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Abstract

Error bounds are a requisite for trusting or distrusting solutions in an informed

way. Until recently, provable error bounds in the absence of constraint qualifications

were unattainable for many classes of cones that do not admit projections with

known succinct expressions. In this thesis, we apply a recently developed framework

based on facial reduction algorithms and one-step facial residual functions to build

up error bounds for two closed convex cones: the generalized power cones and the

log-determinant cones.

The generalized power cones admit direct modelling of certain problems and

have found applications in geometric programs, generalized location problems, and

portfolio optimization, etc. We propose a complete error bound analysis for the conic

linear feasibility problems with the generalized power cones without requiring any

constraint qualifications. All the error bounds are shown to be tight in the sense

of that framework. Besides their utility for understanding solution reliability, the

error bounds we discover have additional applications to the algebraic structure of

the underlying cone. We then completely determine the automorphism group of

the generalized power cones, which was unknown before our work. Based on the

automorphism group, we also discuss some other theoretical questions related to

homogeneity and perfectness, identifying a set of generalized power cones that are

self-dual, irreducible, nonhomogeneous, and perfect.

The log-determinant cone is the closure of the hypograph of the perspective func-
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tion of the log-determinant function, which has both theoretical and practical im-

portance. Specifically, a problem with a log-determinant term in its objective can

be recast as a problem over the log-determinant cone, indicating the significance of

the log-determinant cone. As a high-dimensional generalization of the exponential

cone, whose error bounds were well studied, the derivation of the error bounds for

the log-determinant cone is however not straightforward because of the higher di-

mension and the more involved facial structure. We establish tight error bounds for

the log-determinant cone problem without requiring any constraint qualifications.
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Chapter 1

Introduction

The convex conic linear feasibility problem has attracted a lot of attention due to

its power in modeling convex problems. Specifically, a convex conic linear feasibility

problem admits the following form:

Find x ∈ (L + a) ∩ K, (Feas)

where K is a closed convex cone contained in a finite dimensional Euclidean space

E , L ⊆ E is a subspace and a ∈ E is given. Various aspects of (Feas) such as

numerical algorithms and applications have been studied in the literature; see e.g.,

[6, 25]. In this thesis, we focus on the theoretical aspects, particularly error bounds

for (Feas). To be more precise, assuming the feasibility of (Feas), we want to establish

inequalities that give upper bounds on the distance from an arbitrary point to (L +

a) ∩ K based on the individual distances from the point to L + a and K. As a

fundamental topic in optimization [27, 35, 45, 54, 74], error bounds possess a wide

range of applications, especially in algorithm design and convergence analysis. A

notable application of error bounds for (Feas) is in the design of termination criteria

for the celebrated interior-point method (IPM), one of the most powerful algorithms

that are used in commercial and open source solvers for solving (convex) nonlinear

optimization problems; see, for example, [31, 11, 61, 15, 14] and solvers like MOSEK,

Alfonso, DDS and Hypatia [12, 30, 55, 47]. The IPM obtains a Karush-Kuhn-Tucker
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(KKT) point of the optimization problem by iteratively solving a series of perturbed

KKT systems that approximate the true KKT system. As the KKT system can be

formulated as a convex conic linear feasibility problem in the form of (Feas), error

bounds for (Feas) provide an upper bound on the distance from a candidate solution

to the set of KKT points. This bound is typically of the same order of magnitude

as the actual distance, making it an effective tool for designing a robust termination

criterion that balances computational efficiency with solution accuracy.

Deducing the error bounds for (Feas) is generally difficult because it involves the

projection onto the cone, which can be complicated without an analytic form. When

the cone K is polyhedral, i.e., it can be written as the intersection of finitely many half

spaces, the classical Hoffman’s error bound [27] provides a comprehensive depiction

of a nearly best error bound. In contrast, if the cone is not polyhedral, a similar

error bound also holds when some good behaviors (constraint qualifications) of the

feasible region are assumed. For instance, one of the most commonly seen constraint

qualifications is the Slater’s condition, which is satisfied if the affine space intersects

the relative interior of the cone [7]. Nonetheless, the Slater’s condition is generally

not satisfied, and verifying its satisfaction, even when met, presents considerable

challenges.

The attempts at the error bounds without constraint qualifications can be traced

back to Sturm’s pioneering work on the error bounds for positive semidefinite sys-

tems [62]. This work is also the first work connecting the error bounds with the facial

reduction algorithms [9, 56, 70]. In the same year, Luo and Sturm relevantly estab-

lished a complete picture of error bounds for the cone that is a Cartesian product of

second-order cones and the positive semidefinite cones [44], generalizing the previous

work. Inspired by Sturm’s work, Lourenço presented an approach for deducing error

bounds for the so-called amenable cones without constraint qualifications based on

the facial reduction algorithms and the new notion of facial residual functions [40].
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Lourenço’s approach is applied to a more general class of cones, the symmetric cones

in the context of Jordan algebras [18, 19] since the symmetric cones are shown to be

amenable. This result covers Luo and Sturm’s results because both the second-order

cone and positive semidefinite cone are symmetric cones.

However, there is no unified framework for conic feasibility problems with gen-

eral cones. One concrete counterexample such that all previous methods fail to

work is the exponential cone. While having a simple form, the projection onto the

exponential cone requires solving a transcendental equation, which only has numer-

ical solutions. This makes the traditional projection-based method cannot apply.

Lourenço’s framework also fails to apply to the exponential cone since amenable

cones have been proven to be nice [42] and so facially exposed, while the exponential

cone is not. These failures of previous methods motivate Lindstrom, Lourenço and

Pong to develop a new framework based on Lourenço’s previous work [36]. The new

framework is based on the facial reduction algorithms and the one-step facial resid-

ual functions (1-FRFs) [36, Definition 3.4], and theoretically works for any closed

convex cones without any constraint qualifications and avoids the computation of

the projection onto the cone.

In this thesis, we apply the recently developed framework to establish the error

bounds for (Feas) with two closed convex cones: the generalized power cone and the

log-determinant cone. Utilizing the error bounds, we also exploit some interesting

applications in algebraic structure.

1.1 Generalized Power Cones

The generalized power cone is defined as

Pα

m,n =

{
x = (x, x̃) ∈ IRm+n

∣∣∣∣ ∥x∥ ≤
n∏

i=1

x̃αi
i , x ∈ IRm, x̃ ∈ IRn

+

}
,
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where m ≥ 1, n ≥ 2, α = (α1, . . . , αn) ∈ (0, 1)n with
∑n

i=1 αi = 1, and ∥x∥ denotes

the Euclidean norm of x. In the specific case when m ≥ 1, n = 2, and α = (1/2, 1/2),

Pα

m,n is isomorphic to a second-order cone, whose worst-case error bound is known

to be Hölderian with exponent 1/2, thanks to the work of Luo and Sturm [44].

The remaining cases, while not as well-known as the second-order cone case, admit

more direct modeling of certain problems and have found applications in geometric

programs, generalized location problems, and portfolio optimization [11, 47]. More

broadly, the inclusion of the power cone1 (and the exponential cone) makes all the

convex instances from the MINLPLib2 benchmark library conic representable [43,

46]. This broad utility has motivated the development of self-concordant barriers

[11, 68, 59], and the ongoing development of specialized interior point methods [50,

61]. Optimization with the generalized power cones is implemented in commercial

and open source solvers like MOSEK, Alfonso, DDS and Hypatia [12, 30, 55, 47].

We propose in this thesis a complete error bound analysis for the generalized

power cone problem (Feas). The generalized power cone cases pose two significant

obstructions to error bound analysis that are not present in the second-order cone

case. Firstly, known forms for projections onto generalized power cones do not admit

simple representations [26]; secondly, their facial structure is more complicated. The

first obstruction we obviate via the framework of one-step facial residual functions

(1-FRFs), which was established in [36, 37]. The second challenge, facial complexity,

we tackle directly. In particular, we build 1-FRFs for all faces of Pα

m,n. All these

1-FRFs are tight in the natural sense of [37]. Consequently, all of the obtained error

bounds are tight in this sense.

While error bounds are typically used in convergence analysis and to evaluate

the quality of approximate solutions, our approach via 1-FRFs admits a surprising

additional application to the algebraic structure of the underlying cone. In order to

1 This refers to Pα

1,2.
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explain our next results, we recall a few concepts. The automorphism group of a

cone K is the set of the bijective linear operators A satisfying AK = K. A cone is

said to be homogeneous if its automorphism group acts transitively on its relative

interior. We say that a cone is irreducible if it is not the direct sum of two nontrivial

cones whose spans only intersect at the origin.

Because automorphisms of cones must preserve optimal FRFs (up to positively

rescaled shifts), we can use our results to establish the automorphism group for Pα

m,n

and compute its dimension.

This is useful because the automorphism group of a closed convex cone K has

important implications for complementarity problems over K; see [22]. In particular,

denoting the dual cone of K by K∗, a complementarity condition of the form “x ∈

K,y ∈ K∗, ⟨x,y⟩ = 0” can be split into a square system of equations if and only if

the dimension of the automorphism group of K is at least dimK, see [53, Theorem 1].

In this case, K is said to be a perfect cone.

Many of the concrete examples of irreducible perfect cones in the literature corre-

spond to homogeneous cones. In this paper we will show that the generalized power

cone is irreducible, perfect (when m ≥ 3) and, except when it reduces to the second

order-cone case, always non-homogeneous. This gives an interesting example of an

irreducible cone with good complementarity properties that is not a homogeneous

cone.

1.2 Log-determinant Cones

The log-determinant cone is defined as

Klogdet :=
{

(x, y, Z) ∈ IR × IR++ × Sd
++ : x ≤ y log det(Z/y)

}
∪ (IR− × {0} × Sd

+),

where d ≥ 1, IR++ is the positive orthant, Sd
+ (resp., Sd

++) is the set of d× d positive

semidefinite (resp., positive definite) matrices. We note that the log-determinant
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cone is the closure of the hypograph of the perspective function of the log-determinant

function.

The log-determinant function has both theoretical and practical importance. It

is a self-concordant barrier function for Sd
+, and hence it is useful for defining the

logarithmically homogeneous self-concordant barrier functions (LHSCBs) for various

matrix cones. LHSCBs are crucial for complexity analysis of the celebrated primal-

dual interior point methods for solving conic feasibility problems; see, e.g., [51, 12].

In practice, the log-determinant function appears frequently in countless real-world

applications, especially in the area of machine learning, to name but a few, the sparse

inverse covariance estimation [21], the fused multiple graphical Lasso problem [71,

73], Gaussian process [57, 60], sparse covariance selection [17, 16], finding minimum-

volume ellipsoids [1, 65, 69], the determinantal point process [33], kernel learning [5],

D-optimal design [2, 10] and so on.

An elementary observation is that

t ≤ log det(Z), Z ∈ Sd
++ ⇐⇒ (t, 1, Z) ∈ Klogdet,

in this way, a problem that has a log-determinant term in its objective can be recast

as a problem over the log-determinant cone Klogdet. In view of the importance and

prevalence of the log-determinant function, the cone Klogdet can also be used to handle

numerous applications.

That said, if one wishes to use conic linear optimization to solve problems in-

volving log-determinants, it is not strictly necessary to use Klogdet. Indeed, it is

possible, for example, to consider a reformulation using positive semidefinite cones

and exponential cones, e.g., [47, Section 6.2.3].

A natural question then is whether it is more advantageous to use a reformulation

or handle Klogdet directly. Indeed, Hypatia implements the log-determinant cone as

a predefined exotic cone [12] and their numerical experiments show that the direct
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use of the log-determinant cone gives numerical advantages compared to the use

of reformulations, see [14] and [13, Sections 8.4.1, 8.4.2]. One reason that other

formulations may be less efficient is that they increase the dimension of the problem.

Another drawback is that they do not capture the geometry of the hypograph of the

log determinant function as tightly.

Motivated by these results, we present a study of the facial structure of Klogdet

and the error bounds for (Feas) with K = Klogdet.

Specifically, we deduce tight error bounds for (Feas) with K = Klogdet by deploying

the framework in [36, 37]. Although the log-determinant cone is a high-dimensional

generalization of the exponential cone, whose error bounds were studied in depth in

[36], the derivation of the error bounds for the log-determinant cone is not straight-

forward. Indeed, the exponential cone is three dimensional and so its facial structure

can be visualized explicitly. In contrast, with a higher dimension, the log-determinant

cone has a more involved facial structure.

1.3 Contributions

The contributions of this thesis can be summarized as follows:

1. We completely determine the tightest possible error bounds for the generalized

power cone.

2. Using our error bounds, we completely determine the automorphism group

of Pα

m,n and discuss some theoretical questions related to homogeneity and

perfectness (in the sense of [23, 22]).

3. We establish the tight error bounds for (Feas) with K = Klogdet.

Although we do not discuss the details, we mention in passing that determining the

error bound associated to conic linear systems makes it possible to compute the KL-

7



exponent of certain functions, as done, for example, in [37, Section 5.1] using results

from [72]. See more on the connection between error bounds, KL exponents and

convergence rates in [8].

1.4 Organization

This thesis is organized as follows.

• In Chapter 1, we briefly introduce the convex conic linear feasibility prob-

lem and the corresponding error bounds. We review the development of the

methods to deduce error bounds, especially those do not require constraint

qualifications. The two closed convex cones considered in this thesis are also

discussed.

• In Chapter 2, we recall notation and preliminaries.

• In Chapters 3 and 4, we establish the error bounds for (Feas) with the gener-

alized power cone and the log-determinant cone, respectively.

• In Chapter 5, we summarize this thesis and discuss the possible future research

directions.
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Chapter 2

Notation and Preliminaries

We will use plain letters to represent real scalars, bold lowercase letters to denote

vectors, bold uppercase letters to stand for matrices,2 and curly capital letters for

(sub)spaces and sets. Let E be a finite dimensional Euclidean space, IR+ and IR−

be the set of nonnegative and nonpositive real numbers, respectively. The inner

product of E is denoted by ⟨·, ·⟩ and the induced norm by ∥ · ∥. With that, for

x ∈ E and a closed convex set C ⊆ E , we denote the projection of x onto C by

PC(x) so that PC(x) = arg miny∈C ∥x − y∥ and the distance between x and C by

dist(x, C) = infy∈C ∥x − y∥ = ∥x − PC(x)∥. For any x ∈ E and η ≥ 0, we denote

the ball centered at x with radius η by B(x; η) := {y ∈ E | ∥y − x∥ ≤ η}; we write

B(η) for the ball centered at 0 with radius η for simplicity. A diagonal matrix with

diagonal vector being x is denoted by Diag(x). Meanwhile, we use C⊥ to denote the

orthogonal complement of C.

2.1 Matrices

We use IRm×n to denote the set of all real m× n matrices and Sd to denote the set

of symmetric d× d matrices. The n× n identity matrix will be denoted by In. Let

Sd
+ and Sd

++ be the set of symmetric d× d positive semidefinite matrices and d× d

2 With an abuse of notation, we use 0 to denote a zero vector / matrix, whose dimension should
be clear from the context.
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positive definite matrices respectively. The interior of Sd
+ is Sd

++. We write X ≻ 0

(resp., X ⪰ 0) if X ∈ Sd
++ (resp., X ∈ Sd

+). For any X ∈ Sd, we let λi(X) ∈ IR

denote the i-th eigenvalue of X such that λd(X) ≥ λd−1(X) ≥ · · · ≥ λ1(X). We

will use λmax(X) and λmin(X) to denote the maximum and minimum eigenvalues of

X, respectively. The rank of X is defined by the number of non-zero eigenvalues,

denoted by r (X). The trace (resp., determinant) of X is defined by tr(X) :=∑d
i=1 λi(X) (resp., det(X) :=

∏d
i=1 λi(X)). With these, we recall that the Frobenius

inner product on Sd is given by ⟨X, Y ⟩ := tr(XY ) for any X, Y ∈ Sd, and the

Frobenius norm is ∥X∥F :=
√

tr(X2). For X ∈ IRn×n, we denote the nuclear norm

and spectral norm of X by ∥X∥∗ :=
∑n

i=1 |λi(X)| and ∥X∥2 := maxi |λi|, respectively.

For any X ∈ Sd
+ (resp., X ∈ Sd

++), we have λi(X) ≥ 0 (resp., λi(X) > 0). We hence

also have for any X, Y ∈ Sd
+ that

tr(XY ) ≥ λmin(Y ) tr(X) ≥ 0 and moreover, tr(XY ) = 0 ⇐⇒ XY = 0. (2.1)

For a given non-zero positive semidefinite matrix, the next result connects its

determinant with its trace and rank.

Lemma 2.1. Let Z ∈ Sd
+ \ {0}. Then for any η > 0, there exists C > 0 so that

(det(R))
1
d ≤ C[ tr(RZ)]

r (Z)
d ∀R ∈ B(η) ∩ Sd

+. (2.2)

Proof. Let Z = QΣQ⊤ be an eigendecomposition of Z, where Q is orthogonal and

Σ is diagonal, and let r be the rank of Z. Then r ≥ 1 since Z ̸= 0. Without

loss of generality, we may suppose that the first r diagonal entries of Σ, denoted

as σ1, σ2, . . . , σr, are nonzero and are arranged in descending order. Then σr is the

smallest positive eigenvalue of Z and we have for any R ∈ B(η) ∩ Sd
+ that

tr(RZ) = tr(RQΣQ⊤) = tr(Q⊤RQΣ) = tr([Q⊤RQ]r[Σ]r)

(a)

≥ σr tr([Q⊤RQ]r)
(b)

≥ σr

r∑
i=1

λi(Q
⊤RQ),

(2.3)
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where [A]r is the submatrix of A formed by Aij for 1 ≤ i, j ≤ r, (a) holds since

[Q⊤RQ]r ⪰ 0 (thanks to R ⪰ 0), (b) is true because of the interlacing theorem

(see [28, Theorem 4.3.8]).

Next, note that we have for any R ∈ B(η) ∩ Sd
+ that

det(R) = det(Q⊤RQ) =
d∏

i=1

λi(Q
⊤RQ)

(a)

≤ ηd−r
r∏

i=1

λi(Q
⊤RQ)

(b)

≤ ηd−r

(
1

r

r∑
i=1

λi(Q
⊤RQ)

)r

,

(2.4)

where (a) holds because

(i) ∀ i = 1, 2, . . . , d, λi(Q
⊤RQ) = λi(R) since Q is orthogonal.

(ii) R ∈ B(η) ∩ Sd
+ =⇒ ∥R∥F =

√
tr(R2) ≤ η =⇒ ∀ i = 1, 2, . . . , d, λi(R) ≤ η.

and (b) comes from the AM-GM inequality. Combining (2.4) with (2.3) gives

(det(R))
1
d ≤ η1−

r
d ·

(
1

r

r∑
i=1

λi(Q
⊤RQ)

) r
d

≤ η1−
r
d ·
(

1

rσr
tr(RZ)

) r
d

whenever R ∈ B(η) ∩ Sd
+. Hence, we see that (2.2) holds with C = η1−

r
d (rσr)

− r
d .

2.2 Error bounds for conic feasibility problems

We first recall the definition of error bounds.

Definition 2.2 (Error bounds [38, 54]). Suppose (Feas) is feasible. We say that

(Feas) satisfies an error bound with a residual function r : IR+ → IR+ if for every

bounded set B ⊆ E, there exists a constant cB > 0 such that

dist(x,K ∩ (L + a)) ≤ cBr (max {dist(x,K), dist(x,L + a)}) ∀x ∈ B.
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We remark that typically it is required that r satisfy r(0) = 0, be nondecreasing

and be right-continuous at 0. Under these conditions, the error bound in Defini-

tion 2.2 can be understood in the context of consistent error bound functions ; see

[38, Definition 3.1]. Specifically, for Bb = B(b), if Definition 2.2 holds, then cBb
can

be taken to be a nondecreasing function of b (since considering a larger constant still

preserves the error bound inequality). In this way, the function Φ : IR+× IR+ → IR+

given by Φ(a, b) := cBb
r(a) satisfies [38, Definition 3.1], provided that r has the

aforementioned properties.

With different residual functions, we will have different error bounds, among

which the Lipschitzian and Hölderian error bounds are most widely studied in the

literature. Particularly, we say that (Feas) satisfies a uniform Hölderian error bound

with exponent γ ∈ (0, 1] if Definition 2.2 holds with r = (·)γ for every bounded set

B. That is, for every bounded set B ⊆ E , there exists a constant κB > 0 such that

dist(x,K ∩ (L + a))≤κB max {dist(x,K), dist(x,L + a)}γ ,

for all x ∈ B. If γ = 1, then the error bound is said to be Lipschitzian. Hölderian

error bounds are a particular case of a consistent error bound, see [38, Theorem 3.5].

Let K be a closed convex cone contained in E and K∗ be its dual cone. We

will denote the boundary, relative interior, linear span, and dimension of K by

∂K, riK, spanK and dimK, respectively. If K ∩ −K = {0}, then K is said to be

pointed. If F ⊆ K is a face of K, i.e., for any x,y ∈ K such that x + y ∈ F , we

have x,y ∈ F , then we write F ⊴ K.3 If further F = K ∩ {n}⊥ for some n ∈ K∗,

we say that F is an exposed face of K. A face F is said to be proper if F ̸= K, and

we denote it by F ⪇◁ K. If F is proper and F ̸= K ∩ −K, then F is said to be a

nontrivial face of K.

The facial reduction algorithm [9, 56, 70] and the FRA-poly algorithm [41] play

3 By convention, we only consider nonempty faces.
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important roles in making full use of the facial structure of a cone; see also [36, Section

3]. More precisely, assuming (Feas) is feasible, the facial reduction algorithm aims at

finding the minimal face that contains the feasible region and satisfies some constraint

qualification. One of the most commonly used constraint qualification is the so-called

partial-polyhedral Slater (PPS) condition [40, Definition 3]. For (Feas), if K and L+a

satisfy the PPS condition, then a Lipschitzian error bound holds for K and L+a; see

[7, Corollary 3] and the discussion preceding [36, Proposition 2.3]. Thanks to this

property, we can apply the facial reduction algorithm to deduce the error bounds

based on the one-step facial residual function [36, Definition 3.4] without requiring

any constraint qualifications, as in the framework developed recently in [40]; see also

[36, 37]. This framework is highly inspired by the fundamental work of Sturm on

error bound for LMIs, see [62]. For the convenience of the reader, we recall the

definition of the one-step facial residual function as follows.

Definition 2.3 (One-step facial residual function (1-FRF)). Let K be a closed convex

cone and n ∈ K∗. Suppose that ψK,n : IR+ × IR+ → IR+ satisfies the following

properties:

(i) ψK,n is nonnegative, nondecreasing in each argument and it holds that ψK,n(0, t) =

0 for every t ∈ IR+.

(ii) The following implication holds for any x ∈ spanK and ϵ ≥ 0:

dist(x,K) ≤ ϵ, ⟨x,n⟩ ≤ ϵ =⇒ dist(x,K ∩ {n}⊥) ≤ ψK,n(ϵ, ∥x∥).

Then ψK,n is said to be a one-step facial residual function (FRF) for K and n.

The one-step facial residual function is used in each step of the facial reduction

algorithm to connect a face and its subface until a face F is found such that F and

L + a satisfy the PPS condition. Then the error bound for K and L + a can be

13



obtained as a special composition of those one-step facial residual functions. Due to

the importance of the PPS condition in this framework, we shall define the distance

to the PPS condition of a feasible (Feas), denoted by dPPS(K,L+ a), as the length

minus one of the shortest chain of faces (among those chains constructed as in [40,

Proposition 5]) such that the PPS condition holds for the final face in the chain and

L + a.

Next we present a lemma and a proposition that will help simplify our subsequent

analysis.

Lemma 2.4 (Formula of ∥w−u∥). Let K be a closed convex cone and n ∈ ∂K∗\{0}

be such that F := {n}⊥ ∩ K is a nontrivial exposed face of K. Let η > 0 and let

v ∈ ∂K ∩ B(η) \ F ,w = P{n}⊥(v),u = PF(w) and w ̸= u. Then, we have

∥w − u∥2 = ∥v − u∥2 − ∥w − v∥2, (2.5)

and,

∥w − u∥ ≤ ∥v − u∥ = dist(v,F). (2.6)

Proof. Since w = P{n}⊥(v), we have

w = v − ⟨n,v⟩
∥n∥2

n and ∥w − v∥ =
|⟨n,v⟩|
∥n∥

.

Moreover, we can notice that w ⊥ n and u ⊥ n.

Now, for any ũ ∈ {n}⊥, we have

∥w − ũ∥2 =

∥∥∥∥v − ⟨n,v⟩
∥n∥2

n− ũ

∥∥∥∥2 =

∥∥∥∥v − ⟨n,v⟩
∥n∥2

n

∥∥∥∥2 − 2

〈
v − ⟨n,v⟩

∥n∥2
n, ũ

〉
+ ∥ũ∥2

(a)
=∥v∥2 − 2

⟨n,v⟩
∥n∥2

⟨n,v⟩ +
⟨n,v⟩2

∥n∥2
− 2⟨v, ũ⟩ + ∥ũ∥2 = ∥v∥2 − ⟨n,v⟩2

∥n∥2
− 2⟨v, ũ⟩ + ∥ũ∥2

=∥v − ũ∥2 − ∥w − v∥2,

where (a) comes from the fact that ũ ⊥ n. This proves (2.5) upon letting ũ = u.
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The above display implies that for any ũ ∈ {n}⊥, v,w, ũ are three vertices of a

right-angled triangle with ∠w being the right angle. This fact also leads us to the

observation that u = PF(v). Indeed, suppose not, then there exists û = PF(v) with

û ̸= u such that ∥û− v∥ < ∥u− v∥. Then û ∈ {n}⊥ and hence v,w, û form a new

right-angled triangle. Thus,

∥w − û∥2 = ∥v − û∥2 − ∥w − v∥2 < ∥u− v∥2 − ∥w − v∥2 = ∥w − u∥2.

Since û ∈ F , the above display contradicts the fact that u = PF(w). Therefore,

u = PF(v) and ∥u− v∥ = dist(v,F).

The next proposition states an error bound result related to the positive semidef-

inite cone. We present a proof based on the results in [40], although it can also be

obtained from Sturm’s error bound in [62].

Proposition 2.5 (Error bound for positive semidefinite cones). Let Z ∈ Sd
+ \ {0}

and η > 0, then there exists CP > 0 such that

dist(Y,Sd
+ ∩ {Z}⊥) ≤ CP tr(Y Z)α ∀Y ∈ Sd

+ ∩ B(η), (2.7)

where

α :=

{
1
2

if r (Z) < d,

1 otherwise.
(2.8)

Proof. By [40, Proposition 27, Theorem 37], there exists C0 > 0 such that

dist(Y,Sd
+ ∩ {Z}⊥) ≤ C0 max{dist(Y,Sd

+), dist(Y, {Z}⊥)}α whenever Y ∈ B(η),

where α is defined as in (2.8).

If further Y ∈ Sd
+, then dist(Y,Sd

+) = 0; moreover, dist(Y, {Z}⊥) = | tr(Y Z)|
∥Z∥F

=

tr(Y Z)
∥Z∥F

. Therefore, letting CP := C0/∥Z∥αF , we can obtain (2.7).
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We end this section with the following lemma, which is useful in the analysis of

one-dimensional faces. It will be used repeatedly in our subsequent discussions.

Lemma 2.6 ([37, Lemma 2.5]). Let K be a pointed closed convex cone and let z ∈

∂K∗ \ {0} be such that F := {z}⊥ ∩ K is a one-dimensional proper face of K. Let

f ∈ K \ {0} be such that F = {tf | t ≥ 0}. Let η > 0 and v ∈ ∂K ∩ B(η) \ F ,

w = P{z}⊥(v) and u = PF(w) with u ̸= w. Then it holds that ⟨f , z⟩ = 0 and we

have

∥v −w∥ =
| ⟨z,v⟩ |
∥z∥

, ∥u−w∥ =


∥∥∥v − ⟨z,v⟩

∥z∥2 z − ⟨f ,v⟩
∥f∥2 f

∥∥∥ if ⟨f ,v⟩ ≥ 0,∥∥∥v − ⟨z,v⟩
∥z∥2 z

∥∥∥ otherwise .

Moreover, when ⟨f ,v⟩ ≥ 0 (or, equivalently, ⟨f ,w⟩ ≥ 0), we have u = PspanF(w).

On the other hand, if ⟨f ,v⟩ < 0, we have u = 0.
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Chapter 3

Generalized Power Cones

We consider the generalized power cone and its dual. Let m ≥ 1, n ≥ 2 and

α = (α1, . . . , αn) ∈ (0, 1)n with
∑n

i=1 αi = 1, the generalized power cone Pα

m,n and

its dual (Pα

m,n)∗ are given respectively by

Pα

m,n =

{
x = (x, x̃) ∈ IRm+n

∣∣∣∣ ∥x∥ ≤
n∏

i=1

x̃αi
i , x ∈ IRm, x̃ ∈ IRn

+

}
,

(Pα

m,n)∗ =

{
z = (z, z̃) ∈ IRm+n

∣∣∣∣ ∥z∥ ≤
n∏

i=1

(
z̃i
αi

)αi

, z ∈ IRm, z̃ ∈ IRn
+

}
.

(3.1)

Here, given a vector x ∈ IRm+n, we let x ∈ IRm be the vector corresponding to its

first m entries and x̃ ∈ IRn be the vector corresponding to its last n entries.

In this section, we will prove the main result of this chapter: a complete analysis

of the error bounds of Pα

m,n. This will require an analysis of the facial structure of

Pα

m,n which we will do shortly after the following lemmas.

Lemma 3.1. Let n ≥ 2 and α = (α1, . . . , αn) ∈ (0, 1)n with
∑n

i=1 αi = 1. Let

ζ ∈ int IRn
− satisfy

∏n
i=1(−ζi/αi)

αi = 1. Define ζ̃ := −α ◦ ζ−1, where ◦ is the

Hadamard product and the inverse is taken componentwise. Then there exist C > 0

and ϵ > 0 so that

−1−⟨ζ,ω⟩ ≥ C∥ω− ζ̃∥2 wheneverω ∈ int IRn
+, ∥ω− ζ̃∥ ≤ ϵ and

n∏
i=1

ωαi
i = 1. (3.2)

17



Moreover, for any ω ∈ int IRn
+ satisfying

∏n
i=1 ω

αi
i = 1, it holds that ⟨ζ,ω⟩ ≤ −1;

furthermore, we have ⟨ζ,ω⟩ = −1 if and only if ω = ζ̃.

Proof. For each i, we see from the Taylor series of ln(·) at ζ̃i > 0 that

ln(ωi) = ln(ζ̃i) + ζ̃−1
i (ωi − ζ̃i) − ζ̃−2

i (ωi − ζ̃i)
2 +O(|ωi − ζ̃i|3) as ωi → ζ̃i, ωi > 0.

Thus, there exist ϵi > 0 and ci > 0 so that

ln(ζ̃i) ≥ ln(ωi) − ζ̃−1
i (ωi − ζ̃i) + ci(ωi − ζ̃i)

2 whenever |ωi − ζ̃i| ≤ ϵi andωi > 0.

Let ϵ := min
1≤i≤n

ϵi > 0. Multiplying both sides of the above inequality by αi and

summing the resulting inequalities from i = 1 to n, we see that whenever ω ∈ int IRn
+

satisfies ∥ω − ζ̃∥ ≤ ϵ and
∏n

i=1 ω
αi
i = 1, we have

0
(a)
=

n∑
i=1

αi ln(ζ̃i) ≥
n∑

i=1

αi ln(ωi) −
n∑

i=1

αiζ̃
−1
i (ωi − ζ̃i) +

n∑
i=1

αici(ωi − ζ̃i)
2

(b)
= −

n∑
i=1

αiζ̃
−1
i (ωi − ζ̃i) +

n∑
i=1

αici(ωi − ζ̃i)
2 (c)

= −
n∑

i=1

αiζ̃
−1
i ωi+1+

n∑
i=1

αici(ωi − ζ̃i)
2

=
n∑

i=1

ζiωi + 1 +
n∑

i=1

αici(ωi − ζ̃i)
2,

where (a) and (b) hold because
∏n

i=1 ζ̃
αi
i =

∏n
i=1 ω

αi
i = 1, (c) uses the fact that∑n

i=1 αi = 1, and the last equality follows from the definition of ζ̃. Rearranging the

above inequality, we conclude that (3.2) holds with C = min
1≤i≤n

αici > 0.

Next, let ω ∈ int IRn
+ satisfy

∏n
i=1 ω

αi
i = 1. Then (−1,ω) ∈ Pα

1,n. Recall from

the assumption that (1,−ζ) ∈ (Pα

1,n)∗. From these we deduce ⟨ζ,ω⟩ ≤ −1. If

⟨ζ,ω⟩ = −1, then

n∑
i=1

αi

(
−ζi
αi

)
ωi =

n∑
i=1

(−ζi)ωi = 1 =
n∏

i=1

ωαi
i =

n∏
i=1

(
−ζi
αi

)αi n∏
i=1

ωαi
i .
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Taking ln on both sides of the above equality, we see that

ln

[
n∑

i=1

αi

(
−ζi
αi

)
ωi

]
=

n∑
i=1

αi ln

[(
−ζi
αi

)
ωi

]
.

Since ln is strictly concave and αi ∈ (0, 1) for all i, we conclude that there exists

c > 0 so that ωi · (−ζi/αi) = c for all i. This, together with the facts that
∏n

i=1 ω
αi
i =∏n

i=1(−ζi/αi)
αi = 1 and

∑n
i=1 αi = 1, gives c = 1. It thus follows that ω = ζ̃.

Conversely, it is routine to check that if ω = ζ̃, then
∏n

i=1 ω
αi
i = 1 and ⟨ζ,ω⟩ =

−1.

The next lemma is obtained by applying [37, Lemma 4.1] with p = q = 2.

Lemma 3.2. Let ζ ∈ IRn (n ≥ 1) satisfy ∥ζ∥ = 1. Define ζ := −ζ. Then there

exist C > 0 and ϵ > 0 so that

1 + ⟨ζ,w⟩ ≥ C
∑
i∈I

|wi − ζ i|2 +
1

2

∑
i/∈I

|wi|2 whenever ∥w − ζ∥ ≤ ϵ and ∥w∥ = 1,

(3.3)

where I = {i | ζ i ̸= 0}. Furthermore, for any w satisfying ∥w∥ ≤ 1, it holds that

⟨ζ,w⟩ ≥ −1, with the equality holding if and only if w = ζ.

3.1 The facial structure of Pα

m,n

In this section, we discuss the faces of Pα

m,n. We first characterize the proper non-

trivial exposed faces of Pα

m,n in the following proposition.

Proposition 3.3 (Proper nontrivial exposed faces of Pα

m,n). Let z = (z, z̃) ∈

∂(Pα

m,n)∗\{0}.

(i) If z ̸= 0, then z exposes the following one-dimensional face:

Fr := {z}⊥ ∩ Pα

m,n = {tf ∈ IRm+n | t ≥ 0} withf = (−z/∥z∥2,α ◦ z̃−1), (3.4)
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where the inverse is taken componentwise.

(ii) If z = 0, then z exposes the following face of dimension n− |I|:

Fz := {z}⊥ ∩ Pα

m,n = {x = (x, x̃) ∈ IRm+n
+ |x = 0, x̃i = 0 ∀i ∈ I}, (3.5)

where I := {i | z̃i > 0} ≠ ∅ and |I| denotes the cardinality of I.

Proof. (i): Notice that x = (x, x̃) ∈ {z}⊥ ∩ Pα

m,n\{0} if and only if x ∈ ∂Pα

m,n,

x ̸= 0 and

⟨z,x⟩ + ⟨z̃, x̃⟩ = 0. (3.6)

The above relation yields

n∑
i=1

z̃ix̃i = −⟨z,x⟩ ≤ ∥z∥∥x∥ ≤
n∏

i=1

(
x̃iz̃i
αi

)αi

, (3.7)

where the last inequality follows from the definition of Pα

m,n in (3.1).

Note that x̃i cannot be all zero, for otherwise x will also be zero since x ∈ ∂Pα

m,n,

which contradicts x ̸= 0. In addition, we must have z̃i > 0 for all i because z ̸= 0

and z ∈ ∂(Pα

m,n)∗\{0}. Using these observations, we have
∑n

i=1 z̃ix̃i > 0. Combining

this with (3.7), we deduce that x̃iz̃i > 0 for all i. Now we can take ln on both sides

of (3.7) to obtain

ln

[
n∑

i=1

αi

(
x̃iz̃i
αi

)]
≤ α1 ln

(
x̃1z̃1
α1

)
+ · · · + αn ln

(
x̃nz̃n
αn

)
. (3.8)

Using this together with the fact that ln(·) is strictly concave, we deduce that (3.8)

holds as an equality. Hence, there exists a constant c > 0 so that

x̃i = cαiz̃
−1
i ∀i = 1, 2, . . . , n. (3.9)

Plugging (3.9) into (3.6), we obtain

⟨z,x⟩ = −⟨z̃, x̃⟩ = −c
n∑

i=1

αi = −c. (3.10)
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Moreover, using (3.9) and the last relation in (3.7), we see that

∥z∥∥x∥ ≤
n∏

i=1

(
x̃iz̃i
αi

)αi

= c.

The two displayed lines above show that ∥z∥∥x∥ = −⟨z,x⟩, which together with

z ̸= 0 implies that there exists κ > 0 so that

x = −κz. (3.11)

Plugging (3.11) into (3.10), we obtain that κ = c/∥z∥2. Using this together with

(3.9) and (3.11), we can now conclude that

Fr := {z}⊥ ∩ Pα

m,n = {tf ∈ IRm+n | t ≥ 0} withf = (−z/∥z∥2,α ◦ z̃−1),

where the inverse is taken componentwise.

(ii): In this case, z = 0. Then I := {i | z̃i > 0} is nonempty because z ̸= 0.

Hence, x = (x, x̃) ∈ {z}⊥ ∩ Pα

m,n\{0} if and only if x ∈ ∂Pα

m,n\{0} and satisfies

∑
i∈I

z̃ix̃i = 0.

This means that x̃i = 0 whenever i ∈ I and hence x = 0. Thus,

Fz := {z}⊥ ∩ Pα

m,n = {x = (x, x̃) ∈ IRm+n
+ |x = 0, x̃i = 0 ∀i ∈ I}.

Having characterized the proper exposed faces of Pα

m,n, we will show that Pα

m,n is

projectionally exposed [9, 63], which means that for every face F of Pα

m,n there is a

linear operator P satisfying P (Pα

m,n) = F and P 2 = P . In particular, P , which de-

pends on F , is a projection that is not necessarily orthogonal. Projectionally exposed

cones are both facially exposed [63, Corollary 4.4] and amenable [40, Proposition 9],

see also [42].
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Proposition 3.4 (Generalized power cones are projectionally exposed). Pα

m,n is

projectionally exposed, in particular, all its faces are exposed.

Proof. Sung and Tam proved in [63, Corollary 4.5] that a sufficient condition for

a cone to be projectionally exposed is that all its exposed faces are projectionally

exposed. With this in mind, let F be an exposed face of Pα

m,n. If F = {0} or

F = Pα

m,n, then the zero map and the identity map are, respectively, projections

mapping Pα

m,n to F . Otherwise, F is a nonzero proper face of Pα

m,n and is of the

form {z}⊥ ∩Pα

m,n, for some z = (z, z̃) ∈ ∂(Pα

m,n)∗\{0}. By the analysis in cases (i),

(ii), we only need to consider two cases.

First, suppose that F is a one-dimensional face as in (3.4) and let u ∈ (Pα

m,n)∗

be such that ⟨f ,u⟩ = 1. At least one such u exists, since otherwise we would have

f ∈ ((Pα

m,n)∗)⊥ = {0}. Then, P = fu⊤ satisfies P 2 = P and P (Pα

m,n) = F as

required.

Next, suppose that F is as in (3.5). Then, we let P be the linear map that maps

(x, x̃) to (0, ỹ) where ỹi = 0 if i ∈ I and ỹi = x̃i if i ̸∈ I. With that, P is a

projection mapping Pα

m,n to F .

3.2 Deducing error bounds and one-step facial resid-

ual functions for Pα

m,n

We start with the faces Fr that correspond to a z ∈ ∂(Pα

m,n)∗\{0} with z ̸= 0. We

have the following result.

Theorem 3.5. Let z = (z, z̃) ∈ ∂(Pα

m,n)∗\{0} with z ̸= 0 and let Fr := {z}⊥∩Pα

m,n.

Let η > 0 and define

γz,η :=inf
v

{
∥v −w∥ 1

2

∥u−w∥

∣∣∣∣ v ∈ ∂Pα

m,n ∩ B(η)\Fr, w = P{z}⊥(v),
u = PFr(w), u ̸= w

}
. (3.12)
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Then it holds that γz,η ∈ (0,∞] and that

dist(q,Fr) ≤ max{2
√
η, 2γ−1

z,η} · dist(q,Pα

m,n)
1
2 whenever q ∈ {z}⊥ ∩ B(η).

Proof. Suppose for a contradiction that γz,η = 0. Then, in view of [36, Lemma 3.12],

there exist v̂ ∈ Fr and a sequence {vk} ⊂ ∂Pα

m,n ∩ B(η)\Fr such that

lim
k→∞

vk = lim
k→∞

wk = v̂ and lim
k→∞

∥wk − vk∥ 1
2

∥wk − uk∥
= 0, (3.13)

where wk = P{z}⊥(vk), uk = PFr(w
k) and uk ̸= wk.

Define, for notational simplicity, z0 := ∥z∥ and vk0 := ∥vk∥. Then, since {vk} ⊂

∂Pα

m,n and z ∈ ∂(Pα

m,n)∗ with z ̸= 0, we have

z0 = ∥z∥ =
n∏

i=1

(
z̃i
αi

)αi

> 0 and vk0 = ∥vk∥ =
n∏

i=1

(ṽki )αi ∀k. (3.14)

If it holds that vk0 = 0 infinitely often, by passing to a further subsequence, we

may assume that vk0 = 0 for all k. Then we have in view of Lemma 2.6 that

∥vk −wk∥=
1

∥z∥
|⟨z̃, ṽk⟩| (a)=

1

∥z∥

n∑
i=1

z̃iṽ
k
i ≥

mini z̃i
∥z∥

∥ṽk∥1≥
mini z̃i
∥z∥

∥ṽk∥ (b)
=

mini z̃i
∥z∥

∥vk∥,

where (a) holds because ṽki ≥ 0 and z̃i > 0 for all i (see (3.14)), and (b) holds

since ∥vk∥ = 0. Since ∥wk − uk∥ = dist(wk,Fr) ≤ ∥wk∥ ≤ ∥vk∥ as a consequence

of the properties of projections, we conclude from this and the above display that

∥vk −wk∥ ≥ mini z̃i
∥z∥ ∥wk − uk∥, contradicting (3.13).

Thus, by considering a further subsequence if necessary, from now on, we assume

vk0 = ∥vk∥ =
n∏

i=1

(ṽki )αi > 0 ∀k. (3.15)

Using Lemma 2.6, we see that
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∥vk −wk∥ =
1

∥z∥
|⟨z,vk⟩| =

1

∥z∥

∣∣∣∣∣
m∑
i=1

ziv
k
i +

n∑
i=1

z̃iṽ
k
i

∣∣∣∣∣
=

1

∥z∥

∣∣∣∣∣z0vk0 +
m∑
i=1

ziv
k
i −

n∑
i=1

(−z̃i)ṽki − z0v
k
0

∣∣∣∣∣
=
z0v

k
0

∥z∥
∣∣1 + ⟨z−1

0 z, (vk0)−1vk⟩ − ⟨z−1
0 (−z̃), (vk0)−1ṽk⟩ − 1

∣∣
=

z0
∥z∥

(
1 + ⟨z−1

0 z, (vk0)−1vk⟩ − ⟨z−1
0 (−z̃), (vk0)−1ṽk⟩ − 1

)
vk0 ,

(3.16)

where the last equality holds as ∥z−1
0 z∥ = 1, ∥(vk0)−1vk∥ = 1 and ⟨z−1

0 z̃, (vk0)−1ṽk⟩ ≥

1, thanks to (3.14), (3.15) and Lemma 3.1 applied with ζ = −z−1
0 z̃.

Let f be defined as in (3.4). We consider two cases:

(I) ⟨f ,vk⟩ ≥ 0 for all sufficiently large k.

(II) ⟨f ,vk⟩ < 0 infinitely often.

(I): By passing to a further subsequence, we may assume that ⟨f ,vk⟩ ≥ 0 for all

k. In this case, if we define

Q = Im+n −
zz⊤

∥z∥2
− ff⊤

∥f∥2
,

where f is as in (3.4), then we see from Lemma 2.6 and (3.14) that

∥uk −wk∥ = ∥Qvk∥ = vk0

∥∥∥∥Q [(vk0)−1vk

(vk0)−1ṽk

]∥∥∥∥
(a)
= vk0

∥∥∥∥∥Q
[
(vk0)−1vk

(vk0)−1ṽk

]
−Q

[
−z−1

0 z
α ◦ (z0z̃

−1)

]
︸ ︷︷ ︸

z0f

∥∥∥∥∥
≤ vk0

[
∥(vk0)−1vk + z−1

0 z∥ + ∥(vk0)−1ṽk −α ◦ (z0z̃
−1)∥

]
,

(3.17)

where (a) holds because Qf = 0 (an identity which is clear from the definitions).
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Next, in view of (3.14), we can apply Lemma 3.2 to obtain C1 > 0 and ϵ1 > 0 so

that (3.3) holds with ζ = −z−1
0 z, i.e.,

1 + ⟨z−1
0 z,ω⟩ ≥ C1∥ω + z−1

0 z∥2

whenever ∥ω+z−1
0 z∥ ≤ ϵ1 and ∥ω∥ = 1. On the other hand, in view of the positivity

of 1 + ⟨z−1
0 z,ω⟩ when ∥ω∥ = 1 and ω ̸= −z−1

0 z (see Lemma 3.2), we know that

C2 := inf
∥ω∥=1

{1 + ⟨z−1
0 z,ω⟩ | ∥ω + z−1

0 z∥ ≥ ϵ1} > 0.

This together with the fact ∥z−1
0 z∥ = 1 (see (3.14)) implies that

1 + ⟨z−1
0 z,ω⟩ ≥ C2 ≥ 0.25C2∥ω + z−1

0 z∥2,

whenever ∥ω + z−1
0 z∥ ≥ ϵ1 and ∥ω∥ = 1. We thus have (with C3 :=min{C1, C2/4})

1 + ⟨z−1
0 z,ω⟩ ≥ C3∥ω + z−1

0 z∥2 whenever ∥ω∥ = 1. (3.18)

In addition, noting (3.14) again, we can apply Lemma 3.1 with ζ = −z−1
0 z̃ ∈

int IRn
− to obtain C4 > 0 and ϵ > 0 so that (3.2) holds with ζ̃ = α ◦ (z0z̃

−1), i.e.,

−1 + ⟨z−1
0 z̃,ω⟩ ≥ C4∥ω −α ◦ (z0z̃

−1)∥2 (3.19)

whenever ∥ω −α ◦ (z0z̃
−1)∥ ≤ ϵ, ω ∈ int IRn

+ and
∏n

i=1 ω
αi
i = 1.

Furthermore, consider h : IRn → IR ∪ {∞} defined by

h(ω) =


⟨z−1

0 z̃,ω⟩ − 1

∥ω −α ◦ (z0z̃−1)∥
if ∥ω −α ◦ (z0z̃

−1)∥ ≥ ϵ, ω ∈ Υ,

∞ otherwise,

(3.20)

where Υ = {ω ∈ IRn
+ |
∏n

i=1 ω
αi
i = 1}. Then we have

lim inf
∥ω∥→∞

h(ω) = lim inf
∥ω∥→∞,ω∈Υ

⟨z−1
0 z̃,ω⟩ − 1

∥ω −α ◦ (z0z̃−1)∥

≥ lim inf
∥ω∥→∞,ω∈IRn

+

⟨z−1
0 z̃,ω⟩ − 1

∥ω −α ◦ (z0z̃−1)∥
(a)

≥ inf
∥λ∥=1,λ∈IRn

+

⟨z−1
0 z̃,λ⟩

(b)

≥ min
1≤i≤n

z−1
0 z̃i > 0.
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Here (a) may be verified by multiplying both numerator and denominator of the left

side by 1/∥ω∥; (b) holds because z−1
0 z̃i > 0 for all i (see (3.14)). Since h in (3.20)

is also lower semicontinuous on any compact set and is always positive,4 it must

then hold that C5 := inf h > 0. In particular, this means that

−1 + ⟨z−1
0 z̃,ω⟩ ≥ C5∥ω −α ◦ (z0z̃

−1)∥ (3.21)

whenever ∥ω −α ◦ (z0z̃
−1)∥ ≥ ϵ, ω ∈ int IRn

+ and
∏n

i=1 ω
αi
i = 1.

By passing to suitable subsequences, we will end up with one of the following two

cases:

Case 1: ∥(vk0)−1ṽk − α ◦ (z0z̃
−1)∥ ≤ ϵ for all k. Then we have from (3.18) (with

ω = (vk0)−1vk) and (3.19) (with ω = (vk0)−1ṽk) that for these k

1 + ⟨z−1
0 z, (vk0)−1vk⟩ − ⟨z−1

0 (−z̃), (vk0)−1ṽk⟩ − 1

≥ min{C3, C4}(∥(vk0)−1vk + z−1
0 z∥2 + ∥(vk0)−1ṽk −α ◦ (z0z̃

−1)∥2).

Combining this with (3.16) and (3.17), we see further that

∥vk −wk∥

≥ z0
∥z∥

min{C3, C4}(∥(vk0)−1vk + z−1
0 z∥2 + ∥(vk0)−1ṽk −α ◦ (z0z̃

−1)∥2)vk0

≥ z0
2∥z∥

min{C3, C4}(∥(vk0)−1vk + z−1
0 z∥ + ∥(vk0)−1ṽk −α ◦ (z0z̃

−1)∥)2vk0

≥ z0 min{C3, C4}
2∥z∥vk0

∥uk −wk∥2 ≥ z0 min{C3, C4}
2∥z∥η

∥uk −wk∥2,

where the last inequality holds because vk ∈ B(η). The above display con-

tradicts (3.13) and hence Case 1 cannot happen.

4 The positivity can be seen by applying Lemma 3.1 with ζ = −z−1
0 z̃.
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Case 2: ∥(vk0)−1ṽk −α ◦ (z0z̃
−1)∥ ≥ ϵ for all k. Then we have from (3.18) and (3.21)

that for these k

1 + ⟨z−1
0 z, (vk0)−1vk⟩ − ⟨z−1

0 (−z̃), (vk0)−1ṽk⟩ − 1

≥ min{C3, C5}(∥(vk0)−1vk + z−1
0 z∥2 + ∥(vk0)−1ṽk −α ◦ (z0z̃

−1)∥).

Using this together with (3.16), we deduce that for all large k,

∥vk−wk∥≥ z0 min{C3, C5}
∥z∥

(∥(vk0)−1vk+z−1
0 z∥2+∥(vk0)−1ṽk−α◦(z0z̃

−1)∥)vk0 .

This implies that

∥(vk0)−1vk + z−1
0 z∥ ≤M1

√
(vk0)−1∥vk −wk∥,

∥(vk0)−1ṽk −α ◦ (z0z̃
−1)∥ ≤M1(v

k
0)−1∥vk −wk∥,

(3.22)

where M1 := max

{(
z0
∥z∥ min{C3, C5}

)−1

,
(

z0
∥z∥ min{C3, C5}

)−1/2
}

. Using

(3.22) together with (3.17), we obtain that

∥uk −wk∥ ≤M1v
k
0

[√
(vk0)−1∥vk −wk∥ + (vk0)−1∥vk −wk∥

]
(a)

≤ M1
√
η
√

∥vk −wk∥ +M1∥vk −wk∥

(b)

≤ 3M1
√
η
√
∥vk −wk∥,

(3.23)

where (a) holds since vk ∈ B(η) wherefore vk0 ≤ η, and (b) holds because

∥wk∥ ≤ ∥vk∥ ≤ η (because the projection onto K is nonexpansive and

0 ∈ K), wherefore

∥wk − vk∥ =
√
∥wk − vk∥

√
∥wk − vk∥ ≤ 2

√
η
√

∥wk − vk∥.

Altogether, (3.23) contradicts (3.13) and hence Case 2 cannot happen.
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Summarizing the above discussions, we see that Case (I) cannot happen.

(II): By passing to a further subsequence, we may assume that ⟨f ,vk⟩ < 0 for all

k. This together with the definition of f gives

vk0
z0

[⟨−z−1
0 z, (vk0)−1vk⟩ + ⟨α ◦ (z0z̃

−1), (vk0)−1ṽk⟩] < 0.

Since
vk0
z0
> 0, we deduce that ⟨−z−1

0 z, (vk0)−1vk⟩+ ⟨α ◦ (z0z̃
−1), (vk0)−1ṽk⟩ < 0 for all

k. Then it must hold that

lim
k→∞

∥(vk0)−1vk + z−1
0 z∥ + ∥(vk0)−1ṽk −α ◦ (z0z̃

−1)∥ ≠ 0;

otherwise, we have (vk0)−1vk → −z−1
0 z and (vk0)−1ṽk → α ◦ (z0z̃

−1), which further

gives ⟨−z−1
0 z, (vk0)−1vk⟩ + ⟨α ◦ (z0z̃

−1), (vk0)−1ṽk⟩ → ∥z−1
0 z∥2 + ∥α ◦ (z0z̃

−1)∥2 =

∥z0f∥2 > 0, a contradiction.

Consequently, there exists ϵ > 0 such that for all sufficiently large k,

∥(vk0)−1vk + z−1
0 z∥ + ∥(vk0)−1ṽk −α ◦ (z0z̃

−1)∥ ≥ ϵ. (3.24)

Consider the function G : IRm+n → IR ∪ {∞} defined by

G(ξ,ω) :=


|⟨z−1

0 z, ξ⟩ + ⟨z−1
0 z̃,ω⟩|√

1 + ∥ω∥2
if (ξ,ω) ∈ Ξ, ∥ξ∥ = 1, andω ∈ Υ,

∞ otherwise,

where Υ = {ω ∈ IRn
+ |
∏n

i=1 ω
αi
i = 1} and Ξ = {(ξ,ω) | ∥ξ + z−1

0 z∥ + ∥ω − α ◦

(z0z̃
−1)∥ ≥ ϵ}. Since ⟨z−1

0 z, ξ⟩ + ⟨z−1
0 z̃,ω⟩ = 1 + ⟨z−1

0 z, ξ⟩ − ⟨z−1
0 (−z̃),ω⟩ − 1, we

see from (3.14), (3.24), Lemma 3.2 and Lemma 3.1 that G is never zero. Moreover,

it is clearly lower semicontinuous on any compact set, and

lim inf
∥(ξ,ω)∥→∞

G(ξ,ω)= lim inf
∥ω∥→∞,ω∈Υ

|⟨z−1
0 z̃,ω⟩|√
1 + ∥ω∥2

(a)

≥ inf
∥λ∥=1,λ∈IRn

+

|⟨z−1
0 z̃,λ⟩|

(b)

≥min
i

|z−1
0 z̃i| > 0,
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where (a) may be verified by multiplying numerator and denominator by 1/∥ω∥ and

(b) holds since z−1
0 z̃i > 0 for all i. Thus, C6 := inf G > 0 and we have for all large k,

∥vk −wk∥
∥uk −wk∥

(a)
=

∥vk −wk∥
∥wk∥

(b)

≥ ∥vk −wk∥
∥vk∥

(c)
=

z0
∥z∥

|⟨z−1
0 z, (vk0)−1vk⟩ + ⟨z−1

0 z̃, (vk0)−1ṽk⟩|vk0√
(vk0)2 + ∥ṽk∥2

=
z0
∥z∥

|⟨z−1
0 z, (vk0)−1vk⟩ + ⟨z−1

0 z̃, (vk0)−1ṽk⟩|√
1 + ∥(vk0)−1ṽk∥2

(d)

≥ C6z0
∥z∥

,

where (a) follows from Lemma 2.6, which states that uk = 0 in Case (II), (b) holds

because the projection onto the cone is nonexpansive and 0 is in the cone, (c) follows

from (3.16) and (d) follows from (3.24), (3.15) and the definitions of G and C6. The

above display contradicts (3.13). Thus, Case (II) also cannot happen.

Summarizing the above, we conclude that (3.13) cannot happen. Thus, in view

of [36, Lemma 3.12], we must indeed have γz,η ∈ (0,∞] and that the desired error

bound follows from [36, Theorem 3.10].

Remark 3.6 (Optimality of the error bound in Theorem 3.5).Let z ∈∂(Pα

m,n)∗\{0}

with z ̸= 0 and let Fr := {z}⊥ ∩ Pα

m,n. Then necessarily z̃i > 0 for all i. Moreover,

we also know from the definition that αi > 0 for all i. Now, consider the continuous

function q : (0, α1) → {z}⊥ defined by ϵ 7→ qϵ := (q̄ϵ, q̃ϵ) where

q̄ϵ = −z/∥z∥2, (q̃ϵ)1 = (α1 − ϵ)z̃−1
1 , (q̃ϵ)2 = (α2 + ϵ)z̃−1

2 , and (q̃ϵ)i = αiz̃
−1
i , ∀i ≥ 3.

Notice that qϵ only differs from the f in (3.4) in two entries. One can check that
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⟨z, qϵ⟩ = 0 and qϵ → f ∈ Fr\{0} as ϵ ↓ 0. Moreover, we have

n∏
i=1

(q̃ϵ)
αi
i = (α1 − ϵ)α1(α2 + ϵ)α2 z̃−α1

1 z̃−α2
2

n∏
i=3

(
αi

z̃i

)αi

=

(
1 − ϵ

α1

)α1
(

1 +
ϵ

α2

)α2 n∏
i=1

(
αi

z̃i

)αi
(a)
=

(
1 − ϵ

α1

)α1
(

1 +
ϵ

α2

)α2

∥z∥−1

=

(
1 − ϵ

α1

)α1
(

1 +
ϵ

α2

)α2

∥q̄ϵ∥,

where (a) holds because z ∈ ∂(Pα

m,n)∗\{0} with z ̸= 0. In view of this, if we define

a continuous function p : (0, α1) → Pα

m,n by ϵ 7→ pϵ := (p̄ϵ, p̃ϵ) where

p̄ϵ := −
(

1 − ϵ

α1

)α1
(

1 +
ϵ

α2

)α2 z

∥z∥2
and p̃ϵ := q̃ϵ;

then it is clear that pϵ ∈ Pα

m,n, and we can compute that

dist(qϵ,P
α

m,n) ≤ ∥qϵ − pϵ∥ =
1

∥z∥

∣∣∣∣(1 − ϵ

α1

)α1
(

1 +
ϵ

α2

)α2

− 1

∣∣∣∣
=

1

∥z∥
∣∣(1 − ϵ+O(ϵ2))(1 + ϵ+O(ϵ2)) − 1

∣∣ = O(ϵ2).

(3.25)

Next, we estimate dist(qϵ,Fr). Notice that ⟨qϵ,f⟩ > 0 for all sufficiently small ϵ

because qϵ → f . Hence, using the definition of Fr and Lemma 2.6, we see that

dist(qϵ,Fr)
2 =

∥∥∥∥qϵ −
⟨qϵ,f⟩
∥f∥2

f

∥∥∥∥2 = ∥qϵ∥2 −
(⟨qϵ,f⟩)2

∥f∥2
.

A direct computation then shows that

∥qϵ∥2 =
1

∥z∥2
+ (α1 − ϵ)2z̃−2

1 + (α2 + ϵ)2z̃−2
2 +

n∑
i=3

α2
i z̃

−2
i

=
1

∥z∥2
+

n∑
i=1

α2
i z̃

−2
i + 2ϵ(α2z̃

−2
2 − α1z̃

−2
1 ) + ϵ2(z̃−2

1 + z̃−2
2 )
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= ∥f∥2 + 2ϵ(α2z̃
−2
2 − α1z̃

−2
1 ) + ϵ2(z̃−2

1 + z̃−2
2 ),

where the last equality follows from the definition of f in (3.4). Furthermore,

(⟨qϵ,f⟩)2 =
(

1
∥z∥2 + α1(α1 − ϵ)z̃−2

1 + α2(α2 + ϵ)z̃−2
2 +

∑n
i=3 α

2
i z̃

−2
i

)2
=
[
∥f∥2 + ϵ(α2z̃

−2
2 − α1z̃

−2
1 )
]2

= ∥f∥4 + 2ϵ∥f∥2(α2z̃
−2
2 − α1z̃

−2
1 ) + ϵ2(α2z̃

−2
2 − α1z̃

−2
1 )2.

Combining the above three identities, we deduce further that

dist(qϵ,Fr)
2 = ϵ2

(
z̃−2
1 + z̃−2

2 − (α2z̃
−2
2 − α1z̃

−2
1 )2

∥f∥2

)

≥ ϵ2
(
z̃−2
1 + z̃−2

2 − (α2z̃
−2
2 − α1z̃

−2
1 )2

α2
2z̃

−2
2 + α2

1z̃
−2
1

)
, (3.26)

where the inequality follows from the definition of f . Now, notice that in (3.26), the

scalar term is strictly greater than zero, because

(α2z̃
−2
2 − α1z̃

−2
1 )2 < (α2z̃

−2
2 + α1z̃

−2
1 )2 ≤ (z̃−2

1 + z̃−2
2 )(α2

2z̃
−2
2 + α2

1z̃
−2
1 ),

where the strict inequality holds because αiz̃
−2
i > 0 for i = 1, 2, and the last inequality

follows from the Cauchy-Schwarz inequality. This together with (3.26) shows that

dist(qϵ,Fr) = Ω(ϵ). Combining this with (3.25), we obtain lim supϵ↓0
dist(qϵ,P

α
m,n)

1
2

dist(qϵ,Fr)
<

∞. Thus | · | 12 satisfies the asymptotic optimality criterion (cf. [37, Definition 3.1])

for Pα

m,n and z, which implies that the error bound is optimal in the sense of [37,

Theorem 3.2(b)].

We now look at the faces that are exposed by z ∈ ∂(Pα

m,n)∗\{0} with z = 0.

Theorem 3.7. Let z ∈ ∂(Pα

m,n)∗\{0} with z = 0 and let Fz := {z}⊥ ∩ Pα

m,n. Let

I := {i | z̃i > 0},5 η > 0 and define β :=
∑

i∈I αi and

γz,η :=inf
v

{
∥v −w∥β

∥u−w∥

∣∣∣∣ v ∈ ∂Pα

m,n ∩ B(η)\Fz, w = P{z}⊥(v),
u = PFz(w), u ̸= w

}
. (3.27)

5 Since z = 0 and z ∈ ∂(Pα

m,n)
∗\{0}, we must have ∅ ≠ I ⊊ {1, 2, . . . , n}.
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Then it holds that γz,η ∈ (0,∞] and that

dist(q,Fz) ≤ max{2η1−β, 2γ−1
z,η} · dist(q,Pα

m,n)β whenever q ∈ {z}⊥ ∩ B(η).

Proof. In view of [36, Theorem 3.10], we need only show that γz,η > 0. To that end,

let v ∈ ∂Pα

m,n ∩ B(η)\Fz, w = P{z}⊥(v), u = PFz(w), and u ̸= w. Then a direct

computation shows that

∥w − v∥ =
1

∥z∥
|⟨z,v⟩| (a)

=
1

∥z∥
∑
i∈I

z̃iṽi
(b)

≥ mini∈I z̃i
∥z∥

∑
i∈I

ṽi
(c)

≥ mini∈I z̃i
∥z∥

∥ṽI∥, (3.28)

where (a), (b) and (c) hold because ṽi ≥ 0 and z̃i > 0 for all i ∈ I, with ∥ṽI∥ :=√∑
i∈I ṽ

2
i (note that I ̸= ∅, thanks to z = 0 and z ̸= 0). Next, notice that

w = v − ⟨z,v⟩
∥z∥2 z. Using this and the definitions of z and I, we deduce that

w = v, w̃i = ṽi −
z̃i

∥z∥2

(∑
j∈I

z̃j ṽj

)
∀i ∈ I and w̃i = ṽi ≥ 0 ∀i /∈ I. (3.29)

In view of this and the definition of Fz in (3.5), we see that ũi = w̃i whenever i /∈ I,

and hence

∥w − u∥ =

√
∥w∥2 +

∑
i∈I

w̃2
i ≤

√
∥v∥2 + n(1 +

√
n)2∥ṽI∥2, (3.30)

where the inequality follows from (3.29) and the fact that for each i ∈ I,

|w̃i| =

∣∣∣∣ṽi − z̃i
∥z∥2

(∑
j∈I

z̃j ṽj

)∣∣∣∣ ≤ (1 +
|z̃i|
∥z∥2

∑
j∈I

|z̃j|
)
∥ṽI∥

≤
(

1 +

√
n|z̃i|
∥z∥

)
∥ṽI∥ ≤ (1 +

√
n)∥ṽI∥.

Next, note that we have

∥v∥ =
n∏

i=1

(ṽi)
αi =

∏
i/∈I

ṽαi
i ·
∏
i∈I

ṽαi
i ≤

∏
i/∈I

ηαi ·
∏
i∈I

∥ṽI∥αi = η1−β∥ṽI∥β, (3.31)
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where the inequality holds because v ∈ B(η). Combining (3.28), (3.30) and (3.31),

we deduce

∥w − u∥ ≤
√
∥v∥2 + n(1 +

√
n)2∥ṽI∥2 ≤ ∥v∥ + (n+

√
n)∥ṽI∥

≤ η1−β∥ṽI∥β + (n+
√
n)∥ṽI∥ = (η1−β + (n+

√
n)∥ṽI∥1−β)∥ṽI∥β

(a)

≤ η1−β(n+ 1 +
√
n)∥ṽI∥β

(b)

≤ η1−β(n+ 1 +
√
n)∥z∥β

(mini∈I z̃i)
β

∥w − v∥β.

Here (a) holds since v ∈ B(η) and β ∈ (0, 1); (b) is true because of (3.28). Thus,

γz,η ≥ (mini∈I z̃i)
β

η1−β(n+1+
√
n)∥z∥β > 0, and the desired error bound follows from [36, Theorem

3.10].

Remark 3.8 (Optimality of the error bound in Theorem 3.7).Let z ∈∂(Pα

m,n)∗\{0}

with z = 0 and let Fz := {z}⊥ ∩ Pα

m,n. Let I := {i | z̃i > 0} ≠ ∅ and define

β :=
∑
i∈I

αi ∈ (0, 1).

Fix any u ∈ IRm with ∥u∥ = 1 and define the continuous function q : (0, 1) → {z}⊥

by ϵ 7→ qϵ := (q̄ϵ, q̃ϵ) where

q̄ϵ = ϵβu, (q̃ϵ)i = 0 ∀i ∈ I, and (q̃ϵ)i = 1, ∀i /∈ I.

It is clear that for all ϵ, ⟨z, qϵ⟩ = 0 and dist(qϵ,Fz) → 0 as ϵ ↓ 0 . Now, define the

function p : (0, 1) → Pα

m,n by ϵ 7→ pϵ := (p̄ϵ, p̃ϵ) where

p̄ϵ = ϵβu, (p̃ϵ)i = ϵ ∀i ∈ I, and (p̃ϵ)i = 1, ∀i /∈ I.

Clearly pϵ lies in Pα

m,n, and we have that dist(qϵ,P
α

m,n) ≤ ∥qϵ − pϵ∥ ≤ |I| · ϵ.

On the other hand, we have in view of (3.5) that dist(qϵ,Fz) = ϵβ > 0. Hence,

lim supϵ↓0
dist(qϵ,P

α
m,n)

β

dist(qϵ,Fz)
≤ |I|β <∞. Thus | · |β satisfies the asymptotic optimality cri-

terion (cf. [37, Definition 3.1]) for Pα

m,n and z, which implies that the error bound

is optimal in the sense of [37, Theorem 3.2(b)].
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Using Theorems 3.5 and 3.7 together with [36, Lemma 3.9], we have the following

result concerning one-step facial residual functions.

Corollary 3.9. Consider Pα

m,n and its dual cone (Pα

m,n)∗.

(i) Let z ∈ ∂(Pα

m,n)∗\{0} with z ̸= 0 and let Fr := {z}⊥∩Pα

m,n. Let γz,t be defined

as in (3.12). Then the function ψPα
m,n,z

: IR+ × IR+ → IR+ given by

ψPα
m,n,z

(ϵ, t) :=max {ϵ, ϵ/∥z∥} + max{2
√
t, 2γ−1

z,t}(ϵ+ max {ϵ, ϵ/∥z∥})
1
2 (3.32)

is a one-step facial residual function for Pα

m,n and z.

(ii) Let z ∈ ∂(Pα

m,n)∗\{0} with z = 0 and let Fz := {z}⊥∩Pα

m,n. Let γz,t be defined

as in (3.27), where β :=
∑

i:z̃i>0 αi. Then the function ψPα
m,n,z

: IR+×IR+ → IR+

given by

ψPα
m,n,z

(ϵ, t) :=max{ϵ, ϵ/∥z∥} + max{2t1−β, 2γ−1
z,t}(ϵ+ max {ϵ, ϵ/∥z∥})β (3.33)

is a one-step facial residual function for Pα

m,n and z.

We now collect these results to show the tight error bounds for Pα

m,n.

Theorem 3.10 (Error bounds for the generalized power cone and their optimality).

Consider Pα

m,n and its dual cone (Pα

m,n)∗. Let L ⊆ IRm+n be a subspace and a ∈ IRm+n

be given. Suppose that (L + a) ∩ Pα

m,n ̸= ∅. Then the following items hold.

(i) dPPS(Pα

m,n,L + a) ≤ 1.

(ii) If dPPS(Pα

m,n,L + a) = 0, then a Lipschitzian error bound holds.

(iii) If dPPS(Pα

m,n,L + a) = 1, consider the chain of faces F ⊊ Pα

m,n with length

being 2.

(a) If F = Fr, then a Hölderian error bound with exponent 1/2 holds.
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(b) If F = Fz with z ∈ (Pα

m,n)∗ ∩ L⊥ ∩ {a}⊥, then a Hölderian error bound

with exponent β :=
∑

i:z̃i>0 αi holds.

(c) If F = {0}, then a Lipschitzian error bound holds.

(iv) All these error bounds are the best in the sense stated in [37, Theorem 3.2(b)].

Proof. As is shown in Section 4.1, all the proper exposed faces of the generalized

power cone are polyhedral. Then the process of facial reduction needs at most one

step to reach the PPS condition. Hence, dPPS(Pα

m,n,L+a) ≤ 1. This shows item (i).

If dPPS(Pα

m,n,L + a) = 0, i.e., (Feas) satisfies the PPS condition, then by [7,

Corollary 3], a Lipschitzian error bound holds. This shows item (ii).

Next, let dPPS(Pα

m,n,L+a) = 1; i.e., we need one step to reach the PPS condition.

In this case, the error bound depends on the exposed face F that contains the feasible

region. If F = Fr, then by Corollary 3.9i, we conclude that a Hölderian error bound

with exponent 1/2 holds. Remark 3.6 implies that g = | · | 12 satisfies the asymptotic

optimality criterion for Pα

m,n and z with z ̸= 0. Hence, by [37, Theorem 3.2], the

obtained Hölderian error bound with exponent 1/2 is the best error bound.

If F = Fz with z ∈ (Pα

m,n)∗ ∩ L⊥ ∩ {a}⊥, then using Corollary 3.9(ii), we

conclude that a Hölderian error bound with exponent β :=
∑

i∈I αi holds, where

I = {i | z̃i > 0}. The optimality of this error bound comes from Remark 3.8 and [37,

Theorem 3.2]. If F = {0}, which means the feasible region is {0}, then a Lipschitzian

error bound holds automatically and it is naturally tight, see [40, Proposition 27].

3.3 Application: Self-duality, homogeneity, irre-

ducibility and perfectness of Pα

m,n

In this section, we consider the self-duality, homogeneity, irreducibility and perfect-

ness of Pα

m,n. We first briefly explain the importance of those questions.
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In what follows, we need the following concepts. We will denote by Aut (K) the

group of automorphisms of K which are the linear bijections M : E → E such that

MK = K. Then, the Lie algebra of Aut (K) denoted by Lie Aut (K) corresponds

to the linear maps L for which etL ∈ Aut (K) for all t ∈ IR or, equivalently, is the

tangent space at the identity element when Aut (K) is seen as a Lie group.

Recall that a cone K is called self-dual if there exists a positive definite matrix Q

such that QK = K∗. This is equivalent to the existence of some inner product under

which K becomes self-dual, e.g., [29, Proposition 1]. A cone is homogeneous if for

every x,y ∈ riK, there is a matrix A ∈ Aut (K) such that Ax = y. A homogeneous

and self-dual cone is called symmetric [18].

If a closed convex cone K can be expressed as a direct sum of two nonempty

and nontrivial sets K1,K2 ⊂ K, i.e., K = K1 + K2 with K1 ̸= {0},K2 ̸= {0} and

span (K1)∩ span (K2) = {0}, then K is said to be reducible; it might not be immedi-

ately obvious, but this forces K1 and K2 to be convex cones, e.g., [39, Lemma 3.2].

Otherwise, K is said to be irreducible or indecomposable, e.g., [39, 3, 23].

3.3.1 Some theoretical context

It is relatively recent that the power cone has been a subject of research in optimiza-

tion. However, the power cone was first considered in the 50’s by Max Koecher in

the context of the so-called domains of positivity, see [32]. More precisely, Koecher

proposed a family of 3D cones in [32, Section 11,d)] which corresponds to Pα

1,2, with

α ∈ (0, 1). After that, the power cone languished in relative obscurity inside the op-

timization community, although it was discussed briefly in [67] and in [66] under the

name of Koecher cone. As indicated in the introduction, several works helped to re-

vitalize the interest in power cones by showcasing modelling applications, algorithms

and software [11, 47, 61, 30, 55, 12].

When the power cone is bundled together in the class of “non-symmetric cones”,
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it might be interesting to take a step back and understand two points: (a) how

exactly the power cone fails to be symmetric and (b) why one should care about

this.

Starting from the latter, what is special about symmetric cones is that they are

supported by a powerful theory of Jordan algebras [18]. Being a symmetric cone is

a very favourable property which was heavily exploited to develop efficient primal-

dual interior point algorithms, e.g., [19]. However, being a symmetric cone is also

restrictive for it is known that, up to linear isomorphism, each symmetric cone is

a direct product of only five types of cones. The most remarkable examples of

symmetric cones are the IRn
+, the real symmetric positive semidefinite matrices Sn

+,

the second-order cone and the direct products of those three.

As for item (a), examining (3.1), we immediately see that the dual of Pα

m,n under

the Euclidean inner product is just DPα

m,n, where D is a diagonal matrix with

positive entries, so Pα

m,n is indeed self-dual in the sense above. Thus the only gap

between Pα

m,n and the class of symmetric cones is the homogeneity.

Given that being symmetric is very advantageous, one may reasonably wonder if

the family of cones Pα

m,n parametrized by α andm and n are indeed non-homogeneous

in general. To the best of our knowledge, although it is well-known (e.g., see com-

ments in [67, Section 4]) that Pα

1,2 is non-homogeneous except when α = (1/2, 1/2),

there is no result on the generalized power cone regarding which combination of the

parameters m, n and α leads to homogeneity or not. We fill this gap with Theo-

rem 3.12 and Corollary 3.14, which tells us precisely which of the generalized power

cones are homogeneous or not.

We also completely determine the automorphism group of Pα

m,n. While this may

seem an esoteric question, the automorphism group of a cone K is intimately con-

nected to complementarity questions over K. For example, it is known that L belongs
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to the Lie algebra of Aut (K) if and only if the following implication holds

x ∈ K,y ∈ K∗, ⟨x,y⟩ = 0 ⇒ ⟨Lx,y⟩ = 0,

see [22]. If a cone has “enough” automorphisms then a complementarity problem can

be rewritten as a square system using the matrices from the Lie algebra of Aut (K).

In particular, when the dimension of Aut (K) is at least dimK, then the cone is said

to be perfect, see [22, Page 5] and [53, Theorem 1]. An example of this phenomenon

is how the conditions x,y ∈ IRn
+, ⟨x,y⟩ = 0 imply n equations xiyi = 0 which is

useful in several contexts.

The quantity dim AutK is called the Lyapunov rank of K [22, 23] and is additive

with respect to direct sums [22, Proposition 1]. Since any cone can be written as a

direct sum of irreducible cones, it becomes important to identify which irreducible

cones are perfect.

It is interesting to note that many of the examples of irreducible perfect cones

in the literature (e.g., [22, 23, 53]) seem to be homogeneous. In addition, every

homogeneous cone is perfect, which follows by known results about Lie groups, e.g.,

see [34, Theorem 21.20] or Section 2 in [52] which summarizes useful results. The

final observation we will make in this chapter is that, surprisingly, for some choices of

parameters, Pα

m,n is perfect but non-homogeneous, see Corollary 3.14. We note that

in [64], Sznajder showed that there are choices of parameters for which the so-called

extended second order cone is irreducible and perfect. This corresponds to a family

of cones proposed by Németh and Zhang that contains the second order cones [49].

However, as far as we know, the homogeneity of those cones (or the lack thereof)

was not discussed in general.
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3.3.2 Automorphisms of the generalized power cone

In this section, we will prove our main results regarding Aut (Pα

m,n). The basic

strategy is simple: if A ∈ Aut (Pα

m,n), then A must map a face F1 of Pα

m,n to

another face F2 of Pα

m,n with the same properties such as the dimension. More than

that, the optimal exponents associated to FRFs of F1 and F2 must be the same.

These conditions impose enough restrictions on A that we are able to completely

determine its shape. Note that when n = 2 and α = (1/2, 1/2), Pα

m,n is isomorphic

to the second-order cone, whose automorphism group is well-known. Below, we focus

on the complementary cases.

Theorem 3.11 (Automorphisms of Pα

m,n). For m ≥ 1, n > 2 and any α ∈ (0, 1)n

such that
∑n

i=1 αi = 1, or for m ≥ 1, n = 2 and any α ∈ (0, 1)2 such that α1 ̸= α2

and α1 + α2 = 1, it holds that A ∈ Aut (Pα

m,n) if and only if

A =

[
B 0
0 E

]
(3.34)

for some (invertible) generalized permutation matrix6 E ∈ IRn×n with positive nonzero

entries and invertible matrix B ∈ IRm×m satisfying ∥Bx∥ =
∏n

k=1(Ek,lk)αlk∥x∥ for

all x ∈ IRm, where Ek,lk is the nonzero element in the k-th row of E and αlk = αk.

Proof. Suppose that there exists a matrix

A :=

[
B C
D E

]
with B ∈ IRm×m, C ∈ IRm×n, D ∈ IRn×m, E ∈ IRn×n

such that APα

m,n = Pα

m,n.

First note that the entries of E must all be nonnegative, for if the (i, j)-th entry

was negative, then we could pick a vector q := (0, c) ∈ Pα

m,n with cj = 1 and ck = 0

for k ̸= j, wherefore Aq ̸∈ Pα

m,n, which is a contradiction.

6 A generalized permutation matrix is a matrix where in each column and each row there is exactly
one nonzero entry.
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Additionally, such a matrix A must be invertible and if ψ is an FRF for a face

F1⊴Pα

m,n, then A must map F1 onto a face F2⊴Pα

m,n which has the same dimension

and admits an FRF that is a positively rescaled shift of ψ; see [40, Proposition 17].

Observe from Section 4.1 that the generalized power cone has two types of faces

defined in (3.4) and (3.5) (denoted by Fr and Fz respectively with an abuse of

notation) with the corresponding (optimal) one-step facial residual functions in (3.32)

and (3.33), respectively. We also notice that the dimension of the faces of the first

type is 1, while the dimension of a face of the second type is n− |I|. These lead to

the following observations:

(I) Given an I with βI :=
∑

i∈I αi, if |I| < n − 1, i.e., the dimension of the

corresponding face is larger than 1, then A must map the face associated with

I to a face associated with an Ī where |I| = |Ī| and βĪ = βI .

(II) In the case when n = 2, since we assumed α1 ̸= α2 and thus α1 ̸= 1/2,

A cannot map a one-dimensional face of type Fz (whose FRF admits an

optimal exponent of α1 or α2) to one of type Fr (whose FRF admits an optimal

exponent of 1/2).

Thus, a face of type Fz with |I| = 1 must be mapped to a face of the same type.

From now on, for each k ∈ {1, 2, . . . , n}, we let ik and lk be such that AF{k} =

F{ik} and AF{lk} = F{k}, where F{k} denotes the face of type Fz associated with

I = {k}. We deduce immediately from the above discussions that {1, 2, . . . , n} =

{i1, i2, . . . , in} = {l1, l2, . . . , ln} and αk = αik = αlk .

Now, fix any k ∈ {1, 2, . . . , n}. Then for any x̃I := (c1, . . . , ck−1, 0, ck+1, . . . , cn)

with ci > 0 for all i ̸= k, it must hold that A maps xI := (0, x̃I) to some xÎ :=

(0, x̃Î) with Î = {ik}, αk = αik and (x̃Î)ik = 0. Thus,

[
B C
D E

] [
0
x̃I

]
=

[
0
x̃Î

]
.
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Therefore, we have Cx̃I = 0. This together with the arbitrariness of ci > 0 shows

that all except possibly the k-th column of C are 0. Since k is arbitrary, then we

conclude that C = 0.

Next, notice that we also have Ex̃I = x̃Î . Since (x̃Î)ik = 0, we see that Eikx̃I =

0, where Eik is the ik-th row of E. Using again the arbitrariness of ci > 0 in the

definition of x̃I , we conclude that all entries of Eik are 0 except possibly for the k-th

entry, i.e., Eik has only one possibly nonzero entry and that entry is nonnegative.

From the arbitrariness of k and the fact that {i1, i2, . . . , in} = {1, 2, . . . , n}, we

immediately obtain that every entry of the ik-th row E has all of its entries equal to

zero except possibly for the k-th, which is nonnegative.

Taking into account of the fact that A is invertible and C = 0, we know that

none of the columns of E can be identically zero, and so we altogether have that

each of the rows and columns of E consists of one strictly positive entry, with all

other entries identically zero. Then, we have shown that

Es,r ̸= 0 ⇔ (s, r) = (ik, k) for some k ∈ {1, 2, . . . , n}, (3.35)

where the latter condition is also equivalent to (s, r) = (k, lk) for some k ∈ {1, 2, . . . , n}.

We next claim that A must map faces of type Fr to a face of type Fr. Since A

must permute faces whose FRFs admit the same optimal exponent, we only need to

consider the extreme case that there exists a face of type Fz corresponding to an

I := {1, 2, . . . , i− 1, i+ 1, . . . , n} for some i (i.e., the dimension of the corresponding

face is 1) with βI = 1/2, and argue that A cannot map Fr onto such Fz. Suppose

for contradiction that this happens; then there must exist x = (x, x̃) in some face

of type Fr with x ̸= 0 and x̃i > 0 for all i such that[
B 0
D E

] [
x
x̃

]
=

[
0
ei

]
,

where ei ∈ IRn is the vector whose elements are all zero except for the i-th element
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being 1. However, this cannot happen because Bx = 0 and the invertibility of B (a

consequence of invertibility of A) implies x = 0, leading to a contradiction. Hence,

A must map faces of type Fr onto a face of type Fr.

Thus, for any x = (x, x̃) in one of the type Fr faces with x ̸= 0, mini{x̃i} > 0

and ∥x∥ =
∏n

i=1 x̃
αi
i , there must be y = (y, ỹ) in one of the type Fr faces with y ̸= 0,

mini{ỹi} > 0 and ∥y∥ =
∏n

i=1 ỹ
αi
i such that

[
B 0
D E

] [
x
x̃

]
=

[
y
ỹ

]
.

Recall that there is exactly one nonzero element in each row of E, and this element

is positive. From the definition of lk, this nonzero element is Ek,lk ; see (3.35).

Fix any j and k ∈ {1, . . . , n}. Pick any (x, x̃) ∈ Pα

m,n such that x = ej and∏n
i=1 x̃

αi
i = 1. For any t > 0, one can check that (tαlkx, x̃1, · · · , tx̃lk , · · · , x̃n) ∈ Pα

m,n

belongs to a face of type Fr. Thus, there exists (y, ỹ) such that

tαlkBej = y and tαlkDk,j + tEk,lk x̃lk = ỹk > 0.

The second relation implies that Dk,j + t1−αlkEk,lk x̃lk > 0. Letting t ↓ 0, we conclude

that Dk,j ≥ 0. As the choices of j and k were arbitrary, we see that all entries of D

are nonnegative. Considering x = −ej, a similar argument shows that all entries of

D are nonpositive. Hence, D = 0.

Now, for any x ∈ IRm, pick any (x, x̃) ∈ ∂Pα

m,n. Because A is invertible and

APα

m,n = Pα

m,n, which implies AriPα

m,n = riPα

m,n and A∂Pα

m,n = ∂Pα

m,n, then there

exists (y, ỹ) ∈ ∂Pα

m,n so that

Bx = y and Ek,lk x̃lk = ỹk for k = 1, 2, . . . , n.
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Thus,

∥Bx∥ = ∥y∥ =
n∏

k=1

ỹαk
k =

n∏
k=1

(Ek,lk x̃lk)αk
(a)
=

n∏
k=1

(Ek,lk x̃lk)αlk

=
n∏

k=1

E
αlk
k,lk

n∏
i=1

x̃αi
i =

n∏
k=1

E
αlk
k,lk

∥x∥.

where (a) holds as αk = αlk for all k. The above shows the necessity of the form in

(3.34).

Conversely, if A is a matrix of the form (3.34), then A must be invertible since B

and E are invertible. For any x = (x, x̃) ∈ Pα

m,n, we have Ax = (Bx,Ex̃). Hence,

∥Bx∥ =
n∏

k=1

E
αlk
k,lk

∥x∥ ≤
n∏

k=1

E
αlk
k,lk

n∏
i=1

x̃αi
i =

n∏
k=1

(Ek,lk x̃lk)αlk ,

where the last equality holds as {1, . . . , n} = {l1, . . . , ln}. This implies APα

m,n ⊆

Pα

m,n.

We claim

(i)
(
E−1

)
i,j

=

{
0, Ej,i = 0,
1

Ej,i
, Ej,i ̸= 0.

(ii) ∥B−1x∥ =
n∏

k=1

E
−αlk
k,lk

∥x∥ ∀x ∈ IRm. (3.36)

Granting these, we have that for any x = (x, x̃) ∈ Pα

m,n, A−1x = (B−1x, E−1x̃)

satisfies
n∏

i=1

(E−1x̃)αi
i =

n∏
i=1

( n∑
j=1

(E−1)i,jx̃j

)αi
(a)
=

n∏
k=1

(
(E−1)lk,kx̃k

)αlk =
n∏

k=1

(E−1
k,lk
x̃k)αlk

=
n∏

k=1

E
−αlk
k,lk

n∏
i=1

x̃
αli
i

(b)
=

n∏
k=1

E
−αlk
k,lk

n∏
i=1

x̃αi
i ≥

n∏
k=1

E
−αlk
k,lk

∥x∥ (c)
= ∥B−1x∥,

where (a) is true thanks to the fact that in the sum there is only one nonzero term,

which comes from identity (i) and (3.35); (b) holds because αk = αlk for all k; (c)
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comes from identity (ii). Hence, A−1x ∈ Pα

m,n. This implies APα

m,n ⊇ Pα

m,n and

consequently APα

m,n = Pα

m,n.

Now, it remains to show (3.36). Since E is a generalized permutation matrix with

all nonzero elements being positive, then we immediately have (i) from EE−1 = In.

Recall that, by assumption, ∥Bx∥ =
∏n

k=1E
αlk
k,lk

∥x∥ for any x ∈ IRm and B is

invertible. Using these, we can deduce (ii) in (3.36) as follows: for any x ∈ IRm,

∥x∥ = ∥BB−1x∥ =
n∏

k=1

E
αlk
k,lk

∥B−1x∥.

The next theorem is about the dimension of Aut (Pα

m,n).

Theorem 3.12. Let m ≥ 1, n ≥ 2 and α ∈ (0, 1)n such that
∑n

i=1 αi = 1, then we

have the following statements about dim Aut (Pα

m,n).

(i) If m ≥ 1, n = 2 and α := (1/2, 1/2), then dim Aut (Pα

m,n) = (m2 + 3m+ 4)/2.

(ii) If m ≥ 1, n > 2 and
∑n

i=1 αi = 1 or m ≥ 1, n = 2, α1 ̸= α2 and α1 + α2 = 1,

then:

Lie Aut (Pα

m,n) =


[
G 0
0 Diag(h)

] ∣∣∣∣∣G + G⊤ = 2α⊤hIm,

G ∈ IRm×m, h ∈ IRn

 . (3.37)

Hence, dim Aut (Pα

m,n) = dim Lie Aut (Pα

m,n) = n+m(m− 1)/2.

Proof. (i) If m ≥ 1, n = 2 and α := (1/2, 1/2), then Pα

m,n is isomorphic to a second-

order cone; see, [47, Section 3.1.2]. Hence, we know from [22, Page 12 (v)] that

dim Aut (Pα

m,n) =
(m+ 2)2 −m

2
=
m2 + 3m+ 4

2
.

(ii) By [24, Corollary 3.45], dim Aut (Pα

m,n) = dim Lie Aut (Pα

m,n). This in addi-

tion to [24, Corollary 3.46] show that it suffices to calculate the dimension of the

tangent space at the identity of Aut (Pα

m,n) to obtain dim Aut (Pα

m,n).
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First, we compute Lie Aut (Pα

m,n) and for that we consider an arbitrary con-

tinuously differentiable curve F : (−1, 1) → Aut (Pα

m,n) with F (0) = Im+n and

F (t) ∈ Aut (Pα

m,n) for any t ∈ (−1, 1). We further denote

F (t) =

[
Gt 0
0 Ht

]
and Ḟ (t) =

[
Ġt 0

0 Ḣt

]
,

where Gt ∈ IRm×m and Ht ∈ IRn×n are both invertible; G0 = Im, H0 = In; Ht is

a generalized permutation matrix with all nonzero elements being strictly positive

(which we assume, by suitably shrinking the neighborhood of definition of F and

reparameterizing, to be only nonzero along the diagonal); Ḟ (0) lies in the tangent

space of Aut (Pα

m,n) at I, that is,

Ḟ (0) =

[
Ġ0 0

0 Ḣ0

]
∈ Lie Aut (Pα

m,n); (3.38)

Ġt and Ḣt refer to the componentwise derivative of G and H with respect to t,

respectively.

Since Ht and Ḣt are diagonal, we let ht and ḣt be the diagonal vectors of Ht

and Ḣt, respectively, i.e., Ht = Diag(ht) and Ḣt = Diag(ḣt). We also let hkt and ḣkt

denote the k-th element of the vectors ht and ḣt respectively. Then, from Theorem

3.11,

∥Gtx∥2 =
n∏

k=1

(hkt )2αk∥x∥2, ∀x ∈ IRm, ∀ t ∈ (−1, 1). (3.39)

Differentiating7 both sides of (3.39) with respect to t, we can obtain

2x⊤G⊤
t Ġtx = x⊤x

n∑
k=1

2αk

(
hkt
)2αk−1

ḣkt
∏
j ̸=k

(
hjt
)2αj

= x⊤x

n∑
k=1

2
αk

hkt
ḣkt

n∏
j=1

(
hjt
)2αj

= 2

(
x⊤x

n∏
j=1

(hjt)
2αj

) n∑
k=1

αk

hkt
ḣkt

(a)
= 2x⊤G⊤

t Gtx
(
α ◦ (ht)

−1
)⊤

ḣt,

7 This calculation simply uses the chain rule to differentiate (hk
t )

2αk for a given k, and then applies
the product rule for the product over all k.
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where the inverse is taken componentwise, and the rest of (a) comes from (3.39).

Notice that (α ◦ (ht)
−1)

⊤
ḣt is a scalar, by rearranging terms, one has

x⊤
[
G⊤

t Ġt −
(
α ◦ (ht)

−1
)⊤

ḣtG
⊤
t Gt

]
x = 0, ∀x ∈ IRm, ∀ t ∈ (−1, 1).

Letting t = 0 and recalling G0 = Im,H0 = In, we have

x⊤
(
Ġ0 −α⊤ḣ0Im

)
x = 0, ∀x ∈ IRm. (3.40)

Recall that 2x⊤Ġ0x = x⊤(Ġ0 + Ġ⊤
0 )x. We can thus rewrite (3.40) as

x⊤
(
Ġ0 + Ġ⊤

0 − 2α⊤ḣ0Im

)
x = 0, ∀x ∈ IRm.

Since the matrix in the parentheses is zero, the above display implies that

Ġ0 + Ġ⊤
0 = 2α⊤ḣ0Im.

The above derivation and (3.38) show that any matrix in Lie Aut (Pα

m,n) satisfies the

above display.

Conversely, suppose that G and Diag(h) are such that G + G⊤ = 2α⊤hIm and

U :=

[
G 0
0 Diag(h)

]
. We need to show that the matrix exponential etU belongs to

Aut (Pα

m,n) for every t ∈ IR. To this end, recall that eX+Y = eXeY if XY = Y X,

we have

etG = e2tα
⊤hIm−tG⊤

= e2tα
⊤hIme−tG⊤

= e2tα
⊤he−tG⊤

,

since 2tα⊤hIm and −tG⊤ commute. This shows that (etG)⊤etG = etG
⊤
etG =

e2tα
⊤hIm, i.e., etG is an orthogonal matrix multiplied by the scalar etα

⊤h. Then

∥etGx∥ = etα
⊤h∥x∥ = e

∑n
i=1 thiαi∥x∥ =

n∏
i=1

(ethi)
αi∥x∥ ∀x ∈ IRm. (3.41)

Since
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etU =

[
etG 0
0 eDiag(th)

]
=

[
etG 0
0 Diag(eth)

]
,

where eth corresponds to the vector such that its i-th component is ethi and hi is the i-

th component of h, we conclude from (3.41) and Theorem 3.11 that etU ∈ Aut (Pα

m,n).

Finally, a direct computation shows that the dimension of the right-hand side of

(3.37) is n+m(m− 1)/2, which is just the claimed dimension.

3.3.3 Homogeneity, irreducibility and perfectness of gener-
alized power cone

In this section, we will use Theorem 3.11 to prove the homogeneity, irreducibility

and perfectness of Pα

m,n. Before moving on, we recall the following lemma.

Lemma 3.13. (i) If a closed convex pointed cone K is reducible, i.e., K is a direct

sum of two nonempty, nontrivial sets K1 and K2, then we have K1 ⪇◁ K, K2 ⪇◁ K

and dim (K) = dim (K1) + dim (K2).

(ii) A proper cone K ⊆ IRp is perfect if and only if dim Lie Aut (K) ≥ p.

Proof. (i) The fact that K1 and K2 are faces is well-known, see [39, Lemma 3.2]. The

conclusion on dimensions follows directly from the definition of direct sum.

(ii) This fact comes from [53, Theorem 1] and the first display on [22, Page 4].

Using Lemma 3.13, Theorems 3.11 and 3.12, we have the following corollary.

Corollary 3.14. Let m ≥ 1, n ≥ 2 and α ∈ (0, 1)n such that
∑n

i=1 αi = 1, then the

following statements hold for the generalized power cone Pα

m,n.

(i) Pα

m,n is irreducible.

(ii) If m ≥ 1, n = 2 and α := (1/2, 1/2), then Pα

m,n is homogeneous and perfect.
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(iii) If m ≥ 1, n > 2 and
∑n

i=1 αi = 1 or m ≥ 1, n = 2, α1 ̸= α2 and α1 + α2 = 1,

then Pα

m,n is nonhomogeneous. In addition, if 1 ≤ m ≤ 2, then Pα

m,n is not

perfect; if m ≥ 3, then Pα

m,n is perfect.

Proof. (i) Recall that the two types of faces of Pα

m,n are defined as in (3.4) and (3.5),

with dimensions being 1 and n−|I|, respectively. Since I ≠ ∅ and so |I| ≥ 1, for any

possible pair of nontrivial faces F1 and F2 of Pα

m,n, we have dim (F1) + dim (F2) <

m+n = dim (Pα

m,n). This together with Lemma 3.13(i) show that Pα

m,n is irreducible.

(ii) If m ≥ 1, n = 2 and α := (1/2, 1/2), Pα

m,n is isomorphic to a second-order

cone and so is homogeneous; see, for example, [47, Section 3.1.2]. The perfectness

holds by Theorem 3.12(i) and Lemma 3.13(ii).

(iii) Take any m ≥ 1, n > 2 with any α ∈ (0, 1)n such that
∑n

i=1 αi = 1 or

m ≥ 1, n = 2 with any α ∈ (0, 1)2 such that α1 ̸= α2, consider x = (0, x̃) ∈ riPα

m,n

and y = (y, ỹ) ∈ riPα

m,n, where mini{x̃i} > 0, mini{ỹ} > 0 and y ̸= 0, ∥y∥ <∏n
i=1 ỹ

αi
i . Using (3.34), for all A such that APα

m,n = Pα

m,n, we have Ax ̸= y because

B0 = 0 ̸= y for all possible B. Then by definition, Pα

m,n with m ≥ 1, n = 2

and
∑n

i=1 αi = 1 or m ≥ 1, n = 2, α1 ̸= α2 and α1 + α2 = 1 is nonhomogeneous.

By Theorem 3.12(ii), we have dim Lie Aut (Pα

m,n) = n + m(m−1)
2

≥ m + n if and

only if m ≥ 3. The conclusion concerning perfectness now follows from this and

Lemma 3.13(ii).
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Chapter 4

Log-determinant Cones

In this section, we will compute the one-step facial residual functions for the log-

determinant cones, and obtain error bounds. Let d be a positive integer and sd(d) :=

d(d+1)
2

be the dimension of Sd, we consider the (sd(d)+2)-dimensional space IR×IR×

Sd. We let x := (xx,xy,xZ) denote an element of IR×IR×Sd, where xx ∈ IR,xy ∈ IR

and xZ ∈ Sd, and equip IR × IR × Sd with the following inner product:

⟨x, z⟩ = xxzx + xyzy + tr(xZzZ) for any x, z ∈ IR × IR × Sd.

Recall that the log-determinant cone is defined as follows.

Klogdet :=
{

(x, y, Z)∈ IR×IR++×Sd
++ : x ≤ y log det(Z/y)

}
∪ (IR−×{0}×Sd

+) (4.1)

=
{

(x, y, Z)∈ IR×IR++×Sd
++ : ydex/y ≤ det(Z)

}
∪ (IR−×{0}×Sd

+). (4.2)

Its dual cone is given by

K∗
logdet:=

{
(x, y, Z)∈ IR−−×IR×Sd

++:y≥x(log det(−Z/x)+ d)
}
∪({0}×IR+×Sd

+) (4.3)

=
{
(x, y, Z)∈ IR−−×IR×Sd

++ : (−x)dey/x ≤ ed det(Z)
}
∪({0}×IR+×Sd

+). (4.4)

In terms of the derivation of the dual cone, here is a sketch. Let f : Sd
++ → IR be

such that f(Z) = −d− log det(Z) and let K be the closed convex cone generated by

the set C := {(1, y, Z) | f(Z) ≤ y}. We have K = cl {(x, y, Z) ∈ IR++ × IR × Sd
++ |

xf(Z/x) ≤ y}. That is, K is the closure of {(x, y, Z) ∈ IR++ × IR × Sd
++ | y ≥
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x(− log det(Z/x) − d)}. By [58, Theorem 14.4], the closed convex cone K̄ generated

by {(1, v,W ) | v ≥ f ∗(W )} satisfies K̄ = {(u, v,W ) | (−v,−u,W ) ∈ K◦}, where K◦

is the polar of K. The conjugate of f is − log det(−W ) for W ∈ −Sd
++. Overall, we

conclude that (x, y, Z) ∈ K∗ iff (−x,−y,−Z) ∈ K◦ iff (y, x,−Z) is in the closure of

{(u, v,W ) ∈ IR++ × IR ×−Sd
++ | v ≥ −u log det(−W/u)}. Finally, this implies that

(x, y, Z) ∈ K∗ if and only if (x, y, Z) is in the closure of {(x, y, Z) ∈ IR× IR++×Sd
++ |

−x ≤ y log det(Z/y)}. This means (x, y, Z) ∈ K∗ iff (−x, y, Z) ∈ Klogdet. Thus, we

conclude that the cones in (4.1) and (4.3) are dual to each other.

One should notice that if d = 1, then the log-determinant cone reduces to the

exponential cone, whose corresponding error bound results were discussed in [36].

Hence, without loss of generality, we assume that d > 1 in the rest of this

paper. Notice from (4.2) and (4.4) that K∗
logdet is a scaled and rotated version of

Klogdet.

For convenience, we further define

K1
logdet :=

{
(x, y, Z) ∈ IR × IR++ × Sd

++ : x ≤ y log det(Z/y)
}

;

K1e
logdet :=

{
(x, y, Z) ∈ IR × IR++ × Sd

++ : x = y log det(Z/y)
}

;

K2
logdet := IR− × {0} × Sd

+;

K∗1
logdet :=

{
(x, y, Z) ∈ IR−− × IR × Sd

++ : y ≥ x(log det(−Z/x) + d)
}

;

K∗1e
logdet :=

{
(x, y, Z) ∈ IR−− × IR × Sd

++ : y = x(log det(−Z/x) + d)
}

;

K∗2
logdet := {0} × IR+ × Sd

+. (4.5)

With that, we have

∂Klogdet = K1e
logdet ∪ K2

logdet (4.6)

and

∂K∗
logdet = K∗1e

logdet ∪ K∗2
logdet.
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Before moving on, we present several inequalities, which will be useful for our

subsequent analysis.

1. Let η > 0, and let x = (xy log det(xZ/xy),xy,xZ) ∈ K1e
logdet ∩ B(η) with xy > 0

and xZ ≻ 0 and satisfy xy log det(xZ/xy) ≥ 0. Then, we have

0 ≤ xy log det(xZ/xy) ≤ xy log det(ηId/xy) ≤ dxy| log(η)| − dxy log(xy). (4.7)

2. Let α > 0 and s > 0. The following inequalities hold for all sufficiently small

t > 0,

t ≤
√
t, −tα log(t) ≤ tα/2, tα ≤ − 1

log(t)
, −tα log(t) ≤ − 1

log(st)
. (4.8)

4.1 Facial structure

In general, we are more interested in nontrivial faces, especially nontrivial exposed

faces. Recall that if there exists n := (nx,ny,nZ) ∈ ∂K∗
logdet \ {0} such that F =

Klogdet ∩ {n}⊥, then F is a nontrivial exposed face of Klogdet. Different nonzero n’s

along ∂K∗
logdet will induce different nontrivial exposed faces.

The next proposition completely characterizes the facial structure of the log-

determinant cone.

Proposition 4.1 (Facial structure of Klogdet). All nontrivial faces of the log-determinant

cone can be classified into the following types:

(a) infinitely many 1-dimensional faces exposed by n = (nx,nx(log det(−nZ/nx) +

d),nZ) with nx < 0,nZ ≻ 0,

Fr :=
{

(y log det(−nxn
−1
Z ), y,−ynxn

−1
Z ) : y ∈ IR+

}
= {yfr : y ∈ IR+}, (4.9)

where

fr = (log det(−nxn
−1
Z ), 1,−nxn

−1
Z ). (4.10)
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(b) a single (sd(d) + 1)-dimensional exposed face exposed by n = (0,ny,0) with

ny > 0,

Fd := IR− × {0} × Sd
+ = K2

logdet. (4.11)

(c) infinitely many (sd(d− r (nZ)) + 1)-dimensional exposed faces given by

F# := IR− × {0} × (Sd
+ ∩ {nZ}⊥), (4.12)

which are exposed by

n = (0,ny,nZ) with ny ≥ 0,nZ ⪰ 0, 0 < r (nZ) < d. (4.13)

(d) a single 1-dimensional exposed face exposed by

n = (0,ny,nZ) with ny ≥ 0,nZ ≻ 0,

that is, r (nZ) = d,

F∞ := IR− × {0} × {0}. (4.14)

(e) infinitely many non-exposed faces defined by

F#
ne := {0} × {0} × (Sd

+ ∩ {nZ}⊥), (4.15)

which are proper subfaces of exposed faces of the form F# or Fd (see (4.11) and

(4.12)), and nZ comes from the n that exposes F# or Fd, i.e., 0 ≤ r (nZ) < d.

Proof. Let n := (nx,ny,nZ) ∈ K∗
logdet be such that {n}⊥∩Klogdet is a nontrivial face

of Klogdet. Recall that Klogdet is pointed, so n ∈ ∂K∗
logdet \ {0}. By (4.5), nx ≤ 0 and

we can determine whether n ∈ K∗1
logdet or n ∈ K∗2

logdet by checking whether nx < 0 or

not. Therefore, we shall consider the following cases.

nx < 0: nx < 0 indicates that n ∈ K∗1e
logdet, then we must have

n = (nx,nx(log det(−nZ/nx) + d),nZ) with nx < 0, nZ ≻ 0.
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For any q := (qx, qy, qZ) ∈ ∂Klogdet, since nx < 0, we can see that q ∈ {n}⊥ if and

only if

qx + qy(log det(−nZ/nx) + d) + tr(nZqZ)/nx = 0. (4.16)

If qy = 0, then q ∈ K2
logdet, and so qx ≤ 0, qZ ⪰ 0. This together with nZ ≻ 0

and (2.1) imply that tr(nZqZ) ≥ 0. Since nx < 0, we observe that

0 ≤ −qx = tr(nZqZ)/nx ≤ 0.

Thus, qx = 0 and tr(nZqZ) = 0. The latter relation leads to qZ = 0. Consequently,

q = 0.

If qy ̸= 0, then qy > 0 by the definition of the log-determinant cone and hence

q ∈ K1e
logdet. Then, we know that qx = qy log det(qZ/qy), qZ ≻ 0 and hence (4.16)

becomes

log det

(
qZ

qy

)
+ log det

(
−nZ

nx

)
+ d+ tr

(
nZqZ

nxqy

)
= 0.

After rearranging terms, we have

log det

(
−nZqZ

nxqy

)
+ d+ tr

(
nZqZ

nxqy

)
= 0. (4.17)

Note also that

det

(
−nZqZ

nxqy

)
= det

(
−n

1
2
ZqZn

1
2
Z

nxqy

)
and tr

(
nZqZ

nxqy

)
= tr

(
n

1
2
ZqZn

1
2
Z

nxqy

)
,

where n
1
2
ZqZn

1
2
Z ≻ 0 and −n

1
2
Z qZn

1
2
Z

nxqy
≻ 0.

Let f(x) = log(x) − x+ 1, we can rewrite (4.17) as follows,

d∑
i=1

f

(
λi

(
−n

1
2
ZqZn

1
2
Z

nxqy

))

=
d∑

i=1

(
log

(
λi

(
−n

1
2
ZqZn

1
2
Z

nxqy

))
+ 1 − λi

(
−n

1
2
ZqZn

1
2
Z

nxqy

))
= 0.

(4.18)
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Since f(x) ≤ 0 for all x > 0 and f(x) = 0 if and only if x = 1, (4.18) holds if and

only if

λi

(
−n

1
2
ZqZn

1
2
Z

nxqy

)
= 1 ∀i ∈ {1, 2, . . . , d}.

This illustrates that all the eigenvalues of −n
1
2
Z qZn

1
2
Z

nxqy
are 1. Hence, one can imme-

diately see n
1
2
ZqZn

1
2
Z = −nxqyId and so qZ = −qynxn

−1
Z . By substituting this

expression of qZ into q = (qy log det(qZ/qy), qy, qZ), we obtain (4.9).

nx = 0: nx = 0 indicates that n ∈ K∗2
logdet, then ny ≥ 0 and nZ ⪰ 0. Now, for

any q ∈ ∂Klogdet, we have q ∈ {n}⊥ if and only if

nyqy + tr(nZqZ) = 0. (4.19)

Since ny ≥ 0, qy ≥ 0,nZ ⪰ 0 and qZ ⪰ 0, we observe that both summands on the

left hand side of (4.19) are nonnegative. Therefore, (4.19) holds if and only if

nyqy = 0, tr(nZqZ) = 0. (4.20)

These together with (2.1) make it clear the cases we need to consider.

Specifically, if nx = 0, we consider the following four cases.

1. If r (nZ) = 0 and ny = 0, then n = 0, which contradicts our assumption. This

case is hence impossible.

2. If r (nZ) = 0 and ny > 0, then by (4.20), qy = 0. This corresponds to (4.11).

3. If 0 < r (nZ) < d, then qZ ⪰ 0 but qZ is not definite, so (qx, qy, qZ) ∈ K2
logdet.

Since qZ ∈ {nZ}⊥ holds, this corresponds to (4.12).

4. If r (nZ) = d, i.e., nZ ≻ 0, then qZ = 0. This corresponds to (4.14).
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Therefore, we obtain the exposed faces defined as in (4.11), (4.12) and (4.14).

We now show that all nontrivial faces of Klogdet were accounted for (4.9), (4.11),

(4.12), (4.14) and (4.15). First of all, by the previous discussion, all nontrivial

exposed faces must be among the ones in (4.9), (4.11), (4.12), and (4.14). Suppose

F is a non-exposed face of Klogdet. Then it must be contained in a nontrivial exposed

face F̂ of Klogdet, e.g., [9, Proposition 3.6] or [42, Proposition 2.1]. The faces in (4.9)

and (4.14) are one-dimensional, so the only candidates for F̂ are the faces as in (4.11)

and (4.12).

So suppose that F̂ is as in (4.11) or (4.12). Recalling the list of nontrivial

exposed faces described so far, the only nontrival faces of F̂ that have not appeared

yet are the ones of the form F#
ne (as in (4.15)) for some nZ with 0 ≤ r (nZ) < d. This

shows the completeness of the classification.

It is worth noting that when d = 1, the case corresponding to F# does not occur.

We also have the following relationships between these nontrivial faces. Let n ̸= 0

with 0 ≤ r (nZ) < d be given. If r (nZ) > 0, then the corresponding faces F# and

F#
ne satisfy the following inclusion

F#
ne ⪇◁ F# ⪇◁ Fd and F∞ ⪇◁ F# ⪇◁ Fd. (4.21)

If r (nZ) = 0, then we have

F#
ne ⪇◁ Fd. (4.22)

For distinct n1 := (n1
x,n

1
y,n

1
Z) and n2 := (n2

x,n
2
y,n

2
Z) with 0 < r (n1

Z) < d

and 0 < r (n2
Z) < d, suppose n1 and n2 expose F1

# and F2
#, respectively. If

range(n1
Z) ⊋ range(n2

Z), then F1
# ⪇◁ F2

# (see, e.g., [4, Section 6]). A similar re-

sult also holds for non-exposed faces, that is, denote the non-exposed faces by F#1
ne

and F#2
ne , respectively, with respect to n1 and n2, if range(n1

Z) ⊋ range(n2
Z), then

F#1
ne ⪇◁ F#2

ne .
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4.2 One-step facial residual functions

In this section, we shall apply the strategy in [36, Section 3.1] to compute the

corresponding one-step facial residual functions for nontrivial exposed faces of the

log-determinant cone. Put concretely, consider F = Klogdet ∩ {n}⊥ with n ∈

∂K∗
logdet \ {0}. For η > 0 and some nondecreasing function g : IR+ → IR+ with

g(0) = 0 and g ≥ | · |α for some α ∈ (0, 1], we define

γn,η :=inf
v

{
g(∥v −w∥)

∥u−w∥

∣∣∣∣ v ∈ ∂Klogdet ∩ B(η) \ F , w = P{n}⊥(v),
u = PF(w), u ̸= w

}
. (4.23)

In view of [36, Theorem 3.10] and [36, Lemma 3.9], if γn,η ∈ (0,∞] then we can use

γn,η and g to construct a one-step facial residual function for Klogdet and n. In [36],

the positivity of γn,η (with the exponential cone in place of Klogdet and some properly

selected g) was shown by contradiction. Here, we will follow a similar strategy and

make extensive use of the following fact from [36, Lemma 3.12]: if γn,η = 0, then

there exist v̂ ∈ F and a sequence {vk} ⊂ ∂Klogdet ∩ B(η) \ F such that

lim
k→∞

vk = lim
k→∞

wk = v̂ and lim
k→∞

g(∥wk − vk∥)

∥uk −wk∥
= 0, (4.24)

where wk = P{n}⊥(vk), uk = PF(wk) and uk ̸= wk.

4.2.1 Fd: the unique (sd(d) + 1)-dimensional faces

We define the piecewise modified Boltzmann-Shannon entropy gd : IR+ → IR+ as

follows:

gd(t) :=


0 if t = 0,
−t log(t) if 0 < t ≤ 1

e2
,

t+ 1
e2

if t > 1
e2
.

(4.25)

Note that gd is nondecreasing with gd(0) = 0 and |t| ≤ gd(t) for any t ∈ IR+.

The next theorem shows that γn,η ∈ (0,∞] for Fd, which implies that an entropic

error bound holds.
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Theorem 4.2 (Entropic error bound concerning Fd). Let n = (0,ny,0) ∈ ∂K∗
logdet

with ny > 0 such that Fd = Klogdet ∩ {n}⊥. Let η > 0 and let γn,η be defined as in

(4.23) with F = Fd and g = gd. Then γn,η ∈ (0,∞] and

dist(q,Fd) ≤ max{2, 2γ−1
n,η} · gd(dist(q,Klogdet)) ∀q ∈ {n}⊥ ∩ B(η). (4.26)

Proof. If γn,η = 0, in view of [36, Lemma 3.12], there exist v̂ ∈ Fd and a sequence

{vk} ⊂ ∂Klogdet ∩ B(η) \ Fd such that (4.24) holds with g = gd and F = Fd.

By (4.11), v̂ = (v̂x, 0, v̂Z) with v̂Z ⪰ 0. Since vk ∈ ∂Klogdet∩B(η)\Fd for all k, we

have vk
y > 0 and vk ∈ K1e

logdet for all k. Hence, vk = (vk
y log det(vk

Z/v
k
y ),vk

y ,v
k
Z) with vk

y >

0,vk
Z ≻ 0 for all k.

Recall that n = (0,ny,0) with ny > 0, then ∥n∥ = ny and ⟨n,vk⟩ = nyv
k
y > 0.

Since wk = P{n}⊥(vk) and {n}⊥ is a hyperplane, one can immediately see that for

all k,

wk = vk−⟨n,vk⟩
∥n∥2

n = (vk
y log det(vk

Z/v
k
y ), 0,vk

Z) and ∥wk−vk∥ =
|⟨n,vk⟩|
∥n∥

= vk
y .

Using (4.11), uk = PFd
(wk) and uk ̸= wk, we see that vk

y log det(vk
Z/v

k
y ) > 0 and

uk = (0, 0,vk
Z). We thus obtain that for all k,

∥wk − uk∥ = vk
y log det(vk

Z/v
k
y ).

Because limk→∞ vk
y = 0, for sufficiently large k, we have 0 < vk

y <
1
e2

. Hence,

lim
k→∞

gd(∥wk − vk∥)

∥wk − uk∥
(a)

≥ lim
k→∞

−vk
y log(vk

y )

dvk
y | log(η)| − dvk

y log(vk
y )

= lim
k→∞

1

d− d | log(η)|
log(vk

y )

=
1

d
> 0,

where (a) comes from the fact vk ∈ B(η) and (4.7). This contradicts (4.24) with

gd in place of g and hence this case cannot happen. Therefore, we conclude that

γn,η ∈ (0,∞], with which and [36, Theorem 3.10], (4.26) holds.
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Remark 4.3 (Tightness of (4.26)). We claim that for Fd, there is a specific choice

of sequence {wk} in {n}⊥ with dist(wk,Klogdet) → 0 along which both sides of (4.26)

vanish at the same order of magnitude. Recall that we assumed that d > 1; see the

discussions following (4.4).8 Let n = (0,ny,0) with ny > 0 so that {n}⊥ ∩Klogdet =

Fd. Define wk = (d log(k)/k, 0, Id) for every k ∈ N. Then {wk} ⊆ {n}⊥. Since

log(k)/k > 0 for any k ≥ 2 and log(k)/k → 0 as k → ∞, there exists η > 0 such

that
{
wk
}
⊆ B(η). Thus, applying (4.26), there exists κB > 0 such that

dist
(
wk,Fd

)
≤ κBgd

(
dist

(
wk,Klogdet

))
for all sufficiently large k.

Noticing that the projection of wk onto Fd (see (4.11)) is given by (0, 0, Id), we obtain

d log(k)

k
= dist(wk,Fd) ≤ κBgd

(
dist(wk,Klogdet)

)
.

Let vk = (d log(k)/k, 1/k, Id) for every k. Then dist(wk,Klogdet) ≤ 1/k since vk ∈

Klogdet. In view of the definition of gd (see (4.25)) and its monotonicity, we conclude

that for large enough k we have

d log(k)

k
= dist(wk,Fd) ≤ κBgd(dist(wk,Klogdet)) ≤ κB

log(k)

k
.

That means it holds that for all sufficiently large k,

d ≤ dist(wk,Fd)

gd(dist(wk,Klogdet))
≤ κB.

Consequently, for any given nonnegative function g : IR+ → IR+ such that

limt↓0
g(t)
gd(t)

= 0, we have upon noting dist(wk,Klogdet) → 0 that

dist(wk,Fd)

g(dist(wk,Klogdet))
=

dist(wk,Fd)

gd(dist(wk,Klogdet))

gd(dist(wk,Klogdet))

g(dist(wk,Klogdet))
→ ∞,

which shows that the choice of gd in (4.26) is tight.

8 When d = 1, the log-determinant cone reduces to the exponential cone studied in [36], where
the tightness of the corresponding error bounds was shown in Remark 4.14 therein.
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Upon invoking Theorem 4.2 and [36, Lemma 3.9], we obtain the following one-step

facial residual function for Klogdet and n.

Corollary 4.4. Let n = (0,ny,0) ∈ ∂K∗
logdet with ny > 0 such that Fd = Klogdet ∩

{n}⊥. Let γn,t be defined as in (4.23) with F = Fd and g = gd in (4.25). Then the

function ψK,n : IR+ × IR+ → IR+ defined by

ψK,n(ϵ, t) := max {ϵ, ϵ/∥n∥} + max
{

2, 2γ−1
n,t

}
gd (ϵ+ max {ϵ, ϵ/∥n∥})

is a one-step facial residual function for Klogdet and n.

4.2.2 F#: the family of (sd(d− r (nZ)) + 1)-dimensional faces

Let η > 0 and let n ∈ ∂K∗
logdet be such that F# = Klogdet∩{n}⊥. Let γn,η be defined

as in (4.23) with F = F# and some nondecreasing function g : IR+ → IR+ with

g(0) = 0 and g ≥ | · |α for some α ∈ (0, 1]. If γn,η = 0, in view of [36, Lemma 3.12],

there exists v̂ ∈ F# and a sequence {vk} ⊂ ∂Klogdet ∩ B(η) \ F# such that (4.24)

holds. As we will see later in the proofs of Theorem 4.6 and Theorem 4.8 below, we

will encounter the following three cases:

(I) ny ≥ 0 and vk ∈ Fd ∩ B(η) \ F# for all large k;

(II) ny > 0 and vk ∈ ∂Klogdet ∩ B(η) \ Fd infinitely often;

(III) ny = 0 and vk ∈ ∂Klogdet ∩ B(η) \ Fd infinitely often.

For case (I), we have the following lemma which will aid in our further analysis.

One should notice that this lemma holds for both F# and F∞.

Lemma 4.5. Let n = (0,ny,nZ) ∈ ∂K∗
logdet \ {0} with ny ≥ 0 and nZ ⪰ 0 such

that F = Klogdet ∩ {n}⊥ with F = F# or F∞. Let v ∈ F be arbitrary and {vk} ⊂

Fd ∩ B(η) \ F be such that

lim
k→∞

vk = lim
k→∞

wk = v,
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where wk = P{n}⊥(vk),uk = PF(wk) and wk ̸= uk. Then

lim inf
k→∞

∥wk − vk∥α

∥wk − uk∥
∈ (0,∞],

where α is defined as in (2.8) with Z being nZ.

Proof. Note that {vk} ⊂ Fd ∩ B(η) \ F implies vk = (vk
x, 0,v

k
Z) with vk

x ≤ 0 and

vk
Z ∈ Sd

+ for all k. Then, ⟨n,vk⟩ = tr(vk
ZnZ), which is nonnegative since both vk

Z and

nZ are positive semidefinite. Because wk = P{n}⊥(vk) and {n}⊥ is a hyperplane,

one can immediately see that for all k,

∥wk − vk∥ =
|⟨n,vk⟩|
∥n∥

=
tr(vk

ZnZ)

∥n∥
.

On the other hand, by Lemma 2.4 and the formula of F , we obtain that for all k,

∥wk − uk∥ ≤ dist(vk,F) = dist(vk
Z ,Sd

+ ∩ {nZ}⊥) ≤ CP tr(vk
ZnZ)α,

where the final inequality comes from Proposition 2.5 and α is defined as in (2.8)

with Z being nZ .

Now, we can conclude that

lim inf
k→∞

∥wk − vk∥α

∥wk − uk∥
≥ 1

CP∥n∥α
> 0.

This completes the proof.

Now, we are ready to show the error bound concerning F#. We first show that

we have a Hölderian error bound concerning F# when ny > 0.

Theorem 4.6 (Hölderian error bound concerning F# if ny > 0). Let n = (0,ny,nZ) ∈

∂K∗
logdet with ny > 0, nZ ⪰ 0 and 0 < r (nZ) < d such that F# = Klogdet ∩ {n}⊥.

Let η > 0 and let γn,η be defined as in (4.23) with F = F# and g = | · | 12 . Then

γn,η ∈ (0,∞] and

dist(q,F#) ≤ max{2η
1
2 , 2γ−1

n,η} · (dist(q,Klogdet))
1
2 ∀q ∈ {n}⊥ ∩ B(η). (4.27)
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Proof. If γn,η = 0, in view of [36, Lemma 3.12], there exist v̂ ∈ F# and a sequence

{vk} ⊂ ∂Klogdet∩B(η)\F# such that (4.24) holds with g = | · | 12 and F = F#. Since

{vk} ⊂ ∂Klogdet ∩ B(η) \ F#, the equation for the boundary of Klogdet (see (4.6) and

(4.21)) implies that we have the following two cases:

(i) vk ∈ ∂Klogdet ∩ B(η) \ Fd infinitely often;

(ii) vk ∈ Fd ∩ B(η) \ F# for all large k.

(i) Passing to a subsequence if necessary, we can assume that vk ∈ ∂Klogdet ∩

B(η) \ Fd for all k, that is,

vk = (vk
y log det(vk

Z/v
k
y ),vk

y ,v
k
Z) with vk

y > 0,vk
Z ≻ 0, for all k.

Then, ⟨n,vk⟩ = nyv
k
y + tr(vk

ZnZ), which is positive since ny > 0,vk
y > 0 and both

vk
Z ,nZ are positive semidefinite.

Now, one can check that

∥wk − vk∥ =
⟨n,vk⟩
∥n∥

=
nyv

k
y + tr(vk

ZnZ)

∥n∥
. (4.28)

On the other hand, by Lemma 2.4, the formula of F# and Proposition 2.5, we obtain

the following inequality for all k,

∥wk − uk∥ ≤ dist(vk,F#) ≤ (vk
y log det(vk

Z/v
k
y ))+ + vk

y + CP tr(vk
ZnZ)

1
2 . (4.29)

Let τ k := tr(vk
ZnZ) and r := r (nZ).

If vk
y log det(vk

Z/v
k
y ) ≥ 0 infinitely often, then by extracting a subsequence if

necessary, we may assume that vk
y log det(vk

Z/v
k
y ) ≥ 0 for all k. Then we have from

(4.29) and (4.7) that for all large k,

∥wk − uk∥ ≤ d| log(η)|vk
y − dvk

y log(vk
y ) + vk

y + CP (τ k)
1
2

(a)

≤ (d| log(η)| + 1)(vk
y )

1
2 + d(vk

y )
1
2 + CP (τ k)

1
2
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(b)

≤ (d| log(η)| + d+ 1)∥n∥ 1
2

(ny)
1
2

∥wk − vk∥
1
2 + CP∥n∥

1
2∥wk − vk∥

1
2

=

[
(d| log(η)| + d+ 1)∥n∥ 1

2

(ny)
1
2

+ CP∥n∥
1
2

]
∥wk − vk∥

1
2 ,

where (a) holds by (4.8) with α = 1 and the fact that vk
y → 0 (since vk → v̂ ∈ F#),

(b) is true since ∥wk−vk∥ 1
2 ≥ (nyv

k
y )

1
2/(∥n∥)

1
2 and ∥wk−vk∥ 1

2 ≥ (τ k)
1
2/(∥n∥)

1
2 for

all k thanks to (4.28).

This contradicts (4.24) with | · | 12 in place of g and hence this case cannot happen.

If vk
y log det(vk

Z/v
k
y ) < 0 infinitely often, then by extracting a subsequence if

necessary, we may assume that vk
y log det(vk

Z/v
k
y ) < 0 for all k. Similar to the

previous analysis, we have from (4.29), (4.8) and (4.28) that for all large k,

∥wk−uk∥ ≤ vk
y+CP (τ k)

1
2 ≤ (vk

y )
1
2 +CP (τ k)

1
2 ≤

[
(∥n∥/ny)

1
2 + CP∥n∥

1
2

]
∥wk−vk∥

1
2 .

The above display contradicts (4.24) with | · | 12 in place of g and hence this case

cannot happen.

(ii) By Lemma 4.5, case (ii) also cannot happen.

Hence, we conclude that γn,η ∈ (0,∞]. In view of [36, Theorem 3.10], we deduce

that (4.27) holds.

Remark 4.7 (Tightness of (4.27)). Fix any 0 < r < d (recall that we assumed d ≥ 2;

see the discussions following (4.4)). Let n = (0,ny,nZ) with ny > 0, nZ ⪰ 0 and

r (nZ) = r. Then, we have F# = Klogdet ∩ {n}⊥ from (4.12). Let R ∈ IRd×d be such

that nZ = R

[
0 0
0 Σr

]
R⊤ where Σr ∈ S r is diagonal, Σr ≻ 0 and RR⊤ = Id. Then

F# = IR−×{0}× (Sd
+∩{nZ}⊥) = IR−×{0}×

{
R

[
A 0
0 0

]
R⊤ : A ∈ Sd−r

+

}
. (4.30)
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Fix a Q ∈ IRr×(d−r) with 0 < λmax(Q
⊤Q) ≤ 1. For every k > 0, we define

wk =

(
−1, 0, R

[
Id−r

Q⊤

k
Q
k

0

]
R⊤
)

and vk =

(
−1, 0, R

[
Id−r

Q⊤

k
Q
k

Ir
k2

]
R⊤
)
.

Then there exists η > 0 such that {wk} ⊂ {n}⊥ ∩ B(η). We also observe that

R

[
Id−r

Q⊤

k
Q
k

Ir
k2

]
R⊤ ⪰ 0 for all k based on standard arguments involving the Schur

complement. Then {vk} ⊂ Fd ⊂ Klogdet. With that, we have

dist(wk,Klogdet) ≤ ∥wk − vk∥ =

∥∥∥∥ Irk2
∥∥∥∥
F

=

√
r

k2
.

Therefore, by applying (4.27) and using (4.30), there exists κB > 0 such that

0 <

√
2∥Q∥F
k

= dist(wk,F#) ≤ κBdist(wk,Klogdet)
1
2 ≤ κBr

1
4

k
.

Consequently, for all k, we have

0 <

√
2∥Q∥F
r
1
4

≤ dist(wk,F#)

dist(wk,Klogdet)
1
2

≤ κB.

Similar to the argument in Remark 4.3, we conclude that the choice of | · | 12 is tight.

Next, we consider the case where ny = 0. Define glog as follows

glog(t) :=


0 if t = 0,
− 1

log(t)
if 0 < t ≤ 1

e2
,

1
4

+ 1
4
e2t if t > 1

e2
.

(4.31)

We note that glog is increasing with glog(0) = 0 and |t| ≤ glog(t) for all t ∈ IR+.

Moreover, glog(t) > gd(t) for any t ∈ (0, 1
e2

). With glog, the next theorem shows that

γn,η ∈ (0,∞] for F#, which implies that a log-type error bound holds.
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Theorem 4.8 (Log-type error bound concerning F# if ny = 0). Let n = (0, 0,nZ) ∈

∂K∗
logdet with nZ ⪰ 0 and 0 < r (nZ) < d such that F# = Klogdet ∩ {n}⊥. Let η > 0

and let γn,η be defined as in (4.23) with F = F# and g = glog in (4.31). Then

γn,η ∈ (0,∞] and

dist(q,F#) ≤ max{2, 2γ−1
n,η} · glog(dist(q,Klogdet)) ∀q ∈ {n}⊥ ∩ B(η). (4.32)

Proof. If γn,η = 0, in view of [36, Lemma 3.12], there exists v̂ ∈ F# and sequences

{vk}, {wk}, {uk} being defined as those therein, with the cone being Klogdet and the

face being F#, such that (4.24) holds with g = glog as in (4.31). As in the proof

of Theorem 4.6, the condition {vk} ⊂ ∂Klogdet ∩ B(η) \ F# means that we need to

consider the following two cases:

(i) vk ∈ ∂Klogdet ∩ B(η) \ Fd infinitely often;

(ii) vk ∈ Fd ∩ B(η) \ F# for all large k.

(i) Passing to a subsequence if necessary, we can assume that vk ∈ ∂Klogdet ∩

B(η) \ Fd for all k, that is,

vk = (vk
y log det(vk

Z/v
k
y ),vk

y ,v
k
Z) with vk

y > 0,vk
Z ≻ 0, for all k.

Then ⟨n,vk⟩ = tr(vk
ZnZ), which is nonnegative since nZ ⪰ 0,vk

Z ≻ 0.

Now, one can check that for all k,

∥wk − vk∥ =
⟨n,vk⟩
∥n∥

=
tr(vk

ZnZ)

∥n∥
. (4.33)

On the other hand, by Lemma 2.4, the formula of F# and Proposition 2.5, we obtain

that for all k,

∥wk − uk∥ ≤ dist(vk,F#) ≤ (vk
y log det(vk

Z/v
k
y ))+ + vk

y + CP tr(vk
ZnZ)

1
2 . (4.34)

Let τ k := tr(vk
ZnZ) and r := r (nZ).
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If vk
y log det(vk

Z/v
k
y ) ≥ 0 infinitely often, then, by passing to a subsequence if

necessary, we may assume that det(vk
Z/v

k
y ) ≥ 1 for all k, and hence (vk

y )d ≤ det(vk
Z)

for all k. Thus, upon invoking Lemma 2.1, we obtain that for all k,

vk
y ≤ (det(vk

Z))
1
d ≤ C(τ k)

r
d . (4.35)

Then, for all sufficiently large k,

∥wk − uk∥
(a)

≤ dvk
y | log(η)| − dvk

y log(vk
y ) + vk

y + CP (τ k)
1
2

(b)

≤ (d| log(η)| + 1)C(τ k)
r
d − dC(τ k)

r
d log(C(τ k)

r
d ) + CP (τ k)

1
2

= (d| log(η)| + 1)C(τ k)
r
d − Cd log(C)(τ k)

r
d − Cr(τ k)

r
d log(τ k) + CP (τ k)

1
2

(c)

≤ (Cd| log(η)| + C − Cd log(C))(τ k)
r
d + Cr(τ k)

r
2d + CP (τ k)

1
2

≤
∣∣∣Cd| log(η)| + C − Cd log(C)

∣∣∣(τ k)ρ + Cr(τ k)ρ + CP (τ k)ρ

= C#(τ k)ρ,

where ρ = min{ r
2d
, 1
2
} and C# :=

∣∣∣Cd| log(η)| + C − Cd log(C)
∣∣∣ + Cr + CP > 0,

(a) comes from (4.34) and (4.7), (b) holds because of (4.35) and the fact that x 7→

−x log(x) is increasing for all sufficiently small positive x, (c) is true by (4.8) (with

α = r/d > 0).

Therefore, we conclude that

lim
k→∞

glog(∥wk − vk∥)

∥wk − uk∥
≥ lim inf

k→∞

∥wk − vk∥ρ

∥wk − uk∥
≥ lim

k→∞

(τ k)ρ

∥n∥ρC#(τ k)ρ
=

1

∥n∥ρC#

> 0.

This contradicts (4.24) with glog in place of g and hence this case cannot happen.

If vk
y log det(vk

Z/v
k
y ) < 0 infinitely often, then by passing to a subsequence if

necessary, we may assume that vk
y log det(vk

Z/v
k
y ) < 0 for all large k. Moreover,

recalling the exponential form of Klogdet in (4.2), we have (vk
y )dev

k
x/v

k
y = det(vk

Z) for
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all k. Invoking Lemma 2.1, we then see that for all k,

vk
ye

vk
x/(dv

k
y ) = (det(vk

Z))
1
d ≤ C(τ k)

r
d .

Thus, by taking logarithm on both sides, the above inequality becomes

log(vk
y ) +

vk
x

dvk
y

≤ log(C) +
r

d
log(τ k).

Since vk
y → 0, τ k → 0, and both sequences are positive, we note that −vk

y log(τ k) >

0 for all large k. After multiplying −vk
y on both sides of the above display and

rearranging terms, we see that for all large k,

0 < −vk
y log(τ k) ≤

d log(C)vk
y

r
−
dvk

y log(vk
y )

r
− vk

x

r
.

Then, by passing to the limit on both sides of the above display, we obtain that

0 ≤ lim sup
k→∞

−vk
y log(τ k) ≤ lim sup

k→∞

d log(C)vk
y

r
−
dvk

y log(vk
y )

r
− vk

x

r

= − lim
k→∞

vk
x

r
= − v̂x

r
. (4.36)

Therefore, we conclude that

lim
k→∞

glog(∥wk − vk∥)

∥wk − uk∥
(a)

≥ lim inf
k→∞

− 1

log(τ k) − log(∥n∥)

1

vk
y + CP (τ k)

1
2

= lim inf
k→∞

1

log(∥n∥)(vk
y + CP (τ k)

1
2 ) − vk

y log(τ k) − CP (τ k)
1
2 log(τ k)

(b)

≥ lim
k→∞

−r

vk
x

∈ (0,∞],

where (a) is true owing to (4.33) and (4.34), (b) comes from (4.36) and the fact vk
y →

0, τ k → 0, the last inequality holds because v̂x ≤ 0 thanks to vk
y log det(vk

Z/v
k
y ) < 0

for all large k. The above display contradicts (4.24) with glog in place of g and so

this case cannot happen.
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(ii) In this case, we have from Lemma 4.5 that lim infk→∞
∥wk−vk∥1/2
∥wk−uk∥ ∈ (0,∞],

which implies that

lim
k→∞

glog(∥wk − vk∥)

∥wk − uk∥
≥ lim inf

k→∞

∥wk − vk∥1/2

∥wk − uk∥
∈ (0,∞],

where we recall that |t|1/2 ≤ glog(t) for t sufficiently small. In view of the definition

of γn,η, case (ii) also cannot happen.

Hence, we conclude that γn,η ∈ (0,∞]. Using this together with [36, Theorem

3.10], we deduce that (4.32) holds.

Remark 4.9 (Tightness of (4.32)). Let n = (0, 0,nZ) with nZ ⪰ 0, 0 < r (nZ) < d.

Then, we have F# = {n}⊥ ∩ Klogdet from (4.12). Consider the sequence wk =

(−1, 1/k,0), vk = (−1, 1/k, Id/(ke
k
d )) and uk = (−1, 0,0) for every k, we note that

wk ∈ {n}⊥,vk ∈ Klogdet and uk = PF#
(wk) for every k. Moreover, there exists

η > 0 such that {wk} ⊆ B(η). Therefore, applying (4.32), there exists κB > 0 such

that

1

k
= dist(wk,F#) ≤ κBglog(dist(wk,Klogdet)) ≤ κBglog

(√
d

ke
k
d

)
∀k ∈ N.

In view of the definition of glog (see (4.31)) and its monotonicity, for large enough

k we have

1

k
= dist(wk,F#) ≤ κBglog(dist(wk,Klogdet)) ≤

κB

log k + (k/d) − log
√
d
≤ κB

2d

k
.

Consequently, it holds that for all sufficiently large k,

1

2d
≤ dist(wk,F#)

glog(dist(wk,Klogdet))
≤ κB.

Similar to the argument in Remark 4.3, we conclude that the choice of glog is tight.

67



Using Theorems 4.6 and 4.8 in combination with [36, Lemma 3.9], we obtain the

following one-step facial residual functions for Klogdet and n.

Corollary 4.10. Let n = (0,ny,nZ) ∈ ∂K∗
logdet with ny ≥ 0, nZ ⪰ 0 and 0 <

r (nZ) < d such that F# = Klogdet ∩ {n}⊥.

(i) If ny > 0, let γn,t be as in (4.23) with F = F# and g = | · | 12 . Then the function

ψK,n : IR+ × IR+ → IR+ defined by

ψK,n(ϵ, t) := max {ϵ, ϵ/∥n∥} + max
{

2t
1
2 , 2γ−1

n,t

}
(ϵ+ max {ϵ, ϵ/∥n∥})

1
2

is a one-step facial residual function for Klogdet and n.

(ii) If ny = 0, let γn,t be as in (4.23) with F = F# and g = glog in (4.31). Then

the function ψK,n : IR+ × IR+ → IR+ defined by

ψK,n(ϵ, t) := max {ϵ, ϵ/∥n∥} + max
{

2, 2γ−1
n,t

}
glog (ϵ+ max {ϵ, ϵ/∥n∥})

is a one-step facial residual function for Klogdet and n.

4.2.3 F∞: the exceptional 1-dimensional face

We first show a Lipschitz error bound concerning F∞ if ny > 0.

Theorem 4.11 (Lipschitz error bound concerning F∞ if ny > 0). Let n = (0,ny,nZ) ∈

∂K∗
logdet with ny > 0 and nZ ≻ 0 such that F∞ = Klogdet ∩ {n}⊥. Let η > 0 and let

γn,η be defined as in (4.23) with F = F∞ and g = | · |. Then γn,η ∈ (0,∞] and

dist(q,F∞) ≤ max{2, 2γ−1
n,η} · dist(q,Klogdet) ∀q ∈ {n}⊥ ∩ B(η). (4.37)

Proof. If γn,η = 0, in view of [36, Lemma 3.12], there exists v̂ ∈ F∞ and sequences

{vk}, {wk}, {uk} being defined as those therein, with the cone being Klogdet and the

face being F∞, such that (4.24) holds with g = | · |. Note that {vk} ⊂ ∂Klogdet ∩

B(η) \ F∞ means that we need to consider the following two cases:
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(i) vk ∈ ∂Klogdet ∩ B(η) \ Fd infinitely often;

(ii) vk ∈ Fd ∩ B(η) \ F∞ for all large k.

(i) Without loss of generality, we assume that vk ∈ ∂Klogdet ∩ B(η) \ Fd for all k

by passing to a subsequence if necessary, that is,

vk = (vk
y log det(vk

Z/v
k
y ),vk

y ,v
k
Z) with vk

y > 0,vk
Z ≻ 0 for all k.

Then, ⟨n,vk⟩ = nyv
k
y + tr(vk

ZnZ) > 0 and

∥wk − vk∥ =
nyv

k
y + tr(vk

ZnZ)

∥n∥
.

On the other hand, by Lemma 2.4, we obtain that for all k,

∥wk − uk∥ ≤ dist(vk,F∞) ≤ (vk
y log det(vk

Z/v
k
y ))+ + vk

y + ∥vk
Z∥F . (4.38)

If vk
y log det(vk

Z/v
k
y ) ≥ 0 infinitely often, by passing to a subsequence if necessary,

we may assume that vk
y log det(vk

Z/v
k
y ) ≥ 0 for all large k and hence, recalling that

∥vk
Z∥F ≤ tr(vk

Z) (since vk
Z ≻ 0), we obtain

∥wk − uk∥ ≤ vk
y log det(vk

Z/v
k
y ) + vk

y + tr(vk
Z) = vk

y + tr(vk
Z) + vk

y log(
d∏

i=1

λi(v
k
Z)/vk

y )

= vk
y + tr(vk

Z) +
d∑

i=1

vk
y log(λi(v

k
Z)/vk

y )

(a)

≤ vk
y + tr(vk

Z) +
d∑

i=1

vk
y (λi(v

k
Z)/vk

y + 1)

= vk
y + tr(vk

Z) + tr(vk
Z) + dvk

y = (1 + d)vk
y + 2 tr(vk

Z),

where (a) holds because log(x) ≤ x+ 1 for all x > 0.
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Combining these identities and using (2.1) yields:

lim
k→∞

∥wk − vk∥
∥wk − uk∥

≥ lim inf
k→∞

ny

∥n∥(1+d)
(1 + d)vk

y + λmin(nZ)
2∥n∥ 2 tr(vk

Z)

(1 + d)vk
y + 2 tr(vk

Z)

≥min

{
ny

∥n∥(1 + d)
,
λmin(nZ)

2∥n∥

}
> 0.

This contradicts (4.24) with | · | in place of g and hence this case cannot happen.

If vk
y log det(vk

Z/v
k
y ) < 0 infinitely often, then by extracting a subsequence if

necessary, we may assume that vk
y log det(vk

Z/v
k
y ) < 0 for all large k and hence (4.38)

becomes

∥wk − uk∥ ≤ vk
y + tr(vk

Z).

Therefore,

lim
k→∞

∥wk − vk∥
∥wk − uk∥

≥ lim inf
k→∞

ny

∥n∥v
k
y + λmin(nZ)

∥n∥ tr(vk
Z)

vk
y + tr(vk

Z)
≥ min

{
ny

∥n∥
,
λmin(nZ)

∥n∥

}
> 0.

The above inequality contradicts (4.24) with | · | in place of g and hence this case

cannot happen.

(ii) By Lemma 4.5, case (ii) also cannot happen.

Overall, we conclude that γn,η ∈ (0,∞], and so by [36, Theorem 3.10], (4.37)

holds.

Note that a Lipschitz error bound is always tight up to a constant, so (4.37) is

tight.

If ny = 0, we have the following Log-type error bound for Klogdet.

Theorem 4.12 (Log-type error bound concerning F∞ if ny = 0). Let n = (0, 0,nZ) ∈

∂K∗
logdet with nZ ≻ 0 such that F∞ = Klogdet∩{n}⊥. Let η > 0 and let γn,η be defined

as in (4.23) with F = F∞ and g = glog in (4.31). Then γn,η ∈ (0,∞] and

dist(q,F∞) ≤ max{2, 2γ−1
n,η} · glog(dist(q,Klogdet)) ∀q ∈ {n}⊥ ∩ B(η). (4.39)
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Proof. If γn,η = 0, in view of [36, Lemma 3.12], there exists v̂ ∈ F∞ and sequences

{vk}, {wk}, {uk} being defined as those therein, with the cone being Klogdet and

the face being F∞, such that (4.24) holds with g = glog as in (4.31). Note that

{vk} ⊂ ∂Klogdet ∩B(η) \F∞ means that we need to consider the following two cases:

(i) vk ∈ ∂Klogdet ∩ B(η) \ Fd infinitely often;

(ii) vk ∈ Fd ∩ B(η) \ F∞ for all large k.

(i) Without loss of generality, we assume that vk ∈ ∂Klogdet ∩ B(η) \ Fd for all k

by passing to a subsequence if necessary, that is,

vk = (vk
y log det(vk

Z/v
k
y ),vk

y ,v
k
Z) with vk

y > 0,vk
Z ≻ 0 for all k.

Then ⟨n,vk⟩ = tr(vk
ZnZ) ≥ 0 and

∥wk − vk∥ =
⟨n,vk⟩
∥n∥

=
tr(vk

ZnZ)

∥n∥
. (4.40)

In addition, by Lemma 2.4, we obtain that for all k,

∥wk − uk∥ ≤ dist(vk,F∞) ≤ (vk
y log det(vk

Z/v
k
y ))+ + vk

y + ∥vk
Z∥F . (4.41)

Let τ k := tr(vk
ZnZ).

If vk
y log det(vk

Z/v
k
y ) ≥ 0 infinitely often, then by passing to a subsequence if

necessary, we may assume that det(vk
Z/v

k
y ) ≥ 1 for all k. Hence we have (vk

y )d ≤

det(vk
Z). Thus, combining Lemma 2.1 with r (nZ) = d, we obtain that for all k,

vk
y ≤ (det(vk

Z))
1
d ≤ Cτ k. (4.42)
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Then, for sufficiently large k,

∥wk − uk∥
(a)

≤ d| log(η)|vk
y − dvk

y log(vk
y ) + vk

y + tr(vk
Z)

= (d| log(η)| + 1)vk
y − dvk

y log(vk
y ) +

1

λmin(nZ)
λmin(nZ) tr(vk

Z)

(b)

≤ (Cd| log(η)| + C)τ k − Cdτ k log(Cτ k) +
1

λmin(nZ)
τ k

= (Cd| log(η)| + C − Cd log(C))τ k − Cdτ k log(τ k) +
1

λmin(nZ)
τ k

(c)

≤
(∣∣∣Cd| log(η)| + C − Cd log(C)

∣∣∣+ Cd+
1

λmin(nZ)

)
(−τ k log(τ k))

= C∞(−τ k log(τ k)),

(4.43)

where C∞ :=
∣∣∣Cd| log(η)|+C−Cd log(C)

∣∣∣+Cd+ 1
λmin(nZ)

> 0, (a) comes from (4.41)

and (4.7), (b) holds because of (2.1), (4.42) and the fact that x 7→ −x log(x) is

increasing for all sufficiently small positive x, (c) is true because x ≤ −x log(x) for

sufficiently small x and τ k → 0 because vk
Z → 0.

Hence,

lim
k→∞

glog(∥wk − vk∥)

∥wk − uk∥
≥ lim inf

k→∞
− 1

log
(

τk

∥n∥

) 1

C∞(−τ k log(τ k))

≥ lim
k→∞

−τ k log(τ k)

C∞(−τ k log(τ k))
=

1

C∞
> 0,

where the first inequality comes from (4.40) and (4.43), the second inequality comes

from (4.8) (with α = 1 and s = 1
∥n∥). This contradicts (4.24) with glog in place of g

and hence this case cannot happen.

If vk
y log det(vk

Z/v
k
y ) < 0 infinitely often, then by passing to a subsequence if

necessary, we may assume that that vk
y log det(vk

Z/v
k
y ) < 0 for all k. Moreover,

recalling the exponential form of Klogdet in (4.2), we have (vk
y )dev

k
x/v

k
y = det(vk

Z) for
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all k. Upon invoking Lemma 2.1 with r (nZ) = d, we then see that for all k, we have

vk
ye

vk
x/(dv

k
y ) = (det(vk

Z))
1
d ≤ Cτ k.

Thus, by taking the logarithm on both sides, the above inequality becomes

log(vk
y ) +

vk
x

dvk
y

≤ log(C) + log(τ k).

Since vk
y → 0, τ k → 0 and {vk

y}, {τ k} are positive sequences, we note that −vk
y log(τ k) >

0 for all large k. After multiplying −vk
y on both sides of the above display and rear-

ranging terms, we see that for all large k,

0 < −vk
y log(τ k) ≤ −vk

y log(vk
y ) − vk

x

d
+ log(C)vk

y .

Then, by passing to the limit on both sides of the above display, we obtain that

0 ≤ lim sup
k→∞

−vk
y log(τ k) ≤ lim sup

k→∞
−vk

y log(vk
y ) − vk

x

d
+ log(C)vk

y

= − lim
k→∞

vk
x

d
= − v̂x

d
.

(4.44)

Note also that since nZ has full rank, we have upon invoking the equivalence in (2.1)

that {nZ}⊥ ∩ Sd
+ = {0}. Then Proposition 2.5 guarantees that CP τ

k ≥ ∥vk
Z∥F .

Therefore, altogether we conclude that

lim
k→∞

glog(∥wk − vk∥)

∥wk − uk∥
(a)

≥ lim inf
k→∞

− 1

log(τ k) − log(∥n∥)

1

vk
y + CP τ k

≥ lim inf
k→∞

1

log(∥n∥)(vk
y + CP τ k) − vk

y log(τ k) − CP τ k log(τ k)

(b)

≥ lim
k→∞

−d
vk
x

∈ (0,∞],

where (a) is true owing to (4.40), (4.41), (b) comes from (4.44), τ k log(τ k) → 0

and vk
y + CP τ

k → 0, the last inequality holds because v̂x ≤ 0. The above display

contradicts (4.24) with glog in place of g and hence this case cannot happen.
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(ii) Analogously to the proof of Theorem 4.8, by Lemma 4.5, case (ii) cannot

happen.

Therefore, we obtain that γn,η ∈ (0,∞]. Using this together with [36, Theorem

3.10], we deduce that (4.32) holds.

Remark 4.13 (Tightness of (4.39)). Let n = (0, 0,nZ) with nZ ≻ 0. Then, F∞ =

{n}⊥ ∩ Klogdet. Consider the same sequences {vk}, {wk}, {uk} in Remark 4.9, i.e.,

for every k,

vk = (−1, 1/k, Id/(ke
k
d )), wk = (−1, 1/k,0), uk = (−1, 0,0).

Note that there exists η > 0 such that wk ∈ {n}⊥ ∩ B(η), vk ∈ Klogdet and uk =

PF∞(wk) for any k. Therefore, applying (4.39), there exists κB > 0 such that

1

k
= dist(wk,F∞) ≤ κBglog(dist(wk,Klogdet)) ≤ κBglog

(√
d

ke
k
d

)
∀k ∈ N.

In view of the definition of glog (see (4.31)) and its monotonicity, for large enough

k we have

1

k
= dist(wk,F∞) ≤ κBglog(dist(wk,Klogdet)) ≤

κB

log k + (k/d) − log
√
d
≤ κB

2d

k
.

Consequently, it holds that for all sufficiently large k,

1

2d
≤ dist(wk,F∞)

glog(dist(wk,Klogdet))
≤ κB.

Similar to the argument in Remark 4.3, we conclude that the choice of glog is tight.

Using Theorem 4.11 and Theorem 4.12 in combination with [36, Lemma 3.9], we

deduce the following one-step facial residual function for Klogdet and n.

Corollary 4.14. Let n = (0,ny,nZ) ∈ ∂K∗
logdet with ny ≥ 0 and nZ ≻ 0 such that

F∞ = Klogdet ∩ {n}⊥.
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(i) If ny > 0, let γn,t be as in (4.23) with F = F∞ and g = | · |. Then the function

ψK,n(ϵ, t) := max {ϵ, ϵ/∥n∥} + max
{

2, 2γ−1
n,t

}
(ϵ+ max {ϵ, ϵ/∥n∥})

is a one-step facial residual function for Klogdet and n.

(ii) If ny = 0, let γn,t be as in (4.23) with F = F∞ and glog defined in (4.31). Then

the function

ψK,n(ϵ, t) := max {ϵ, ϵ/∥n∥} + max
{

2, 2γ−1
n,t

}
glog (ϵ+ max {ϵ, ϵ/∥n∥})

is a one-step facial residual function for Klogdet and n.

4.2.4 Fr: the family of 1-dimensional faces

Theorem 4.15 (Hölderian error bound concerning Fr). Let n = (nx,nx(log det(−nZ/nx)+

d),nZ) ∈ ∂K∗
logdet with nx < 0 and nZ ≻ 0 such that Fr = Klogdet ∩ {n}⊥. Let η > 0

and let γn,η be defined as (4.23) with F = Fr and g = | · | 12 . Then γn,η ∈ (0,∞] and

dist(q,Fr) ≤ max{2η
1
2 , 2γ−1

n,η} · (dist(q,Klogdet))
1
2 ∀q ∈ {n}⊥ ∩ B(η). (4.45)

Proof. If γn,η = 0, in view of [36, Lemma 3.12], there exists v̂ ∈ Fr and sequences

{vk}, {wk}, {uk} being defined as those therein, with the cone being Klogdet and the

face being Fr, such that (4.24) holds with g = | · | 12 . We consider two different cases.

(i) vk ∈ Fd infinitely often, i.e., vk
y = 0 infinitely often (wherefore v̂ = 0);

(ii) vk /∈ Fd for all large k, i.e., vk
y > 0 for all large k.

(i) If vk
y = 0 infinitely often, by extracting a subsequence if necessary, we may

assume that

vk = (vk
x, 0,v

k
Z) with vk

x ≤ 0,vk
Z ⪰ 0 for all k.

Combining this with the definition of n, we have

|⟨n,vk⟩| =|nxv
k
x + tr(nZv

k
Z)| = −nx|vk

x| + tr(nZv
k
Z) ≥ −nx|vk

x| + λmin(nZ) tr(vk
Z)
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≥min{−nx, λmin(nZ)}(|vk
x| + tr(vk

Z)) ≥ min{−nx, λmin(nZ)}∥vk∥.

Here, we recall that tr(nZv
k
Z) ≥ 0, λmin(nZ) > 0, tr(vk

Z) ≥ 0.

Since projections are non-expansive, we have ∥wk∥ ≤ ∥vk∥. Moreover, since

0 ∈ Fr, we have dist(·,Fr) ≤ ∥ · ∥. Thus,

∥wk − uk∥ =dist(wk,Fr) ≤ ∥wk∥ ≤ ∥vk∥

≤ 1

min{−nx, λmin(nZ)}
|⟨n,vk⟩| =

∥n∥
min{−nx, λmin(nZ)}

∥wk − vk∥.

This display shows that (4.24) for g = | · | does not hold in this case. Since |t|1/2 ≥ |t|

holds for small t > 0, we conclude that (4.24) for g = | · |1/2 does not hold as well.

(ii) If vk
y > 0 for all large k, by passing to a subsequence if necessary, we can

assume that

vk = (vk
y log det(vk

Z/v
k
y ),vk

y ,v
k
Z) with vk

y > 0,vk
Z ≻ 0, for all k.

Thus, we have

∥wk − vk∥ =
|⟨n,vk⟩|
∥n∥

, (4.46)

and

⟨n,vk⟩ = nxv
k
y log det(vk

Z/v
k
y ) + nxv

k
y (log det(−nZ/nx) + d) + tr(nZv

k
Z)

= nxv
k
y

(
log det

(
−vk

ZnZ

vk
ynx

)
+ d+ tr

(
vk
ZnZ

vk
ynx

))

= nxv
k
y

(
log det

(
−n

1
2
Zv

k
Zn

1
2
Z

vk
ynx

)
+ d+ tr

(
n

1
2
Zv

k
Zn

1
2
Z

vk
ynx

))

= nxv
k
y

d∑
i=1

(
log

(
λi

(
−n

1
2
Zv

k
Zn

1
2
Z

vk
ynx

))
+ 1 + λi

(
n

1
2
Zv

k
Zn

1
2
Z

vk
ynx

))

= nxv
k
y

d∑
i=1

(
tki + 1 − et

k
i

)
≥ 0, (4.47)
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where tki := log

(
λi

(
−n

1
2
Z vk

Zn
1
2
Z

vk
ynx

))
for i = 1, 2, . . . , d and k ≥ 1, and the nonnega-

tivity comes from the observation that t + 1 − et ≤ 0 for all t ∈ IR and the facts

that nx < 0 and vk
y > 0; recall that here vk

Z ≻ 0,nZ ≻ 0,nx < 0, and vk
y > 0, then

λi(−
n

1
2
Z vk

Zn
1
2
Z

vk
ynx

) > 0 for all i, and hence tki is well-defined.

Next, we turn to compute ∥wk − uk∥. Using Lemma 2.4, (4.9) and (4.10), one

can see for all k,

∥wk − uk∥ ≤ dist(vk,Fr)
(a)

≤ ∥vk − vk
yfr∥

= ∥(vk
y log det(vk

Z/v
k
y ) − vk

y log det(−nxn
−1
Z ), 0,vk

Z + vk
ynxn

−1
Z )∥

≤ vk
y (| log det(−(n

1
2
Zv

k
Zn

1
2
Z)/(vk

ynx))| + ∥vk
Z/v

k
y + nxn

−1
Z ∥F )

≤ vk
y

((
d∑

i=1

|tki |

)
+ ∥vk

Z/v
k
y + nxn

−1
Z ∥F

)
,

where (a) holds because vk
yfr ∈ Fr. We remark that vk

Z/v
k
y + nxn

−1
Z is a symmetric

matrix. Let

Ak :=
vk
Z

vk
y

+ nxn
−1
Z , B := −nxn

−1
Z , Dk :=

vk
ZnZ

vk
ynx

, D̂k :=
n

1
2
Zv

k
Zn

1
2
Z

vk
ynx

.

We notice that Dk = n
− 1

2
Z D̂kn

1
2
Z and et

k
i = λi(−D̂k) for i = 1, 2, . . . , d and k ≥ 1.

Then, we have for all k,

∥Ak∥F ≤ ∥Ak∥∗ = ∥Ak(nZ/nx)(nxn
−1
Z )∥∗ = ∥(Dk + I)B∥∗

(a)
= sup

∥W∥2≤1

tr(W (Dk + I)B) = sup
∥W∥2≤1

tr
(
BW

(
n

− 1
2

Z D̂kn
1
2
Z + I

))

= sup
∥W∥2≤1

tr
(
n

1
2
ZBWn

− 1
2

Z (D̂k + I)
) (b)

≤ ∥D̂k + I∥∗ sup
∥W∥2≤1

∥n
1
2
ZBWn

− 1
2

Z ∥2

= β

d∑
i=1

|λi(D̂k + I)| = β

d∑
i=1

|λi(D̂k) + 1| = β

d∑
i=1

|λi(−D̂k) − 1| = β

d∑
i=1

|etki − 1|,
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where β := sup∥W∥2≤1 ∥n
1
2
ZBWn

− 1
2

Z ∥2 ∈ (0,∞), and (a) and (b) hold since the dual

norm of nuclear norm ∥ · ∥∗ is the spectral norm ∥ · ∥2. Hence, we obtain that for all

k,

∥wk − uk∥ ≤ vk
y

(
d∑

i=1

|tki | + β|etki − 1|

)
. (4.48)

Before moving on, we define two auxiliary functions and discuss some useful

properties. Define

h(t) := t+ 1 − et and g(t) := |t| + β|et − 1|. (4.49)

We observe that

h(t) = 0 ⇐⇒ t = 0,

lim
t→∞

h(t) = lim
t→−∞

h(t) = −∞,

h′(t) = 1 − et, h′(0) = 0,

h′′(t) = −et, h′′(0) = −1.

(4.50)

In addition, g(t) ≥ 0 for all t ∈ IR and g(t) = 0 if and only if t = 0.

Now, recall from the setting of {vk} that vk → v̂ and ⟨n,vk⟩ → 0. This and the

formula of ⟨n,vk⟩ in (4.47) reveal that we need to consider the following two cases:

(I) lim infk→∞
∑d

i=1 h(tki ) = 0;

(II) lim infk→∞
∑d

i=1 h(tki ) ∈ [−∞, 0).

For notational simplicity, we define tk := (tki )di=1 for all k.

(I) Without loss of generality, by passing to a further subsequence, we assume

that limk→∞
∑d

i=1 h(tki ) = 0. Combining this assumption and the fact that h(t) ≤ 0

for all t ∈ IR with (4.50), we know that tk → 0. Now, consider the Taylor expansion

of h(t) at t = 0, that is,

h(t) = −0.5t2 +O(|t|3), t→ 0.
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It follows that there exists ϵ > 0 such that for any t satisfying |t| < ϵ, h(t) ≤

−0.25t2 ≤ 0. Thus, we have for all large k that,

0 ≤
d∑

i=1

0.25(tki )2 ≤
d∑

i=1

|h(tki )|. (4.51)

We can deduce the lower bound of ∥wk − vk∥ 1
2 for sufficiently large k as follows:

∥wk − vk∥
1
2

(a)
=

|⟨n,vk⟩| 12
∥n∥ 1

2

(b)
=

|nx|
1
2 |vk

y |
1
2

∥n∥ 1
2

(
d∑

i=1

|h(tki )|

) 1
2

(c)

≥
|nx|

1
2 |vk

y |
1
2

2∥n∥ 1
2

(
d∑

i=1

(tki )2

) 1
2

(d)

≥
(|nx||vk

y |)
1
2

2(d∥n∥)
1
2

(
d∑

i=1

|tki |

)
,

where (a) comes from (4.46), (b) comes from (4.47) and (4.49), (c) holds by (4.51),

(d) comes from the root-mean inequality.

Next, to derive a bound for ∥wk − uk∥, we shall relate |etki − 1| to |tki |. To this

end, notice that limt→0(e
t − 1)/t = 1. Then, there exists C1 > 0 such that for any

i = 1, 2, . . . , d,

|etki − 1| ≤ C1|tki | for sufficiently large k.

Therefore, by (4.48), for all sufficiently large k,

∥wk − uk∥ ≤ vk
y (βC1 + 1)

d∑
i=1

|tki |.

We thus conclude that

lim
k→∞

∥wk − vk∥ 1
2

∥wk − uk∥
≥ lim inf

k→∞

(|nx||vk
y |)

1
2

2(d∥n∥)
1
2

(
∑d

i=1 |tki |)
vk
y (βC1 + 1)(

∑d
i=1 |tki |)

(a)

≥ |nx|
1
2

2(d∥n∥η)
1
2 (βC1 + 1)

> 0,

where (a) holds since 0 < vk
y ≤ ∥vk∥ ≤ η. This contradicts (4.24) with | · | 12 in place

of g and hence this case cannot happen.
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(II) In this case, in view of (4.50), by passing to a further subsequence if necessary,

we can assume that there exist ϵ > 0 and i0 such that |tki0| ≥ ϵ for all large k, that

is, g(tki0) > 0 for all large k. Then, ∥tk∥∞ ≥ ϵ for all large k. Now, consider the

following function

H(t) :=

{∑d
i=1 |h(ti)|∑d
i=1 g(ti)

if ∥t∥∞ ≥ ϵ,

∞ otherwise,

where h is defined as in (4.49). Since ∥t∥∞ ≥ ϵ implies g(ti) > 0 for some i, we see

that H is well-defined. Moreover, one can check that H is lower semi-continuous and

never zero.

We claim that inf H > 0. Granting this, we have

lim
k→∞

∥wk − vk∥ 1
2

∥wk − uk∥
≥ lim inf

k→∞

∥wk − vk∥
∥wk − uk∥

(a)

≥ lim inf
k→∞

|nx|
∥n∥

∑d
i=1 |h(tki )|∑d
i=1 g(tki )

(b)
= lim inf

k→∞

|nx|
∥n∥

H(tk) ≥ |nx|
∥n∥

inf H > 0,

where (a) comes from (4.46), (4.47), (4.48) and the definition of h and g in (4.49), (b)

holds thanks to the definition of H. The above display contradicts (4.24) with | · | 12 in

place of g and hence this case cannot happen. Therefore, we obtain that γn,η ∈ (0,∞]

with g = | · | 12 . Together with [36, Theorem 3.10], we deduce that (4.45) holds.

Now, it remains to show that inf H > 0. We claim that it suffices to prove

lim inf∥t∥→∞H(t) > 0 because H is lower semi-continuous and never zero. Suppose,

for the sake of contradiction, that inf H = 0. Then, there exists a sequence {ζl} such

that H(ζl) → 0. If {ζl} is unbounded, we can find a subsequence {ζlk} such that

∥ζlk∥ → ∞ and H(ζlk) → 0 holds, which would contradict lim inf∥t∥→∞H(t) > 0.

So {ζl} must be bounded and passing to a subsequence we may assume it con-

verges to some ζ̄. By lower semicontinuity, we have H(ζ̄) ≤ lim inft→ζ̄ H(t) ≤

liml→∞H(ζl) = 0. However, H is always positive, so this cannot happen either.

Therefore, lim inf∥t∥→∞H(t) > 0 implies inf H > 0.
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To this end, consider a sequence {ζl} such that ∥ζl∥ → ∞ and

lim
l→∞

H(ζl) = lim inf
∥t∥→∞

H(t),

then there exists at least one i0 ∈ {1, 2, . . . , d} such that |ζ li0| → ∞. Consequently,

|h(ζ li0)| → ∞ and g(ζ li0) → ∞, and so both
∑d

i=1 |h(ζ li)| and
∑d

i=1 g(ζ li) tend to ∞.

Passing to a subsequence, we can assume that for each i, liml→∞ ζ li ∈ [−∞,∞] exists

and we can split ζl into three parts:

(1) ζ li → ζ i ∈ IR \ {0}, then |h(ζ li)| → |h(ζ i)| ≠ 0, g(ζ li) → g(ζ i) ̸= 0. Denote the set

of indices of these components by IC
ζ where C refers to “constant”.

For any i ∈ IC
ζ , we have

lim
l→∞

|h(ζ li)|
g(ζ li)

=
|h(ζ i)|
g(ζ i)

> 0.

Thus, there exists a constant CC > 0 such that for all sufficiently large l and all

i ∈ IC
ζ ,

|h(ζ li)| ≥ CCg(ζ li).

(2) ζ li → 0, then |h(ζ li)| → 0, g(ζ li) → 0. Denote the set of indices of these compo-

nents by I0
ζ .

(3) |ζ li | → ∞, then |h(ζ li)| → ∞, g(ζ li) → ∞. Denote the set of these components

by I∞
ζ . We have I∞

ζ ̸= ∅, since otherwise ∥ζl∥ ̸→ ∞.

For any i ∈ I∞
ζ , we notice that

lim inf
l→∞

|h(ζ li)|
g(ζ li)

≥ min

{
lim inf
t→−∞

|h(t)|
g(t)

, lim inf
t→∞

|h(t)|
g(t)

}
= min

{
1,

1

β

}
:= β̂ > 0.

Thus, for all sufficiently large l and all i ∈ IC
ζ ,

|h(ζ li)| ≥
β̂

2
g(ζ li).
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Combining the above three cases, we obtain

lim inf
∥t∥→∞

H(t) = lim
l→∞

H(ζl)

≥ lim
l→∞

CC

∑
i∈IC

ζ
g(ζ li) + β̂

2

∑
i∈I∞

ζ
g(ζ li) +

∑
i∈I0

ζ
g(ζ li)∑d

i=1 g(ζ li)
+

∑
i∈I0

ζ
|h(ζ li)| −

∑
i∈I0

ζ
g(ζ li)∑d

i=1 g(ζ li)

(a)

≥ min

{
CC ,

β̂

2
, 1

}
> 0, (4.52)

where (a) comes from the fact that

lim
l→∞

∑
i∈I0

ζ
|h(ζ li)| −

∑
i∈I0

ζ
g(ζ li)∑d

i=1 g(ζ li)
= 0,

which holds because the numerator tends to 0 while the denominator tends to infinity.

Remark 4.16 (Tightness of (4.45)). Let n be defined as in Proposition 4.1.(a)) and

vk =

(
log det(−nxn

−1
Z ) +

1

k
, 1, e

1
dk (−nxn

−1
Z )

)
, wk = P{n}⊥(vk), uk = PFr(w

k),

so that Fr = Klogdet ∩ {n}⊥, {vk} ⊂ Klogdet and there exists η > 0 such that {wk} ⊆

B(η). Then we have

∥wk − vk∥ =
|⟨n,vk⟩|
∥n∥

=
−nx| 1k + d− de

1
dk |

∥n∥
.

For the sake of notational simplicity, we denote ξ := 1
k
, then

∥wk − vk∥ =
−nx|ξ + d− de

ξ
d |

∥n∥
. (4.53)

Consider the Taylor expansion of ξ + d− de
ξ
d with respect to ξ at 0, we have

ξ + d− de
ξ
d = ξ + d− d

(
1 +

ξ

d
+

ξ2

2d2

)
+ o(ξ2) = − ξ2

2d
+ o(ξ2), as ξ → 0. (4.54)
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Next, upon invoking the definitions of Fr and fr (see (4.9) and (4.10), respec-

tively), we can see that

∥vk − uk∥2 = dist2(vk,Fr) = min
y≥0

∥vk − yfr∥2

= min
y≥0

∥∥∥((1 − y) log det(−nxn
−1
Z ) + ξ, 1 − y,−(e

ξ
d − y)nxn

−1
Z

)∥∥∥2
= min

y≥0

{[
(1 − y) log det(−nxn

−1
Z ) + ξ

]2
+ (1 − y)2 + (e

ξ
d − y)2n2

x∥n−1
Z ∥2F︸ ︷︷ ︸

F (y)

}

For the sake of brevity, we denote µ := log det(−nxn
−1
Z ) and ν := n2

x∥n−1
Z ∥2F . Then

we have

F (y) = (µ(y − 1) − ξ)2 + (y − 1)2 + ν(y − e
ξ
d )2.

Noting

F ′(y) = 2µ (µ(y − 1) − ξ) + 2(y − 1) + 2ν(y − e
ξ
d )

= (2µ2 + 2 + 2ν)y − (2µ2 + 2 + 2µξ + 2νeξ/d),

we know that F attains its minimum at ȳ = µ2+1+µξ+νeξ/d

µ2+ν+1
, which is larger than 0 for

sufficiently large k (or, equivalently, sufficiently small ξ).

Next we move towards the analysis of ∥vk − uk∥2 = F (ȳ). Consider the Taylor

expansion of ȳ − 1 and ȳ − e
ξ
d with respect to ξ at 0, we have that

ȳ − 1 =
µ2 + 1 + µξ + νeξ/d

µ2 + ν + 1
− 1 =

µξ + ν(e
ξ
d − 1)

µ2 + ν + 1
=

µξ + ν ξ
d

µ2 + ν + 1
+ o(ξ),

and

ȳ− e
ξ
d = ȳ− 1− ξ

d
+ o(ξ) =

(
µ+ ν

d

µ2 + ν + 1
− 1

d

)
ξ+ o(ξ) = −

(
µ2

d
− µ+ 1

d

µ2 + ν + 1

)
ξ+ o(ξ).

Then, for all sufficiently large k,

∥vk − uk∥2 = F (ȳ)
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= (µ(ȳ − 1) − ξ)2 + (ȳ − 1)2 + ν(ȳ − e
ξ
d )2

=

(
µ2 + µν

d

µ2 + ν + 1
− 1

)2

ξ2 +

(
µ+ ν

d

µ2 + ν + 1

)2

ξ2 + ν

(
µ2

d
− µ+ 1

d

µ2 + ν + 1

)2

ξ2 + o(ξ2)

=

[(
ν(1 − µ

d
) + 1

µ2 + ν + 1

)2

+

(
µ+ ν

d

µ2 + ν + 1

)2

+ ν

(
µ2

d
− µ+ 1

d

µ2 + ν + 1

)2

︸ ︷︷ ︸
Cr≥0

]
ξ2 + o(ξ2). (4.55)

Next we show Cr > 0. Suppose that µ2

d
− µ + 1

d
= 0, then9 µ = d±

√
d2−4
2

> 0 and

µ(1− µ
d
) = 1

d
. This implies that 1− µ

d
> 0 and hence ν(1− µ

d
)+1 > 0 thanks to ν > 0.

Therefore, we can see that Cr > 0 because either µ2

d
− µ+ 1

d
̸= 0 or ν(1− µ

d
) + 1 ̸= 0.

Using Lemma 2.4, (4.53), (4.54) and (4.55), we deduce that

Lr := lim
k→∞

∥wk − uk∥
∥wk − vk∥ 1

2

= lim
k→∞

√
∥vk − uk∥2 − ∥wk − vk∥2

∥wk − vk∥ 1
2

= lim
k→∞

∥n∥ 1
2(

−nx| 1k + d− de
1
dk |
) 1

2

√
∥n∥2∥vk − uk∥2 − ( 1

k
+ d− de

1
dk )2n2

x

∥n∥

=
1

∥n∥ 1
2

lim
k→∞

√
∥n∥2
−nx

∥vk − uk∥2

| 1
k

+ d− de
1
dk |

+
∣∣∣1
k

+ d− de
1
dk

∣∣∣ · nx

=
1

∥n∥ 1
2

lim
ξ→0

√
∥n∥2
−nx

Crξ2 + o(ξ2)
ξ2

2d
+ o(ξ2)

+ nx

(
ξ2

2d
+ o(ξ2)

)

=
1

∥n∥ 1
2

√
2∥n∥2Crd

−nx

=

√
2∥n∥Crd

−nx

> 0. (4.56)

By contrast, applying (4.45), there exists κB > 0 such that

∥wk − uk∥ = dist(wk,Fr) ≤ κBdist(wk,Klogdet)
1
2 ≤ κB∥wk − vk∥

1
2 .

This shows that Lr ≤ κB < ∞. Moreover, from (4.56), for large enough k, we have

9 Note that this quadratic in µ has real roots because d ≥ 2; see the discussions following (4.4).
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∥wk − uk∥ ≥ Lr

2
∥wk − vk∥ 1

2 . Therefore, for sufficiently large k, we have

Lr

2
∥wk − vk∥

1
2 ≤ dist(wk,Fr) ≤ κBdist(wk,Klogdet)

1
2 ≤ κB∥wk − vk∥

1
2 .

Consequently, it holds that for all large enough k,

Lr

2
≤ dist(wk,Fr)

dist(wk,Klogdet)
1
2

≤ κB.

Similar to the argument in Remark 4.3, we conclude that the choice of | · | 12 is tight.

By Theorem 4.15, we have the following one-step facial residual function for

Klogdet and n.

Corollary 4.17. Let n = (nx,nx(log det(−nZ/nx)+d),nZ) ∈ ∂K∗
logdet with nx < 0

and nZ ≻ 0 such that Fr = Klogdet ∩ {n}⊥. Let γn,t be as in (4.23) with F = Fr and

g = | · | 12 . Then the function ψK,n : IR+ × IR+ → IR+ defined by

ψK,n(ϵ, t) := max {ϵ, ϵ/∥n∥} + max
{

2t
1
2 , 2γ−1

n,t

}
(ϵ+ max {ϵ, ϵ/∥n∥})

1
2

is a one-step facial residual function for Klogdet and n.

4.3 Error bounds

In this section, we combine all the previous analysis to deduce the error bound

concerning (Feas) with K = Klogdet. We proceed as follows.

We consider (Feas) with K = Klogdet and we suppose (Feas) is feasible. We also

let d := dPPS(Klogdet,L + a), where we recall that dPPS denotes the distance to the

PPS condition, i.e., the minimum number of facial reduction steps necessary to find

a face F such that F and L + a satisfy the PPS condition; see [40, Section 2.4.1].

In particular, invoking [40, Proposition 5], there exists a chain of faces

Fd+1 ⊊ Fd ⊊ · · · ⊊ F2 ⊊ F1 = Klogdet (4.57)
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together with n1, . . . ,nd satisfying the following properties:

(a) For all i ∈ {1, . . . , d} we have

ni ∈ F∗
i ∩ L⊥ ∩ {a}⊥ and Fi+1 = Fi ∩ {ni}⊥.

(b) Fd+1∩ (L+a) = Klogdet∩ (L+a) and Fd+1 and L+a satisfy the PPS condition.

In order to get the final error bound for (Feas) we aggregate the one-step facial

residual functions for each of Fi and ni using the recipe described in [36, Theo-

rem 3.8].

So far, we only computed facial residual functions for F1 = Klogdet and n1 ∈

K∗
logdet, but we need the ones for the other Fi and ni. Fortunately, thanks to the

facial structure of Klogdet, if d ≥ 2, then F2 must be a face of the form Fd or F# (see

(4.11) and (4.12)). This is because all other possibilities correspond to non-exposed

faces or faces of dimension 1 (for which the PPS condition is automatically satisfied).

F# and Fd are symmetric cones [18, 19] since they are linearly isomorphic to a

direct product of IR− and a face of a positive semidefinite cone (which are symmetric

cones on their own right, e.g., [40, Proposition 31]). The conclusion is that for the

faces “down the chain” we can compute the one-step facial residual functions using

the general result for symmetric cones given in [40, Theorem 35]. We note this as a

lemma.

Lemma 4.18. Let F̄ be a face of Fd. Let n ∈ F̄∗ ∩ L⊥ ∩ {a}⊥. Then, there exists

a constant κ > 0 such that the function

ψF̄ ,n(ϵ, t) := κϵ+ κ
√
ϵt

is a one-step facial residual function for F̄ and n.

Proof. Follows by invoking [40, Theorem 35] with K := F̄ , F := F̄ and z := n.
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We are now positioned to prove our main result in this paper.

Theorem 4.19 (Error bounds for (Feas) with K = Klogdet). Consider (Feas) with

K = Klogdet. Suppose (Feas) is feasible and let d := dPPS(Klogdet,L+a) and consider

a chain of faces as in (4.57). Then d ≤ min{d − 1, dim (L⊥ ∩ {a}⊥)} + 1 and the

following items hold:

(i) If d = 0, then (Feas) satisfies a Lipschitzian error bound.

(ii) If d = 1, we have F2 = {0} or F2 = Fd or F2 = F# or F2 = Fr or F2 = F∞.

(a) If F2 = {0}, then (Feas) satisfies a Lipschitzian error bound.

(b) If F2 = Fd, then (Feas) satisfies an entropic error bound.10

(c) If F2 = F# and n1
y > 0, then (Feas) satisfies a Hölderian error bound with

exponent 1
2
. If F2 = F# and n1

y = 0, then (Feas) satisfies a log-type error

bound.10

(d) If F2 = Fr, then (Feas) satisfies a Hölderian error bound with exponent 1
2
.

(e) If F2 = F∞ and n1
y > 0, then (Feas) satisfies a Lipschitzian error bound.

If F2 = F∞ and n1
y = 0, then (Feas) satisfies a log-type error bound.10

(iii) If d ≥ 2 we have F2 = Fd or F2 is of form F#. Then, an error bound with

residual function h ◦ h ◦ · · · ◦ h︸ ︷︷ ︸
d−1

◦ ḡ holds, where h = | · | 12 and

ḡ =


gd if F2 = Fd,

glog if F2 = F# and n1
y = 0,

| · | 12 if F2 = F# and n1
y > 0.

(4.58)

10 An entropic error bound is an error bound with the residual function being gd, see Definition 2.2.
A log-type error bound refers to an error bound with the residual function being glog. See (4.25)
and (4.31) for the definitions of gd and glog, respectively.
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Proof. Following the discussion so far, if d ≥ 2, it is because F2 = Fd or F2 is of the

form F#. Also, as remarked previously, in this case, F2 is a symmetric cone that is

a direct product of a polyhedral cone (of rank at most 1) and a symmetric cone of

rank at most d. Considering the conic feasibility problem with K = F2, it follows

from [40, Proposition 24, Remark 39] that

dPPS(F2,L + a) ≤ min{d− 1, dim (L⊥ ∩ {a}⊥)}.

Hence, by adding the first facial reduction step to get F2, we obtain the bound on

d. Next, we examine the possibilities for d.

(i) If d = 0, then (Feas) satisfies the PPS condition and so a Lipschitzian error

bound holds because of [7, Corollary 6].

(ii) If d = 1, then the possibilities for F2 are {0}, Fd, F#, F∞ or Fr. Then, except

for the case {0}, the error bound then follows from [36, Theorem 3.8] and the

facial residual functions computed in Corollaries 4.4, 4.10, 4.14 and 4.17. The

case F2 = {0} follows from [40, Proposition 27].

(iii) In this case, it must hold that F2 = Fd or F2 is of form F#. Both cases,

as discussed previously, correspond to symmetric cones. The error bound is

obtained by invoking [36, Theorem 3.8] and using the facial residual functions

constructed in Corollaries 4.4 and 4.10 and Lemma 4.18.

From Theorem 4.19 we see the presence of non-Hölderian behaviour in the cases

of entropic and logarithmic error bounds. A similar phenomenon was observed in the

study of error bounds for the exponential cone, see [36, Section 4.4]. The analysis of

convergence rates of algorithms under non-Hölderian error bounds is still a challenge

(see [38, Sections 5 and 6]) and Klogdet is thus another interesting test bed for research

ideas on this topic.
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Chapter 5

Concluding Remarks

In this thesis, we establish the optimal error bounds for conic linear feasibility prob-

lems involving generalized power cones and log-determinant cones. Their appli-

cations in algebraic structures are also explored. Specifically, we characterize the

automorphism group of the generalized power cone, which was unknown until our

work. Utilizing the automorphism group, we investigate other algebraic properties

of the generalized power cone, including homogeneity, reducibility, and perfectness.

The characterization of the automorphism group of the generalized power cone is

particularly notable as it bridges analysis, geometry, and algebra. Furthermore, the

generalized power cone is closely related to nonnegativity problems [48], providing

possible directions for future research related to the generalized power cone.

Similar exploration in geometry also apply to the log-determinant cone. For

instance, the likelihood geometry of determinantal point processes [20] requires ex-

tensive calculations and cannot be easily extended to high-dimensional cases. Could

our results help progress this problem? Additionally, how can we generalize the error

bounds for the log-determinant cone from positive semidefinite cones to Euclidean

Jordan algebras [19]?

Returning to the framework employed in this thesis, several potential directions

emerge. One natural question is:
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Can we establish some calculus rules for one-step facial residual func-

tions for certain closed convex cones?

For instance, the generalized power cone can be viewed as a specific composition of

two closed convex cones, and the log-determinant cone can be considered a spectral

extension of the exponential cone. Are there any connections between one-step facial

residual functions for these cones?

The generalization of the classical facial reduction algorithms, typically applicable

to the intersection of an affine subspace and a closed convex cone, to the intersections

of two general closed convex sets is an interesting prospect. Achieving this would

simplify the regularization of convex optimization problems, as lifting would no longer

be necessary. Additionally, it might enable us to establish an extended dual, as

discussed in [56].
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[67] Levent Tunçel and Song Xu. On homogeneous convex cones, the Carathéodory
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