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Abstract 

 

Bayesian inference is an effective statistical inference method, which could deal 

with some uncertain problems and update our beliefs about unknown parameters with 

the integration of new evidence. However, one disadvantage of Bayesian statistics is 

that the Bayesian formula is more complex than the frequentist parameter estimation, 

thus it has become an appealing issue that how to choose an appropriate prior 

distribution to make Bayesian statistics easier to calculate for specific data. The primary 

objective of the thesis is to explore the performance of Bayesian inference for different 

data types in the aspect of epidemiology in three parts. As the representatives of 

Bayesian inference methods, Markov chains Monte Carlo and integrated nested 

Laplace approximation are explored for different types of data to focus on some 

practical issues in epidemiology: 1.) access the common features and variations of 

infectiousness of infectious disease in different contact settings; 2.) evaluate the effect 

of immigration on chronic disease mortality in the past and future along with the effects 

of age, period and cohort; 3.) due to their merits and weaknesses, evaluate the 

performance of Markov chains Monte Carlo and integrated nested Laplace 

approximation to determine preferred simulation methodology for different types of 

data in epidemiology. 

The principle and application of one Bayesian inference method—Markov chain 

Monte Carlo (MCMC) with datasets of COVID-19 were emphasized to explore the 

estimated reproductive numbers and dispersion parameters, in order to 1) access the 

common features and variations of infectiousness in different settings, and 2) examine 

if there exist significant variation among individuals to investigate the association 

between community spread and superspreading events. MCMC performs satisfactory 

convergence and estimation as iterations increase for the short-term dataset of 

infectious disease.  

Methodology of Bayesian inference on the long-term and large sample-sized data 
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of chronic disease was perform in this chapter. The mortality rates of lung, pancreatic, 

colon, liver, prostate and stomach cancers between locally born residents in Hong Kong 

and immigrants from mainland China were assessed, and we adopted a MCMC-free 

Bayesian age-period-cohort (APC) model based on integrated nested Laplace 

approximation (INLA) to explore the projection of mortality rates for the locally born 

population and immigrants in Hong Kong, taking into account age, period, and birth 

cohort effects as well. Compared to MCMC, INLA indicate higher computational 

efficiency, accuracy and flexibility for long-term data of chronic disease. 

With similar data of chronic disease, some criteria, such as Continuous Ranked 

Probability Score (CRPS) and a calibration test were applied to evaluate the 

performance of retrospective projections based on MCMC and INLA. Two methods 

expound approximately significant performance on retrospective projections, and the 

projections based on INLA indicate less dispersion with observations than those based 

on MCMC in most of immigrations groups. Some circumstances, such as prostate 

cancer and stomach cancer, against the conclusion result from lack of data since INLA 

requires large sample size. The findings underscore the significance for targeted 

interventions and strict control measures for vulnerable populations to curb the spread 

of infectious diseases effectively, and we could reach to equal opportunities of optimal 

healthcare of cancers and other chronic diseases for every individual regardless of 

culture or background. Furthermore, the research demonstrates that the findings and 

conclusions can be also applied to other countries and regions with similar methods.  

 

 



1 

 

1. Introduction 

1.1 Background 

 

Bayesian inference is a statistical inference method, combining subjective 

judgment with extensive calculations. It can effectively deal with some uncertain 

problems and update our beliefs about unknown parameters with the integration of new 

evidence. When we consider the potential of application of Bayesian statistics, different 

people will give different answers to a direct question that how to choose the prior 

distribution. However, one disadvantage of Bayesian statistics is that the Bayesian 

formula is more complex than the frequentist parameter estimation [1][2][3], thus it has 

become an appealing issue that how to choose an appropriate prior distribution to make 

Bayesian statistics easier to calculate.  

Why is Bayesian statistics difficult to calculate? One of the most straightforward 

difficulties is that it is tough for us to ensure that the posterior distribution can be 

analytically solved [4]. When the posterior distribution can be analytically solved, it 

means that the density function of “the posterior distribution has an analytical solution”. 

Another question is why posterior distribution sometimes doesn’t have an analytical 

solution. It obviously does not necessarily have an analytical solution when the 

denominator of the specific Bayesian formula is an integral [5]. It means that the 

denominator with no analytical solution can be necessarily equivalent to the posterior 

distribution with no analytical solution, and the integral of this denominator with 

analytical solution is attainable as long as a suitable model and prior distribution can be 

selected. However, Bayesian statistics is an iterative process of continuously collecting 

data and updating parameter distributions. During the update process using Bayesian to 

calculate the posterior distribution, the last iteration will be set as the prior distribution 

of the new iteration each time [6][7]. Therefore, in order to ensure that the posterior 

distribution of each iteration can obtain an analytical solution, the same parameterized 

distribution family of the prior distribution and the posterior distribution could be 
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required, that is, ensure that the forms of prior distribution and posterior.  

    How to calculate the parameters of the generalized linear models with and without 

mixed effects models is another challenge, which has always been the focus of research. 

The random effects in the model are associated with spatial locations, and the number 

and specific coordinates of spatial locations directly affect the dimension of the spatial 

effects [8]. Furthermore, it is an essential challenge of computation as both Bayesian 

estimation and maximum likelihood estimation of parameters are inseparable from 

high-dimensional integration of spatial effects. Under the Bayesian method, the 

Metropolis program of random walks was proposed to implement Markov chain Monte 

Carlo (MCMC) algorithm to obtain the posterior density distribution and posterior 

quantity of the estimated parameters and values [9]. Additionally, Langevin-Hastings 

algorithm achieved better computational efficiency than the random walk Metropolis 

algorithm [10][11]. A subsequent robust version was developed by Christensen is given. 

In actual operation, the main problems faced by the Markov Chain Monte Carlo 

algorithm are convergence diagnosis and calculation time [12]. Of course, the algorithm 

implementation itself is also very important. For end users, most of them may not be 

good at it programming, so there may be problems in the algorithm implementation 

process. Therefore, it is also important to seek a good Bayesian inference tool or 

platform. Currently, models with random effects fitted through MCMC include 

software such as WinBUGS, OpenBUGS, JAGS, BayesX, MultiBUGS, and Stan 

[13][14][15][16]. In recent years, some researchers have begun to pay attention to the 

approximation of high-dimensional integrals, leading to the emergence of a new types 

of approximate Bayesian inference in Gaussian Malar under the setting of random field 

approximation of stationary spatial Gaussian process [17]. Laplacian is used to 

approximate the high-dimensional integral of spatial effects, thus proposing an 

integrated nested Laplacian algorithm, Lindgren et al. proposed a similar algorithm for 

parameter estimation of the SGLMM model when the random effect is a skewed 

distribution[18]. It was affirmed the use of the Laplace approximation method and 

believed that this type of approximation has sufficient accuracy and can be used for 
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actual data analysis.  

Although it is computationally fast in some aspects, the most severe weakness of 

the Bayesian method is that it relies on the choices of prior distribution. Christensen 

also proposed the Monte Carlo maximum likelihood algorithm, which still relies on the 

MCMC algorithm, but provides likelihood analysis on parameters[19]. Its algorithm 

implementation is packaged in the R package geoRglm. As an alternative to Monte 

Carlo likelihood, Hao proposed the Monte Carlo Expectation Maximum algorithm 

(MCEM), which treats the part of spatial random effects that cannot be directly 

observed as missing data[20]. Due to its robustness and convenience, Bayesian 

inference has already been extensively applied on epidemiological modeling and 

analysis. 

As the study of disease patterns with determinants within populations, 

epidemiology is the science which focuses on the distribution and determinants of 

diseases and health conditions among specific populations, as well as the research 

aspect of strategies and interventions to mitigate the spread of diseases and promote 

healthcare facilities [21]. In recent years, infectious diseases, represented by COVID-

19, were widespread among the population around the world and brought great disasters, 

which lead to more in-depth epidemiological investigations and studies on infectious 

diseases [22]. Meanwhile, when major infectious diseases are gradually under control, 

epidemiologists have increasingly focus on researches on some non-communicable 

diseases, especially chronic diseases, such as cardiovascular and cerebrovascular 

diseases, malignant tumors, diabetes, and injuries and disabilities [23]. Due to the novel 

coronavirus SARS-CoV-2, the pandemic has posed unprecedented challenges to public 

health systems, governments and communities all over the world, which has 

necessitated a comprehensive understanding of the transmission dynamics of the 

epidemic, risk factors and effective public health interventions. Epidemiologists swiftly 

mobilized to understand key aspects of COVID-19, including its transmission modes, 

incubation period, and clinical manifestations [24]. With rigorous surveillance and 

contact tracing, epidemiologists have identified respiratory droplets as the primary 
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mode of transmission, emphasizing the importance of measures such as mask-wearing, 

physical distancing, and hand hygiene in reducing viral spread [25]. Additionally, 

evidence has emerged regarding the potential for airborne transmission, particularly in 

enclosed spaces with poor ventilation. 

Bayesian inference has played an essential role in epidemiological modeling, and  

Datasets and samples related to infectious and chronic diseases have also gave rise to 

Bayesian inference techniques. Based on the National Radioactivity Survey data of the 

Marshall Islands, Diggle et al. recorded the intensity data of 137Cs radiation particles 

on Rongelap Island in the South Pacific, and established an SGLMM model in which 

the response variable obeys the Poisson distribution [26]. Under the Bayesian method, 

Metropolis-Hastings sampling was used to implement the MCMC algorithm, obtain 

parameter estimates of the SGLMM model, and analyze the spatial distribution of the 

residual nuclear pollutant concentration [27]. In addition, they also established an 

SGLMM model with response variables obeying the binomial distribution to analyze 

the North Spatial distribution of Campylobacter infection among residents in 

Lanarkshire and South Cumbria. Christensen added non-spatial independent random 

effects to the model used by Diggle et al. The fitting effect, this non-spatial random 

effect is often called the nugget effect in geo-statistics. As focused on malaria data from 

Nyanza Province in Kenya, which combines school and village information. The 

analysis is a multi-source data, assuming that one of the data is biased. From a non-

random survey, the other data is unbiased and comes from a random survey, so a spatial 

random effect containing two stationary spatial processes is established, and the 

binomial SGLMM model is estimated using the Monte Carlo maximum likelihood 

algorithm (MCML) [28][29]. parameters to obtain the spatial distribution of malaria in 

the province. The second data is malaria data collected from May 2010 to June 2013 in 

Wawa District, Malawi. Diggle et al., considered the binomial SGLMM model, and 

they assumed that the time term and the space term are independent, and the nugget 

effect only depends on time changes [13]. Also based on the MCML algorithm, each 

parameter of the model is estimated; The third data modeling is based on SGLMM with 
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nugget effect [30]. It is believed that the response variable should obey a mixed 

binomial distribution to contain very low infection levels. For example, none of the 

villages are infected, so zero excess binomial spatial mixed effects model analysis of 

the third river blindness data set.  

When faced with complex high-dimensional integrals, each alternative method, 

whether taking the route of random simulation or approximation, has a corresponding 

cost. Resulted from the property of the hierarchical models and random effects stated 

above, the convergence issues of MCMC leads to the development of Integrated Nested 

Laplace Approximation (INLA) as an alternative method to fit Bayesian hierarchical 

models within the latent Gaussian model [31]. The method based on Laplace 

approximation relies on the selection of initial values, while MCMC are random 

simulation. The algorithm relies on the adjustment of prior distributions and algorithm 

parameters, which will have an impact on the final data analysis results [32][33]. The 

process of adjusting parameters is often full of experience and skills. Although new and 

complex algorithms and methods are constantly being developed, Bonat and Ribeiro 

believed that only parameter estimation methods that can be widely used and be 

relatively straightforward implemented are more general and more reliable to select. 

Therefore, the inference methods according to different criteria and data types has 

already been an essential issue in epidemiology [34][35]. 

 

 

1.2 Objectives and significance 

 

Since the choice of an appropriate prior distribution is essential to calculate in 

Bayesian inference for specific data, the primary objective of the thesis is to explore 

the performance of Bayesian inference for different data types in the aspect of 

epidemiology in three parts. As the representatives of Bayesian inference methods, 
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Markov chains Monte Carlo and integrated nested Laplace approximation are explored 

for different types of data to focus on some practical issues in epidemiology: 1.) access 

the common features and variations of infectiousness of infectious disease in different 

contact settings; 2.) evaluate the effect of immigration on chronic disease mortality in 

the past and future along with the effects of age, period and cohort; 3.) due to their 

merits and weaknesses, evaluate the performance of Markov chains Monte Carlo and 

integrated nested Laplace approximation. 

 

1.3 Publications and Contributions 

The thesis is mainly arisen from two publications “Differences in the 

superspreading potentials of COVID-19 across contact settings” and “Age-period-

cohort analysis and projection of cancer mortality in Hong Kong, 1998–2030”. As the 

first author of these two papers, I was in charge of methodology, formal analysis, data 

curation, writing draft and visualization of them.  

 

 

1.4 Outline 

Background, motivations and objectives of this thesis are introduced in chapter 1. 

In chapter 2, with the reference of one of my published paper “Differences in the 

superspreading potentials of COVID-19 across contact settings”, I sets forth the 

methodology of Bayesian inference, based on MCMC for infectious disease data. Due 

to some weaknesses of MCMC, I present a MCMC-free Bayesian APC model for 

chronic disease data, based on INLA in chapter 3, with the reference of another 

published paper “Age-period-cohort analysis and projection of cancer mortality in 

Hong Kong, 1998–2030”. Evaluation of the performance related to MCMC and INLA 

in epidemiology are shown in chapter 4. Discussions and conclusions are presented in 

chapter 5. The flow chart illustrates the outline in details.  
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2. Infectious disease—MCMC in short-term data 

 

Markov chain Monte Carlo (MCMC) is a powerful computational method used in 

Bayesian inference, and it has been widely applied in epidemiology, which allows 

sampling from complex probability distributions by constructing a Markov chain that 

has the desired distribution as its equilibrium distribution. This makes MCMC 

particularly useful for estimating complex models that are not analytically tractable. 

One of the main advantages of MCMC is its flexibility. It can handle a wide range 

of models, including those with complex hierarchical structures, non-linear 

relationships, and high-dimensional parameter spaces. This flexibility makes MCMC a 

valuable tool in epidemiology, where complex models are often needed to capture the 

intricate relationships between various risk factors and health outcomes. Another 

advantage of MCMC is that it provides a full posterior distribution of the parameters, 

rather than just point estimates [23]. This allows for a more comprehensive assessment 

of uncertainty, which is crucial in epidemiological studies. 

Furthermore, maximum likelihood estimation (MLE) is a classical method of 

statistical estimation that is also used in epidemiology. While MLE has its own 

advantages, such as simplicity and consistency under certain conditions, it also has 

several disadvantages compared to Bayesian methods like MCMC. One of the main 

disadvantages of MLE is that it only provides point estimates of the parameters, without 

a direct measure of uncertainty [24][25]. While confidence intervals can be constructed, 

they are based on asymptotic approximations and may not be accurate for small sample 

sizes or complex models. 

Another disadvantage of MLE is that it does not allow for the incorporation of prior 

knowledge or beliefs. In contrast, Bayesian methods like MCMC allow for the 

integration of prior information through the use of prior distributions, which can be 

particularly useful in epidemiological studies where prior information is often available. 
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The development of MCMC and other Bayesian methods in the academic language has 

been facilitated by the availability of software packages, such as WinBUGS and JAGS 

for MCMC [27]. These packages have made Bayesian inference more accessible to 

epidemiologists and have contributed to the increasing use of Bayesian methods in 

epidemiology. 

In this chapter, I emphasize the principle and application of one Bayesian inference 

method—MCMC with datasets of infectious disease. 

 

 

2.1 Introduction 

 

“In the past few years, spurred by the increasing burden of Coronavirus disease 

2019 (COVID-19) outbreaks, researchers have been concentrating on characterizing 

superspreading events caused by multiple variants of the severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) [36][37][38].Meanwhile, the aggregation of 

transmission for some superspreading cases also draw researchers’ attention, defined as 

20/80 rule [39] in epidemiology, which implies that approximately 80% secondary 

infected cases and transmissions result from roughly 20% of primary cases. 

Additionally, cluster infections involved in superspreading events were generally 

adjudged to be responsible for the epidemic and its rapid evolution[36][40]. Therefore, 

exploring and summarizing the inherent dynamics in transmission chains of SARS-

CoV-2 can conduce to more effective and enhanced interventions and prevention from 

the epidemic.”  

“During the past few years, the coronavirus disease 2019 (COVID-19) that 

caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has 

been continuously spreading worldwide, posing a significant threat to public health. A 

comprehensive understanding on the epidemiological characteristics of COVID-19 
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underlies the strategic development of region-wide control policies to combat the 

epidemics. The fundamental biological parameters – basic reproduction number (R0) 

and effective reproduction number (R) describe the transmission potential of a typical 

infectious disease agent, that is, the average number of secondary cases generated by 

an infectious person in a completely and not completely susceptible population, 

respectively[36]. While for the COVID-19 epidemics, the differences arose in 

infectiousness, behavioral patterns and locally implemented public health 

interventions give rise to heterogeneous individual transmissibility[37][38], which 

cannot be reflected by a single measurement of R0 [39].”  

“A superspreading event (SSE) is defined as a transmission event involving an 

unusual large number of cases, initiated by the super-spreader. The SSE represented a 

heterogeneous transmission pattern, where the majority of the cases were seeded by a 

small fraction of super-spreaders [40][41]. As a distinct feature of the transmission 

dynamics of COVID-19, SSEs played essential roles in aggravating the COVID-19 

epidemics. For instance, in early November 2021 in Hong Kong, an outbreak in the 

community was caused by a few SSEs in entertainment places, which led to a major 

epidemic wave in the whole city [42]. In South Korea, the SSE seeded by the SARS-

CoV-2 Omicron variants occurred in churches and schools, causing the disease to 

spread widely in the local community [43]. Characterizing the superspreading 

potential of the epidemics in the context could give policymakers a hint on how to 

effectively curb the local transmissions [44]. For example, identifying and shutting 

down the hot-spot contact settings favoring the occurrence SSE (e.g., bars, social 

parties, and gyms) could timely chop the transmission chains and prevent future large 

outbreaks.” As a forceful circumstantial evidence of community transmission and 

SSEs, Furuse et al. exemplified demographic information regarding some clusters of 

COVID-19 infectors and schematized their features in transmission chains from 

January to July 2020 in Japan with different contact settings of SSEs [45].  
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2.2 Objective 

As a representative research, it exemplified demographic information regarding 

some clusters of COVID-19 infectors and schematized their features in transmission 

chains from January to July 2020 in Japan with different settings of superspreading 

events [41]. This study sought to explore the estimated reproductive numbers and 

dispersion parameters of rearranged contact tracing data in transmission chains in Japan 

from [45]. The objective was to 1) access the common features and variations of 

infectiousness in different settings, and 2) examine if there exist significant variation 

among individuals to investigate the association between community spread and 

superspreading events. 

 

 

2.3 Data and methods 

2.3.1 Data 

28 circumstances of transmission clusters of COVID-19 from January to July 

2020 in Japan were retrieved [45]. Based on the contact tracing and exposure history 

of each cases within the transmission clusters, 545 infectee-infector transmission pairs 

were constructed. We thereafter extracted the number of secondary cases (i.e., 

infectees) that were directly generated by each infector for further analysis. We 

excluded the cases that are indirectly linked with the infectors. The identified 

transmission pairs were further grouped by different contact settings (i.e., community, 

health care facility, school, household, and workplace) according to where the 

transmission occurred, and those without detailed information regarding contact 

settings were also omitted. Counts of cases in three age groups (0–19, 20–59, and 60 

or more) were also recorded. 
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Figure 1. One instance of 28 circumstances of transmission clusters. The blue, green, red, and 

yellow boxes represent cases at community superspreading events, cases among co-workers, cases 

at hospitals/care facilities/schools, and cases among family members, respectively. Arrows indicate 

infector-infectee transmission pairs. A solid and dashed arrow line indicate direct and indirect 

transmission chains. Values in square brackets denote the number of patients aged 0–19, 20–59, and 

60 or more. Arrows indicate infector-infectee transmission pair. 

 

 

 

2.3.2 Methods 

 

“To quantify the superspreading potential, we assumed the number of secondary 

cases seeded by each infector following a Negative binomial distribution [6], which 
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was parameterized by an effective reproduction number (R) as mean and a dispersion 

parameter (k). The k captured the heterogeneity in the individual transmissibility. A 

lower value of k indicated a higher transmission heterogeneity, and thereby a higher 

superspreading potential. The number of offspring cases generated by each seed case 

was fitted to a negative binomial model. For the model parameter estimation, Markov 

chain Monte Carlo (MCMC) method was applied to estimate the joint posterior 

distribution of R and k.”  

“The proportion of the most infectious cases that seeded 80% of the total 

transmissions was calculated [46]. The probability that a seed case generates a cluster 

with size 10 or more and the probability of observing SSEs were also computed. In 

addition to incorporating the expected proportion of infectors generating at least one 

infected individual and the probability that a seed case generates a cluster with size 10 

or more, some intuitive concepts, such as the proportion of the most infectious 

infectors responsible for 80% of infectees and the expected probability of 

superspreading events, were also attained based on estimated [47][48][49]. Followed 

by previous work [41], we defined the threshold of SSEs as the 99-th percentile of the 

Poisson distribution with the rate at reproduction number. Any transmission event that 

is seeded by a single infector would be counted as an SSE if the number of secondary 

cases exceeds the threshold. We thereafter calculated the probability of observing 

SSEs seeded by a single infector according to the SSE threshold. Subgroup analysis in 

different contact settings was also conducted in the same procedure to obtain the 

above estimates.”  

 

Secondary case distribution in the context of superspreading 

Given the stochastic effect of the transmission events, the transmission dynamics 

can be modelled by a Poisson process, such that the number of secondary cases Y 

generated by each infector is described by a Poisson distribution a mean of 𝜆 [50]. 

To characterize the heterogeneity in individual transmissibility, the 𝜆 was assumed to 
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follow a gamma distribution and thereby yield a Negative binomial secondary case 

distribution parameterized by the reproduction number (R) and a dispersion parameter 

(k) [41]. Therefore, the probability that an infector generates 𝑦(≥ 0) secondary cases 

is given by 

  (1) 

where  is the gamma function satisfying that . When a 

transmission cluster involves 𝑥𝑖 infectors who seeded a total of 𝑦𝑖 secondary 

cases, then the above function is adjusted as [51][52]: 

 

𝑟(𝑥𝑖, 𝑦𝑖) = 𝑃𝑟(𝑌 = 𝑦𝑖; 𝑅, 𝑘)

=
Γ(𝑘 ∗ 𝑥𝑖 + 𝑦𝑖)

Γ(𝑦𝑖 + 1)Γ(𝑘 ∗ 𝑥𝑖)  
(

𝑘

𝑅 + 𝑘
)

𝑘∗𝑥𝑖

(
𝑅

𝑅 + 𝑘
)

𝑦𝑖

 
(2) 

Then, the likelihood function  based on the dataset with totally 𝑛 transmission 

pairs is 

  (3) 

 

Parameter estimation 

The Markov Chain Monte Carlo (MCMC) method was employed to jointly 

estimate the reproduction number R and dispersion parameter k based on formula (3). 

Metropolis-Hastings algorithm was adopted and the marginal posterior distributions 

were obtained from 110 000 MCMC iterations, among which the first 30 000 were 

discarded as burn-in. Uniform prior distributions were applied for R and k. The 95% 

credible intervals were drawn from the marginal posterior distributions. Trace plot and 
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Gelman–Rubin convergence diagnostic were used for checking the convergence of 

posterior reproduced based on the MCMC [53]. The illustration of convergence 

diagnostic can be found in Appendices A1. Iterations of the whole population and 

contact settings shows no significant differences among within and between variance. 

(eFigure 1) All statistical analyses were performed in R version 4.2.1 (R Core Team, 

R Foundation for Statistical Computing, Vienna, Austria, 2013, http://www.R-

project.org/). 

 

 

Measurements of superspreading potentials 

Armed with the estimated R and k values, we deduced the proportion of the 

most infectious cases responsible for 80% of total transmissions, which was 

formulated as per [54]: 

 

 

(4) 

where  represents the floor function and  satisfies 

 

 

(5) 

Followed by previous work [54], we defined the threshold of SSE for the COVID-19 

as the 99th percentile of the Poisson distribution of the basic reproduction number 

(R0). Given that a consensus R0 estimates were in a range of 2 to 3 [55], the threshold 

of SSE was determined to be 6 to 8. The threshold was assumed to be 6 in this study. 

Any transmission event that is directly seeded by a single infector would be counted 

as an SSE if the number of secondary cases exceeds the threshold (i.e., 6). 
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Then, the probability of observing an SSE seeded by a single infector is given by 

𝑃𝑠 = 1 − 𝐹(𝑦; 𝑅, 𝑘)|𝑦=5 or 7 (6) 

Here, 𝐹(. ) is the cumulative probability function of equation (2).Furthermore, 

based on the methods derived in [54][56], when we refocus on the final cluster 

size with the assumption that the offspring distribution are independently and 

identically distributed (iid) negative binomial distribution given by equation (2), 

the possibility mass function for the final size 𝑠 of th cluster caused by 𝑥 

initial cases is  given by: 

 

(7) 

Therefore, the probability of 𝑥 seed cases resulting in a cluster with size 𝑠 or more 

is . 

 

 

 

2.4 Results 

 

A total of 545 transmission pairs were constructed from the reported 28 

transmission clusters. Of the settings where the identified transmission pairs occur, 

31.1%, 25.6%, 28.7%, 4.0%, and 10.6% belonged to the community, household, 

health care facility, school and workplace, respectively. Among 1017 identified 

infectors, 75.0% of them lead to no secondary cases, and 0.8% of them directly 

generated more than 10 cases. From the observed secondary case distribution and 
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fitted negative binomial models, we estimated that the overall R and k were 0.561 

(95% CrI: 0.496, 0.640) and 0.221 (95% CrI: 0.186, 0.262), 0.107 (95% CrI: 0.046, 

0.331) and 0.004 (95% CrI: 0.002, 0.007) for community setting, 0.137 (95% CrI: 

0.110, 0.168) and 0.141 (95% CrI: 0.098, 0.210) for household setting, 0.186 (95% 

CrI: 0.079, 0.409) and 0.004 (95% CrI: 0.002, 0.006) for healthcare facilities setting, 

0.088 (95% CrI: 0.028, 0.295) and 0.002 (95% CrI: 0.001, 0.005) for school setting, 

0.080 (95% CrI: 0.052, 0.138) and 0.019 (95% CrI: 0.012, 0.029) for workplace 

setting, respectively (Table 1). Based on the estimated R value, the threshold of SSEs 

was determined to be 6, and there were 17 out of 500 (3.4%) transmission events 

identified as SSEs. We inferred that 80% of total transmissions were generated by 

13.14% (95% CrI:11.55%, 14.87%) of the most infectious seed cases.  

 

 

Figure 2. Estimated reproduction numbers R and dispersion parameters k of total population and 

five types of contact settings with 95% credible intervals. Right figure is the zoom-in of three 

selected contact settings.   
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Across all contact settings, the health care facility and household had a higher 

risk of transmission (larger value of R) whereas school, health care facility, and 

community had a higher superspreading potential (smaller value of k). The probability 

that an infector generates at least one secondary case was 24.37% (95% CrI: 21.47, 

27.68), where cases in household setting were more likely to generate more than one 

infectors (9.13%, 95% CrI: 7.11, 11.61). Furthermore, the probability of observing 

SSEs with a predefined threshold is 1.75% (95% CrI:1.57, 1.99), while probabilities 

of SSEs in different contact settings are approximately comparable with a higher 

probability in health facilities (0.33%, 95% CrI: 0.13, 0.94). The probability that a 

seed case generates a transmission cluster with a size of 10 or greater is 3.87% (95% 

CrI: 2.94, 5.24). Other epidemiological results for mentioned contact settings are 

shown in Table 1.  
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Table 1. Summary of the estimated metrics of superspreading potential under different contact 

settings. The metrics were summarized as ‘median estimate (95% CrI)’ format.  

 Total Community Household 

 

Healthcare 

facilities 

School Workplace 

 

Reproduction 

number (R) 

0.561 

(0.496, 

0.640) 

0.107 (0.046, 

0.331) 

0.137 (0.110, 

0.168) 

0.186 (0.079, 

0.409) 

0.088 

(0.028, 

0.295) 

0.080 (0.052, 

0.138) 

Dispersion 

parameter (k) 

0.221 

(0.186, 

0.262) 

0.004 (0.002, 

0.007) 

0.141 (0.098, 

0.210) 

0.004 (0.002, 

0.006) 

0.002 

(0.001, 

0.005) 

0.019 (0.012, 

0.029) 

Probability of 

1 infector 

generating ≥1 

infectees 

24.37% 

(21.47, 

27.68) 

1.32% (0.63, 

2.68) 

9.13% (7.11, 

11.61) 

1.53% (0.74, 

2.51) 

0.76% 

(0.34, 2.03) 

3.09% (1.99, 

4.95) 

Proportion of 

infector 

seeding 80% 

transmission 

13.14% 

(11.55, 

14.87) 

0.44% (0.21, 

0.76) 

6.39% (4.91, 

8.24) 

0.44% (0.22, 

0.66) 

0.22% (0.11, 

0.55) 

1.54% (0.99, 

2.43) 

Probability of 

observing SSE 

1.75% 

(1.57, 1.99) 

0.49% (0.22, 

1.18) 

0.07% (0.06, 

0.08) 

0.67% (0.31, 

1.21) 

0.33% 

(0.13, 0.94) 

0.32% (0.21, 

0.60) 

Probability of 

cluster size 

≥10 seeded by 

1 infector 

3.87% 

(2.94, 5.24) 

0.37% (0.16, 

1.00) 

0.05% (0.04, 

0.06) 

0.55% (0.24, 

1.04) 

0.26% 

(0.09, 0.80) 

0.17% (0.10, 

0.38) 
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2.5 Discussion 

 

“Characterizing the superspreading potential could provide a better understanding 

of the transmission potential of the COVID-19 pandemic and help to formulate 

targeted public health interventions. In this study, using transmission cluster data 

collected during the early phase of the epidemic in Japan, we assessed the 

superspreading potential of COVID-19 within different contact settings.” 

“We found that the early epidemics in Japan exhibited a significant superspreading 

potential (k=0.22), which is in line with another study conducted during a similar 

study period (k=0.23) [41], but is smaller than an estimate obtained in Hong Kong 

(k=0.43) [16]. This discrepancy could be attributed to the differences in imposed 

control policies. In Japan, cluster-based measures that focused on identifying and 

preventing transmission clusters were adopted to curb the epidemics [45]. On the 

other hand, a series of social distancing interventions including school closure, work-

from-home-policy, and cancellation of mass gatherings were implemented in Hong 

Kong [57], which may have a greater effect on reducing the potential of societal SSEs 

[58] and thus resulting in a relatively higher k. It was also concluded in [10] that rare 

superspreading events in community resulted from infectors from hospitals, 

healthcare facilities or schools, whereas some cases in hospitals, healthcare facilities 

or schools were caused by the transmission chains originated from community 

superspreading events, which may lead to a low dispersion parameter in the 

distribution of offspring from communities. Meanwhile, the super-aged society in 

Japan [45] can also be deemed as the underlying cause of the estimates in each 

setting.”  

“We also found that the risk of transmission and superspreading potentials varied 

across different contact settings. The higher estimated superspreading potential in 

school and community is consistent with a study conducted in South Korea, whereby 

the transmission chains in community and schools were more heterogeneous (smaller 
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k) than that in the household [59].”  

“In conclusion, the early COVID-19 epidemics in Japan demonstrated a 

significant potential of superspreading. Particularly, the school, health care facility 

and community had relatively higher potential of superspreading when compared to 

other contact settings. The different potential of superspreading in contact settings 

highlights the need to continuously monitoring the transmissibility accompanied with 

the dispersion parameter, to timely identify high risk settings favoring the occurrence 

of SSE.” 

The findings underscore the significance for targeted interventions and strict 

control measures of infections for specific circumstances to curb the spread of 

infectious diseases effectively, including implementing strict healthcare protocols, 

promoting vaccination campaign, enhancing ventilation systems, ensuring adequate 

distancing measures, and conducting regular testing to mitigate the risk of outbreaks. 

Additionally, tailored public health campaigns and education may also be necessary to 

raise awareness to the infectious diseases and foster a culture of health and safety within 

these high-risk contact settings, which ultimately safeguards individuals and 

communities. 

“There are also some limitations in this study. Firstly, the transmission cluster 

data used was subjected to any bias (e.g., recall bias) generated during the contact 

tracing process and thus it is plausible that some cases that are exposed to the clusters 

were missed. This imperfect case ascertainment may lead to an underestimation of the 

R value but an overestimation of the k value [60][61]. Secondly, disproportional 

attention to infectors who generated infectees or not may have resulted in that 

infectors generating infectees were more likely to be collected and reported. Besides, 

the transmission clusters included in our study occurred during the early stage of the 

COVID-19 epidemics. Finally, more types of contact settings combination can be 

considered when some places are interconnected through ventilation. Given that the 

current epidemics are dominated by the SARS-CoV-2 Omicron variants, further study 
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is warranted to assess the superspreading potential of the emerging variants in Japan 

to help with formulating control policy.” 

With the in-depth study and investigation of the algorithm of Markov chains 

Monte Carlo, we can conclude that MCMC is more universal and general than 

integrated nested Laplace approximation because MCMC can be applied for all models, 

theoretically. However, it requires the user to be very proficient in the methodology and 

hyperparameters of MCMC to avoid misjudgment of prior and posterior distributions 

so that it would be crucial to select or design the appropriate sampler. When the model 

is complex, such as spatial model, or the amount of data is huge, the convergence speed 

would also be extremely slow. Therefore, it can be used in large-scale data analysis, 

theoretically. Meanwhile, INLA can only be used with Latent Gaussian Models (LGMs) 

[62]. However, LGMs are very universal and involve with a lot of amounts of models, 

including many spatial models, time models, space-time models. specifically, INLA can 

be applied for the inference issues in linear models, generalized linear models, linear 

mixed models, generalized linear mixed models, generalized additive models and 

survival models. Furthermore, with lower computation consumptions, the accuracy of 

INLA also outperforms MCMC for large-scale data analysis and specific models. 
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3. Chronic disease—INLA in long-term data 

 

INLA is a Bayesian inference method based on Laplace approximation, which 

approximates the posterior distribution into an analytical form of distribution and 

avoids the large number of Monte Carlo sampling required in traditional Bayesian 

inference. INLA transforms the Bayesian inference problem into an approximation 

problem of solving Gaussian Markov random fields by decomposing parameters into 

fixed effects and random effects and exploiting the properties of Gaussian Markov 

random fields. 

Compared to some traditional Bayesian inference methods such as MCMC, INLA 

has the following advantages [63]:  

1). High computational efficiency: INLA uses the Laplace approximation method, 

which avoids the large number of Monte Carlo sampling required in traditional methods, 

with lower computation consumptions.  

2). High accuracy: With high computational efficiency, the posterior distribution is 

more accurately approximated, so more accurate inference can be obtained.  

3). Higher flexibility: It can be applied to a variety of different models, including linear 

models, generalized linear models, and some nonlinear models, etc. 

In this chapter, I perform the methodology of Bayesian inference on the long-term 

and large sample-sized data of chronic disease. 

 

 

3.1 Introduction 

 

“Several migration waves from mainland China to Hong Kong have occurred over 
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the past century. These migration waves included a large-scale migration inflow from 

1945 to 1950 (the Chinese Civil War) and a few small-scale inflows in the 1950s, 1970s, 

and 1990s [64][65][66]. In 2016, immigrants from mainland China formed 

approximately 38% of the population of Hong Kong. These inflows have led to a 

growing interest in research on the disparity of health conditions between the locals and 

immigrants.” 

“Cancer has been one of the most common causes of death, as an estimated 19.3 

million new cancer cases and 9.9 million new cancer-associated deaths occurred 

worldwide in 2020 [67]. In Hong Kong, lung cancer is one of the most common causes 

of cancer deaths [68]. Previous studies suggested that the primary cause of lung cancer 

is cigarette smoking [69][70][71][72]. Genetic factors, asbestos, radon gas, second-

hand smoke, and other forms of air pollution have been proven to influence the risk of 

lung cancer [73-79]. The overall daily smoking rate in mainland China was 

approximately 23.2% in 2018 [80], whereas the daily smoking rate in Hong Kong was 

only 10.2% in 2019 [81]. The leading causes of liver cancer include viral infection, 

drinking of alcohol and polluted water and food supplies which are also culprits for 

colon, stomach and pancreatic cancer [82]. Alcohol consumption per capita in Hong 

Kong has reached 2.37 liters in 2021 [83], compared to 7.0 liters of per capita 

consumption of alcohol in mainland China in 2018 [84]. As approximately 99% of 

prostate cancer cases occur after age 50, factors of prostate cancer have been regarded 

as old age, race, family history and the diet of red meat consumption [85]. In addition 

to these risk factors, studies have suggested that cancer mortality rates vary depending 

on migrant status [86-89].  

According to data from the Census and Statistics Department of Hong Kong, 

approximately 81% of immigrants in Hong Kong immigrated from mainland China, 

Macau, and Taiwan. Immigrants from mainland China account for the bulk of this 

population. Previous studies have shown that child immigrants in Hong Kong tend to 

suffer from a higher risk of wheezing disorders and cardiovascular diseases, and 

immigrant women have higher age-specific mortality rates of breast cancer than locally-
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born women in Hong Kong [90][91]. However, to date, few studies have investigated 

the effect of length of stay in Hong Kong and birthplace on the risk of other types of 

cancer.” 

 

 

3.2 Objective 

 

“In this part, we compared the mortality rates of lung, pancreatic, colon, liver, 

prostate and stomach cancers between locally born residents in Hong Kong and 

immigrants from mainland China. Both populations are widely considered as ethnically 

homogeneous with similar cultures. Nevertheless, due to different early life experiences, 

immigrants are exposed to more various social economy and lifestyles than locals. 

Therefore, it’s constructive to ascertain whether immigrants from mainland China have 

a different mortality pattern of cancers from locals to verify the significance of 

migration status for this health outcome. As Age-period-cohort (APC) analysis plays a 

vital role in studying time-specific phenomena in epidemiology. in this study, to 

evaluate the effect of immigration on cancer mortality in the past and future, we 

developed APC models specified by sex and migrant status to assess the effects of age, 

period, birth cohort, and of the length of stay in Hong Kong on the mortality risks of 

cancers. Additionally, we explore the projection of mortality rates for the locally born 

population and immigrants in Hong Kong who were younger or older than 60 using a 

predictive model, taking into account age, period, and birth cohort effects as well.” 
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3.3 Data and methods 

3.3.1 Data 

“We obtained the death registry data, related to six types of cancer: lung cancer, 

colon cancer, liver cancer, stomach cancer, pancreatic cancer for males and females and 

prostate cancer for males, in Hong Kong between 1998 and 2021 from the Census and 

Statistics Department of Hong Kong, as the data in 2022 has not been available up to 

now. The data was extracted from a routine census held by the Hong Kong government 

as subjective errors caused by resampling can be neglected. The population data were 

stratified by age, sex, immigration status, and length of stay in Hong Kong. We retrieved 

six types of cancer cases from the death registry data using ICD codes, such as ICD-9 

code 162 and ICD-10 codes C34.0–C34.3, C348, and C349 for lung cancer. To assure 

comparability among registries, deaths from the age group of 35–85 years were selected, 

since cases younger than 35 and older than 85 were relatively trivial for lack of 

statistical interpretability [92]. Cases were also divided into different age groups, such 

as younger or elder than 60, to explore the projection of mortality rates for the locally 

born population and immigrants in Hong Kong who were younger or older than 60 

using a predictive model, taking into account age, period, and birth cohort effects as 

well.” 

“Immigration status was classified into three groups: locals born in Hong Kong, 

immigrants who have lived in Hong Kong for >10 years before death defined as long-

stay immigrants, and immigrants who have lived in Hong Kong for ≤10 years before 

death defined as short-stay immigrants. Notably, much focus was placed on 

immigrants from mainland China, because approximately 81% of immigrants in Hong 

Kong came from mainland China, Macau, and Taiwan based on the data from the 

Census and Statistics Department of Hong Kong. Moreover, few cases recorded from 

Macau and Taiwan are statistically insignificant in the analysis. Demographics and 

population projections from 2022 to 2030 were retrieved from the Census and 

Statistics Department of Hong Kong and estimated with cubic smoothing spline as the 
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prerequisite of the predictive model.” Combined data of all types of cancer was 

omitted due to inevitable incomparability of results and unbalanced dataset for each 

type of cancer. For example, more than 20 long-stay male deaths at age 59 for lung 

cancer in each year, whereas there were no long-stay male deaths at age 59 for 

prostate cancer for some years. It would lead to merge and mitigate the effect of age 

and immigration history. They are introduced in detailed in “Methods” below. 

 

 

3.3.2 Methods 

 

Cubic smoothing spline 

 

Data of demographic census is exposed every five years from Census and 

Statistics Department of Hong Kong, thus we obtained the data of population and 

immigrants in Hong Kong for each year until 2030 based on cubic smooth spline. 

Theoretically, smooth spline regression is a local modeling method, which is a 

continuous piece-wise polynomial based on certain smoothness. In order to obtain 

accurate estimates of population for each year, the idea of cubic smooth spline was 

considered that penalization was introduced to minimize residual sum of squares 

(RSS) based on ordinary least squares (OLS) such that  

              (8) 

where  is the piece-wise cubic spline function and  is the 

penalization. The detail of missing data imputation of immigrants population for each 

year is demonstrated in Appendices A2. 
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Age-period-cohort effects between immigration groups, 1998-2021  

We modeled cancer mortality rates in Hong Kong using APC analysis based on 

log-linear Poisson regression models. The model aimed to disentangle age, period, 

and cohort effects of time-varying phenomena simultaneously [93][94], given that 

              (9)                

where 𝛽0 is the intercept with the mean age effect of 𝑎 and mean birth cohort effect 

of 𝑐, 𝛼𝐿 , 𝜋L , 𝛾𝐿 represent the combination of linear trend in age, period and 

cohort effects, 𝛼̃𝑎 , 𝜋̃𝑝,  𝛾̃𝑐 are deviation (curvature) parameters and capture 

nonlinear patterns of observed rate. log (𝑂apc) represents high-order residual. Finally, 

curvature parameters satisfy the following conditions in order to have identifiability, 

such that  

            (10) 

 

Model (9) parameterization is identifiable. Notably, no prior assumption on the 

magnitudes of  𝛼𝐿  ,  𝜋L  , 𝛾𝐿  is required. Furthermore, 𝛼𝐿+𝜋L  is the so-call 

“longitudinal age trend” and 𝜋L + 𝛾𝐿 is called the “net drift parameter”, as well as the 

difference 𝛼𝐿 − 𝛾𝐿 is called the “cross-sectional age trend”. Based on the model (9), 

we propose to incorporate “age when arrived in Hong Kong” and “Years in Hong Kong” 

into intercept, age trend and drift as following:   

(11) 
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Here, the choice of group would be “immigrant from mainland” and “locally born 

resident”. We further divided the “immigrant from mainland” into subgroups, such as 

“age when entered HK less than 12 years old” and “age when entered Hong Kong later 

than 12 years old”. Every ten years bin was another choice for the “age when entered 

Hong Kong” subgroups. We fit such a model to cancer mortality in Hong Kong from 

1998 to 2021. We aim to gain new insights on the impact of migrant status and forecast 

the trends of the cancer deaths under the background of demographics changes and 

inform public health policy making in Hong Kong. 

“We mainly focused on the contributions of sex and immigration status due to the 

non-identifiability problem that the effects of these three components are collinear 

with each other (denoted as period – age = cohort) [95][96]. Birth cohort effect and 

period effect were assessed with relative risks to evaluate the effect of three 

components. The median year of birth among cases was regarded as the reference 

cohort [97][98][99]. Since death cases aged 35–85 years between 1998 and 2021 were 

selected, the range of birth cohort from 1913 to 1986 covered observations and further 

projections until 2030. The second and penultimate period effects were constrained to 

the reference for period. For sex and immigration status, maximum likelihood 

framework was applied to estimate the relative risks and 95% confidence intervals 

(CIs) by age groups, calendar period, and birth cohort.” 

Although migrant status on risk of cancer is not a new topic, migrant status in 

these mortality data in Hong Kong have not been studied as a risk factors for cancer 

deaths, except for one of our earlier works, where we examined the impacts of birth 

place (either mainland China or Hong Kong) on the effects of age, period and cohort 

effects. Given that the birth place indeed played a role in the age, period and cohort 

effects of breast cancer deaths for women, it is reasonable to hypothesize that the “age 

when entered Hong Kong” would likely play a role in some of the cancer deaths. If the 

early life environment determines the development of cancer in the later life, then the 

younger the age entered Hong Kong, the weaker impact of early lifestyle would be for 

immigrants.  
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Mortality projection with Bayesian APC model, 2022-2030 

“Several projection approaches for future cancer mortality have been developed, 

but a Bayesian age-period-cohort (BAPC) model built upon integrated nested Laplace 

approximations (INLA) [100] yields relatively higher coverage and better 

performance for all evaluated parameter combinations [101]. To prevent some 

sampling problems caused by Markov chain Monte Carlo (MCMC), this MCMC-free 

BAPC approach was applied to predict future cancer mortality within a fully Bayesian 

inference setting and provide outputs of interest simply, such as projected age-

standardized and age-specific rates. Convergence checks are not necessary for this 

technique [100]. The projections of age-standardized cancer mortality rates for each 

sex, age group (younger or older than 60 years) and migrant status, taking into 

account age, period, and birth cohort effects, were performed based on the weights of 

population age groups from the WHO World Standard population [102], with 95% 

prediction intervals.” The Mann-Kendall trend test was applied to verify the 

projection trend. Friedman's Two-Way Analysis of Variance was applied to test 

interactions between gender and immigration groups for each year. 

All analyses were performed via R version 4.2.1 (R Core Team, R Foundation for 

Statistical Computing, Vienna, Austria, 2013, http://www.R-project.org/). The APC 

models were established using the Epi package, and the projections based on 

Bayesian APC models were performed with the BAPC package. 

 

 

 

3.4 Results 

 



31 

 

The first two figures of Figures 3-8 (i.e. a & b of Figures 3-7 and Figure 8a) illustrate 

the estimates of age (assessed by cancer mortality), cohort and period effects (assessed 

by relative risk) based on APC models among three migrant groups for men and women 

with six types of cancers, respectively. All the mortality rates for each gender and 

immigration status exhibit notable increasing trends with age. Age, cohort and period 

effects of six types of cancer for immigrants who stayed in Hong Kong for ≤10 years 

revealed relatively more pronounced fluctuations and deviations from those effects in 

the other two immigration groups. Significant increasing trends of age effect occurred 

in all types of cancer, regardless of gender and immigration status. 

  Figure 3c-7c & 8b, eFigure 2-6 in Appendices A3 illustrate the age-standardized 

mortality rates of six types of cancer from 1998 to 2021 and their projections by sex, 

immigrant status and age groups from 2022 to 2030, taking into account age, period, 

and birth cohort effects. Means and standard deviations of predictive mortality rates 

are shown in Table 2-7. For all ages projection (Figure 3c-8c), as approximately 

significant interactions between gender and immigration groups emerge for each type 

of cancer in each year (p<0.05), given the projected trends, immigrants for each 

gender, especially who have stayed in Hong Kong for > 10 years will suffer from 

higher mortality rates of cancer in each year than locals.  

Monotone decreasing trends or plateau of forecasting occur for both genders 

and all immigration groups in cancers, except for increasing trends for male 

immigrants who have stayed in Hong Kong for ≤10 years with colon cancer (p < 0.05, 

Avg +0.30 deaths/100,000 per annum) from 15.47 deaths/100,000 (95% CI: 11.28, 

19.66) in 2021 to 18.50 deaths/100,000 (95% CI: 2.31, 34.69) in 2030, and male 

immigrants who have stayed in Hong Kong for > 10 years with pancreatic cancer (p < 

0.05, Avg +0.72 deaths/100,000 per annum) from 16.30 deaths/100,000 (95% CI: 

14.38,17.26) in 2021 to 23.49 deaths/100,000 (95% CI: 12.49, 34.49) in 2030. Results 

of six types of cancers are introduced as follows 
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3.4.1 Lung Cancer 

 

Figure 3a. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-period-

cohort model of male lung cancer mortality rates by immigrant groups: locals, immigrants stay in 

Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 

years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by 

relative risk (right axis), 95% confidence intervals are shown as shaded bands. 
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Figure 3b. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-period-

cohort model of female lung cancer mortality rates by immigrant groups: locals, immigrants stay in 

Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 

years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by 

relative risk (right axis), 95% confidence intervals are shown as shaded bands. 

 

 

“While relatively insignificant differences in lung cancer mortality rates by 

immigration status among females have performed, male immigrants who remained in 

Hong Kong for >10 years had higher lung cancer mortality rates at ages above 50 years 

and those who arrived ≤10 years had lower lung cancer mortality at ages below 62 years 

compared to local men Figure 3. In addition to compatible dynamics of period effect 

for locals and long-stay immigrants, similar changes of relative risks by birth cohort for 

locals and long-stay immigrants in lung occurred before 1945, whereas significant 

differences of relative risks by birth cohort between these two immigration groups 

occurred after 1960. Short-stay immigrants who have stayed in Hong Kong for ≤10 

years had more fluctuating relative risks affected by period effects before 2020 than 
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those for locals and long-stay immigrants. Consequently, immigrants for both gender 

who have stayed in Hong Kong for ≤10 years had more fluctuating relative risks of lung 

cancer mortality affected by cohort and period effects than locals and immigrants who 

have stayed in Hong Kong for >10 years.” 

 

 

 

Figure 3c. Projections of lung cancer mortality rates by gender and immigrant status from 2022 to 

2030. Observations are shown as dots with the predictive distribution between the 5% and 95% 

quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The 

predictive mean is shown as black solid line and the vertical dashed line indicates where 

prediction started. 

 

Given the projected trends in Figure 3c, immigrants for each gender, especially who 

have stayed in Hong Kong for > 10 years will suffer from higher mortality rates of lung 

cancer in each year than locals. Monotone decreasing trends or plateau of forecasting 

occur for both genders and all immigration groups, except for increasing trends for 

female local immigrants (p < 0.05, Avg +0.33 deaths/100,000 per annum) from 30.22 
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deaths/100,000 (95% CI: 30.01, 33.56) in 2022 to 33.55 deaths/100,000 (95% CI: 29.31, 

36.11) in 2030. Compared with other immigration groups, male immigrants who have 

stayed in Hong Kong for >10 years with lung cancer would perform the most significant 

decline in predictive mean from 102.90 (95% CI: 98.14, 107.66) to 79.55 (95% CI: 

47.46, 111.64) deaths per 100,000 population (Avg -2.34 deaths/100,000 per annum) 

(Table 2). Men would suffer from higher mortality rates of lung cancer in the future 

than females in the same immigration group. In 2030, the highest mortality rate of lung 

cancer would be 79.55 deaths/100,000 (95% CI: 70.11, 85.47) for male immigrants who 

have stayed in Hong Kong for > 10 years. 

eFigure 2 in Appendices illustrate the age-standardized mortality rates of lung 

cancer from 1998 to 2021 and their projections by sex, immigrant status and two age 

groups from 2022 to 2030. Most of predictive trends for younger cases (<60 years) and 

older cases (≥60 years) reach a consensus with those for all ages population in Figure 

3c, except for mortality rates of lung cancer for men immigrants ≤10 that insignificant 

trend for all ages (p > 0.05) vs. decline for younger cases (p < 0.05) vs. increase for 

older cases (p < 0.05). It’s also reasonable that elders would be at higher risk of death 

by lung cancer than youngers regardless immigration groups and genders. Male 

individuals would also suffer from higher mortality rate of liver cancer than females for 

youngers and elders. 
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Predictive mean of age-standardized mortality rates of lung cancer per 100,000 population 

Year 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 

Female 

immigrants >10 

41.80 

(1.27) 

41.34 

(1.86) 

40.58 

(2.27) 

39.87 

(2.75) 

39.19 

(3.28) 

38.53 

(3.86) 

37.89 

(4.46) 

37.26 

(5.09) 

36.65 

(5.74) 

36.04 

(6.4) 

Female immigrants ≤

10 

23.92 

(4.00) 

22.22 

(4.67) 

20.56 

(5.38) 

19.01 

(6.10) 

17.57 

(6.80) 

16.24 

(7.45) 

15.00 

(8.04) 

13.85 

(8.56) 

12.79 

(9.01) 

11.81 

(9.39) 

Female locals 

34.67 

(1.76) 

30.22 

(3.54) 

30.63 

(4.77) 

31.05 

(6.38) 

31.48 

(8.29) 

31.9 

(10.47) 

32.32 

(12.87) 

32.73 

(15.48) 

33.15 

(18.31) 

33.55 

(21.33) 

Male immigrants >10 

102.90 

(2.43) 

100.18 

(4.18) 

97.18 

(5.33) 

94.34 

(6.72) 

91.71 

(8.24) 

89.15 

(9.84) 

86.66 

(11.47) 

84.19 

(13.11) 

81.81 

(14.74) 

79.55 

(16.37) 

Male immigrants ≤10 

81.26 

(9.21) 

79.90 

(10.41) 

79.81 

(11.82) 

79.72 

(13.42) 

79.62 

(15.19) 

79.50 

(17.09) 

79.32 

(19.09) 

79.08 

(21.18) 

78.78 

(23.32) 

78.41 

(25.53) 

Male locals 

60.96 

(2.82) 

52.27 

(4.86) 

50.83 

(5.39) 

49.56 

(6.13) 

48.18 

(6.97) 

46.64 

(7.84) 

45.13 

(8.76) 

43.83 

(9.76) 

42.67 

(10.8) 

41.43 

(11.8) 

Female 

immigrants>10(<60y) 

15.51 

(1.12) 

14.51 

(1.50) 

13.90 

(1.76) 

13.29 

(2.04) 

12.71 

(2.33) 

12.13 

(2.62) 

11.57 

(2.91) 

11.02 

(3.18) 

10.49 

(3.43) 

9.98 

(3.68) 

Female immigrants ≤

10(<60y) 

8.14 

(1.91) 

7.79 

(1.95) 

7.18(2.23) 6.62(2.53) 6.10(2.81) 5.63(3.08) 5.19(3.32) 

4.79 

(3.53) 

4.42 

(3.72) 

4.09 

(3.88) 

Female locals(<60y) 

10.25 

(0.77) 

9.48 

(0.89) 

9.17(1.02) 8.87(1.16) 8.57(1.32) 8.27(1.49) 7.97(1.65) 

7.68 

(1.82) 

7.38 

(1.98) 

7.09 

(2.13) 

Male 

immigrants>10(<60y) 

27.81 

(2.10) 

26.36 

(3.58) 

24.96 

(3.94) 

23.64 

(4.35) 

22.38 

(4.79) 

21.17 

(5.23) 

20.03 

(5.67) 

18.96 

(6.10) 

17.96 

(6.51) 

17.03 

(6.90) 

Male immigrants ≤

10(<60y) 

15.01 

(2.98) 

13.38 

(3.71) 

12.02 

(4.17) 

10.79 

(4.59) 

9.68 

(4.95) 

8.69 

(5.24) 

7.79 

(5.46) 

6.98 

(5.61) 

6.25 

(5.69) 

5.59 

(5.72) 



37 

 

Table 2. Predictive means and standard deviations (in brackets) of age-standardized mortality 

rates of lung cancer per 100,000 population for each gender, age group (less than, greater or equal 

to 60 years old) and immigrant status from 2022 to 2030. Reported means and standard deviations 

(in brackets) of age-standardized mortality rates in 2021 are also listed. 

Male locals(<60y) 

15.19 

(0.78) 

14.45 

(1.15) 

14.03 

(1.29) 

13.61 

(1.46) 

13.14 

(1.64) 

12.65 

(1.82) 

12.13 

(2.01) 

11.55 

(2.17) 

10.93 

(2.31) 

10.26 

(2.43) 

Female 

immigrants >10(≥

60y) 

108.85 

(4.80) 

107.21 

(5.17) 

106.26 

(6.24) 

105.52 

(7.54) 

104.94 

(9.04) 

104.51 

(10.72) 

104.21 

(12.57) 

104.07 

(14.61) 

104.06 

(16.78) 

104.16 

(19.14) 

Female immigrants ≤

10(≥60y) 

66.16 

(13.25) 

63.84 

(15.72) 

59.88 

(17.50) 

56.14 

(19.31) 

52.60 

(21.03) 

49.27 

(22.66) 

46.14 

(24.16) 

43.20 

(25.52) 

40.44 

(26.74) 

37.85 

(27.81) 

Female locals(≥60y) 

77.33 

(9.40) 

76.53 

(10.11) 

76.22 

(10.85) 

75.94 

(11.79) 

75.69 

(12.94) 

75.49 

(14.28) 

75.32 

(15.80) 

75.19 

(17.48) 

75.10 

(19.33) 

75.03 

(21.32) 

Male 

immigrants>10(≥60y) 

293.56 

(9.13) 

289.8 

(11.7) 

286.6 

(15.19) 

284.28 

(19.51) 

282.78 

(24.49) 

281.99 

(30.07) 

281.88 

(36.31) 

282.31 

(43.15) 

283.37 

(50.66) 

285.03 

(58.86) 

Male immigrants ≤

10(≥60y) 

244.88 

(30.29) 

247.01 

(36.85) 

251.24 

(42.94) 

255.62 

(50.06) 

260.14 

(58.14) 

264.82 

(67.14) 

269.61 

(77.01) 

274.52 

(87.75) 

279.55 

(99.34) 

284.69 

(111.81) 

Male locals(≥60y) 

150.75 

(16.22) 

146.29 

(18.46) 

143.54 

(20.58) 

141.84 

(23.97) 

140.07 

(28.24) 

138.14 

(33.39) 

136.65 

(39.82) 

136.49 

(47.87) 

137.24 

(57.47) 

138.26 

(68.52) 
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3.4.2 Colon Cancer 

 

Figure 4a. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-period-

cohort model of male colon cancer mortality rates by immigrant groups: locals, immigrants stay in 

Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 10 

years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed by 

relative risk (right axis), 95% confidence intervals are shown as shaded bands. 
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Figure 4b. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-period-

cohort model of female colon cancer mortality rates by immigrant groups: locals, immigrants stay 

in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or equal to 

10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were assessed 

by relative risk (right axis), 95% confidence intervals are shown as shaded bands. 

 

 

 

Although relatively insignificant differences in colon cancer mortality rates for both 

genders between locals and long-stay immigrants have performed, immigrants who 

remained in Hong Kong for <10 years had lower colon cancer mortality rates at each 

age compared to locals and immigrants who remained in Hong Kong for >10 years in 

Figure 4. In addition to compatible dynamics of period effect for locals and long-stay 

immigrants, similar changes of relative risks by birth cohort for locals and long-stay 

immigrants in colon occurred before 1955, whereas significant differences of relative 

risks by birth cohort between these two immigration groups occurred after 1960. Short-

stay immigrants who have stayed in Hong Kong for ≤10 years had more fluctuating 

relative risks affected by period effects before 2020 than those for locals and long-stay 
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immigrants. Consequently, immigrants for both gender who have stayed in Hong Kong 

for ≤10 years had more fluctuating relative risks of colon cancer mortality affected by 

cohort and period effects than locals and immigrants who have stayed in Hong Kong 

for >10 years. 

 

 

Figure 4c. Projections of colon cancer mortality rates by gender and immigrant status from 2022 

to 2030. Observations are shown as dots with the predictive distribution between the 5% and 95% 

quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The 

predictive mean is shown as black solid line and the vertical dashed line indicates where 

prediction started. 

 

 

Given the projected trends in Figure 4c, immigrants for each gender, especially who 

have stayed in Hong Kong for > 10 years will suffer from higher mortality rates of 

colon cancer in each year than locals. Men would suffer from higher mortality rates of 

colon cancer in the future than females in the same immigration group. Monotone 

decreasing trends or plateau of forecasting occur for both genders and all immigration 

groups, except for increasing trends for male immigrants who have stayed in Hong 
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Kong for < 10 years (p < 0.05, Avg +0.30 deaths/100,000 per annum) from 15.47 

deaths/100,000 (95% CI: 11.09, 18.26) in 2021 to 18.50 deaths/100,000 (95% CI: 15.44, 

21.11) in 2030. Compared with other immigration groups, male locals with colon 

cancer would perform the most significant decline in predictive mean from 21.28 (95% 

CI: 18.14, 23.17) to 16.71 (95% CI: 10.46, 19.25) deaths per 100,000 population (p < 

0.05, Avg -0.45 deaths/100,000 per annum) (Table 3). In 2030, the highest mortality 

rate of colon cancer would be 28.98 deaths/100,000 (95% CI: 26.53, 31.47) for male 

immigrants who have stayed in Hong Kong for > 10 years, while the lowest mortality 

rate of liver cancer would be 4.71 deaths/100,000 (95% CI: 2.77, 7.12) for female 

immigrants who have stayed in Hong Kong for < 10 years. 

eFigure 3 in Appendices illustrate the age-standardized mortality rates of colon 

cancer from 1998 to 2021 and their projections by sex, immigrant status and two age 

groups from 2022 to 2030. Most of predictive trends for younger cases (<60 years) and 

older cases (≥60 years) reach a consensus with those for all ages population in Figure 

4c, except for mortality rates of colon cancer for women immigrants >10 that 

insignificant trend for all ages (p > 0.05) vs. increase for younger cases (p < 0.05) vs. 

insignificant trend for older cases (p > 0.05). It’s also reasonable that elders would be 

at higher risk of death by colon cancer than youngers regardless immigration groups 

and genders. Male individuals would also suffer from higher mortality rate of liver 

cancer than females for youngers and elders. 
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Predictive mean of age-standardized mortality rates of colon cancer per 100,000 population 

Year 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 

Female 

immigrants >10 

20.03 

(0.95) 

18.95 

(1.13) 

18.77 

(1.37) 

18.59 

(1.66) 

18.42 

(1.98) 

18.27 

(2.33) 

18.12 

(2.71) 

17.98 

(3.11) 

17.85 

(3.53) 

17.73 

(3.96) 

Female immigrants ≤

10 

8.11 

(2.19) 

7.70 

(2.51) 

7.25 

(2.81) 

6.82 

(3.11) 

6.42 

(3.37) 

6.03 

(3.61) 

5.67 

(3.83) 

5.33 

(4.01) 

5.01 

(4.17) 

4.71 

(4.31) 

Female locals 

13.77 

(1.30) 

13.47 

(1.61) 

13.24 

(1.72) 

13.01 

(1.87) 

12.77 

(2.04) 

12.53 

(2.24) 

12.29 

(2.46) 

12.06 

(2.68) 

11.82 

(2.92) 

11.59 

(3.16) 

Male immigrants >10 

31.22 

(1.28) 

29.82 

(1.46) 

29.66 

(1.79) 

29.52 

(2.19) 

29.41 

(2.63) 

29.30 

(3.11) 

29.21 

(3.64) 

29.14 

(4.19) 

29.06 

(4.78) 

28.98 

(5.39) 

Male immigrants ≤10 

15.47 

(2.14) 

16.77 

(3.77) 

17.02 

(4.18) 

17.23 

(4.64) 

17.45 

(5.14) 

17.67 

(5.69) 

17.88 

(6.27) 

18.09 

(6.91) 

18.31 

(7.56) 

18.50 

(8.26) 

Male locals 

21.28 

(1.38) 

19.81 

(2.07) 

19.39 

(2.22) 

18.97 

(2.42) 

18.57 

(2.61) 

18.18 

(2.85) 

17.81 

(3.12) 

17.43 

(3.40) 

17.06 

(3.71) 

16.71 

(4.03) 

Female 

immigrants >10(<60y) 

7.09 

(0.99) 

7.36 

(1.12) 

7.46 

(1.28) 

7.56 

(1.46) 

7.65 

(1.68) 

7.74 

(1.92) 

7.83 

(2.19) 

7.92 

(2.48) 

8.01 

(2.79) 

8.09 

(3.13) 

Female immigrants ≤

10(<60y) 

3.11 

(0.67) 

2.82 

(0.86) 

2.65 

(0.91) 

2.51 

(0.97) 

2.36 

(1.02) 

2.22 

(1.07) 

2.08 

(1.11) 

1.95 

(1.14) 

1.83 

(1.18) 

1.72 

(1.22) 

Female locals(<60y) 

4.10 

(0.41) 

3.87 

(0.50) 

3.73 

(0.54) 

3.61 

(0.59) 

3.47 

(0.65) 

3.34 

(0.70) 

3.22 

(0.76) 

3.11 

(0.82) 

2.99 

(0.88) 

2.88 

(0.94) 

Male 

immigrants >10(<60y) 

8.29 

(0.91) 

7.98 

(1.17) 

7.85 

(1.38) 

7.71 

(1.60) 

7.54 

(1.83) 

7.36 

(2.08) 

7.17(2.32) 6.97(2.57) 6.76(2.81) 6.55(3.05) 

Male immigrants ≤

10(<60y) 

5.03 

(1.44) 

5.18 

(1.58) 

5.22 

(1.75) 

5.26 

(1.93) 

5.30 

(2.14) 

5.34 

(2.36) 

5.38(2.59) 5.43(2.84) 5.47(3.11) 5.51(3.38) 
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Male locals(<60y) 

5.14 

(0.43) 

4.88 

(0.63) 

4.66 

(0.79) 

4.46 

(0.96) 

4.26 

(1.13) 

4.08 

(1.31) 

3.91(1.48) 3.73(1.65) 3.57(1.82) 3.42(1.97) 

Female 

immigrants >10(≥60y) 

52.16 

(2.59) 

49.21 

(2.99) 

48.70 

(3.56) 

48.26 

(4.26) 

47.87 

(5.05) 

47.54 

(5.94) 

47.26 

(6.90) 

47.05 

(7.94) 

46.91 

(9.06) 

46.81 

(10.26) 

Female immigrants ≤

10(≥60y) 

24.01 

(5.83) 

22.44 

(6.56) 

21.69 

(6.96) 

20.95 

(7.38) 

20.23 

(7.80) 

19.52 

(8.23) 

18.84 

(8.66) 

18.17 

(9.08) 

17.51 

(9.49) 

16.86 

(9.90) 

Female locals(≥60y) 

37.42 

(5.31) 

36.69 

(5.74) 

36.29 

(6.06) 

35.87 

(6.46) 

35.46 

(6.95) 

35.04 

(7.5) 

34.61 

(8.12) 

34.19 

(8.79) 

33.77 

(9.51) 

33.34 

(10.27) 

Male 

immigrants >10(≥60y) 

84.17 

(3.55) 

82.72 

(4.09) 

82.16 

(4.95) 

81.64 

(5.97) 

81.19 

(7.12) 

80.81 

(8.39) 

80.47 

(9.77) 

80.15 

(11.24) 

79.85 

(12.81) 

79.56 

(14.45) 

Male immigrants ≤

10(≥60y) 

43.25 

(11.07) 

44.93 

(13.09) 

45.62 

(14.52) 

46.30 

(16.09) 

46.96 

(17.80) 

47.61 

(19.64) 

48.25 

(21.62) 

48.88 

(23.73) 

49.51 

(25.97) 

50.13 

(28.34) 

Male locals(≥60y) 

55.79 

(6.86) 

54.89 

(7.65) 

53.75 

(8.03) 

52.63 

(8.52) 

51.54 

(9.12) 

50.47 

(9.8) 

49.43 

(10.55) 

48.42 

(11.37) 

47.42 

(12.25) 

46.44 

(13.16) 

Table 3. Predictive means and standard deviations (in brackets) of age-standardized mortality 

rates of colon cancer per 100,000 population for each gender, age group (less than, greater or 

equal to 60 years old) and immigrant status from 2022 to 2030. Reported means and standard 

deviations (in brackets) of age-standardized mortality rates in 2021 are also listed. 
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3.4.3 Liver Cancer 

 

Figure 5a. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-

period-cohort model of male liver cancer mortality rates by immigrant groups: locals, immigrants 

stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less than or 

equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period effects were 

assessed by relative risk (right axis), 95% confidence intervals are shown as shaded bands. 
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Figure 5b. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-

period-cohort model of female liver cancer mortality rates by immigrant groups: locals, 

immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less 

than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period 

effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded 

bands. 

 

 

Relatively insignificant differences in liver cancer mortality rates for both genders 

between locals and long-stay immigrants have performed, even though immigrants 

aged younger than 55 and older than 65 who remained in Hong Kong for <10 years had 

lower colon cancer mortality rates at each age compared to locals and immigrants who 

remained in Hong Kong for >10 years in Figure 5. In addition to compatible dynamics 

of period effect for locals and long-stay immigrants, similar changes of relative risks 

by birth cohort for locals and long-stay immigrants in liver occurred before 1955, 

whereas significant differences of relative risks by birth cohort between these two 

immigration groups occurred after 1960. Short-stay immigrants who have stayed in 

Hong Kong for ≤10 years had more fluctuating relative risks affected by period effects 

before 2020 than those for locals and long-stay immigrants. Consequently, immigrants 

for both gender who have stayed in Hong Kong for ≤10 years had more fluctuating 

relative risks of liver cancer mortality affected by cohort and period effects than locals 

and immigrants who have stayed in Hong Kong for >10 years. 
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Figure 5c. Projections of liver cancer mortality rates by gender and immigrant status from 2022 to 

2030. Observations are shown as dots with the predictive distribution between the 5% and 95% 

quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The 

predictive mean is shown as black solid line and the vertical dashed line indicates where 

prediction started. 

 

 

Given the projected trends in Figure 5c, immigrants for each gender, especially who 

have stayed in Hong Kong for > 10 years will suffer from higher mortality rates of liver 

cancer in each year than locals. Men would suffer from higher mortality rates of liver 

cancer in the future than females in the same immigration group. Monotone decreasing 

trends (p < 0.05) or plateau (p > 0.05) of forecasting occur for both genders and all 

immigration groups. Compared with other immigration groups, male immigrants who 

have stayed in Hong Kong for < 10 years with liver cancer would perform the most 

significant decline in predictive mean from 42.33 (95% CI: 38.94, 44.25) to 24.25 (95% 

CI: 19.46, 28.77) deaths per 100,000 population (p < 0.05, Avg -1.51 deaths/100,000 

per annum) (Table 4). In 2030, the highest mortality rate of liver cancer would be 38.71 

deaths/100,000 (95% CI: 36.53, 41.92) for male immigrants who have stayed in Hong 

Kong for > 10 years, while the lowest mortality rate of liver cancer would be 4.30 
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deaths/100,000 (95% CI: 1.77, 7.42) for female local. 

eFigure 4 in Appendices illustrate the age-standardized mortality rates of liver 

cancer from 1998 to 2021 and their projections by sex, immigrant status and two age 

groups from 2022 to 2030. Most of predictive trends for younger cases (<60 years) and 

older cases (≥60 years) reach a consensus with those for all ages population in Figure 

5c, except for mortality rates of liver cancer for men immigrants >10 that decline for 

all ages (p < 0.05) vs. decline for younger cases (p < 0.05) vs. insignificant trend for 

older cases (p > 0.05). It’s also reasonable that elders would be at higher risk of death 

by liver cancer than youngers regardless immigration groups and genders. Male 

individuals would also suffer from higher mortality rate of liver cancer than females for 

youngers and elders. 
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Predictive mean of age-standardized mortality rates of liver cancer per 100,000 population 

Year 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 

Female immigrants >10 

11.34 

(0.66) 

10.68 

(0.71) 

10.09 

(0.85) 

9.54 

(1.01) 

9.01 

(1.16) 

8.50 

(1.31) 

8.02(1.45) 7.57(1.59) 7.14(1.72) 6.74(1.83) 

Female immigrants ≤10 

9.15 

(1.55) 

8.66 

(1.82) 

8.38 

(1.95) 

8.11 

(2.08) 

7.84 

(2.22) 

7.58 

(2.36) 

7.32(2.49) 7.07(2.63) 6.82(2.76) 6.58(2.88) 

Female locals 

6.72 

(0.69) 

6.36 

(0.88) 

6.08 

(0.90) 

5.81 

(0.93) 

5.53 

(0.97) 

5.26 

(1.01) 

5.01(1.06) 4.77(1.11) 4.53(1.15) 4.3(1.21) 

Male immigrants >10 

52.17 

(1.78) 

49.22 

(2.36) 

47.76 

(2.93) 

46.35 

(3.59) 

45.01 

(4.31) 

43.67 

(5.05) 

42.37 

(5.81) 

41.1(6.56) 

39.89 

(7.33) 

38.71 

(8.08) 

Male immigrants ≤10 

42.33 

(5.87) 

39.03 

(6.49) 

37.39 

(7.47) 

35.81 

(8.51) 

34.26 

(9.58) 

32.76 

(10.63) 

31.31 

(11.65) 

29.91 

(12.62) 

28.56 

(13.54) 

27.25 

(14.40) 

Male locals 

24.22 

(1.77) 

22.16 

(2.09) 

21.02 

(2.22) 

19.91 

(2.39) 

18.85 

(2.58) 

17.83 

(2.79) 

16.85 

(3.03) 

15.92 

(3.21) 

15.03 

(3.40) 

14.18 

(3.59) 

Female 

immigrants >10(<60y) 

3.62 

(0.45) 

3.39 

(0.52) 

3.29 

(0.57) 

3.20 

(0.63) 

3.12 

(0.69) 

3.04 

(0.75) 

2.96(0.82) 2.89(0.89) 2.82(0.96) 2.75(1.03) 

Female immigrants ≤

10(<60y) 

4.10 

(0.79) 

3.81 

(0.91) 

3.69 

(0.96) 

3.57 

(1.02) 

3.46 

(1.08) 

3.36 

(1.15) 

3.25(1.22) 3.15(1.29) 3.06(1.36) 2.97(1.43) 

Female locals(<60y) 

1.50 

(0.13) 

1.37 

(0.2) 

1.29 

(0.21) 

1.22 

(0.23) 

1.16 

(0.24) 

1.10 

(0.26) 

1.04(0.27) 0.99(0.29) 0.94(0.30) 0.89(0.31) 

Male 

immigrants >10(<60y) 

26.32 

(2.11) 

24.04 

(2.35) 

23.02 

(2.63) 

22.05 

(2.94) 

21.13 

(3.27) 

20.25 

(3.61) 

19.41 

(3.95) 

18.62 

(4.30) 

17.86 

(4.64) 

17.14 

(4.98) 

Male immigrants ≤

10(<60y) 

25.52 

(2.99) 

22.56 

(3.96) 

21.71 

(4.44) 

20.87 

(4.94) 

20.04 

(5.45) 

19.22 

(5.95) 

18.42 

(6.45) 

17.63 

(6.91) 

16.86 

(7.36) 

16.11 

(7.78) 
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Male locals(<60y) 

8.25 

(0.69) 

7.47 

(0.74) 

6.97 

(0.79) 

6.52 

(0.86) 

6.11 

(0.93) 

5.73 

(1.01) 

5.38(1.08) 5.04(1.15) 4.73(1.21) 4.44(1.27) 

Female immigrants >10(≥

60y) 

33.67 

(1.88) 

29.63 

(2.01) 

27.99 

(2.36) 

26.42 

(2.75) 

24.92 

(3.14) 

23.49 

(3.52) 

22.13 

(3.88) 

20.85 

(4.23) 

19.64 

(4.55) 

18.50 

(4.85) 

Female immigrants ≤10(≥

60y) 

21.72 

(5.11) 

19.08 

(5.81) 

18.38 

(6.14) 

17.71 

(6.48) 

17.03 

(6.83) 

16.39 

(7.16) 

15.76 

(7.49) 

15.16 

(7.80) 

14.57 

(8.11) 

14.01 

(8.39) 

Female locals(≥60y) 

20.63 

(3.03) 

18.41 

(3.23) 

17.55 

(3.26) 

16.72 

(3.32) 

15.91 

(3.40) 

15.11 

(3.49) 

14.34 

(3.59) 

13.59 

(3.69) 

12.87 

(3.81) 

12.17 

(3.93) 

Male immigrants >10(≥

60y) 

115.39 

(4.54) 

113.96 

(5.95) 

113.43 

(7.65) 

113.17 

(9.70) 

113.16 

(12.04) 

113.37 

(14.66) 

113.79 

(17.56) 

114.39 

(20.73) 

115.19 

(24.18) 

116.17 

(27.91) 

Male immigrants ≤10(≥

60y) 

88.61 

(15.58) 

85.14 

(18.85) 

82.59 

(20.6) 

80.02 

(22.44) 

77.42 

(24.34) 

74.83 

(26.24) 

72.23 

(28.12) 

69.64 

(29.94) 

67.07 

(31.70) 

64.52 

(33.38) 

Male locals(≥60y) 

62.88 

(5.97) 

58.95 

(7.91) 

56.51 

(8.20) 

54.14 

(8.61) 

51.84 

(9.12) 

49.61 

(9.70) 

47.46 

(10.33) 

45.38 

(11.01) 

43.38 

(11.68) 

41.45 

(12.36) 

Table 4. Predictive means and standard deviations (in brackets) of age-standardized mortality rates of 

liver cancer per 100,000 population for each gender, age group (less than, greater or equal to 60 years 

old) and immigrant status from 2022 to 2030. Reported means and standard deviations (in brackets) of 

age-standardized mortality rates in 2021 are also listed. 
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3.4.4 Pancreatic Cancer 

 

Figure 6a. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-

period-cohort model of male pancreatic cancer mortality rates by immigrant groups: locals, 

immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less 

than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period 

effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded 

bands. 
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Figure 6b. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-

period-cohort model of female pancreatic cancer mortality rates by immigrant groups: locals, 

immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less 

than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period 

effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded 

bands. 

 

 

Relatively insignificant differences in pancreatic cancer mortality rates for both 

genders between locals and long-stay immigrants have performed, even though female 

immigrants aged younger than 50 and older than 75 who remained in Hong Kong for 

<10 years had lower pancreatic cancer mortality rates at each age compared to locals 

and immigrants who remained in Hong Kong for >10 years, while male immigrants 

who have stayed in Hong Kong for <10 years had significantly higher pancreatic cancer 

mortality rates than other two immigration status for each age group in Figure 6. In 

addition to compatible dynamics of period effect for locals and long-stay immigrants, 

similar changes of relative risks by birth cohort for locals and long-stay immigrants in 

pancreatic occurred before 1955, whereas significant differences of relative risks by 
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birth cohort between these two immigration groups occurred after 1960. Short-stay 

immigrants who have stayed in Hong Kong for ≤10 years had more fluctuating relative 

risks affected by period effects before 2020 than those for locals and long-stay 

immigrants. Consequently, immigrants for both gender who have stayed in Hong Kong 

for ≤10 years had more fluctuating relative risks of pancreatic cancer mortality affected 

by cohort and period effects than locals and immigrants who have stayed in Hong Kong 

for >10 years, and relative risks of pancreatic cancer mortality affected by cohort and 

period for locals and long-stay immigrants perform significant consistency. 

 

 

 

 

Figure 6c. Projections of pancreatic cancer mortality rates by gender and immigrant status from 

2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 

95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The 

predictive mean is shown as black solid line and the vertical dashed line indicates where 

prediction started. 

 



53 

 

 

Given the projected trends in Figure 6c, immigrants for each gender, especially who 

have stayed in Hong Kong for > 10 years will suffer from higher mortality rates of 

pancreatic cancer in each year than locals. Men would suffer from higher mortality rates 

of pancreatic cancer in the future than females in the same immigration group. Unlike 

the trends of age standardized mortality rates depict above, monotone increasing trends 

(p < 0.05) or plateau (p > 0.05) of forecasting occur for both genders and all 

immigration groups, except for decreasing trends for male immigrants who have stayed 

in Hong Kong for < 10 years (p < 0.05, Avg -0.12 deaths/100,000 per annum) from 8.10 

deaths/100,000 (95% CI: 6.04, 11.13) in 2021 to 6.81 deaths/100,000 (95% CI: 4.47, 

9.74) in 2030. Compared with other immigration groups, male immigrants who have 

stayed in Hong Kong for < 10 years with pancreatic cancer would perform the most 

significant uptrend in predictive mean from 16.30 (95% CI: 15.88, 17.74) to 23.49 (95% 

CI: 19.96, 26.59) deaths per 100,000 population (p < 0.05, Avg +0.72 deaths/100,000 

per annum) (Table 5). In 2030, the highest mortality rate of pancreatic cancer would be 

23.49 deaths/100,000 (95% CI: 19.96, 26.59) for male immigrants who have stayed in 

Hong Kong for > 10 years, while the lowest mortality rate of pancreatic cancer would 

be 5.31 deaths/100,000 (95% CI: 3.22, 7.92) for female who have stayed in Hong Kong 

for < 10 years. 

eFigure 5 in Appendices illustrate the age-standardized mortality rates of 

pancreatic cancer from 1998 to 2021 and their projections by sex, immigrant status and 

two age groups from 2022 to 2030. Most of predictive trends for younger cases (<60 

years) and older cases (≥60 years) reach a consensus with those for all ages population 

in Figure 6c, except for mortality rates of pancreatic cancer for men immigrants <10 

that decline for all ages (p < 0.05) vs. decline for younger cases (p < 0.05) vs. 

insignificant trend for older cases (p > 0.05). It’s also reasonable that elders would be 

at higher risk of death by pancreatic cancer than youngers regardless immigration 

groups and genders. Male individuals would also suffer from higher mortality rate of 

liver cancer than females for youngers and elders.  
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Predictive mean of age-standardized mortality rates of pancreatic cancer per 100,000 population 

Year 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 

Female 

immigrants >10 

10.89 

(0.62) 

11.11 

(0.75) 

11.36 

(0.91) 

11.61 

(1.09) 

11.87 

(1.31) 

12.14 

(1.56) 

12.42 

(1.84) 

12.71 

(2.15) 

13.01 

(2.48) 

13.3(2.85) 

Female immigrants ≤

10 

5.51 

(1.44) 

5.44 

(1.56) 

5.44 

(1.69) 

5.43(1.84) 5.42(1.99) 5.41(2.15) 5.39(2.32) 5.36(2.49) 5.34(2.66) 5.31(2.84) 

Female locals 

8.79 

(1.10) 

9.01 

(1.22) 

9.15 

(1.34) 

9.29(1.48) 9.43(1.64) 9.57(1.83) 9.71(2.05) 9.85(2.28) 9.99(2.54) 

10.14 

(2.83) 

Male immigrants >10 

16.30 

(0.98) 

17.87 

(1.19) 

18.48 

(1.49) 

19.11 

(1.87) 

19.78 

(2.32) 

20.47 

(2.83) 

21.18 

(3.42) 

21.92 

(4.07) 

22.69 

(4.81) 

23.49 

(5.61) 

Male immigrants ≤10 

8.10 

(2.02) 

7.87 

(2.37) 

7.76 

(2.53) 

7.64(2.70) 7.51(2.87) 7.38(3.05) 7.24(3.23) 7.09(3.41) 6.95(3.58) 6.81(3.75) 

Male locals 

11.97 

(1.26) 

12.29 

(1.49) 

12.49 

(1.64) 

12.69 

(1.83) 

12.91 

(2.06) 

13.11 

(2.33) 

13.33 

(2.63) 

13.55 

(2.97) 

13.78 

(3.34) 

14.02 

(3.74) 

Female 

immigrants >10(<60y) 

3.47 

(0.33) 

3.62 

(0.57) 

3.74 

(0.66) 

3.87(0.77) 4.01(0.89) 4.14(1.02) 4.28(1.18) 4.42(1.34) 4.57(1.53) 4.72(1.73) 

Female immigrants ≤

10(<60y) 

1.12 

(0.33) 

1.21 

(0.48) 

1.22 

(0.52) 

1.23(0.56) 1.24(0.61) 1.25(0.66) 1.26(0.71) 1.26(0.77) 1.27(0.83) 1.28(0.89) 

Female locals(<60y) 

2.76 

(0.27) 

2.88 

(0.36) 

2.91 

(0.41) 

2.93(0.48) 2.96(0.55) 2.99(0.63) 3.02(0.71) 3.04(0.81) 3.07(0.90) 3.10(1.01) 

Male 

immigrants >10(<60y) 

6.88 

(0.98) 

7.05 

(1.11) 

7.24 

(1.32) 

7.43(1.56) 7.62(1.84) 7.82(2.16) 8.01(2.50) 8.21(2.88) 8.40(3.30) 8.61(3.75) 

Male immigrants ≤

10(<60y) 

2.20 

(0.71) 

2.01 

(0.85) 

1.95 

(0.91) 

1.9(0.94) 1.84(0.99) 1.79(1.04) 1.74(1.09) 1.69(1.14) 1.64(1.19) 1.60(1.24) 
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Male locals(<60y) 

4.16 

(0.35) 

4.33 

(0.48) 

4.41 

(0.57) 

4.46(0.68) 4.53(0.81) 4.61(0.94) 4.69(1.09) 4.77(1.26) 4.85(1.44) 4.93(1.63) 

Female 

immigrants >10(≥60y) 

28.58 

(1.83) 

29.45 

(2.11) 

29.91 

(2.54) 

30.38 

(3.06) 

30.85 

(3.66) 

31.33 

(4.33) 

31.81 

(5.08) 

32.29 

(5.91) 

32.78 

(6.79) 

33.27 

(7.74) 

Female immigrants ≤

10(≥60y) 

16.79 

(5.29) 

15.65 

(6.08) 

15.49 

(6.71) 

15.33 

(7.36) 

15.16 

(8.03) 

14.97 

(8.73) 

14.79 

(9.43) 

14.59 

(10.14) 

14.39 

(10.86) 

14.19 

(11.58) 

Female locals(≥60y) 

22.80 

(4.23) 

23.85 

(4.46) 

24.21 

(4.81) 

24.56 

(5.23) 

24.91 

(5.73) 

25.25 

(6.30) 

25.58 

(6.95) 

25.90 

(7.67) 

26.22 

(8.47) 

26.54 

(9.34) 

Male 

immigrants >10(≥60y) 

42.70 

(2.55) 

44.36 

(3.02) 

45.85 

(3.76) 

47.41 

(4.69) 

49.04 

(5.78) 

50.73 

(7.05) 

52.48 

(8.50) 

54.28 

(10.13) 

56.16 

(11.95) 

58.11 

(13.98) 

Male immigrants ≤

10(≥60y) 

24.68 

(8.21) 

23.96 

(9.01) 

23.87 

(9.74) 

23.75 

(10.52) 

23.61 

(11.33) 

23.45 

(12.17) 

23.28 

(13.04) 

23.09 

(13.93) 

22.89 

(14.83) 

22.68 

(15.75) 

Male locals(≥60y) 

30.10 

(4.68) 

31.17 

(5.22) 

31.55 

(5.63) 

31.93 

(6.14) 

32.30 

(6.75) 

32.66 

(7.45) 

33.01 

(8.23) 

33.35 

(9.11) 

33.69 

(10.08) 

34.03 

(11.12) 

Table 5. Predictive means and standard deviations (in brackets) of age-standardized mortality 

rates of pancreatic cancer per 100,000 population for each gender, age group (less than, greater or 

equal to 60 years old) and immigrant status from 2022 to 2030. Reported means and standard 

deviations (in brackets) of age-standardized mortality rates in 2021 are also listed. 
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3.4.5 Stomach Cancer 

 

Figure 7a. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-

period-cohort model of male stomach cancer mortality rates by immigrant groups: locals, 

immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less 

than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period 

effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded 

bands. 
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Figure 7b. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-

period-cohort model of female stomach cancer mortality rates by immigrant groups: locals, 

immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less 

than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period 

effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded 

bands. 

 

 

Compared to the age effect of other types of cancer, relatively insignificant 

differences in stomach cancer mortality rates for both genders between locals and long-

stay immigrants have performed before 55, and stomach cancer mortality rates for long-

stay immigrants are lower than those of locals after 55 for both genders. Short-stay male 

immigrants who was aged younger than 50 suffered lower mortality rate, while those 

aged older than 70 suffered higher mortality rate than other two immigration groups, 

and female short-stay immigrants were at lower mortality risk of stomach cancer than 

others in Figure 7. In addition to compatible dynamics of period effect for locals and 

long-stay immigrants, similar changes of relative risks by birth cohort for locals and 

long-stay immigrants in stomach occurred before 1955, whereas significant differences 

of relative risks by birth cohort between these two immigration groups occurred after 
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1960. Short-stay immigrants who have stayed in Hong Kong for ≤10 years had more 

fluctuating relative risks affected by period effects before 2020 than those for locals and 

long-stay immigrants. Consequently, immigrants for both gender who have stayed in 

Hong Kong for ≤10 years had more fluctuating relative risks of stomach cancer 

mortality affected by cohort and period effects than locals and immigrants who have 

stayed in Hong Kong for >10 years, and relative risks of stomach cancer mortality 

affected by period for locals and long-stay immigrants perform significant consistency. 

 

 

 

 

 

Figure 7c. Projections of stomach cancer mortality rates by gender and immigrant status from 

2022 to 2030. Observations are shown as dots with the predictive distribution between the 5% and 

95% quantile, whereby each lighter shade of red represents an additional 10% predictive CI. The 

predictive mean is shown as black solid line and the vertical dashed line indicates where 

prediction started. 
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Given the projected trends in Figure 7c, immigrants for each gender, especially who 

have stayed in Hong Kong for < 10 years will suffer from higher mortality rates of 

stomach cancer in each year than locals after 2021. Men would suffer from higher 

mortality rates of liver cancer in the future than females in the same immigration group. 

Monotone decreasing trends (p < 0.05) or plateau (p > 0.05) of forecasting occur for 

both genders and all immigration groups. Compared with other immigration groups, 

male immigrants who have stayed in Hong Kong for < 10 years with stomach cancer 

would perform the most significant decline in predictive mean from 15.22 (95% CI: 

12.91, 19.20) to 10.15 (95% CI: 6.41, 18.27) deaths per 100,000 population (p < 0.05, 

Avg -0.51 deaths/100,000 per annum) (Table 6). In 2030, the highest mortality rate of 

stomach cancer would be 14.03 deaths/100,000 (95% CI: 10.53, 19.22) for male 

immigrants who have stayed in Hong Kong for < 10 years, while the lowest mortality 

rate of stomach cancer would be 3.83 deaths/100,000 (95% CI: 0.57, 7.92) for female 

local. 

eFigure 6 in Appendices illustrate the age-standardized mortality rates of stomach 

cancer from 1998 to 2021 and their projections by sex, immigrant status and two age 

groups from 2022 to 2030. Most of predictive trends for younger cases (<60 years) and 

older cases (≥60 years) reach a consensus with those for all ages population in Figure 

7c, except for mortality rates of stomach cancer for female immigrants >10 that decline 

for all ages (p < 0.05) vs. insignificant trend for younger cases (p > 0.05) vs. 

insignificant trend for older cases (p > 0.05). It’s also reasonable that elders would be 

at higher risk of death by stomach cancer than youngers regardless immigration groups 

and genders. Male individuals would also suffer from higher mortality rate of liver 

cancer than females for youngers and elders. 
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Predictive mean of age-standardized mortality rates of stomach cancer per 100,000 population 

Year 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 

Female immigrants >10 

8.20 

(0.55) 

7.95 

(0.62) 

7.71 

(0.74) 

7.47 

(0.87) 

7.25 

(1.01) 

7.03 

(1.15) 

6.83 

(1.29) 

6.62 

(1.43) 

6.43 

(1.57) 

6.24 

(1.71) 

Female immigrants ≤

10 

7.51 

(1.44) 

7.36 

(1.56) 

7.33 

(1.69) 

7.30 

(1.85) 

7.28 

(2.01) 

7.27 

(2.20) 

7.27 

(2.40) 

7.28 

(2.61) 

7.31 

(2.84) 

7.33 

(3.09) 

Female locals 

5.26 

(0.40) 

4.91 

(0.52) 

4.75 

(0.57) 

4.61 

(0.63) 

4.47 

(0.71) 

4.34 

(0.77) 

4.21 

(0.84) 

4.08 

(0.91) 

3.95 

(0.99) 

3.83 

(1.06) 

Male immigrants >10 

15.22 

(0.64) 

13.89 

(0.97) 

13.34(1.21) 

12.81 

(1.46) 

12.31 

(1.73) 

11.83 

(1.99) 

11.38 

(2.26) 

10.95 

(2.51) 

10.54 

(2.76) 

10.15 

(3.01) 

Male immigrants ≤10 

15.83 

(3.04) 

15.21 

(3.38) 

15.07 

(3.67) 

14.93 

(3.98) 

14.79 

(4.31) 

14.64 

(4.65) 

14.51 

(5.02) 

14.35 

(5.39) 

14.19 

(5.78) 

14.03 

(6.17) 

Male locals 

8.14 

(0.89) 

8.07 

(0.99) 

7.73 

(1.03) 

7.41(1.07) 

7.10 

(1.13) 

6.81 

(1.19) 

6.51 

(1.26) 

6.23 

(1.33) 

5.97 

(1.39) 

5.71 

(1.46) 

Female 

immigrants >10(<60y) 

4.81 

(0.56) 

4.69 

(0.79) 

4.62 

(0.87) 

4.55 

(0.96) 

4.47 

(1.07) 

4.39 

(1.17) 

4.31 

(1.29) 

4.22 

(1.41) 

4.13 

(1.52) 

4.03 

(1.64) 

Female immigrants ≤

10(<60y) 

3.89 

(0.80) 

4.08 

(0.93) 

4.10 

(1.03) 

4.13 

(1.14) 

4.17 

(1.27) 

4.21 

(1.41) 

4.24 

(1.55) 

4.28 

(1.70) 

4.32 

(1.87) 

4.36 

(2.05) 

Female locals(<60y) 

2.28 

(0.21) 

2.08 

(0.27) 

1.98 

(0.29) 

1.88 

(0.32) 

1.79 

(0.35) 

1.71 

(0.37) 

1.61 

(0.41) 

1.53 

(0.43) 

1.44 

(0.45) 

1.37 

(0.47) 

Male 

immigrants >10(<60y) 

4.94 

(0.57) 

4.71 

(0.79) 

4.55 

(0.89) 

4.41 

(0.99) 

4.25 

(1.10) 

4.12 

(1.21) 

3.98 

(1.32) 

3.86 

(1.43) 

3.74 

(1.54) 

3.63 

(1.65) 

Male immigrants ≤

10(<60y) 

4.81 

(1.31) 

4.70 

(1.42) 

4.66 

(1.55) 

4.63 

(1.69) 

4.59 

(1.83) 

4.55 

(1.99) 

4.52 

(2.15) 

4.48 

(2.32) 

4.44 

(2.50) 

4.41 

(2.68) 
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Male locals(<60y) 

2.48 

(0.21) 

2.37 

(0.29) 

2.28 

(0.32) 

2.21 

(0.35) 

2.12 

(0.38) 

2.04 

(0.42) 

1.97 

(0.45) 

1.91 

(0.49) 

1.83 

(0.52) 

1.77(0.

55) 

Female 

immigrants >10(≥60y) 

17.80 

(1.04) 

16.23 

(1.26) 

15.65 

(1.47) 

15.08 

(1.70) 

14.55 

(1.94) 

14.03 

(2.18) 

13.54 

(2.43) 

13.07 

(2.68) 

12.62 

(2.92) 

12.19 

(3.16) 

Female immigrants ≤

10(≥60y) 

14.72 

(4.29) 

13.01 

(4.83) 

12.52 

(5.11) 

12.03 

(5.37) 

11.55 

(5.63) 

11.08 

(5.88) 

10.63 

(6.12) 

10.19 

(6.35) 

9.76(6.56) 

9.34 

(6.75) 

Female locals(≥60y) 

12.20 

(1.66) 

11.86 

(1.84) 

11.67 

(1.98) 

11.49 

(2.15) 

11.33 

(2.35) 

11.18 

(2.58) 

11.04 

(2.84) 

10.91 

(3.11) 

10.79(3.4) 

10.68 

(3.71) 

Male immigrants >10(≥

60y) 

37.23 

(2.29) 

36.59 

(2.56) 

35.17(3.18) 

33.82 

(3.86) 

32.55 

(4.57) 

31.34 

(5.28) 

30.19 

(6.01) 

29.08 

(6.70) 

28.02 

(7.40) 

27.01 

(8.07) 

Male immigrants ≤

10(≥60y) 

42.30 

(10.88) 

41.43 

(11.78) 

41.03 

(12.71) 

40.61 

(13.70) 

40.17 

(14.75) 

39.71 

(15.85) 

39.24 

(16.99) 

38.75 

(18.16) 

38.23 

(19.35) 

37.71 

(20.57) 

Male locals(≥60y) 

23.04 

(3.29) 

22.69 

(3.56) 

22.37(4.07) 
22.16(4.8

4) 

21.89 

(5.86) 

21.61 

(7.22) 

21.52 

(9.02) 

21.74 

(11.29) 

22.17 

(14.03) 

22.73 

(17.28) 

Table 6. Predictive means and standard deviations (in brackets) of age-standardized mortality 

rates of stomach cancer per 100,000 population for each gender, age group (less than, greater or 

equal to 60 years old) and immigrant status from 2022 to 2030. Reported means and standard 

deviations (in brackets) of age-standardized mortality rates in 2021 are also listed. 
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3.4.6 Prostate Cancer 

 

Figure 8a. Parameter estimates of age (a), cohort (b) and period (c) effects based on an age-

period-cohort model of male prostate cancer mortality rates by immigrant groups: locals, 

immigrants stay in Hong Kong for more than 10 years and immigrants stay in Hong Kong for less 

than or equal to 10 years. Age effect was assessed by mortality (left axis). Cohort and period 

effects were assessed by relative risk (right axis), 95% confidence intervals are shown as shaded 

bands. 

 

 

Unlike other types of cancer, only the APC effects of prostate cancer for males 

illustrate in Figure 8. Compared to the age effect of other types of cancer, relatively 

insignificant differences in prostate cancer mortality rates between locals and long-stay 

immigrants have performed. Short-stay male immigrants who was aged younger than 

65 suffered lower mortality rate, while those aged older than 80 suffered higher 

mortality rate than other two immigration groups in Figure 7. A sharp decline of 

mortality by age for short-stay immigrants is performed resulted from lack of data of 

deaths aged 80 or older. In addition to compatible dynamics of period effect for locals 
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and long-stay immigrants, similar changes of relative risks by birth cohort for locals 

and long-stay immigrants in prostate occurred before 1955, whereas significant 

differences of relative risks by birth cohort between these two immigration groups 

occurred after 1960. Short-stay immigrants who have stayed in Hong Kong for ≤10 

years had more fluctuating relative risks affected by period effects than those for locals 

and long-stay immigrants. Consequently, immigrants for both gender who have stayed 

in Hong Kong for ≤10 years had more fluctuating relative risks and more broad 

confidence interval of stomach cancer mortality affected by cohort and period effects 

than locals and immigrants who have stayed in Hong Kong for >10 years, and relative 

risks of prostate cancer mortality affected by period for locals and long-stay immigrants 

perform significant consistency. 

 

 

 

 

Figure 8b. Projections of prostate cancer mortality rates for males by immigrant status and age groups 

(less than, greater than or equal to 60 years old) from 2022 to 2030. Observations are shown as dots 
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with the predictive distribution between the 5% and 95% quantile, whereby each lighter shade of red 

represents an additional 10% predictive CI. The predictive mean is shown as black solid line and the 

vertical dashed line indicates where prediction started. 

 

Given the projected trends in Figure 8b, male immigrants, especially who have 

stayed in Hong Kong for > 10 years will suffer from higher mortality rates of prostate 

cancer in each year than locals after 2021. Monotone decreasing trends (p < 0.05) or 

plateau (p > 0.05) of forecasting occur for all immigration groups. Compared with other 

immigration groups, male immigrants who have stayed in Hong Kong for < 10 years 

with prostate cancer would perform the most significant decline in predictive mean 

from 9.03 (95% CI: 5.91, 17.01) to 7.27 (95% CI: 2.91, 12.12) deaths per 100,000 

population (p < 0.05, Avg -0.18 deaths/100,000 per annum) (Table 7). In 2030, the 

highest mortality rate of prostate cancer would be 14.38 deaths/100,000 (95% CI: 11.13, 

20.62) for male immigrants who have stayed in Hong Kong for > 10 years, while the 

lowest mortality rate of prostate cancer would be 7.27 deaths/100,000 (95% CI: 2.91, 

12.12) for male immigrants who have stayed in Hong Kong for < 10 years. 

Figure 8b also illustrate the age-standardized mortality rates of prostate cancer 

from 1998 to 2021 and their projections by sex, immigrant status and two age groups 

from 2022 to 2030. Most of predictive trends for younger cases (<60 years) and older 

cases (≥60 years) reach a consensus with those for all ages population, except for 

mortality rates of prostate cancer for male immigrants <10 that decline for all ages (p < 

0.05) vs. increasing trend for younger cases (p < 0.05) vs. decline for older cases (p < 

0.05). It’s also reasonable that elders would be at higher risk of death by prostate cancer 

than youngers regardless immigration groups and genders. Some particular cases occur 

in the projection of prostate cancer that young long-stay male immigrants (0.44 

deaths/100,000, 95% CI: 0, 1.05) aged less than 60 will be at lower mortality rate than 

locals (0.69 deaths/100,000, 95% CI: 0, 1.42) in 2030 (Table 7). 
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Predictive mean of age-standardized mortality rates of prostate cancer per 100,000 population 

Year 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 

Male immigrants >10 

14.81 

(0.61) 

14.59 

(0.79) 

14.57 

(0.96) 

14.56 

(1.15) 

14.54 

(1.37) 

14.51 

(1.61) 

14.48 

(1.86) 

14.45 

(2.13) 

14.42 

(2.42) 

14.38 

(2.72) 

Male immigrants ≤10 

9.03 

(2.95) 

8.78 

(3.11) 

8.58 

(3.29) 

8.39 

(3.49) 

8.19(3.69) 8.10(3.89) 7.82(4.11) 7.63(4.31) 7.45(4.51) 7.27(4.72) 

Male locals 

9.54 

(1.40) 

9.66 

(1.57) 

9.67 

(1.66) 

9.69 

(1.77) 

9.72(1.91) 9.75(2.06) 9.78(2.23) 9.82(2.43) 9.86(2.64) 9.9(2.88) 

Male 

immigrants >10(<60y) 

0.57 

(0.12) 

0.52 

(0.17) 

0.51 

(0.19) 

0.50 

(0.21) 

0.49(0.22) 0.48(0.24) 0.47(0.25) 0.46(0.27) 0.45(0.29) 0.44(0.31) 

Male immigrants ≤

10(<60y) 

0.65 

(0.59) 

0.73 

(0.77) 

0.81 

(0.93) 

0.87 

(1.10) 

0.94(1.31) 1.01(1.51) 1.09(1.75) 1.16(2.02) 1.24(2.32) 1.33(2.64) 

Male locals(<60y) 

0.63 

(0.12) 

0.66 

(0.14) 

0.66 

(0.16) 

0.66 

(0.19) 

0.67(0.21) 0.67(0.24) 0.67(0.27) 0.68(0.31) 0.68(0.33) 0.69(0.37) 

Male immigrants >10(≥

60y) 

49.43 

(2.59) 

49.61 

(2.73) 

49.63 

(3.29) 

49.64 

(3.94) 

49.64 

(4.68) 

49.64 

(5.51) 

49.63 

(6.38) 

49.62 

(7.32) 

49.61 

(8.32) 

49.58(9.3

7) 

Male immigrants ≤

10(≥60y) 

28.29 

(9.15) 

27.66 

(9.78) 

26.53 

(10.21) 

25.4 

(10.63) 

24.28 

(11.03) 

23.16 

(11.41) 

22.07 

(11.76) 

21.01 

(12.09) 

19.96 

(12.38) 

18.95(12.

63) 

Male locals(≥60y) 

31.57 

(5.17) 

31.48 

(5.49) 

31.40 

(5.76) 

31.32 

(6.09) 

31.24 

(6.48) 

31.15 

(6.94) 

31.06 

(7.44) 

30.96 

(8.01) 

30.86 

(8.61) 

30.74(9.2

6) 

Table 7. Predictive means and standard deviations (in brackets) of age-standardized mortality 

rates of prostate cancer per 100,000 population for each age group (less than, greater or equal to 

60 years old) and immigrant status from 2022 to 2030. Reported means and standard deviations 

(in brackets) of age-standardized mortality rates in 2021 are also listed. 
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3.5 Discussion 

 

“Early detection of cancer is positive and instructive for increasing chances of cure. 

Nevertheless, the high mortality rate of cancer results from late diagnosis among most 

patients after progression to more advanced or severe stages. Individuals at high risk of 

cancer, such as smokers, alcoholics or those who are frequently exposed to susceptible 

circumstances, should be screened for early detections to increase opportunities for cure 

[103]. Therefore, the differences in mortality rates among immigration groups are 

synonymous with detection means, therapies, and social history in disparate periods 

and areas.”  

“While the changes in mortality rates by age for long-stay immigrants reached 

approximate harmony with those for locals, the changes in mortality rates by age for 

short-stay immigrants revealed clear differences with those for the other two 

populations. The group of long-stay immigrants had a higher risk of death from lung, 

colon and liver cancers than the other two immigration groups after the age of 60 

years. Short-stay male immigrants were less likely to die from lung cancer before the 

age of 65 years. The contrast in age effects among the immigration groups was 

partially consistent with studies [88][104] that highlighted the age effects for locals 

and immigrants on breast cancer mortality in Hong Kong and lung cancer incidence in 

Sweden, as they both showed similar trends and magnitudes between locals and 

immigrants before the age of 60 years. They are also compatible with the results in 

[105] that diagnosis of liver cancer is the most frequent among populations at 55 to 65 

years old. According to these trends, young individuals, especially new young 

immigrant men, who have benefited from all-rounded development in mainland China 

and Hong Kong, are more likely to seek early detection and be treated for cancers 

using more advanced treatments [106]. Differences in birth cohort effects among 

immigrant groups partially comply with the interpretation above.” 



67 

 

 

“We observed significant trends of cohort effects among locals and immigrants. 

These findings are partially consistent but subtly different from previous findings, 

regarding the effect of immigration status on cancers. Zhao et al. [88] described 

multiple peaks of cohort effects on breast cancer mortality between locals and 

immigrants in Hong Kong, as well as a significant decline in cohort effects after 1950. 

In contrast, Sung et al. [107] investigated the difference in breast cancer incidence 

between Chinese Americans and non-Hispanic whites in the U.S. and emphasized that 

Chinese Americans were at lower risk of breast cancer than non-Hispanic whites born 

in the same year. Here, we interpret the cohort-driven trends resulting from the 

intricacy of social history and lifestyle. Compared to a relatively stable social 

development in Hong Kong, representing downward trends of relative risks for locals, 

wars and social instability in mainland China resulted in several immigration waves 

from mainland China to Hong Kong before 1950. Additionally, remarkable increasing 

trends were recorded for new immigrants after 1950, which corresponded to the 

economic downturn after wars and famine between 1959 and 1961 during their 

youth[108].”  

“The increasing trends for new immigrants and similar trends for locals and long-

stay immigrants were consistent with the finding that nutrient deficiency contributes 

to a higher risk of severe mortality rates of cancers [109]. Furthermore, we speculate 

that these trends, especially those for locals and long-stay immigrants, are most likely 

attributed to social development and personal behaviors, such as daily habits, 

occupational history, different diagnoses and treatments, and domestic environmental 

exposures. Notably, short-stay immigrants suffered from a lower risk of death from 

colon cancer for all ages (Figure 4c). As locals and immigrants in Hong Kong 

transitioned to more westernized lifestyles, higher consumption of meat was 

associated with a higher risk of these types of cancer, whereas consumption of 

vegetables had a strong protective effect against pancreatic cancer, and moderate 

consumption of coffee appeared to be beneficial against lung cancer [109][110]. 
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Further studies on potential risk factors are required.” 

“Short-stay immigrants had more fluctuating and non-stationary but 

inconspicuous relative risks by period effects before 2021 than locals and long-stay 

immigrants. Cumulatively, an arch pattern and fluctuating curve depicting period 

effects externally resulted in an arch pattern of age-standardized mortality rates for 

short-stay immigrant women and irregular rates for short-stay immigrant men before 

2021. The external performance of different period effects on mortality rates could be 

most likely attributed to the higher effect of different lifestyles and social 

development on new immigrants than on long-stay immigrants and locals in Hong 

Kong. For the age-standardized mortality rates and projections, consistent with 

previous findings [111][112], we predict that the mortality rates of cancer in Hong 

Kong after 2021 will continue to decline or remain relatively stable, consistent with 

the trends before 2020, except for male immigrants who have stayed in Hong Kong 

for ≤10 years with colon cancer and male immigrants who have stayed in Hong Kong 

for >10 years with pancreatic cancer. Men will be at higher risk of mortality rates of 

cancer than women, regardless of immigration status. They are also compatible with 

the results in [113] that men suffer from a higher risk of these types of cancer than 

women, excluding prostate cancer. Furthermore, new immigrant women will be at 

lower risk than local women, even though long-stay immigrants will suffer from 

higher mortality rates than locals in the future. Potential interpretations could be 

consistent with those for birth cohort effects, as age and period effects are considered 

as confounders of cohort effects.” 

“In the past few decades, spurred by an increasing burden of high incidence and 

mortality rates of cancer, several studies focused on the inherent identification 

dilemma of three effects in the APC model. Further, complicated population 

distribution and immigration status in Hong Kong, one of the areas with the highest 

population density and migration frequency in the world, have intricate causes and 

inherent dynamics of cancer and other diseases. To our knowledge, few studies have 

assessed the relationship between immigration status and cancer mortality. Therefore, 
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this study is original to examine the effect of the length of stay in Hong Kong and 

origins of previous residence on cancer deaths, which is instructive for further 

immigration policy-making and targeted strategies of disease detection and 

intervention. However, this study had several limitations. Given the non-identifiability 

problem in age-period-cohort models, we could only depict trends and variations 

among different immigration and sex groups, as illustrated in figures, and 

insufficiently perform the estimates of the contributions of three effects or subgroups 

to mortality rates. Furthermore, we adopted a cubic smoothing spline to estimate 

populations of immigrants and locals due to the large proportion of unspecified 

immigration status from official demographic projections. A few acceptable cases 

resulted in a limited type of cancer so that some common cancers, such as the ovary 

and cervix, were discarded. Since the issue of quantification, the future perspective of 

cancer therapies and techniques have not been considered in the model of projection.” 

To explore the relationship between immigration groups and cancer mortality, this 

study aimed to explore age, period, birth cohort effects and effects across genders and 

immigration groups on mortality rates of lung, pancreatic, colon, liver, prostate and 

stomach cancers and their projections. Death registry data in Hong Kong between 1998 

and 2021, which were stratified by age, sex and immigration status. Immigration status 

was classified into three groups: locals born in Hong Kong, long-stay immigrants and 

short-stay immigrants. Age-period-cohort analysis was used to examine age, period, 

and birth cohort effects for genders and immigration groups from 1998 to 2021. 

Bayesian age-period-cohort models were applied to predict the mortality rates from 

2022 to 2030. Short-stay immigrants revealed pronounced fluctuations of mortality 

rates by age and of relative risks by cohort and period effects for six types of cancers 

than those of long-stay immigrants and locals. Immigrants for each type of cancer and 

gender will be at a higher mortality risk than locals. After 2021, decreasing trends 

(p<0.05) or plateau (p>0.05) of forecasting mortality rates of cancers occur for all 

immigration groups, except for increasing trends for short-stay male immigrants with 

colon cancer (p<0.05, Avg +0.30 deaths/100,000 per annum from 15.47 to 18.50 
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deaths/100,000) and long-stay male immigrants with pancreatic cancer (p<0.05, Avg 

+0.72 deaths/100,000 per annum from 16.30 to 23.49 deaths/100,000). 

“We conclude that immigrants, especially short-stay immigrants, had more 

pronounced fluctuations of mortality rates by age and of relative risks by cohort and 

period effects for six types of cancers than those of long-stay immigrants and locals. 

Male immigrants who have stayed in Hong Kong for ≤10 years with colon cancer and 

male immigrants who have stayed in Hong Kong for >10 years with pancreatic cancer 

would perform significant uptrend in the future, while other immigration groups for 

each type of cancer would continue to decline or remain relatively stable. Immigrants 

for each gender in Hong Kong would suffer from higher mortality risks of cancers 

than locals in the future.” 

The conclusions that immigrants, males, and elders would face higher mortality 

risks from cancer compared to local populations carries profound implications for 

public health interventions and healthcare planning moving forward. Specific 

interventions are required to reduce disparities in cancer outcomes among these 

vulnerable groups, involved with tailored screening programs to facilitate early 

detection, culturally sensitive health education campaigns to promote awareness to 

precaution, and improved access to quality healthcare services for immigrants, males, 

and older individuals. Addressing underlying social determinants of health, such as 

language barriers, socioeconomic status, and healthcare access disparities, will be 

crucial in mitigating the projected higher mortality rates from cancer in these 

populations. By prioritizing specific strategies and fostering inclusivity in healthcare 

delivery, we could reach to equal opportunities of optimal healthcare of cancers and 

other chronic diseases for every individual regardless of culture or background. 

However, we could also realize some weaknesses of INLA as the Bayesian APC 

model based on INLA was applied to the data of chronic disease. Although INLA has 

brought out high efficiency and accuracy when processing complex models, there are 

still some limitations [22]. For example:  
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1). Strict model assumptions: assumptions of INLA about the model are strict, which 

requires the properties of model should be parallel with those of Gaussian Markov 

random fields, so that it is not suitable for all types of models.   

2). Complexity on parameter selection: There are many parameters which need to be 

selected in INLA, including improper selection of grid size, number of nodes, etc. They 

may lead to inaccurate results. 

3). Requirements for data size: INLA has high requirements for data size. If the sample 

size is too small, the inference results may be unreliable. 

Therefore, the performance of MCMC and INLA in epidemiology has triggered 

our curiosity and it’s expounded in detail in chapter 4.  
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4. Performance of MCMC and INLA 

 

4.1 Introduction 

 

Methods derived from Bayesian inference have been increasingly worth heeding 

on parameter estimation and modeling in epidemiology. As two representative 

methods of Bayesian inference, MCMC and INLA perform different effectiveness and 

accuracy on model fitting for different types of data, and also reveal different 

advantages and disadvantages. With various circumstances, which method or 

assumption is more appropriate to adopt to obtain robust and reliable results has 

already been a worthy topic in modeling of epidemiology. 

Unlike traditional uniform sampling, Markov chain Monte Carlo sampling adjusts 

the proposed sampling distribution function to approach the objective function, which 

reveals that sampling from the proposed distribution is equivalent to sampling the 

objective function. MCMC is an attractive method for Bayesian inference due to its 

flexibility and versatility. Any target distribution can be handled without the need for 

analysis or numerical integration, as long as the density or likelihood function can be 

evaluated. Furthermore, MCMC is robust and consistent, and does not rely on 

assumptions or approximations about the target distribution. Additionally, given 

enough samples and time, convergence to the true posterior distribution is guaranteed. 

Additionally, MCMC is easy to implement and use, and there are many packages and 

libraries available for different languages and platforms. It can also be customized and 

expanded to suit your individual needs and preferences. 

However, MCMC is not a foolproof solution for Bayesian inference and has some 

challenges and limitations that should be addressed [23]. For example, it can be slow 

and inefficient, taking a long time and many samples to reach convergence and obtain 

accurate estimates. It can also be tricky and deceptive, producing misleading or 
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erroneous results if the right algorithm, parameters, or samples are not chosen. 

Additionally, MCMC can be complex and confusing, involving many technical details 

that are not intuitive or familiar [27]. To combat these issues, we may need to optimize 

your algorithm, use parallel computing, monitor and diagnose your MCMC, use 

multiple chains, compare different algorithms, learn the theory and practice of MCMC, 

and understand the specificities of your problem and model. 

Compared to MCMC, INLA transforms the Bayesian inference problem into an 

approximation problem of solving Gaussian Markov random fields by decomposing 

parameters into fixed effects and random effects and exploiting the properties of 

Gaussian Markov random fields. Compared to some traditional Bayesian inference 

methods such as MCMC, INLA has emerged high computational efficiency, since 

INLA uses the Laplace approximation method, which avoids the large number of Monte 

Carlo sampling required in traditional methods, with lower computation consumptions 

[66]. Furthermore, with high computational efficiency, the posterior distribution is more 

accurately approximated, so more accurate inference can be obtained. Additionally, 

INLA can also be applied to a variety of different models, including linear models, 

generalized linear models, and some nonlinear models, etc. 

However, we could also realize some weaknesses of INLA as the Bayesian APC 

model based on INLA was applied to the data of chronic disease in chapter 3. Although 

INLA has brought out high efficiency and accuracy when processing complex models, 

there are still some limitations. For example [63]:  

1). Strict model assumptions: assumptions of INLA about the model are strict, which 

requires the properties of model should be parallel with those of Gaussian Markov 

random fields, so that it is not suitable for all types of models.   

2). Complexity on parameter selection: There are many parameters which need to be 

selected in INLA, including improper selection of grid size, number of nodes, etc. They 

may lead to inaccurate results. 

3). Requirements for data volume: INLA has high requirements for data size. If the 
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sample size is too small, the inference results may be unreliable. 

 

 

4.2 Objective 

 

With data of chronic diseases in last chapter, projections of cancer mortality based 

on MCMC Bayesian APC model are performed. As what have been mentioned in 

chapters above regarding strengths and weaknesses of MCMC and INLA with 

different types of data, the contrast of performance of them is demonstrated in this 

chapter to determine the superior method based on different criteria by evaluating 

their performance of 10-year retrospective projections. 

 

 

 

4.3 Data and methods 

 

4.3.1 Data 

Similar death registry data from the Census and Statistics Department of Hong 

Kong was applied again, related to six types of cancer: lung cancer, colon cancer, liver 

cancer, stomach cancer, pancreatic cancer for males and females and prostate cancer 

for males, to adopt MCMC sampling in this chapter. Beside the introduction of dataset 

in last chapter, more preprocessing of data was considered in this chapter for MCMC. 

The predictive means of age-standardized cancer mortality rates for each sex and 

migrant status, taking into account age, period, and birth cohort effects, were calculated 

based on the weights of population age groups from the WHO World Standard 

population [102]. With the demography of mortality rates of six types of cancer from 
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1998 to 2021, the evaluation of projection performance between MCMC and INLA in 

Bayesian APC model is to compare the quantities of retrospective projection of 

different genders, immigration groups and types of cancer in 10 years from 2012 to 

2021. 

With data of transmission clusters of COVID-19 in Chapter 2, estimations of 

transmission potential and heterogeneity based on INLA are excluded in the main 

body due to unreliable performances. One potential cause is lack of samples for INLA 

estimation as 545 infectee-infector transmission pairs were constructed. The posterior 

distributions of the effective reproduction numbers and dispersion parameters for each 

contact setting can be approximated with integrated nested Laplace approximations by 

applied the INLA package. More details can be found in Appendices A4. 

 

   

4.3.2 Methods 

 

Recall Equation 9 in chapter 3.3.2, a linearized APC model can be rewritten as  

      (12) 

Beside other definition of notations in formula 10 and 11, to set up the assumption of 

identification issue in APC model, we assume that  

                 (13) 

where  denoted as undetermined scale to combine with true unknow linear effects 

,  and . This scale can be considered in maximum likelihood estimation in 

APC model. Assume ,  and  as age, period and 

cohort group, respectively, and the asterisk ,  and  are the midpoint of the 
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range of age, period and cohort group. Similarly, th age effect can be represented as 

an overall linear age effect with th non-linear age effect as  

with  [114]. Other notations of period and cohort effects are similar 

above. Furthermore, the model and prior distribution for estimation in Bayesian APC 

can be specified from equation 12 as follows. 

    (14) 

                                                 (15) 

                                           (16) 

                              (17) 

                            (18) 

In Equation 14, ,  and  are regarded as linear effects and ,  

and   are non-linear. Estimation in Bayesian inference, such as MCMC, can be 

adopted with the likelihood model (Equation 14) and the prior distributions of model 

parameters (Equation 15-18) [115]. Laplace distribution is regarded as the prior 

distribution of high degree polynomials, since there is a spiked concentration closed to 

zero. It’s also equivalent to the constraining of sum of zero (Equation 10). The 

estimations of the Bayesian APC model based on MCMC can be attained with the 



77 

 

package BAMP [116] and those based on INLA can be attained with the BAPC package 

[100]. The main idea of performance contrast is to build up 10-year retrospective 

projections and true value from 2012 to 2021 with criteria expounded below. 

 

 

 

Proper scoring rule 

 

Proper score rule is adopted to evaluate the probabilistic forecast performance of 

two methods. The scoring rule is often used to score the effectiveness of prediction of 

an event. The proper scoring rule is defined that, when designing the scoring rule, we 

generally expect that the model of forecast can get higher score only when it honestly 

produces true view of the event [117]. In other words, for a proper score, the 

forecaster maximizes the expected reward if forecasts are consistent with the true 

distribution. It’s often assumed that all forecasters own the prior knowledge of the 

predicted event in real life, and they can obtain more information and thus have 

corresponding posterior knowledge with one more step of forecast [117]. Intuitively, 

the rule designer would want people to be able to obtain a posterior knowledge and 

report it honestly. However, for some common scoring rules, there are some scenarios 

where whether the answer is a posteriori knowledge with little impact on the final 

score. Therefore, the predictors have no motivation for one more step and are only 

satisfied with the answers based on a prior distribution. 

Continuous Ranked Probability Score (CRPS) is the criterion, quantifying the 

contrast between the observed value and theoretical value of continuous probability 

distribution. It often be applied as the loss function or the criteria of evaluating 

function of a probabilistic model, which can be adopted in real-life problems such as 

probabilistic weather forecasting and error analysis [118]. As an evaluation function, 
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the results obtained by evaluating the probability model based on CRPS are 

equivalent to the results from evaluating the expectations of the probability model 

based on mean absolute error [118][119]. As the description of data in chapter 4.3.1 

and 3.3.1, we assume  as observed counts of deaths aged at  in year , then 

CPRS for the th forecast is  

           (19) 

where  and  are the mean and standard deviation of predictive distribution, 

and  and  are the distribution and density function of normal distribution, 

respectively. CRPS can be regarded as the integral of the square of the difference 

between the cumulative distribution function and the step function in the real number 

domain, so it’s equivalent to the generalization of the mean absolute error (MAE) on 

the continuous probability distribution [118]. That is, if , CRPS can reduce to 

absolute error (AE) as 

                (20) 

To evaluate the performance of retrospective projections, we applied  and 

MAE , which are the mean  and  of age standardized projection for 

all periods, respectively. Smaller values of them indicate less differences between 

theoretical values and observed values and better performance of retrospective 

projection. 

Another calibration test based on CRPS was adopted with the test statistic [120] 

                         (21) 
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where  and  are the mean and variance of CRPS under the null hypothesis 

of expected calibration. For computation convenience, the retrospective projections 

are approximately independent among different age groups, so that the statistic is 

standard normally distributed. Lower p-value indicate more significant dispersion 

among projection and the observed value. 

 

 

 

4.4 Results 

Figure 9 and eFigure 7-11 in Appendices A5 illustrate the contrast of 

performance on retrospective projections of six types of cancer based on INLA and 

MCMC as well as observed deaths for immigration groups and genders from 2012 to 

2021. Additionally, Table 8 and eTable 2-6 state the contrast criteria, such as mean 

absolute error, mean of CRPS, statistic and corresponding p-value of retrospective 

projections performance between inference methods and observations. Two methods 

expound significant projection performance (p-values >0.05) on both genders and 

most of immigration groups, except for: 1. Lung cancer: MCMC for short-stay males 

(p-value=0.01); 2. Colon cancer : MCMC for short-stay females (p-value=0.04), 

INLA and MCMC for short-stay males (p-value=0.01/0.01), and MCMC for local 

males (p-value=0.02); 3. Liver cancer: INLA for short-stay females (p-value=0.03); 4. 

Stomach cancer: INLA and MCMC for short-stay males (p-value< 0.01 and =0.01).  

Furthermore, most of 10-year retrospective projections based on INLA indicate 

less dispersions with observations than those based on MCMC and outperform in 

most of types of cancer and immigration groups, except for some circumstances such 

as 1. Liver cancer (eFigure 8, eTable 3): short-stay females (p-value: INLA 0.03 vs. 

MCMC 0.17); 2. Stomach cancer (eFigure 10, eTable 5): short-stay females (p-value: 

INLA 0.14 vs. MCMC 0.18) and short-stay males (p-value: INLA <0.01 vs. MCMC 

0.01); 3. Prostate cancer (eFigure 11, eTable 6): long-stay males (p-value: INLA 0.80 
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vs. MCMC 0.86) and short-stay males (p-value: INLA <0.44 vs. MCMC 0.52). Lack 

of data can be potential reason since INLA requires large sample size.  

 

INLA estimates for short-stay males with stomach cancer indicates the most 

significant dispersions with observations and performs the worst projections (p-

value< 0.01), while MCMC for long-stay males with prostate cancer performs the 

best simulation (p-value = 0.86). Both techniques for long-stay immigrants state better 

performance on the retrospective projection than those for short-stay immigrants, 

regardless of types of cancer and genders. 
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Figure 9. Contrast of retrospective projections of lung cancer mortality between INLA and 

MCMC as well as observed deaths for immigration groups and genders from 2012 to 2021  
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Contrast of retrospective projections performance of lung cancer between INLA and MCMC  

        

Methods 

 

Immigration 

INLA MCMC 

        

Female 

immigrants >10 

14.86 13.46 0.66 0.51 18.97 14.22 0.92 0.32 

Female immigrants 

≤10 

20.25 18.81 -1.33 0.27 21.27 18.20 1.77 0.08 

Female locals 21.21 17.22 0.84 0.40 27.88 20.52 1.42 0.16 

Male 

immigrants >10 

20.70 17.52 1.44 0.15 24.33 17.27 1.62 0.10 

Male immigrants 

≤10 

31.51 24.72 1.76 0.08 41.02 32.33 -2.56 0.01 

Male locals 25.67 17.88 1.52 0.11 27.04 20.84 1.94 0.05 

Table 8. Contrast of retrospective projections performance of lung cancer between INLA and 

MCMC for different immigration groups and genders. Mean absolute error, mean of CRPS, 

statistic and corresponding p-value are listed. 
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4.5 Discussion  

Through the simulation study on the contrast of MCMC and INLA, the 

performance of INLA on retrospective projection is approximately equivalent to, or 

even more significant than that of MCMC, with less MAE, less mean CRPS and 

higher p-value of calibration test in most of immigration groups for each gender and 

type of cancer. Firstly, as two methods expound significant projection performance (p-

values >0.05) on both genders and most of immigration groups, the reason can be the 

merits of them. The flexibility of MCMC and INLA allows sampling from complex 

probability distributions by constructing Markov chains or Gaussian Markov random 

fields, handling a wide range of models. 

Secondly, most of 10-year retrospective projections based on INLA indicate less 

dispersions with observations than those based on MCMC and outperform in most of 

types of cancer and immigration groups. It consistent with the superiority of INLA of 

its higher computational efficiency and accuracy. As it approximates the posterior 

distribution into an analytical form of distribution and avoids the large number of 

Monte Carlo sampling required in traditional Bayesian inference, the posterior 

distribution is more accurately approximated, so more accurate inference can be 

obtained. With lower computation consumptions, the accuracy of INLA also 

outperforms MCMC for large-scale data analysis and specific models. The choice of 

posterior distributions and convergence issues from MCMC can result in higher 

dispersions of projections than those obtained based on INLA. 

In general, MCMC is more universal for all types of data and can theoretically 

work on all models. However, it requires researchers to be very proficient in MCMC 

theorems and hyperparameters. It’s crucial to select and design appropriate sampler, 

since the effectiveness of convergence would be extremely low with some complex 

models, such as spatial models, and extremely huge data size. Therefore, MCMC can 

only be adopted theoretically in large-scale data analysis. Even though INLA can only 

be applied for Latent Gaussian models, Latent Gaussian models also cover many 
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aspects of models and have been considered as vast quantities of inference techniques, 

such as spatial models, time models and spatial-time models, as substitutes of 

MCMC. The efficiency of computation and inference accuracy of INLA could also be 

more satisfactory than those of MCMC. However, some weaknesses and unexpected 

performance on projection based on INLA have also been revealed.   

On the other hand, a minority of projections have also presented significant 

dispersions with the observed mortality rate, and retrospective projections based on 

INLA have also indicate higher dispersions with observations than those based on 

MCMC for some specific circumstances. The potential causes could be the complexity 

on parameter selection and requirements for data size for INLA. There are many 

parameters which need to be selected in INLA, including improper selection of grid 

size, number of nodes, etc. They may lead to inaccurate results, and INLA has high 

requirements for data size. If the sample size is too small, the inference results may be 

unreliable. They are comparable with the outcome that most of insignificant projections 

and higher dispersions from INLA occur in short-stay immigration group which sample 

size is relatively less than the other two groups.  
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5. Conclusion and Future Research 

 

Epidemiological studies have shed light on the risk factors associated with the 

outcomes of infectious and chronic diseases, such as severe COVID-19 infections and 

cancer mortality. Advanced age and the presence of underlying health conditions, such 

as immigration status and coordination of other diseases, have been consistently 

identified as significant risk factors for severe illness and mortality. We have also 

recognized the disproportionate impact of COVID-19 on marginalized communities, 

different mobile index and contact settings, who often face social and economic 

disparities that contribute to increased vulnerability. 

To estimate the spread of COVID-19 and inform public health responses, we 

have employed Bayesian models based on MCMC that incorporate various factors, 

such as population demographics, mobility patterns, and contact settings. These 

models have helped guide decision-making regarding the implementation of non-

pharmaceutical interventions like lockdowns, travel restrictions, and school closures. 

Furthermore, epidemiological modeling has played a critical role in predicting 

healthcare system capacity requirements and evaluating the potential impact of 

vaccination campaigns. The modeling technique proved the flexibility of MCMC for 

short-term infectious data. “In conclusion, the early COVID-19 epidemics in Japan 

demonstrated a significant potential of superspreading. Particularly, the school, health 

care facility and community had relatively higher potential of superspreading when 

compared to other contact settings. The different potential of superspreading in 

contact settings highlights the need to continuously monitoring the transmissibility 

accompanied with the dispersion parameter, to timely identify high risk settings 

favoring the occurrence of SSE.” 

INLA is widely used in Bayesian inference problems in various fields. Compared 

to MCMC, we emphasize the performance of INLA based on a MCMC-free Bayesian 

APC prediction model to assess the effect of immigration on cancer mortality, as well 
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as the effects of age, period and cohort, for long-term chronic disease data. We 

conclude that immigrants, especially short-stay immigrants, had more pronounced 

fluctuations of mortality rates by age and of relative risks by cohort and period effects 

for six types of cancers than those of long-stay immigrants and locals. Male 

immigrants who have stayed in Hong Kong for ≤10 years with colon cancer and male 

immigrants who have stayed in Hong Kong for >10 years with pancreatic cancer 

would perform significant uptrend in the future, while other immigration groups for 

each type of cancer would continue to decline or remain relatively stable. Immigrants 

for each gender in Hong Kong would suffer from higher mortality risks of cancers 

than locals in the future.” 

Through the simulation study on the contrast of MCMC and INLA, the 

performance of INLA on retrospective projection is approximately equivalent to, or 

even more robust than that of MCMC. Generally, MCMC is more universal for all types 

of data and can theoretically work on all models. However, it requires researchers to be 

very proficient in MCMC theorems and hyperparameters. It’s crucial to select and 

design appropriate sampler, since the effectiveness of convergence would be extremely 

low with some complex models, such as spatial models, and extremely huge data size. 

Therefore, MCMC can only be adopted theoretically in large-scale data analysis. Even 

though INLA can only be applied for Latent Gaussian models, Latent Gaussian models 

also cover many aspects of models and have been considered as vast quantities of 

inference techniques, such as spatial models, time models and spatial-time models, as 

substitutes of MCMC. The efficiency of computation and inference accuracy of INLA 

could also be more satisfactory than those of MCMC. However, some weaknesses and 

unexpected performance on projection based on INLA have also been revealed. Higher 

dispersions and worse performance of INLA in some special cases are consistent with 

the conclusion of lack of samples.  

To estimate the spread of COVID-19 and inform public health responses, we have 

employed Bayesian models based on MCMC with contact tracing data in Japan. 

Compared to MCMC, we emphasize the performance of INLA based on a MCMC-free 
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Bayesian APC prediction model to assess the effect of immigration on cancer mortality 

with death registry data in Hong Kong. The research findings and conclusions can be 

extended to other countries and regions with similar methods. What we may concentrate 

more on could be certain circumstances, and we would adjust our models of different 

population. For instance, we are able to observe the superspreading and heterogeneity 

of infectious diseases in China, and effect of immigration on cancer mortality in the US 

after rearranging datasets and adjusting assumptions of models for different populations. 

Meanwhile, it would be also logical that discussions of different culture, demography 

and history are essential, since we may figure out different results between Japan, China, 

Hong Kong and the US.       

The development of the Bayesian method in recent years is inseparable from the 

contribution of modern computer techniques, as the computing power have been more 

and more powerful. The Monte Carlo method and INLA have presented in majority of 

software and program libraries, especially Stan. The latest version of Stan has been 

already expressive with large-scale parallelism and computation based on MCMC, 

which is very helpful to promote Bayesian theory and applications [121]. Therefore, 

more researches of Bayesian inference on Stan could be potential appealing issue to 

obtain more robust and accurate analysis in the future.  

Issues of measurement errors and missing data have been arousing our interests on 

the development of some frameworks of probabilistic programming, such as Stan, and 

the application of them for Bayesian inference. As what have been demonstrated by the 

authors of WinBUGS [13], Bayesian methods are eligible and universal in dealing with 

issues and data from uncertain sources. Particularly, some popular multiple 

interpolation methods for missing data have been developed within Bayesian paradigm, 

and they can be regarded as approximation for full Bayesian analysis. Therefore, the 

improvement of accuracy and speed of Bayesian inference, such as more accurate 

interpolation methods for missing data within Bayesian paradigm, could be prospective 

in future work.    
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Appendices 

A1. Convergence diagnostic 

 

eFigure 1. Gelman–Rubin convergence diagnostic with 100,000 iterations and 20,000 burn-in 
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A2. Missing data imputation of immigrants population for each year 

Objective 

Obtain hk population stratified by age (1-100+), gender and birthplace (hk/mainland) 

Source 

1. https://www.bycensus2016.gov.hk/tc/bc-mt.html?search=A118 

2. https://www.censtatd.gov.hk/tc/EIndexbySubject.html?scode=17

0&pcode=D5211101 

3. https://www.censtatd.gov.hk/tc/web_table.html?id=1B# 

Method 

Step 1 

Firstly, we combined data from three sources. For year 2001, 2006 ,2011, 2016, We have 

complete data for age groups ranged 0-100+ [1,2]. As for other years we used data for the age 

group ranged 0-85+ [3]. 

rm(list=ls()) 

sample.year <- c(2001, 2006, 2011, 2016) 

all.year <- c(1995:2020) 

spar <- 0.125 

Male group 

matrix_male <- read.csv("age_matrix_male.csv", header =T) 

rownames(matrix_male) <- matrix_male[,1] 

matrix_male <- matrix_male[,-1] 

matrix_male[,-c(7,12,17,22)] <- matrix_male[,-c(7,12,17,22)] * 1000 

colnames(matrix_male) = paste("year.", all.year, sep = "") 

rownames(matrix_male) = paste("age.", c(0:100), sep = "") 

Female group 

matrix_female <- read.csv("age_matrix_female.csv", header =T) 

rownames(matrix_female) <- matrix_female[,1] 

matrix_female <- matrix_female[,-1] 

matrix_female[,-c(7,12,17,22)] <- matrix_female[,-c(7,12,17,22)] * 1000 

colnames(matrix_female) = paste("year.", all.year, sep = "") 

rownames(matrix_female) = paste("age.", c(0:100), sep = "") 
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Step 2 

Then we use cubic smoothing spline to fill the missing values. (refer to year 2001, 2006 ,2011, 

2016) 

spline.fun <- function(input){ 

  smooth.func <- smooth.spline(x = sample.year, 

                               y = input[c(7,12,17,22)] %>% log(), spar = spar) 

  age.pred <- predict(smooth.func, all.year)$y %>% exp() %>% round() 

  age.pred[which(age.pred<0)] <- 0 

  return(age.pred) 

} 

matrix_female[86:101,] <- apply(matrix_female[86:101,], 1, spline.fun) %>%  

  t() %>% as.data.frame() 

matrix_male[86:101,] <- apply(matrix_male[86:101,], 1, spline.fun) %>%  

  t() %>% as.data.frame() 

Step 3 

In this step, we are going to extend the data to year 1995-2020 and age ranged 0-100+. This part 

of code is largely consistent with the original code in the preprocess file. 

Read in data (population stratified by birthplace, age and gender). 

## read data 

hk.source.data.1996 = read_excel("birth_place_age_gender_1996.xlsx") 

hk.source.data.2001 = read_excel("birth_place_age_gender_2001.xlsx") 

hk.source.data.2006 = read_excel("birth_place_age_gender_2006.xlsx") 

hk.source.data.2011 = read_excel("birth_place_age_gender_2011.xlsx") 

hk.source.data.2016 = read_excel("birth_place_age_gender_2016.xlsx") 

Define the extending function and sample years 

trans.age.range = function(source.data = the.data, year = year){ 

  # Female: 4-5 

  if(gender=="F"){ 

    age.info = matrix_female 

    this.data = source.data[,c(4:5)] %>% as.data.frame 

    #print("F") 

  }  

  # Male: 2-3 

  if(gender=="M"){ 

    age.info = matrix_male 

    this.data = source.data[,c(2:3)] %>% as.data.frame 

    #print("M") 

  }  
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  this.age.info = c(age.info[,(year-1995+1)]) 

  the.length = dim(source.data)[1] 

  ## 

  temp.index = NULL 

  temp.list = NULL 

  temp.sum = NULL 

  temp.prop = NULL 

  temp.data = NULL 

  data.matrix = matrix(data = NA, nrow = length(this.age.info),  

                       ncol = dim(this.data)[2]) 

  for(j in 1:the.length){ 

    temp.index = c((j*5-4):(j*5)) 

    if(j == the.length) 

      temp.index = c((j*5-4):(101)) 

    # 

    temp.list = this.age.info[temp.index] 

    temp.list = c(unlist(temp.list)) 

    temp.sum = sum(temp.list) 

    temp.prop = temp.list/temp.sum 

     

    # 

    temp.data = this.data[j,1]*temp.prop 

    data.matrix[temp.index,1] = temp.data 

    temp.data = this.data[j,2]*temp.prop 

    data.matrix[temp.index,2] = temp.data 

  } 

  colnames(data.matrix) = paste(c("HongKong.", "OtherCN."), year, sep = "") 

  rownames(data.matrix) = paste("age.", c(0:100), sep = "") 

  return(data.matrix) 

} 

 

sample.year <- c(1996, 2001, 2006, 2011, 2016) 

Extended female group first 

gender = "F" 

Extend population to all age groups (0-100+), referring to the age proportion provided by 

the matrix_female data. 

## make the matrix 

hk.local.matrix = matrix(data = NA, nrow = 101, ncol = length(sample.year)) 

hk.immigrant.matrix = matrix(data = NA, nrow = 101, ncol = length(sample.year)) 

 

# 1996 
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temp.matrix = trans.age.range(source.data = hk.source.data.1996,year = 1996) 

hk.local.matrix[,1] = temp.matrix[,1] 

hk.immigrant.matrix[,1] = temp.matrix[,2] 

 

# 2001 

temp.matrix = trans.age.range(source.data = hk.source.data.2001, year = 2001) 

hk.local.matrix[,2] = temp.matrix[,1] 

hk.immigrant.matrix[,2] = temp.matrix[,2] 

 

# 2006 

temp.matrix = trans.age.range(source.data = hk.source.data.2006, year = 2006) 

hk.local.matrix[,3] = temp.matrix[,1] 

hk.immigrant.matrix[,3] = temp.matrix[,2] 

 

# 2011 

temp.matrix = trans.age.range(source.data = hk.source.data.2011, year = 2011) 

hk.local.matrix[,4] = temp.matrix[,1] 

hk.immigrant.matrix[,4] = temp.matrix[,2] 

 

# 2016 

temp.matrix = trans.age.range(source.data = hk.source.data.2016, year = 2016) 

hk.local.matrix[,5] = temp.matrix[,1] 

hk.immigrant.matrix[,5] = temp.matrix[,2] 

Extend population to all years (1995-2020), using cubic smoothing spline. 

## start loop for the local 

temp.age.data = NULL 

processed.hk.local.matrix = matrix(data = NA, nrow = 101, ncol = length(all.year)) 

#dim(processed.hk.local.matrix) 

#      i = 2 

for(i in 1:101){ 

  temp.age.data = c((unlist(hk.local.matrix[i,c(1:5)]))) 

  temp.smooth.func = smooth.spline(x = sample.year,  

                                   y = temp.age.data %>% log(), spar = spar) 

  temp.age.pred = predict(temp.smooth.func, all.year)$y %>% exp() %>% round() 

  temp.age.pred[which(temp.age.pred<0)] <- 0 

  # 

  processed.hk.local.matrix[i,] = temp.age.pred 

} 

colnames(processed.hk.local.matrix) = paste0("y", all.year) 

rownames(processed.hk.local.matrix) = c(1:101) 

processed.hk.local.matrix = as.data.frame(processed.hk.local.matrix) 

#  check plot 
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plot(all.year, colSums(processed.hk.local.matrix)) 

 

 

## for the other Chinese 

# 

temp.age.data = NULL 

processed.hk.immigrant.matrix = matrix(data = NA, nrow = 101, ncol = length(all.year)) 

#dim(processed.hk.immigrant.matrix) 

#      i = 2 

for(i in 1:101){ 

  temp.age.data = c((unlist(hk.immigrant.matrix[i,c(1:5)]))) 

  temp.smooth.func = smooth.spline(x = sample.year, y = temp.age.data, spar = spar) 

  #temp.smooth.func$y 

  temp.age.pred = predict(temp.smooth.func, all.year)$y %>% round() 

  temp.age.pred[which(temp.age.pred<0)] <- 0 

  # 

  processed.hk.immigrant.matrix[i,] = temp.age.pred 

} 

colnames(processed.hk.immigrant.matrix) = paste0("y", all.year) 

rownames(processed.hk.immigrant.matrix) = c(1:101) 

processed.hk.immigrant.matrix = as.data.frame(processed.hk.immigrant.matrix) 

#  check plot 

plot(all.year, colSums(processed.hk.immigrant.matrix)) 
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## 

female.hk <- processed.hk.local.matrix 

female.cn <- processed.hk.immigrant.matrix 

Repeated for male group 

gender = "M" 

Extend population to all age groups (0-100+) 

## make the matrix 

hk.local.matrix = matrix(data = NA, nrow = 101, ncol = length(sample.year)) 

hk.immigrant.matrix = matrix(data = NA, nrow = 101, ncol = length(sample.year)) 

 

# 1996 

temp.matrix = trans.age.range(source.data = hk.source.data.1996,year = 1996) 

hk.local.matrix[,1] = temp.matrix[,1] 

hk.immigrant.matrix[,1] = temp.matrix[,2] 

 

# 2001 

temp.matrix = trans.age.range(source.data = hk.source.data.2001, year = 2001) 

hk.local.matrix[,2] = temp.matrix[,1] 

hk.immigrant.matrix[,2] = temp.matrix[,2] 

 

# 2006 

temp.matrix = trans.age.range(source.data = hk.source.data.2006, year = 2006) 

hk.local.matrix[,3] = temp.matrix[,1] 

hk.immigrant.matrix[,3] = temp.matrix[,2] 

 

# 2011 

temp.matrix = trans.age.range(source.data = hk.source.data.2011, year = 2011) 

hk.local.matrix[,4] = temp.matrix[,1] 
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hk.immigrant.matrix[,4] = temp.matrix[,2] 

 

# 2016 

temp.matrix = trans.age.range(source.data = hk.source.data.2016, year = 2016) 

hk.local.matrix[,5] = temp.matrix[,1] 

hk.immigrant.matrix[,5] = temp.matrix[,2] 

Extend population to all years (1995-2020) 

## start loop for the local 

temp.age.data = NULL 

processed.hk.local.matrix = matrix(data = NA, nrow = 101, ncol = length(all.year)) 

#dim(processed.hk.local.matrix) 

#      i = 2 

for(i in 1:101){ 

  temp.age.data = c((unlist(hk.local.matrix[i,c(1:5)]))) 

  temp.smooth.func = smooth.spline(x = sample.year,  

                                   y = temp.age.data %>% log(), spar = spar) 

  temp.age.pred = predict(temp.smooth.func, all.year)$y %>% exp() %>% round() 

  temp.age.pred[which(temp.age.pred<0)] <- 0 

  # 

  processed.hk.local.matrix[i,] = temp.age.pred 

} 

colnames(processed.hk.local.matrix) = paste0("y", all.year) 

rownames(processed.hk.local.matrix) = c(1:101) 

processed.hk.local.matrix = as.data.frame(processed.hk.local.matrix) 

#  check plot 

plot(all.year, colSums(processed.hk.local.matrix)) 

 

## 
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## for the other chinese 

# 

temp.age.data = NULL 

processed.hk.immigrant.matrix = matrix(data = NA, nrow = 101, ncol = length(all.year)) 

#dim(processed.hk.immigrant.matrix) 

#      i = 2 

for(i in 1:101){ 

  temp.age.data = c((unlist(hk.immigrant.matrix[i,c(1:5)]))) 

  temp.smooth.func = smooth.spline(x = sample.year, y = temp.age.data, spar = spar) 

  #temp.smooth.func$y 

  temp.age.pred = predict(temp.smooth.func, all.year)$y %>% round() 

  temp.age.pred[which(temp.age.pred<0)] <- 0 

  # 

  processed.hk.immigrant.matrix[i,] = temp.age.pred 

} 

colnames(processed.hk.immigrant.matrix) = paste0("y", all.year) 

rownames(processed.hk.immigrant.matrix) = c(1:101) 

processed.hk.immigrant.matrix = as.data.frame(processed.hk.immigrant.matrix) 

#  check plot 

plot(all.year, colSums(processed.hk.immigrant.matrix)) 

 

## 

male.hk <- processed.hk.local.matrix 

male.cn <- processed.hk.immigrant.matrix 

Step 4 create subgroup 

subgroup_ref <- read_xlsx("processed_length_group.xlsx") 

subgroup_ref$num[which(subgroup_ref$num=="-")] <- 0 

subgroup_ref$num <- as.numeric(subgroup_ref$num) 
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for(sex in c("male", "female")){ 

  for(group in c("s", "l")){ 

    assign(paste0("cn.",sex,".",group,".matrix"), NULL) 

    for(i in seq(2001,2016,5)){ 

      #ref_set <- get(paste0(sex,".cn")) 

      ref_set <- get(paste0("matrix_", sex)) 

       

      start <- seq(0,85,5)+1 

      end <- c(seq(4,84,5), 100)+1 

      duration <- end-start+1 

      if(i==2011 & group=="s"){ 

        duration[1] <- sum(duration[1:3]) 

        duration <- duration[-c(2:3)] 

      } 

       

      data.frame(num=ref_set[,grepl(i,names(ref_set))], 

               ind=rep(1:length(duration), times = duration)) %>% 

        group_by(ind) %>% 

        summarise(n=sum(num)) -> temp 

      if(i==2011 & group=="l") temp <- temp[-c(1,2), ] 

     

      subgroup_ref %>% 

        filter(gender==sex, grepl(group, length), year==i) -> temp_group 

       

      temp_pop <- temp_group$num/temp$n 

      if(i==2011 & group=="l") temp_pop <- c(0,0,temp_pop) 

      rep(temp_pop, times = duration) * 

        ref_set[,grepl(i, names(ref_set))] -> temp_pop 

       

      assign(paste0("cn.",sex,".",group,".matrix"),  

             cbind(get(paste0("cn.",sex,".",group,".matrix")), 

                   temp_pop)) 

    } 

  } 

} 

Extend population to all years (1995-2020) 

sample.year <- seq(2001, 2016, 5) 

## start loop for the local 

temp.age.data = NULL 

male.cn.s = matrix(data = NA, nrow = 101, ncol = length(all.year)) 

#      i = 2 

for(i in 1:101){ 

  temp.age.data = c((unlist(cn.male.s.matrix[i,c(1:4)]))) 
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  temp.smooth.func = smooth.spline(x = sample.year,  

                                   y = temp.age.data %>% log1p(), spar = spar) 

  temp.age.pred = predict(temp.smooth.func, all.year)$y %>% expm1() %>% round() 

  temp.age.pred[which(temp.age.pred<0)] <- 0 

  # 

  male.cn.s[i,] = temp.age.pred 

} 

colnames(male.cn.s) = paste0("y", all.year) 

rownames(male.cn.s) = c(1:101) 

male.cn.s = as.data.frame(male.cn.s) 

#  check plot 

plot(all.year, colSums(male.cn.s)) 

 

## 

 

temp.age.data = NULL 

male.cn.l = matrix(data = NA, nrow = 101, ncol = length(all.year)) 

#      i = 2 

for(i in 1:101){ 

  temp.age.data = c((unlist(cn.male.l.matrix[i,c(1:4)]))) 

  temp.smooth.func = smooth.spline(x = sample.year,  

                                   y = temp.age.data %>% log1p(), spar = spar) 

  temp.age.pred = predict(temp.smooth.func, all.year)$y %>% expm1() %>% round() 

  temp.age.pred[which(temp.age.pred<0)] <- 0 

  # 

  male.cn.l[i,] = temp.age.pred 

} 

colnames(male.cn.l) = paste0("y", all.year) 

rownames(male.cn.l) = c(1:101) 

male.cn.l = as.data.frame(male.cn.l) 

#  check plot 
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plot(all.year, colSums(male.cn.l)) 

 

## 

 

### Female 

 

## start loop for the local 

temp.age.data = NULL 

female.cn.s = matrix(data = NA, nrow = 101, ncol = length(all.year)) 

#      i = 2 

for(i in 1:101){ 

  temp.age.data = c((unlist(cn.female.s.matrix[i,c(1:4)]))) 

  temp.smooth.func = smooth.spline(x = sample.year,  

                                   y = temp.age.data %>% log1p(), spar = spar) 

  temp.age.pred = predict(temp.smooth.func, all.year)$y %>% expm1() %>% round() 

  temp.age.pred[which(temp.age.pred<0)] <- 0 

  # 

  female.cn.s[i,] = temp.age.pred 

} 

colnames(female.cn.s) = paste0("y", all.year) 

rownames(female.cn.s) = c(1:101) 

female.cn.s = as.data.frame(female.cn.s) 

#  check plot 

plot(all.year, colSums(female.cn.s)) 
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## 

 

temp.age.data = NULL 

female.cn.l = matrix(data = NA, nrow = 101, ncol = length(all.year)) 

#      i = 2 

for(i in 1:101){ 

  temp.age.data = c((unlist(cn.female.l.matrix[i,c(1:4)]))) 

  temp.smooth.func = smooth.spline(x = sample.year,  

                                   y = temp.age.data %>% log1p(), spar = spar) 

  temp.age.pred = predict(temp.smooth.func, all.year)$y %>% expm1() %>% round() 

  temp.age.pred[which(temp.age.pred<0)] <- 0 

  # 

  female.cn.l[i,] = temp.age.pred 

} 

colnames(female.cn.l) = paste0("y", all.year) 

rownames(female.cn.l) = c(1:101) 

female.cn.l = as.data.frame(female.cn.l) 

#  check plot 

plot(all.year, colSums(female.cn.l)) 



110 

 

 

Since we do not have data in 1996, we need to corrected the spline by previous 

results male.cn and female.cn. 

male.cn.l <- round(male.cn.l/(male.cn.l+male.cn.s)*male.cn) 

female.cn.l <- round(female.cn.l/(female.cn.l+female.cn.s)*female.cn) 

male.cn.s <- round(male.cn.s/(male.cn.l+male.cn.s)*male.cn) 

female.cn.s <- round(female.cn.s/(female.cn.l+female.cn.s)*female.cn) 

 

plot(all.year, colSums(female.cn.l+female.cn.s+male.cn.l+male.cn.s)) 

 

plot(all.year, colSums(female.cn.l+female.cn.s)) 
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plot(all.year, colSums(male.cn.l+male.cn.s)) 

 

plot(all.year, colSums(female.cn.l+male.cn.l)) 

 

plot(all.year, colSums(female.cn.s+male.cn.s)) 
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plot(all.year, colSums(male.cn+female.cn)) 
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A3. Projections of cancer mortality rates for the population by age 

strata 

 

 

eFigure 2(a). Projections of lung cancer mortality rates for the population younger than 60 by gender 

and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive 

distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an 

additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed 

line indicates where prediction started. 
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eFigure 2(b). Projections of lung cancer mortality rates for the population older than 60 by gender and 

immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution 

between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% 

predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates 

where prediction started. 

 

 

 

eFigure 3(a). Projections of colon cancer mortality rates for the population younger than 60 by gender 

and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive 

distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an 
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additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed 

line indicates where prediction started. 

 

 

 

eFigure 3(b). Projections of colon cancer mortality rates for the population older than 60 by gender 

and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive 

distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an 

additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed 

line indicates where prediction started. 
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eFigure 4(a). Projections of liver cancer mortality rates for the population younger than 60 by gender 

and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive 

distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an 

additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed 

line indicates where prediction started. 

 

 

 

eFigure 4(b). Projections of liver cancer mortality rates for the population older than 60 by gender and 

immigrant status from 2022 to 2030. Observations are shown as dots with the predictive distribution 

between the 5% and 95% quantile, whereby each lighter shade of red represents an additional 10% 
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predictive CI. The predictive mean is shown as black solid line and the vertical dashed line indicates 

where prediction started. 

 

 

 

eFigure 5(a). Projections of pancreatic cancer mortality rates for the population younger than 60 by 

gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive 

distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an 

additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed 

line indicates where prediction started. 
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eFigure 5(b). Projections of pancreatic cancer mortality rates for the population older than 60 by 

gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive 

distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an 

additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed 

line indicates where prediction started. 

 

 

 

eFigure 6(a). Projections of stoamch cancer mortality rates for the population younger than 60 by 

gender and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive 

distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an 

additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed 

line indicates where prediction started. 
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eFigure 6(b). Projections of stomach cancer mortality rates for the population older than 60 by gender 

and immigrant status from 2022 to 2030. Observations are shown as dots with the predictive 

distribution between the 5% and 95% quantile, whereby each lighter shade of red represents an 

additional 10% predictive CI. The predictive mean is shown as black solid line and the vertical dashed 

line indicates where prediction started. 
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A4. Contrast of effective reproduction number and dispersion 

parameter between INLA and MCMC 

eTable 1. Contrast of effective reproduction number and dispersion parameter between INLA and 

MCMC under different contact settings. The metrics were summarized as ‘median estimate (95% 

CrI)’ format.  

 

  

 Total Community Household 

 

Healthcare 

facilities 

School Workplace 

 

Reproduction 

number (R) 

with MCMC 

0.561 

(0.496, 

0.640) 

0.107 (0.046, 

0.331) 

0.137 (0.110, 

0.168) 

0.186 (0.079, 

0.409) 

0.088 

(0.028, 

0.295) 

0.080 (0.052, 

0.138) 

Dispersion 

parameter (k)  

with MCMC 

0.221 

(0.186, 

0.262) 

0.004 (0.002, 

0.007) 

0.141 (0.098, 

0.210) 

0.004 (0.002, 

0.006) 

0.002 

(0.001, 

0.005) 

0.019 (0.012, 

0.029) 

Reproduction 

number (R) 

with INLA 

5.440 

(2.712, 

9.343) 

3.389 (1.121, 

4.897) 

0.051 (0.017, 

0.278) 

1.702 (0.832, 

3.880) 

0.064 

(0.020, 

0.337) 

0.238 (0.092, 

0.671) 

Dispersion 

parameter (k)  

with INLA 

0.574 

(0.106, 

0.753) 

0.021 (0.009, 

0.033) 

0.107 (0.068, 

0.334) 

0.316 (0.102, 

0.948) 

0.017 

(0.001, 

0.083) 

0.033 (0.002, 

0.071) 
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A5. Contrast of retrospective projections of cancer mortality between 

INLA and MCMC 

 
eFigure 7. Contrast of retrospective projections of colon cancer mortality between INLA and 

MCMC as well as observed deaths for immigration groups and genders from 2012 to 2021 
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eFigure 8. Contrast of retrospective projections of liver cancer mortality between INLA and 

MCMC as well as observed deaths for immigration groups and genders from 2012 to 2021 
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eFigure 9. Contrast of retrospective projections of pancreatic cancer mortality between INLA and 

MCMC as well as observed deaths for immigration groups and genders from 2012 to 2021 
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eFigure 10. Contrast of retrospective projections of stomach cancer mortality between INLA and 

MCMC as well as observed deaths for immigration groups and genders from 2012 to 2021 
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eFigure 11. Contrast of retrospective projections of prostate cancer mortality between INLA and 

MCMC as well as observed deaths for immigration groups and genders from 2012 to 2021 
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Contrast of retrospective projections performance of colon cancer between INLA and MCMC  

        

Methods 

 

Immigration 

INLA MCMC 

        

Female 

immigrants >10 

6.45 5.04 0.33 0.74 8.67 7.88 1.06 0.29 

Female immigrants 

≤10 

11.30 8.22 1.42 0.16 10.26 9.07 1.99 0.04 

Female locals 8.05 7.87 0.64 0.52 8.80 8.22 0.68 0.50 

Male 

immigrants >10 

9.77 8.91 1.04 0.30 13.73 8.96 1.70 0.09 

Male immigrants 

≤10 

12.51 10.72 -2.50 0.01 21.83 15.48 -2.77 0.01 

Male locals 13.67 10.17 1.66 0.10 20.04 18.21 2.33 0.02 

eTable 2. Contrast of retrospective projections performance of colon cancer between INLA and 

MCMC for different immigration groups and genders. Mean absolute error, mean of CRPS, 

statistic and corresponding p-value are listed. 
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Contrast of retrospective projections performance of liver cancer between INLA and MCMC  

        

Methods 

 

Immigration 

INLA MCMC 

        

Female 

immigrants >10 

5.77 5.82 0.87 0.38 7.94 7.07 0.92 0.35 

Female immigrants 

≤10 

10.75 8.44 2.14 0.03 13.26 7.56 1.38 0.17 

Female locals 8.71 8.11 0.74 0.46 11.18 10.92 1.42 0.16 

Male 

immigrants >10 

8.07 7.31 0.88 0.38 7.87 6.21 1.04 0.30 

Male immigrants 

≤10 

12.32 9.68 1.75 0.08 21.45 15.27 1.72 0.08 

Male locals 5.33 3.48 0.45 0.65 6.89 6.04 0.88 0.38 

eTable 3. Contrast of retrospective projections performance of liver cancer between INLA and 

MCMC for different immigration groups and genders. Mean absolute error, mean of CRPS, 

statistic and corresponding p-value are listed. 
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Contrast of retrospective projections performance of pancreatic cancer between INLA and MCMC  

        

Methods 

 

Immigration 

INLA MCMC 

        

Female 

immigrants >10 

4.05 4.00 0.24 0.81 7.28 6.85 0.59 0.55 

Female immigrants 

≤10 

7.25 7.11 0.58 0.55 9.10 8.42 1.19 0.23 

Female locals 5.75 4.25 0.44 0.66 8.73 8.02 1.45 0.15 

Male 

immigrants >10 

5.12 3.89 0.38 0.70 10.44 7.68 1.94 0.05 

Male immigrants 

≤10 

7.50 6.35 1.05 0.30 11.27 9.88 1.52 0.14 

Male locals 5.93 3.98 -0.45 0.65 7.26 6.04 -0.99 0.32 

eTable 4. Contrast of retrospective projections performance of pancreatic cancer between INLA 

and MCMC for different immigration groups and genders. Mean absolute error, mean of CRPS, 

statistic and corresponding p-value are listed. 
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Contrast of retrospective projections performance of stomach cancer between INLA and MCMC  

        

Methods 

 

Immigration 

INLA MCMC 

        

Female 

immigrants >10 

2.91 2.33 0.19 0.85 7.72 5.49 0.77 0.44 

Female immigrants 

≤10 

9.83 6.52 1.47 0.14 9.19 8.03 1.33 0.18 

Female locals 5.15 4.67 0.25 0.80 8.45 7.98 0.58 0.56 

Male 

immigrants >10 

2.03 0.77 0.16 0.87 3.95 2.67 0.42 0.67 

Male immigrants 

≤10 

12.72 10.38 -2.75 <0.01 12.52 9.37 -2.54 0.01 

Male locals 6.93 3.63 0.46 0.65 7.82 6.18 0.87 0.38 

eTable 5. Contrast of retrospective projections performance of stomach cancer between INLA and 

MCMC for different immigration groups and genders. Mean absolute error, mean of CRPS, 

statistic and corresponding p-value are listed. 

 

 

 

 

Contrast of retrospective projections performance of prostate cancer between INLA and MCMC  

        

Methods 

 

Immigration 

INLA MCMC 

        

Male 

immigrants >10 

2.59 1.21 0.23 0.80 2.68 2.33 0.18 0.86 

Male immigrants 

≤10 

6.20 4.39 0.89 0.38 6.98 5.01 1.02 0.30 

Male locals 5.18 3.92 0.77 0.44 4.90 2.65 0.63 0.52 

eTable 6. Contrast of retrospective projections performance of prostate cancer between INLA and 

MCMC for different male immigration groups. Mean absolute error, mean of CRPS, statistic and 

corresponding p-value are listed. 
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