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Abstract 

The novel coronavirus that caused this pandemic has infected millions of people and 

resulted in over a million deaths. Similar to the HIV, Zika virus, Ebola virus, and many 

influenza strains, the novel coronavirus had already evolved from animals to humans before 

causing widespread destruction. Our ongoing battle against it continues. 

As a Ph.D. student who concentrates on epidemic mathematical modeling, I’m 

trying to make some scientific contributions to the world's fight against this intractable 

infectious disease. My aim with this research is to aid these marginalized regions in 

promptly mitigating the detrimental effects caused by the COVID-19 virus. I have 

conducted research on various aspects, including the variations in infection fatality rates and 

transmission dynamics among different strains of the novel coronavirus, as well as the 

heterogeneity of in-hospital mortality rates in underdeveloped regions. And I aspire to 

utilize my theoretical knowledge to assist humanity in overcoming this formidable new 

virus. 

We studied the reduction in the infection fatality rate of the Omicron (B.1.1.529) 

variant compared with previous variants in South Africa. This research work started when 

the Omicron variants just emerged, and South Africa was the first place where the virus 

wreaked havoc. Before we did this work, some previous studies have shown that the variant 

has enhanced immune evasion ability and transmissibility and reduced severity. In this study, 

we developed a mathematical model with time-varying transmission rate, vaccination, and 

immune evasion. We fit the model to report case and death data up to February 6, 2022, to 

estimate the transmissibility and infection fatality ratio of the Omicron variant in South 
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Africa. As a result, we found that the high relative transmissibility of the Omicron variant 

was mainly due to its immune evasion ability, whereas its infection fatality rate substantially 

decreased by approximately 78.7% (95% confidence interval: 66.9%, 85.0%) concerning 

previous variants.  

Another research focuses on the transmissibility of all COVID-19 variants that have 

been spread in South Africa. The COVID-19 pandemic caused multiple waves of mortality 

in South Africa, where three genetic variants of SARS-COV-2 and their ancestral strain 

dominated consecutively. In this research, we fit a state-of-the-art mathematical modeling 

approach to estimate the time-varying transmissibility of SARS-COV-2 and the relative 

transmissibility of Beta, Delta, and Omicron variants. As a result, the transmissibilities of 

the three variants were about 73%, 87%, and 276% higher than their preceding variantsThe 

transmissibility of the Omicron variant is substantially higher than that of previous variants. 

In addition to South Africa, we examined the regional variations in COVID-19 in-

hospital mortality in Brazil using a multivariate mixed-effect Cox model applied to national 

inpatient data from February 27, 2020, to March 15, 2022. We compared mortality risks 

between vaccinated and unvaccinated patients, adjusting for age, state, ethnicity, education, 

and comorbidities. Our analysis showed age as the primary risk factor for death. Illiterate 

patients (hazard ratio: 1.63, 95% CI: 1.56-1.70) faced higher risks compared to those with 

higher education. Common comorbidities, such as liver disease (HR: 1.46, 95% CI: 1.34-

1.59) and immunosuppression (HR: 1.32, 95% CI: 1.26-1.40), increased mortality risk. 

States like Sergipe (HR: 1.75, 95% CI: 1.46-2.11), Roraima (HR: 1.65, 95% CI: 1.43-1.92), 

Maranhão (HR: 1.57, 95% CI: 1.38-1.79), Acre (HR: 1.44, 95% CI: 1.12-1.86), and 

Rondônia (HR: 1.26, 95% CI: 1.10-1.44) in the north and northeast had higher mortality 

risks. Vaccination did not significantly reduce mortality, with varying effectiveness between 
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Sinovac and AstraZeneca across regions. The study highlights regional differences in 

mortality, the limited impact of vaccination, and the role of social inequality. Ethnic and 

regional disparities suggest uneven interactions within communities may influence 

epidemic spread, and vaccine efficacy varies by region. 

 

 

 

 

 

 

 

 

 

 



 viii 

 

Publication arising from the thesis 

List of articles used in the thesis: 

1. Liu, Y., Yu, Y., Zhao, Y., & He, D. (2022). Reduction in the infection fatality rate of Omicron variant 

compared with previous variants in South Africa. International Journal of Infectious Diseases, 120, 

146-149. 

2. Yu, Y., Liu, Y., Zhao, S., & He, D. (2022). A simple model to estimate the transmissibility of the 

Beta, Delta, and Omicron variants of SARS-COV-2 in South Africa. Math. Biosci. Eng, 19(10), 

10361-10373. 

3. Liu, Y., Wang, K., Yang, L., & He, D. (2022). Regional heterogeneity of in-hospital mortality of 

COVID-19 in Brazil. Infectious Disease Modelling, 7(3), 364-373. 

4. Liu, Y., Feng, A., Zhao, S., Wang, W., & He, D. (2022). Large-scale synchronized replacement of 

Alpha (B. 1.1. 7) variant by the Delta (B. 1.617. 2) variant of SARS-COV-2 in the COVID-19 

pandemic. Mathematical Biosciences and Engineering, 19(4), 3591-3596. 

 

List of other published articles during the course of the study: 

1. Song, H., Fan, G., Liu, Y., Wang, X., & He, D. (2021). The second wave of COVID-19 in South and 

Southeast Asia and the effects of vaccination. Frontiers in medicine, 8, 773110. 

2. Musa, S. S., Tariq, A., Yuan, L., Haozhen, W., & He, D. (2022). Infection fatality rate and infection 

attack rate of COVID-19 in South American countries. Infectious diseases of poverty, 11(02), 42-52. 

 

 



 ix 

 

CURRICULUM VITAE 

 

Academic qualifications of the thesis author, Mr. Liu Yuan: 

• Received the degree of Bachelor of Science from Miami University, May, 2019. 

• Received the degree of Master of Science from Georgetown University, May, 

2021. 

 
 
 
 
 
 
 
 
 
 
 

 



 x 

 
 

Acknowledgments 

 

Research work is an interesting and challenging endeavor, yet an individual's 

capacity is inherently limited. Here, I extend my deepest gratitude to my chef supervisor, 

friends, and families who have supported me in various ways over these three years.  

First and foremost, I would like to thank my Chief Supervisor, Dr. Daihai He, my 

advisor, for his patient, friendly, and selfless guidance. From reading research works, 

collecting data, to writing and publishing papers, Dr. He has provided detailed and patient 

guidance at every important juncture of my research work over the past three years. Without 

his selfless and patient assistance, my research work would not have been possible. 

I also want to extend profound respect and gratitude to my family, thanking them 

for their dual support, both financially and spiritually, which has enabled me to have the 

opportunity to receive an education at a world-renowned institution. It is precisely because 

of the selfless support and encouragement from my family members that I have been able 

to focus wholeheartedly on my research work.  

Finally, I would like to thank all of my friends and research fellows at Hong Kong 

Polytechnic University, for their support and love. 

 

 
 



 xi 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xii 

 

 
Contents 

1 INTRODUCTION ....................................................................................................... 1 

1.1 INFECTIOUS DISEASES: HUMANITY’S PERPETUAL SHADOW ................................... 3 

1.2 MATHEMATICAL MODELLING OF INFECTIOUS DISEASES ...................................... 10 

1.3 OUTLINE OF THIS THESIS ....................................................................................... 20 

2 ASSESSING COVID-19 VARIANT DYNAMICS IN SOUTH AFRICA: 

REDUCED FATALITY RATE OF THE OMICRON VARIANT AND 

TRANSMISSIBILITY OF THE BETA, DELTA, AND OMICRON VARIANTS. ... 26 

2.1 REDUCTION IN THE INFECTION DISEASE FATALITY RATE OF THE OMICRON VARIANT 

COMPARED WITH PREVIOUS VARIANTS IN SOUTH AFRICA. ............................................... 27 

2.1.1 Introduction .................................................................................................. 27 

2.1.2 Method .......................................................................................................... 30 

2.1.3 Result ............................................................................................................ 36 

2.1.4 conclusion and discussion ............................................................................ 44 

2.2 ESTIMATE THE TRANSMISSIBILITY OF SARS-COV-2 BETA, DELTA AND OMICRON 

VARIANTS IN SOUTH AFRICA. .......................................................................................... 46 

2.2.1 Introduction .................................................................................................. 46 

2.2.2 Materials and Methods ................................................................................. 53 

2.2.3 Results .......................................................................................................... 58 

2.2.4 Discussion and Conclusion .......................................................................... 64 



 xiii 

3 REGIONAL HETEROGENEITY OF IN-HOSPITAL MORTALITY OF 

COVID-19 IN BRAZIL .................................................................................................... 68 

3.1 INTRODUCTION ..................................................................................................... 68 

3.2 METHODS ............................................................................................................. 71 

3.2.1 Data Collection ............................................................................................ 71 

3.2.2 Statistical analysis ........................................................................................ 73 

3.3 RESULTS ............................................................................................................... 75 

3.3.1 Demographic features of data ...................................................................... 75 

3.3.2 Fitted multivariate mixed-effects Cox model ................................................ 79 

3.3.3 In-hospital mortality rate ............................................................................. 83 

3.3.4 Efficacy of vaccines ...................................................................................... 90 

3.4 DISCUSSION AND CONCLUSION ............................................................................. 95 

4 CONCLUSION AND FUTURE WORK .............................................................. 102 

5 APPENDICES ......................................................................................................... 108 

5.1 LARGE-SCALE SYNCHRONIZED REPLACEMENT OF ALPHA (B.1.1.7) VARIANT BY THE 

DELTA (B.1.617.2) VARIANT OF SARS-COV-2 IN THE COVID-19 PANDEMIC ............. 108 

5.1.1 Introduction ................................................................................................ 108 

5.1.2 Method and result ....................................................................................... 111 

5.1.3 Conclusion and Discussion ........................................................................ 115 

5.2 PRELIMINARY WORK ABOUT MDR-TB ............................................................... 116 

6 BIBLIOGRAPHY ................................................................................................... 122 

 



 xiv 

 
 
 
 
 
 
 
List of Tables  

 
Table 1. Parameter Description for the model ............................................................... 33 

Table 2. Estimated reduction in IFR under four scenarios of immunity evasion. ......... 43 

Table 3. The composition of “susceptible pool” for the Delta and Omicron variants ... 63 

Table 4. Explanatory Variables of Cases ....................................................................... 75 

Table 5. Ethnic Composition in Each Region ............................................................... 78 

 
 
 
 
 



 xv 

 
 
 
 
 
List of Figures  

2.1 Fitting model for the 1-fold susceptible pool to reported cases and deaths in South 

Africa. ............................................................................................................................ 38 

2.2 Fitting model for the 0.25-fold susceptible pool to reported cases and deaths in 

South Africa. .................................................................................................................. 39 

2.3 Fitting model for the 0.5-fold susceptible pool to reported cases and deaths in South 

Africa. ............................................................................................................................ 40 

2.4 Fitting model for the 2-fold susceptible pool to reported cases and deaths in South 

Africa. ............................................................................................................................ 42 

2.5 Weekly reported excess deaths and reported COVID-19 deaths, stringency index, 

and vaccination coverage (a) and variant proportion (b) in South Africa. .................... 51 

2.6 Results of the model fitting ...................................................................................... 58 

2.7 The sum of squared errors as functions of η1, η2, and η3 for the model. ............... 60 

3.1 Risk of Death by Clinical Features (Fixed Effects) ................................................. 81 

3.2 Risk of Death by States (Random Effects) .............................................................. 82 



 xvi 

3.3 SARI-fatality-ratio by age in four periods of different dominant variants in 

Brazilian states ............................................................................................................... 85 

3.4 In-hospital Mortality Rate by Age between Patients with Different Comorbidities 87 

3.5 In-hospital Mortality Rate by Age between Ethnical Groups ................................. 88 

3.6 In-hospital Mortality Rate by Age between Patients with Different Education 

Levels ............................................................................................................................. 89 

3.7 SARI-fatality ratio in vaccinated and unvaccinated patients by the number of 

comorbidities and regional differences. ......................................................................... 92 

3.8 SINOVAC vs. ASTRAZ by the number of comorbidities ...................................... 93 

3.9 SINOVAC vs. ASTRAZ by age .............................................................................. 94 

5.1 Timing of the confirmations of Delta (B.1.617.2) variant exceeding Alpha (B.1.1.7) 

variant. ......................................................................................................................... 112 

5.2 The population standardized daily reported COVID-19 deaths ............................ 114 

5.3 Drug sensitivity test of some common tuberculosis drugs .................................... 119 

5.4 Case densities and age distributions of TB cases by male and female with resistance 

to different drugs. ......................................................................................................... 120 

  



 xvii 

 

Basic Notations 

 

S Susceptible 

E Exposed 

I Infectious 

R Recovered 

H Hospitalization 

V Vaccination 

!! The basic reproduction number 

" Transmission rate 

#"# Mean Latent Period 

$"# Mean Infectious Period 

  



 xviii 

 

  



 1 

 

Chapter 1 

1  Introduction 

 

The sudden outbreak of infectious diseases has been continuously 

threatening the global public health system. Novel modes of transmission and 

rapid spread rates can instantly destabilize seemingly robust public health 

systems, leading to enormous economic losses, psychological trauma, and even 

endangering lives across different regions and nations. Particularly in 

economically underdeveloped countries and regions, where primary healthcare 

facilities have limited capacity to accommodate patients, experience in managing 

rapidly spreading infectious diseases is limited, and government financial support 

is constrained, the relatively fragile public health systems become increasingly 

overwhelmed in the face of widespread transmission of emerging infectious 

diseases. 

 In the face of the threat posed by a novel infectious disease, scientific 

research stands as humanity’s best weapon. Researchers in the fields of 

mathematical epidemiology, bioinformatics, medicine, and others are frontline 

warriors confronting emerging infectious diseases. They study virus 

characteristics, vaccine development, transmission rates, mortality rates, and the 
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substantial economic losses and demographic changes that such diseases may 

bring to human society from various angles and directions. 

 As a doctoral student in the field of mathematical epidemiology, I have 

been dedicated to studying the infection mortality rates of the novel coronavirus 

in economically underdeveloped regions, particularly in South Africa and Brazil, 

as well as the transmissibility of different strains and the effectiveness of vaccines. 

I hope that my research can contribute to the global health community’s efforts 

in combating infectious diseases, especially the novel coronavirus. Through 

enhancing human understanding of disease dynamics, establishing mathematical 

models, and conducting computational simulations, I aim to provide valuable 

insights for public health systems worldwide, especially in economically 

underdeveloped regions, to help them better prepare and enhance their capacity 

to combat current and future threats, thus safeguarding the health and well-being 

of all residents and people around the world. 

 This chapter first introduces the common characteristics of infectious 

diseases that have had a profound impact on human history since the last century. 

Subsequently, it discusses the principles and foundations of mathematical models 

for infectious diseases and the modern methodology of computational simulation. 

The third section outlines the overall structure of the thesis. The final section 

offers prospects for future research in mathematical epidemiology. 
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1.1 Infectious Diseases: Humanity’s Perpetual 

Shadow 

In recent years, the world has witnessed the profound impact of infectious 

diseases on global health, societal stability, and economic prosperity. From the 

devastating effects of pandemics like HIV/AIDS, influenza, and most recently 

COVID-19, to the persistent threat of endemic diseases such as malaria, 

tuberculosis, and cholera, the complex interplay between pathogens, hosts, and 

environments underscores the critical need for advanced epidemiological 

research and intervention strategies. At the forefront of this multidisciplinary 

endeavour lies mathematical epidemiology, a field that integrates mathematical 

modelling, statistical analysis, and computational techniques to elucidate the 

dynamics of infectious diseases and evaluate the effectiveness of control 

measures. By providing quantitative insights into transmission patterns, 

population dynamics, and the impact of interventions, mathematical 

epidemiology plays an indispensable role in guiding public health policies and 

mitigating the burden of infectious diseases worldwide. 

Infectious diseases have long been entwined with the narrative of human 

existence, leaving an indelible imprint on civilizations and shaping the course of 

history, and infectious diseases have already been an enormous burden on the 

whole society and medical system. A new infectious disease will spread among 

different regions and continents rapidly, mercilessly bringing down the health of 

individuals, the healthcare system, the stability of social order, and even the lack 

of foundation supplies: food and drinks. From ancient plagues to contemporary 
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pandemics, infectious diseases have profoundly impacted societies, altering 

demographics, social structures, and scientific paradigms. Understanding their 

historical evolution and contemporary challenges is pivotal in devising effective 

strategies to mitigate their impact on global health.  

In the 21st century, infectious disease-related disciplines have become 

increasingly important, regardless of whether in developed or developing 

countries. Issues related to infectious diseases are repeatedly mentioned by global 

leaders, health policymakers, and various charitable organizations. The focus of 

high-level attention is not only on scientific research such as vaccine 

development but also on the impact of various infectious diseases on economic 

development and political stability. With the continuous increase in financial 

investment and support for scientific research, people's understanding of 

infectious diseases has become more comprehensive, and related research has 

become associated with the basic healthcare infrastructure of many countries and 

regions. 

Some argue that with the development of technology and medical 

standards, research related to infectious diseases will gradually disappear. 

However, through an understanding of the history of infectious diseases, the 

opposite is true. Infectious diseases may become more frequent in the future and 

have profound impacts on societies worldwide, potentially even affecting human 

lifestyles (e.g., wearing masks). 

Since the last century, the names of certain infectious diseases have 

repeatedly appeared and to some extent influenced the course of human history 

(Faria et al. 2014; Keele et al. 2006). For instance, Human Immunodeficiency 
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Virus (HIV), which initially sporadically spread from non-human primates to 

humans in the 20th century. It wasn't until the 1980s when a form of immune 

deficiency disease was discovered within the male homosexual community that 

this virus began to attract global attention (Gottlieb et al. 1981).  HIV infection 

is one of the leading causes of illness and death worldwide, with the majority of 

cases concentrated in the South African region (Correction Naghavi et al. 2015). 

Infections typically occur in adults of working age, thus, to a certain extent, this 

virus has significantly altered the economic development of many countries and 

regions. The impact it has had on humanity is challenging to comprehensively 

quantify (Deeks et al. 2015).  

When it comes to infectious diseases, another one that cannot be ignored 

is the catastrophic influenza A. Even in the 21st century, with significant 

advancements in technology and healthcare, on average, influenza A causes 

20,000 deaths annually in the United States alone (Webster 1998). In the last 

century, the first global rampage of influenza A occurred in 1918, resulting in at 

least 20 million deaths worldwide. The second outbreak was in 1957 when the 

deadly influenza A caused approximately 70,000 deaths in the United States. In 

1968, there was a third major flu pandemic, resulting in 35,000 to 40,000 deaths 

(Fauci 2001). Historically, from a historical perspective, there has been a major 

flu outbreak approximately every 20 to 40 years. From 1997 to 1998, the spread 

of H5N1 influenza A in Hong Kong, China served as a warning, indicating that 

influenza-like infectious diseases pose a threat like a dark cloud looming over the 

entire human race on Earth (Chan 2002). 
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Entering the 21st century, in 2002, an outbreak of an unknown cause of 

atypical pneumonia occurred in southern China, gradually spreading to 

neighboring countries and regions (Ksiazek et al. 2003). The virus responsible 

was a coronavirus that caused severe acute respiratory syndrome (SARS). Hong 

Kong and Beijing were the most severely affected cities at the time (Demmler 

and Ligon 2003). Fortunately, the epidemic was declared over in July 2003. 

However, within just one year, more than 8,000 suspected cases were reported in 

29 countries, with a mortality rate reaching 10% (Watkins 2018). The initial 

outbreak of the virus was linked to the consumption of wild animals, and it spread 

through close contact and droplets (Hui and Chan 2010). Its hallmark was 

recurrent fever accompanied by hypoxemia and progressive pneumonia, with 

approximately 50% of patients requiring oxygen supplementation and about 20% 

needing intubation. Diarrhea and hepatitis were common complications, and 

some survivors also exhibited persistent pulmonary dysfunction (Watkins 2018). 

Like a cycle of fate, in December 2019, a series of acute atypical 

respiratory diseases occurred again in Wuhan, China. The virus quickly spread 

from Wuhan to other areas, leading to a global pandemic over the following two 

years. In approximately two years, it has led to over 5.59 million deaths and 

resulted in millions of people suffering from multi-system diseases(Young et al. 

2022). According to preliminary research, the virus was quickly identified as a 

novel coronavirus, named Severe Acute Respiratory Syndrome Coronavirus 2 

(SARS-CoV-2), due to its high homology with the SARS virus that appeared in 

2002-2003 (Yuki, Fujiogi, and Koutsogiannaki 2020). Initially thought to be a 

zoonotic virus, human-to-human transmission of this novel coronavirus was soon 
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recognized at the beginning of the outbreak (Li et al. 2020). The disease caused 

by this virus was subsequently named Coronavirus Disease 2019 (COVID-19), 

and shortly after, the World Health Organization declared it a pandemic. This 

novel coronavirus primarily affects the respiratory system, but subsequent 

research has found that it also affects other organ systems to varying degrees. 

According to initial studies, initial cases presented symptoms of lower respiratory 

tract infection, including fever, dry cough, and difficulty breathing (Huang et al. 

2020). Some patients also experienced headaches, fatigue, vomiting, and diarrhea 

(Shi et al. 2020). The original strain circulating in Wuhan was highly virulent, 

with patients progressing from symptom onset to severe hypoxia in just nine days 

(Huang et al. 2020). The rapid progression of the disease led to a rapid increase 

in severe cases and deaths worldwide.  

Although all viruses undergo mutations over time, most mutations have 

little impact. However, for the novel coronavirus, several mutations have 

significantly altered its pathogenicity and transmission capability, changing the 

severity of the disease, hindering vaccine development and treatment strategy 

design, increasing the virus's immune evasion, and reducing vaccine 

effectiveness. According to the World Health Organization's report in 2022, the 

WHO has focused on five variants: alpha, beta, gamma, delta, and omicron 

(Young et al. 2022). Different variants have even caused different clinical 

symptoms; alpha and delta variants increase the risk of severe illness and death, 

the gamma variant is associated with loss of smell and taste (Luna-Muschi et al. 

2022), while the omicron variant may cause milder symptoms (Nyberg et al. 

2022). 
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The Alpha variant (B.1.1.7) was first discovered in the UK in September 

2020. Due to the D614G mutation, this variant increased the binding ability of 

SARS-CoV-2 to the ACE2 receptor, resulting in increased infectivity (Lan et al. 

2020). Other mutations in this strain also enhanced the virus's ability to evade 

antibody detection. According to a report from a medical institution in Madrid, 

Spain, patients infected with the alpha strain were twice as likely to be admitted 

to the intensive care unit as those infected with the original strain (Martínez-

García et al. 2021). This variant became the dominant strain within four months. 

The Beta variant (B.1.351) was first discovered in South Africa in May 2020. 

This variant contains five mutations in the S protein, similar to the alpha variant. 

The mutations increase the binding affinity to the ACE2 receptor, enhancing 

virulence and resistance to antibodies (Starr et al. 2020). Due to the enhanced 

binding ability, the transmissibility and immune evasion of the beta variant are 

significantly increased. The Gamma variant (P.1) was first discovered in Brazil 

in November 2020, carried by a traveler returning from Brazil to Japan. Like the 

previous two variants, the S protein mutation in the gamma variant also increases 

the binding ability to the ACE2 receptor, infectivity, and lethality (ECDC 2022). 

Studies have shown that compared to previous variants, the infectivity of the 

gamma variant increased by 1.7 to 2.4 times (Campbell et al. 2021), and the 

infection and mortality rates of patients in the main transmission area of the 

gamma variant, Brazil, increased by 13% (Freitas et al. 2021). 

The Delta variant (B.1.617.2) was first discovered in India in October 

2020. Unlike previous variants, the delta variant contains the E484Q mutation, 

which, together with the L452R mutation, significantly increases the affinity of 
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this variant to the ACE2 receptor, much higher than that of the original strain and 

other variant strains (Korber et al. 2020). Soon, the Delta variant became the 

dominant variant worldwide (Torjesen 2021a; Campbell et al. 2021). Research 

has shown that the reproductive number of the delta variant is 97% higher than 

that of non-concern variants, approximately three times higher than the three 

aforementioned variants (Sinha, Tam, and Wang 2021). The rapid spread and 

reproductive ability of the Delta variant quickly gave it a competitive advantage 

among variant strains and rapidly became the dominant strain worldwide. More 

frighteningly, the Delta variant also increased the severity of the disease. In 

Scotland, the risk of hospitalization from the delta variant was significantly 

increased compared to the alpha strain (Sheikh et al. 2021). In India, a cross-

sectional study found that the risk of death among delta variant patients was 

approximately 1.8 times higher, and the proportion of symptomatic cases among 

young people was higher than that of the original strain (Kumar, Asghar, et al. 

2021).  

The Omicron variant (B.1.1.529) was first discovered in South Africa and 

Botswana in November 2021. The variant's S protein has more than 30 mutations, 

with 15 mutations in the RBD (Cao et al. 2021). The emergence of the Omicron 

strain has led to a surge in infection cases globally. According to data from South 

Africa, the proportion of infections caused by the Omicron variant rose from 3% 

to 98% in just two months from October to December 2021 (Wolter et al. 2022). 

By late December, the number of Omicron infections in most regions of the UK, 

US, and Europe had doubled or tripled (Young et al. 2022). The variant's 

transmissibility and replication speed are astonishing, with a replication rate 
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approximately 70 times faster than the delta variant (Sheikh et al. 2022). Another 

notable feature is that the Omicron variant has remarkable reinfection capability; 

according to a study, the reinfection rate of this variant is more than ten times 

higher than previous variants (Pulliam et al. 2022). Fortunately, the severity of 

infections caused by the Omicron variant is lower than previous variants. In an 

early analysis in South Africa, the risk of hospitalization and severe illness among 

Omicron-infected individuals was lower than that of delta patients (Wolter et al. 

2022). Although the Omicron variant appears to cause mild illness, high infection 

numbers could still lead to high hospitalization and mortality rates. This three-

year-long COVID-19 pandemic has once again sounded the alarm for all 

humanity, as infectious diseases remain an ever-looming cloud, periodically 

shrouding humanity. 

 
1.2 Mathematical Modelling of Infectious Diseases 

 
When a disease outbreak occurs, scientists immediately seek to 

understand the new disease. Some scientists eagerly don their lab coats and 

examine new infectious diseases under microscopes, while others rush to their 

computers and code. Infectious disease epidemiologists, mathematical biologists, 

biostatisticians, and other professionals with relevant expertise are all striving to 

answer these questions: How fast does the infection spread? Which modes of 

transmission should be blocked to control the virus spread? What is the 

probability of hospitalization or death for infected individuals? 
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Theory and rigorous mathematical analysis are the foundations of ecology, 

evolutionary biology, and epidemiology. The idea of using mathematics to 

understand the spread of infectious diseases is older than the germ theory of 

disease itself. Fluid mechanics Daniel Bernoulli designed a model in 1760 to 

predict the benefits of smallpox vaccination (Bourouiba 2021). on the other hand, 

Nobel laureate Ronald Ross developed mathematical models advocating for 

controlling mosquito populations to reduce the transmission of malaria (Kevin 

Baird 2017). 

 A mathematical model can be imagined as a microscopic world or system, 

where the rules of this micro-world and system are precisely formulated, and 

entities governed by these accurately formulated rules constitute it. Mathematics 

provides humanity with a precise, clear language for formulating the behavioral 

rules of such systems and micro-worlds, thereby assisting in the clear 

construction and description of a hypothetical environment for human society. 

After the construction of a mathematical model, mathematical analysis, such as 

utilizing computer technology and algorithms for numerical simulations, can help 

humanity study the global behavior of the model, thereby obtaining results based 

on the assumptions made in the mathematical model. It is precisely because of 

the construction of mathematical models and the numerical simulation techniques 

of computer science algorithms that humans can truly predict the future behavior 

of constructed micro-worlds and systems in a relatively low-cost and 

interpretable manner while sitting indoors. Furthermore, we can explore the 

diversity of potential outcomes through the formulation and variation of system 

management rules.  
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 In the field of infectious diseases, mathematical models allow humanity 

to gain a deeper understanding of the significant impact of an epidemic on a 

specific region, country, or even the entire global population by constructing 

micro-scale systems that describe the transmission of pathogens among hosts. 

Specifically, the construction of mathematical models for infectious diseases 

depends on factors such as the mode of contact between infectors and susceptible 

people, the latent period from infection to manifestation, the duration of 

infectiousness after infection, the transmissibility of the virus, the degree of 

immunity acquired by susceptible people  after infection, the protective efficacy 

of vaccines if successfully developed, vaccine effectiveness, and the probability 

of vaccine breakthrough after administration. 

Once all human-related factors are incorporated and expressed in the 

mathematical models of infectious diseases, researchers in this field can predict 

the expected number of infections during a pandemic, the duration of the 

epidemic, the peak time of infections, and even forecast the epidemic curve 

throughout the entire pandemic process. This enables medical institutions, 

regional and national public health agencies, and the World Health Organization 

to provide expected case numbers at each time point. In the case of terrifying 

infectious diseases that may lead to severe illness or death among infectors, 

factors related to hospitalization and mortality can also be incorporated into the 

constructed mathematical micro-world of infectious diseases. This allows for the 

prediction of information related to the number of severe cases and deaths during 

the pandemic, such as changes in mortality rates, peak mortality predictions, and 

expected mortality cases at different time points. All of this information provides 
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significant support to the World Health Organization, governments of various 

countries, and public health agencies, ultimately benefiting all of humanity. 

 Through literature search and reference, the first publication in human 

history discussing epidemic models can be traced back to 1776 (Bernoulli 1766). 

This ground-breaking paper described a mathematical model developed by the 

renowned scientist Daniel Bernoulli. The mathematical model was used at that 

time to analyze the mortality rate caused by smallpox in England. Smallpox, as a 

highly threatening infectious disease back then, resulted in a mortality rate 

accounting for one-fourth of the total death rate. Daniel Bernoulli's analysis with 

his model concluded that vaccinating against smallpox could increase the 

expected lifespan of newborns by about three years (Bernoulli and Blower 2004). 

Subsequently, in 1772, another scientist, Lambert, continued to explore 

Bernoulli's mathematical model, expanding the original model by incorporating 

parameters related to the age information (Lambert 1772). In 1911, a seminal 

article on modern mathematical epidemiology was published by Ross, marking 

the formal entry of the study direction of mathematical epidemiology into a 

systematic development path (Smith et al. 2012). In Ross's work, he proposed 

and utilized a mechanistic modelling approach, approximating the discrete-time 

dynamics of malaria transmission by mosquito-borne pathogens through 

equations. 

 In subsequent research, three pioneering papers were published by 

Kermack and McKendrick, which formally established and determined the 

compartmental infectious disease models (Kermack and McKendrick 1927, 1932, 

1933). The emergence of compartmental infectious disease models laid a solid 
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foundation for later research on mathematical models of infectious diseases and 

served as cornerstone models widely applied in the study of mainstream 

infectious diseases such as influenza, COVID-19, and tuberculosis. The initial 

work by Kermack and McKendrick discussed large-scale events during the 

disease transmission cycle, exploring the probability of susceptibility similar to 

the frequency of contact between susceptible people and infectives. In their work, 

the rate at which susceptible become infected is denoted as %&' , where & 

represents the density of susceptible and ' represents the density of infectives. In 

such a system, the recovery rate of infected individuals is (', considering the 

possibility that recovered individuals may become susceptible again after 

recovery, implying that recovered individuals may become susceptible again, 

with a rate denoted as )*. The %, (, )	are analogical constants. Guldberg and 

Waage proposed the SIR model in 1864, suggesting strong similarities between 

this mechanistic deterministic representation and the law of mass action. The 

introduction of the SIR model also assumed homogeneous mixing, overall 

conservation, and relatively low interaction rates between individuals (Guldberg, 

Waage, and Lund 1864). 

 This continuum model describes the dynamic flow of infectious diseases 

within a population. Humans can establish and study disease evolution models 

through continuum models, which can also serve as functions of age and time 

after vaccination, and can be used to investigate the effects of quarantine and 

isolation on infected populations. For exploring such models, we can employ 

ordinary differential equations or partial differential equations. In the infectious 

disease dynamic systems established by these models, the population is divided 
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into different compartments based on different health statuses, such as 

susceptible people ( S ), infectives ( I ), and recovered people ( R ). In practical 

applications, additional compartments can be introduced to control and 

incorporate other population statuses relevant to policies, such as vaccination 

( V ), hospitalization ( H ), death ( D ), and isolation ( Q ). 

S (t), I (t), and R(t) represent their respective proportions in the population 

at time t, and this system is described by different equations: 

-&
-. = −1&' 

			!"!# = #$% − '%																																															(1.1) 

-*
-. = 2' 

 The derivatives -&/-., -'/-., and  -*/-.	represent the rates of change 

for the proportions S(t), I(t), and R(t) in the population over time. The 

transmission parameter 1 quantifies the average number of individuals infected 

by an infective per unit time, assuming all contacts between infectives and 

susceptible people lead to transmission. Therefore, diseases with higher 

infectivity exhibit higher 1 values. On the other hand, the parameter 2 signifies 

the recovery rate, where 1/( denotes the average duration of an infected 

individual's infectious period. The term 1&(.)'(.) denotes the total infection rate, 

indicating the proportion of the population infected per unit time at time	.. In 

scenarios where only a small fraction of the population, represented by '(.), is 

currently infected, their contacts with susceptible people would result in infecting 

a fraction 1'(.) of the population per unit time. However, considering that only 
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a small fraction &(.) of the population remains susceptible, they would infect 

1&(.)'(.) of the population per unit time. 

 The ratio 1/2, often referred to as the basic reproduction number *$ , 

serves as a vital metric for assessing the transmission of a pathogen. *$ is defined 

as the average number of individuals an infected person infects within a fully 

susceptible population during the infectious period.  

 This foundational infectious disease model forms the basis for many 

intricate models and offers insightful predictions. Researchers can utilize 

numerical methods to solve the corresponding differential equations and specify 

initial values for parameters like beta, gamma, &(0), '(0), and *(0). This allows 

them to generate epidemic curves, predicting the daily proportion of the 

population infected by the disease. Furthermore, utilizing historical epidemic 

data alongside the model enables the prediction of significant parameters such as 

the epidemic threshold, also known as the basic reproduction number *$ . *$ 

represents the average number of infections caused by a single infected individual 

entering the susceptible population. If *$ < 1, it indicates a rapid decrease in 

infections, suggesting no epidemic outbreak. Conversely, if *$ > 1, regardless 

of the initial number of infected individuals, an epidemic will occur. This 

underscores that during an epidemic, the scale of disease development hinges on 

the initial proportion of susceptible individuals &(0) and the basic reproduction 

number *(0), rather than the initial number of infectors. It's important to note 

that the final scale of an epidemic remains smaller than the initial proportion of 

susceptible people &(0) , signifying the continual presence of an uninfected 

susceptible population. 
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In 2009, Gaudart et al. (Gaudart et al. 2009) made advancements to the 

SIR model by introducing an improved version known as the SIRS model. This 

was used to approximate the dynamic spread of malaria observed in the 

Bancoumana region of Mali between 1996 and 2001. Expanding upon the 

frameworks established by Ross and McKendrick, they integrated demographic 

data and genetic variations into the model to simulate the transmission of malaria 

in Mali and the historical plague outbreaks. Gaudart employed Archimedean 

copulas to link infection risk with biological age (Gaudart et al. 2010). In parallel 

studies, refined SIR models incorporated continuous age stratifications and the 

diffusion of human and vector subpopulations within infected regions by 

incorporating demographic and spatial dynamics. These investigations employed 

differential or partial differential equations to describe the generalized dynamics 

of disease propagation within populations. 

 Within the field of infectious disease modelling, stochastic models are 

also prevalent. These encompass Markov chain models that operate on discrete 

and continuous-time scales, focusing on individual-level dynamics. Such models 

relax the assumptions of mean-field approximations for infinitely large 

populations and introduce individual behavior variability. A notable example is 

the Discrete Markov Chain (DMC), where time and states are discretized, and 

transitions between states occur probabilistically based on predefined rules. For 

instance, Lekone et al. (Lekone and Finkenstädt 2006) utilized stochastic SEIR 

models to analyze the spread of the 1995 Ebola outbreak in the Democratic 

Republic of Congo. Bishai et al. (Bishai et al. 2011) developed a stochastic SIR 

model incorporating age structure and additional compartments to account for 
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vaccine heterogeneity. Similarly, Wang et al. (Wang et al. 2012) employed a 

stochastic SIR-based model to simulate and interpret the multi-wave patterns 

observed during the North American avian influenza outbreak, considering 

random interactions between individuals and the viral transmission environment.

  

When studying and addressing issues related to novel coronavirus, we 

utilize SEIR-based models for modelling and predicting the spread of infectious 

diseases. Specifically, in the research work that studies the reduction in the 

infection fatality rate of the Omicron variant compared with previous variants in 

South Africa, we used the Susceptible-Exposed-Infectious-Hospitalized-Death-

Recovered-Vaccinated (SEIHDRV) model to the observed case and death data in 

South Africa. Here S, E, I, and R represent the number of susceptible populations, 

exposed populations, infectious populations, and recovered populations. The 

delay class V, H which represents vaccination and hospitalization was added 

between infections and death. 

According to different research purposes, the SEIR-based model was 

used to do the simulation. In our work, the Susceptible-Exposed-Infectious-

Hospitalized-Death-Recovered-Vaccinated (SEIHDRV) model was utilized to 

simulate weekly cases and deaths to study the infection-fatality ratio of patients 

carrying Omicron variants in South Africa. We simulated weekly cases as :%&∆% 

and as ;%&∆%, and we denoted the weekly reported cases and death cases as <%&∆% 

and =%&∆%. We assumed the weekly reported cases and deaths were followed by 

negative binomial distributions and connected the reported cases/deaths and 
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simulated cases/deaths via two negative binomial distributions. Then the log-

likelihood function can be defined.  

We employ the Iterated Filtering method within a likelihood-based 

inference framework, specifically utilizing the Partially Observed Markov 

Process (POMP) approach (Ionides, Bretó, and King 2006; Ionides et al. 2011; 

He, Ionides, and King 2010b). This allows us to derive maximum likelihood 

estimates for the unknown parameters of the log-likelihood function. The Iterated 

Filtering algorithm serves as a valuable tool for inferring maximum likelihood in 

partially observed dynamical systems. To explore the parameter space, we 

introduce stochastic perturbations to the unknown parameters. Subsequently, we 

apply Sequential Monte Carlo, or the particle filter, to the extended model, 

enabling the selection of parameter values that align better with the observed data. 

If executed effectively, iterated filtering with progressively reduced perturbations 

will converge to the maximum likelihood estimate. The POMP package can be 

executed on high-performance workstations in either parallel or serial mode, 

facilitating the selection of large-scale models. 
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1.3 Outline of this thesis 

 
This dissertation encapsulates the culmination of my doctoral research 

spanning over three years, during which I have closely observed the evolution 

and progression of the novel coronavirus. As a Ph.D. student specializing in 

epidemic mathematical modeling, I am gratified to have contributed scientifically 

to the global efforts against this relentless infectious disease. 

My research endeavors have been dedicated to understanding the 

transmission patterns and mortality impacts of infectious diseases, with a 

particular focus on the context of COVID-19 within marginalized communities. 

The core objective of my thesis revolves around aiding these underserved areas 

in promptly mitigating the adverse consequences induced by the COVID-19 virus. 

Throughout my investigation, I have explored various facets, including variations 

in infection fatality rates and transmission dynamics across different strains of 

the novel coronavirus. Furthermore, my research has delved into the disparities 

in in-hospital mortality rates prevalent in underdeveloped regions. My 
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overarching goal is to utilize the theoretical insights gleaned from my studies to 

significantly contribute to humanity's endeavors in combating this formidable 

new viral threat. 

Chapter 2 of this dissertation delves into our study on the reduction in the 

infectious disease fatality rate of the Omicron variant compared to previous 

variants in South Africa. We also estimate the transmissibility of three 

predominant SARS-COV-2 variants in South Africa, namely the Beta variant, 

the Delta variant, and the Omicron variant. This research commenced when the 

Omicron variants first emerged, and South Africa bore the brunt of the virus's 

impact. In this study, we developed a mathematical model incorporating time-

varying transmission rates, vaccination data, and immune evasion characteristics. 

By fitting the model to reported case and death data up to February 6, 2022, we 

estimated the transmissibility and infection fatality ratio of the Omicron variant 

in South Africa. Our findings revealed that the substantially higher relative 

transmissibility of the Omicron variant was primarily attributed to its immune 

evasion capabilities, while its infection fatality rate decreased significantly by 

approximately 78.7% (with a 95% confidence interval of 66.9% to 85.0%) 

compared to previous variants. In subsequent research, we employed a state-of-

the-art mathematical modeling approach to estimate the time-varying 

transmissibility of SARS-COV-2 and the relative transmissibility of the Beta, 

Delta, and Omicron variants. Our analysis indicated that the transmissibilities of 

these three variants were approximately 73%, 87%, and 276% higher, 

respectively, than their preceding variants. To the best of our knowledge, our 

model represents the first simple model capable of simulating multiple mortality 
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waves and the replacement of three variants in South Africa, highlighting the 

substantially higher transmissibility of the Omicron variant compared to previous 

variants. 

Chapter 3 of the dissertation focuses on the investigation of regional 

disparities in in-hospital mortality rates of COVID-19 in Brazil. The COVID-19 

pandemic has significantly impacted Brazil, with various dominant variants 

circulating throughout different periods. To explore the regional heterogeneity of 

in-hospital mortality rates of COVID-19 in Brazil and assess the effects of 

vaccinations and social inequality, we fitted a multivariate mixed-effect Cox 

model to a national database of inpatient data in Brazil spanning from February 

27, 2020, to March 15, 2022. We compared the in-hospital mortality risks of 

vaccinated and unvaccinated patients while adjusting for age, state, ethnicity, 

education, and comorbidities. Furthermore, we analyzed the effects of these 

variables on in-hospital mortality and conducted stratified analyses across 

different age groups and vaccine types. 

The reason that we did the research work about covid-19 in two different 

regions since there are notable connections between the research on COVID-19 

in Brazil and South Africa: 

Emergence of Variants: Brazil and South Africa were key locations for 

the discovery of the Gamma and Beta variants, respectively. Both variants share 

similar mutations that increase transmissibility and potential immune escape, 

suggesting common evolutionary patterns. 

Vaccine Effectiveness: Studies from both countries have been crucial in 

assessing vaccine effectiveness against these variants. While some vaccines 
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showed reduced efficacy, they still provided protection, leading to further 

development of boosters and vaccine improvements. 

Public Health Responses: Despite different public health strategies, both 

countries faced challenges like managing rapidly spreading variants. Their 

experiences offer valuable lessons for other nations in balancing health measures 

with economic considerations. 

Immune Escape and Herd Immunity: Research in both Brazil and 

South Africa highlighted the potential for these variants to evade immunity, 

prompting reevaluation of herd immunity and long-term vaccination strategies. 

In summary, the studies from Brazil and South Africa are interconnected 

through their focus on virus variants, vaccine effectiveness, public health policies, 

and immune response, providing important insights for global pandemic 

management. 

Chapter 4 is the conclusion and discussion of my research work during 

these three years, over the past two years of the COVID-19 pandemic, large-scale 

infections have occurred globally, with surges in cases occurring one after 

another. Economically underdeveloped regions such as Brazil and South Africa 

have been particularly hard hit by the onslaught of the novel coronavirus. The 

public health systems in these areas have been severely strained, resulting in 

incalculable damage to national economies, government stability, and the lives 

and properties of the people. During the peak of the COVID-19 pandemic, the 

numbers of severe cases and deaths reached alarming levels, presenting one of 

the most severe public health crises in recent decades. The continuous mutations 

of the virus and the emergence of new variants have further complicated the 
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situation, with several key variants rapidly becoming predominant globally. 

These variants exhibit high infectivity and immune evasion capabilities, with 

significant changes in their biological characteristics such as the incubation 

period and clinical symptoms of carriers. This poses new challenges for epidemic 

prevention and control, vaccine development, and the formulation of public 

health measures and policies by governments in different regions and countries. 

As a researcher in the field of infectious disease mathematics, I hope to contribute 

to the best of my abilities by using my knowledge to quickly and efficiently 

simulate and track the trends of different virus strains, providing scientific 

assistance and support to the global public health system, especially to 

economically underdeveloped public health institutions in countries like Brazil 

and South Africa. 

In Appendix part, we present findings on a notable synchronized 

replacement pattern whereby the Alpha variants of SARS-CoV-2 were 

supplanted by the Delta variant on a large scale. Our analysis suggests that this 

phenomenon is closely linked to the timing of the Delta variant's emergence and 

its inherent transmissibility advantage. Notably, the Alpha variant exhibited a 

tendency to skip certain countries and regions, such as India and its neighboring 

areas, resulting in a relatively mild initial wave of reported COVID-19 deaths per 

capita before the Delta variant's incursion. 

This research represents a significant discovery made early in my PhD 

studies and marks the initial publication of my doctoral research journey. It 

underscores the rapid mutational dynamics of the novel coronavirus at that time 

and highlights the efficacy of scientific inquiry in understanding and responding 
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to emerging viral variants. Our study visualizes the global replacement process 

from the preceding strain to the Alpha variant and subsequently to the Delta 

variant. 

We observed that the Alpha variant's dominance was relatively short-

lived, spanning only 3 to 4 months, before being rapidly replaced by the Delta 

variant in a remarkably synchronized manner across numerous countries and 

regions. Specifically, the Delta variant first emerged in India and spread outward 

to neighboring areas before disseminating further globally. Conversely, the 

Alpha variants, originating in the UK, followed a similar pattern of regional 

spread before proliferating worldwide. 

Our visual analysis reveals a striking simultaneous replacement of the 

Alpha variant by the Delta variant in multiple countries and regions. In contrast, 

the earlier substitution of the Alpha variant for the wild strain did not exhibit a 

similarly synchronized trend. This discrepancy may be attributed to the 

heightened transmissibility of the Delta variant compared to its predecessors, 

underscoring the dynamic nature of viral transmission dynamics during the 

COVID-19 pandemic. 
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Chapter 2 
 
2 ASSESSING COVID-19 VARIANT 

DYNAMICS IN SOUTH AFRICA: 

REDUCED FATALITY RATE OF THE 

OMICRON VARIANT AND 

TRANSMISSIBILITY OF THE BETA, 

DELTA, AND OMICRON VARIANTS. 
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2.1 Reduction in the infection disease fatality rate 

of the Omicron variant compared with 

previous variants in South Africa. 

 
2.1.1  Introduction 

 
The COVID-19 pandemic has persisted for nearly two years since its 

initial identification in late 2019. According to the World Health Organization 

(WHO), the global tally has exceeded 260 million reported cases, with over 5 

million deaths attributed to the virus. 

('https://www.who.int/emergencies/diseases/novel-coronavirus-2019'  2021). 

Over this period, the virus has undergone multiple mutations, leading the WHO 

to classify variants into three categories: variants of concern (VOC), variants of 

interest (VOI), and variants under monitoring (VUM). Notably, four variants of 

concern—Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta 

(B.1.617.2)—have contributed significantly to infections and mortality 

worldwide. The emergence of the Omicron (B.1.1.529) variant on November 26, 

2021, marked its classification as the fifth VOC. (He et al. 2021)  

Before the advent of the Omicron variant, South Africa experienced three 

distinct waves of infections and deaths driven by different variants. The initial 

wave commenced in March 2020, reaching its peak in July and subsiding by 

September 2020 (Pulliam et al. 2021). The second wave, associated with the Beta 
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variant, began in October 2020, initially affecting Nelson Mandela Bay before 

spreading to Eastern Cape, Western Cape, and Kwazulu-Natal by early 

December 2020 (Tegally, Wilkinson, Giovanetti, et al. 2021). In May 2021, the 

emergence of the Delta variant triggered a third wave across South Africa. 

According to (Abdool Karim and Baxter 2021), The Delta variant swiftly 

supplanted the Beta variant, leading to a rapid surge in infections peaking in July, 

during which the Delta variant accounted for 86% of sequenced viruses in the 

first week of that month. 

The emergence of the Omicron variant, which rapidly became the 

predominant strain in Gauteng, South Africa, was initially detected on November 

23, 2021, coinciding with a significant surge in reported infections. By early 

December 2021, the number of confirmed Omicron variant cases in South Africa 

exceeded 2,000 (Vaughan 2021). Characterized as highly mutable, the Omicron 

variant exhibits remarkable genetic diversity with over 30 amino acid 

substitutions, three deletions, and one small insertion. Notably, 15 of these 

substitutions are concentrated within the receptor binding domain (RBD), 

including key mutations such as S371L, S373P, S375F, K417N, N440K, G446S, 

S447N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, and 

D614G ('Science Brief: Omicron (B.1.1.529) Variant'  2021). Additionally, the 

Omicron variant carries the mutation found in other variants of concern, in which 

a deletion was found at the peak position 60-79. It has three key mutations similar 

to the Beta variant and Gamma (P.1) variant, which may increase its ability to 

escape immunity (Poudel et al. 2022). Research by Zhang et al. demonstrated a 

reduced neutralization capability of convalescent sera from individuals 
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previously infected with early strains or the Delta variant against the Omicron 

virus, with neutralizing antibody titers declining significantly (36-fold and 39-

fold reduction, respectively). These findings underscore the Omicron variant's 

potential to evade immunity, posing challenges for vaccine efficacy and natural 

immunity (Zhang et al. 2021).  

Despite its increased transmissibility and immune evasion features, early 

observations suggest a potential difference in disease severity compared to 

previous variants. In Tshwane, South Africa, during the peak of the Omicron 

variant, bed occupancy rates were approximately half those observed during the 

Delta variant surge, indicating potentially lower hospitalization rates. 

Furthermore, fewer intensive care unit (ICU) admissions and shorter hospital 

stays may indicate reduced disease severity associated with the Omicron variant. 

(Abdullah et al. 2021).  

This study aims to develop and apply a comprehensive modelling approach that 

integrates reported cases and deaths in South Africa to quantify the Omicron 

variant's impact on the infection fatality rate (IFR) and disease burden in the 

region. By elucidating the evolving dynamics and implications of the Omicron 

variant, this research seeks to inform public health strategies and interventions 

aimed at mitigating the spread and impact of this novel SARS-CoV-2 lineage. 
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2.1.2 Method 

We obtain reported cases, deaths, excess deaths, and vaccination data 

from the Our World in Data ('Johns Hopkins University CSSE.'  2022; Hannah 

Ritchie 2020; Mathieu et al. 2021).  We obtained aggregated variant proportion 

data from the Our World in Data, Covariant.org (Hodcroft 2021), and GISAID 

((Shu and McCauley 2017b; Khare et al. 2021; Elbe and Buckland-Merrett 2017). 

We fit our previously proposed Susceptible-Exposed-Infectious-

Hospitalized-Death-Recovered-Vaccinated (SEIHDRV) model to the observed 

case and death data in South Africa (Lin, Chen, et al. 2021; Lin, Zhao, et al. 2021). 

We assume that a proportion denoted as > of the infections was reported and > < 

7%. This can be seen from that the total number of reported cases in the country 

is much smaller than the estimated proportion of the population being infected 

based on the seroprevalence from serological studies, (Musa et al. 2021). We 

incorporate the vaccination (fully vaccinated, or second dose) data, and fit our 

model to the reported cases and deaths. We denote the proportion of the Omicron 

variant as ?%. We assume the infection fatality ratio (IFR) of the previous variant 

is IFR1, and the IFR of the Omicron variant is IFR2. Thus the overall IFR of a 

one-strain model is (1-?%) IFR1+ ?% IFR2, i.e., a weighted average of the two 

IFRs. We assume a vaccine efficacy of 85% against both infection and death. 

Considering the high seroprevalence in South Africa, we assume that eventually 

80-85% of the whole population were infected. We note that the re-infection of 

the Omicron is high, which means the Omicron variant has high immune evasion 

ability. The high relative transmissibility of the Omicron variant comes from two 

sources: namely the enlargement of the susceptible pool due to immune evasion 
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and the increase in the intrinsic transmissibility. We consider immunity evasion 

due to Omicron by allowing a proportion of recovered individuals to move to 

susceptible on Nov 9, 2021, when the Omicron variant was prevalent. We denote 

the size of the susceptible pool before Omicron evasion as S, then we consider 

four scenarios: the immune evasion causes the susceptible pool to increase by 

0.25*S, 0.5*S, S, and 2*S.  

Our model reads: 

 

!̇ = −%!&' − ()!, 

+̇ = (1 − .)()! − 0%+&' , 

																																					2̇ = !"#
$ + %!&#

$ − 42,           (2.1) 

&̇ = 42 − 5&, 

6̇ = 75& − 86, 

9̇ = :86, 

;̇ = .()! + (1 − 7)5& + (1 − :)86. 

 

Here @ denotes the vaccinated class which contains a proportion (denoted 

as 1 − A ) of vaccinated individuals. The rest proportion of the vaccinated 

individuals (A) enter *  class and gain long-term immunity. These vaccinated 

individuals in @  class are susceptible to breakthrough infection. Parameter B 

accounts for the reduced susceptibility of vaccinated individuals. Here we assume 
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B = 1 for simplicity, since the effects of B  and A  compensate each other. A 

proportion (C)	of hospitalized individuals will eventually die, and this proportion 

decreases as vaccination coverage increases in the form C = (1 −

ε ∫ F(G)%
$ -G)	C$ . Namely, we assume that the risk of death drops while the 

vaccination coverage ∫ F(G)%
$ -G increases, and we set ε = 0.5. We note that the 

vaccination will only be delivered to those who have not yet been vaccinated. 

Thus the vaccination rate FJ(.) takes the form FJ(.) = F(.)/(1 − ∫ F(G)ds)	%"(
$ , 

while F(.) is the daily vaccination rate per capita. Here we only consider the fully 

vaccinated (second dose) data and ignore the effects of the first dose since the 

impact of the first dose would be overtaken by the impact of the second dose.  

Parameter M  denotes the risk of hospitalization or severe outcome of 

infected cases. Since we do not fit hospitalization or severe cases, we cannot 

estimate M, rather we can estimate the product of M and C which is the IFR when 

N = 0 . We previously found that it is convenient to simply assume C$ = 	M 

without changing the fitting performance. We estimate the 1(.) which is an 

exponential cubic spline function (Vetterling et al. 1992) with 12 nodes spanning 

over the study period. We fix other parameters A = 0.85 which reflects the high 

efficacy of vaccine against both infection and deaths. We did not explicitly 

separate cases from natural infection and breakthrough infection.  
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Parameter Description Symbol 

Time-varying transmission rate  1(.)  

Reduced susceptibility of vaccinated individuals  B  

Proportion of fully protected individuals due to vaccination  A  

Proportion of susceptible individuals who received COVID-

19 vaccine per day  

PJ(.) 

Infectiousness onset rate  Q  

Rate of loss of infectiousness  2  

Removal rate of hospitalized cases  % 

Ratio of severe cases out of all infected cases  M  

Proportion of mortality out of severe cases  C 

 

Table 1. Parameter Description for the model 

 

 

 

 

The mean latent period Q"( = 2 days, 2"( = 3 days and %"( = 12 days 

are fixed, such that the mean generation time (ie, sum of mean latent period and 

mean infectious period) equals 5 days (Tang et al. 2021) and the mean duration 

from infection to death is 17 days. 

We simulate weekly cases :%&∆% and deaths  ;%&∆%  as 
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:%&∆% = ∫ >QT-.%&∆%
%                                            (2.2) 

;%&∆% = ∫ C%U-.%&∆%
%                                            (2.3) 

 

We denote the weekly reported cases and deaths as <%&∆% and deaths  =%&∆% .  

 

We assume them follows Negative-Binomial distribution: 

 

!!"∆!~#$%&'()$_+(,-.(,&/0.$&, = 2!"∆! , )&4(&,5$ = 2!"∆!(1 + 92!"∆!);											(2.4) 

=!"∆!~#$%&'()$_+(,-.(,&/(.$&, = >!"∆! , )&4(&,5$ = >!"∆!(1 + 9>!"∆!))       (2.5) 

 

Where V is an over-dispersion parameter which will be estimated, and when it 

equals to 0, the negative binominal distribution is ging to reduce to Poisson 

distribution. 

 

The log likelihood functions are: 

=>?_=ABCDAℎ>>F	 = 	∑ log K(L'|L(:('+(), Θ)-
'.( 	   (2.6) 

 

=>?_=ABCDAℎ>>F	 = 	∑ log K(O'|O(:('+(), Θ)-
'.( 	   (2.7) 
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Where Θ  is the set of unknown parameters and X(<)|<(:()"(), Θ)  are the 

conditional densities for <) given <(:()"() which can be numerically calculated via 

Sequential Monte Carlo. 

 

when studying the number of infectious disease cases, there is often 

spatial clustering. Such data does not meet the independence principle of the 

Poisson distribution. Usually, the variance in such data is significantly larger than 

the mean, making it overdispersed. When conducting Poisson regression with 

such data, the standard errors of the estimated model parameters tend to be 

underestimated. Therefore, when count data does not conform to the Poisson 

distribution, particularly in cases of overdispersion, it is more appropriate to use 

Negative Binomial regression analysis. 

Thus we connect the reported cases/deaths and simulated cases/deaths via 

two Negative Binomial distributions. Thus the log likelihood can be defined (Lin 

et al. 2018; Zhao et al. 2018). We fit the model to reported cases and deaths via 

R package POMP (King, Nguyen, and Ionides 2015; He, Ionides, and King 2010a) 

and report the maximum likelihood estimate for IFR.  The Iterated Filtering 

algorithm serves as a valuable tool for inferring maximum likelihood in partially 

observed dynamical systems. To explore the parameter space, we introduce 

stochastic perturbations to the unknown parameters. Subsequently, we apply 

Sequential Monte Carlo, or the particle filter, to the extended model, enabling the 

selection of parameter values that align better with the observed data. If executed 

effectively, iterated filtering with progressively reduced perturbations will 

converge to the maximum likelihood estimate. The POMP package can be 
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executed on high-performance workstations in either parallel or serial mode, 

facilitating the selection of large-scale models. This allows us to derive maximum 

likelihood estimates for the unknown parameters of the log-likelihood function. 

The 95% confidence interval is defined as the interval of IFR such that the log 

likelihood of the model given by the data drops by 0.5Z$../,123(4 = 1.92 from the 

maximum log likelihood (He, Ionides, and King 2010a). 

 
2.1.3  Result 

 
We found that the COVID-19 cases and death reporting in South Africa 

were consistent over time. For instance, the reported COVID-19 death was 

consistently 1/3 of the excess deaths. The raw infection fatality rate (IFR) was 

consistent over time before the emergence of the Omicron variant. After the 

emergence of the Omicron variant, the raw IFR seemingly decreased 

significantly. 

In Figure 2.1, we show our fitting result of four waves in South Africa. 

Our model simulations (black curve) match the reported case and death (red circle) 

reasonably well, with cases in panel (a) and deaths in panel (b). The estimated 

IFR1 is about 0.21%, as we discussed we knew the reported death is only 1/3 of 

excess deaths and it was generally believed that the excess death is a good proxy 

of the true COVID-19, thus the true IFR could be 0.63% which was well in line 

with current knowledge of COVID-19 before Omicron (B.1.1.529) variant. We 

show the proportion of the fully vaccinated population and proportion of the 

Omicron variant among processed samples in the top panel in Panel a. We show 
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the overall susceptible level in the top panel in Panel b, where a sudden increase 

on Nov 9, 2021, can be noticed reflecting the effect of immune evasion due to 

Omicron variant. Panel (c) shows the log-likelihood profile versus the reduction 

in IFR. We find that the reduction in IFR is about 78.7% (95% confidence interval: 

66.9%, 85.0%) under the scenario that the immune evasion enlarged the 

susceptible pool by 1-fold.  Table 1 shows the estimated reduction in IFR under 

four scenarios where immune evasion enlarged the susceptible pool by 0.25-fold, 

0.5-fold, 1-fold, and 2-fold. The estimated reduction in IFR is consistent under 

the four scenarios.  In Figure 2.1, we show the scenario when the susceptible 

pool is increased by 1-fold, and in Figures 2.2, 2.3, and 2.4,  we show the 

scenario when the susceptible pool is increased by 0.25-fold, 0.5-fold, and 2-fold 

by immune evasion. The fitting performance is greatly improved, reflected in the 

maximum log likelihood (MLL),  when the immune evasion increased from 0.25-

fold to 2-fold of pre susceptible level. Thus the relative transmissibility of the 

Omicron variant is likely 3-fold of that of the Delta variant. If we assume the 

immune evasion is at a low level, e.g. 0.25-fold of the pre-susceptible level, then 

the transmission rate, in units of basic reproductive number, needs to go up to as 

high as 9.  
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2.1 Fitting model for the 1-fold susceptible pool to reported cases and deaths in 

South Africa. 

 

The red circle and black curve represent reported cases or deaths, and simulated 

cases or deaths.  

(a) reported cases versus simulated cases, and proportion of fully vaccinated and 

proportion of Omicron variant among samples processed in the top panel. 

(b) reported deaths versus simulated deaths, and simulated susceptible level 

(green curve at the top), where the susceptible pool doubled on Nov 9, 2021, due 

to the immunity evasion of the Omicron variant;  The dashed blue curve showed 

the estimated transmission rate in the unit of ℛ% = 5(%)
6 .  

(c) The log-likelihood profile as a function of reduction in IFR before and after 

Omicron evasion 
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2.2 Fitting model for the 0.25-fold susceptible pool to reported cases and deaths in 

South Africa. 

 

The red circle and black curve represent reported cases or deaths, and 

simulated cases or deaths. For part a, the upper panel contrasts reported cases 

with simulated cases, alongside the proportions of fully vaccinated individuals 

and the Omicron variant among samples processed. Part b visualized reported 

deaths against simulated deaths, accompanied by the simulated susceptible level. 

Notably, the green curve reflects the doubling of the susceptible pool on Nov 9, 

2021, attributed to the immunity evasion of the Omicron variant. Additionally, 

the dashed blue curve illustrates the estimated transmission rate denoted in ℛ% =
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5(%)
6 . Part c shows the log-likelihood profile concerning the reduction in IFR 

before and after Omicron evasion provides insight into the impact of the variant 

on disease severity. 

 

 

 

 

2.3 Fitting model for the 0.5-fold susceptible pool to reported cases and deaths in 

South Africa. 

 

The red circle and black curve represent reported cases or deaths, and simulated 

cases or deaths. For part a, the upper panel contrasts reported cases with 

simulated cases, alongside the proportions of fully vaccinated individuals and the 
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Omicron variant among samples processed. Part b visualized reported deaths 

against simulated deaths, accompanied by the simulated susceptible level. 

Notably, the green curve reflects the doubling of the susceptible pool on Nov 9, 

2021, attributed to the immunity evasion of the Omicron variant. Additionally, 

the dashed blue curve illustrates the estimated transmission rate denoted in ℛ% =
5(%)
6 . Part c shows the log-likelihood profile concerning the reduction in IFR 

before and after Omicron evasion provides insight into the impact of the variant 

on disease severity. 
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2.4 Fitting model for the 2-fold susceptible pool to reported cases and deaths in 

South Africa. 

 

The red circle and black curve represent reported cases or deaths, and 

simulated cases or deaths. For part a, the upper panel contrasts reported cases 

with simulated cases, alongside the proportions of fully vaccinated individuals 

and the Omicron variant among samples processed. Part b visualized reported 

deaths against simulated deaths, accompanied by the simulated susceptible level. 

Notably, the green curve reflects the doubling of the susceptible pool on Nov 9, 

2021, attributed to the immunity evasion of the Omicron variant. Additionally, 

the dashed blue curve illustrates the estimated transmission rate denoted in ℛ% =
5(%)
6 . Part c shows the log-likelihood profile concerning the reduction in IFR 



 43 

before and after Omicron evasion provides insight into the impact of the variant 

on disease severity. 

 

 

Table 1 Estimated reduction in IFR in four scenarios of immune evasion. 

Immune 

evasion 

Maximum likelihood estimate of 

reduction in IFR 

95% confidence 

interval 

0.25 

0.5 

1 

2 

0.794 

0.777 

0.787 

0.778 

 

0.683, 0.869 

0.652, 0.861 

0.669, 0.85 

0.636, 0.842 

IFR, infection fatality ratio. 

 

Table 2. Estimated reduction in IFR under four scenarios of immunity evasion. 

 

For 1 fold scenarios, the IFR of the Omicron variant is about 78.7% with a 95% 

confidence interval (66.9%, 85.0%) of that of the previous variant.  

 

 



 44 

 
 
2.1.4  conclusion and discussion 

 
In our analysis, we operate under the assumption of consistent case testing 

and reporting efforts, although the veracity of this assumption may not always 

hold true. Particularly, with the emergence of a new variant such as the Omicron 

variant, there might be an intensification of the testing effort, potentially resulting 

in an underestimation of the Infection Fatality Rate (IFR) attributable to transient 

effects. Furthermore, our study incorporates various degrees of immunity evasion 

stemming from the Omicron variant within a single-strain model; however, it is 

noteworthy to consider the alternative approach of employing a multiple-strain 

model to further elucidate the dynamics. The temporal scope of our analysis is 

confined to data available up to Feb 9, 2022, with the overarching objective of 

providing an early estimate of the IFR specific to the Omicron variant in South 

Africa. It is crucial to acknowledge that our estimated IFR pertains to a context 

characterized by a high seroprevalence (infection attack rate) in South Africa, 

thus may not accurately reflect the intrinsic IFR of the Omicron variant within a 

population predominantly susceptible to infection. 

Drawing a comparative perspective, empirical observations from Hong 

Kong's fifth wave of the Omicron variant, as of April 4, 2022, reveal a raw Case 

Fatality Rate (CFR) of 0.69%, marking a significant reduction from the preceding 

raw CFR of 1.38% recorded up to February 6, 2022 ('Latest situation of COVID-

19 (as of 4 April 2022)'  2022). It is imperative to note that this observed reduction 
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of 50% could potentially be even more substantial, considering the likelihood of 

higher under-reporting of cases during the fifth wave relative to preceding waves. 

This reduction in CFR can be attributed in part to intrinsic features of the 

Omicron variant and in part to the protective effects conferred by vaccination 

campaigns. Specifically, the raw CFR among the unvaccinated population during 

the first wave stands at 2.05%, ostensibly surpassing the 1.34% CFR recorded in 

preceding waves. However, accounting for the considerable underreporting of 

cases during the initial wave, it is conceivable that the CFR of the Omicron 

variant among the unvaccinated cohort may actually be substantially lower than 

that of previous variants. ('Latest situation of COVID-19 (as of 4 April 2022)'  

2022).  

In summary, we found that the relative transmissibility of the Omicron 

variant (including due to immunity escaping) could be more than 3-fold higher 

than previous variants, which is in line with our previous estimate (Yu et al. 2021). 

Immune evasion is the main reason behind the high relative transmissibility of 

the Omicron variant. For one-fold scenario, the IFR of the Omicron variant is 

about 78.7% with a 95% confidence interval (66.9%, 85.0%) of that of the 

previous variant. For 0.25-fold scenario, the IFR of the Omicron variant is about 

79.4% with a 95% confidence interval (68.3%, 86.09%) of that of the previous 

variant. For 0.5-fold scenario, the IFR of the Omicron variant is about 77.7% 

with a 95% confidence interval (65.2%, 86.10%) of that of the previous variant. 

For two-fold scenario, the IFR of the Omicron variant is about 77.8% with a 95% 

confidence interval (63.6%, 84.20%) of that of the previous variant. 
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2.2 Estimate the transmissibility of SARS-COV-2 

Beta, Delta and Omicron variants in South 

Africa. 

 
2.2.1  Introduction 

 
The coronavirus disease 2019 (COVID-19) spread rapidly and ravaged the 

world in a short time. As of December 18, 2021, 271,963,258 confirmed cases 

and 5,331,019 deaths had been recorded (WHO, https://covid19.who.int/), 

seriously affecting global public health. The rapid mutation rate of the virus is an 

important reason for its huge and long-lasting impact. Currently, several variants 

of the virus have emerged, causing multiple peaks of COVID-19 infection 

worldwide. In South Africa, the Wild strain, Beta variant, Delta variant, and 

Omicron variant have emerged and dominated. The newly emerged variant 

viruses show stronger infectivity and weaken the effectiveness of vaccines 

(Karim and Karim 2021; Tegally, Wilkinson, Althaus, et al. 2021). 

In October 2020, the Beta variant was first discovered in South Africa. It 

triggered the second wave of outbreaks in the country (Cele et al. 2021). 

Compared to the Wild strain, the Beta variant spread rapidly in South Africa and 

increased infectivity and immunity evasion. Additionally, the effect of the 

https://covid19.who.int/
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ChAdOx1 nCoV-19 vaccine on the Beta variant was severely weakened (Madhi 

et al. 2021; Tegally, Wilkinson, Giovanetti, et al. 2021). Therefore, the Beta 

variant has higher reinfection characteristics than the Wild strain (Chemaitelly, 

Bertollini, and Abu-Raddad 2021). However, compared to the Beta variant, the 

Delta variant is much more fatal. 

In December 2020, the Delta variant was first detected in Maharashtra, India. 

It spread rapidly to other countries and regions (Del Rio, Malani, and Omer 2021). 

Five studies estimated the basic reproductive number, ℛ$, of the Delta variant 

and indicated that the range of ℛ$ of the Delta variant is 3.2–8, with an average 

value of 5.08 (Liu and Rocklöv 2021), which is significantly higher than those of 

the Alpha variant (Del Rio, Malani, and Omer 2021) and Wild strain (Liu and 

Rocklöv 2021). Some studies indicated that the increased replication suitability 

and decreased sensitivity to neutralizing antibodies of the Delta variant have led 

to a greatly increased infectivity of the Delta variant (Mlcochova et al. 2021). 

However, the Omicron variant, as the mutant strain with the most mutation sites 

currently during the COVID-19 pandemic, seems to have a higher transmission 

rate, lower vaccine efficiency, and higher reinfection risk (Torjesen 2021b). To 

explore the transmissibility of the Delta variant, Ito et al. reported the 

predominance of the Delta variant in the run-up to the July 2021 Olympics in 

Tokyo, Japan. The authors used a renewal-equation-based model which is 

different from our model to describe the adaptive evolution of multiple variants 

in Japan and demonstrated that the Delta variant was more transmissible than its 

predecessor, with a transmittance 1.4 times higher than that of the Alpha variant 

(Ito, Piantham, and Nishiura 2021). 
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The Omicron variant was first discovered in South Africa on November 9, 

2021, and was classified variant of concern by WHO on November 26, 2021 (Gu 

et al. 2022). As of December 16, 2021, the Omicron variant has existed in 89 

countries and regions, and it is spreading at an unprecedented speed. In South 

Africa, the variant quickly replaced the Delta variant and caused a rapid increase 

in the number of infections (Dyer 2021). The number of daily cases rose rapidly 

from 273 cases on November 17, 2021 to above 26,389 cases on December 16, 

2021 (WHO, https://covid19.who.int/). 

Presently, several studies have been conducted on the Omicron variant. 

Some of these studies investigated Omicron's vaccine breakthrough rate and 

antibody resistance through in vitro experiments and clinical research. In an in 

vitro experimental study on the SARS-CoV-2 variants, Wilhelm et al. 

demonstrated that the neutralizing effect of the vaccine against the Omicron 

variant was severely reduced, compared to the Delta variant (Wilhelm et al. 2021). 

Furthermore, Zhang et al. demonstrated that the Omicron variant may lead to 

more obvious evasion of immunity in an in vitro study (Zhang et al. 2022). Karim 

et al. compared the neutralizing titers of the Omicron variant with those of the 

Victoria, Beta, and Delta variants, and indicated that the Omicron variant will 

cause more breakthrough infections, which may trigger further infection waves 

(Karim and Karim 2021; Dejnirattisai et al. 2022). Mohiuddin et al. used the 

reduction in neutralizing antibody titers to infer vaccine effectiveness. The study 

reported that the effect of the vaccine on the Omicron variant was severely 

reduced, the effectiveness of vaccines against severe illnesses was significantly 

reduced for frail individuals, and the protection against infection, mild illness, 

https://covid19.who.int/
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and transmission was almost eliminated (Gardner and Kilpatrick 2021). 

Kuhlmann et al. revealed that three doses of the mRNA vaccine may not be 

enough to prevent infection and symptomatic diseases of the Omicron variant 

based on clinical studies on patients (Kuhlmann et al. 2021). Additionally, 

Nishiura et al. reported the relative reproductive numbers of Omicron and Delta 

Variants in South Africa by a mathematical model different from ours(Nishiura 

et al. 2021). The authors assumed that the effective reproduction number of the 

Omicron variant, ROmicron(t) was given by multiplying a constant factor k to that 

of the Delta variant, RDelta(t). This research paper reported that the effective 

reproduction number of the Omicron variant was estimated to be 4.2 times more 

than the Delta variant, and 3.3 times more transmissible than the Delta variant. 

Some studies used theoretical models to investigate the effects of the 

Omicron variant. Bai et al. analyzed the population movement data obtained from 

both flights in South Africa and the Omicron case report data and estimated that 

the probability of the Omicron variant being introduced into the studied country 

before November 28, 2021, was higher than 50% (Bai et al. 2021). Kumar et al. 

studied the spike proteins of the Omicron and Delta variants using several 

computational tools and a computational saturation mutagenesis model. They 

found that the Omicron variant has a higher affinity for human angiotensin-

converting enzyme 2 (ACE2) receptors than the Delta variant, indicating that the 

Omicron variant has a higher transmission potential (Kumar, Thambiraja, et al. 

2021). In another study on the Omicron variant’s infectiousness, vaccine 

breakthrough, and antibody resistance using an artificial intelligence model, the 

variant’s infectivity was found to be above 10 times higher than that of the Wild 
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virus or about twice that of the Delta variant. Vaccine breakthrough was twice 

that of the Delta variant, and antibody resistance had been weakened (Chen et 

al.). Kuhlmann et al. (Kuhlmann et al. 2021) used the meta-analysis method to 

predict that after 6 months of initial immunization with mRNA vaccines, the 

vaccine’s efficacy on the symptoms of patients infected by the Omicron variant 

was estimated to have reduced to about 40%. Additionally, the efficacy on severe 

diseases had decreased to about 80% (Khoury et al. 2021). Furthermore, the 

OpenCOVID individual-based model was used to compare the infectiousness, 

severity, and immune evasion properties of the Omicron and Delta variants. The 

model indicated that the Omicron variant could become the new dominant variant 

(Le Rutte et al. 2021). 
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2.5 Weekly reported excess deaths and reported COVID-19 deaths, stringency index, 

and vaccination coverage (a) and variant proportion (b) in South Africa. 

 

 

Figure 2.5.a shows the weekly reported deaths and excess deaths with stringency 

index and vaccination coverage in South Africa. Data are downloaded from 

(Hannah Ritchie 2020; Shu and McCauley 2017b; Khare et al. 2021; Elbe and 

Buckland‐Merrett 2017; Mathieu et al. 2021; Hale et al. 2021). 

According to the figure, the number of excess deaths was about three-fold 

that of the reported deaths, the number of weekly deaths varies largely with the 

stringency index and variant invasion, and vaccination could effectively reduce 
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the number of deaths. Figure 2.5.b shows the trend of infection by the four 

COVID-19 virus variants over time in South Africa. The Beta variant gradually 

replaced the wild strain from September 2020 to January 2021, then the Delta 

variant gradually replaced the Beta variant from May to August 2021. After 

November, the Omicron variant replaced the Beta variant and became the 

dominant variant within a month. 

In this work, we propose a new model and fit the model to the adjusted 

COVID-19 deaths and the proportion of variants in South Africa to estimate the 

relative transmission rates of the Beta, Delta, and Omicron variants, compared to 

their preceding dominant strains, which were the Wild strain, Beta variant, and 

Delta variant, respectively. 
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2.2.2 Materials and Methods 

 

The susceptible-exposed-infectious-hospitalized-recovered-death (SEIHRD) 

model from our previous studies (Song, Fan, Zhao, et al. 2021; Song, Fan, Liu, 

et al. 2021) was adopted and extended to simulate the alternative dominance of 

the Wild strain, Beta variant, Delta variant, and Omicron variant. Based on the 

assumption that the variant replacement only affected the overall transmission 

rate of COVID-19 and only transmission changes but no variant changes 

occurred, the SEIHRD model with a flexible time-varying transmission rate 

could simulate COVID-19 deaths (or excess deaths) (Musa et al. 2022). To 

simulate the replacement of the proceeding strain by a variant, an additional set 

of (EIHRD) equations for the variant were included. Since the replacements 

occurred thrice in South Africa, one set of the SEIHRD model for the Wild strain 

and three additional sets of EIHRD models for the Beta, Delta variant, and 

Omicron variants, amounting to 21 equations, were used. However, one set of 

SEIHRD and one additional set of EIHRD were sufficient. Therefore, only 8 

equations were used if further merging HRD classes for two successive variants. 

At any moment, at most two strains (or variants) dominated. Therefore, a system 

of two groups of models was sufficient to simulate the replacement. 

The dominance of the variants could be divided into several time intervals: 

 (1) Before the emergence of the Beta variant, (SEIHRD)1 was used to model 

the dynamics of the wild strain;  
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 (2) After the emergence of the Beta variant, (EIHRD)2 was used to model the 

dynamics of the Beta variant; 

 (3) After the emergence of the Delta variant, by which the Wild stain had 

almost been replaced, (SEIHRD)1 was reused to model the dynamics of the Delta 

variant; 

 (4) After the emergence of the Omicron variant, by which the Beta variant had 

been replaced, (SEIHRD)2 was reused to model the dynamics of the Omicron 

variant. 

Therefore, only 8 equations were used to simulate the successive replacements 

of one Wild strain and three variants. This system can be used to model further 

replacements in principle. To the best of our knowledge, our model is the simplest 

model for this purpose. 

 

Our model reads as follows: 

 

!̇ = − /!!"#!
$ − /"!"#"

$ , 

2(̇ = /!!"#!
$ − 42(, 

20̇ = /"!"#"
$ − 420,  

	&(̇ = 42( − 5&(,              (2.8) 

	&0̇ = 420 − 5&0, 

6̇ = 75(&( + &0) − 86, 

9̇ = :86, 
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;̇ = (1 − 7)5&( + (1 − 7)5&0 + (1 − :)86. 

 

If P ∈ [0, P(] ∪ [P0, P1]  and 2( < 1, then 2( = 1, ! = ! − 1. If P ∈ [0, P(], W( = W0 = 1, 

If P ∈ [P(, P1], W0 = .(, If P ∈ [P0, P2], W( = .(.0, If P ∈ [P1, P2], W0 = .(.0.1. 

 

We simulate weekly deaths  ;%&∆%  as 

945∆4 = ∫ :86FP45∆4
4       (2.9) 

 

We denote the weekly reported deaths as =%&∆% .  

 

We assume  
O45∆4~'C?ZPA(C_[A\>]A\ZD(]CZ\ = 945∆4 , (Z^AZ\_C = 945∆4(1 + `945∆4)) 

(2.10) 

 

The log likelihood function noted as: 

 

=>?_=ABCDAℎ>>F	 = 	∑ log K(O'|O(:('+(), Θ)-
'.( 	   (2.11) 

 

 

We assumed the transmission rate was an exponential cubic spline function, 

we used ]5=13, which meant there were 13 nodes in the cubic spline evenly 

distributed over the study period. We denote these 13 nodes as (.) , ^)), where _=1 

to 13, .) = %!"#$"&(7"()
(4 ∗ (.891 − .:%;<%), ^) were positive values to be estimated 

via fitting model to data. Given our model and parameter setting (including fixed 

parameter and unknown parameters) and data, we used standard iterated filtering 

to achieve the maximum log-likelihood estimates of all unknown parameters 
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which included these 13 ^). The transmission rate is shown in Figure 2.2.2 as a 

dashed blue curve. 

According to Figure 2.5, the number of excess deaths was about three-fold 

that of the reported deaths and excess deaths had negative values. Therefore, 

reported COVID-19 deaths was multiplied by a factor of 3, resulting in the 

adjusted COVID-19 deaths. 

The plug-and-play likelihood-based inference framework (He, Ionides, and 

King 2010a) was adopted and implemented in the R package POMP (Ionides, 

Bretó, and King 2006) to fit the model.  

For COVID-19 deaths, a negative binomial measurement model was used to 

link the simulated model and adjusted reported deaths. For the variant 

proportions, out of several options, a simple approach was adopted. For the three 

time intervals, based on the replacement process of the variants, the sum of 

squared errors between the simulated and reported proportions was calculated. 

The simulated proportion was defined as either T(/(T( + T4) or T4/(T( + T4), 

which is the ratio of exposed cases of the variant to the exposed cases of both the 

variant and the preceding strain or variant. The transmissibility of the Beta, Delta, 

and Omicron variants was denoted as A(-fold of that of the Wild strain, A4-fold 

of that of the Beta strain, and A=-fold of that of the Delta strain, respectively. 

A comparison of the fitting performance of models with different number of 

nodes in the transmission rate and the second-order Akaike Information Criterion 

(AICc) revealed that ]5 = 13 yielded the smallest AICc. The emergence times 

of the three variants were fixed on June 12, 2020, February 23, 2021, and 
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September 27, 2021. These dates were 1–2 months ahead the first time these 

variants were reported on August 31, 2020, March 22, 2021, and November 1, 

2021. We introduce one exposed case of the dominant variants if there is no 

exposed case of the dominant variants in a day to mimic the continuous 

importation of cases. 

Aggregated variant proportion data, vaccination data, and stringency index 

data were obtained from the compiled data source in The Our World in Data 

(Hannah Ritchie 2020) and original from the GISAID (Shu and McCauley 2017b; 

Khare et al. 2021; Elbe and Buckland-Merrett 2017; Hale et al. 2021; Mathieu et 

al. 2021).  
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2.2.3 Results 

 

 

2.6 Results of the model fitting 

 

Figure 2.6 shows the results of the model fitting. Panel 2a shows the model 

of the simulated deaths and adjusted COVID-19 deaths. Our model simulation 

largely matched the observed three-fold adjusted COVID-19 deaths in South 

Africa, with an estimated infection fatality rate of about 1%. Panels b–d show the 
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simulated proportions of the Beta, Delta, and Omicron variants and the observed 

proportions. The simulated and observed proportions were closely matched. The 

estimated relative transmission rate factor is shown in Panels b–d. 

 

(A) Fitting results to three-fold weekly reported deaths (black curve and red 

circles as the simulated and observed deaths, respectively) and the fitted 

transmission rate in the units of basic reproduction number (blue dashed 

curve). nβ=13 nodes were used in the cubic spline (Vetterling et al. 1992) 

for the transmission rate. The grey region indicates the 95% range of the 

1,000 random simulations.  

(B-D) The simulated and observed proportions of the Beta, Delta, and 

Omicron variants among all samples were sequenced. 
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2.7 The sum of squared errors as functions of η1, η2, and η3 for the model. 

 

These results suggest that our estimates are robust. As indicated, 200 samples 

were sampled for each of η1, η2, and η3, from a range. They were fixed while 

fitting the model to adjusted deaths. The sum of squared errors for the three 

variants was calculated. 

Simulated and observed proportions were closely matched. The estimated 

A( = 1.73, A4 = 1.87, and A= = 3.76 are similar to the estimates for the Beta, 

Delta, and Omicron variants, reported by previous studies at 1.69-fold (Tegally, 

Wilkinson, Althaus, et al. 2021), 1.65-fold (Campbell and Gustafson 2021), and 

3.8-fold of their preceding strain or variant, respectively. In Figure 2.7, 200 

groups of (A(, A4, A=) values were sampled, and the model was refitted. The sum 

of squared errors between observed and simulated proportion time series was 
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calculated. The results in Figure 2.7 suggest that our estimates of A(, A4, and A= 

are robust. 

 

 

In our model, we ignored the effect of re-infection and the effects of 

vaccination because the coverage of fully vaccinated individuals was relatively 

low and the invasion of the Omicron variant occurred at the end of the study 

period. Allowing re-infection would mean a proportion of recovered individuals 

would become susceptible, leading to an increase in the susceptible pool, i.e., 

S→S+∆S. However, concurrently, the transmission rate was increased due to the 

increased transmissibility of the Omicron variant, i.e., β→β+∆β. Therefore, the 

mass action term in our model became βSI→(β+∆β)(S+∆S)I = βSI + 

(∆βS+∆Sβ+∆β∆S)I. If possible, disentangling ∆β and ∆S from fitting this type of 

model to aggregated death data would be difficult, when the time interval 

covering the Omicron variant was short. The effects of ∆β and ∆S are 

exchangeable. Therefore, ignoring the immunity evasion-induced ∆S, i.e., 

assuming ∆S = 0, and synthesis of all effects into ∆β to estimate ∆β was 

appropriate. Additionally, in interpreting ∆β, ∆β should be emphasized to include 

both effects from ∆β and ∆S. Furthermore, we sought to estimate how fast the 

Omicron variant transmits relative to the Delta variant. Other types of study, such 

as case-control studies, are needed to reveal the underlying mechanism. The sizes 

of the susceptible pools for a variant, e.g., Omicron, and its preceding variant, 

e.g., Delta, may be assumed to be the same (i.e., if ∆S = 0, we have ℛ$(Omicron) 

= A=*ℛ$	(Delta)). 
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We argue that ℛ$ (Omicron) could be further categorized into three 

components: ℛ$  (reinfection), ℛ$  (breakthrough), and ℛ$ (natural). Each of 

these three components has its own exclusive susceptible pool. ℛ$ (reinfection) 

is in the pool of those infected by previous strains/variants. ℛ$ (breakthrough) is 

in the pool of the vaccinated population, and ℛ$  (natural) is in the pool of 

unvaccinated susceptible individuals. 

For the Delta and Omicron variants, the re-infection risks are 15% and 81% 

(Ferguson et al. 2021). The vaccine breakthrough risk for the Delta variant is 

40%. The vaccine efficacy is 60% 3 months after administration of the second 

vaccine dose, while the vaccine breakthrough risk is high for the Omicron variant. 

However, the vaccination coverage in South Africa is only 25.96% (fully 

vaccinated by December 16, 2021). Given the high infection attack rate, the 

susceptible pool in South Africa is probably 20–30% currently. 

Assuming that the susceptible, fully vaccinated, and recovered individuals 

were 20%, 20%, and 60% of the population in November 2021, in reality, the 

vaccinated and recovered individuals could overlap. In this study, we assigned 

the group that overlapped (e.g., infected but vaccinated as well, due to 

unawareness of infection status) to one of the two groups. Given the above 

information, the composition of the “susceptible pool” for infection with the 

Delta and Omicron variants is indicated in Table 3. 
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Table 3. The composition of “susceptible pool” for the Delta and Omicron variants 

 Susceptible Vaccinated Recovered Total 

Delta 20% 8% (20*40%) 9% (60*15%) 88.6% 

Omicron 20% 20% (20*100%) 48.6% (60*81%) 37% 

 

Therefore, the susceptible pool of the Omicron variant was about 2.39-fold 

that of the Delta variant in November 2021, and the observed transmission 

advantage was partly due to this difference in the sizes of susceptible pools of 

the two variants. The natural increase in the transmissibility was 1.57 

(1.57*2.39 = 3.76). 
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2.2.4 Discussion and Conclusion 

 
Several prior studies have examined the relative transmissibility of new 

SARS-CoV-2 variants compared to their predecessors. Leung et al. conducted an 

investigation into the early transmissibility of the N501Y mutant strain in the UK 

from October to November 2020, using bioinformatics and public health data. 

By analyzing viral genomes carrying the 501Y mutation within spike proteins 

and incorporating global phylogenetic analysis, the study identified two distinct 

501Y variants. Through a competitive transmission model, variant 2 (also known 

as the Alpha variant) was estimated to have an *$	value 1.75 times higher than 

the 501N strain, indicating a 75% increase in transmissibility (Leung et al. 2021). 

Additionally, Roquebert et al. compared the transmissibility of the Beta variant 

and Alpha variant in specific regions of France. Using sequencing maps and 

reverse transcription PCR results to elucidate gene sequence differences and 

regional distribution, the study employed multinomial log-linear and generalized 

linear modelling techniques. Their analysis revealed that the Beta variant 

exhibited a transmission advantage of 15.8% (95% CI: 15.5-16.2%) in Ile-de-

France and 17.3% (95% CI: 15.5-16.2%) in Hauts-de-France. For the Omicron 

variant, Ito et al. investigated its relative instantaneous reproduction number 

compared to the Delta variant in Denmark. They developed a method to estimate 

the relative instantaneous reproduction number of one variant relative to another 

under similar epidemiological conditions. The effective (instantaneous) 
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reproductive number of the Omicron variant was estimated to be 3.19 times that 

of the Delta variant (95% CI 2.82-3.61) (Ito, Piantham, and Nishiura 2022).  

In terms of mathematical modelling, Chu introduced a fractional order 

COVID-19 model dynamics with a case study focusing on Saudi Arabia (Chu et 

al. 2021). The model incorporated classical Caputo-type derivatives of fractional 

order and considered transmission through the environment. Data from March 02, 

2020, to July 31, 2020, were used to estimate parameters, revealing a basic 

reproduction number (*$ ) of 1.2937. Furthermore, Li applied an SEIARD 

mathematical model to calculate the basic reproduction number using reported 

cases from March 06, 2021, to April 30, 2021, during the third wave of the 

pandemic. The calculated *$	 value was 1.2044, with graphical representation of 

parameter sensitivity and effects on model variables, predicting the peak of 

infections to occur on May 06, 2021 (Li, Wang, et al. 2021). 

We developed a straightforward model consisting of 8 equations to simulate 

the complex wave patterns observed in COVID-19 deaths and the sequential 

replacement of variants in South Africa. In tandem, we estimated time-varying 

transmission rates and calculated three relative transmission rate factors for the 

Beta, Delta, and Omicron variants. Notably, the relative transmissibility rates of 

these variants were substantially higher than their predecessors, with increases of 

73%, 87%, and 276% for the Beta, Delta, and Omicron variants, respectively. 

This heightened transmissibility in the Omicron variant stems from two primary 

sources: an expanded susceptible pool due to enhanced immune evasion 

capability and an inherent increase in transmission efficiency. 
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Mathematical models play a pivotal role in pandemic mitigation strategies; 

however, many existing models are overly complex to yield practical insights. 

Our approach utilized a concise set of 8 equations to simulate the intricate 

dynamics of multiple waves and variant replacements, demonstrating that further 

simplification by removing exposed classes would not significantly alter the 

outcomes, aligning with prior research findings (Song, Fan, Zhao, et al. 2021).  

Nevertheless, our study had certain limitations. We did not account for 

potentially shortened generation intervals (GI) associated with the Delta and 

Omicron variants, which could result in an overestimation of the relative 

transmission rates. Additionally, the model did not incorporate reinfection 

scenarios, likely leading to an overestimation of transmission rates compared to 

models that do consider reinfection. Our estimated transmission rates therefore 

encompass contributions from shortened GIs and the immune evasion properties 

of the variants. 

Furthermore, while reinfection risks were generally low for most variants 

(e.g., 10% for the Beta variant), cases of reinfection were associated with reduced 

infectivity and severity. Future models incorporating reinfection should account 

for these diminished effects. Our estimated transmission rates reflect conditions 

specific to South Africa and may hold true for other regions with similar infection 

attack rates, but caution should be exercised in extrapolating these findings to 

areas with lower infection rates. 

Overall, our simplified mathematical framework provides a practical 

approach to estimating relative transmission rates across multiple variant strains, 

offering valuable insights for pandemic preparedness and response efforts. 
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Chapter 3  
 

3 Regional Heterogeneity of in-hospital 

Mortality of COVID-19 in Brazil 

 
3.1 Introduction 

 
As reported by The World Health Organization (WHO), the global COVID-

19 pandemic has led to a staggering total of more than 445 million confirmed 

cases and approximately 6 million deaths worldwide. Within the context of this 

global crisis, Brazil, with a population comprising just 2.73% of the world's total, 

has borne a disproportionately heavy burden, accounting for 8.07% of reported 

COVID-19 cases and 11.53% of reported deaths globally. This disparity 

underscores the profound impact of the pandemic on Brazil, highlighting the 

significant challenges faced by the country's healthcare system and population in 

grappling with the virus's devastating consequences. The data underscores the 

urgent need for targeted interventions and support to mitigate the impact of 
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COVID-19 in Brazil and other heavily affected regions around the world. 

('https://www.who.int/emergencies/diseases/novel-coronavirus-2019'  2021) 

Variations in COVID-19 mortality rates across different ethnic groups 

highlight profound social inequalities within societies. Previous research, 

predominantly conducted in developed nations like the United States, United 

Kingdom, and various European countries, consistently identified heightened 

vulnerability among certain ethnic minority groups, such as African Americans 

and Black British individuals, to SARS-CoV-2 infection (Niedzwiedz et al. 2020). 

In the context of Brazil, a vast continental nation encompassing diverse 

ethnicities, deeply ingrained social disparities further compound the impact of 

the pandemic. Brazil's population is categorized into five racial groups according 

to the Brazilian Institute of Geography and Statistics: branco (white), pardo 

(brown or mixed), preto (black), Amarillo (yellow), and caboclo (indigenous). 

Black and Brown Brazilians, considered disadvantaged, often experience lower 

educational attainment, diminished income levels, and restricted access to 

healthcare services compared to their white counterparts (Hone et al. 2017). The 

epidemic has starkly highlighted these disparities, as marginalized groups 

struggle within an inadequate welfare system that fails to provide sufficient 

income support during emergencies and offers limited access to timely 

information (Ahmed et al. 2020). Furthermore, the economic uncertainty 

exacerbated by the pandemic significantly impacts the mental well-being of these 

vulnerable populations, weakening immune resilience and heightening 

susceptibility to various viral infections. Addressing these systemic inequities is 

crucial to promoting health equity and ensuring comprehensive, accessible 
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healthcare for all individuals, irrespective of ethnicity or socioeconomic status 

(Patel et al. 2020). 

In Brazil, the distribution of COVID-19 vaccines encompasses three main 

types: Coronavac (Sinovac), AZD1222 (AstraZeneca), and BNT162b 

(Pfizer/BioNTech). These vaccines have played a critical role in the national 

vaccination effort, aiming to curb the spread of the virus and mitigate its impact 

on public health. During the administration of the initial dose, data indicates that 

Coronavac, AZD1222, and BNT162b vaccines were utilized to vaccinate 

approximately 9.61%, 6.69%, and 0.35% of the Brazilian population, 

respectively. These figures underscore the diverse distribution of vaccine types 

and their respective contributions to the nationwide immunization campaign. For 

the subsequent administration of the second dose, the distribution pattern shows 

that Coronavac, AZD1222, and BNT162b vaccines were responsible for 

vaccinating approximately 7.52%, 0.53%, and less than 0.01% of the Brazilian 

population, respectively. This data highlights the ongoing efforts to ensure 

complete vaccination coverage among eligible individuals, with varying degrees 

of uptake observed across different vaccine types. As Brazil continues its 

vaccination campaign, comprehensive data analysis and strategic distribution 

efforts remain essential to achieving widespread immunity and combating the 

COVID-19 pandemic effectively (Boschiero, Palamim, and Marson 2021)  

Several prior studies have addressed the disproportionate impact of COVID-

19 based on social status and ethnicity in developing nations (Li, Pereira, et al. 

2021), This research extends this discussion by investigating detailed 

epidemiological profiles of patients across diverse ethnic and educational 



 71 

backgrounds in various geographic regions. Additionally, the study explores how 

prevalent comorbidities influence in-hospital mortality rates. Furthermore, this 

paper delves into the effectiveness of vaccines in reducing the Severe Acute 

Respiratory Infections (SARI) fatality ratio across patients with varying 

comorbidities and age groups. Specifically, it compares the efficacy of Sinovac 

and AstraZeneca vaccines in mitigating COVID-19-related mortality outcomes. 

 
 
3.2 Methods 

 
3.2.1 Data Collection 

 
       The patient data utilized in this investigation were sourced from the Influenza 

Epidemiological Surveillance Information System (SIVEP-Gripe) spanning from 

February 27, 2020, to March 15, 2022. Demographic data specific to regions 

were obtained from publicly accessible Census data.  

Included in this study were all hospitalized patients with confirmed 

positive reverse transcription-polymerase chain reaction (RT-PCR) results for 

SARS-CoV-2 and a documented outcome of either discharge or death within this 

timeframe. Each patient's dataset contained 154 attributes encompassing 

demographic details and clinical characteristics, with certain values restricted by 

government regulations. Key variables selected for analysis included age, gender, 
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geographical location (state), ethnicity, vaccination status, presence of 

comorbidities, level of education, and date of hospital admission. 

Comorbidity information was absent in approximately 51.4% of cases 

within the database. In instances where data were unavailable, it was assumed 

that the respective comorbidities were absent. A total of eleven comorbidities 

were considered for analysis, including cardiovascular disease, hematologic 

disorders, liver ailments, neurological conditions, kidney diseases, Down 

syndrome, asthma, diabetes, immunodeficiency disorders, pulmonary disorders, 

and obesity. 

To account for the dominance of different virus variants during specific 

periods, distinct time intervals were designated corresponding to the emergence 

and prevalence of three notable variants subsequent to the original strain. The 

Ancestor strain was considered dominant from March 13, 2020, to November 23, 

2020. This was followed by the Gamma (P.1) variant's dominance from 

November 23, 2020, to August 16, 2021. The Delta (B.1.617.2) variant then 

prevailed from August 16, 2021, to December 6, 2021, with the subsequent 

period from December 16, 2021, onward designated as the Omicron (B.1.1.529) 

variant dominant period. 
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3.2.2 Statistical analysis 

 
In this study, the in-hospital mortality rate as the proportion of deaths after 

hospitalization was selected to be the interest outcome variable. Pearson’s Chi-

squared test was first performed for categorical variables, and one-way analysis 

of variance (ANOVA) was examined for continuous variables. Together with the 

p-value of null hypothesis significance testing, we presented the data showing 

demographic features comorbidities, and ethnic composition of patients in five 

macro regions. 

To assess the influences of ethnicity, comorbidities, and education on an 

individual level, we employed mixed-effects Cox proportional hazards 

regression analysis using the "coxme" package, accounting for geographical 

variations. This analytical approach mirrors studies examining COVID-19 

mortality in intensive care units in the United Kingdom and early-stage mortality 

in Brazil (Qian et al. 2020). Patient-specific clinical characteristics including age, 

gender, ethnicity, education, vaccination status, and comorbidities were treated 

as fixed effects, while region was considered a random effect For categorical 

variables, White Brazilians, unvaccinated individuals, those with a university 

degree or higher education, and individuals under the age of 40 were designated 

as the reference categories for ethnicity, vaccination status, education, and age, 

respectively. Subsequently, hazard ratios with corresponding 95% confidence 
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intervals were visualized using a forest plot to illustrate the impact of these 

factors on mortality risk. 

We proceeded to analyze the in-hospital mortality rates across different age 

groups, focusing on patients with varying features such as comorbidities, ethnic 

backgrounds, and education levels. Education level was defined based on the 

highest grade completed by the patient. Furthermore, we investigated the impact 

of vaccination status on hospitalization outcomes, distinguishing between 

vaccinated and unvaccinated patients. 

In examining vaccine efficacy, we initially compared the Severe Acute 

Respiratory Infections (SARI) fatality ratio among patients with different 

numbers of comorbidities, stratified by vaccination status. The SARI fatality ratio 

was graphically represented by the number of comorbidities per patient. 

Subsequently, we evaluated the SARI fatality ratio across different age groups, 

comparing vaccinated and unvaccinated patients, and plotted the results by age. 

Moreover, to assess the effectiveness of the two predominant vaccines 

(Sinovac and AstraZeneca) among hospitalized patients of varying ages and 

comorbidity profiles, we visualized their respective fatality ratios. This 

comparative analysis aimed to provide insights into the performance of these 

vaccines under different patient demographics and health conditions. 
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3.3  Results 

 
3.3.1 Demographic features of data 

 
We initially presented the demographic characteristics of our dataset 

concerning patients with outcomes of discharge and death. Table 4 illustrates the 

distribution of cases across five age groups, revealing a trend where the 

proportion of deaths increased with advancing age. The prevalence of deaths was 

slightly higher among males (34.6%) compared to females (34.4%), among Black 

and Indigenous Brazilians (39.2% and 38.6%, respectively) compared to other 

ethnic groups, and among unvaccinated patients (34.7%) compared to vaccinated 

patients (33.4%). There was a notable predominance of hospitalized deaths in the 

northeast region, accounting for 42.2% of cases in that area, followed by the 

northern region (37.2%). The mortality rate was approximately 25% lower in 

patients with a university degree (23.4%) compared to illiterate patients (48.4%). 

Nearly all comorbidities examined showed an association with mortality among 

hospitalized patients. 

Subsequently, Table 5 presents the ethnic composition across different 

regions. In most regions, the percentages of hospitalizations and deaths among 

ethnic groups were consistent with their respective population distributions. 

Notably, in the north, northeast, and central-west regions, White individuals 
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exhibited a significantly lower proportion of hospitalizations and deaths 

compared to their representation in the population, whereas Brown individuals 

had higher rates of hospitalizations and deaths relative to their population size. 

However, this relative ratio demonstrated contrasting characteristics in the 

southeast and south regions. 
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Table 4. Explanatory Variables of Cases 

 Death Discharge P-value 
Age   < 0.001 

< 40 years 6550 (13.0%) 43781 (87.0%)  
40 – 49 years 9624 (21.7%) 34669 (78.3%)  
50 – 59 years 16552 (29.9%) 38783 (70.1%)  
60 – 69 years 20641 (41.1%) 29633 (58.9%)  
> 70 years 42457 (54.8%) 35022 (45.2%)  

Gender   0.106 
Female 42227 (34.4%) 80576 (65.6%)  
Male 53597 (34.6%) 101312 (65.4%)  

Region   < 0.001 
North 6316 (37.2%) 10659 (62.8%)  
Northeast 13775 (42.2%) 18901 (57.8%)  
Central-west 9698 (33.6%) 19171 (66.4%)  
Southeast 42724 (35.1%) 78911 (64.9%)  
South 23311 (30.1%) 54246 (69.9%)  

Ethnic Group   < 0.001 
White 55161 (33.2%) 110806 (66.8%)  
Black 4725 (39.2%) 7337 (60.8%)  
Yellow 883 (33.9%) 1722 (66.1%)  
Pardo 34827 (36.1%) 61660 (63.9%)  
Indigenous 228 (38.6%) 363 (61.4%)  

Education Level   < 0.001 
    Illiterate 4613 (48.4%) 4924 (51.6%)  
    Elementary School 16614 (43.8%) 21293 (56.2%)  

Middle School 8722 (34.5%) 16527 (65.5%)  
    High School 10878 (26.8%) 29678 (73.2%)  
    University 4052 (23.4%) 13291 (76.6%)  
Vaccine   < 0.001 

Vaccinated 11645 (33.4%) 23271 (66.6%)  
Unvaccinated 84179 (34.7%) 158617 (65.3%)  

Comorbidities   < 0.001 
Cardiovascular 

Disease 
37783 (45.5%) 45241 (54.5%)  

Hematology 668 (48.2%) 719 (51.8%)  
Down syndrome 361 (42.9%) 480 (57.1%)  
Liver Disease 1044 (56.8%) 794 (43.2%)  
Asthma 1990 (31.8%) 4276 (68.2%)  
Diabetes 27592 (46.7%) 31484 (53.3%)  
Neurological Disease 4966 (54.4%) 4158 (45.6%)  
Pulmonary 4433 (55.0%) 3634 (45.0%)  
Immunodepression 2834 (54.5%) 2366 (45.5%)  
Renal 4858 (60.1%) 3220 (39.9%)  
Obesity 11203 (42.8%) 14964 (57.2%)  
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Table 5. Ethnic Composition in Each Region 

 Population Hospitalization Death 
North    

White 23.2% 1800 (10.6%) 735 (11.6%) 
Black 6.5% 604 (3.6%) 219 (3.5%) 
Yellow 1.1% 185 (1.1%) 69 (1.1%) 
Pardo 67.2% 14127 (83.2%) 5194 (82.2%) 
Indigenous 1.9% 259 (1.5%) 99 (1.6%) 

Northeast    
White 29.2% 4694 (14.4%) 2175 (15.8%) 
Black 9.4% 1521 (4.7%) 683 (4.9%) 
Yellow 1.2% 499 (1.5%) 186 (1.4%) 
Pardo 59.8% 25912 (79.3%) 10705 (77.7%) 
Indigenous 0.4% 50 (0.1%) 26 (0.2%) 

Central-west    
White 41.5% 9031 (31.3%) 2990 (30.8%) 
Black 6.6% 1228 (4.3%) 472 (4.9%) 
Yellow 1.5% 388 (1.3%) 141 (1.5%) 
Pardo 49.4% 18076 (62.6%) 6040 (62.3%) 
Indigenous 0.9% 146 (0.5%) 55 (0.5%) 

Southeast    
White 54.9% 79574 (65.4%) 28150 (65.9%) 
Black 7.8% 6934 (5.7%) 2720 (6.4%) 
Yellow 1.1% 1176 (1.0%) 387 (0.9%) 
Pardo 36% 33896 (27.9%) 11451 (26.8%) 
Indigenous 0.1% 55 (0.0%) 16 (0.0%) 

South    
White 78.3% 70868 (91.4%) 21111 (90.6%) 
Black 4% 1775 (2.3%) 631 (2.7%) 
Yellow 0.7% 357 (0.4%) 100 (0.4%) 
Pardo 16.7% 4476 (5.8%) 1437 (6.2%) 
Indigenous 0.3% 81 (0.1%) 32 (0.1%) 
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3.3.2 Fitted multivariate mixed-effects Cox model 

 

In the analysis conducted using the multivariate mixed-effects Cox model, 

Figure 3.1 displays the estimates of fixed effects, while Figure 3.2 illustrates the 

random effects. Notably, patients aged over 70 years exhibited a significantly 

higher rate of hospital mortality compared to those younger than 40 years (HR: 

2.93, 95% CI: 2.82 – 3.06), highlighting age as a critical risk factor for death. 

Furthermore, patients with lower education levels, particularly illiterate 

individuals, faced a higher risk of mortality (HR: 1.63, 95% CI: 1.56 – 1.70) 

compared to those with a university degree or higher. 

The presence of certain comorbidities also contributed significantly to 

mortality risk, with conditions such as liver disease (HR: 1.46, 95% CI: 1.34 – 

1.59) and immunosuppression (HR: 1.32, 95% CI: 1.26 – 1.40) identified as 

relatively dangerous factors. Moreover, Black Brazilians experienced a higher 

risk of death compared to White Brazilians (HR: 1.07, 95% CI: 1.03 – 1.12), 

underscoring the impact of ethnicity on mortality outcomes. 

Significant variations in hazard ratios were observed across different 

Brazilian states, with states like Sergipe (HR: 1.75, 95% CI: 1.46 – 2.11), 

Roraima (HR: 1.65, 95% CI: 1.43 – 1.92), Maranhão (HR: 1.57, 95% CI: 1.38 – 

1.79), Acre (HR: 1.44, 95% CI: 1.12 – 1.86), and Rondônia (HR: 1.26, 95% CI: 

1.10 – 1.44) in the north and northeast regions exhibiting higher hazard ratios 
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compared to other states. These findings highlight regional disparities in 

mortality risk within Brazil, emphasizing the need for targeted interventions to 

address healthcare inequalities across different geographical areas. 
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3.1 Risk of Death by Clinical Features (Fixed Effects) 
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3.2 Risk of Death by States (Random Effects) 
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3.3.3 In-hospital mortality rate 

 

We begin by presenting visualizations of the fatality ratio by age across 

different dominant variant periods in 27 Brazilian states, providing an overview 

of respiratory hospitalized mortality trends in Brazil. Figure 3.3 illustrates the 

fatality ratio by age during each period of dominant variants across these states. 

In nearly all states, the peak fatality ratio is observed among patients aged 60 to 

70. Furthermore, in most states, the fatality ratio during the initial period of 

different dominant variants was notably higher compared to other periods with 

different COVID strains. This indicates that the mortality rate among respiratory 

inpatients during the dominance of the Gamma (P.1) variant was significantly 

higher than during other strain dominance periods. Conversely, during the second 

and third periods dominated by the Delta (B.1.617.2) and Omicron (B.1.1.529) 

variants, the fatality ratio appears relatively low across all age groups. 

Next, we analyze in-hospital fatality rates by age among patients with 

varying comorbidities, education levels, and ethnic groups. Figure 3.4 depicts 

the variation in in-hospital mortality rates among patients with different numbers 

of comorbidities. Generally, the risk of death for hospitalized patients increases 

with the number of comorbidities, with the most significant risk gap observed 

between no comorbidities and one comorbidity (around 20%), which is larger 
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than the gap between multiple comorbidities (less than 10%). Teenagers with 

three comorbidities exhibited particularly higher mortality rates. 

Figure 3.5 presents how mortality rates vary with age across different 

ethnicities in Brazil. In middle-aged individuals (30 – 60 years old), no 

significant disparities were observed across races. However, among older 

individuals (over 70 years old), as well as infants of Indigenous, Yellow, and 

Black Brazilian descent, there was a higher risk of death. Conversely, Indigenous 

youth (15 – 24 years old) exhibited relatively lower mortality risk. 

In Figure 3.6, we compare in-hospital mortality rates among patients 

with varying levels of education. For patients under the age of 80, higher 

education levels were associated with relatively lower risk of mortality. The 

mortality gap between illiterate individuals and those with some level of 

education was more pronounced than differences based on specific schooling 

lengths. Notably, these gaps peaked around age 18 and gradually decreased 

thereafter, with little variation observed for patients around 80 years old. 
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3.3 SARI-fatality-ratio by age in four periods of different dominant variants in 

Brazilian states 
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Figure 3.3. Visualizing the fatality ratio by age in four periods of different 

dominant variants of the pandemic in 27 Brazilian states. Four different colors 

represent four periods of different dominant variants in Brazil. The black line 

represents the first period—the Ancestor strain, and the red line means the second 

period which is dominated by the Gamma (P.1) variant. The green line represents 

the third period which is the Delta (B.1.617.2) variant-dominated period, and the 

blue line represents the fourth period which is the Omicron (B.1.1.529) variant-

dominated period. 
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Figure 3.4 compares the in-hospital mortality rate for patients with different 

numbers of comorbidities at different ages. The black line shows patients with 

no comorbidities. The red line, the green line, and the blue line represent patients 

with one, two, and three kinds of comorbidities, respectively. 

 

Figure 3.4 compares the in-hospital mortality rate for patients with different 

numbers of comorbidities at different ages. The black line shows patients with 

no comorbidities. The red line, the green line, and the blue line represent patients 

with one, two, and three kinds of comorbidities, respectively. 

 

 

3.4 In-hospital Mortality Rate by Age between Patients with Different Comorbidities 
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Figure 3.5 shows the in-hospital mortality rate for patients of different ages and 

ethnic groups. The black line represents white patients, the red line represents 

black patients, the green line represents yellow patients, the blue line describes 

pardo patients and the purple line represents indigenous patients. 

3.5 In-hospital Mortality Rate by Age between Ethnical Groups 
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3.6 In-hospital Mortality Rate by Age between Patients with Different 

Education Levels 

 

Figure 3.6 compares the in-hospital mortality rate for patients of different ages 

and levels of education.  The black line represents illiterate patients, the red line 

represents patients with only elementary education, the green line represents 

patients with only middle school education, the blue line represents patients 
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whose highest degree was high school, and the purple line represents patients 

who have been to university or college. 

 

3.3.4 Efficacy of vaccines 

 
In the investigation of vaccination efficacy, Figure 3.7 illustrates the 

variation in SARI (Severe Acute Respiratory Infection) fatality ratios between 

vaccinated and unvaccinated patients categorized by the number of comorbidities 

and regional disparities. Regions were grouped based on similar income levels 

and health conditions, highlighting two contrasting areas with the most notable 

differences. Overall, vaccination did not significantly benefit patients with 

comorbidities, with fatality rates remaining higher for the Alpha 2020 and 

Gamma (P.1) variants compared to the Delta (B.1.617.2) and Omicron (B.1.1.529) 

variants. Across these four variants of coronavirus, fatality ratios increased with 

the number of comorbidities, peaking around 5 comorbidities and decreasing 

thereafter. 

In Figure 3.8, the effectiveness of two vaccine types, Sinovac and 

AstraZeneca, was evaluated for hospitalized patients with varying numbers of 

comorbidities across two contrasting regions. During the Gamma (P.1) variant-

dominated period, AstraZeneca generally demonstrated better efficacy in 

preventing deaths among hospitalized patients. However, in the Central-west, 

Southeast, and South regions, Sinovac showed higher protection for patients with 

more than four comorbidities. During the Delta (B.1.617.2) variant-dominated 
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period, both vaccines exhibited similar protective effects for hospitalized patients 

with no more than four comorbidities. For patients with four or more 

comorbidities, Sinovac provided greater protection than AstraZeneca. In the 

Omicron (B.1.1.529) variant-dominated period, AstraZeneca demonstrated 

significantly greater protection than Sinovac in the North and Northeast regions. 

Conversely, Sinovac was more protective in the Central-west, Southeast, and 

South regions, especially for patients with varying numbers of comorbidities. 

Figure 3.9 presents the effectiveness of the two vaccines for patients of 

different ages during different variant periods. Sinovac showed more 

effectiveness in reducing the SARI fatality ratio among patients under 60 during 

the Gamma (P.1) variant transmission. Conversely, AstraZeneca exhibited 

greater protection for patients older than 60. During the Delta (B.1.617.2) variant 

period, AstraZeneca was more effective in reducing SARI fatality ratios for 

children and elderly patients in the Central-west, Southeast, and South regions. 

In the North and Northeast regions, Sinovac provided better protection across all 

age groups. Similar trends were observed during the Omicron (B.1.1.529) variant 

epidemic, with Sinovac demonstrating greater protection in the North and 

Northeast regions and AstraZeneca being more effective for patients aged 40 to 

60 in the Central-west, Southeast, and South regions. 
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3.7 SARI-fatality ratio in vaccinated and unvaccinated patients by the number of 

comorbidities and regional differences. 

 

Figure 3.7 The effectiveness of vaccination is assessed by comparing the SARI 

(Severe Acute Respiratory Infection) fatality ratio in vaccinated and 

unvaccinated patients with varying numbers of comorbidities. Each period 

dominated by a specific variant is represented by a different color. The black line 

corresponds to the Gamma (P.1) variant-dominated period, the red line represents 

the Delta (B.1.617.2) variant-dominated period, and the green line indicates the 

Omicron (B.1.1.529) variant-dominated period. 
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3.8 SINOVAC vs. ASTRAZ by the number of comorbidities 

 

Figure 3.8 The comparison of vaccine effectiveness for patients with varying 

numbers of comorbidities is depicted in the plot. The red line represents 

AstraZeneca, while the black line represents Sinovac. The SARI (Severe Acute 

Respiratory Infection) fatality ratios are shown with a 95% confidence interval 

displayed by the dashed lines. 
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3.9 SINOVAC vs. ASTRAZ by age 

 

 

Figure 3.9 Comparing the effectiveness of two vaccines for patients of different 

ages. The red line represents the AstraZeneca and the black line represents 

Sinovac. The efficacy of two vaccines was compared in three different mutation-

dominated periods in three regions of Brazil.  
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3.4 Discussion and Conclusion 

 
In line with global findings, our study corroborates that mortality rates 

were higher among the elderly (Liu, Chen, et al. 2020), male (Sharma, Volgman, 

and Michos 2020), and individuals with multiple comorbidities (Halpin et al. 

2020). Furthermore, another study published in Nature Medicine analyzed the 

same dataset, focusing on spatiotemporal variations in COVID-19 mortality rates 

within Brazilian hospitals (Brizzi et al. 2022). The authors selected 14 state 

capitals in Brazil during periods dominated by the gamma variant and observed 

fluctuations in COVID-19 in-hospital mortality rates linked to geographic 

disparities and healthcare capacity constraints. Using a Bayesian model, they 

estimated that approximately half of the COVID-19 deaths in hospitals across 

these 14 cities could have been prevented in the absence of geographic 

inequalities and healthcare system strain. Our study differs in that we examined 

trends in geographic disparities of in-hospital mortality across ethnic groups in 

Brazil and employed models to investigate disparities among these groups.    

 Upon analyzing the racial composition and mortality rates across various 

regions, we identified racial disparities in different geographic areas. In 

comparison to the regional population demographics, hospitalizations and deaths 

among Pardo Brazilians were notably higher in the north, northeast, and central-

west regions, whereas those among White Brazilians were more prevalent in the 

southeast and south regions. It is noteworthy that the Pardo population is 

concentrated in the north and northeast regions, whereas the white demographic 
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is predominant in the south and southeast regions. This observation suggests a 

correlation between ethnic concentrations and a higher proportion of death cases 

relative to population size. Additionally, it is observed that White Brazilians tend 

to have more frequent opportunities for international travel. Considering race as 

an indicator of intersecting social networks (Neely and Samura 2011), we 

hypothesize that differential interactions within residential communities may 

partially contribute to the spread of the epidemic. In the investigation of racial 

disparities, a study published in the Journal of Public Health utilized an 

alternative methodology to explore this topic (Peres et al. 2021). The researchers 

employed the same dataset for their analysis, utilizing logistic regression models 

to evaluate the relationship between self-reported race and in-hospital mortality 

while adjusting for clinical characteristics and comorbidities. The median age of 

the cohort was 61 years, with 57% being male, 35% self-identifying as 

black/brown, and 35.4% identifying as white. The overall in-hospital mortality 

rate stood at 37%. Black/brown patients exhibited a higher in-hospital mortality 

rate compared to white patients (42% vs. 37%) and were less frequently admitted 

to intensive care units (ICUs) (32% vs. 36%). This study underscores that among 

hospitalized adults with COVID-19 in Brazil, black/brown patients faced higher 

mortality rates, utilized fewer hospital resources, and experienced higher rates of 

illness compared to their white counterparts. These racial disparities in health 

outcomes and healthcare access underscore the urgent need for implementing 

strategies to mitigate inequities.  

Within the Cox regression model, age emerges as a primary risk factor 

for mortality. Moreover, liver disease stands out as the most significant 
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contributor to in-hospital mortality. Among patients with cirrhosis and SARS-

CoV-2 infection, notably high rates of mortality and hepatic decompensation are 

observed. These outcomes likely stem from immune dysfunction associated with 

cirrhosis (Marjot et al. 2021). This discovery can inform discussions on SARS-

CoV-2 vaccination strategies for Brazilian patients with liver cirrhosis or those 

who have undergone liver transplants. Additionally, obesity has been identified 

as another significant comorbidity associated with heightened risk. Several 

mechanisms collectively contribute to this effect (Popkin et al. 2020). A 

significant concern has been raised regarding the potentially reduced 

effectiveness of vaccines in obese individuals. Analyzing the relationship 

between mortality rates and the number of comorbidities reveals a substantial 

increase in the risk of death when at least one comorbidity is present. 

Black individuals face a heightened risk of mortality compared to White 

individuals. This racial disparity underscores deep-seated social inequalities and 

highlights the challenges faced by minority populations. Many disadvantaged 

groups, including Black and Pardo Brazilians, often work in healthcare and 

nursing roles and reside in environments conducive to infection, leading to 

disproportionate exposure to risk factors. In the immediate term, policymakers 

must take swift action to curb the spread of the virus in these vulnerable areas. A 

paper published in The Lancet Global Health used a similar method (Baqui et al. 

2020). The distinction lies in the approach taken by the authors, who utilized the 

SIVEP-Gripe dataset to conduct cross-sectional research on ethnic and regional 

disparities in COVID-19 hospital mortality rates in Brazil. This cross-sectional 

study had a limited data period spanning a few months, during which the authors 
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examined regional discrepancies in COVID-19 hospital admissions by state and 

across two socioeconomic sub-regions (five in our study). Furthermore, the 

authors visualized the prevalence of comorbidities among survivors and non-

survivors, as well as the distribution of comorbidities across different racial 

groups.      

In our investigation, survival analysis also revealed that the northern and 

northeastern regions exhibited higher hazard ratios compared to other states. The 

northeastern region of Brazil is historically the country's poorest, characterized 

by a blend of export-oriented plantation agriculture and subsistence farming. 

Notably, there are extremely impoverished areas within the northern and 

northeastern regions. Economic disparities are evident among rural households, 

particularly in the western Amazon, where the rural poverty rate is notably high. 

This economic context exposes these populations to various social challenges, 

including limited access to water and inadequate internet connectivity, which 

may impede their ability to access information about preventive measures against 

the virus (de León-Martínez et al. 2020). Moreover, climate plays a crucial role 

in shaping the impact of COVID-19. In tropical regions, favorable climatic 

conditions can potentially facilitate the spread of the outbreak. The unique rainy 

season, affecting humidity levels, is likely contributing to the higher mortality 

rates observed. This scenario may be particularly relevant in areas such as 

Amazonas (AM), Maranhão (MA), and Ceará (CE) located in the north and 

northeast regions of Brazil. Conversely, increased hours of solar radiation in 

relatively drier and sunnier conditions can help mitigate the spread of COVID-

19 (Martins et al. 2020). 
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Education emerged as a significant risk factor for mortality in our study. 

Our findings highlight a positive correlation between higher education levels and 

a relatively lower risk of mortality. Individuals with lower levels of education are 

more susceptible to unemployment issues, and during the COVID-19 pandemic, 

job loss can be particularly distressing for them. Workers with a high school 

education or less constitute a disproportionately larger portion of the unemployed 

population compared to the overall working-age demographic (Daly, Buckman, 

and Seitelman 2020). The labor market inequality has been exacerbated by the 

crisis, highlighting unequal access to education as another critical issue. 

Education level has also been identified as a risk factor in scientific literature 

(Baqui et al. 2021). Unlike the multivariate mixed-effects Cox model approach, 

the authors of a scientific report utilized machine learning prediction algorithms 

to unravel the complex interdependencies among various indicators. The 

predictive task was framed as a binary classification problem, where '0' denoted 

death and '1' represented recovery. The analysis leveraged the XGBoost (XGB) 

algorithm, alongside logistic regression, K-nearest neighbor, neural network, 

random forest, and support vector machine algorithms. The study revealed that 

socioeconomic, geographic, and structural factors outweighed individual 

comorbidities in influencing outcomes in Brazil. Key factors of significance 

included housing conditions and development indicators, proximity to hospitals 

(especially in rural or less developed areas), education levels, and the hospital 

financing model and pressures.  
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In a study focusing on vaccine effectiveness, a publication in Lancet 

Regional Health explored the impact of age on the efficacy and longevity of 

vaccine protection against Vaxzevria and CoronaVac (Cerqueira-Silva et al. 

2022). The researchers utilized data not only from SIVEP-Gripe but also e-SUS-

Notifica to evaluate vaccine effectiveness using a negative binomial regression 

model, adjusting for sociodemographic factors. Their findings, akin to our study, 

demonstrated high vaccine effectiveness (VE) against mortality, with rates of 

92.3% for Vaxzevria. They also explored VE against hospitalization and ICU 

admission, showing rates of 91.4% and 91.1% for Vaxzevria, respectively. For 

CoronaVac, VE rates against these outcomes were 71.2%, 72.2%, and 73.7%, 

respectively. VE across all outcomes exhibited a gradual decline with increasing 

age. 

In our investigation, we observed that vaccines did not provide significant 

protection for hospitalized patients with various comorbidities. The SARI fatality 

ratio increased with the number of comorbidities, peaking at approximately 5 

comorbidities. Comparing Sinovac and AstraZeneca vaccines, AstraZeneca 

demonstrated greater efficacy than Sinovac in preventing deaths during the 

Gamma (P.1) variant-dominated period. During the Delta (B.1.617.2) variant 

period, Sinovac showed superior protection over AstraZeneca for patients with 4 

or more comorbidities. In the Omicron (B.1.1.529) variant period, AstraZeneca 

was more protective than Sinovac in the North and Northeast regions, while 

Sinovac was more effective in the Central-west, Southeast, and South regions for 

patients with varying comorbidities. 
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It's important to note that our analysis was confined to hospitalized 

patients, and out-of-hospital mortality data were not considered. There could be 

limitations due to case determination and potential bias from missing information, 

including delayed hospitalization due to insufficient data. Inequalities in 

healthcare access may have exacerbated these disparities. Moreover, our study 

did not account for reinfection, and variant misclassification bias may have 

occurred due to limited patient sequencing. 
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Chapter 4  
 

4 Conclusion and Future Work 

 
Our study delved into the notable reduction in the infection fatality rate 

(IFR) associated with the Omicron (B.1.1.529) variant compared to previous 

SARS-CoV-2 variants in South Africa. This investigation commenced shortly 

after the emergence of the Omicron variants, with South Africa being one of the 

first regions impacted by this novel strain. Prior studies had already highlighted 

the Omicron variant's heightened immune evasion ability and transmissibility, 

along with reduced severity. In our research, we developed a sophisticated 

mathematical model incorporating time-varying transmission rates, vaccination 

parameters, and immune evasion dynamics. By fitting this model to case and 

death data up to February 6, 2022, we estimated the transmissibility and infection 

fatality ratio (IFR) specific to the Omicron variant in South Africa. Our findings 

revealed a substantial decrease of approximately 78.7% (95% confidence interval: 

66.9% to 85.0%) in the infection fatality rate of the Omicron variant compared 

to its predecessors, highlighting its lower severity despite heightened 

transmissibility. Thus, our data-driven mathematical modeling provides evidence 

that the Omicron variant exhibits high transmissibility coupled with significantly 

reduced infection fatality rates relative to earlier SARS-CoV-2 variants. 
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In another line of inquiry, we investigated the transmissibility dynamics 

of all COVID-19 variants circulating in South Africa during the pandemic. South 

Africa experienced multiple waves of mortality attributed to COVID-19, with 

three distinct genetic variants of SARS-CoV-2 and their ancestral strain 

dominating consecutively. Employing an advanced mathematical modeling 

approach, we estimated the time-varying transmissibility of SARS-CoV-2, 

specifically examining the relative transmissibility of the Beta, Delta, and 

Omicron variants. Our analysis revealed substantial increases in transmissibility 

for these variants, ranging from 73% to 276% higher than their respective 

predecessors. To our knowledge, our modeling framework represents the first to 

simulate multiple mortality waves and the replacement dynamics of three 

variants in South Africa, underscoring the heightened transmissibility of the 

Omicron variant compared to earlier strains. 

Additionally, we explored the regional heterogeneity of in-hospital 

mortality associated with COVID-19 in Brazil. By fitting a multivariate mixed-

effect Cox model to a comprehensive national database of COVID-19 inpatients 

from February 27, 2020, to March 15, 2022, we discerned critical insights into 

mortality risks among vaccinated and unvaccinated individuals, accounting for 

age, ethnicity, education, and comorbidities. Our analysis identified age as the 

most significant risk factor for death, with notable disparities observed across 

education levels and geographical regions. In terms of vaccine efficacy, our study 

highlighted varied protective effects across different vaccine types and regions, 

emphasizing the intricate interplay between vaccination strategies, social 

inequality, and regional health outcomes. This investigation underscores the 
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multifaceted nature of COVID-19 mortality and vaccination dynamics in Brazil, 

shedding light on critical factors contributing to the pandemic's impact on diverse 

populations. 

As a researcher in mathematical epidemiology field, I believe that preventing the 

next pandemic should focus on several key scientific approaches: 

1. Early Detection and Monitoring: Utilize mathematical models and big 

data to establish early warning systems. By monitoring real-time data like 

infection rates and geographic spread, potential outbreaks can be 

identified early, enabling swift intervention. 

2. Transmission Dynamics Modeling: Understanding disease spread 

through dynamic models helps predict outbreak trends, evaluate the 

effectiveness of control measures, and guide decision-making on 

strategies like social distancing and vaccination. 

3. Optimized Vaccine and Drug Allocation: Mathematical optimization 

can determine the most effective distribution of limited vaccines and 

treatments, especially in resource-constrained situations, to maximize 

their impact in controlling the outbreak. 

4. Modeling Public Behavior and Social Response: The spread of a 

pandemic is influenced by public behavior and societal reactions. 

Modeling these factors can lead to more accurate predictions and targeted 

interventions. 

5. International Cooperation and Data Sharing: Global collaboration 

and data sharing are crucial. A worldwide data-sharing platform can 

enhance global early warning and response capabilities. 
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6. Continuous Model Updating and Simulation: Regular updates to 

models and data, along with scenario simulations, can prepare 

policymakers to respond effectively to emerging threats. 

In summary, mathematical modeling and data analysis are essential for predicting, 

preventing, and responding to future pandemics, requiring close cooperation 

between scientists, governments, public health institutions, and the public. 

In Appendix part, we observed that the dominance of the Alpha variant 

was relatively short-lived, lasting only 3 to 4 months, before being swiftly 

supplanted by the Delta variant in a synchronized manner across numerous 

countries and regions. The Delta variant initially surfaced in India and 

neighboring areas before spreading to other parts of the world. In contrast, the 

Alpha variants, originating in the UK, followed a similar trajectory of regional 

expansion before becoming globally prevalent. Our visual analysis highlights a 

remarkable simultaneous replacement of the Alpha variant by the Delta variant 

in multiple countries and regions. This synchronized substitution contrasts with 

the earlier replacement of the Alpha variant for the wild strain, which did not 

exhibit such uniformity. The higher transmissibility of the Delta variant likely 

contributed to this distinct pattern of viral dissemination during the ongoing 

COVID-19 pandemic. In addition, we did some preliminary work in MDR-TB 

field, we hope that the modern machine learning technics based on big data can 

really predict the MDR-TB and benefit to patients. 

For future work, here are some potential methodological improvements for SEIR 

(Susceptible-Exposed-Infectious-Recovered) infectious disease models: 
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1. Parameter Estimation Methods: 

o Enhanced Parameter Estimation: Use advanced statistical 

methods, such as Bayesian inference or machine learning 

techniques, to more accurately estimate model parameters. 

o Data Integration: Combine data from various sources (e.g., 

clinical data, demographic data, mobility data) to improve the 

accuracy of parameter estimation. 

2. Model Structure Extensions: 

o Introduce Additional States: For example, incorporate an 

“isolation” state (SEIQRD model) to better simulate real-world 

scenarios. 

3. Individual Heterogeneity: 

o Individual Differences: Incorporate individual heterogeneity, 

such as variations in age groups, social behavior, and health status, 

to enhance the model's adaptability and accuracy. 

o Population Structure: Consider the impact of social networks or 

group structures, such as households, schools, and workplaces, on 

transmission patterns. 

4. Model Validation and Calibration: 

o Model Validation: Validate the model using multiple data sources 

and actual observations to ensure its accuracy and reliability. 

o Calibration and Sensitivity Analysis: Conduct systematic model 

calibration and sensitivity analysis to identify the impact of key 

parameters on the results. 

5. Uncertainty Analysis: 
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o Incorporate Uncertainty: Perform uncertainty analysis, such as 

Monte Carlo simulations, to assess the robustness and uncertainty 

of model predictions. 

o Risk Assessment: Evaluate potential extreme scenarios to inform 

emergency response strategies. 

6. Computational Efficiency: 

o Improve Computational Methods: Use more efficient 

computational methods or optimization algorithms to reduce 

model run time and computational cost. 

o Parallel Computing: Apply parallel computing techniques to 

handle large-scale datasets and complex models. 

These methodological improvements can make SEIR models more realistic, 

accurate, and adaptable, thereby better supporting infectious disease research and 

public health decision-making. 
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5 Appendices 

 

5.1  Large-scale synchronized replacement of 

Alpha (B.1.1.7) variant by the Delta (B.1.617.2) 

variant of SARS-COV-2 in the COVID-19 

pandemic  

5.1.1  Introduction  

 
The global public health landscape has been profoundly impacted by the 

coronavirus disease 2019 (COVID-19), stemming from the severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2). By February 2021, over 100 

million individuals had received a diagnosis of SARS-CoV-2 infection, with the 

disease responsible for over 2 million deaths globally (Wang et al. 2021). The 

virus underwent rapid evolution, leading to the emergence of several variants. By 

March 2021, the Alpha (B.1.1.7) variant had begun spreading in Cambodia and 

Thailand. In certain clusters within Thailand, the positivity rate for SARS-CoV-

2 testing reached as high as 60%-90% (Chookajorn et al. 2021). According to 

(Vassallo et al. 2021), in addition to its higher transmissibility compared to the 

previous wild strain, individuals infected with the Alpha (B.1.1.7) variant faced 
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an elevated risk of hospitalization relative to those infected with the earlier wild 

strain, underscoring the heightened virulence of the Alpha (B.1.1.7) variant. 

 

Simultaneously, the emergence of the Gamma (B.1.617.1) and Delta 

(B.1.617.2) variants in Maharashtra, India led to a resurgence of cases across the 

country. Unlike the Alpha (B.1.1.7) variant, the Delta (B.1.617.2) lineage is 

characterized by eight non-synonymous mutations in the S protein. The Delta 

(B.1.617.2) variant, now widespread in over 200 countries/regions, has been 

designated as a variant of concern by the CDC (Farinholt et al. 2021). In addition 

to its heightened transmissibility compared to the Alpha (B.1.1.7) variant, 

individuals infected with the Delta (B.1.617.2) variant were more than twice as 

likely to require hospitalization compared to those with the Alpha (B.1.1.7) 

variant (Liu, Gayle, et al. 2020).  

If a virus's genetic code, or genome, undergoes one or more mutations 

from its original version, it is classified as a variant. Samples collected from 

patients are sequenced using next-generation sequencing techniques to identify 

these variants. Comparing the Alpha (B.1.1.7) and Delta (B.1.617.2) variants, the 

Alpha (B.1.1.7) variant has 19 non-synonymous mutations, including 8 

mutations affecting spike proteins. According to Liu et al., their research 

demonstrated that only the N501Y mutation consistently resulted in increased 

fitness in experimental models. This mutation, in combination with the eight 

other Alpha spike mutations, is thought to be the primary driver of enhanced viral 

transmission observed in the Alpha (B.1.1.7) variant (Liu et al. 2021).  The Delta 

(B.1.617.2) variant exhibits 23 mutations compared to the Alpha (B.1.1.7) strain, 
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with notable changes in the spike protein believed to contribute to Delta's 

(B.1.617.2) transmission advantage. Among these mutations are T19R, L452R, 

T478K, D614G, P681R, and D960N, along with deletions at sites 157 and 158. 

The most significant spike protein mutations in Delta (B.1.617.2) include L452R 

and P681R. The L452R mutation replaces leucine at position 452 with arginine, 

enhancing spike protein affinity for ACE2 receptors and potentially affecting 

antibody binding that evades vaccine-induced immunity (Mor et al. 2021). The 

mutation P681R, which replaces proline at position 681 with arginine, enhances 

the virus's ability to integrate into host cells compared to variants lacking this 

mutation (Shiehzadegan et al. 2021). 

Beginning in June 2020, India initiated 11 phases of unlocking, with the 

11th phase announced at the end of March 2021 and set to remain in effect until 

April 30, 2021. However, starting in mid-April 2021, India experienced a severe 

surge in the pandemic. By May 10, 2021, more than 388,000 people had been 

affected (Ghosh et al. 2021). And according to another report by (Shrivastava et 

al. 2021), distinctive mutations associated with the Delta (B.1.617.2) variant were 

detected in sequences collected from India in April and May 2021, leading to its 

emergence as the predominant transmission variant in India during May and June 

2021. 
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5.1.2 Method and result 

 
In this work, we visualize the replacement of the previous strain with the 

Alpha (B.1.1.7) variant and the replacement of the Alpha (B.1.1.7) variant with 

Delta (B.1.617.2) variants globally. We find that the Alpha (B.1.1.7) variant only 

dominated for a short period of 3-4 months and the replacement of Alpha (B.1.1.7) 

with Delta (B.1.617.2) shows a surprisingly synchronous pattern in a large 

number of countries/regions.  

Proportions of the different variants of concern confirmed over time 

(https://ourworldindata.org) We downloaded biweekly aggregated variant 

proportion data from "The Our World in Data" which obtained their data 

originally from GISAID Initiative(Khare et al. 2021; Elbe and Buckland-Merrett 

2017; Shu and McCauley 2017a) 

 

 

 

https://ourworldindata.org/
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5.1 Timing of the confirmations of Delta (B.1.617.2) variant exceeding Alpha 

(B.1.1.7) variant. 

The first time that the proportion of B.1.617.2 (Delta variant) > the 

proportion of B.1.1.7 (Alpha variant), denoted as T>→@ in 71 countries/regions, 

versus timing of the confirmations of Alpha (B.1.1.7) variant exceeding the 

previous strain TA→B . (a) countries/regions are ordered from left to right 

according to T>→@. (b) countries/regions are ordered from left to right according 

to TC→>.   
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From Figure 5.1, we can see that the Delta (B.1.617.2) variant was first 

found in India and spread first in neighboring countries/regions, gradually to 

other countries/regions. Alpha (B.1.1.7) variant was first found in the United 

Kingdom and spread first in neighboring countries/regions, gradually to the rest 

of the world. T>→@  (Black circle) has a surprising synchrony pattern across a 

large number of countries/regions (ie, a horizontal line across a large number of 

countries/regions in July 2021). This synchrony pattern is less evident in the 

TC→> (red squares). In other words, the timing of the Delta (B.1.617.2) variant 

replacing the Alpha (B.1.1.7) variant occurred simultaneously in many 

countries/regions. In contrast, the timing of the Alpha (B.1.1.7) variant replacing 

the previous wild strain did not show a strong synchronous substitution trend. 

This could be related to a higher transmissibility of Delta (B.1.617.2) variant 

compared to other previous strains. Delta (B.1.617.2) variant also possesses a 

shortened incubation period and increased viral load. In particular, the viral load 

is about 1000 times higher in patients who were infected with the Delta 

(B.1.617.2) variant than patients who were infected with the original strain. The 

first detectable time for the Delta (B.1.617.2) variant is 4 days after infection 

which is longer than the average detectable time of the original strain (6 days) 

(Reardon 2021) 

Also, the invasion time of the Delta (B.1.617.2) variant happened at the 

tail of the wave of Alpha (B.1.1.7) variant and coincided with a relaxation of 

social distancing in many countries (see Figure 5.2).   
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5.2 The population standardized daily reported COVID-19 deaths 

 

This figure report the population standardized daily reported COVID-19 

deaths in these countries/regions listed. The countries/regions skipped by the 

Alpha (B.1.1.7) variant (e.g., India) had a mild 2020 year. The synchronized 

eD→E  coincided by a trough of deaths in European countries. Here we show 

population standardized daily data (daily reported COVID-19 per 1 million 

population). A bright band (low deaths) can be seen in June-July 2021 when Delta 

(B.1.617.2) invaded. Data are obtained from https://covid19.who.int/info/. 

 

 

India
Sri Lanka
Turkey
South Africa
Bahrain
Australia
Qatar
Bangladesh
Singapore
Viet Nam
Nepal
The United Kingdom
Ghana
Kenya
Portugal
Zambia
Israel
Aruba
Oman
Uganda
Austria
Finland
France
Luxembourg
Croatia
Germany
Iceland
United States of America
Thailand
Brazil
Kuwait
Rwanda
Ireland
Nigeria
Slovakia
Bulgaria
Czechia
Greece
Italy
Lebanon
Romania
Belgium
Denmark
Netherlands
Norway
Poland
Sweden
Switzerland
Estonia
Spain
Canada
Gambia
Latvia
Lithuania
Pakistan
Slovenia
Ukraine
Malta
Costa Rica
Argentina
Chile
Japan
Montenegro
Cambodia
Suriname
Kazakhstan
Jordan

Mar/
20

May
/20

Ju
l/2

0

Sep
/20

Nov
/20

Ja
n/2

1

Mar/
21

May
/21

Ju
l/2

1

Sep
/21

1

10

100

1000

10000

1e+05



 115 

 

 
5.1.3 Conclusion and Discussion 

 
The dominance time of the Alpha (B.1.1.7) variant is between TC→>, 

and T>→@.  In South and Southeast Asia, e.g. India, the Alpha (B.1.1.7) variant 

failed to dominate, which could be associated with a mild first wave (with low 

deaths per capita in India in 2020).  

In Scotland, BNT162b2 and AstraZeneca vaccines were 79% and 60% effective 

at preventing SARS-COV-2 Delta (B.1.617.2) variant infection after two doses, 

respectively. However, the Pfizer-Biontech and AstraZeneca vaccines maintain 

a high degree of protection against any infection similar to the Alpha (B.1.1.7) 

variant (Cevik et al. 2021).  

In summary, we reported a large-scale synchronized replacement of the 

Alpha (B.1.1.7) variant by the Delta (B.1.617.2) variant which could be due to 

the invasion timing of Delta (B.1.617.2) variant and its relatively high 

transmissibility. Also, we note that these countries/regions in South and 

Southeast Asia experienced a mild 2020 year that was largely skipped by the 

Alpha (B.1.1.7) variant.  Modeling simulation can be done using a model 

framework similar to those in previous works(Rohani, Earn, and Grenfell 1999; 

Rohani et al. 2003). 
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5.2  Preliminary work about MDR-TB 

 
For future research work, Tuberculosis (TB) -related work especially the 

multidrug-resistant tuberculosis (MDR-TB). Tuberculosis is a bacterial disease 

that infects about one-third of the population worldwide. About 10% of those 

infected will develop active TB disease. The incubation period of TB ranges from 

a few months to decades, and the treatment period is approximately 6-9 

months(Liu and Sun 2010). Tuberculosis remains one of the leading causes of 

morbidity and mortality worldwide. According to WHO ('World Health 

Organization. Global Tuberculosis Report'  2021), in 2020 an estimated 10 

million people became infected with TB and 1.5 million died from TB, which is 

equivalent to 4100 deaths per day.  

As TB is gradually brought under control with the incidence falling at 

about 2% per year globally, the spread of multidrug-resistant tuberculosis (MDR-

TB, i.e. tuberculosis with resistance to isoniazid and rifampicin that does not 

respond to treatment or for which treatment is discontinued because of side 

effects) has a negative impact on TB control worldwide(Gandhi et al. 2010). The 

more severe format of MDR-TB is extensively drug-resistant tuberculosis (XDR-

TB). XDR- TB is defined as resistance to isoniazid, rifampicin, any 

fluoroquinolone and at least one injectable drugs (capreomycin, kanamycin and 

amikacin) (Migliori et al. 2007; Velayati et al. 2009; Gandhi et al. 2010). The 

emergence of drug resistance is a major threat to TB control because it raises the 

prospect of returning the disease to a time when there was no cure (Raviglione 

2006). The emergence of drug resistance in TB patients is due to spontaneous 
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mutations in the M tuberculosis genome that occur at a predictable rate (David 

1970; Supply et al. 2003). And through artificial drug selection, these resistant 

bacteria gradually become the dominant strain, so to some extent, drug-resistant 

TB can also be considered as man-made event(Kaplan et al. 2003; Post et al. 

2004).  Drug resistance is a growing threat to world public health, in 2017, MDR-

TB already killed 14% of tuberculosis patients all over the world (O'Neill 2016).  

Early studies explored mechanism of drug-resistance TB (Seung et al. 2004) 

(Borrell and Gagneux 2009).Antibiotic resistance first occurs when drug-

sensitive TB patients receive inadequate or inappropriate treatment. Once drug-

resistant bacteria are present in infected patients, it is possible that these bacteria 

can spread the resistant bacteria to others through respiratory modes of 

transmission, such as droplet transmission. And there is evidence that appear in 

the selection of resistant bacteria which is easy to spread. However, due to the 

complexity of the anti-drug mechanism of TB, no consensus is reached yet.  

Mathematical modelling is a very important tool to study disease epidemics. For 

the prediction of MDR-TB, machine learning model is an effective method for 

early identification and detection of MDR-TB. A variety of machine learning 

models have been used to predict multidrug-resistant TB and feature 

selection(Ali et al. 2021; Evora, Seixas, and Kritski 2017; Chen et al. 2018; Solari 

et al. 2008).  

In Pakistan, Mian et al (Ali et al. 2021) focused on the machine learning 

feature selection algorithm in order to identify the multidrug-resistant 

tuberculosis. They exploited decision tree, random forest, k-nearest neighbors, 

support vector machine (SVM), logistic regression, least absolute shrinkage and 

selection operator (LASSO), and artificial neural networks (ANNs) to analyze a 
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case-control dataset. The study demonstrated that close contact with MDR-TB 

patients, tobacco using, previous tuberculosis history, depression and improper 

treatment and the interruption of treatment may contribute to the MDR-TB, and 

SVM and Random Forest are the models with best performance to classify 

patients in this case.  

Évora et al (Evora, Seixas, and Kritski 2017) used machine learning 

methods to identify MDR-TB patients in Rio de Janeiro. Their data included 

clinical and demographic information. They used classification and regression 

trees as well as artificial neural networks to classified the MDR-TB patients, 

where the ANN algorithm achieved ideal accuracy and concluded that history of 

tuberculosis, close exposure to drug-resistant tuberculosis, high temperature, 

smoking, and hemoptysis were important factors.   

Chen and Michael (Chen et al. 2018) obtained data of over 3000 

tuberculosis patients, of which 1228 were MDR-TB cases. They attempted to 

predict drug-resistance tuberculosis by machine learning algorithms including 

random forest, logistic regression, and deep neural network (DNN). The 

performance of the three models were compared by determining the specificity, 

sensitivity and accuracy. The random forest demonstrated better performance 

than others with specificity of 92.7%, sensitivity of 93.7% and accuracy of 97.9%. 

The bloody cough, close contact with drug-resistant patients, history of 

tuberculosis, drug and alcohol abuse, poor medication management and high 

temperature were significant predictors.  

This research will use the data from Shandong which includes the 

patient's own living habits, age, gender, medical condition and other variables to 

fit different machine learning models, e.g. decision tree, random forest, logistic 
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regression, support vector machine, to classify the MDR-TB patients and do the 

feature selection to obtain the important factors that may cause the emergence 

and transmission of MDR-TB. The best machine learning model for predicting 

MDR-TB cases in the future will be selected by parameter adjustment.  

In the preliminary work, we utilized drug-susceptibility data in 2021 from 

Shandong province to do the exploratory analysis, including the age distribution 

of TB patients by gender, the proportions of TB cases with resistance to some 

common drugs and drug sensitivity tests.  Further, for drugs with a higher 

proportion of reported resistance, the age distribution of drug-resistant cases by 

gender were analysed. By exploring the 2021 data, we envision that for the future 

research, we may have to quantify the heterogeneities of tuberculosis and 

multidrug-resistant tuberculosis incidence by gender, age group, resident status, 

occupation and other features, to predict the future trend of multidrug-resistant 

tuberculosis. 

 

 

5.3 Drug sensitivity test of some common tuberculosis drugs 
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. 

The red color represents patients with drug sensitivity, the blue color represents 

patients with drug resistance, the grey one represents missing values. 

Figure 5.3 demonstrates drug sensitivity test results and the proportion 

of sensitive and resistance are shown. Due to the variety of drugs used by 

different patients, there are significant proportion of missing values in the drug 

sensitivity test results. By checking the commonly used tuberculosis drugs, about 

18% and 11% of the tuberculosis patients resistant to the two most common TB 

drugs Isoniazid (INH) and Rifampicin (RFP) respectively.  

 

5.4 Case densities and age distributions of TB cases by male and female with 

resistance to different drugs. 
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The red solid line represents density of female patients, and the green dashed-

and-dotted line represents density of male patients. 

Figure 5.4 shows the case densities and age distributions of TB cases by 

male and female with resistance to different drugs. Six drugs with higher 

proportion of reported resistance were selected. For each drug, the ages of the 

cases were grouped into four, i.e., <18, 18-35, 36-60 and 60+. For Isoniazid 

(INH), to which 18.1% of the cases were resistant, in both female and male, over 

40% were in age group 36-60. In general, most patients with drug resistance were 

under 60 years old. And the proportion of elderly patients with drug resistance 

was not high, except for Streptomycin (SM), to which 36% of female patients 

aged 60 and above were resistant. 
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