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Abstract 

Nasopharyngeal carcinoma (NPC) is a malignant neoplasm that arises from the 

mucosal epithelium of the nasopharynx. In the field of clinical practice, radiation therapy 

(RT) remains the primary treatment modality for NPC patients. However, with the 

increasing emphasis on personalized treatment approaches and advancements in artificial 

intelligence (AI), researchers have started utilizing AI-based cancer imaging analysis, 

which combines clinical images with AI techniques, to enhance various clinical tasks 

related to NPC patients. Predicting outcomes, such as overall survival (OS) and incidence 

of toxicity after RT, for NPC patients can assist clinicians in assessing the risk profile based 

on tumor characteristics. This information permits identification of patients with poor 

prognosis, who may benefit from escalated therapy or inclusion in clinical trials. 

Conversely, patients with a favorable prognosis, if identified in advance, could receive de-

escalated therapy, minimizing the physiological and financial burdens associated with 

cancer treatment. However, toxicity predictions, specifically for the incidence of acute oral 

mucositis (AOM), are mainly using single sources of data and has limited predictive 

capability of models. Similarly, studies related to survival prediction models often lack 

external validation, especially international validation, calling for the development of more 

generalizable models.  

The aims in our studies are focused mainly on two parts, to investigate the impact 

of radiomics, dosiomics, extracted from multi-regions and multi-sources, and clinical data 

on the prediction of severe acute oral mucositis in patients undergoing radiotherapy for 

NPC, and to develop CT-based generalizable prognostic model with perturbation in an 

international dataset for the prediction of five-year OS of NPC patients following intensity-

modulated radiation therapy (IMRT).  

For the prediction of AOM, pathological validated NPC patients were 

retrospectively included from Queen Elizabeth Hospital (QEH) in Hong Kong. Radiomics 

features (RFs) and dosiomics features were extracted from various volume of interests 



(VOIs): Gross tumor volume of primary NPC tumor (GTVp), metastatic lymph nodes area 

(GTVn), regions of nodal planning target volume with the prescribed dose level of 70Gy 

(PTVn_70Gy), PTVn with and the prescribed dose level of 60Gy (PTVn_60Gy), using 

contrast enhanced computed tomography (CECT), cT1-weighted imaging (cT1WI), T2-

weighted imaging (T2WI), and dose-volume histogram (DVH) data. Additionally, relevant 

clinical variables were incorporated into the analysis. Logistic Regression (LR), Gaussian 

Naive Bayes (GNB) and eXtreme Gradient Boosting (XGBoost) models were developed, 

considering different combinations of data extracted from distinct VOIs and image 

modalities. The area under the curve (AUC) of the receiver operating characteristic (ROC) 

was used to assess the performance of the models. For the prediction of OS, patients were 

sourced from both a private database in Hong Kong and the publicly available RADCURE 

database in Canada. RFs were extracted from GTVp in computed tomography (CT) 

images. Perturbations of the images were employed to select robust RFs. Conventional 

machine learning models and a multilayer perceptron (MLP) model were developed, 

integrating the RFs with clinical variables to predict the 5-year OS of NPC patients. The 

AUC of the ROC was used as a metric to evaluate the performance of the models. 

For the first study, the best performing GNB model with 10-fold cross validation 

AUC of 0.81±0.1 was developed for the prediction of AOM with radiomics and dosiomics 

features extracted from primary tumor area. For the second study, the best performing MLP 

score/LR model achieved an internal validation AUC of 0.734 [95% confidence interval 

(95% CI): 0.765-0.865] and an external validation AUC of 0.735 (95% CI: 0.681-0.783). 

Our studies have shown that clinical images hold promise for predicting the 

occurrence of AOM and OS in NPC patients. In particular, utilizing multimodal data 

sources has the potential to enhance the performance of the prediction model for AOM. 

Additionally, deep learning model have demonstrated its effectiveness in handling data 

from various institutions. These findings provide valuable insights and lay the groundwork 

for further research in predicting outcomes for NPC patients, particularly in the context of 

patient screening. 
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Chapter 1.  

Introduction 

1.1. Background 

Over the past decades, the establishment of standardized scanning protocol for the 

clinical imaging and the implementation of computer assisted detection (CAD) system for 

the diagnosis of diseases have provided a solid foundation for the development of 

quantitative imaging analysis [1]. Currently, in the era of artificial intelligence (AI), which 

involves computer systems emulating complex tasks performed by humans, such as 

reasoning, decision-making, and problem-solving, AI-enabled techniques have 

revolutionized the field of advanced quantitative imaging analysis [2]. Numerous studies 

have employed AI-enabled techniques to optimize the diagnosis, treatment, and outcome 

prediction for diseases, especially in oncology field. Among these explorations, radiomics, 

which involving extraction and selection of imaging biomarkers from clinical images, have 

emerged as mainstream methods for quantitative imaging analysis, holding tremendous 

potential in assisting precision treatment and personalized medicine. Radiomics can offer 

versatile and powerful tools for comprehensive analysis and interpretation of medical 

images. The application of radiomics in oncology commonly involves two categories based 

on the final tasks of the study: classification tasks and prediction of clinical outcomes [3, 

4].  Classification tasks are focused on dividing a population into categories, such as 

separating individuals into low or high risk of metastasis [5]. Prediction of clinical 
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outcomes is based on time-to-event analysis, for example, predict the incidence of lymph 

node metastasis [6]. The radiomics converts the images into extractable high through-put 

data, offering noninvasive imaging biomarkers with significant potential to assist the 

screening, diagnosis, treatment and patient care in clinical practice. 

1.2. Imaging Biomarker                                                                                                                                    

According to the National Cancer Institute (NCI), the definition of biomarker is “A 

biological molecule found in blood, other body fluids, or tissues that is a sign of a normal 

or abnormal process, or of a condition or disease” [7]. However, this definition of 

biomarkers with biological molecules limits their scope to the biological field, overlooking 

their use in other research areas such as imaging biomarkers and digital biomarkers [8-10]. 

In 2016, the U.S. Food and Drug Administration and the National Institutes of Health 

(FDA–NIH) Biomarker Working Group issued a consensus statement to promote the 

consistency of this terminology. The statement expanded the definition of biomarkers to 

include “molecular, histologic, radiographic or physiologic characteristics are examples of 

biomarkers” [11]. These characteristics are considered biomarkers when they are measured 

as indicators of normal biological processes, pathogenic processes, or responses to an 

exposure or intervention, including therapeutic interventions [12].  

In contrast to biological biomarkers that rely on blood or Immunohistochemistry 

(IHC) samples, imaging biomarkers offer a noninvasive approach for oncology patients. 

Especially for patients undergoing radiotherapy (RT), routine access to medical images 

such as CT or MRI makes imaging biomarkers highly applicable for individualized 

treatment. In medical imaging, the two main categories of AI-enabled imaging biomarkers 
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are hand-crafted radiomics features (RFs). Compared to the IHC, which could only reflect 

focal part of tumor, the radiomics have the capability to capture the information from entire 

volume of the tumor for high-throughput data analysis. 

1.2.1. Hand-crafted Radiomics Features and Dosiomics 

 In 2012, Philippe Lambin firstly published a research article which proposed the 

terminology of radiomics. The radiomics is a standard quantitative image processing and 

analysis method for medical imaging, which including four steps: data preparation, tumor 

segmentation, feature extraction and data analysis [1]. The “-omics” indicated the high 

through-put processing method involved in the radiomics [13]. Researchers from computer 

science, oncology, and radiology have developed a predefined set of representations (also 

RFs), generated by specific algorithms, to describe the particular arrangement of image 

voxel intensities or morphological information of tumors in the clinical images [14]. The 

theoretical foundation of radiomics is that physiological properties of tissues and gene-

related patterns can be captured in image intensity-based values [1]. The radiomics 

converts the images into mineable high-through put data for data analysis. (See Figure 1-

1) 
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Figure 1-1. Example of calculation of radiomics features. a. Axial CT image with contour 

mask(red) representing the region of interest (ROI) for an NPC patient; b. Three-dimensional (3D) 

volume of interest (VOIs) reconstructed from the CT images with corresponding masks, highlighting 

the primary gross tumor volume (GTVp) area; c. Cartoon example of a two-dimensional (2D) 

matrix on the tumor mask used for calculating the gray-level co-occurrence matrix (GLCM).  The 

GLCM captures the frequency and spatial relationship of different gray levels occurring together by 

analyzing the relationships between pixels' grayscale values. In the picture, the grey level of 

Hounsfield unit (HU) intensity within the tumor mask have been standardized into six grades (one 

to six). The yellow box encircles the paired pixels with grade one and two.  d. Cartoon example of 

GLCM matrix, in total there are10 paired pixels with grade one and two. The value at coordinate 

(1,2) in the GLCM matrix is 10, and the symmetric position (2,1) also has the same value (to make 

the picture clearer, not explicitly indicated in the picture). 
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The RFs are commonly utilized to quantify morphological characteristics, first-

order statistical aspects, and spatial relationships (texture) between voxels, which contain 

intensity values for medical images. In 2015, Philippe Lambin categorized RFs into three 

groups: first-order features, second-order features, and higher-order features. First-order 

features focus solely on the correlation of individual voxels, while second-order features 

consider the spatial interaction of voxels. For instance, the GLCM feature mentioned in 

Figure 1-1 is a second-order features measuring the heterogeneity/disorder by examining 

the relationship between grey levels in specific neighborhoods. Higher-order features 

encompass additional filters or mathematical transformations applied to images before 

feature extraction, providing additional information for data analysis [15].  Since 2020, 

the Image Biomarker Standardization Initiative (IBSI), an independent international 

collaboration, has been actively working on standardizing the application of RFs. Currently, 

the IBSI recommends a total of 167 original RFs (first or second order features) and eight 

filters they were able to standardized for radiomics analysis. This combination results in a 

grand total of 1336 filtered RFs (167 original RFs multiplied by eight filters). Filters are 

commonly employed in radiomics analyses to enhance and quantify clinically relevant 

characteristics and textures in medical images. These filters can result in the enlargement 

of important information such as the peritumoral region, blood vessels, contrast agent 

uptake, degree of calcification, or fibrosis, among others [16, 17].  

Dosiomics, introduced in 2017 as an extension of radiomics, involves extracting 

dose distribution characteristics to develop personalized radiotherapy plans and predict 

treatment outcomes [18]. By treating patients' 3D dose distributions as spatially and 

statistically distributed images, parameters like prescription dose, dose distribution, and 
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dose-volume histogram (DVH) can be utilized for treatment response assessment and 

prognostic analysis in cancer. Incorporating both radiology and dosimetry features 

provides comprehensive information that enhances prediction accuracy in tumor 

radiotherapy [19, 20]. 

Machine learning (ML) models always used for the prediction in radiomics and 

dosiomics. In contrast to statistical models, which rely on predefined assumptions and 

employ statistical inference to estimate model parameters based on observed data, ML 

models prioritize learning patterns and relationships directly from the data [21]. In other 

words, while statistical models solely validate predefined assumptions, ML models have 

the ability to generate personalized predictions based on the acquired patterns.  

Furthermore, ML models possess greater freedom in capturing intricate patterns and non-

linear relationships in the data to address diverse tasks. Conversely, statistical models are 

typically designed with specific assumptions regarding the underlying data distribution and 

relationships [22].  

In radiomics and dosiomics, after applying filters, thousands of features can be 

extracted from a single type of image within multiple VOIs. Before utilizing ML models 

for data analysis, it is imperative to undergo a dimension reduction (feature selection) 

process to ensure optimal performance. The dimension reduction is the process of 

searching for a low-dimensional manifold that effectively captures and represents the 

underlying structure of high-dimensional data [23]. As the number of features/variables in 

a ML model increases and/or the number of cases in the groups decreases, the likelihood 

of model overfitting increases. Overfit models have limited generalizability, which 

undermines their effectiveness.  Dimension reduction can be achieved through the use of 
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several statistical or ML methods, either individually or in combination. These methods 

include feature reproducibility analysis, collinearity analysis, algorithm-based feature 

selection, et al. The final number of features after feature selection does not have a specific 

threshold. However, it is generally recommended to have at least one-tenth of the total 

labeled data as the minimum number of features to ensure adequate representation and 

prevent overfitting [24]. 

Some RFs are sensitive to the changes of segmentation [25]. The feature 

reproducibility analysis [26], especially for segmentation involving manual contouring by 

human experts [27]. Additionally, analysis of RFs can be influenced by different 

acquisition protocols. It is better to conduct the reproducibility evaluation for data with 

different acquisition protocols[28-30]. The primary objective of the reproducibility 

analysis is to reduce dimensionality by excluding features with relatively poor 

reproducibility. The intra-class correlation coefficient (ICC) is a widely used statistical tool 

for this analysis. It is essential to consider the different types of ICC when conducting the 

analysis [31].  

The definition of collinearity is the non-independency of predictive variables. By 

keeping the most represent and dependent variables, the collinearity analysis could achieve 

the dimension reduction for the RFs  [32]. Pearson's correlation coefficient is commonly 

employed to identify redundant features, specifically those exhibiting collinearity. When 

two radiomic features demonstrate high collinearity, it is advisable to exclude the one with 

the highest collinearity with the others from the analysis. Some algorithms such as 

correlation-based feature selection algorithm was designed to solve the collinearity status, 

such as fast correlation based feature selection algorithm [33, 34]. Except for the 
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collinearity problem, the algorithm also helps with selection of features with maximum 

correlation to the classes.  

Algorithm-based feature selection is the most widely dimension reduction 

technique [35]. There are various algorithms with different functions such as random forest 

classifier (RFC) [36]. The RFC is one of the most popular and successful feature selection 

method. Random forest classifiers tackle dimensional redundancy by assessing the 

relevance of features and selecting the most informative ones with threshold settings, while 

the ensemble of decision trees mitigates the influence of correlated variables, resulting in 

improved model performance and robustness against redundant dimensions [37].  

Aside from the categorize methods of reproducibility, collinearity, and algorithm-

based methods, based on the working principles and interaction with the model, some 

articles also categorize the principal feature selection methods to three groups: filters, 

wrappers, and embedded methods [38]. Filter methods, wrapper methods, and embedded 

methods differ primarily in their evaluation criteria. Filter methods use criteria such as 

correlation coefficients or test statistics, which do not involve any specific learning 

machine, to assess feature quality. They are independent of specific learning machines, 

using statistical properties or correlation-based measures to evaluate feature quality. 

Wrapper methods utilize the performance of a learning machine trained using a given 

feature subset as the evaluation criterion. They embed feature selection into a specific 

learning machine, evaluating different feature subsets based on the performance of the 

trained model. They can employ search techniques but tend to be computationally 

expensive due to evaluating multiple subsets. Embedded methods integrate feature 

selection into the model training process, automatically selecting the best feature subset to 
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enhance model performance. They automatically select the best feature subset to enhance 

model performance and are performed during the model training process. Details in the 

Table 1-1. 

Table 1-1. Advantages and disadvantages of dimension reduction 

Types Methods Advantages &Disadvantages 

Filter Variance 
Correlation 
Chi-square 
Fisher exact/Odds ratio (OR) 
T-test/Mann–Whitney U test  
Mutual information 
(Information gain) 

Generic of methods, not 
specific to ML algorithm 
Much faster compared with 
wrapper 
Less prone to over-fitting 
 
 
 
 
 

Wrapper Forward selection 
Backward elimination 
Boruta 

On specific ML algorithm 
High computation time 
High chance of over-fitting 
 
 

Embedded LASSO 
Random Forest Embedding 
Ridge regression 

Time consuming between filter 
and wrapper 
Generally used to reduce the 
over-fitting 

Note: LASSO=Least Absolute Shrinkage and Selection Operator 

1.2.2. Machine Learning and Deep Learning 

In 1950s, John McCarthy coined the term of “AI” as using computer or machine to 

simulate the human intelligence and critical thinking [39].  There are numerous subfields 

of AI, such as ML and computer vision [40]. The definition of ML is a branch of algorithm 

that are designed to learn complex tasks and develop predictive model [41]. To further 

optimize the feature engineering steps of ML, the DL was generated [42], details in Figure 

1-2.  
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Figure 1-2. Relationship of AI, ML, and DL. Artificial intelligence (AI) aims at stimulating the 

human intelligence. Machine learning (ML) is a subfield of AI, intends to developing predictive 

model with sample data. Deep learning (DL) is a subfield of ML, designed to eliminates the feature 

engineering steps with optimal set of features from sample data.  

 

Many ML algorithms have been applied on the radiomics. Here we would like to 

introduce some most commonly used ML algorithms in supervised learning [43].  

- Logistic Regression (LR): LR is a commonly used probabilistic model for 

classification prediction.  Depending on the context and application domain, the LR can be 

considered both a statistical model and a ML model.  From a statistical perspective, LR is 

a type of generalized linear model. It involves estimating parameters through methods like 

maximum likelihood estimation and performing hypothesis testing and inference. In the 

field of statistics, LR is often used to establish probability models, analyze relationships 

between variables, and conduct parameter estimation and inference. From a ML 

perspective, LR is seen as a classification algorithm used to predict binary or multiclass 
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outcomes. It learns the relationship between features and the labels (also known as target 

variables) from training data and uses this relationship to make predictions on new data. 

LR exhibits a tendency to overfit high-dimensional datasets, but it performs effectively 

when the dataset can be linearly separated. To mitigate the risk of overfitting in such 

situations, regularization techniques such as L1 and L2 regularization [44] can be 

employed. However, it is important to note that the assumption of linearity between the 

dependent and independent variables is widely regarded as a significant limitation of LR 

[45]. 

- Naive Bayes (NB): The NB algorithm is based on the Bayes’ theorem.  NB 

considers each attribute features as independent feature. Mathematically, Bayes' theorem 

can be expressed as: P(A|B) = (P(B|A) * P(A)) / P(B). Where:  P(A|B) represents the 

conditional probability of event A occurring given that event B has occurred. P(B|A) 

represents the conditional probability of event B occurring given that event A has occurred. 

P(A) and P(B) are the probabilities of events A and B occurring independently. The key 

benefit of NB algorithm is that, compared to more sophisticated approaches, it needs a 

small amount of training data to estimate the necessary parameters and make predictions 

quickly. However, the performance of the NB algorithm may be influenced by its strong 

assumption of feature independence. Gaussian, Multinomial, Complement, Bernoulli, and 

Categorical are the common variants of NB classifier. Among these variants, the Gaussian 

NB (GNB) classifier is suitable to handle continuous features. By utilizing the assumption 

of Gaussian distributions, it can handle deviations from typical data patterns and still 

provide reliable classification outcomes [46]. 



 

32 

-Decision tree (DT) and random forest: DT are models that use a divide and conquer 

approach to make decisions based on feature values. They recursively split the input space 

into smaller regions, where each internal node represents a decision based on a specific 

feature, and each leaf node represents the final decision. DTs can be combined into 

ensemble methods. However, they are prone to overfitting and require techniques like 

pruning and regularization to prevent it. Despite their limitations, DTs are widely used for 

their simplicity, transparency, and ability to capture non-linear relationships  [47].  Random 

forest is a bagging ensemble model by creating multiple DTs through randomization [36]. 

It uses bootstrap sampling and variable selection at decision nodes to test various thresholds, 

capturing interactions and non-linear effects of predictors. The model's predictive 

performance is evaluated by aggregating the predictions of individual trees, and variable 

importance measures are used to assess predictor influence [48, 49]. By combining the 

predictions of multiple DT, random forest tends to achieve higher accuracy. The ensemble 

approach reduces overfitting and provides more stable and reliable predictions. In addition, 

random forest provides an assessment of feature importance, allowing insights into which 

features play a crucial role in the model's predictions. This feature importance evaluation 

aids in understanding the decision process of the model and identifying key features in the 

data [47]. 

- eXtreme Gradient Boosting (XGBoost): XGBoost is a scalable ML system that 

utilizes tree boosting, demonstrating superior performance and wide-ranging applications. 

The principle behind the XGBoost model involves employing the gradient boosting tree 

algorithm, iteratively training multiple DT to optimize the loss function. Each tree is trained 

based on the residuals of the previous tree, and the final prediction is generated by weighted 
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summation. XGBoost exhibits resilience to noise and outliers, reducing the risk of 

overfitting. Additionally, the model provides insights into feature importance, supports 

custom loss functions and evaluation metrics, and allows for fine-tuning model complexity 

and generalization. With its gradient boosting strategy and regularization techniques, 

XGBoost excels in modeling complex data relationships.  

In ML, the term "error" refers to the incorrect prediction made by a model [50]. The 

generalization error, in turn, represents the error that arises when the model is applied to 

cases that it has not encountered before. In clinical medical applications, it is crucial to 

minimize the generalization error, as it directly reflects the accuracy of predictions. 

Evaluating the generalization error of models guides the choice of learning methods.  

The commonly used evaluation methods to evaluate the generalization error of 

model in radiomics are hold-out, cross-validation methods and bootstrapping [51]. Hold-

out methods involve directly splitting the dataset into two independent sets: one for training 

the model and the other for evaluating its generalization. Stratified sampling is often 

employed to ensure appropriate distribution of data between the training and test sets [52]. 

In addition, the cross-validation technique divides the dataset into k similar sub-datasets, 

ensuring the preservation of data distribution. In this method, k-1 sub-datasets are utilized 

for training the model, while the remaining sub-dataset is employed for testing its 

performance. This process is repeated k times, yielding k distinct train-test groups. Through 

k-fold cross-validation, the model undergoes training and testing k times, ultimately 

allowing for the calculation of the mean results [53]. Furthermore, bootstrapping is a 

resampling technique used to estimate population parameters by repeatedly sampling with 

replacement from the original dataset to create multiple simulated datasets. It enables the 
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estimation of sampling distributions and confidence intervals for statistics without relying 

on strict assumptions about the underlying population distribution. The cross validation 

and bootstrapping are recommended for radiomics study. In 2017, Philippe Lambin 

introduced a radiomics quality score for assessing the quality of radiomics studies. As part 

of this scoring system, the inclusion of cross-validation contributes an additional point to 

the overall score [54]. 

 The essential idea of DL approach is from the study of artificial neurons, which was 

initially proposed in 1943 as a model for how neurons process information in the biological 

brain [55, 56]. In a neural network, the input (input including various types of data, such 

as numbers, text, images, audio, and more) is fed into an input layer, which then transmits 

its computed value to one or more hidden layers that are connected to an output layer. Each 

layer consists of nodes, also known as "units" or "features", connected through edges to the 

previous and next layers. These units transform the data in a nonlinear manner by applying 

an activation function. A deep neural network typically comprises multiple hidden layers, 

sometimes exceeding 100. During the training process, deeper layers in the network can 

combine high-level features or representations algorithms can automatically generate 

features that are well-suited for addressing the specific task at hand [57].  

In recent decades, various DL neural networks are developed, such as multilayer 

perceptron (MLP), convolutional neural networks (CNN), generative adversarial networks 

(GAN) and more. Among these techniques, MLP is the most frequently used neural 

network, especially for small datasets [58]. MLP, a fundamental feedforward neural 

network, comprises multiple layers of neurons (input, hidden, and output) and is employed 

for classification and regression. It trains via the backpropagation algorithm, adjusting 
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inter-neuron connection weights to minimize the discrepancy between predicted and actual 

outputs. The structure and parameters of MLP can be adjusted based on specific tasks and 

data. For instance, different activation functions, the number and size of hidden layers, and 

regularization techniques can be chosen to control the model's complexity and 

generalization ability. Compared with other DL models, the MLP has shallow structure 

and fewer parameter, which can provide good performance without requiring large number 

of training datasets. The output layer of MLP often utilizes an activation function (such as 

sigmoid) to map the outputs to a range of 0 to 1, representing the probability of the positive 

class. These outputs could be used as model prediction results. Alternatively, they can be 

directed outside the network and processed by different analyzers, such as a support vector 

machine (SVM) or DT, for additional analysis and classification.  

1.3. Nasopharyngeal Carcinoma 

1.3.1. Background 

Nasopharyngeal carcinoma (NPC) is a tumor that originates from the epithelial 

lining of the nasopharynx. The nasopharynx is anatomically defined by the posterior 

choanae at the front, the declivity of the sphenoid bone above, and the clivus and the first 

two cervical vertebrae at the back. The soft palate forms the lower boundary. The 

nasopharynx is well-supplied with blood vessels and has an extensive lymphatic drainage 

system [59]. Locally advanced NPC often involves the parapharyngeal space and the 

carotid artery, which significantly increases the risks associated with surgical intervention 

(Details in Figure 1-3.) [60]. The initial stages of NPC often manifest with minimal 
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discomfort, posing a challenge for early detection. Late-stage diagnosis and the anatomical 

location of the tumor make surgical intervention in NPC patients particularly challenging.  

 

Figure 1-3. Location description of nasopharyngeal carcinoma in relation to the internal 

carotid artery.  a. An axial CT image of one nasopharyngeal carcinoma (NPC) patient. The tumor 

(red area is the gross tumor volume) is close proximity to the internal carotid artery (orange arrows).  

b. Coronal CT image of one NPC patient. c. Cartoon illustration of sagittal image of the internal 

carotid artery (red) travel into the brain superiorly, and passed through the cavernous sinus (blue). 

The internal carotid artery is the major blood vessel that supplies oxygenated blood to the brain. 

The growth of tumor might invasion or compression the internal carotid artery. 

In 2022, there were 120,216 new cases and 73,476 death of NPC reported 

globally[61]. The majority of NPC patients are concentrated in South China and 

Southeastern Asia, with China alone accounting for approximately 50% of the global NPC 

population. The age-standardized incidence rate of NPC per 100,000 person-years in China 

and Southeastern Asia was eight, significantly higher compared to the combined rate of  

2.7 in Europe and America [62]. Due to its association with the specific geographical 

region, NPC is also commonly referred to as "Guangdong cancer." 
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1.3.2. Diagnosis and Treatment 

Clinical evaluations and medical imaging play a vital role in raising suspicion of 

NPC, while the ultimate confirmation depends on the result of pathological histology 

examination, which is the gold standard for the conclusive diagnosis. The staging of NPC 

involves several components, including a thorough medical history, physical examination 

with cranial nerve assessment, complete blood count, serum biochemistry (including liver 

and renal function tests and lactate dehydrogenase), nasopharyngoscopy, and radiological 

imaging. In particular, computed tomography (CT) and magnetic resonance imaging (MRI) 

are standard imaging examinations routinely recommended for the diagnosis of NPC. 

Among the two modalities, MRI is considered the most accurate and recommended for 

visualizing small mucosal thickening, parapharyngeal and masticatory space involvement, 

retropharyngeal lymph node involvement, as well as skull base and cranial nerve 

infiltration. However, the MRI has long scanning time, higher cost and requirements for 

patients without metal implants. Conversely, CT is particularly adept at identifying bone 

destruction of the osteogenic skull base, lower cost, and easier to recognize small 

suspicious metastatic lymph nodes [63, 64].  

The gold standard of the diagnosis of NPC is the result of pathological histology. 

In 2005, the World Health Organization (WHO) revised the classification of NPC into three 

categories: WHO I, which refers to Keratinizing squamous cell; WHO II, which denotes 

non-keratinizing carcinoma; and WHO III, which represents Basaloid squamous cell 

(Details in Figure 1-4) [30]. Among these three histological types of NPC, the non-

keratinizing carcinoma is the most commonly observed, accounting for over 95% of cases 

in high incidence areas and approximately 75%-87% of cases in low incidence areas. [65]. 
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The non-keratinizing carcinoma is sensitive to the radiation. Considering the anatomical 

localization of the tumor, the main treatment method for the NPC patients is the radiation 

therapy.  

 

Figure 1-4. Hematoxylin and eosin stain samples for nasopharyngeal patients.  

a. Non-keratinizing carcinoma, magnification 200x; b. Keratinizing squamous cell carcinoma, 

magnification 200x. The WHO type III is too rare to collect from the hospital. 

According to the ESMO-EURACAN clinical practice guidelines in 2020 [63], the 

intensity-modulated radiation therapy (IMRT) is the primary treatment for NPC with or 

without chemotherapy. In two-dimensional (2D) conventional radiation therapy, radiation 

is delivered uniformly and constant without any differentiation as it penetrates through the 

human body. This can result in exposure of organs surrounding the tumor, also known as 

organs at risk (OARs), to radiation without any protection. The IMRT is an advanced three-

dimensional (3D) radiation therapy technique that allows for the generation of complex 3D 

dose distributions, closely conforming the high dose of radiation to the target volume and 

reducing the radiation on OARs. IMRT utilizes computer algorithms to optimize the beam 

intensity (fluence) to be precisely shaped and delivered. These algorithms take into account 

not only the dimensions of the target and normal tissues but also user-defined constraints 
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such as dose limits to targets and critical organs. By incorporating these considerations, 

IMRT enables precise and personalized radiation treatment planning, improving the 

therapeutic outcome while minimizing radiation-related side effects [66, 67] . The 5-year 

overall was increased from 75% to over 80% for NPC patient following IMRT in some 

studies[68-70].  

1.3.3. Survival and Toxicity of IMRT for NPC Patients 

The underlying mechanism of radiotherapy is based on the ability of ionizing 

radiation to damage cancerous cells, ultimately resulting in their death. It is essential for 

clinicians to actively manage and control the spread of radiation to OARs. Even though 

with the highly accurate dose controlled IMRT technique, the incidence of the toxicity 

symptoms is inevitable for most patients. The primary toxicities associated with IMRT 

include oral mucositis (OM), dysphagia, dermatitis, xerostomia, and others. Among these 

reactions, OM is commonly experienced by the majority of NPC patients. The incidence 

of acute oral mucositis (AOM), symptoms lasting up to three months after IMRT, is 

approximately 90% [71].   

Various criteria, such as those developed by the WHO, Radiation Therapy 

Oncology Group (RTOG), and the common terminology criteria for adverse events 

(CTCAE), have been established to evaluate the severity of AOM (Details in Table 1-2) 

[72-74]. These criteria are stratified patients with toxicity reaction to four or five grades 

and provided appropriate management methods for each grade of patients. Although there 

may be some discrepancies between these criteria, studies have shown that similar results 
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are obtained regardless of which criteria are used when dividing the grading system 

between ≤grade 2 (mild AOM) and ≥grade 3 (Severe AOM) [75].  

As we have mentioned before, prediction of severe AOM for NPC patients with 

IMRT could help the clinical trials stratification of high risk severe AOM patients for the 

investigation of novel effective treatment for severe AOM. Currently, there is not a 

standard guidance for physicians on how to protect the OARs. The prediction model of 

severe AOM also could provide specific tips for clinicians to draw the RT plan contours 

for patients with high risk of severe AOM. This information enables the implementation of 

advanced protective measures and optimizes the allocation of limited medical resources. 

Table 1-2. Oral Mucositis scales under various criteria  

 Grade 0 Grade I Grade II Grade III Grade IV Grade V 

WHO No 

findings 

Erythema 

without 

ulcers 

Erythema 

and ulcers 

Liquid diet Tube feeding NA 

RTOG No 

findings 

Erythema 

without 

ulcers 

Erythema 

and ulcers 

Liquid diet Tube feeding NA 

CTCAE.v4 No 

findings 

Erythema 

without 

ulcers 

Moderate 

pain or 

ulcer, not 

interfering 

oral intake 

Severe 

pain, 

interfering 

oral intake 

Life 

threatening 

consequence 

Death 

related 

to 

toxicity 

Abbreviation: World Health Organization (WHO), Radiation Therapy Oncology Group (RTOG), and 

the common terminology criteria for adverse events (CTCAE). 
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Overall survival (OS) is the primary endpoint in oncology clinical trials, and it is 

defined as the duration from the time of randomization or diagnosis to the occurrence of 

death from any cause. In oncology clinical trials, OS is commonly regarded as the gold 

standard endpoint, given the general objective of cancer treatment to prolong survival. It is 

worth emphasizing that OS is a patient-centered measure, as it directly captures the 

ultimate event of death, rendering measurement relatively uncomplicated. Moreover, OS 

is an objective measure with minimal susceptibility to researcher bias [76]. 

For the NPC patients with IMRT, prediction of OS plays a significant role in 

pretreatment risk assessment, risk-adapted clinical trials, and clinical decision-making 

scenarios. It helps estimate survival outcomes based on patient-specific factors, enabling 

informed treatment decisions. Survival prediction models aid in designing trials that target 

specific risk groups, optimizing treatment approaches. They also guide decisions such as 

escalating or de-escalating treatment strategies based on predicted risks, improving patient 

outcomes. Incorporating survival prediction enhances care by personalizing treatment 

strategies and improving overall effectiveness. 

Currently, for the prediction of incidence of AOM, most studies only used single 

or double modal of traditional clinical data. The risk factors for AOM involving genomic 

background, tumor microenvironment and the radiation dose distribution. No study had 

considered the multiple sources of background information for the prediction.   

For the prediction of OS of NPC patients with IMRT, most of the studies are 

restricted on centers in China. The lack of involvement of international cohorts hinders the 

evaluation of generalizability and robustness of the prediction models. Additionally, the 

current treatment decisions and prognosis of NPC heavily rely on the tumor-node-
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metastasis (TNM) staging system. However, despite patients with NPC receiving similar 

treatments at the same stages, outcomes can vary significantly. The introduction of 

advanced modality of RT and treatment have increased both the survival and quality of life 

(QoL) for NPC patients. The dosage management in NPC is too precise to allow for 

significant further optimization. To further optimize the outcome for NPC with RT, it is 

necessary to find novel ways and new biomarkers that can accurately to predict the survival 

and toxicity in the context of the current treatment. Innovative strategies must be developed 

to manage cancer patients more effectively.  

1.4. Aim and Objectives 

To address the aforementioned challenges, this thesis aims to develop AI-based models 

utilizing multimodality data or representative international datasets for the prediction of 

survival and prognosis of NPC patients with IMRT. The objectives are as follows: 

1. To investigate the impact of radiomics, dosiomics, extracted from multi-regions 

and multi-sources, and clinical data on the prediction of severe acute oral mucositis 

in patients undergoing radiotherapy for NPC. 

2. To develop CT-based generalizable prognostic model with perturbation in an 

international dataset for the prediction of five-year OS of NPC patients following 

IMRT. 
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Chapter 2.  

Literature Review 

2.1. Acute Oral Mucositis (AOM) for NPC Patients Following IMRT 

The AOM is typically characterized by atrophy, swelling, erythema, and ulceration, 

significantly impacting the functional status and QoL of patients. The initial soreness of 

AOM can lead to difficulties in opening the mouth, resulting in reduced food and water 

intake, weight loss, and increased risk of systemic infection. Patients experiencing severe 

AOM with intense pain may require a reduced dose of chemotherapy, and some may even 

consider discontinuing the RT regimen. The presence of severe AOM can further worsen 

patient morbidity, ultimately leading to a decline in QoL and increased mortality rates [77]. 

Currently, advanced RT machine (3D) have achieved highly precise and controlled 

delivery of radiation for the treatment of NPC patients. Effective management and 

prevention of toxicity events are crucial for improving the survival and QoL of NPC 

patients.  

Apart from its symptomatic impact, the effective treatment of severe AOM is rare. 

Furthermore, the management of AOM result in a significant health economic burden. On 

one hand, few studies provide high levels of evidence to support the effective treatment of 

severe AOM. Carryn et al. conducted a phase IIb clinical trial, using manganese-containing 

macrocyclic complex and placebo to manage the severe AOM for head and neck (H&N) 

patients with concurrent RT and cisplatin. The trial demonstrated a decrease in the 

incidence of severe AOM from 65% to 43%, with a corresponding reduction in the severity 
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rate from 30% to 16% [78]. While the manganese, as a heavy metal ion, has the potential 

risks of long-term accumulation and toxicity effects, such as the defect of eyesight. 

Additionally, it is important to note that these treatment approaches may not be applicable 

to all patients undergoing RT [79]. On another hand, the presence of AOM is associated 

with various healthcare utilization factors, including increased rates of hospital admission, 

prolonged hospital stays, visits to the emergency department, a higher number of clinic 

visits, consultations with nutritionists, increased use of supplemental feeding options, as 

well as greater usage of opioids and antibiotics. These additional healthcare requirements 

and interventions contribute to the overall cost of managing AOM [80]. The incremental 

cost of AOM among patients receiving radiation therapy was estimated to be 

approximately $5,000 to $30,000. Between 15% and 55% of patients undergoing radiation 

for H&N cancer require enteral feedings. The management of these patients often involves 

the placement of feeding tubes. The cost associated with feeding tube management is 

approximately $30 per day, and it is typically required for a duration of four to six months. 

This represents a significant financial burden for both patients and healthcare systems. [81]. 

Early intervention is crucial for effectively managing the clinical burden of severe 

mucositis. However, there is still a lack of clarity regarding the individuals who are at a 

higher risk of developing severe symptoms. Consequently, there is a clear and unmet need 

to identify patients who are prone to experiencing severe mucositis. This identification is 

essential to implement methods of risk minimization and provide targeted supportive care. 

By identifying patients who are more likely to experience severe mucositis, clinicians can 

customize interventions and deliver personalized care to mitigate the impact of this side 

effect. 
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2.1.1.  Risk Factors for AOM of NPC Patients with RT 

Previous studies have primarily concentrated on analyzing specific types of data, 

such as genetic information or clinical variables, to predict the severity of oral mucositis. 

Multiple factors have been identified as correlating with the occurrence and severity of oral 

mucositis, including genetic background, tumor microenvironment, radiation therapy dose 

distribution, chemotherapy drugs, and nutritional status, et al.  As for the genome studies, 

several of them have demonstrated a connection between the genome and AOM. However, 

the underlying mechanism of the incidence and severity of AOM in patients with NPC 

undergoing RT remains unclear. For instance, Li et al. conducted a study where blood 

samples were collected from 114 NPC patients prior to RT. They utilized polymerase chain 

reaction-restriction fragment length polymorphism to detect single nucleotide 

polymorphisms (SNPs). The study identified a correlation between SNPs (194Arg/Trp and 

399Arg/Gln) in the X-ray cross-complementing group 1 gene and the occurrence of acute 

skin reactions and AOM. However, the findings were solely based on statistical 

investigation and lacked external or internal validation experiments to provide further 

support. Similarly, Yang et al. [82] recruited a large-scale of 1467 NPC patients using 

genome-wide association analysis. They discovered that patients carrying the minor alleles 

of rs117157809 were more prone to developing severe AOM, with a per allele odds ratio 

of 3.72 [95% confidence interval (95% CI): 2.10-6.57, P=6.33×10−6]. Rs117157809 is a 

locus in the Tankyrase gene, which is involved in protein coding. The study did not delve 

into the underlying pathway connecting the gene to AOM. Furthermore, a recent two-stage 

genome-wide association study [83] indicated that four SNPs might be associated with 

acute mucositis. Unfortunately, the results were not validated in the subsequent validation 
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stage. It is evident that, at this moment, relying solely on the variables of clinicogenomics 

is insufficient for accurately predicting the incidence, correlations, and severity of AOM 

in NPC patients after RT. 

Aside the genomic background, the tumor itself may have the impact on the AOM 

[84].  The location and stage of tumor are associated risk factors for the AOM [85, 86]. 

The innate immunity is essential to the pathogenesis of oral mucositis [87].  Mahesh 

Kudrimoti et al. used the dusquetide to treat the severe OM patients with chemoradiation 

therapy. The dusquetide is a synthetic peptide drug with immunomodulatory and tissue 

healing properties. The drugs modulated the tumor microenvironment and achieved 50% 

decreased on the median duration of severe OM, which might also indicated that the tumor 

microenvironment might correlated with the AOM [88].  

Other clinical correlated factors also contribute to the incidence and severity of 

AOM, such as the RT dosage, weight loss, body mass index (BMI), and concurrent 

chemotherapy, et al. A study [89] involving 92 patients with NPC who underwent IMRT 

demonstrated a correlation between severe AOM and a radiation dose exceeding V30 Gy 

to the oral mucosa. Additionally, the study identified weight loss as another factor 

associated with severe AOM. Furthermore, additional studies by Saito et al.[90] and 

Rosenthal et al.[91] have reported that a low BMI is a risk factor for severe AOM. 

Moreover, the administration of additional chemotherapy, particularly with certain agents 

known to be associated with AOM, such as alkylating agents and antimetabolites, can 

further exacerbate the occurrence and severity of AOM.  

Although mucositis risk is influenced by the intricate interplay of the host, tumor 

microenvironment, and treatment specifications, a significant majority of studies employ 
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hypothesis-driven, single-candidate approaches [92]. These approaches focus on 

investigating individual factors or variables, driven by specific hypotheses, rather than 

considering the comprehensive interaction of multiple factors. 

2.1.2. Radiomics and Dosiomics Models for Predicting AOM 

In addition to genomics information, routine clinical data for patients with NPC 

undergoing RT include contrast-enhanced computed tomography (CECT), MRI, and dose 

files. Dosiomics, following the idea of radiomics, is a quantitative method that extracts 

high-throughput information from the dose files of RT patients. By leveraging intensity, 

textural, and shape-based features, it enables the parameterization of the dose distribution 

in specific VOIs. This approach provides a comprehensive understanding of the dose 

distribution, allowing for a detailed characterization of the RT treatment and its impact on 

the targeted areas. Importantly, dosiomics goes beyond traditional DVHs by describing the 

dose distribution at a high complexity level, capturing intricate details that are distinct from 

the information obtained from DVHs [18, 93]. Both radiomics and dosiomics are two 

quantitative methods which could provide minable texture and dose-distribution 

information for clinical prognosis prediction.  

Numerous studies have demonstrated that the RFs could reflect the heterogeneity 

and microenvironment of tumor [94, 95]. Most of them selected receiver operating 

characteristic (ROC) curve and area under the curve (AUC) to evaluate the model 

performance. The AUC is a numerical value ranging from zero to one. A higher AUC 

indicates better model performance [96].  Few studies have indicated the association of 

RFs and AOM. Jiang et al.[97] developed two Light Gradient Boosting models to predict 

the severity of AOM. The training and internal validation AUC of the models are 0.8 and 
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0.85, respectively (Conference poster). However, it is worth noting that the grading cut-off 

in their study was grade≥2, which may have overestimated the severity of AOM. The 

study reported that 26 RFs were significant for the prediction. Satheeshkumar[98] 

investigated the capability of ML model to predicting the incidence of mucositis for cancer 

patients with chemotherapy. The best performing model with testing AUC is 0.79. This 

study did not show the cancer types of patients and not involve the severity of AOM.   

As an extension of radiomics, the dosiomics analyze the variance in dose 

distribution within 2D and/or 3D DVHs. Dean et al.[99] and Orlandi et al.[100] selected 

oral cavity and parotid gland as VOIs. The study demonstrated that the severe AOM is 

associated with the mean dose of parotid gland and the high dose received by small oral 

cavity. Meanwhile, Li et al. [101] extracted dosiomics features from oral cavity contour 

(OCC) and mucosa surface contour (MSC). They selected significant dosiomics features 

with least absolute shrinkage and selection operator (LASSO) and developed LR model to 

predict the incidence of severe AOM. The body mass index and retropharyngeal lymph 

node area irradiation status also included into the model development. The training and 

validation AUC of models for OCC and MSC are 0.737 and 0.767. The finding is 

concordance with Orlandi’s studies. Many research studies have mentioned about using 

oral cavity as VOIs for AOM prediction. While the specific definition and delineation 

methods for oral cavity are different in these studies. 

2.1.3. Multimodal Data Integration 

The risk factors associated with the incidence and severity of AOM are 

multifaceted, and the contributions of these factors are complex. In clinical practice, 
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clinicians should integrate information from multiple sources to make informed decisions 

regarding the diagnosis and treatment of cancer patients. Traditional experiences with 

single or double sources of data have been validated to have limited prediction power for 

acute AOM. Integration of complementary data from multiple types of datasets can lead to 

an intricate outcome than a simple summation of information [102]. Integration of 

multimodal data from multiple sources, for instance, clinical, radiomics, and dosiomics for 

NPC patients, has the potential to overcome the boundaries of conventional medical 

analysis [103, 104]. 

In recent years, several multimodal data integration methods have been developed. 

Based on the time or stages in which data are integrated, the fusion methods including early 

fusion, intermediate fusion and late fusion. Early fusion involves integrating all data 

resources before model development. Intermediate fusion combines several types of data 

to generate multiple models, which are then aggregated for final analysis.  Late fusion 

trains the model with each data resource separately and then interprets the results for the 

final prediction. [104]. Early fusion requires a certain level of alignment or synchronization 

between modalities, such as integrating wide range of electronic health records [105]. 

Intermediate fusion is more flexible, as it can first integrate similar modalities of data and 

then combine other information into the evaluation system [106]. Late fusion allows for 

variance in modalities, such as fusing radiomics data with clinical data [107].  

The etiology of AOM in NPC patients is complex, and previous research has 

identified dose distribution as a significant risk factor associated with its incidence. Some 

previous studies have used the oral cavity as ROIs, but there is a lack of consensus on the 

contouring guidelines for the oral cavity. Manual contouring of the oral cavity or oral 
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mucosa in radiotherapy plans is a labor-intensive task, particularly when dealing with large 

datasets. Furthermore, it is important to acknowledge that the incidence of severe AOM 

can be influenced by factors beyond the nature of oral cavity, such as tumor heterogeneity, 

the tumor microenvironment, and the radiotherapy plan itself. Therefore, to improve the 

prediction of severe AOM, it is crucial to consider heterogeneity information within tumor 

regions and their surrounding areas, in addition to the oral cavity. Dosiomics, a high-

throughput data analysis technique that focuses on dose distribution, can provide valuable 

information for predicting AOM. Additionally, incorporating other clinical data, such as 

BMI and body weight loss, can contribute to a comprehensive assessment. 

Unfortunately, there is a limited number of studies exploring the potential of 

radiomics or dosiomics for AOM prediction. Most existing studies simply incorporate 

clinical data into radiomics or dosiomics models to predict the incidence of AOM. To the 

best of our knowledge, no studies have investigated whether the fusion of data from 

multiple regions and modalities could enhance the predictive capabilities for severe AOM. 

Therefore, there is a need for further research to explore the potential of multi-region and 

multimodality data fusion in enhancing the prediction of severe AOM in NPC patients. 

Such investigations could provide valuable insights into the complex relationship between 

dose distribution, tumor characteristics, and the incidence of AOM, ultimately improving 

patient management and treatment outcomes.                               

2.2. Overall Survival for NPC Patients following IMRT 

Before we start to introduce the predication of OS for NPC patients, it is better to 

understand the word “precision medicine”. The precision medicine, also known as 
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stratified medicine or targeted therapy, refers to the practice of tailoring treatment to a 

specific subpopulation of individuals who exhibit variations in their susceptibility to 

develop a particular disease or response to a specific medicine [108]. In the past, traditional 

medicine commonly employed a uniform drug treatment for all patients diagnosed with a 

specific disease. However, this approach resulted in various issues. For example, some 

patients with the same diagnosis exhibited different responses to the identical treatment, 

while others experienced severe side effects from the treatment. Precision medicine, on the 

other hand, takes an alternative approach by stratifying patients into subpopulations, 

allowing for more precise sub-treatments tailored to their specific needs. This personalized 

approach to treatment aims to achieve greater effectiveness in patient care [109].  

 In the era of precision medicine, prediction of OS for cancer patients plays a crucial 

role in tailoring medical treatments to individual needs [110]. By utilizing prediction 

models, patients can be stratified into high-risk and low-risk groups, facilitating efficient 

resource allocation by prioritizing treatments for those who stand to benefit the most [111, 

112]. Moreover, prediction of OS offers valuable insights for patients with disease 

backgrounds or family histories of specific illnesses, empowering them with a better 

understanding of what they may encounter in the future. Beyond its impact on treatment 

decisions, prediction of OS also holds significant benefits for researchers in terms of 

biomarker discovery and disease understanding [113, 114]. Through the use of prediction 

models, researchers can explore the correlations between different variables and clinical 

outcomes, thereby identifying novel biomarkers associated with specific diseases. 

Furthermore, these models enable the longitudinal monitoring of disease progression, 

allowing for the identification of critical time points and patterns of progression [115].  
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As we have mentioned before, the OS is a primary endpoint for cancer treatment. 

The definition of OS is that the duration from diagnosis with a specific disease to the end 

of death. In both clinical practice and trials, the primary objective for clinicians and 

researchers is to extend OS by striking a balance between the various interventions and 

standard care for patients. The measurement of OS is 100% objective and can be calculated 

without bias from researchers. Even though alternative survival metrics such as 

progression-free survival , disease-free survival and biochemical recurrence are proposed 

as potential surrogates for OS, the enhancement of  OS remains widely recognized as the 

gold standard for drug approval by regulatory agencies in the United States and Europe 

[116].   

Prediction of OS is extensively utilized in oncology research to derive precise 

probabilities that assist in clinical decision-making. A variety of models can be employed 

for the prediction of OS. Traditional Cox proportional hazards model is widely utilized as 

survival prediction model for survival analysis. But this model cannot cope with high-

dimensional data.  While precision medicine is based on the big data analysis, AI, various 

omics disciplines and integration of these information. In recent decades, the application 

of ML and DL models in survival prediction tasks has yielded impressive results, 

demonstrating strong model performance [117].  

Numerous methods and metrics are available to evaluate the performance of 

prediction models, including the AUC, concordance index (C-index), accuracy, and others 

[115]. These methods could basically be categorized into two types: discrimination and 

calibration. Discrimination refers to the model's ability to accurately classify individuals 

into two classes: high-risk and low-risk. Calibration, on the other hand, measures the extent 
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to which the model's predicted probabilities align with the actual outcomes for each 

individual. These two aspects reflect different dimensions of prediction models. It is 

commonly recommended that discrimination is a more representative measure compared 

to calibration metrics, as recalibration is always possible to improve calibration, whereas 

discrimination may not be easily adjustable [118].  

The most commonly used discrimination measurement is the ROC curve and AUC 

[119, 120]. ROC and AUC are most commonly used evaluation criteria for radiomics 

model [121].   ROC is a parametric plot that illustrates the relationship between the true 

positive rate and the false positive rate, showcasing the performance of a binary 

classification system as the decision threshold is adjusted across the entire range of a 

continuous forecast variable. The AUC  is a metric that quantifies the overall performance 

of a model by measuring the area under the ROC curve, serving as a measure of the model's 

capacity to effectively distinguish between positive and negative cases and its 

generalization ability [122]. When evaluating a model, AUC values in the range of 0.7-0.8 

are considered good, while values between 0.8-0.9 are considered excellent. AUC values 

above 0.9 are regarded as outstanding [123].  

The C-index is also popular for the survival analysis. Instead of relying on absolute 

survival times for each instance, the C-index considers the relative risk of an event 

occurring across different instances [124]. When come up with the binary outcome task, 

the C-index is equal to the definition of AUC [125]. The C-index ranges from 0.5 to 1. The 

0.5 represents random prediction and the 1 indicate perfect predictive ability of model. 

Aside from the model evaluation, hazard ratios (HR) are also a commonly used statistical 

measure to evaluate the risk factors in the Cox regression model [126]. The HR is derived 
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from regression coefficients in Cox regression model which indicated the relative risk or 

hazard of an event occurring between two groups or conditions. When the hazard ratio is 

equal to 1, it indicates that there is no difference in the hazard rates between the compared 

groups. A hazard ratio greater than 1 suggests an increased relative risk or hazard for the 

event. Conversely, a HR less than 1 corresponds to a decreased relative risk or hazard [127]. 

2.2.1. Conventional Prediction of OS for NPC Patients  

The conventional prediction models of OS could be categorized into mainly three 

groups: statistic models, ML models, and DL models. Among which, the parametric 

Kaplan Meier (KM) and semi-parametric Cox regression are most commonly used statistic 

models for the prediction of OS. In these articles, the KM method and Cox regression 

analysis are frequently used together. The KM method is a univariate approach that allows 

for the estimation of survival probabilities over time, without considering the influence of 

other variables. On the other hand, Cox regression analysis is a multivariable approach that 

takes into account multiple factors simultaneously to assess their impact on survival 

outcomes [128]. The prediction of OS is frequently associated with the identification of 

prognostic or predictive factors in cancer research. Prognostic factors encompass a set of 

variables collected prior to treatment initiation that have the capability to forecast patient 

outcomes. These factors possess the ability to predict clinical outcomes irrespective of the 

treatment patients may undergo. On the other hand, risk factors are variables that can be 

influenced by the treatment itself and often exhibit quantifiable variations in response to 

the treatment [129].  

Many studies have utilized the prediction of OS to investigate risk factors in NPC 

patients undergoing various treatment methods. Kwok et al. employed the Cox regression 
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model for multivariate analysis to identify independent risk factors associated with the 

prediction of 3-year OS in NPC patients experiencing local failure [130]. Their findings 

revealed that advanced initial T stage (HR: 1.44; p < 0.006) was a significant risk factor 

for local failure in NPC patients. Gokce et al. [131] conducted a ten-year OS study 

involving 58 NPC patients from a single institute. The study demonstrated no significant 

difference in OS based on staging (p = 0.92); however, males with WHO II pathological 

type exhibited a higher risk of metastasis (p = 0.037; HR = 4.132; 95% CI: 1.09-15.66). 

Similarly, Xiao et al. [132] conducted a study involving 299 NPC patients to investigate 

the correlation between various clinical variables and 5-year OS. Their findings suggested 

that age and gender were independent risk factors for NPC patients. The 5-OS of male 

patients is 70.7% compared to female patients at 94.1% (p < 0.001). Male patients under 

the age of 45 had lower 5-OS (66.8%) than same age of female (91.2%), p = 0.008.  

KM and log-rank tests were utilized to describe patient survival, while Cox 

regression analysis was employed to analyze the correlation of clinical variables with 5-

year OS. Additionally,  Lulu Zhang et al. [133] conducted a retrospective study involving 

8093 nasopharyngeal NPC patients from a single hospital to investigate the correlation 

between clinical variables and OS. The study employed Cox regression analysis, KM 

modeling, nomogram development, and evaluation metrics such as the AUC and C-index. 

The findings indicated that age, T stage, N stage, Epstein-Barr virus (EBV) DNA levels, 

lactate dehydrogenase levels, and Albumin levels were prognostic factors for the 3-year 

OS of NPC patients. The best performing model achieved a C-index of 0.716 (95% CI: 

0.698-0.734) and an AUC of 0.717 (95% CI: 0.698-0.737) compared to the conventional 

TNM staging system, which had a C-index of 0.643 (95% CI: 0.624-0.661) and an AUC 
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of 0.643 (95% CI: 0.623-0.662) for OS prediction. However, it is important to note that the 

study mentioned in the previous statement was limited to a single institute. 

Numerous studies also have investigated the prognostic factors for the OS in NPC 

patients. Liu et al. [134] conducted a survival analysis involving 83 NPC patients treated 

with IMRT, considering variables such as gender, age, stages, pathological types, and 

metastasis. The study suggested that metastasis significantly influenced OS; however, it is 

important to note that only six patients had distant metastasis. In another study by Li et al. 

[135], 202 NPC patients with metastasis were recruited, and the study identified T-N stage 

and metastasis in a single organ as prognostic factors for OS prediction. Randomized 

studies have been conducted to investigate optimal treatment methods for NPC patients 

under various conditions. Anthony and colleagues conducted a phase III randomized study 

involving 350 patients [136]. Patients were randomly assigned to either the RT alone group 

or the concurrent chemotherapy with RT (CCRT) group. KM and log-rank tests were 

utilized for 5-year OS analysis, while Cox regression was adjusted for T stage, age, and 

other factors to control for study variance. The 5-year OS rates for the RT and CCRT 

groups were 58.6% and 70.3%, respectively. The HR for CCRT was 0.71 (p = 0.049), 

suggesting the potential of CCRT for locoregionally advanced NPC patients. Conducting 

a randomized study has advantages in controlling treatment method variance and reducing 

bias. Similarly, in 2022, Yuan Zhang and colleagues published a paper [137] introducing 

the randomized phase III trial with 480 NPC patients for the prediction of 5-year OS. 

Patients were assigned to CCRT alone (n=238) and CCRT with induction chemotherapy 

(n=242) groups. KM, log-rank test and Cox regression were utilized for survival analysis. 

The study indicated that the induction chemotherapy before CCRT improved the OS of 
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NPC patients. The OS of CCRT with induction chemotherapy had higher OS of 87.9% 

than that for CCRT alone 78.8% (HR, 0.51; 95% CI: 0.34-0.78]; P= 0.001).  

These articles utilize the KM model to describe the survival status, incorporating 

bivariate comparisons through the log-rank test to assess statistical significance between 

compared groups. The Cox regression model is used to examine the impact of risk factors 

and covariates on survival probabilities. The survival outcomes of cancer patients are 

impacted by a multitude of factors. However, most of these conventional studies are 

restricted in the single institute or single country with limited patient number. Only clinical 

variables from EMR are collected for the analysis, which naturally contains limited 

information related to the disease. What is more, the KM method, log-rank test and Cox 

regression model have their own disadvantages for the survival prediction. Specifically, 

the disadvantages of Cox regression:  1) The Cox regression model assumes that the hazard 

ratio between two groups remains constant over time. If this assumption is violated, the 

results can be biased. 2) The model has limitations in modeling complex interactions 

between covariates. It assumes that the effects of covariates are multiplicative on the hazard 

scale. 3) The model requires the assumption of linearity. It assumes a linear relationship 

between covariates and the hazard function. In addition, the disadvantages of KM and log-

rank tests are: 1) The KM estimator and log-rank test assume that censoring is non-

informative. However, if censoring is informative (e.g., related to the survival outcome), 

the estimates may be biased. 2) The KM model also lacks the covariate adjustment. The 

KM estimator and log-rank test do not directly account for the effects of covariates. They 

only compare survival curves between groups without considering other factors that may 

influence survival. 3) The KM estimator and log-rank test may have lower statistical power 
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compared to more advanced survival analysis techniques. They are less sensitive to detect 

more subtle differences in survival between groups, especially when sample sizes are small 

or event rates are low. 

2.2.2. Machine Learning and Deep Learning for the Prediction of OS  

With the advancement of -omics research, the landscape of outcome prediction has 

grown increasingly intricate. Numerous studies now integrate radiomics, clinical, and other 

data types to facilitate prognostic predictions. Traditional statistical models may not be 

adept at handling big data analysis, which entails high-dimensional inputs with intricate 

interrelationships among diverse data elements. Meanwhile, ML models have 

demonstrated superior predictive accuracy when confronted with high-dimensional 

datasets. ML models have found widespread application in prediction of OS within the 

field of oncology [138-140]. 

Multiple studies have employed the ML models for the prediction of OS. In 2024, 

Dan Hu et al. [141] recruited 420 NPC patients form one hospital to develop three ML 

models (LR, DT, random forest) for predicting 5-year OS. The study developed a best-

performing random forest model with internal validation AUC at 0.753 (95% CI: 0.609, 

0.896). In 2020, Chunyan Cui et al. [142] generated ML model (XGBoost, GNB, random 

forest and DL et al.) to predict the 5-year OS of MR images from 792 NPC patients. The 

model yielded internal validation AUC at 0.796. Similarly, Rou Jiang et al. [143] 

investigated 347 patients with NPC and synchronous distant metastases. Employing 30 

hematological markers and 11 clinical characteristics, the study aimed to predict the two-

year OS of these patients. The best performing model achieved a training AUC of 0.761 
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and an internal validation AUC of 0.633. However, due to an imbalanced label distribution, 

the resulting ROC curve for the best performing model exhibited a piecewise-linear trend. 

Melek Akcay and his colleagues [144] also included 72 NPC patients and applicated six 

models, LR, artificial neural network (ANN), XGBoost, SVM, random forest, and GNB 

with clinical variables for the prediction of OS. The best performing model was GNB with 

best AUC of 0.91. The patient number in this study is too small to be representative. The 

model has no 10-fold cross validation and external validation for a reliable evaluation. 

Changchun Lai et al. [145] collected clinical variables and blood biomarkers to predict the 

OS of NPC patients. They recruited 519 NPC patients from one hospital and separated 

them into train and validation groups with the ratio of 2:1. The best C-index of the 

prognostic model in training and internal validation group are 0.786 (95% CI: 0.728–0.844) 

and 0.697 (0.612-0.734), respectively. It is important to note that these studies solely 

included patients from a single institution, without external validation data to estimate the 

generalizability of the models. 

Some studies have attempted to incorporate more diverse datasets for prediction 

purposes. Rasheed Omobolaji Alabi et al.[146] using NPC patients from the Surveillance, 

Epidemiology, and End Results (SEER) database, which involved 1,094 patients for 

training and internal validation, with an additional 517 patients for temporal validation. 

Furthermore, the study included 60 patients from Helsinki University Hospital for external 

validation. XGBoost models were developed using only clinical variables, achieving the 

best external AUC of 0.76. However, it should be noted that the SEER database primarily 

consists of American patients and may not be directly applicable to NPC patients in 

Southeast China, where the majority of cases occur. Additionally, the external validation 
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sample size of 60 patients is relatively small compared to the training dataset of over 1,000 

patients. In “-omics” family, the genomics is also a powerful tool for the prediction of OS 

in cancer patients. In 2023, Yiren Wang et al. [116] examined 33 samples (18 samples for 

training and 15 samples for external testing from two distinct databases) using a Cox 

regression model to predict the OS of NPC patients [116]. The best AUC achieved was 

0.769 (95% CI: 0.716-0.823) for the prediction of 3-year OS. However, genomic studies 

often face challenges related to sample accessibility. Genomic examinations can be 

invasive and expensive, particularly when employing advanced technologies such as 

single-cell sequencing. Furthermore, many genomic studies lack external validation and 

have limited sample sizes, highlighting areas for improvement in future research. 

Radiomics, on the other hand, involves extracting informatics information related to gene 

and protein expression from routine clinical imaging examinations. It holds great potential 

for generalizable application without adding significant financial burden.  

Among the studies mentioned above, ML models such as LR, SVM, random forest, 

GNB, and XGBoost are frequently employed. However, models like LR and SVM may 

face challenges in effectively capturing non-linear relationships within the data. Their 

limitations lie in their inability to handle complex non-linear patterns. In contrast, random 

forest and XGBoost, which are ensemble tree models, demonstrate superior performance 

in handling non-linear relationships. Nevertheless, for highly intricate non-linear 

relationships, these models may necessitate deeper trees or a greater number of weak 

learners to accurately model the complexities present. 

DL as a subset of ML, excels in capturing intricate non-linear relationships within 

data. Some studies have applied DL model for OS prediction of NPC patients, especially 
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related to the image data. Mengyun Qiang et al. [147] included 3444 locoregionally 

advanced NPC patients from Guangdong province, China in four hospital. 1838 patients 

for training, 787 patients for internal validation, 257, 248 and 314 for three external 

validations. 3D-CNN was used for MRI pattern recognition. The results of MRI scores then 

concatenate with clinical variables into XGBoost model for the prediction of 5-year OS. 

The AUC for the model in three external validation institutes were 0.728 (0.618 to 0.838), 

0.837 (0.752 to 0.922) and 0.853 (0.789 to 0.917). The patient number included in the study 

is larger enough than that in previous other studies. While these patients are all from single 

southeast area of China. The interpretation of DL models, particularly those related to CNN 

studies, remains a challenge in the field. Later, Lianzhen Zhong et al. [148] included 1872 

NPC patients to investigate the efficiency of induction chemotherapy for NPC patients with 

CCRT. The study extracted MRI patterns with ResNet model then using fully connected 

neural network to fuse the MRI patterns to MRI score. The MRI score was then 

concatenated with clinical variables into a nomogram for the prognostic prediction of NPC 

patients. The study only reported the C-index of progression free survival (Internal 

validation: 0.733, 95% CI: 0.657-0.809 and external validation:0.681, 95% CI: 0.568-0.793) 

without that for OS. In addition, only T3N1M0 NPC patients with CCRT or ICT plus 

CCRT were included in the study. Other stages of NPC patients and patients with other 

treatment such as adjuvant chemotherapy were not included. The selection bias might 

influence the representative of models.   

Predicting OS for NPC patients is challenging due to the complex interactions 

among multiple factors that influence the survival outcomes in cancer patients. It is not 

feasible to accurately predict OS using a single algorithm or modeling method alone. 
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Regarding the aforementioned studies, it is noteworthy that many of them primarily focus 

on clinical variables, which offer limited information for the intricate prediction of cancer 

patients' survival. Additionally, a significant proportion of these studies lack external 

validation and solely rely on internal validation. While ML methods have demonstrated 

potential in enhancing our comprehension of cancer progression, it is crucial to incorporate 

an adequate level of validation before considering their integration into routine clinical 

practice [149]. DL models have demonstrated the ability to effectively handle complex 

high-throughput data with impressive performance. However, these models often 

necessitate a large amount of input data for training, and their interpretability remains a 

challenge. 

2.3. Thesis Overview 

This thesis will first review previous literatures on radiomics prediction of AOM 

and OS for NPC patients with RT in Chapter 2. In the next chapter, which focuses on the 

first objective, the prediction of AOM with the multimodal data will be explained in detail. 

The fourth chapter contains the study for the prediction of OS for NPC patients based on 

three international datasets (Two private and one open accessed datasets). Lastly, we 

summarize the entire thesis by revisiting the main results and discussing the limitations and 

future developments.  
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Chapter 3.  

Acute Oral Mucositis  

3.1. Introduction 

As we have mentioned in the chapter 2, we intended to using radiomics, dosiomics 

and clinical data for the prediction of the severe AOM for NPC patients with IMRT.  In 

this part, we will introduce the whole research method for the study, from data collection, 

image preprocessing, feature extraction to model construction.  We first developed a 

conventional clinical LR model, and then used the model selected variables to combine 

with the radiomics and dosiomics data for the construction of other two ML models. We 

compared two data integration methods: 1) integrating radiomics and dosiomics before 

selection by the RFC, or 2) passing radiomics and dosiomics data separately to the RFC 

and then combining the results with clinical data for the prediction. 

3.2. Methods 

3.2.1. Patient Data  

All patient data were retrospectively collected from NPC patients who underwent 

CCRT or RT at Hong Kong Queen Elizabeth Hospital (QEH) from 2012 to 2015. Informed 

consent of patients was waived due to the nature of the retrospective study. NPC patients 

were recruited based on the following inclusion and exclusion criteria. The inclusion 

criteria were: (1) NPC patients with pathological validation and absence of distant 

metastasis and co-existing tumors of other types at diagnosis, (2) patients treated with a 
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total RT dose of 60–70 Gy, and (3) patients with a completed set of clinical, image, and 

radiation dose files. The exclusion criteria were: (1) patients aged less than 18, (2) patients 

without original image or clinical data, and (3) patients for whom exact standard CTCAE 

evaluation for AOM had not been recorded. Symptoms in grades 1 and 2 were defined as 

mild AOM, and grades 3 and 4 as severe AOM accordingly [150]. All the patients were 

negative of oral mucositis according to the CTCAE grading system before receiving 

radiation therapy. Clinical variables included (1) treatment information: TNM stage, 

treatment, past health condition, allergy history, vision condition, hearing condition, and 

CTCAE evaluation for AOM; and (2) demographic data: age, gender, body weight, height, 

BMI, and the smoking and drinking habits. All clinical variables were acquired one week 

before RT commencement, except the CTCAE evaluation results, which were recorded 4–

5 weeks after RT commencement. The equation for BMI is defined as follows:  

BMI = weight/height2  

Patients were maintained in a supine position during the imaging examination.  

CECT. All patients were scanned in the CT stimulator (16-slice Brilliance Big 1 Bore CT, 

Philips Medical Systems, Cleveland, OH) at Queen Elizabeth Hospital in Hong Kong. The 

scanned regions were from vertebra to five centimeters (cm) below the sternoclavicular 

notch. The contrast-enhanced images were acquired at 30s after intravenous injection of 

70 milliliter (mL) iodinated contrast agents. The detailed acquisition parameters are listed in 

Table 3-1. 
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Table 3-1. Acquisition parameters of CECT. 

Parameters  CECT 

Pitch  1 

Voltage (kVp)  120 

Exposure (mAs)  250–350 

Slice thickness (mm) 3 

Matrix  512 x 512 

Scan time (s)  15 

 

MRI. MRI scans were acquired with an MR scanner (1.5 Tesla, Siemens Avanto, 

Germany). T2-weighted imaging with short-tau inversion recovery (STIR) sequence and 

T1-weighted imaging with spin-echo MRI sequence were applied. The detailed acquisition 

parameters are listed in Table 3-2. 

Table 3-2. Parameters of T2WI and T1WI. 

Parameters  T2-STIR  cT1WI 

[TR]/[TE] (ms)  7640/97  739/17 

FOV (cm2)  24 x 24  24 x 24 

Number of acquisitions  1  1 

Slice thickness  

(mm x slices)  

4 x 25  3 x 28 

Spacing (cm3)  0.75 x 0.75 x 4.4  0.938 x 0.938 x 3.3 

Matrix  320 x 320  256 x 256 

 

 Radiomics has been successfully applied to a range of imaging techniques, 

including CT, MRI, ultrasound, and others. In a hospital setting, even for the same type of 

imaging modality, different scanning machines and reconstruction methods may be used 
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to cater to various needs. This issue is not limited to multi-scale institutes but also exists 

within individual hospitals [151, 152]. To ensure the quality of the collected images, we 

employ a visualization process wherein all the data obtained from the hospital is carefully 

examined. This allows us to identify and exclude images that exhibit significant noise or 

artifacts, as these can adversely affect the consistency of radiomics analysis.  

3.2.2. Imaging Preprocessing 

As previously mentioned, radiomics is based on the quantitative analysis of pixel 

HU values in medical images. Image pre-processing plays a significant role in ensuring the 

accuracy and standardization of radiomics [24]. The main steps involved in image pre-

processing are: 1) size of the pixel or voxels; 2) number of the gray levels [153]; 3) range 

of gray level values [154]; 4) nonuniformity of signal intensity for MRI [155, 156]; 

Numerous methods can be used for the imaging pre-processing. Details in Table 3-3.  

Table 3-3. Commonly used image pre-processing methods  

Pre-processing steps Methods 

Size of the pixel or voxels Liner and cubic B-spline interpolation [157] 

Number of the gray levels ±3 sigma normalization [158] 

Range of gray level values Discretization with fixed bin size and bin number [159] 

Remove the nonuniformity  

of signal intensity for MRI 

N3 and N4 bias field correction algorithms [160] 

 

         In this study, the imaging pre-processing steps were based on our previous work [161] 

and are in accordance with the IBSI guidelines [16]. Specifically, (1) voxel size resampling: 

all images (CECT and MRI) were resampled to a voxel size of 1 × 1 × 1 mm3 ; (2) VOIs 
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re-segmentation: CECT images were normalized to confine the value of HU to [–150,180] 

to eliminate the non-soft tissue influence in the VOIs; (3) image filtering: a Laplacian of 

Gaussian (LoG) filter with three levels of Gaussian radius parameter was used under fine 

(1 mm), medium (3 mm), and coarse (6 mm) scales; (4) quantization of gray levels: gray-

level intensities of the images were fixed to 50 bins; and (5) inhomogeneity correction of 

image pixel value: N4B bias correction in the “N4 Bias Field Correction Image Filter” in 

SimpleITK (v1.2.4) was implemented, in particular, to MRI images.  

3.2.3. Feature Extraction  

Feature extraction was performed using our in-house platform RADAR based on 

publicly available SimpleITK (v1.2.4) and PyRadiomics (v2.2.0) [162, 163]. All VOIs 

were delineated by an experienced senior clinician [164]. The gross tumor volumes were 

contoured based on CECT with the assistance of MRI images.  

Radiomics 

The GTVp and the gross tumor volume of nodal lesions (GTVn) were selected as 

the main VOIs for radiomics feature extraction. Features with or without LoG filters were 

both involved. All these features were extracted from CECT, contrast-enhanced T1 

weighted (cT1WI), and T2 weighted (T2WI) images (Parameter details in Figure 3-1). 

Meaning of each VOIs for different image modalities were listed in Table 3-4.  
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Figure 3-1. VOI examples for NPC patients with CECT examination. (a) Region of GTVp 

(orange), axial view. (b) Region of GTVn (blue) and PTVn_70 Gy (red), axial view. (c) Region of 

PTVn_60 Gy (green), coronal view. (d) DVH curve of four VOI. Three categories of radiomics 

features (RFs) were extracted: shape, first-order statistics, and texture features. The texture 

features can be further categorized into gray-level difference matrix (GLDM), GLCM, gray-level run-

length matrix (GLRLM), gray-level size-zone matrix (GLSZM), and neighboring gray-tone difference 

matrix (NGTDM) classes.   
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Table 3-4. VOIs and image modalities. 

VOIs  Descriptions of VOI Imaging Modalities/Images 

GTVp  Gross tumor volume of primary NPC tumor CECT, cT1WI, T2WI, DVH 

GTVn Metastatic lymph nodes area  CECT, DVH 

PTVn Regions of nodal planning target volume  

PTVn_70Gy  PTVn with the prescribed dose level of 70Gy DVH 

PTVn_60Gy  PTVn with the prescribed dose level of 60Gy  DVH 

 

 

Figure 3-2. Dose maps of NPC patients undergoing IMRT. (a) 3D view of NPC patient. (b) 

DVH of multiple VOIs. (c) Axial view of patient in different VOIs. (d) Coronal view of patient. (e) 

Sagittal view of patient. 

Dosiomics 

Except for GTVp and GTVn, the region of the high-dose nodal planning target 

volume (PTVn_70Gy) and region of the low-dose nodal planning target volume 

(PTVn_60Gy) were also added to the dosiomics analysis (Details in Figure 3-1, Figure 3-
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2 and Table 3-2). 2D and 3D DVHs of each studied VOIs were extracted from dose files 

for dosiomics feature extraction. All dosiomics features were extracted based on Gabry et 

al.’s previous study [18]. Features that reflect dose distribution, for instance, mean dose, 

spatial dose gradient, and spatial dose spread were extracted accordingly. All the 

calculation algorithms have been listed in a previous publication by Buettner et al. [165]. 

3.2.4. Model Development and Evaluation 

Based on the training process with or without label (prediction tasks) information, 

the ML algorithms applied in radiomics can be classified into three groups: supervised, 

unsupervised, semi-supervised learning [43]. In supervised learning, the algorithm utilizes 

label ,for example the treatment outcomes of patients, a s input to predict future instances 

[166]. It should be noted that not all patients in the real world have label information. 

Unsupervised algorithms analyze unlabeled datasets independently, without human 

intervention. Semi-supervised algorithms combine both supervised and unsupervised 

analysis simultaneously. In our study, the grading of AOM is the label of the task. It’s 

classified into two categories. The input label information enables the supervised ML 

model to make accurate prediction and complete model evaluation with the guidance of 

labels. Therefore, here we only introduce the background information related to the 

supervised tasks. The most common supervised tasks are “classification” that separates the 

data, and “regression” that fits the data. 

In this study, the statistical analysis, model training, and evaluation were conducted 

in Jupyter 6.4.12 and SPSS 25. The ROC curve and AUC with 10-fold cross validation was 

performed to evaluate model performance. The CTCAE grade scale of patients in mucositis 

was dichotomized between severe AOM (grade ≥ 3) and mild AOM (grade ≤ 2) as the 
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prediction endpoint. Patients were stratified based on CTCAE grade to training and testing 

groups at a 7:3 ratio (Details in Figure 3-3).  

 

Figure 3-3. Scheme of feature selection and modeling. Training and validation sets were 

separated before data analysis. The training set of data was used for feature selection. The 

validation set of data was used for model evaluation. To further manipulate the numerical and 

categorical data, reduce the interactions, and solve the collinearity problems, random forest 

selection was applicated for radiomics, dosiomics, and integrated data. Three linear or non-linear 

models were developed with independent validation data sets with selected features. The AUC was 

set as the main evaluation method for the model performance. performance. 

Models trained with Single-modal data 

The single-modal data sources in this study were restricted to single type of data 

(radiomics, dosiomics, or clinics), single modality of imaging (CECT, cT1WI, T2WI, and 

DVH), or single region of patients (GTVp, GTVn, PTVn_60Gy, and PTVn_70Gy). Each 

single data source experienced two steps: (1) feature selection and model training in the 
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training dataset and (2) AUC evaluation in validation datasets. For clinical data, chi-square 

and Mann–Whitney U tests were employed for binary and non-binary variables for 

univariate analysis. p values < 0.05 was considered to be statistically significant. All 

radiomics and dosiomics data were standardized with the MinMax scaler before selection. 

For radiomics and dosiomics data, we first identified significant features between severe 

and mild AOM patients in the training set with Mann–Whitney U tests. After that, random 

fores was used to rank the importance of the significant features considering both feature 

interactions and nonlinearities. The optimal feature number was set according to the best 

RF training model score. Three models, including LR, GNB, and XGBoost, were applied 

to evaluate the combined predictive value of these selected features in the independent 

validation set. All VOIs data were analyzed separately at the single model stage.   

 Models trained with multi-modal data  

The multi-modal data sources in this study indicated the dataset including equal to 

or more than two single-modal data sources. Specifically, clinical variables after 

multivariant analysis (LR) with p value < 0.05 were selected for data integration. 

Dosiomics and radiomics data from different VOIs and image modalities were integrated 

with two methods: (1) dosiomics and radiomics data were combined together before feature 

selection and (2) the features selected after the RFC were merged and directly combined 

without a further feature-selection step (please refer to Figure 3-3 for more details). All 

the data-integration methods are listed in Table 3-5.   Shapley Additive Explanations 

(SHAP), an explainable AI-based tool, was applied for further explanation of feature 

importance for the model with the best AUC result and specific features [167]. The feature 

importance method in tree ensemble algorithms like XGBoost is inconsistent, as it can 
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underestimate a feature's importance even when its true impact increases. In contrast, 

SHAP utilizes game theory and provides fast and precise attribution values for individual 

trees. With its unique consistency and local accuracy, SHAP is a superior approach for 

explaining feature importance in XGBoost models [168]. 

Table 3-5. Data resources and integration/combination methods. 

Name of Model Methods 

GTVp_RD Integration of radiomics and dosiomics GTVp data before  

feature selection 

GTVp_R_CECTcT1T2 
Integration of radiomics GTVp data from CECT, cT1WI, T2WI 

before feature selection 

GTVp_R_CECTcT1 
Integration of radiomics GTVp data from CECT and cT1WI before 

feature selection 

GTVp_R_cT1T2 Integration of radiomics GTVp data from cT1WI and T2WI before 

feature selection 

GTVp_R_cT1 Single radiomics data from cT1WI 

GTVp_R_CECT Single radiomics data from CECT 

GTVp_R_T2 Single radiomics data from T2WI 

GTVp_D Single dosiomics data from GTVp 

GTVn_RD Integration of radiomics and dosiomics data from GTVn before 

feature selection 

GTVn_R Single radiomics data from GTVn 

GTVn_D Single dosiomics data from GTVn 

PTVn_D Integration of 60 and 70 Gy dosiomics data before  

feature selection 

PTVn_60Gy_D Single dosiomics data from PTVn_60Gy 
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Continue…  

Name of Model Methods 

PTVn_70Gy_D Single dosiomics data from PTVn_70Gy 

D Integration of all dosiomics data before feature selection 

C Single clinical data 

C&D Combine selected clinical and dosiomics data for modeling 

C&R Combine selected clinical and radiomics data for modeling 

RD Integration of radiomics and dosiomics data before  

feature selection 

C&RD Combine selected clinical and RD data for modeling 

C&GTVp_RD Combine selected clinical and GTVp_RD data for modeling 

R&D Combine selected radiomics and dosiomics data for modeling 

C&R&D Combine selected clinical, radiomics and dosiomics data  

for modeling 

3.3. Results 

3.3.1. Patient’s Characteristics 

A total of 397 continuous patients were collected based on their final diagnosis with 

pathological validation. Of these patients, with a median age of 54 (range 26–86 years), 

242 were enrolled for further analysis following the inclusion and exclusion criteria (details 

in Figure 3-4). All patients were negative for oral mucositis with CTCAE graded 0 before 

radiation therapy. Univariate analysis results of demographic and clinical characteristics 

for those patients are listed in Table 3-6. 
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Figure 3-4. Schematic diagram of patient selection. 

Table 3-6. Demographic and clinical characteristics for all patients. 

Characteristics AOM < Grade 3  

(Mild AOM) 

AOM ≥ Grade 3  

(Severe AOM) 

p Value 

Total Number 191 (78.9%) 51 (21.1%)  

Age, mean ± SD, years 54.89 ± 12.25 50.9 ± 10.60 0.036 * 

18–65   149 (61.6%)  44 (18.1%)  

≥65  42 (17.4%)  7 (2.9%) 0.192 

Gender Male  135 (55.8%)  41 (16.9%)  

Female  56 (23.1%)  10 (4.1%)  0.167 

Treatment    0.004 * 

RT alone  27 (11.2%)  0  

CCRT  164 (67.8%)  51 (21.1%)   

    



 

76 

Continue…    

Characteristics AOM < Grade 3  

(Mild AOM) 

AOM ≥ Grade 3  

(Severe AOM) 

p Value 

T stage   0.031 * 

T1  15 (6.2%)  3 (0.1%)  

T2  8 (3.3%)  5 (2.1%)  

T3  137 (56.6%)  28 (11.6%)  

T4  31 (12.8%)  15 (6.2%)  

N stage    0.091 

N1  28 (11.2%)  1 (0.4%)  

N2  142 (58.7%)  45 (18.6%)  

N3  20 (8.2%)  5 (2.1%)  

Pathology     

Non-keratinizing  

squamous cell  

175 (72.3%)  48 (19.8%)  0.556 

Past health condition     

Past health good  92 (38.0%)  27 (11.2%)  

Basic diseases/cancer  99 (40.9%)  24 (9.9%)  0.545 

Allegory of History     

No known drug allergies  176 (72.7%)  46 (19.0%)  

Allergy history  15 (6.2%)  5 (2.1%)  0.653 

Vision    

Normal  189 (78.1%)  51 (21.1%)  

With eye impairment  2 (0.8%)  0  0.463 

Hearing     

Normal  186 (76.9%)  48 (19.8%)  

With hearing impairment  5 (2.1%)  3 (1.2%)  0.247 
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Continue…    

Characteristics AOM < Grade 3  

(Mild AOM) 

AOM ≥ Grade 3  

(Severe AOM) 

p Value 

Habits    

Smoking  9 (3.7%)  6 (2.5%)  0.044 * 

Non-smoker  182 (75.2%)  45 (18.6%)  

Drinking  4 (1.7%)  1 (0.4%)  

No alcohol consumption  187 (77.3%)  50 (20.7%)  0.953 

Height, mean ± SD, cm 163.4 ± 8.5  165.0 ± 8.0  0.561 

Body weight,  

mean ± SD, kg  

   

1st week of RT   63.1 ± 11.9  66.2 ± 14.6 1.599 

2nd week of RT  62.0 ± 11.8  64.9 ± 14.5 1.5  

3rd week of RT  61.2 ± 11.4  63.9 ± 14.1 0.116  

BMI     

1st week of RT    

<25 131 (54.1%) 32(13.2%)  

≥25 60(24.8%) 19(7.9%) 0.429 

2nd week of RT    

<25 131 (54.1%) 32 (13.2%)  

≥25 60 (24.8%) 19 (7.9%) 0.116 

3rd week of RT    

<25 131 (54.1%) 31 (12.8%)  

≥25 55 (22.7%) 20 (8.3%) 0.153 

4th week of RT    

<25 142 (58.7%) 34 (14.0%)  

≥25 49 (20.2%) 17 (7.0%) 0.274 

* p < 0.05. All the above data are derived from biopsy-proven primary NPC patients without the existence of distant metastasis or co-existing 

tumors of other type at diagnosis. 
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3.3.2. Feature Extraction and Model Development 

Feature Extraction 

In this study, a total of 1544 RFs, 386 features each for four modalities of imaging, 

were extracted from raw and LoG-filtered images. A total of 836 dosiomics features (210 

for GTVn, 211 for GTVp, 204 for PTVn_60Gy, and 211 for PTVn_70Gy) were extracted 

from dose images.  

Dimension Reduction 

For the clinical data, four variables, including age, RT treatment alone, T stage, and 

smoking habits, were selected after univariate analysis. The LR model was established with 

these variables. T stage and smoking habits had statistical significance in the LR model 

with a p-value < 0.05 (Details in Table 3-7). 

Table 3-7. LR results for single clinical data model.  

Variables p-Value 95% Confidence Interval 

  Lower 95% Bound Upper 95% Bound 

Age (18, 65) 0.802 0.345 2.274 

T 0.007 *   

T 1 0.591 0.149 2.96 

T 2 0.069 0.881 29.854 

T 3 0.024 * 0.195 0.891 

RT alone 0.998 0 . 

Smoker 0.043 * 1.037 10.683 

* P < 0.05.
 

Radiomics and dosiomics features extracted from various VOIs were put into 

Mann–Whitney U tests and RFC step by step. RFC selection results of the threshold and 

feature numbers are listed in Table 3-8. 
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Table 3-8. Threshold of RFC and feature numbers for further model development. 

Modal of data Threshold Number of features 

GTVp_RD  0.014  5 

GTVp_R_CECTcT1T2  0.01  8 

GTVp_R_CECTcT1  0.0125  5 

GTVp_R_cT1T2  0.125  5 

GTVp_R_cT1  0.015  4 

GTVp_R_CECT  0.01  19 

GTVnp_R_T2  0.03  2 

GTVnp_D  0.024  6 

GTVn_RD  0.02  7 

GTVn_R  0.03  7 

GTVn_D  0.06  7 

PTVn_D  0.03  3 

PTVn_60Gy_D  0.03  12 

PTVn_70Gy_D  0.042  1 

R  0.012  2 

D  0.016  13 

RD  0.005  13 

 

Models 

Nine categories of single-modal models (C, PTVn_70Gy_D, PTVn_60Gy_D, 

GTVn_D, GTVp_D, GTVn_R, GTVp_R_T2, GTVp_R_CECT, and GTVp_R_cT1) were 

established with single modal, single modality, and single VOI data. The best validation 

AUC was at 0.75 ± 0.12 (training AUC = 0.73 ± 0.01) of a GNB model (GTVp_R_cT1) 

with radiomics data from GTVp of cT1WI. Seven groups of models with data integrated 

before feature selection (raw-data integration) were generated with the best AUC of a GNB 
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model (GTVp_RD) at 0.81 ± 0.01 (training AUC = 0.79 ± 0.01). This best-performing 

model was constructed with features selected from radiomics and dosiomics data in the 

region of GTVp. In addition, six sets of combined data after feature selection were also 

used for modeling. A best LR model (C&R&D) with AUC at 0.79 ± 0.14 (training AUC = 

0.81 ± 0.02) was set with the simply combined data of selected clinical, dosiomics, and 

RFs (Details of mean 10-fold validation AUC results are listed in Figure 3-5). 

 

Figure 3-5. 10-fold validation AUC results for the internal validation dataset. (a) The AUC plot 

of GNB model for the GTVp_R_cT1 data set. (b) The AUC plot of GNB model for the GTVp_RD 

data set. (c) The AUC plot of LR model for the C&R&D data set. (d) The heatmap of mean AUC 

results for all models. 

The SHAP analysis showed the importance of the five features in the GTVp_RD 

model for prediction of severe AOM. Four of the five features were derived from cT1WI. 
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All five features are texture features. No dosiomics features were selected after the feature 

selections (details in Figure 3-6). 

 

Figure 3-6. Feature importance of SHAP for XGBoost model of GTVp_RD. From the highest 

to the lowest level, the features are categorized in GLSZM, log sigma 6 0 mm 3D GLCM, original 

GLDM, GLDM, and log-sigma 1.0 mm 3D GLCM. 

3.4. Discussion 

In our study, we used simply combined and data-fusion methods to manage multi-

modalities of data (clinical, radiomics, and dosiomics), multimodalities of imaging (CECT, 

cT1WI, and T2WI), and multi-regional information (GTVn, GTVp, and PTVn) to predict 

the incidence of severe AOM. Multiple models were established to evaluate and determine 

which method was effective for clinical decision-making. Comparison of the AUC between 

models showed that the simple combination of single-modal data of selected features had 

the most stable performance (C&R&D), with an average AUC of 0.77 ± 0.17. In addition, 

data-fusion methods, integrating radiomics and dosiomics data before selection 

procedures, resulted in the best-performing model (GTVp_RD), with the best validation 
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AUC of 0.81 ± 0.01. This is also the best AUC among the existing AOM prediction models 

from previous studies. The feature numbers in the C&R&D model and GTVp_RD were 29 

and five, respectively. Obviously, data fusion was more efficient for training a model with 

one-sixth the number of features to achieve stronger model predictability.  

To better explain the correlations of the selected features and severe AOM for NPC 

patients, a SHAP plot was applied for the GTVp_RD XGBoost model. In this model, RFs 

extracted from GTVp in cT1WI images yielded the highest and majority prediction value 

for severe AOM. Poolakkad and his colleagues established a ML model of 253 H&N 

patients’ clinical data with the best AUC of 0.79 for AOM prediction [169]. Most clinical 

data selected in their study were late after the CCRT scheme, for example, the anti-

neoplastic chemotherapy-induced pancytopenia, co-morbidity score, and agranulocytosis. 

It is worth noting that the features and variables selected in our study were all from the data 

collected before implementation of the RT regimen. Clinicians could predict the severe 

AOM before the commencement of RT planning. Personalized treatment strategies 

adjustment could be achieved using the developed prediction model. Strictly speaking, the 

concept of dosiomics is originated from radiomics. The data for dosiomics and radiomics 

are similar in terms of the feature calculation algorithm.[93] The clinical data are different 

from the “-omics” data in nature. Therefore, instead of integrating raw clinical data with 

other data, the simple concatenation of selected clinical data was only applied in this study.  

Compared with less increase of AUC for the combination of clinical data with 

integrated RD data, the clinical data could enhance the prediction capability of single-

modal models. The single radiomics models (R) and single clinical models (C) have limited 

prediction performance with average AUC of three models (LR, GNB, and XGBoost) at 
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0.63 ± 0.06 and 0.63 ± 0.64, respectively. When combining the clinical data with the 

selected RFs, the model (C&R) outperformed both R and C models with average AUC at 

0.74 ± 0.03. The single dosiomics models yielded poor performance, with most AUCs 

under 0.7 in the validation data set. In a previous study, dose distribution correlated with 

the incidence and severity of AOM [170]. Dean et al.[171] developed an random forest 

model with a testing AUC of 0.71 ± 0.09, using a dose–volume histogram, spatial dose 

metrics from the oral cavity, and clinical data. In the current study, the best dosiomics 

model had the mean testing AUC of 0.69 ± 0.14. Different tumor-related VOIs may present 

different prediction value for severe AOM. The difference in VOI selection between the 

two studies might shed some light on the discrepancy in the findings.  

When analyzing the influence of the dose distribution, the oral cavity contours 

directly represent the dose distribution in the oral mucosa, which might be more accurate 

than the GTVn, GTVp, PTVn_60_Gy, or PTVn_70_Gy. The VOI of the oral cavity 

requires specific contouring. It is worth noting that contouring of the oral cavity is not a 

common practice in the participating hospital of this study. Extra contouring is labor-

intensive work in daily clinical practice. Our study only selected the routine VOI broadly 

used for RT planning, which could support our model to be applied from bench to bedside 

for clinical decision-making. Besides, the DVH is prone to over-simplifying the dose 

distribution [172]. It is recommended to combine or integrate dosiomics data with other 

modalities of data. When incorporating dosiomics data with other data types, the best mean 

validation AUC could surge to 0.81 ± 0.01. At present, there exists no effective preventive 

measures for the occurrence of severe AOM in NPC patients undergoing RT. Nevertheless, 

it is feasible to mitigate the severity of this affliction:  
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(1) Use of alternative radiation techniques, such as proton therapy, may be 

considered to reduce the risk of oral mucositis while maintaining treatment efficacy [150, 

173].  

(2) Shortening the duration of chemotherapy. For advanced NPC patients who need 

to accept both radiotherapy and chemotherapy, shortening the exposition time to 

chemotherapy agents has shown lower mucosal toxicity [174].  

(3) Photo-biomodulation is a supportive treatment for the protection of high-risk 

mucositis patients [175].  

(4) Supportive care interventions: preemptive or proactive use of supportive care 

interventions, such as oral hygiene measures, pain management, or nutritional support, may 

be considered to prevent or reduce the severity of AOM [176].  

The limitations of our study were:  

(1) The mucositis grade levels of our patients had an imbalanced distribution. This 

might have had a negative influence on the data analysis work. The imbalanced results 

were the nature of the clinical situation. Patients were stratified into the training and 

validation groups according to the severity of OM, which could offset the imbalance 

problem [150, 177, 178].  

(2) Potential bias of smoking information: in our study, the number of smoking 

patients might be underestimated due to the nature of this patient-reported outcome. This 

data was reported by patients at the time of their hospital visit and recorded in the nursing 

consultation notes.  
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(3) The severity of AOM was scaled with CTCAE in v3 or v4.03, almost equivalent 

for evaluation of mucositis. Various criteria are available for mucositis grading, such as the 

those of the RTOG and the WHO. These scales have excellent concordance with bundled 

scores of 3 and 4 to describe severe AOM [75]. The CTCAE is easily conducted by 

clinicians and nurses and broadly applied in the hospital.  

(4) The correlations of contributors under AOM for NPC patients are complex. For 

clinical decision-making, genome information, other clinical information such as 

fermented-food consumption and EBV infection, and pathological image may also play 

critical roles. The limited data resources for multimodal data integration are common 

challenges in the data-mining field. The radiomics data in our study also provided relevant 

genomic information. Compared with gene test results, the CECT and MRI examination 

images collected in our research are clinical routines used by clinicians to set the RT plan 

for NPC patients. These noninvasive examinations could serve as high-throughput 

screening tools for further application of severe AOM prediction in the future.    

(5) Other selection of VOIs: for practical consideration, we have not added the 

VOIs of the oral cavity, tongue, pharyngeal muscles, etc., which may hold potential 

predictive value for AOM. Further investigation is recommended to incorporate this 

information to enhance the accuracy of the analysis. 

3.5. Conclusion 

AOM is a challenging and distressing complication in NPC patients following RT. 

Prediction of severe AOM is necessary for timely prevention and intervention, which 

would further improve the QoL and survival of patients. In this study, we adopted 
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multimodal data (clinical, radiomics, and dosiomics), multimodality of imaging (CECT, 

cT1WI, and T2WI), and multi-regional information (GTVn, GTVp, and PTVn) to develop 

a best-performance model for severe AOM prediction. The simple combination of selected 

information and data fusion were applied in our work. The results demonstrated that the 

fusion of radiomics and dosiomics data from the primary tumor could generate the most 

effective and best-performing model (mean AUC = 0.81 ± 0.01). The data resources and 

VOIs selected in this study are routinely used in clinical practice, which has excellent 

potential for further clinical support. Further validation work on a large cohort is warranted 

to validate model generalizability. Our current integration work only considers two 

methods for integrating radiomics and dosiomics data. However, we found that the clinical 

data had little contribution to the model performance, possibly due to the small number of 

clinical data compared to radiomics and dosiomics data. Other potential multimodal data 

integration frameworks to balance the weight of clinical variables and radiomics/dosiomics 

features are worth exploring. 
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Chapter 4.  

Overall Survival  

4.1. Introduction 

The OS is the most commonly used outcome measure for cancer patients. 

Prognostic prediction of OS for NPC patients using ML models optimizes resource 

allocation, improves prognosis assessment, guides clinical decision-making, and provides 

valuable insights for researchers, fostering further research and development. In this part, 

we intended to using CT-based radiomics and clinical data to develop a generalizable 

prognostic DL model to predict the 5-year OS of NPC patients in Hong Kong and Canada. 

The entire study design is introduced following the data collection, imaging preprocessing, 

feature extraction, feature redundancy to model development.  

4.2. Methods 

4.2.1. Patient Data  

The study follows the MI-CLAIM (Minimum Information about CLinical Artifcial 

Intelligence Modelling) checklist (2020) [179, 180] and the TRIPOD+AI (Transparent 

Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis + 

Artificial Intelligence) statement (2024) [181]. In view of the retrospective nature of study, 

the study informed consent and ethical approval were waived by the ethnic committee of 

Queen Elizabeth Hospital (QEH) and University Health Network (UHN).  
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The CT images, GTVp contour mask files and clinical variables were searched and 

collected from a private QEH database in Hong Kong and a public RADCURE database 

in Canada (https://www.cancerimagingarchive.net/collection/radcure). Details are 

presented in Figure 4-1. The acquisition parameters of CT scanning are listed in Table 4-

1. Patient data from RADCURE was randomly split into a train and an independent internal 

validation cohort, stratified by the survival outcome, with the ratio of eight to two. Patients 

from QEH was set as an external validation cohort. The inclusion criteria included: 1) 

Pathological validated NPC patients and no prior surgery at diagnosis; 2) Patients with total 

IMRT dose around 60-70 Gy; and 3) Patients with GTVp contour mask delineated by 

registered radiation oncologists, pretreatment CT images, and clinical variables. The 

exclusion criteria included: 1) Patients without completed CT images or GTVp contour 

files; 2) Age of patients less than 18 years old. Clinical variables included the following: 

age, gender, Eastern cooperative oncology group performance status (ECOG PS), TNM 

stage, Clinical stage, Pathological types (based on World Health Organization 

classification, WHO), smoking habits, treatment methods (radiotherapy with/without 

chemotherapy).  

 

Figure 4-1. Flowchart of patient selection process QEH and RADCURE datasets 
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Table 4-1. The acquisition parameters of CT scanning. 

Parameter RADCURE QEH 

Position Supine Supine 

Slice thickness [mm] 2 [2-2.5] 3 [3-3] 

Voltage [kVp] 120 [120,120] 120 [120,120] 

Exposure [mAs] 300 [121-540] 300 [250-350] 

Pixel spacing [mm] 0.976 [0.702-1.17] 1.102 [0.941-1.330] 

4.2.2. Imaging Preprocessing 

In this study, CT images and GTVp masks were converted to digital imaging and 

communications in medicine (DICOM) and radiation therapy structure (RTSTRUCT) 

formats, respectively. All DICOM and RTSTRUCT files were transferred to MetaImage 

(MHA) files for further processing. All imaging preprocessing methods were in accordance 

with Image Biomarker Standardization Initiative (IBSI) guidelines [16, 17]. In particular, 

all images were resampled to 1x1x1 mm3 and normalized to [-150,180] HU. The number 

of intervals into which the pixel values of an image are fixed at 32 bin count. 

4.2.3. Feature Extraction 

All feature extraction procedures were conducted in our in-house platform which 

is developed based on SimpleITK (v1.2.4) and PyRadiomics (v2.2.0). The GTVp masks 

was delineated by experienced clinicians as RT planning masks. The minimum dimensions 

required for the images is at least three dimensions (VOIs). Three categories of RFs 

including Shape, first-order, GLCM, GLRLM, GLSZM, GLDM, and NGTDM were 

extracted from the CT images. Perturbations of images were utilized to delineate the 
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influence of  variations from human contours based on our previous studies [182].  

Specifically, a total of 40 perturbations were performed, resulting in 40 times of 

calculations for RFs under different perturbation conditions. The rotation angles used were 

-20°, 0°, and 20°, indicating that the images were rotated by these angles for feature 

calculation. Additionally, three translation distances (0, 0.4, and 0.8) and a smoothing 

sigma of 10 were employed.  

4.2.4. Model Development and Evaluation 

The Jupyter (v6.5.4), python (v3.11.7) were utilized for statistical analysis, model 

training, and evaluation. The intraclass correlation coefficient (ICC) [183] and coefficient 

of variant (CV) [184] were calculated based on the 40 times of perturbations. The cutoff 

value for ICC>0.9 and CV<15% were set for the selection of robust RFs [185]. For clinical 

variables, nearest neighbour imputation was used for the missing values. The categorical 

variables were compared with the Chi-square test. The continuous and ordinal variables 

were compared with the Mann-Whitney U test.  

For ML model with RFs, Random Forest Classifier (RFC) was utilized for the 

important feature selection. Four conventional ML models, namely Logistic Regression 

(LR), Random Forest, Gaussian Naive Bayes (GNB), and eXtreme Gradient Boosting 

(XGBoost), were developed using selected robust RFs and clinical variables. Additionally, 

a Multilayer Perceptron (MLP) neural network model was constructed. The robust RFs 

were directly input into the MLP model to obtain the MLP score. Subsequently, the score 

was concatenated with the clinical variables to generate a nomogram based on LR model. 
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Receiver Operating Characteristic (ROC), AUC, Accuracy (ACC) were applied for 

evaluation of models. Details are presented in Figure 4-2.  

 

Figure 4-2. Study layout. 348 and 366 NPC patients were retrospective searched from the 

RADCURE and QEH datasets. All patients underwent pretreatment CT imaging. A)  Radiomics 

workflow: Imaging preprocessing and segmentation; Feature engineering; model development and 

model evaluation; B) Clinical variable workflow: Data collection and preprocessing; univariate 

analysis; model development; and model evaluation. C) The development and evaluation of the 

nomogram. MLP=multilayer perceptron; LR=logistic regression; XGBoost= eXtreme Gradient 

Boosting; AUC = area under the curve; ACC= accuracy; MWU=Mann Whitney U test; Decision 

Curve Analysis (DCA); Kaplan-Meier (K-M) analysis;  
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4.3. Results  

4.3.1. Patient Data 

A total of 397 and 3346 NPC patients were collected from QEH (Hong Kong, 

China) and RADCURE (Toronto, Canada) databases, respectively. The date of diagnosis 

for NPC patients in QEH and RADCURE were from 2012 to 2015 and from 2005 to 2017, 

respectively. 348 NPC patients and 366 NPC patients from RADUCRE and QEH with CT 

images, GTVp mask, and clinical variables were finally recruited into this study (Details 

are provided in Figure 4-1).  The datasets for training, internal validation, and external 

validation consisted of 244, 104, and 366 patients, respectively. The mean follow-up time 

for QEH and RADCURE are 4.5 and 5.3 years, respectively. In RADCURE datasets, ten 

patients without smoking status and three patients without ECOG PS information. In QEH 

datasets, pathological types were unknown for four patients; 16 patients without smoking 

status. All these information was imputed accordingly. Adjusted characteristics of patients 

in training, internal and external cohorts are listed in the Table 4-2. The continuous 

variables are reported as median and standard deviation. The categorial and ordinal 

variables are summarized as frequencies and percentage. 

Table 4-2. Characteristics of patients in training, internal and external cohorts 

Characteristics Training Internal Validation External Validation 

No. of patients 278 70 366 

Age 52.9±12.0 54.0±13.8 54.2±12.6 

    Male 194 (69.8） 55 (78.6) 273 (74.6) 
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Continue…    

Characteristics Training Internal Validation External Validation 

Female 84 (30.2) 15 (21.4) 93 (25.4) 

ECOG PS    

    0 198 (71.2) 51 (72.9) 58 (15.8) 

    1 76 (27.3) 17 (24.3) 292 (79.8) 

    2 3 (1.1) 1 (1.4) 13 (3.6) 

    3 1 (0.4) 1 (1.4) 3 (0.8) 

Smoking Status    

    Non-smoker 155 (55.8) 42 (60) 288 (78.7) 

    Ex-smoker 77 (27.7) 15 (21.4) 54 (14.8) 

    Current 46 (16.5) 13 (18.6) 24 (6.6) 

T    

    1 74 (26.6） 25 (35.7) 24 (6.6) 

    2 46 (16.5) 4 (5.7) 21 (5.7) 

    3 86 (30.9) 27 (38.6) 246 (67.2) 

    4 82 (29.5) 14 (20.0) 75 (20.5) 

N    

    0 31 (11.2) 11 (15.7) 3 (0.8) 

    1 71 (25.5) 16 (22.9) 44 (12) 

    2 141 (50.7) 32 (45.7) 275 (75.1) 

    3 86 (30.9) 11 (15.7) 44 (12) 

 M      

0 276 (99.3) 70 (100) 365 (99.7) 

    1 2 (0.7) 0 (0) 1 (0.3) 
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Continue…    

Characteristics Training Internal Validation External Validation 

Clinical Stage    

    1 9 (3.2) 4 (5.7) 2 (0.5) 

    2 32 (11.5) 10 (14.3) 9 (2.5) 

    3 127 (45.7) 34 (48.6) 239 (65.3) 

    4 110 (39.6) 22 (31.4) 116 (31.7) 

Pathological Type    

    WHO I 8 (2.9) 3 (4.3) 20 (5.5) 

    WHO II 268 (96.4) 67 (95.7) 345 (94.3) 

    WHO III 2 (0.7) 0 (0) 1 (0.3) 

Treatment    

    IMRT 32 (11.5) 10 (14.3) 52 (14.2) 

    IMRT+chemo 246 (88.5) 60 (95.7) 314 (85.8) 

Note: ECOG PS= Eastern Cooperative Oncology Group Performance Status; WHO= World Health 

Organization; IMRT= Intensity-Modulated Radiation Therapy. 

4.3.2. Feature Extraction and Model Development 

Feature Extraction 

1130 RFs, including 107 original RFs, 278 log-sigma RFs, and 743 wavelet RFs 

were extracted from GTVp. Among these RFs, 170 RFs were robust RFs with ICC >0.9 

and CV<15%.  

Models 

In the training dataset, three clinical variables had significant p value <0.05 after 

univariate analysis: age, sex and smoking status (Detailed results are displayed in Table 4-

3). The best ML model with clinical variables was XGBoost, which achieved internal and 
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external validation AUC around 0.55. (Results can be found in Table 4-4). For ML models 

with RFs, RFC was applied for further feature selection. Important feature number of RFC 

were set at 6, 8, 10, 12, 14. The ML models with best internal AUC were listed in Table 

4-5. Other details are listed in Table 4-6, 10). The RF model had best internal AUC of 

0.840 (95% CI: 0.728, 0.938). The LR model with MLP score (the nomogram) achieved 

the best internal validation and external AUC of 0.796 (95% CI: 0.689-0.881) and 0.700 

(95% CI: 0.642-0.753), respectively.  

Table 4-3. The results of univariate analysis for clinical variables in training cohort. 

Characteristics Univariate (p value) 

Age 0.029* 

Sex 0.038* 

ECOG PS 0.187 

Smoking Status 0.168 

T 0.726 

N 0.980 

M 1.000 

Clinical Stage 0.771 

Pathological Type 0.383 

Treatment 0.116 

*p<0.05 
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Table 4-4. AUC and ACC of ML models for clinical variables 

Models Training  Internal   External   

 AUC (95%CI) ACC AUC (95%CI) ACC AUC (95%CI) ACC 

LR 0.647(0.581, 0.712) 0.594 0.491(0.357, 0.626) 0.529 0.566 (0.507, 0.624) 0.574 

RF 0.799(0.744, 0.846) 0.723 0.462(0.328, 0.609) 0.486 0.576 (0.519, 0.631) 0.612 

GNB 0.656(0.591, 0.717) 0.59 0.506(0.372, 0.642) 0.514 0.551 (0.489, 0.609) 0.505 

XGBoost 0.751(0.691, 0.802) 0.662 0.554(0.417, 0.692) 0.543 0.547 (0.492, 0.601) 0.582 

 

Table 4-5. AUC and ACC of ML models with robust RFs as input 

Models No. Training  Internal   External   

  AUC (95%CI) ACC AUC (95%CI) ACC AUC (95%CI) ACC 

LR 8 0.831 (0.781, 0.876) 0.788 0.788 (0.668, 0.9) 0.786 0.585 (0.524, 0.642) 0.566 

RF 12 0.985(0.973, 0.994) 0.928 0.84(0.728, 0.938) 0.757 0.560 (0.502, 0.619) 0.552 

GNB 14 0.849 (0.804, 0.891) 0.784 0.825 (0.712, 0.921) 0.771 0.575(0.515, 0.633) 0.574 

XGBoost 6 0.998 (0.996, 1.0) 0.982 0.812(0.696, 0.912) 0.714 0.453(0.395, 0.513) 0.552 

Nomogram 5 0.827 (0.776, 0.874) 0.774 0.786 (0.688, 0.871) 0.762 0.705 (0.646, 0.749) 0.623 

Note: No.=numbers of variables as input; AUC=Area Under the Curve; ACC=Accuracy; ML=Machine 

Learning; LR=Logistic Regression; RF=Random Forest; GNB= Gaussian Naive Bayes; XGBoost= Extreme 

Gradient Boosting. 

Table 4-6. The AUC and ACC of ML models with six robust RFs 

Model Train    Internal   External   

 AUC 95% CI ACC  AUC 95% CI ACC  AUC 95% CI ACC  

LR 0.809 (0.758, 0.856) 0.745 0.745 (0.619, 0.867) 0.743 0.588 (0.527, 0.646) 0.571 

RF 0.985 (0.973, 0.993) 0.928 0.828 (0.715, 0.925) 0.743 0.503 (0.444, 0.562) 0.546 

GNB 0.835 (0.787, 0.881) 0.766 0.797 (0.678, 0.897) 0.786 0.558 (0.497, 0.616) 0.566 

XGBoost 0.998 (0.996, 1.0) 0.982 0.812 (0.696, 0.912) 0.714 0.453 (0.395, 0.513) 0.552 
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Table 4-7. The AUC and ACC of ML models with eight robust RFs 

Model Train    Internal   External   

 AUC 95% CI ACC  AUC 95% CI ACC  AUC 95% CI ACC  

LR 0.831 (0.781, 0.876) 0.788 0.788 (0.668, 0.9) 0.786 0.585 (0.524, 0.642) 0.566 

RF 0.982 (0.967, 0.991) 0.921 0.806 (0.691, 0.906) 0.729 0.438 (0.379, 0.492) 0.549 

GNB 0.846 (0.801, 0.888) 0.763 0.783 (0.669, 0.884) 0.686 0.488 (0.426, 0.544) 0.527 

XGBoost 0.979 (0.963, 0.99) 0.917 0.805 (0.687, 0.911) 0.714 0.441 (0.38, 0.498) 0.552 

 

Table 4-8. The AUC and ACC of ML models with ten robust RFs 

Model Train    Internal   External   

 AUC 95% CI ACC  AUC 95% CI ACC  AUC 95% CI ACC  

LR 0.831 (0.781, 0.876) 0.788 0.788 (0.668, 0.9) 0.771 0.586 (0.524, 0.642) 0.563 

RF 0.97 (0.952, 0.985) 0.903 0.833 (0.721, 0.93) 0.786 0.524 (0.466, 0.582) 0.56 

GNB 0.844 (0.8, 0.888) 0.781 0.819 (0.71, 0.913) 0.757 0.522 (0.466, 0.58) 0.536 

XGBoost 0.966 (0.945, 0.983) 0.899 0.774 (0.648, 0.881) 0.714 0.506 (0.445, 0.562) 0.552 

 

Table 4-9. The AUC and ACC of ML models with 12 robust RFs 

Model Train    Internal   External   

 AUC 95% CI ACC  AUC 95% CI ACC  AUC 95% CI ACC  

LR 0.81 (0.756, 0.864) 0.773 0.776 (0.651, 0.893) 0.800 0.572 (0.513, 0.627) 0.546 

RF 0.985 (0.973, 0.994) 0.928 0.840 (0.728, 0.938) 0.757 0.560 (0.502, 0.619) 0.552 

GNB 0.854 (0.81, 0.895) 0.777 0.804 (0.682, 0.904) 0.786 0.508 (0.449, 0.566) 0.525 

XGBoost 0.992 (0.98, 0.999) 0.964 0.786 (0.666, 0.892) 0.686 0.503 (0.445, 0.559) 0.560 

 

Table 4-10. The AUC and ACC of ML models with 14 robust RFs 

Model Train    Internal   External   

 AUC 95% CI ACC  AUC 95% CI ACC  AUC 95% CI ACC  

LR 0.81 (0.757, 0.863) 0.766 0.781 (0.656, 0.896) 0.800 0.576 (0.516, 0.631) 0.552 

RF 0.982 (0.968, 0.992) 0.928 0.838 (0.721, 0.94) 0.786 0.553 (0.495, 0.608) 0.546 

GNB 0.849 (0.804, 0.891) 0.784 0.825 (0.712, 0.921) 0.771 0.575 (0.515, 0.633) 0.574 

XGBoost 1 (0.998, 1.0) 0.996 0.797 (0.675, 0.9) 0.757 0.457 (0.4, 0.515) 0.536 
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The MLP model was constructed with five hidden layers. The model architecture consists 

of multiple dense layers with different activation functions. Dropout regularization was added 

after the hidden layer to prevent the overfitting of the model. The input layer, with an input 

dimension of 'featureNum', was followed by a dense layer with 512 units and a ‘sigmoid’ 

activation function. A dropout layer with a rate of 0.5 was applied after the first dense layer to 

prevent overfitting. The subsequent hidden layer was consisted with a dense layer (256 units, 

activation= ‘Leaky_relu’), and following a dropout layer with a rate of 0.5. Two additional dense 

layers followed, each with 256 units and ‘Leaky_relu’ activation. The dropout layer with a rate 

of 0.3 was added for the second one to further regularize the model. Another two hidden layers 

with 128 units were included. Leaky_relu and sigmoid were added as activation, respectively. 

Finally, the output layer consisted of a single unit with a ‘sigmoid’ activation function, facilitating 

binary classification. The RMSprop optimizer was employed to optimize the model's 

performance, with specific parameters for learning rate, rho, momentum, and epsilon. For the loss 

function, we utilized the Binary Focal Crossentropy, which was customized with alpha and 

gamma values of 0.25 and 2.0, respectively, to address class imbalance. The model was evaluated 

using accuracy and AUC metrics. During the training phase, the model was trained on the 

provided training dataset for 200 epochs, with a batch size of 16 and a validation split of 0.2. The 

training history was recorded for further analysis and evaluation. MLP score was concatenated 

with significant clinical variables to construct the nomogram with logistic regression model.  

The nomogram (MLP/LR) achieved the training, internal and external validation AUC of 

0.818 (95% CI: 0.765-0.865), 0.734 (95% CI: 0.609-0.839), and 0.735 (95% CI: 0.681-0.783), 

respectively.  The ACC of the model are 0.770, 0.686 and 0.697 for train, internal and external 

validation. Nomogram was established based on the coefficient of MLP/LR model with 
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simpleNomo package [186]. Details were displaced in Figure 4-3. The p-value of log-rank test 

for training, internal validation and external validation cohorts were all less than 0.05.  

 

Figure 4-3. Development and evaluation of Nomogram. A. Clinical variables and MLP score 

were included for the construction of nomogram; B. ROC of nomogram for training, internal and 

external validation cohorts. C. The decision curve for the training validation cohort. The dot and 

solid black lines represent non-responders and responders, respectively. The calculation algorithm 

of net benefit: net_benefit = (tp / n) - (fp / n) * (thresh / (1 - thresh)), in which tp=number of true 

positive samples, fp=number of false positive samples, thresh= threshold, total= number of true 

and false positive samples; D. Kaplan-Meier (K-M) curve for the training cohort; E. K-M curve for 

the internal validation cohort; F. K-M curve for the external validation cohort. Sex: 0=female, 1=male; 

Smoking status: 0=non-smoker, 1=ex-smoker, 2=current smoker. 



 

100 

4.4. Discussion 

The nomogram with CT-based RFs for the prediction of 5-year OS for NPC patients 

was developed and evaluated on an international dataset in this study. The results of our 

study demonstrated that the nomogram exhibited the best and most generalizable 

performance for predicting the 5-year OS of NPC patients in both internal （AUC: 0.734, 

95% CI: 0.609-0.839), and external (AUC: 0.735, 95% CI: 0.681-0.783) validation cohorts.  

In contrast, the clinical variables showed limited predictive power for the 5-year 

OS, with best internal and external AUC values of only around 0.55. In a previous study 

by Mengyun Qiang [187], the information of TNM stage along with other clinical 

variables, including blood test results, were utilized to predict the 5-year OS of NPC 

patients. The AUC values for the training, internal validation, and three external validation 

cohorts were reported as follows: 0.642 (95% CI: 0.602-0.682), 0.621 (95% CI: 0.563-

0.679), 0.618 (95% CI: 0.517-0.718), 0.658 (95% CI: 0.552-0.764), and 0.672 (95% CI: 

0.584-0.761), respectively. In our study, only three clinical variables, the age, sex and 

smoking status, exhibited significant differences. Blood test results were not included due 

to the lack of information in the two datasets. These might contribute to the lower model 

performance. In addition, other clinical information also has an impact on patients’ survival 

status, such as detailed treatment drugs and dosages, which were not included in the study. 

However, the results of univariate analysis are in concordance with previous studies. 

Xiao’s study indicated that younger male patients (age<45) have lower survival rate than 

female. Male patients had poor 5-year OS [132]. 

In line with previous studies, which have extensively examined the 5-year survival 

of NPC patients, our ML models' internal validation AUC values are comparable to or even 
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better than those reported, especially for CT-based radiomics. Best results of studies in 

recent ten years predicting the OS for NPC patients with internal or external validation 

cohorts were listed in Table 4-11.  

Table 4-11. Summary of previous studies predicting the OS of patients with NPC 

Year Data Author Patients Best Model Validation AUC/C 95% CI 

2024 [141] Clinical Dan Hu 420 RF Internal 0.753 0.609-0.896 

2024 [188] R/MRI Da Fenglin 921 Cox External 0.731 - 

2024 [189] R/CT Yinbing Lin 99 Cox Internal 0.82 - 

2023 [146] Clinical Rasheed 1094/60 XGBoost External 0.76 - 

2022 [190] Clinical Rong Zhao 1304 Cox Internal 0.717 - 

2021 [145] Clinical Changchun Lai 519 LASSO Internal 0.697 0.612-0.734 

2020 [142] R/MRI Chunyan Cui 792 AutoML Internal 0.796 - 

2020 [191] R/MRI Marco Bologna 136 COX Internal 0.68 - 

2020 [192] R/CT Linyan Chen 136 LASSO Internal 0.752  0.614-0.891 

2020 [193] Clinical Melek Akcay 72 GNB Internal 0.91 - 

2020 [187] DL/MRI Mengyun Qiang 2625 3D-CNNs External 0.757  0.695-0.819 

2019 [194] R/MRI Xue Ming 303 Cox Internal 0.845  0.752-0.939 

2016 [143] Clinical Rou Jiang 347 SVM Internal 0.633 - 

Note: C=C index; RF=Random Forest; LASSO= Least Absolute Shrinkage and Selection Operator; R=radiomics; DL=deep 

learning with images as input; AutoML= a series combination of ML; SVM= Support vector machine.  

Yingbing Lin [189] and Linyan Chen [192] conducted studies that utilized CT-

based RFs for 5-year OS prediction. The internal validation AUC (0.82) of Yingbing Lin’s 

work was similar to our’s study (RF, 0.84, 95% CI: 0.728, 0.938). However, these studies 

had a limited number of patients and were restricted to internal validation only. In Melek 

Akcay's study [193], the GNB model with clinical variables achieved the best internal AUC 

of 0.91. This study included a total of only 72 NPC patients and did not provide 95% 

confidence intervals or cross-validation results. Other radiomics studies primarily focused 
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on extracting RFs from magnetic resonance imaging (MRI) images, especially for local 

recurrent NPC patients. MRI images have higher resolution compared to CT images, 

potentially providing more information for OS prediction. However, not all NPC patients 

had MRI images available. For primary NPC patients, CT is the more commonly used 

imaging modality for pretreatment RT planning [195, 196]. Two studies have employed 

DL models and utilized MRI images as input for predicting survival in NPC patients. 

Lianzhen Zhong’s study [148] generated a nomogram to visualize the contribution of 

clinical variables and DL score for OS prediction. The study only provided the prediction 

C-index for disease-free survival. Patients in this study were all at stage T3N1M0 which has 

limited clinical application. Another study by Mengyun Qiang [187] also used the DL 

model and achieved best external validation AUC of 0.853 (95% CI: 0.789- 0.917). 

Similarly, the study only included NPC patients at stage III or IVA at the first visit. In our 

study, patients from all clinical stages were included. The DCA and K-M analyses 

demonstrated that the nomogram exhibited strong capability in stratifying NPC patients 

into high-risk and low-risk groups. This provides clinicians with a valuable tool for patient 

screening. 

The study does have several limitations that should be acknowledged: 

(1) the retrospective nature of the study resulted in the exclusion of patients with 

incomplete clinical variables, CT images, or GTVp masks. In cases where patients had a 

few missing clinical variables, data imputation techniques were employed to fill in the 

gaps. This approach helped to ensure a larger sample size, while it is important to note that 

it may have affected the representativeness of the study sample. However, it is worth 

mentioning that clinical variables contribute less to the final models compared to RFs. 
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Therefore, it may have been more beneficial to retain patients with CT images rather than 

excluding them based on minor missing clinical variables.  

(2) The inherent variance of patients between the QEH and RADCURE datasets is 

a factor that could potentially influence the predictive performance.  The proportion of 

patients in late stage (clinical stage ≥3) is obvious higher in QEH (97%) than that in 

RADCURE (84.29%). The VOIs in the study only included GTVp, while for late status 

patients, other areas surrounding the primary tumor also has predictive information. This 

might limit the predictive performance of models.  

(3) This study is the first try for the inclusion of two datasets from both southeast 

China and western country to predict the 5-year OS of NPC patients. The data resource is 

rare. Further prospective studies with multiple cohorts from different localizations with 

comprehensive and standardized EMR are needed for the evaluation of generalizability for 

prognostic models. The development of future radiomics studies would greatly benefit 

from the availability of large open access resources that provide comprehensive 

information and various types of images. 

Conclusions 

In this study, we use CT-based MLP score with late fusion of clinical variables to 

construct a LR based nomogram predicting the 5-year OS of NPC patients. The AUC of 

the nomogram achieved 0.734, 95% CI: 0.609-0.839 in internal and 0.735, 95% CI: 0.681-

0.783 in external cohorts, demonstrating its generalizability with an international dataset. 

However, further investigations using more comprehensive patient data are necessary to 

enhance the model's performance. Nonetheless, our generalizable model exhibited 



 

104 

significant potential for clinical application across various healthcare institutes. Notably, 

patients with lower probabilities of 5-year OS should be considered for more aggressive 

treatment options beyond the scope of current clinical guidelines.  
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Chapter 5.  

Summary 

This thesis presents the development of ML and DL models for predicting the 

outcomes of NPC patients using clinical images and EMR. Chapter 1 provides background 

information on radiomics, precision medicine, and NPC. Chapter 2 reviews previous 

articles on AOM and OS of NPC patients treated with RT. Chapters 3 and 4 introduce two 

studies related to the prediction of AOM and OS for NPC patients. 

 For the prediction of AOM, multimodal data consisting of CT and MRI images, 

dose files, and EMR were utilized to develop ML models. This study is the first to include 

multimodal information, including radiomics, dosiomics and EMR, for predicting severe 

AOM in NPC patients. The model achieved the best performance in predicting severe 

AOM compared with previous studies, making it a valuable tool for identifying NPC 

patients following RT at high risk of developing severe AOM. This information can act in 

suggesting advanced prevention treatment and management, as well as guide clinicians and 

physicians in RT planning, where AOM is strongly correlated with RT dose. Patients at 

high risk of severe AOM should be considered for advanced prevention treatment and 

management, and dose reduction near the oral area.  

For the prediction of 5-year OS, international datasets from Southeast Asia (Hong 

Kong) and North America (Canada) were used for model evaluation.  Majority of previous 

correlated studies restricted their study in internal validation. Previous studies mostly 

focused on internal validation, with only a few incorporating external validation. However, 

these studies were often limited to a single region, such as Southeast China, which may not 
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effectively assess the generalization ability of the models. Radiomics and clinical variables 

(mainly TNM stages related variables) were used for the model development. The results 

indicated that MLP/LR model achieved best and consistent AUC performance for the 

prediction of 5-year OS of NPC patients within two distinct populations. This model 

exhibits good generalizability, reliability and applicability for screening NPC patients. 

Moreover, it suggests the potential application of advanced treatment methods beyond the 

current TNM stage treatment guidelines for NPC patients with lower probabilities of 

surviving beyond five years. 

Several limitations still exist in our studies, necessitating further investigation and 

development. In the AOM prediction study, we employed 10-fold cross-internal validation 

to assess model performance. However, the inclusion of external validation datasets is 

necessary for additional exploration and validation. The current model only incorporates 

data from the primary tumor and correlated lymph nodes, while the addition of OARs, such 

as the oral cavity, might enhance its performance. The establishment of a standard 

definition for delineating the oral mucosa is imperative for accurate contouring. In the OS 

prediction study, only one contour mask was available for RFs extraction. Developing a 

generalizable automatic segmentation tool for CT and MRI images of NPC is essential. 

Furthermore, the available EMR information is not comprehensive enough for accurate OS 

prediction. Standardizing EMR practices in real-world clinical setting is of utmost 

importance for future studies. It is worth noting that two of the studies conducted were 

retrospective, which may introduce patient bias, information bias, selection bias into the 

investigation. Stratifying patients based on their outcome results was used in both two 

studies to make sure the distribution balance of patients in train and internal validation 
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groups. In addition, to address this limitation, prospective studies focusing on radiomics 

and outcome prediction in NPC are urgently needed to provide more robust and reliable 

insights. 

In conclusion, the integration of clinical variables and RFs shows promise for 

predicting outcomes in NPC patients following IMRT. The developed models have the 

potential to serve as adjunct tools for precision medicine, enabling patient screening for 

severe AOM and 5-year OS. Additionally, the utilization of pathomics and bioinformatics 

provides valuable insights into protein and gene expression levels, offering micro-level 

understanding of NPC patients. The combination of macro-level radiomics and micro-level 

pathomics and bioinformatics data holds potential for providing comprehensive 

information in the development of precision medicine. 

Future work is crucial for further validating models and findings. In the context of 

the AOM study, it is highly recommended to conduct a comparison and incorporate the 

VOI of the oral cavity. The initial study results indicated that data derived from the gross 

tumor area are most effective in predicting AOM. Furthermore, the direct impact of 

radiation dosage on the oral cavity significantly influences the occurrence of AOM. The 

implementation of auto-segmentation techniques and the establishment of a standardized 

definition of the oral cavity for CT images would be advantageous for future investigations. 

Comparing or combining information extracted from both the primary tumor area and the 

oral cavity has the potential to enhance the model's performance further. External 

validation is paramount to evaluate the models' generalizability. 

 Moreover, additional evidence is required to explore the relationship between the 

tumor microenvironment and the incidence of severe AOM in NPC patients, which could 
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offer new insights into AOM treatment. In the case of the OS study, only radiomics features 

extracted from the primary tumor area and a few clinical variables were considered. To 

enhance the model's generalizability, it is recommended to include dosiomics, pathomics, 

genomics, proteomics, and other essential clinical variables, such as EBV infection. 

Furthermore, integrating information on deep learning patterns has the potential to boost 

the model's performance. 
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