 + λ2∥ · ∥0 + δΩ(·). This also provides a PG

algorithm for solving (4.1). We establish a uniform lower bound on proxµ−1g(x)

for x on a compact set and µ on a closed interval. This generalizes the corre-

sponding results in Lu (2014a) for ℓ0-norm and in Lemma 3.1 for ℓq-norm with

0<q<1, respectively.

(ii) We design a hybrid algorithm (PGiPN) of PG and inexact projected regularized

Newton method to solve the structured ℓ0-norms regularization problem (4.1),

which includes the fused ℓ0-norms regularization problem with a box constraint

as a special case. We obtain the global convergence of the algorithm by showing

that the structured stable supports (4.3) hold when the iteration number is

sufficiently large. Moreover, we establish a superlinear convergence rate under a

Hölderian error bound on a second-order stationary point set, without requiring

the isolatedness and the local optimality of the limit point.

(iii) The numerical experiments show that our PGiPN is more effective than some

existing algorithms in the literature in terms of solution quality and efficiency.

The rest of the paper is organized as follows. In Section 4.1 we give some prelimi-

naries on stationary conditions of model (4.1) and some results related to g, including

a lower bound of proximal mapping of g, and an algorithm for finding a point in the

proximal mapping of λ1∥B̂x∥0 + λ2∥x∥0 + δΩ(x). In Section 4.2, we introduce our

algorithm and show that it is well defined. In Section 4.3 we present the convergence

analysis of our algorithm. The implementation scheme of our algorithm and the

numerical experiments are presented in Section 4.4.
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4.1 Preliminaries on Structured ℓ0-norms Regu-

laried Problem

4.1.1 Generalized Subdifferential

Since problem (4.1) involves a box constraint and the structured ℓ0-norms function is

lower semicontinuous, the set of global optimal solutions of model (4.1) is nonempty

and compact. Moreover, by the continuity of ∇2f and the compactness of Ω, we have

∇f is Lipschitz continuous on Ω, i.e., there exists L1 > 0 such that

∥∇f(x)−∇f(y)∥ ≤ L1∥x− y∥ for all x, y ∈ Ω. (4.10)

Recall that multifunction function Π : Rn ⇒ Rn is defined in (4.4), by which we

characterize the generalized subdifferential of F .

Before presenting the theoretical results, we make an overview on the regular

subdifferential of ∥B · ∥0. Fix any z ∈ Rn. It is not hard to check that for zk → z, it

holds that ∥Bzk∥0 ≥ ∥Bz∥0. Let

Γ1 := {x | ∥Bx∥0 = ∥Bz∥0} and Γ2 := {x | ∥Bx∥0 > ∥Bz∥0}.

For Γ2 ∋ zk → z, we deduce that for any v ∈ Rn,

lim inf
Γ2∋zk→z

∥Bzk∥0 − ∥Bz∥0 − ⟨v, zk − z⟩
∥zk − z∥

≥ 0.

Therefore, from the definition of regular subdifferential, we have

∂̂∥B · ∥0(z) =

{
v ∈ Rn | lim inf

Γ1∋zk→z

∥Bzk∥0 − ∥Bz∥0 − ⟨v, zk − z⟩
∥zk − z∥

≥ 0

}

=

{
v ∈ Rn | lim inf

Γ1∋zk→z

−⟨v, zk − z⟩
∥zk − z∥

≥ 0

}
.

From this deduction, the regular subdifferential of ∥B ·∥0 at z is likely to be a normal

cone of a subspace at z. We make a formal statement in the following lemma.

75



Lemma 4.1. Fix any z ∈ Ω. The following statements are true.

(i) ∂F (z) = ∇f(z) + ∂g(z) = ∇f(z) +NΠ(z)(z).

(ii) 0 ∈ ∇f(x) +NΠ(z)(x) implies that 0 ∈ ∂F (x).

Proof. The first equality of part (i) follows by (Rockafellar and Wets, 2009, Exercise

8.8), and the second one uses (Pan et al., 2023, Lemma 2.2 (i)). Next we consider

part (ii). Let x ∈ Π(z). From the definition of Π(·), we have Π(x) ⊆ Π(z), which

along with x ∈ Π(x) implies that NΠ(z)(x) ⊆ NΠ(x)(x). Combining part (i), we

obtain the desired result.

Remark 4.1. Lemma 4.1 (ii) provides a way to seek a critical point of F . Indeed,

for any given z ∈ Rn, if x is a critical point of problem arg min{f(y) | y ∈ Π(z)}, i.e.,

0 ∈ ∇f(x)+NΠ(z)(x), then by Lemma 4.1 (ii) it necessarily satisfies 0 ∈ ∂F (x). This

technique will be utilized in the design of our algorithm. In particular, when obtaining

a good estimate of the critical point, say xk, we use a Newton step to minimize f

over the polyhedral set Π(xk), so as to enhance the speed of the algorithm.

4.1.2 Prox-regularity of g

In this subsection, we aim at proving the prox-regularity of g, which together with

Proposition 2.1 and the prox-boundedness of g indicates that the set of critical points

of problem (4.1) coincides with that of its L-type stationary points.

We remark here that the prox-regularity of g cannot be obtained from the existing

calculus of prox-regularity. In fact, it was revealed in (Poliquin and Rockafellar,

2010, Theorem 3.2) that, for proper fi, i = 1, 2 with fi being prox-regular at x for

vi ∈ ∂fi(x) and let v := v1 + v2, and f0 := f1 + f2, a sufficient condition such that f0

is prox-regular at x for v is

w1 + w2 = 0 with wi ∈ ∂∞fi(x) =⇒ wi = 0, i = 1, 2, (4.11)

76



where ∂∞ denotes the horizon subdifferential (Definition 2.1). We give a counter

example to illustrate that the above constraint qualification does not hold for fi :

R4 → R with f1 = ∥B̂ · ∥0 and f2 = ∥ · ∥0. Let x = (0, 0, 0, 1)⊤. Then,

∂∞f1(x) = ∂f1(x) = Range((B̂[2]·)
⊤), ∂∞f2(x) = ∂f2(x) = Range((I[3]·)

⊤).

By the expressions of ∂∞f1(x) and ∂∞f2(x), it is immediate to check that the con-

straint qualification in (4.11) does not hold. Next, we give our proof toward the

prox-regularity of g.

Lemma 4.2. The function g is prox-regular on its domain Ω. Consequently, the set

of critical points of model (4.1) coincides with its set of L-type stationary points.

Proof. Fix any x ∈ Ω and pick any v ∈ ∂g(x). Let λ := min{λ1, λ2} and C :=

[B; I]. Pick any ε ∈ (0,min{λ, ∥v∥, λ
5∥v∥}) such that for all x ∈ B(x, ε), supp(Cx) ⊇

supp(Cx). Next we prove that

g(x′) ≥ g(x) + v⊤(x′ − x), for all ∥x′ − x∥ ≤ ε, v ∈ ∂g(x), ∥v − v∥ < ε and x ∈ Ξ,

(4.12)

where Ξ := {x | ∥x− x∥ < ε, g(x) < g(x) + ε}, which implies that g is prox-regular

at x for v.

We first claim that for each x ∈ Ξ, it holds that supp(Cx) = supp(Cx) and x ∈ Ω.

If fact, by the definition of ε, supp(Cx) ⊇ supp(Cx). If supp(Cx) ̸= supp(Cx), we

have g(x) ≥ g(x) + λ > g(x) + ε, which yields that x /∈ Ξ. Therefore, supp(Cx) =

supp(Cx). The fact that x ∈ Ξ implies x ∈ Ω is clear. Hence the claimed facts are

true.

Fix any x ∈ Ξ. Consider any x′ ∈ B(x, ε). If x′ /∈ Ω, since g(x′) = ∞, it

is immediate to see that (4.12) holds, so it suffices to consider x′ ∈ B(x, ε) ∩ Ω.

Note that supp(Cx′) ⊇ supp(Cx) = supp(Cx). If supp(Cx′) ̸= supp(Cx), then
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g(x′) ≥ g(x) + λ. For any v ∈ ∂g(x) with v ∈ B(v, ε), ∥v∥ ≤ ∥v∥+ ε ≤ 2∥v∥, which

along with ∥x′ − x∥ ≤ ∥x′ − x∥+ ∥x− x∥ ≤ 2ε implies that

g(x′)− g(x)− v⊤(x′ − x) ≥ λ− ∥v∥∥x′ − x∥ ≥ λ− 4∥v∥ε > 0.

Equation (4.12) holds. Next we consider the case supp(Cx′) = supp(Cx). Define

Π1(x) :=
{
z ∈ Rn | (Bz)[supp(Bx)]c = 0

}
, Π2(x) :=

{
z ∈ Rn | z[supp(x)]c = 0

}
.

Clearly, Π(x) = Π1(x) ∩ Π2(x) ∩ Ω and Π1(x),Π2(x) and Ω are all polyhedral sets.

By (Rockafellar, 1970, Theorem 23.8), for any v ∈ NΠ(x)(x) = ∂g(x), there exist

v1 ∈ NΠ1(x)(x), v2 ∈ NΠ2(x)(x) and v3 ∈ NΩ(x) such that v = v1 + v2 + v3. Then,

g(x′)− g(x)−v⊤(x′ − x) = λ1∥Bx′∥0 − λ1∥Bx∥0 − v⊤1 (x′ − x)

+ λ2∥x′∥0 − λ2∥x∥0 − v⊤2 (x′ − x)− v⊤3 (x′ − x) ≥ 0,

where the inequality follows from λ1∥Bx′∥0−λ1∥Bx∥0 = 0, v⊤1 (x′−x) = 0, λ2∥x′∥0−

λ2∥x∥0 = 0, v⊤2 (x′ − x) = 0 and v⊤3 (x′ − x) ≤ 0. Equation (4.12) is true. Thus, by

the arbitrariness of x ∈ Ω and v ∈ ∂g(x), we conclude that g is prox-regular on set

Ω.

4.1.3 Lower Bound of the Proximal Mapping of g

Given λ > 0 and x ∈ Rn, for any z ∈ proxλ∥·∥0(x), it holds that if |zi| > 0, then

|zi| ≥
√

2λ (Lu, 2014a, Lemma 3.3). This indicates that |z|min has a uniform lower

bound. Such a uniform lower bound is shown to hold for ℓq-norm with 0 < q < 1

(Lemma 3.1). Next, we show that such a uniform lower bound exists for g.

Lemma 4.3. For any given compact set Ξ ⊆ Rn and constants 0 < µ < µ, define

Z :=
⋃

z∈Ξ,µ∈[µ,µ] proxµ−1g(z).

Then, there exists ν > 0 (depending on Ξ, µ and µ) such that infu∈Z\{0} |[B; I]u|min ≥

ν.
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Proof. Write C := [B; I]. By invoking (Bauschke et al., 1999, Corollary 3) and the

compactness of Ω, there exists κ0 > 0 such that for all index set J ⊆ [n+p],

dist(x,Null(CJ ·) ∩ Ω) ≤ κ0dist(x,Null(CJ ·)) for any x ∈ Ω. (4.13)

In addition, there exists σ0 > 0 such that for any index set J ⊆ [n+p] with {Cj·}j∈J

being linearly independent,

λmin(CJ ·C
⊤
J ·) ≥ σ0. (4.14)

For any z ∈ Ξ and µ ∈ [µ, µ], define hz,µ(x) := µ
2
∥x − z∥2 for x ∈ Rn. By the

compactness of Ω, [µ, µ] and Ξ, there exists δ0 ∈ (0, 1) such that for all z ∈ Ξ, µ ∈

[µ, µ] and x, y ∈ Ω with ∥x−y∥ < δ0, µ(∥x∥+∥y∥+2∥z∥)∥x−y∥ < λ := min{λ1, λ2},

and consequently,

|hz,µ(x)− hz,µ(y)| = µ

2
|⟨x− y, x+ y − 2z⟩|

≤ µ

2
(∥x∥+ ∥y∥+ 2∥z∥)∥x− y∥ < λ

2
.

(4.15)

Now suppose that the conclusion does not hold. Then there is a sequence

{zk}k∈N ⊆ Z\{0} such that |Czk|min ≤ 1
k

for all k ∈ N. Note that C has a full

column rank. We also have |Czk|min > 0 for each k ∈ N. By the definition of Z, for

each k ∈ N, there exist zk ∈ Ξ and µk ∈ [µ, µ] such that zk ∈ proxµ−1
k g(z

k). Since

|Czk|min ∈
(
0, 1

k

)
for all k ∈ N, there exist K ⊆ N and an index i ∈ [n+p] such that

0 < |(Czk)i| = |Czk|min <
δ0σ0

κ0∥C∥2
for each k ∈ K, (4.16)

where κ0 and σ0 are the ones appearing in (4.13) and (4.14), respectively. Fix any

k ∈ K. Write Qk := [n+p]\supp(Czk) and choose Jk ⊆ Qk such that the rows of

CJk· form a basis of those of CQk·. Let Ĵk := Jk ∪ {i}. If Jk = ∅, then CĴk· has a

full row rank. If Jk ̸= ∅, then CJk·z
k = 0, which implies that CĴk· also has a full
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row rank (if not, Ci· is a linear combination of the rows of CJk·, which along with

CJk·z
k = 0 implies that Ci·z

k = 0, contradicting to |(Czk)i| = |Czk|min > 0). Let

z̃k := projNull(C
Ĵk·)

(zk). Then, CĴk·z̃
k = 0 and (zk − z̃k) ∈ Range (C⊤

Ĵk·
). The latter

means that there exists ξk ∈ R|Ĵk| such that zk − z̃k = C⊤
Ĵk·
ξk. Since CĴk· has a full

row rank and ∥CĴk·z
k∥ = |(Czk)i|, we have

|(Czk)i| = ∥CĴk·z
k − CĴk·z̃

k∥ = ∥CĴk·C
⊤
Ĵk·
ξk∥ ≥ σ0∥ξk∥, (4.17)

where the last inequality is due to (4.14). Combining (4.17) with (4.16) yields ∥ξk∥ <

κ−1
0 ∥C∥−1

2 δ0. Therefore,

∥zk − z̃k∥ = ∥C⊤
Ĵk·
ξk∥ ≤ ∥CĴk·∥2∥ξ

k∥ ≤ ∥C∥2∥ξk∥ < κ−1
0 δ0. (4.18)

Let ẑk := projNull(C
Ĵk·)∩Ω

(zk). From (4.13) and (4.18), it follows that

∥zk − ẑk∥ = dist(zk,Null(CĴk·) ∩ Ω) ≤ κ0dist(zk,Null(CĴk·)) = κ0∥zk − z̃k∥ < δ0.

(4.19)

Note that ẑk, zk ∈ Ω. From (4.19) and (4.15), it follows that

|hzk,µk
(ẑk)− hzk,µk

(zk)| < λ

2
. (4.20)

Next we claim that supp(Cẑk) ∪ {i} ⊆ supp(Czk). Indeed, since the rows of

CĴk· form a basis of those of C[Qk∪{i}]· and CĴk·ẑ
k = 0, C[Qk∪{i}]·ẑ

k = 0. Then,

supp(C[Qk∪{i}]·ẑ
k) ∪ {i} = supp(C[Qk∪{i}]·z

k). Since all the entries of C[Qk∪{i}]c·z
k are

nonzero, it holds that supp(C[Qk∪{i}]c·ẑ
k) ⊆ supp(C[Qk∪{i}]c·z

k), which implies that

supp(Cẑk) ∪ {i} ⊆ supp(Czk). Thus, the claimed inclusion follows, which implies

that g(zk)− g(ẑk) ≥ λ. This together with (4.20) yields

hzk,µk
(zk) + g(zk)− (hzk,µk

(ẑk) + g(ẑk)) ≥ λ− λ

2
=
λ

2
,

contradicting to zk ∈ proxµ−1
k g(z

k). The proof is completed.
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The result of Lemma 4.3 will be utilized in Proposition 4.2 to justify the fact that

the sequences {|Bxk|min}k∈N and {|xk|min}k∈N are uniformly lower bounded, where xk

is obtained in (4.2) (or (4.33) below). This is a crucial aspect in proving the stability

of supp(xk) and supp(Bxk) when k is sufficiently large.

4.1.4 Proximal Mapping of a Fused ℓ0-norms Function with
a Box Constraint

Using the idea of (Killick et al. (2012)), Jewell et al. (2020) presented a polynomial-

time algorithm for computing the proximal mapping of the fused ℓ0-norm λ1∥B̂ · ∥0,

where B̂x = (x1 − x2; ...;xn−1 − xn) for any x ∈ Rn. We extend the result of

(Jewell et al. (2020)) for computing the proximal mapping of the fused ℓ0-norms

λ1∥B̂ · ∥0 + λ2∥ · ∥0 + δΩ(·), i.e., for any given z ∈ Rn, seeking a global optimal

solution of the problem

min
x∈Rn

h(x; z) :=
1

2
∥x− z∥2 + λ1∥B̂x∥0 + λ2∥x∥0 + δΩ(x). (4.21)

To simplify the deduction, for each i ∈ [n], we define wi : R → R by wi(α) :=

λ2|α|0 + δ[(lb)i,(ub)i](α). It is clear that for all x ∈ Rn, λ2∥x∥0 + δΩ(x) =
∑n

i=1wi(xi).

Let H(0) := −λ1, and for each s ∈ [n], define

H(s) := min
y∈Rs

hs(y; z1:s), where hs(y; z1:s) :=
1

2
∥y − z1:s∥2 + λ1∥B̂·[s]y∥0 +

s∑
j=1

wj(yj).

(4.22)

It is immediate to see that H(n) is the optimal value to (4.21). For each s ∈ [n],

define function Ps : [0 :s−1]× R→ R by

Ps(i, α) := H(i) +
1

2
∥α1− zi+1:s∥2 +

s∑
j=i+1

wj(α) + λ1. (4.23)
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For any given y ∈ Rs, if i is the largest integer in [0 : s−1] such that yi ̸= yi+1, and

yi+1 = yi+2 = ... = ys = α, then y = (y1:i;α1) and

hs(y; z1:s)

=
1

2
∥y1:i−z1:i∥2+λ1∥B̂·[i]y1:i∥0+

i∑
j=1

wj(yj)+
1

2
∥yi+1:s−zi+1:s∥2+

s∑
j=i+1

wj(yj) + λ1

=hi(y1:i; z1:i) +
1

2
∥α1− zi+1:s∥2 +

s∑
j=i+1

wj(α) + λ1.

If y1:i is optimal to miny′∈Ri hi(y
′; z1:i), then H(i) = hi(y1:i; z1:i), which by the defini-

tions of Ps and hs yields that Ps(i, α) = hs(y; z1:s). In the following lemma, we prove

that the optimal value of mini∈[0:s−1],α∈R Ps(i, α) is equal to H(s), by which we give

characterization to an optimal solution of hs(·; z1:s).

Lemma 4.4. Fix any s ∈ [n]. The following statements are true.

(i) H(s) = mini∈[0:s−1],α∈R Ps(i, α).

(ii) Assume that (i∗s, α
∗
s) ∈ arg mini∈[0:s−1],α∈R Ps(i, α). Then y∗ = (y∗1:i∗s ;α∗

s1) is a

global solution of miny∈Rs hs(y; z1:s) with y∗1:i∗s ∈ arg minv∈Ri∗s hi∗s(v; z1:i∗s).

Proof. (i) Let y∗ be an optimal solution to problem (4.22). If y∗i = y∗j for all i, j ∈ [s],

let i∗s = 0; otherwise, let i∗s be the largest integer such that y∗i∗s ̸= y∗i∗s+1. Set α∗
s = y∗i∗s+1.

If i∗s ̸= 0, from the definition of H(·), hi∗s(y∗1:i∗s ; z1:i∗s) ≥ H(i∗s), which implies that

min
i∈[0:s−1],α∈R

Ps(i, α) ≤ H(i∗s) +
1

2
∥α∗

s1− zi∗s+1:s∥2 +
s∑

j=i∗s+1

wj(α
∗
s) + λ1

≤ hi∗s(y∗1:i∗s ; z1:i∗s) +
1

2
∥y∗i∗s+1:s − zi∗s+1:s∥2 +

s∑
j=i∗s+1

wj(y
∗
j ) + λ1 = hs(y

∗; z1:s) = H(s),
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where the first equality holds by y∗i∗s+1 ̸= y∗i∗s and the expression of hs(y
∗; z1:s). If

i∗s = 0,

min
i∈[0:s−1],α∈R

Ps(i, α) ≤ H(0) +
1

2
∥y∗ − z1:s∥2 +

s∑
j=1

wj(y
∗
j ) + λ1 = H(s).

Therefore, mini∈[0:s−1],α∈R Ps(i, α) ≤ H(s) holds. On the other hand, let (i∗s, α
∗
s) be

an optimal solution to mini∈[0:s−1],α∈R Ps(i, α). If i∗s ̸= 0, let y∗ ∈ Rs be such that

y∗1:i∗s ∈ arg minv∈Ri∗s hi∗s(v; z1:i∗s) and y∗i∗s+1:s = α∗
s1. Then, it is clear that

H(s) ≤ hs(y
∗; z1:s) ≤ hi∗s(y∗1:i∗s ; z1:i∗s) +

1

2
∥y∗i∗s+1:s − zi∗s+1:s∥2 +

s∑
j=i∗s+1

wj(y
∗
j ) + λ1

= H(i∗s) +
1

2
∥α∗

s1− zi∗s+1:s∥2 +
s∑

j=i∗s+1

wj(α
∗
s) + λ1 = min

i∈[0:s−1],α∈R
Ps(i, α).

If i∗s = 0, let y∗ = α∗
s1. We have

H(s) ≤ hs(y
∗; z1:s) = H(0) +

1

2
∥y∗ − z1:s∥2 +

s∑
j=1

wj(α
∗
s) + λ1 = min

i∈[0:s−1],α∈R
Ps(i, α).

Therefore, H(s) ≤ mini∈[0:s−1],α∈R Ps(i, α). These two inequalities imply the result.

(ii) If i∗s ̸= 0, by part (i) and the definitions of α∗
s and i∗s,

H(s) = min
i∈[0:s−1],α∈R

Ps(i, α) = H(i∗s) +
1

2
∥α∗

s1− zi∗s+1:s∥2 +
s∑

j=i∗s+1

wj(α
∗
s) + λ1

= hi∗s(y∗1:i∗s ; z1:i∗s) +
1

2
∥y∗i∗s+1:s − zi∗s+1:s∥2 +

s∑
j=i∗s+1

wj(y
∗
j ) + λ1 ≥ hs(y

∗, z1:s),

where the last inequality follows by the definition of hs(·, z1:s). If i∗s = 0,

H(s) = min
i∈[0:s−1],α∈R

Ps(i, α) = H(0) +
1

2
∥y∗ − z1:s∥2 +

s∑
j=1

wj(y
∗
j ) + λ1 = hs(y

∗; z1:s),

Therefore, H(s) ≥ hs(y
∗; z1:s). Along with the definition of H(s), H(s) = hs(y

∗; z1:s).
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From Lemma 4.4 (i), the nonconvex nonsmooth problem (4.21) can be recast as

a mixed-integer programming with objective function given in (4.23). Lemma 4.4

(ii) suggests a recursive method to obtain an optimal solution to (4.21) via solving

(4.23). In fact, by setting s = n, we can obtain that there exists an optimal solution

to (4.21), says x∗, such that x∗i∗n+1:n = α∗
n1, and x∗1:i∗n ∈ arg minv∈Ri∗n hi∗n(v; z1:i∗n).

Next, by setting s = i∗n, we are able to obtain the expression of x∗i∗
i∗n

+1:i∗n
. Repeating

this loop backward until s = 0, we can obtain the full expression of an optimal

solution to (4.21). The outline of computing proxλ1∥B̂·∥0+w(·)(z) is shown as follows.



Set the current changepoint s = n.

While s > 0 do

Find (i∗s, α
∗
s) ∈ arg min

i∈[0:s−1],α∈R
Ps(i, α). (4.24)

Let x∗i∗s+1:s = α∗
s1 and s← i∗s.

End

To obtain an optimal solution to (4.21), the remaining issue is how to execute the

first line in while loop of (4.24), or in other words, for any given s ∈ [n], how to find

(i∗s, α
∗
s) ∈ N × R appearing in Lemma 4.4 (ii). The following proposition provides

some preparations.

Proposition 4.1. For each s ∈ [n], let P ∗
s (α) := mini∈[0:s−1] Ps(i, α).

(i) For all α ∈ R,

P ∗
s (α) =

{
1
2
(α− z1)2 + w1(α) if s = 1,

min
{
P ∗
s−1(α),minα′∈R P

∗
s−1(α

′)+λ1

}
+ 1

2
(α−zs)2+ws(α) if s ∈ [2 :n].

(ii) Let R0
1 := R, and Ri

s := Ri
s−1 ∩ (Rs−1

s )c for all s ∈ [2 :n] and i ∈ [0 :s−2], where

Rs−1
s :=

{
α ∈ R | P ∗

s−1(α) ≥ min
α′∈R

P ∗
s−1(α

′) + λ1

}
. (4.25)
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(a) For each s ∈ [2 :n],
⋃

i∈[0:s−1]Ri
s = R and Ri

s ∩Rj
s = ∅ for any i ̸= j ∈ [0 :

s−1].

(b) For each s ∈ [n] and i ∈ [0 :s−1], P ∗
s (α) = Ps(i, α) when α ∈ Ri

s.

Proof. (i) Note that P ∗
1 (α) = P1(0, α) = H(0) + 1

2
(α − z1)2 + w1(α) + λ1 = 1

2
(α −

z1)
2 + w1(α). Now fix any s ∈ [2 : n]. By the definition of P ∗

s , for any α ∈ R,

P ∗
s (α) = min

i∈[0:s−1]
Ps(i, α) = min

{
min

i∈[0:s−2]
Ps(i, α), Ps(s−1, α)

}
. (4.26)

From the definition of Ps in (4.23), for each i ∈ [0 :s−2] and α ∈ R, it holds that

Ps(i, α) = H(i) +
1

2
∥α1− zi+1:s∥2 +

s∑
j=i+1

wj(α) + λ1

= H(i) +
1

2
∥α1−zi+1:s−1∥2 +

s−1∑
j=i+1

wj(α) + λ1 +
1

2
(α−zs)2 + ws(α)

= Ps−1(i, α) +
1

2
(α− zs)2 + ws(α),

while for any α ∈ R, Ps(s−1, α) = H(s−1) + 1
2
(α− zs)2 +ws(α) + λ1. By combining

the last two equalities with (4.26), we immediately obtain that

P ∗
s (α) = min

{
min

i∈[0:s−2]
Ps−1(i, α), H(s−1) + λ1

}
+

1

2
(α− zs)2 + ws(α)

= min
{
P ∗
s−1(α),min

α′∈R
P ∗
s−1(α

′) + λ1

}
+

1

2
(α− zs)2 + ws(α),

(4.27)

where the last equality follows by Lemma 4.4 (i). Thus, we get the desired result.

(ii) We first prove (a) by induction. When s = 2, sinceR0
1 = R andR0

2 = R0
1∩(R1

2)
c,

we have R0
2 ∪ R1

2 = R and R0
2 ∩ R1

2 = ∅. Assume that the result holds when s = j

for some j ∈ [2 :n−1]. We consider the case s = j+1. Since Ri
s := Ri

s−1 ∩ (Rs−1
s )c

for all i ∈ [0 :s−2] and
⋃

i∈[0:s−2]Ri
s−1 = R, it holds that⋃

i∈[0:s−1]R
i
s =

[⋃
i∈[0:s−2](Ri

s−1 ∩ (Rs−1
s )c)

]
∪Rs−1

s =
(
R ∩ (Rs−1

s )c
)
∪Rs−1

s = R.
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Thus we obtain the first part of (a) by deduction. For any i ∈ [0 :s−2], by definition,

Ri
s ∩ Rs−1

s = ∅. It suffices to show that Ri
s ∩ Rj

s = ∅ for any i ̸= j ∈ [0 : s−2]. By

definition,

Ri
s ∩Rj

s =
[
Ri

s−1 ∩ (Rs−1
s )c

]
∩
[
Rj

s−1 ∩ (Rs−1
s )c

]
= ∅,

where the last equality is using Ri
s−1 ∩ R

j
s−1 = ∅. Thus, the second part of (a) is

obtained.

Next we prove (b). Since for any α ∈ R = R0
1, P

∗
1 (α) = P1(0, α), the result holds

for s = 1. For s ∈ [2 :n] and i=s−1, by the definition of Rs−1
s , for all α ∈ Rs−1

s ,

P ∗
s (α) = min

α′∈R
P ∗
s−1(α

′) + λ1 +
1

2
(α− zs)2 + ws(α) = Ps(s− 1, α),

where the second equality is using Lemma 4.4 (i) and the definition of Ps. Next we

consider s ∈ [2 : n] and i ∈ [0 : s−2]. We argue by induction that P ∗
s (α) = Ps(i, α)

when α ∈ Ri
s. Indeed, when s = 2, since R0

2 = R0
1 ∩ (R1

2)
c = (R1

2)
c, for any α ∈ R0

2,

from (4.25) we have P ∗
1 (α) < minα′∈R P

∗
1 (α′) + λ1, which by part (i) implies that

P ∗
2 (α) = P ∗

1 (α) + 1
2
(α − z2)2 + w2(α) = P1(0, α) + 1

2
(α − z2)2 + w2(α) = P2(0, α).

Assume that the result holds when s = j for some j ∈ [2 : n−1]. We consider the

case for s = j+1. For any i ∈ [0 : s−2], by definition, Ri
s = Ri

s−1 ∩ (Rs−1
s )c. Then,

from (4.27) for any α ∈ Ri
s,

P ∗
s (α) = P ∗

s−1(α) +
1

2
(α− zs)2 + ws(α) = Ps−1(i, α) +

1

2
(α− zs)2 + ws(α)

= H(i) +
1

2
∥α1− zi+1:s−1∥2 +

s−1∑
j=i+1

wj(α) + λ1 +
1

2
(α−zs)2 + ws(α)

= H(i) +
1

2
∥α1− zi+1:s∥2 +

s∑
j=i+1

wj(α) + λ1 = Ps(i, α),

where the second equality is using P ∗
s−1(α) = Ps−1(i, α) implied by induction. Hence,

the conclusion holds for s = j + 1 and any i ∈ [0 :s−2]. The proof is completed.
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Now we take a closer look at Proposition 4.1. Part (i) provides a recursive

method to compute P ∗
s (α) for all s ∈ [n]. For each s ∈ [n], by the expression

of ws, Ps(i, ·) is a piecewise lower semicontinuous linear-quadratic function whose

domain is a closed interval, relative to which Ps(i, ·) has an expression of the form

H(i)+ 1
2
∥α1−zi+1:s∥2+(s−i)|α|0+λ1, while P ∗

s (·) = min{Ps(0, ·), Ps(1, ·), . . . , Ps(s−

1, ·)}. Note that for each i ∈ [0 : s−1], the optimal solution to minα∈R Ps(i, α)

is easily obtained (in fact, all the possible candidates of the global solutions are

0,
∑s

j=i+1 zj

s−i
,maxj∈[i+1:s]{(lb)j},minj∈[i+1:s]{(ub)j}), so is arg minα′∈R P

∗
s (α′). Part (ii)

suggests a way to search for i∗s such that P ∗
s (α∗

s) = Ps(i
∗
s, α

∗
s) for each s ∈ [n]. Ob-

viously, Ps(i
∗
s, α

∗
s) = mini∈[0:s−1],α∈R Ps(i, α). This inspires us to propose Algorithm 4

for solving proxλ1∥B̂·∥0+w(·)(z), whose iterate steps are described as follows.

Algorithm 4 (Computing proxλ1∥B̂·∥0+w(·)(z))

1. Initialize: Compute P ∗
1 (α) = 1

2
(z1 − α)2 + w1(α) and set R0

1 = R.
2. For s = 2, . . . , n do
3. P ∗

s (α) := min{P ∗
s−1(α),minα′∈R P

∗
s−1(α

′) + λ1}+ 1
2
(α− zs)2 + ws(α).

4. Compute Rs−1
s by (4.25).

5. For i = 0, . . . , s− 2 do
6. Ri

s = Ri
s−1 ∩ (Rs−1

s )c.
7. End
8. End
9. Set the current changepoint s = n.
10. While s > 0 do
11. Find α∗

s ∈ arg minα∈R P
∗
s (α), and i∗s = {i | α∗

s ∈ Ri
s}.

12. x∗i∗s+1:s = α∗
s1 and s← i∗s.

13. End

The main computation cost of Algorithm 4 comes from lines 3 and 6, in which

the number of pieces of the linear-quadratic functions involved in P ∗
s plays a crucial

role. The following lemma gives a worst-case estimation for the number of pieces of

P ∗
s in the s-th iterate.

Lemma 4.5. Fix any s ∈ [2 : n]. The function P ∗
s in line 3 of Algorithm 4 has at

most O(s1+o(1)) linear-quadratic pieces.
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Proof. Let hi(α) := H(i)+ 1
2
∥α1−zi+1:s∥2 +λ1 +(s− i)λ2|α|0 +

∑s
j=i+1 δ[(lb)j ,(ub)j ](α)

for α ∈ R with i ∈ [0 :s−1]. From the definition of P ∗
s , it holds that

P ∗
s (α) = min

i∈[0:s−1]
{hi(α)}, for α ∈ R. (4.28)

For each i ∈ [0 :s−1], hi is a piecewise lower semicontinuous linear-quadratic function

whose domain is a closed interval, and every piece is continuous on the closed interval

except α = 0. Therefore, for each i ∈ [0 :s−1],

hi = min
{
hi,1, hi,2, hi,3

}
, with (4.29)

hi,1(α) := hi(α)− (s− i)λ2|α|0 + (s− i)λ2 + δ(−∞,0](α), hi,2(α) := hi(α) + δ{0}(α),

hi,3(α) := hi(α)− (s− i)λ2|α|0 + (s− i)λ2 + δ[0,∞)(α).

Obviously, hi1, hi,2 and hi,3 are piecewise linear-quadratic functions with domain

being a closed interval. Combining (4.29) with (4.28), for any α ∈ R,

P ∗
s (α)=

{
h0(α), h1(α), . . . , hs−2(α), hs−1(α)

}
= min

i∈[0:s−1],j∈[3]

{
hi,j(α)

}
.

Notice that any hi,j and hi′,j′ with i ̸= i′ ∈ [0 : s−1] or j ̸= j′ ∈ [3] crosses at

most 2 times. From (Sharir, 1988, Theorem 2.5) the maximal number of linear-

quadratic pieces involved in P ∗
s is bounded by the maximal length of a (3s, 4)

Davenport-Schinzel sequence, which by (Davenport and Schinzel, 1965, Theorem

3) is 3c1s exp(c2
√

log 3s). Here, c1, c2 are positive constants independent of s. Thus,

we conclude that the maximal number of linear-quadratic pieces involved in P ∗
s is

O(s1+o(1)). The proof is finished.

By invoking Lemma 4.5, we are able to provide a worst-case estimation for the

complexity of Algorithm 4. Indeed, the main cost of Algorithm 4 consists in lines

3 and 5-7. Since line 3 involves the computation cost proportional to the pieces

of P ∗
s−1, from Lemma 4.5, it requires O(s1+o(1)) operation. For each i ∈ [0 : s−1],
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from part (b) of Proposition 4.1 (ii), we know that Ri
s consists of at most O(s1+o(1))

intervals, which means that line 6 requires at most O(s1+o(1)) operations and then the

complexity of lines 5-7 is O(s2+o(1)). Thus, the worst-case complexity of Algorithm

4 is
∑n

s=2O(s2+o(1)) = O(n3+o(1)).

4.2 A Hybrid of PG and Inexact Projected Reg-

ularized Newton Methods

In the hybrid frameworks owing to (Themelis et al. (2018)) and (Bareilles et al.

(2023)), the PG and Newton steps are alternating. We now state the details of

our algorithm, a hybrid of PG and inexact projected regularized Newton methods

(PGiPN), for solving problem (4.1), where the introduction of the switch condition

(4.3) is due to the consideration that the PG step is more cost-effective than the

Newton step when the iterates are far from a critical point. Let xk ∈ Ω be the

current iterate. It is noted that the PG step is always executed and if condition (4.3)

is met, we need to solve (4.6), which involves constructing Gk to satisfy (4.7). Such

Gk can be easily achieved in the following situations.

For some generalized linear models, f can be expressed as f(x) = h(Ax− b) for

some A ∈ Rm×n, b ∈ Rm and twice continuously differentiable, separable h. For

this case, ∇2h is a diagonal matrix, and ∇2f(x) = A⊤∇2h(Ax− b)A. Since ∇2f(xk)

is not necessarily positive definite, following the method in (Liu et al. (2024)), we

construct Gk := G1
k, where

G1
k := ∇2f(xk)+ b1[−λmin(∇2h(Axk − b))]+A⊤A+ b2∥µk(xk−xk)∥σI (4.30)

with b1 ≥ 1. However, for highly nonconvex h, [−λmin(∇2h(Axk − b))]+ is large,

for which G1
k is a poor approximation to ∇2f(xk). To avoid this drawback and

simultaneously make Gk positive definite, Zhang et al. (2023) considered Gk := G2
k,
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where

G2
k := A⊤[∇2h(Axk − b)]+A+ b2∥µk(xk−xk)∥σI. (4.31)

For the case where ∇2f(xk) ⪰ 0, G1
k = G2

k. If ∇2f(xk) ̸⪰ 0, it is immediate to

see that ∥G1
k − ∇2f(xk)∥2 ≥ ∥G2

k − ∇2f(xk)∥2, which means that G2
k is a better

approximation to ∇2f(xk) than G1
k. On the other hand, for those f ’s not owning

a separable structure, we form Gk := G3
k as in (Ueda and Yamashita (2010)) and

HpgSRN in Chapter 3, where

G3
k := ∇2f(xk)+

(
b1[−λmin(∇2f(xk))]+ + b2∥µk(xk−xk)∥σ

)
I. (4.32)

It is not hard to check that for i = 1, 2, 3, Gi
k meets the requirement in (4.7). We

remark here that the sequel convergence analysis holds for all three Gi
k, and we write

them by Gk for simplicity.

Now we are in position to present the detailed iterates of our algorithm.

Algorithm 5 (a hybrid of PG and inexact projected regularized Newton methods)

Initialization: Choose ϵ ≥ 0 and parameters µmax > µmin > 0, τ > 1, α > 0, b2 > 0,
ϱ ∈ (0, 1

2
), σ ∈ (0, 1

2
), ς ∈ (σ, 1] and β ∈ (0, 1). Choose an initial x0 ∈ Ω and let

k := 0.

PG Step:
(1a) Select µk ∈ [µmin, µmax]. Let mk be the smallest nonnegative integer m such
that

F (xk) ≤ F (xk)−α
2
∥xk−xk∥2 with xk ∈ prox(µkτm)−1g(x

k−(µkτ
m)−1∇f(xk)). (4.33)

(1b) Let µk = µkτ
mk . If µk∥xk − xk∥ ≤ ϵ, output xk; otherwise, go to step (1c).

(1c) If condition (4.3) holds, go to Newton step; otherwise, let xk+1 = xk. Set
k ← k + 1 and return to step (1a).

Newton step:
(2a) Seek an inexact solution yk of (4.6) satisfying (4.8)-(4.9).
(2b) Set dk := yk − xk. Let tk be the smallest nonnegative integer t such that

f(xk + βtdk) ≤ f(xk) + ϱβt⟨∇f(xk), dk⟩. (4.34)

(2c) Let αk = βtk with xk+1 = xk+αkd
k. Set k ← k + 1 and return to PG step.
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Remark 4.2. (a) Our PGiPN benefits from the PG step in two aspects. First, the

incorporation of the PG step can guarantee that the sequence generated by PGiPN

remains in a right position for convergence. Second, the PG step helps to identify

adaptively the subspace used in the Newton step, and as will be shown in Proposition

4.3, switch condition (4.3) always holds and the supports of {Bxk}k∈N and {xk}k∈N

keep unchanged when k is sufficiently large, so that Algorithm 5 will reduce to an

inexact projected regularized Newton method for solving (4.5) with Πk ≡ Π∗. In

this sense, the PG step plays a crucial role in transforming the original challenging

problem (4.1) into a problem that can be efficiently solved by the inexact projected

regularized Newton method.

(b) When xk enters the Newton step, from the inexact criterion (4.8) and the ex-

pression of Θk, 0 ≥ Θk(xk+dk)−Θk(xk) = ⟨∇f(xk), dk⟩+ 1
2
⟨dk, Gkd

k⟩, and then

⟨∇f(xk), dk⟩ ≤ −1

2
⟨dk, Gkd

k⟩ ≤ −b2
2
∥µk(xk − xk)∥σ∥dk∥2 < 0, (4.35)

where the second inequality is due to (4.7). In addition, the inexact criterion (4.8)

implies that yk ∈ Πk, which along with xk ∈ Πk and the convexity of Πk yields that

xk + αdk ∈ Πk for any α ∈ (0, 1]. By the definition of Πk, supp(B(xk + αdk)) ⊆

supp(Bxk) and supp(xk+αdk) ⊆ supp(xk), so g(xk+αdk) ≤ g(xk) for any α ∈ (0, 1].

This together with (4.35) shows that the iterate along the direction dk will reduce the

value of F at xk.

(c) When ϵ = 0, by Definition 2.2 the output xk of Algorithm 5 is an L-type station-

ary point of (4.1), which is also a critical point of problem (4.5) from Proposition

2.1 and Lemma 4.1 (i). Let rk : Rn → Rn be the KKT residual mapping of (4.5)

defined by

rk(x) := µk[x− projΠk
(x− µ−1

k ∇f(x))]. (4.36)

It is not difficult to verify that when xk satisfies condition (4.3), the following relation
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holds

rk(xk) = µk(xk − xk), (4.37)

for which it suffices to argue that xk = projΠk
(xk−µ−1

k ∇f(xk)). Indeed, if not, there

exists zk ∈ Πk such that h̃k(zk) < h̃k(xk), where h̃k(x) := µk

2
∥x−(xk−µ−1

k ∇f(xk))∥2.

Since zk ∈ Πk, we have supp(Bzk) ⊆ supp(Bxk) and supp(zk) ⊆ supp(xk), which

implies that g(zk) ≤ g(xk) and then h̃k(zk) + g(zk) < h̃k(xk) + g(xk), a contradiction

to xk ∈ proxµ−1
k g(x

k − µ−1
k ∇f(xk)).

(d) The line search in step (1a) must stop after a finite number of backtrackings. In

fact, by using equation (4.10) and Remark 2.2, we deduce that when µkτ
m ≥ L1 +α,

(4.33) must hold, which implies that µk < µ̃ := τ(L1+ α) for each k ∈ N.

By Remark 3.1 (d), to show that Algorithm 5 is well defined, we only need to

argue that the Newton steps in Algorithm 5 are well defined, which is implied by the

following lemma.

Lemma 4.6. For each k ∈ N, define the KKT residual mapping Rk : Rn → Rn of

(4.6) by

Rk(y) := µk[y − projΠk
(y − µ−1

k (Gk(y − xk) +∇f(xk)))].

Then, for those xk’s satisfying (4.3), the following statements are true.

(i) For any y close enough to the optimal solution of (4.6), y − µ−1
k Rk(y) satisfies

inexact conditions (4.8)-(4.9).

(ii) The line search step in (4.34) terminates after a finite number of backtrackings,

and αk ≥ min
{

1, (1−ϱ)b2β
L1
∥µk(xk − xk)∥σ

}
.

(iii) The inexact criterion (4.9) implies that ∥Rk(yk)∥ ≤ 1
2

min
{
∥rk(xk)∥, ∥rk(xk)∥1+ς

}
.

Proof. Pick any xk satisfying (4.3). We proceed the proof of parts (i)-(iii) as follows.
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(i) Let ŷk be the unique optimal solution to (4.6). Then ŷk ̸= xk (if not, xk is

the optimal solution of (4.6) and 0 = Rk(xk) = rk(xk), which by (4.37) means

that xk = xk and Algorithm 5 stops at xk). By the optimality condition of (4.6),

−∇f(xk)−Gk(ŷk−xk) ∈ NΠk
(ŷk), which by the convexity of Πk and xk ∈ Πk implies

that ⟨∇f(xk) +Gk(ŷk − xk), ŷk − xk⟩ ≤ 0. Along with the expression of Θk, we have

Θk(ŷk)−Θk(xk) ≤ −1
2
⟨ŷk − xk, Gk(ŷk − xk)⟩ < 0. Since Θk is continuous relative to

Πk, for any z ∈ Πk sufficiently close to ŷk, Θk(z)−Θk(xk) ≤ 0. From Rk(ŷ) = 0 and

the continuity of Rk, y − µ−1
k Rk(y) is close to ŷ when y sufficiently close to ŷ, which

together with y − µ−1
k Rk(y) ∈ Πk implies that y − µ−1

k Rk(y) satisfies the criterion

(4.8) when y is sufficiently close to ŷ. In addition, from the expression of Rk, for any

y ∈ Rn,

0 ∈ Gk(y − xk) +∇f(xk)−Rk(y) +NΠk
(y − µ−1

k Rk(y)),

which by the expression of Θk implies that µ−1
k GkRk(y)+Rk(y) ∈ ∂Θk(y−µ−1

k Rk(y)).

Hence, dist(0, ∂Θk(y−µ−1
k Rk(y))) ≤ ∥µ−1

k GkRk(y)+Rk(y)∥. Noting that Rk(ŷk) = 0,

we have ∥µ−1
k GkRk(ŷk)+Rk(ŷk)∥ = 0 <

min{µ−1
k ,1}
2

min
{
∥µk(xk−xk)∥, ∥µk(xk− xk)∥1+ς

}
.

From the continuity of the function y 7→ ∥µ−1
k GkRk(y) + Rk(y)∥, we conclude that

for any y sufficiently close to ŷk, y − µ−1
k Rk(y) satisfies the inexact criterion (4.9).

(ii) By (4.10) and the descent lemma (Bertsekas, 1997, Proposition A.24), for any

α ∈ (0, 1],

f(xk+αdk)− f(xk)− ϱα⟨∇f(xk), dk⟩ ≤ (1−ϱ)α⟨∇f(xk), dk⟩+
L1α

2

2
∥dk∥2

≤ −(1−ϱ)αb2
2

∥µk(xk−xk)∥σ∥dk∥2+
L1α

2

2
∥dk∥2

=
(
− (1−ϱ)b2

2
∥µk(xk−xk)∥σ+

L1α

2

)
α∥dk∥2,

where the second inequality uses (4.35). Therefore, when

α ≤ min
{

1,
(1− ϱ)b2

L1

∥µk(xk−xk)∥σ
}
,
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the line search in (4.34) holds, which implies that

αk ≥ min
{

1,
(1− ϱ)b2β

L1

∥µk(xk−xk)∥σ
}
.

(iii) Let ξk ∈ ∂Θk(yk) be such that ∥ξk∥ = dist(0, ∂Θk(yk)). From ξk ∈ ∂Θk(yk) and

the expression of Θk, we have yk = projΠk
(yk + ξk− (Gk(yk−xk) +∇f(xk))). Along

with the nonexpansiveness of projΠk
, ∥yk−projΠk

(yk−(Gk(yk−xk)+∇f(xk)))∥ ≤ ∥ξk∥.

Consequently,

dist(0, ∂Θk(yk)) ≥ ∥yk−projΠk
(yk−(Gk(yk−xk) +∇f(xk)))∥ ≥ min{µ−1

k , 1}∥Rk(yk)∥,

where the second inequality follows by (Sra, 2012, Lemma 4) and the expression

of Rk. Combining the last inequality with (4.9) and (4.37) leads to the desired

inequality.

When µk = 1, the condition that

∥Rk(yk)∥ ≤ 1

2
min

{
∥rk(xk)∥, ∥rk(xk)∥1+ς

}
is a special case of the first inexact condition in (Yue et al., 2019, Equa (6a)) or the

inexact condition in (Mordukhovich et al., 2023, Equa (14)), which by Lemma 4.6

(iii) shows that criterion (4.9) with µk = 1 is stronger than those ones.

To analyze the convergence of Algorithm 5 with ϵ = 0, henceforth we assume

xk ̸= xk for all k (if not, Algorithm 5 will produce an L-type stationary point within

finite number of steps, and its convergence holds automatically). From the iterate

steps of Algorithm 5, we see that the sequence {xk}k∈N consists of two parts, {xk}k∈K1

and {xk}k∈K2 , where

K1 :=N\K2 with K2 :=
{
k ∈ N | supp(Bxk)= supp(Bxk), supp(xk)= supp(xk)

}
.

Obviously, K1 consists of those k’s with xk+1 from the PG step, while K2 consists of

those k’s with xk+1 from the Newton step.
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To close this section, we provide some properties of the sequences {xk}k∈N and

{xk}k∈N.

Proposition 4.2. The following assertions are true.

(i) The sequence {F (xk)}k∈N is descent and convergent.

(ii) There exists ν > 0 such that |Bxk|min ≥ ν and |xk|min ≥ ν for all k ∈ N.

(iii) There exist c1, c2 > 0 such that c1∥rk(xk)∥ ≤ ∥dk∥ ≤ c2∥rk(xk)∥1−σ for all

k ∈ K2.

Proof. (i) For each k ∈ N, when k ∈ K1, by the line search in step (1a), F (xk+1) <

F (xk), and when k ∈ K2, from (4.34) and (4.35), it follows that f(xk+1) < f(xk),

which along with g(xk+1) ≤ g(xk) by Remark 4.2 (b) implies that F (xk+1) < F (xk).

Hence, {F (xk)}k∈N is a descent sequence. Recall that F is lower bounded on Ω, so

{F (xk)}k∈N is convergent.

(ii) By the definition of µk and Remark 4.2 (d), µk ∈ [µmin, µ̃) for all k ∈ N. Note that

{xk}k∈N ⊆ Ω, so the sequence {xk−µ−1
k ∇f(xk)}k∈N is bounded and is contained in a

compact set, says, Ξ. By invoking Lemma 4.3 with such Ξ and µ = µmin, µ = µ̃, there

exists ν > 0 (depending on Ξ, µmin and µ̃) such that |[B; I]xk|min > ν. The desired

result then follows by noting that |Bxk|min ≥ |[B; I]xk|min and |xk|min ≥ |[B; I]xk|min.

(iii) From the definition of Gk, the continuity of ∇2f , {xk, xk}k∈N ⊆ Ω and Remark

4.2 (d), there exists c > 0 such that

∥Gk∥2 ≤ c for all k ∈ K2. (4.38)

Fix any k ∈ K2. By Lemma 4.6 (iii), ∥Rk(yk)∥ ≤ 1
2
∥rk(xk)∥. Then, it holds that

1

2
∥rk(xk)∥ ≤ ∥rk(xk)∥ − ∥Rk(yk)∥ ≤ ∥rk(xk)−Rk(yk)∥

= µk∥xk − projΠk
(xk − µ−1

k ∇f(xk))− yk + projΠk
(yk − µ−1

k (Gk(yk − xk) +∇f(xk)))∥

≤ (2µk + ∥Gk∥2)∥yk − xk∥ ≤ (2µ̃+ c)∥dk∥,
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where the third inequality is using the nonexpansiveness of projΠk
, and the last one is

due to (4.38) and dk = yk−xk. Therefore, c1∥rk(xk)∥ ≤ ∥dk∥ with c1 := 1/(4µ̃+ 2c).

For the second inequality, it follows from the definitions of rk(·) and Rk(·) that

Rk(yk)−∇f(xk)−Gkd
k ∈ NΠk

(yk − µ−1
k Rk(yk))

and

rk(xk)−∇f(xk) ∈ NΠk
(xk − µ−1

k rk(xk)),

which together with the monotonicity of the set-valued mapping NΠk
(·) implies that

⟨dk, Gkd
k⟩ ≤ ⟨Rk(yk)−rk(xk), dk⟩ − µ−1

k ∥Rk(yk)−rk(xk)∥2 − µ−1
k ⟨Gkd

k,−Rk(yk) + rk(xk)⟩

≤ ⟨(I + µ−1
k Gk)dk, Rk(yk)− rk(xk)⟩.

Combining this inequality with equations (4.7), (4.37) and Lemma 4.6 (iii) leads to

b2∥rk(xk)∥σ∥dk∥2 ≤ (1 + µ−1
k ∥Gk∥2)(∥Rk(yk)∥+ ∥rk(xk)∥)∥dk∥ (4.39)

≤ (3/2)(1 + µ−1
k ∥Gk∥2)∥rk(xk)∥∥dk∥,

which along with (4.38) and µk ≥ µmin implies that ∥dk∥ ≤ 3
2
(1+µ−1

minc)b
−1
2 ∥rk(xk)∥1−σ.

Then, ∥dk∥ ≤ c2∥rk(xk)∥1−σ holds with c2 := 3
2
(1 + µ−1

minc)b
−1
2 . The proof is com-

pleted.

4.3 Convergence Analysis

Before analyzing the convergence of Algorithm 5, we show that Algorithm 5 finally

reduces to an inexact projected regularized Newton method for seeking a critical

point of a problem to minimize a smooth function over a polyhedral set. This requires

the following lemma, which presents the descent proeprty of {F (xk)}k∈N, and proves

that all the elements of ω(x0) is an L-type stationary point (recall that ω(x0) denotes

the set of accumulation points of {xk}k∈N).
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Lemma 4.7. For the sequences {xk}k∈N and {xk}k∈N generated by Algorithm 5, the

following assertions are true.

(i) There exists a constant γ > 0 such that for each k ∈ N,

F (xk+1)− F (xk) ≤


−γ∥xk − xk∥2 if k ∈ K1,
−γ∥xk − xk∥2+σ if k ∈ K2, αk = 1,
−γ∥xk − xk∥2+2σ if k ∈ K2, αk ̸= 1.

(4.40)

(ii) limk→∞ ∥xk − xk∥ = 0 and limK2∋k→∞ ∥dk∥ = 0.

(iii) ω(x0) is nonempty and compact, and every element of ω(x0) is an L-type sta-

tionary point of problem (4.1).

Proof. (i) Fix any k ∈ K2. From inequalities (4.34) and (4.35),

f(xk+1)− f(xk) ≤ −ϱb2αk

2
∥µk(xk−xk)∥σ∥dk∥2 ≤ −ϱc

2
1b2αk

2
∥µk(xk−xk)∥2+σ

≤ −ϱc
2
1b2αkµ

2+σ
min

2
∥xk−xk∥2+σ,

(4.41)

where the second inequality is using Proposition 4.2 (iii) and equality (4.37). By

Remark 4.2 (b), we have g(xk+1) ≤ g(xk), so that F (xk+1)−F (xk) ≤ f(xk+1)−f(xk),

which along with the last equation yields that

F (xk+1)− F (xk) ≤ −ϱc
2
1b2αkµ

2+σ
min

2
∥xk − xk∥2+σ.

Take γ := min
{

α
2
,
ϱc21b2µ

2+σ
min

2
,
β(1−ϱ)ϱc21b

2
2µ

2+2σ
min

2L1

}
. The desired result then follows by using

Lemma 4.6 (ii) and recalling that F (xk+1)− F (xk) ≤ α
2
∥xk − xk∥2 for k ∈ K1.

(ii) Let K̃2 := {k ∈ K2 | αk = 1}. Doing summation for inequality (4.40) from k = 0
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to any j ∈ N yields that∑
k∈K1∩[j]

γ∥xk − xk∥2 +
∑

k∈K̃2∩[j]

γ∥xk − xk∥2+σ +
∑

k∈(K2\K̃2)∩[j]

γ∥xk − xk∥2+2σ

≤
j∑

k=0

[
F (xk)− F (xk+1)

]
= F (x0)− F (xj+1),

which by the lower boundedness of F on the set Ω implies that

∑
k∈K1

∥xk − xk∥2 +
∑
k∈K̃2

γ∥xk − xk∥2+σ +
∑

k∈K2\K̃2

γ∥xk − xk∥2+2σ <∞.

Thus, we obtain limk→∞ ∥xk − xk∥ = 0. Together with Proposition 4.2 (iii), (4.37)

and Remark 4.2 (d), it follows that limK2∋k→∞ ∥dk∥ = 0.

(iii) Recall that {xk}k∈N ⊆ Ω, so its accumulation point set ω(x0) is nonempty.

The compactness of ω(x0) can be obtained by following the proof of (Bolte et al.,

2014, Lemma 5(iii)). Pick any x∗ ∈ ω(x0). Then, there exists an index set K ⊆ N

such that limK∋k→∞ xk = x∗. From part (ii), limK∋k→∞ xk = x∗. For each k ∈ K,

xk ∈ proxµ−1
k g

(
xk − µ−1

k ∇f(xk)
)

with µk ∈ [µmin, µ̃) by step (1a) of Algorithm 5

and Remark 4.2 (d). We assume that limK∋k→∞ µk = µ∗ ∈ [µmin, µ̃] (if necessary by

taking a subsequence). Define the function

h(z, x, µ) :=

{
µ
2

∥∥z − (x−µ−1∇f(x))
∥∥2

+ g(z) if (z, x, µ) ∈ Rn × Rn × [µmin, µ̃],
∞ otherwise,

and write P(x, µ) := arg minz∈Rn h(z, x, µ) for (x, µ) ∈ Rn × R. Note that h :

Rn × Rn × R → R is a proper and lower semicontinuous function and is level-

bounded in z locally uniformly in (x, µ). In addition, by (Rockafellar and Wets, 2009,

Theorem 1.25), the function ĥ(x, µ) := infz∈Rn h(z, x, µ) is finite and continuous on

R × [µmin, µ̃]. From (Rockafellar and Wets, 2009, Example 5.22), the multifunction

P : Rn × R ⇒ Rn is outer semicontinuous relative to Rn × [µmin, µ̃]. Note that
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xk ∈ P(xk, µk) for each k ∈ K. Then, x∗ ∈ proxµ−1
∗ g

(
x∗−µ−1

∗ ∇f(x∗)
)
, so x∗ is an

L-type stationary point of (4.1).

Next we use Lemma 4.7 (ii) to show that, after a finite number of iterations, the

switch condition in (4.3) always holds and the Newton step is executed. To this end,

define

Tk := supp(Bxk), T k := supp(Bxk), Sk := supp(xk) and Sk := supp(xk). (4.42)

Proposition 4.3. For the index sets defined in (4.42), there exist index sets T ⊆

[p], S ⊆ [n] and an index k ∈ N such that for all k > k, Tk = T k = T and Sk =

Sk = S, which means that k ∈ K2 for all k > k. Moreover, for each x∗ ∈ ω(x0),

supp(Bx∗) = T and supp(x∗) = S.

Proof. We complete the proof via the following three claims:

Claim 1: There exists k ∈ N such that for k > k, |Bxk|min ≥ ν
2
, where ν is the same

as the one in Proposition 4.2 (ii).

Indeed, for each k−1 ∈ K1, x
k = xk−1, and |Bxk|min = |Bxk−1|min ≥ ν > ν

2

follows by Proposition 4.2 (ii). Hence, it suffices to consider that k−1 ∈ K2. By

Lemma 4.7 (ii), there exists k ∈ N such that for all k > k, ∥xk−1−xk−1∥ < ν
4∥B∥2 and

∥dk−1∥ < ν
4∥B∥2 , which implies that for K2 ∋ k−1 > k−1, ∥Bxk−1−Bxk−1∥ < ν

4
and

∥Bdk−1∥ < ν
4
. For each K2 ∋ k− 1 > k− 1, let ik ∈ [p] be such that |(Bxk−1)ik | =

|Bxk−1|min. Since condition (4.3) implies that supp(Bxk−1) = supp(Bxk−1) for each

k − 1 ∈ K2, we have |(Bxk−1)ik | ≥ |Bxk−1|min. Thus, for each K2 ∋ k − 1 > k − 1,

∥Bxk−1 −Bxk−1∥ ≥ |(Bxk−1)ik − (Bxk−1)ik | ≥ |(Bxk−1)ik | − |(Bxk−1)ik |

≥ |Bxk−1|min − |Bxk−1|min.

Recall that |Bxk−1|min ≥ ν for all k ∈ N by Proposition 4.2 (ii). Together with the

last inequality and ∥Bxk−1 − Bxk−1∥ < ν
4
, for each K2 ∋ k − 1 > k − 1, we have
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|Bxk−1|min ≥ 3ν
4

. For each K2 ∋ k − 1 > k − 1, let jk ∈ [p] be such that |(Bxk)jk | =

|Bxk|min. By Remark 3.1 (ii), supp(Bxk) ⊆ supp(Bxk−1) for each k− 1 ∈ K2, which

along with jk ∈ supp(Bxk) implies that |(Bxk−1)jk | ≥ |Bxk−1|min. Thus, for each

K2 ∋ k − 1 > k − 1,

∥Bdk−1∥ ≥ ∥Bxk −Bxk−1∥ ≥ |(Bxk−1)jk − (Bxk)jk |

≥ |(Bxk−1)jk | − |(Bxk)jk | ≥ |Bxk−1|min − |Bxk|min,

which together with ∥Bdk−1∥ ≤ ν
4

and |Bxk−1|min ≥ 3ν
4

implies that |Bxk|min ≥ ν
2
.

Claim 2: Tk = T k for k > k.

From the above arguments, ∥Bxk−Bxk∥ ≤ ν
4

for k > k. If i ∈ Tk, then |(Bxk)i| ≥

|(Bxk)i|− ν
4
≥ ν

4
, where the second inequality is using |Bxk|min>

ν
2

by Claim 1. This

means that i ∈ T k, so Tk ⊆ T k. Conversely, if i ∈ T k, then |(Bxk)i| ≥ |(Bxk)i|− ν
4
≥

3ν
4

, so i ∈ Tk and T k ⊆ Tk. Thus, Tk = T k for k > k.

Claim 3: Tk = Tk+1 for k > k.

If k ∈ K1, the result follows directly by the result in Claim 2. If k ∈ K2, from

the proof of Claim 1, ∥Bxk− Bxk+1∥ ≤ ∥Bdk∥ ≤ ν
4

for all k > k. Then, if i ∈ Tk,

|(Bxk+1)i| ≥ |(Bxk)i| − ν
4
≥ ν

4
, where the second inequality is using |Bxk|min>

ν
2

by

Claim 1. This implies that i ∈ Tk+1 and Tk ⊆ Tk+1. Conversely, if i ∈ Tk+1, then

|(Bxk)i| ≥ |(Bxk+1)i| − ν
4
≥ ν

4
. Hence, i ∈ Tk and Tk+1 ⊆ Tk.

From Claim 2 and Claim 3, there exists T ⊆ [p] such that Tk = T k = T for

k > k. Using the similar arguments, we can also prove that there exists S ⊆ [n] such

that Sk = Sk = S for all k > k (if necessary increasing k).

Pick any x∗ ∈ ω(x0). Let {xk}k∈K be a subsequence such that limK∋k→∞ xk = x∗.

By the above proof, for all sufficiently large k ∈ K, |Bxk|min ≥ ν
2

and |xk|min ≥ ν
2
,

which implies that |Bx∗|min ≥ ν
2

and |x∗|min ≥ ν
2
. The results supp(Bx∗) = T

and supp(x∗) = S can be obtained by a proof similar to Claim 3. The proof is

completed.
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By Proposition 4.3, k ∈ K2 for all k > k, i.e., the sequence {xk+1}k>k is generated

by the Newton step. This means that {xk+1}k>k is identical to the one generated

by the inexact projected regularized Newton method starting from xk+1. Also, since

Πk = Π∗ := Πk+1 for all k > k, Algorithm 5 finally reduces to the inexact projected

regularized Newton method for solving

min
x∈Rn

Ψ(x) := f(x) + δΠ∗(x), (4.43)

which is a minimization problem of function f over polyhedron Π∗, much simpler

than the original problem (4.1). Consequently, the global convergence and local

convergence rate analysis of PGiPN for model (4.1) boils down to analyzing those of

the inexact projected regularized Newton method for (4.43). The rest of this section

is devoted to this. Unless otherwise stated, the notation k in the sequel is always the

same as that of Proposition 4.3. In addition, we require the assumption that ∇2f is

locally Lipschitz continuous on ω(x0).

Assumption 4.1. ∇2f is locally Lipschitz continuous on an open set O ⊇ ω(x0).

Assumption 4.1 is very standard when analyzing the convergence behavior of

Newton-type method. In fact, if f is assumed to be third time continuously differ-

entiable on Rn, this assumption directly holds. The following lemma reveals that

under this assumption, the step size αk in Newton step takes 1 when k is sufficiently

large. Since the proof is similar to that of (Liu et al., 2022, Lemma B.1), the details

are omitted here.

Lemma 4.8. Suppose that Assumption 4.1 holds. Then αk = 1 for sufficiently large

k.

Notice that Π∗ is a polyhedron, which can be expressed as

Π∗ =
{
x ∈ Rn | BT c

k+1
·x = 0, xSc

k+1
= 0, x ≥ lb, −x ≥ −ub

}
. (4.44)
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For any x ∈ Rn, we define multifunction A : Rn ⇒ [2n] as

A(x) := {i | xi = (lb)i} ∪ {i+ n | xi = (ub)i}.

Clearly, for x ∈ Π∗, A(x) is the active set of constraint Π∗ at x. To prove the global

convergence for PGiPN, we first show that {A(xk)}k∈N remains stable when k is

sufficiently large, under the following non-degeneracy assumption.

Assumption 4.2. For all x∗ ∈ ω(x0), 0 ∈ ∇f(x∗) + ri(NΠ∗(x∗)).

It follows from Proposition 2.1 and Lemma 4.7 (iii) that for each x∗ ∈ ω(x0),

x∗ is a critical point of F , which together with Proposition 4.3 and Lemma 4.1 (i)

yields that 0 ∈ ∇f(x∗)+NΠ∗(x∗), so that Assumption 4.2 substantially requires that

−∇f(x∗) does not belong to the relative boundary1 of NΠ∗(x∗). In the next lemma,

we prove that under Assumptions 4.1-4.2, A(xk) = A(xk+1) for sufficiently large k.

Lemma 4.9. Let {xk}k∈N be the sequence generated by Algorithm 5. Suppose that

Assumptions 4.1-4.2 hold. Then, there exist A∗ ⊆ [2n] and a closed and convex cone

N ∗ ⊆ Rn such that A(xk) = A∗ and NΠ∗(xk) = N ∗ for sufficiently large k.

Proof. We complete the proof via the following two claims.

Claim 1: limk→∞ ∥projTΠ∗ (x
k)(−∇f(xk))∥ = 0.

Since Π∗ is polyhedral, for any x ∈ Π∗, TΠ∗(x) and NΠ∗(x) are closed and convex

cones, and TΠ∗(x) is polar to NΠ∗(x), which implies that when k is sufficiently large,

z = projTΠ∗ (x
k)(z) + projNΠ∗ (x

k)(z) holds for any z ∈ Rn. Then, for all sufficiently

large k,

∥projTΠ∗ (x
k)(−∇f(xk))∥ = ∥ −∇f(xk)−projNΠ∗ (x

k)(−∇f(xk))∥ = dist(0, ∂Ψ(xk)).

Therefore, it suffices to prove that limk→∞ dist(0, ∂Ψ(xk)) = 0. By Proposition

4.3, equation (4.9), Remark 3.1 (d) and Lemma 4.7 (ii), there exists {ζk}k>k with

1 For Ξ ⊆ Rn, the set difference cl(Ξ)\ri(Ξ) is called the relative boundary of Ξ, see (Rockafellar,
1970, p. 44).
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limk→∞ ∥ζk∥ = 0 such that 0 ∈ ∇f(xk) + Gkd
k + ζk +NΠk

(xk + dk) for each k ≥ k,

which implies that ∇f(xk + dk) − ∇f(xk) − Gkd
k − ζk ∈ ∂Ψ(xk + dk) for each

k ≥ k. This together with Lemma 4.7 (ii) and the continuity of ∇f implies that

limk→∞ dist(0, ∂Ψ(xk + dk)) = 0. Thus, by Lemma 4.8 we obtain the desired result.

Claim 2: A(xk) ⊆ A(xk+1) for all sufficiently large k.

We prove by contradiction. If this claim does not hold, there exists K ⊆ N such

that A(xk) ̸⊆ A(xk+1) for all k ∈ K. If necessary taking a subsequence, we assume

that {xk}k∈K converges to x∗. By Lemma 4.7 (ii), {xk+1}k∈K converges to x∗. In

addition, from Claim 1 it follows that limk→∞ ∥projTΠ∗ (x
k+1)(−∇f(xk+1))∥ = 0. The

two sides along with Assumption 4.2 and (Burke and Moré, 1988, Corollary 3.6)

yields that A(xk+1) = A(x∗) for all sufficiently large k ∈ K. Since A(xk) ⊆ A(x∗)

for sufficiently large k ∈ K, we have A(xk) ⊆ A(xk+1) for sufficiently large k ∈ K,

contradicting to A(xk) ̸⊆ A(xk+1) for k ∈ K. The claimed fact that A(xk) ⊆ A(xk+1)

then follows.

From A(xk) ⊆ A(xk+1) for all sufficiently large k, {A(xk)}k∈K2 converges to for

some A∗ ⊆ [2n] in the sense of Painlevé-Kuratowski. From the finiteness of A∗, we

conclude that A(xk) = A∗ for all sufficiently large k. From the expression of Π∗ in

(4.44) and A(xk) = A∗ for all sufficiently large k, we have NΠ∗(xk) = N ∗ for all

sufficiently large k.

Our proof for the global convergence of PGiPN additionally requires the following

assumption.

Assumption 4.3. For every sufficiently large k, there exists ξk ∈ NΠ∗(xk) such that

lim inf
k→∞

−⟨∇f(xk) + ξk, d
k⟩

∥∇f(xk) + ξk∥∥dk∥
> 0.

This assumption essentially requires that for every sufficiently large k there exists

one element ξk ∈ NΠ∗(xk) such that the angle between∇f(xk)+ξk and dk is uniformly
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larger than π/2. For every sufficiently large k, since xk + αdk ∈ Π∗ for all α ∈ [0, 1],

we have dk ∈ TΠ∗(xk), which implies that ⟨ξk, dk⟩ ≤ 0. Together with (4.35), for

every sufficiently large k, the angle between ∇f(xk) + ξk and dk is larger than π/2.

This means that it is highly possible for Assumption 4.3 to hold. Obviously, when

n = 1, it automatically holds.

Next, we show that if Ψ is a KL function and Assumptions 4.1-4.3 hold, the

sequence generated by PGiPN is Cauchy and converges to an L-type stationary

point.

Theorem 4.1. Let {xk}k∈N be the sequence generated by Algorithm 5. Suppose that

Assumptions 4.1-4.3 hold, and that Ψ is a KL function. Then,
∑∞

k=1 ∥xk+1−xk∥ <∞,

and consequently {xk}k∈N converges to an L-type stationary point of (4.1).

Proof. If there exists k > k such that Ψ(xk) = Ψ(xk+1), then F (xk) = F (xk+1) by

Proposition 4.3, which together with Lemma 4.7 (i) yields that xk = xk. Con-

sequently, xk meets the termination condition of Algorithm 5, so that {xk}k∈N

converges to an L-type stationary point of (4.1) within a finite number of steps.

Thus, we only need to consider the case that Ψ(xk) > Ψ(xk+1) for all k > k.

By (Bolte et al., 2014, Lemma 6), there exist ε > 0, η > 0 and a continuous

concave function φ ∈ Υη (see Definition 2.4) such that for all x ∈ ω(x0) and

x ∈ {z ∈ Rn | dist(z, ω(x0)) < ε} ∩ [Ψ(x) < Ψ < Ψ(x) + η],

φ′(Ψ(x)−Ψ(x))dist(0, ∂Ψ(x)) ≥ 1,

where ω(x0) is defined in Lemma 4.7 (iii). Clearly, limk→∞ dist(xk, ω(x0)) = 0.

Pick any x∗ ∈ ω(x0). By the definition of Ψ, Propositions 4.2 (i) and 4.3, we have

limk→∞ Ψ(xk) = Ψ(x∗). Then, for k > k (if necessary by increasing k), xk ∈ {z ∈

Rn | dist(z, ω(x0)) < ε} ∩ [Ψ(x∗) < Ψ < Ψ(x∗) + η]. Consequently, for all k > k,

φ′(Ψ(xk)−Ψ(x∗))dist(0, ∂Ψ(xk)) ≥ 1. (4.45)

104



By Assumption 4.3, there exist cmin > 0 and ξk ∈ NΠ∗(xk) such that for all suffciently

large k,

−⟨∇f(xk) + ξk, d
k⟩ > cmin∥∇f(xk) + ξk∥∥dk∥. (4.46)

From Lemma 4.9 we have NΠ∗(xk) = NΠ∗(xk+1) for all k > k (by possibly enlarging

k), which implies that ξk ∈ NΠ∗(xk+1). Together with (4.34), (4.46) and Lemma 4.8,

we have that for all k > k (if necessary enlarging k),

Ψ(xk)−Ψ(xk+1)

dist(0, ∂Ψ(xk))
≥−ϱ⟨∇f(xk) + ξk, d

k⟩
dist(0, ∂Ψ(xk))

≥ ϱcmin∥∇f(xk) + ξk∥∥dk∥
∥∇f(xk) + ξk∥

= ϱcmin∥xk+1 − xk∥,

(4.47)

where the second inequality follows by ∇f(xk) + ξk ∈ ∂Ψ(xk) and (4.46). For each

k, let ∆k := φ(Ψ(xk)−Ψ(x∗)). From (4.45), (4.47) and the concavity of φ on [0, η),

for all k > k,

∆k −∆k+1 ≥ φ′(Ψ(xk)−Ψ(x∗))(Ψ(xk)−Ψ(xk+1))

≥ Ψ(xk)−Ψ(xk+1)

dist(0, ∂Ψ(xk))
≥ ϱcmin∥xk+1 − xk∥.

Summing this inequality from k to any k > k and using ∆k ≥ 0 yields that

k∑
j=k

∥xj+1−xj∥ ≤ 1

ϱcmin

k∑
j=k

(∆j−∆j+1) =
1

ϱcmin

(∆k−∆k+1) ≤
1

ϱcmin

∆k.

Passing the limit k →∞ leads to
∑∞

j=k ∥xj+1−xj∥ <∞. Thus, {xk}k∈N is a Cauchy

sequence and converges to x∗. It follows from Lemma 4.7 (iii) that x∗ is an L-type

stationary point of problem (4.1). The proof is completed.

If Ψ has the KL property of exponent 1/2 and Assumptions 4.1, 4.2 are satisfied,

both {F (xk)}k∈N and {xk}k∈N converge at a linear rate.
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Theorem 4.2. Suppose that {xk}k∈N be the sequence generated by Algorithm 5, and

Assumptions 4.1, 4.2 hold. Pick any x∗ ∈ ω(x0). If Ψ has the KL property with

exponent 1
2
at x∗, {F (xk)}k∈N converges to F (x∗) at a Q-linear rate, and {xk}k∈N

converges to x∗ at an R-linear convergence rate.

Proof. Let k be such that the results in Proposition 4.3 and Lemmas 4.8, 4.9 hold

for k > k. For any k > k, by equations (4.9) and (4.37) there exist ξk ∈ NΠ∗(xk +dk)

and ζk ∈ Rn with ∥ζk∥ ≤ 1
2
∥rk(xk)∥1+ς such that ∇f(xk) +Gkd

k + ξk + ζk = 0, which

implies that dk = −G−1
k (∇f(xk) + ξk + ζk). From Lemma 4.9, (Li and Pong, 2018,

Lemma 4.1) and (Sra, 2012, Lemma 4), we have

∥∇f(xk) + ξk∥ ≥ dist(0, ∂Ψ(xk)) ≥ min{µ−1
k , 1}∥rk(xk)∥. (4.48)

Since ς > σ, the above inequality along with Remark 4.2 (d), (4.37), Lemma 4.7(ii)

yields

lim
k→∞

∥rk(xk)∥1+ς−σ

∥∇f(xk) + ξk∥
≤ (min{µ−1

k , 1})−1 lim
k→∞
∥rk(xk)∥ς−σ = 0. (4.49)

Then, we have for k > k (if necessary enlarging k),

− ⟨∇f(xk) + ξk, d
k⟩ = ⟨∇f(xk) + ξk, G

−1
k (∇f(xk) + ξk + ζk)⟩

≥ c−1∥∇f(xk) + ξk∥2 − (b2∥rk(xk)∥σ)−1∥∇f(xk) + ξk∥∥ζk∥

≥ c−1∥∇f(xk) + ξk∥2 −
∥∇f(xk) + ξk∥∥rk(xk)∥1+ς

2b2∥rk(xk)∥σ

≥ c−1∥∇f(xk) + ξk∥2
(

1− c∥rk(xk)∥1+ς−σ

2b2∥∇f(xk) + ξk∥

)
≥ (2c)−1∥∇f(xk) + ξk∥2,

(4.50)

where the first inequality uses (4.38), the second inequality follows by the definition

of ζk, and the last inequalities use (4.49). From (4.34), Proposition 4.3 and Lemmas

4.8, 4.9, it holds that

Ψ(xk)−Ψ(xk+1) ≥ ϱ

2c
dist(0, ∂Ψ(xk))2, (4.51)

106



for k > k. Since Ψ has the KL property of exponent 1/2, following a discussion

similar to the proof of Theorem 3.1, we have that there exist c > 0 and x∗ ∈ ω(x0)

such that for all k > k (if necessary enlarging k),

c

2
(Ψ(xk)−Ψ(x∗))−1/2dist(0, ∂Ψ(xk)) ≥ 1.

Let ∆̄k = Ψ(xk)−Ψ(x∗) for each k > k. Then, it follows from (4.51) that

4c−2 ≤ [∆̄
−1/2
k dist(0, ∂Ψ(xk))]2 ≤ 2c

ϱ
∆̄−1

k (Ψ(xk)−Ψ(xk+1)) =
2c

ϱ
∆̄−1

k (∆̄k−∆̄k+1),

which implies that Ψ(xk+1) − Ψ(x∗) ≤ ĉ(Ψ(xk) − Ψ(x∗)) with ĉ := cc2−2ϱ
cc2

. That

is, {Ψ(xk) − Ψ(x∗)}k>k converges to 0 at a Q-linear convergence rate. If necessary

enlarging k, we have for k > k,

∞∑
j=k

∥xj − xj+1∥ =
∞∑
j=k

∥dj∥ ≤
∞∑
j=k

c2µ̃
1−σ∥xj − xj∥1−σ

≤
∞∑
j=k

c2µ̃
1−σ(γ−1(Ψ(xj)−Ψ(xj+1)))

1−σ
2+2σ ≤

∞∑
j=k

c2µ̃
1−σ(γ−1(Ψ(xj)−Ψ(x∗)))

1−σ
2+2σ

≤
∞∑
j=k

c2µ̃
1−σγ

σ−1
2+2σ ĉ

(1−σ)(j−k)
2+2σ (Ψ(xk)−Ψ(x∗))

1−σ
2+2σ ≤ c2µ̃

1−σγ
σ−1
2+2σ

1− ĉ
(1−σ)
2+2σ

(F (x0)−Ψ(x∗))
1−σ
2+2σ ,

where the first equality holds by Lemma 4.8, the first inequality follows by equation

(4.37), Proposition 4.2(iii) and Remark 4.2 (d), the second inequality uses Lemma 4.7

(i), and the last inequality holds by F (x0)≥F (xk)≥Ψ(xk). Therefore, we conclude

that {xk}k∈N is a convergent sequence. By noting that x∗ ∈ ω(x0), {xk}k∈N converges

to x∗. Since ∥xk − x∗∥ ≤
∑∞

j=k ∥xj − xj+1∥, by the above group of inequalities we

conclude that {xk}k∈N converges to x∗ at an R-linear convergence rate.

We now focus on the superlinear rate analysis of PGiPN. Denote

X ∗ :=
{
x ∈ Rn | 0 ∈ ∇f(x) +NΠ∗(x), ∇2f(x) ⪰ 0

}
,
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which we call by the set of second-order stationary points of (4.43). Based on this

notation, we assume that a local Hölderian error bound condition holds with X ∗ in

Assumption 4.4. For more introduction on the Hölderian error bound condition, we

refer the interested readers to Mordukhovich et al. (2023) and Liu et al. (2024).

Assumption 4.4. The q-subregularity of function r(x) := x − projΠ∗(x − ∇f(x))

holds at x∗ for the origin with X ∗, i.e., there exist ε > 0, κ > 0 and q ∈ (0, 1] such

that for all x ∈ B(x∗, ε) ∩ Π∗, dist(x, r−1(0)) = dist(x,X ∗) ≤ κ∥r(x)∥q.

Recently, Liu et al. (2024) proposed an inexact regularized proximal Newton

method (IRPNM) for solving the problems, consisting of a smooth function and an

extended real-valued convex function, which includes (4.43) as a special case. They

studied the superlinear convergence rate of IRPNM under Assumptions 4.1 and 4.4.

By (Sra, 2012, Lemma 4) and µk ∈ [µmin, µ̃), ∥r(xk)∥ = O(∥rk(xk)∥) for sufficiently

large k. This together with Assumption 4.4 implies that there exists κ̂ > 0 such that

for sufficiently large k with xk ∈ B(x∗, ε),

dist(xk,X ∗) ≤ κ̂∥rk(xk)∥q. (4.52)

Recall that PGiPN finally reduces to an inexact projected regularized Newton method

for solving (4.43). From Lemma 4.6 (iii) and Lemma 4.8, we have

Θk(xk+1)−Θk(xk) ≤ 0 and ∥Rk(xk+1)∥ ≤ 1

2
min{∥rk(xk)∥, ∥rk(xk)∥1+ς}, (4.53)

for sufficiently large k. Let Λi
k := Gi

k−∇2f(xk) − b2∥µk(xk − xk)∥σI, where Gi
k are

those in (4.30)-(4.32). Under Assumption 4.4, from Lemma 3.11 and (Liu et al.,

2024, Lemma 7) and the fact that G1
k −G2

k ⪰ 0, we have for sufficiently large k with

xk ∈ B(x∗, ε),

max
{
λmin(Λ1

k), λmin(Λ2
k), λmin(Λ3

k)
}

= O(dist(xk,X ∗)), (4.54)
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By using (4.52), (4.53) and (4.54), and following a proof similar to (Liu et al., 2024,

Theorem 6), we can obtain the following result.

Theorem 4.3. Let {xk}k∈N be the sequence generated by Algorithm 5. Suppose that

Assumption 4.1 holds, and that {xk}k∈N converges to x∗ ∈ ω(x0). If Assumption 4.4

holds with q ∈ ( 1
1+σ

, 1] at x∗, then the sequence {xk}k∈N converges to x∗ with the

Q-superlinear convergence rate at order q(1+σ).

4.4 Numerical Experiments

This section focuses on the numerical experiments of several variants of PGiPN for

solving a fused ℓ0-norms regularization problem with a box constraint. We first

describe the implementation of Algorithm 5 in Section 4.4.1. In Section 4.4.2, we

make comparison between model (4.1) with the least-squares loss function f and

the fused Lasso model (1.6) by using PGiPN to solve the former and SSNAL (Li

et al. (2018)) to solve the latter, to highlight the advantages and disadvantages

of our proposed fused ℓ0-norms regularization. Among others, the code of SSNAL

is available at https://github.com/MatOpt/SuiteLasso. We note that problem

(4.43) with f considered in this subsection satisfies KL property, see Proposition 2.3.

Finally, in Section 4.4.3, we present some numerical results toward the comparison

among several variants of PGiPN and ZeroFPR and PG method for (4.1) in terms of

efficiency and the quality of the output. The MATLAB code of PGiPN is available

at https://github.com/yuqiawu/PGiPN.

4.4.1 Implementation of Algorithm 5

Dimension reduction of (4.6)

Suppose that ∅ ≠ Sc
k := [n]\Sk. Based on the fact that every x ∈ Πk satisfies

xSc
k

= 0, we can obtain an approximate solution to (4.6) by solving a problem in a
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lower dimension. Specifically, for each k ∈ K2, write

Hk :=(Gk)SkSk
, uk :=xkSk

, ∇fSk
(uk)=[∇f(xk)]Sk

,

Π̂k := {u ∈ R|Sk| | B̃ku = 0, (lb)Sk
≤u≤(ub)Sk

},

where B̃k is the matrix obtained by removing the rows of BT c
kSk

whose elements are

all zero. We turn to consider the following strongly convex optimization problem,

ûk ≈ arg min
u∈R|Sk|

{
θk(u) := f(I·Sk

uk)+⟨∇fSk
(uk), u−uk⟩+ 1

2
(u−uk)⊤Hk(u−uk)+δΠ̂k

(u)
}
.

(4.55)

The following lemma gives a way to find yk satisfying (4.8)-(4.9) by inexactly solving

problem (4.55), whose dimension is much smaller than that of (4.6) if |Sk| ≪ n.

Lemma 4.10. Let ykSk
= ûk and ykSc

k
= 0. Then, Θk(yk) = θk(ûk) and dist(0, ∂Θk(yk)) =

dist(0, ∂θk(ûk)). Consequently, the vector ûk satisfies

θk(ûk)−θk(uk) ≤ 0, dist(0, ∂θk(ûk)) ≤ min{µ−1
k , 1}

2
min

{
∥µk(xk−xk)∥, ∥µk(xk−xk)∥1+ς

}
,

if and only if the vector yk satisfies the inexact conditions in (4.8)-(4.9).

Proof. The first part is straightforward. We consider the second part. By the defini-

tion of Θk, dist(0, ∂Θk(yk)) = dist(0,∇f(xk) +Gk(yk − xk) +NΠk
(yk)). Recall that

Πk = {x ∈ Ω | BT c
k ·x = 0, xSc

k
= 0}. Then, NΠk

(yk) = Range(B⊤
T c
k ·

) + Range(I⊤Sc
k·

) +

NΩ(yk), and

dist(0, ∂Θk(yk))

= dist
(
0,∇f(xk) +Gk(yk − xk) + Range(B⊤

T c
k ·

) + Range(I⊤Sc
k·

) +NΩ(yk)
)

= dist
(
0,∇fSk

(uk) +Hk(ûk − uk) + Range(B⊤
T c
kSk

) +N[(lb)Sk
,(ub)Sk

](û
k)
)

= dist(0,∇fSk
(uk) +Hk(ûk − uk) +NΠ̂k

(ûk)) = dist(0, θk(ûk)),

where the second equality is using Range(I⊤Sc
k·

) = {z ∈ Rn | zSk
= 0}.
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Acceleration of Algorithm 1

The switch condition in (4.3) is in general difficult to be satisfied when ∥Bxk∥0

or ∥xk∥0 is large. Consequently, PGiPN is continuously executing PG steps. This

phenomenon is evident in the numerical experiment of the restoration of blurred

image, see Section 4.4.3. To further accelerate the iterates of Algorithm 5 into the

Newton step, we introduce the following relaxed switch condition:

∥|sign(Bxk)| − |sign(Bxk)|∥1 ≤
η1n

k
and ∥|sign(xk)| − |sign(xk)|∥1 ≤

η2n

k
, (4.56)

where η1, η2 are two nonnegative constants. Following the arguments similar to those

in Lemma 4.6, we have that Algorithm 5 equipped with (4.56) is also well defined.

Obviously, when ηin
k
≥ 1, condition (4.56) allows the supports of Bxk and Bxk and xk

and xk have some difference; when ηin
k
< 1(i = 1, 2), condition (4.56) is identical to

(4.3). This means that as k grows, Algorithm 5 with relaxed switch condition (4.56)

will finally reduce to the one with (4.3). Since our convergence analysis does not

specify the initial point, the asymptotic convergence results also hold for Algorithm

5 with condition (4.56).

Choice of parameters in Algorithm 5

We will test the performance of PGiPN with Gk given by G2
k in (4.31), and PGiPN(r),

which is PGiPN with relaxed switch condition (4.56). We use Gurobi to solve sub-

problem (4.6) with such Gk, with inexact conditions (4.8), (4.9) controlled by op-

tions params.Cutoff and params.OptimalityTol, respectively. Also, we test PGilbfgs,

which is the same as PGiPN, except using limited-memory BFGS (lbfgs) to con-

struct Gk. In particular, we form Gk = Bk + b2∥µk(xk − xk)∥σ, with Bk given

by lbfgs. For solving (4.6) with such Gk, we use the method introduced in (Kan-

zow and Lechner (2022)). We set the parameters of all the variants of PGiPN by
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α = 10−8, τ = 2, σ = 1
2
, ϱ = 10−4, β = 1

2
, ς = 2

3
. We set b2 = 10−3 for PGiPN and

PGiPN(r), and b2 = 10−8 for PGilbfgs.

We compare the numerical performance of our algorithms with those of ZeroFPR

(Themelis et al. (2018)) and the PG method (Wright et al. (2009)). In particular,

ZeroFPR uses the quasi-Newton method to minimize the forward-backward envelope

of the objective. The code package of ZeroFPR is downloaded from http://github.

com/kul-forbes/ForBES. We set “lbfgs” as the solver of ZeroFPR. On the other

hand, the iterate steps of PG are the same as those of PGiPN without the Newton

steps, so that we can check the effect of the additional second-order step on PGiPN.

For this reason, the parameters of PG are chosen to be the same as those involved in

PG Step of PGiPN. We also observe that the sparsity of the output is very sensitive

to µk in Algorithm 5. To be fair, as the default setting in ZeroFPR, in all variants of

PGiPN and PG, we set µk = 0.95−1L1 for all k ∈ N, where L1 is an estimation of the

Lipschitz constant of ∇f obtained by computing ∥A∥2 from the following MATLAB

sentences:

opt.issym = 1; opt.tol = 0.001; ATAmap = @(x) A’*A*x; L = eigs(ATAmap,n,1,‘LM’,opt).

For each solver, we set x0 = 0 and terminate at the iterate xk whenever k ≥ 5000

or µk∥xk − proxµ−1
k g(x

k − µ−1
k ∇f(xk))∥∞ < 10−4. All the numerical tests in this

section are conducted on a desktop running on 64-bit Windows System with an

Intel(R) Core(TM) i7-10700 CPU 2.90GHz and 32.0 GB RAM.

4.4.2 Model Comparison with the Fused Lasso

This subsection is devoted to the numerical comparison between the fused ℓ0-norms

regularization problem with a box constraint (FZNS), i.e., model (4.1) with f =

1
2
∥A · −b∥2 and B = B̂ and the fused Lasso (1.6). We apply PGiPN to solve FZNS

and SSNAL to solve (1.6). Since the solved models are different, we only compare

the quality of solutions returned by these two solvers, and will not compare their
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running time.

Our first empirical study focuses on the ability of regression. For this purpose,

we use a commonly used dataset, prostate data, which can be downloaded from

https://hastie.su.domains/ElemStatLearn/. There are 97 observations and 9

features included in this dataset. This data was used in (Jiang et al. (2021)) to

check the performance of square root fused Lasso.

We randomly select 50 observations to form the training set, which composes

A ∈ R50×8. The corresponding responses are represented by b ∈ R50. The reminders

are left as testing set, which forms (Ā, b̄) with Ā ∈ R47×8 and b̄ ∈ R47. We employ

PGiPN to solve FZNS, and SSNAL (Li et al. (2018)) to solve the fused Lasso (1.6),

with (A, b) given above, and lb = −1000 × 1, ub = 1000 × 1. For each solver, we

select 10 groups of (λ1, λ2) ∈ [0.003, 400] × [0.0003, 40], ensuring that the outputs

exhibit different sparsity levels. We record the sparsity and the testing error, where

the later one is defined as ∥Āx∗−b̄∥ with x∗ being the output. The above procedure

is repeated for 100 randomly constructed (A, b), resulting in a total of 1000 recorded

outputs for each model. All the sparsity pairs (∥B̂x∗∥0, ∥x∗∥0) from PGiPN and

SSNAL are recorded in lines 1, 3 and 5 in Table 4.1. For each sparsity pair, the

mean testing errors of ∥Āx∗−b̄∥ for PGiPN and SSNAL corresponding to the given

pair is recorded in lines 2, 4 and 6 in Table 4.1. Among others, since the fused Lasso

may produce solutions with components being very small but not equal to 0, we

define ∥y∥0 := min{k |
∑k

i=1 |ŷ| ≥ 0.999∥y∥1} as in (Li et al. (2018)), where ŷ is

obtained by sorting y in a nonincreasing order, for the outputs of the fused Lasso.

As shown in Table 4.1, it is evident that when (∥B̂x∗∥0, ∥x∗∥0) = (6, 6), the mean

testing error for FZNS is the smallest among all the testing examples. Furthermore,

in the presented 21 comparative experiments, the fused Lasso outperforms FZNS for

only 8 cases. Among these 8 experiments, in 7 cases, ∥B̂x∗∥0 ≥ 4 and ∥x∗∥0 ≥ 6.
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This indicates that our model performs better when the solution is relatively sparse.

Table 4.1: Mean testing error (FZNS|Fused Lasso) of the outputs.

(∥B̂x∗∥0, ∥x∗∥0) (2,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,8)

Mean testing error 8.35|8.54 7.34|7.36 5.45|5.15 5.15|5.74 5.21|6.32 5.08|5.27 5.11|5.70

(∥B̂x∗∥0, ∥x∗∥0) (4,4) (4,5) (4,6) (4,7) (4,8) (5,5) (5,6)

Mean testing error 5.07|5.52 5.31|5.86 5.49|4.99 5.25|4.97 5.33|4.78 5.10|5.48 5.74|5.38

(∥B̂x∗∥0, ∥x∗∥0) (5,7) (5,8) (6,6) (6,7) (6,8) (7,7) (7,8)

Mean testing error 5.46|5.58 5.35|5.19 4.41| 5.26 5.34|4.95 5.25|5.34 5.03|5.22 5.24|5.22

Our second numerical study is to evaluate the classification ability of the two mod-

els using the TIMIT database. As introduced in Section 1.2, the TIMIT database

is a widely used resource for research in speech recognition. Following the approach

described in (Land and Friedman (1997)), we compute a log-periodogram from each

speech frame, which is one of the several widely used methods to generate speech

data in a form suitable for speech recognition. Consequently, the dataset comprises

4509 log-periodograms of length 256 (frequency). It was highlighted in (Land and

Friedman (1997)) that distinguishing between “aa” and “ao” is particularly chal-

lenging. Our aim is to classify these sounds using FZNS and the fused Lasso with

λ2 = 0, lb = −1 and ub = 1, or in other words, the zero order variable fusion (1.4)

plus a box constraint and the first order variable fusion (1.5).

In TIMIT, the numbers of phonemes labeled “aa” and “ao” are 695 and 1022,

respectively. As in (Land and Friedman (1997)), we use the first 150 frequencies of the

log-periodograms because the remaining 106 frequencies do not appear to contain

any information. We randomly select m1 samples labeled “aa” and m2 samples

labeled “ao” as training set, which together with their labels form A ∈ Rm×n and

b ∈ Rm, with m = m1 + m2, n = 150, where bi = 1 if Ai· is labeled as “aa”,

and bi = 2 otherwise. The rest of dataset is left as the testing set, which forms

Ā ∈ R(1717−m)×n, b̄1717−m, with b̄i = 1 if Āi· is labeled as “aa” and b̄i = 2 otherwise.
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For (A, b), given 10 λ1’s randomly selected within [2×10−5, 300] such that the sparsity

of the outputs ∥B̂x∗∥0 spans a wide range. If Āi·x
∗ ≤ 1.5, this phoneme is classified

as “aa” and hence we set b̂i = 1; otherwise, b̂i = 2. If b̂i ̸= b̄i, Ai· is regarded as

failure in classification. Then the error rate of classification is given by ∥b̄−b̂∥1
1717−m

. We

record both ∥B̂x∗∥0 and the error rate of classification.

The above procedure is repeated for 30 groups of randomly generated (A, b),

resulting in 300 outputs for each solver. The four figures in Figure 4.1 present

∥B̂x∗∥0 and the error rate for each output, with 4 different choices of (m1,m2). We

can see that, for each figure the output with the smallest error rate is always achieved

by the fused ℓ0-norms regularization model. It is apparent that in general, FZNS

performs better than the fused Lasso when ∥B̂x∗∥0 ≤ 30, while the mean error rate

of the fused Lasso is lower than that of FZNS when ∥B̂x∗∥0 ≥ 60. This phenomenon

is especially evident when m1 and m2 are small.

Based on the results of these two empirical studies, we deduce that the fused ℓ0-

norms regularization tends to outperform the fused Lasso regularization model when

the output is sufficiently sparse. However, it is important to note that the numerical

performance of the fused ℓ0-norms regularization is not stable if the output is not

sparse, especially when the number of observations is small, which suggests that

when employing the fused ℓ0-norms regularization, careful consideration should be

given to selecting an appropriate penalty parameter. Moreover, due to the fact that

for some optimal solution x∗ of the fused Lasso regularization problem, |B̂x∗|min

and |x∗|min may be very small but not equal to zero, which leads to a difficulty in

interpreting what the outputs mean in the real world application. This also well

matches the statements in (Land and Friedman (1997)) that the ℓ0-norm variable

fusion produces simpler estimated coefficient vectors.
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(b) m1 = 50,m2 = 100
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(c) m1 = 100,m2 = 200
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Figure 4.1: ∥B̂x∗∥0 and the classification error rate for the outputs from FZNS and
the fused Lasso under different m1,m2.

4.4.3 Comparison with ZeroFPR and PG

This subsection focuses on the comparison among several variants of PGiPN, Ze-

roFPR and PG, in terms of efficiency and the quality of the outputs.

Classification of TIMIT

The experimental data used in this part is the TIMIT dataset, the one in Section

4.4.2. To test the performance of the algorithms on (4.1) with nonconvex f , we

consider solving model (4.1) with f =
∑m

i=1 log
(

1 + (A·−b)i
ν

)
, B = B̂, lb = −1 and

ub = 1, where A ∈ Rm×n represents the training data and b ∈ Rm is the vector of
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the corresponding labels. It is worth noting that the loss function is nonconvex, and

it was claimed in (Aravkin et al. (2012)) that this loss function is effective to process

data denoised by heavy-tailed Student’s t-noise.

Following the approach in Section 4.4.2, we use the first 150 frequencies of the

log-periodograms. For the training set, we arbitrarily selecte 200 samples labeled as

“aa” and 400 samples labeled as “ao”. These samples, along with their corresponding

labels, form the matrices A ∈ Rm×n and b ∈ Rm, with dimensions m = 600 and

n = 150. The remaining samples are designated as the testing set. Given a series

of nonnegative λc, we set λ1 = λc × 10−7∥A⊤b∥∞ and λ2 = 0.1λ1. We employ four

solvers: PGiPN, PGilbfgs, PG, and ZeroFPR. Subsequently, we record the CPU time

and the error rate of classification on the testing set. This experimental procedure

is repeated for a total of 30 groups of (A, b), and the mean CPU time and error rate

are recorded for each λc, presented in Figure 4.2. Motivated by the experiment in

Section 4.4.2, we also draw Figure 4.3, recording ∥B̂x∗∥0 and the error rate for all

the tested cases for four solvers.
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Figure 4.2: Mean of the cpu time and the error rate on 30 examples for four solvers

We see from Figure 4.2(a) that in terms of efficiency, PGiPN is always the best

one, more than ten times faster than the other three solvers. The reason is that the
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Figure 4.3: Scatter figure for all tested examples, recording the relationship of spar-
sity (∥B̂x∗∥0) and the error rate of classification.

other three solvers depend heavily on the proximal mapping of g, and its computation

is a little time-consuming, which reflects the advantage of the projected regularized

Newton steps in PGiPN. From Figure 4.2(b), when λc = 1, PGiPN reaches the

smallest mean error rate among four solvers for 10 λc’s. When λc is large (> 0.4),

PGiPN and PGilbfgs tend to outperform ZeroFPR and PG. Moreover, when λc is

small (< 0.1), the solutions returned by PG have the best error rate among four

solvers. This is because B̂x∗ produced by PG is sparser than those of the other three

solvers under the same λc, which can be observed from Figure 4.3. For small λc,

the solutions by the other three solvers are not sparse, leading to high error rate of

classification.
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Recovery of blurred images

Let x ∈ Rn with n = 2562 be a vector obtained by vectorizing a 256×256 image

“cameraman.tif” in MATLAB, and be scaled such that all the entries belong to [0, 1].

Let A ∈ Rn×n be a matrix representing a Gaussian blur operator with standard

deviation 4 and a filter size of 9, and the vector b ∈ Rm represents a blurred image

obtained by adding Gauss noise e ∼ N (0, ε) with ε > 0 to Ax, i.e., b = Ax + e.

We apply model (4.1) with f = 1
2
∥A · −b∥2, B = B̂, lb = 0 and ub = 1, to restore

the blurred images. We test five solvers, which are PGiPN, PGiPN(r), PGilbfgs,

ZeroFPR and PG. For PGiPN(r), we set η1 = 0.01, η2 = 0.01 in (4.56). For all

these five solvers, we employ λ1 = λ2 = 0.0005 × ∥A⊤b∥∞. Under different ε’s, we

compare the performance of these five solvers in terms of required iterations (Iter),

cpu time (Time), F (x∗) (Fval), ∥x∗∥0 (xNnz), ∥B̂x∗∥0 (BxNnz) and the highest peak

signal-to-noise ratio (PSNR), where PSNR := 10 log10

(
n

∥x−x∗∥2

)
. In particular, to

check the effect of the Newton step, we record the iterations (or time) in the form

M(N), where M means the total iterations (or time) and N means the iterations

(or time) in Newton step. PSNR measures the quality of the restored images. The

higher PSNR, the better the quality of restoration. Table 4.2 presents the numerical

results.

From Table 4.2, PGiPN(r) always performs the best in terms of efficiency, which

verifies the effectiveness of the acceleration scheme proposed in Section 4.4.1. PGiPN

is faster than PGilbfgs, and PGilbfgs is faster than PG, supporting the effective

acceleration of the Newton steps. However, ZeroFPR is the most time-consuming,

even worse than PG, a pure first-order method. The reason is that ZeroFPR requires

more line searches, and each line search involves a computation of the proximal

mapping of g, which is expensive (2-5 seconds).

Despite the superiority of efficiency, the solutions yielded by PGiPN(r) is not
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Table 4.2: Numerical comparison of six solvers on recovery of blurred image with
λ1 = λ2 = 0.0005∥A⊤b∥∞

Noise PGiPN PGiPN(r) PGilbfgs PG ZeroFPR

ε = 0.01

Iter 379(3) 123(6) 529(31) 796 361
Time 1.70e3(10.2) 5.61e2(21.4) 2.39e3(6.0) 3.43e3 2.35e4
Fval 37.88 37.95 37.88 37.88 37.77
xNnz 63858 63805 63858 63858 63717

BxNnz 5767 5995 5776 5779 5834
psnr 25.90 25.77 25.90 25.90 25.91

ε = 0.02

Iter 281(4) 109(6) 457(38) 853 286
Time 1.20e3(8.8) 4.74e2(13.2) 1.95e3(7.4) 3.62e3 1.82e4
Fval 45.98 46.05 45.98 45.98 45.83
xNnz 63495 63440 63495 63495 63350

BxNnz 6098 6320 6098 6099 6143
psnr 25.41 25.23 25.42 25.42 25.33

ε = 0.03

Iter 234(3) 94(3) 325(15) 717 332
Time 9.8e2(6.5) 3.98e2(6.5) 1.36e3(6.7) 2.97e3 1.88e4
Fval 60.26 60.34 60.26 60.26 60.02
xNnz 63006 62944 63006 63006 62800

BxNnz 6594 6844 6597 6592 6710
psnr 24.90 24.67 24.90 24.90 24.76

ε = 0.04

Iter 255(3) 78(5) 360(19) 526 230
Time 1.04e3(6.2) 3.37e2(20.0) 1.45e3(3.9) 2.18e3 1.11e4
Fval 77.82 77.87 77.82 77.82 77.44
xNnz 62103 62002 62104 62104 61853

BxNnz 7267 7553 7268 7271 7427
psnr 24.20 23.85 24.20 24.20 24.00

ε = 0.05

Iter 263(3) 76(11) 389(29) 688 168
Time 1.05e3(10.3) 3.30e2(28.5) 1.55e3(6.3) 2.71e3 5.91e3
Fval 99.65 99.72 99.65 99.65 98.93
xNnz 61376 61286 61381 61381 60963

BxNnz 7955 8283 7955 7956 8240
psnr 23.36 23.00 23.37 23.37 22.87

good. We also observe that ∥B̂x∗∥0 of PGiPN(r) is a little higher than those of

PGiPN, PGilbfgs and PG, because PGiPN(r) runs few PG steps, so that its struc-

tured sparsity is not well reduced. Moreover, the PSNR is closely related to ∥B̂x∗∥0,

and this leads to the weakest performance of PGiPN(r) in terms of PSNR. On the
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other hand, although ZeroFPR always outputs solutions with the smallest objective

value, its PSNR is not as good as the objective value. The performance of PGiPN,

PGilbfgs and PG in terms of the objective value and PSNR are quite similar. Tak-

ing the efficiency and the quality of the output into consideration, we conclude that

PGiPN is the best solver for this test.
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Chapter 5

Conclusion

In this thesis, we considered a hybrid framework of proximal gradient method and

Newton-type method for two classes of nonconvex sparse optimization problems,

which achieve global and superlinear convergence under mild conditions.

For the ℓq-norm regularized composite problem (3.1), we proposed a hybrid of PG

and regularized Newton method by exploiting the special structures of the ℓq-norm.

We not only established the convergence of the whole iterate sequence under a mild

curve-ratio condition and the KL property of the objective function, but also achieved

a superlinear convergence rate under an additional local error bound condition. In

particular, the local superlinear convergence result neither requires the isolatedness

of the limit point nor its local minimum property.

Moreover, we developed a polynomial-time algorithm for computing a point in

the proximal mapping of λ1∥B̂x∥0 + λ2∥x∥0 + δΩ(x), which makes PG available to

solve (4.1) with B = B̂. To accelerate the PG method, we employed our hybrid

framework to solve problem (4.1). We proved the convergence of the whole iterate

sequence under a mild nondegeneracy condition, a curve-ratio condition and the KL

property of the objective function, and also obtained a superlinear convergence rate

under a Hölderian local error bound on the set of the second-order stationary points,

without assuming the local minimality of the limit point.
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In the future, we will consider one direction as extension of this thesis. In this

study, we developed globalized algorithms for regularized Newton methods and pro-

jected regularized Newton methods. It would be intriguing to extend this framework

to globalize semismooth Newton methods. In fact, assume that x is an L-stationary

point of the composite problem (1.7). Then, there exists µ > 0 such that that

x ∈ proxµϕ(x− µ−1∇ψ(x)). (5.1)

For the reason that the proximal mapping may own a better smooth property than

the original objective function, finding some stationary point of Ψ by solving (5.1)

is a promising method. We plan to solve this system by using semismooth New-

ton method. To do it, the first thing we need to consider is that, in which case

proxµϕ(x−µ−1∇ψ(x)) is single-valued and locally Lipschitz continuous, ensuring the

existence of the Clarke generalized Jacobian. Existing result in (Themelis et al., 2018,

Theorem 4.7) indicates that for given critical point x of Ψ, if ϕ is prox-regular at x for

−∇ψ(x) and prox-bounded, then for sufficiently small µ > 0, proxµϕ(x−µ−1∇ψ(x))

is single-valued and Lipschitz continuous at a neighborhood of x. This result pro-

vides a sufficient condition for the single-valuedness of proxµϕ(x − µ−1∇ψ(x)) at

a neighborhood of some critical point. However, this is not enough, because to

design a globalize semismooth Newton method, we also need to consider the single-

valuedness and the locally Lipschitz continuity of the proximal mapping of the points

far away from the critical points. For an arbitrarily given point x, how to ensure that

proxµϕ(x−µ−1∇ψ(x)) is single-valued and locally Lipschitz continuous? If this ques-

tion could be well resolved, it is possible to design a globally convergent semismooth

Newton method for (5.1). We will leave it in our future study.
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